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Preface

The subject of radiative transfer has matured to the point of being a well-developed
tool, which has been adapted over the years to a host of disciplines, ranging from
atmospheric and ocean optics to stellar atmospheres. It has also become a part of many
engineering curricula, since its industrial applications (particularly for the infrared)
are wide ranging. As a result of this broadness, developments of radiative transfer
theory in many separate fields have grown up in isolation. In comparing the literature
in these various disciplines, one finds a bewildering multiplicity of approaches, which
often obscures the fact that the same fundamental core is present, namely the radiative
transfer equation. The same can be said for the two fields of atmospheric radiation and
ocean optics. These have evolved along largely separate paths, with their own sets of
jargon and nomenclature. However, in view of the fact that there is a growing need
for interdisciplinary research involving the coupled atmosphere-ocean system, we
feel that the time has come to write a textbook that acknowledges the following basic
fact: The radiation that enters, or is emitted by, the ocean encounters the same basic
processes of scattering and absorption as those involved in atmospheric radiation.
There are no inherently different optical properties between atmospheric and aqueous
media. Because the two media share a common interface that readily passes radiative
energy, there is even more need for a unified approach.

Coming from an atmospheric background, we must confess to having built-in biases
toward the nomenclature and jargon of atmospheric radiation. To counteract this, we
inform the reader of its oceanic counterpart whenever an atmospheric radiation variable
is defined. We also present a table of nomenclature comparing the two usages. A
glossary of terms should also be helpful in bridging the gap between fields.

This book is an outgrowth of two graduate courses that have been taught more
or less regularly by G. E. Thomas at the University of Colorado for the past thirty
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years. Its content has also greatly benefitted from a course taught by K. Stamnes at
the University of Alaska for the past fifteen years. A more or less common body
of notes was used in the teaching of those courses, and a common philosophy has
evolved. This philosophy is based on the notion that students benefit most from a
single-minded systematic approach, that of derivation, formulation, and solution of
the radiative transfer equation. Along the way, numerous examples and problems are
worked out, and physical interpretation is constantly stressed.

The book starts with an introduction of the basic concepts of absorption, emission,
radiative equilibrium, radiative forcing, and feedbacks. A brief review is provided
of atmospheric and oceanic vertical structures and their basic optical properties. In
Chapter 2 we define the basic state variables of the theory, such as intensity (radiance)
and flux (irradiance), as well as prove several useful theorems. Here we introduce
the fundamental law of extinction and a general form of the differential equation
of radiative transfer. In Chapter 3 we introduce the first of the two types of light-
matter interactions, that of scattering. A discussion of scattering in its various guises
(Rayleigh, resonance, Mie-Debye, etc.) is followed by a simple-harmonic oscillator
treatment of the line-broadening process, from which follows the important Lorentz
line-broadening formula. Then Chapter 4 considers the second basic type of interac-
tion, that of absorption. The topics of thermal emission, the Planck Law, and local
thermodynamic equilibrium (LTE) are illustrated through the use of the two-level atom
concept. This approach also illuminates the importance of collisions (and the radiation
field itself) in maintaining LTE. Chapter 5 concerns itself with the radiative properties
of solid, aqueous, and atmospheric media, particularly with respect to their boundary
surfaces. The solution of the radiative transfer equation in the limit of zero scatter-
ing is then generalized to obtaining a formal solution in the general case (including
both scattering and absorption). Half-range quantities in a slab medium are defined.
Chapter 6 sets the stage for solving the radiative transfer equation in emphasizing the
formulation of problems as an essential step in their ultimate solution. Chapter 7 is
almost entirely devoted to the two-stream (or two-flow analysis in ocean optics) ap-
proximate solution of various prototype problems. In our opinion, this is the simplest
and most intuitive solution technique available. Even though its pedagogic value often
exceeds its computational accuracy, there is usually something in this method to learn
by even the most experienced of workers. Chapter 8 describes a solution technique
that is a natural outgrowth of the two-stream method wherein the number of streams
is allowed to increase until the solution is as accurate as desired.

The last three chapters deal with various applications of the theory. Chapter 9
contains a detailed accounting of shortwave transfer of solar radiation through various
types of media (clear air, clouds, water, and snow), with emphasis on UV transmission
as it is affected by atmospheric ozone. Transfer of longwave transfer of planetary
infrared radiation is the subject of Chapters 10 and 11. Finally, Chapter 12 is concerned
with radiation and climate, in particular the greenhouse problem. Concepts employed
by general circulation climate models are illustrated by the use of simple two-stream
ideas, including the joint effects of radiation and convection; radiative forcing from
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greenhouse gases, clouds, and aerosols; climate gain and feedback; the runaway and
"anti-greenhouse effect"; etc.

The book contains five appendices (A-E), but fourteen additional appendices (F-S)
are referred to in the text. These (including other supplementary material) are available
through the following web page: h t t p : / / o d i n . mat. s t evens- tech . e d u / r t t e x t /

This book assumes that the reader is familiar with the fundamentals of electro-
magnetic theory, optics, thermodynamics, and the kinetic theory of gases, with some
basic knowledge of the quantum structure of atoms and molecules. Familiarity with
the fundamentals of integral calculus and ordinary and partial differential equations
is required. An elementary knowledge of linear algebra and numerical analysis will
make it easier to follow Chapter 8. The book is most suitable as a text for advanced
seniors and first-year graduate students at U.S. universities. It is intended as a first text
for students who need not only a basic theoretical knowledge but an exposure to mod-
ern methods of solution of atmospheric and oceanic radiation problems. It could be
preceded by, or supplemented with, a course at the same level describing the physical
processes of light-matter interactions. It could be followed with courses on more ad-
vanced topics, such as remote sensing, inversion techniques, climate modeling of the
air-sea system, or computer-intensive methods involving problems coupling radiation
with dynamics, cloud microphysics, photochemistry, or photobiology.

There are an enormous number of research papers and books on this subject already.
So why do we add another book? Our motivation was to write a tutorial that had the
single theme of the practical mathematical solution of the radiative transfer equation.
Although this would seem to be an obviously desirable quality, we felt that its uni-
form application was lacking in all the texts we used over the years. However, we
would be remiss if we did not acknowledge an enormous debt to the books by the late
S. Chandrasekhar (Radiative Transfer, 1949) and R. M. Goody (Atmospheric Radia-
tion, I, Theoretical Basis, 1964). These two masterworks have inspired us throughout
our academic careers, and they still contain much to teach us even today. Of course,
there are many other wonderful sources of information. We have acknowledged only
a few original contributors to the ideas and concepts we so liberally have borrowed
from scores of others. We include a few key references at the end of each chapter,
from which more detail can be obtained. The reader must dip into the vast literature
to acquire a historical view of who actually thought of the concept first, and in what
context.
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Chapter 1

Basic Properties of Radiation, Atmospheres,
and Oceans

1.1 Introduction

This chapter presents a brief overview of the spectra of the shortwave solar and long-
wave terrestrial radiation fields and the basic structure of atmospheres and oceans.
Some general properties of the emission spectra of the Sun and the Earth are described.
Their broad features are shown to be understandable from a few basic radiative trans-
fer principles. We introduce the four basic types of matter that interact with radiation:
gaseous matter, aqueous matter, particles, and surfaces. The stratified vertical struc-
ture of the bulk properties of an atmosphere or ocean is shown to be a consequence of
hydrostatic balance. The vertical temperature structure of the Earth's atmosphere is
shown to result mainly from radiative processes. Optical paths in stratified media are
described for a general line-of-sight direction. Radiative equilibrium, the greenhouse
effect, feedbacks, and radiative forcing are introduced as examples of concepts to be
dealt with in greater detail in Chapter 12.

The ocean's vertical temperature structure, and its variations with season, are dis-
cussed as resulting from solar heating, radiative cooling, latent heat exchange, and
vertical mixing of water masses of different temperature and salinity. Its optical prop-
erties are briefly described, along with ocean color. Section 1.7 prepares the reader for
the notation and units used consistently throughout the book.

1.2 Parts of the Spectrum

In Table 1.1, we summarize the nomenclature attached to the various parts of the visible
and infrared spectrum. The spectral variable is the wavelength X. Here A. = c/v, where
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Table 1.1. Subregions ofthe spectrum.

Subregion

Xrays

Extreme UV

FarUV

Middle UV, or
UV-C

UV-B

UV-A

Visible, or PAR*

NearlR

Thermal IR

Range

X < 10 nm

10 < A < 100 nm

100 < X < 200 nm

200 < X < 280 nm

280 < X < 320 nm

320 < X < 400 nm

400 < X < 700 nm

0.7 < X < 3.5 /xm

3.5 < X < 100 /zm

Solar
variability

10-100%

50%

7-80%

1-2%

<1%

<1%

<0.1%

Comments

Photoionizes all thermosphere
species.

Photoionizes O2 and N2.
Photodissociates O2.
Dissociates O2. Discrete

electronic excitation of atomic
resonance lines.

Dissociates O3 in intense Hartley
bands. Potentially lethal to
biosphere.

Some radiation reaches surface,
depending on O3 optical depth.
Responsible for skin erythema.

Reaches surface. Benign to
humans. Scattered by clouds,
aerosols, and molecules.

Absorbed by ocean, land.
Scattered by clouds, aerosols,
and molecules. Primary energy
source for biosphere and
climate system.

Absorbed by O2, H2O, CO2 in
discrete vibrational bands.

Emitted and absorbed by
surfaces and IR-active gases.

Note: TAR stands for "photosynthetically active radiation."

c is the speed of light and v is the frequency ([s l] or [Hz]). In the IR X is usually
expressed in micrometers (or more commonly microns, where 1 /xm = 10~6 m). In
the UV and visible spectral range, X is expressed in nanometers (1 nm = 10~9 m).
A wavelength unit widely used in astrophysics and laboratory spectroscopy is the
Angstrom (1 A = 10~10 m). For completeness we list both X rays and the shorter-
wavelength UV regions, even though they are not discussed in this book. The third
column lists the known solar variability (in percent), defined as the maximum minus
minimum divided by the minimum. We also provide brief comments on how radiation
in each spectral subregion interacts with the Earth's atmosphere. A common usage
is to denote the solar part of the spectrum as shortwave radiation and the thermal
infrared (IR) as longwave radiation. The latter is sometimes referred to as terrestrial
radiation.
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1.2.1 Extraterrestrial Solar Flux

In this section we consider some elementary aspects of solar radiation and the origin
of its deviations from blackbody behavior. We will assume the reader is familiar with
the concept of absorption opacity, or optical depth, t(v) at frequency v. The basic
ideas are reviewed in Appendix G and covered more thoroughly in Chapter 2.

In Fig. 1.1 we show the measured spectral flux, or irradiance, of the Sun's radiative
energy at a distance of one astronomical unit re(r® = l .SxiO6]™).1 Integrated over
all frequencies, this quantity is called the solar constant, S [W • m"2]. These data were
taken by a spectrometer on board an Earth-orbiting satellite, beyond the influences of
the atmosphere.2 The solar constant is not actually a constant but is slightly variable.
For this reason, the modern term is the total solar irradiance, whose value3 is about
1368 W • m~2. The total solar irradiance S represents the total instantaneous radiant
energy falling normally on a unit surface located at the distance r e from the Sun. It
is the basic forcing of the Earth's heat engine, and indeed for all planetary bodies
that derive their energy primarily from the Sun. The quantity S(r^/r2) is the total
instantaneous radiant energy falling normally on a unit surface at the solar distance r.

Near IR

s

^

cd

o
CO

10
200 400 600

Wavelength (nm)
800 1000

Figure 1.1 Extraterrestrial solar flux, or irradiance, measured by a spectrometer on board an
Earth-orbiting satellite. The UV spectrum (119 < X < 420 nm) was measured by the
SOLSTICE instrument on the UARS satellite (modified from a diagram provided by G. J.
Rottmann, private communication, 1995). The vertical lines divide the various spectral
subranges defined in Table 1.1. The smooth curves are calculated blackbody spectra for a
number of emission temperatures.
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Also shown in Fig. 1.1 are spectra of an ideal blackbody at several temperatures. Re-
quiring that the total energy emitted be the same as a blackbody, one finds that the
Sun's effective temperature is 5,778 K. If the radiating layers of the Sun had a uni-
form temperature at all depths, its spectrum would indeed match one of the theoretical
blackbody curves exactly. The interesting deviations seen in the solar spectrum can be
said to be a result of emission from a nonisothermal atmosphere. Radiative transfer
lies at the heart of the explanation for this behavior.

We can explain the visible solar spectrum qualitatively by considering two charac-
teristics of atmospheres - 1. their absorption opacity x (v) depends upon frequency and
2. their temperature varies with atmospheric depth - and one basic rule - that a radiat-
ing body emits its energy to space most efficiently at wavelengths where the opacity is
approximately unity. This rule is explained in terms of the competing effects of absorp-
tion and emission. In spectral regions where the atmosphere is transparent (r (v) <3C 1),
it neither emits nor absorbs efficiently. In contrast, where it is opaque (r (v) ^> 1), its
radiative energy is prevented from exiting the medium, that is, it is reabsorbed by sur-
rounding regions. Atr(v) « 1, a balance is struck between these opposing influences.

At visible wavelengths, the Sun's opacity is unity deep within the solar atmosphere
in the relatively cool photosphere, where the temperature is =5,780 K. Regions as
cool as 4,500 K are apparent at 140-180 nm (see Fig. 1.1). At shorter wavelengths
the opacity increases, thereby raising the effective emission height into the higher-
temperature chromosphere. The solar spectrum can be thought of as a "map" of the
vertical temperature structure of the Sun. The map can be read provided one has
knowledge of the dependence of opacity of the solar atmosphere on wavelength.

1.2.2 Terrestrial Infrared Flux

An understanding of radiative transfer is also essential for understanding the energy
output of the Earth, defined to be the spectral region X > 3.5 /xm. Figure 1.2 shows
the IR emission spectrum measured from a down-looking orbiting spacecraft, taken
at three different geographic locations.4 Also shown are blackbody curves for typical
terrestrial temperatures. The spectral variable in this case is wavenumber v = I/A,,
commonly expressed in units of [cm"1]. Again, as for the solar spectrum, the de-
viations are attributed to the nonisothermal character of the Earth's atmosphere. The
spectral regions of minimum emission arise from the upper cold regions of the Earth's
troposphere where the opacity of the overlying regions is ~ 1 . Those of highest emis-
sion originate from the warm surface in transparent spectral regions ("windows"),
with the exception of the Antarctic spectrum, where the surface is actually colder than
the overlying atmosphere (see Fig. 1.2). In this somewhat anomalous situation, the
lower-opacity region is one of higher radiative emission because of the greater rate of
emission of the warm air. Again, the deviations from blackbody behavior can be un-
derstood qualitatively in terms of the temperature structure of the Earth's atmosphere
and the variation with frequency of the IR absorption opacity.



1.2 Parts of the Spectrum

150

100

50

0

•A

I

- " 325K

i " ~3oox A J ^ 0 ^ .

100

50

0

' 1 250lĵ
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Figure 1.2 Thermal emission spectra of Earth measured by the IRIS Michelson
interferometer instrument on the Nimbus 4 spacecraft (see Endnote 4). Shown
also are the radiances of blackbodies at several temperatures, (a) Sahara region;
(b) Mediterranean; (c) Antarctic.
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1.3 Radiative Interaction with Planetary Media

1.3.1 Feedback Processes

The properties of planetary media (chemical and dynamical) may themselves be af-
fected by radiation, on all spatial scales. These changes may then further influence the
way the media interact with radiation, etc. On the macrophysical (much greater than
molecular) scale, we will mention two examples: 1. During daytime, solar radiation
heats the Earth's surface and atmosphere. Often there results a fluid instability, which
causes air to be set into convective motion, some air parcels moving upward, others
downward. Upward air motion causes adiabatic cooling and, if the atmosphere is suf-
ficiently moist, will lead to condensation and cloud formation. Clouds will alter the
distribution of incoming sunlight and absorb and emit IR radiation, and thus affect the
heating, etc. 2. A second example is that of ocean photosynthesis. The concentrations
of light-absorbing phytoplankton determine the depth dependence of the radiation
field, which itself governs the viability of such organisms.

If we had to concern ourselves with these "chicken-and-egg" problems of simulta-
neous mutual interactions of the medium and the radiation, this book would be very
different and the subject much more difficult. Throughout, we will deal with the optical
properties of planetary media as if they were specified a priori. This is a useful fiction
for our purposes. Our neglect of these so-called feedback processes necessarily rules
out a treatment of many interesting climate phenomena (cloud-radiation interactions,
ocean photo-biologic feedback on climate change, etc.). Fortunately these feedback
processes do not alter the fundamental description of the light-matter interaction. The
speed of light is so high that the radiation field adjusts itself instantaneously to its
environment. As a result radiative transfer is essentially a quasi-static phenomenon,
and consequently its interaction with matter can usually be treated separately from
other physical influences.

On the microphysical (molecular) scale, the presence of radiation can alter the basic
optical properties of matter itself. Radiative heating leads to a redistribution of quan-
tized states of excitation (for example the vibratory motion of molecules), which in
turn alters the light interaction properties of the gas. In other words, the absorptive and
emissive properties of a gas depend upon its temperature, which is itself affected by
radiative heating. Again a fortunate circumstance usually allows us to decouple these
two situations, so that the gas temperature may be considered to be an externally spec-
ified quantity, independent of the radiation field. This is contingent on the gas density
being sufficiently high, so that Kirchhoff's Law is obeyed (§5.2.1). This condition is
easily met for the lower portions of most planetary atmospheres and for the ocean.

1.3.2 Types of Matter that Affect Radiation

Pretending that they are independent of the radiation, we now focus on those aspects
of oceans and atmospheres that are important in modifying the radiation field. For our
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purposes, there are four forms of matter that can affect radiation:

Gaseous matter: Under local thermodynamic equilibrium conditions (§5.2.1),
the density p, temperature 7\ and chemical composition are normally all that
is required to determine the optical properties. Gas pressure p should also be
included in this list, although it is not independent of p and T. Gas pressure,
through its collisional effects on the quantized excited states of the molecules, af-
fects absorption of light by altering the line strengths, as well as the line positions
in frequency and their spectral width (§3.3.3). The quantities p, T, and p are
related to one another by an empirical "real-gas" formula, although it is almost
always an adequate approximation to use the ideal gas law (see the following
section).

Aqueous matter. As in gaseous media, density largely determines the optical
properties of pure ocean water. Salinity, which is important for ocean dynamics,
is unimportant for the optical properties. However, "pure sea water" hardly ex-
ists outside the laboratory. "Impurities" usually dominate the optical properties
of natural bodies of water.

Particles'. The atmospheric particulate population consists of suspended parti-
cles (aerosols) and condensed water (hygrosols). The latter is the generic term
for water droplets and ice crystals, or combinations with dust. Airborne particles
may be of biological origin or originate from pulverization of solid surfaces. Par-
ticles are frequently chemically or physically altered by the ambient medium, and
these alterations can affect their optical properties. Particles with sizes compa-
rable to the wavelength take on optical characteristics that can be quite different
from their parent-solid bulk optical properties (§4.2). Oceanic particles consist
of a large variety of dissolved and suspended organic and inorganic substances,
such as the variously pigmented phytoplankton and organic yellow substances.5

Solid and ocean surfaces: The atmospheres of the terrestrial planets are all in
contact with surfaces, which vary greatly in their visible-light reflectance and
absorptance properties (§5.2). In many applications their strong continous ab-
sorption in the IR allows them to be treated as thermally emitting blackbodies,
an enormous theoretical simplification. Knowledge of the visible reflectance of
underlying land and ocean surfaces is necessary for calculating the diffuse ra-
diation field emergent from the atmosphere. In addition, the reflectance of the
ocean bottom in shallow seas has an important influence on the diffuse radiation
field in the ocean and on the radiation leaving the ocean surface.

l .4 Vertical Structure of Planetary Atmospheres

It is useful to describe those general aspects of similarity and dissimilarity of oceans and
atmospheres. First, they are similar in that they are both fluids, that is, they readily flow
under the influences of gravity and pressure differences. Also, they both obey the basic
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equation of hydrostatic equilibrium. A fundamental difference is that atmospheres
are highly compressible, whereas oceans are nearly incompressible. A quantitative
difference arises from the fact that the average density of water (1 x 103 [kg • m~3]) is
much higher than that of most planetary atmospheres. For the Earth's atmosphere on a
clear day at sea level, a visible light photon can traverse unattenuated a horizontal path
many hundreds of kilometers long. In the ocean, it penetrates at most a few hundred
meters before being attenuated. Of course for sufficient depths in the atmospheres of
Venus and of the giant outer planets, the atmospheric density can approach or even
exceed that of water.

1.4.1 Hydrostatic and Ideal Gas Laws

In this section, we describe some important bulk properties of the atmosphere and
ocean, described by its density, pressure, temperature, and index of refraction. As a
result of gas being highly compressible, the atmospheric density, p [kg • m"3], the
mass per unit volume, varies strongly with height, z. For both atmospheres and oceans
in a state of rest, the pressure, p, must support the weight of the fluid above it. This
is called a state of hydrostatic equilibrium. With increasing height in the atmosphere,
the density decreases as the pressure decreases (Boyle's Law). With increasing depth
in the ocean, this also holds true but the density change is slight.

Consider the atmospheric case. In differential form, the weight of the air (mass
times the acceleration of gravity g) in a small volume element dV is gdM, where
dM is the mass of the air inside the volume. Now dM = pdV = pdAdz, and the
net force exerted by the surrounding gas on the parcel is —dpdA. The differential
dp is the change in pressure over the small height change dz. The minus sign comes
from the fact that the pressure dXz + dz is smaller than at z, and the upward buoyancy
force must be positive. Equating the two forces, —dpdA = gpdAdz, we find upon
cancellation of the d A term

dP = -gpdz. (1.1)

For planetary atmospheres of moderate and low density, and specifically the Earth's
atmosphere, the equation of state is closely approximated by the ideal gas law,

^ (1.2)

where M is the mean molecular mass, R is the gas constant per mole, and n is the total
concentration of molecules (number of molecules per unit volume). More detailed
descriptions of each of the above quantities are given below. Substituting Eq. 1.2 into
Eq. 1.1, we find

* * = - * * w h e r e H=™ (1.3)
p H Mg

H is called the atmospheric scale height.
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Earth's atmosphere consists of a mixture of long-lived, permanent species, together
with many other minor species molecules. The /th species contributes to the overall
bulk density through its molecular mass M(i) and its concentration nt. Air contains a
"standard" mixture of 78% nitrogen (M(N2) = 28), 21% oxygen (M(O2) = 32), and
about 1% argon (M(Ar) = 40). The proportions of these constituents are essentially
constant up to about 95 km. Above this height, the homopause, M, decreases as the
composition changes to lower-mass species, such as O, N, and He. This results from
photodissociation of the heavier molecules, combined with gravitational separation
tending to place the lighter elements at the highest levels.

Integrating Eq. 1.3 from z! = z0 to z! = z, and using the ideal gas law, Eq. 1.2, we
obtain

Three forms of the hydrostatic equation

P(z) = - / dz'/H{z')
L zo

^ ( z o )
n(z) =n(zo) _ , . exp

T(z)

P(z) =
T(z)

z

- J dz'/H(z')
. Z0

z

- J dzf/H{z')

(1.4a)

(1.4b)

(1.4c)

It is clear that from a knowledge of surface pressure p(zo) and the variation of scale
height H(z) from z0 to z, Eqs. 1.4 allow us to determine the bulk gas properties at any
height z.

The various quantities and their units [ ] are defined below:

z, zo* Height [m] above a reference level zo- Zo is usually the surface, z0 = 0.
The more common atmospheric unit is [km].

p: Gas density or mass per unit volume, p = 1.293 [kg • m~3] at 0°C and 1 bar,
which is the condition of standard temperature and pressure (STP).

p: Gas pressure [N • m~2] at height z. p is the sum of the partial pressures
Y^ Pi- Pressure is expressed in bars, 1 [bar] = 101,325 [N • m~2], or Pascals
[Pa]. Another common unit is the ra////Z?ar ([mbar]) or hectoPascal. 1 [mbar] =
1 [hPa] = 10"3 [bar] = 102 [Pa].

T: Atmospheric temperature in Kelvins [K]. In everyday use, degrees Celsius
[C] is more frequent. T(C) = 273.2 + T(K).

H: Atmospheric scale height [m], more commonly [km], equal to RT/Mg =
RaT/g. Up to the homopause, H ^ 29.3 T (T in [K]) [m].

R,Ra: Molar gas constant, 8.3143 x 103 [J • K"1 • kmol"1], and specific gas
constant = 2.87 x 102 [J • K"1 • kg"1], respectively. The latter applies to air
below the homopause. One kilogram-mole [kmol] is the quantity of matter in
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a volume having a mass equal to its molecular weight. One kmol contains the

number Na (Avogadro's number) = 6.022 x 1026 molecules.

n: Total gas concentration [m~3], equal to the sum of the individual gas concen-

trations J2nt-

M: Mean molecular mass per kilogram-mole [kg • kmol"1]. For dry air, M =

28.964 kg • kmol"1 up to the homopause. M = J2niMt/n, where Mt are the

molecular masses of the individual species.

g: Acceleration due to gravity [m • s"2]. g(z) = g(zo)(zo + R®)2/(z + # e ) 2 ,
where g(zo)= 9.807 [m • s~2] and R® is the Earth's mean radius, equal to
6,371 [km]. Strictly speaking, g also should include the small (<1%) outward
centripetal force due to the Earth's rotation, which varies with latitude.

The following approximation is often made to simplify the form of the hydrostatic
equation. Assuming that g, T, and M are constant with height, we can integrate the
argument of the exponential in Eqs. 1.4 to obtain

D(Z)" w ^ -(z-zo)/# (\ <za\——- ~ e , (i.Da;
P(zo)

n(z) ^c_{

n(zo)

Pfe) ^c-(
p(zo)

The above equations show that H is an e-fold height for density.
Another important property of ideal gases is given by Dalton 's Law, which states

that the total pressure equals the sum of the partial pressures pi, where / denotes the /th
gas species. As long as the gases are well mixed, each separate species concentration
nt obeys the same hydrostatic equation. However, this does not apply to short-lived
species (time scales short compared to a mixing time scale, typically ~hours to a few
days in the troposphere). Examples are ozone (O3), which is chemically destroyed or
created, and water (H2O), which undergoes phase changes on short time scales. The
hydrostatic equation does not apply to these species, and empirical or theoretically
modeled determinations of species concentrations are then needed. This is one of the
principal tasks of the subject of aeronomy.

The hydrostatic equation shows that atmospheric bulk density and pressure change
rapidly with height with an ^-folding height of 6 to 8 km. An important property
of an atmosphere or ocean is its tendency to arrange itself into a vertically stratified
and horizontally homogeneous medium. Quasi-horizontal motions tend to homoge-
nize properties along constant-pressure (more correctly constant-entropy) surfaces.
Horizontal variations do occur (after all, this is the origin of weather), particularly in
temperature, but usually on spatial scales much greater than a scale height. However,
all over the Earth, the pressure and density at sea level are nearly the same on a hori-
zontal plane. Even during severe weather disturbances, the horizontal surface pressure

(1.5b)

(1.5c)
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difference is no greater than about 15%. For our purposes, the atmosphere (or ocean)
may be regarded as locally stratified.

The local stratification property does not usually apply to particles. They tend to have
highly localized sources and/or sinks; for example, cloud droplets usually occur only
in local pockets of rising air as a result of water condensation. Clouds, particularly of
convective origin, may have horizontal scale sizes considerably less than a scale height.
In contrast, stratiform clouds get their name from being horizontally homogeneous.
Horizontal air motions tend to stratify noncondensible particulates, such as dust or
pollen. Ocean currents tend to equalize particle concentrations more rapidly in the
horizontal plane than in the vertical. However, inhomogeneities such as phytoplankton
"blooms" tend to occur in regions of local upwelling, in analogy to atmospheric clouds.
The assumption of local stratification is also called that of a plane-parallel or slab
medium, when referring to its radiation field.

Since a knowledge of temperature is essential to understanding the bulk structure
of an atmosphere, we will consider temperature as a key atmospheric variable. (The
other key variable is composition, which largely determines the optical properties.)
What physical processes give rise to the observed temperature structure? This is a
vast subject, and we can only give a few examples. First of all, consider that part of
an atmosphere in thermal contact with the warm surface of the land or ocean. During
daytime, the upward transport of heat tends to expand the air near the surface. Due to
the tendency for pressure to remain constant, the air density decreases, according to
Eq. 1.2. Lower density means that the air is more buoyant than the overlying cooler
air, and a convective instability may occur, in which air is set into small-scale tur-
bulent motion. The rising air cools by expansion, displacing cooler air. Because of
its higher density, the upper cooler air sinks and compressively heats. If allowed to
approach equilibrium, a temperature gradient is set up that, in the absence of any other
heating/cooling processes (i.e., it is an adiabatic process), is given by

dT\ g
— = (dry atmosphere), (1.6)
9*/ad CP

where cp is the specific heat of (dry) air= 1,006 [J • kg"1 • K"1]. This is called the
dry adiabatic lapse rate, whose value is approximately —9.8 K • km"1 for Earth. For
moist air, condensation and release of latent heat cause the gradient to be considerably
smaller (in magnitude) than —g/cp. 3 T/3z can be as small as — 3 K • km" l , depending
upon the moisture content of the air.6

The tendency toward an adiabatic lapse rate for an atmosphere heated from below
is a fundamental property of planetary atmospheres. The observed mean temperature
profile for Earth displayed in Fig. 1.3 shows a nearly linear temperature lapse rate of
—6.5 Kkm" 1 in the lowest part of the troposphere.7 The region of declining tempera-
ture is called the troposphere, and its upper boundary the tropopause. The explanation
of this temperature minimum, and the increasing temperature in the upper region, the
stratosphere, lies in radiative processes, namely in the in situ solar absorption by the
ozone layer. The thermal transfer process will be described in more detail in Chapter 9.
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The upper region of declining atmospheric temperature in the 50-95 km height
range is called the mesosphere. At the upper boundary of the mesosphere, a second
temperature minimum occurs, called the mesopause. Again, the declining mesospheric
temperature is a consequence of radiative effects, in this case, a decreasing ozone
concentration and an increased efficiency of IR cooling. Low ozone concentrations
at these heights imply reduced solar heating, and IR radiative cooling causes this
atmospheric region to be significantly colder than the stratosphere, particularly at the
mesopause at about 85 km. However, this is not the whole story, as dynamical processes
are also important in this region.

The uppermost atmospheric region above 90 km, the thermosphere, is a very hot,
tenuous region forced by photoionization heating due to energetic UV and X-ray ab-
sorption. In the polar regions, energetic auroral electrons are also important for the
heat budget. The thermal structure is a result of imbedded solar heating and cooling
by airglow emission, combined with transport by thermal conduction and dynamical
advection. More details about the wavelength dependence of the solar radiation de-
posited in this region are provided in Table 1.1.

1.4.2 Minor Species in the Atmosphere

There are dozens of chemical species in the Earth's atmosphere, some naturally occur-
ring, others of anthropogenic origin. The ones of greatest interest are those that interact
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with UV and IR radiation, the polyatomic radiatively active gases. For reasons dis-
cussed in Chapter 4, the principal gases N2, O2, and Ar are generally unimportant
for visible and IR absorption. The study of atmospheric chemistry has importance in
problems of air pollution, climate, and the health of the biosphere, to mention a few
applications. Shortwave radiation plays a crucial role in determining the concentra-
tions of photochemically active species through the process of photolysis, in which
molecules are split up into smaller fragments (atoms and molecules) as illustrated in
Fig. 1.4a. One of these species, the ozone (O3) molecule, is of paramount importance
in providing life a protective shield to biologically damaging ultraviolet radiation. The
response of biological systems to ultraviolet radiation is illustrated in Fig. 1.4b. These
topics are further discussed in Chapter 9.

A species of key importance to terrestrial radiation, and thus to its heat balance, is
the water vapor molecule (H2O). Although present in fractions of 1% by volume, it
dominates the absorption of infrared radiation. Water vapor (along with several other
minor species) has the dual properties of allowing relatively free passage of shortwave
solar radiation while impeding the release to space of thermal infrared radiation. This
"trapping" of radiative energy causes the Earth's surface temperature to be significantly
higher than would be the case in the absence of those gases. The resemblance of this
mechanism to what happens in a glass hot house, or greenhouse, is why they are called
greenhouse gases. Additional species that trap infrared radiation are carbon dioxide
(CO2), methane (CH4), nitrous oxide (N2O), and the chlorofluorocarbons (CFCs).
Since these chemicals have a component of anthropogenic origin (so-called biogenic
gases), the effects of their increasing concentration on the heat budget is of great
societal concern.

1.4.3 Optical Line-of-Sight Paths
In atmospheric radiation problems, we frequently require a line-of-sight integration
over the ith species density, given by pt(z). In what follows we ignore atmospheric
refraction. Thus, light rays follow straight lines, and we need to evaluate the line-
of-sight slant column mass, Mi, between points P\ and P2, along the direction of
propagation Q. We will deal with a well-mixed species, such as CO2. Assuming
constant temperature and gravity, we integrate along the line-of-sight distance variable
s. Using Eq. 1.5c, we find

2 2

Mt(l, 2) = Idsptis) « A'feo) /*dse-[z*(s)-zM]/Hi. (1.7)
1 1

Referring to Fig. 1.5, we transform from the variable ds to dz\ds = dz sec #, where
0 is the polar angle (0 < 9 < n/2) made by the vector Q with the vertical, cos 0 =
\z-&\. z is a unit vector in the positive z direction. Integration of the above equation
yields

, 2) = Pi(zo)Hi sccO(e-Zl/Hi - e~Z2/Hi)

(1.8)
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Figure 1.4 Illustration of chemical and biological effects of solar radiation, (a) The photolysis
rate is determined by the integral of the product of the "actinic flux" of radiation, Iv

(x 10~15 s"1 cm"1), the photoabsorption cross section, an(v) (x 10~17 cm2), and the quantum
yield r](v). The net effect Ivan(v)r](v) (x 10~7 nm"1) is determined by the area under the
product curve as indicated, (b) The UV exposure is determined by the product of a biological
"action spectrum", A(v), and the solar irradiance, Fv. The instantaneous dose rate is the area
under the product curve as indicated.

We find that the species slant column mass between two atmospheric points sep-

arated by the heights z\ and zi, and whose direction is 0 from the normal, is the

difference of two quantities Mi (I, 2) = Mi(z\, 0) — Mi(z2,0), where

Mt(z, 0) = Pi(z)Ht sec(9 = sec(9 (1.9)
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Figure 1.5 Geometry of the slant-column number. The right-circular cylinder of
unit geometrical cross section contains M molecules (number per m2).

is the slant column mass between the height z and z —• oo along the direction Cl(0).
In the second result we have used the ideal gas law and the definition of Ht. Another
common notation for vertical column mass is u.

As discussed in Appendix G and in Chapter 2 the optical path is obtained by mul-
tiplying Mi by a mass absorption coefficient am. This assumes am does not vary
along the path - otherwise it must be inside the integration over path length. We can
visualize Ati( l , 2) as being the species atmospheric mass contained within a geo-
metric cylinder of unit cross section extending from points Pi to P2. For P2 outside
the atmosphere, Mi(z, 0) is the species atmospheric mass in an infinitely long slant
column above z in the direction 0. The above equation also shows that the quan-
tity Hi may be interpreted as the equivalent vertical thickness, if the species were
extracted from the air and compressed everywhere to a density equal to its surface
density.

The above equations are invalid for nearly horizontal paths, for which 0 is near 90°.
In the range 0 > 82°, it is necessary to consider the spherical nature of the atmosphere.
In fact, Mi does not diverge as 0 -> n/2, as predicted by Eq. 1.9, but reaches a finite
value, depending upon the radius of the planet (§6.4). Curvature effects are considered
further in §6.4.

Analogous to column mass we define the column number A//(l, 2) as the number
of molecules (of composition /, each with molecular mass M() in a cylinder of unit
cross section:

A/Kl, 2) = fds nt = Mt(l, 2)/M( = Ni{zi, 0) - M(zu 0). (1.10)

Although Mi has the mks units of [molecules • m~2], it is more commonly expressed in
units of atm • cm. This unit is the length of a column filled with the species of interest
and compressed to standard temperature and pressure (STP), which are 273.16 K
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Figure 1.6 Radiatively active atmospheric constituent height profiles of volume mixing ratio.
The ozone and water (above 25 km) profiles are taken from globally averaged data from the
HALOE experiment on board the UARS satellite. The remaining profiles are taken from
standard atmosphere compilations and from balloon measurements.

and 1013.25 mb, respectively. To convert from [molecules • cm"2] to [atm • cml, one
divides A// by Lochmidfs number, the air density at STP, nL = 2.687 x 1019 cm"3.

Well-mixed species (those with long photochemical lifetimes) such as N2, O2, and
CO2 may be described by the above equations up to the homopause.8 However, most
chemical species are photochemically produced and lost over time scales short com-
pared with a mixing time scale (see Fig. 1.6), and we cannot use Eqs. 1.7-1.9 for
the column number or column mass. Nevertheless, the dominant height variation of
many species, for example N2O and CH4, are at least quasi-exponential. A convenient
variable to describe deviations of the species height distribution from the hydrostatic
case is the mixing ratio. This is defined either in terms of the mass mixing ratio,
wl

m(z) = pt(z)/p(z), or the volume mixing ratio, wl(z) = nt{z)/n{z), where p(z) is
the total density and n{z) is the total concentration of the ambient atmosphere. Quite
often we are dealing with constituents with very small mixing ratios. Typically wl

is specified in parts per million by volume [ppmv] or parts per billion [ppbv]. wl

is also sometimes called the molar fraction of species /. wl
m is usually specified in

[g • g"1] (grams per gram). Figure 1.6 displays the volume mixing ratios of vari-
ous species versus height, derived from measurements and modeling studies. This
diagram is intended to be illustrative, rather than an accurate representation, since
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individual species can vary by large factors with time, season, and with the diurnal
cycle.

1.4.4 Radiative Equilibrium and the Thermal Structure
of Atmospheres

Atmospheric temperature plays a key role in the energy balance of any planet. A planet
is heated by absorption of solar radiation and cooled by emission of thermal infrared
radiation. Kirchhoff's Law (§5.2.1) states that matter at a finite temperature T will emit
at a rate that depends upon both the absorptive properties of the matter and the absolute
temperature. Thus a planet sheds its energy by radiating to space solely by this thermal
emission process. In general, these two rates do not balance one another at any one
location or time. As a result of this instantaneous imbalance of heating/cooling, the
temperature of a rotating planet with an axial tilt will undergo both diurnal and seasonal
cycles of temperature. However, the highs and lows tend to remain the same, and when
averaged over the entire surface area and over an orbital period, the mean temperature
is expected to remain constant, in the absence of internal or external changes. This
negative feedback of the planetary temperature (through Kirchhoff's Law) acts like a
giant thermostat, continually adjusting the rate of energy loss to compensate for excess
heating or cooling.

Assuming that the local thermal emission is balanced by the local rate of heating
due to absorption of radiation at all wavelengths is called local radiative equilibrium
(§5.2.1). This state of affairs is only met in special situations in the Earth's atmosphere,
for example in the upper stratosphere. However, analysis of outgoing and incoming
radiation shows that averaging the energy gains and losses over the entire planet
and over a suitably long time interval results in a very close balance, within the
accuracy of the measurements. This is called a state of planetary radiative equilibrium.
Satellite measurements verify this condition to a high accuracy, when averaged over the
course of a year. Climatic records show that the Earth's climate has been remarkably
stable over geologic time. The geologic record shows that climatic change has indeed
occurred, but life's continuing existence for 3.8 billion years attests to a basic climate
stability. Of current concern are fluctuations in climate that could be so extreme, in both
their magnitude and suddeness, that they could place great stress on the biosphere. For
example, changes in rainfall patterns could influence agricultural productivity and the
world's food supply. Fluctuations due to natural causes (for example, due to variability
of the solar "constant") and to inadvertent human influence (such as carbon dioxide
forcing) need to be clearly understood. We will consider only the most basic ideas of
energy balance in this chapter, and we will take up this subject again in the final chapter.

Other planetary atmospheres have temperature structures that pose their own par-
ticular challenges. For example, the high surface temperature of the planet Venus
(Ts = 750 K) requires a very powerful greenhouse mechanism.9 A second example is
the Martian atmospheric heat budget. Mars undergoes substantial global change in its
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70
Initiation Ls

1) 174
2) 201
3) 254

Decay
4) 275
5) 283
6) 292
7) 308
8) 312
9) 342

140 160 180 200 220

Atmospheric Temperature (K)

240 260

Figure 1.7 Temperature profiles of the atmosphere of Mars, derived from emission/
absorption spectra of the carbon monoxide microwave lines at 1.3 mm and 2.6 mm
(see Endnote 10). They are derived from full-disk averaged spectra obtained at the
Kitt Peak NRAO radio telescope during the period January-June, 1994. The spectral
dependence of the pressure-broadened line is used to retrieve atmospheric temperature
versus pressure with roughly 10-15 km vertical resolution. The various profiles reflect
the solar heating rates due to varying degrees of dust loading during the global dust
storm in 1994. Ls denotes the longitude of Mars relative to a fixed point in its orbit,
the spring equinox.

temperature structure, as shown in Fig. 1.7.10 This short-term variability in tempera-
ture is explained by the presence of differing heating distributions over the planet due
to variable dust loading. Solar absorption by suspended dust particles is responsible
for the temperature inversion.

Consider the total thermal energy of the entire climate system (excluding geother-
mal energy), E. Dividing this by the total surface area of the Earth, 4TVR2, yields
the average column-integrated energy E = E/AnR2. According to the First Law of
Thermodynamics, the time rate of change of the globally averaged column energy is
given by

dE
— =N =
ot

- p)Fs - (1.11)

Here N is called the mean radiative forcing and is equal to the net flux at the top of the
atmosphere. The incoming flow is the absorbed solar radiation (1 — p)F s , where p is
the spherical albedo and Fs is the average flux falling on the planet. The second term is
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the outgoing thermal emission F T O A at the top of the atmosphere (TOA). Characterizing
the mean outgoing IR radiation in terms of an effective temperature, Te, we get FTOA =
orB7;4, where aB = 5.67 x 10"8 [W-m"2 -K"4] is the Stefan-Boltzmann constant.
Further averaging over one year (or several years) yields a time- and space-averaged
radiative forcing (N), which is very close to zero. Assuming (N) = 0 implies planetary
radiative equilibrium. In this situation, the effective temperature is thus

The spherical albedo of Earth is about 30%, and Fs is one quarter of the solar constant,
Fs = 5/4 = 342 [W • m"2]. (The factor of 1/4 is the ratio of the total surface area to
the disk area of the Earth intercepting the radiation.) We find Te = 255 K or -18°C.
This value is considerably lower than Earth's mean surface temperature Ts, which is
288 K or 15°C. In fact, Te is the temperature of a fictitious airless body at 1 AU (e g.,
the Moon) that has the same albedo as the Earth. Actually the Moon's albedo is very
low, p = 0.07, and thus its effective temperature is higher than Earth's, Te = 367 K.
With its dark oceans, Earth would have an albedo similar to that of the Moon, were
it not for its extensive cloud cover. The effective temperature is a useful property for
all planets, even the gas giants (Jupiter and Saturn), which possess their own inter-
nal energy sources. For the Earth the internal (geothermal) energy production is only
~0.01% of the solar input and can therefore be disregarded.

The fact that Ts > TQ on terrestrial-like planets with substantial atmospheres is a
result of their being relatively transparent in the visible part of the spectrum and rela-
tively opaque in the infrared. A portion of the IR radiation emitted by the surface and
atmosphere is absorbed by polyatomic molecules in the atmosphere (the greenhouse
gases). Emission of this absorbed energy takes place in all directions. Some of this
energy is subsequently released to space, but a significant part is emitted downward,
where it may warm the surface. The greenhouse effect is thus the additional warming
of the surface by the downwelling IR "sky emission." In fact the warming of the
surface by absorption of diffuse sky and cloud radiation is nearly twice the direct solar
heating. It is sometimes loosely stated that the IR radiation is "trapped" between the
surface and the atmosphere, as if somehow it never escapes. In reality, the speed of the
energy flow is limited only by the radiative lifetimes of the molecular excited states
and the speed of light. In the opaque parts of the spectrum there is indeed a radia-
tive energy buildup (the energy density is raised), but in other parts of the spectrum,
the radiation readily escapes to space. This is particularly apparent in the 8-12 /zm
spectral "window," where the atmosphere is relatively transparent. According to the
principle mentioned in §1.2, this radiating level (at a height of about 5 km) is located
where the IR opacity is of order unity.

In Chapter 12, we examine in greater detail the temperature structure of the Earth's
atmosphere. For this brief introduction, we will illustrate the basic idea by using a
zero-dimensional model of the energy balance.11



20 Basic Properties of Radiation, Atmospheres, and Oceans

1.4.5 Climate Change: Radiative Forcing and Feedbacks

The notion of radiative forcing of the temperature structure of the atmosphere is in
widespread use in modern climate studies. Since the ocean is intimately involved in
the exchange of energy of the planet with the Sun, we will refer to the combined
ocean-atmosphere as the climate "system". Although the specification of the forcing
is straightforward, the job of describing its response to this forcing is a complex task, a
problem that is far from solution even with today's elaborate general circulation models
(GCMs). Nevertheless it is useful to consider a simplified model in which the response
is described in terms of feedback mechanisms already mentioned briefly. As a way of
introducing some of these ideas, we will begin with the definition of radiative forcing
and illustrate its usefulness in quantifying the relative effects of various perturbations
(external or internal) to the climate. We will then discuss briefly the ideas of how
feedbacks influence the response of the climate system. These concepts are described
in greater detail in Chapter 12.

To relate the radiative forcing to the surface temperature, we first consider the
outgoing flux to consist of the sum of two terms: the dominant term due to the surface
contribution and the second due to emission from the atmosphere. Neglecting the
smaller atmospheric contribution, and approximating the surface as black, we can
approximate the outgoing flux by FTOA ^ JpGBT*. % is the flux transmittance, the
fraction of radiation that survives passage through the atmosphere. If we now correct
this result for the neglected term, we can rewrite the above expression in terms of an
effective flux transmittance, 7 f̂f (0 < % < T& < 1), so that

(1.13)

The above equation states that the radiative forcing is a function of surface temperature.
We now consider a perturbation to the radiative forcing, such that N(TS) is changed

to N(TS) + AN. (We drop the average ((N)) notation, since by now there should be no
confusion that we are dealing with globally and time-averaged quantities.) Assuming
that the perturbed atmosphere relaxes to a new equilibrium state, and assuming small
changes, we can write the total derivative of N as the sum of the radiative forcing (the
"cause") and the atmospheric response (the "effect"):

response
forcing

0. (1.14)

Solving for the surface temperature response, we have

AT* = a AN, where a = -

(1.15)

The factor a is called the climate sensitivity. We have used the notation ATs
d to denote

the direct temperature response.
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Example 1.1 Climate Response to a CO2 Doubling

As will be discussed in Chapter 12, the radiative forcing from a doubling of CO2 may be
calculated from a detailed spectral radiative transfer model. Its value is AN ~ 4 W • m~2. We
can then find the temperature response due solely to the (negative) feedback of the change of
surface flux with temperature, or in other words, due to the change in the FT0A term, a =
[dia^T^/dTsr1 = KaB^Teff]-1 = rs /4FT 0 A = 288/(4 x 240) = 0.3 W • m"2 • K"1. Then
the direct response of the surface temperature, in the absence of feedbacks, Ars

d, is 0.3 x 4 = 1.2 K.

Example 1.2 Climate Response to a Change in the Solar Constant

Suppose the solar constant were to decrease by 1%. What is the change in the surface temper-
ature, assuming no feedbacks except for the negative feedback of the reduced thermal emission?
Since we ignore changes in the albedo, the climate sensitivity is simply a = [3/rTOA/drs]~

1. From
Eq. 1.11, AN = (1 — p)AFs. The change in surface temperature is thus ATS — a{\ — p)AFs.
From Eq. 1.13, we have

a = [dFT0A/dTsr
l = [d(ZffCrBTs

4)/dTsY
l = [(4/rs)FT0A]-1-

Since the unperturbed system is in radiative equilibrium, FTOA = (1 — p)Fs, and therefore

s - V4

Setting AFS/FS = -0.01 and Ts = 288 K, we find AJs
d = -0.72 K. Note that this would

partially offset the warming (+1.2 K) due to a simultaneous doubling of CO2.

We now consider the indirect effects on the surface temperature, brought about by
temperature-dependent processes. An effect is called a positive feedback if the changes
tend to amplify the temperature response. For example, increased temperature tends to
increase evaporation and thus raise the humidity. Since water vapor is a greenhouse gas,
increased IR opacity causes a further increase in temperature. In contrast, a negative
feedback tends to dampen the temperature response. For example, increased low-level
cloudiness could result from a warmer climate, and more clouds cause a higher albedo.
This in turn tends to cool the Earth. We can formalize this behavior by considering
the parameter Q (such as albedo) that depends upon the surface temperature. Then
the direct forcing AN is augmented by an additional term (dN/dQ)(dQ/dTs)ATs.
Thus AN + (3N/dQ)(dQ/dTs)AT, = -(dFTOA/dTs)ATs. Solving for the climate
sensitivity we find

a = [4FTOA/TS - (dN/dQ)(dQ/dTs)r
l. (1.16)

For an arbitrary number of forcings Qt, we can use the chain rule of differentiation to
obtain a general expression for the climate sensitivity:

a = 4FjOA/Ts— y (dN/dQi)(dQi/dTs)\ . (1.17)
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The temperature response can now be written as

(1.18)

where the gain of the climate system is

where A.,- = — — . (1.19)

The gain / = 1 in the absence of feedbacks, / > 1 when the net feedbacks are positive

(Z) ^i > 0), and / < 1 if the net feedbacks are negative (J2 ^/ < 0)-
Equation 1.18 would appear to tell us that the temperature response is independent

of the nature of the forcing mechanism, as long as it has the same numerical value. In
particular, it suggests that increases in two different greenhouse gas (such as CO2 and
CH4) have the same effect on climate if their individual forcings, ANt, are the same.
Detailed model calculations verify that this is indeed a good approximation, with two
notable exceptions: 1. stratospheric ozone forcing, which has a very different altitude
dependence than that of a well-mixed tropospheric gas, and 2. regionally concentrated
sulfate aerosols, which act in the global average in a different way than the well-mixed,
long-lived greenhouse gases.

The radiative forcings contributed by individual greenhouse gases over the past
several centuries are shown in Fig. 1.8a for different epochs.12 These results were com-
puted from a detailed radiative transfer model. The radiative forcing concept can be
extended to include clouds, where the forcing consists of both shortwave (due to albedo
changes) and longwave contributions (due to greenhouse trapping by cloud particles).
The detailed response of the climate system will depend upon the specifics of the
perturbation, and the quantities k( and a must be determined from a detailed climate
model. Current estimates for the epoch 1850 to present are shown in Fig. 1.8b, includ-
ing aerosol and solar forcing. The major indirect effects are a depletion of stratospheric
ozone caused by the chlorofluorocarbons and other halocarbons and an increase in the
concentration of tropospheric ozone.

The change in radiative forcing due to a CO2 increase occurring over the period
1900-1990 is estimated to be AN = 1.92 W • m~2. Since this corresponds to a direct
temperature change ATs

d of 0.356°C, and the actual temperature response was ATS =
0.5°C, the gain for the current climate is estimated to be 1.4. This does not take into
account the time lag of the response. A radiative forcing from CO2 doubling (see
Example 1.1) of 4 W • m~2 yields accurately a computed steady-state temperature
change of about 3° ± 1.5°C. Again, from a direct response of 1.2°C, this yields a gain
of 2.5 ± 1.25, which includes the effects of time lag.

The temperature is just one response among many. The dynamics and hydrologic
cycle will also be affected by radiative forcing, and these will have additional influences
on the biosphere and oceans. One might ask: What role do oceans play in climate
change? The simple system discussed above does not seem to require the ocean at all!
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Figure 1.8 (a) The degree of radiative forcing produced by selected
greenhouse gases in five different epochs (see Endnote 3). Until about
1960, nearly all the forcing was due to CO2; today the other greenhouse
gases combined nearly equal the CO2 forcing, (b) Estimates of the
globally averaged radiative forcing due to changes in greenhouse gases
and aerosols from pre-industrial times to the present day and changes in
solar variability from 1850 to the present day. The height of the bar
indicates a mid-range estimate of the forcing. The lines show the
possible range of values. An indication of relative confidence levels in
the estimates is given below each bar.

In fact, oceans play a crucial role in the time-dependent response. The oceans absorb
and give up heat to the atmosphere, over time scales that are very long compared to
atmospheric time scales. The time scale for atmospheric changes is of the order of
one year. For the ocean, several hundred years may ensue before the ocean has fully
responded to a climate perturbation. This causes a time lag in the response of the
climate system, and it gives rise to the notion of an "unrealized warming." We now
turn to some basic properties of the ocean.
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1.5 Density Structure of the Ocean

Some basic state variables of the ocean (such as density and temperature) are the same
as those of the atmosphere. The hydrostatic equation (Eq. 1.1) is unchanged. However,
the equation of state is quite different from the ideal gas formula. In particular, the den-
sity of water is not directly proportional to p/ T but is a much weaker nonlinear function
of these variables. It also depends upon the salinity S. This dependence may be ex-
pressed in terms of the empirical formula p = p(S, T, p = 0)/[l — p/K(S, T, /?)],
where K is the bulk modulus given by low-order polynomial fits in each variable
S, T, and p. As a numerical example, the density of pure water (S = 0) at 5°C
increases from 1,000 to 1,044 kg • m~3 from the surface to a depth where the pres-
sure is 1,000 bars (about 10 km depth). Even though the changes of p are small,
they nevertheless have important implications for the stability and circulation of
ocean water. However, such effects can usually be ignored from the optical point
of view.

The variation of pressure with depth is obtained by integrating Eq. 1.1 from the sea
surface downward to the depth h:

P(h) = Pa + j dtip(ti)g « Pa + pgh, (1.20)
0

where pa is the atmospheric pressure at the sea surface, and p is the depth-averaged
value of the density. This result shows that the total hydrostatic pressure is equal to
the sea-level atmospheric pressure plus the weight of the overlying column of water
(pgh), which varies linearly with depth.

As in atmospheric radiation problems, we are interested in the line-of-sight slant-
path mass of water between two points, P\ and P2. If the line of sight makes an angle
0 with the upward vertical direction (see Fig. 1.5), we have

M(l,2) = ph2sec6 - phisecO, (1.21)

where we assumed that h2 > h\. Comparing Eq. 1.9 to Eq. 1.21, we see that the result
for the ocean is the same as for the atmosphere, provided we replace the atmospheric
scale height H with the ocean depth h.

Knowledge of the slant-path water mass is usually sufficient for shortwave radiative
transfer studies in very pure waters, in which only Rayleigh scattering (§3.2, §9.3.1)
needs to be considered. In this case all water molecules take part in the light scattering
process in a similar way to the light scattering by air molecules that causes the blue
sky. However, in most practical radiation problems, water impurities are of crucial
importance. These are dissolved organic substances and suspended minerals and or-
ganic matter. Their concentrations can vary in almost arbitrary ways in the vertical.
Fortunately, the vertical stratification approximation is often valid.



1.6 Vertical Structure of the Ocean 25

1.6 Vertical Structure of the Ocean

The energy budget of the ocean is a subject of considerable interest for modern studies
of climate, because of the intimate coupling of the ocean (covering nearly three fourths
of the total world surface area) with the atmosphere. In the following we describe briefly
a few features of the ocean of relevance to its interaction with radiation.

1.6.1 The Mixed Layer and the Deep Ocean

The ocean's vertical structure can be crudely subdivided into two regions: an upper
mixed layer, typically 50 to 200 m in depth, and beneath it, the deep ocean having
an average depth of 4 km. The mixed layer is characterized by a nearly uniform tem-
perature and salinity. Its homogeneous nature is maintained by turbulent transport
caused by mechanical stirring by wind stress, and less frequently, by spontaneous
overturning when more dense water overlays less dense regions. The latter situation
can occur at night and during high latitude in winter when the cooling surface water
becomes denser than the underlying layers. The transition to colder, denser bottom
water is characterized by an abrupt decrease in temperature, the thermocline, and an
abrupt increase in density, the pycnocline. Accompanying these changes is a large
increase in the fluid stability, so that small-scale mixing ceases to become important in
transporting heat and salinity downward. Due to precipitation, the ocean receives fresh
(less dense) water. Melting of sea ice also freshens the sea surface. Counteracting this
tendency is evaporation, which tends to leave more saline water behind. Figure 1.9
shows typical depth profiles of temperature at different latitudes.13 Water density (not
shown) tends to follow profiles that are inverse to temperature, so that density tends
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Figure 1.9 Typical mean temperature/depth profiles for the open ocean (see
Endnote 13). The dicothermal layer refers to a layer of cold water that often
occurs in northern high latitudes between 50 and 100 m. Stability in this layer
is maintained by an increase in salinity with depth.
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Figure 1.10 Daily shortwave radiation received at the sea surface in the
absence of clouds (see Endnote 13). Units are [W • m~2].

to increase with depth. In the polar oceans, and at lower latitudes during winter, the
thermocline and pycnocline may cease to exist, and the water temperature and salinity
are nearly constant with depth.

The absorption of sunlight (direct plus diffuse) within a shallow layer generally
1 to 10 m thick is the ocean's ultimate source of energy. Periodic heating over the
year occurs as a result of the varying solar incidence angle and the length of the day.
The global distribution of the daily shortwave radiation received at the sea surface
under clear conditions is shown in Fig. 1.10.14 The annual variation of the diurnally
averaged mixed-layer temperature at a northern hemisphere site is shown in Fig. 1.11.15

Interpretation of this behavior requires an understanding of the physical properties of
seawater. Generally speaking, when the temperature increases, the density decreases
slightly. Thus surface heating creates a lighter and hence more buoyant upper layer,
which is resistant to downward mixing. Vertical mixing would otherwise distribute
the absorbed energy uniformly throughout the layer and entrain colder water from
below, thus thickening the layer. Thus the shallower the mixed layer, the higher its
temperature. Conversely, the deeper the mixed layer the lower the temperature.

1.6.2 Seasonal Variations of Ocean Properties

At a given location, the depth of the mixed layer varies with season, and with the degree
of mechanical stirring induced by winds. For example, a storm of duration of several
days has been observed to lower the thermocline by 30-50 m, while cooling the surface
by 1-2 K. In Fig. 1.11 the mixed layer is seen to be deepest when the solar heating
is a minimum (during winter). During winter, the ocean emits more thermal infrared
energy than it receives from the Sun, and a net cooling occurs. The deepening of the
mixed layer occurs because the colder, denser (and thus less stable) water can be mixed
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Figure 1.11 Growth and decay of the seasonal thermocline at 50°N,
145°W in the eastern North Pacific (see Endnote 13).

to greater depths than during summer. During the summer, the ocean receives more
energy than it radiates, and the ocean surface warms. The upper levels become more
buoyant and less susceptible to downward mixing. The mixed layer becomes shallower
and warmer as the summer season progresses. As autumn approaches, the warming
lessens and the water becomes less stable. Downward mixing causes the thermocline
to deepen, and energy is shared by a larger volume. Cooling occurs during autumn
more as a result of this downward mixing than from increased net radiative energy loss.
Thus the mixed layer's annual temperature cycle, although driven by solar heating at
the surface, is controlled more by turbulent heat transport than by radiative transfer.

The deep ocean shows virtually no seasonal variation. Its temperature decreases
slowly with depth, approaching 0°C at abyssal depths. Its temperature is governed
by larger-scale processes of overturning. It is interesting that downwelling occurs
primarily in the polar regions. The return of colder water to the surface by up welling
occurs over a much greater fraction of the world ocean than that of downwelling. The
time scale of this overturning process is of the order of several centuries. If the Sun were
to suddenly go out, the Earth's oceans would not freeze solid for several hundred years.

1.6.3 Sea-Surface Temperature

Another important aspect of water is its very high IR opacity. Unit optical depth occurs
within an extremely small distance near the surface. If the water is calm, the daytime
"skin temperature" may be appreciably different than that of water just below the sur-
face, due to the fact that even a thin layer of water takes up a considerable amount of
energy. Due to its high opacity (see Fig. 1.12), which means a low "radiative conduc-
tivity," the downward transport of IR radiation through water is negligible. The surface
sheds its energy upward by radiation and by exchange of latent heat with the overlying



28 Basic Properties of Radiation, Atmospheres, and Oceans

atmosphere via evaporation and precipitation. The sea-surface temperature measured
by infrared sensors always refers to this skin layer. Interpreting this temperature as that
of the upper mixed layer requires the assumption that the water is well stirred. Under
calm conditions, this can lead to an error of several degrees Celsius, a substantial error
in remote sensing applications.

Because the ocean has a high IR absorptance, then by Kirchhoff's Law (Chapter 5) it
is also an efficient emitter of thermal radiation. The more physically relevant quantity
is not the IR emission rate, but the net cooling, that is, the difference between the
energy emitted and that received. Measurements show that as the ocean temperature
increases, the net cooling actually decreases. This is due to the strong dependence
of the atmospheric radiation upon the atmospheric water vapor content. As the ocean
temperature increases, the excess of evaporation over condensation causes the absolute
humidity to rise. As we will find in Chapter 12, the longwave opacity of the atmosphere
is dominated by water vapor, particularly over the ocean. The increased warming of
the ocean from downwelling atmospheric radiation more than compensates for the T4

increase of the emitted surface flux.

1.6.4 Ocean Spectral Reflectance and Opacity

Due to its low visible reflectance (of the order of 7%) the ocean absorbs nearly all
incident shortwave radiation. Despite the fact that the oceans receive most of their
energy directly from the Sun (the remainder comes from sensible heat transport from
the atmosphere) only this initial radiative "forcing" is of concern to us, since the issue
of its subsequent transport is almost entirely one of dynamical transport by turbulence
and large-scale overturning.

As shown in Fig. 1.12, the ocean's shortwave opacity exhibits a deep minimum in
the visible spectrum, where incoming radiative energy can be deposited up to 100 m in
depth.16 This transparency "window" for visible radiation for liquid water is analogous
to a similar atmospheric transparency window (see Fig. 9.10). That these two windows
are both situated at wavelengths 0.4-0.6 /im, around the peak of the solar spectrum, is
one of the most remarkable coincidences of nature, for it makes it possible for life to
exist - indeed the water window was probably necessary for the rise of life itself, which
is believed to have developed, if not originated, in the oceans. Just as remarkable is the
very high opacity of water to the UV. For example, Fig. 1.12 shows that the penetration
depth (the inverse of the absorption coefficient) for X < 0.35 /im is less than 10 cm.
Long before the primitive biosphere was able to generate a UV-protective ozone layer
(estimated to have formed about one billion years ago) oceanic life and in particular
phytoplankton could exist in a safe haven between depths of 10 cm and tens of meters,
shielded from harmful UV, but bathed in visible radiation necessary for photosynthesis.

Finally, we mention the ocean color, which ranges from deep blue to green or
greenish-yellow. A deep indigo color is characteristic of tropical waters, where compar-
itively little biology exists (oceanic "deserts"). At higher latitudes, the color changes
from green-blue to green in polar regions. Consider first the reason for the blue color of
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Figure 1.12 Typical absorption coefficient of the ocean (see
Endnote 16).

open ocean waters containing very little particulate matter. Both absorption and scat-
tering processes are involved. At a few meters' depth, the red and yellow wavelengths
will be selectively removed, as shown in Fig. 1.12. Thus only blue light remains, and
since the water molecules themselves are responsible for the scattering, these shorter
(blue) wavelengths are favored by the Rayleigh scattering process (see §3.3.7). The
upward scattered light will also selectively leave the surface, giving a deep-blue color
to the water. In more fertile waters, green phytoplankton and yellow substances will
absorb the blue light, and the color will shift toward the green end of the spectrum.
Certain colors (such as the "red tide") are characteristic of particular phytoplankton
blooms. The coloration of the ocean has in recent times become a subject of commer-
cial interest. Satellite remote sensing of ocean color is a valuable enterprise to fisheries
and for making surveys of ocean fertility in global change studies.

1.7 Remarks on Nomenclature, Notation, and Units

By nomenclature we mean the names and symbols of the various quantities in the
theory, a subject covered in detail in Appendix A. By units we mean the particular
standard: English, cgs, or mksa; the latter stands for meter-kilogram-second-ampere.
The older cgs system (centimeter-gram-seconds) of units has been consistently used
in the astrophysical literature. This system was also used in the atmospheric and
oceanic sciences until the late 1950s. At that time the Systeme Internationale des
Unites (SI),17 already in wide use in the engineering community, was adopted by the
various international and national scientific bodies. The SI system employs mksa
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units and encompasses a large variety of physical measurements. The situation is
more unfortunate with regard to nomenclature. The beginning reader will encounter a
bewildering variety of nomenclature particularly in the older literature. There has been
some convergence toward a uniform system in the atmospheric literature. However,
ocean optics has followed its own system of nomenclature and units. See Appendix D
for more details.

In the following we present our notation scheme for future reference. We indicate
units by enclosing the abbreviation of the quantity in brackets [ ]. We use the SI
units in this book (discussed more fully in Appendix A). The abbreviations for the
various mksa units are length in meters [m], mass in kilograms [kg], and time in
seconds [s]. Derivative units are as follows: for wave frequency, v, cycles per second
or hertz [Hz]; wavelength k, nanometers (1 x 10~9 m), [nm] or micrometers (1 x
10~6 m), [jLtm]; wavenumber [cm"1]; radians [rad]; steradians [sr]; watts (joules per
second), [W]; absolute temperature in kelvins [K] (not °K!); force in newtons [N];
hydrostatic pressure in newtons per unit area [N • m~2] (or pascals [Pa]); k- as a prefix
means kilo-, as in [km] = 1 x 103 [m], etc.

The reader will quickly note the mixing of usages of frequency v, wavelength k,
and wavenumber v. In fact, this is deliberate. When referring to a spectral function,
say T(V), we prefer frequency as the variable, for the somewhat pedantic reason
that frequency is a more fundamental property of the wave. Unlike wavelength and
wavenumber its value is independent of the medium. However, when we want to
identify specific parts of the spectrum, we will use units of wavelength (nm or /xm
in the visible and near-IR), and wavenumber (cm"1 in the thermal IR). We will not
distinguish between the small differences of k in vacuum and air.

We use boldface for vectors (r), a circumflex for unit vectors (h), an overbar for an
angular average (/v), and angle brackets for time, spatial, or frequency averages, for
example, (A). A dot (•) separating two vectors (such as A-B) denotes the scalar product.
Integrals are written with the differential closest to its integral sign. Thus we write

dOF(O,<t))

o o

rather than

2n n

F(Q,(j))dOd(l).

o o

2n n

We use the symbol = to denote "is defined by." We deviate from the practice of
many texts in the ordering of the arguments of such quantities as the scattering phase
function p (§5.3), which contains both the incident (Q') and outgoing (Q) unit vectors.
For example, many authors usually write p(Q, &) so that the second variable is the
"input" and the first variable is the "output." We prefer to write it in the order from
left to right, that is, from incident to outgoing directions, p(& —• fo), or we leave
out the right arrow and write simply p(Q\ Cl). Another example is the hemispherical-
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directional reflectance (§5.2), which we write as P(—2TT, +Q)9 which tells us that
uniform illumination (—In) is incident from above on a surface, and we are interested
in a specific upward (+) direction Q for the outgoing beam of radiation.

1.8 Summary

In this chapter we set the stage by introducing the basic ideas of absorption and emission
and showing how they can explain the deviations of both the solar emission spectrum
and the terrestrial infrared emission spectrum from that of a classic blackbody. We
provided a brief summary of how hydrostatic balance affects the vertical structure of the
bulk properties of the atmosphere and ocean. Temperature is affected by solar heating,
IR opacity (the greenhouse effect), and by convective transport of heat. A discussion of
line-of-sight optical paths was followed by an introduction of the concept of radiative
equilibrium. A simple model of climate change illustrated the concept of radiative
forcing and feedbacks. The temperature and density structure of the oceanic mixed
layer was discussed in terms of solar heating and conductive mixing. We discussed
optical properties of the ocean such as the transparent spectral window in the visible,
the highly opaque spectral regions in the UV and IR, and a low visible reflectance.

Problems

1.1 An early study of the ice-albedo feedback problem was made by M. Budyko.18

He showed for a 1% reduction in the solar constant that ATS = —5°C; and for a
1.5% reduction, ATS = —9°C. This sensitivity is much greater than the direct effect
discussed in Example 1.2 and is due to the equatorward advance in the permanent ice
line as the Earth cools. In the 1.5% reduction case, the ice line is at 50°N latitude, cor-
responding to the southward advance of Quaternary glaciation. For a slightly greater
(1.6%) reduction, ATS = —33°C. Here the Earth is completely glaciated.
(a) Find the values of albedo p corresponding to these three solar flux reduction

scenarios. Assume that 7 f̂f remains fixed in Eq. 1.13.
(b) Plot p versus Ts and estimate the value of dp/dTs for each scenario. Take into

account the variation of FTOA and rs.
(c) Plot the climate sensitivity a and the gain / versus AFS/FS. Comment on the

steep increases of a and / as AFS/FS reaches the critical value of 0.016. How
does this illustrate the "runaway glaciation" effect?

1.2 The diurnally averaged solar radiation at the top of the atmosphere available for
heating may be parameterized as follows:19

jo, 1.0 - 0.Fa
s(/x, t) = 342 x max j o , 1.0 - 0.796/ZCOS[2TT(/ - 0.75)]

+ {0.147 cos[47r(f - 0.75)] - 0.477}
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where fi = sin k and k is the latitude. Time t is measured in years, starting from the
vernal equinox.

Plot isolines of Fa
s versus A. and t and compare with Fig. 1.10. What accounts for

the differences between these two results?

1.3 Assume that the albedo of the Earth's system responds to a change in solar flux
to exactly compensate, so as to leave the surface temperature unaffected. This is called
homeostasis, and it is the hypothesized response envisioned in some "strong versions"
of the Gaia hypothesis?® Show that if the solar flux were to increase by 1%, the albedo
in this hypothetical system would respond by increasing by 0.7%.

1.4 The effect of the various greenhouse gases on the radiative forcing may be crudely
estimated by setting %& = exp [— J2t T/]» where T,- is the opacity due to the z'th species.
Suppose that the concentration of a single species (say CO2) were increased from r,
to t| + At/.
(a) Show that the radiative forcing is given by Nt = ANt = +JFT OAAT;.

(b) Show that for a CO2 doubling (for which Nt = 4 W • m~2), the required change
in opacity is At/ / ]T^ t; = 0.034, that is, only a 3% change in effective opacity is
implied. What factors tend to reduce the radiative effectiveness of a CO2 doubling?
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Chapter 2

Basic State Variables and the Radiative
Transfer Equation

2.1 Introduction

In this book we are mostly concerned with the flow of radiative energy through at-
mospheres and oceans.1 We will ignore polarization effects, which means that we
disregard the Q, U, and V components of the Stokes vector2 and consider only the
first (intensity) component / . This approach is known as the scalar approximation,
in contrast to the more accurate vector description. In general, this approximation is
valid for longwave radiation where thermal emission and absorption dominate scat-
tering processes. However, at shorter wavelengths where scattering is important, the
radiation is generally partially polarized. For example, polarization is a basic part of
a description of scattering of sunlight in a clear atmosphere or in pure water (so-
called Rayleigh scattering). Generally, a coupling occurs between the various Stokes
components, and an accurate description requires the full Stokes vector representation.

Of central importance in the theory is the scalar intensity, which plays as central a
role in radiative transfer theory3 as the wave function plays in quantum theory. Its full
specification as a function of position, direction, and frequency variables conveys all
of the desired information about the radiation field (except for polarization).

In this chapter, we define the basic state variable of the theory, the scalar intensity.
We first review the most basic concepts of geometrical optics, those of pencils and
beams of light. We then define the various state variables in a transparent medium,
involving flow of radiative energy in beams traveling in specific directions and over
a hemisphere. Several theorems governing the propagation of intensity are described.
The Extinction Law is stated in both differential and integral forms. The radiative
transfer equation is shown to be a consequence of extinction and the existence of
radiation sources.

34
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A brief description of our notation is in order. Radiation state variables are described
in terms of both spectral (or monochromatic) quantities and frequency-integrated quan-
tities. Frequency is measured in cycles per second or hertz, abbreviated as [Hz]. For
spectral quantities, we may visualize a small frequency interval over which all prop-
erties of the radiation and its interaction with matter are constant. A general quantity,
/ v , is identified with a frequency (v) subscript if it is defined on a per-frequency basis.
If / is a function of frequency, it is written f(v). Of course, spectral quantities can
also be expressed4 as a function of wavelength, X [nm] or [/xm], or wavenumber, v
[cm"1]. Frequency-integrated quantities are of the form J dvfv.

2.2 Geometrical Optics

It is important to point out that the basic assumptions of the radiative transfer theory
are the same as those of geometrical optics. Indeed if there is no scattering or thermal
emission, the radiative transfer equation reduces to the intensity law of geometrical
optics. The concept of a sharply defined pencil of radiation was first defined in geomet-
rical optics. A radiation pencil is realized physically by allowing light emanating from
a point source to pass through a small opening in an opaque screen. This light may be
viewed by allowing it to fall on a second screen. If we were to examine this spot of light
near its boundary, we would notice that the edge would not be geometrically sharp.
Instead we would find a series of bright and dark bands, called diffraction fringes. The
size of the region over which these bands occur is of the order of the wavelength of
light, X. If the diameter of the cross-sectional area of the pencil is very much larger
than X, diffraction effects are small, and we may speak of a sharply bounded pencil
of rays. The propagation of light may then be described in purely geometrical terms,
and energy transport will occur along the direction of the light rays. These rays are
not necessarily straight lines. In general they are curves whose directions are deter-
mined by the gradient of the index of refraction, m. The real part of m is the ratio
of the speed of energy propagation in a vacuum to that in the medium. It is the most
important light-matter interaction parameter in geometrical optics. Absorption along
the ray may be shown to depend upon the imaginary part of the complex index of
refraction. The fact that m varies with frequency is known as the phenomenon of
dispersion.

In geometrical optics theory, interference and diffraction of light are unimportant.
The same is true of the radiative transfer theory. In this book we set the index of
refraction equal to a constant value pertaining to either air or water. Thus, we ignore
both dispersion and ray bending. However, variation of m with position giving rise to
refraction or ray bending cannot be ignored in remote sensing applications in which
the rays traverse a significant atmospheric path length. Refraction is also important
in radiative transfer through the ocean-atmosphere interface, at which the index of
refraction changes abruptly. In this case it is usually sufficient to assume that the index
of refraction is unity for air and equal to 1.33 for water.
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For our purposes the concept of incoherent (noninterfering) beams of radiation is
more convenient than the concept of ray pencils. We define a beam in analogy with
a plane wave: It carries energy in a specific propagation direction (the ray direction)
and has infinite extent in the transverse direction.5 We will use ray and beam direc-
tion synonymously throughout this book. When a beam of sunlight is incident on a
scattering medium (e.g., the Earth's atmosphere), it splits into an infinite number of
incoherent beams propagating in different directions. Similarly, when a beam is inci-
dent on a diffusely reflecting surface (e.g., a "rough" ocean surface or a plant canopy),
the reflected radiation splits into an infinite number of incoherent beams traveling in
different directions. However, if a beam is incident on a perfectly smooth, plane inter-
face, it will give rise to one reflected and one transmitted beam. The directions of these
two beams follow from the geometrical optics laws of reflection and refraction (SnelVs
Law), while their states of polarization follow from FresneVs equations (Appendix E).

It will also be convenient to define an angular beam as an incoherent sum of beams
propagating in various directions inside a small cone of solid angle dco centered around
the direction Cl.

2.3 Radiative Flux or Irradiance

We consider the flow of radiative energy across a surface element dA, located at a
specific position, and having a unit normal h (see Fig. 2.1). As mentioned above,
the energy flow is visualized as being carried by incoherent (noninteracting) angular
beams of radiation moving in all directions. Because the beams traveling in different
directions do not interact, we may treat them separately. The net rate of radiative energy

dco

Figure 2.1 The flow of radiative energy carried by a beam in the
direction Q through the transparent surface element dA. The flow
direction Q is at an angle 0 with respect to the surface normal h
(cos 6 = h • Q).
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flow, or power, per unit area within the small spectral range v to v + dv is called the
spectral net flux. The spectral net flux Fv is expressed in terms of the net energy d3E
that crosses the area dA, in the time interval t, t + dt, within the frequency interval
y, v + dv, as

d3EF [ W ^ H - 1 ]

The quantities d3E and dAdtdv are third-order differential quantities6 that are consid-
ered positive if the flow is into the hemisphere centered on the direction h and negative
if the flow is into the opposite hemisphere centered on — h. A general radiation field
consists of angular beams traveling in all directions. It is convenient to separate the
energy flow into oppositely directed positive energy flows in two separate hemispheres
d3E+ and d3E~. Each of these partial flows carries a positive amount of energy. We
define the spectral hemispherical fluxes Fv

+ and F~ as

d3F+ d3F~
F+ =

 a *- p- =
 a * (2 l)

dAdtdv' v dAdtdv' V " ;

The net energy flow in the positive direction is d3E = d3E+ — d3E~. In the same
way the spectral net flux is written as the difference of two positive quantities Fv =
Fv

+ — F~. Summing over all frequencies, we obtain the net flux, or net irradiance:

oo

F = IdvFv [W-nT2] .

o

The spectral net flux Fx within a small wavelength range k to k + dk is defined within
the wavelength interval dk, related to the frequency interval dv. Thus, Fv \dv \ = Fx \dk \
and

Fk = Fv \dv/dk\ = Fv(c/k2) [W • m"2 • mn"1].

Similarly, the spectral net flux per wavenumber (v = v/c) is

Fo = Fv\dv/dv\ = Fvc [W • m"2 • cm].

The spectral net flux is also the component of a spectral radiative flux vector Fv(r),
which points in the reference direction Q,

Fv(r) = Fv(r)6.

(This should not be confused with the four-dimensional Stokes vector.) The vector
Fv(r) is the generalization of the Poynting vector used to describe streams traveling
in arbitrary directions. Clearly, the scalar spectral net flux is the component of Fv(r)
in the direction Cl, that is,
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That part of the net flux originating in reflection or emission from a surface is sometimes
referred to as the radiant exitance.

2.4 Spectral Intensity and Its Angular Moments

The net flux through a surface element dA depends upon the cumulative effect of
all the angular beams crossing it in different directions. This quantity conveys little
information about the directional dependence of the energy flow. A more precise
description of the energy flow is desirable, especially in remote sensing applications.
In principle, what is needed is the specification of the vector flux for every direction.
Alternatively, the directional dependence can be visualized in terms of a distribution of
energy flow in all An directions. In any particular direction the energy flow is associated
with the angular beam traveling in that direction.

We denote by d4E any small subset of the total energy flow within a solid angle
dco around a certain direction Q in the time interval dt and over a small increment
of frequency or energy. We require that this subset of radiation has passed through a
surface element dA whose orientation is defined by its unit normal h. The geometry
is illustrated in Fig. 2.1. The angle between h and the direction of propagation Q is
denoted by 0. The energy per unit area, per unit solid angle, per unit frequency, and
per unit time defines the spectral intensity?

The spectral intensity or radiance Iv is defined as the ratio

d4E
*» = WTJTZr^r [W-m-^sr-^Hz-1].

cos OdAdtdcodv

(2.2)

Note that, in addition to dividing by dcodvdt, we have divided by the factor cos# =
h • Q. This factor multiplied by dA is the projection of the surface element onto the
plane normal to Q. Note also that if h and Q are directed into opposite hemispheres,
then h • Q is negative. The energy flow is also negative in this case, by definition,
so that the ratio d4E/cos0 remains positive. Intensity is always positive. The infini-
tesimal cone of solid angle dco is visualized as a truncated cone with base dA cos 6.

Intensity is seen to be a scalar quantity, describing an angular variation of energy
flow and how this angular variation itself depends upon position. In addition to the
dependence on the coordinate variable r, the angular variable Q, and the frequency
variable v, it may also be time dependent, bringing to seven the number of independent
variables: three in space, two in angle, one in frequency, and one in time.8 Time
dependence must be considered when the incident radiation field or the properties
of the medium change over the very short time scale of light transport within the
medium. Except in active remote sensing applications, such as lidar and radar, this
complication may be confidently ignored. Also, planetary media have approximate
planar uniformity. Therefore, it often suffices to use only one position variable (height
in the atmosphere and depth in the ocean). This reduces the number of variables to
four, which still poses a formidable task. Fortunately, such a detailed specification is
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seldom necessary, particularly in calculations of the radiative energy balance. It often
happens that only a few angular moments are needed. Our usual situation is such
that only two variables (frequency and a height variable) remain and the mathematics
becomes tractable. This is particularly true in problems where the frequency enters as a
parameter, so that the problem can be solved for a single frequency and then repeated
for all frequencies contributing to the radiation field. In the following sections, we
examine two angular moments9 of the intensity: the flux and the energy density.

2.4.1 Relationship between Flux and Intensity

This relationship follows from Eq. 2.2, which we rewrite as

d4E = Iv cos 0 dA dt dco dv. (2.3)

The rate at which energy flows into each hemisphere is obtained by integration of the
separate energy flows

d3E+=fd4E+, d3E~ = fd4E~. (2.4)

+

In these expressions, the subscript (+) on the integral signs denotes integration over
the hemisphere defined by -\-h. Similarly, we use a (—) subscript to denote integration
over the hemisphere defined by — ft. Use of Eqs. 2.1, 2.3, and 2.4 yields expressions
for the half-range fluxes defined as positive quantities:

d3E~
= / dco cos 0Iv, Fv = = — / dcocosOIv.

J dAdtdv JdAdtdv

(2.5)

Combination of the half-range fluxes yields the net flux.

The spectral net flux is the integration of Iv cos 0 over all solid angles,

Fv = Fv
+ - F~ = f dco cos 0Iv [W • m"2 • Hz"1]. (2.6)

Note that in the latter of Eqs. 2.5, cos 0 is negative so that F~ > 0. Similarly, in
Eq. 2.6, cos 0 is negative over half the angular integration domain. The negative con-
tribution to Fv from the component F~ tends to offset the positive contribution from
the oppositely directed component Fv

+. If the spectral intensity 7y(r, £1) at a point is
independent of direction Q, it is said to be isotropic. If it is independent of position,
it is called homogeneous. The spectral intensity is both isotropic and homogeneous in
the special case of thermodynamic equilibrium, where the net flux is zero everywhere
in the medium. This follows from the fact that even though the hemispherical fluxes
are finite, they are of equal magnitude and opposite direction. Therefore no net energy
flow can occur in this equilibrium case (see §4.3.1 for more details).
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2.4.2 Average Intensity and Energy Density

Averaging the directionally dependent intensity over all directions at a given point r
yields a scalar quantity dependent upon the position variable r. This quantity is called

the spectral average intensity:

Iv(r) = {I/An) f deolv(r, Q) [W • m"2 • Hz"1]. (2.7)

An

In general, the overbar (") indicates an average over the sphere. Iv is proportional
to the spectral energy density of the radiation field Uv, the radiative energy that resides
within a unit volume. The actinic flux used by photochemists is simply 4TVIV. The
spectral energy density Uv can be related to the intensity in the following way. Consider
a small cylindrical volume element of area dA having a unit normal h, whose length,
cdt, is the distance light travels in time dt (c is the light speed). Let the direction
of propagation Q be at an angle 0 with respect to n. The volume of this element is
dV = dA cos Ocdt, where dA cos 0 is the projection of the surface element dA onto
the plane normal to Q. The energy per unit volume per unit frequency residing in the
volume between t and t + dt is therefore

d4E Iv cos OdAdtdvdco Iv ,
dU ^ = dco- <2-8)dA cos Ocdtdv c

If we consider the energy density in the vicinity of a collection of incoherent beams
traveling in all An directions, we must integrate this expression over all solid angles
dco to obtain

Uv= IdUv = - Idcolv = —Iv [J • m"3 • Hz"1]. (2.9)
c

The total energy density is the sum over all frequencies:

oo

dvUv [J-nT3]. (2.10)

o

oo

U-J.
In the following examples we will examine some special cases of particularly simple

symmetry, which have proven to be useful mathematical idealizations.

Example 2.1 Isotropic Distribution

Let us assume that the spectral intensity is independent of direction, that is, Iv (Q) = Iv =
constant. This assumption applies to a medium in thermodynamic equilibrium and is approximately
valid deep inside a dense medium. The flux and energy density are easily evaluated as

F+ = F;=7tiv, (2.11)

Fv = F+ - F~ = 0, (2.12)

Uv = ^ . (2.13)
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Note that the two contributions to the flux from the opposite hemispheres cancel. Mathematically,
this occurs because cos 6 is an odd function of 0 in the interval [0,7r], and physically because of
a balance between upward- and downward-flowing beams.

Example 2.2 Hemispherically Isotropic Distribution

This situation is the essence of the two-stream approximation (Chapter 7). It yields the simplest
nontrivial description of diffuse radiation having a nonzero net energy transport. Let /+ denote
the (constant) value of the intensity everywhere in the positive hemisphere, and let /~ denote the
(constant) value of the intensity everywhere in the opposite hemisphere. /+ ^ /~ by assumption.
For a slab medium, an angular distribution of intensity has been replaced by a pair of numbers at
each point in the medium.10 In some situations, this is too inaccurate. However, in situations where
the spectral intensity is close to being isotropic, it leads to results of surprisingly high accuracy,
as discussed in Chapter 7. As in the isotropic case, we solve for the various moments:

2n 7r/2 In n

Fv = / + d(p dO sin(9 cos<9 + I~ d<p dO sin(9 cos<9 = jr(/v
+ - / v " ) ,

0 0 0 TT/2

2n n/2 2n n

Uv = — d<l> dO sinO + -^- d<p dO sin6>

0 0 0 TT/2

= — ( / v
+ + /v~). (2.14)

Example 2.3 Collimated Distribution

This is a commonly used approximation for the intensity of an incoming solar beam, in which
the finite size of the Sun is ignored.11 We write the solar intensity in the general direction Q as

Fv
s is the flux carried by the beam across a plane normal to the direction of incidence Cl0. &0 has

the polar angle 60 and the azimuthal angle 0O. 8(Cl — Qo) = 5(0 — 0o)5(cos# — cos#0) is the
two-dimensional Dirac 8-function. According to the mathematical properties of the 8-function,12

the intensity is zero in all but a single direction QQ (where it is infinite). Equation 2.15 is physically
meaningful only when it is integrated over some finite solid angle. Note that since the S-function
has the units of inverse solid angle, /* has the correct units (energy per unit area, per unit frequency,
per unit time, per unit solid angle). The moments for a collimated beam are

lit I

f f
Fv = F* / d(j)8((j) — 0o) / duu8(u — /xo) = Fv

J J
o - l

in +i

o - l

Here we have set u = cos 0 and un = cos #o-

= Fv
s f

0

l

= ^ /</05(0-0o) fdu8(u
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Example 2.4 Azimuthally Symmetric Distribution

In this special case, the intensity distribution is constant with azimuthal angle 0. Of course,
all other variables are held constant. This describes the singly scattered part of the radiation field
in a coordinate system in which the z axis is along the incoming direction of a collimated beam.
It is also valid for the multiply scattered radiation in a slab or plane-parallel geometry when the
scattering phase function (§5.3) is isotropic, a frequently used idealization in the theory of radiative
transfer (see §6.2). Further, it applies to a radiation field produced by thermal emission and, of
course, to an isotropic or hemispherically isotropic distribution. The angular moments are

in +i +i

Fv = d</) duulv(u) = 2n duulv(u),

dulv(u) = (4TT/C)IV.

2.5 Some Theorems on Intensity

Perhaps the most important property of the intensity is expressed in the following
theorem:

Theorem I In a transparent medium, the intensity is constant along a ray.

To prove this we begin by imagining two arbitrarily oriented surface elements
separated by a distance r (see Fig. 2.2). A ray PP' connects the two areas and defines
the direction Q. From Eq. 2.2 the amount of energy crossing d A in time dt and entering
the solid angle dco is given by

d4E = IV(P, &)dAcosO dv dt dco.

Similarly, the energy passing through dA! in time dt into solid angle dco' (subtended
by the surface element dA) is the same amount of energy

d4E = IV{P\ Q)dA'cosO' dv dt dco'.

Our objective is to prove that /V(P, Q) = IV(P', &). Solving for IV(P, Q) from the
first of the above equations and substituting the expression for d4E from the second
equation, we have

. _ d4E _ Iv(P',Cl)dA'cos0'dco'

dA cos 0 dv dt dco dA cos 0 dco

Butsincedco = dA'cos0'/r2anddco' = dAcos0/r2,weseeth2LtIv(P, Q) = IV(P', Q).
Theorem I may be generalized to apply to a beam that is reflected any number of times
by perfectly reflecting mirrors:
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dco1

Figure 2.2 The energy crossing the transparent area dA and entering
into the solid angle dco is the same as that which crosses the area dA!
and is contained within the solid angle dco''. r is the distance between
P and P'.

Theorem II The intensity remains constant along a ray upon perfect reflection by any
mirror or combination of mirrors.

This theorem may be proven by a method similar to that of Theorem I (see Prob-
lem 2.1). A third property of the intensity applies to refraction in a transparent medium
of variable index of refraction. The theorem also applies for discrete changes in ra(v)
as long as reflection at the interfaces can be neglected.
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Theorem III The quantity Iv/m
2(v) remains constant along a ray in a transparent

medium, provided that the reflectance at each interface can be neglected.

Again, a similar method is used to prove this theorem.13 The law of refraction
(Snell's Law) is used to relate the incident and refracted angles (see Problem 2.3). The
quantity Iv/m

2(v) is called the basic radiance. Clearly, Theorem I is a special case of
Theorem III.

2.5.1 Intensity and Flux from an Extended Source

At first sight Theorems I—III may appear quite strange - we might expect the intensity
to weaken as the beam diverges. Let us consider a specific example of an interplanetary
traveler moving outward from the Sun. We will assume that the Sun emits like an iso-
thermal blackbody (see §4.3.1). This means that the intensity emitted is isotropic and
constant over the entire surface. We assume also that there is negligible interplanetary
attenuation. To determine the intensity at a distance r from the Sun's center we need to
determine the energy AE per unit time and per unit area arriving within a finite solid
angle Aco centered on the Sun and just barely containing the Sun. We now move away
from the Sun to a distance r' > r and make another measurement AE' within the solid
angle Aco', again just barely containing the Sun. If the measurements are made along
the same ray then from conservation of energy the ratios

AE AE'
= = constant.

Aco Aco'

Although the amount of energy AE' contained within the smaller solid angle Aco' is
smaller (by the ratio of the squares of the distances (r2/r'2)) the ratio of the solid angles
is also smaller by the same factor. However, the fluxes at the two points r and r' are
different, because the energy flow received at the two distances per unit area are clearly
different. We can relate flux and intensity from Eq. 2.6. If Iv is the (hemispherically
isotropic) value of the intensity leaving the Sun's surface, then since the intensity for
all beams not intersecting the Sun is zero, the net flux at a distance r from the center
of the Sun is

2TT

rv(r) = / dcolvcos0 = Iv dcj) dO sinOcosO,

Aco 0 0

where a is the angle subtended by the Sun's radius a at the distance r from the center
of the Sun.

The integration is easily carried out, using sin a = a/r, to yield

a

<V = 2nlv f d6 sin 0 cos 9 — nlv sin2 a — —^—.
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From Eq. 2.14, nlv is the outward spectral flux at the surface, Fv(r = a). Fv(r) varies
as the inverse square of the distance r as a result of the constancy of the intensity along
a ray. Of course the inverse-square law is demanded by energy conservation.

2.6 Perception of Brightness: Analogy with Radiance

A quantity analogous to intensity is brightness, which is actually the perception of the
human eye of differing luminances of two objects in a scene. Luminance is the fre-
quency integral of the intensity weighted by the spectral response function of the
human eye.14 Illumination is the photometric counterpart of flux. A difficulty with
the concept of brightness is that the same object viewed against a dark background
may appear relatively "bright," whereas when seen against a bright background it may
appear relatively "dark." For example, falling snowflakes seen against the bright sky
appear to be black, but seen against a dark woods they appear to be white. The anal-
ogy of brightness with luminance is more satisfactory if we consider the appearance
of an extended object against a background of fixed luminance.

Consider the extended object to be a lady's white dress, which we assume reflects
visible light like ^Lambert reflector (§5.2). This amounts to assuming that the reflected
intensity is quasi-isotropic. In Fig. 2.3 the lady's dress does not appear to "dim" as she
walks away from an observer. Although she recedes in the distance, and the solid angle
subtended by the dress diminishes as the square of the distance, the dress appears to the

Figure 2.3 Successive images of lady in white dress.
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eye to remain at a constant brightness. Thus although the total energy (illumination)
received by the eye decreases, the energy falling on an individual pixel (analogous
to luminance or brightness) remains constant. For our purpose, we can directly relate
intensity and luminance. Thus, from Theorem I her image does not appear to become
dimmer with distance. However, as she recedes further, her image will eventually shrink
to the size of less than one pixel. At this point (not shown in the figure), any further
increase in distance between object and observer means that the energy falling on a
pixel also begins to decrease. Thus, the eye switches over from perceiving luminance to
illumination beyond this distance (about 2.5 km). Therefore the lady's image becomes
a point source, which dims inversely as the distance squared. The angle subtended by
the lady has become smaller than the angular resolution of the eye and the eye senses
(luminous) flux.

If one were equipped with a telescope, the magnified image would of course cover
a larger number of pixels. However, according to Theorem II, the amount of light
falling on a single pixel (and therefore the brightness) is unchanged. The magnified
image will never appear to be brighter, only bigger, even in the largest telescope. The
only difference is that the lady's dress would be visible as an extended object to a
greater distance. As before, a constant intensity (brightness) is perceived until her
image subtends an angle smaller than the combined resolving power of the telescope
and observer. The above statements follow directly from Theorems II and III (see also
Problems 2.1 and 2.2).

2.7 The Extinction Law

We now introduce the specific interaction properties that comprise the essential ele-
ments in the radiative transfer theory. They are defined in terms of the most important
principle in the theory, the Extinction Law, more commonly known as Beer's Law}5

the Beer-Lambert Law, or the Beer-Lambert-Bouguer Law. Consider a small volume
d V containing matter described by n [m~3], the concentration, defined as the ratio of
the number of particles dN divided by the volume dV. The particles are assumed to
be optically active, that is, they have a nonnegligible effect on radiation that passes
through the volume. Other (optically inactive) particles may be present, but these may
be ignored for the present purposes. For convenience, the volume dV is considered
to be a slab of infinitesimal thickness ds and area dA (Fig. 2.4). Suppose a beam
of radiation is incident normally on the slab. From Eq. 2.3 the differential of energy
falling on the front surface is

d4E = Iv dA dt dv dco.

As the beam of radiation passes through the slab, it interacts with the particles
through either absorption or scattering and a reduced amount of energy emerges at the
opposite side. The beam of radiation is said to have suffered extinction. The energy
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Iv (s + ds) = lv (s) - k(v) Iv (s)ds

/

\ (a) /

\ ds /

Iv(s = Iv (s = 0)e"k<v)s

(b)

Figure 2.4 (a) Intensity passing through a thin slab suffers extinction proportional
to the path length ds. (b) Intensity passing through a finite path length s suffers
exponential extinction.

emerging from the back face of the slab is given by the original energy, less an amount
given by

8(d4E)=dIvdAdtdvdco, (2.16)

where dlv is the differential loss in intensity along the length ds.
It is found experimentally that the degree of weakening depends linearly upon

both the incident intensity and the amount of optically active matter along the beam
direction (proportional to the length ds):

The Extinction Law (differential form)

dlv oc —Ivds. (2.17)

We define the constant of proportionality in Eq. 2.17 to be the extinction coefficient
k. There are three different ways of defining extinction: in terms of the path length
itself ds, the mass path dM = pds, or the column number dj\f = nds of the ab-
sorbing/scattering species concentration. Here p and n are the mass density [kg • m~3]
and particle density [m~3] of the optically active gas. This leads to the following three
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definitions of extinction:

k(v) = — extinction coefficient [m"1], (2.18)
I VdS

km{v) = -4^rIvpds

= v— mass extinction coefficient [m2 -kg ], (2.19)

IydJvi

dh.

KM = —
Ivnds

extinction cross section [m2]. (2.20)
lvdM

The extinction cross section kn is analogous to the collision cross section in atomic
physics. It is interpreted as the effective area of the molecule or particle presented to
the incident beam, resulting in some of the beam being absorbed or deflected into other
directions.

A more common form of the extinction law is obtained by integration over a finite
distance along the beam. Let the total length of the straight-line path through an
extended section of the medium be s, and let an intermediate path length be sf < s.
Denoting the intensity entering the medium at sf = 0 as Iv (s

f = 0, £2), we need to find
the intensity Iv(s

f = s, &), where Q denotes the propagation direction of the beam.
Integrating Eqs. 2.18, 2.19, and 2.20 from s = 0 to s' = s, we obtain

rs(v) = - In
Iv(s' =

Iv(s' = 0,0)

where

(2.21)

s s s

T8(v) = fds'k(y) = [ds'km(v)p = fds'kn(v)n. (2.22)

0 0 0

Here rs is the extinction optical path or opacity along the path s. The dimensionless
quantity TS is a measure of the strength and number of optically active particles along
a beam. Solving for the intensity at s' = s by taking the antilogarithm of Eq. 2.21, we
obtain

The Extinction Law (integrated form)

Iv(s, ft) = /v(0, Q) exp[-t s(v)] . (2.23)

The intensity is seen to decay exponentially with optical path along the beam
direction.16 Equation 2.23 reduces to Theorem I when the optical path is zero, resulting
in the statement that the intensity remains constant along the beam direction in the
absence of extinction.
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2.7.1 Extinction = Scattering + Absorption

We have dealt with extinction as if it were one process, whereas it is actually caused by
two distinctly different phenomena. It is clear that the attenuation of a light beam in a
specific direction can be obtained by either absorption or scattering. This is obvious for
absorption but some care needs to be given as to how scattering also weakens the beam.
Since this process diverts the radiation into beams propagating in other directions,
it must necessarily result in a loss of energy in the initial beam along Q. However,
suppose a photon in the beam is deflected only a very small amount. A detector of finite
angular resolution may then measure the presence of this scattered photon along with
the original (unscattered) beam photons. This can be a difficult experimental problem,
since small-angle scattering from particulate matter (the so-called diffraction peak) can
be orders of magnitude more efficient than large-angle scattering. It is also possible
that photons in a different beam, propagating in direction £2", might be deflected into
the direction Q, and thus they could become confused with the original beam. This
deflection is a consequence of multiple scattering mentioned earlier. The solution of
the multiple scattering problem is a major concern of this book. The deflection problem
is solved in principle provided we determine the multiple scattering contribution to
the radiation in the direction of the original beam (see §5.6).

The extinction optical path rs of a mixture of scattering/absorbing molecules and
particles is defined as the sum of the individual scattering optical path, rsc(v), and the
absorption optical path, ra(v), that is,

rs(v) = tsc(v) + Ta(v),

where
s

" ds'<

' o l 6

t i / f\ V ^ f J ' i / \ / f\
s a (v,s) = y^ I as om(v)pi(s )

- V f ' [ (2.24)

' 5
and

s s

Ta(v) = Y1 ds'ai(v> •*') = X ) / ds'am(v)Pi(s')
1 0 i 0

(2.25)

The sum is over all optically active species. Here pt and nt are the mass densities
and concentrations of the /th optically active species (either molecule or particle).
The quantities or1, or^, and al

n are called the absorption coefficient, the mass absorp-
tion coefficient, and the absorption cross section of the /th constituent (molecule or
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k1=0.1 T=1.5

Figure 2.5 Leaf shadows cast by the overhead Sun on level ground due to
three idealized leaf canopies. Each randomly distributed leaf shadow has an
area a = 0.01% of the total ground area A. The optical path is given by the
total leaf area per unit projected ground area, r = Na/A, where N is the
number of leaf shadows. For the cases from left to right, TV = 103, 5 x 103,
and 1.5 x 104, corresponding to r = 0.1, 0.5, and 1.5, respectively. Note
that for T = 1.5, overlapping of leaf shadows is important for determining
the total shaded area. The canopy beam transmittance (see §5.2) e~x is
interpreted as the fraction of sunlit area, which for small r is ~1 — r.

particle), respectively. Similarly, the quantities ai are the corresponding scattering
coefficient, etc.

The fact that the various extinctions are independent may be easily justified by
noting that within a small volume element, the particles do not "shadow," or overlap,
one another. If this were the case, one could always decrease the size of the volume
element until the shadowing becomes negligible. Of course, over a longer path the
effects of both scattering and absorption accumulate, and overlapping can become a
dominant effect. For example, in a leaf canopy with a large leaf density (Fig. 2.5) the
shadows tend to overlap, a tendency that allows a nonzero transmission even for a leaf
density area per unit area (optical path) that can be much greater than unity.

The extinction coefficient will generally vary with the physical conditions of the
medium and will therefore be a function of space and possibly time. For example, the
rate of collisional excitation controls the populations of excited molecular levels, and
therefore it affects the variation of the absorption coefficient with frequency. Also,
absorption within the rotational structure of a single molecular band varies as the gas
temperature changes.

In most atmospheric and oceanic applications, the extinction coefficient does not
vary with the direction of propagation, Q. A medium in which this is valid is called
isotropic. If this is not the case, the medium is said to be anisotropic. For example,
falling raindrops or snowflakes tend to be aerodynamically oriented, causing the ex-
tinction coefficient to be largest in the vertical direction. Also, leaf canopies generally
have extinction cross sections that vary with incidence angle.

Example 2.5 Photon Mean Free Path

The quantity e Ts(v), called the beam transmittance %, is proportional to the probability P(s)
that a photon, beginning its path at s' = 0, will travel unhindered through the medium to the point
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s' = s. The (normalized) probability is

P(s) = -J— (0 < PCs) < 1).

Since radiative transfer processes are statistical in nature, most quantities in transfer theory may
be interpreted as probabilities, or probability distributions. To illustrate how extinction may be
interpreted in this way, consider a situation in which all photons ultimately suffer an extinction
event along a particular line of sight. For example, the photons from a streetlight on a foggy night
will eventually be scattered out of the direct beam. (For a dense water fog, visible light absorption
is weak so that shortwave extinction is identical to scattering.) To a distant observer, the streetlight
itself will be indistinguishable from the surrounding scattered "halo." Such a medium in which
rs ^> 1 is called an optically thick medium. As the observer approaches the lamp, the light bulb
becomes more and more distinguishable, that is, more and more photons have survived the direct
path. Finally, at the lamp itself, none of the emerging photons has undergone scattering. We see
that the probability that a photon has escaped scattering is just P(s). More precisely, P(s)ds is
the probability of finding a photon with free path length lying between s and s + ds. P(s) versus
s may also be thought of as a distribution of photon free paths along a given line. The average
straight-line distance traveled by a photon in an optically thick medium is the photon mean free
path (mfp) given by

oo

= (s)= f dssP{s) = ^—

J *0>)
mfp

which follows from the relation drs(v)/ds = k(v). The extinction coefficient is seen to be the
reciprocal of the mean free path. Note that this quantity is usually a function of frequency. It is
possible to define separately mean free paths for scattering, absorption, and extinction.

2.8 The Differential Equation of Radiative Transfer

We define formally the emission of radiative energy by a differential volume element

within the medium. We ignore any time dependence of the radiation field.17 Consider

again a slab of thickness ds and cross-sectional area dA, filled with an optically active

material giving rise to radiative energy of frequency v in time dt. This energy emerges

from the slab as an angular beam within the solid angle dco around Cl. The emission

coefficient is defined as the ratio

dA ds dt dv dco dv dt dv dco

We now have general definitions for both the loss and the gain of radiative energy

of a beam, and we may therefore write an equation for the net rate of change of the

intensity along the beam direction. Combining the extinction law with the definition

of emission, we have

dlv = -k(v)Ivds + jvds, (2.26)
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where k(v) = o(y) + a(v). Dividing Eq. 2.26 by k(v)ds, the differential optical path
drs, we find

dlv _ jv

drs
 v k(v)

The ratio jv/k(v) is given the special name of the source function:

Sv = — [W • m"2 • Hz"1 . sr"1]. (2.27)
k(v)

Our fundamental equation may be written in three mathematically equivalent ways.

The differential equation of radiative transfer:

v,
(2.28)

dlv dlv

_ Z = _ / v + sv, —^ = -k{v)Iv + k(y)Sv,
dT ds

tl- VIv = -k(v)Iv+k(v)Sv.

In the third form we have used an alternate form for the directional derivative
involving the gradient operator V, which emphasizes that we are describing a rate of
change of intensity along the beam in the direction Q. As described in §6.4, Q • V/v

is sometimes called the streaming term. A derivation of the extra term (l/c)dlv/dt
that must be added to the left-hand side of Eq. 2.29 when time dependence cannot be
ignored is provided in Example 2.6 below. Equation 2.29 is an expression of continuity
of the photon distribution function (see Example 2.6). Photons are lost from the beam
by extinction and added to it by emission. Both Iv and Sv are generally functions of
both position (r) and direction (Q). They also depend parametrically on frequency.

Example 2.6 Alternative Derivation of the Equation of Radiative Transfer

To arrive at the radiative transfer equation describing the spatial and temporal evolution of the
angular intensity (or radiance), we may begin with the Boltzmann equation for the photon gas. We
define the photon distribution function, /v(r, ft, t) [m~3 • sr"1 • Hz"1] such that /v(r, Q, t)cdtdA
cos Odvdco is the number of photons with frequencies between v and v + dv crossing a surface
element dA in direction £2 into solid angle dco in time dt. Since each photon carries energy hv,
the amount of energy associated with these photons is

d4E = chvfv dA cosO dv dco dt.

The intensity is defined such that the same amount of energy is given by

d4E = Iv(r, ft, i)dA cos6 dv dco dt.

Comparing the two expressions we find that the intensity and the photon distribution function are
related by

/v(r, ft, t) = chvfv(r, ft, t). (2.29)
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The temporal and spatial evolution of a general distribution function is described by the
Boltzmann equation

^ + Vr • (vfv) + V¥ • (a/) = Qv(r, &, t), (2.30)
ot

where v stands for velocity, a stands for acceleration, and Vr and Vv stand for the divergence
operator in configuration and velocity space, respectively. Qv(r, &, t) represents the source and
loss terms due to scattering, extinction, and emission. For Qv = 0, Eq. 2.30 is the well-known
Liouville's Theorem, which is just Theorem I. If we ignore general relativistic effects there are
no forces acting on the photons (a = 0), and they travel in straight lines with velocity c between
collisions. Therefore, Eq. 2.30 becomes

which we recognize as a continuity equation for the photon gas. Using Eq. 2.29, we obtain

- ^ + (ft • V)/V(r, ft) = hvQ(r, ft).
c at

The left side of this equation is identical to that of Eq. 2.29 if we ignore the time-dependent term,
(l/c)(dlv/dt), and the right side will also become the same as that of Eq. 2.29 if we assume that
the photons interact with a medium that scatters, absorbs, and emits radiation.

2.9 Summary

We have defined the basic state variables of the radiative transfer theory, the scalar
intensity Iv and the net flux Fv. Since the flux is derivable from the intensity (but
not vice versa), the intensity is the more basic variable. Although Iv contains all the
information concerning the radiative energy flow in the gas, it does not convey any
knowledge of the state of polarization. Angular moments of the spectral intensity were
defined, and these were related to the spectral net flux and the spectral energy density
IAV. Four idealized angular distributions of Iv were shown to give simple expressions
for the angular moments. Theorems describing the behavior of Iv in a homogeneous,
transparent medium were given. The notion of intensity as visual brightness was
discussed as a good analogy, but not as a one-to-one correspondence. The Extinction
Law was considered to be a given result, ultimately based on experiment. The important
concepts of extinction, absorption, and scattering optical depths were introduced. The
differential radiative transfer equation was derived from consideration of the sources
and sinks of radiation along a ray.

Problems

2.1 Let a small object be located at P' on the optical axis of a concave mirror. The
object has an area dA! and is oriented normally to the axis. This object forms a real
image at the distance P. Show that the intensity leaving the object at Pf and the
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(unattenuated) intensity arriving at P are equal. Thus prove Theorem II for the case of
singly reflected light from a concave mirror. Argue that the principle can be generalized
to show that the image has the same distribution of intensity as the original object.

2.2 Consider two transparent media of indices of refraction m\ and ra2, separated
by an interface of arbitrary shape. Prove Theorem III by using Snell's Law to show
that for a bundle of beams passing through the interface, the intensity I\ within the
bundle in medium 1 is related to the intensity I2 in medium 2 within the refracted beam
through I\/m\ = h/m\.

2.3 A Lambertian disk of radius a emits a quasi-isotropic intensity X. Show that the
outward flux at a point lying on the axis of the disk a distance z from the center of the
disk is given by

F(z) =

Notes

Radiative transfer theory originated in astrophysics. Even though it is a bit out of date,
the basic reference for radiative transfer in planetary atmospheres is still Chandrasekhar,
S., Radiative Transfer, Clarendon Press, Oxford, reprinted by Dover Publications, New
York, 1960. A well-written history of the field of atmospheric radiation up to the space age
is by Moller, K, Radiation in the atmosphere, pp. 43-71, in Meteorological Challenges:
A History, Mclntyre, D.P. (ed.), Information Canada, Ottawa, CA, 1972. The classic
reference for transfer of radiation in oceans is Jerlov, N. G., Optical Oceanography,
Elsevier, Amsterdam, 1968. A more modern treatment on marine bio-optics is Kirk,
J. T. O., Light and Photosynthesis in Aquatic Ecosystems, 2nded., Cambridge University
Press, New York, 1994.
To include the effects of polarization, a partially incoherent light wave is written as
a four-vector, with the components commonly known as / , Q, U, and V. The first
component is the ordinary intensity.
Basic radiative transfer field variables are clearly discussed in the classic astrophysi-
cal reference Milne, E. A., Thermodynamics of the Stars, Handbuch der Astrophysik, 3,
Part I, Chapter 2,1930, pp. 65-255, reprinted in Selected Papers on the Transfer of Radi-
ation, ed. D. H. Menzel, Dover, New York, 1966. Modern treatments of radiative transfer
are found in many books, e.g., Mihalas, D., Stellar Atmospheres, W. H. Freeman, San
Francisco, 1978, andLiou, K.-N., An Introduction to Atmospheric Radiation, Academic
Press, New York, 1980.
The wavelength should be reported in vacuum. The small differences are very important
in precise spectroscopy, and in line-by-line calculations.
Note that this beam concept is different from that used in optics and antenna theory.
A laser beam or an antenna beam usually has a finite spatial extent in the transverse
direction.
Note that finite quantities, such as Fv, are ratios of two infinitesimal quantities of the
same order.
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7 The reader should not confuse our definition of intensity with a quantity with the same
name, but with different units and interpretation. See, for example, American National
Standard: Nomenclature and Definitions for Illuminating Engineering, Z7.1, Illuminat-
ing Engineering Society, New York, 1967. Its definition is d3E/da>dvdt [W • sr - 1 •
Hz"1]. It is a measure of the radiative power carried per solid angle and is applicable to
point sources of radiation. It rarely appears in problems dealing with extended sources,
such as occurs in natural radiation, and thus plays no role in our scheme.

8 The intensity distribution is analogous to the distribution in six-dimensional phase space
of molecular velocities and positions in the kinetic theory of gases as a function of time
(i.e., three spatial cordinates, three components of the velocity, and time).

9 The second angular moment of the intensity is proportional to the radiation pressure,
which is of interest in stellar atmospheres but of no importance in atmospheric/oceanic
radiative transfer.

10 In a three-dimensional medium with no symmetry, we require three pairs of numbers,
for the x, y, and z directions.

11 At the Earth's mean distance the Sun's disk subtends 32 minutes of arc, or 6.8 x 10~5 sr.
12 For more information on the properties of the Dirac 8 -function, see Appendix F.
13 See Appendix E for a derivation of Theorem III.
14 When a radiative quantity, such as Iv, Fv, etc., is integrated in this fashion, it becomes

a photometric quantity and is usually accompanied by the term luminous (luminous
intensity, luminous flux, etc.). Excellent discussions of the relationships among irradi-
ance, radiance, luminance, and brightness are given in Bohren, C. E, "All that's best of
dark and bright," Weatherwise, 43, 160-3, June, 1990. (See also Bohren, C. E, Chap-
ter 15 of the same title, in What Light Through Yonder Window Breaks?, Wiley, New
York, 1991.) An alternate definition of the intensity, as well as an up-to-date treatment
of modern radiative transfer theory and practice, is given in Lenoble, J., Atmospheric
Radiative Transfer, Deepak Publishing, Hampton, VA, 1993.

15 August Beer (1825-63) was not the first to expound this principle, nor was Johann
Lambert (1728-77). The honor actually belongs to Pierre Bouguer (1698-1758), con-
sidered to be the father of photometry. We have settled on the historically neutral term
"Extinction Law," which at least is descriptive. This is one of many examples in our
science in which prematurely assigning the "discoverer's" name to a physical principle
can lead to later difficulties. Another example is the term "Mie-scattering," which gives
the false impression that Mie was the originator.

16 If the medium consists of closely spaced (but randomly distributed) particles, such as in
nonporous soil or a dense leaf canopy, the extinction law must be modified to include the
filling factor F (0 < F < 1), which is the total particle volume per unit volume = n{V),
where (V) is the average particle volume. The modification consists of replacing n in
Eq. 3.6 with an effective particle density ne = rc[-log(l - F)/F]. When F < 1, the
bracketed quantity [ ] —> 1, which is valid for a dilute medium such as an atmosphere.
For F —> 1, ne -> oo and the medium becomes opaque.

17 There are few natural processes (with the possible exception of a solar eclipse) that pro-
ceed rapidly enough to compete with the time scale of light travel. Most time-dependent
problems of atmospheric radiative transfer are governed by the slower (rate-determining)
processes of heating and cooling, or by the changing illumination conditions, for exam-
ple, at the shadow line.



Chapter 3

Basic Scattering Processes

3. l Introduction

In the next two chapters we will study the physical basis for the three types of light-
matter interactions that are important in planetary media - scattering, absorption, and
emission. In this chapter we concentrate on scattering, which may be thought of as
the first step in both the emission and absorption processes. The classical concept of
the Lorentz atom is first used to visualize the process of scattering, which encom-
passes both coherent processes, such as refraction and reflection, as well as the many
incoherent processes that comprise the main topics of this chapter.

Consideration of the classical interaction of a plane wave1 with an isolated damped,
simple harmonic oscillator helps to introduce the concept of the cross section. The
scattering cross section is expressed in terms of the frequency of the incident light,
the natural frequency of the oscillator, and the damping rate. A simple extension of
the concept is then made to scattering involving excited quantum states. This approach
also helps to understand three different scattering processes (Rayleigh, resonance, and
Thomson scattering) using one unified description. It also gives the Lorentz profile
for absorption in terms of the classical damping rate, which apart from a numerical
constant agrees with the quantum mechanical result. This approach also allows for a
description of the two principal mechanisms responsible for broadening of absorption
lines in realistic molecular media: pressure broadening and Doppler broadening.

Radiation interacts with matter in three different ways: through emission, absorp-
tion, and scattering. We first contrast these three interactions in terms of their energy
conversions between internal energy states of matter, E\ (which includes kinetic energy
of motion), and radiative energy, ER. It is convenient to consider monochromatic radi-
ation. Emission converts internal energy to radiative energy {E\ -> ER). Absorption

56
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converts radiative energy to internal energy (ER -^ E{). Scattering is a double con-
version (ERf —• Ei —• ER) where the radiative energy ER> is first absorbed by matter
(ER> -> £1) and then radiated (£1 ->• £R). Thus, the radiated field, denoted by /?, is
generally modified in frequency, direction of propagation, and polarization relative to
the absorbed field.

Some general relationships among these interactions follow from the energy-
conversion viewpoint. For example, emission and absorption appear to be inverse
processes. Indeed, in the special case of thermodynamic equilibrium (§5.3) the rates
of emission and absorption are identical. Similarly, we might think of scattering as
being simply a combination of absorption followed by emission, although the scatter-
ing process actually proceeds via virtual states and does not require absorption and
then reemission. It is nonetheless an accurate description in certain situations,2 and it
serves as a useful mental picture of scattering.

In the continuum view, matter can be divided into finer and finer elements with no
limits on the smallness of the values of the charge or matter within the elementary
volumes. In contrast, the atomic theory is based on the notion of a fundamental dis-
creteness of matter, thus placing a limit on the size of these basic volume elements. Our
microscopic description is based on the interactions of light with these basic "building
blocks," assumed to consist only of mass and positive and negative electric charges
bound together by elastic forces. If we imagine these elements to be endowed with
certain internal energy modes ("excitation"), which coincide with those derived from
quantum theory (or determined from experiment), then Maxwell's theory provides us
with all the tools we need to understand the interactions of these elements with elec-
tromagnetic radiation. Although individual atoms are the actual agents of absorption,
emission, and scattering, the mathematics of the classical theory often requires us
to consider the matter to consist of an infinitely divisible continuous distribution of
charge. Fortunately, the dimensions of atoms are so small that these two contradictory
views never pose any practical problems. For example, we will use mathematically
smooth functions to describe how the density of matter varies with space or how the
speeds of molecules vary within a small volume of space without concern with the
basic granularity of matter. We will choose volume elements in either real space, veloc-
ity space, or energy space that are sufficiently small that we can consider the properties
of matter to be uniform within that element. Moreover, these volumes will be large
enough to contain a sufficiently large number of atoms so that the granularity can be
ignored.

With regard to the radiation field, we again take two apparently contradictory views.
The classical point of view is that the electromagnetic field is a continous function
of space and time, with a well-defined electric and magnetic field at every location
and instant of time. In this classical picture the radiative energy within the small
frequency range v and v + dv is a continuous function of v and there is no limit to
how small the energy differences can be. The quantum view of the radiation field is
that of concentrations at discrete values of energy that are separated in increments of
the minimum energy hv at a given frequency. Here h is Planck's constant. The total
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energy density is determined by the total number of radiation quanta (photons) times
the energy hv per quantum. As in the case of atoms, we can define the interval dv
to be sufficiently small so that the energy may be considered to be constant over dv,
but large enough to contain enough photons so that the discretization in energy is
unobservable.

We will sometimes refer to radiation in terms of a "field" and other times in terms of
"photons." This deliberate looseness allows us a flexibility in visualizing light-matter
interactions, sometimes in terms of light particles, whereas other times in terms of a
continuous distribution of an electromagnetic field. However, our actual mathematical
description will usually be based on the classical theory. The classical approach can
be extended to the description of discrete spectral line absorption (a distinct quantum
process). In this "semiclassical" theory, the atom is described in quantum terms but
the radiation is treated as a classical entity. Although this theory has been very suc-
cessful, some phenomena (such as spontaneous emission) require for their complete
explanation that both the matter and the radiation be quantized (called "quantum elec-
trodynamics"). Fortunately, quantum effects can fairly easily be incorporated in the
classical approach. Although not rigorous in any sense, this artifice usually leads to re-
sults consistent with observation. For example, the Planck formula for the frequency
distribution within a blackbody cavity stems from quantum theory. Its adoption in
the classical theory is straightforward. We will unapologetically mix classical and
quantum concepts throughout the book.

3.2 Lorentz Theory for Radiation-Matter Interactions

In 1910, Lorentz3 put forth a very successful microscopic theory of matter, picturing
the electrically neutral atoms of a substance to consist of negative charges (electrons)
and equal positive charges (the nucleus) bound together by elastic forces. These elas-
tic forces are proportional to the distance of the charges from the center of charge
(Hooke's Law). The question of the nature of these forces is not our concern here,
as this requires quantum theory for a satisfactory answer. However, the Lorentz the-
ory combined with the familiar Coulomb forces between electrical charges, and the
Maxwell theory of the electromagnetic field, provided the prequantum world with a
satisfactory explanation of a vast number of phenomena. Some of the constants result-
ing from the Lorentz theory needed to be adjusted to agree with experiments, which
later on were explained in a more basic way with quantum theory. In addition, the
field equations of Maxwell served to explain nearly all properties of radiation as an
electromagnetic phenomenon.

A dramatic failure of the classical theory was its inability to predict the blackbody
frequency distribution law. This failure eventually led Planck in 1900 to his paradigm-
shattering notion of quantized energy states of matter. This advance, plus the failure of
the classical theory to explain the photoelectric effect, led Einstein in 1914 to postulate
that light itself is quantized.4 The new quantum theory eventually replaced the old
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classical theory because of its successful application to a very broad range of phenom-
ena. However, the Lorentz theory has survived to the present day, not because it in
any way competes with the newer theory, but because it has important advantages of
concrete visualization that the quantum theory often lacks. For this pedagogical rea-
son (and because it usually gives the correct answers when the unknown constants are
provided by the accurate quantum theory) we will use the Lorentz theory throughout
the book. Note, however, that the interpretation of many modern optical phenomena
involving so-called coherent radiation requires quantum theory. Fortunately, to explain
the propagation of natural (incoherent) radiation we seldom need to resort to these so-
phisticated descriptions. On the one hand, accurate numerical values of many of the
interaction parameters required in the radiative transfer theory (for example molec-
ular absorption cross sections) cannot be provided by the classical theory. However,
cross-section calculations for spherical particles5 are accurately described by the clas-
sical Mie-Debye theory. Except in certain simple situations, we will consider the
interaction parameters to be given, either from quantum-theoretical calculations, from
the Mie-Debye theory, or from laboratory measurements.

3.2.1 Scattering and Collective Effects in a Uniform Medium

We now use the Lorentz model and the classical radiation theory to visualize how
light is affected in its passage through matter. We consider atoms and molecules
to behave in basically similar ways. Consider a monochromatic plane wave incident
upon a dielectric medium consisting of a uniform distribution of nonabsorbing Lorentz
atoms. The plane wave has a fixed frequency, phase, and polarization (orientation of
the electric field direction). The imposed electric field creates within each atom an
oscillating charge separation, which varies in time with the same period as that of the
incident field. The strength of the interaction is measured by the induced dipole moment
p, which is proportional to two quantities: (a) the polarizability ap, which depends
upon the bonding forces between the constituent positive and negative charges, and
(b) the imposed electric field intensity E'. For simplicity we consider an isotropic
medium, for which ap is a scalar.6 The induced dipole (the product of the electronic
charge and its displacement from the equilibrium arrangement within the atom) is
mostly due to the oscillatory motion of the bound electrons because they are much
lighter than the positive nucleus.

Consider the effect of the incident wave on an isolated atom. Electromagnetic theory
predicts that an oscillating charge will radiate an outgoing electromagnetic wave of
the same frequency as the oscillation frequency. In general, this radiated or scattered
wave will have a definite phase shift with respect to the incoming plane wave. Thus,
the scattered wave is coherent with the incoming wave. In this simplest of situations,
it propagates outward as a spherical wave with the typical dipole radiation pattern.

The effect of a single nonabsorbing atom is thus to divert the flow of radiative
energy, but not to destroy it. However, the collective action of a uniform, optically dense
medium is quite different. In fact, no overall scattering will occur! This is despite the
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fact that each spherical wave may interact strongly with other waves in the manner just
described. To understand this paradox, consider the fact that pure glass, water, or air
transmits light freely with (at most) some bending of the rays at interfaces where there is
a change in the index of refraction. Moreover, away from interfaces, the basic radiance
(I/m*) is not attenuated along the ray (see Theorem III of §2.5). To understand how
the induced dipole picture is compatible with the notion of an unattenuated refracted
ray, we must consider the interactions of the scattered waves with the incident field
and with one another. The medium is assumed to be perfectly uniform. As discussed
earlier, each atom is forced to radiate spherically outgoing waves that are coherent
with the incident wave. The net radiation field therefore is a coherent superposition of
these scattered waves and the incident wave. Because of the coherence, the separate
electric fields must be added with due regard to their relative phases.

Figure 3.1 illustrates light incident on a smooth plane boundary separating a vacuum
(to the left) from a semi-infinite medium (to the right). We assume that the plane wave
falls on this boundary at normal incidence. If the medium is perfectly uniform, then for
every point P' on the boundary we can locate a second point P" such that for a given
direction of observation the path length difference is A./2, where X is the wavelength.
The two scattered waves from P' and P" cancel in this direction through destructive
interference. For all other directions of observation (other than the forward direction)
we can always find other pairs of points for which perfect cancellation occurs. As a
result of destructive interference the incident wave is completely extinguished inside
the medium (the Ewald-Oseen Extinction Theorem). If the medium to the right is a
slab of finite extension, then all that remains of the incident light is the transmitted and
reflected rays, in the forward and backward directions, respectively. We might expect
the net result for the transmitted ray to be the same as if there were no medium at
all. This is not the case - as a result of the repeated scatterings and reemissions along
the ray, its forward progress turns out to be slowed down by a factor rar, the index of
refraction of the medium.

zero net intensity

unattenuated
intensity in
forward direction

zero net intensity

Figure 3.1 The radiation fields scattered from the points P" and P1 are 90°
different in phase and therefore interfere destructively.
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If the incident light falls obliquely on the smooth planar interface of Fig. 3.1 and the
medium is assumed to be a finite slab, then the scattered waves will be found to survive
in two directions outside the medium corresponding to those of the familiar specularly
reflected and transmitted rays in geometric optics. The direction of propagation of
the refracted ray within the medium is given by Snell's Law (see Appendix E). Thus,
both refraction and reflection are manifestations of a coherent superposition of waves,
each caused by a single, more fundamental scattering process. In fact, any type of
"reflection" when analyzed in detail will be found to be the result of the same basic
type of coherent scattering described above. As discussed in the following section,
the myriad of collective processes occurring at the surfaces and interiors of most
natural media modify beyond recognition the basic underlying scattering pattern of
each individual atom or molecule.

3.2.2 Scattering from Density Irregularities

Since no real substance is perfectly uniform, we now consider the case in which var-
ious irregularities, or inhomogeneities, are distributed throughout the medium. These
irregularities can take various forms. For example, even in pure solids, crystal defects
may be present, or there may be irregularities in the orientation of the atoms or in the
density (and thus in the index of refraction) from place to place. Fluctuations occur
in the number density n (or in other thermodynamic properties depending upon den-
sity) due to the fact that no actual substance is perfectly uniform. The atomic nature
of the substance causes it to have statistical variations in density that are present in
all phases, but these are most apparent in gases and liquids. These density inhomo-
geneities, An (whose spatial scales are small compared to k)9 give rise to corresponding
changes in the number of induced dipoles per unit volume, V = navE\ where V is
the bulk polarization of the medium, av is the polarizability, and E' is the imposed
electric field. The electric and magnetic fields at some distance away from two source
points P' and P" will interfere as in a uniform medium (see Fig. 3.1), but in this
case the result is an incomplete cancellation. The "excess" (surviving) electric field
E in the scattered wave is proportional7 to the change in the bulk polarization, AV,
so that E oc AV = apAn. Since the intensity of an electromagnetic wave is propor-
tional to the square of the electric field amplitude (averaged over a wave period),
(A/) oc ((AE)2) oc {AV)2 oc ((An)2). Now the statistical theory for fluctuations
in an ideal gas predicts that {(An)2) oc n. Thus, we are led to the conclusion that
for an ideal gas the scattered intensity is proportional to the number of atoms per
unit volume; that is, the scattering behaves as if the atoms scatter independently of
one another. This remarkable result8 was understood and used by Lord Rayleigh in
his classic explanation of the blue sky in a series of papers between 1899 and 1903.
Mathematical proofs were provided by R. Smoluchowski in 1908 and by A. Einstein
in 1910. A consequence of this result is that light can be simultaneously refracted and
scattered by air molecules. This foremost example of scattering is called Rayleigh
scattering.
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3.2.3 Scattering in Random Media

We have seen that, although a uniform medium transmits light in a collective transpar-
ent manner, the randomly distributed inhomogeneities or imperfections (in an other-
wise uniform medium) scatter light as if the individual atoms were unaffected by the
radiation from their neighbors. With the exception of the forward direction, it can
be shown that for most planetary media, the individual scattered spherical wavelets
have no permanent phase relationships.9 This randomness of the phases of the super-
posed scattered wavelets implies that the net intensity due to all the scattering centers
is simply the sum of the individual intensities. This property of incoherent scattering
is shared by a very large variety of planetary materials, consisting as they usually
do of mixtures of substances and of several types of inhomogeneities. For example,
the presence of small bubbles of air trapped in water or ice will give rise to a milky
appearance owing to the spatial inhomogeneities in the index of refraction. We shall
generally refer to the scattering centers in such substances (so-called random media)
as particles. They are generally different in composition from the atoms of the ambi-
ent media and are distributed randomly within the ambient media. The assumption of
independent scatterers is violated if the particles are too closely packed. The average
spacing between particles should be several times their diameters to prevent inter-
molecular forces from causing correlations between neighboring scattering centers.10

This requirement would appear to rule out independent scattering in aqueous media
where such short-range correlations are the very essence of the liquid state. In parti-
cular, pure water is composed of transitory water clusters of random size held together
by hydrogen bond forces. Seawater11 contains a diversity of ion clusters, depending
upon the various types of dissolved salts. Scattering therefore occurs from the clusters
rather than from individual water molecules. An important point is that these clusters
are much smaller than the wavelength of visible light. With regard to their spatial cor-
relations, the long-range forces between adjacent clusters are of critical importance
to the thermodynamic properties (such as viscosity). The wavelength dependence of
scattering in pure water is ~X~43, suggesting that there is indeed incoherency between
the scattered wavelets. From the optical point of view the clusters are uncorrelated.

Aerosols (solid or liquid particles suspended in the atmosphere or ocean) may
have important radiative effects. Even though the concentrations of scattering "parti-
cles" may be present only in trace amounts, they usually have much larger scattering
cross sections than the molecules. Thus they often have an important influence on the
transfer of radiation.12 The distribution of sky brightness may be severely altered by
atmospheric aerosols (dust, soot, smoke particles, cloud water droplets, raindrops, ice
crystals, etc.), which may be present only in the parts per million by volume. Simi-
larly, suspended organic and inorganic particles in seawater, which may be of minor
importance to ocean chemistry, may nevertheless be of dominant importance to the
radiation field in ocean water. Most natural surface materials (soil, snow, vegetation
canopies) are classified as random media. These materials are composed of randomly
distributed collections of diverse scattering elements, which scatter light incoherently.
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A counterexample is the surface of calm water, for which cooperative effects account
for the specularly reflected and transmitted light. In such cases, the radiative transfer
theory cannot be used, and it is necessary to use Maxwell's equations, as, for example,
in the Fresnel theory of reflection (§6.6).

In most media of interest to us, the dimensions of scattering particles are comparable
to, or exceed, the wavelength of light. In such cases, their "radiation patterns" are often
very complicated (see §6.7 and §6.8). As in the case of small density irregularities,
the intensity of the direct beam is largely a result of collective, coherent effects, but
it is also weakened by the fact that the secondary radiation diverts energy into other
directions. We will refer to this secondary scattered radiation as diffuse radiation,
because in contrast to direct (collimated or unidirectional) radiation it is distributed
over many directions, in general through 4TT steradians.

Scattering in random media occurs over the very small spatial scales of the particles
themselves. We may contrast this with light interactions with irregularities having
larger spatial scales. For example, convection or overturning of air parcels causes a
mixing of irregular warm and cool air masses over scales of the order of centimeters
to meters. Variations of air density and temperature lead to variations over the same
scale in the index of refraction of the air. This in turn alters the direction of light rays
in a chaotic manner and explains the twinkling of stars (scintillation). On a still larger
scale, the air density of a planetary atmosphere declines exponentially with height
(§1.4) over characteristic scales of the order of 5 to 8 km. The distortion of the image
of the setting Sun is a result of the vertical gradient of the index of refraction of air.
Refraction must be dealt with by considering the coherent wave nature of the radiation.
We will not consider such phenomena in this book, although it may be introduced into
the incoherent scattering theory in a straightforward manner.

3.2.4 First-Order and Multiple Scattering

In an earlier section we discussed the fact that, in uniform media, mutual interactions
between the various scattered waves and between each scattered wave and the incident
wave are of utmost importance. In random media where the particles scatter indepen-
dently of one another, their individual contributions add together as if there were no
mutual interactions. Consider the illumination of the atmosphere by the Sun. Assume
that the particles are well separated, so that each is subjected to direct solar radiation.
A small portion of the direct radiation incident on the particle will be scattered and
thereby gives rise to scattered or diffuse radiation. If the diffuse radiation arriving from
all parts of the medium is negligible compared with the direct radiation, the medium
is said to be optically thin and diffuse radiation is unimportant. If we were to double
the number of scatterers in an optically thin medium, the scattered or diffuse radiation
would also be doubled. However, it often happens that the diffuse radiation itself is an
important additional source of radiation, becoming a source for still more scattering,
etc. The diffuse radiation arising from scattering of the direct solar beam is called
first-order or primary scattering. If additional scattering events need to be included,
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the radiation is said to be multiply scattered, and the medium in which this is important
is said to be optically thick. Thus, in many situations of interest in planetary media,
the radiation field is determined not only by the transmitted incident radiation field
but also by the "self-illumination" from the medium itself. This incoherent multiple
scattering could be regarded as a collective effect, but it should not be confused with
the coherent, collective effects already discussed. We will describe multiple scattering
in greater detail in §5.3.

In the following two sections we derive some basic equations for the interaction
cross sections of matter with radiation. Our treatment only scratches the surface of a
vast and complex subject. We present below a simple example of how the interaction
works in a very specific, simplified situation. It also provides useful quantitative results
for cross sections and line profiles in real media. For an isolated molecule and including
only the natural damping interaction, the analysis yields: (1) a strong resonant interac-
tion, which occurs when the light frequency is very near one of the natural oscillation
frequencies of the molecule, and (2) a much weaker interaction, which affects all light
frequencies, and which provides a very good model for Rayleigh scattering. In either
case, the interaction is that of elastic scattering (see §3.3.3). Our treatment does not
explicitly consider the coherence of the incoming and outgoing waves, although this
is necessary in order to derive the corresponding extinction of the incoming beam.
Although the combination of both the direct and scattered fields is important in dense
media, where the oscillators themselves affect the local electric field, here we ignore
this effect.

A simple generalization of the meaning of the damping constant to include colli-
sional effects provides a first-order description of pressure broadening. The Lorentz
line profile predicted by this simple model is in very good agreement with high-
spectral-resolution measurements. We also include the Doppler-broadening effects of
thermal motions on the line profile. We then describe the net result of pressure and
Doppler broadening, the so-called Voigt broadening. The Rayleigh angular scattering
pattern is then derived from the same simple model.

3.3 Scattering from a Damped Simple
Harmonic Oscillator

In certain applications, it is permissible to treat a molecule as a simple harmonic os-
cillator with a single natural oscillation frequency COQ. TO avoid continual appearances
of the factor 2n, it is convenient to deal with the angular frequency co, rather than
the frequency v. The molecule is assumed to consist of an electron bound to a posi-
tively charged nucleus with a certain "spring-constant," related to the natural oscillator
frequency. Later we will remove some of the restrictions of the simple model.

When this simple system is irradiated by a linearly polarized, monochromatic, plane
electromagnetic wave of angular frequency co, the electron undergoes a harmonic ac-
celeration in response to the oscillating electric field. The nucleus, being much more
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massive than an electron, is considered to be a rigid support, and its motion may be
neglected. The relative displacement of positive and negative electrical charges causes
the formation of an induced electric dipole. According to classical theory, acceleration
of an electric charge gives rise to the emission of electromagnetic radiation. A large-
scale example is a dipole13 antenna, which emits radio waves. Without energy loss,
absorption of light by the oscillator increases its motion indefinitely. Loss of energy in a
mechanical oscillator, such as a spring, occurs as the result of a frictional damping force,
which is approximated as being proportional to the velocity. To account for the energy
loss due to the emitted wave, a damping force must exist. For an isolated molecule, this
damping force may be thought of as a radiation resistance.14 The classical radiative
damping force (assumed to be suitably small) is given by F = — mey\, where

y = e2col/67t€omec
3. (3.1)

Here me is the electron mass, v is its velocity, e is its charge, COQ is the natural angular
frequency, e0 is the vacuum permittivity, and c is the speed of light in a vacuum. In an
insulating solid, or in a gas where the electron is subjected to an additional force from
collisions with the lattice or with other molecules, the damping rate y takes the form
of a collisional frequency, given by the inverse of the mean time between collisions.

The power emitted by an accelerated charge may be found by considering the
equation of motion of a damped, simple harmonic oscillator, subject to a forcing electric
field15 of amplitude E' and angular frequency co. According to classical theory,16 a
charge set into accelerated motion radiates an electromagnetic wave with the time-
averaged power given by (see Problem 3.1)

« . , . •**•
l27tm2

e€0C
3

[W]. (3.2)

We now take the ratio of the above expression for the scattered power to the power
carried in the incident field per unit area. The latter is simply eocE'2/2. This ratio is
just the total scattering cross section,

an(co) =
P(co) e4 co4

eocE'2/2 6nm2<E2c4

Below we consider two special cases of this general result.

(3.3)

3.3.1 Case (1): Resonance Scattering and the Lorentz Profile

Here we allow the frequency of the incident light to be "tuned" to a discrete energy
level of a molecule {resonance scattering). In this case the strength of the interaction
is typically many orders of magnitude greater than the nonresonant interaction. Let the
driving frequency co be very close to resonance with the natural oscillation frequency
COQ. We simplify Eq. 3.3 with the provision that 8co = COQ — co <£ co. Then co2 — co2 =
(co + 8co)2 -co2 = 2co8co + (8co)2 « 2co(co0 - co). Substituting into Eq. 3.3, using the
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definition of y from Eq. 3.1, we find upon simplication

Returning to ordinary frequency using co = 2nv, and a>o = 27rv0, we have

The frequency-dependent part of this result is called

the Lorentz profile:

Y'** 21- (3.6)
2]

The frequency line width [s l] (full width at half-maximum) of the Lorentz profile
is just the damping parameter y/2n. The profile OL(v) is normalized. This can be
seen by changing variables to x = 4n(v — vo)/y. Integrating over x, and noting that

1, one finds

>O OO +OO

^ " T = 1- (3-7)
it

Since the Lorentz profile is normalized, we find by integrating over all frequencies
(we have assumed only one natural frequency)

oc

/

e2

dva™(y) = . (3.8)
4meeoc

Thus, the integrated, or total, classical cross section is constant, depending only upon
fundamental atomic constants.17 This simple result is independent of the damping
constant and originates from the area-preserving frequency dependence of Eq. 3.6.
This property of the Lorentz profile is illustrated in Fig. 3.2. Increasing the value of y
decreases the strength of the spectral line in the line core, the region | v — vo I < y/4jt.
However, increasing y strengthens the line wings, the region where |v — vo| > y /4ix.
In the distant parts of the line, <J>L(V) varies as v~2.

The above expression was derived from strictly classical considerations of a single
electron forced by the oscillating electric field of the incident wave. In actuality, there
is more than one resonant frequency, so that we refer to the ith frequency or quantum
transition. In addition no consideration has been given to the quantum-mechanical
character of the process, which involves the notion of a transition from a ground state
to a quantized excited state. It is found that the more correct derivation18 yields a
nearly identical expression, the difference being that it contains an extra multiplicative
factor, called the oscillator strength, ft. Thus we may write our expression for the
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Figure 3.2 Comparison of normalized Lorentz, Voigt, and Doppler profiles versus
x = (v — vo)/Av. Avis the Doppler width Q?D for both Doppler broadening and
Voigt broadening and is the Lorentz width a^ for Lorentz broadening.
a = C*LA*D = 1 was used for the Voigt profile.

resonance cross section in the following form, showing the relationships between the
line profile, the oscillator strength, and the line strength Si (see Eq. 4.59):

e2fi
4me€oc

(3.9)

3.3.2 Conservative and Nonconservative Scattering

It is convenient to classify scattering processes, depending upon whether or not the
photon changes frequency upon scattering. In analogy with elastic and inelastic colli-
sions between two material particles, the issue is whether or not there is a net change
of energy and momentum following the "collision." Light carries momentum (of or-
der hv/c), and one might expect the absorption and subsequent reemission of light
would impart both a momentum impulse19 and a change of energy (frequency) of the
photon. For the UV/visible/IR radiation fields of interest to us, this process is neg-
ligible compared with the damping (or more correctly, broadening) effects resulting
from the uncertainty of the upper-state lifetime. For resonance scattering, Rayleigh
scattering, and Mie-Debye scattering the change in emitted frequency is very small,
compared with the incident frequency. The term coherent scattering is sometimes used
to describe this case, since the process involves interference between the incident and
scattered waves. However, this term could lead to confusion, since it might lead one
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to believe that it does not apply to scattering from random media. It also implies that
if absorption occurs, the process is incoherent, which is untrue.

Inelastic scattering involves an exchange of internal energy of the medium with that
of the radiation field. Typically, the exchange results in a net loss of radiative energy
and a gain of internal energy of the medium in the form of heat or chemical energy. Such
processes are possible when the matter contains a number of accessible energy states.
For example, rotational Raman scattering is the process by which the excited "virtual"
state of a molecule radiatively decays, not to the original state (Rayleigh scattering),
but to a state higher in rotational energy (the Stokes component) or lower in rotational
energy (the anti-Stokes component). If molecules are illuminated by monochromatic
light from a laser, the scattered spectrum will be a series of closely spaced lines on either
side of the central Cabannes line.20 An understanding of the basic aspects of rotational
Raman scattering can be obtained from classical considerations. We replace our notion
of an induced dipole fixed in space by one that is also rotating. The dipole will then emit
not only its fundamental ("carrier") frequency, but "sideband" frequencies consisting
of sums and differences of the basic frequency and the frequencies corresponding to
the energies of rotation. Because rotational energy states are quantized, this results in
a number of discrete "beat frequencies" (see Problem 3.3). A closely related process
is fluorescence, which applies to two bound states, either vibrational or electronic.
Here the molecule is originally in its ground (lowest energy) state and returns after
scattering to a higher energy state. The scattered photon will, of course, have less
energy than the incident photon.

Raman scattering and fluorescence may be classified as "cross-wavelength" pro-
cesses, in that scattered photons of more than one discrete frequency are involved.
Raman scattering is important for some ocean and lidar applications. We will not con-
cern ourselves with such processes, since they occur in rather specialized applications
(such as in so-called Raman lidars).

Another classification is whether the scattering process results in partial absorp-
tion of the light energy. If there is negligible absorption, it is said to be conservative,
referring to the conservation of radiative energy. If there is some absorption, it is
nonconservative. These terms may be considered to be synonomous with elastic and
inelastic scattering. To ensure that we do not confuse the terms "elastic" and "inelas-
tic" with processes involving collisions of molecules (see Chapter 4), we prefer to use
the terms "conservative" and "nonconservative" when referring to light scattering.

3.3.3 Natural Broadening

For an isolated molecule, the notion of the damping parameter y may be extended to
a more realistic interpretation as the inverse lifetime of an excited quantum state tr, as
discussed further in Chapter 4. As seen from Eq. 3.6 the shorter the upper-state lifetime,
the broader the frequency line width of the profile, which we temporarily denote as
Av. This inverse relationship is consistent with Heisenberg's Uncertainty Principle,
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relating the uncertainty in knowledge of the energy of a quantum system AE = hAv
to the uncertainty in knowledge of the lifetime At of the energy state. In this context,
Heisenberg's relationship is written AEAt & (h/2n). It follows immediately that
At = tr & (2nAv)~l. The situation where the absorption line is dampened solely by
the natural lifetime of the upper level is called natural broadening.

3.3.4 Pressure Broadening

Natural dampening applies to an isolated molecule, that is, one unperturbed by col-
lisions with its neighboring molecules within a radiative lifetime, tT. For a strong
(allowed) transition in the shortwave spectrum, a typical value is tT ~ 10~8 s. Thus
the natural line width aN is ^\/2ntv ~ 1 x 107 s"1. In wavenumber units aN =
\/2ixtvc = 5 x 10~4 cm"1, which is very much smaller than that observed in atmo-
spheric spectra. For vibrational and rotational transitions in the IR, tr is much longer,
of the order of tr ~ 10"1 to 101 s, with even smaller values of aN. Thus natural bro-
adening is completely negligible in atmospheric applications.

Collisions between molecules result in collisionally induced transitions, which
occur temporarily in the joint system of two molecules in close vicinity. The net effect
of these nearly resonant transitions on the emitted energy is very small, since roughly
half of the transitions are excitations, and the other half deexcitations of energy states.
These processes effectively reduce the lifetime of the upper state, and thus they broaden
the line. The reduced lifetime is called the optical lifetime topt. It may be shown that
under rather general conditions (see Problem 3.6) the collision process leads to a
Lorentz profile, with a line width aL ~ l/2ntopt, of

n [(v -
(3.10)

The theory of collisional line broadening is quite complicated. A number of methods
have been devised, but all make simplifying assumptions. However, common to all
the theories is the predicted linear dependence of aL on the number density of the
perturbing molecules, and upon the relative speed of the collision partners, vrei. Thus
for an arbitrary number density n and temperature T, since urei ~ y/T, we may scale
the pressure-broadened Lorentz width

c*L(STP) nVr* = a L ( S T P ) ^ = , (3.11)
^ ^ ( S T P ) /T

where rcL is Loschmidt's number (the number density of air at STP) and To is standard
temperature (272.2 K).

A typical value for ropt is 10~10 s at STP, yielding a line width of 2 x 109 s"1, or in
wavenumber units aL = 0.05 cm"1. This value greatly exceeds both the natural line
width and the Doppler line width (see the next section), so that pressure broadening
is dominant at STP for all wavelengths.
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3.3.5 Doppler Broadening

The second major source of line broadening is that due to small Doppler shifting of
the emitted and absorbed frequencies. As shown later, the shift is of order vK\v/c =
Ureî > where t>rei is the relative speed and c is the light speed. For CO2 at STP, at
the wavelength of the strong 15-/zm band, the Doppler shift is ~8 x 10~4 cm"1.
Thus Doppler broadening is negligible near the surface but grows in importance with
height, since it varies as \ff and aL(z) falls off exponentially with z. They are equal
in importance where n/n0 « 0.016, which occurs at a height of about 30 km (see
Appendix C). Below we examine the Doppler broadening in greater detail.

Doppler broadening stems from the simple fact that molecules are in motion when
they absorb and when they emit. Consider a photon scattered in a resonance line. Since
this process involves a photon arriving and leaving in different directions, there is a
relative Doppler shift between the two events. Given that one always observes the net
effect of an ensemble of scattering molecules, the result will be a spreading of the fre-
quency of an initially monochromatic photon. Absorbing molecules will be distributed
along the line of sight according to the Maxwell-Boltzmann Law, and therefore they
will absorb in proportion to the number having a certain velocity component. Finally,
suppose the molecules are excited by collisions and undergo many elastic collisions so
that the "memory" of the direction of the colliding molecule is lost. Then the excited
molecules will emit according to their velocity distribution, which is Maxwellian by
assumption. In all three cases (scattering, absorption, and emission), we find that the
line profile is dominated by thermal Doppler shifts, if the spread in frequency is larger
than that caused by natural or pressure broadening.

We will describe the effects of thermal broadening on absorption. Consider the
frequency of the photon in two reference frames (v and v'). Here v is the frequency in
the laboratory frame, which is the normal frame of an observer, and vr is the frequency
in the atom's (rest) frame. The relationship between these two frequencies is obtained
by considering an atom with speed 1; moving toward the observer with a line-of-sight
velocity v cos 0, where 0 is the angle between the direction of motion and the line of
sight. Suppose the molecule receives a photon of frequency v in the lab frame. If the
molecule were at rest with respect to the lab frame, in one second it would "see" exactly
c/X oscillations, where X is the irradiating monochromatic wavelength. However, be-
cause of the fact that the molecule is moving toward the emitter, it "sees" an additional
number of oscillations equal to the distance it travels in one second, divided by the
wavelength. Thus, the number of oscillations the atom encounters is c/X + v cos 0/X.
This quantity is just the frequency seen in the atom's frame, v' = c/Xr. Hence

v cos 6
v' = vH = v + v(v/c) cosO = v[l + (v/c) cos(9]. (3.12)

A

The molecule will therefore absorb according to its absorption cross section at the
shifted frequency v'. Suppose we align the rectangular coordinate system so that the
x direction coincides with the line of sight. The absorption cross section appropriate to
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the molecule moving with the velocity component vx is on (v + vvx /c). The number of
molecules moving with this velocity component is given by the Maxwell-Boltzmann
distribution

f(vx)dvx = (T^=) e-v*/v°dvx, (3.13)
\2nkBT J

where vo = ^/2kBT/m is the mean speed of the molecules. The cross section at the
frequency v due to all line-of-sight components is given by

an{v) = j dvxf(vx)crn[v(l + (vx/c)]
—oo

1/2 +°°

We now need to assume the functional form for the cross section in the molecule's
frame. For simplicity we first assume that the broadening in the molecule's frame is
much less than the thermal broadening. In effect, we are assuming that the molecule
absorbs according to an infinitely narrow peak, that is, crn(v) & S8(v' — v0) =S8(v —
ô + wx/c). Substituting in the above integral and integrating, we obtain

-c\v - v0f/v
2
0v

2
o]. (3.15)

Letting aD = v0vo/c, which is called the Doppler width, we find

crn(v) = <SOD(v) = -^f— exp[-(v - VO )2/«D]-
/7taD

 L

It can be verified that the Doppler line profile OD(V) is properly normalized. The
mathematical form of Eq. 3.16 is recognized as a Gaussian function, of (l/e)-width
Q?D, and line width aDVhi2.

We now consider the more general case in which the broadening in the rest frame
cannot be ignored compared with the thermal broadening. Suppose this is given by
Lorentz broadening, with a total (natural- and pressure-broadened) line width aL. Then
substituting Eq. 3.10 into Eq. 3.14, and simplifying the notation, we find

+OO

_ a f d

7 T 3 / 2 C Y D J (V —

dye
A,2

y) + a2
(3.17)

where the damping ratio is a = aL/tfD a n d v = (v — vo)/aD. The function <&y(v) is
called the Voigt profile, which can be shown to be properly normalized. It represents
the combined effects of both Lorentz and Doppler broadening. We note that for small
damping ratios (a -> 0), we retrieve the Doppler result. The Voigt profile shows
a Doppler-like behavior in the line core and Lorentz-like (v~2) behavior in the line
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wings. For a > 1, the Voigt profile resembles the Lorentz profile for all frequencies.
The Voigt profile must be evaluated by numerical integration, and to this end, many
authors have published algorithms suitable for efficient computation.21

3.3.6 Realistic Line-Broadening Processes

The collisional processes considered up to now are adiabatic interactions, implying
only very gentle interactions with other molecules. Unfortunately, the quantum-
mechanical line-broadening theory describing more realistic collisional perturbations
of the upper state is extremely difficult. Collisional narrowing of lines can occur, as
well as asymmetry and shifting of the line profile away from its unperturbed location.
The far wings of lines are most affected by such complications. Empirical corrections
are sometimes applied, in which the power of the exponent b in the v~b formula is
altered from its canonical value of b = 2 to obtain super-Lorentzian (b < 2) and sub-
Lorentzian (b > 2) wing behavior. Fortunately, the line core and near wings remain
Lorentzian even under severe collisional interactions. In practice, neighboring lines
often begin to encroach on one another with increasing gas pressure, and line over-
lapping usually is more important than far-wing effects. The net effect of increasing
pressure is greater line broadening, in agreement with Eq. 3.11.

In liquids and solids, the effects of nearby molecules are of course even more im-
portant than in the densest gases. Their absorption spectra may be extremely complex
resulting from the myriad of energy states created by the mutual interactions. In most
situations, first-principles analysis is impossible. Fortunately, the spectra frequently
overlap to the point where the absorption spectra appear to be nearly continuous and
slowly varying with frequency. Then the situation is actually simplified from the point
of view of the radiative transfer. It is then sufficient to use low-spectral-resolution
measurements and tabulation of the optical properties, provided one can collect sam-
ples of the material for transmission experiments in the laboratory. In practice, some
materials are so opaque that standard transmission experiments are not possible. Re-
flection and absorption experiments are required for such substances, combined with
the use of FresneVs equations (see Appendix E) and various theoretical relationships
(for example, the Kramers-Kronig relations). Standard tabulations of optical proper-
ties for continuous media are usually either in the form of real and imaginary indices
of refraction or involve the complex dielectric constant, from which the absorption
and scattering coefficients may be derived.

3.3.7 Case (2): Rayleigh Scattering

Suppose the driving frequency is much less than the natural frequency, co <^COQ. Then
Eq. 3.3 becomes

.?«_ " ^ ( ^ V - d , ) 1 . (,18)

bnm^e^coQ bn \c J \me€oc0Q J

This result displays the well-known co4 dependence of Rayleigh scattering.
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The Rayleigh cross section may be related to the molecular polarizability, ap. This
quantity was previously defined (see §3.2) as a relationship between the induced dipole
moment and the imposed electric field. From the harmonic oscillator solution, we find
for co <̂C coo the result av = e2/4nme€ocol (Problem 3.1). Using this result in Eq. 3.18,
and transforming to wavelength X = c/v, we find

As discussed in §3.2.3 it is permissible to assume that we can add together the
separate molecular contributions for a gaseous medium consisting of scatterers with
random orientations and positions. A dilute mixture of gases, such as air, can be
described in terms of a weighted average of the real refractive indices. This is denoted
by mT and may be related to the mean polarizability through

The Lorentz-Lorenz equation:

oip = (mT - l)/2jtn.

Our final form for the macroscopic Rayleigh scattering coefficient is thus

1 ) 2 [rrT1]. (3.20)

For purely scattering dielectric spheres of radius a <£ A., the polarizability was shown
by Lorentz to be given by

The cross section then follows immediately from Eq. 3.19. Other forms for the Rayleigh
scattering cross section follow if the particles are anisotropic, nonspherical, partially
absorbing, inhomogeneous, etc. A third limit, co ^> coo, is considered in Problem 3.2.

Since mr varies with wavelength, the actual cross section departs somewhat from
the A."4 behavior. A convenient numerical formula (accurate to 0.3%) for the Rayleigh
scattering cross section for air is22

3

an
RAY = AT4 Y^aix~2i x 10~28 [cm2l ( ° - 2 0 5 < * < 1-05 fim),

where the coefficients are a0 = 3.9729066, ax = 4.6547659 x 10"2, a2 = 4.5055995 x
10"4, anda3 = 2.3229848 x 10"5.

Although the classical Lorentz dispersion theory (§3.2) is still quite useful in un-
derstanding some phenomena in liquids and solids, it has been more profitable to
treat them as continuous media. The scattering is considered to occur as a result of
optical inhomogeneity arising from impurities and imperfections, as well as statisti-
cal fluctuations of density and concentration. These fluctuations are due to various
types of collective oscillations, set up by thermal motions. This approach was pio-
neered by Smoluchowski and Einstein in the early twentieth century. As discussed



74 Basic Scattering Processes

in §3.2, it has been long understood that even scattering from gases requires such
a description, because the coherent interference of the scattered waves would pre-
dict zero scattering in a homogeneous medium. Fortunately, gases in planetary atmo-
spheres generally scatter as if there were no mutual interactions (except in the forward
direction).

3.4 The Scattering Phase Function

So far we have ignored the directional dependence of the scattered radiation. We now
consider the determination of the scattering phase function. We wish to describe the
amount of radiation emanating from a small volume element as a result of scattering
due to radiation coming from the Sun or from other parts of the medium. The angle
0 between the directions of incidence Qf and observation Q is given by cos 0 =
Qf - Q. This angle is called the scattering angle. The term forward scattering refers
to observation directions for which 0 < jr/2, and we use backward scattering for
0 > n/2. The total scattering cross section was defined in Eq. 3.3 as the total power
per unit area scattered in all directions divided by the incident power per unit area of
the incident plane wave. Similarly, the scattered power per unit area per steradian in a
particular direction of observation divided by the power per unit area of the incident
plane wave is called the angular scattering cross section, crn(S) [m2- sr"1]. Azimuthal
asymmetry (dependence on the 0 coordinate) of the scattering phase function will
usually disappear when averaging over all orientations of scatterers. Thus it is almost
always permissible to assume that the scattering cross section is the same everywhere
along a cone of half-angle 0 . To determine the scattering cross section as a function
of 0 , we form the following scalar product:

ti -Q = cos 0 = QX,QX + QyQy + QZQZ.

The rectangular components £2X, £2y, and £2Z are illustrated in Fig. 3.3. Carrying out
the multiplications and noting that cos(0' — 0) = cos 0' cos 0 + sin 0' sin 0, we find
(Problem 3.4)

cos0 = cos 0'cos 0 + sin0'sin0cos(0' - 0). (3.22)

This result is recognized as the familiar cosine law of spherical geometry.
Consider a medium consisting of just one type of particle of number density n [m~3].

an(cos 0 ) is the angular cross section per particle and a (cos 0 ) = nan(cos 0 ) is the
angular scattering coefficient [m~l • sr~l ]. It is convenient to introduce a dimensionless
quantity that characterizes the scattering process. We define the phase function23 as
the normalized angular scattering cross section as follows:

- ] . 0.23)
7T
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Figure 3.3 Illustration of the relationship between Cartesian and spherical
coordinates. The rectangular components of the unit vector Q are
£2X = sinO cos</>, Qy = sinO s in0 , and QZ = cos6.

The normalization is

/?(cos0)
In n

dO sin 0 = 1.
An

(3.24)

4n

Since p/4jr varies between 0 and 1 this suggests a probabilistic interpretation. Given
that a scattering event has occurred, the probability of scattering in the direction Q
into the solid angle dco centered around Cl is p(&, Q)dco/47t = p(cos @)dco/47t.

3.4.1 Rayleigh-Scattering Phase Function

The radiation pattern for the far field of a classical dipole is proportional to n sin2 0,
where 0 is the polar angle as measured from the axis defined by the induced field,
and II is the induced dipole moment along that axis. The scattered radiation therefore
maximizes in the plane normal to the dipole and vanishes on the axis of the dipole
itself. We now consider how this translates into a normalized angular scattering cross
section or phase function. This is the probability p (0) of scattering per unit solid angle,
defined above, which depends upon the projection of the induced dipole moment in
the direction 0 of the scattered radiation.

As usual we denote the direction of propagation of the incident and scattered waves
to be Qf and Q, respectively. It is convenient to use as a reference the scattering plane,
defined as the plane containing & and Q. For the present purpose it is sufficient to
consider two linearly polarized incident waves, one with its electric field parallel to (or
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Figure 3.4 Illustration of the two transverse components of Rayleigh-
scattered light. Q' and Q are the incident and scattered propagation
vectors, respectively. Tl± and Fly are the induced dipole moments for
incident electric fields that are linearly polarized in the directions
perpendicular to, and parallel with, the scattering plane (shown as the
white rectangle), respectively. I± and /y are the corresponding scattered
intensities in direction Q associated with the induced dipoles. The plane
defined by n ^ and II y as well as the plane defined by I± and I\\ (both
shown as shaded) are normal to the scattering plane.

in) the scattering plane, and the other with its electric field orthogonal to the scattering
plane. As indicated in Fig. 3.4 these incident waves give rise to induced dipoles (FTu
and Fix) along the respective incident fields. Referring to Fig. 3.4, we see that if the
incident electric field lies in the scattering plane, then the angle 0 between the induced
dipole and the direction of scattering is (TT/2 + 0 ) , where 0 is the scattering angle.
Thus, the scattered light intensity is / = /y oc riy sin2(7r/2 + 0 ) = ITy cos2 0 . If,
however, the incident plane wave is linearly polarized perpendicular to the scattering
plane, then the angle 0 between the induced dipole and the direction of scattering is
7r/2, and the scattered intensity is simply proportional to the strength of the induced
dipole, that is, / = I± oc FI^.

We are concerned in this book with natural, unpolarized incident light, which can
be treated as a sum of two orthogonal, linearly polarized waves having no coherent
relationship. Furthermore they are of equal intensity (I± = /y = 1/2). Thus we find
that for incident unpolarized light the scattered intensity and the linear polarization are

/RAY(0) OC (7L + /„) oc 1(1 + cos2 0 ) ,

I± - h 1 - cos2 0PRAY(0) =
(3.25)

/_L + /|| 1 + COS2 0 '
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Parallel
Component

Perpendicular
Component

Net

COS20 cos20

Figure 3.5 Schematic three-dimensional diagram of the Rayleigh-
scattering phase function, or scattering pattern, for the case of incident
unpolarized light. The intensity of the parallel component of the incident
light is scattered according to the pure dipole (cos2 0 ) law, as a result of
the projection of the induced dipole along the scattered light direction 0
(see Fig. 3.4). In contrast, the intensity of the scattered component
perpendicular to the scattering plane is the same for all 0 and thus is
isotropic. The sum of the two patterns yields the scattering pattern for
unpolarized light.

The proportionality constant follows from noting that dco = d(j) sin OdO in a polar
coordinate system where Q! is along the z axis. Therefore

— f4n J dco(l +cos26>)

2JT TT

-hhl dO sinO(l +cos20) = - ,

which implies that

3
4( (3.26)

Figure 3.5 illustrates how the two components, one isotropic, the other a dipole,
combine to yield the Ray leigh phase function.

It should be kept in mind that even though we assumed that the incident light beam
is unpolarized, the scattered light from a Ray leigh-scattering medium is polarized.
This follows from Eq. 3.25 and the fact that /y is not usually equal to I±. In fact for
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0 = 90°, Eq. 3.25 shows that the scattered light is 100% polarized, in the _L direction.
However, its importance is diminished in the presence of multiple scattering, which
mixes light beams of many polarization states. In practice, if one is interested only in
the flow of energy through a Rayleigh-scattering medium, errors in methods that ig-
nore polarization and that use Eq. 3.26 for all orders of scattering are small, typically
less than a few percent. However, angular distributions are subject to more severe
errors, depending upon the optical thickness, among other factors. Another consid-
eration for air molecules is the nonspherical shapes of N2 and O2. Their effect is to
introduce a small anisotropic correction to the above formulas, since the two induced
moments are slightly unequal (FTn ^ II _L). One consequence of anisotropy is that
the light scattered from air molecules through 90° is slightly depolarized (P(90°) ~
96%).

3.5 Mie—Debye Scattering

For particles not small compared with the wavelength, the interaction properties must
be found by solving a complicated boundary-value problem for the electric and mag-
netic fields. For spherical particles this theory is well established, and the detailed
derivations and applications are found in many references and texts. Here we gather
together the most important formulas, which convey the flavor of the input and output
quantities, and how the calculation is carried out. In the limit of large particles (r ^> X,
where r is the radius of the spherical particle), the Mie-Debye results may be derived
from geometrical optics.

The scattering cross section an and scattering efficiency (Qs = an/nr2) are calcu-
lated from the multipole expansion expression

°" = IT Yl{2n + 1)(l^2 + |Z?»|2)' (3-27)
k n=\

where k = co/c = 2TT/X is the angular wavenumber. The extinction cross section
(kn = an + an) is given by

2n
Jl(2 im *> (3-28)
n=\

where $t denotes the real part of the expression. The coefficients an and bn, which may
be complex, are derived from the formulas

_ mjrn{mx)tyn(x) xl/n(x)xl/n(mx)
m^(mx)^(i)-^(i)^(mi) '

_ \lrn(mx)jrf
n(x) - m\lrn(x)\lr'n(mx)
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where m = mp/ma{r, and rap and mair are the refractive indices of the particle and the
surrounding medium (in this case air), respectively.

The functions tyn and §„ are the Ricatti-Bessel functions, which are related to
the spherical Bessel functions. Primes O denote differentiation with respect to the
argument. The quantity x = 2nr/X, where k is the wavelength inside the medium
(k = Ao/mp), is called the size parameter.

The phase function for scattering is given by

where Si and S2 are the scattering amplitudes,

(In + 1) ^ (2n + 1)
———— (an7tn + bnrn), S2 = > ————• (anrn + bn7tn),
n(n + 1) —̂f n(n + 1)

(3.32)

and where

Pl(S) dPl(@)
nn(S) = — , t n (0) = — . (3.33)

sin @ d©

Pn
!(@) is the associated Legendre polynomial. (For example, P/ = sin0, 7t\ = 1,

and ti = sin@.)
The Rayleigh-scattering formula (see Eqs. 3.20 and 3.21) is retrieved from Eq. 3.27

by expanding the functions i//n and §„ in powers of x and retaining only the lowest-order
terms.24

3.6 Summary

Scattering processes occur in both homogeneous and inhomogeneous media. The
basic difference is that in the former, the scattered wavelets cancel and only the direct
beam is preserved. In the latter, because the scatterers are subject to statistical vari-
ations (in time and space) the scattered wavelets do not cancel. In both gaseous and
aqueous media of interest to us, the squares of the electric fields in the scattered waves
are added as if all the particles were independent scatterers. In both cases the direct
beam experiences the collective effects of refraction and reflection. In the classical
picture, the scattering process occurs as a result of the incident electric field inducing
temporary electric dipoles, which then act as sources of secondary radiation. The ra-
diation issuing from these centers is called first-order scattering. Radiation produced
by further interactions of the first-order radiation with the medium is called multiple
scattering. Scattering processes in which there is no net energy exchange between
the gas and the photons are classified as conservative. If some absorption occurs, the
process is called nonconservative.
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The frequency dependence of the absorption line profile was illustrated by solution
of the forced classical damped harmonic oscillator. The concepts of resonance and
Rayleigh scattering follow from various limiting forms of the classical oscillator solu-
tion. The Lorentz line-broadening profile as well as the Rayleigh phase function also
follow from this formulation. The classical picture of an induced dipole was extended
to describe scattering as an excitation of a quantized state. The concept of pressure
broadening is understood as the extension of the harmonic oscillator damping to in-
clude perturbations of the excited state by elastic collisions. Doppler and mixed (Voigt)
line broadening were shown to result from the spectral line shifts from a gaseous ensem-
ble in which there is a dispersion of velocities, described by the Maxwell-Boltzmann
distribution. The Rayleigh phase function applying to unpolarized incident light was
derived from consideration of the components of the induced dipole in directions nor-
mal to, and perpendicular to, the scattering plane. Mie-Debye scattering theory was
briefly described for spherical particles.

Problems

3.1 The equation of motion of a damped, simple harmonic oscillator, subject to a
forcing electric field of amplitude E' and angular frequency co, may be written

"O-WeX — • (3.34)

Here z is the vector displacement which is in the same direction as the imposed electric
field vector E'. dl ( ) denotes the real part of a complex quantity.
(a) Derive Eq. 3.2.
(b) Show that for co <3C co0 the polarizability is given by

3.2
(a) Taking the high-frequency limit of Eq. 3.3 (co ^> coo), show that the total scattering

cross section is given by

where ro = ^ ^ is the classical electron radius (r0 = 2.82 x 10~15 [m]). an,the
Thomson-scattering cross section, gives the scattering cross section for a free
electron.

(b) Derive the above equation for r0 by equating the electrostatic self-energy of an
electron to its relativistic equivalent mec

2.

3.3 A qualitative understanding of Raman scattering is gotten by considering an anal-
ogy with Rayleigh scattering. Consider the polarizability to oscillate with a frequency
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corresponding to the vibrational (or rotational) energy,

a = of0 + Qfk cosiest + 5k).

Show that the scattering consists not only of the principal (Rayleigh) component, but
also two other frequency components, the Stokes line having a frequency (coo — co^),
and an anti-Stokes line with frequency (a>o + o\).

3.4 Derive Eq. 3.22.

3.5 Show that a line that is broadened both naturally (line width o?N) and by pressure
effects (line width aP) is a Lorentzian with a line width given by of = aN + ofP.

3.6 A classical view of collisional broadening results from imagining the molecules
to be radiating simple harmonic oscillators, perturbed by elastic collisions that change
the phase of the oscillators in a random manner. Assume that collisions occur with
a probability p(t) = e~t/topt, where t and topt are the time, and mean time, between
collisions, respectively.

First find the Fourier cosine transform g(v) of the ensemble of wave trains of varying
length ct by carrying out the integration

t/2
[2 f

g(v, t) = \ — / dtf cos 2nv0t
f cos 27tvt\

-t/2

Ignore the term involving (v + v0)
 l. Then evaluate the power spectrum by convolut-

ing the Poisson distribution of collision times p(t) with the square of the cosine trans-
form (since the intensity is proportional to the square of the electric field amplitude),

oo

E(v)= fdtp(t)g2(v,t).
0

Show that the result is that E(y) oc </>L(V), the Lorentz profile, where the line width is
aL = l/(27rfopt).

3.7 Generalize Eq. 3.23 to describe the phase function for a mixture of particles
consisting of different scattering cross sections and phase functions, having densities
rii (i = 1, . . . , n ) .

Notes

1 The concept of a plane wave is discussed in detail in Appendix H.
2 In fluorescence scattering, the accurate quantum-mechanical probability of scattering

is given by the product of the separate absorption and emission probabilities. In this
case the intermediate (excited) state of matter is an observable property.



82 Basic Scattering Processes

3 The classical Lorentz theory of the interaction of radiation and matter is given a con-
sistent treatment in the well-written textbook, J. M. Stone, Radiation and Optics, An
Introduction to the Classical Theory, McGraw-Hill, New York 1963.

4 Only later in 1925 did these light particles become known as "photons."
5 This type of scattering is often called Mie scattering. This term should be reserved

strictly for scattering from homogeneous spherical particles for which Gustav Mie in
1908 brought together the contributions of others and added his own improvements:
"Beitrage zur Optik triiber Medien, Speziell Kolloidaler Metallosungen", Annalen der
Physik, 25, 377-445, 1908.

6 ap is written as a scalar here, but it can be a tensor quantity in so-called anisotropic media.
In other words, it is possible in such media for the induced dipole to have components
normal to the direction of the imposed electric field.

7 The proportionality of the E field to the induced dipole moment per unit volume V
is a consequence of Maxwell's equations. The electric fields in the "far field" can be
shown to be given by E a d2V/d2t. Since both E and V vary in time as exp(icot), then
E oc co2V ex k~2V. Since the scattered intensity varies as E2, then / oc A"4^ 2 .

8 This result applies only to ideal gases, for which there are no mutual interactions of the
molecules. A further restriction is that the index of refraction must be close to unity,
which is valid for all transparent gases. Condensed media, for example liquid water, do
not share this property, although they usually still maintain an approximate A."4 behavior.
Scattering from inhomogeneities in such materials is a valuable tool for studying both
the atomic and thermodynamic properties of the substance.

9 Lack of permanent phase relationships is a consequence not only of the random spatial
distribution of scatterers, but also because their orientations and thermal velocities are
uncorrelated. There are many synthetic substances for which this is not the case. For
example, a liquid crystal owes much of its peculiar optical properties to the fact that the
orientations of the various scattering centers are highly correlated. Another example is
an ionized medium that will affect the passage of a radio wave in a collective fashion
as a result of the spatial coherence brought on by the mutual electrical forces between
charges.

10 The standard reference on single-scattering theory is Van de Hulst, H. C , Light Scat-
tering by Small Particles, Dover, New York, 1981.

11 The subject of absorption and scattering in the ocean is covered in N. G. Jerlov, Optical
Oceanography, Elsevier, Amsterdam, 1968 and in Chapters 4 and 5 of J. Dera, Marine
Physics, Elsevier, Amsterdam, 1992. A modern treatise is that of C. D. Mobley, Light
and Water: Radiative Transfer in Natural Waters, Academic Press, San Diego, 1994.

12 On the average, one out of ten solar photons encounter an aerosol particle before being
absorbed or scattered back into space.

13 Even though the induced magnetic dipole arising from the oscillating current is vital in
the emission process, for the present purposes it is possible to ignore it altogether.

14 Although this classical notion has been fraught with conceptual difficulties, it has nev-
ertheless remained a useful concept since its predictions are consistent with experiment.

15 If the oscillator is within an insulating solid, and therefore subject to the induced electric
fields from neighboring molecules in the lattice, E' should be the local field, E'loc,
and not the externally applied electric field intensity of the incident light wave. It is a
complicated and not completely solved problem to relate these two fields or to relate
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the molecular properties, such as the polarizability, to the bulk optical constants, such
as the index of refraction. One commonly used relationship is the Clausius-Mosetti
equation. A nice derivation is found in Hapke, B., Theory of Reflectance and Emittance
Spectroscopy, Cambridge University Press, Cambridge, 1993.

16 A good treatment is found in Zahn, M., Electromagnetic Theory, A Problem Solving
Approach, Wiley, New York, 1979. Another is in the recent book, Heald, M. A. and
J. B. Marion, Classical Electromagnetic Radiation, 3rd ed., Saunders College Publ. Co.,
Ft. Worth, 1995.

17 The reader may find this formula given in other references in cgs units, in which case
the result for the integrated cross section is ire2/mec. The difference is the substitution
of the term e2 in cgs units for e2/4jt€o in SI units and stems from the difference in the
Couloumb-Law expression in the two systems of units for the force between two point
charges separated by a distance r, e2/r2 (cgs) and e2/47teor

2 (SI).
18 Many references exist. One useful one is Shu, F. H., The Physics of Astrophysics, Vol.

1: Radiation, University Science Books, Mill Valley, CA, 1991.
19 The so-called radiation reaction, the small impulse delivered to the atom as a result of

the emission process, actually accounts for the phase difference of the scattered and
incident waves.

20 The accepted terminology is that the sum of the Cabannes line and the rotational lines
is the Rayleigh line. See Young, A. T., "Rayleigh scattering," Physics Today, 35,42-8,
1982.

21 A thorough discussion of computational algorithms for the Voigt function is that of
Armstrong, B. H., "Spectrum line profiles: The Voigt function," J. Quant. Spectrosc.
Radiative Transfer, 1, 61-88, 1967. The algorithm used in the Voigt subroutine in the
IDL graphics package is from this reference. A discussion of the computational strategies
for computing the Voigt function is given by Uchiyama, A., "Line-by-line computation
of the atmospheric absorption spectrum using the decomposed Voigt line shape," /.
Quant. Spectrosc. Radiative Transfer, 47, 521-32, 1992.

22 This formula was provided by M. Callan, University of Colorado, who fitted the numer-
ical results of D. R. Bates, "Rayleigh scattering by air," Planet. Space Sci., 32, 785-90,
1984.

23 The term phase comes from the original astronomical usage, which refers to the variation
of the planetary brightness versus phase angle a, the angle between the two vectors
from the Earth to the planet and from the Sun to the planet {it — 0). It should not be
confused with the phase of an electromagnetic wave.

24 See Chapter 5 of Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light
by Small Particles, Wiley, New York, 1983.



Chapter 4

Absorption by Solid, Aqueous,
and Gaseous Media

4.1 Introduction

Most particles in the atmosphere and the ocean (except those responsible for the
density irregularities leading to Rayleigh scattering) are also absorbers of radiation.
Absorption causes the incident radiation to be further weakened (in addition to scat-
tering) by losses within the particles themselves. As explained in Chapter 3 the net
effect of scattering and absorption is called attenuation or extinction. Absorption is
inherently a quantum process resulting from the fact that matter contains energy lev-
els that can be excited by the absorption of radiation. A transition from an initial
quantum state to a higher-energy state is highly dependent on the frequency or en-
ergy of the incident light. When the photon energy is close to the energy difference
between the initial and final state, the atoms and light may be said to be in reso-
nance, and the absorption is comparatively high. Conversely, when the photon energy
is not close to the transition energy, the absorption is often much weaker than the
scattering and is not easily measurable. This energy selectivity is the outstanding
characteristic of absorption. (In contrast, scattering is generally much less selective
and usually has a smoothly varying efficiency with wavelength.) Selective absorption
causes individual molecular absorption spectra to be very complex. The resonances
are usually very sharp, and because of the many modes of excitation of molecules
(particularly the polyatomic molecules of greatest interest to us) there may exist tens
to hundreds of thousands of discrete absorption lines in molecular spectra. The dom-
inant characteristic of such spectra is the presence of dark regions in the absorption
spectrum. These broad spectral features are called molecular absorption bands, in
which lines are clustered closely in frequency groups. Under low resolution these
bands appear to be continuous functions of frequency. Figure 4.1 shows the calculated

84
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transmittance spectrum of air, including the separate contributions from molecules
(Rayleigh scattering and near-IR absorption by water vapor and molecular oxygen)
and aerosol scattering.1

In this chapter we mainly consider radiative processes that occur in the solar near
infrared (1 < X < 3 /xm) and the thermal infrared (X > 3 /xm). We will frequently
refer to the former as the near-IR and to the latter simply as the IR. Here, in contrast to
the visible spectrum, extinction is dominated by absorption. This state of affairs is due
to the multitude of quantum states that become accessible to low-energy photons. IR
radiative transfer occurs as a series of emissions and absorptions. Unlike scattering, the
temperature of the medium plays a vital role in the IR, since in the high-density media
of interest to us in this book, it controls the rate of emission through Kirchhoff's Law
(Chapter 5). We briefly touch on the topic of absorption in the UV and visible, which
involves not only rotation and vibration but also electronic excitation. Electronic band

0.5 1.0
Wavelength (um)

2.0

^ 0 . 2 5

0.0 0.5 1.0
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1.5 2.0

Figure 4.1 Upper panel: Low-resolution transmittance spectrum for three
atmospheric components, molecular scattering, aerosol scattering, and molecular
absorption.3 The atmospheric absorption bands are mainly due to IR absorption by
H2O. Lower panel: The upper curve is the Lowtran solar irradiance outside the
atmosphere. The lower curve is the solar irradiance observed vertically through the
(clear) atmosphere.
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spectra for simple diatomic molecules illustrate the more complicated band spectra of
polyatomic molecules. Although electronic transitions play a minor role in the overall
radiative energy balance of planetary atmospheres, they are of central importance for
determining the composition and thermal structure of the upper atmosphere.

4.2 Absorption on Surfaces, on Aerosols,
and within Aqueous Media

The general physical consequence of light absorption is the deposition of energy in
the medium. If light absorption leads to excitation of a bound excited state, the energy
of the excited state is usually promptly converted into thermal energy, by means of a
collision with a neighboring gas molecule, or for a solid or liquid, by a dissipation of
the energy through vibrations of the surrounding lattice or fluid cluster. Alternatively,
the chemical energy of the medium may be altered. Because of its increased reac-
tivity, an individual excited molecule may participate in a photo-induced or photo-
chemical reaction with its neighbors. At higher photon energies (in the UV and at
shorter wavelengths) the excited molecular state may be unbound. In this case the
kinetic energy of the resultant atomic (or molecular) fragment is not quantized but
is a continuous function of the incident photon energy. This is the process of photo-
dissociation, which is important for the photochemistry and heating of the Earth's
middle atmosphere (e.g., for the formation of ozone). At still higher photon energies,
the absorption into an unbound electronic state may cause an electron to be removed
from its parent molecule, leaving behind a positively charged ion. This is the basic
mechanism giving rise to the ionosphere, and it accounts for the existence of free elec-
trons whenever high-energy radiation is present. The rate of these photoabsorption
processes depends upon the spectrum and strength of the radiation field, and therefore
its accurate determination requires the application of the principles of radiative transfer.

4.2.1 Solids

In general, the absorption, reflection, and transmission properties of solids vary with
frequency in a complex fashion. They may vary smoothly with frequency, or they
sharply change in the neighborhood of resonances, where the absorbed energy coin-
cides with energy differences between various types of quantized states of the solid.
Consider first the high-energy process whereby an electron is transferred from a lower-
energy state into an unoccupied higher-energy state. Many such states cluster together
in "bands," so that we speak of a transition involving two bands. A fundamental differ-
ence between insulators (such as water and most soil minerals) and conductors (metals)
is the disposition of these bands in energy. Conductors have incompletely filled bands
or bands that overlap in energy with adjacent unoccupied bands. The availability of
nearby unoccupied energy levels makes it possible for low-energy photons to be ab-
sorbed. However, the bands in insulators are well separated, such that the low-energy
bands are filled, and the upper-energy bands are unfilled. Thus, only photons with
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energy greater than the "band gap" may be absorbed. Generally speaking, conductors
are highly absorbing and reflecting4 in the visible and IR, whereas insulators are more
or less transparent over this spectral range, becoming absorbing in the UV.

Example 4.1 Color and Brightness of an Object

The overlapping of numerous absorption lines in solids does not mean that broad spectral ab-
sorption features, absorption "edges," etc. are absent. In fact, it is this selectivity that is responsible
for nearly all color of objects in our natural environment. Objects are red because of their selective
absorption of blue light. The color of the yellow substance in oceans is a result of its strong ab-
sorption of blue and UV light, etc. An exception to this general rule is Rayleigh scattering, which
is responsible for the blue color of clear skies, oceans, blue-jay feathers, and the eyes of newborn
infants. Most other blue colors (certainly one's blue sweater) are due to selective absorption of red
and yellow light by various absorbing pigments. Of course, scattering contributes to the perception
of the texture, sheen, etc. of objects, but it is the selective removal of various wavelengths that
gives objects their characteristic hue.

In the thermal IR, absorption causes excitation of lattice vibrations (phonons),
molecular vibrational states, and so-called intermolecular vibrations. The latter is as-
sociated with collective interactions between molecules and naturally depends more
sensitively on the density and phase of the material. For polar substances, materi-
als consisting of molecules that have a permanent electric dipole moment (such as
water), the oscillating electric field tends to align the dipoles. This happens in the
microwave spectrum where the collisional relaxation time (defined in §3.3.3) of the
water molecules is ~ 3 x 10~n s, which is very short compared with the wave period.
Thermal motions tend to convert this energy of alignment into heat. This process is
called Debye relaxation, and it is the mechanism responsible for intense absorption of
microwave energy by liquid water. Because the damping effects are much less signifi-
cant in water ice (damping times are about 1 x 10~3 s), radar backscatter cross sections
depend sensitively upon whether the particles are raindrops or hailstones.

Most laboratory results for the reflecting, transmitting, and absorbing properties of
solids apply only to "smooth" (polished) surfaces. However, most natural surfaces are
irregular over many size scales, and laboratory results are not immediately applicable.
Determination of the boundary properties of a rough surface, or of small suspended
particles, requires a more fundamental knowledge of the bulk properties of a substance.
This knowledge is embodied in the optical constants, the real (rar) and imaginary {mf)
indices of refraction. The phase velocity of the wave is c/mT. For absorption of a
plane wave in an infinite dielectric medium, mx determines the absorption coefficient
through the dispersion relation a = Innii/X. How are the optical constants (they are
not actually constants, since they vary with frequency) determined? This might typi-
cally involve working backward from measurements of transmittance and reflectance
of a thin sample, via FresneVs equations (Appendix E). Given the optical constants, it
is possible to determine through theory the scattering and absorptive properties of pol-
ished pure solids. Since most natural substance are irregular and of mixed composition,
it is usually necessary to perform experiments on the bulk samples.
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4.2.2 Aerosols

What happens to the optical properties when the material is finely divided into small
particles? If the particles are large compared to the wavelength of light, then the princi-
ples of geometrical optics will apply, and ray-tracing techniques may be used to derive
the appropriate interaction properties. If the particle dimensions are smaller than sev-
eral hundred wavelengths, the concepts of transmittance, reflectance, and absorptance
are not useful. At this point we must deal with the properties applicable to dispersed
matter, that is, absorption and scattering coefficients. Radiation that penetrates the
particles undergoes interference effects, which depend sensitively upon the size and
shape of the particles. Interference can affect both the absorption and scattering in very
different ways than in the bulk state. But are the bulk optical constants still relevant to
small particles? Experience shows that the same bulk optical constants (mr and m\)
apply down to the smallest (0.1-[im radius) particles of practical interest to us.

Provided aerosol particles are homogeneous, spherical, and of known composition,
their absorption and scattering coefficients can be determined by solving a classical
boundary-value problem, as discussed in §3.5. With the advent of fast computers,
numerical solutions for other idealized shapes, such as spheroids, have become pos-
sible. Also, approximate techniques, such as the discrete-dipole method, have been
developed to handle arbitrarily shaped particles, but with rather severe demands on
computer time. The point is that if we are given an ensemble of independently scat-
tering and absorbing particles, of known shapes, sizes, and composition for which the
optical constants are known, it is possible, at least in principle, to compute the scatter-
ing and absorption coefficients. Because uncertainties in the knowledge of the aerosols
are often thought to be more serious than shape effects (such as in the size distribu-
tion), equivalent spherical-particle assumptions are commonly resorted to, even for
extreme nonspherical particles, such as snow crystals. The effects of particle shapes
on radiative transfer remain to be established.

4.2.3 Liquids

Absorption in pure liquids results from the mutual interactions between the intermolec-
ular forces, which may be thought of as collective excitation modes. As a consequence
of this added complexity:

i. It is very difficult to calculate from first principles the quantitative details of the
transitions (such as absorption line strengths and band frequency positions).
Laboratory and/or in situ measurements of absorption spectra are therefore
essential.

ii. The number of transitions is so large that overlapping of adjacent spectral
absorption lines (or bands) yields an almost continuous absorption spectrum.
Paradoxically, their complexity causes condensed media to have a much
simpler absorption spectrum than that of its constituent molecules. Radiative
transfer in aquatic media has a significant practical advantage over that in the
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Figure 4.2 Spectral variation of the flux transmittance through a 1-m layer of
water in the euphotic zone. Types I, II, and III are different ocean water types,
and types 1-5 describe different coastal water types. (See Endnote 5.)

atmosphere: The spectral sampling interval for the oceanic radiation field can
be orders of magnitude larger than that required in atmospheric radiation
problems to achieve the same accuracy. (See Chapter 10 for more details.)

Unfortunately the above advantage is offset by the fact that, except for the purest
waters, the optical properties of the ocean are largely governed by dissolved and sus-
pended impurities, of both inorganic and organic origin. The compositional variability
from location to location makes it difficult to create "standard" optical models, such
as those used widely in atmospheric studies. An attempt to optically classify various
water types5 is shown in Fig. 4.2.3. Generally speaking, seawater is most transparent
in the 400-600 nm region.

4.3 Molecular Absorption in Gases

Atmospheric molecules are highly selective in their ability to absorb radiation. This is
particularly true in the thermal infrared part of the spectrum, where a large number of
spectral absorption features occur. Figure 4.3 shows synthetic IR atmospheric radiance
along a vertical path looking down at the surface from several altitudes. The surface
emits thermal radiation (dashed curve), which is attenuated upon passage through
the atmosphere (solid line). To delineate the effect of absorption on the transmitted
radiation field, the atmospheric emission was not included in this computation, which
was made at moderate spectral resolution (0.1 /xm, or ^ 2 cm"1).6 This figure shows
that highly opaque regions exist side by side with transparent regions. These molecular
bands exist where there are bunched coincidences of photon energies and excitation
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Figure 4.3 Synthetic clear-sky atmospheric upward spectral radiance for a vertical path
from sea level to 1,3, and 15 km. The computation was made using the MODTRAN code.
The dashed line shows the blackbody curve evaluated at the surface temperature of 294 K.
Left panels: Atmospheric emission was ignored. Middle panels: Same as left panel, but for
atmospheric emission (no surface emission). Right panels: Same as left panel, but for
emission from both surface and atmosphere.

energies of the various quantum levels. The excitation energies coincide with those of
various normal modes of molecular vibration.

In the middle panels of Fig. 4.3 we show the synthetic spectrum computed in the
same way, except that here we ignored the surface emission but included the atmo-
spheric emission. Note that the absorption features in the previous figure appear as
emission features, as a consequence of Kirchhoff 's Law. Also, in the opaque region
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Figure 4.4 High-resolution (0.01 cm l) transmittance spectrum of
the Earth's stratosphere and mesosphere measured by the ATMOS
Michelson interferometer experiment from the NASA Space Shuttle.
(See Endnote 7.) Shown is a section of the 667-cm"1 (15 /xm) CO2

band. Each curve applies to a horizontal line of sight identified by the
minimum height of the tangent ray of solar radiation through the
atmosphere. Note the intense absorption in the Q-branch near
667-668 cm"1. Each curve is shifted vertically for clarity. A sliding
transmittance scale (from 0 to 1) extends over a vertical distance of
two tick marks.

between 5 and 7 /zm, and between 14 and 16 /xm, the intensity in the lower atmo-
sphere (1 km level) is close to the Planck curve as expected. The total contribution
to the upward intensity from both surface and atmospheric emission is shown in the
right panel of Fig. 4.3 at the same atmospheric levels. At high altitude, the spectrum
resembles what a downward-looking sensor above the atmosphere would observe.

At higher spectral resolution, molecular bands reveal their underlying structure -
that of closely spaced lines. Figure 4.4 shows a small portion of the measured trans-
mittance in the strong 15-/xm band of CO2. These data were taken by a Michelson
interferometer8 on board the Space Shuttle Challenger in 1985. The transmittance is
the ratio of the irradiance, measured along a line of sight through the atmosphere, to
the extraterrestrial solar irradiance. Each absorption line corresponds to a transition
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Figure 4.5 Dots: Ultra-high-resolution measurement of an individual
molecular absorption line of CO2 in the 936-cm"1 region from solar
spectra obtained from Denver, Colorado during sunset on January 12,
1989, with a BOMEM model DA3.002 interferometer (see Endnote 9).
Solid curve: theoretical line profile (see Eq. 10.50).

between two quantum states of a specific molecule. The frequency of each transition
is a unique "fingerprint" of the particular species. Under still higher resolution (see
Fig. 4.5), an individual line has a distinctive spectral width.9 At altitudes below about
50 km in the Earth's atmosphere, both the strength of the line and its spectral width
depend upon atmospheric pressure and temperature.

Regions of high transparency are called spectral windows. These are very important
for atmospheric remote sensing of the planetary surface. The 10-12 /xm window is
particularly significant for cooling the Earth's surface, which emits approximately like
a blackbody with a maximum near 10 /xm (see Fig. 4.3). The effect of windows was
illustrated in Fig. 1.2, which shows the emission spectrum of the Earth measured by
a high-resolution interferometer from an orbiting spacecraft. In the high transparency
regions, the Earth's surface emission is evident. The contribution of the upwelling
atmospheric radiation occurs within the opaque bands, at an effective temperature
lower than that of the surface. The emitted radiance is reduced in the regions of high
opacity, because the radiation received by the satellite instrument is emitted from the
upper colder atmospheric regions, where the lines are optically thin. Notice in the
case of the Antarctic, where the surface is colder than the atmosphere, more radiation
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is emitted from the warmer atmosphere in the vicinity of the bands than from the
surface (in the windows).

4.3.1 Thermal Emission and Radiation Laws

Thermal emission is the inverse of absorption. Every particle of matter at a temperature
greater than absolute zero contains excited quantum states. The spontaneous decay of
these states is accompanied by the creation of radiative energy. If only thermal emission
were acting, all the molecules would eventually revert to their ground-state levels, and
all the energy would reside in the radiation field. Of course, in reality the medium and
its radiation field are continually exchanging energy by absorption and emission. For
example, solar radiation is absorbed by a planet, with some of the energy going into
thermal energy and some into mechanical energy (fluid motion) and chemical energy
(change of state). The remainder of the absorbed energy goes into emission of thermal
radiation, which is reabsorbed or lost to space. When the incoming and outgoing radia-
tive powers are in balance, the planet is said to be in planetary radiative equilibrium}®
A more restricted equilibrium occurs when the amount of energy absorbed locally is
equal to that emitted locally. We call this simply radiative equilibrium.

Other kinds of equilibria refer to the temperature and motion fields and to the chem-
ical composition. Thermal equilibrium occurs in a constant-temperature medium. No
heat flows in the absence of a temperature gradient. Mechanical equilibrium occurs
when there are no net forces or stresses anywhere in the medium. Consequently there
is no bulk motion of the fluid. Chemical equilibrium occurs when the rates of all chem-
ical reactions are balanced by their inverse reactions, so that the chemical composition
is fixed throughout the medium.

When all these equilibria occur, we have the most general state of thermodynamic
equilibrium. To attain this situation requires a closed system, called a blackbody cavity,
or hohlraum,11 with insulating walls completely isolating it from external influences.
Planetary media, being "open" systems in the thermodynamic sense, would at first
glance appear to be far from such an artificial condition. However, as we shall see,
atmospheres and oceans do share certain properties with a medium in thermodynamic
equilibrium. For this reason we are particularly interested in the properties of the
equilibrium radiation field and its interaction with matter within a hohlraum. These
properties are found to depend only upon the temperature of the medium and are totally
independent of the nature of the matter occupying the hohlraum. They are expressed
in the famous Radiation Laws, first laid out by Kirchhoff in I860.12

4.3.2 Planck s Spectral Distribution Law

Suppose that a tiny opening is made in a containing wall of a hohlraum. Consider
first the effect this opening has on incident radiation. It is clear that it will completely
absorb the incident radiation, for its likelihood of being reflected inside the container
and making it back out is negligibly small. For this reason the opening is perfectly
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absorbing, or "black." The radiation that escapes the enclosure through the opening
will have reached thermal equilibrium with the matter within the enclosure. The loss of
energy due to this leakage is assumed to be very small compared with the total energy.
The radiation emanating from this "black" surface is called blackbody radiation. (This
can be a confusing term for beginners, since it actually refers to the absorbing properties
of the surface giving rise to the emission.)

By introducing his hypothesis of quantized oscillators in a radiating body, Planck
in 1901 derived the expression for the hemispherical blackbody spectral radiative flux,

BB _ m2

v " 2 {

where h is Planck's constant, mT is the real index of refraction, and &B is Boltzmann's
constant. (See Example 4.2 for a derivation of the blackbody formula.) Throughout
the hohlraum the radiation field is isotropic and unpolarized. An equal and opposite
hemispherical flux opposes FB B, so that the net flux is everywhere zero (see Eq. 2.10).

Approximations for F B B are Wen's limit, for high energies:

J\?B ^ ^r27thv3e-hv/kBT (hv/kBT » 1) (4.2)
cl

and the Rayleigh-Jeans limit, for very low energies:

f (hv/kBT«l). (4.3)

The latter is useful in the microwave spectral region for X > 1 mm.
As a result of the isotropy, the blackbody intensity is related to the hemispherical

flux through F B B =nI*B =nBv (see Eq. 2.11). Here Bv is

The Planck function

7BB = Bv(T) = - f ^hv/kaT _ ^ . (4.4)

BV(T) has the same units as intensity. The closely related function Bx is illustrated in
Fig. 4.6 for a range of terrestrial temperatures. It should be mentioned that the preceding
equations apply separately to each polarization component of the electric field. In
this book we usually deal with unpolarized light, which is the sum of these (equal)
components. As indicated earlier, when we deal with gases we will set13 rar = 1.

By differentiating the Planck function and equating the result to zero, one may easily
show that the spectral distribution of blackbody radiation has its maximum value at
the frequency vm, or wavelength Xm, where

v m r = 5 .88xe 1 0 r [Hz-K] or XmT = 2,897.8 [/xm-K]. (4.5)

This important result, known as the Wen Displacement Law, states that the wavelength
of peak blackbody emission is inversely proportional to temperature.
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Figure 4.6 The blackbody intensity Bx versus wavelength X. The relationship between Bv

and Bx is Bxd\X\ = Bv\dv\. Since X = c/v then \dv\ = (c/X2)\dX\.

The Stefan-Boltzmann Law

From Eqs. 2.1 and 2.5, the frequency-integrated hemispherical flux leaving the hohl-
raum is

OO 00

= dv dcocosOI™ = n I iFB B = I dv I ducosOI™ =n I dvBv(T).

0 In 0

(4.6)

Substituting Eq. 4.4 in Eq. 4.6 and setting x = hv/k^T and mr = 1, we obtain the
expression for the frequency-integrated emergent blackbody flux:

00

2ir(kBT)4 r dxx3

Jh3c2

r dxx3 ^
J (ex - 1) 15h3c2 4

where we have used the result that the value of the definite integral is TT4/15. We have
derived the important

Stefan-Boltzmann Law:

F B B = (4.7)
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where aB = 2n5k^/l5h3c2 = 5.6703 x 10"8 [W • m"2 • K"4] is the Stefan-Boltzmann

constant.

Example 4.2 Derivation of the Planck Radiation Law

The derivation consists of two parts: determining the average energy per photon state and finding
the density of states within the hohlraum. We begin with a general statistical law describing the
distribution of states in a system in thermodynamic equilibrium. If there are N total states, with
individual discrete energies £t (i = 1, 2 , . . . , N), each having a degeneracy gt, the canonical, or
Gibbs distribution describes the probability of a particular energy state occurring for a system at
temperature T. It is proven in statistical mechanics treatises that

(4.8)

Since the probability summed over all states is unity, this distribution may be written as

-f,7*Br -siW

P^ = ^ g/tT- s -7T7TT- ( 4- 9 )

Here Qp is called the photon partition function (see §4.5.3 for more detailed examples of partition
functions).

Equation 4.9 describes the Boltzmann distribution of discrete energy states in thermodynamic
equilibrium (see §4.3.4 and Eq. 4.19). It may also be transformed to yield the equilibrium dis-
tribution of molecular velocities in a gas. It is necessary to allow the range of energies to be
continuous and to convert the sums to integrals (see Eq. 4.12). Here we are interested in deriving
the equilibrium distribution of photon energies, Bv.

We next ask, "What is the mean energy of the quantum states having the frequency v?" If
each state contains n photons of energy hv, then the energy of the nth state is En = nhv.
The mean energy is thus the sum of En weighted by the probability of that energy occurring,
p(En) = gne-^/Qp(T), where 0 = (kBT)~\ Thus

We have factored out the common factor gn, which is the same for all states. To evaluate this
expression explicitly, we note that

where we have interchanged differentiation and summation. The sum can be evaluated as a geo-
metric series ^ xn = (1 — x)'1 where x = e~^hv. Thus

For vanishing temperature, (E(v)) ~ hvexp(—hv/kBT) - • 0. For high temperature, (E(v)) ~
kB T. The latter result tells us that the energy per photon is that predicted by the classical Equipar-
tition Theorem, which states that the particle has kBT/2 of energy for every degree of freedom.
The photon has two degrees of freedom, corresponding to the two polarization components. In
quantum terminology, it has two spin directions ("up" and "down").
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We now make the correspondence of an oscillator with a standing electromagnetic wave in
the cavity (see Appendix H). For a given frequency v a standing wave can have a host of discrete
energies, given by Sv = (h/2n)c\k\ =hv. Here k is the quantized wavenumber vector, having
components kx = nx(n/L), ky — ny(n/L), and kz = nz(n/L), where L is the length of one
side of the cubical cavity. We first need to know the number of standing waves <&(k)dk having
wavenumber lying between k and k + dk. Multiplying this number by the mean energy (E(v)),
we obtain the expression for the energy density per unit volume. We can find <$> (k) by appealing
to a simple geometrical construction, where the vector k is drawn in the pseudo-space of kx, ky,

and kz. Not all values of kx, etc. are allowed - only those satisfying kx = n/L, 2n/L, 3n/L,
We now visualize a volume element in this space, which is defined by incrementing each of the
values of the k components by one. Then for k large, the element is approximately a cube of side
n/L whose volume is (n/L)3. A given energy state defined by the coordinates (kx, ky, kz) "fills"
the above volume element. A one-to-one correspondence exists between the volume (n/L)3 and
a specific energy state. Thus to count the total number of states out to some radial distance k in
this pseudo-space, all we need to do is to evaluate the total volume and divide by (n/L)3. There
is some bookkeeping we must do before we get the correct answer. Since k is positive, we should
evaluate only one quadrant of the total sphere in fc-space; that is, the volume should be 4nk3/3
divided by 8. As mentioned earlier, for every specific value of k, there are two independent states,
corresponding to the two polarization states. Therefore the total number of states N(k) for which
the ^-values are less than or equal to k is

2 x (4nk3/3) Vk3

S(n/L)3 = ^

where V = L3 is the cavity volume. The density of states (number per unit volume) is therefore

(
dk V ~ dk\3n2) " n2'

We now return to frequency space and find the number of states between v and v + dv. Since
k — (2nv/c), then k2 = 4n2v2/c2 and dk = 2ndv/c. Therefore

4v2 (2ndv\ Snv2dv
<D(V)JV = — = r .

c2 V c ) c3

Finally, the energy density is the number of oscillators per unit volume multiplied by the average
energy

8nv2(E(v)) Snv2hv

Since the radiation is isotropic, Uv = 4nlv/c = 4nlv/c (see Eq. 2.13), we find the blackbody
intensity formula

cRR c
/v

BB = B V ( T ) = —Uv =

2hv3

4n v c2

4.3.3 Radiative Excitation Processes in Molecules

A rigorous treatment of the interaction of matter and radiation requires both the matter
and the radiation to be a fully coupled, quantized assembly. In fact, the phenomenon
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of spontaneous emission requires such a description, a discipline known as "quantum
electrodynamics," which is certainly beyond the scope of this text. For the present
purpose we use a hybrid approach, the semiclassical theory, in which the radiation is
described by the classical electromagnetic theory, whereas the structure of matter is
specified by the quantum theory. In the older quantum theory, the connection between
radiation and matter was specified by the Einstein equations, to be discussed in the
next section. In the modern theory, the coefficients of interaction are calculated by
quantum mechanical Perturbation Theory. Mixing of classical and quantum physics,
although not rigorous, has proven to be immensely successful and is also conceptually
and mathematically simpler. We will adopt this approach here.

In the semiclassical theory we will continue to describe the radiation field in terms
of its intensity (radiance), flux (irradiance), and energy density. The "matter field"
we will describe in terms of the populations of the excited states. These states may
be either discrete or continuous. Absorption of a photon of energy E = hv results
in excitation of a state (either molecular or atomic), thus reducing the population of
the initial state population no (normally the ground state) by one, and increasing the
excited state population n, by one. Here n,(/ = 1, 2 , . . . ) is the number of molecules
(atoms) per unit volume in the state having energy Et. However, an excited state can
decay, either by spontaneous or induced emission (to be described in detail later), and
the reverse will happen. The continual exchange of energy between the matter and
radiation is described in terms of rate equations for the various processes.

Photon-matter processes are classified in terms of three basic kinds of interac-
tions: (a) bound-bound processes describe the exchange of energy when the initial
and excited states are both discrete states, schematically (Et -* Ej); (b) bound-free
processes describe transitions between discrete and continuous states, schematically
(Et -> Ej, Ej + dEj); and (c) free-free processes describe transitions between two
continuous states, schematically (Et, Et + dEt —• Ej, Ej + dEj). Only the bound-
bound processes are important in infrared radiative transfer in planetary atmospheres.
Process (b) is important in some ultraviolet absorption processes, such as the absorp-
tion by ozone in the Hartley bands (200-300 nm), in which an oxygen atom is removed
from the ozone molecule in the process of photoabsorption.

4.3.4 Inelastic Collisional Processes

We will use chemical notation for shorthand purposes. Let A 5 b e a molecule with
atoms A and B bound together, and let M be a second molecule of unspecified nature,
which we will designate as a "third body." Denoting {KE)f and (KE) as the sum of
the kinetic energies of the reactants and products respectively, we then consider the
following collisional "reaction":

AB + M + (KE)f -> (AB)* + M + (KE),

where the notation (ABy indicates internal excitation of the AB molecule (elec-
tronic, vibrational, rotational, or some combination). The above reaction describes a
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collisional excitation of the molecule A B. In this case, (KE) < (KE)f of course, and
energy is extracted from the thermal "pool" and placed into energy of excitation. The
inverse reaction is

(AB)* + M + (KE) -> AB + M + (KE)',

which is called collisional deexcitation, or collisional quenching. The above are ex-
amples of inelastic collisions, in which energy is transferred from kinetic to internal
excitation energy, or vice versa.14 They are of great importance in the theory of ab-
sorption. An elastic collision is one in which there is no net transfer of energy from
kinetic to excitation energy, although the collision partners will end up with different
shares of the total kinetic energy. In other words, exchanges of momentum and kinetic
energy occur but the totals of each remain the same.

To quantify the collisional and radiative processes, we need to describe the rates at
which the various reactions occur. We will use the same general framework as we used
in describing radiative processes, namely that of cross sections. The collision cross
section a is defined analogously to the radiative cross section, provided the differential
flux of incoming particles is used, rather than the photon flux. This differential flux is
the analog of the intensity, being defined as the flux per unit solid angle. The change
of this flux over a distance (say ds) is proportional to the product of the flux and the
number of target molecules within a cylinder of unit cross section having a length ds.
The constant of proportionality is a, which depends upon the properties of incident
and target molecules, as well as their relative speeds. There are various ways we
can define the change of the flux over ds. We can specify that the incident molecules
change their directions but not their speeds. In this case, the cross section is said to
be the elastic cross section. We can be more specific and ask that the molecules be
deflected in a particular direction 0 (per unit solid angle). This gives rise to the concept
of a differential elastic collision cross section, dae\(O)/dco, which is analogous to the
product of the photon cross section and the phase function (see Chapter 3). The total
elastic cross section is given by

f dael(@)
crei = / dco— . (4.10)

J dco

Alternatively, the inelastic cross section am involves a change in the molecules' internal
excitation. It is important to indicate the particular excited state of interest, in which
case we have a smaller partial cross section. The total inelastic cross section is the
sum of all the partial cross sections.

We now consider typical orders of magnitude of collisional cross sections. Elastic
cross sections are of order 10~19 m2. Inelastic cross sections are much smaller,15

of order 10~23-10~25 m2. This large difference will be important later on when we
consider the maintenance of various thermal equilibrium distributions.

The rate of increase of the population of excited states, d[AB]*/dt, due to a partic-
ular inelastic process is defined in terms of the product of the reactants and, because
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of the dependence on relative speeds, the sum (integral) over all possible relative
speeds:

/
d3 \yAB - VM|/Afi(VAfi)/M(VM)^^. (4.11)

Here [AB] denotes the concentration of species AB, and fAB and uAfi are the velocity
distribution and velocity of species AB, etc. The integral is over all possible relative
velocities \\AB — \M\ of AB and M. This amounts to an integration over all rela-
tive energies and directions of the colliding particles. The velocity distributions of a
species of mass m in thermal equilibrium is given by the familiar Maxwell-Boltzmann
distribution of velocities:

T m 1 [ vx + vy + vz]
/MB(V) = — — exp - J I * , (4.12)

\27tkT\ y (2kT/m) J

where vx, vy, and vz are the Cartesian components of the velocity, and kB is
Boltzmann's constant. The Maxwell-Boltzmann distribution, given by Eq. 4.12, is
maintained by elastic collisions between molecules of the gas.

Equation 4.11 can be written more compactly as

d\ABY
-l—-^=kin[AB][M] [cm3^-1], (4.13)

dt

where km is called the collisional excitation coefficient for the particular inelastic
collision of interest. Rate constants are commonly reported in cgs units.

Numerical evaluation of Eq. 4.11 using actual values of da-m/d(o show that the
reaction rate coefficient can usually be approximated as

(4.14)

where a is a combination of molecular constants, b is a dimensionless constant of
order unity, and c is the activation temperature in kelvins; c = AE/kB, where AE is
the energy of excitation; and e~c/T is called the Boltzmann factor. Equation 4.14 is in
a form convenient for comparison with data, in which case a, b, and c are empirical
constants to be determined by fitting Eq. 4.14 to laboratory measurements. A similar
expression is obtained for the decrease of the excited-state populations due to collisions
(collisional quenching):

^ = -k'ia[AB*][M], (4.15)

where k[n is the appropriate quenching coefficient, which is related to the excitation co-
efficient k[n through the Principle of Detailed Balance (see Endnote 19 of Chapter 6).
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The coefficients for either elastic or inelastic collisions are written in terms of the
mean molecular speed

(v) = fdvvfMB(v) = (SkBT/Km)l/\ (4.16)

where /MB(^) is given by

^]/2 v2e~m^T. (4.17)
27tkBT

From the units [cm3 • s"1] of the collisional coefficient (either km or the corresponding
rate of elastic collisions, ke\), it is clear that k is just the effective volume swept out by a
moving molecule per unit time. If we imagine the other molecules to be stationary, this
volume is the product of the appropriate cross section and the relative speed (~(v)).
Then ke\ & <TG\(V)9 and kin & crin(v). For T = 300 K, and assuming N2 molecules as
third bodies, then (v) & 480 [m • s"1]. For elastic collisions, <7ei ^ 1 x 10~15 [cm2],
and the values for the reaction rate coefficients are

*ei ~ 5 x 10"10 (7/300)1/2 , km « 5 x 10"1 4-10-1 6 [cm3 • s"1]. (4.18)

Thus inelastic collisions proceed at about 10~4 to 10~6 the rate of elastic collisions.

4.3.5 Maintenance of Thermal Equilibrium Distributions

A second important statistical distribution valid in thermodynamic equilibrium is that
of the Boltzmann distribution of excited states,

( 4 1 9 )

*i gi

where rij, Ej, and gj denote the volume density, energy, and the statistical weight of
the jth excited state, respectively. Since the excited-state populations are established
by inelastic collisions, it is clear that these processes maintain the Boltzmann distribu-
tion. Since these processes occur much less frequently than elastic collisions (which
maintain the Maxwell-Boltzmann distribution of velocities), we therefore expect that
for low gas density, the Boltzmann distribution will become invalid.

The third distribution of interest is the Planck distribution of photon energies,

2hv3 1
*^r) = ^r?^r—[• (4-20)

As discussed further below, this is a distribution that is maintained by emission and
absorption of photons - these processes in turn are determined by the populations
of the various excited states in the medium, or in other words, are also maintained
by inelastic collision processes. In strict thermodynamic equilibrium (TE), BV(T)
not only describes the blackbody radiation field 7^B, but it also describes the source
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function Sv (§2.8). From Kirchhoff's Law (§5.3) the emission coefficient (rate of
thermal emission per unit volume) is given by jv = a(v)Bv(T). Here a{v) is the
absorption coefficient. (We ignore scattering for the present.) Since Sv = jv/a(v),
then in TE, Sv = BV(T). This result also follows from the radiative transfer equation
(Eq. 2.28) dlv/dxv = —Iv + Sv. In TE the intensity is uniform and isotropic, and
dlv/drv = 0. Thus Sv = I®B = Bv, which applies to a closed system in equilibrium.

What about an "open system," such as an atmosphere or ocean, that receives energy
from the Sun and radiates energy to space? Under rather general conditions, such sys-
tems also share certain properties of a system in TE. As will be shown in greater detail
for a two-level atom, the source function is Planckian (but Iv ^ Bv) in local thermo-
dynamic equilibrium, or LTE. This applies if the photon frequency is sufficiently low
(v < kBT/h) and the density is sufficiently high for the rate of collisional excitation/
deexcitation processes to greatly exceed the corresponding radiative processes. This
is the same condition for which the Boltzmann distribution is valid. In fact if Eq. 4.19
is valid, this is a necessary and sufficient condition for LTE.

Local thermodynamic equilibrium applies if the gas density is sufficiently high to
ensure that the collisional lifetime of an excited state £coii is much smaller than the
radiative lifetime tTad. This condition is fulfilled in the thermal IR (X > 3 /xm). For vi-
brational energy states, frad is typically 0.1-1 s. For the 15-/xm band of CO2 under STP
conditions (see §1.4.3), tcoll ~ [ABf/d[ABf/dt = l/k[n[M] ~ 10"5 s. Therefore
we would expect that LTE would exist in this band down to pressures of 0.01-0.1 mb,
which occurs near 75 km. This is called the level ofvibrational relaxation, since above
this height, the upper state "relaxes" to a population different than that given by the
Boltzmann distribution. This situation is called nonlocal thermodynamic equilibrium
(NLTE). Finding the source function in the NLTE case is considerably more compli-
cated than in the LTE case. The interplay of collisional and radiative processes in the
general NLTE case is illustrated by considering the example of a two-level atom.

4.4 The Two-Level Atom

We now consider the more realistic situation in which all the radiative and collisional
processes act together. We will assume that the values of the rate processes are given,
and we will derive equations describing the transfer of radiation through the system.
Many of the properties of a complex system are embodied in the two-level atom
concept, which envisions an atom with only two discrete energy levels. Altogether, we
must consider five separate processes (see Fig. 4.7) connecting the two energy levels
of the atom. We begin by considering the radiative processes.

4.4.1 Microscopic Radiative Transfer Equation

The radiation field is assumed to be a result of transitions from the single excited level
(state 2) to the ground level (state 1) of a radiatively active species. The gas will be a
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Figure 4.7 Illustration of the five radiative and collisionai processes involved in the
rate of population of energy levels in a two-level atom.

two-component mixture consisting of the radiatively active species and a radiatively
inert "buffer" gas. The latter plays the role of collisionally transforming the excited
level to the ground state and vice versa. The populations in the two levels are de-
noted n\ and n2. The sum of the two populations is a constant, equal to the density of
the radiatively active species, n. The average energy difference between the states is
£21 = hv0, but there is assumed to be a small spread in frequencies, due to spectral
broadening. The radiative processes (see Fig. 4.7) are:

1. absorption: hv + n\ —> n2,

2. spontaneous emission: n2 -> n\ + hv, and

3. stimulated emission: n2 + hv —• n\ + hv + hv.

Process 3 is one in which the emitted radiation is exactly coherent with the incident
radiation, in both direction and phase. Processes 1 and 3 may be understood from
classical physics, but 2 requires quantum theory for a fundamental description. In
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the semiclassical theory, we assign a rate to this process that is independent of the
surroundings of the atom.16

The rates at which the three radiative processes occur were first derived by Einstein
in 1905. The rate efficiencies are described by the Einstein coefficients B\2, A2i, and
B2\. We now consider the rate equations for each individual process: Process 1 de-
scribes the rate at which absorption depletes the lower state. It is proportional to the
number of atoms in the ground state n \, to the absorption cross section an (v), and to the
number of photons in solid angle dco, (Iv/hv)dco. Integrating over all frequencies17

and photon directions, we find

OO 00

(dn2/dt)ahs = ni dv / dcoan(v)(Iv/hv) = Ann\ I dvan(v)(Iv/hv).

0 4TT 0

(4.21)

Process 2 is the rate at which photons depopulate the upper state. Einstein asserted
that its rate may be written

(dn2/dt)svon = -A2ln2. (4.22)

The above equation shows that the excited states decay via this process independently
of their surroundings. Stimulated emission, Process 3, is given by an expression sim-
ilar to Eq. 4.21, since the rate is also proportional to the number of photons available:

(dn2/dt)siim = -n2 I dv I dcoan(stim; v)(Iv/hv)
/ •

0 4n

oo

= -4nn2 / dvan(stim\ v)(Iv/hv), (4.23)

o

where an(stim; v) is the absorption cross section for stimulated emission.
We now write the above absorption cross sections in terms of the Einstein coef-

ficients, an(v) = hvB\2Q(y)l\n and an(stim; v) = hvB2i<&(v)/4n. The function
O(y) is the normalized line-profile function, defined so that

oc

/
dv<$>(v) = 1. (4.24)

There is no a priori reason why the line profiles for stimulated emission and absorption
should generally be the same. We made the assumption because there are many situa-
tions where it is an excellent approximation.18 The properties of the atom (molecule)
and its surroundings determine the line shape. We assume for now that <l> (v) is known
and is independent of position.

As we might suspect, the rates of the above three processes are related. In fact, we
will show that it is sufficient to know the value of one Einstein coefficient to determine
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the other two. For this purpose we use the common approach of assuming a special
case (that of TE) and then arguing that the result so obtained has more general validity.
In TE, IV = BV, and the populations n\ and n2 are related through the Boltzmann
equation, Eq. 4.19. We denote the ratio of the two populations in TE as n\jn\ to
distinguish it from the more general ratio n2/nx. From Eq. 4.19, we have

nt/n\ = (g2/gi) exp(-hvo/kBT), (4.25)

where the gt are the statistical weights. (Note that we have used the average energy
difference between the two states E2\ = hv0.) Assuming time-independent conditions,
we have dn\/dt = —dn^/dt = 0. The radiative rates must all balance19 and

oo oo

dn*/dt = 0 = n\A2X + n\B2X I dvBv$>(v) - n\BX2 / dvBv®(v).

o o
(4.26)

We will simplify the above expression by using the fact that the Planck function Bv

is slowly varying over the line profile. Removing this from the frequency integration,
and using the normalization property of O(v), Eq. 4.24, we find

n*A2X+n*B2XBVo=n*BX2BVQ.

Solving for BVo we find

(A2l/B2l)
Vo (Si5i2/*2fl2i)e*l*/*»r-r K ]

But we already know the functional form of the Planck function:

Making the correspondence of the above two equations, we obtain the following two
expressions:

The Einstein Relations

A2l = (2hv3
0/c

2)B2U (4.29a)

(4.29b)

These relationships are independent of the state of the gas, in particular of the
temperature or density, and therefore they must involve only the basic properties of
the atom itself. We therefore assert that the Einstein relations are quite general and
are independent of the situation assumed in their derivation. Thus, they should apply
to the more general situation of NLTE.

We now use the above relationships to write down the continuity equation for
photons, which is just our familiar radiative transfer equation. We first note that dlv /ds
is the rate at which radiative energy is lost, or gained, along a beam. Then we can write
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this quantity as being equal to the gains less the losses due to the three radiative
processes. The result is

The Microscopic Radiative Transfer Equation,

^L ^ ^ % ^ % . (4.30)^ ^niBnIvi(v) + ^%2Z,2l/vi(v) + ^
as An An An

We have introduced the additional assumption that the line profile for spontaneous
emission is also given by O(v). Equation 4.30 may now be related to our conventional
radiative transfer equation, Eq. 2.28, which we can now call the macroscopic radiative
transfer equation:

(4.31)
ds

Equating the factors multiplying Iv in Eqs. 4.30 and 4.31, we find

k(v) = ^ 4 > ( v ) (TH*I2 - n2B2l). (4.32)
An

This relationship allows us to relate microscopic quantities to macroscopic quantities.
Consider the above equation in the case of LTE. Replacing the quantities n\ and n2 by
n\ andn^ we have

r (v) = ^ * ( v ) » ! B I 2 (1 - ^ \ (4-33)
An \ n1BuJ

where we denote by Jc*(v) the LTE value of the effective extinction coefficient. From
the Boltzmann relation for the ratio n^/n* (Eq. 4.25) and the Einstein relation g2B2X =

, we find

*(v)

The above equation is the extinction coefficient in LTE, corrected for stimulated
emission. It is clear that stimulated emission is simply negative absorption, since the
emitted photon is coherent with, and in the same direction as, the incident photon.
Thus, our macroscopic equation needs a slight adjustment for the LTE situation, such
that

- ^ = -jfc*(v) (Iv - Sv), (4.35)
ds

where k*(v) is given by Eq. 4.34. The more general NLTE equation would use the
expression in Eq. 4.32 for k(v). In many atmospheric problems, the factor e-

hv^/k^T <̂ ;
1 and the effect of stimulated emission is negligible.
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We now equate the source terms in Eqs. 4.30 and 4.31. Using Eq. 4.32 for k(v), we
find

»*• " ^ (4.36)Vo niBn - n2B2X (nig2/n2gx) - 1'

where we used the Einstein relationships, Eqs. 4.29. An important aspect of Eq. 4.36 is
that the frequency dependence of the source function has vanished. This stems directly
from the assumptions that the line profiles for stimulated emission, spontaneous emis-
sion, and absorption are identical. This approximation is called complete frequency
redistribution. Note that if we assume that n2/n\ = n\/n\, that is, make the LTE
assumption, then the source function becomes the Planck function, Eq. 4.28, as can
be seen from Eq. 4.25. Therefore, Eq. 4.36 is the expression for the NLTE source
function. However, it is not very useful to express it in terms of another unknown, the
ratio of the two populations. The equation for determining this unknown ratio comes
from considering inelastic collisions.

4.4.2 Effects of Collisions on State Populations

So far we have considered only the effects of radiation on the excited states. We now
take into account the additional effects of collisional excitation and quenching. We
previously defined these rates in terms of the product of reactant concentrations and
a reaction rate coefficient. For purposes of simplifying the notation, we define the
collisional excitation rate per atom as k[n[M] = C\2 and the collisional quenching rate
per atom as k[n[M] = C2\. We may now write down the rate at which both collisions
and radiation populate the excited state. In a steady state we set this rate equal to zero:

oo

/ •
JvO(v)/v

o

oo

+ n2C21 +n2B2i / dv$>(v)Iv + n2A2l = 0. (4.37)

o

This equation is called the statistical equilibrium equation. It provides a second equa-
tion, which, in addition to Eq. 4.36, allows us to solve for both unknowns, n2/n\
and the source function. But first we will consider some relationships between the
collisional rates by once again invoking the principle of detailed balance.

In deriving the Einstein relationships, we considered the state of TE, in which the
radiative processes are in balance with one another, without regard to collisional pro-
cesses. We use the same idea with collisions and ignore radiative processes. Assuming
TE, we set the two rates equal:

n\C2X = n\Cl2. (4.38)
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Using the definitions of the coefficients, and invoking the Boltzmann distribution of
excited states, Eq. 4.19, we find

C2i = C12—eh v o / k*T . (4.39)
82

As in the case of the Einstein relationships we will argue that the above relationship is
more general than the assumption used in deriving it. We cannot argue that Eq. 4.39
describes an inherent atomic property, because of its dependence on the temperature.
However, we observe that the collisional excitation rate (Eq. 4.11) is determined by an
integration over the product of the Maxwell-Boltzmann velocity distributions of the
reactants. We also recall that these distributions are maintained by elastic collisions,
which are millions of times more efficient than inelastic collisions. Thus, we would
expect that Eq. 4.39 would be valid in nonequilibrium situations, as long as the velocity
distribution is Maxwellian. To emphasize that there may be several different tempera-
tures in a NLTE situation, the quantity entering the Maxwell-Boltzmann distribution
is often referred to as the kinetic or translational temperature.

We now return to the statistical equilibrium equation. Solving for n\/n2 from
Eq. 4.37 we obtain

— = — C l 2 + BnJ , where J = [dv$>(v)Iv. (4.40)
0

Equation 4.40 is in the form of the ratio of the net rate of excitation to the net rate of
quenching, or the "source" divided by the "sink" of excited states.

We consider Eqs. 4.36 and 4.40 to be two equations in the two unknowns, n\/n2

and / . The quantity / depends upon the radiation field 7V, which can be determined
from the source function equation for isotropic scattering, in the usual way. Rewriting
the statistical equilibrium equation, using Eq. 4.39 to eliminate the collisional rate C\2,
and Eqs. 4.29 to eliminate the Einstein coefficient B\2, we find

n2 (g/g)Ce-hvo/k»T + (g/g)Bj

Note carefully that T is understood to be the kinetic temperature of the gas. Thus the
velocity distribution of the atoms in the gas is in LTE, while the populations of the
energy states may be far from an LTE distribution. We rewrite the above equation as

A21 + B21J + C21

n2gi

We now have the combination that appears in the denominator of Eq. 4.36. Substi-
tution of Eq. 4.42 into 4.36 yields

_ 2hv[ I" A21+B21J + C2i _
vo~ 2 [ B J + C h v / k T
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Clearing fractions, we find

»3yn
 = =

A21 + B2lJ + C2i -B21J-

and using the first of the Einstein relations, Eq. 4.29, we obtain

= J +
l

Defining a new parameter, ev,

C2\ev = - r , (4.43)

we find with some additional manipulation and using Eq. 4.28

The NLTE source function

SVo=€vBVo + (l-tv)J. (4.44)

We have shown that the NLTE source function is the sum of two terms: a thermal
emission term plus a term that represents the scattering contribution to the source
function. ev<&(v) is interpreted as the emittance per unit volume, that is, its efficiency
as a blackbody emitter as a function of frequency within the spectral line. In terms of
the macroscopic absorption (a(v)) and extinction (k(v)) coefficients, €v = a(v)/k(v)
(note that the frequency dependence cancels in the ratio). The emission coefficient is
obtained from its definition (jv = Sv/k(v)), yielding

0

fjv = a(v)Bv(T) + f dva(v)Iv, (4.45)

0

where we used the relationship a (v) = k(v) — a (v). The first term in the above equation
is the expression of Kirchhoff's Law for a volume element, which states that the thermal
emission is the product of the absorption coefficient and the Planck function (§5.3.1).
The second term is the contribution to the volume emission from scattering within the
volume (see §5.3.2).

The quantity €v is a measure of the coupling between the gas and the radiation
field. When it is large (ev -» 1), the coupling is strong, and there is a rapid exchange
between kinetic and internal energy. In this limit, SVo - • BVo, which is just the LTE
limit. In the opposite case of weak coupling (ev —• 0), the source function approaches
the pure-scattering limit

- /
SVo -> / = / dv<b{v)Iv, (4.46)
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which might be called an extreme condition of NLTE, in which the excited states are
populated exclusively by radiation and collisions no longer play a role. In a planetary
or stellar atmosphere, as one moves upward into lower densities and pressures, there
will be a transition from LTE to NLTE as the coupling between the gas and the radiation
field disappears.

4.5 Absorption in Molecular Lines and Bands

We are concerned with molecular absorption by solar near-infrared (1 /xm to 3 /xm)
and thermal infrared radiation, which occupies the spectrum from about 3 /xm to
100 /xm. We shall refer to this entire range, 1 /xm to 100 /xm (100-10,000 cm"1),
genetically as the IR spectral range. The molecular excited states of interest are those
of vibration (500-10,000 cm"1) and rotation (1-500 cm"1). This range of energies
contrasts with that of the higher-lying electronic states (10,000-100,000 cm"1), which
interact primarily with visible and ultraviolet radiation. To a first approximation the
internal excitation energy is the sum of these three types of energies, electronic (Ee),
vibrational (Ew), and rotational (ET). We shall also be concerned with the kinetic
energy of the molecules, since it plays an important indirect role in determining the
populations of the various absorbing states.

Mastery of the subject of IR spectroscopy demands a thorough familiarity with
quantum mechanics, a subject beyond the scope of this book. Our approach is to
consider only a few of the simpler ideas underlying the physics of vibrational and
rotational spectra. Fortunately an understanding of the radiative transfer process it-
self does not require detailed spectroscopic knowledge. This situation has been made
possible in recent years by the availability of accurate compilations of line strengths
and frequencies for all the major terrestrial molecular species. We will follow this em-
pirical approach, as opposed to the more traditional and perhaps more intellectually
satisfying spectroscopic approach.

We first consider some elementary physics of the absorption process. It is impor-
tant to note that the major molecular species (O2, N2) of the Earth's atmosphere have
essentially no importance for IR absorption. This follows from the symmetrical struc-
ture of homonuclear, diatomic molecules, as will be explained shortly. Four of the
most important IR-absorbing molecular species are the minor constituent polyatomic
molecules, water vapor (H2O), carbon dioxide (CO2), ozone (O3), and methane (CH4).
Dozens of other species have a small effect on the heat budget, when considered col-
lectively; also, these minor species (and their isotopic variants) are important in remote
sensing. We will discuss only these representative species.

The absorption of light gives rise to excited states, which may be a combination of
electronic, vibrational, and rotational motion (we will ignore the small effects asso-
ciated with nuclear spin). We will begin with a consideration of molecular vibration,
ignoring for the time being electronic or rotational energy. Separating the three is a
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useful abstraction, because the total internal energy of a molecule is given approxi-
mately by the sum of the three kinds of energy. Before discussing specifics, we will
attempt to provide a visualization of the physics of the absorption process, in the same
spirit as our earlier discussion of the Lorentz atom with regard to the scattering process
(§3.2). The constituent atoms are held together in a semirigid structure by attractive
forces provided by the electron "cloud," which is more or less shared by all the atoms.
The bonding forces can be either electrostatic (ionic bonding) or quantum mechani-
cal (exchange or covalent bonding). The nature of these forces does not concern us
here. We need only consider their behavior as "springs" binding the various positively
charged nuclei together. The simplest example is a diatomic molecule, which acts in
many ways like a classical oscillator. Upon being "struck," either by a collision with
another molecule or by absorption of a photon of the proper frequency, the constituent
atoms are set into internal motion, alternately stretching and compressing the molecule.
In polyatomic molecules the bonds may also "bend" so that the angles between
the various axes may also oscillate. Classically, the energy of oscillation of a molecule
can vary continuously, but in reality, the number of energy states is a discrete set, due
to the quantum nature of energy states.

According to classical-mechanical analyses, the internal motion of a semirigid sys-
tem, no matter how complicated, can be decomposed into a sum of elementary motions,
called normal modes. A diatomic molecule, modeled by a simple harmonic oscillator,
has only one normal mode of oscillation, along the internuclear axis. However, with
increasing complexity of the molecule, more normal modes are possible. The general
rule is that if a molecule has N atoms, the number of independent modes (or degrees of
freedom) is 3N — 6 for a nonlinear molecule (N > 2) and 3N — 5 for a linear molecule.
Figure 4.8 illustrates some of the normal modes of N2, H2O, CO2, O3, and CH4. If the
motions are small amplitude, the quantum-mechanical result for the total vibrational
energy is

Ev = J2 hvk(vk + 1/2) (vk = 0, 1, 2 , . . . ) , (4.47)
k

where the sum is over all modes denoted by the index k, hvk is the vibrational constant
for that mode, vk is the mode frequency, and vk is an integer, the vibrational quantum
number. The value of hvk will depend upon the molecule, as well as the particular
electronic energy state, and is usually in the range 300-3,000 cm"1. The constant 1/2
is a quantum-mechanical feature associated with the "zero-point energy." The lowest
vibrational energy levels are somewhat higher than thermal energy ~£B T ~ 200 cm"1

for T = 300 K. For a classical simple harmonic oscillator, elementary analysis shows
that hvk depends upon the square root of the "spring constant" ke divided by the re-
duced mass. It is usually written in terms of a vibrational constant (coe in cm"1) as
hvk = hccoe. The intermolecular force for a diatomic molecule is given by the spatial
derivative of the potential energy function V(r), which for small-amplitude oscilla-
tions is given by — ke(r — re). Here re is the equilibrium nuclear separation. Figure 4.9
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Figure 4.8 Normal modes of vibration of N2, O2, H2O, CO2, O3,
and CH4. (a) N2 and O2 are diatomic, homonuclear molecules
with only one mode of vibration, (b) CO2 is a linear, triatomic
molecule. Its vi stretching mode is symmetric and therefore
optically inactive. v2a and v2b are two separate modes but with the
same energy and are said to be degenerate. The two modes differ
only by a 90° rotation about the internuclear axis. v3 is the
asymmetrical bending mode, (c) Both H2O and O3 (not shown)
have three normal modes, all of which are optically active, (d) CH4

has nine normal modes, but only V3 and V4 are active in the IR. v2

is doubly degenerate, and V3 is triply degenerate.

shows the function V (r) for the H2 molecule, along with the array of vibrational energy

states.20 Departures from strictly harmonic oscillations are described by higher-order

terms.

In addition to being excited by molecular collisions, molecular vibrations may

also be induced by absorption of radiation, provided the radiative energy is in
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Figure 4.9 Potential curve of the H2 ground state with vibrational levels and continuous
term spectrum. The continuous term spectrum, above v = 14, is indicated by vertical
hatching. The vibrational levels are drawn up to the potential curve, that is, their end
points correspond to the classical turning points of the vibrational motion.

resonance with a normal mode. Classically we can think of this interaction as the
temporary creation of an induced electric dipole moment by the incident electromag-
netic field. This occurs if the new configuration results in an electron distribution
whose first moment ("center of gravity") is displaced from its original position. In
their ground, or lowest energy states, the dipole moment of symmetrical molecules,
such as N2, O2, CO2, and CH4, is zero. However, there are asymmetrical stretch-
ing or bending modes of vibration (for example, the v2 state of CO2) that result in
an electric dipole. Radiative transitions between these states and the ground state
are allowed because there is a change in the dipole moment. Note that the homonu-
clear molecules N2 and O2 are symmetrical in both their ground and (single) excited
state, and therefore they have no vibrational spectra, that is, they are radiatively inac-
tive.

In quantum theory, absorption takes place providing there is a finite dipole ma-
trix element between the initial and excited states. It happens that sometimes this
matrix element is zero for certain combinations, and the transition is forbidden,
at least for dipole transitions. Higher-order moments, such as electric quadrupole
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and magnetic dipole moments, may exist but their associated absorptions are much
weaker than electric dipole transitions. Selection rules follow from considerations
of whether a transition is "dipole allowed" or "dipole forbidden." The wavenumber
of a vibrational transition is given by hcv = Ev(v

f) — Ew(v") with the selection
rule Av = v' — v" = ± 1 , which is called the fundamental Because of devia-
tions from strict harmonic oscillator behavior of a real molecule, higher-order transi-
tions (overtone bands) can occur where Av= ± 2 , ±3 , etc. If two (or more) modes
change simultaneously during an absorption event, a combination band is said to
occur.

Up to now we have ignored rotation, but rotational energy always accompanies
vibrational energy. Rotation imposes a "fine structure" on the vibrational transitions,
giving rise to a far richer absorption spectrum than Eq. 4.47 would imply.

4.5.1 Molecular Rotation: The Rigid Rotator

Molecular rotation is easy to understand in principle. For simplicity we assume that
the molecule is a rigid rotator, that is, the internuclear separation is fixed, regardless
of the rotation. A diatomic molecule will be characterized by one moment of inertia,
/ , expressed classically as M\r\ + M2r

2, where Mj and r7 are the nuclear masses and
distances along the principal axis from the center of gravity of the nuclei. The two
radii are given by

ri = l^Wr and r2 = W^wr>
where r = r\ + r2 is the internuclear separation. The classical expression for the energy
of rotation is Er = Ico2/2 = C2/2I, where co is the angular velocity of rotation about
the principal axis, / is the corresponding moment of inertia, and C is the angular
momentum. The usual quantum-mechanical "prescription" is to replace the classical
angular momentum with the quantized quantity (h/2n) times an integer, where h is
Planck's constant. Since we are dealing with the square of the angular momentum,
the quantum-mechanical equivalent is C2 —>• (h/2n)2J(J + 1), where / is a positive
integer, called the rotational quantum number. Thus, the rotational energy of a rigid
rotator is given by

l_fh_\2

Er(J) = — [ — ) J(J + 1) = hcBvJ(J + 1) (/ = 0, 1,...), (4.48)
2/ \27tJ

where Bv = h/(&7t2cl) is the rotational constant corresponding to a particular elec-
tronic and vibrational state. Since Bv is inversely proportional to the moment of inertia,
and therefore to the molecular mass, it follows that light molecules, such as H2, will
have more widely separated rotational energy levels (see Fig. 4.11 below) than heavier
molecules.
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How does rotation affect absorption and emission? Again, we invoke the principle
that a changing electric dipole must be involved. In this case for radiative interaction
it is necessary to have a permanent electric dipole moment. Since the dipole moment
is a vector quantity, a change of the direction of this dipole moment would constitute
a change in the dipole moment. This interaction leads to pure rotational transitions,
whose energies occur in the far-infrared and microwave portion of the spectrum. The
wavenumber of the emitted or absorbed photon is

v = BvJ\Jf + 1) - BVJ'\J" + 1), (4.49)

where the selection rule is A / = ± 1 , that is, J may change or "jump" by only one
unit. The pure rotational spectrum of a rigid rotator can be seen to be a sequence of
equidistant lines. Linear molecules, such as N2, O2, or CO2, are symmetrical in their
ground states. They have no permanent dipole moment and thus no pure rotational
spectrum. Finally, it should also be mentioned that pure rotational transitions prevail
in the microwave spectrum. For example, H2O exhibits intense microwave absorption
at 22 and 183 GHz (1 gigahertz = 1 x 109 Hz). Despite the fact that the ground state
of O2 possesses no electric dipole moment, it does have an unusually large magnetic
dipole. Thus weak ("forbidden") magnetic dipole transitions occur in the microwave
spectrum, which nevertheless are important for atmospheric absorption because of the
very high abundance of O2.

4.5.2 Molecular Vibration and Rotation:
The Vibrating Rotator

Recognizing that vibration and rotation can occur simultaneously, we now consider
the vibrating rotator. If there were no interaction between rotation and vibration, the
energy would be simply the sum Ew + ET. However, if the centrifugal force and the
Coriolis force associated with the rotating frame are considered, the situation becomes
more complicated. The energy levels can be written as term values

E{V' J) = coe(v + 1/2) - coexe(v + 1/2)2 + BVJ(J + 1) - DVJ2{J + I)2.
he

(4.50)

Here coe and coexe are vibrational constants, expressed in wavenumber units. The higher-
order terms are the "interaction" terms for an anharmonic oscillator. Note the presence
of two rotational constants, Bv and Dv, whose subscripts indicate their dependence
on v. The term involving coexe is an anharmonic correction, which takes into account
departures from simple harmonic oscillator motion.

The total molecular energy includes the electronic energy Ee. With this addition,
the values of the rotational constants may also depend upon the particular electronic
energy state. The wavenumber of a spectral line in a vibration-rotation band within
a given electronic state is given by the difference of the term values of the two states



116 Absorption by Solid, Aqueous, and Gaseous Media

defined by (t/, / ' ) and (v", / " ) :

v = vk + B'VJ\J' + 1) - B'JJ"(J" + 1) [cm"1], (4.51)

where vk is the basic wavenumber of the pure vibrational transition without taking
into account any rotation (that is, when / ' and J" are set equal to zero). With AJ =
J' — J" = +1 and AJ = J' — J" = — 1, we obtain the wavenumbers of the R-branch
and P-branch, respectively:

vR = vk + 2B'V + (3B'V - B'J)J + (Bf
v - B'^J1 (J = 0, 1, . . .) , (4.52)

vP = vk-(B
f
v + B'J)J + (B'V-B'^)J2 C = l > 2 , . . . ) . (4.53)

(The notation for the ground-state term J" has been changed to / . ) Figure 4.10 shows
the various transitions in a vibration-rotation band, illustrating the separation into two
branches.22

The above description of a diatomic molecule is still approximate. The electrons
(having small masses compared to the nuclei) have a small moment of inertia about
the internuclear axis. Nevertheless their angular momenta are comparable to the nu-
clear value (which we now designate as N), because they move much faster in their
orbits. Only the component of this angular momentum along the axis, A, is con-
stant (the other components average to zero). This occurs as a result of the electric
field, which points along the axis of symmetry. The associated quantum number is
A, a positive number. The total angular momentum J of the molecule is thus the
vector sum of the nuclear angular momentum N (which points perpendicular to the
axis) and the component of the electronic angular momenta J (which points along
the axis). The magnitude of J is constant, and hence it is quantized according to
|J| = <s/(J(J + l)h/2n, where h is Planck's constant. / is greater than or equal to A
and is given by / = A, A + 1, For A / 0, there is a precession of N and A about
the (constant) vector J. Thus a more accurate picture of the diatomic molecule is a
symmetric top nutating about the direction of the total angular momentum. The energy
levels that result are thus the sum of the nuclear rotational energy and the nutational
energy:

Er/hc = BvJ(J + 1) + (A, - BV)A2,

where Bv = — and Av =

The primary moment of inertia is IB, and IA is the much smaller moment about the
internuclear axis. Generally, Av is much larger than Bv. The quantum number A is
usually a small (integral) value. Thus for a given electronic state, the levels of the
symmetric top are the same as those of the simple rotator, except that there is a shift
of magnitude (Av — BV)A2. However, levels with / < A are absent.

Ignoring electronic transitions, the selection rules are rather simple, since A does not
change during the transition. Then for A = 0, AJ = ± 1 , and for A ^ 0, AJ = 0, ± 1 .
In the first case, since the constant term (A — B)A2 disappears when the two term
values are subtracted, we obtain exactly the same branches as discussed for the simple
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Figure 4.10 Energy levels of the vibrating rotator, v" and J" are the
vibrational and rotational quantum numbers of the lower state. i>', J' refer
to the upper (excited) state. The vertical lines indicate allowed transitions
(AJ = ±1). R(0) denotes the /^-branch ( A / = +1) ending in the J = 0
state, etc. In the lower part of the diagram, an idealized absorption is shown
versus wave number. P(l) denotes the P-branch (AJ = —1) ending in the
7 = 1 state, etc. The vertical dashed line indicates the band head, at
v = v0, which is missing in homonuclear diatomic molecules, because
v' = 0 to v" = 0 is forbidden.

rotator. In the second case there is a constant shift, but otherwise the term values are
the same. However, more importantly, there arises a new branch, the Q-branch, with
AJ = 0. The wavenumbers of the lines in this branch are

= vk
?;' - B'V)A2 + {B'V- (B'v~ (4.54)

The only case of atmospheric interest for which a diatomic molecule has a Q -branch
in its infrared spectrum is that of nitric oxide (NO), which has a nonzero A in its ground
state. Its fundamental band at 5.3 /xm is important for the energy budget of Earth's
lower thermosphere.
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Q-branches are more common in polyatomic molecular spectra, for example in the
pure bending mode of the V2 mode of CO2. The Av = 1 transitions "pile up" at very
nearly the same frequency, accounting for the very strong g-branch in the 15-/xm
band (667-668 cm"1; see Fig. 4.4).

More complex molecules are categorized in terms of the relationships of the various
moments of inertias. For the most complicated molecule, all three moments of inertia
are different and also unequal to zero. This is called the asymmetric top and is rep-
resented by the important molecules H2O and O3. If all three moments are equal, we
have the spherical top, represented by CH4. If two of the moments are equal, we have
the symmetric top, already mentioned in the case of a diatomic molecule. It is repre-
sented by the molecule CFC13. Finally, we have the case where one of the moments
is effectively zero, in which case we have a linear molecule, examples of which are
CO2, N2O, CO, and NO. Equation 4.48 applies to the rotational energy for both the
spherical top (Av = Bv) and the linear molecule (A = 0). However, a more detailed
analysis shows that linear molecules and spherical tops do not have the same rotational
structure, as levels of equal J will "split" in different ways. This "splitting" occurs as
the theory is made more precise to consider all the various couplings among electronic,
vibrational, and rotational energies. Electron and nuclear spin are important for setting
additional selection rules and in perturbing single energy levels into multiple levels.
The fine structure results from the interaction of the magnetic dipole of the spinning
electron with the electric field of the other electrons. Hyperfine structure results from
a similar interaction of the nuclear spin.

4.5.3 Line Strengths

The rather formidable task of spectroscopy is to analyze the line frequencies of an
absorption or emission spectrum in terms of the various quantum numbers, rotational
and vibrational constants, etc. We will henceforth take a less formidable empirical
approach and assume that we are given the complete set of spectroscopic constants
(coe, COQXQ, B, D, etc.) necessary to determine the frequency (or wavenumber) of all
transitions within a specified frequency range. In addition to the spectroscopic con-
stants, modern compilations of the absorption line strengths are also readily available.
Knowledge of line strengths is necessary for determining the overall opacity of the
atmosphere as a function of frequency. The strengths depend not only upon the na-
ture of the individual transition, but also upon the equilibrium number of ground-state
molecules. Thus it is necessary to return to the consideration of the Boltzmann distri-
bution of energy states.

We will first consider a vibration-rotation band produced by a simple harmonic-
oscillator rigid rotator. We will assume LTE conditions, so that the distribution of
excited states is given by Boltzmann's formula. First consider molecular rotation only,
in which the energy levels are denoted by the quantum number / and are given by
Eq. 4.48. Since the quantum theory tells us that the statistical weight gj (§4.3.4) of a



4.5 Absorption in Molecular Lines and Bands 119

rotational level 7 is 27 + 1, we write for the ratio of state populations with different
/-values

-'«•+4
A more convenient ratio is that of an excited-state population to the total number of
states n within a given electronic and vibrational state,

n{J) (2/ + 1) f hcBv ]
—^ exp - — - J ( / + l ) , (4.56)n L - ^ _

where QT is the rotational partition function given by

For sufficiently large 71 or small #„, the spacing is very small compared with the total
extent of the rotational energy. In this limiting case we may replace the sum with an
integral, which is easily evaluated:

o

f
J

dJ(2J + l)exp[-hcBvJ(J + l)/kBT] =

The distribution of rotational energies with rotational quantum number 7 is shown
in Fig. 4.11 for a number of molecules of atmospheric interest. This distribution is
very important for the absorption coefficient, since the number of molecules in the
ground (vibrational and electronic) state determines the rate of excitation. Note that
in Fig. 4.11, when the average separation between states is relatively high, as in H2,
there are relatively few rotational states populated by collisions.

The LTE absorption cross section afn(v) for an individual vibration-rotation line
(denoted by /) can be written as the product of a numerical factor and a frequency-
dependent line profile:

< ( y ) = <S/Oi(v). (4.58)

Here St is the line strength or line intensity of the z'th line (i/', J") -> (i/, J') given
by

Si=Jdva*n{v) [m2^-1] , (4.59)

where the frequency integration is over the line breadth of a single line. In the above,
double primes denote the lower state, and single primes denote the excited state. The
absorption coefficient is given by at (v) = ain(v)n, where n is the total density of ra-
diatively active molecules (the sum over all ground and excited states). In tropospheric
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Figure 4.11 Distribution of rotational energy levels with rotational quantum number J for
the molecules O2, H2, N2, and NO, assuming T = 250 K.

radiation problems, it is permissible to assume LTE, so that Eq. 4.34 applies. In the
present context, absorption and extinction are synonomous. In this equation, the initial
(absorbing) state in the generalization to a multilevel molecule is n\ -> n(v", J").
Also, we let Bn-^Bi. Thus, equating Eqs. 4.34 and 4.58, we find the following ex-
pression for the LTE absorption coefficient:

4TT
(4.60)

where vt denotes the central frequency of the line hvt = E(v', Jf) - E(v", J"), the
difference in energies of the two states connecting the transition i. The notation <!>,• (v)
reminds us that the line profile may depend upon the particular transition, /, and differ
from line to line and from band to band. This variation is usually small and slowly
varying with frequency over lines within the same band. Solving for the line strength,
we find

ftv>

4TT

n(v",J")
(4.61)

Substitution from Eq. 4.55 for the population ratio of a rotational state yields

-BiCxp[-hcBvr
f(r (4.62)
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We should note here that the expressions above may differ from those found in the
literature. First, our definition of the absorption coefficient in terms of the total density
of molecules, as opposed to the number of molecules in the specific ground state,
accounts for the factor n(v", J")/n in the above equation. Second, the assumption
of LTE allowed us to express stimulated emission as negative absorption, and the
correction factor for this effect is (1 — e~hVi/kBT). Not all authors include this factor,
which is often near unity. Third, we have defined the Einstein coefficients in terms of
the average intensity 7V, instead of the energy density Uv, which is often used in the
astrophysical literature. This accounts for a factor of 4n/c between the two definitions.

In Eq. 4.62 we see the explicit dependence of the line strength on temperature
through the Boltzmann distribution of initial-state populations. So far we have assumed
that transitions connect only a ground state with an excited state. In fact, absorption
can originate from a higher vibrational state. This is the case for so-called hot bands.
Including the possibility of initial vibrational excitation, we have

The vibrational partition function, <2V, is defined analogously to QT. E" denotes the
initial state energy. Slo is simply the line strength obtained from Eq. 4.62 evaluated
at the reference temperature To. Fortunately the above result may be applied to any
polyatomic molecule for which we know the various partition functions, line strengths,
and central line frequencies. For standard tabulations, the temperature dependence of
all the various terms is subsumed into the following semiempirical expression:

«•">

Here m is a dimensionless quantity of order unity that serves as a fitting parameter.
The strength of a line can be determined in two basic ways: (1) from quantum theor-

etical calculations and (2) from laboratory measurements. The first method requires
rather accurate knowledge of the wave functions, a very difficult problem for poly-
atomic molecules. In practice, laboratory results that rely upon the Extinction Law are
used. The Air Force Geophysics Laboratory (now the Phillips Laboratory) provides
an up-to-date listing of these parameters for atmospheric molecules. Specifically, it
includes spectroscopic data for seven major atmospheric absorbers, O2, H2O, CO2,
O3,N2O,CO, andCH4.

The 1992 HITRAN spectroscopic data base contains information for a total of
709,308 lines.23 Included in the listing for each line are: v?, 5io, width of the line at
standard sea-level pressure and reference temperature, and energy E" of the lower state,
etc. A data base such as HITRAN is extremely useful to atmospheric radiative transfer
practitioners, because it provides a well-accepted standard against which theory can
be compared with data and with other theories.
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4.6 Absorption Processes in the UV/Visible

As we proceed upward on the energy ladder from the infrared into the visible and UV,
the spectroscopy becomes still more complex than previously discussed. At these
higher energies, electronic excited states become accessible. Absorption of a photon
causes an electron in an outer shell of the atom or molecule to be transferred to a
higher electronic energy state. As in vibrational and rotational transitions, the transfer
is accompanied by a change in the electric dipole moment of the atom or molecule.
In the simple Bohr atom picture of an atom as a miniature solar system, the electron
"jumps" from its initial orbit (around the massive nucleus) to one of larger radius.
Thus, a third type of energy must be added to the vibrational and rotational types
previously considered.

Electronic excited states are short lived in comparison to vibrational or rotational
states. If the transition is electric dipole forbidden, the excited-state lifetimes are much
longer than electric dipole states and are quenched by collisions well above the surface.
For example, the O2(0, 1) A-band (b-X) with band origin at 12,969 cm"1 (seen as the
absorption feature at 771 nm in Fig. 5.8) is quenched at about 40-km altitude. Above
this height, more of the absorbed radiative energy is promptly emitted as airglow emis-
sion, rather than ending up as thermal energy. The variable role of quenching produces
absorption lines against the Rayleigh continuum background for tangent-ray heights
below 40 km and emission lines above 40 km. High-spectral-resolution measurements
from space24 provide a sensitive probe of the temperature, density, and wind fields in
the mesosphere and lower thermosphere. Neither O2 nor N2 absorb appreciably in
the visible because of the absence of accessible electronic states with energies down
to middle-UV wavelengths. In the UV, the Herzberg continuum, Schumann-Runge
bands, and Schumann-Runge continuum (see Fig. 4.12) all result in a breakup of the
oxygen molecule into free oxygen atoms. Absorption in the Herzberg continuum is
a bound-free process that yields two ground-state oxygen atoms. The Schumann-
Runge bands are due to a bound-bound transition to discrete upper levels. Electrons
in this excited state are subject to a "level crossing" to a repulsive (unstable) electronic
state. Thus, the upper state is very short lived, and because of the uncertainty princi-
ple, the absorption lines are broadened beyond that expected from ordinary pressure
broadening. The unstable O2 state almost instantaneously converts into two ground-
state oxygen atoms. This process is known aspredissociation. The Schumann-Runge
continuum is a bound-free process resulting in dissociation into two O atoms: one in
the ground state O(3P) and the other in an electronically excited state O(1D). Another
important example of a bound-free process is the middle-UV Hartley-band absorp-
tion (see Fig. 4.12) of O3 in which the molecule is fragmented into O(3P) and O(lD)
products.25

In contrast to these bound-free continuum processes, more structured spectra re-
sult from transitions between two discrete electronic levels (bound-bound processes).
Because molecules also have vibrational and rotational energy, the result will be a
band system. The total term value can be written approximately as the sum of the
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Figure 4.12 Top panel: O2 absorption cross section illustrating the various
band and continua (see text). The deep absorption line at 121.6 nm corresponds
almost exactly with the strong solar hydrogen Lyman-a line. Bottom panel:
Absorption cross section for O3. The strong shortwave feature is the Hartley
continuum, which blends into the band structure, called the Hartley bands.
The weaker visible quasi-continuum is the Chappuis bands. Upper panel is
from Brasseur, G. and S. Solomon (see Endnote 25).

electronic term value, re, the vibrational term value, G, and the rotational term value,
F. Thus the frequency of a transition is written as the difference of two term values

v = Tf -T" = (71' - 71") + (G' - G") + (F' - F"). (4.65)

As usual we refer to the upper state with single-primed letters and the ground state with
double-primed letters. For a given electronic transition, ve = Te' — T^ is a constant.
The remaining parts of Eq. 4.65 have forms similar to that for the vibration-rotation
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spectrum. The essential difference is that G and G" now belong to different vibrational
term series with different values of coe and coexe (see Eq. 4.50). Similarly F' and F"
belong to two quite different rotational term series of different ^-values (see Eq. 4.50).

Ignoring rotational "fine structure" for the moment, we can obtain a formula for
the vibrational structure of an electronic band. Ignoring terms in T higher than v2, we
may write

v = ve + co'e(v
f + 1/2) - co'XW + 1/2)2

- (oW + 1/2) - (o'X(v" + 1/2)2. (4.66)

For electronic transitions there is no selection rule for the vibrational quantum num-
ber v. In principle, each upper vibrational state can be combined with each lower
vibrational state.26 Thus, a host of vibrational bands (i/, v") will exist within the
entire electronic band system. The bands denoted by (t/', 0), (i/, 1), etc. for a fixed
v' are called vf-progressions. The bands denoted by (0, i/'), (1, i/'), etc. are called
v"-progressions. Another grouping of bands in which Av = v' — v" is a constant is
called a sequence. Since coe and coQxe are not very different between states, sequences
are often grouped closely together in a spectrum.

At typical atmospheric temperatures, nearly all molecules will be in their ground
(v" = 0) vibrational state. Thus absorption bands will exist normally only in a single
t/-progression, with v" — 0. The formula for the wavenumber of the absorption line
progressions is

v = voo + o>ov' - o)'ox'ov'2 + • • •, (4.67)

where vOo is the term level of the (0,0) band. With increasing i/, the separations between
successive vibrational levels approach the value zero, and then a continuous term
spectrum joins onto the series of discrete vibrational levels. The energy where this
occurs corresponds to the dissociation energy of the molecule. An example of this
transition point is at 175 nm, where the structured Schumann-Runge band system
converts to the smoothly varying Schumann-Runge continuum (see Fig. 4.12). This
corresponds to the energy of dissociation plus the energy of the excited O(lD) oxygen
atom.

Most molecules of interest to us (CO2, H2O, O3, and CH4) are polyatomic molecules.
A discussion of their electronic spectra is beyond the scope of this book. Fortunately
many of the concepts discussed above for the diatomic molecule may be carried over
directly. Electronic transitions involving these molecules are not important for the en-
ergy balance of the lower atmosphere. However, they play critical roles in airglow,
heating, and ionization processes in the upper atmosphere. The electronic absorption
bands (the Chappuis and Hartley bands) of O3 are semicontinuous over reasonably
large frequency intervals and thus absorption obeys the Extinction Law. For example,
calculating the irradiance-weighted cross sections over 10-nm bins may yield errors in
the ozone photodissociation rate profile of only a few percent. Fortunately, unless one
is interested in airglow spectra, it is generally not necessary to master the spectroscopy
of polyatomic electronic band spectra. If necessary, one can fall back on the empirical
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method if a compilation of all the band positions and strengths is available from, for
example, the HITRAN data base.

4.7 Summary

Absorption properties of aerosols depend upon the bulk optical properties, as well as
the particle size and shape down to dimensions of order 0.1 /xm, where quantum effects
become important. Absorption by liquid water is governed by both the imaginary index
of refraction of the pure state and by the effects of suspended particles. Molecular
absorption is either discrete or continuous with frequency, depending upon the nature
of the excited energy state. Of most importance to the IR are bound-bound (discrete)
transitions. The strength and frequency width of these discrete features (absorption
lines) are affected by the inherent properties (oscillator strengths), but they are also
affected by the state of the ambient gas. The physical conditions of the gas (density,
temperature, and chemical composition) affect the character of the radiative transitions
through molecular collisions.

Various types of equilibria of matter were reviewed, including thermal, mechani-
cal, chemical, and radiative. The most general, thermodynamic equilibrium, includes
all of the above. It applies only to an isolated static system, a hohlraum. Despite
the extreme departure of planetary media from these ideal situations, their study is
quite useful in understanding less-restrictive equilibria, such as local thermodynamic
equilibrium (LTE) and nonlocal thermodynamic (NLTE) equilibrium. The Planck
Radiation Law and its Wien and Rayleigh-Jeans limits were reviewed, along with
the Wien Displacement Law and the Stefan-Boltzmann Law. The Planck Law was de-
rived from assuming that photons have discrete energies, whose states can be likened
to standing waves in a closed box. The Planck Law distribution of light energy, as a
function of frequency, was derived from finding the product of the mean energy per
state and the density of states in an enclosure. The very important Kirchhoff's Law
will be discussed in Chapter 5.

The idealized two-level atom permitted a simple visualization of the five basic
processes of energy exchange between states: radiative absorption, radiative emis-
sion (spontaneous and induced), and collisional excitation and deexcitation. Detailed
balance arguments allow the rates of processes to be related to their inverses. Reviews
of the Maxwell-Boltzmann distribution of molecular velocities and of the Boltzmann
distribution of discrete energy levels were given. A balance of radiative and colli-
sional processes gives rise to the NLTE source function and the microscopic radiative
transfer equation. The two extreme limits of gas density yield pure scattering in the
low-density limit and the LTE limit for high density. The extension from a two-level
atom to a multilevel molecule then allowed a realistic description of the line strength,
in terms of temperature and density for a gas in LTE.

Infrared absorption and emission in molecular bands results from transfer among en-
ergy modes, or states, which arise from molecular vibration and rotation. These states
are present in all molecules but are not always radiatively active. As a consequence
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of their linear symmetry, the dominant air species (N2 and O2, which both are homonu-
clear and diatomic) do not participate in IR radiative transfer. The way in which the
various energies are described in terms of the basic vibrational and rotational quantum
numbers was discussed. This was followed by a brief discussion of the spectroscopy of
a diatomic molecule treated as a vibrating rotator. This simple model served as a pro-
totype for more complex polyatomic molecules, which have more complicated vibra-
tional and rotational modes. The temperature dependence of molecular line strengths,
and more generally of the shape of molecular bands, was found to be a result of the
Boltzmann distribution of energy states. Modern spectroscopic data bases were briefly
discussed.

The more energetic shortwave absorption processes were discussed very briefly.
Transitions in the visible and UV result from exchange between states of electronic
excitation. These states have even greater complexity than IR absorption bands, be-
cause of the superposition of all three forms of energy: electronic, vibration, and
rotation. For Earth atmospheric composition, these band systems are located primar-
ily in the UV. Again, the spectroscopy of a diatomic molecule (such as O2) serves to
illustrate that of the more complex molecules, such as O3. Thermal emission in these
bands is negligible because collisional excitation rates at the low thermal energies of
atmospheric molecules are very low.

Problems

4.1 The generalized Boltzmann distribution (Eq. 4.9) may be used to derive the
equilibrium distribution of velocities. Setting /3 = (kBT)~l for convenience, and al-
lowing £t to be the sum of kinetic and potential energies of the molecules, we have
St = y (v% + Vy + v%) + V(x, y, z). Furthermore, the partition function Q may be con-
verted from a sum to an integral, since the energy may be considered to be a continuous
function of the spatial (x,y,z) and velocity-component (vx, vy, vz) variables. Thus,
we have Q oc / / • exp[—flS(x, y, z, vx, vy, vz)]dxdydzdvxdvydvz.
(a) Show by performing the integrations over the velocity components that the proba-

bility p(S) that a molecule has position coordinates between x and x + dx, y and
y + dy, and z and z + dz, and velocity components between vx and vx+dvx,vy

and vy + dvy, and vz and vz + dvz, is

P(S) oc fMBe-^x^z)dxdydz,

where / M B is given by Eq. 4.12.
(b) Assuming the atmosphere to be plane-parallel, and ignoring the variation of gravity

and temperature with height, show that since fiV(x, y, z) = rngz/k^T, we recover
the hydrostatic, or barometric law, Eq. 1.4.

(c) Explain why the atmosphere does not collapse, with all molecules falling to the
ground under the influence of gravity.
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(d) How is it possible for the molecules at each height to have the same average speed
and kinetic energy?

4.2 Derive the equilibrium distribution of molecular speeds u, Eq. 4.17, beginning
with the distribution of velocities, Eq. 4.12. {Hint: Transform the "volume element"
dvxdvydvz into polar coordinates, where the "radial" coordinate is dv, and integrate
over the two angular coordinates.)

4.3 Show that if stimulated emission is neglected, leaving only two Einstein coeffi-
cients, an appropriate relation between the coefficients will be consistent with thermal
equilibrium between the atom and a radiation field of a Wien spectrum, but not of a
Planck spectrum.

4.4
(a) Calculate the rotational constant, B, for the electronic ground state of molecular

hydrogen, H2. The internuclear separation is re = 1.059 x 10~10 m. (Answer:
30 cm-1).

(b) Repeat for the ground state of O26 for which r = 1.42 x 10"10 m, and contrast
this value with that for H2.

4.5 The heating rate for the NLTE two-level atom problem is given by

where (dn\/dt)nQt is the sum of the three radiative processes tending to change the
population of the ground state.
(a) Show from the definition of7i = —J dcodv(dlv/ds) that

(S - BVo)

where S is the line strength per molecule, €v is the coupling coefficient, S is the
source function, BVo is the Planck function evaluated at v = v0, and

oo

/ = [ dv<S>(v)Iv.

0

oo

(b) Let 6V —> 0. Assume that the radiation field is very dilute, so that S <^ BVo. Show
that in this limit, TC ~ —hvon\C\2.

(c) Physically interpret the result (b).

Notes

1 Kyle, T. G., Atmospheric Transmission, Emission and Scattering, Pergamon Press,
Oxford, 1991.

2 SeeEndnotel.
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3 SeeEndnote l .

4 This may seem somewhat paradoxical. The high reflectance from a solid with a large
absorption coefficient can be understood from the fact that the light is attenuated over a
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Chapter 5

Principles of Radiative Transfer

5. l Introduction

The radiation field in atmospheres and oceans is affected by the presence of a bound-
ing surface, such as that of a solid land material, a liquid, such as an ocean, or an
effective surface, such as a dense cloud deck. Similarly, the radiation field in the
ocean is determined by the transmission of direct and diffuse light through the ocean-
atmosphere interface. (A "surface" in our usage can even be the outer "edges" of a
gaseous medium.) In this chapter we define emissive and reflective properties of sur-
faces applicable to their longwave and shortwave interactions, respectively. Infrared
surface properties are generally simpler than UV/visible properties, since reflection of
IR radiation is usually unimportant. Furthermore, except at millimeter wavelengths,
surfaces emit thermal radiation approximately isotropically. Descriptions of surface
interactions have historically been largely empirical, but in the past several decades,
physically based models of surface reflection have gained in popularity with the need
(for example) to relate land reflectance to crop yield and ocean color to water fertility.
Somewhat analogous quantities for aerosols, the single-scattering albedo a and phase
function p, describe the probability for scattering and the angular dependence of the
scattered light, respectively. With these specifications, the radiative transfer equation
including both scattering and absorption can be easily written down. We derive a
closed-form solution for the local thermodynamic equilibrium intensity for the limit-
ing case of zero scattering. The formal solution for the general case then immediately
follows, although because it is expressed in terms of the unknown source function, it
is not yet a usable result. The heating rate, photolysis rate, and dose rate are defined
in terms of various integrals over the spectral intensity.

130
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5.2 Boundary Properties of Planetary Media

A bounding surface1 may have up to four distinct effects on the radiation environment:
(1) reflection of a portion of the incident radiation back into the medium, (2) absorption
of a portion of the incident radiation, (3) emission of thermal radiation, and (4) trans-
mission of some of the incident radiation. All such processes modify the radiation field
throughout the medium.

We refer to the photometric properties of surfaces when we deal with the unpolarized
aspects of shortwave reflection and absorption. In the following sections we provide
mathematical descriptions of these processes in terms of quantities that relate incoming
and outgoing monochromatic intensities or fluxes. These photometric properties are
specific to the type of surface, to the angular distribution of incoming radiation, and
to the direction of outgoing radiation. Fortunately, the IR surface emittance depends
only weakly upon its composition and texture.

Traditionally the study of diffuse reflection from solid surfaces has been an empirical
science. However, in recent years the subject has been placed on a more physical basis.
B. Hapke2 has derived mathematical expressions for photometric quantities in terms
of physically meaningful parameters. Some useful relationships among the various
surface quantities are provided by Kirchhoff's Law, the Principle of Reciprocity, and
the Principle of Conservation of Energy.

5.2.1 Thermal Emission from a Surface

As discussed previously, the small opening in a hohlraum (§4.3.1) is the ideal black
"surface," emitting hemispherically isotropic blackbody radiation at all frequencies.
However, emission from a real surface at the same temperature is usually quite dif-
ferent (and usually less efficient) than that from a blackbody. Generally, the emitted
intensity will differ in the two polarization components, but as usual we ignore this
complication.3 Let /+(£2) cos 0dco be the emitted energy from a flat surface of temper-
ature Ts within the solid angle dco in the direction Q. The corresponding energy emitted
by a black surface at the same temperature is written BV(TS) cos 0 dco. Here 0 is the angle
between the direction Q and the surface normal h, so that cos 0 = \Cl - h\. The spectral
directional emittance is defined as the ratio of the energy emitted by a surface of temper-
ature Ts to the energy emitted by a blackbody at the same frequency and temperature:

. 1+(Cl) cos 9da>
€ ( V ' ° ' T s ) S Bv(Ts)coS9da>

In general, e depends upon the direction of emission, the surface temperature, and the
frequency of the radiation, as well as other physical properties of the surface (index of
refraction, chemical composition, texture, etc.). A surface for which e is unity for all Cl
and v is a blackbody, by definition. A hypothetical surface for which e = constant < 1
for all frequencies is a graybody.
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A second important surface quantity describes how the surface emits energy into a
hemisphere (2n sr) relative to a blackbody at a particular frequency. The spectral flux
emittance or bulk emittance relates the emitted flux to that of a blackbody at the same
frequency and temperature:

_ f+dcocos61+(Q) J+

e(v, 2TT, TS) = -r— =
J + dco cos OBV(TS)

= —

n J
dcocosOeiy, ft, Ts). (5.2)

The flux emittance is usually measured directly, but in some cases it may be derived
from first principles. (The directional emittance is almost never reported in the litera-
ture.) Experimentally it is easier to measure the reflectance p and to derive e from the
relationship (1 — p). In the thermal IR, nearly all surfaces are efficient emitters, with e
generally exceeding 0.8. For pure substances, such as water ice, the imaginary index
of refraction is needed to determine e from theory.

5.2.2 Absorption by a Surface

Let a surface be illuminated by an angular beam of downward radiation with intensity
7~(ft') in a direction within a cone of solid angle dco' around Q'. Then the incident
energy is 7~(ft') cos 9'dco'. A certain amount 7y~(ft') cos 9'dco' of this energy is lost
by absorption. Here 9' is the complement of the angle between the downward incident
beam Q' and the upward surface normal n, so that cos 9' = |ft' • h\. (Our convention
in using the negative sign in the notation 7~(ft') emphasizes the downward direction
of the beam.) We define the spectral directional absorptance as the ratio of absorbed
energy to incident energy of the beam,

I-(W) cos 6 fdcof I~<Slf)

Again, the minus sign in the notation —Q! emphasizes the downward direction of
incidence. In analogy to the flux emittance, the spectral flux absorptance is the ratio
of the absorbed flux to the incident flux,

f dcof cos 0fI-(&)
4 ^ r
J_dQ)'cos0'I-(W)

/_ dco'cosO'a(v, -ft', 7;)/"(ft')
= K "

If the illumination is from an isotropic blackbody, /~(ft') = BV(TS), then

(5.4)

a(v, -2TT, Ts) = - /dco'cosO'a(v, -Q\ Ts). (5.5)
n J
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5.2.3 Kirchhoff s Law for Surfaces

This famous law relates the emissive and absorptive abilities of a body in thermo-
dynamic equilibrium. In the following we will apply heuristic arguments to show how
this law follows from very simple physical considerations. We consider an opaque
nonblack surface within a hohlraum, exposed to the isotropic radiance Iv = BV(T).
Due to the isotropy of the radiation field, the upward radiation field emanating from the
surface must also be uniform. However, in general not all this radiation will be emitted
radiation. This is because we have allowed for values of emittance less than unity.
(Since the surface material is assumed to be opaque, only reflection and absorption
need to be considered.) The "deficit" of upward radiation due to the smaller amount
of emitted radiation must be made up by a reflected component /+. For each angular
beam of light these two components must add to yield the Planck distribution, so that
for all 6

/+(ft) + 4(ft) = £v(rs). (5.6)

From conservation of energy, the sum of the reflected and absorbed energy must be
equal to the incident energy, which in the hohlraum is also the Planck function. This
yields

(5.7)

Using Eqs. 5.1, 5.3, 5.6, and 5.7 we find

Kirchhoff's Law for an Opaque Surface

a(v, - A Ts) = e(v, ft, Ts). (5.8)

Kirchhoff's Law describes the intimate connection between emission and absorp-
tion. The law is strictly valid only within an isothermal enclosure in thermodynamic
equilibrium. However, in the form above it has much broader validity and for practical
purposes may be considered to be an exact relationship for planetary surfaces.

Is there an equivalent form of this law relating the flux emittance and flux absorp-
tance? Consider the expression for the flux absorptance in the special circumstance
of hemispherically isotropic incidence. Comparing Eq. 5.5 with Eq. 5.2, and using
Eq. 5.8, we find

a(v, -2;r, rs) = €(v, 2TT, TS), (5.9)

which states that the flux absorptance is indeed equal to the flux emittance. However,
we stress that this form of Kirchhoff's Law is applicable only if the incident intensity
is uniform over a hemisphere. If we were to seek relationships between the frequency-
integrated emittance and absorptance, we would have to impose even more restrictive
conditions on the radiation field. Therefore, Kirchhoff's Law does not generally apply
to angular-integrated and frequency-integrated quantities.
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5.2.4 Surface Reflection: The BRDF

The concepts of reflectance and transmittance are more complicated than those of
emittance or absorptance, since they depend upon both the angles of incidence and
reflection or transmission. Referring to Fig. 5.1, we consider a downward-moving
angular beam of radiation with intensity /~(ft') within a cone of solid angle dco'
around ft'. Then the energy incident on a flat surface whose normal h is directed along
the z axis (see Fig. 5.1) is I~ (&') cos 0'dco'. Denoting by d/+(ft) the intensity of
reflected light leaving the surface within a cone of solid angle dco around the direction
ft, we define the bidirectional reflectance distribution function, or BRDF, as the ratio
of the reflected intensity to the energy in the incident beam:

p(v, -ft', ft) =
~ (ft') cos 0'dco''

(5.10)

We note that dI+(Q) is a first-order differential quantity that balances the differential
dco' in the denominator, so that p is a finite quantity. Adding the contributions to
the reflected intensity in the direction ft from beams incident on the surface in all
downward directions, we obtain the total reflected intensity

7+(ft) = fdI+(&) = Jdco'cosO'p(v, -ft', ft)/" (ft'). (5.11)

Thus, the reflected intensity is the integral of the energy in each incident direction
times the BRDF for that particular combination of incidence and observation angles

Figure 5.1 Geometry and symbols for the definition of the BRDF. The angle a is
the backscattering angle.



5.2 Boundary Properties of Planetary Media 135

under consideration. The fact that 0f can take on any value in the hemisphere in
Fig. 5.1 illustrates the diffuse nature of the reflected light from most natural surfaces.
The BRDF, or in short the reflectance, plays a central role in the remote sensing of
planetary surfaces.

To help elucidate the physical significance of the BRDF, we consider the two
extreme types of reflection: purely diffuse and purely specular. The former occurs
at microscopically irregular surfaces, such as sand and snow. Such surfaces present
a variety of angles to the incident light, and as a result the reflected light will have
an approximately uniform angular distribution. Specular reflection occurs when the
surface is perfectly smooth, like a mirror. A typical example is reflection of sunlight
from a window pane.

If the reflected intensity from a diffuse surface is completely uniform with angle
of observation, it is said to be a Lambert surface. Good examples of Lambert surfaces
are ground glass and matte paper. The BRDF for a Lambert surface is independent of
both the direction of incidence and the direction of observation. Then the reflectance
simplifies to

p(v, -Q\ ft) = A » , (5.12)

where PL is the Lambert reflectance, which may depend upon frequency. From Eq. 5.11,
the reflected intensity is simply

4 = PL(y)Jda/cosO'I-(fr) = PL(V)F". (5.13)

For this ideal surface, the reflected intensity is proportional to the incident flux F~ and
is independent of the observation direction ft.4

Example 5.1 Collimated Incidence - Lambert Surface vs. Specular Reflection

Suppose that the incident light is direct (collimated) sunlight so that

r(&) = FS8(Q' - ft0) = F*8(cosO' - cos0 o )W - 0o), (5.14)

where we have dropped the v subscript.
What is the expression for the reflected intensity from a Lambert surface illuminated by direct

(collimated) sunlight? Since the incident flux is given by F~ = Fs cos 0O, the result is simply
/r

+(ft) = PL/XO/78, where /x0 = cos0O- Thus, for a collimated light beam the intensity reflected
from a Lambert surface is proportional to the cosine of the angle of incidence.

The opposite extreme is specular reflection, for which the reflected intensity is directed along
the angle of reflection (see Fig. 5.2). It is important for smooth, untextured surfaces, such as calm
water, clean smooth ice, and the waxy surfaces of leaves. The specularly reflected intensity 7r

+

is directly proportional to the incident intensity, but it is finite only in the direction of reflection
6, (p. The polar and azimuthal angles of reflection are given by 6 = 6' and (p = 4>' + n. The
proportionality constant is the spectral reflection function ps(v,6), which depends upon reflection
angle 6 = 6' and frequency. Thus, for an incident collimated beam in the direction 0O, 0O given
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Figure 5.2 Intensity is incident in the direction Q! on the jc-vplane. According to
the law of reflection, the vertical plane through Q! and the surface normal h (the z
direction) also contains the direction of reflection Q. Furthermore, the angle of
reflection 6 is equal to the incident angle 9'.

by Eq. 5.14, the specularly reflected intensity is

/r
+(Q) = ps(6)Fs8(cos00 -cos0)8(<p - [0O + TT]), (5.15)

and the corresponding reflected flux becomes

2n TT/2

Fr
+ = / d</> d6sinOcos6F&ps(6)8(cos00-cos6)8((t)-[(l)o + 7T])

0 0

= ps(<9o)^scos<9o.

However, no natural surface is perfectly smooth. If the BRDF itself is of interest, the <5-function in
Eq. 5.15 is to be replaced by ordinary functions that are sharply peaked in the reflection direction
(see the parameterization in a following section).

In general, a surface will exhibit both a specular and a diffuse reflection component.
Denoting the diffuse part of the BRDF as Pd and the specular part as ps, we write p as
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a sum of specular and diffuse components,

P(V, —ft', ft) = ps(v, — ft', ft) + Pd(v, — ft', ft),

so that the reflected intensity is given by

I+(ft) = / dco'cosO'p(v, -ft, ft)I~(ft')

= ps(v, 0)I~(0, (/)' + 7t) + / dco' cosO'p<i(v,

(5.16)

(5.17)

Specular reflection from a smooth dielectric surface can be calculated from first
principles, given the optical constants of air and the dielectric material. Fresnel's
equations (Appendix E) yield the reflectance for an arbitrary direction of incidence.
Figure 5.3 shows how the theoretical reflectance and transmittance of water varies
with angle of incidence.
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Figure 5.3 The bidirectional reflectance and transmittance at a smooth air-water
interface based on Fresnel's equations (see Appendix E). The two curves show the
reflectance and transmittance for the perpendicular and parallel components.
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5.2.5 Albedo for Collimated Incidence

We are often interested in the reflected intensity and flux from direct (collimated) sun-
light from the direction Qo. The incident intensity is given by Eq. 5.14, and from
Eq. 5.11 we obtain the diffusely reflected intensity

/+(&) = Fy / dco'cos 6'pd(v, -Q\ Q)8(cosOf - cos0o)$(0' - 0o)

= F*cos0opd(v, -&o, Q). (5.18)

The diffusely reflected flux is

F+ = / da)cos0I+(fl) = Fv
scos0o / dcocosOpd(v, -£lo, 6 ) . (5.19)

The ratio of the reflected flux to the incident solar flux is the^wjc reflectance or plane
albedo5:

F+ [
p(v, —Qo, 2it) = — = / dcocosOp(v, —QQ, := - — = /

Fy
s cos 00 J

+
The 2n notation emphasizes that the integration is made over all reflected (outgoing)
directions. In reality, p(v, — Cl0, 2n) is the sum of a diffuse and a specular component,
that is,

p(v, —&o, 2n) = ps(v, —^o> 2n) + Pd(v, — ̂ o> •

= / dco cos #ps(v, —^o, fi) + / dco cos 6pd(v, —QQ, Q).

(5.20)

For most natural surfaces p(v, —^o, 27r) depends only upon the polar angle of the
incident beam direction, #0-

If the BRDF is Lambertian, then Eq. 5.20 yields

In 7T/2

p(v, — &o, 2n) = PL(V) I dcp I dO sin6 cos0 = 7tPL(V).

o o

This result is analogous to the relationship between the blackbody flux FBB (Eq. 4.1)
and the blackbody intensity IBB, Eq. 4.4, that is, Fy

BB = nIBB. Note that since PL <
it~l the flux albedo is bounded from above by unity.

5.2.6 The Flux Reflectance, or Albedo: Diffuse Incidence

Sunlight reaching the surface of the Earth consists of two components, a direct (colli-
mated) component and & diffuse (scattered) component. The diffuse radiation (skylight)
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I~ (ft') is distributed over the entire downward hemisphere (§6.2). The reflected flux is

F+ = f dco cos 01+(&) = I dco cos 0 f dco' cos O'p(v, - f t ' , ft)/" (ft').

Interchanging the order of the integrations, we find

F+ = f dco'cos 0' j dcocosOpiy, - f t ' , ft)

The quantity in brackets [ ] is the flux reflectance for incidence from the direction ft',

p(y, - f t ' , In) = / dcocosOpiy, - f t ' , ft). (5.21)

4-

Therefore the reflected flux for a diffuse distribution of incident radiation is

F+ = [ dco' cosO'p(v, - f t ' , 27r)/-(ft'). (5.22)

It is interesting to compare this result with our previous results for the emitted and
absorbed fluxes,

F+ = fdcocosOe(v, ft, TS)BV(TS), (5.23)

F~a = dco'cosO'a(v,-Cl',Ts)I~(Q'), (5.24)

where we have used Eqs. 5.1 and 5.3. The three equations (5.22, 5.23, and 5.24) for
the reflected, emitted, and absorbed fluxes show that the quantities p(v, —ft, 2n),
6(v, ft, r s) , and a(v, —ft, Ts) play analogous roles in "transforming" intensity distri-
butions into fluxes.

We now derive an important relationship between the flux reflectance and the ab-
sorptance of an opaque surface. Consider an incident angular beam containing the
energy /~(ft') cos 0'dco', which is partially absorbed and partially reflected. Conser-
vation of energy implies that the incident energy is equal to the sum of the absorbed and
reflected energy. The absorbed energy (see Eq. 5.3) is /"(ft ' ) cos O'dco'a(v, —ft', Ts).
The energy reflected into the solid angle dco around the direction ft is
dI+(Q) cos 0dco, where the reflected intensity is given by Eq. 5.10, that is, dl+(£l) =
p(v, —ft', ft)/~(ft')cosO'dco'. The total energy reflected from the incident angular
beam around ft' into all upward directions is given by the hemispherical sum of the
contributions to the flux from all directions, that is,

/ J/+(ft)cos6> dco = I~(Cl')cosO'dco' / dcocos0p(v, - f t ' , ft).
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Equating the incident energy to the absorbed and total reflected energy, we have

/"(&)cos0'dcof = I-(Qf)cos6'da)'a(v, -&, Ts)

+ I~(&)cosQ'daJ j dcocos0p(v, -Q\ £l).

+

The integral in the above equation is the flux reflectance p(v, — &, 2n). Canceling
common factors, we find the

Relationship between the flux reflectance and directional absorptance
for an opaque surface:

a(v, -&, Ts) = l - p(v, -&, In). (5.25)

Since this relationship follows from conservation of energy, it is generally valid. Its
extension to a partially transmitting medium is considered in Problem 5.2.

5.2.7 Analytic Reflectance Expressions

It is convenient to describe surface reflection in terms of a smooth function involving a
small number of adjustable parameters. Such a function may be used for interpolation
if only a limited amount of reflectance data is available. Also, we may be interested
in assessing how important the overall reflectance properties are in calculations of
the radiation field. In such cases it would be useful to have a continuous variation
of the parameters, for example between the two extremes of Lambert reflectance and
specular reflectance. Below we discuss several analytic models that have appeared in
the literature. In what follows we ignore any azimuthal dependence of the reflected
light and express the input (Go) and output (0) polar angles in terms of their cosines,
/x0 = cos #o and /JL — cosO.

Example 5.2 The Minnaert Formula

A formula that has been extensively used in planetary astronomy is that of M. Minnaert:

p(/x0, /x) = pn/4~ V " 1 - (5.26)

Here A; is a dimensionless parameter, which is adjusted to fit observations. When k = 1 we obtain
the Lambert reflectance formula. For dark surfaces k is about 0.5. In the latter case, the Minnaert
formula predicts that the greater the observation angle 6 (also called the off-nadir angle or simply
nadir angle), the brighter the surface. This prediction is in general accord with experiment. For
brighter surfaces, k increases, and for very bright surfaces, k -> 1 and the reflectance approaches
that of a Lambert surface, again in accord with experiment. Figure 5.4 shows the behavior of
Eq. 5.26 for values of the parameters k and pn chosen to fit the data for a number of prepared
particulate surfaces, varying in the values of their normal reflectance, pn .

6 The disadvantage of the
Minnaert formula is that its parameters have no physical basis. An even more undesirable quality
is that when fitting data, it is often necessary that parameters vary with the angle of incidence.
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Figure 5.4 The BRDF for Minnaert's formula is plotted versus the off-nadir angle. Each curve
corresponds to a different laboratory sample (see Endnote 6) ranging from very dark to very
bright. For all curves the incident solar zenith angle is fixed at 6Q = 60°, so that /XQ = 0.5. If one
is interested in a different solar zenith angle, each curve should be multiplied by (2/zo)*"1.

As first pointed out by M. Minnaert in 1941, any satisfactory reflectance model must
obey the Principle of Reciprocity? according to which: The reflectance is unaffected by
an interchange of the directions of incidence and observation, or in mathematical form

,0(0', 0'; 0,0) = p(0,0;0/,0/).

Reciprocity is discussed in greater detail in Appendices M and P.
We next consider the Lommel-Seeliger formula for the reflectance

(5.27)
fl) '

where pn = p ( l , 1) is called the normal reflectance in planetary astronomy. This form
predicts that the reflectance should be minimum at normal viewing (/x = 1) and maxi-
mum at a grazing view angle (/x —• 0). This behavior is consistent with Minnaert's for-
mula, as can be seen in Fig. 5.4. The Lommel-Seeliger formula also predicts that as the
incident angle 0o increases from 0° to grazing (90°), p should exhibit a larger increase9

with the off-nadir angle 0. Laboratory experiments confirm this behavior. Experience
has shown that Eq. 5.27 applies rather well to most dark surfaces for which pn < 0.3.

If we ignore the minor "peaking" effect (to be described shortly) the behavior of
the Lommel-Seeliger formula is clearly seen in Fig. 5.5 for two land surface types.10
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Figure 5.5 Measured bidirectional reflectance functions (BRDFs) for prairie
grassland (upper plot) and for an alkali flat (lower plot), p is plotted versus
the cosine of the off-nadir angle [i = cos 0 in the plane of incidence. Each
curve corresponds to a different solar zenith angle, 6Q.
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5.2.8 The Opposition Effect

The phase angle, or backscattering angle, a, is defined as the complement of the angle
(see Fig. 5.1) between the incident vector ^o(#o> <fo) and reflected vector Q(0, 0):

• £2) = 7T - cos -^a = 7T - cos-! (^o • £2) = 7T - cos-^-zxI/xol + v ^ l -M 2 ) ( l - M/2)cos</>]. Outer
planets are generally viewed at very small values of a, whereas the inner planets are
viewed over nearly the entire angular range.

A property of planetary surfaces that is not shared by atmospheres or oceans is
the opposition effect (also called the Heiligenschein or the hot-spot phenomenon), an
abrupt increase in brightness of the reflected light as a -> 0. The lunar surface and
many other natural surfaces possess this property. This effect is apparent even to the
casual observer during the full moon. At lunar opposition when the Sun is behind
the observer, the Moon is perceptably brighter than at other phases. All parts of the
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disk appear uniformly bright, despite the large spread in incidence and observation
angles between 0° and 90°. This phenomenon was first observed by Seeliger in 1860
in reflection from the ring particles of Saturn. He correctly explained it as a result of
particle shadowing. Since the scattering elements in solid surfaces are considerably
larger than the wavelength of visible light, and are fairly densely packed, the elements
cast shadows on each other. The interstices between the particles can be thought of
as "tunnels" through which light can penetrate. At large a the interiors of most of
the tunnels that the observer views are in shadow, because the light is blocked by the
particles making up the walls of the tunnels. However, when a is small, the sides and
bottoms of the tunnels are illuminated, resulting in the so-called opposition surge in
brightness. Thus the phenomenon may be thought of as "shadow hiding." Note that the
tunnels may be thought of as oriented in varying directions, depending upon how the
surface is viewed. The effect is always largest when the Sun is "behind the shoulders"
of the observer, that is, for small a. The surface can be inclined at any angle away
from the observer, although in practice the effect is usually confined to solar incidence
angles within 20°. The opposition effect is most pronounced for dark surface materials,
since particle shadows are densest for strongly absorbing particles. Lighter materials
containing translucent particles scatter light into shadowed regions, thus "softening"
the shadows and diminishing the effect. Figure 5.5 illustrates the opposition effect
from a prairie grassland.

An analytic formulation of the opposition phenomenon for the lunar soil was first
given by B. Hapke in 1963.11 This scheme has since been modified and extended to
describe reflection from vegetative canopies. A simplified version12 consists of a multi-
plicative correction to the Lommel-Seeliger formula, such that

o, /x, a) = A 11 + B exp - - tan(a/2) 1, (5.28)
Oxo + AO I L h JJ

where A is a normalization constant and B > 0 is the opposition enhancement factor.
The compaction parameter /lisa measure of the angular width of the opposition effect.
It is related to the interparticle spacing in the surface layer. Low values of h imply a
porous medium. Although h is usually in the range 0.2-0.6, it can be as high as unity.
The correction results in a maximum at a = 0, whose width is proportional to h. This
peaking is clearly seen in Fig. 5.5 for prairie grassland.

5.2.9 Specular Reflection from the Sea Surface

A final example concerns specular reflection, most commonly observed as "sun glint."
The delta-function behavior of the specular reflectance implied in Eq. 5.15 is never
realized in practice. Even the smallest of surface irregularities in smooth, nonporous
surfaces will spread out the peak. This property may be turned to advantage in remote
sensing measurements of ocean roughness to infer surface wind speeds. In 1954 Cox
and Munk13 derived an analytic model for the sea-surface reflectance based on Fres-
nel's equations and the probability distribution for the orientation of scattering facets.
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It has since been used to describe the specular features of snow and of the smooth lake
beds of volcanic sites. Their expression is

, 0) =
C

-pF(a/2)g(tan6n). (5.29)

Here C is an empirical constant, and ixn = cosOn, where 0n = cos l
 [(/JL0 +

2 cos (a/2)]. The angle 0n is that particular angle between the scattering facet's sur-
face normal and zenith for which specular reflection occurs. The term pF(a/2) is the
Fresnel reflectance (see Appendix E), and g(tan#n) is the probability of a specular
contribution in the direction (/x, 0) given by14

g(t<mOn) =
1

Here a is the root mean square of the slope distribution of the surface, and tan 6n is
the tangent of the wave slope whose components are dZ/dx and dZ/dy.

Figure 5.6 shows the calculated reflected radiance above the surface of a calm
ocean and above ocean surfaces that are disturbed by waves driven by winds of 5 knots
(9.3 km • hr"1) and 20 knots (37 km • hr"1). Note the presence of the sharp specular
peak for a calm sea and the broadening of this peak due to ocean roughness. At the
higher wind speeds, there is no sign of the specular peak.15
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Figure 5.6 Upward intensity above the ocean surface for 60 = 57° at k = 0.46 /xm, calculated
using a Monte Carlo scheme and the Cox-Munk wave slope distribution. The three plots apply to
three different assumed wind speeds. Each curve is for a different azimuthal plane, with 0 = 0
being the forward direction in the plane of incidence.
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5.2.10 Transmission through a Slab Medium

If the surface is partially transparent (for example, a water or ice surface), the trans-
mitted light can be further scattered or absorbed inside the medium. The description
of these processes will be taken up in Chapters 6 and 8. If the medium has a finite
vertical extent, then some of the scattered light contributes to the transmitted light.
The transmittance is a measure of how much light reaches the lower surface, either
in a direct, attenuated beam or as diffuse (scattered) radiation. For example, when we
observe an optically thin cloud, we observe not only the directly transmitted sunlight
but, by virtue of the diffuse light, we also view the bottomside of the cloud. Through
the Extinction Law the direct or beam transmittance will depend upon the optical path
and thus on the scattering and absorption properties of the medium.

We assume a homogeneous, horizontal slab so that the optical path rs depends only
upon the polar angle 0 and the vertical optical thickness (see Fig. 1.6). As in the case of
surface reflection, we consider a downward-moving angular beam in the direction — Qf,
containing the energy I~(Q') cos O'doo', that is incident on a surface whose normal is
directed along the positive z axis. The transmitted intensity leaving the bottom surface
of the medium in direction —Q is dI~(Cl). The spectral bidirectional transmittance
function, or simply transmittance, is defined as the ratio of the transmitted intensity
dI~(Q) to the incident energy, that is,

I-(W) cos O'dco'

Adding up the contributions to the transmitted intensity in the direction —ft from
beams incident on the surface in all downward directions —ft', we obtain the total
transmitted intensity

/-(ft) = IdI~(Q) = [dcof cosO'T{v, -ft', -ft)/"(ft'). (5.30)

The transmitted intensity consists of two parts, the direct and diffuse components, anal-
ogous to the specular and diffuse components of the reflected radiation. The directly
transmitted component of the intensity can be found immediately from the Extinction
Law, I~(Q')%(v), where %(v) = e~Ts(v) is the beam transmittance. The diffuse part
is given by Eq. 5.30 with T replaced by Td. The total transmitted intensity is written

/"(ft) = i;(£l)e-^v) + fdcofcos0fTd(v, -ft', -

where 7d(v, — ft', ft) is the diffuse transmittance. If the incident beam is collimated
so that /~(ft') is given by Eq. 5.14, then

= F*8(cos0 - cos<9o)<H0 - 0o)e~Ts(v) + Fv
scos<90Td(v, - f t 0 , -Q)
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and the corresponding flux becomes

F~ = Jdco cos 0I~(Q)

If
9oU~rs(v)+ /

L J

If 1
= Fy

scos<9oU~rs(v)+ / da)COsOTd(v,-Qo,Q)\. (5.31)

We may use Eq. 5.31 to define the flux transmittance16 as the ratio of the transmitted
flux to the (collimated) incident flux:

f- r
T(v, -to0, -2n) = — = e~Ts(v) + / dco cos 0%(v, -to0, -to).

F* cos 60 J

(5.32)

In IR radiative transfer one frequently encounters the flux transmittance of an
isotropic incident radiation field Iv. A frequency-integrated form of this quantity %
is extensively used in the theory of transmission of radiative energy within molecular
bands (§11.2.1). It is defined as

o-x{y)l\± i>

(5.33)
r

= 2 d ^ e ' ^ .
J

5.2.11 Spherical, or Bond Albedo

An important property of a planet is its net ability to reflect, transmit, or absorb
incident solar energy over its entire disk. To assess this ability we need to evaluate the
emergent flux integrated over the planet. For simplicity, we assume that the planet's
optical properties are uniform on any spherical surface. Consider the contribution
from an annulus centered on the subsolar point, where the solar zenith angle is 00

(see Figure 5.7). If the planet's radius is R, then the radius of the annulus is R sin#0,
and thus the area of the annulus presented to the Sun's rays is 2nR2 sin 00 cos OodOo.
The solar energy received by this annulus is therefore Fv

s multiplied by the annular
area. The energy reflected from this annulus is 2TTR2F*P(V, —/X0, 2TT) sin#0cos#od#o-
Integrating over the entire planetary disk, we obtain the total spectral reflected energy.
The total incoming solar energy at frequency v is simply it R2 Fv

s. The spectral spherical
albedo (or Bond albedo) is defined to be the ratio of the disk-integrated reflected energy
to the disk-integrated solar energy,17

(5.34)

The spherical transmittance T and spherical absorptance a are also expressed
as angular integrations over the corresponding flux transmittance and absorptance
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dA = 2nK2 sin Bo cos Bod0()

Figure 5.7 Geometry for the definition of spherical albedo.

quantities:

, - / x 0 , - (5.35)

• * /

, - / x 0 , 2TT). (5.36)

The frequency-integrated quantities are

oo oo oo

p = / p(v)dv, T = / T(v)dv, a =? / a(v)dv.

The spherical albedo and spherical transmittance also appear in the problem of calcu-
lating the enhancement of the radiation field by a reflecting lower boundary (§6.11).

For planetary media the transmittance, reflectance, absorptance, and emittance are
of fundamental importance. Given the photometric properties of the bounding surfaces,
and the boundary conditions of illumination, these quantities must be evaluated by
solving the radiative transfer equation. Obtaining their solution is one of the principal
goals of this book. We now consider absorption and scattering in extended media.
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5.3 Absorption and Scattering in Planetary Media

5.3.1 KirchhofFs Law for Volume Absorption and Emission

To enable us to discuss radiative processes in an extended medium, rather than for a
surface, we must define absorption and emission per unit volume rather than per unit
area. We start by considering a hohlraum filled with matter throughout the volume,
which both scatters and absorbs radiation at frequency v. KirchhofFs Law has a dif-
ferent form than that for a surface, since it relates the thermal emission coefficient j *
to the absorption coefficient and the Planck function.

Kirchhoff's Law Applied to Volume Emission:

j * = a(v)Bv(T). (5.37)

In accordance with Eq. 2.27 we define the thermal contribution to the source function

V{T). (5.38)

In place of the spectral directional emittance for a surface, we define the spectral
volume emittance €v(v, Q, T) as the ratio of the thermal emission per unit volume of
the matter under consideration to that of a perfectly "black" material of the same mass
and temperature 7\ S*B = BV(T). Mathematically,

Most atmospheric and oceanic absorbers are isotropic emitters, so that the absorp-
tion coefficient is independent of angle. Dropping the angular dependence and using
Eq. 5.38, we find

«.<».r> = ^ . (5-39)

The volume emittance ev is proportional to the absorption coefficient a.
A planetary medium is of course far from an artificial closed system such as a

hohlraum. It is therefore surprising that within spectral lines in the IR, planetary media
radiate approximately as a blackbody, that is, the source function is equal to the Planck
function. In addition, as previously discussed, all opaque surfaces (either solid or liquid)
obey Kirchhoff's Law, Eq. 5.23. As discussed in the previous chapter, this situation
prevails when the collisional rates of excitation/deexcitation of the quantum states are
much larger than the corresponding radiative loss rates. Then the populations of these
states are determined by the local kinetic temperature of the medium, rather than by
the radiation field. In the troposphere thermal IR radiation is in local thermodynamic
equilibrium. Note that LTE implies that Eqs. 5.37-5.39 are valid, but the intensity
is not equal to the Planck function, as it would be in TE (see Eq. 4.4). At very low
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atmospheric densities LTE will break down even in the IR, and Eqs. 5.37-5.39 are no
longer valid.

However, LTE does not apply to shortwave radiative processes, since the colli-
sional excitation processes are completely ineffective. This is because the kinetic
energy involved in thermal collisions (~kB T) is much less than the excitation energies
associated with visible and UV transitions (£"/). This is illustrated using the two-level
atom relationship found in §4.4.2. If we set hv0 = Et the excitation rate may be found
from Eq. 4.38 to be proportional to e~

Ei/kBT <C 1. Thus the collisional quenching rates
at shortwave energies greatly exceed the collisional excitation rates. Although sun-
light heats the medium because of absorption, followed by collisional quenching, the
opposite process (collisional energy converting to radiative energy) is absent. The im-
balance of excitation versus quenching essentially uncouples the shortwave radiation
from the thermal state of the gas.

As shown in Fig. 5.8 there is little overlap between the radiation spectra of the
Sun and the Earth. Therefore, except for applications where the region of overlap
(3—^fjim) is of special interest, we may treat the two spectra separately. Another
important consideration is the absence of strong absorption by the major atmospheric
gases throughout the visible spectrum. The major shortwave interaction is in the UV
spectrum below 300 nm where sunlight never reaches the surface, being absorbed in
the middle atmosphere by ozone.
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Figure 5.8 Spectral distribution of solar (shortwave) and terrestrial (longwave) radiation fields.
Also shown are the approximate shapes and positions of the scattering and absorption features
of the Earth's atmosphere.
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5.3.2 Differential Equation of Radiative Transfer

We consider conservative scattering in which there is no change in frequency between
the incident and the scattered radiation. Also, we assume that the incident radiation is
collimated. We return to a formal description of the secondary emission that results
from scattering. From Eq. 2.3 the radiative energy that is incident normally on the area
dA in the direction & and within the solid angle dco', centered, around &, in time dt,
and within frequency interval dv, is the fourth-order quantity

d4E' = lv(Q!)dAdtdvdcd.

The radiative energy scattered in all directions is a ds d4E\ where ds is the length of
the scattering volume element in the direction normal to dA and a is the scattering
coefficient. We are interested in that fraction of the scattered energy that is directed
into the solid angle dco centered around the direction Q. This fraction is proportional
to p(&, Cl) dco/An, where p(&, Q) is the scattering phase function defined in §3.4. If
we multiply the scattered energy by this fraction and then integrate over all incoming
directions, we find that the total scattered energy emerging from the volume element
dV = ds dA in the direction Q is

d4E = cr(v)dVdtdvdco [ dco'
J An

An

We define the emission coefficient for scattering as

d4E
Jv —

dVdtdvdco
An

J An

The source function for scattering is thus

Sr(r, ft) = £ = ̂  / ¥-p&, ft)/w(ft^. (5.40)
k(v) k(v) J An

An

The quantity o(v)/k(y) appearing in Eq. 5.40 is given a special name, the single-
scattering albedo, a{v). Since £(v) = a(v) + a(v), it is clear that a(v) < 1. We
interpret a as the probability that a photon will be scattered, given an extinction event.
Given that an interaction of radiation has occurred (either a scattering or an absorption,
which we call an extinction event), the quantity (1 — a) is the probability of absorption
per extinction event. The quantity (1 — a) is also called the co-albedo. If thermal
emission is involved, (1 — a) is the volume emittance ev (§4.4.2). The complete time-
independent radiative transfer equation, which includes both scattering and absorption,
is therefore

Radiative transfer equation including multiple scattering and absorption

^ [da>'p(&,
n J

_ a(v)]Bv(T) + ^ [da>'p(&, ft)/v(ft'). (5-41)
An J
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Equation 5.41 is a generalization of Eq. 2.28 to include both scattering (Eq. 5.40)
and thermal emission (Eq. 5.38). An inspection of this equation reveals the major math-
ematical complexity of radiative transfer theory, namely, that it involves the solution
of an integro-differential equation. We will show in the next section that there exists a
formal solution to Eq. 5.41, which, in the absence of multiple scattering, represents a
practical solution. This formal solution will help us understand the radiative transfer
process and provide guidance for devising methods of numerical solution.

5.4 Solution of the Radiative Transfer Equation
for Zero Scattering

In the limit of no scattering, the radiation is affected only by absorption and emission
processes. The radiative transfer equation 5.41 simplifies to

^ = - / v + Bv (D, (5.42)

where the source function Sv = BV(T) may be considered to be a known function of
position through the temperature T. This problem is classified as a local one, since
the source function does not depend upon the distant properties of the medium. This
problem is much easier to solve than the more general nonlocal problem. Note that
the optical path rs is measured along the beam direction, taken to be a straight line
since we are ignoring refraction. A solution of Eq. 5.42, satisfying the appropriate
boundary conditions, yields the radiation field Iv at all positions rs along the beam
direction. The solution will clearly vary with the frequency v, the temperature T, and
the optical properties of the medium, embodied in the absorption coefficient a(v),
which in general may vary from point to point in the medium.

The problem of interest is that of an inhomogeneous medium in LTE, which at
each point radiates thermal emission according to the Planck function at the local
temperature. The medium may have arbitrarily shaped boundaries. It is illuminated by
a beam of radiation in the direction Q at the boundary point Pi (see Fig. 5.9). We want
to find the solution for the intensity IV(P2,&) that emerges from the medium at point P2

along the same direction. The solution for this particular direction of the incident beam
may be considered to be an elementary solution. A completely general distribution of
intensity in angle and frequency can be obtained by repeating the elementary solution
/V(P2> &) for all incident beams and for all frequencies. The elementary solution will
be found to be a sum of two terms: (a) the incident intensity IV(P\, Q) attenuated by
the intervening optical path along P\ P2 and (b) a term consisting of the contributions
from the internal (thermal) sources at all points P between Pi and P2 and attenuated
by the intervening optical path along PP2.

Equation 5.42 is readily integrated by using an integrating factor, which in this case
is ex. For now we drop the subscripts s and v to avoid a burdensome notation. After
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Figure 5.9 A beam of radiation is incident on an absorbing/emitting region at
the boundary point Pi. It is attenuated along the path Pi P2 and emerges at the
point Pi. The propagation direction of the beam is denoted by Q. In addition,
thermal emission adds to the beam at all points within the medium.

multiplying by eT, Eq. 5.42 may be written as a perfect differential

dx
—
dx

(5.43)

Since we are ignoring refraction, we shall integrate along a straight path from the point
P\ to the point P2, the latter point being at the boundary of the medium (see Fig. 5.9).
The optical path from the point Pi to an intermediate point P is given by

p p Pi

r(P1,P)= fads = fads- fads = r(P) - x{Px).
Pi 0 0

Note that the optical path may be measured from an arbitrary reference point Po outside
the medium, even though r(Po, Pi) = 0. It increases monotonically with distance in
the medium because of the addition of absorbing matter along the beam.

Integration of Eq. 5.43 along the straight line from Pi to P2 yields

r(P2)

/

j n

dt — (Iel) = I[x(P2)]eT(P2) - I[x(Pi)]eT(Pl) = / dtB(t)e\r(Pi)



5.4 Solution of the Radiative Transfer Equation for Zero Scattering 153

where the integration variable t stands for the optical path r. Solving for the intensity
at the point P2, we find

7[r(P2)] = /[r(Pi)]e-T(P2)+T(P l ) +

r(P2)
l'F2) + f dtB(t)e-t{p^ (5.44)

1

J d%(P,P2)B(t). (5.45)

In the last equation, we have expressed the result in terms of the beam transmittance, %
(§5.2.10). This result has a direct physical interpretation. The intensity at the point P2

emerging from the medium in the beam direction Pi P2 consists of two parts. The first
term is the contribution from the intensity incident at the boundary point Pi, which has
been attenuated by the beam transmittance. The surviving term is the contribution from
thermal emission from those parts of the medium that lie along the beam, weighted by
the appropriate beam transmittance e~f(PP2).

It is clear that the above solution is valid whether or not the points Pi and P2 lie at
the boundaries of the medium (both Pi and P2 may be interior points). We chose these
points to be at the boundaries so that 7[r(P2)] would represent the intensity escaping
from the medium at point P2 due to the beam incident on the medium from the outside
at point Pi and the internal sources (due to thermal emission) between points Pi and
P2. 7[r (P2)] is called the emergent intensity.

Example 5.4 Isothermal Medium: Arbitrary Geometry

We assume that the temperature and absorption cross section an are constant throughout the
medium. Then we can easily perform the integration in Eq. 5.45. We redefine the origin of the
optical path scale so that it coincides with the point Pi (i.e., x{P\) = 0). Then

7[r(P2)] = / [T(P! ) ]^ - T ( J P 2 ) + B I dte-[r{P2)-t]

o

= 7[T(PI) = 0]e-r(P2) + B[\ - e~x{P2)l (5.46)

Consider the behavior of the second term with optical path. If the medium is optically thin in
a given direction (i.e., r(P2) <C 1), then the second term is &BT(P2), to first order in r(P2). In
this limit the contribution from the medium depends linearly upon optical path, or in other words,
upon the path number of emitting (or absorbing) molecules A/"(0, P2):

f2 n.

•,(P2) = I <xds=an [ n{s)ds = aJ\f(0, P2),



154 Principles of Radiative Transfer

where J\f(O, P2) is (also) the path number of absorbing molecules. This dual interpetation of
JV(0 , P2) follows from our implicit use of Kirchhoff's Law in Eq. 5.42.

If we take both the absorption and scattering coefficient to be zero, then r = 0 and Eq. 5.46 shows
that the intensity is constant along a given beam direction everywhere in the medium. A radiation
field in such a transparent medium may be very anisotropic, since each beam may have its own inten-
sity or constant of integration, while along each particular beam direction the intensity is constant.
This is just Theorem I (see Chapter 2), which has already been proven in a more intuitive manner.

In the opposite case of an optically thick medium, for which r(P2) > 1, the total intensity is
IV(P2) = BV(T). In this case the medium radiates like a blackbody at all frequencies and in all
directions; that is, it is in a state of thermodynamic equilibrium.

5.4.1 Solution with Zero Scattering in Slab Geometry

The most common geometry in the theory of radiative transfer is that of^plane-parallel
medium, or a slab. This geometry is appropriate to both planetary atmospheres and
oceans. The force of gravitation imposes a density stratification, so that the medium
properties tend to vary primarily in the vertical direction. In many cases, we can ignore
the horizontal variation in the medium. We will distinguish the vertical optical path r
(which we hereafter call the optical depth) from the slant optical path rs. It is convenient
to measure the optical depth along the vertical direction downward from the "top" of
the medium.18 The relationship between the vertical and slant optical paths is

00

= f

where 0 = cos l u is the polar angle of the beam direction. Since it is used so
frequently, we assign a special symbol, w, to cos#, so that drs = —kdz/\u\. The
extinction optical depth can also be written in terms of the vertical column number,
A/", and the extinction cross section,

00

x(z)=kn J dz'n(z')=knN(z),

or in terms of the mass extinction coefficient

00

= km f

where M(z) is the mass of the radiatively active material in a vertical column of unit
cross-sectional area. Analogous expressions apply to the absorption and scattering
optical depths.

If R is the radial distance from the center of the planet and H is the vertical scale
length of the absorber, the slab approximation is valid if H/R <̂C 1 and if 0 is not too
close to 90°. If these conditions are violated, it is necessary to take into account the
curvature of the atmospheric layers.19
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5.4.2 Half-Range Quantities in a Slab Geometry

The half-range intensities are defined by

(5.47)

These definitions may also be expressed in terms of u = cos 0 > 0 and u = cos 0 < 0.
It will become apparent later that the variable /JL = \u\ makes the notation for slant
optical depth simple and straightforward.

The radiative flux is also defined in terms of half-range quantities. From Eq. 2.5,
we have

2n TT/2

F+(r) = /' da>cos 0I+(&)= f d</> f dO sin0cos0/v
+(r, 0,

2n 1

-hi
+ 0 0

2n 1

(r,/z,0), (5.48)
0 0

2TT 7i

F~(r) = - da)cosOI~(Cl) = - d</> / dO sin0cos0/~(r, 0, 0)
0 7T/2

111 1

= J d4>[dtifiI-(T,ti,4>). (5.49)

0 0

The downward flux F~ is thus seen to be a positive quantity. From Eq. 2.6 the net flux
is

Fv(r) = / dcocosOIv(Q) = / dcocos6I+(Q) + / dcocosOI~(Q)

An +

= F + ( T ) - F - ( T ) . (5.50)

Note that the net flux in slab geometry is positive if the net radiative energy flows
in the upward (positive) direction, or toward increasing z and decreasing r.

In the limit of no scattering the radiative transfer equations for the half-range in-
tensities become

+(r, /x,0) ,
^^ = /v

+ (T, /X, 0) - fiv(r), (5.51)

= /"(r , M, 0) - Sv(r). (5.52)

Note that the independent variable is now the absorption optical depth, measured
downwards from the "top" of the medium. This accounts for the difference in sign of
the left-hand sides of Eqs. 5.51 and 5.52.
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Figure 5.10 Half-range intensities in a slab geometry. The optical depth variable T
is measured downward from the "top" of the medium (T = 0) to the "bottom"
(r = T*). /A is equal to the absolute value of the cosine of the angle 0, the polar
angle of the propagation vector Q.

5.4.3 Formal Solution in a Slab Geometry

We first obtain a formal solution of Eq. 5.52. Choosing the integrating factor to be
eT / / \ we obtain

U l e ) ( ^ + / ) S e . (5.53)
dx v y \ dx fi ) \J

In accordance with the physical picture in Fig. 5.10 of downgoing beams that start at
the "top" and interact with the medium in the slab on their way downward, we integrate
Eq. 5.53 along the vertical from the "top" (r = 0) to the "bottom" (r = r*) of the
medium to obtain

*>» ~ /"CO,

0

Solving for / ~ ( T * , /X, </>), we find

*, ii, 4>) = 7-(0, M, 0 ) ^ r V ' i + / —Bv^')*-^*-107" (5.54)

o
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for the intensity emerging from the bottom of the slab. For an interior point, r < t*,
we integrate from 0 to r. The solution is easily found by replacing r* by r in Eq. 5.54:

r

J —Bv{r')e-(x-xr)lr (5.55)

We now turn to the solution for the upper-half-range intensity. The integrating factor
for Eq. 5.51 is e~r//x, which yields

at \ ax IX J IJL

In this case the physical picture in Fig. 5.10 involves upgoing beams that start at the
bottom and interact with the medium on their way upward. Therefore, we integrate
from the "bottom" to the "top" of the medium:

Solving for 7^(0, /x, 0), we find

T*

7y
+(0, /x, 0) = 7+(r*, fi, 4>)e-x*/l1 + J —e^'^B^x').

o

To find the intensity at an interior point r, we integrate from r* to r, to obtain

T*

/+(r, n, 0) = Itix*, n, <j>)e-(*'-r)^ + I d—e-«-^l» Bv{x'). (5.56)
J [L
X

On comparing Eq. 5.45 with Eq. 5.55 and Eq. 5.56, we find that the mathemati-
cal structures, and therefore the physical interpretations, are identical. Thus, the slab
solutions could have been obtained directly from the general solution, Eq. 5.45. All
that is necessary is to replace rs with r//x, and change variables from rs to r. Note
also that our dummy variable in the slab geometry is r', the (variable) optical depth,
to distinguish it clearly from the slant optical path t. To obtain a good physical un-
derstanding of the radiative transfer process the integration should be thought of as
directed along the beam direction. Note, however, that from a mathematical point of
view, the integration direction is irrelevant: Either direction gives the same answer.

It is interesting to consider the situation where fi -> 0, that is, where the line of
sight traverses an infinite distance parallel to the slab. It is intuitively clear that since
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Bv(r) is constant in Eq. 5.55 and 5.56

(5.57)

5.5 Gray Slab Medium in Local Thermodynamic
Equilibrium

It is instructive to study the role of infrared radiation in a simple climate model, in which
the rather drastic assumption is made that the optical depth is independent of frequency.
This is the gray approximation, which has played a very important historical role in the
subject and is still of great pedagogic value. If scattering is ignored, the source function
is simply the Planck function Bv, and the solutions to the monochromatic transfer
equation are given by Eqs. 5.55, 5.56, and 5.57. The frequency-integrated intensity
is given by / ( r , /x, 0) = / dvlv(r, /x, </>), where the limits of the integration include
the thermal IR wavelengths longer than ~3 /xm (see Figs. 4.6 and 5.8). From Eqs. 4.6
and 4.7, / dvBv(z, /x, 0) = aBT4/TV. Because the atmosphere receives no appreciable
IR radiation from space, we set /~~(0, /x, </>) = 0. If we assume that the lower boun-
dary intensity is determined by an isotropically emitting black surface of temperature
rs, then we set / + ( r* , /x, 0) = oBT* /n. The frequency-integrated intensities are then
given by

It J /X 7T

r , / x , 0 ) = / e (r r')//x.
J /X TV

/-(r, /x, 0) = / — " ->e-v-*mm (5.58)
J /X 7T
0

The corresponding fluxes are obtained by integrating the (cosine-weighted) intensity
over solid angle in each hemisphere (see Eqs. 5.48 and 5.49):

T*

F+(r) = 2aBTs
4E3(r* - r) + 2 f dx'aBT\x')E2(r' - x),

T*

(5.59)

F~(x) =2 dx'crBT\x')E2(x - r'). (5.60)
J

0

Here we define the exponential integral of order n for n > 0 and x > 0 as

1 oo

En{x) = f dfjLfin-2e~x^ = f %e~tx. (5.61)
o I

These functions cannot be analytically integrated, except in certain limits. However,
fast computational software programs are available for evaluating the En functions.
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In this regard, they can be considered no more difficult to handle than the trigonometric
functions. For more information we refer the interested reader to the literature.20 In
this book we will make use of only two of their interesting mathematical properties,
which we list below:

{ +00 for n = 1,

(5.62)
—e x/x forn = 1,

- £ W _ I ( J C ) forn = 2 , 3 , 4 , . . . .

5.6 Formal Solution Including Scattering and Emission

If we cannot neglect scattering, the source function is written (see Eq. 5.41)

Source function due to thermal emission and multiple scattering

5(r, Q) = [1 - a(r)]B(r) + — [do)fp(r, Q\ ft)/(r, &). (5.63)
An J

An

We note that the independent variable is the extinction optical depth, which is the
sum of the absorption and scattering optical depths. The source function is generally
a function of the direction fo of the "emitted" beam and also a function of the local
intensity distribution. The general radiative transfer equation is

dx

The method of the integrating factor may be used in exactly the same manner as in the
previous section. We can therefore write the formal solution of Eq. 5.64 by replacing
B with S in Eq. 5.45:

Intensity in terms of an integration over the source function

HPz)

7[r(P2), ft] = 7 [ T ( P I ) , ft]e-T(*'ft) + f dt S(t, ft)<T'(p'ft). (5.65)

We stress that this solution is only a formal solution, since (in contrast to Eq. 5.45)
the source function is unknown, and in fact it depends upon the radiation field, as
seen in Eq. 5.63. The importance of this solution is that it emphasizes that, apart from
boundary terms, a knowledge of the source function is tantamount to knowledge of the
complete solution of the radiative transfer problem. This follows from the fact that
finding I is reduced to evaluating the integral in Eq. 5.65 by numerical quadrature.21

Furthermore, there is an important class of radiative transfer problems in which the
source function is approximately independent of angle. Then we need solve for the
unknown S(r) having only one independent variable (r), rather than two or even
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three variables. Finally, there are some problems in which we are not interested in the
intensity, and the source function is itself the unknown of interest.

In slab geometry the solutions to Eqs. 5.63 and 5.65 are given by Eqs. 5.55, 5.56,
and 5.57:

T

T/f* + / — S(r', /x, 0 ) ^ - ( T - T ^ ,
J M

/"(r, /x, 0) = /-(0, /x, (t))e-T/f* + / — S(r', /x, 0 )^ - ( T - T ^ , (5.66)
J

T

(5.67)

/ ± ( r , fi = 0, 0) = 5(T, /X = 0, 0). (5.68)

The source function in slab geometry is easily derived from Eq. 5.63, where we
express the radiation field in terms of the half-range intensities:

In 1

S(r, /x, 0) = (1 - a)B(x) + ^ - / d0r / ̂ X M ' , 0r; /x, 0)/+(r, /xr, 00
0 0

2n 1

+ — / J0r /^(-^^^^/-(r,^,^). (5.69)

This very important set of equations constitutes the basis for much of the analysis
in future chapters. An important point is that the convergence of the integrals in the
above equations requires the following condition at large optical depths:

I im r^o o5(r)^" r -> 0. (5.70)

Equations 5.63 and 5.65 are two coupled equations in the unknowns S and / . If we
were to substitute one equation into the other we would arrive at two new equations for
either S or / separately. The rather complicated results are usually simplified by various
assumptions and serve as a starting point for many radiative transfer techniques.22 An
example of such an integral equation is discussed in §7.2.1.

Example 5.5 Physical Basis for the Lommel-Seeliger Law

Here we illustrate the use of the formal solution of the radiative transfer equation (Eqs. 5.66,5.67,
and 5.69) in deriving the reflectance of an idealized flat surface illuminated by a collimated beam.
The solid is modeled as a homogeneous, semi-infinite (r* -> oo) slab medium. Even though the
medium is optically infinite, because of the dense packing of the scatterers, the penetration of
photons is actually quite shallow in real space. The surface is of course located at an optical depth
r = 0. The particles of the medium are assumed to be independent scatterers of single-scattering
albedo a. The particles scatter according to a phase function p. The absorption is assumed to
dominate the scattering {a is small), so that only the singly scattered photons leave the surface.
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Under the above assumptions, the reflected intensity is a simplified form of Eq. 5.67,

(5.71)
J »

where the source function S is obtained from Eq. 5.69. To evaluate S and thus / + , we note that
we need to determine the two unknown half-range intensities, / + and / " , throughout the medium.
This circularity is always present in scattering theory, and to solve the problem generally requires
methods not yet discussed in the book. However, in this simple example, we have simplified
the problem in order to specify the radiation field explicitly. The single-scattering assumption
permits us to replace the intensities on the right-hand side of Eq. 5.69 with the incident radiation
field. In this case /~ is the solar intensity, evaluated within the medium from the extinction law,
7~(T, fif, 00 = FS8(/JL' — /xo)5(0; — <po)e~r^ . The term involving I+ within the medium can
be neglected, since it represents higher-order scattering. Inserting this result into Eq. 5.69 and
ignoring thermal emission, we find

S ( T , JJL, 0) = —p(—[io,(po',ii,(p)Fse T'At°. (5.72)
47T

Inserting this result into Eq. 5.71 we find

oo

7+(0, /z, 0) = — p(-Ato, 0o; At, 0 ) ^ 8 A —e-
x'lMe-x'111

o

= /?(—/Xo, 0o5 M5 0)^s« (5.73)
4TT(1 + 11/fio)

The reflectance (BRDF) is given by

4TT (JI
(5.74)

On setting pn = a/Sn and assuming isotropic scattering (p = 1) we recover the Lommel-Seeliger
Law (Eq. 5.27). Thus this originally empirical law is seen to have an underlying physical basis,
applying to a dark surface whose particles scatter isotropically. It is shown in Problem 9.7 that
the above result may be generalized to include multiple scattering. This results in a more general
expression for p, which applies equally well to dark and bright surfaces.

5.7 Radiative Heating Rate

We now examine the rate at which radiation exchanges energy with matter. From

Eq. 2.16, the differential change of energy over the distance ds along a beam is

8(d4E) =dIvdAdt dv dco.

Dividing this expression by dsdA = dV, and also by dvdt, we obtain the time rate

of change in radiative energy per unit volume per unit frequency, due to the change

in intensity for beams within the solid angle dco. Since there is (generally) incoming
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radiation from all directions, the total change in energy per unit frequency per unit
time per unit volume is

^-= [
An An

where we have used the alternate form for the directional derivative (see Eq. 2.28).
The spectral radiative heating rate Hv is (minus) the rate of change of the radiative
energy per unit volume,

= - IHv

An

The net radiative heating rate 7i is
oo

H = - j dv I da)(Q • V/v). (5.75)
0 An

In a slab geometry the radiative heating rate is written23

OO 0 0 + 1

7i = - [dv— = -2n I dv f duu — , (5.76)
J dz J J dz
0 0 - 1

where Fv = F+ — F~ is the radiative flux in the z direction (Eq. 5.50).

5.7.1 Generalized Gershuns Law

Substituting for the term dlv/drs = —udlv/dx in Eq. 5.76 from the radiative transfer
equation (Eq. 5.41) and using k(v) = a(v) +a(v), we obtain

nv = Ana(v)Iv + Ana(v)Iv - Ana(v)Bv(T)

Jdco' J^p(Q\Q)Iv(^),-a(v)
An An

where Iv is the angular average of the intensity (Eq. 2.7). We also used the isotropic
property of BV(T). Employing the normalization condition for the phase function
(Eq. 3.24), we see that the inner integral is unity. Thus the two scattering terms cancel.
Integration over frequencies therefore yields the result that

the radiative heating rate is the rate at which radiative energy is absorbed,
less the rate at which radiative energy is emitted.

oo oo

H = - V • F = An I dva(v)Iv - An I dva(v)Bv(T). (5.77)

o o

When internal emission is absent, Eq. 5.77 is known as Gershun's Law in ocean
optics.
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When TL = 0, the volume absorption rate exactly balances the volume emission rate.
This may happen locally at points where the net heating rate happens to change sign,
but if the entire medium experiences this balance, we have the condition of planetary
radiative equilibrium. Clearly, if there is no absorption anywhere in the medium, then
TL = 0 everywhere. In a slab medium, radiative equilibrium implies that dF/dz = 0
and thus F = constant.

5.7.2 Warming Rate, or the Temperature Tendency

When W ^ O a n imbalance of heating occurs. Then the second law of thermodynam-
ics dictates a change in the temperature of the medium, which will act to eliminate
the heating excess or deficit. To examine the response of the medium to the heat-
ing imbalance we will ignore all other diabatic heating mechanisms except radiative
processes.

We consider the instantaneous rate of change of temperature of a fluid parcel con-
taining absorbing particles. In general, an imbalance of heating and cooling results in
a gain or loss of thermal energy. We ignore any changes of internal (chemical) energy
and consider only changes in the thermal energy pcT, where c is the specific heat
per unit mass. The question is whether to use cv (applicable to a process in which
the volume is held constant) or cp (applicable to a process in which pressure is held
constant). Clearly, if a fluid parcel24 is heated there will be no constraining walls to
maintain a fixed volume. The parcel will expand against its environment and do work
on its surroundings to maintain a constant pressure. The rate of change in the ther-
mal energy per unit volume of a gas that is free to expand against its surroundings is
therefore given by pcp(dT/dt)p. Thus,

in the absence of other heating or cooling processes, the rate of change of
temperature of a parcel at constant pressure is

TL
(5.78)

The above discussion motivates the use of cp instead of cv, since the former applies
to a parcel that is free to expand as it is heated rather than being constrained to a fixed
volume. Since cp > cv, the heating rate TL > 0 is less than it would be for a fixed
volume, because some of the absorbed energy goes into work of expansion. However,
if TL < 0 the rate of temperature reduction is also less than at constant volume. This is
because the environmental pressure compresses and heats the parcel, thus canceling
some of the radiative cooling. It is conventional in atmospheric science to describe
this quantity in units of kelvins per day. In the field of atmospheric dynamics, it is
called the temperature tendency. We prefer to call it the warming rate25 W, given by
the formula (since there are 86,400 seconds per day)

W = 86,400 [K per day]. (5.79)
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5.7.3 Actinic Radiation, Photolysis Rate, and Dose Rate

A quantity of key importance to atmospheric photochemistry is the photolysis rate
coefficient, defined as the local rate per molecule of a photoabsorption event leading
to a specific photodissociation event. The radiative energy absorbed at a frequency v
may not be 100% efficient in producing the desired event. Defining this efficiency or
quantum yield by rf (v)(0 < rf < 1), we express the photolysis rate coefficient for the
photodissociation of a particular species (denoted by superscript /) as follows:

The photolysis rate coefficient

oo

J(= Idv47t(Iv/hv)ai
n(v)rii(v) [m~3 • s~1]. (5.80)

Here vc is the minimum frequency corresponding to the threshold energy for the
photoabsorption. According to Eq. 2.9, 47tlv/hv = Uvc/hv is the density of pho-
tons at a given frequency. Photochemists sometimes use the term actinic flux for the
quantity 47r/v, but this is to be avoided because the term flux should be reserved for
the hemispherical flow of radiative energy or momentum. We may, however, refer to
4TVIV as the actinic radiation field without introducing confusion.

Of considerable biological interest is the rate at which a flat horizontal surface, or
a spherical surface, receives radiative energy capable of initiating certain biological
processes. For example, UV-B radiation between 280 and 320 nm is harmful to human
skin and damaging to the DNA molecule, the carrier of genetic information in all living
cells. The received radiation is weighted by a specific spectral function A(v) < 1 called
the action spectrum. A(v) gives the efficiency as a function of frequency of a particular
process, for example, the UV "kill rate." The rate at which a flat surface is "exposed"
is called the dose rate,

dvA{v)Fv [W-nT2], (5.81)

0

where Fv is the net flux. Alternatively, we may be interested in the rate at which a
spherical particle receives energy from the radiation field. This describes the dose rate
received by small ocean creatures or the heating rate of a cloud water droplet. Note
that in the case of heating of a spherical droplet, the appropriate quantity is 4TT/V, not
Fv. The dose rate in this case is

oo

dvA(v)Iv [W-nT2]. (5.82)

o

The radiation dose is defined to be the total time-integrated amount of energy received
(usually over one day), / dtD(t).



Problems 165

5.8 Summary

In this chapter we have laid the groundwork for the radiative transfer theory to be
elaborated on in succeeding chapters. The interaction properties of matter and ra-
diation (emittance, absorptance, surface reflectance, scattering and absorption coeffi-
cients, emission coefficients, etc.) were considered as specified functions of frequency,
angle, temperature, etc. The fundamental principle underlying the theory is the phe-
nomenological Extinction Law (Eqs. 2.17 or 2.23). Radiative emission is governed by
Kirchhoff's Law, according to which the directional emittance equals the directional
absorptance in the case of surfaces (Eq. 5.8); and in the case of extended media the
emission coefficient is proportional to the absorption coefficient (Eq. 5.37). The Prin-
ciple of Reciprocity equates reflectances evaluated for the direct ray path and for the
time-reversed ray path. Several analytic representations of the reflectance (commonly
referred to as the bidirectional reflectance distribution function) are Minnaerf s for-
mula and the Lommel-Seeliger formula. Physically based models were used to describe
the Opposition Effect and also specular reflection from a wind-roughened sea surface.
The time-independent radiative transfer equation (Eq. 5.41) describes how the inten-
sity is affected by extinction, emission, and scattering processes. The solution of this
equation requires the specification of external radiation sources and of the absorption,
emission, and scattering properties of the medium and its bounding surface. The latter
properties include the efficiencies of reflection, emission, absorption, and transmission
as functions of frequency, temperature, and direction. These properties illustrate the
equivalent status of the source function Sv and the intensity Iv as information carriers
of the radiation field. From the energetics point of view, the radiative flux divergence
(Eq. 5.76) is the key to determining the heating rate (Eq. 5.77). For atmospheric pho-
tochemistry, the quantity of interest is the photolysis rate, which depends upon the
product of the average intensity and the effective absorption coefficient (Eq. 5.80). UV
exposure of the biosphere was quantified in the dose rate D or the time-integrated radi-
ation dose. In the next chapter we will discuss how these matter-radiation descriptions
enter into the mathematical formulation of radiative transfer problems.

Problems

5.1 Two gray surfaces 1 and 2, at temperatures Ti and T2, have flux emittances €\ (2n)
and 62(27r) and flux reflectances p\(2n) and p2(2n). The surfaces are flat, parallel,
and separated by a transparent medium. Surface 2 is above surface 1.
(a) Show that the upward and downward frequency-integrated fluxes are given by

+ _
1 - P\P2 ' 1 - P\P2
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(b) Show that the net rate of energy transfer between the surfaces per unit area is

*2l + ^r1 - 1 '

5.2 Prove that for a partially transparent surface, Eq. 5.25 is generalized to

a{v, -&) = 1 - p(v, -Cl\ 2n) - T(v, -&, -2n).

5.3 Suppose that a surface reflects partially by Lambert reflection and partially by
specular reflection. Show from conservation of energy that

5.4 The Earth's atmosphere, plus its underlying surface, can be considered to have
an effective absorptance and reflectance. Suppose the atmosphere is purely absorbing,
so that the total shortwave atmospheric transmittance is determined by the beam trans-
mittance, %. Let the diffusely reflecting surface be characterized by a BRDF with no
azimuthal dependence of the reflection, such that Pd(—^', &) = Pd(#', #)•
(a) Show that the net flux absorptance of the combined atmosphere-surface for solar

radiation incident at the polar angle #0 is given by

-fi0) = 1 -

I

-^0) /

where JJL = cos 0 and /x0 = cos #0-
(b) Suppose that there is also a specular component to the surface reflection, ps{0).

Show that the net flux absorptance is

-2n, -/x0) = 1 -

l

-fi0) /

5.5 A plane-parallel planetary atmosphere is heated by a collimated solar beam
whose flux normal to the beam at the top of the atmosphere is — Fy

s and is incident at
the angle cos"1 /̂ o- An underlying Lambertian surface has a flux reflectance PL- Show
from the radiative transfer equation that the heating rate due to solar absorption by a
single species is given by

t) F
Hv(z) = —^ = ct(z)Fl [*-*/"• + puUoe-r*/M°2£2(T* - r)] .

Here Fv is the net flux (downwelling solar flux combined with the upward reflected
solar flux) and a(z) is the absorption coefficient of the absorbing species. En is the
exponential integral of order n (see Eqs. 5.62). Ignore scattering processes. {Hint: Pay
particular attention to the signs of the direct and reflected fluxes.)
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5.6
(a) Show that for a semi-infinite, purely absorbing isothermal plane-parallel atmo-

sphere in LTE, the net flux at frequency v and at optical depth r is given by

Fv{x) = nBv{T)T{v, -2TT, -In) = 2TTBV(T)E3{T).

(b) Evaluate this expression at r = 0 and as r -> oo. Interpret the results.

(c) Show by differentiation that the spectral heating rate is given by

Uv = -2na{v)BvE2{x).

Interpret this result, using the concept of "cooling to space."

(d) Show that the above result is compatible with Eq. 5.77 (TCV = Ana{v){Iv — Bv))
by evaluating Iv explicitly. In other words use the solutions for / + ( r ) and / ~ ( T )
and integrate these results over solid angle.

5.7 Show that the column-integrated heating rate due to direct solar absorption in
the atmosphere is given by

oo o

fdzfH(zf)= f

where /xo is the cosine of the incident solar zenith angle, a is the flux absorptance, and
F s is the solar flux.

Notes

An excellent reference for boundary properties of materials is Siegel, R., and J. R.
Howell, Thermal Radiation Heat Transfer, 3rd ed., Hemisphere Publ., Washington, DC,
1992.
Hapke, B., Theory of Reflectance and Emittance Spectroscopy, Cambridge University
Press, Cambridge, 1993.
The formalism is readily generalized to apply when polarization is important. The bound-
ary quantities defined in this section may be defined separately for the perpendicular
and parallel components.
Note that the maximum value of PL is 1/TT. For this reason, some authors define the
BRDF as r = 7tp. However, it is then necessary to define the albedo as l/n J dco cos Or.
p(v, — &, 2TT) is also called the directional-hemispherical reflectance. A similar quan-
tity, the hemispherical-directional reflectance p(v, —2TT, Q) is the ratio of reflected in-
tensity to incident flux for uniform illumination. The term albedo originated in a book
published in 1760 by Johann Lambert. Writing in Latin, Lambert used the word albedo,
meaning "whiteness" for the fraction of light reflected diffusely by a body.
The data for pn and k are taken from Veverka, J., J. Goguen, S. Yange, and J. Elliot,
"Scattering of light from particulate surfaces I. A laboratory assessment of multiple-
scattering effects," Icarus, 34, 406-14, 1978.
See Endnote 6.
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8 Papers still appear in which this important principle is ignored.
9 In the language of planetary photometry, there is a weak "limb brightening" from a

surface obeying the Lommel-Seeliger formula. "Limb darkening/brightening" refers to
the variation of brightness of an extended object, such as the moon or a planet, with
observation angle, that is, from the center of the disk to the edge ("limb"). Usually it
refers to observations near zero phase angle.

10 The smooth curves are fits of the Lommel-Seeliger formula, modified to include an
opposition effect. Taken from Ahmad, S. P., and D. W. Deering, "A simple analytical
function for bidirectional reflectance"/. Geophys. Res., 97, 18,867-86, 1992.

11 Hapke, B., "A theoretical photometric function for the lunar surface," / Geophys. Res., 68,
4571-86, 1963.

12 Ahmad, S. P., and D. W. Deering, "A simple analytical function for bidirectional re-
f lectance"/ Geophys. Res.,97, 18,867-86, 1992.

13 Cox, C , and W. Munk, "Measurement of the roughness of the sea surface from pho-
tographs of the sun glint ,"/ Opt. Soc. Am., 44, 838-50, 1954.

14 Nakajima, T., and M. Tanaka, "Effect of wind-generated waves on the transfer of solar
radiation in the atmosphere-ocean system,"/ Quant. Spectr. Radiative Transfer,29,
521-37, 1983.

15 Figure 5.6 is taken from Plass, G. N., G. W. Kattawar, and J. A. Guinn, Jr., "Radia-
tive transfer in the Earth's atmosphere and ocean: Influence of ocean waves," Applied
Optics, 14, 1924-36, 1975.

16 This quantity is also called the directional-hemispherical transmittance. From reci-
procity it may be shown to be equal to the total transmittance T(v; — 2TT, —£l), which
describes the transmission of light in the direction — Q for a hemispherically isotropic
incoming radiation field. This is called the hemispherical-directional transmittance (see
Appendix M).

17 Spherical albedoes for the planet Venus for a variety of wavelengths are found in Irvine,
W. M., "Monochromatic phase curves and albedoes for Venus,"/ Atmos. ScL, 610-
16, 1968.

18 This convention is universal in the astrophysical literature but has not been accepted
by all atmospheric radiative transfer workers. Caution is in order in reading the older
literature. It is a natural convention in oceanic applications.

19 An additional restriction must be imposed even if the above condition is met: The
angle that incident sunlight makes with the local vertical, Go, must not be greater than
about 82° (for the Earth). Otherwise the horizontal distance through which the sunlight
penetrates before being absorbed or reflected is large enough for curvature effects to
become important.

20 A compact discussion is found in the appendix of the text by M. N. Ozisik, Radiative
Transfer and Interactions with Conduction and Convection, Wiley-Interscience, New
York, 1973. A more exhaustive discussion is found in M. Abramowitz and I. A. Ste-
gun, Handbook of Mathematical Functions, Dover Publications, New York, 1965.

21 Equation 5.65 is also useful as an interpolation formula in angle, once the approximate
solution is known at a set of discrete angles (see Chapter 8).

22 An excellent modern review of analytic solution methodology is given in the book by
E. G. Yanovitskij,L/g/tf Scattering in Inhomogeneous Atmospheres, Springer-Verlag,
Berlin, 1997.
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23 Equation 5.76 assumes all absorbed energy results in heat. This is not the case if collisions
are not capable of quenching the upper excited states before they have a chance to radiate.
This NLTE situation applies to rarefied upper levels of planetary atmospheres. In NLTE,
Eq. 5.76 must contain an efficiency factor e(v) (0 < e(v) < 1).

24 A fluid parcel could apply to either an atmosphere or ocean and defines a fixed number
of molecules or particles. The particles move together, more or less like a separate entity.
The volume of the parcel is compressed when it sinks and expands when it rises. It is
clear that a parcel will not maintain its identity forever but will eventually be distorted
and eventually fragmented by dynamical and diffusive processes. However, it is a useful
concept for air motions over time scales that are short compared to a diffusion time scale
(hours to days, depending upon the height).

25 Since the warming rate is negative when only the thermal infrared part of the radiative
budget is considered, this quantity is sometimes called the cooling rate.



Chapter 6

Formulation of Radiative Transfer Problems

6.1 Introduction

In this chapter, we further refine the mathematical description of the radiative transfer
process. We will find that it is as important to be able to set up a problem correctly as
it is to solve it. Experience has shown that an investment of attention at the "front end"
is well rewarded when it comes time to submit the problem to analytic or numerical
solutions. To quote A. Einstein and L. Infeld,1

The formulation of a problem is often more essential than its solution, which may
be merely a matter of mathematical or experimental skill.

For example, some applications are more amenable to an integral-equation approach.
In other cases, a transformation can convert a problem that might involve hundreds of
terms in the expansion of the phase function to one involving just a few terms. Also,
in scattering problems it is usually advisable to separate the direct solar component
from the diffuse component. Finally, we will introduce several prototype problems,
which are invaluable as tools for learning various solution techniques. Since accurate
solutions to these problems are readily available, they provide a practical means of
testing numerical techniques, which can then be applied to more realistic problems.

6.2 Separation into Diffuse and Direct (Solar)
Components

There are two distinctly different components of the shortwave radiation field.2 The
first one is the direct or solar component /s, which is that part of the solar radiation
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field that has survived extinction:

/ " ( r , /x, 0) = Fse~T^8(Q - ft0) = F*e-x/«>&<ji - /xo)S(0 - 0O), (6.1)

where we have suppressed the v subscripts. This is sometimes called the "uncollided"
component. The second part of the radiation is the diffuse component 7d, which consists
of light that has been scattered at least once. This part is also called the multiple-
scattering component, which may be thought of as the medium's "self-illumination." A
particular volume element of the medium can be said to be illuminated by two sources:
by the Sun and by the rest of the medium (including the planetary surface or the bottom
of the ocean). Since the direct component is described by the Extinction Law, it is useful
to isolate this part from the total radiation field, so that the difficult part remains:

/ - ( T , /x, 0) = /d-(r, /x, 0) + / - ( r , /x, 0). (6.2)

For the present discussion we let the lower surface be black so that no solar radiation
is reflected back into the medium. We also ignore thermal emission from the surface,
but include thermal radiation from the medium itself. Then 7s

+(t*, /x, 0) = 0, where
r* denotes the total optical depth of the medium, and 7+(r, /x, 0) = / / ( r , /x, 0).

We now recall the form of the radiative transfer equation for the two half-range inten-
sities. We can write Eq. 5.41 in terms of the half-range intensities for slab geometry as

rf/-(T,ft) = Q)-(l- a)B - — [da)'p(+n\ -ft)7+(t, ft')
dx An J

+

- — f d(o'p{-tl', -ft)7~(r, ft'), (6.3)
An J

/I+(T'Q) = 7+(r, ft) - (1 - a)B - — [ da1 p{+tl\ +ft)7+(r, ft')
dx An J

+

- •?- I da>rp(-n\ +ft)7-(r, ft'). (6.4)
An J

With regard to the notation 7"(r, /x, 0) = 7"(r, ft) = 7(r, - f t ) and p(-Qf, +ft)
(for example) indicates that a photon is moving downward before the scattering (—ft')
and upward (H-ft) after the scattering. We now substitute for the total intensity field
the sum of the direct and diffuse components (Eqs. 6.1 and 6.2) into Eq. 6.3 to obtain

</7d"(r, ft) d7s-(r,ft)

~ M di ^ dx

= 7d"(r, ft) + 7"(r, ft) - (1 - a)B - ^- f doJp(-Q\ -ft)7"(r, ft')
An J

--?- [da)'p(+&, -ft)7d
+(r, ft') - -^ - [dcofp(-&, -ft)7d"(r,ft').

An J An J
+ -

(6.5)
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The two nonintegral terms involving the direct component cancel, because
—/jidl'/dr = I~. If we substitute for /~ from Eq. 6.1 in the first integral term, we
obtain the result

" (1 " a)B - S*(r, -ft)

d(o'p{tl\ -ft)/d
+(r, ft')-— f d(o

+

- ^- J dco'p(-&, -ft)/d"(r, ft') (6.6)
<+n j

where

-T/"°5(ft' - ft0)

An

We repeat this procedure for the upward component to obtain

li d —- = /d
+(r, ft) - (1 - a)B - S*(r, +ft)

a f
/ dcofp(+Q', +ft)/d

l"(r, ft')
Aix J

- ^ - da)fp(-Q\+Q)I7(z,Qf), (6.8)
An J

where

S*(T, +ft) = — / dco'p(-&,
An J

- T / ">. (6.9)
47T

The equations of transfer for the total field and for the diffuse field differ by the
presence of an extra "source" term S* (r, ±ft) (compare Eqs. 6.6 and 6.8 with Eq. 5.41).
This single-scattering source function "drives" the diffuse radiation field. Without
S*(r, ±ft) there would be no diffuse radiation in the absence of thermal emission
(B = 0). Note also that the azimuthal dependence of the radiation field can be traced to
that of S* (r, ± ft) through the phase function p(—Q0, ±ft). If the external source had a
more general angular dependence, then S*(r, ±ft) would be expressed in terms of the
angular integration over this external radiation field, weighted by the phase function.
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We note for completeness and later reference that in full-range slab geometry the
radiative transfer equation for the diffuse intensity may be written more compactly as

2n 1

a [ , f , , , , ,
~ An J J U P U '

(6.10)

dx
- l

where 5*(r, w, 0) denotes the solar beam driving term derived above.

6.2.1 Lower Boundary Conditions

For a lower surface at temperature Ts that emits thermal radiation with emittance e and
reflects the incident radiation field /~(r*, Q') with reflectance p, it is straightforward
to show that the following source terms must be added to Eqs. 6.7 and 6.9:

An
+

[da)"p(-n", n'
emitted

reflected component

(6.11)

where

\X ,\L ) = r e ' O\\LQ — \l ) -\- Ifi [T , *c ) . ^O.IZJ

solar component diffuse component

Finally if we add the unscattered component of the intensity reflected from the lower
boundary (analogous to the solar component for the downward intensity) the total
upward intensity is given by

In 1
T-i- , i\ I i i / I i ! / f if i \ T— / * / / / \ —(T* — T)/U}

/ (T, /x, 0) = / dcp / d\i\x p\—[i ,q>',/JL, 0 ) / (r , /x , 0 )e K )l^)

J J
0 0

r*
WT „ , , . x _ ^ T ' _ T W I I .

(6.13)

where 5tot = (1 — a ) 5 + 5* + ^ + ^ . We have rewritten the angular integration
in polar coordinates. It is instructive to sketch a number of photon trajectories, each
having different reflection and scattering histories, to determine which of the six terms
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in Eq. 6.13 contains that trajectory. Unfortunately, /d~(r*, £2"), the downward dif-
fuse component, is unknown. However, there are ways to incorporate this boundary
condition into various solution techniques. An example of this approach is found in
§6.6, where the effects of specular reflection from a calm sea surface are included in
a term derived from the reflected component above.

A common way of dealing with the unknown term begins with the solution of the
standard problem (in which the underlying surface is assumed to be nonreflecting,
i.e., black) and proceeds by adding to this an analytic correction to obtain the solution
for the full problem with a reflecting surface, known as the planetary problem. This
procedure, which is discussed in §6.11, would be the preferred method if we were
interested solely in the total energy balance of the atmosphere-surface system, that
is, p, a, and T. Unfortunately this approach does not take into account an emitting
surface and it is limited to Lambert surfaces. Nor can it be used if we are interested
in the internal radiation field. We will generally deal with the standard problem in this
book. For Lambert surfaces the reflection can be included as an analytic correction
(§6.11) with the caveats mentioned above.

Methods that transform the exact radiative transfer equation to a system of coupled
partial differential equations can incorporate the above boundary condition straight-
forwardly into the solution. An example is given in Chapter 8, where the discrete-
ordinate method is worked out in detail.

6.2.2 Multiple Scattering

The interpretation of Eqs. 6.6-6.9 for the diffuse intensity is straightforward. The extra
term S* is an "imbedded source" of radiation, which has been scattered once within
the medium. The integral terms constitute the source of multiply scattered radiation.3

Since /d is the radiation arising from scattering by the medium itself (as contrasted
with boundary or external sources), it adds to the source function through additional
scattering. Thus, the total source function consists of the following sum:

thermal emission first-order scattering

Qf). (6.14)-?- [da>'p(&9
47T J

4TT

multiple scattering

It should be emphasized that S(T, Q) refers to the sources of all internal radiation and
includes boundary sources if S* includes the boundary term S£ (Eq. 6.11).

Example 6.1 Isotropic Scattering in Slab Geometry

It is sometimes permissible to assume that the scattering is isotropic, so that p = 1. The source
term is therefore also isotropic: 5*±(r, Q) — S*(t), and the radiative transfer equations for the
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half-range diffuse intensity fields, Eqs. 6.6 and 6.8, are greatly simplified because the integrals

are independent of the azimuthal angle, <p. Dropping the subscript d, and assuming a black lower

boundary, we find

' ^ = /+(r, ii) - (1 - a)B -
dx

I I

- | fdu,'I+(T, At') - | fdn'r(z, it'), (6.15)

dl (T,/X) = 7 _ _ _ ^ ) j 5 _ ^

dx

I I

- | [dii'I+(T,ii')-l [diiT(T,ii'), (6.16)

where S*(r) = ^-Fse~r/l10.

Because S* is isotropic in this case, the intensities are independent of the angle 0, which is
an enormous simplification over the anisotropic scattering case. A great deal of the early work
in the field was performed on this type of problem, because of its analytic simplicity rather than
its resemblance to real problems. Nevertheless, there are a few practical problems for which the
isotropic approximation is valid, and these will be mentioned later in the book.

The source function is, from Eq. 6.14,

i

S* + | fd[i[lf(.T, (6.17)

Given the source function 5 ( T ) , the diffuse intensities follow from Eqs. 5.66 and 5.67:

(6.18)

/
— S (T>-<* ' -^ . (6.19)

—

6.2.3 Azimuth Independence of Flux and Mean Intensity
We now prove the important result that, in slab geometry, the fluxes and mean intensity

depend only on the azimuthally averaged intensity. By averaging Eqs. 6.6 and 6.8

over azimuth, we obtain the following pair of equations for the azimuthally averaged
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half-range diffuse intensities:

1

(£jL)_ = / + _ _ _ a f rf / ( + /? +/x)/+(r, / / )
r 2 J

o
l

- | fdfi'pi-ii', +/x)/"(r, //) - 5*(r, /x), (6.20)
o

I

= / - (T , M) - (1 - *)* - % fdn'p(+n', -/x)/+(r, / )
2 J

T, n') - S*(r, -n), (6.21)

where

In

/±(r,/x) = — / J0//±(r,/x, 00, (6.22)
2TT J

o
In

If,
z?(±/x , db/x) = — / J 0 /?(±/x , 0 5 =t/^ 0 )> (6.23)

2TT J
0

and
In

-T//Xo. (6.24)

Note that we have dropped the subscript d since we are mainly concerned from this
point onward with the diffuse intensity. The presence of 5* is always the clue that we
are referring to the diffuse intensity. By definition

In 1 1 In

F±(T) = / dcj)' I diirIJL'1^(r, \JL ,(/)') = 2n J/x//x/— / ^ 0 / / ± ( T , /xr, 00
J J J 2;r J
0 0 0 0

1

/ / , +
= 2n djji IJL I (r, /X ).

(6.25)

To simplify the notation, we have used the absence of 0 arguments to indicate inde-
pendence of azimuth angle. Hence, we see that in a slab geometry the flux depends
only on the azimuthally averaged intensity.

The above result shows that if we are interested only in radiative flux (as op-
posed to angular-dependent intensities) then all we have to consider is the azimuthally
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independent component of the intensity. Similarly, we find that the mean intensity de-
pends only on the azimuthally averaged intensity. Switching back to the u coordinate,
we have

7(r) = - * - [ dcj)' Idu'I(T,uf,<j)/) = - [duf— [ d<t>fHx,u\4>')

0 - 1 - 1 0

1

= )- f dufl(r,uf). (6.26)
- l

Finally, we may integrate Eqs. 6.3 and 6.4 over An steradians so that we consider
the total (diffuse plus direct) radiation field. Adding the two terms yields

dF
= 4TT(1 - a)(I - B) = (l- a)Fse-T/^° + 4TT(1 - a)(Id - B), (6.27)

dz

which shows that a constant flux is obtained if either there is no absorption in the
medium (a = 1) or the slab is in monochromatic radiative equilibrium (7 = B).
We note that Eq. 6.27 is proportional to the spectral heating rate (see Eqs. 5.76 and
5.77).

6.3 Azimuthal Dependence of the Radiation Field

We have seen that if only fluxes or heating rates are desired, we need to solve a radia-
tive transfer problem involving only two variables, r and u. However, if we desire the
intensity or the source function, we are faced with having to solve for a function of
three variables, r, u, and 0. We will show below that by using an Addition Theorem
we can reduce the latter problem to solving for a small number of functions of only
two variables. We will describe a transformation that reduces the problem to one of
solving a finite set of uncoupled radiative transfer equations, each of which depends
on only two variables, r and u.

We start by expanding the phase function in a finite series of 2N Legendre poly-
nomials4 as follows:

2N-1

p(r, cos 0) « Yl (2l + 1)X/(T)/J/(COS 0), (6.28)
/=0

where Pt is the /th Legendre polynomial. The /th expansion coefficient is given by

I

X / ( T ) = - / J(cos 0)P/(cos 0)/?(r, cos 0 ) . (6.29)

- l
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It is common to denote the first moment of the phase function by the symbol g = xi •
(Another notation is (cos 0).) The first moment represents the degree of asymmetry
of the angular scattering and is therefore called the asymmetry factor. Special values
for the asymmetry factor are given below:

g = 0 (isotropic scattering, or symmetric about cos 0 = 0),

g = — 1 (complete backscattering),

g = 1 (complete forward scattering).

The Legendre polynomials Pi (cos 0 ) comprise a natural basis set of orthogonal poly-
nomials over the angular domain (0° < 0 < 180°). The first five Legendre polyno-
mials are

P0(u) = 1, Pdu) = M, P2(u) = l-Ou2 - 1),

P3(u) = - ( 5 M 3 - 3M), P4(U) = - ( 3 5 M 4 - 30M2 + 3).

An important property of the Legendre polynomials is their orthogonality.

1uduPx(u)Pk{u) =

- l

Here, 8ik is the Kronecker delta (8ik = 1 for / = k and 8ik = 0 for / / £). The number
of terms, 2Af, in the expansion required for an accurate representation of p(r, cos 0 )
depends on how asymmetric the phase function is. Obviously, for isotropic scattering
(p = 1) only one term is needed. In this case xo = 1 and xz = 0 for / = 1, 2, 3 . . . 2N.
In general, the more asymmetric the phase function the more terms are required for
an accurate representation. Figure 6.1 illustrates this for an increasingly anisotropic
Henyey-Greenstein phase function (§6.7).

The above representation is of little use in the transfer equation, which is described
in terms of the angular coordinates measured with respect to the vertical axis, that is,
0 and (/>. The relationship of these two angles to the scattering angle, 0 , is given by
Eq. 3.22. However, the substitution of this relationship into the Legendre polynomials
yields a rather complicated and useless form. The key in simplifying the expansion of
the phase function is the Addition Theorem for Spherical Harmonics? which we may
write as follows:

i

P/(cos0) = P/(M
/)/)z(M) + 2V'A^(M/)A^(M)cosm(0/-0). (6.30)

m=\

To simplify the formulas we have introduced the normalized associated Legendre poly-
nomial defined by6

( 6 3 1 )
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Figure 6.1 Illustration of Legendre polynomial fit to a synthetic phase function for varying
degrees of asymmetry as indicated by the parameter g. The larger the value of g the more
anisotropic the phase function. Less anisotropic phase functions require fewer terms in
the expansion of the phase function in Legendre polynomials to obtain a reasonable fit.

where Pz
m(w) is the associated Legendre polynomial. The following orthogonality

properties apply:

(2/
oik

or

If m = 0 , A°(w) = Pj*(u) = Pi(u), the Legendre polynomial. Note that we have
defined Af(u) in such a way that it satisfies the same orthogonality condition as
Pi(u). Thus, the function + l)/2Am(w) is orthonormal with respect to the polar
angle 0. The first few associated Legendre polynomials are

P\(U) = \ / l - M 2 ,

Pj(u) = 15w(l - w2), u2 - 1).
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The addition theorem allows us to express the phase function in terms of products
of functions of 0 (or u = cos 6) and 0 separately as follows:

2N-\

p(cos 0 ) = p(u'', 0'; w, 0) = Y^ (2/ + l)x/
z=o

x\ h u A;"cosm j
Inverting the order of the summation, we have

2N-1

p(u', 0'; u, 0) = V~̂  pm(u\ u) cosm(0/ — 0), (6.32)
m=0

where

2 N - 1

pm{u\ u) = (2 - <5Om) 2 ^ (2^ + l)X/Ar(wr)Ar(w). (6.33)
l=m

Since the expansion of the phase function in Eq. 6.32 is essentially a Fourier cosine
series, we should expand the intensity in a similar way:

2N-\
jm /I(r,u,4>)= ^2 7m(r, M) cosm(0o-0). (6.34)

m=0

As explained in Appendix L, for spherical geometry we need to consider sine terms too,
because the derivative operator contains such terms. In slab geometry sine terms are
absent. If we substitute Eqs. 6.32 and 6.34 into the full-range version of the radiative
transfer equation (Eq. 5.41), we obtain, after some tedious but straightforward manip-
ulation, an equation for each of the Fourier components (see Appendix S for details):

1

- —- / dufpm(r, uf, u)Im(x, u) - X{?(r, M)^"T//X0

2 y
- i

- (1 - a)B(T)8Om (m = 0, 1, 2 , . . . , 2N - 1), (6.35)

where pm(r, u', u) is given by Eq. 6.33, and

X%(r, u) = — Fs(2 - 8Om)pm(r, -MO, w), (6.36)

where we have used the relation AJ"(—w) = (—l)/+mA^(M).
We have effectively "eliminated" the azimuthal dependence from the radiative trans-

fer equation in the sense that the various Fourier components in Eqs. 6.35 are entirely
uncoupled. Thus, in slab geometry independent solutions for each m give the azimuthal
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components, and the sum in Eq. 6.34 yields the complete azimuthal dependence of the
intensity. It is important to note that the azimuthal dependence is forced upon us by the
boundary conditions. Hence, when there is no beam source and no azimuth-dependent
reflection at either of the slab boundaries, the sum in Eq. 6.34 reduces to the m = 0
term. Then the angles /x0 and 0O are irrelevant and there is no azimuthal dependence
of the diffuse intensity. We also note that if the particles scatter isotropically, there is
no azimuthal dependence, as we already showed in Eqs. 6.15-6.16. This follows from
Eq. 6.36, since X™ = 0 for m > 0 if the phase function is set to unity. Finally, we note
that Eq. 6.35 is of the same mathematical form for all azimuth components m. This
means that a method available for solving the m — 0 azimuth-independent equation
can be readily applied to solve the equation for all m > 0.

6.4 Spherical Shell Geometry

So far in this chapter we have been dealing with slab geometry, which is appropriate
for a planetary atmosphere if we ignore horizontal inhomogeneities associated with
clouds and aerosols, and if the Sun is high enough above the horizon that the non-
flat shape of the planet is unimportant. Although the remainder of this book deals
almost exclusively with slab geometry for both practical and pedagogical reasons, we
shall briefly discuss here the complications arising when plane-parallel geometry is no
longer appropriate. We shall distinguish between a stratified, spherical shell medium,
in which the optical properties are assumed to depend only on the distance from the
center of the planet, and a nonstratified medium, in which the optical properties are
truly inhomogeneous (both horizontally and vertically). The former case applies to a
clear planetary medium assumed to be inhomogeneous only in the vertical, whereas the
latter applies to a situation in which horizontal inhomogeneities are also introduced,
for example by the presence of particles in the atmosphere or ocean.

For solar zenith angles greater than about 82° and twilight situations, we have to
take the curvature of the Earth into account and solve the radiative transfer equation
appropriate for a spherical shell atmosphere.7

In spherical shell geometry, the derivative of the intensity consists of three terms
in addition to the one term occurring for slab geometry. These extra terms express the
change in the intensity associated with changes in polar angle, azimuthal angle, and
solar zenith angle. For a spherical shell medium illuminated by a collimated beam of
radiation, the appropriate radiative transfer equation for the diffuse intensity may be
expressed as (see §2.8)

Q • V/(r, u, 0, /z0) = -k(r)[I(r, u, (j), /x0) - S(r, u, 0, /x0)]. (6.37)

Here r is the distance from the center of the planet and k is the extinction coefficient,
while u and 0 are the cosine of the polar angle and the azimuthal angle, respec-
tively. The symbol Q • V denotes the derivative operator or the "streaming term"
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appropriate for this geometry. To arrive at this term we must use spherical geometry.
If we map the intensity from a set of global spherical coordinates to a local set with
reference to the local zenith direction, then the streaming term8 may be written (see
Appendix O)

dr r du

1 f 3 Mo
H—/(w, MO) COS(0 — 0o) 1

r L "Mo l — MW

(6.38)

where the factor / is given by

' 7 (6.39)

For slab geometry, only the first term contributes. Thus, for spherically symmetric
geometry, the second term must be added, while the third and fourth terms are required
for a spherical shell medium illuminated by collimated beam radiation. The source
function in Eq. 6.37 is

2n 1

u, 0, Mo) = ^ / d(j)' J du'p(r, u\ 0'; u,
- l

C h { \ (6.40)+ Pp(r, MO, 0o;
An

The first term in Eq. 6.40 is due to multiple scattering and the second term is due to first-
order scattering. We have used the diffuse/direct splitting so that Eq. 6.37 describes the
diffuse radiation field only. We note that for isotropic scattering, the primary scattering
"driving term" becomes isotropic, which implies that the intensity becomes azimuth
independent. The argument in the exponential, Ch(r, Mo), is the air-mass factor or the
Chapman function: the quantity by which the vertical optical depth must be multiplied
to obtain the slant optical path. For a slab geometry, Ch(r, MO) = 1/Mo = sec 00. Hence
exp[—rCh(r, Mo)] yields the attenuation of the incident solar radiation of flux Fs

(normal to the beam) along the solar beam path.
In a stratified planetary atmosphere, spherical effects become important around sun-

rise and sunset. It has been shown that in a stratified atmosphere, mean intensities may
be calculated with sufficient accuracy for zenith angles less than 90° by ignoring all an-
gle derivatives in the streaming term, but using spherical geometry to compute the direct
beam attenuation. Then, we may simply write the streaming term as 2̂ • V = ukd/dx.

Although this pseudo-spherical approach works adequately for the computation of
intensities in the zenith- and nadir-viewing directions and mean intensities (for zenith
angles less than 90°), it may be inadequate for computation of intensities in directions
off-zenith (or off-nadir) unless it can be shown that the angle derivative terms are
indeed small.
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6.5 Nonstratified Media

The Earth's atmosphere and ocean are inhomogeneous, both in the vertical and the
horizontal. The horizontal variation is caused by nonuniform distributions of aerosols
and broken cloud fields in the atmosphere and of particles in the ocean. Thus, while it
is a good approximation for a clear atmosphere or pure ocean water to ignore horizon-
tal inhomogeneities, this is, in general, not the case for an aerosol-loaded and partly
overcast atmosphere or a "turbid" ocean. We have seen above that, in certain circum-
stances, it is possible to reduce the three-dimensional radiative transfer equation valid
for spherical shell geometry to a one-dimensional equation. This is not a valid ap-
proach if we want to treat the horizontal inhomogeneity of the atmosphere and ocean.
Because inhomogeneities occur over a range of scales, a realistic treatment should
be three dimensional. Cuboidal cloud forms have been adopted in three-dimensional
models to arrive at the somewhat obvious result that a finite cloud has lower albedo
than the plane-parallel counterpart due to "leakage" of radiation out of the sides of the
cloud. More general, multidimensional formulations for the treatment of broken cloud
fields have also been developed that allow for arbitrary variability over many scales.
Fractal descriptions of clouds are popular in the current research literature. Fractals
make pictures of clouds that look like clouds, but there are, at the present time, no
convincing physical arguments leading to a fractal description of clouds. To quote
W. Wiscombe9:

. . . measurements are the acid test of any model; it is not enough that a model
simply "looks" better. Perhaps a plane-parallel model taking proper account of
vertical inhomogeneity will agree better with measurements than typical cubic
cloud models with their spatially-invariant liquid water and drop distributions.
Perhaps weighting plane-parallel albedos by the proper measure of cloudiness
fraction will correctly predict the albedo of a patchy cloud field. But more
importantly, our job is not to make our models as complicated as nature herself;
it is to simplify and idealize, in order to gain understanding. Plane-parallel cloud
modeling is an entirely acceptable way to do this. And, on a practical level, (a) we
will never know, or want to know, the shape and size of every single cloud on
Earth, and (b) plane-parallel clouds can be modeled with a level of spectral and
angular detail unreachable in finite cloud models. Our job is to learn how to make
simple adjustments to plane-parallel predictions to mimic patchiness, not to reject
this very valuable modeling approach out of hand.

A better understanding of radiative transfer in inhomogeneous media is clearly
needed. This is an active research area in which many questions remain to be formulated
and answered. For the development of practical models to compute quantities that
depend on the radiation field, such as warming/cooling and photolysis rates, reliable
and fast computational schemes are required. At the present time, only radiative transfer
models for stratified media have reached a stage of development to be suitable for
incorporation into large-scale models.
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6.6 Radiative Transfer in the Atmosphere-Ocean System

In Chapter 2 and in Problem 2.2 it was shown that the invariant intensity I/m] is
invariant along a beam path in the absence of scattering and absorption. We have
assumed that we are dealing with media for which the index of refraction is constant
throughout the medium. The coupled atmosphere-ocean system provides an important
exception to this situation because we have to consider the change in the index of
refraction across the interface between the atmosphere (with rar & 1) and the ocean
(with mr & 1.33). In this section, we shall discuss the modifications of the framework
provided previously that are required to properly describe the radiative transfer process
throughout a system consisting of two adjacent strata.10

Radiative transfer in aquatic media is a mature discipline in itself with its own
nomenclature, terminology, and methodology. To help readers more familiar with
oceanic rather than atmospheric applications (and vice versa) we provide a list of
nomenclature in Appendix D. We should also point out that radiative transfer in
aquatic media is similar in many respects to radiative transfer in gaseous media. In
pure aquatic media, density fluctuations lead to Rayleigh-like scattering phenomena.
Turbidity (which formally is a ratio of the scattering from particles to the scattering
from the pure medium) in an aquatic medium is caused by dissolved organic and inor-
ganic matter acting to scatter and absorb radiation in much the same way aerosol and
cloud "particles" do in the atmosphere. In the following, we shall focus on the transfer
of solar radiation in the atmosphere-ocean system as illustrated in Fig. 6.2.

Sun

Top

Atmosphere
T = 0

Ocean

Figure 6.2 Schematic illustration of two adjacent media with a flat
interface such as the atmosphere overlying a calm ocean. The
atmosphere has a different index of refraction (mr ~ 1) than the
ocean (mr = 1.33). Therefore, radiation in the atmosphere
distributed over 2n sr will be confined to a cone of less than 2TZ sr
in the ocean (region II). Radiation in the ocean within region I will
be totally reflected when striking the interface from below.
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To simplify the situation, we shall assume that the ocean surface is calm (i.e.,
perfectly flat). In principle, the radiative coupling of the two media is very simple
because it is described by the well-known laws of reflection and refraction that apply
at the interface as expressed mathematically by SnelVs Law and FresneVs Equations.
The practical complications that arise are due to multiple scattering and total internal
reflection. As illustrated in Fig. 6.2, the downward radiation distributed over 2TT sr in the
atmosphere will be restricted to an angular cone less than 2n sr (hereafter referred to as
region II; see Fig. 6.2) after being refracted across the interface into the ocean. Beams
outside the refractive region in the ocean are in the total reflection region (referred to
as region I hereafter; see Fig. 6.2). The demarcation between the refractive and total
reflective region in the ocean is given by the critical angle (see Eq. 6.45), schematically
illustrated by the dashed line separating regions I and II in Fig. 6.2. Upward-traveling
beams in region I in the ocean will be reflected back into the ocean upon reaching
the interface. Thus, beams in region I cannot reach the atmosphere directly (and vice
versa); they must be scattered into region II in order to be returned to the atmosphere.

6.6.1 Two Stratified Media with Different
Indices of Refraction

Since the radiation field in the ocean is driven by solar radiation passing through
the atmosphere, we may use the same radiative transfer equation in the ocean as
in the atmosphere as long as we properly incorporate the changes occurring at the
atmosphere-ocean interface. Thus, the appropriate radiative transfer equation in ei-
ther medium is Eq. 6.10,

2n
a(x)

= /(r , u, 0) - f d<p' I du'p{x, «', 0'; u, 0) / ( r , «', <̂ ')
dx - — - - ' 4 j r

0 -1

where 5*(r, w, 0) represents the solar driving term. This term is different in the atmo-
sphere and the ocean. In the atmosphere, we have

S*r(r, ii, 0) = ^-p(T, -/x0, 0O; u, 4>)e-T/«>
471

+ ^ILp^-^ mrel)Jp(r, /xo, 0o; «,
Ait

where as usual /xo, 0o, and Fs refer to the incident solar beam at the top of the
atmosphere; rarei = mOCn/^atm is the real index of refraction in the ocean relative to the
atmosphere; and ra is the optical depth of the atmosphere. To simplify the notation we
have written ps(—Mo> ^rei) = Ps(~Mo> 0o5 Mo? 0o + n\ ^rei) for the specular reflection
by the atmosphere-ocean interface caused by the change in index of refraction between
air and water. The first term is due to the usual solar beam source, whereas the second
term is due to specular reflection by the atmosphere-ocean interface.
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The source term in the ocean consists of the attenuated solar beam refracted through
the interface:

^ocn(r' M' 0) = —~—~~ ^b(-Mo; ^rel)An

X / ? ( t , — /Zom> 00? M?

where 7^(—/x0; mrei) = 2b(—/i0, </>o; — Ak)m> 0o; ^rei) is the beam transmittance
through the interface, and /xOm is the cosine of the solar zenith angle in the ocean,
related to /XQ by Snell's Law

= yjI - (l -

Isolating the azimuth dependence is now accomplished as usual. The source terms
become

S*r(r, u) = xy( r , M ) e - ^ ° + XSi(r, 11)^/^,

where X ^ ( T , M) is given by Eq. 6.36, and

2JV-1

• X) (2/ + l)x/(r)Ar(w)Ar(/x0), (6.41)
/=o

Tb(-/z0, -/xOw; m r e l ) ^ T ^ 1 ^ - 1 / ^ ) ( 2 - 8Om)
47T / Z O m

2AT-1

• \ J (—l)/+m(2/ + l)x/(T)A^(w)A^(/zom). (6.42)
/=0

In addition to applying boundary conditions at the top of the atmosphere and the
bottom of the ocean, we must properly account for the reflection from and transmission
through the interface. Here the following conditions apply:

/a
+(ra, /xa) = ps(-/xa; mre l)/-(ra, /xa) + Tb(/x°; mrd) [/0

+(ra, f

(6.43)

0

(-/xa; mrei)/-(ra, /xa) (/x° > /xc),

/ - ( r a , M°) = /0
+(ra, /x°) <ji° < /xc). (6.44)

Here /a(ra, /xa) refers to the intensity in the atmosphere evaluated at the interface, while
Io (^a, M°) refers to the intensity in the ocean evaluated at the interface. The first of these
equations states that the upward intensity at the interface in the atmosphere consists of
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the specularly reflected downward atmospheric radiation plus the transmitted upward
oceanic radiation. Similarly, the second equation states that the downward intensity
at the interface in the ocean consists of the reflected component of oceanic origin
plus a transmitted component originating in the atmosphere. Finally, the last equation
ensures that radiation in the total reflection region is properly taken into account.

The demarcation between the refractive and the total reflective region in the ocean
is given by the critical angle, whose cosine is

/xc = y/l - l/mr
2

el. (6.45)

/x° and /xa are connected through the relation

/x° = /x°(/xa) = A/1 - [1 - (/xa)2]/m2
el.

Note that we have defined ps(/^; ^rei) and %(/JL; rarei) as the specular reflectance and
transmittance of the invariant intensity, / /m 2 , where mr is the local index of the real part
of the refractive index. The reflectance and transmittance are derived from Fresnel's
equations (see Appendix E).

The solution of the above equations requires techniques to be described briefly in
Chapter 8. Alternative treatments are given in texts on marine optics.11

6.7 Examples of Phase Functions

The action of scattering particles (including molecules) on the intensity and the state of
polarization of an incident radiation field can be represented as a linear operator, called
the scattering or phase matrix. As explained in Appendix I the elements of the phase
matrix depend upon the optical properties of the particles. The 4 x 4 phase matrix
connects the Stokes vector of the incident radiation to the scattered radiation. In this
book we are mainly concerned with the intensity of light (i.e., the first component of
the Stokes vector / ) since it conveys the information on the energy carried by the light
field. In the scalar approximation we require only one element of the phase matrix,
which is usually referred to as the phase function.12 In many applications, such as heat-
ing/cooling of the medium, photodissociation of molecules, and biological dose rates, it
is often permissible to ignore polarization effects. This is because the error incurred by
doing so is very small compared to errors caused by uncertainties in the input parame-
ters to the computation, which determine the optical properties of the medium. We limit
our attention to the phase function here, although we should caution that in some remote
sensing applications, describing the state of polarization may be absolutely necessary.

6.7.1 Rayleigh Phase Function

As explained in Chapter 3, if the light frequency is not close to a resonant frequency, the
scattering of light by molecules is similar to that of an induced dipolar oscillator. The
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classical model that fits observations quite well considers the (unpolarized) incident
wave to induce a motion of the bound electrons, which is in phase with the wave. Its
interaction with an unpolarized wave results in the molecule extracting energy from
the wave and then reradiating it in all directions. If we assume that the molecule is
isotropic (which is not quite true for linear molecules such as N2 and O2) and the in-
cident radiation is unpolarized, then it was shown in §3.4.1 that the normalized phase
function is given by

pRAY(cos 0 ) = - ( l + cos2 0 ) . (6.46)

Expanding pRAY in terms of the incident and scattered polar and azimuthal angles, we
find using Eq. 3.22

PRAY(U', 0'; w, 0) = - [1 + u'2u2 + (1 - uf2)(\ - u2) cos2(0' - 0)

+ 2u'u{\ - w/2)1/2(l - M2)1 / 2 cos(0r - 0)]. (6.47)

The azimuthally averaged phase function is found to be

i 9 u) = — I d(f> pRAY(u , 0 ; w, 0 )
2n J

o

= J I"1 + u'lul + \<\ ~ M / 2 ) ( ! " «2)| • (6-48)
Expressing the above in terms of Legendre polynomials, one may show that

The asymmetry factor for the Rayleigh phase function is therefore

g = X\ = - / du'pRAY(u', w)Pi(w') = - / du'u'pRAY(ur, u) = 0

- l - l

because of the orthogonality of the Legendre polynomials. This result can be proven
for any even function of cos 0 , that is, for any terms in the phase function symmetric
around 0 = 90°, and should be obvious from symmetry arguments.

6.7.2 The Mie-Debye Phase Function

Scattering in planetary media is caused by molecules and particulate matter. If the size
of the scatterer is small compared to the wavelength as is the case for scattering of solar
radiation by molecules, then the scattering phase function is only mildly anisotropic.
Such a phase function poses no special problem for solving the radiative transfer
equation. However, scattering of solar radiation by larger particles is characterized by
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Aerosol Ocean particle
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Figure 6.3 Illustration of phase functions occurring in planetary media. Shown are phase
functions for: molecular (Rayleigh) scattering and aerosol particles (upper left); hydrosols
(upper right); cloud droplets (lower left); and ice crystals (lower right).

strong forward scattering with a diffraction peak in the forward direction. Examples
of phase functions for four different media are shown in Fig. 6.3.

The Mie-Debye theory (discussed in §3.5) has been refined and developed by
hundreds of investigators. Although the mathematical foundation is complete, its nu-
merical implementation has proven to be very challenging. Progress in developing fast
and accurate computer algorithms continues to the present day. Although it is beyond
the scope of this book to explore this byway, every serious student of radiative transfer
should be familiar with the subject, for which there are many excellent references.13

Example 6.2 The Henyey-Greenstein Phase Function

A one-parameter phase function proposed by L. Henyey and J. Greenstein in 1941 is

PHG(COS0) =
( l + g 2 - 2 g c o s 0 ) 3 / 2 '

(6.49)

This function has no physical basis and should be considered as a one-parameter analytic fit to an
actual phase function. It should not be used except when the fit is reasonably good. However, as
far as the radiative transfer is concerned, the requirement of "reasonableness" is not very strict,
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because the multiple-scattering process tends to smooth out irregularities present in the more
accurate function. A remarkable feature of the H-G function (proven in Problem 6.1) is the fact
that the Legendre polynomial coefficients are simply

This partly explains its popularity, because only the first moment of the phase function (i.e., the
asymmetry factor g) must be specified. Thus, the Legendre polynomial expansion of the H-G
phase function is given simply by

/?HG(COS 0 ) = 1 + 3g cos 0 + 5g2P2(cos&) + 7g3P3(cos@) + • • •.

Also, the Henyey-Greenstein phase function has the desirable feature that it yields complete for-
ward scattering for g = 1, isotropic scattering for g = 0, and complete backward scattering for
g = — 1. The linear combination

p(cos 0) = bpHG(g, cos 0) + (1 - b)pHG(g\ cos 0)

is sometimes used to simulate a phase function with both a forward- and a backward-scattering
component (g > 0 and g! < 0). Here 0 < b < 1 and g and g' are usually different.

6.8 Scaling Transformations Useful
for Anisotropic Scattering

The solution of the radiative transfer equation for strongly forward-peaked scattering is
notoriously difficult. An accurate expansion of the phase function may require several
hundred terms for a typical cloud phase function.

As we shall see, most methods of solving Eq. 6.35 start by approximating the integral
term by a finite sum that is usually of the same order (2N) as the number of terms neces-
sary to get a good Legendre polynomial representation of the phase function. This may
lead to a large system of equations that requires such inordinate amounts of computer
storage space and time as to render the solution impractical even on modern computers.

To circumvent this numerical difficulty associated with strongly forward-peaked
scattering, scaling transformations have been invented. The motivation for scaling in
this case is to transform a transfer equation with a strongly peaked phase function into
a more tractable problem with a phase function that is much less anisotropic.

The pronounced forward scattering by cloud droplets becomes even more extreme
if we plot the phase function as a function of the cosine of the scattering angle (instead
of the scattering angle). In fact, the forward scattering peak takes on the resemblance
of a Dirac 5-function when plotted versus cosine of the scattering angle. This suggests
that it would be useful to treat photons scattered within the sharp forward peak as
unscattered, and truncate this peak from the phase function. In ocean optics, this has
been referred to as the quasi-single-scattering approximation}^

We start by assuming that the forward-scattering peak can be represented by a
Dirac 8 -function, while the remainder of the phase function is expanded in Legendre
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polynomials as usual. Thus, we set

p8_N(cos 0 ) = Ps-N(u\ 0;; w, 0)

2N-1

= 2f8(\ - cos 0) + (1 - / ) ]T (21 + l)xzP/(cos 0)
/=0

2N-1

= 4nf8(uf - u)8((j)r - (j>) + (1 - / ) ] T (2/ -
/=o

A^(w/)Ar(«)cosm(0/-0) I,
m=0 J

(6.50)

where / ( 0 < / < l ) i s a dimensionless parameter to be determined by a fit to an
actual phase function. We shall refer to this transformation as the 8-N method as
indicated by the subscript. Note that if / = 0 we retain the usual Legendre polynomial
expansion and xi = Xi- Illustrations of actual phase functions occurring in nature and
approximations using the 8-N method are provided in Fig. 6.4. This figure suggests
that it would be problematic to obtain accurate intensities with low-order scaled phase
functions, although such phase functions give accurate flux and mean intensity.
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Figure 6.4 Illustration of actual and 8-N scaled phase functions for aerosol particles, water
cloud droplets, ice particles, and hydrosols.
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For simplicity we shall consider the azimuthally averaged radiative transfer equation
below (see Problem 6.3 for a generalization to azimuthal dependence). We first find a
general expression for the azimuthally averaged scaled phase function:

2n

p(uf, u) = — / J#(cos0)
Z7T J

0

2N-\

= 2f8(uf -u) + (l-f)J2 (21 + l)xiPi(ur)Pi(u). (6.51)
/=o

The second part of the scaling problem concerns how we approximate the remaining
(nonpeaked) part of the phase function. In the following subsections, we shall start
with the simplest case, which emphasizes the principles involved, and then generalize
this method to achieve better accuracy. A more formal mathematical approach (see
Appendix J) to the scaling procedure is provided elsewhere.15

6.8.1 The 6-Isotropic Approximation

The crudest way of handling the problem with strong forward scattering is to approx-
imate the remainder of the phase function by a constant (isotropic scattering). The
azimuthally averaged phase function becomes

2n

(6.52)

2n

iso(^ u) = ^ J d(Pp(cos 0) = 2f8(u' - u) + (1 - / ) .

Substitution of this phase function into the azimuthally averaged radiative transfer
equation (Eq. 6.35) yields

1

udl(r,u) =1{xu)_a [du'p(u,u)I(T ) t t / } ( 6 5 3 )

dx 2 J
- l

= 7(T, U) - afl(r, u) - a(l ~ ̂  I du'I(x,ur) (6.54)
- l

or

dl(x, u) a f
u = 7(r, u) / du 7(r, u),

dx 2 J
(6.55)

- l

where

dx = (1 - af)dx, a = -——. (6.56)
1 -af
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For simplicity we ignored the source term Q(x, u) = S*(T, U) + (1 — a)B(r). Be-
cause we have divided by 1 — af this term would simply become Q(x, u) = Q(x, u)/
(1 — af) (see also Problem 4.3).

Finally, to complete the scaling, we ask: How do we specify / , the strength of the
forward-scattering peak? Clearly there is no unique choice, but it should depend in
some simple way on the asymmetry factor, g. Since xi = 8 *s the first moment of
the unsealed phase function, this suggests that we equate the first moment of /?acc (the
accurate phase function) to the first moment of the scaled phase function p. This is

I

h = \ Jdu'u'p8_iso(u
f, u) = f (6.57)

- l

The above result follows from substitution of Eq. 6.52 and carrying out the integration.
Our matching requirement sets / = xi = g-

The 5-isotropic approximation is sometimes referred to as the transport approxima-
tion. Use of it in the radiative transfer equation leads to the transformation of Eq. 6.53 to
an equation with isotropic scattering, but with a scaled optical depth dx = (1 — ag)dx
and a scaled single-scattering albedo a = (1 — g)a/(l — ag). Thus, the radiative
transfer equation with strongly anisotropic scattering is reduced to an equation with
isotropic scattering, which is easier to handle numerically. These particular scaling
transformations of the optical depth and the single-scattering albedo are sometimes
referred to as similarity relations.16

6.8.2 The 6-Two-Term Approximation

A better approximation results from representing the remainder of the phase function
by two terms17 as follows (setting Af = 1 in Eq. 6.51):

/ W A O A U) = 2f&(u' - u) + (1 - / ) 5^(2/ + DJtiPiiu'Wu). (6.58)
/=o

Substitution of this phase function into the azimuthally averaged radiative transfer
equation yields

dl(x, u) a ^ - ^ i f f f

u = /(r , u) > (2/ + 1)X/P/(M) / du Pi(u )/(r, u ), (6.59)

i

Jdu'Pl{uW,W),

where dx and a are defined in Eq. 6.56. Again, by matching moments of the approxi-
mate and accurate phase functions we find

Xl - / g ~ f r
Xi=g = 1 f = JZT7' f = X2'
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6.8.3 Remarks on Low-Order Scaling Approximations

We may now ask what (if anything) has been gained by the scaling? First, we note
that the two-term approximation (TTA) makes the replacement x/ = 0 for / > 2.
Thus, all the higher-order moments, which may contribute substantially to the phase
function if it happens to be strongly anisotropic, have been brutally set to zero. From
the discussion of the general case (arbitrary N) below, it will be shown that the 5-TTA
approximation is equivalent to making the replacement xi = Xi for / > 2. Thus, for
strongly anisotropic phase functions, /3 = X2> which demonstrates the advantage of the
TTA scaling transformation (i.e., the third moment and higher moments are set equal to
the second moment, which is generally expected to be better than setting them to zero).

The two-term approximation is commonly used in connection with the two-stream
and Eddington approximations to be discussed in Chapter 7. As we shall see, in these
approximations the transfer equation is replaced by two coupled, first-order differential
equations, which are easily solved analytically. In the two-stream case, the two cou-
pled equations are obtained by replacing the integral (multiple-scattering term) by just
two terms or "streams" (this essentially amounts to adopting a two-point quadrature).
In the Eddington approximation, one expands the intensity in Legendre polynomials,
keeping only the first two terms (i.e., we set / ( r , u) = Io(r) + ul\(r)). Inserting this
approximation into Eqs. 6.20-6.21 and using the first two moments, we arrive at a set of
two coupled equations. This will be discussed in some detail in Chapter 7. Here it suf-
fices to note that, as a rule of thumb, it is customary to keep the number of terms in the
expansion of the phase function equal to the number of quadrature terms (or expansion
terms for the intensity) in the approximation. Hence, a two-term expansion of the phase
function leads naturally to the two-stream (or Eddington) approximation, although in
principle one could retain more terms in the expansion of the phase function even in the
two-stream approximation to the radiative transfer equation. In fact, as explained in
Chapter 7, it is possible to use the exact phase function even in the two-stream approx-
imation. The rule of thumb referred to above merely reflects the philosophy that there
may not be much to gain from using a very accurate representation of the phase function
if the level of approximation for solving the radiative transfer equation is much cruder.

Finally, if we use the H-G phase function in the 8 -TTA approximation, then f = g2,
and therefore g = g/(l + g). Then 0 < g < 0.5 when 0 < g < 1. This implies that
the 8-TTA approximation applies to a range of g (g < 0.5) for which the two-stream
approximation has been shown to be reasonably accurate. We note, however, that
we must require g = xi < 1/3 to guarantee that the truncated phase function [i.e.,
Arunc(cos®) = (1 ~ / ) ( ! + 3£cos0)] is positive for all scattering angles. This
should alert us to the possibility that we may obtain unphysical results (e.g., negative
reflectance) unless g < 1/3 or g < 1/2.

6.8.4 The 6-N Approximation: Arbitrary N

We generalize the method outlined above to include an arbitrary number of terms to
represent the remainder of the phase function in Eq. 6.50. The resulting transformation,
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referred to as the 8-N method,1^ is designed to scale phase functions that are sharply
peaked in the forward direction. It has proven to be particularly useful in solving
practical radiative transfer problems involving sharply forward-peaked phase functions
associated with scattering from cloud droplets and particles.

By substituting Eq. 6.51 into Eq. 6.53, we find

dl{x,u) „ ^ a 2 ^ ' , ^ / x / " . , , „ , „ „ . „ ^ ^ ,
M = /(T,M) > (2/+ 1)X;F;(M) I du PI(U )1 (J, u ) , (6.60)

where dx and a are defined in Eq. 6.56.
As before, we set the expansion coefficients / / equal to the moments, xi, of the accu-

rate (unsealed) phase function by equating moments of the accurate and approximate
phase functions:

I

Xl=2 M(COS0)pacc(COS0)P/(COS0),

- 1

1

= - J d(cos®)p8_N(cos®)Pi(cos&),

- 1

where pacc denotes the accurate value for p. This leads to

Xi-f
or

1 - /

It is easy to see that if we set / = 0, then dx — dx, a = a, and xi = Xh implying
that the scaled equation reduces to the unsealed one as it should. We determine / by
setting / = X2N (truncation), which is clearly a generalization of the procedure used
for iV = 1. We note that setting // = 0 for / > 2N is equivalent to replacing // with
X2N f° r I ^ 2Af. Thus, whereas the ordinary Legendre polynomial expansion of order
2N sets xi = 0 for / > 2N, the 8-N method makes the replacement xi = XIN for
/ > 2N. Finally we note that the error in the phase function representation incurred
by using the 8-N method is

Pace (COS © ) - & .

/=2Af+l

Example 6.3 The 6-Henyey-Greenstein Approximation (6-HG)

In this case we have/)(cos ©) = 2/5(1 — cos 0 ) + (1 — f)puG(cos 0 ) , where /?HG(COS 0 ) =
^0(2/ + 1)gl Pi (cos 0 ) . By matching the first two moments of this phase function (%i a n ^ Xi)
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to the actual phase function we want to approximate, we find

Xi = / + d - / ) g = Xi.
X2 = / + (1 - f)g2 = X2-

Solving for g and / we find

= Xi ~X2 f = X2 - Xi2

Of 1 J
1 - Xi 1 - 2Xi + X2

6.8.5 Mathematical and Physical Meaning of the Scaling

It is worth noting that an essential feature of the scaling is to turn the unsealed prob-
lem into one in which the optical depth is reduced (dt < dr), while the absorption is
artificially increased (a <a). In addition the scattering phase function appears con-
siderably less anisotropic. It should be stressed, however, that Eq. 6.60 is of identical
mathematical form to Eq. 6.35. This implies that whatever tools we have available for
solving the unsealed equation can be applied to the scaled equation. From a pragmatic
point of view, what has been gained by the scaling is to render the problem more
tractable numerically because the new equation has a phase function that is much less
anisotropic due to the truncation of the forward-scattering peak. Hence, we expect
that considerably fewer terms are needed to obtain an adequate Legendre polynomial
expansion of the phase function. This, in turn, implies that the scaled equation is easier
to solve by numerical means, as will be illustrated in Chapters 7 and 8. Thus, the S-N
method is not a method of solution but rather a way of making the transfer equation
easier to solve by whatever analytical and/or numerical techniques we have at our
disposal.

From the physical point of view the S-N approximation relies on the following
premise: Those beams that are scattered through the small angles contained within
the forward peak are not scattered at all. These beams are in fact "added back" to the
original radiation field. This explains why the scaled optical depth r is smaller than
the original r. The effective asymmetry factor is also less than the original (unsealed)
value, since the angular distribution of those beams scattered outside the forward peak
is (by definition) less extreme in its angular dependence. Consider the transmitted flux
in the scaled problem

where the d subscript denotes the diffuse flux. Since r* < r*, this means that the scaled
directly transmitted solar flux is greater than it is in the unsealed problem. Because
of the phase-function truncation, the "direct" flux actually contains some scattered
beams of radiation traveling in very nearly the same direction as the incident beam.
As an example, the Sun's rays shining through a hazy or dusty atmosphere are spread
out into a very bright blurry disk, somewhat greater than the Sun's disk itself. This
is called the Sun's aureole, which has been used as a means of inferring the mean
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particle size in tropospheric haze. A substantial fraction of the solar aureole would
be included in the 8-N direct flux. The scattered flux in this approximation would
apply to those beams scattered largely outside the aureole. Finally, we note that since
the total downward flux must be the same whether we use scaling or not, that is,

Fd-(r) + fioFse-f/^ = Fd"(r) + /x0F s^- T /^ ,

we can always recover the unsealed downward diffuse flux by solving for Fd~(r):

Fd-(r) = Fd"(f) + fi0F
s(e-f/^ - *"*/">), (6.61)

where all the quantities on the right are known. No such "correction" for the upward
flux is necessary.

6.9 Prototype Problems in Radiative Transfer Theory

In this section, we describe a number of standard radiative transfer problems, which
have received much attention in the research literature. By concentrating on these
special cases, we may compare the numerical results from approximate solutions to
exact solutions. Because of the many idealizations used in these problems, it is possible
to study the transfer process in detail, without the distraction of the many complexities
that always accompany real-life transfer problems. In addition, the methods of attack
we find successful for these prototype problems can be applied with more confidence
to the more realistic problems.

Each prototype problem is for a slab geometry and an optically uniform (homo-
geneous) medium. The radiation is considered to be monochromatic and unpolarized.
The complete specification of a prototype problem requires five input variables: (1) r *,
the vertical optical depth of the slab; (2) S*(r, Q)9 the internal or external sources;
(3) p(Qf, &), the phase function; (4) a, the single-scattering albedo; and (5) p (—Q', Q),
the bidirectional reflectance of the underlying surface (PL = constant, for a Lambert
surface). For r* —> oo, a condition on the source function is that limr^oo S(r)eT —> 0.
The analytic or numerical solution of the radiative transfer equation provides the fol-
lowing output variables: the reflectance, transmittance, absorptance, and emittance; the
source function; the internal intensity field; and the heating rate and net flux through-
out the medium. A cartoon illustration of the standard problems we describe below is
provided in Fig. 6.5.

6.9.1 Prototype Problem 1: Uniform Illumination

Here the incident radiation field is taken to be constant (=X) in the downward hemi-
sphere. Because of the azimuthal symmetry of the incident radiation, the radiation field
depends only upon r and /x. Furthermore, the source function depends only upon r.
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Figure 6.5 Illustration of Prototype Problems in radiative transfer.

It so happens that the frequency-integrated problem for conservative and isotropic
scattering reduces mathematically to that of a simple greenhouse problem. This de-
scribes the enhancement of the surface temperature over that expected from planetary
radiative equilibrium. This application is discussed in Chapter 12.

In addition, Prototype Problem 1 approximately reproduces the illumination con-
ditions provided by an optically thick cloud overlying an atmosphere. The source for
the diffuse emission is

5*(r)

2n 1

~ 4TT J J

where ^ ( r ) is the second exponential integral defined by Eq. 5.61. However, this
problem is solved more efficiently by setting 5* = 0 in Eqs. 6.6 and 6.8 and applying
a uniform boundary condition to the total intensity I~(r = 0, JJL) = I at the upper
boundary. It is straightforward to add the effects of surface reflection later, as described
at the end of this section.

6.9.2 Prototype Problem 2: Constant Imbedded Source

For thermal radiation problems, the term (1 — a)B is the "driver" of the scattered
radiation. This is an "imbedded source" equal to the local rate at which inelastic
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collisions are producing thermal emission. Note that in general, this term will be a
strong function of frequency, and of course it depends upon the temperature, through
Eq. 4.4. In our Prototype Problem 2 we assume that the product (1 — a)B is constant
with depth.

Example 6.4 The Conservative Limit for Prototype Problem 2:
The Milne Problem

The classical Milne Problem can be thought of as the limit of the imbedded-source problem,
in which there is no absorption so that a -> 1. Then the source term is zero, and one is left with
the simple radiative transfer equation

Note that we consider the full-range intensity (—1 < u < +1) because no particular simplifications
follow from using half-range intensities, and because this is the traditional form of the Milne
problem. The medium is usually taken to be semi-infinite, and a source of radiation is assumed to
be placed at an infinite distance away from the boundary (r = 0). The radiation therefore trickles
upward and escapes without any losses into the half-space above the boundary. As we shall see in
Chapter 7 the upward radiative flux is constant, since there is no absorption in the medium.

6.9.3 Prototype Problem 3: Diffuse Reflection Problem

In this problem we consider collimated incidence at r = 0, and a lower boundary
that may be partly reflecting as explained below. The case of collimated incidence as
opposed to uniform incidence can be considered to be the classical planetary problem.
For shortwave applications, the term (1 — a)B can be ignored and the only source term
is

aFs

S*(r, ±n, <f>) = — p ( - M o , <h\ ±H, 4>)e-™>. (6.62)

Note that in contrast to Prototype Problems 1 and 2, the radiation field depends upon
both /x and the azimuthal coordinate 0. The lower boundary condition appropriate for
this problem is described below.

An illustration of the total source functions, S given by Eq. 6.14, in Prototype
Problems 1 through 3 is provided in Fig. 6.6. For simplicity we assume isotropic
scattering so that S depends only on optical depth in all the Prototype Problem solutions
displayed in Fig. 6.6.

6.9.4 Boundary Conditions: Reflecting and Emitting Surface

We first consider a Lambertian surface (BRDF = pL), which also emits thermal IR
with an emittance 6S and temperature Ts. The upward intensity at the surface is given
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Figure 6.6 Source functions for isotropic scattering for Prototype Problems 1
through 3 considered in this book. The upper panel pertains to uniform
illumination (X = 1), the middle panel to a constant internal source (B = 1),
and the lower one to an incident collimated beam (Fs = 1). A vertical optical
depth T* = 1 is assumed. The lower boundary is assumed to be black. These
source functions were computed using the DISORT code (see Chapter 8) with
eight streams.

by (seeEq. 5.11)

2n

+ pL J d(/>' J dii'iiT(0, //, 0>-T*^' +€SB(TS). (6.63)

Here B(TS) denotes the Planck function at the appropriate frequency and Fd (r*) is

the downward diffuse intensity at the lower boundary. The upper and lower boundary
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conditions for the three prototype problems can now be written down immediately:

Prototype Problem 1

/ - ( 0 , ii) = X, / +(r*, /x) = pL [Fd"(O + 2TTIE3(T*)] + €SB(TS),

(6.64)

Prototype Problem 2

/ - ( 0 , ix) = 0, 7+(T*, UL) = PLFd-(T*); (6.65)

Prototype Problem 3

lo),
(6.66)

7+(r*, 11, 0) = pL [Fd-(r*) + /^ T * / / X o ]

The above equations are expressed in terms of the unknown quantity Fd (r*).
Although this would not appear to be very helpful in the ultimate solution, it is not
a difficulty for the methods of solution described in this book (Chapters 7 and 8).
These techniques rely upon the intensity (and flux) being expressed as a finite sum
(say of N terms) of known functions of angle and optical depth. These functions are
weighted by unknown coefficients. Thus the problem becomes one of solving for the
coefficients, which are determined by a set of algebraic equations of N — 2 equations
in the N unknowns. The two boundary conditions provide two necessary constraints,
which then provide the necessary N equations.

For Prototype Problem 3 we may encounter situations where the surface is described
by a more general reflectance law. In this case the upward intensity at the surface is
given by

2TT 1

- J J
0 0

~T*//X°pd(—/xo, 0o; +M, 0) + €(/JL)B(TS), (6.67)

where we have assumed no 0 dependence of the thermal emission. Here pd is the diffuse
BRDF, assumed to be a function only of the difference between the azimuthal angles of
the incident and the reflected radiation. This will enable us to separate the Fourier com-
ponents by expanding the BRDF in a Fourier cosine series of 2N terms. Thus, we write

p d ( - / / , 0r; /z, 0) = Pd(-/xr, ix\ 0 - 0')
2 J V - 1

= H P™(-M'' M)cosm(0 - 00, (6.68)
m=0

where the expansion coefficients are computed from

7T

[d(4 4')(ii', ii;<t>- <t>')cosm(<t> - </>'). (6.69)
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Substituting Eq. 6.68 into Eq. 6.67 and using Eq. 6.34, we find that each Fourier
component must satisfy the bottom boundary condition (see Appendix N for a deriva-
tion)

l

/ m + ( r * /x) = 8o€(fi)B(T) + (1 + 80) J* dp!p!p™(-p!/x)/m"(r* / / )/m +(r*, /x) = 8mo€(fi)B(Ts) + (1 + 8m0) Jdp!p!p™(-p!, /x)/m"(r*, / / )

o

+ — Fsp^(-Mo, [i)e~x*'^ m = 0, 1 , . . . , 2N - 1. (6.70)
n

Finally, for an atmosphere overlying a body of calm water, we must use the inter-
face conditions provided in §6.6 (Eqs. 6.43-6.44) to account for the reflection and
transmission taking place at the interface between the two strata with differing indices
of refraction. Then the coupled atmosphere-ocean system should be considered as
described in §6.6.

6.10 Reciprocity, Duality, and Inhomogeneous Media

We have noted previously (see Appendices J, P, and Eq. 9) that the reciprocity rela-
tionships satisfied by the BRDF and flux reflectance are

p(-&, Q) = p ( - 6 , 6'), p(-&, 2TT) = P( -2TT, &), (6.71)

where we have suppressed the v argument. The Reciprocity Principle states that in
any linear system, the pathways leading from a cause (or action) at one point to an
effect (or response) at another point can be equally well traversed in the opposite
direction.19 Equation 6.71 states that the BRDF is unchanged upon a reversal of the
direction of the light rays. Equation 6.71 follows from the reciprocity of the BRDF and
implies that the flux reflectance of Prototype Problems 2 and 3 are related (see §6.9).
This is an example of the more general Principle of Duality, in which the solution of
one problem is related to the solution of a second problem.

A similar relationship exists for the transmittance. It is important to point out that
our previous discussions are applicable only to homogeneous media. For plane-parallel
media, this means that the optical properties, such as a and p, are uniform with optical
depth. It is not difficult to show that for an inhomogeneous slab the reflectance and
transmittance for a slab illuminated from the top are in general different from those
of a slab illuminated from the bottom. To emphasize this fact, we denote properties
for illumination from the bottom with the symbol ~. The more general reciprocity
relationships for transmittance and flux transmittance are

T ( - 6 ' , -Q) = T(+^, +6'), T(-2TT, -ft) = T(+6, +2TT). (6.72)

Therefore, the principle of duality connects the transmittances of Prototype Problems 1
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and 3, in a similar way as for reflectances. The remaining relationships can now be
listed:

', -2TT) = P(+2TT, -&). (6.73)

The practical implications of the above results can be illustrated by one exam-
ple. Suppose we are interested in only boundary quantities, such as flux reflectance
and transmittance, and we want to solve a problem involving collimated radiation
for many values of the incoming solar direction. Then it is much more efficient to
consider the problem of uniform illumination and solve for the reflected intensity
from

/+(0, Cl) = dco'cos 6fp(-Q',+Q)I = I p(-27t,+£l)
+

= Tp(-6,+2TT). (6.74)

The last result follows from Eq. 6.71 and is the desired flux reflectance for collimated in-
cidence. We can find p(—Q, +2n), the flux reflectance for collimated light incident in
direction — Q, for every value of—Q of interest, by applying uniform illumination with
X = 1 and solving for the intensity / + ( 0 , Q). Moreover, by integrating Eq. 6.74 we
find

l l

F+ = lit I d/z/x/+(0, fi) = 2nX I d/jL/xpi-fji, +2n) = nip, (6.75)

0 0

which shows that we can obtain the spherical albedo, p (§5.2.11), by computing the
flux reflectance, F+/TTT, resulting from uniform illumination.

6.11 Effects of Surface Reflection on the Radiation Field

We now consider the effects of a reflecting lower boundary on the reflectance and trans-
mittance of a homogeneous plane-parallel slab overlying a partially reflecting surface.
The principle can be established by simplifying the boundary reflectance to that of an
idealized Lambert surface. We will show that we can express the solutions for the emer-
gent intensities algebraically in terms of the solutions derived above for a completely
black or nonreflecting lower boundary, which we refer to as the standard problem. In
other words, we express the solutions for the partly reflecting lower boundary, referred
to as the planetary problem, in terms of those for the standard problem.20

From Fig. 6.7, the total reflected flux from the combined slab plus lower bound-
ary is the sum of the following components: (1) the reflection from the slab itself;
(2) the flux that reaches the surface, is reflected, and then transmitted; (3) that part
of (2) which is reflected back to the surface and is then reflected a second time and
transmitted; and (4) all higher-order terms, reflected three, four, etc. times from the
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TPt99LT

Figure 6.7 Addition of a reflecting surface leads to a geometric (binomial)
series.

surface before being transmitted. The first term is just the ordinary flux reflectance
p(—Q, -\-2TT). The second term is proportional to the flux transmittance (including
both the direct and diffuse components) T(—Q, —2n). After reflection, it is propor-
tional to T(—£2, — 27T)/OL- Upon transmission through the slab, this term is multiplied
by the spherical transmittance T. Thus, the second term is T(—£2, —2TT)P\T. The
third term takes the part of term (2) up to where it was reflected from the surface, but
then instead of multiplying by the flux transmittance, we multiply by the spherical
reflectance p, thus bringing it back for a second surface reflection. It is then multi-
plied by PL, and finally gets transmitted, bringing in the term T. Thus the third term is
T(—Q, —2TC)PLPP\T. Proceeding in a similar way with the higher-order components,
we find that the sum can be written as (see Fig. 6.7)

(-Q, +2n) + T(-Q, -

(-Cl, -In)^
= p(-Q, +2TT)

1 -

where we have used the fact that the infinite sum is the binomial expansion of
(1 - P P L ) " 1 . Thus,

p t o t ( - 6 , +2TT, pL) = p ( - 6 , +2TT) + T ( ^ ' 2jt)PhT, (6.76)
1 - P P L

where the quantities on the right-hand side (p, p,T, and T) are evaluated for a black
surface, pL = 0.

A final step is to include the possibility of inhomogeneity. When the transmission
or reflection is from below, it is necessary to replace p with p and T withT\ Thus the
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total flux reflectance is written

A o t(-A +2*, PL) = p(-ft, +27T) + r ( " f > ~? 7 r ) P L T . (6.77)
1 - PPL

The total flux transmittance can be determined in a similar fashion:

T«(-ft, -In, PL) = T(-ft, -In) + n-fi,
1 - P P L

( 6 . 7 8 )

1 " P P L

It is straightforward, but a bit tedious, to show that these results also follow from
the conservation of energy. Also, the method can be extended to derive a similar
relationship for the directional transmittance and reflectance (see Appendix P for
details). The results for these quantities are

-6o, ft, pd = p(-fto, ft) + ̂ ^ ; 2 f f ' ^ , (6.79)

T ( 6 6 «\ T( 6 6^ 4. P L ^ ( - ^ O , -2*)p(ft, +2TT)
7 to t ( - "o , - " » PL) = T(—L20, -S2) H =— . (6.80)

TT[1 - P P L ]
We have shown that the bidirectional reflectance and transmittance of a slab over-

lying a reflecting surface with a Lambertian reflectance are given by the sums and
products of quantities evaluated for a black surface. This means that we only have to
solve one radiative transfer problem involving a nonreflecting lower boundary. If the
slab is inhomogeneous, we should, however, apply uniform illumination from both
the top and the bottom to allow for rapid computation of T(—Q, —2n), p(—Q, -\-2TT),

andp as discussed above. Thus, as long as we are interested in only the transmitted and
reflected intensities an analytic correction allows us to find the solutions pertaining to
reflecting (Lambert) surfaces.

6.12 Integral Equation Formulation of Radiative Transfer

We have seen that the general radiative transfer equation (Eq. 5.41) is an integro-
differential equation, which relates the spatial derivative of the intensity to an angular
integral over the local intensity. This approach emphasizes the intensity, /v, as the
fundamental quantity of interest. However, as discussed in §5.3, we could as well
consider the source function, Sv, to be the desired quantity, since a knowledge of
either Iv or Sv (together with boundary conditions) constitutes a complete solution.
We will consider below an alternate formulation of the radiative transfer problem,21

where the source function is the principal dependent variable.

We proceed by making the same approximations as in Example 6.1 - isotropic
scattering, lower absorbing boundary, and a homogeneous medium. We may obtain
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an equation for the source function by eliminating the unknowns / / and Id from
Eq. 6.17. Substituting the Eqs. (6.19 and 6.18) for / / and /d~ we find

In

_0 0

1 T*

J ^ J I**' (6.81)

The two terms in brackets may be combined into a single term by noting that
because the two quantities (xf — x) and (r — r') are positive, they are therefore left
unchanged if we substitute their absolute value. The integrands are now identical in
form, and we may combine the two integrals into a single integral over the entire
medium. Interchanging orders of integration, we find

S(x) = (1 - a)B(r)
o Lo

(6.82)

The quantity in brackets is the first exponential integral (see Eq. 5.61),

l
dx

-e
-\T-T'\X (6.83)

Defining the sum of the two "internal" sources as Q = (1 — a)B + S*, we arrive
at the final form of our integral equation:

= Q(x) + | Jdx'Ex{\x - x'\)S(xr). (6.84)

This has come to be known as the Milne-Schwarzschild integral equation. E\ (| r — r' \)
is called the kernal of the integral equation. The quantity (a/2)E\(\x — x'\)dx' is the
probability that a photon that has been emitted within the plane layer between x' and
x' + dx' travels a net vertical distance to the plane at r and is scattered at r. The
physical significance of the integral term is therefore clear. It is the contribution to
the source function from multiply scattered photons occurring within the medium. (In
other words it is the contribution of the "self-illumination" of the medium.)

In the Milne-Schwarzschild formulation, we are faced with solving an integral
equation for the source function, S(x), instead of solving an integro-differential equa-
tion for the intensity, / ( r , JJL). It is clear that in this specific application (isotropic
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scattering) the integral approach is simpler, since it involves finding a solution for a
function of only one variable, rather than a function of two variables.

There are other favorable features of the integral formulation that can be mentioned.
The multiple-scattering term can be ignored if ar* Ĉ 1. Then the integral equation
solution provides the explicit solution S(x) & Q(r). This result is easily generalized
to anisotropic scattering and thermal emission:

S(T, /x, 0) « [(1 - a)B(x) + aFs /?(-/z0, 0O; M, 0)/47r]^-r/^° (at* « 1).

(6.85)

Once the solution for S(x) is available, the intensity follows by evaluating Eqs. 6.19
and 6.18 by numerical quadrature. In the more general case of anisotropic scattering,
the integral equation formulation loses its primary advantage, in that the source function
now depends upon not only position but also the direction, Q, of emission.

6.13 Probabilistic Aspects of Radiative Transfer

In this section we consider an alternate formulation of the radiative transfer process.
This approach will focus on properties of the scattering medium, which are inde-
pendent of the distribution of sources of radiation, either external or internal. The
point-direction gain and the escape probability are the basic quantities of interest.
These quantities incorporate all the basic scattering properties of the medium, through
the single-scattering albedo and the phase function, plus the knowledge of the total
optical depth. Through the point-direction gain and its angular moments it is possible
to solve problems differing in their sources of radiation. In the days before computers,
this approach provided a considerable advantage, since in principle, these fundamen-
tal quantities could be calculated once and for all and presented in tables for general
use. This approach is no longer necessary, since computers make it a relatively simple
matter to alter the boundary conditions or internal sources of radiation in the program
code. However, these probabilistic concepts are still of great pedagogical interest. We
will therefore discuss only the essential elements of the method.

We begin with a "thought experiment," which will illustrate the concept. We assume
a slab geometry and an isotropic scattering law. The medium may be inhomogeneous,
so that the single-scattering albedo depends upon the optical depth. Consider an interior
point at the optical depth x' within the medium. Within the thin layer between x' and
x' + dx' is contained an isotropic source of radiation, given by Q ( T ' ) , whose detailed
specification will not concern us. The source Q will generally consist of the sum of
a thermal source, (1 — a)B, plus an imbedded source of first-order scattered photons,
S*. (We will continue to suppress the frequency subscript.) The emergent photons
will execute a variety of scattering trajectories, depending upon the specific emission
direction and upon the random nature of the angular scattering process (see Fig. 6.8).

We are interested in those photons that eventually reach the surface (r = 0) and
that leave the medium in the direction given by /x. (There is no dependence on the
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Figure 6.8 Illustration of the point-direction gain concept, (a) Without
an interacting medium, the intensity emitted by the region within the
thin layer of thickness dx, in direction cos"1 /x, is given by Q —. (b) When
the thin layer is imbedded in an absorbing/scattering medium, the intensity
emitted in the same direction is Q Q —, where Q is the point-direction gain.

azimuthal angle 0, because of the assumption of an isotropic source and an isotropic
phase function.) The differential contribution to the emergent intensity due to this thin
layer may be written

) - ,

where Q is the (dimensionless) point-direction gain. To understand the meaning of this
quantity, consider the contribution to the emergent intensity from the same source in
the absence of a medium. This is just

d/+(0,At) = G ( r / ) — (0=1).

The presence of the term dx'l\i is explained by the fact that the column of emitting
material is in the direction /x. The change in the radiation field, Q, is a result of the
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intervening medium. We may now write down an expression for the emergent intensity
from the entire medium, since this is just a linear sum over all layers (an integral in
the limit of very small layer thicknesses):

T*

/+(0, /x) = [ —G(T', /X; a, r*)2(r').
J fi

(6.86)

The intensity emerging from the bottom of the medium (assuming no reflection from
the boundary) is given by

i-< * ^ fdT'r, * '
/ ( r * , / x ) = / — G ( r * -r ,[i;a,->

For an inhomogeneous medium, the point-direction gain is different for downward
emitted radiation than for upward radiation, and hence we use the different symbol,
Q. For a homogeneous medium, Q = Q.

The above experiment is called direct, in that we seek the external radiation field
derived from a certain internal source. We now consider the inverse experiment, that
is, we are given an external radiation field, 7~(0, /x), and we seek to determine the
internal source function. We assume that no thermal sources of radiation are present. We
postulate that the source function arising from this incident radiation field is given by

2n

S(r) = ^- I d4> Id^G(r, /x; a, r*)/~(0, /x,
0 0

In the particular case of an incident collimated beam

/ - ( 0 , /x, 0) = Fs5(/x - /xo)<K0 - 0o),

the source function is

^ x o ; a , r * ) , (6.88)

where the subscript 3 refers to Prototype Problem 3 (i.e., collimated incidence). Since
S3 satisfies the Milne-Schwarzschild equation (Eq. 6.84)

o

then Q satisfies the following equation:

0; a, r*) = e " ^ 0 + - / dr'ExQr - x'\)Q(x\ /x0; a, r*). (6.89)
o
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We now return to the direct experiment and assume that the internal source is just
Q = S* = [a/47r]Fs^~T//x°,thatis, it is provided by an external collimated beam with
flux Fs. From Eq. 6.86, the emergent intensity from this source is

r

/ + (0 , ii) = Fs / — — 0 ( r ' , /x; a, T > - T 7 / X 0 .
J [i 4TT
o

We set the angle /x = /x0, so that

+(0, Mo) = F* f —£-Q{x', MO; a, T*)e-*''»\
J Mo 4n

and use the relationship between intensity and the source function (where we set

S(r') = S 3 ( T ' ) )

••[-'
J Mo
0

The above two equations for / + (0 , /x0) are valid for all /x0 and r*, if and only if

-^Fs£(T,/zo;a,T*), (6.90)
47T

which is the same result as in the inverse experiment, Eq. 6.88. It is another illustration
of the Principle of Duality, discussed in §6.9.

Other relationships connecting Q and its angular moments may be established with
the classical functions of radiative transfer theory. It suffices to mention only one set of
relationships to the X-, Y-, and //-functions, described by V. A. Ambartsumyan and
S. Chandrasekhar. These functions have played a key role in the development of the
classical theory of radiative transfer.22 It may be shown that these functions are equal
to the point-direction gain evaluated at the upper and lower bounds of the medium
(assumed homogeneous),

x; a, r*) = 0(0, //,; a, r*), F(/x; a, r*) = 0(T*, /X; a, r*), (6.91)

H(fi\ a) = 0(0, /x; a, r* - • oo). (6.92)

It should be apparent that knowledge of Q allows one to solve entire classes of radia-
tive transfer problems. This is the case for the source function for an arbitrary incident
intensity on either or both faces, and also for the emergent intensities for any arbitrary
disposition of internal sources.

6.13.1 The Escape Probability

As discussed earlier, the quantity (a/4jt)G has a dual interpretation. In the inverse
problem, it is the source function for the problem of an isotropically scattering slab
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of optical depth r* illuminated by a collimated beam of radiation of flux unity (see
Eq. 6.90). For the direct problem, we can interpret it in terms of a directional escape
probability. The formal relationship is

V{x, /X; a, r*) = ^ - £ ( r , /x; a, r*). (6.93)

The quantity Vdco is interpreted as the joint probability of two successive events:
First, a/An is the probability per unit solid angle that a photon, having suffered an
extinction event at r, will emerge as a scattered photon; and second, Qdco is the proba-
bility that a photon will emerge from the upper surface of the medium in the direction
/x within the solid angle dco. If we then integrate the product of these two probabil-
ities over all emergent angles in the upper hemisphere, we obtain the hemispherical
escape probability,

2n 1 1

V{x\ a, r*) = I d(j) f d/xV(r, /x; a, r*) = | f dfiG(r9 /x; a, r*). (6.94)
0 0 0

Here V(r; a, r*) is the probability of a photon emerging from the medium in any
(upward) direction, and it is seen to be proportional to the zeroth-order moment of the
point-direction gain. The escape probability for a homogeneous medium is propor-
tional to the source function for Prototype Problem 1 (uniform incidence), which is
illustrated in Fig. 6.6. Suppose the medium is optically thin, so that Q « e~T/fl, from
Eq. 6.89. Then V -> P where

P(r; a, r*) = - / d/jie~T/fl = -E2(r) = Si(r), (6.95)

o

where S\(r) is the source function for Prototype Problem 1. The above quantity, the
single-flight escape probability, is given a special symbol because of its importance.
It describes the probability of direct escape of all photons emerging at that point either
from thermal emission or from a scattering. It is clear that those photons which have
been scattered one or more times are counted in the general escape probability V. Note
that the single-flight escape probability out the bottom of the medium is P(r* — r) .

6.14 Summary

As stated at the beginning the purpose of this chapter is to take a close look at the
formulation of radiative transfer problems. The main idea is that we can save a lot of
resources by properly analyzing the problem to see if there are possible simplifications
making it easier to find a solution.



212 Formulation of Radiative Transfer Problems

As a first example we demonstrated that a separation into diffuse and solar compo-
nents is very useful for problems with collimated beam incidence. A second example is
the simplification that is possible in slab geometry if we need to compute the azimuthal
dependence of the radiation field. In this case it turns out to be sufficient to solve a
series of uncoupled azimuth-independent equations. Each of these equations is simi-
lar to the azimuthally averaged equation, which we can solve, by methods discussed
in subsequent chapters. We referred to this as "the isolation of the azimuthal depen-
dence"; it allows us to compute very efficiently the complete azimuthal dependence
of the radiation field.

Many problems in radiative transfer involve scattering phase functions that are
strongly peaked in the forward direction. The one-parameter Henyey-Greenstein phase
function was introduced as a prototype for large-particle scattering. Scaling transfor-
mations in which the forward-scattering peak is truncated have proven to be extremely
useful for making the transfer equation more amenable to solution. This provided a
third example of the usefulness of formulating the problem properly prior to attempting
a solution.

It is also useful to try to relate a problem for which solution is sought to one that
is easier to solve. This issue was addressed in §6.10, where we discussed how cer-
tain duality relations that can be traced to the Reciprocity Principle allow us to re-
late problems pertaining to collimated incidence to an equivalent problem pertaining
to uniform incidence. The practical consequence is that we can save considerable
amounts of computing resources because the latter problem requires substantially less
computation than the former one. The use of uniform incidence allows us to com-
pute very efficiently bulk quantities such as flux reflectance and transmittance and
the corresponding "spherical" quantities. These in turn can be used to provide ana-
lytic corrections for surface effects if the surface can be approximated by a Lambert
reflector.

Three prototype radiative transfer problems were introduced in this chapter. These
problems will be solved by approximate methods in Chapter 7 and accurately in
Chapter 8. Their solutions provide physical insight as well as serving to check the
performance of solution methods. We discussed briefly the integral equation formu-
lation approach to radiative transfer and the use of probabilistic concepts in radiative
transfer theory. The point-direction gain Q is similar to a Green's function - if we are
given the basic distribution of photon sources, we can find the emergent intensities
from an integration of the sources weighted by Q. It is interpreted as the change in
the emergent intensity due to the intervening medium over that obtained from the
sources in the absence of a medium. It is also interpreted as the probability of a
photon emerging from a medium in either a specified direction (in which case we
refer to the directional escape probability) or over a hemisphere (the hemispherical
escape probability). A knowledge of Q evaluated at the two boundaries of a slab
medium provides us with the Chandrasekhar X-, Y- and //-functions. These will be
shown in the next chapter to be useful in finding emergent intensities from a slab
medium.
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Problems

6.1 The Henyey-Greenstein phase function is given by Eq. 6.49.
(a) Verify that it is correctly normalized so that

4TT J da)puG(cos&) = 1.
An

(b) Derive the following expression for the azimuthally averaged phase function:

' - — ? . ' ' _ V" z
2n J HG f-£

o / = 0

where P/(w) are the Legendre polynomials. Show explicitly that xi = gl by ex-
panding Eq. 6.49 in a binomial series. (Hint: Expand /?HG as a power series expan-
sion in the quantity g2 — 2g cos 0 and collect the terms multiplying the various
powers of g.)

6.2
(a) Show that the delta-Legendre polynomial representation for the phase function

2N-1

p(cos 0) = 2/5(1 — cos 0) + (1 — / ) ^ (21 + 1) x/P/(cos 0)
1=0

leads to the usual equation (as outlined in §6.3, Eq. 6.35) for the mth Fourier com-
ponent of the intensity, 7m(r, /x), except that the optical depth, single-scattering
albedo, and source term are scaled according to

l-af l-af

(b) Verify that p (cos 0 ) is correctly normalized.

6.3 Prove Eq. 6.47.

6.4 A disadvantage to the Henyey-Greenstein phase function PHG is its failure in
the limit of g -> 0 (small-particle limit) to approach the Rayleigh phase function
PRAY- (Instead it approaches p —• I.) This problem describes a more satisfactory phase
function parameterization for small particles.
(a) Show that the following parameterization approaches /?RAY as g -^ 0:

3 ( l - g 2 ) ( l + c o s 2 0 )

( l + g 2 - 2 g c o s 0 ) 3 / 2 '

(b) Show that /?^G is properly normalized by using the property xi =
= gl. (Hint: cos2 0 = \(2P2(@) + I).)
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(c) Show that the asymmetry factor is

n
1 r

(cos @) = - / d® sin @ cos BpH,

6.5
(a) Prove that the escape probability (§6.13, Eq. 6.94) for a semi-infinite medium is

related to the source function for Prototype Problem 2 (B — constant) through

(b) Prove that V(r, r* —• oo) = S\ (T, r* —• oo)/Z, where Si is the solution to Proto-
type Problem 1.

6.6 Show that the spherical albedo, p, and the spherical emittance, T, for a collimated
beam problem (Prototype Problem 3) are equal to the flux reflectance, p(—2n, +2TC),

and flux transmittance, T(—2n, +2TT), respectively, for Prototype Problem 1.

6.7
(a) Show that the flux emittance in Prototype Problem 2 is equal to the flux absorptance

in Prototype Problem 1, in the case of a semi-infinite slab.
(b) How should the boundary conditions be altered in order for the above relationship

to apply to a finite slab?
(c) Explain in physical terms the basis of this relationship.

6.8 A homogeneous, conservative-scattering medium of spherical reflectance pa

overlies a Lambert reflecting surface of albedo pL.
(a) Use Eqs. 6.77 and 6.78 to show that the sum of the total spherical reflectance ptot

and the total flux transmittance Ttot of the medium is given by

Ptot + ^tot = —

(b) Show that ptot + Ttot = 2 in the limit pL = 1.
(c) What is the physical interpretation of a surface that has both perfect reflectance

and perfect transmittance? (Compare with a transparent surface imbedded in a
hohlraum.)

6.9 The spherical transmittance T has been previously defined (Eq. 5.35) as

I l

[7^(+/x, +2TT) + e~T*/tM] = fd + 2 / t//x/x^~r*/M, (6.96)

o o

where Td is the diffuse flux transmittance and Td is the corresponding spherical diffuse
transmittance. Show that if we integrate the above expressions for the reflectance and
transmittance over the hemisphere to obtain the flux reflectance and flux transmittance,
we obtain Eqs. 6.77 and 6.78.
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Notes

1 Einstein, A. and L. Infeld, The Evolution of Physics, Simon and Shuster, New York,
1961.

2 The separation of the radiation field into diffuse and direct ("solar") components is a
"standard" procedure used to deal with boundary conditions in mathematical physics,
see, e.g., Morse, P. M. and H. Feschbach, Methods of Theoretical Physics, Dover, New
York, 1950. In radiative transfer theory, it is described for example in Chandrasekhar,
S., Radiative Transfer, Clarendon, Oxford, 1950 and Liou, K.-N., An Introduction to At-
mospheric Radiation, Academic Press, Orlando, FL, 1980.

3 Collections of key papers on radiative transfer in multiple-scattering and absorbing
media is contained in Selected Papers on Scattering in the Atmosphere, SPIE Milestone
Series, Volume MS07, 1989, edited by C. F. Bohren, and Selected Papers on Multiple
Scattering in Plane Parallel Atmospheres and Oceans: Methods, SPIE Milestone Series,
Volume MS42, 1991, edited by G. W. Kattawar.

4 The expansion of the phase function in Legendre polynomials and the isolation of
the azimuth dependence for the slab problem are "standard" procedures described in
Chandrasekhar's book. Note that if iV —> oo, Eq. 6.28 becomes an equality.

5 See, for example, Arfken, G., Mathematical Methods of Physics, 3rd ed., Academic
Press, Boston, 1985.

6 A practical reason for using the Af is that they remain bounded whereas the P™ can
become quite large and cause computer overflow (see NASA report cited as Endnote 5
of Chapter 8).

7 The treatment of spherical geometry is described in Sobolev, V. V, Light Scattering in
Planetary Atmospheres (Transl. by W. M. Irvine), Pergamon, New York, 1975.

8 A derivation of the "streaming" term is provided in Kylling, A., Radiation Transport in
Cloudy and Aerosol Loaded Atmospheres, Ph.D. Thesis, University of Alaska, Fairbanks,
1992, and a discussion of the azimuthally averaged equation is provided in Dahlback,
A. and K. Stamnes, "A new spherical model for computing the radiation field available
for photolysis and heating at twilight," Planet. Space Sci., 39, 671-83, 1991.

9 Wiscombe, W. J., "Atmospheric radiation: 1975-1983,"/tev. Geophys.,21, 997-1021,
1983.

10 Several authors have considered the transfer of radiation within the coupled atmosphere-
ocean system. A comparison of different approaches including numerical results is
provided in Mobley, C. D., B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel,
P. Reinersman, K. Stamnes, and R. H. Stavn, "Comparison of numerical models for com-
puting underwater light fields ''Applied Optics, 32, 7484-504, 1993. Our presentation
follows the treatment of Z. Jin and K. Stamnes, "Radiative transfer in nonuniformly re-
fracting media such as the atmosphere/ocean system," Applied Optics., 33,431-42,1993.

11 Radiative transfer in aquatic media is described in some detail in the classical text by N. G.
Jerlov, Marine Optics, Elsevier, Amsterdam, 1976, and more briefly in the text by J. Dera,
Marine Physics, Elsevier, Amsterdam, 1992. A recent text is that of Mobley, C. D., Light
and Water: Radiative Transfer in Natural Waters, Academic Press, San Diego, 1995.

12 Scattering of radiation by independent particles and the calculation of phase functions
are described in considerable detail in the classic treatise by H. C. van de Hulst, Scatter-
ing by Small Particles, Wiley, New York, 1957, in the more specialized treatment by
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D. Deirmendjian, Electromagnetic Scattering on Spherical Poly dispersions, American
Elsevier, New York, 1969, in the more elementary book by E. J. McCartney, Optics of
the Atmosphere: Scattering by Molecules and Particles, Wiley, New York, 1976, as well
as in the comprehensive treatment by C. F. Bohren and D. R. Huffman, Absorption and
Scattering of Light by Small Particles, John Wiley & Sons, New York, 1983.

13 A practical reference that discusses numerical algorithms is Wiscombe, W. J., "Improved
Mie scattering algorithms," Applied Optics, 19, 1505-9, 1980.

14 Gordon, H. R., "Modeling and simulating radiative transfer in the ocean," in Ocean
Optics, ed. R. W. Spinrad, K. L. Carder, and M. J. Perry, Oxford University Press, New
York, 1994.

15 This approach is due to A. F. McKellar and M. A. Box, "Scaling group of the radiative
transfer equation," J.Atmos. Sci.,38, 1063-8, 1981.

16 Similarity transformations were first introduced by H. C. van de Hulst and are discussed
in his book, Multiple Light Scattering: Tables, Formulas, and Applications, Academic
Press, Orlando, FL, 1980.

17 The (5-TTA scaling transformation is described in J. H. Joseph, W. J. Wiscombe, and J. A.
Weinman, "The delta-Eddington approximation for radiative flux transfer,"/. Atmos.
ScL, 33, 2452-9, 1976.

18 The 8-N approximation is described in W. J. Wiscombe, "The delta-M method: Rapid yet
accurate radiative flux calculations for strongly asymmetric phase functions," J. Atmos.
Sci.,34, 1408-22, 1977.

19 It is closely connected to the Principle of Detailed Balance (see §4.4), which states that
in thermodynamic equilibrium any detailed process which we choose to consider has a
reverse process, and the rates of these processes are in exact balance. It has been proven
for any system governed by a Hamiltonian that possesses time-reversal invariance, both
in classical systems and in quantum mechanics. For more details, see van de Hulst,
H. C, Scattering by Small Particles, Wiley, New York, 1957.

20 The inclusion of surface reflection as an "analytic correction" is described in Chan-
drasekhar's book (pages 271-3) for a homogeneous slab. The extension to an inhomo-
geneous slab outlined in Appendix P is taken from K. Stamnes, "Reflection and trans-
mission by a vertically inhomogeneous planetary atmosphere," Planet. Space Sci., 30,
727-32, 1982.

21 The classical literature is replete with solutions of radiative transfer integral equations,
usually in an idealized scattering/absorbing medium. A prime example is E. Milne,
"Thermodynamics of the stars" in Handbuch Astrophys.,3 (1), 65, reprinted by Dover
Press in the volume edited by D. H. Menzel, Selected Papers on the Transfer of Radiation,
1966. More modern treatments are given by V. Kourganoff, Basic Methods in Transfer
Problems, Clarendon Press, Oxford, and Heaslet, M. A. and R. F. Warming, "Radiative
source predictions for finite and semi-infinite non-conservative atmospheres," Astrophys.
Space Science, 1, 460-98, 1968.

22 Chandrasekhar, S., Radiative Transfer, Dover Publications, New York, 1960. For a
readable exposition of classical methods of the Russian school, see V. V. Sobolev, A Trea-
tise on Radiative Transfer, English translation by S. I. Gaposchkin, D. Van Nostrand,
Princeton, 1963.



Chapter 7

Approximate Solutions of Prototype Problems

7.1 Introduction

We now describe several approximate methods of solution of the radiative transfer
equation. Approximate methods play an important role in the subject, because they
usually provide more insight than the more accurate methods. Indeed their simple
mathematical forms help clarify physical aspects that are not easily discerned from
the numerical output of a computer code. Another redeeming feature of approximate
methods is that they are often sufficiently accurate that no further effort is necessary.
Unlike some of the more sophisticated numerical techniques, these methods also yield
approximations for the internal radiation field, including the source function. Of cen-
tral importance is the two-stream approximation. This class of solutions has been given
various names in the past (Schuster-Schwarzschild, Eddington, two-stream, diffusion
approximation, two-flow analysis, etc.). In all variations of the method, the intractable
integro-differential equation of radiative transfer is replaced with representations of
the angular dependence of the radiation field in terms of just two functions of optical
depth. These two functions obey two linear, coupled ordinary differential equations.
When the medium is homogeneous, the coefficients of these equations are constants,
and analytic closed-form solutions are possible. The mathematical forms of these so-
lutions are exponentials in optical depth, depending on the total optical depth of the
medium, the single-scattering albedo, one or two moments of the phase function, and
the boundary intensities. Some disadvantages are that two-stream solutions maintain
acceptable accuracy over a rather restricted range of the parameters; there is no useful
a priori method to estimate the accuracy; and one generally needs an accurate solution
to obtain a useful estimate of the accuracy.

217
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In recent years two-stream methods have been applied to multilayer problems and
to the computation of photolysis and heating rates in the presence of scattering. Al-
though computationally intensive radiative transfer schemes are capable of accuracy
better than 1%, it is unlikely that the inputs to the models are nearly this accurate. In
the present era of fast computers, there is still a need for fast computational radiation
algorithms (such as the two-stream method), particularly in three-dimensional photo-
chemical/dynamical models. For example, the NCAR CCM3 General Circulation
Model uses an algorithm for calculating shortwave radiative heating that is based on
the two-stream method.

In this chapter we first consider so-called optically thin problems, or more precisely,
first-order scattering solutions. The results are simple analytic expressions, which nev-
ertheless are sufficiently general to make this method an important part of one's arsenal
of weapons. We first discuss the single-scattering approximation for solar beam inci-
dence in which the multiple-scattering contribution to the source function is ignored.
In this case the source function for the diffuse radiation is given by a simple analytic ex-
pression and the integration may be carried out directly. We then discuss the multiple-
scattering series and the condition of validity of the single-scattering approximation.
The effect of a reflecting surface is considered next. We will then concentrate on the
two-stream approach in solving the radiative transfer equation. We find approximate
solutions of the three prototype problems introduced in Chapter 5 in the simplifying
case of isotropic scattering. We introduce the exponential-kernal method, based on the
integral-equation approach (§4.11). Prototype Problem 1 is solved as an example of this
technique to illustrate its equivalence to the traditional differential-equation method.

We then look at anisotropic scattering and compare the approximating differential
equations for the classical Eddington approach with those of the two-stream approach.
The two methods will be found to be equivalent, provided the mean ray inclinations
for both the internal and boundary radiation are chosen to be the same. The backscat-
tering coefficients, which play a vital role in the two-stream method, are defined as
angular integrations over the phase function. Solutions are obtained for the case when
these coefficients differ between the two hemispheres, a situation that approximates
radiative transfer in the ocean. The accuracy of several of these approximate solutions
is assessed by comparing with the results of more accurate techniques. These latter
methods will be considered in Chapter 8.

7.2 Separation of the Radiation Field
into Orders of Scattering

We showed in Chapter 5 that if the source function is known then we may integrate
the radiative transfer equation directly. This is the case for thermal emission in the
absence of scattering. A second important case where the source function is known is
when multiple scattering is negligible. The solution to the radiative transfer equation
in the absence of multiple scattering is usually referred to as the single-scattering
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approximation. We will first derive these solutions for the diffuse intensity and then
discuss situations where this approximation is valid. In slab geometry the radiative
transfer equations for the half-range intensities are

= / + ( t , /x, 0) - S+(r, /x, 0), (7.1)
dx

= / (T, / X , 0 ) - S (T, /X,0). (7.2)

We have dropped the v subscripts for convenience. As usual, the independent variable
is the optical depth, measured downward from the "top" of the slab. We showed in
Chapter 6 that formal solutions to the above equations are a sum of direct (/s) and
diffuse (/d) contributions:

r, n, 4>) = /-(0,11, <j>)e-T/)l + f —e-C-^S-iT', ft, 4>), (7.3)
J A^

' s /* dr'
/+(r,/x,0)=/+(r*,/x,0>-(r-T)/^ + / —^-(T-T)//x5+(r/,/x,0),

T

(7.4)

In the single-scattering approximation, we assume that the multiple-scattering contri-
bution (the integral terms) to the source function is negligible. From Eqs. 6.7 and 6.9,
the source function simplifies to

S±(r'', /x, 0) ^ (1 — a)B + 5*(rr, ±/x, 0)

= (1 — a).B H P(—JJLQ, 0O; ± / X , (j))e~x ^ ° . (7.6)
47T

Here 5 is the Planck function, (1 — a) is the volume emittance, 5r± are the half-range
source functions analogous to the half-range intensities / ± ( r , /x), and S* is the contri-
bution of singly scattered solar photons to the source function. Since this latter term
varies exponentially with optical depth the integration is easily carried out. Substitut-
ing the simplified form (Eq. 7.6) into Eqs. 7.3 and 7.4, and carrying out the integrations,
we obtain the following analytic results for the first-order scattered intensity:

a/xoFs
/7(- /xo,0o;-/x,0) . T/|£o _ ^_T /^

4TT(/XO-/X) L J '



220 Approximate Solutions of Prototype Problems

+
47T(/X0H-/X)

(7.8)

To obtain the total intensity, we must add to the diffuse intensity the boundary terms in
Eqs. 7.3 and 7.4. Since / " (0 , /x, 0) = Fs<5(/x - /xo)<$(0 - 0O) and / + ( r* , /x, 0) = 0
(if the lower boundary is assumed to be perfectly absorbing), the total intensity is given
by

.-lio)S(4>-4>o) + Ii(r,li,<l>), (7-9)

o

/ + ( t , /x, 0) = / + ( t* , /x, 0)^( T*-T ) / / X + /d
+(r, /x, 0) = /d

+(r, /x, 0), (7.10)

where the diffuse terms are given by Eqs. 7.7 and 7.8.
Favorable aspects of the single-scattering approximation are:

1. The solution is valid for any phase function.

2. It is easily generalized to include polarization.

3. It applies to any geometry, as long as we replace the slab optical path r//x with
the expression appropriate to the incident ray path. For example, in spherical
geometry, r//x0 is replaced with rC/z(/x0), where C/z(/x0) is the Chapman
function (see §6.4).

4. It is useful when an approximate solution is available for the multiple
scattering, for example, from the two-stream approximation. In this case the
diffuse intensity is given by the sum of single-scattering and (approximate)
multiple-scattering contributions.

5. It serves as a starting point for expanding the radiation field in a sum of
contributions from first-order, second-order scattering, etc. The latter
expansion technique, known as Lambda iteration, allows us to evaluate more
precisely the validity of the first-order scattering approximation.

7.2.1 Lambda Iteration: The Multiple-Scattering Series

We have previously shown that the source function is the sum of single-scattering
and multiple-scattering contributions. The latter is just the sum of contributions from
photons scattered twice, three times, etc. To explicitly reveal the structure of this
multiple-scattering series, we consider the integral equation formulation, Eq. 6.81. To
avoid unnecessary complexity, we will assume isotropic scattering in a homogeneous
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medium, for which Eq. 6.84 is valid (a = constant):

T*

S(r) = (1 - a)B(r) + 5*(T) + ̂  J dx'Ex(\x - r'|)S(r'). (7.11)
o

This integral equation forms the basis for an iterative solution, in which we first ap-
proximate the integrand S(T ' ) with the first-order scattering source function, 5(1) (r') =
(1 - a)B(rf) + S*(r'). Then an improved result S(2) is obtained by inserting S(l)(xf)
into the integrand of Eq. 7.11,

r*

S(2)(x) « S(l\x) + | /" dr'EiQr' - (7.12)

This procedure is then repeated aJ infinitum to improve the approximation. Defining
the dummy integration variables as Ti, r 2 , . . . , rn, we obtain the infinite series

oo

S(r) = J2A(n)(T> *n)S(l)(rn) = S(l)(r) + a-\ drxEx(\x -

T* T*

| ) 2 j dn J dx2El{\r - Ti|)£i(|r, - r2|)5
(1)(T2) + • • •,

0 0

(7.13)

where the Lambda operator is defined as

0

X* X*

^ t2^ ~ \ 2 / / dTl ' dXlEl^X ~ rlD£l(lTl ~ T2l)'
0 0

x*

A( B )(T,TB )S ( | V f dxiE^x - n\) j dx2Ei(\xi - x2\)
0 0

j

rn^i( |rn_i-rj) . (7.14)
0

Equation 7.13 is called the Neumann series expansion of the source function, and
it is easily interpreted as the sum of the first-order, second-order, etc. scattering con-
tributions. It is not obvious that the above series converges, that is, whether it is the
desired solution to Eq. 7.11. A proof that it is indeed absolutely convergent is obtained
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by evaluating a second series expansion in closed form, whose terms are upper bounds
to those in the above series expansion.

The proof of convergence also provides us with an approximate solution that offers
more insight into the general nature of the multiple-scattering series. We assume the
conditions of Prototype Problem 2, in which the only source of radiation is thermal
emission, and for which the "imbedded source" is constant with r. For simplicity we
temporarily set this source equal to unity, S(1) = (1 — a)B = \. Consider the second-
order contribution to the source function

X*

= | j dxxEx(\x - Til)
0

r T

/
dxxEx(x — Ti) + / i

J
-r)

J
.0

Using the property dE2(t)/dt = —Ex(t), and noting that £2(0) = 1, we find

T X*

(7.15)

= a [1 - l/2E2(x) - l/2E2(x* - r)]

= fl[l_P(T)_P(T*_T)]. (7.16)

The functions P(x) = \E2(x) and P(r* — r) = \E2(x* — x) are the hemispherical
single-flight escape probabilities for a photon released at the optical depth r (see
Eq. 6.95). They describe the probability of escape without further scattering through
the top (r = 0) or bottom (r * — r) of the slab, respectively. As usual, we are assuming
a black lower boundary, so that a photon is lost when it reaches either boundary.

Since 1 — P(x) — P(x* — x) is the probability of photon capture upon emission at
r, the interpretation of Eq. 7.16 is clear. The source function of second-order scattered
photons is the product of two factors: {a = probability of a photon being scattered
following an extinction event) x (the probability that a photon is "captured"). It de-
fines the contribution from photons that are emitted from a unit volume,1 suffer one
extinction, and survive the extinction as a scattering event.

Since we are interested in an upper bound to the source function, this occurs where
the escape probability is a minimum, that is, at the mid-point in the slab, x = r*/2.
Let us replace the equality Eq. 7.16 with the inequality

Si2)(x) <a[l-P(r*/2)l

Continuing the procedure, we find that the third-order term is

T* T*

S(3)(x) = ( ^ ) 2 I dxxEx{\x - nl) j dx2El(\xl - T2|). (7.17)
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An upper limit follows from evaluating both the integrals at r*/2:

T* T*

S(3)(t) < ( ^ ) 2 j dxxEx{\xx - r*/2|) J dx2Ex(\x2 - r*/2|)
0 0

= a2[l-P(x*/2)]2.

Repeating this process for every order of scattering, we find the general upper bound

S(n\x) < an-\\ - P(T*/2)]n-1.

The total source function thus obeys the following inequality:

oo oo

S(x) = J 2 s i n ) < J2X"> where x = a [ l - P(r*/2)l

The above series is easily evaluated by recognizing that the geometric series expansion
of (1 - JC)"1 is 1 + x + x2 H . Thus

We have replaced the numerator (1) with the original thermal source (1 — a)B. Since
0 < P(x) < 1, and 0 < a < 1, this result is finite. Note that in the limit of an opti-
cally thick, conservative-scattering medium where the escape probability goes to zero,
S—• (1 —a)B/(l —a) = B, as it should. Thus, we have shown that the Neumann
series converges for any first-order scattering source that is finite everywhere in the
medium. Equation 7.18 is also interesting in its own right, since it provides in some cir-
cumstances a useful estimate for the actual source function. If we use the more general
first-order source function, Eq. 7.15, we can replace the upper limit with the approxi-
mation

- a)B + (aF/47r)/?(/zo, 0o; M, 0)e

In astrophysics, the above equation is called the Sobolev approximation, and in in-
frared atmospheric physics it goes by the name of the cooling-to-space approximation
(§10.2.6).

Now let r* < 1. We note that 1 - P(r*/2) = 1 - E2(x*/2) « 1 - e'^11^ « r*
(assuming \± = 1/2). The multiple-scattering series becomes

S(r, n, 0) « [(1 - a)B

This shows that it is permissible to use first-order scattering provided that at* <&l.
This is reasonable because if absorption is large (a is small), then even if T* is large,
the contribution of multiply scattered photons may still be negligible. Thus, an op-
tically thin medium (r* <C I) is not necessarily required for multiple scattering to be
negligible.



224 Approximate Solutions of Prototype Problems

The multiple-scattering series method is practical only when the series converges
rapidly. Otherwise, the necessity of performing multiple integrals makes the computa-
tion prohibitively expensive. The second-order scattering term may be used to estimate
the error in the first-order scattering approximation, although because of the mono-
tonic nature of the series, this only provides a lower bound to the error, which is not
very helpful. A practical example where single scattering is the dominant contribution
is that of a thin Rayleigh-scattering atmosphere overlying a dark surface. The angular
distribution of near-infrared skylight as seen by a ground observer is described with
reasonable accuracy by the single-scattered component (Problem 5.1). The next most
important contribution is usually that of sunlight reflected from the surface and then
scattered once in the atmosphere. We next consider this effect.

7.2.2 Single-Scattered Contribution from Ground
Reflection: The Planetary Problem

The radiation reflected upward from a surface is often comparable to the direct solar
radiation, and the first-order scattering from this source may appreciably augment the
source function. From the expression 6.11, the boundary contribution to the source
function is given by

S!(r, db/x, 0) = — dc/)' d[i'p(+ii', 0'; ±/z, 0)/r
+(r, /x', 0'),

4TT J J
o o

(7.20)

where /r
+ is the upward beam of reflected solar radiation received at the optical depth

r. We will assume that the reflected light is primarily the component arriving directly
from the surface. From the definition of the BRDF (Eq. 5.10),

Inserting the above result into Eq. 7.20, we find

In

0

1

i/z'/?(/z', <//; ±/x, 0)p(/xo, 0o; M > 0') e~^T*~T^fl.

0

(7.21)

The single-scattering source function for the planetary problem is therefore S* + S£,
where S* is given by Eq. 7.6, and S£ by Eq. 7.21. Integration over a line of sight yields
the intensity, using Eqs. 7.3 and 7.4. The effects of ground reflection should always be
considered in any first-order scattering formulation. As we will show, its influence is
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comparable to the direct first-order scattering (Eqs. 7.15 and 7.16), unless the surface
is quite dark.

We will estimate the first-order surface contribution to the Rayleigh-scattered sky-
light distribution. For this purpose, it is sufficient to replace the BRDF with a Lamber-
tian reflectance function (p = p^ = constant). In addition, the integration of the reflec-
ted radiation over 2n sr will "wash out" the signature of the weak angular dependence
of the Rayleigh phase function. Thus, it is permissible to replace the function pRAY

with an isotropic phase function, p = 1. The error is expected to be less than that of
ignoring the multiple scattering. The simplified result is

_ ry {122)

The ratio of 5b to S* is therefore 27t/jLopLE2(r* — r)p~l. For small r*, this ratio
is ~27T/XOPLP~\ which can actually exceed unity. For an average solar incidence,
/x0 = 0.5, this term may be ignored only if p^ <$C (TT)-1. Thus even for the dark ocean
surface (7rpL^0.1), the skylight is influenced by surface reflection. Note that this
result is independent of the wavelength.

7.3 The Two-Stream Approximation: Isotropic Scattering

7.3.1 Approximate Differential Equations

Before considering the more realistic anisotropic scattering problem, we will spend
some time solving problems in which the scattering is isotropic (p = 1). This assump-
tion greatly reduces the algebraic complexity without sacrificing any essential aspects.
We will solve the three prototype problems for homogeneous media and for a black
lower boundary. We begin with the governing integro-differential equations and later
show that the integral-equation approach yields identical results.

The radiative transfer equations for the half-range intensity fields are given by (see
Eqs. 6.3 and 6.4)

dx 2
o

1

-§/«,'!
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Because the scattering is isotropic, the radiation field has no azimuthal dependence as
explained previously in Chapter 6. In the two-stream approximation we replace the
angularly dependent quantities ^ by their averages over each hemisphere, / + ( r ) and
7~(r). This leads to the following pair of coupled differential equations2, which are
called

The two-stream equations:

^ /+(r) - | / + ( r ) - | / " ( T ) - (1 - a)B, (7.23)

_ . _ ^ J r ) = 7_(T) _ a / + ( T ) _ a 7_(r ) _ (1 _ ^ ) g (? U)

ax 2 2

Here /x± is the cosine of the average polar angle 0 made by a beam, which generally
differs in the two hemispheres. The precise values are described in the next section.
These linear, coupled, ordinary differential equations allow for analytic solutions by
standard methods if the medium is homogeneous so that a{x) — a = constant. Before
embarking on this course of action, we note that the two-stream approximation will be
most accurate when the radiation field is nearly isotropic. This situation should occur
deep inside the medium, far away from any boundary or from sources or sinks of
radiation. However, we will often find, somewhat surprisingly, that it is accurate even
at the boundaries themselves. Thus, far from being simply an "asymptotic" theory,
the method can teach us about radiative transfer over a large range of variables, from
optically thin to optically thick conditions, and for both scattering- and emission-
dominated problems. We shall return to the accuracy of the two-stream approximation
in §7.6.

The approximate two-stream expressions for the source function, the flux, and the
heating rate are

= | J 7"(r, ii)1 + (1 - a)B

l

F(T) = lit f dfjLfl[I+(T, fl) - /-(T, /X)]

0

« 27T[/2+/+(r) - £- / - ( r ) ] , (7.26)

and

W(T) = - ^ « 27rof[/+(r) + /"(r)] - 4naB. (7.27)

In Eq. 7.27, a is the absorption coefficient. We have used Eq. 5.76 for the heating rate.
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7.3.2 The Mean Inclination: Possible Choices for fi

The two-stream approach does not provide us with a prescription for determining the
value of p±, but some options are discussed below. We could obviously define p±

formally as the intensity-weighted angular means

, = ,, = ,

but since we do not know the intensity distribution a priori this definition is of little
use. It demonstrates, however, that p will in general vary with optical depth and takes
on a different value in the two hemispheres. Hence picking the same constant value
for this quantity in both hemispheres (p = p+ = p~ = constant) is clearly an approxi-
mation. If the intensity field were strictly hemispherically isotropic, this formula would
yield p = 1 /2 for all depths and for both hemispheres. This is identical to the result ob-
tained in evaluating the hemispherical integral numerically using a one-point Gaussian
quadrature (explained in more detail in Chapter 8).

If the intensity distribution were approximately linear in /x, say I(/JL) & C/z, where
C is a constant, then p = 2/3. In the solution for Prototype Problem 2, we find that in
order to get the optimum accuracy in calculating the emittance of a highly absorbing
slab, p must lie between 2/3 and 1/2.

Alternatively, we could use the root-mean-square value

JoM = Mrms — V \A* / — A

If the radiation field were isotropic this definition would yield p = 1/V3, which hap-
pens to be identical to the value obtained from a two-point Gaussian quadrature for
the complete range of u = cos 6 (— 1 < w < 1). A linear variation of the radiation
field would yield p = 1/V2 = 0.71.

Thus, these possible choices yield p values ranging from 0.5 to 0.71. There is really
no certain way to decide categorically and a priori which choice is optimal or if another
definition would be even better. It appears that we are faced with having to pick the
optimal p value on a trial-and-error basis for each type of problem. In most of what
follows, we assume a single value for p but leave its value undetermined to remind us
that it represents some sort of average over a hemisphere. We shall return to this issue
in §7.5.5.

7.3.3 Prototype Problem 1: Differential-Equation Approach
In this problem, we ignore the thermal emission term. We will manipulate the two-
stream equations to uncouple the quantities / + and I~. By first adding Eqs. 7.23 and
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7.24 and then subtracting Eq. 7.24 from Eq. 7.23 we obtain

+ / " ) , (7.28)(1
dx

dx

Differentiating Eq. 7.29 with respect to t , and substituting for d(I+ — I~)/dx from
Eq. 7.28, we find

+
V1 ' * /•dx1

 /

This provides us with an equation involving only the sum of the intensities. Similarly,
differentiating the first of the above equations, and substituting for d(I+ + I~)/dx
from the second equation, we find

which involves only the difference of the intensities. We see that we have the same
differential equation to solve for both quantities. Calling the unknown Y, we obtain a
simple second-order diffusion equation

= T2F, where F = y/\ -a/p,, (7.30)
dx1

for which the general solution is a sum of positive and negative exponentials

Here A! and B' are arbitrary constants to be determined. Since the sum and differ-
ence of the two intensities are both expressed as sums of exponentials, each intensity
component must also be expressed in the same way:

/+(r) = AeTx + Be~T\ I~{x) = CeTr + De~T\ (7.31)

where A, B, C, and D are additional arbitrary constants.
We now introduce boundary conditions at the top and the bottom of the medium.

We begin with Prototype Problem 1 for which

/ - ( T = 0) = J = constant, /+(r*) = 0. (7.32)

We choose this as our first example, as the two-stream solution to this problem has the
simplest analytic form of the three considered. Furthermore it has several interesting
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aspects:

1. It bears a resemblance to the important problem of solar beam incidence
{Prototype Problem 3), particularly at large optical depths.

2. Its solution is that of the simplest greenhouse problem (Chapter 12).

3. The source function is proportional to the escape probability V (see §6.13 and
Problems 6.4 and 7.6).

4. Through the duality property, the directional reflectance and transmittance for
the direction /A are simply related to the flux reflectance and flux transmittance
for Prototype Problem 3, where /x is replaced by the cosine of the angle of
incidence of sunlight /x0.

5. The flux reflectance and transmittance for this problem are the spherical
reflectance and transmittance for Prototype Problem 3 (see Problem 6.5).

Equations 7.31 display four constants of integration, but the two boundary condi-
tions, Eqs. 7.32, and the fact that the differential equation is of degree two, suggest that
there are only two independent constants. To obtain the two necessary relationships
between A, B, C, and Z), we substitute Eqs. 7.31 into Eqs. 7.23-7.24. We find that

C B a \-iiT \4Y^L

= p (7.33)A D 2-a + 2jir 1 + /2F \

An explanation of the physical meaning of the above ratio defined as p ^ , where
0 < Poo < 1, is provided in Example 7.2. We now substitute into the general solutions,
Eqs. 7.31, to obtain

7+(r) = AeVx + p^De^1, (7.34)

/ - ( r ) = PooAerr + De~Tx. (7.35)

We now apply the boundary conditions (Eqs. 7.32), which yield

/ - ( r = 0) = PooA + D=1, 7+(r = r*) = AeTx* + p^De^1* = 0.

Solving for A and D we find

A = D = .

The solutions are

/ + ( T ) = ^ ^ [eT{x*-x) - e-r(x*-x)], (7.36)

7 " ( T ) = - [er(x*-x) - p ^ ^ - r ( T * - T ) ] , (7.37)

where the denominator is

V = eTx* - p 2 < r r r \ (7.38)
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The solutions for the source function, flux, and heating rate which follow from
Eqs. 7.25-7.27 are

S(r) = g (1 + Poo) [er(r*-T) - Pcoe-r(T*-r)], (7.39)

F(r) = - 2 A ^ (1 - Poo) [er(T*~r) + P o o ^ ^ ] , (7.40)

H(r) = ^ (1 + Poo) [« r ( l ' - r ) - Pooe-r(r*-T)]. (7.41)

Note that Eq. 7.26 yields F~ (0) = 2TT/2/~ (0) = 2njlX for the incoming flux at the top
of the slab. We might be tempted to set /2 = 0.5 so that this expression would yield
the exact value, nX. However, to remain consistent with the two-stream approxima-
tion, it is important to use the approximate expression, Eq. 7.26. The flux reflectance
p(—2n, 2n), flux transmittance T(—2n, —2n), and flux absorptance a(—2n) become

(-2*. In) = * ^ » = *=V - e-"], (7.42)
2nX V

^ ^ . (7.43)

and

a(-2n) = 1 - P( -2TT, 2TT) - T ( - 2 T T , -2TT)

= ~ r ^ r r * + Poô rT* - 1 - Pool- (7.44)

It is important to note that the flux transmittance includes the "beam" transmittance,
which in this problem is

Jo

Thus, the diffuse flux transmittance is

Td(-2n, -In) = T(-2n, -In) - %(-2n, -In)

] ^ ) . (7.45)

In the upper left panel of Fig. 7.1 we show two-stream values for the upward and
downward fluxes and the mean intensity as a function of optical depth for a specific
set of optical parameters, r *, a, jl, and X. The errors incurred by using the two-stream
approximation are shown in the upper right panel. Note that the upward flux is zero
at the bottom boundary (r = r* = 1.0), and the downward flux is 2nflX at the top
boundary (r = 0 ) . The error in these fluxes grows almost monotonically away from
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Figure 7.1 Two-stream solutions for uniform illumination {Prototype Problem 1).
Upper left panel: The parameters a r e X = l , r * = l , a = 0.4, jl = 1/2, and p — 1.
The downward flux F~ (solid line), the upward flux F+ (dotted line), and the
mean intensity / (dashed line). Upper right panel: Errors (e) in the two-stream
approximation, €_ = F~ — F~c (solid line), €+ = F+ — Fa+ (dotted line), 6net =
F — Fac (dot-dashed line), and €diV = (AF — AFac)/Ar (long-dashed line).
The subscript "ac" denotes the accurate solution, computed from an eight-stream
discrete-ordinates solution (Chapter 8). AF/Ar is the flux divergence, and €div is the
error in the flux divergence. Lower panels: Same as upper panels except that a — 1.0.

the boundaries and becomes as large as 25%, in this particular example. In lower

panels of Fig. 7.1 we show similar results for conservative scattering {a = 1.0). The

heating rate (flux divergence) is proportional to the total (direct plus diffuse) mean

intensity. The error here is less than that of the hemispherical fluxes, suggesting that

energy deposition may be estimated accurately in the two-stream approximation.
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Example 7.1 Thermalization Length and Random Walk

Equations 7.36 and 7.37 show that the (l/e)-depth of the penetration of photons is

The quantity F l is called the thermalization length. It is interpreted to be the mean optical depth of
a photon penetration following repeated scatterings before it suffers an absorption (thermalization).
The dependence on jl is straightforward, since the steeper the mean inclination of the rays, the
more shallow the penetration. The inverse dependence on Vl — a is qualitatively reasonable; when
a —> 1 (conservative scattering), the penetration depth becomes infinite, as one would expect for
no photon loss.

Why should the square root of the volume emittance (1 — a) be the relevant dependence? To
answer this we will use the random walk picture of "diffusion" of a multiply scattered photon
over distance. Imagine that photons are released repeatedly into an unbounded scattering medium
and are randomly scattered on the average (N) times before being destroyed (absorbed). Since
the probability of being destroyed per collision is (1 — a), then it is clear that (N)(l —a) = 1.
According to the random-walk theory, the mean total distance through which an average photon
"wanders" after (N) collisions is ^/(N)mfp, where mfp is the photon mean free path. Now mfp
is just one optical depth times the cosine of the mean ray inclination. Thus, the mean total distance
covered before being absorbed is just ^/{N) • /x = /X/A/1 — CL.

Example 7.2 Semi-Infinite Slab

In this example we consider the limit of r* —* oo. This is an approximation to a very thick
planetary atmosphere (such as that of Venus or Jupiter) or a deep ocean. Invoking the condi-
tion S{x)e~r —> 0, we must exclude the positive exponential terms. The solutions simplify as
follows:

/ - (T) = le~r\ 7+(r) = lPooe-r\ (7.46)

S(r) = | j ( l + Poo)e-rz, (7.47)

F(r) = -2njXX{\ - Poo)e-rT, (7.48)

p^e_rx

Note that the sign of F(r) is negative, indicating that the net flow of energy is downward. We
also note that F{z) —> 0 as r exceeds many thermalization lengths. The flux reflectance of the
semi-infinite slab is

7 + ( T = 0 ) XPoa 1 - y T ^
P ( - 2 J T , 2JT) = = ^ — = p 0 O = - - = . (7.50)

The meaning of the notation p^ should now be clear. The above expression is an exact result for
the reflected intensity (see Problem 7.9). Equation 7.50 also provides us with the flux absorp-
tance,

(7.51)
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Example 7.3 The Conservative-Scattering Limit

There are two ways to find this solution. The first is to take the limit a —> 1 of the expressions
valid for nonconservative scattering using L'Hospital's Rule to handle the 0/0 limits. The second
way is to return to the (simplified) set of coupled differential equations and solve them afresh.
Then only a first-order differential equation must be solved. Both methods yield the following
results (see Problem 7.2):

_
2/x + T*

(7.52)

2/x + r*

Note that the flux is constant throughout the atmosphere and that the heating rate is zero, as should
be the case for a conservatively scattering slab. The above results, derived by Schuster in 1905,
were one of the first published solutions of the radiative transfer equation.3 Assuming jl = 1/2,
Schuster found the reflectance and transmittance of the medium to be

-v - " ' - " ' X 1 + T*' V ' ' J 1+T*

Schuster also pointed out the following remarkable property of a conservatively scattering slab: It
transmits light in an arithmetic ratio to the thickness, whereas an absorbing slab transmits light in
a geometric ratio to the thickness. This effect is caused by the augmentation of the exponentially
attenuated beam by the multiply scattered light.

Example 7.4 Highly Absorbing Medium

In this limit, it is easily shown by expanding the previous expressions in a power series in a,
and maintaining only the lowest-order terms, that the reflectance for a semi-infinite slab, in the
limit a —> 0, is p ^ ^ a/A. The source function and the flux are given by

~ aX -tm ~ - -r/n

These results show that only first-order scattering contributes to the source function, and only
the directly transmitted radiation contributes to the net flux. The reflectance, transmittance, and
absorptance are

P(-2JT, 2JT) « °- (l - e-2r*/il), T ( - 2 T T , 2TT) « e"T*/A,

Note in particular the presence of the term e~2x*/fl in the reflectance. A reflected photon will travel
twice as far through the slab, on the average, as a transmitted photon.

A further interesting limit is for T* Ĉ 1 and a <̂C 1, the optically thin, highly absorbing case.
Then,

at* T* r* r*
P(-2TT, In) « — = -5_, T ( - 2 T T , 2TT) « 1 - -2-, <X(-2TT) « -2-.

2/x 2/x /x /x

In this limit, the reflectance depends linearly upon the mean slant scattering optical path r*//x.
The factor of 1/2 accounts for the fact that for isotropic scattering, half the photons are scattered
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in the forward direction. It is also reasonable that the slab transmittance and slab absorptance are
linearly dependent upon the mean slant absorption optical path, r*//2.

Example 7.5 Angular Distribution of the Radiation Field

To find the intensity / ± ( T , IX) in the two-stream approximation, it is necessary to integrate the
(approximate) source function, using Eqs. 7.3 and 7.4. This method yields a closed-form solution
for the angular dependence of the intensity and may provide sufficient accuracy for some problems.
We proceed by considering the expressions for the upward and downward intensity:

/ + (T,/*)= / — S(T>-(r '- r ) / / \
J M
T

T

/
, /

— S{x')e-{x-rr)^

(7.54)

r rir' .
/ " ( r ,

Inserting the approximate (two-stream) approximations for the source function, Eq. 7.39, and
performing the integration, we find, after some algebraic manipulation using the relationships
between p^, F, and /x (Eq. 7.33),

/ + ( T , /X) = —— |C+(/x)er(T*~T) — C~(/x)e~r(r ~T)

-(/x)-C+(/x)k-( T*-T ) / / x ) , (7.55)

/-(T,/x) = - { C

- p^[ l - C+(/x)]e-rr*-T//*}, (7.56)

where C±(/x) = (1 ± F/x)/(l dz F/x). This form is convenient because it shows explicitly that
when /x = /x, then C±(/x) = 1 and the results become identical to Eqs. 7.36-7.37.

It is interesting that for a viewing angle parallel to the slab (/x = 0), the above results both
approach the source function, / ± ( r , /x -> 0) = S(T) , Eq. 7.39, which is a property shared by the
exact result. It is easily verified that the above results satisfy the boundary conditions for all values
of/x, that is, / - (0 , /x) = Jand 7+(r*, /x) = 0.

The expressions for the hemispherical-directional reflectance I+(0, /x)/X and the transmittance
/-(r*,/x)/Xare

(7.57)

T(-2TT, /x) = — (C~(/x) -p^C + ( /x ) + [l -C^Ox)]^*"7 *7^

r T * - T * ^ } . (7.58)

In the special case /x = /x, since C±(/x) = 1, the results for the flux reflectance and transmit-
tance agree with the two-stream results, Eqs. 7.42 and 7.43. From the duality principle, the
above equations are equal to the directional-hemispherical reflectance p(—/x, 2TT) and transmit-
tance T(—/x, 2TT). The latter quantities may also be derived from the solution of the problem
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with collimated incidence {Prototype Problem 3; see §7.3.5), but with considerably more diffi-
culty.

Example 7.6 The Exponential-Kernal Approximation

An alternate method of solving radiative transfer problems is to begin with the Milne-
Schwarzschild integral equation for the source function. The source function yields the diffuse
intensity through an integration, which may then be added to the direct (solar) intensity. We illus-
trate this approach by again solving Prototype Problem 1 and comparing to the previous results.
Equation 6.84 is written for isotropic scattering for a general internal (thermal) source Smt and a
boundary contribution S*:

(7.59)

The boundary contribution may be written in terms of a general distribution of intensity / (0, [i, 0)
falling on the top of the medium. From Eq. 5.63

(7.60)

An

o (r) = — / a<w I (U, /x , 0 )e '^,

and for hemispherically isotropic radiation of intensity X

I
a f , , a

= -X d\JLe~xliX = -

2 J 2

I

5*(r) = ^ 1 fdu'e-W = ^ J £ 2 ( T ) , (7.61)

0

where E2 is the exponential integral of order 2.
The exponential-kernal approximation consists of the following replacement:

I

- r|) = f ^ e
J fif ( 7 > 6 2 )

where jl has its usual meaning. This may be thought of as a one-point quadrature evaluation of
the integral or as a replacement of the angular integral with the integrand evaluated at the mean
angle of the inclination of the rays. Note that E2 in the expression for S* becomes ~e~r/iX. The
nth exponential integral is approximated by

En(r)^e-r/ilfln-2. (7.63)

Substituting the above results, we find that Eq. 7.59 becomes

= -Ie-r^ + a- [ —e-^-
2 2 J fl

S(r) = -Ie-r^ + a- [ —e-^-^S(T'). (7.64)
2 2 J fl

This equation can be shown to have a solution consisting of positive and negative exponentials.
Substituting the trial solution 5(r) = AeTx + Ce~Fr, where F is given by Eq. 7.30, we carry out
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the integrations to yield

T

A

* L _

(l-r/i)

After cancellation of equal terms on the left and right, we obtain an equation in which the left-hand
side is zero. For this equation to be correct for all values of r, it is necessary that the coefficients
of the two linearly independent terms (one of which is proportional to e~r/fl and the other being
just a constant) be separately equal to zero, that is,

A C Ae~Tr* CeTr*
~ (i Tfi) ~ (i + r#) " ' (i + TPL)

 + (i - r/z) "

These are easily solved to yield

-1(1 - r*

where we have used the definition of p^, Eq. 7.33, and T), Eq. 7.38. Noting that 1 — Vjl =
(a/2)(l + Poo), we find the same solution for 5"(T) obtained earlier, Eq. 7.39. Given the source
function, the diffuse intensity is given by

T *

/
, f

^S( r> - ( r ' - r ) / A ,/
^S( r> - ( r ' - r ) / A , (7.65)

^ S ( T > - < - ' > / * . (7.66)

The total radiation field is the sum of the diffuse and direct ("solar") terms, /^ + /s, where the
direct term is

7,(T) = | J £ 2 ( T ) « | ^ ' T / A -

Carrying out the integrations, one finds that the total intensities / ± ( r ) agree with the earlier
results, Eqs. 7.34-7.35. If ji ^ jl, the intensity / ( r , /x) agrees with the result of Example 7.5,
Eq. 7.54-7.55.

We have shown that, at least for Prototype Problem 1, the exponential-kernal methods yields the
same solution as the traditional two-stream differential-equation approach. It should be obvious
that the two methods are equivalent, since they both rely upon the same approximation replacing
the angular variation of the radiation with a constant value.
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7.3.4 Prototype Problem 2: Imbedded Source
We now return to the differential equation approach and solve Prototype Problem 2,
where the only source of radiation is thermal emission within the slab. We further
assume that the slab is isothermal, isotropically scattering, and homogeneous. The
two-stream equations are

d/+(r) = _ _ a _ a
ax 2 2

- A ^ ^ = / - ( r ) - (1 - a)B - V ( t ) - | / - ( T ) , (7.68)

with the boundary conditions /~(0) = /+(r*) = 0. These equations differ from the
previous set by having an extra inhomogeneous term on the right-hand side. To handle
this complication, it is standard practice to first seek a solution to the homogeneous
equation for which the imbedded source (1 — a) B is set equal to zero. Next, we find
a particular solution that satisfies the full equation. The general solution is then the
sum of the homogeneous and particular solutions. For the former, we seek solutions
of the form

/+(r) = AeFx + PooDe-r\ 7"(T) = PooAeTx + De~r\

where A and D are to be determined from the boundary conditions, and where F and
Poo were defined in the previous section.

The particular solution is obtained by guessing that I+ = B and I~ = B are solu-
tions. This is easily verified by substituting these solutions into the governing equa-
tions. Imposing the boundary conditions, we arrive at the following two simultaneous
equations:

AeTx* + f)ooDe-Tx* + 5 = 0 , p^A + D + B = 0.

Solving for A and D we find
r* r* - Poo)

where T> was defined previously (Eq. 7.38). Using these results, we substitute into the
general solution to find

/+(r) = | {ple-* - er* + Poo [e~r^-^ - eT^}} + B, (7.69)

' " t o = | R e - r ( T * - T ) - *r(r*~r) + Poo [e-Tz - er<]} + B. (7.70)

The expression for the flux is, from Eq. 7.26,

F(x) = 2n A | {pi [e~r* - <rr<*'-*>] + [er^ - er*] }

|POO [e~r^ - e~T* - er(r*"r> + e^\, (7.71)
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and the source function is, from Eq. 7.25,

(7.72)

The slab (or bulk) emittance is, from Eq. 5.2,

= = — [Poo — 1 — Poo(£ — e )J + 1. (7.74)

Examples of the depth variation of the flux and average intensity are provided in
Fig. 7.2 for a highly absorbing medium (a = 0.4, upper panels), and a conservative
case ia = 1.0, lower panels), respectively. The error in upward and downward fluxes
decreases from about 10% for the absorptive case (a = 0.4), to 1-2% for the conser-
vative case, whereas the error in the mean intensity is larger: about 10% for a = 0.4
and 15% for a = 1.0.

Example 7.7 Symmetry Properties of the Solutions

Figure 7.2 shows that Sir) and F(r) are symmetric and antisymmetric about r*/2, respectively.
This can be proven by transforming r into r* — r and r* — r into r. We obtain

Sir) = 5(r* - T), Fir) = -Fir* - r).

The above results can be restructured by taking advantage of this symmetry. We will change
variables from r to t, where r = T +1 and T = r*/2. The new variable, t, can be negative, varying
over the range —T<t< +T. After some manipulation, we obtain the following compact
expressions (see Problem 7.4):

(7-75 )

(7.76)

A plot of S/B versus r / r* is shown in the left panel of Fig. 7.3 for several values
of r* and for a = 0.95. This diagram shows that for r* > 15, the source function
"saturates," that is, it approaches the Planck function in the center of the medium. This
is a consequence of the average intensity approaching the Planck function when the
optical depth greatly exceeds the thermalization depth. The scattering contribution to
the source function, a I ^aB, then makes up for the deficit in the thermal contribution,
(1 — a)B. The variation with optical depth of Six)/B is shown in the right panel of
Fig. 7.3, where the optical depth of the medium is held constant at r * = 2 and the single-
scattering albedo, a, takes on the values a = 0.2, 0.6, 0.8, and 0.95. The tendency for
S -> B as a -> 0 is clear.
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Figure 7.2 Two-stream solutions for an imbedded source {Prototype Problem 2).
Upper panels: The parameters are B = 100, r* = 1, a = 0.4, jl = 1/2, and p = 1.
Lower panels: Same as upper panels except that a = 1.0. The line symbols are
explained in Fig. 7.1.

The thermal radiation emitted by the slab relative to that of a blackbody is described
by the bulk emittance

+ - F T *

Note that for consistency with the two-stream approximation we have used the expres-
sion for the blackbody flux 2nflB, rather than the exact value nB.
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Figure 7.3 Source function S divided by the imbedded source B versus optical depth
(scaled by the total optical thickness of the slab) for Prototype Problem 2. Dashed lines
are two-stream results; solid lines are accurate results. Left panel: Single-scattering albedo
of 0.95 and several values of total optical thickness. Right panel: Total optical thickness
T* = 2 and several values of single-scattering albedo.

Example 7.8 Semi-Infinite Slab

Using the previous results (Eqs. 7.73), and taking the limit r* —> oo, we find

S/B = 1 - (l - y/l-a) e~Vx.

Similarly the net flux (Eq. 7.71) becomes

The flux is positive, as it should be for radiation flowing upward toward the single boundary at
T = 0. Notice also that the flux approaches zero at a large optical depth, where S —> B. More
specifically, this occurs when F T ^> 1 or when the optical depth greatly exceeds the thermalization
depth. The heating rate for a semi-infinite medium is given by

H(T) = —
4naB

Note that there is a net cooling everywhere, with the maximum occurring at r = 0. The source
function at r = 0 deserves special attention. This is

S(z =0) = y/l-aB,

which turns out to be an exact result. For small values of (1 — a), the surface value of the source
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function falls well below the Planck function. This is a result of "leakage" of photons from the
boundary region at a rate that cannot be sustained by the radiation sources.

Example 7.9 Limit of Conservative Scattering for a Semi-Infinite Slab

In the limit a —>• 1, the imbedded source vanishes and the solution might appear to be undeter-
mined. However, it can be derived by considering the ratio S(r)/S(0)9 which, for the semi-infinite
slab, is simply

S(r) 1 r, A

s(0) y r ^ L v

We expand the exponential and keep only the first-order term

Substituting into the above expression we find, in the limit a —> 1,

This is the two-stream solution to the Milne problem* It describes the problem of a conservative-
scattering semi-infinite medium, in which radiation flows upward from a radiation source located
deeply within the medium. It approximates the flow of radiation through the Sun's optically thick
photosphere, an application first made by K. Schwarzschild in 1906.5

It is possible to relate the source function to the upward flux F+ by noting that in the two-stream
approximation, F+(r = 0) = 2TTJII+(T = 0) = AnjlS{x = 0). If we set /x = 1/A/3, which we
will justify later, we find

F V3
S( 0) ^ F

which is also an exact result (the Hopf-Bronstein relationship).
The two-stream solution for the source function in the Milne problem in which the upwelling

flux is F = constant is

We now compare this solution with the exact solution

where q{x) is the Hopffunction. This exact solution was first derived by E. Hopf in 1934, who
showed that q{x = 0) = 0.577350, that q{x) increases slowly with optical depth, and that at great
depth, q(oo) = 0.710446. The two-stream approximation sets q & qa = constant. If jl = 1/V3,
then qa = jl = 0.577350. The best overall value for qa is 2/3 = 0.666667.
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Example 7.10 Limit of Pure Absorption

This is a useful limit since we have exact solutions at our disposal. For a —> 0, the solution for
the isothermal slab becomes (see Example 7.8)

[ ] [ ] S ( t ) = B,

F(t) = 2njlB [g-cr+t)/A _ g-cr-t)/A] ? €(2n) = (i _ «,-2T/A) = (i _

The two-stream result for the emittance differs from the exact result, which is

6(2TT) = l - 2 £ 3 ( r * ) .

Equating these two results, we require

I

= 2 / d^e~xV^.-xVil = 2£3(r*)

o

We can find a "best value" for jl by requiring that

The solution to this equation can be easily verified to be /x = 2/3. However, this choice is not
necessarily the best one for all circumstances, as previously discussed.

When the medium is semi-infinite, (r* -> oo), it is easier to deal with the flux in the (0 — r*)
coordinate, Eq. 7.73. The emergent flux and emittance are easily seen to be

F(0) = 2fXnB and e(2n) = 1,

which requires that jl = 1/2 for the result to agree with the exact solution for F(0) = nB.

7.3.5 Prototype Problem 3: Beam Incidence

We now consider the most important scattering problem in planetary atmospheres -
that of a collimated solar beam of flux Fs, incident from above on a planetary atmo-
sphere. This is Prototype Problem 3 as described in Chapter 5. We will find it conve-
nient to deal with the diffuse intensity in this problem. We simplify to an isotropically
scattering, homogeneous atmosphere and, as usual, assume a black lower boundary.
(Both these restrictions will be removed later.) Setting the angle of incidence to be
cos"1 /x0, we find that the appropriate two-stream equations are

A ^ f =/d+ ~ \(/d++/-") - hre~xl" (7J7)

and

~A^ = /<r - \(/d++/d~) - hF%e~xhM>' (7-78)
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where / / and 1^ are the diffuse intensities. As before, we take the sum and difference
of the above equations

V^=(i"a)(/d++/<r)" ^F*e~zlm> (7-79)
/d-) = (/d+_/-) (780)

Differentiating Eq. 7.80 and substituting into Eq. 7.79, we find

Similarly, if we differentiate Eq. 7.79 and substitute into Eq. 7.80 we get

We may use the same solution method used earlier for Prototype Problem 2. We
first consider the homogeneous solution. As was shown previously, this can be written
as follows:

/ = AeTx + PocDe~r\ /d" = PooAeTx + De~r\

where V and p^ have their usual meanings. We guess that the particular solution is
proportional to e~T/fJ/°. We set

and

/+ = AeTx

/ - = PooAeTl + De~Vz

where Z + and Z~ are constants to be determined. Substituting into Eqs. 1.11-1.IS,
we find

7+ , 7- - aF^0 7+ -7- - fl
z + z " toA2(i-r^§)' z z -2^A2(i-r^)

(7.81)

The above two equations may be solved for Z + and Z~ separately:

, _ aFs/jLo(jl - /xp) _ aF/xo(/xo + fi)

- 4 A 2 ( l r ^ ) ' " 4 A 2 ( l r ^ § ) ' l J

We are now ready to apply boundary conditions for the diffuse intensity: 7d~ (r = 0) =
0 and / / ( r * ) = 0. From these two conditions, we obtain two simultaneous equations
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for A and D. After some manipulation we find

A = --

D =

where D is defined in Eq. 7.38.
We may now solve for the source function, flux, etc. For example, the source func-

tion is

S(x) = | (/d
+ + /„-) + ^ « - r / " ° . (7-83)

Rather than display the rather complicated solution for a finite medium, we will con-
sider the simpler situation of a semi-infinite medium. With the condition on the bound-
edness of the solution S{x)eT ->• 0, the positive exponentials must be discarded, so that
A — 0. The constant D reduces to

The diffuse intensities are

7+(r) = PooDe~r

'T + (A-Mo)e"r/A], (7.84)

/d-(r) = De~rr + Z-e-T'^

" r T - ( A + Mo)e"T/Mol, (7-85)

and the source function becomes (Eq. 7.83)

(7.86)

We may ask: What happens if the denominator (1 — F2/^) is zero in the equations
for 7^? This can occur if the Sun is at a specific location in the sky. This removable
singularity can be "cured"6 by the application of L'Hospital's rule, which leads to a
new algebraic form that varies as x exp(—
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The total net flux and heating rate are

(7.87)

and

+ aFs<TT//Xo. (7.88)

Note that we have added the terms —fioFse~T/fZ° in the flux equation and aFse~T/fl0

in the heating equation to include the contributions from the solar component.
Profiles of computed fluxes and average intensity are shown in Fig. 7.4 for an

absorbing slab (a = 0.4, upper panels) as well as for a nonabsorbing slab (a = 1.0,
lower panels). The error incurred by using the two-stream approximation is also
shown.

Example 7.11 Point-Direction Gain for a Semi-Infinite Medium

From Eq. 6.90 the point-direction gain for a semi-infinite medium is

where S is given by Eq. 7.86. The H-function is given by Eq. 6.92:

HQi) = G(0, fi; r* -> oo) = 1 +

A2(i
The above expression may be reduced to a much simpler algebraic form (Problem 7.3)

(7.90)
/X + JJLy/l — a

The directional-hemispherical albedo is

p(-liOi2n) = —— = — —^-[poo(^ + Mo) + (M-Mo)], (7.91)
MoFs 2 /x( l - rVo)

which may also be simplified to

p(-/x0, 2TT; T* -^ oo) = A ~ ^ ^ ~ a = 1 - VT^Hbio). (7.92)
+ Vl
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Figure 7.4 Two-stream results for diffuse fluxes and mean intensity for direct beam (solar)
illumination {Prototype Problem 3). Upper panels: The parameters are F s = 1, /xo = 1.0,
T* = 1, a = 0.4, jl = 1/2, and p = 1. Lower panels: Same as upper panels except that
a = 0.4. The line symbols are explained in Fig. 7.1.

An interesting relationship exists between the above quantity and the two-stream solution for
the hemispherical-directional albedo in Prototype Problem 1 (Eq. 7.57), which in the limit of
r* -> oo becomes

p(-2;r ; JLI; T* -* oo) = — *J\— a
a 1 + /x + /iVl -a

(7.93)
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which is the same result as Eq. 7.92. Thus, the two-stream approximation for the directional albedo
obeys the Duality Principle, p{—//, 2n; r* —>> oo) = P(—2TV, JJL; T* —> oo).

7.4 Conservative Scattering in a Finite Slab

It is instructive to solve the radiative transfer problem anew in this case, since a new
feature occurs, namely that the homogeneous solution for / + + /~ is now a linear
function of r (say, Bx + C). We will not show the details of the solution (this is
Problem 7.5). The results are given below:

d (r) =
(m + l)(r* - r) + (m -

An

- (m - X)e~zl^ I, (7.94)

Fsm \(m + l)(r* — T + 2/2) + (m -

An [

- (m + 1) e~T/^

F*m
4n(T* + 2/1) '-

- m ( r * + 2/I)^~T/A

F+(0) i

(r* + 2A)

f l ) ( T * - r + /x) + (m- l )O

°^Ane

- m) + (1 — m)e~T*^°~\,

r* + (/x — /XQ)(1 — e~r*/^°)

(7.95)

(7.96)

(7.97)

(7.98)

r7 oo1!
r* + 2/x

where m = IJLQ/JI. Since Eq. 7.95 is the downward diffuse intensity, the total trans-
mittance given by Eq. 7.99 is

T(- /x 0 , -lit) = Td(-/z0, -2n) + e~x*^

It is easily verified that p(—/x0, 27r) + T(—/x0, —27r) = 1.
Consider the limit of large optical depth. For r* ->• ex), F(r*) ->• 0, p(—/x0, 27r) ->•

1, and T(—/x0, 27r) -> 0. In this limit, the source function is

/7s

S ( T ) = — [(1 - m2)e-T/fM0 + m(m + 1)1. (7.100)
An L J
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From this expression, we see that our two-stream approximation yields S(r -> oo)/
S(0) = m = \/3/zo when fx = 1/V3, a result that is exact?

Example 7.12 Angular Distribution of the Intensity

The angular distribution of the intensity for Prototype Problem 3 can be obtained in the
same fashion as in Prototype Problem 1. The procedure is straightforward, but the algebra is
rather daunting. However, a short cut is possible, provided we are interested only in the emer-
gent intensities. We may use the closed-form results for the emergent intensities given by S.
Chandrasekhar8:

/ + (0 , /x; r*) = aF^° [X(ji)XQio) - 7(/x)F(/x0)], (7.101)
47rO + A6)

/-(r*, 11; r*) = ——J^—[YQi)X(jio) - X(/x)7(/x0)], (7.102)
47T(/X - fJLo)

where the X- and F-functions are obtained directly from the point-direction gain (Eqs. 6.91),
XQi) = G(0, fi; r*) and 7(/z) = <?(r*, /x; T*). In Problem 7.3, the X- and F-functions are
obtained in the two-stream approximation.

For a semi-infinite medium, Chandrasekhar's result is written

/ + (0 , fi; r* -> oo) = ^ F ^ x//(/x)if (/x0)

(A + M)
= - I I — . I •

(7.103)

7.5 Anisotropic Scattering

7.5.1 Two-Stream Versus Eddington Approximations

Two-stream types of approximations are used primarily to compute fluxes and mean
intensities in plane geometry.9 As we showed in Chapter 5, flux and mean intensity
depend only on the azimuthally averaged radiation field. We are therefore interested
in simple solutions to the azimuthally averaged radiative transfer equation valid for
anisotropic scattering:

dld(r, u)
u

i

= /d(T, u) - °- \ du'p(u', M)/d(T, u') - 5*(T, u). (7.104)
ax 2 J

- l

For now, we ignore thermal emission, but the method is by no means restricted to
scattering alone. To obtain approximate solutions, we proceed by integrating Eq. 7.104
over each hemisphere to find two coupled, first-order differential equations for hemi-
spherically averaged upward and downward intensity "streams." As we have seen,
this leads to the usual two-stream approximation. We can obtain a similar result by
replacing the integral in Eq. 7.104 by a two-term quadrature. This quadrature can be
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full range (based on the complete interval — l < w < + l ) o r half range in which the
intervals — 1 < u < 0 and 0 < u < +1 are considered separately. The latter is similar
to the hemispheric averaging mentioned above.

We may alternatively proceed by approximating the angular dependence of the
intensity by a polynomial in u. By choosing a linear polynomial, / ( r , u) = /o(r) +
w/i(r), and taking angular moments of Eq. 7.104, we arrive at two coupled equations
for the zeroth and first moments of the intensity, /o and I\. This approach is usually
referred to as the Eddington approximation.

In the following, we examine both the Eddington and the two-stream approximation.
We shall be particularly interested in exposing the similarities and differences between
these two approaches.

Assuming collimated incidence, 5*(r, u) = (aFs/4n)p(—fio, w)e~r//x°, we ap-
proximate the angular dependence of the intensity as a constant plus a term linear in
u, / ( r , u) & [/o(r) + W/I(T)] , which upon substitution into Eq. 7.104 yields

u ( / O + B / I )

- 1

aFs ,
---p{-HQ,u)e-T/»\ (7.105)

An

We expand the phase function in Legendre polynomials as usual and find that the
azimuthally averaged phase function is

p(u'9 u) =
1=0

where the moments of the phase function are given by

- 1

In the two-stream approximation, we normally retain only two terms: the zeroth mo-
ment, which is unity because of the normalization of the phase function (xo = 1),
and the first moment, which we refer to as the asymmetry factor, xi (more commonly
denoted by g). Then

1

| Idu'p{u\ u)(I0 + u'h) = a(I0 + 3gu(u)2Ii),
- l

where the ( ) symbol denotes an angular average over the sphere

I

(u)0 = T / duu2.
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Since p(—/x0, u) = \ — 3g«/x0, Eq. 7.105 becomes

u
dx

(7.106)

We first integrate Eq. 7.106 over u (from —1 to 1). This yields the first equation
below. We then multiply Eq. 7.106 by u, and integrate again, to obtain the second
equation below. Thus, we are left with the following pair of coupled equations for the
moments of intensity, /o and I\:

ax (u)2

^p- = (1 - 3ga{u)2)Ii + ^gnoe-x/tl0. (7.108)
dx An

Rather than solve these coupled equations immediately, we consider a slightly different
approach.

We start by writing Eq. 7.104 in terms of the half-range intensities

0
1

a r aF&

J d f ( r ) / + ( ')
^/d

+(T,/x)-5+(r,/x) (7.109)

and

r ' M) - 2 / d^P(-v'' -
o

I

= / d - (T,M)-S"(r ,^) . (7.H0)

The above equations are exact. We proceed by integrating both equations over the
hemisphere by applying the operator Jo dfi. If the /^(r , /x) are replaced by their
averages over each hemisphere, / ± ( r ) , and the explicit appearance of /x is replaced
by some average value /x, this leads to the following pair of coupled equations for / ±

(dropping the d subscript):

/x = / + - a(l - b)I+ - abr - 5*+, (7.111)
dx

-fl— = I~ - 0(1 - ft)/" - abl+ - 5*", (7.112)
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where

S*+ = ™ + l

2

5"- = — [ 1 - &0*0)]e"T//i0 = X-e-T/)l0.
2n

Here

X+ = ^-Fsb(Ho), X- EE ^ -F S [1 - 6O*o)]. (7.114)

The backscattering coefficients are defined as

l l

b{ii) EE 1 jdrfpi-n', /x) = l-Jdvifp(ii', -/x), (7.115)
0 0

1 1 1

= / dfib(fi) = - d/x dfif

0 0 0

1 1

i[x!P(/JL'', — /x), (7.116)

o o

1 1 1 1

i\ji p(—\JL , — /x). (7.117)

oo oo

We have used the Reciprocity Relations satisfied by the phase function, p(—/z', /x) =

P(/JL\ — /x); p{—/x', — /x) = p(/x', /x), as well as the normalization property.

Example 7.13 Alternative Derivation Using Quadrature

We could have derived these two-stream equations by using quadrature. We proceed as ex-
plained above by applying the operator Jo J/x to the half-range equations for the azimuthally
averaged intensities, but instead of replacing /^ ( r , ji) with their average values in each hemi-
sphere, we now evaluate these integrals by approximating them with the value of the integrand at
one particular direction (or "stream") /x = \i\. This will yield a pair of two-stream equations iden-
tical to Eqs. 7.111 and 7.112 if we choose /xi = fl. The difference is that we interpret / ± ( r , /xi)
as the value of the intensity in the particular direction [i = /xi rather than the hemispheric average.
We shall return to the use of quadrature in Chapter 8 where we will generalize it to include an
arbitrary number of "streams."

In terms of two-stream quadrature we have

_ 1 _ 1 _2 _ 1 _ _

1 - b = 1-P{PL, A) = \{l + 3gA2) = \P(~^ "A), (7.H9)
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f) = \P(-IJL', A) = \{l ~ 3g/V), (7.120)

') = \p(-li\ -A) = \& + 3#A/A (7.121)

As before, we have kept only two terms in the expansion of the phase function in Legendre
polynomials.

Equations 7.111 and 7.112 are the two-stream equations for anisotropic scattering.
In the limit of isotropic scattering, (p = 1 or b — 1/2), they reduce to the equations
considered in the previous section, as they should. We note that if we choose jl = 1 / V3,
then the backscattering coefficient and the asymmetry factor are related through b =

£a-g).
We have derived two sets of differential equations (Eqs .7.107-7.108 and Eqs. 7.111 -

7.112), both of which are derived from similar assumptions. What is the relationship,
if any, between them? To answer this question, we will attempt to bring Eqs. 7.111
and 7.112 into a form similar to Eqs. 7.107 and 7.108. We do so by using the change
of variable

consistent with the Eddington approximation. By first adding Eqs. 7.111 and 7.112,
and then subtracting 7.111 from 7.112, we find after some manipulation that Eqs. 7.111
and 7.112 are equivalent to

dx /xz

^p- = (1 - a + 2ab)h
dx

Since 1 - a + lab = 1 - a + a{\ - 3gjl2) = 1 - 3agjl2 and 1 - 2b(fi0) = 1 - (1
= 3g/2/z0, these last two equations become

dX /JLZ

^ = (1 - 3gaH2)h + p-gHoFe-*"*. (7.123)
aX 47T

By comparing Eqs. 7.107-7.108 and 7.122-7.123, we conclude that the equa-
tions describing the Eddington and two-stream approximations are identical provided
(u)2 = A2- Thus, the choices (11)2 = 1/3 and jl = 1/V3 make the governing equa-
tions for the two methods the same. Therefore any remaining difference between the
two must stem from different boundary conditions. This is readily seen as follows: A
homogeneous boundary condition for the downward diffuse intensity consistent with
the two-stream approximation leads to the boundary condition
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If, however, we require the downward diffuse flux to be zero at the upper boundary
(common practice in the Eddington approximation), then we find

/o - | / i = 0.

As we shall see later (Chapter 8), the value jl = l/>/3 for the average cosine follows
from applying full-range Gaussian quadrature whereas a half-range Gaussian quadra-
ture would lead to jl = 1/2. We now consider in more detail the useful concept of the
backscattering coefficient.

7.5.2 The Backscattering Coefficients

The backscattering coefficients &(/z0) and b were defined previously in Eqs. 7.115
and 7.116. These define the fraction of the energy that is scattered into the backward
hemisphere. Of course, 1 — b or 1 — &(Mo) *s m e fraction that is forward scattered. We
showed in the previous subsection that if we use the approximate expression (Eq. 7.120)
and choose jl = l / \ / 3 , then the backscattering coefficient is related to the asymmetry
factor through g = (1 — 2b) where — 1 < g < 1.

Next, let us take a closer look at the relationship between the backscattering co-
efficients10 and p, the azimuthally averaged phase function as expressed by Eqs. 7.115
and 7.116. As explained in Chapter 5, we normally do not use the phase function itself,
but rather its expansion in Legendre polynomials

2N-1

p(u\ u)=J2 (2l + l)XiPi«*')PiW,
1=0

where we have retained 2N terms but have left the value of N unspecified for the
moment. Substituting this phase function expansion into Eq. 7.115 and 7.116, we
find

= -

2N-1 J, 2N-1

/2 /
i=o 5 i=o

where we have used the relation P/ (—/x) = (—I)1 Pi (/x) satisfied by the Legendre poly-
nomials and defined Z?/(/x) = ^( - l ) z (2 / + 1)X/PZ(AO / J d^Pi(fif). Using Eqs. 7.115
and 7.124, we obtain

b= d^)=1-2Y(-l)\2l+l)Xl f
J 2 J
o '= '

(7.125)
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For N = 1 these formulas yield Z?(/x) = | (1 — \gii) and & = | (1 — |g ) , which are
identical with the results obtained from Eqs. 7.118 and 7.120 using quadrature with
the choice jl = 1/2. This is to be expected because this corresponds to the use of
half-range Gaussian quadrature (based on the Legendre polynomials), and it is con-
sistent with the half-range integration of the same polynomial in the above formula.
We note that whereas the use of jl — l/>/3 in Eqs. 7.118 and 7.120 yields the sensible
results b = 0 for complete forward scattering (g = 1) and b = 1 for complete backscat-
tering (g = — 1), we obtain the unphysical results b=l/S and b = 7/8, respectively,
for jl = 1/2. This provides a strong incentive for adopting jl = l/>/3 in Eqs. 7.118
and 7.120 if we want to use them to compute the backscattering coefficients from the
(presumably known) asymmetry factor. We can, however, determine these coefficients
more accurately from Eqs. 7.115 and 7.116 or the above "summation" formulas by
numerically integrating the double integrals. The summation formulas are preferable
because they do not require knowledge of the complete azimuthally averaged phase
function; the moments are sufficient. Moreover, from a computational point of view
the summation formulas are expected to be more efficient because the integrals over
the Legendre polynomials can be precomputed once and for all. It can be shown, how-
ever, that the use of N —• oo in the above formula for b yields the following exact
result involving only a single integral:

71 1

b = — / d@ 0sin©/?(cos©) = — / du cos'1 up(u).
27T J Alt J

0 -1

Thus, it is possible to compute the backscattering coefficients directly from the phase
function to any desired accuracy by numerical integration. This would allow us, at least
in principle, to use an "exact" backscattering coefficient in the two-stream approxi-
mation instead of the commonly used approximate formulas (Eqs. 7.118 and 7.120)
relating the backscattering coefficient to the asymmetry factor. If the phase function is
strongly peaked in the forward direction, we should apply the 5-iV-scaling (discussed
in §6.8) prior to solving the two-stream equations. The exact scaled backscattering
coefficients (£(/x) and b) could then be obtained by replacing the original phase func-
tion in the single integral for b by the scaled one and replacing the moments in the
summation formula for b(/A) by their scaled counterparts. Alternatively, we could use
the summation formulas to compute both coefficients, and this may be preferable, not
only for consistency, but also because the scaling transformation discussed in §6.8
presumes that the moments of the phase function are known. In addition, we need
these moments to compute b{ix) exactly from the summation formula given above in
any case. Finally, if we use the Henyey-Greenstein phase function, then all we need
to know is the first moment of the phase function - the asymmetry factor - because
all the higher moments are just powers of the first, as explained in Chapter 6.

An illustration of the exact angular backscattering coefficient Z?(/x) is provided in
Fig. 7.5 for a Henyey-Greenstein phase function with several values of the asymmetry
factor between 0 and 0.95. Figure 7.6 provides an indication of the number of terms
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Accurate results

- 1 . 0 - 0 . 5 0.0 0.5
Cosine of Scattering Angle

Figure 7.5 Angular backscattering coefficient: "Exact" values of the angular
backscattering coefficient for the Henyey-Greenstein phase function with
asymmetry factors between 0 and 0.95.

needed to obtain accurate representations of the angular backscattering coefficient
computed from the above summation formula for a Henyey-Greenstein phase function
with asymmetry factor 0.95. For an asymmetry factor g = 0.4 (not shown), four terms
(N = 2 in Eq. 7.124) are sufficient to obtain very accurate results. For g = 0.95 (left
panel), more than thirty terms (not shown) are required for the summation formula
to converge. If we truncate the summation at N = 1 (two-term approximation), the
backscatter coefficient becomes negative for /x > 0.7. This range corresponds to solar
elevations greater than about 45°. Equation 7.120 implies that 5*+ in Eq. 7.113 becomes
negative for solar elevation angles such that /x0 > 1 /3g/Z. For an optically thin medium
this may lead to negative reflectance, which can be avoided by a suitable scaling as
shown below.

The advantage of using 8-N scaling of the phase function is illustrated in the bottom
panel of Fig. 7.6, which shows the 8-N scaled backscattering coefficient for a Henyey-
Greenstein phase function with g = 0.95. Here, we have used the scaled moments
fa = (xi — / ) / ( l — / ) in the above summation formulas with / = Xiv+i a s discussed
in Chapter 6. We see that N = 8 is sufficient to obtain a reasonably accurate represen-
tation of the scaled backscatter coefficient for all /x. It is also clear that a two-term
expansion of the phase function (N = 1) may give reasonably accurate results. In par-
ticular we note that no negative values appear in Fig. 7.6. For a specified solar elevation
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Figure 7.6 Approximate representations of the angular backscattering coefficient obtained
from the summation formula. The value of N indicates half the number of terms used (i.e.,
N = 1 yields two terms, N = 2 four terms, and so on). Both panels are for g = 0.95
(before scaling). In the top panel no scaling is applied, while the bottom panel pertains
to the 8-N scaled phase function.
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(fixed /AQ) the (unsealed) asymmetry factor must satisfy the condition g < 1/3/x/xo to
avoid negative values of the backscattering coefficient. For /x = 1/V3, and /x0 = 1.0
(overhead Sun), we have l/3/x/x0 = 0.5773. However, we showed in §6.8 that if the
8-N scaling is invoked, then \g'\ < 0.5 for the Henyey-Greenstein phase function.
Hence, the 8-N scaling will overcome the problem with negative reflectance referred
to above. The total (integrated) backscattering coefficient (Eq. 7.125) for the Henyey-
Greenstein phase function varies smoothly but nonlinearly with g between 1 (g = 0)
and 0 (g = 1).

It is customary to use only two terms in the expansion of the backscatter coefficients
(Eqs. 7.124 and 7.125), although (as mentioned previously) it is possible to compute
"exact" values for these coefficients. To justify the use of only two terms we examine
the first few terms in the expansion coefficients of Eq. 7.124. The first few Legendre
polynomials are P0(u) = 1, P\(u) = u, P2(u) = \(3u2 - 1), P3(u) = \(5u3 - 3M),
P4(u) = ±(35w4 - 30w2 + 3), and P5(u) = |(63w5 - 70M3 + 15M). The values for
the expansion coefficients, biifi), in Eq. 7.124 are displayed in Fig. 7.7 for a Henyey-
Greenstein phase function with asymmetry factor g. If we choose /x = 1/V3, then
p2(/x) = 0. Thus, there is no contribution from the second term in Eq. 7.124. Fur-
thermore, the contribution from the third term is negligible. The fourth term involving
P^(Ji) contributes for \g\ > 0.5. However, if we use the 8-N transformation, then
0 < g < 0.5 for the Henyey-Greenstein phase function. Finally, the fifth term in-
volving Ps{jX) contributes negligibly for all values of g. Hence, in the two-stream
approximation it is sufficient to include only the first two terms in the expansion of
the backscattering coefficient, so that Z?(/x) = | (1 —
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backscattering coefficient Z?(/z). Right panel: The backscattering coefficient obtained for
different choices of N. Note that the curves for N = I and N = 2 are indistinguishable.
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7.5.3 Two-Stream Solutions for Anisotropic Scattering
Focusing first on the homogeneous solution, we add and subtract Eqs .7.111 and 7.112
to obtain

dx

= - ( « •

dx

where we have defined a = — [1 — a( l — b)]/p, and ft = ab/jl. By differentiating
one equation and substituting into the second, we obtain the following uncoupled
equations to solve:

d ) _ 2 ( + , d ( l I d )

where

As in the case of isotropic scattering, the homogeneous solutions are

/d
+(r) = AeTx + Be-Tx = AeTx + p^De^, (7.126)

/ " ( r ) = Ce r r + L>6rrT = PooA^rr + D ^ r r . (7.127)

The coefficients A, 5 , C, and Z) are not all independent, as pointed out in §7.3.3. The
relation between them is found by substituting Eqs. 7.126 and 7.127 into Eqs. 7.111
and 7.112, yielding

C B j + / _

Equations 7.111 and 7.112 suggest seeking a particular solution of the form

l£ = Z±^-T//Xo. (7.128)

Substitution of Eq. 7.128 into Eqs. 7.111 and 7.112 yields

+ [1 - a + ab *

where X± are given by Eqs. 7.114. Before proceeding with the solution, we note the
resemblance to the equations for isotropic scattering. If we set b = 1/2 (g = 0) and
observe that in this case X+ = X~, it can be verified that F and Z± are identical to
those terms for the corresponding isotropic scattering (Eqs. 7.30 and 7.82). It is also
clear that for b = 1/2 we recover the earlier result for p^ (see Eq. 7.33).

Returning to the solution of Eqs. 7.111 and 7.112, we determine the constants
A and D in Eqs. 7.126-7.127 from the homogeneous radiation boundary conditions
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appropriate for the diffuse intensities. The reader may verify that the following solu-
tions are the desired forms:

A v ' D v '
where V is defined by Eq. 7.38.

As can be easily shown, the above solutions satisfy the differential Eqs. 7.111 and
7.112 and also obey homogeneous boundary conditions. It is easy to show that in
the limit of isotropic scattering the expressions for A and D above reduce to those
following Eqs. 7.82 as they should. The solutions for the diffuse intensities are

I = I

We can now solve for the half-range source functions, the flux, and the heating rate:

S+(T) = a(\ - b)l+{z

S"(T) = fl(l - 6)/d-(T) + abl(x) +
2TT

F{x) = 27r/x[/d
+(r) - 7d-(r)] - / x o F ^ " ^ 0 ,

W(r) = 27rcx[/d
+(t) + 7d-(r)] +aF*e-T"«.

In Fig. 7.8, we show computed fluxes and average intensities for single-scattering
albedo 0.4 (upper panel) and 1.0 (lower panel). A Henyey-Greenstein phase function
with asymmetry factor 0.9 was used in these calculations, and the 8-N scaling was
used to truncate the forward-scattering peak of the phase function.

Example 7.14 Addition of a Reflecting Boundary: The Planetary Problem

For a two-stream approximation, it is sufficiently accurate to assume a Lambert reflecting sur-
face. Ignoring surface thermal emission, we obtain from Eq. 5.13 the boundary condition that
replaces /^"(T*) = 0.

/d
+(r*) = pL [iioF'e-**"* + 2;r A/d-(r*)],

where pL is the Lambert BRDF. Together with 7d~ (0) = 0, these relationships allow us to once
again solve for the coefficients A and D. The results are rather complicated. Problem 5.1 provides
a simpler example.

Alternatively, if we were interested only in the reflectance, absorptance, and transmittance, then
we could use the solutions for the black surface (which we derived above) and add the boundary
"correction terms," described in §6.11 (Eqs. 6.79 and 6.80). It was shown in Problem 4.5 that the
spherical albedo and spherical transmittance for Prototype Problem 3 are equal to the flux albedo
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Figure 7.8 Two-stream results for direct beam (solar) illumination. Upper panel:
The parameters are Fs = 1, /XQ = 1.0, r* = 1, a = 0.4, jl = 1/2, and
Henyey-Greenstein phase function with g = 0.9. Lower panel: Same as upper
panel except that a = 1.0. The line symbols are explained in Fig. 7.1.

and flux transmittance (respectively) for Prototype Problem 1. Therefore, no additional effort is
needed to complete the solution for the planetary problem.

7.5.4 Scaling Approximations for Anisotropic Scattering

In §6.7 we noted that accurate representation of sharply peaked phase functions typi-

cally requires several hundred terms in a Legendre polynomical expansion. If we make

the approximation that photons scattered within this peak are not scattered at all, we
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find that the radiative transfer equation becomes more tractable, while we lose only
a small amount of accuracy. This artifice is known as a scaling approximation, and
it takes on various forms depending upon the choice of the truncation. We found in
the <5-isotropic approximation that the scaled radiative transfer equation corresponds
to an isotropic scattering problem, but with a different optical depth r = (1 — af)x
and a different single-scattering albedo a = (1 — f)a/{\ — af). Here / is the fraction
of the phase function within the forward peak. The value of / is somewhat arbi-
trary, but a good choice is / = g, where g is the asymmetry factor xi (Eq. 6.28). If
the remainder of the phase function is constant, the radiative transfer equation to be
solved is

dx
- | f 7"(t,

Since we have solved the above equation in the two-stream approximation for three
prototype problems, it is a trivial matter to rewrite the solutions in terms of the scaled
parameters, a and t . We will write the asymmetry factor in terms of the backscattering
coefficient, b = (1/2)(1 — g). We use as an example the conservative-scattering limit,
a = 1 and r = 2br. For Prototype Problem 3 the scaled solutions for the reflectance
and transmittance are taken from Eqs. 7.98 and 7.99:

2br*
: : ' ' , ,7.29,
* + 2/JL

TC o ^ A + Mo + (fi ~ Mo)*"2**7"0
 ( n A ^

T(/z0, 2TT) = , . , , , _ • (7.130)
2br* + 2/x

Because isotropic scattering problems have much simpler closed-form solutions
than those for anisotropic scattering, scaling makes it possible to obtain approximate
solutions with considerably less algebra. For example, the above solutions may be
used (see Problem 7.11) to simulate the effects of an optically thick cloud consisting
of conservatively and anisotropically scattering water droplets.11

7.5.5 Generalized Two-Stream Equations

As mentioned in §7.3.2 the mean inclination (average cosine) will in general take
on a different value in the two hemispheres unless the radiation field is isotropic.
Similarly, the efficiency of scattering from one hemisphere to the other (defined as
^ below) will be hemispherically dependent, because it depends on the angular dis-
tribution of the radiation field, which in general will be different in the two hemi-
spheres.

We now generalize Eqs. 7.111 and 7.112 to apply for mean inclinations and scatter-
ing efficiencies that are different in the two hemispheres. Integrating Eq. 7.109 over
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the upper hemisphere, we find

1 1

+ a f f i
2 J J

o o
I I

/

Defining

0 0
1

aFs f
\ dtip(iio9 /x)e-T//T (7.131)

An J
o

l I
, 1 1 [ [ . . + .

r (r) = T, TTTT^ \ dp \ dp p{ji, fi)I^(r, ii), (7.132)

- l l f f '
~bI-2J ^ J ^l

o o

I I

(7.133)
0 0

we may rewrite Eq. 7.131 as

aFs

b(iJLo)e~T^0.

(7.134)

dl
= /+(r, fi) - a{\ - b)r+I+ - abrT

dx lit

The backscattering coefficient b, defined previously (Eq. 7.116), is a single-scattering
property that is independent of the radiation field. In a similar way, we integrate
Eq. 7.110 over the lower hemisphere to obtain

dl~
-PT— = /"(r , n) -a(l -b)r~r

dx
aFs

- abr+l+ [1 - fc(/xo)]e~T//Xo. (7.135)
In

Equations 7.134 and 7.135 relate the downward (/") and upward (/+) radiances in
the corresponding hemispheres. In ocean optics terminology 2nl~ and 2nl+ are
referred to as downward and upward scalar irradiance, respectively. If we define the
coefficients a and /3,

a± = [(1 - a{\ - Z?)r±]/A±, ^ = abrT/jl±, (7.136)

we can rewrite the above Eqs. 7.134 and 7.135 as

l+
dJl = a+I+ _ p r _ £^^f2)e-r/«f (7.137)

dx In

-H-dSL = „ - / - _ ri+ - a F S [ 1 - ^ o ) ]
e - ^ Q , (7.138)

dx In
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We note that Eqs. 7.134 and 7.135 are similar to Eqs. 7.111 and 7.112. In fact, they
become identical to Eqs. 7.111 and 7.112 if r+ = r~ = 1 and /2+ = \x~.

The product (1 — b)r+ defined by Eq. 7.132 gives the probability that upward-
traveling photons continue traveling upward, whereas br~ gives the probability that
photons traveling in the downward direction are backscattered into the upward direc-
tion. The coefficients r ± take into account the angular distribution of the radiation field.
Thus, br gives a true backscatter efficiency as the product of the (single-scattering)
backscattering coefficient b and the coefficient r, which properly accounts for the
anisotropy of the radiation field. Similarly, the product (1 — b)r gives a true forward-
scatter probability. Of course, to compute the angular distribution of the radiation field
accurately we need to apply more sophisticated methods (see Chapter 8). Using such
methods we could compute accurate (r-dependent) values of r* and jl±, and then
apply them in Eqs. 7.137 and 7.138 to provide accurate flux values. In fact, Eqs. 7.137
and 7.138 can be considered to be exact, because no approximations have been invoked
in their derivation.

Combining the homogeneous versions of Eqs. 7.137 and 7.138, we arrive at the
following equations:

d2F± dF±

- r ^ = (c*+ - a')—- + («+«- - P+T)F±. (7.139)
dxl dx

Solutions to two-stream equations similar to Eq. 7.139 have been applied to radiative
transfer in the ocean.12

We have now provided detailed two-stream solutions for the three prototype prob-
lems of Chapter 5. Of course, we have not completely shown all the various limiting
forms (a —• 1, r* -> oo, etc.). Because the algebra is considerably simplified, the stu-
dent is encouraged to consider these limiting cases, which can provide further insight.
We now investigate how well the method performs in practice.

7.6 Accuracy of the Two-Stream Method

Two-stream (Eddington) approximations13 using the 8-TTA approximation for the
Henyey-Greenstein phase function to deal with sharply forward-peaked scattering
may be compared with accurate (doubling) computations of reflectance, transmittance,
and absorptance for a homogeneous slab. The comparisons show that the accuracy is
remarkably good, being better than 2.5% in most cases for reflected and transmitted
fluxes. They are accurate to better than 2% when the solar zenith angle satisfies /x0 >
0.4. The errors increase as /xo decreases, with a maximum error in the reflectance
increasing to 15% as /xo —> 0.

We should note, however, that the solutions presented in this chapter pertaining
to a homogeneous slab contain exponentials with arguments dz&r. From a practical
computational point of view this represents a flaw, because "overflow" problems are
encountered when kx becomes too large. Also, to solve realistic problems involving
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Table 7.1. Two-stream results compared to accurate computations for the diffuse upward

and downward fluxes at the top and bottom of the layer®

Case

1
2
3
4
5

Mo

1.000
1.000
0.500
1.000
1.000

r*

1.00
1.00
1.00

64.00
64.00

a

1.0000
0.9000
0.9000
1.0000
0.9000

8

0.7940
0.7940
0.7940
0.8480
0.8480

F+(0)
Exact

0.173
0.124
0.226
2.662
0.376

Twostr

0.174
0.133
0.221
2.683
0.376

Error
(%)

0.65
7.03

-2.14
0.81

-0.05

Exact

1.813
1.516
0.803
0.480
0.000

(r*)
Twostr

1.812
1.522
0.864
0.454
0.000

Error
(%)

-0.07
0.38
7.59

-5.50
0.00

Note: aThe surface albedo was set to PL(2TT) = 0.0.

radiative transfer in the atmosphere and ocean, we must be able to deal with the
vertical inhomogeneity of the medium. Thus, the solutions should be extended to
apply to multilayered media in which the optical properties are allowed to change
from layer to layer. Both these shortcomings will be removed in the next chapter,
where we generalize the two-stream method to an arbitrary number of streams and an
arbitrary number of layers.

In Tables 7.1-7.3 we show results for beam illumination of a homogeneous slab
(Prototype Problem 3). Table 7.1 shows upward flux at the top and downward flux at
the bottom of a slab of optical thickness r* = 1 and 64. The error varies from being
negligible to as large as 7%. Table 7.2 shows the net flux and the flux divergence at
several levels in an optically thick slab (r* = 64). For a conservative slab (a = 1.0)
the errors are small (4-5%) for the net flux and negligible for the flux divergence. For
a moderately absorbing slab (a = 0.9) the error is of similar magnitude for the net
flux and flux divergence; it is relatively small closer to the top of the medium (r < 12)
but becomes as large as 80% deep within the medium. Results for the mean intensity
at the top and bottom of a Rayleigh-scattering slab are shown in Table 7.3. The slab
overlies a Lambert reflector with albedo values pL = 0 (nonreflecting), pL = 0.25, and
pL = 0.80. The error varies depending on the angle of illumination (/x0), the optical
thickness of the slab (r*), and surface reflectance (pL)> but it is typically small (several
percent) except for a few cases where it is 10% or larger.

Tables 7.4 and 7.5 show results for an imbedded (thermal) source (Prototype Prob-
lem 2). Table 7.4 displays exiting fluxes (top and bottom) and the flux divergence.
The temperature was assumed to vary linearly across the slab from 270 K at the top
to 280 K at the bottom. The lower boundary ("surface") temperature was taken to be
0 K for the absorbing case a = 0 and 300 K for the nonabsorbing case (a = 1). The
total integrated Planck function (aBT4/jt) was used to drive the radiation field. The
cases with (a = 0) are "extreme" because the two-stream approximation is known to
have problems in this limit. These cases may therefore be considered as less favorable
situations. We note that the error is never larger than about 11% for exiting fluxes,
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Table 7.2. Two-stream results compared to accurate computations for the net flux,
F = F + — F~, and the flux divergence, Flayer,/+i~ îayer,/ -a

Case 1: /x0 = 1.000, a = 1.0000, r* = 64.00, g = 0.8480

r

.000
3.200
6.400

12.800
32.000
48.000
64.000

Case 2: fi0

X

.000
3.200
6.400

12.800
32.000
48.000
64.000

Net flux
Exact

0.48000
0.48000
0.48000
0.48000
0.48000
0.48000
0.48000

, = 1.000,0 = 0.

Net

Exact

2.77600
1.60500
0.83000
0.19600
0.00220
0.00010
0.00000

Twostr

0.45804
0.45778
0.45743
0.45674
0.45493
0.45401
0.45362

,9000, z* = 64.00

flux
Twostr

2.76577
1.60526
0.82205
0.18274
0.00131
0.00002
0.00000

Error
(%)

- 4 . 6
- 4 . 6
-4 .7
-4 .8
-5 .2
-5 .4
-5 .5

,8 = 0.

Error
(%)

- 0 . 4
0.0

- 1 . 0
-6 .8

-40.2
-81 .0

0.0

Divergence
Exact

0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

8480

Twostr

0.00026
0.00035
0.00070
0.00180
0.00092
0.00039
0.00000

Divergence
Exact

1.16100
0.77500
0.63400
0.19400
0.00210
0.00010
0.00000

Twostr

1.16050
0.78321
0.63931
0.18143
0.00130
0.00002
0.00000

Error
(%)

0.0
0.0
0.0
0.0
0.0
0.0
0.0

Error
(%)

0.0
1.1
0.8
6.5

-38.3
-81.3

0.0

Note: aThe surface albedo was set to PL(27T) = 0.0.

whereas the error is negligible for the flux divergence. In the conservative case the
two-stream approximation yields slightly nonzero values for the flux divergence. In
Table 7.5 two-stream results are compared with accurate multistream results for slabs
of optical thicknesses r* = 0.1, 1.0, 10.0, and 100.0, single-scattering albedo a =
0.1 and 0.95, and asymmetry factors g = 0.05 and 0.75. The internal source was
taken to be (isotropic) thermal radiation. The "surface" temperature was taken as
0 K, the top temperature as 200 K, and the bottom temperature 300 K. Again, the tem-
perature was assumed to vary linearly across the slab, and the Planck function was inte-
grated between wavenumbers 300 cm" l and 800 cm" l, which includes the main portion
of the thermal radiation. The maximum error in the two-stream results is about 12%.

A two-stream algorithm designed to work for a multilayer medium has been used
to investigate the adequacy of two-stream approximations for computations of surface
ultraviolet and visible solar fluxes, atmospheric photolysis rates, and warming/cooling
rates due to solar and thermal infrared radiation under clear-sky, overcast, and hazy
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Table 7.3. Two-stream results compared to accurate computation for the mean intensity for
conservative Rayleigh scattering (a = 1, g = 0).

Mo

O.1O
0.10
0.10
0.40
0.40
0.40
0.92
0.92
0.92

0.10
0.10
0.10
0.40
0.40
0.40
0.92

0.92
0.92

0L(27t) = 0.00
r* Exact Twostr

0.02 1
0.25 1
1.00 ]
0.02 ]
0.25 ]
1.00 1
0.02 ]

0.25 ]
1.00 ]

L.045 1
L.170 ]
L.212 ]
L.047 ]
L.284 ]
L.534 ]

L.040

L.279
L.691

0.02 0.864 (

0.25 (
1.00 (
0.02 (

0.25 (
1.00 (
0.02

0.25
1.00 (

1192 (
1057 (
1998 (
1787 (
1385 (
L.018 (

L.028 (
1881 (

L.016
L.085
L0119
L.017
L.164
L.374

L.017

L.191
L.572

1834

1156
1054

1968
1693
1344

1996

1950
1822

Error

(%)

- 2 . 8
- 7 . 3
- 7 . 7

- 2 . 9
- 9 . 3

-10 .4
- 2 . 2

- 6 . 9
- 7 . 1

- 3 . 4

-18 .6
- 4 . 4

- 3 . 0
-11 .9
-10 .6

- 2 . 2

- 7 . 6
-6 .7

PL(2TT) --= 0.25

Exact Twostr

471-/(0)//;
1.089 ]
1.189 1
1.220 ]
1.235 ]
1.402 ]
1.584 ]

1.477 ]
1.597 ]
1.851 ]

••s

1.061
1.107
1.128
L.210
L.296
1.431
L.467
L.542
L.754

4nI(r*)/Fs

0.912 0.881
0.224 0.188
0.082 0.081
1.203 ]
0.988 (
0.540 (
1.495 ]
1.560 ]
1.384 1

1.168
1883
1500
L.461
L.453
1.320

Error /?L(2JT;

(%) Exact

- 2 . 6 1
- 6 . 9 1
- 7 . 5 ]
- 2 . 1 ]
- 7 . 5 1
- 9 . 7 ]
-0 .7 :
- 3 . 4 :
- 5 . 2 :

- 3 . 4 ]

1.187

L.239
1.247
1.653
L.707
L.778
>.453
>.4O4

>.398

L.018
-16 .1 0.307

- 1 . 1 0.186

- 2 . 9 ]
-10 .6 ]

- 7 . 4 ]
- 2 . 3 :

- 6 . 9 :
- 4 . 6 :

L.661
L.502
L.071

L561
>.982

$.019

) = 0.80
Twostr

1.161
1.165
1.166
1.640
1.645
1.650
2.471
2.466
2.457

0.985
0.271
0.183
1.613
1.382

1.099
2.500

2.776
3.241

Error

(%)

- 2 . 2
- 6 . 0
- 6 . 5
-0 .8
-3 .7
- 7 . 2

0.7

2.6
2.5

- 3 . 3
- 3 . 3

9.2

- 2 . 9
- 8 . 0

2.6
- 2 . 4

- 5 . 2
4.2

conditions. The defining formulas are given in Chapter 5 and the procedures used for
integration over the solar and thermal infrared spectrum are described in Chapter 9.
Here we summarize briefly the performance of the two-stream approximation for such
computations.

For clear-sky situations the error in photolysis rates incurred by using the two-
stream approximation is insignificant compared to other sources of errors in these
computations associated with uncertainties in cross sections and quantum yields. For
overcast and hazy atmospheres the error in photolysis rates incurred by use of the
two-stream approach may become as large as 20-40% for the worst cases. For sur-
face ultraviolet (UV-B: 280-320 nm and UV-A: 320-400 nm) and photosynthetically
active radiation (PAR: 400-700 nm) the error is relatively small for clear, hazy, and
overcast conditions if the surface albedo is less than 0.8. For surface albedos larger
than 0.8 (snow-covered areas) the error may become larger than 10%. The two-stream
approximation overestimates PAR under overcast conditions by up to 50% for low
solar elevations. Finally, it is encouraging to note that the two-stream approximation
yields very accurate results for the computation of warming/cooling rates except for
layers containing clouds and aerosols, where the errors are about 10%.
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Table 7.4. Upward and downward fluxes and the flux divergence for a single layer in the
limits a = 0 and a = I for isotropic scattering.61

r*

1.0
1000.0

10.0

r*

1.0
1000.0

10.0

a

0.0
0.0
1.0

a

0.0
0.0
1.0

F+(0)
Exact

248.2
301.4
53.623

Twostr

274.2
301.4
41.791

dF(0)/dr
Exact

-669.4
-602.6

0.000

Twostr

-657.0
-602.6

-0.013

Error

(%)

10.5
0.0

-22.1

Error
(%)

-1.8
0.0
0.0

Exact

259.1
348.5
417.674

dF(x
Exact

-823.4
-697.1

0.000

(r*)
Twostr

286.9
348.5
417.553

*)/dr
Twostr

-820.2
-697.1

0.004

Error
(%)

10.8
0.0
2.9

Error

(%)

-0.4
0.0
0.0

Note: flThe temperature at the top of layer is 270 K and it is 280 K at the bottom. It is assumed
to vary linearly across the layer. The surface temperature is 0 K for the a = 0 cases and
300 K for the a = 1 case. The Planck function was integrated over the interval 0.0-10,000.0
cm x. Exact results are from 16-stream calculations by the DISORT algorithm (described in
Chapter 8).

Table 7.5. Two-stream results compared to accurate computations for thermal radiation for
different optical thicknesses, single-scattering albedos, and asymmetry factors.

r*

0.10
0.10
1.00
1.00

10.0
10.0

100.00
100.00

a

0.10
0.95
0.10
0.95
0.10
0.95
0.10
0.95

g

0.05
0.75
0.05
0.75
0.05
0.75
0.05
0.75

F+(0)
Exact

19.271
1.264

80.164
11.317
63.725
53.001
56.541
39.423

Twostr

20.919
1.282

87.250
11.615
61.501
48.385
55.965
34.325

Error

(%)

8.55
1.40
8.84
2.64

-3.49
-8.71
-1.02

-12.93

F ( 0 ) -
Exact

-39.839
-2.575

-195.348
-24.135

-265.788
-136.632
-270.983
-172.113

F(r*)
Twostr

-42.721
-2.581

-214.882
-24.577

-265.497
-130.601
-269.922
-153.005

Error

(%)

7.23
0.23

10.00
1.83

-0.11
-4.41
-0.39

-11.10

7.7 Final Comments on the Two-Stream Method

A bewildering variety of seemingly different two-stream methods have been proposed
over the years to solve the radiative transfer equation for anisotropic scattering.14

To avoid confusion, it is useful to distinguish between the approximation utilized to
represent the phase function in the problem and the subsequent approximate solution
of the radiative transfer equation for a given representation of the phase function. As
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an example, we refer to the Eddington and two-stream methods considered above
to solve for the azimuthally averaged intensity. For a two-term representation of the
phase function, we found that the governing equations for the Eddington and two-
stream approximations were identical provided that the value of jl was taken to be
1/A/3. Thus, the only remaining difference must then be attributed to the application
of boundary conditions. Below we shall discuss what options are available.

To help relate the following discussion to previous published papers on the two-
stream approximation, we shall rewrite the two-stream equations in the following
form, which is frequently found in the literature15:

In terms of our notation, yi = [1 — a(\ — b)]/jl, y2 = ab/jl, y3 = Z?(//,o)/A>
y4 = [l— a( l — £(/xo))]/A- Since F^ = 2njll^ in the two-stream approximation,
we could have derived virtually identical equations for F^. In fact, the generalized
two-stream equations (Eqs. 7.139) also reduce to those given above for r ± = 1 and

A± = 1).
Let's first consider the simple case of isotropic scattering. In this case, b(/ji) = b =

1/2 and therefore yx = (\ — a/2)/jl, y2 = a/2/z, y3 = y4 = 1/2/2. Thus, only a
change in jl can affect the y's. A change of \x will obviously affect the solution, but
it will not affect the method of solution. Next, let us consider anisotropic scattering.
The common use of a two-term expansion of the phase function in the Eddington and
two-stream approximations was justified in §7.5.2. The advantage of adopting 8-N
scaling was also emphasized, because it avoids problems with negative reflectances
that are inevitable for strongly forward-peaked phase functions. Also, the use of scaled
values for the backscattering coefficients leaves only jl to be chosen.

It has been customary to classify two-stream methods according to the values
adopted for the y's. Obviously, these constants will depend on (1) the choice of jl
and (2) for anisotropic scattering, the representation of the phase function (including
scaling if necessary). This practice has led to a variety of different two-stream methods
and much energy has been expended on searching for values of these coefficients that
give optimal accuracy. Reading the voluminous literature on this subject can be some-
what frustrating, because there has been a tendency to confuse solution methodology
with preparation of the equations prior to solution. This preparation includes adequate
treatment of the angular scattering such as the truncation of the forward-scattering
peak and the selection of the number of terms to be used in the expansion of the phase
function. The confusion is partly due to the fact that too little attention has been paid
to the "front end" of the problem concerning the choice of y values that are physically
reasonable, compared to the effort spent on comparing solutions for a variety of values
of the coefficients. To alleviate this state of confusion and provide some guidance to
readers who are entering this field, we offer the following suggestions: (i) Use scaling
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to truncate the forward scattering peak (this is mandatory if the asymmetry factor is
greater than 0.5); (ii) for a beam source, jl = l/>/3 is expected to yield the overall
best results for quantities integrated over both hemispheres, such as the mean intensity
and the flux divergence, as well as for quantities integrated over a single hemisphere
such as upward and downward fluxes; (iii) for imbedded, isotropic sources such as
thermal radiation, jl == 0.5 yields the best overall accuracy.

Finally we may ask: Is the two-stream approximation consistent with energy con-
servation? To provide a partial answer to this question we note that if we ignore the
solar "pseudo-source" so that we are considering the total radiation field, and then add
the pair of two-stream equations, we obtain

— = 4 T T ( 1 -a)I.
dx

Conservation of energy follows from the fact that this equation is identical to the one
obtained by integrating the full radiative transfer equation over An sr. Of course, this is
just a consequence of the two-stream phase function (embodied in the backscattering
ratio) being correctly normalized.

7.8 Summary

In this chapter, we have discussed simple approximate solutions to the radiative trans-
fer equation. The first method discussed was that of single scattering, for which we
showed that the condition for validity is the smallness of the quantity ar*. This method
provides convenient analytic forms, which are valid even for inhomogeneous media,
anisotropic scattering, and nonslab geometry. The two-stream method, in its differ-
ential form, replaces the complicated integro-differential equation with two coupled
differential equations for two functions of optical depth. When the medium is homo-
geneous, the resulting equations have constant coefficients and analytic solutions are
obtained. These simple analytic solutions have great value from a pedagogical point
of view, but they are also of considerable practical value in large-scale photochem-
ical and dynamical models, which require repeated solutions of the radiative trans-
fer equation for the purpose of computing photolysis and/or warming/cooling rates
across the temporal and spatial domains. We also showed that for Prototype Problem 1,
a method equivalent to the differential two-stream method is the exponential-kernal
approximation. It is clear that both approaches are valid provided the scattering is
isotropic.

We applied the two-stream approximation to the solution of the prototype problems
defined in Chapter 5. By focusing first on the simple case of isotropic scattering, we
were able to expose the essential aspects of the solutions, discuss a variety of limiting
cases, and introduce several important physical concepts such as the thermalization
length. We then generalized the two-stream solutions to include anisotropic scatter-
ing and compared the two-stream approach to the Eddington approximation. We also
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provided generalized two-stream equations that are valid for coefficients (mean in-
clinations and scattering efficiencies) that are different in the two hemispheres. We
noted that, in principle, these latter equations can be considered to be exact, because
no approximations were invoked in their derivation. In practice, however, an accurate
method is needed to derive the position-dependent coefficients for each hemisphere.

Finally, we note that the literature is replete with papers on various two-stream
and Eddington approximations that have been proposed over the years. Reading these
papers can be somewhat frustrating. To avoid confusion, we note that for isotropic
scattering there is essentially just one "tuning" parameter, \x. For anisotropic scattering,
it is useful to distinguish the approximate representation of the phase function from
the subsequent method of solution. Ever since the invention of the scaling of the phase
function discussed in §6.8, there has been a tendency to confuse the scaling issue
with the solution technique. As discussed in §6.8, it is always advisable to use scaling
if the phase function is strongly forward peaked regardless of solution technique.
We reiterate: The representation of the phase function (including scaling) does not
change the mathematical form of the radiative transfer equation. Scaling, in particular,
merely changes the optical properties of the medium to make the scattering appear less
anisotropic. This in turn makes the scaled equation easier to solve by whatever analytic
or numerical technique we choose to apply. Thus, contrary to common misconception, a
two-stream or Eddington approximation and subsequent solution of the scaled radiative
transfer equation, which is often referred to as a "<5-two-stream" or "5-Eddington"
method, does not really qualify as a new method of solution. It merely uses the same
old methods to solve the scaled equation.

So then, what are the differences between the various methods? There are really
only three ways in which two-stream and Eddington type of methods can differ: (i) the
choice of /2, (ii) the application of boundary conditions, and (iii) the representation of
the phase function for anisotropic scattering. The first item is related to how we integrate
over polar angle or apply quadrature to obtain the approximate equations. In §7.5.1, we
showed that the governing equations for the Eddington and two-stream approximations
are identical provided we choose jl = l / \ / 3 . So if we use the same representation
of the phase function (including the scaling), the only remaining difference must be
attributed to the application of boundary conditions.

Problems

7.1 Assume that the intensity distribution of the clear daytime sky is described by
photons that have been scattered only once.
(a) Ignoring surface reflection, show that the downward intensity of skylight at the

lower boundary is

4TT MO - M
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(b) What does this distribution reduce to when \x —> /zo? (Hint: Assume r* /' JJLQ and
r*/n are both <1. )

(c) Let #o = 45°. Plot the relative intensity of skylight at sea level in the principal
plane of the Sun (0 = 0° and 0 = 180° for four different clear-sky optical depths,
r* = 1.0, 0.25, 0.15, and 0.05. (These correspond to the wavelengths 316, 440,
498 and 654 nm.)

(d) Assume there is a lower reflecting Lambertian surface with BRDF pL. Find the
new expression for the skylight intensity by integrating over the source function
S* + S£ (S* is given by Eq. 7.21). Show that, in the limit of small r*, the sky
intensity at the surface is given by

Fsr*
Id (T*, /X, 0) = [/?RAY(-^0, 00; -M» 0) + 27tflopL\-

(Use the exponential-kernal approximation E2(r* — r) ^ £~(T*~T)//Z.)
(e) Plot /d"(t*, /x, 0) for the same conditions as part (c), but including the effects of

a reflecting surface with 7rpL = 0.3 and 0.7.

7.2 Derive Eqs. 7.52 and 7.53 by two different methods: (1) by taking the limit
a —• 1 and using L'Hospital's Rule, and (2) by solving the relevant set of first-order
differential equations.

7.3
(a) Find the two-stream expression for the point-direction gain Q for nonconservative,

isotropic scattering. Use Eqs. 7.82 for ^ ( r ) , and use the relationship of ^ ( r )
with Q in Eq. 6.94.

(b) From part (a) derive the two-stream expressions for the X- and F-functions, using
Eqs. 6.94, 6.95, and 6.96. Assume a = 1 and use Eq. 7.92 for S3(r). Show that
the resulting expressions are

/x(r* + 2/1)

(c) Show that Z(/x) -> H(fi) and Y(/JL) -» 0, where if (fi) is given by Eq. 7.90 in
the limit r* —> oo.

7.4 Derive Eqs. 7.75 through 7.76.

7.5 Derive Eqs. 7.95 through 7.100.

7.6 The escape probability for an isotropically scattering semi-infinite slab satisfies
the following integral equation:

oo

V(r) = ^E2(r) + | f dz'V(r')Ei(.\T - r'|).
o
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We will consider an approximate form of this equation by using the kernal approxi-
mation, £ i ( | r - r ' |) ^ £>-|T-T/|//7£.
(a) Solve the above equation by ^-iteration out to the third term; that is, find the first

three terms in the Neumann-series expansion

(b) Show that the same results are obtained by expanding the two-stream result for
Prototype Problem 1 (see Problem 6.4b and Eqs. 7.46-7.47) in a Taylor-series
expansion in powers of a, the single-scattering albedo, that is,

where / ( r , a) = a{\ + Poo)e-rT/2.
(c) Plot the first three terms for V(r) versus optical depth for a number of values of

a, and plot and compare their sum with the "exact result," V = / ( r , a). Show
that, for those photons escaping from near the surface, V consists largely of the
first few orders of scattering, at least for some range of a.

(d) Infer by mathematical induction the expression for the nth term, Pn{r). {Hint:
Use the property that V(r, a = 1) = 1 for all r.) Plot Pn(?) for some large value
of n and interpret the behavior with r.

7.7 The two-stream solution to the flux reflectance for Prototype Problem 1 for an
isotropically scattering slab overlying a black surface is given by Eq. 7.42. We want
to include a reflecting lower boundary, which acts as a Lambertian reflector with flux
reflectance pL.
(a) Show, using the boundary condition / + ( r*) = pL/~(r*), that

, o o x Poo (1 - POOPL) eTx* + (PL - poo) e-Fz*
Ptot(-27r, 2TT) =

(1 - POOPL) eFT* + Poo (PL - Poo) e~r r* "

(b) What is the expression for Ttot(—2n, —2n)l
(c) Show that if pL is set equal to p ^ , then ptot = Poo- How is this result related

to Ambartsumyan's Principle oflnvariance (see book by K.-N. Liou, pp. 203-6,
op cit., Endnote 3 of Chapter 2)?

(d) We derived an exact result for the total reflectance and transmittance of an atmos-
phere/reflecting surface in terms of the solutions for an underlying black surface
(Eqs. 6.77 and 6.78). What are the two-stream versions of these equations? Show
that if one assumes that the spherical albedo and transmittance are the same as the
flux albedo and flux transmittance for this problem, then the results are identical
to those derived in parts (a) and (b).

7.8
(a) Repeat Problem 7.7, except use beam boundary conditions, or in other words, solve

the planetary problem for Prototype Problem 3, assuming a Lambert reflecting
surface. Assume isotropic scattering.
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(b) Find ptot when pL = 1.
(c) Find ptot when a = 1.
(d) Find the limit for ptot when r* oo.

7.9 Consider monochromatic light incident on a homogeneous, semi-infinite medium
that scatters isotropically. For a collimated beam of incident light of intensity /~(r , fi) =
Fs(5(/x — /zo)<K0 — 0o)> the angular distribution of the reflected intensity can be ex-
pressed in terms of the //-function as (see Eq. 7.103)

An
(7.140)

where a is the single-scattering albedo and /x0 is the cosine of the beam incidence
angle.
(a) Show that the total reflected intensity (/+(0) = 2n J* J /x / +( r = 0, /x)) divided

by Fs is / + ( 0 ) / F s = [//(/z0) — 1] and that the directional-hemispherical albedo
becomes

Assume now that instead of a collimated beam the incident light has an angular
distribution Tf((i0), where X = constant and 2 / J dix/xfiix) = 1, so that the
incident flux is nX.

(b) Show that the angular distribution of the reflected light can now be expressed as

•HQi)

1

1-JdfifQi)
0

(7.141)

where Hf(fi) satisfies the equation

a r dfi'fUif)HfQi') = 1 f
2 J H + H' Ht(n) aJ

(c) What is the shape of the angular distribution if the scattering is conservative (a = 1)
and the incident illumination is uniform (/(/z0) = 1)? Justify your answer.

(d) Derive the following expression for the total reflected intensity (scalar irradiance)
divided by 1:

-/•
-afdnfQi)

o
(7.142)
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(e) Show that for uniform incidence the following exact expressions are valid:

/+(0) 1 - V T ^ a

(f) Derive an expression for the flux reflectance or albedo in terms of //-functions, and
show that for uniform illumination this expression reduces to one that is consistent
with the result obtained in (a) for the directional-hemispherical albedo.

7.10 Show that the coefficients r=b(r) defined by Eqs. 7.132-7.133 can be expressed
in terms of Legendre polynomials, Pi(/x), as

I

r + ( r ) = 7-^r+Gu;
J
0

1

fd[i'I\(ji'
J

r ( r ) „ rf
(1 —b)I

o

where

1 2N-1

r*0i) = r E (±1)1(2/ +

/=o

and xi are the expansion coefficients of the phase function in Legendre polynomials
(see Eq. 6.29).

7.11 A cloud begins to form in the sky overhead. As the cloud thickens, the visual
brightness of the cloud's bottom side will brighten, reach a maximum, and then begin
to decrease as the cloud becomes optically thick. Ignore effects of ground reflection.
(a) Explain this behavior in physical terms.
(b) Assume the cloud is a plane-parallel slab that scatters visible radiation conserva-

tively (a = 1). The cloud particles have an asymmetry factor g and a probability
of backscatter b = (1 — g)/2. Show that the approximate (two-stream) equations
of radiative transfer are

_</(/+-/-) _<*(/+ + /")
/x = 0 and /x = (1 - g)(I+ - I ).

dx dx

(c) Solve the above equations with the boundary conditions of Prototype Problem I.
Separate the solution into solar and diffuse components, and show that the trans-
mitted diffuse radiation /<f(T*) has the properties described above. (This means
solving for the total transmitted intensity, / " ( r*) , and subtracting the solar trans-
mitted radiation, J^"r*//X°.)

(d) Plot the solution for /d~(r*) versus r*, assuming that g = 0.75 and jl = 0.6.
Is your result compatible with the behavior of the cloud described above? How
important is the assumption of a dark surface to your conclusion?

(e) Repeat the above analysis for beam boundary conditions (Prototype Problem 3)
by solving for /d~ (r *) directly. Include the effect of a reflecting boundary by using



Problems 275

Eq. 6.78. Use for the spherical albedo the flux albedo for Prototype Problem 1.
(The equality of these two quantities was proven in Problem 4.5.) Plot the result
and compare with part (d).

7.12 The radiative transfer equation for a semi-infinite anisotropically scattering
medium such as the deep ocean with an internal source of radiation is given by

dx :
- i

where G(u) is an arbitrary function of u and the parameter y > 0.
(a) Show that the two-stream solution to the above equation can be written for y ^ V:

where

A~ = X — B~, X = I~(r = 0) is the boundary condition,

°° ' °° ~~ A/1 - a + lab + y/\—a'

yfi(l-a)

1 - a [ ( r^ ) 2 - (KM)2] ^

I

± = — [
47T J

G = -— / J/xG(±/x), Vfji =

0

(b) Show that the two-stream approximation to the source function

1

S(r, u) = - I du'p(u\ M)/(T, ur)
4TT

- l

can be expressed as

where

C + = aipoo + b{\ - poo)], C" = a[\ - b{\ - p^]

r ^+i r /
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(c) Show that for isotropic scattering (b = 1/2) and isotropic internal source (G+

G~ = G = G/4TV) the above equation reduces to

+ GHtsa I — ]//tSa I 1 - y/T^
1 - yjl -e

where Htsa(x) is given by Eq. 7.90 and is the two-stream approximation to the
//-function.

(d) Use the above equation to derive an approximate solution for the emergent intensity
for X = 0 (i.e., no incident radiation) given by

/t+(r = 0, n) = G-^t-HtoQi).

Discuss how the emergent intensity varies with the spatial variation of the internal
source, that is, with varying y.

7.13 A plane-parallel planetary atmosphere is transparent to solar radiation and is
thus subjected to heating from only the surface (assumed to be black). Assume the at-
mosphere is gray in the infrared, optically thick, and purely absorbing. The frequency-
integrated source function is thus

oo

B{x) = / dvBv(r) = — T\r),
J TV
0

where Bv is the Planck function, v is (IR) frequency, crB is the Stefan-Boltzmann
constant, T is temperature, and r is optical depth.
(a) Show that an approximate relationship between the frequency-integrated IR flux

F and the source function is obtained from the Eddington approximation

An dB(r)

(b) Assume that the atmosphere is in radiative equilibrium. Show that the source
function at any optical depth r is

B(T=0) + — r.
An

(c) Assume that jl = 1/2. Show from the boundary conditions that this implies F =
2nB(x = 0).

(d) Assume that the absorbing gas is well mixed in the atmosphere and obeys the
hydrostatic equation, (dpa/dz) = —p&g, where pa is the partial pressure of the
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absorbing gas and pa is its mass density. Define the optical depth as

oo

r = / dzfampa(z'),

where am is the (gray) absorption coefficient per unit mass. Show that

3 ^ 1 / 4

(e) Define the effective temperature of the planet, Te as F = cr^T*. Find the relation-
ship between TQ and the "skin" temperature T(r = 0).

(f) Show that the radiative equilibrium temperature lapse rate is given by

dT _ -g | T

~dz ~ I T (1 + § T ) '

From this result show that an atmosphere becomes convectively unstable when
the optical depth is large, and only if cp > 4R. Here cp and R are the specific
heat and gas constant per unit mass.

7.14 A gigantic volcanic emption causes a worldwide layer of sulfuric acid parti-
cles to form in the Earth's stratosphere. Widespread reports of ultrabright skies and
unprecedented cases of sunburn are reported by the world's hospitals. Scientists find
that their measurements of the visible-light sky brightness have increased substantially
over their pre-emption values. After a late-autumn snowfall and the return of cloudless
skies, their spectrometers record even more downward sky radiation than is available
in the extraterrestrial flux!

Explain this behavior using the two-stream approximation for Prototype Problem 3.
Assume the following: a = 1 for the aerosols (an excellent approximation for sulfu-
ric acid droplets); the aerosol layer is horizontally homogeneous; and Lambertian
reflectance for the snow cover, PL. Ignore the influence of the atmosphere, either
Rayleigh scattering or atmospheric absorption. This problem involves the determina-
tion of the total flux transmittance of the diffuse radiation, %ot(~Mo> — 27r), to include
the anisotropically scattering aerosol layer and the reflecting surface.
(a) First, assume PL = 0. Show that the two-stream scaled expressions for the

directional-hemispherical transmittance and reflectance for Prototype Problem
3 obey the relationship

(b) Show that the spherical albedo p3 for Prototype Problem 3 is equal to the flux
reflectance for Prototype Problem 7, which we denote as p(—2n, 2n).

(c) Using the relationship (Eq. 6.78) relating the solution for the directional-hemi-
spherical transmittance To of a medium with a completely absorbing lower bound-
ary to that for a reflecting lower boundary (with a Lambert reflectance pL), find the
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total (diffuse plus direct) directional-hemispherical transmittance Ttot appropriate
to this problem.

(d) Show that, for an appropriate combination of parameters, /x0, A> a n d PL, the trans-
mittance can exceed unity. Explain how "photon trapping" explains this remark-
able result and thus accounts for the observed sky brightness following the volcanic
eruption.

(e) Find the corresponding expression for the total diffuse reflectance of the atmo-
sphere/surface system and show that

Aot(-Mo, 27T) + (1 - PL)^tot(-Mo, -2TT) = 1.

Notes

A unit volume in "tau space" is not the same as in geometrical space. Imagine a small
cylindrical volume whose length is dx and whose cross-sectional area dA has units
m2. Then the volume will be dAdx, whose units are m2, in contrast to the geometrical
volume dzdA, which has units of m3.
The two-stream approximation dates back to A. Schuster, "Radiation through a foggy at-
mosphere," Astrophysical Journal, 21,1-22,1905, and K.Schwarzschild, "On the equi-
librium of the Sun's atmosphere," Nachrichten von der Koniglichen Gesellschaft der
Wissenschaften zu Gottingen, Math.-Phys. Klasse, 195, 41-53, 1905. The Eddington
approximation originated with A. S. Eddington, "On the radiative equilibrium of the
stars," Monthly Notices of the Royal Astronomical Society, 77, 16-35, 1916. These
three classical papers have been reprinted in Selected Papers on the Transfer of Radia-
tion, ed. D. H. Menzel, Dover, New York, 1966.
C. Mobley has pointed out that E. Lommel was the first to derive the radiative transfer
equation. See E. Lommel's "Die Photometrie der diffusen Zuriickwefung," Ann. Phys.
U. Chem. (N.E), 36,473-502, 1889.
It is also called the Eddington approximation solution of the Milne problem when
pi = 2/3 and S(0) is equal to F/2n.
Schwarszchild assumed that radiative equilibrium applied in the Sun's outer atmosphere.
Taking a gray absorption for the photospheric material, he related the source function to
a B T4. From this, he compared the limb darkening to that predicted by adiabatic equilib-
rium. Observations of limb darkening agreed much better with the radiative equilibrium
assumption.
In computational work it is usually sufficient to use numerical "dithering" by which /xo
is changed slightly away from the "singular value." This artifice produces satisfactory
results and avoids the inconvenience of having to deal with a special case involving a
different solution.
See S. Chandrasekhar, Radiative Transfer, Dover, New York, 1960, Eq. 131, p. 87.
Chandrasekhar, S., Radiative Transfer, p. 209, his Eqs. 3, 4, and 5.
The relationship between the two-stream and the Eddington approximation was dis-
cussed by D. R. Lyzenga, "Note on the modified two-stream approximation of Sagan
and Pollack," Icarus, 19,240-3, 1973.
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10 The backscatter coefficients are discussed in some detail in Wiscombe, W. J. and G. W.
Grams, "The Backscattered Fraction in Two-Stream Approximations," /. Atmos. ScL,
33, 2440-451, 1976.

11 An entertaining description of how the two-stream approximation may be used to explain
numerous radiative transfer phenomena is found in Bohren, C. R, "Multiple scattering
of light and some of its observable consequences," Am. J. Physics, 55(6), 524-33,1987.

12 See, for example Aas, E., "Two-stream irradiance model for deep waters," Applied
Optics, 26, 2095-101.

13 The accuracy of the Eddington and two-stream methods for anisotropic scattering was
explored by W. J. Wiscombe and J. H. Joseph, "The range of validity of the Eddington
approximation," Icarus, 32, 362--77', 1977, who found that it was accurate for values
of g less than 0.5. This explains why the <5-Eddington and 5-two-stream methods are so
valuable: The scaled asymmetry factor is always less than 0.5. Tables 7.1-7.5 are taken
from Kylling el al., 1995 (the full reference is provided at the end of the next note).

14 Attempts to combine two-stream solutions for several adjacent slabs with different opti-
cal properties date back more than twenty-nine years - Shettle, E. P. and J. A. Weinman,
"The transfer of solar irradiance through inhomogeneous turbid atmospheres evaluated
by Eddington's approximation," J. Atmos. Sci., 27,1048-55,1970. These solutions were
intrinsically ill-conditioned, because the matrix (that had to be inverted to determine the
constants of integration in the problem) contained a combination of very small and very
large elements resulting from the negative and positive arguments of the exponential so-
lutions. In the 8 -Eddington method, subdivision of layers was employed to circumvent
the ill-conditioning, but at the expense of increasing the computational burden substan-
tially for thick layers (Wiscombe, W. J., NCAR Tech. Note NCAR/TN-121+STR). The
ill-conditioning problem was eliminated by a scaling transformation that removed the
positive arguments of the exponential solutions (Stamnes, K. and P. Conklin, "A new
multilayer discrete ordinate approach to radiative transfer in vertically inhomogeneous
atmospheres," J. Quant. Spectrosc. Radiative Transfer, 31,273-82,1984.) This scaling
transformation was eventually implemented into a general-purpose multistream (includ-
ing two-stream) radiative transfer algorithm by Stamnes, K., S.-C. Tsay, W. J. Wiscombe
and K. Jayaweera, "Numerically stable algorithm for discrete-ordinate-method radiative
transfer in multiple scattering and emitting layered media," Applied Optics, 27,2502-9,
1988. The resulting code has been made generally available to interested users and will
be briefly described in the next chapter. A specific two-stream code that made use of this
scaling transformation to remove the ill-conditioning has been developed (Toon, O. B.,
C. P. McKay, T. P. Ackerman, and K. Santhanam, "Rapid calculation of radiative heating
rates and photodissociation rates in inhomogeneous multiple scattering atmospheres,"
/. Geophys. Res., 94, 16287-301, 1989). Finally, a two-stream algorithm derived from
the general-purpose multistream algorithm mentioned above has been extended for ap-
plication to spherical geometry and to layers in which the internal source may vary
rapidly (Kylling, A., K. Stamnes, and S.-C. Tsay, "A reliable and efficient two-stream
algorithm for radiative transfer: Documentation of accuracy in realistic layered media,"
/. Atmos. Chem., 21, 115-50, 1995.) This two-stream code is also generally available
to interested users.

15 Modern discussions of the two-stream method are due to Meador, W. E. and W. R. Weaver,
"Two-stream approximations to radiative transfer in planetary atmospheres: A unified
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description," /. Atmos. Sci.,37, 630-43, 1980; Zdunkowski, W. G., R. M. Welch, and
G. Korb, "An investigation of the structure of typical two-stream-methods for the calcu-
lation of solar fluxes and heating rates in clouds," Contrib. Atmos. Phys., 53, 147-66,
1980; King, M. D. and Harshvardhan, "Comparative accuracy of selected multiple scat-
tering approximations," /. Atmos. Set, 43,784-801,1986; and Harsh vardhan andM. D.
King, "Comparative accuracy of diffuse radiative properties computed using selected
multiple scattering approximations," /. Atmos. Sci., 50,247-59,1993. Its accuracy for a
single, homogeneous slab was explored in these (and other) papers for a variety of com-
binations of the single-scattering albedo, asymmetry factor, and slab optical thickness,
and for several solar elevations.



Chapter 8

Accurate Numerical Solutions
of Prototype Problems

8.1 Introduction

We now consider a class of more sophisticated approximation techniques that are cap-
able of approaching the exact solution as closely as desired. This class includes the
discrete-ordinate method,1 the spherical-harmonic method, and the doubling-adding
method. It will be seen that in lowest order the first two methods become the two-stream
and Eddington approximations, respectively. The discrete-ordinate and doubling-
adding methods are also closely related, as will be discussed.

8.2 Discrete-Ordinate Method - Isotropic Scattering

8.2.1 Quadrature Formulas

The solution of the isotropic-scattering problem involves the following integral over
angle:

i i i

fdul(r,u)= /d/z/+(r,/x)+ f
- 1 0 0

In the two-stream method we replaced the integration over u with the simple formula

1

du I & / + ( t ) + / ~ ( T ) .

- l

This is obviously a crude approximation. We could improve the accuracy by including

281
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more points in a numerical quadrature formula

i
du /(r, M) « Y^ W'JI(T, Uj).

7=1

Here ti/- is a quadrature weight and M; is the discrete ordinate. The simplest example
is the trapezoidal rule

1

dul « AM ( | / I + / 2 + /3 H h/m-i + £/m),
- i

and the more accurate Simpson's rule is

I

dul ^ — (/i + 4/2 + 2/3 -

where AM is the (equal) spacing between the adjacent points, M7-, and the Ij denotes

If we have m points at which we evaluate 7(T, U), we can replace / with its ap-
proximating polynomial </>(«), which is a polynomial of degree (m — 1). Consider the
following form for </>(M), for m = 3:

(u-u2)(u-u3) ( M - M I ) ( M - M 3 )
4>(U) = /(Mi)- + / (M2 )- M2)(Mi - M3) (M2 - Mi)(M2 - M3)

(M - Mi)(M - M2)

(M3 - Mi)(M3 - M2)

It is easily verified that <j>(u) is a second-degree polynomial, which, when evaluated at
the points u\, M2, and M3, yields / ( M I ) , / ( M 2 ) , and / ( M 3 ) , respectively. The above is an
example of Lagrange's interpolation formula. We can write this in abbreviated form,
if we use the notation Yl to indicate products of terms. For example, we may define

(M - Uj) = (M - Mi)(M - M2) • • • (M - Um).

7=1

Then, since the polynomial (M — MI)(M — M2) • • • (M — M ; _ I ) ( M — Uj+\) • • • (M — Mm)

becomes F(u)/(u — M7) = lYk^j(u ~ uk)> we can write the polynomial </>(M) in a

shorthand form

j ^ (u - Uj)Fr(uj)

where Ff (M7 ) is defined as d F/duj u=Uj. We see that the derivative will give a long string
of polynomials of degree (m — 1); however, when it is evaluated at u = Uj, all terms
become zero except the term (M — MI)(M — M2) • • • (M — M;_I)(M — M7 + I) • • • (M — um).
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Hence, the quadrature formula arising from the assumption that the intensity is a
polynomial of degree (m — 1) is

) = -L- f duF(u).
The quadrature points Uj are, so far, arbitrary.

It can be shown that the error incurred by using the Lagrange interpolation formula
is proportional to the mth derivative of the functions [/ (u)] being approximated.2 Thus,
it is clear that if / (r, u) happens to be a polynomial of degree (m — 1) or smaller, then
the m -point quadrature formula is exact.

Example 8.1 Simple Demonstration of Quadrature

Let's assume that the intensity is a polynomial of degree 3,

/(u) = a0 + a\u + a2u
2 + a3u

3, /g ^

where at (i = 0 , . . . , 3) are constants. Evaluating the function at the points u\ = —l,u2 = 0, and
u3 = 1 yields three evenly spaced points in the interval [— 1, 1]. We find / (u\) = a0 — a\ +a2 — a3,
I(u2) = a0, and /(w3) = a0 + a\ + a2 + a3. Thus, the approximating polynomial becomes

0(M) = -(oo -ai+a2 -a2)(u
2 - u)

+ ao(u
2 - 1) + -(cio + ai +a2 + a3)(w

2 + w),

F(u) = (u - ux)(u - u2)(u - u3)

= U3 — (U\ + U2 + U3)U
2 + (U\U2 + U\U3 + U2U3)U — U\U2U3,

F'(u) = (u - u2)(u - u3) + (w - «i)(w - u3) + (u - u\){u - u2)

and the quadrature weights become

, i f duFiu) i r w w i
F'iux) J u-ui (ui - u2)(ui - u3) J 3

- l - l

and similarly

I I

, _ 1 [ duF(u) _ 4 , _ 1 r duF(u) _ 1
Wl ~ F'(u2) J u-u2 ~ 3 ^ 3 ~ F'(M3) 7 M - M 3 ~ 3'

We have just derived Simpson's rule.
So clearly

/
1 2

du /(«) = ^ u>,'/(Kj) = - [ / (« , ) + 4 / (M 2 ) + 7(M3)] = 2fl0 + -a 2 ,
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which is the same as the exact result

dul(u)=

—+a2—+a3—\ =2ao + -a2.
l -* 4 J -i -̂

Thus, we have demonstrated that Lagrange's three-point formula integrates exactly a polynomial
of degree 3 or less.

As already mentioned, the error in the Lagrange interpolation polynomial of degree
(m — 1) is proportional to the rath derivative of the function being approximated. The
resulting quadrature schemes (usually referred to as the Newton-Cotes formulas) rely
on using even spacing between the points at which the function is evaluated. We may
ask: Is it possible to obtain higher accuracy? This would appear to be so if we were to
choose the quadrature points in an optimal manner.

Gauss showed that one can, in fact, do better, even in the absence of information
about the function I(u). He showed that if F(u) is a certain polynomial, and the Uj
are the roots of that polynomial, then we get the accuracy of a polynomial of degree
(2ra — 1). This polynomial is the Legendre polynomial Pm(u). As we have seen earlier,
they have the special property of being orthogonal to every power of u less than ra,
that is,

i

[duPm(u)ul = 0 (1 = 0, 1,2, . . . , r a - 1).
- l

Note that if Uj is a root of an even Legendre polynomial, then — Uj is also a root. Also,
all m roots are real.

8.2.2 The Double-Gauss Method

We will proceed using a variant of the standard discrete-ordinate method, which will
in general turn out to be the most accurate solution for a given order of approximation.
It is customary to choose the even-order Legendre polynomials as the approximating
polynomials. This choice is made because the roots of the even orders appear in pairs:
If we use a negative index to label points in the downward hemisphere and a positive
index for points in the upper hemisphere, then w_, = — w+l-. The quadrature weights
are the same in each hemisphere, that is, w't = w^. The "full-range" approach has
certain problems because it assumes that / ( r , u) is a smoothly varying function of
u(—1 < w < +1) with no sharp corners for all values of r. We noted earlier that, in
the absence of any information about the integrand, the Legendre polynomial yields
optimum accuracy. However, let's introduce some information by noting that, at least
for small r, the intensity changes rather rapidly as u passes through zero, that is, as
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the line of sight passes through the horizontal. In fact at r = 0, this change is quite
abrupt. Since there is no incoming diffuse radiation, /(r ,u) (for u slightly negative)
is zero; and for slightly positive u values it will generally have a finite value. It will
clearly be difficult to fit such a discontinuous distribution with a small number of terms
involving polynomials that span continuously the full range between u = —l and u = 1.
Because the region near the surface is the most troublesome in terms of getting accurate
solutions, this is obviously the region to which we should pay the most attention.

To remedy this situation, the Double-Gauss method was devised.3 In this method,
the hemispheres are treated separately. Instead of approximating f_x dul(u) by the
sum J2?=-N

 wil(ui), where w[ and ut are the weights and roots of the even-ordered
Legendre polynomial P2N, we break the angular integration into two hemispheres, and
approximate each integral separately,

i i 1
J d u l = I dlLl+ + J

M M

- 1

where the Wj and /x; are the weights and roots of the approximating polynomial for
the half range. Note that we have used the same set of weights and roots for both
hemispheres. Again, this is not necessary, but it is obviously convenient. Now within
each hemisphere, if we are to obtain the highest accuracy, we must again use Gaussian
quadrature. However, our new interval is (0 < \JL < 1) instead of (— 1 < u < 1).
This is easily arranged by defining the variable u = 2/x — 1 so that the orthogonal
polynomial is PM(2H — 1). The new quadrature weight is given by

d/~f^, (8.2)

and the fij are the roots of the half-range polynomials. It is easy to find the weights
for M = 1 from the above formula (see Example 6.2 below).

Algorithms to compute the roots and weights are usually based on the full range. It
is therefore useful to relate the half-range quadrature points and weights to those for
the full range. Fortunately, it turns out that the new half-range weights and roots can
be found easily in terms of the weights w'j and points Uj for the full range. Since the
linear transformation t = (2x — x\ — x2)/(x2 — x\) will map any interval [x\, x2] into
[—1, 1] provided x2 > x\, Gaussian quadrature can be used to approximate

Xo 1

(x2-xi)

1

x2 1

f , lf v [ , T f(*2 ~Xi)t+X2+Xi]

Jdx«x)= J d t l [
Xi - 1

Choosing x\ = 0, x2 = 1, x = /x, and t = u, we find

( )
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and by applying Gaussian quadrature to each integral, we find on setting M = 2N for

the half range

J2 wjifaj) = 2 j d u I

J = l - l

i
j=-N

Thus, in even orders the half-range points and weights are related to the full-range

ones by

N = U-±±±, wj = l-w'j, (8.4)

showing that the new double-Gauss weights in even orders are half the Gaussian

weights in half the order (see Example 8.2). According to Eqs. 8.4 each pair of roots

±|w; | for any order N (full range) generates two positive roots /x7 = (— \UJ\ + l ) /2

and iA2N+i-j = (\i*j\ + l ) /2 of order 2N (half range). We have chosen to label the

roots so that they appear in ascending order, that is, /xi < /x2 < M3 < • • • < HIN (see

also Table 8.1).

Finally, we note that Eq. 8.3 implies that ^2 Wj• = 1 (obtained by setting / (/x) = 1),

which is confirmed by inspection of Table 8.1 provided in the following example.

Example 8.2 Low-Order Quadrature

Let's examine the M = 1 approximation to see if we retrieve the two-stream approximation.
Consider /zi, which is (1 + u{)/2. Now u\ is the root of P\{u) = u. This gives u\ = 0, and hence
\i\ = ^. The weight w\ is easily determined from its definition in Eq. 8.2:

Since Pi = 2/x — 1, P[ = 2, and hence w\ = 1. Therefore we retrieve, in the lowest-order
double-Gauss formula, the same equations as the two-stream Schuster-Schwarzschild equations,
in which ft = 1/2.

Following the same equations for the lowest even-order Gauss formula, we obtain the same
expressions except that jl = l/>/3, rather than 1/2. This follows since the lowest-order even
Gauss formula refers to the Piiu) = ^(3u2 — 1) Legendre polynomial for which P2M = 0
for u\ = ± 1 / A / 3 . In summary, the lowest-order double-Gauss formula leads to the half-range
two-stream Schuster-Schwarzschild equations; and the lowest-order (even) Gauss formula leads
to the full-range two-stream or Eddington approximation.

We may now use the formulas given above to find the half-range roots and weights forN = 1.
Since the corresponding full-range roots and weights are u±\ = ± 1 / ^ 3 and u;^ = 1, respectively,
we find n\ = ^(1 — 1/V3), /x2 = \{l + 1/V3), w\ = \, and w2 = \ for the half-range roots
and weights for 0 < /x < 1. For —1 < /x < 0 the weights are the same and /x_; = — jjLt. Gaussian
and corresponding double-Gaussian points and weights are listed in Table 8.1.
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Table 8.1. Gaussian and double-Gaussian points and weights.

N

1

2

3

4

5

6

j

1

1
2

1
2
3

1
2
3
4

1
2
3
4
5

1
2
3
4
5
6

2Af + 1 - .

2

4
3

6
5
4

8
7
6
5

10
9
8
7
6

12
11
10
9
8
7

0.57735

0.33998

0.86114

0.23862

0.66121

0.93247

0.18343

0.52553

0.79667

0.96029

0.14887

0.43340

0.67941

0.86506

0.97391

0.12523

0.36783

0.58732

0.76990

0.90412

0.98156

1.00000

0.65215

0.34785

0.46791

0.36076

0.17132

0.36268

0.31371

0.22238

0.10123

0.29552

0.26927

0.21909

0.14945

0.06667

0.24915

0.23349

0.20317

0.16008

0.10694

0.04718

0.21132

0.06943

0.33001

0.03377

0.16940

0.38069

0.01986

0.10167

0.23723

0.40828

0.01305

0.06747

0.16030

0.28330

0.42556

0.00922

0.04794

0.11505

0.20634

0.31608

0.43738

wj

0.50000

0.17393

0.32607

0.08566

0.18038

0.23396

0.05061

0.11119

0.15685

0.18134

0.03334

0.07473

0.10954

0.13463

0.14776

0.02359

0.05347

0.08004

0.10158

0.11675

0.12457

0.78868

0.93057

0.66999

0.96623

0.83060

0.61931

0.98014

0.89833

0.76277

0.59172

0.98695

0.93253

0.83970

0.71670

0.57444

0.99078

0.95206

0.88495

0.79366

0.68392

0.56262

W2N+1-J

0.50000

0.17393

0.32607

0.08566

0.18038

0.23396

0.05061

0.11119

0.15685

0.18134

0.03334

0.07473

0.10954

0.13463

0.14776

0.02359

0.05347

0.08004

0.10158

0.11675

0.12457

8.3 Anisotropic Scattering

8.3.1 General Considerations
We shall now generalize the discrete-ordinate method to situations including anisotropic
scattering in finite inhomogeneous (layered) media. In doing so we shall introduce a
matrix formulation4 that not only allows for a compact notation but also greatly fa-
cilitates the numerical implementation of the method. This formulation is valid for
isotropic scattering considered in the previous section as well as for any phase func-
tion that depends only on the angle between the incoming direction Qf and the scattered
direction Q through & • Q = cos ®, where 0 is the scattering angle.

For simplicity we start by considering a homogeneous slab. As we discussed in
Chapter 5, it is possible to "eliminate" the azimuth dependence in the sense that the
intensity may be written as a Fourier cosine series (Eq. 6.34) in which each Fourier
component of the series satisfies a radiative transfer equation mathematically identical
to the azimuthally averaged equation. Thus, we may focus on Eq. 6.35 for m = 0
or Eq. 6.59 if we want to utilize the S-N scaling to handle sharply forward-peaked
phase functions. Mathematically these two equations are identical, and so it does not
matter which one we choose. In fact, scaling only influences the optical properties of
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the medium and will not affect the mathematical solution. Therefore, in the following
it suffices to consider the following pair of equations for the azimuthally averaged (or
m = 0 component) half-range diffuse intensities (cf. Eqs. 6.20-6.21):

0

1

- | I diLrp{-ii\ /x)/-(r, fif) - X+e-T/»\ (8.5)

o

l

—— = I~(j, /x)
r 2

o

I

(8.6)

o

1

- | fdii'pi-ii', -

where (see Eqs. 6.35-6.36)

2JV-1

1=0

and

Xj = X0(±A0 = ^-Fsp(-fjiO, ±ii). (8.8)
47T

We consider the collimated beam case first. This is the most difficult of the three pro-
totype problems defined in Chapter 6 because we need to deal with the full azimuthal
dependence to arrive at the intensity distribution. The internal source problem, Proto-
type Problem 2, is used as an example below (see Example 8.4).

As before, the discrete-ordinate approximation to Eqs. 8.5-8.8 is obtained by re-
placing the integrals by quadrature sums and thus transforming the pair of coupled
integro-differential equations 8.5 and 8.6 into a system of coupled differential equa-
tions as follows:

dl+(r,fii) , a
Mi 2 = I (r,fjii) - -

7 = 1

" IJ2 wJP(-Vj, Mi)/"(r, Hj) - X+e-*'"*, (8.9)
7 = 1

dl-(r,fii) a A
-fit = / (r,Hi) - ~

7 = 1

N

? iPt-Vh -M.')/"(r, fij) ~ X^e~T^. (8.10)
2 7 =
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8.3.2 Quadrature Rule

As noted previously it is convenient to use the same quadrature in each hemisphere
so that /ji-i = —/jii and W-t = Wi. There are many quadrature rules that satisfy this
requirement, but the use of Gaussian quadrature is essential because it ensures that the
phase function is correctly normalized, that is,

= 1, (8.11)
j=-N i=-N

implying that energy is conserved in the computation. The reason for this is simply that
the Gaussian rule is based on the zeros of the Legendre polynomials, which we have also
used for our expansion of the phase function. The normalization property (Eq. 8.11)
guarantees that there will be no spurious absorption in problems with conservative
scattering (a — 1). The big advantage of using the expansion of the phase function in
Legendre polynomials (in addition to the isolation of the azimuth dependence discussed
previously) is that this normalization holds in all orders of approximation (i.e., for
arbitrary values of N).

The quadrature points and weights of the "double-Gauss" scheme adopted here
satisfy /x_7 = —/JLJ and w-j = Wj. As pointed out previously (see §8.2), "double-
Gauss" simply refers to a quadrature rule in which the Gaussian formula is applied
separately to the half ranges — 1 < u < 0 and 0 < u < 1. The main advantage of
this scheme is that the quadrature points (in even orders) are distributed symmetrically
around \u\ = 0.5 and clustered both toward \u\ = 1 and \u\ = 0, whereas, in the
Gaussian scheme for the complete range, — 1 < u < 1, they are clustered toward u =
=b 1. The clustering toward | u \ = 0 will give superior results near the boundaries where
the intensity varies rapidly around \u\ = 0. A half-range scheme is also preferable
since the intensity is discontinuous at the boundaries. Another advantage is that half-
range quantities such as upward and downward fluxes and average intensities are
obtained immediately without any further approximations. Computation of half-range
quantities using a full-range quadrature scheme is obviously not self-consistent.

8.4 Matrix Formulation of the Discrete-Ordinate Method

8.4.1 Two- and Four-Stream Approximations

Before we consider the general multistream solution, we shall first describe the two-
and four-stream cases (N = 1 and 2) for pedagogical reasons. It will then become
obvious how the multistream case works.

The two-stream approximation is obtained by setting N = 1 in Eqs. 8.9 and 8.10,
which yields two coupled differential equations as usual,

a _ a , ,
._. p(—/Xi,/xi)/ (x) P ( M I > U\)I (T ) — Q ( T ) ,

dx 2 2
(8.12)
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- M i — ^ = / ( T ) - - / ? ( - j L 6 i , - / x i ) 7 ( r )
dx 2

p(fJL\, — /xi)/+(r) — Q'~(T), (8.13)

where

a a / i\ a

— p(/jL\, —/xi) = — (1 — 3g/xf) = ab = —/?(—/xi, /x i ) ,
2 2 v 7 2

-p(ii\, ii\) = - 1 + 3g/xf = a ( l — b) = -/?(—/xi, —Mi)-
2 2V y 2

We note first that Eqs. 8.12-8.13 are identical to Eqs. 7.111-7.112 as they should be.
Also, we recall that b = ^(1 — 3g/Xj) is called the backscatter ratio and that g is the
first moment of the phase function as defined in Eq. 6.29 and is commonly referred
to as the asymmetry factor. If we take /xi = 3"2? then for g = —1 we have complete
backscattering (b = 1), for g = 1 complete forward scattering (b = 0), and for g = 0
isotropic scattering (b = 1/2). As shown above the value /xi = 3 " corresponds to
Gaussian quadrature for the full range [— 1, 1], while Gaussian quadrature for the half
range [0, 1] (referred to as double-Gauss; see §8.2 above) yields /xi = 1/2.

We may rewrite Eqs. 8.12 and 8.13 in matrix form as

dx [l-\ [ P a J |_/~J [Q~\

where

Q± = ±fiilQf±,

a = ii\

P = iiil-p(liu -Mi) = fi^-p(-fiu Mi) = li\Xab.

Example 8.3 Four-Stream Approximation (N = 2)

In this case we obtain four coupled differential equations from Eqs. 8.9 and 8.10 as follows
(again by assuming that we have chosen a quadrature satisfying ii_t = —/X/, W-t = wt):

dx
a a _

- w2-p(-l^2, /*I)/~(T, lii) ~ wi-p(-fii, MI)/"(T, /XI)

i )^+( )pifJLu M l ) ^ ( ^ , M l ) W2P(^2, Vl)l(X, / X 2 ) ,
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dx
a,

r, M2) - wi-p(-

fii) - w2-

~(r, Mi)

M2),

dx
a

2 -
a

i -

r, fi2),

2
CL

i -

We may rewrite these equations in matrix form as

d

~dx~

where

Q±(x, fit) = ±p71Q'±(T, in\ i = 1, 2,

«n = M?11 ^i-p(Mi, MI) - 11 = Mi"11^1 2

a2i =

2-P(^2, Ml) = VI1W2-P(-^2, "Ml),

I T

(8.15)

a22 = M2
1U22^(M2,M2) - 11 = M 2

! U22P(~M2, ~M2) -

_i fl i CL

_i a _i CL

31 2 = \xx u;2 — p{—/x2, /xi) = /Xj u>2 — p( /x 2 , — /x i ) ,
2 2

= M ^ W i p C z x i , / ^ ) = /x2;u;i

= M 2 ^ 2 - p ( - M 2 , M2) = M2
1^2^/?(M2, -M 2 )
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By introducing the vectors

we may write Eq. 8.15 in a more compact form as

where all the elements of the matrices a and p are defined above. It should be noted that this
equation is very similar to the one obtained in the two-stream approximation except that the
scalars a and ft have become 2 x 2 matrices. It should also be obvious from Eqs. 8.14 and 8.16
that a and ft may be interpreted as local transmission and reflection operators, respectively. This
will become more evident when we discuss the doubling method.

8.4.2 Multistream Approximation (N Arbitrary)

From the preceding description of the two- and four-stream cases it should be obvious
how to generalize this scheme. We may now write Eqs. 8.9 and 8.10 in matrix form as

where

= {Q±(r,

= M-'DW,

D + = -jipUij, Mi)} = ^{p(-^j, - M i ) } , 1,7 = 1 , . . . , N,

D" = 2 t/'C-My, t^i)) = •^{pi^j, -Mi)}, i, j = 1, • • •, N.

We note that the structure of the (2N x 2A0 matrix

-a -$
P a

in Eq. 8.17 can be traced to the fact that the phase function depends only on the
scattering angle (i.e., the angle between Q(/JL, </>) and €l'(ii\ 00; cf. Chapter 3). This
special structure is also a consequence of having chosen a quadrature rule satisfying
ix-i = —ii[, w-t — wt. As we shall see below, because of this structure, Eq. 8.17 per-
mits eigensolutions with eigenvalues occurring in positive/negative pairs. In particular
we will find that it can be used to reduce the order of the resulting algebraic eigenvalue
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problem by a factor of 2, which leads to a decrease of the computational burden by a
factor of 8. This follows because the timing for eigensolution solvers is proportional
to the cube of the matrix dimension.

8.5 Matrix Eigensolutions

8.5.1 Two-Stream Solutions (N = l)

Seeking solutions to the homogeneous version of Eq. 8.14 (Q± = 0) of the form
/ ^ = g±e~kT, g± = g(±/jb\), we find that this leads to the following algebraic eigen-
value problem:

-p -<*} ig'\ ig-\
Writing this matrix equation as

<xg+ + Pg~ = ^£+>

-pg+ - ag~ = Xg~

and adding and subtracting these two equations, we find

(a - P){g+ - g~) = Mg+ + g~), (8.19)

(a + P)(g+ + g~) = Hg+ - g~). (8.20)

Substitution of the last equation into Eq. 8.19 yields

which has the solutions X\ = k, k-\ = —k with

I
k= V « 2 - P2 = — \ / ( l - 0 ) ( 1 -a + 2ab) > 0 (a < 1) (8.21)

and

g+ + g~ = arbitrary constant, (8.22)

which we may set equal to unity.
ForM = k Eq. 8.20 yields

(8.23)

(assuming k / 0 or a / 1). Combining Eqs. 8.22 and 8.23 we find

gt k + (a + P) VT^
k-(a
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and thus

(8.25)

which is the eigenvector belonging to eigenvalue Ai = &. Repeating this for X_i = —k,

we find gZi/gti = Poo, and

(8.26)
8-11 LPoo_"

The complete homogeneous solution becomes a linear combination of the expo-
nential solutions for eigenvalues X\ = k and A_i = —k, that is,

= /(T,

^ r + PooCigi(-/xi)^T, (8.27)

7"(r) = / ( T , - M I ) = C_is_i(-Ati)e+*T + C i g i ( - M i ) ^ r

+*T + C I ^ I ( - M I ) ^ " * T , (8.28)

where C\ and C_i are constants of integration. We note that these solutions are identical
to Eqs. 7.126 and 7.127 given previously for the two-stream approximation, as they
should be. In anticipation of the extension to more than two streams we rewrite the
solution in the following somewhat artificial form:

l I

/±(r, ft) = J2 C-jg-j(±to)ekjT + J2 Cjgj(±to)e~kj\ i = 1, 1 (8.29)
7 = 1 7 = 1

with k\ = k, given by Eq. 8.21.

8.5.2 Multistream Solutions (N Arbitrary)

Equation 8.17 is a system of 2N coupled, ordinary differential equations with constant
coefficients. These coupled equations are linear and our goal is to uncouple them by
using well-known methods of linear algebra. From the discussion of the two- and
four-stream cases it is now obvious how we should proceed. Seeking solutions to the
homogeneous version (Q = 0) of Eq. 8.17 of the form

l± = g±e'k\ (8.30)

we find

" & 0

which is a standard algebraic eigenvalue problem of order 2N x 2N determining the
eigenvalues k and the eigenvectors g±.

As noted previously, because of the special structure of the matrix in Eq. 8.31, the
eigenvalues occur in positive/negative pairs and the order of the algebraic eigenvalue
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problem (Eq. 8.31) may be reduced as follows. Rewriting the homogeneous version
ofEq. 8.17 as

dx

dx

and then adding and subtracting these two equations, we find

d(I+ + l - ) _

di ~~(

and

dQ+ - I )

(8.32)

dx

Combining Eqs. 8.32 and 8.33, we obtain

+1" ) . (8.33)

I"),

or in view of Eq. 8.30

(a - p)(a + £)(g+ + g") = fc2(g+ + g"), (8.34)

which completes the reduction of the order. To proceed we solve Eq. 8.34 to obtain
eigenvalues and eigenvectors (g+ + g~). We then use Eq. 8.33 to determine (g+ — g~)
and proceed as in the four-stream case to construct a complete set of eigenvectors.

8.5.3 Inhomogeneous Solution

It is easily verified that a particular solution for collimated beam incidence (Prototype
Problem 3) is

I(x,ui) = Z0(ui)e-T/^, (8.35)

where the Zo(W|) are determined by the following system of linear algebraic equations:

N r i
J2 (1 + Uj/m>)Sij - voj^piuj, ut) \zo(Uj) = Xo(m). (8.36)

j=-N L -I

Equation 8.36 is obtained by simply substituting the "trial" solution (Eq. 8.35) into
Eqs. 8.9-8.10.

In the two-stream case Eq. 8.36 reduces to a system of two algebraic equations with
two unknowns, which is easily solved analytically, and the solutions were provided
in Chapter 7. The four-stream case involves four algebraic equations and may also be
solved analytically, but this may not be worth the effort, since standard linear equation
solvers have built-in features like pivoting, implying that such a software package is,
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in general, likely to produce numerical results superior to those obtained from the

analytic solutions.

Example 8.4 Thermal Source

For thermal sources the emitted radiation is isotropic so that the source term is azimuthally
independent,

To account for the temperature variation in the slab we may approximate the Planck function for
each layer by a polynomial in optical depth r:

1=0

Then if we insist that the solution should also be a polynomial in r, that is,

K

/=0

it can be shown (see Problem 6.1) that the coefficients Yi(ut) are determined by solving the
following system of linear algebraic equations:

YK(ut) = (1 - a)bK, (8.37)

TV

j=-N

l = K-l,K -2, . . . , 0 . (8.38)

In practice it is popular to use a linear approximation (K = 1), which only requires knowledge of the
temperature at layer interfaces to compute the Planck function there. Noting that the Planck function
depends linearly on temperature in the long-wavelength (Rayleigh-Jeans) limit but exponentially
in the short-wavelength (Wien's) limit, we expect an exponential times a linear dependence of the
Planck function on r to work well under most circumstances (see Problem 6.1).

8.5.4 General Solution

The general solution to Eqs. 8.9 and 8.10 consists of a linear combination, with coef-

ficients Cy, of all the homogeneous solutions, plus the particular solution,

N N

7±(r, K) = J2 C-jg-j(±iLi)J>T + J^ Cjgj(±Hi)e-k^
7 = 1 ;= i

e-z^\ i = 1,..., N. (8.39)

The kj and gj (±/z;) are the eigenvalues and eigenvectors obtained as described above.

The dz/z, are the quadrature angles, and the C±7 the constants of integration.
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8.6 Source Function and Angular Distributions

For a slab of thickness r*, we may solve Eqs. 8.9 and 8.10 formally to obtain (/x > 0)

• ( ' - r ) / / x , (8.40)I+(r, H) = /+(r*, n)e-(T*-r)/l* + [ —S+(t, M)e~('"
T

r

/"(r, /x) = /-(0, /x)^~T//x + / —S~(t, ti)e-(r-t)/fl.
J [i

(8.41)

As previously discussed in Chapter 5, these two equations show that if we know the
source function 5'±(t, JJL), we can find the intensity at arbitrary angles by integrating the
source function. Below we shall use the discrete-ordinate solutions to derive explicit
expressions for the source function that can be integrated analytically. Although this
procedure is sometimes referred to as the "iteration of the source-function technique,"
it essentially consists of an interpolation.

In view of Eqs. 8.9-8.10 the discrete-ordinate approximation to the source function
may be written as

(8.42)

Substituting the general solution of Eq. 8.39 into Eq. 8.42, we find

N N

S±(r, it) = J2 C-jg_j(±fi)ek^ + ]T Cjgj(±n)e-kJT

7 = 1 7 = 1

+ Zo(/x)^-T/^, (8.43)

where

gj(±fl) = -

(8.44)

+ X0(±n). (8.45)

Equations 8.44 and 8.45 are simply convenient analytic interpolation formulas for
the gj (±/i) and the Z 0 ( ± M ) - They clearly reveal the interpolatory nature of Eq. 8.43 for
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the source function. The fact that they are derived from the basic radiative transfer equa-

tion to which we are seeking solutions indicates that these expressions may be superior

to any other standard interpolation scheme, as demonstrated in Example 8.5 below.

Using Eqs. 8.43 in Eqs. 8.40-8.41, we find that for a layer of thickness r*, the

intensities become

(8.46)
j=-N

/-(T,M) = /-(O,1
j=-N

where we have for convenience included the particular solution as the 7 = 0 term in the

sum so that Cogo(±iJL) = Z0(±/x) and k0 = l//x0. The basic soundness and merit of

the intensity expressions given above will be demonstrated in the following example.

First, we note that Eqs. 8.46-8.47, when evaluated at the quadrature points, yield results

identical to Eqs. 8.39 (see Problem 8.2). Second, Eqs. 8.46-8.47 satisfy the boundary

conditions for all \i values (even though we have imposed such conditions only at the

quadrature points!). Third, the more complicated expressions (i.e., Eqs. 8.46-8.47 as

compared to Eq. 8.39) have the merit of "correcting" the simpler expression (Eq. 8.39)

for IJL values not coinciding with the quadrature points.

Example 8.5 The Merit of the Interpolation Scheme

Equations 8.46 and 8.47 provide a convenient means of computing the intensities for arbitrary
angles, at any desired optical depth. However, the merit of these expressions depends crucially
on the ability to compute efficiently the eigenvectors gj (±/x) and the particular solution vector
Z0(±/x). Since the g/(/x) are known at the quadrature points (/x = /X/, / = ± 1 , . . . , ±N), this
information can be used as a basis for interpolation using any standard interpolation scheme. To
illustrate the problems one might encounter in interpolation using standard technique, we show in
Fig. 8.1 the eigenvector corresponding to the smallest eigenvalue for a phase function typical of
atmospheric aerosols with single-scattering albedo a = 0.9. This illustrates the typical behavior
of some of the eigenvectors. A 16-stream computation (TV = 8) was used in this example. The
values at the quadrature points to be interpolated are indicated by the filled circles. We notice that
there is a pronounced dip close to /x = 0. It is obviously difficult to fit a polynomial to a function
with such a pronounced dip. A cubic spline interpolation also performs poorly on both sides of
the dip as illustrated, whereas the analytic expression (Eq. 8.44) yields quite adequate results.

To illustrate the consequence of using different interpolation schemes we computed diffuse
intensities for a slab of optical thickness T* = 1. The slab was illuminated by a collimated beam
with Fs = 1 at an angle of incidence so that JJLQ = 0.5. The results are based on Eqs. 8.46 and 8.47.
Figure 8.2 shows the azimuthally averaged diffuse intensity at optical depth r = 0.05. The solid
line results from using the analytic expressions (Eqs. 8.44 and 8.45) to compute the eigenvectors
and the particular solution vector. The results obtained by using cubic spline interpolation of the
eigenvectors are shown by the dashed line. We notice that the cubic spline interpolation leads to
erroneous results for —0.6 < u < —0.1.
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Figure 8.1 Interpolated eigenvector. The solid line
pertains to the use of the analytic formula, the dashed
line is a cubic spline interpolation, and the filled circles
refer to values at the quadrature points. Note that the
spline fails to produce accurate results, whereas the
analytic formula gives adequate results.

This example illustrates that an interpolation scheme that interpolates the eigenvectors is per-
haps best suited as a general purpose interpolation scheme since it can provide intensities at any
desired angle and depth. As we have seen, the analytic expressions (Eqs. 8.44 and 8.45) yield
adequate results.

8.7 Boundary Conditions — Removal of Ill-Conditioning

8.7.1 Boundary Conditions

We considered the inclusion of boundary conditions in §6.11 when we discussed Proto-

type Problem 3. We noted that if the diffuse bidirectional reflectance, Pd(/^ </>; — /^, 0O»

is a function only of the difference between the azimuthal angles before and after
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Figure 8.2 Azimuthally averaged intensity at r = 0.05 for oblique
incidence (/XQ = 0.5) of collimated light of unit flux on a slab of optical
thickness r* = 1. The slab consists of particles that scatter radiation
according to an anisotropic phase function (aerosol particles; see Fig. 6.3)
with single-scattering albedo a = 0.9. The solid line is obtained from the
analytic expressions, the dashed line from cubic spline interpolation of the
eigenvectors, and the dotted line from cubic spline interpolation of the
intensities at the quadrature points. The filled circles denote the values of the
intensities at the quadrature points.

reflection, then we may expand it in a cosine series as follows:

2JV-1

(-fi\ 0'; ii, 0) = Pd(-Mr,/x; 0 - 0') =
m=0

where the expansion coefficients are computed from

p?(-li', A0 = - ( d(<f> - <f>')Pi{-n', li\4>- 0'
x J
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Here the superscript m refers to the azimuthal component. The advantage of this
expansion is that we again are able to isolate the azimuthal components. In fact, it
was shown (see §6.9) that each Fourier component must satisfy the bottom boundary
condition

/m(r*, +/x) = 8m0€(fi)B(Ts) + (1 + 8m0)

o

I dp! ti'p%(-ii',

(8.48)

where Ts and e (/z) are the temperature and the emittance of the lower boundary surface,
respectively. Thus, Eqs. 8.39 must satisfy boundary conditions

/m(0, -to) = lm{-in), i = 1, . . . , N, (8.49)

Im{x\ +//,) = I^Qii), i = 1, . . . , N, (8.50)

where

= Smoe(m)B(Ts) + (1 + Sm0)
7 = 1

71
( 8 5 1 )

Zm(—jjLi) is the radiation incident at the top boundary. Note that for Prototype Prob-
lem 1 we would have Im(—/x/) = constant (the same for all fit) for m = 0, and
Xm{—iXi) = 0 for m ^ 0 (uniform illumination). For Prototype Problems 2 and 3 we
have, of course, Xm (—/x/) = 0 since there is by definition no diffuse radiation incident
in Prototype Problem 3 and Prototype Problem 2 is assumed to be driven entirely by in-
ternal radiation sources. Since Eqs. 8.49 and 8.50 introduce a fundamental distinction
between downward directions (denoted by —) and upward directions (denoted by +),
one should select a quadrature rule that integrates separately over the downward and
upward directions. As noted previously, the double-Gauss rule that we have adopted
satisfies this requirement.

For the discussion of boundary conditions, it is convenient to write the discrete
ordinate solution in the following form (kj > 0 and k-j = —kj):

N

/ ±(r , /z*) = Yl [Cjgj(±Vi)e-kjT + C_;g_7-(±M;)e+^] + U^r, m),
7 = 1

(8.52)

where the sum contains the homogeneous solution involving the unknown coefficients
(the Cj) and U±(r, fit) is the particular solution given by Eq. 8.35. Insertion of Eq. 8.52
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into Eqs. 8.49-8.51

AT

7 = 1

AT

7 = 1

where

yields (omitting

...,N,

the m

- + c

superscript)

(0, M/),

} = r(r*,

(8.53)

(8.54)

j j (8.55)
71 = 1

and

- U + (T*, m)
N

+ (1 + <$m()) ^ Pdil^i, -V<j)U)jV>jU~('C*, My)

7 = 1

7T
(8.56)

Equations 8.53 and 8.54 constitute a 2/V x 2/V system of linear algebraic equa-
tions from which the 2N unknown coefficients, the Cj (j = ± 1 , . . . , ±/Y), are de-
termined. The numerical solution of this set of equations is seriously hampered by
the fact that Eqs. 8.53 and 8.54 are intrinsically ill-conditioned. Fortunately, this
ill-conditioning may be entirely eliminated by a simple scaling transformation dis-
cussed in the next subsection. Suffice it to state here: By "ill-conditioning" we mean
that when Eqs. 8.53 and 8.54 are written in matrix form the resulting matrix cannot be
successfully inverted by existing computers that work with "finite-digit" arithmetic.
As we shall see in the next subsection, if r* is sufficiently large, some of the elements
of the matrix become huge while others become tiny, and it is this situation that leads
to ill-conditioning.

8.7.2 Removal of Numerical 111-Conditioning

Attempts to solve Eqs. 8.53 and 8.54 as they stand reveal that they are notoriously
ill-conditioned. In fact, this problem explains why the discrete-ordinate method has
not been used very frequently by researchers in the past. We shall now show that
this ill-conditioning can be completely eliminated, thereby rendering the method very
useful for solving practical problems. The root of the ill-conditioning problem lies in
the occurrence of exponentials with positive arguments in Eqs. 8.53 and 8.54 (recall
that kj > 0 by convention), which must be removed. This is achieved by the scaling
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transformation

C+7- = C'+je
kJTt and C_, = C^e'^, (8.57)

where we have written rt and tb for the optical depths at the top and the bottom of
the layer, respectively. This was done deliberately in anticipation of generalizing this
scaling scheme to apply to a multilayered medium. In the present one-layer case we
have, of course, rt = 0 and rb = r*.

Inserting Eqs. 8.57 into Eqs. 8.53 and 8.54 and solving for the Cj instead of the Cj,
we find that all the exponential terms in the coefficient matrix have negative arguments
(kj > 0, rb > rt). Consequently, numerical ill-conditioning is avoided, implying that
the system of algebraic equations determining the Cj will be unconditionally stable
for arbitrary layer thickness.

As stated above, the merit of the scaling transformation is to remove all positive ar-
guments of the exponentials occurring in the matrix elements of the coefficient matrix.
To demonstrate how this scheme works we shall use the two-stream case as an example.

Example 8.6 Removal of Ill-Conditioning - Two-Stream Case (N - 1)

In this simple case, Eqs. 8.53 and 8.54 reduce to

CigiC-/*!)*-** + C-lg-d-^)ekT' = Clg;e-k« + C-igZ.e** = (RHS),

and

r,C,g,(+Aii)<rtIb +r_,C_,g_I(+Aii)etIb = ^Cgfe"** +r_,C_,gj,eitfc

= (RHS)b>

where we have used Eqs. 8.27 and 8.28. The left-hand side may be written in matrix form as

This matrix is ill-conditioned because one element becomes very large while another one becomes
very small as kx^ (the product of the eigenvalue and the optical depth) becomes large. In practice
this limits solutions to problems for which kx\, < 3 or 4. As we go beyond the two-stream case
the problem becomes more severe because some of the eigenvalues become large. We recall that
for isotropic scattering the eigenvalues are flanked by the values 1//JLI, I/M2, etc., showing that
the larger N is, the larger the biggest eigenvalue. This is the case also for anisotropic scattering.
Hence, it is clear that for the method to be of any practical value this problem must be overcome.

Using the scaling transformation we find that the above matrix becomes

»r ,_v—>irc;
g+e-Hrb-r<) r _ i g + j L ^

In the limit of large values of k(rb — rt) this matrix becomes

0 r-lg;

which shows that the ill-conditioning problem has been entirely eliminated.
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8.8 Inhomogeneous Multilayered Media

8.8.1 General Solution — Boundary and Layer
Interface Conditions

So far we have considered only a homogeneous slab in which the optical properties
specified by the single-scattering albedo and the phase function were assumed to be
constant throughout the slab. We shall now allow for these properties to be a function
of optical depth. To approximate the behavior of a vertically inhomogeneous slab we
will divide it into a number of layers. We will assume that the optical properties are
constant within each layer, but we will allow them to be different from layer to layer.
Thus, the slab is assumed to consist of L adjacent layers in which the single-scattering
albedo and the phase function are taken to be constant within each layer (but allowed
to vary from layer to layer), as illustrated in Fig. 8.3. For an emitting slab we assume
that we know the temperature at the layer boundaries. The idea is that by using enough
layers we can approximate the actual variation in optical properties and temperature
as closely as desired.

The advantage of this approach is that we can use the solutions derived previously
because each of the layers by assumption is homogeneous. This implies that we may

Emitting and reflecting lower boundary

Figure 8.3 Schematic illustration of a multilayered, inhomogeneous medium overlying an
emitting and partially reflecting surface.
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write the solution for the pth layer as (kjp > 0 and k-jP — —kjp)

N

/±(r, fit) = Y, [Cjpgjp(±fJLi)e-k^ + C-jpg-jp{±fii)e
+k»T] + t/±(r, fit),

7 = 1

p = 1,2, . . . , L , (8.58)

where the sum contains the homogeneous solution involving the unknown coefficients
(the CjP) and f/^(r, fjLt) is the particular solution given by Eq. 8.35. We note that except
for the layer index p, Eq. 8.58 is identical to Eq. 8.52, as it should be. The solution
contains 2/V constants per layer, yielding a total of 2/V x L unknown constants. In
addition to boundary conditions we must now require the intensity to be continuous
across layer interfaces. As we shall see this will lead to a set of algebraic equations
from which the 2/V x L unknown constants can be determined. Thus, Eq. 8.39 must
now satisfy boundary and continuity conditions as follows:

m), i = l //; (8.59)

I?(TP, &) = If+iiTp, in), i = ± 1 , . . . , ±N, p = 1, . . . , L - 1; (8.60)

/L (*L, +M«) = ' f (/^)> * = 1 , . . . , # ; (8.61)

where ip(fii) is given by Eq. 8.51 with r* replaced by rL.
Equation 8.60 is included to ensure that the intensity is continuous across layer

interfaces. Insertion of Eq. 8.58 into Eqs. 8.59-8.61 yields (omitting the m superscript)

-jxg-jii-to)} = I(-^i) - Ui(0, -/xf),

(8.62)

7 = 1

+ C-j,p+1g-jtP+i(jii)e*J'P+lT>] } = Up+l(rp, fn) - Up(rp, iit),

i = ± 1 , . . . , ± / V , p = 1 , . . . , L - 1; (8.63)

TV

f = 1 iV; (8.64)

where rj is given by Eq. 8.55 with gj replaced by g^, and F is given by Eq. 8.56 with
U± replaced by U^ and r* by rL.

Equations 8.62-8.64 constitute a (2/V x L) x (2/V x L) system of linear algebraic
equations from which the 2N x L unknown coefficients, the Cjp (j = ± 1 , . . . , ±/V;
p = 1 , . . . , L) are determined. We note that Eqs. 8.62 and 8.64 constitute the boundary
conditions and are therefore identical to Eqs. 8.53 and 8.54 (again except for the layer
indices). As in the one-layer case we must deal with the fact that Eqs. 8.62-8.64 are
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intrinsically ill-conditioned. Again, this ill-conditioning may be entirely eliminated
by the scaling transformation introduced previously (Eqs. 8.57). To illustrate how this
scheme works for a multilayered slab it suffices to consider two layers in the two-stream
approximation (see Problem 8.5).

8.8.2 Source Functions and Angular Distributions
In a multilayered medium we may evaluate the integral in Eqs. 8.40 and 8.41 by

integrating layer by layer as follows (rp-\ <T<XP and /x > 0):

j -
J li fi p

L

+ E f-S:(t,li)e-W, (8.65)

h "-1 z?dt

*S-(t,n)e-W. (8.66)

Tp-l

Using Eq. 8.43 for S^(t, /JL) in each layer (properly indexed) in Eqs. 8.65 and 8.66,
we find

n=p j=—N Jn

x [e-[kj«Tn-i+{Tn-i-T)/n] _ £-[*,„ rn+(rn-r)//z] j ^ ( g 6 ?x

with rn_i replaced by r fovn = p, and

Ip (T, /Ji) = I (0, /X)̂  T/M + 2l^ 2 ^ Cyn—
n = l ; = - 7 V " " ^ ^

x ye jn n n)/^\ — ^ jn n-\ \ n-\)11*> J ̂  (8.68)

with rn replaced by r for « = p. It is easily verified that for a single layer (rn_i = r,
rn = rL = T* in Eq. 8.67; xn = r, rn_i = 0 in Eq. 8.68), Eqs. 8.67 and 8.68 reduce to
Eqs. 8.46 and 8.47, as they should.

Equations 8.58, 8.67 and 8.68 contain exponentials with positive arguments, which
will eventually lead to numerical overflow for large enough values of these arguments.
Fortunately, we can remove all these positive arguments by introducing the scaling
transformation into our solutions. Since only the homogeneous solution is affected, it
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suffices to substitute Eqs. 8.57 into the homogeneous version of Eq. 8.58, ignoring the
particular solution Up(r, /x^), that is,

7 = 1

(8.69)

Since ̂ -p > 0andrp_i < r < rp, all exponentials in Eq. 8.69 have negative arguments,
as they should to avoid overflow in the numerical computations.

Introducing the scaling into Eqs. 8.67 and 8.68 is straightforward but leads to
somewhat cumbersome expressions.5

8.8.3 Numerical Implementation
of the Discrete-Ordinate Method

The solution of the radiative transfer equation described in previous sections has been
implemented numerically into a code written in FORTRAN. This code applies to
vertically inhomogeneous, nonisothermal, plane-parallel media and it includes all the
physical processes discussed previously, namely thermal emission, scattering, absorp-
tion, bidirectional reflection, and thermal emission at the lower boundary. The medium
may be forced at the top boundary by direct (collimated) or diffuse illumination and
by internal and boundary sources as well.6

As discussed in §6.8 for strongly forward-peaked scattering, it is difficult to obtain
accurate solutions to the radiative transfer equation. The S-N method, which replaces
the forward-scattering peak of the phase function by a ^-function (see §6.8), is use-
ful and improves the accuracy significantly, especially for fluxes and mean intensity.
The intensity computation is also generally improved by using S-N but further im-
provements are desirable and essential if one desires to use low-order discrete-ordinate
approximations (say N < 10) to reduce the computational burden. Special algorithms
have been invented to correct the intensity computation for strongly forward-peaked
scattering. The development of such algorithms starts with the notion that the single-
scattering solution can be computed exactly and used to improve the accuracy. Such
an algorithm, described in §8.9, is implemented in the DISORT code and used in
conjunction with the 8-N method to provide acceptable accuracy for as little as 10
streams. Without these algorithms similar accuracy will typically require a quintupling
of the number of streams, which implies that they provide computational savings of
the order of 53 = 125 since the most time-consuming computation in DISORT is the
solution of the algebraic eigenvalue problem in which the computation time varies as
the cube of half the number of streams (i.e., TV3).

In §6.11 we derived simple expressions for the flux reflectance and transmittance
for media without internal sources and showed that an analytic correction allows us
to find the solutions pertaining to reflecting (Lambert) surfaces. These expressions,
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which are implemented in DISORT, offer substantial computational advantages when

only integrated quantities such as flux reflectance and transmittance are required.

Example 8.7 Intensities Computed with and without 6-N Scaling

To illustrate the merit of invoking the 8-N scaling of the phase function, we show in Fig. 8.4
plots of intensity versus cosine of the polar angle for three different optical depths and for azimuthal
angles A0 = 0,90,180°. The solid curve is for 48 streams {IN = 48) and the dashed and dotted-
dashed curves are for 16 streams with and without 8-N scaling, respectively. For the azimuthal
plane of the Sun (A0 = 0) the largest deviation between the 16-stream and the accurate 48-
stream results occurs in the forward direction (i.e., for /x ^ JJLQ). The 16-stream approximation
underestimates the intensity near the forward direction, but the unsealed intensity deviates less

0.0

= 0.05

-1.0 -0 .5 0.0 0.5 1.0
Cosine of polar angle

-1.0 -0.5 0.0 0.5 1.0
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§ 0.04

0.02
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Figure 8.4 Comparison of accurate (48-stream) and approximate (16-stream) diffuse
intensities computed with and without 8-N scaling at several optical depths within an aerosol
layer of total optical thickness rN = 1 for A0 = 0, 90, and 180°; a = 0.9, and fi0 = -0 .5 .
Note that the ordinate scale is not the same in the various diagrams.
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than the result obtained by invoking 8-N scaling. This is expected because of the truncation of
the forward-scattering peak of the phase function incurred in the scaling. We note, however, that
for angles not close to the forward direction better results are obtained with scaling than without.
This is particularly noticeable for A0 = 180°, where the unsealed 16-stream results exhibit an
oscillatory behavior with appreciable deviations, whereas the scaled computations yield quite satis-
factory results. Below we shall discuss procedures invented to improve the speed and accuracy of
the intensity computation.

8.9 Correction of the Truncated Intensity Field

The selection of the truncation, or, in other words the choice of the number of streams
used to compute the intensity field, has been a vexing problem. As we have pointed out
previously the difficulty stems from the strong forward peaking of the phase function
encountered whenever the scattering "particle" is large compared to the wavelength
of the incident radiation. In Chapter 6 we showed that a large number of terms is
required to obtain an accurate representation of such phase functions when expanded
in Legendre polynomials. As a rule of thumb it is advisable to use a similar number
of streams in the discretization of the integro-difrerential equation to turn it into a set
of ordinary differential equations for which analytic solutions are feasible. Thus we
need to adopt a large value of N, say several hundred, in any discretization scheme to
fully resolve the scattering pattern. This consumes enormous amounts of computing
resources and makes routine usage impossible. Therefore, truncation procedures that
provide accurate intensities when N is kept reasonably small become highly desir-
able.

8.9.1 The Nakajima-Tanaka Correction Procedure

The 8-N transformation of the phase function has proven to be a most reliable means for
truncation in flux computations. As we mentioned in §6.8, application of the 8-N will
artificially enhance the direct flux component at the expense of the diffuse component,
but the sum will be computed accurately. Since the sum must be independent of the
8-N scaling, it is trivial to "unscale" the diffuse flux since the true direct component
is easily obtained (cf. Eq. 6.61). This unsealing of the diffuse flux is done in DISORT.
As shown in Fig. 8.4 the accuracy of the intensity computation is generally improved
by the use of 8-N except in the forward direction. This example pertains to a phase
function for aerosols that is far from extreme (see upper left panel of Fig. 6.3). For
more strongly forward-peaked phase functions (e.g., those associated with hydrosols
or clouds illustrated in Fig. 6.3) the error incurred by straightforward application of the
8-N method becomes unacceptable for practical purposes (i.e., small N)9 especially
in the region around the Sun's disk referred to as the solar aureole. Fortunately, it can
be shown7 that by combining the 8-N method with exact computation of low orders
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Figure 8.5 Scattering phase function computed by Mie theory and the 8-N representation
for N = 10.

of scattering (notably first- and second-order scattering), the error in the intensity
computation can be reduced to less than 1%.

Application of the 8-N transformation results in a truncated phase function that
oscillates systematically around the original phase function as illustrated in Fig. 8.5.
The magnitude of the oscillation depends on the size of the truncation, / , which in 8-N
is set equal to XIN, where 2N is the number of terms used in the expansion of the phase
function in Legendre polynomials. The // are the expansion coefficients (see §6.8). The
intensity obtained by the application of the 8-N transformation also oscillates around
the exact value. This suggests that the singly scattered intensity, which resembles
the scattering phase function, contributes most to the fluctuation. Furthermore, it is
expected and well established that multiple scattering tends to produce an isotropic
intensity distribution. Thus, we should first construct the exact solution for the singly
scattered intensity and subsequently apply correction procedures to account for errors
introduced by the truncation as described below.

In §7.2.1 we showed that it is easy to derive exact solutions for the singly scattered
intensity field. The expressions derived there for a single homogeneous slab may easily
be extended to apply to a multilayered medium. In fact, by ignoring the multiple-
scattering term in Eqs. 6.3 and 6.4, we may easily arrive at simple analytic expressions
for the half-range intensity fields. Thus, for the upward intensity we find (assuming
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there is no radiation emanating from the lower boundary) the following expression for
a multilayered slab consisting of L — 1 layers as shown in Fig. 8.3:

with rn_i replaced by r for n = p. We note that since rL > • • • > rn > rn_i > r,
all the exponentials in Eq. 8.70 have negative arguments. Similarly, for the downward
intensity we find on setting / ( r = 0) = 0

4;r(l -

with rn replaced by r for « = p. Again, since r > • • • > rn > xn-\ > 0, all the
exponentials in Eq. 8.71 have negative arguments, as they should to avoid computer
overflow problems.

To improve the accuracy of the intensity computation resulting from the straight-
forward application of the 8-N method we may add a correction term obtained from
single-scattering computations. For example, if the single-scattering computation is
done for the original unsealed optical depth and single-scattering albedo, the correction
is simply taken to be the difference between the singly scattered intensity computed
from the exact phase function and that from the 8-N truncated phase function (which
is what remains after the forward-scattering peak is removed). The improvement ob-
tained by application of this correction is shown in Fig. 8.6. Clearly, this procedure
acts to suppress the fluctuation of the intensity field outside of the solar aureole
region.

Since this correction does not completely remove the error, a refinement is neces-
sary. Thus, we may consider the possible improvement obtained by including the effect
of the r -scaling in the single-scattering computation: We subtract the single-scattering
contribution resulting from the 8-N method and add the single-scattering contribution
obtained by using the exact phase function and the unsealed single-scattering albedo,
but with the 8-N scaled optical depth. This leads to a substantial improvement ex-
cept in the forward direction where significant error remains. This remaining error
in the solar aureole region is caused by secondary and higher order scattering within
the forward-scattering peak. A further improvement is obtained by accounting for
secondary scattering effects to correct the transmitted intensity in the solar aureole
region. The algebra involved in this correction is somewhat cumbersome and will not
be reproduced here. We note, however, that except for the solar aureole region a sim-
ple single-scattering correction of the 8-N results is sufficient to obtain the accuracy
required for most practical purposes.
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Figure 8.6 Relative error of the reflected and transmitted intensities computed by strict
application of 8-N and by applying a correction to the 8-N method (solid line), which is
simply the difference between the singly scattered intensity computed from the exact
phase function and that from the <$-Af-scaled phase function. This example pertains to
vertical (collimated) illumination of a homogeneous slab of total optical thickness 0.8
consisting of particles with scattering properties denned in the previous figure.

8.9.2 Computed Intensity Distributions
for the Standard Problem

To demonstrate the use of the solutions presented above we shall use Prototype Prob-
lem 3 as an example. Thus, we consider a direct (collimated) beam of light incident on
a slab of particles that may scatter and absorb radiation. We assume a beam of radiation
incident in direction 00 = cos"1 /x0 = 60° so that /J.0F

S = /JLO(FS = 1) = 0.5 on a
slab of optical thickness r* = rL = 1.0. Our first example is for partly absorbing
aerosol particles with single-scattering albedo a = 0.9 and phase function labeled
"Aerosol" (illustrated in Fig. 6.3). The intensity as a function of polar and azimuthal
angles for several optical depths ranging from r = 0 (top) to r * = 1 (bottom) is shown
in Fig. 8.7. The most striking feature observed in these plots is the rapid decrease in
intensity with increasing azimuthal angle. We note also that the reflected intensity ex-
hibits limb brightening, while for optical depths <0.2 two distinct maxima occur, one
close to 0 = 90° and another one close to the direction of incidence 0 & 00 = 60°. For
optical depths >0.2 the two peaks combine to yield a single maximum in the forward
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Figure 8.7 Three-dimensional display of diffuse intensity versus polar and azimuthal angles
for several optical depths within a layer consisting of aerosol particles of optical thickness
T* = 1, single-scattering albedo a = 0.9, and cosine of solar zenith angle JJL0 = 0.5.

direction (i.e., /x & JJLQ). The magnitude of the peak intensity generally increases and
the peak becomes narrower with optical depth. This behavior is a direct consequence
of the forward-peaked aerosol phase function.

In our second example we use the phase function for hydrosols, which is even more
strongly peaked than the aerosol phase function, as is evident from Fig. 6.3. As a result
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Figure 8.8 Three-dimensional display of diffuse intensity versus polar and azimuthal angles
for several optical depths within a layer consisting of oceanic particles (hydrosols) of optical
thickness r* = 1, single-scattering albedo a = 0.9, and cosine of solar zenith angle /x0 = 0.5.

the intensity pattern becomes more extreme than in the previous case (see Fig. 8.8).
As the beam penetrates into the medium the intensity is small everywhere except for
the region around the Sun, where the scattered photon intensity becomes increasingly
dominant with penetration depth due to forward scattering.

We repeated the calculation above and kept everything the same except that we
replaced the phase function for hydrosols with the water cloud phase function shown
in Fig. 6.3. The intensity pattern (not shown) is very similar to that for hydrosols,
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which is understandable because the common feature of the two phase function is the
strong forward peaking, which tends to dominate the intensity pattern.

8.10 The Coupled Atmosphere-Ocean Problem

In the previous section we discussed how to deal with changes in optical properties
in a vertically inhomogeneous slab. We did not, however, consider any changes in the
index of refraction such as that occurring at the interface between the atmosphere and
the ocean. In §6.6 we described how to deal with two strata with different indices
of refraction. Below we shall describe how to solve the pertinent equations in the
discrete-ordinate approximation.8 We consider an interface that is perfectly flat and
exhibits only specular reflection.

8.10.1 Discretized Equations
for the Atmosphere—Ocean System

The atmosphere and the ocean may each be divided into a sufficient number of layers
to resolve their optical properties as described in the previous section. We start as usual
by replacing the integral term in Eqs. 6.20-6.21 by a quadrature sum. Thus, for each
layer in the atmosphere, we obtain

M,
^

7 = 1

- \ E <P(-^j' M?)/"(r, /*}) - S*r(r, Ht), (8.72)

7

7 = 1

(8.73)

Similarly, for layers in the ocean we find

7 = 1

N2

7 = 1

(8.74)
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y'=i

(8.75)

Here /z?, tif and /z°, u;° are quadrature points and weights for atmosphere and ocean,
respectively, and /z_i = — /z;, w_; = if/ (Fig. 8.9). Note that we have used different
numbers of streams for the atmosphere (2N\) and the ocean (2Af2). In the refractive
region of the ocean (region II), which communicates directly with the atmosphere, we
use the same number of streams (2N\) as in the atmosphere. This will properly account
for the shrinking caused by refraction of the angular domain in the ocean. In region I of
the ocean, total reflection occurs at the ocean-atmosphere interface for photons moving
in the upward direction. In this region we invoke additional streams (2N2 — 2N\) to
accomodate the scattering interaction between regions I and II in the ocean.

8.10.2 Quadrature and General Solution

We use the double-Gauss rule to determine quadrature points and weights /z? and wf
(i = 1 , . . . , N\) in the atmosphere, as well as the quadrature points and weights /z°
and wf (i = N\ + 1 , . . . , N2) in the total reflection region of the ocean. The quadra-
ture points in the refractive region of the ocean are obtained by simply "refracting"
the downward streams in the atmosphere, [//,*,..., / ^ ] , into the ocean as shown
schematically in Fig. 8.9. Thus, in this region, /z° is related to /xf by Snell's Law

and from this relation the weights for this region are derived as

o a \dS(^)] tf a .
W; = WJ = —« 7 rWJ, 1 = 1 , . . . , N\.

The advantage of this choice of quadrature is that the points are clustered toward
ix = 0 both in the atmosphere and the ocean and, in addition, toward the critical angle
direction in the ocean. This clustering will give superior results near these directions
where the intensities vary rapidly. Also, the phase function is still correctly normalized.

The solution of the homogeneous version of Eqs. 8.72-8.75 was presented in §8.5.
Following the same procedure, we may write the homogeneous solution as follows.
In the atmosphere it is (see Eq. 8.39)

/± (r, tf) = f; [Cjg-j ( i t f ) ^ 1 + Cjgj (±/*?)e-*], « = 1,..., M,
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MN, Me"

Figure 8.9 Schematic illustration of the quadrature adopted
for the coupled atmosphere-ocean system. The dotted line
labeled fic marks the separation between region II, in which
photons can communicate directly with the atmosphere, and
the total reflection region (I). The quadrature angles in region
II are obtained from those in the atmosphere by using Snell's
law. Additional quadrature points are then added to represent
region I as indicated.

and similarly, in the ocean

(r, tf) =
7 = 1

where the kj and gj are eigenvalues and eigenvectors determined by solving an al-
gebraic eigenvalue problem, and the C7 are unknown constants of integration to be
determined by the application of boundary and continuity conditions as discussed
below.

The particular solution in the atmosphere can be expressed as

17* (r, M?) = Z0(±rt)e-*"« + ZOi(±^)^°,

where / = 1 , . . . , N\, and the coefficients ZQ(±/JL*) and ZOi(±/z?) are determined by
the following system of linear algebraic equations (see Eq. 8.36):

j=-Ni
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Similarly, in the ocean the particular solution can be expressed as

where / = 1 , . . . , N2 and Z02(±/z°) is determined by the following system of linear
algebraic equations:

As usual the general solution is just the sum of the homogeneous and particular solu-
tions.

8.10.3 Boundary, Continuity, and Atmosphere-Ocean
Interface Conditions

The vertically inhomogeneous medium is represented by multiple adjacent homo-
geneous layers in the atmosphere and the ocean, respectively. The solutions derived
previously pertain in each layer. We assume that the system consists of L\ layers of
atmosphere and L2 layers of ocean. Then we may write the solution for the pth layer
as (cf. Eq. 8.58)

and p < Lu (8.76)

N2

E [C-jp8-j

and Lx < p < L2. (8.77)

In total there are (2N\ x L 0 + (2N2 x L2) unknown coefficients Cjp in Eqs. 8.76 and
8.77. They will be determined by (i) the boundary conditions to be applied at the top
of the atmosphere and the bottom of the ocean, (ii) the continuity conditions at each
interface between layers in the atmosphere and ocean, and finally (iii) the reflection
and refraction occurring at the atmosphere-ocean interface where we require Fresnel's
equations to be satisfied. These conditions are implemented as follows.

At the top, we require

h (0, - / ^ ) = X ( - / 4 ) , / = 1 , . . . , Nu (8.78)

at the interfaces between atmospheric layers,

Ip(xP,tf) =//,+i(T>,/zf), f = 1 iVi and p = 1 , . . . , Lx - 1,

(8.79)
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at the interface between the atmosphere and the ocean (cf. Eqs. 6.43-6.44),

Iu (ra, /xf) = /Ll (ra, -/xf)ps(-Mf, mrd)

mrel

l (ra, -

at the interfaces between ocean layers,

(8.80)

-tf, rard), i =

NX + 1, . . . , N2,

i, (8.81)

(8.82)

i = 1 , . . . , N2 and p = L\ + 1 , . . . , L\ + L2 — 1,

and finally at the bottom boundary,

(8.83)

/L1+L2(r*, //,?) = Ig{tf), i = 1, • . . , N2. (8.84)

We defined ps(=b/x/, rarei) and 7^(=b/z/, rarei) as the specular reflectance and transmit-
tance of the invariant intensity, / / ra 2 (where ra is the index of refraction at the location
where / is measured). The minus sign applies for the downward intensity, and the posi-
tive for the upward intensity. Formulas for ps and % can be derived from the basic
Fresnel equations. The results are (see Appendix E)

tf - rarel/x
fl?

? +

Equations 8.80 and 8.81 ensure that, by satisfying Fresnel's equations, the radiation
fields in the atmosphere and the ocean are properly coupled through the interface,
whereas Eq. 8.82 represents the total reflection in region I of the ocean. The total
optical depth of the entire medium (atmosphere and ocean) is denoted by r * in Eq. 8.84.
X(—/jif) is the intensity incident at the top of the atmosphere, and /g(/x°) is determined
by the bidirectional reflectance of the underlying surface at the bottom of the ocean.
Substitution of Eqs. 8.76 and 8.77 into Eqs. 8.78-8.84 leads to a system of (2 Nx xLi) +
(2N2 x L2) linear algebraic equations for the same number of unknown coefficients,
the C±jP. Matrix inversion of this system of equations yields the desired coefficients
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and thereby completes the solution for the coupled atmosphere-ocean system. Once

we have obtained the solutions for all Fourier components using Eqs. 8.76 and 8.77,

we may compute the intensity at the quadrature directions from Eq. 6.34. Fluxes and

mean intensity can now be easily computed from the zeroth-order Fourier component

of the intensity given above by using the quadrature to convert the appropriate integrals

into summations, as usual.

Removal of ill-conditioning is just as important in the coupled atmosphere-ocean

problem (two strata with different indices of refraction) as in the one-stratum case.

How to accomplish this removal is addressed in Problem 8.7 for the case of two streams

in the atmosphere and four streams in the ocean.

Example 8.8 Computational Illustration

Here we shall provide a sample application of this model to a simplified atmosphere-ocean
system consisting of a clear model atmosphere (only molecular scattering) and pure seawater.
Therefore, the Rayleigh-scattering phase function is assumed to apply both in the atmosphere and
the ocean. Due to the nonconstant mixing ratio of absorbing gases (notably ozone in the Chappuis
band for the wavelength considered here) with height, a multilayered approach is required to
account properly for the change in optical properties with altitude in the atmosphere, whereas
the optical properties for pure seawater are constant with depth in the ocean if the effects of
ocean impurities (particles) are ignored. Accordingly, a midlatitude model atmosphere divided
into 24 layers is used in conjunction with a one-layer ocean, which is sufficient in view of the
assumed homogeneity of pure seawater. Since the absorbed energy at any level is proportional
to the mean intensity there (cf. the definition of heating rate in Chapter 5), we show in Fig. 8.10
the mean intensity (total scalar irradiance/47r in ocean terminology) as a function of height in the
atmosphere and depth in the ocean. The same results obtained by ignoring refraction are also shown
as well as the relative error, which may be as large as 20% just below the ocean surface. Although
the error is large in the deep ocean, the radiation field is already significantly attenuated there.

The azimuthally averaged intensity distribution just above and just below the ocean surface is
shown in Fig. 8.11. Again, results obtained by ignoring refraction are also shown. We note that
the change in refraction between the atmosphere and the ocean significantly alters the radiative
intensity distribution. Just below the ocean surface, the downward intensity discontinuity position
shifts from the horizontal direction for the case of no change in refraction to the critical angle
direction when refraction is included. The refraction also significantly changes the upward radiation
field just above the ocean surface. Knowledge of the intensity distribution here is important for
correct interpretations of intensity measurements in remote sensing applications.

8.11 The Doubling-Adding and the Matrix
Operator Methods

We shall now discuss a method that has been widely used to solve radiative transfer
problems in planetary atmospheres. In this method doubling refers to how one finds
the reflection and transmission matrices of two layers with identical optical properties
from those of the individual layers, while adding refers to the combination of two or
more layers with different optical properties.
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Figure 8.10 Distribution of the total mean intensity (total scalar irradiance/47T in ocean
terminology) with height in the atmosphere and depth in the ocean. The result of
neglecting the refraction occurring at the atmosphere-ocean interface is also shown. The
computation was done for a solar zenith angle of 30° and wavelength of 500 nm.

The doubling concept is rather old and seems to have originated with Stokes. It
was rediscovered and put to practical use in atmospheric science by van de Hulst and
others.9 The doubling method as commonly practiced today uses the known reflection
and transmission properties of a single homogeneous layer to derive the resulting
properties of two identical layers. To start the doubling procedure the initial layer is
frequently taken to be thin enough that its reflection and transmission properties can
be computed from single scattering. Repeated "doublings" are then applied to reach
the desired optical thickness. The division of an inhomogeneous slab into a series of
adjacent sublayers, each of which is homogeneous, but in principle different from all
the others, is usually taken to be identical to that discussed previously for the discrete-
ordinate method. The solution proceeds by first applying doubling to find the reflection
and transmission matrices for each of the homogeneous layers, whereupon adding is
subsequently used to find the solution for all the different layers combined.
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Figure 8.11 Distributions of the azimuthally averaged intensity (radiance in ocean
terminology) including refraction in the ocean (mr = 1.33), and ignoring it (rar = 1.0). The
computation was done for a solar zenith angle of 30° and wavelength of 500 nm. (a) Just
below the ocean surface; (b) just above the ocean surface.
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8.11.1 Matrix-Exponential Solution — Formal Derivation
of Doubling Rules

In the doubling-adding method one also usually adopts the same discretization in angle
as in the discrete-ordinate method. The basic problem is therefore to find solutions to
the homogeneous version of Eq. 8.17, which we may rewrite as

dr\l+
(8.85)

where the 2N x 2N matrix f consists of the N x N matrices 6c and 0 denned after
Eq. 8.17. Although Eq. 8.30 represents an explicit solution to Eq. 8.85, we may solve
this equation formally for a homogeneous slab to obtain

Ll+(r*)
(8.86)

where r * is the optical thickness of the slab. We emphasize that this matrix-exponential
solution is only a formal solution since we are dealing with a two-point boundary value
problem in which the incident intensities I~(0) and I+(r*) constitute the boundary
conditions and the emergent intensities I+(0) and I~(T*) are to be determined. We
notice the formal similarity with an initial-value problem in which the left side could
be computed if the "initial" values (i.e., the right side) were known (which they are
not in our problem).

Basically, the doubling concept starts with the notion that the emergent intensities
I + (0) and I~ (r *) in Eq. 8.86 are determined by a reflection matrix, p, and a transmission
matrix, T, through the relations

for a homogeneous slab of thickness r*. These two relations, which are frequently
referred to as the Interaction Principle, may be rewritten in matrix form as

-T~lp
(8.87)

where the superscript —1 denotes matrix inversion. By comparing Eqs. 8.86 and 8.87,
we find

T-pT~lp

T - l
(8.88)

If we now let Tx = Tit*), px = p(r*) and T2 = T(2r*), p2 = p(2r*), then the
identity e~t2r* = (e~pr*)2 implies (using Eq. 8.88)

_i _ n 2
p2T2

x 7i -
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Solving for 7^ and p2, we find

T2 = Ti(l-p?)"1Ti, (8.89)

p2 = P l +Tipi(l - p?)"1^, (8.90)

where 1 is the identity matrix. Equations 8.89 and 8.90 constitute the basic doubling
rules from which the reflection and transmission matrices for a layer of thickness 2r *
are obtained from those of half the thickness, r*.

8.11.2 Connection between Doubling
and Discrete -Ordinate Methods

As already mentioned, in practical numerical implementations of the doubling method
it is common to start with an infinitesimally thin layer so that multiple scattering can
be ignored. The starting values for the p and T matrices are then simply determined
from single scattering. Since the computational time is directly proportional to the
number of doublings required to obtain results for a given thickness, it would be
useful to start the procedure with thicker layers. This could be achieved by eval-
uating the left side of Eq. 8.88, requiring the eigenvalues and eigenvectors of f
to be determined by standard procedures as discussed previously. Inspection of the
right side of Eq. 8.88 shows that inversion of the lower right quadrant of the re-
sulting matrix yields T and postmultiplication of the upper right quadrant with T
yields p . 1 0

The discussion above shows that the discrete-ordinate method and the doubling
method, which are conceptually very different, are, in fact, intimately related. In par-
ticular we have seen that the formal matrix-exponential (discrete-ordinate) solution
can be used to derive the doubling rules. Moreover, the eigenvalues and eigenvectors
that were used to construct the basic solutions in the discrete-ordinate method can also
be used to compute the reflection and transmission matrices occurring in the doubling
method. We noted previously that we may interpret the matrices a and ft occurring
in Eq. 8.17 as local or differential transmission and reflection operators. The p and T
matrices are the analogous global operators for a finite layer. The relationship between
the local and global operators is given by Eq. 8.88.

8.11.3 Intuitive Derivation of the Doubling
Rules - Adding of Dissimilar Layers

The doubling concept is illustrated in Fig. 8.12, in which the two sublayers are taken
to be identical. From this figure the doubling rules can be derived in a more intuitive
way. Writing pi and T\ for the individual layers and p2 and T2 for the combined layers,
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Figure 8.12 Illustration of the doubling concept,

we find

P2 = Pi + TipiTi + TipipipiTi + TxpxpxpxpxpiTx +

= px + Tipi( l + pxPx + Pi Pi Pi Pi H )?i

T2 = TxTx + TipipiTi + TxpxPiPiPiTx +

= 71(1 + pipi + pxPxPiPi H )71

where we have used matrix inversion to sum the infinite series, that is,

1 + pp + pppp H = (1 - PP)~l.

We note that these expressions are identical to Eqs. 8.89 and 8.90, as they should be.
For two dissimilar vertically inhomogeneous layers we must generalize the expres-

sions to account for the fact that the transmission and reflection matrices will in general
be different for illumination from the bottom of the layer than that from the top. This
is illustrated in Fig. 8.13, where the reflection and transmission matrices pertinent for
illumination from below are denoted by the symbol ~, the individual layers are de-
noted by subscripts 1 and 2, and the combined layers are without subscript. Referring
to Fig. 8.13 we have

p = px + Tip2Ti + TxPiPxPiTi +
= Pi+T 1 p 2 ( l -p 1 p 2 r 1 T 1 ,

T = %T2 + Tlp2plT2
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Figure 8.13 Illustration of the adding concept.

which are the reflection and transmission matrices for the combined layers for illumi-
nation from the top boundary as illustrated in Fig. 8.13.

Illumination from the bottom boundary leads to the following expressions:

p = p2

T = T2Ti + T2plp2fl + T2plp2plp1ti + • • •

= T2(l-plp2)-
lfl.

This completes the derivation of doubling-adding formulas for external illumination.
To deal with internal sources, additional formulas are required. Readers who are
interested in further pursuing this topic should consult the references given at the
end of this chapter.

8.12 Other Accurate Methods

A variety of techniques have been developed to solve the radiative transfer equation. We
shall not attempt here to describe these various methods in any detail. Several excellent
reviews and books exist and are referred to in the notes at the end of this chapter. Our
aim here is rather to briefly mention some of the more powerful and general methods
that have proven useful for solving practical radiative transfer problems.

8.12.1 The Spherical-Harmonics Method

We have already discussed the doubling-adding method and how it is closely related
to the discrete-ordinate method despite being seemingly quite different in concept.
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Another method that is closely related to the discrete-ordinate method is the spherical-
harmonics method,11 which starts by expanding the intensity in Legendre polynomials.
As already mentioned, this expansion was first suggested by Eddington in 1916 and
led to the widely used Eddington approximation by retaining only two terms in the
expansion. In Chapter 7 we showed that the Eddington and two-stream methods are
closely related. Since the generalization of the two-stream and Eddington methods
leads to the discrete-ordinate method and the spherical-harmonics method, respec-
tively, it is perhaps not surprising to learn that these two latter methods are also closely
related. One reason for this similarity is that the spherical-harmonics method relies
on an expansion of the intensity in Legendre polynomials, while the discrete-ordinate
method relies on using quadrature, which in turn is based on approximating the in-
tensity with an interpolating polynomial that makes essential use of the Legendre
polynomials to achieve optimum accuracy. The difference between the two meth-
ods lies mainly in the implementation of boundary conditions. As we have seen, this
is quite straightforward in the discrete-ordinate approach, but it appears somewhat
more cumbersome in the spherical-harmonics method in which moments of the in-
tensity are specified at each boundary instead of specifying the intensity in discrete
directions as is done in the discrete-ordinate method. In spite of this difficulty the
spherical-harmonics method has been developed into a reliable and efficient solution
technique.

8.12.2 Invariant Imbedding

The radiative transfer equation may be classified as a linear transport equation that
must be solved subject to boundary conditions at the top and the bottom of the medium.
Mathematically, we refer to this problem as a linear two-point boundary value prob-
lem. There is another class of methods in which the two-point boundary value problem
is converted into a set of initial-value problems. This is usually referred to as invariant
imbedding}2 From a mathematical point of view this essentially amounts to the trans-
formation of a "difficult" yet linear two-point boundary value problem into a set of
"simpler" but partly nonlinear initial-value problems. Invariant imbedding has been
used extensively to solve astrophysical radiative transfer problems as well as in radi-
ation dosimetry calculations and radiative transfer in the ocean.13

8.12.3 Iteration Methods

There are several methods of an iterative nature, such as "successive orders of scatter-
ing," "lambda iteration" (or Neumann series), and "Gauss-Seidel iteration" that have
been important both for the development and understanding of multiple-scattering
theories.14 The advantage is that these approaches are physically based and this al-
lows for easy intuitive interpretation of the results. The disadvantage is that they apply
only under restrictive conditions such as optically thin media and nonconservative
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scattering. We have already discussed these types of methods in Chapter 7 and shall
not discuss them further here.

8.12.4 The Feautrier Method

Another class of methods was first introduced by P. Feautrier15 in 1964. Feautrier's
approach, which has gained prominence and popularity in astrophysics, is based on
using symmetric and antisymmetric averages of the radiation field as the dependent
variable. The resulting equations are discretized in both angle and optical depth and
solved numerically using finite-difference techniques. The method was originally used
mainly for problems with isotropic scattering, but it has been generalized to apply also
to problems with anisotropic scattering.

8.12.5 Integral Equation Approach

As shown in Chapter 6 we may convert the integro-differential radiative transfer
equation into a Fredholm-type integral equation16 commonly referred to as the
Schwarzschild-Milne integral equation. This approach is particularly appealing for
line transfer problems occurring in astrophysics in which isotropic scattering and com-
plete frequency redistribution prevail, since the resulting integral equation becomes
angle and frequency independent. Although it is readily generalized to anisotropic
scattering, this approach has not received much attention in the non-astrophysical
literature.

8.12.6 Monte Carlo Methods

For geometries other than plane-parallel and/or media with irregular boundaries, Monte
Carlo methods17 become attractive. In essence the Monte Carlo approach consists
of simulating the trajectories of individual photons using probabilistic methods and
concepts such as those discussed in §6.13. In order to get good statistics a large
number of trajectories must be simulated. Such simulations can, in principle, yield
very precise results. The accuracy is primarily limited by computer resources. Monte
Carlo methods have been developed to a high degree of sophistication and used to solve
a variety of radiative transfer problems in plane-parallel media as well as media with
complicated geometries. This approach has also been widely used to solve radiative
transfer problems in the ocean including the coupled ocean-atmosphere problem in
the presence of a nonplanar (wavy) interface.

8.13 Summary

The main objective of this chapter was to discuss accurate solution methods. To this
end we have provided a detailed description of one accurate method for solving the
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radiative transfer equation and a more cursory description of other powerful meth-
ods. For the more detailed description we picked the discrete-ordinate method, with
which we are intimately familiar and which has been developed into a sophisti-
cated, robust, and versatile general-purpose numerical tool suitable for a variety of
applications. Other methods were briefly described, their relationship to the discrete-
ordinate was pointed out, and a list of pertinent references is provided at the end of the
chapter.

The discrete-ordinate method may be considered to be the obvious or natural ex-
tension of the two-stream method described in detail in Chapter 7. To accomplish this
generalization it was necessary to discuss the topic of numerical quadrature because
the method relies on approximating integrals by finite sums, which in turn converts an
integro-differential equation into a set of coupled ordinary differential equations. Thus,
in §8.2 we started by introducing the concept of numerical quadrature using the sim-
ple case of isotropic scattering for demonstration purposes. The advantage of using
Gaussian quadrature, which makes essential use of the Legendre polynomials, was
stressed. Likewise, we discussed in some detail the advantage of using half-range
quadrature, in which each hemisphere is treated separately, instead of full-range
quadrature.

In §8.3 we applied the discrete-ordinate approximation to the more general problem
of anisotropic scattering and we showed in §8.4 how this problem may be written in
matrix form. The matrix formulation is essential because it allows us to apply powerful
numerical methods from linear algebra. In §8.5 the solutions were derived in some
detail starting with the simple two- and four-stream cases, which we then generalized
to apply to an arbitrary number of streams. In §8.6 we derived an expression for the
source function, which was used to generate analytic formulas for the upward and
downward intensities, allowing us to compute the intensity at arbitrary angles (not
only the quadrature points).

The inclusion of boundary conditions was discussed in some detail (§8.7) and
the removal of ill-conditioning problems that arise when solving for the constants
of integration was accomplished, both for a single layer (§8.7) and for a multilayered
medium (§8.8). This last point is essential; the ill-conditioning must be removed for the
method to work. The numerical aspects of implementing the discrete-ordinate method
on the computer were briefly discussed at the end of §8.8. A more comprehensive de-
scription of the computer code called DISORT (Discrete Ordinate Radiative Transfer)
is provided in a NASA report cited in the notes below. A discussion of improved inten-
sity computations as well as concrete examples of such computations were provided
in §8.9.

In §8.10 we discussed the solution of the coupled atmosphere-ocean problem.
Particular attention was paid to the selection of quadrature to allow effective solution
of the coupled problem as well as the implementation of the conditions properly
describing reflection and refraction at the atmosphere-ocean interface.

The doubling-adding method has been intensively used to solve radiative transfer
problems. We therefore discussed this method in some detail (§8.11) and showed
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in particular how it is related to the discrete-ordinate method. Finally, in §8.12 we
provided a very brief discussion of other accurate methods that are currently used to
solve radiative transfer problems in atmospheres and oceans.

Problems

8.1
(a) In Example 8.4 the thermal source was approximated by a polynomial. Verify that

the solution is given by Eqs. 8.37 and 8.38.
Assume that the Planck function across any layer can be approximated by an

exponential times a linear function of optical depth r, that is,

(b) Derive an expression for cr, Z?o, and b\ by assuming that the temperature is known
at the top and the bottom of the layer. Assume that the temperature at the center
of the layer is given by T(rcenteT) = [T(rtop) + r(rbottom)]/2.

(c) Assume that the particular solution varies as / ( r , ut) = e~aT[Y0(ui) + Fi(w;)r]
and derive suitable expressions for a, Yo, and Y\.

8.2
(a) Verify Eqs. 8.43-8.47 of §8.6.
(b) Show that the solutions for the angular distributions given by Eqs. 8.46 and 8.47

reduce to the results given in Chandrasekhar's book (pp. 82-83) for isotropic
scattering.

(c) Prove that the interpolated intensities given by Eqs. 8.46 and 8.47 coincide with
the basic solutions (Eq. 8.39) at the quadrature points.

(d) Derive Eqs. 8.67-8.69.

8.3 Prove that the interpolated intensities given by Eqs. 8.46 and 8.47 satisfy bound-
ary conditions for all angles.

8.4
(a) Derive Eq. 8.48 and verify that the boundary conditions can be written as in

Eqs. 8.53-8.56 for a homogeneous slab (§8.7).
(b) For multilayered slab verify that the boundary and continuity conditions expressed

by Eqs. 8.62-8.64 are correct.

8.5 Proceed as in the one-layer case considered in Example 8.6 to prove that the
ill-conditioning problem can be removed in the two-stream, two-layer case (N = 1,
L = 2).

8.6 Compute (use the DISORT code) and plot fluxes (upward diffuse, downward
diffuse, total downward, and net flux) for direct beam incidence of radiation on a
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homogeneous layer of optical thickness r* = 1. Use (solar) zenith angles 0 = 10°
and# = 60°.
(a) Assume a nonreflecting lower boundary and consider the following cases:

(i) Rayleigh phase function with conservative scattering (use a = 0.9999).
(ii) Henyey-Greenstein phase function with asymmetry factor, g = 0.75, and a =

0.9999 and a = 0.8.

(b) Repeat the above computations for a Lambertian lower boundary with albedo 0.8.
(c) Discuss the physical meaning of the results and potential applications.

8.7 For the coupled atmosphere-ocean problem show that the ill-conditioning can be
removed by considering two streams in the atmosphere and four streams in the ocean
(N\ = 1, N2 = 2). Use one layer each in the atmosphere and ocean (L\ = L2 = 1).

8.8 Consider the doubling-adding rules in §8.11.
(a) Verify that the formal derivation of the doubling rules from the interaction principle

is correct.
(b) Repeat for the adding rules.

8.9 Use the DISORT code to compute the sky intensity in the principal plane, for
the same conditions as in Problem 7.1. Assume a Lambert surface, with npL = 0,
7rpL = 0.3, and 7rpL = 0-7, and compare with the approximate results of Problem 7.1.

8.10 Consider a cumulus cloud containing conservatively scattering water drops
whose angular scattering is approximated by a Henyey-Greenstein phase function
with g = 0.85.
(a) Using DISORT, compute the sky intensity in the principal plane for the same solar

illumination as Problem 7.1. Assume np^ = 0, np^ = 0.3, and TT^L = 0.7.
(b) Compare and contrast with the results from Problem 8.9.

Notes

The discrete ordinate method was first introduced by G. C. Wick, in "Uber ebene Diffu-
sionsprobleme," Zeit. f Phys., 121, 702, 1943, and further developed by Chandrasekhar
in the 1940s as described in his classic text Radiative Transfer first published in 1950.
The material in §8.2 follows the earlier development except that we have emphasized
the advantage of using double-Gauss quadrature and elucidated the connection between
full range Gaussian quadrature, applicable for the interval [—1, 1], and half range (i.e.,
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Chapter 9

Shortwave Radiative Transfer

9.1 Introduction

There are currently two prominent problems in atmospheric and environmental science
that have received much attention: the possibility of widespread ozone depletion and
the potential for global warming. The primary concerns of public debate and scientific
research have focused on (i) to what extent ozone depletion and global warming are,
in fact, occurring and (ii) if so, to what extent these phenomena are due to natural
rather than anthropogenic causes. There is growing evidence relating ozone depletion
directly to the release of man-made trace gases, notably chlorofluorocarbons used in
the refrigeration industry and as propellants in spray cans. Since ozone provides an
effective shield against damaging ultraviolet radiation from the Sun, there is indeed
good reason to be concerned, because a thinning of the ozone layer could have serious
biological ramifications. The most harmful ultraviolet radiation reaching the Earth's
surface, commonly referred as UV-B, lies in the wavelength range between 280 and
320 nm (see Table 1.1). UV-B radiation, which has enough energy to damage the DNA
molecule, is strongly absorbed by ozone. Radiation with wavelengths between 320 and
400 nm, referred to as UV-A, is relatively little affected by ozone. UV-A radiation can
mitigate some of the damage inflicted by UV-B (this is known as "photo-repair"), but it
causes sunburn and is therefore believed to be a partial cause of skin cancer. In addition
to the harmful effects on humans, too much ultraviolet radiation has deleterious effects
on terrestrial animals and plants, as well as aquatic life forms.

Ozone is a trace gas, whose bulk content resides in the stratosphere. Its abundance
is determined by a balance between production and loss processes. Chemical reac-
tions as well as photolysis are responsible for the destruction of atmospheric ozone.
Its formation in the stratosphere relies on the availability of atomic oxygen, which is
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produced by photodissociation of molecular oxygen. Ozone is then formed when an
oxygen atom (O) and an oxygen molecule (O2) combine to yield O3. It is produced
mainly high in the atmosphere at low latitudes where light is abundant, and it is sub-
sequently transported to higher latitudes by the equator-to-pole circulation.1 Thus, the
distribution of ozone in the atmosphere, vertically and globally, results from a subtle
interplay between radiation, chemistry, and dynamics.

Ozone interacts with ultraviolet/visible radiation as well as with thermal infrared
(terrestrial) radiation. A thinning of the ozone layer renders the stratosphere more trans-
parent in the 9.6-/zm region, thereby allowing more transmission and less backwarming
of surface emission. Thus ozone depletion cools the surface and tends to partially mit-
igate warming from increased greenhouse gases. In addition to ozone, several other
atmospheric trace gases, notably water vapor, carbon dioxide, chlorofluorocarbons,
and methane, are infrared active. These so-called greenhouse gases strongly absorb
and emit infrared radiation and thereby trap radiative energy that would otherwise
escape to space. The global warming issue is concerned with the effects enhanced
abundances of these gases (due mainly to human activities) may have on the radiative
energy balance of the Earth and hence on climate.

Life began with light. Solar radiation illuminating the primordial atmosphere gave
rise to chemical reactions that constituted the basis for biological evolution and even-
tually led to the establishment of photosynthesis, which is a prerequisite for life as
we know it. Three groups of organisms use light for photosynthesis: photosynthetic
bacteria, blue-green algae, and green plants. The green color of plants and biologi-
cally productive waters is due to chlorophyll, which absorbs blue and red light. The
end result of photosynthesis is that light, water, and carbon dioxide combine to yield
carbohydrates and oxygen, which are the building blocks of life. Photosynthesis is
driven by light with wavelengths between 400 and 700 nm. Therefore, this region of
the spectrum is referred to as the photosynthetically active radiation (PAR).

In this chapter we shall consider the radiative output from the Sun, and the ultra-
violet and visible radiation in particular, which drive photochemistry and photobiol-
ogy. Solar near-IR and terrestrial IR radiation will be discussed in Chapter 11, and the
role of radiation in climate will be discussed in Chapter 12. In §9.2 we discuss the
solar radiative output and the basic notion of penetration of solar radiation into the at-
mosphere and ocean. The optical properties of the atmosphere, ocean, snow, and ice
are briefly discussed in §9.3. The modeling of shortwave radiation in these regimes is
considered in §9.4.

9.2 Solar Radiation

The spectral input of solar radiation falling on a planetary atmosphere is governed
roughly by the Sun's effective radiating temperature, which is about 5,780 K. More
precisely it is governed by the abundance and temperature of the absorbing and emitting
gaseous species in the Sun's outer atmosphere. Until the space age our knowledge of
the solar spectrum was largely confined to visible wavelengths longward of the ozone
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cutoff at X = 300 nm. The extraterrestrial irradiance Fs(v) when integrated over all
wavelengths, and referenced to the mean distance of the Earth from the Sun (1 AU, or
1.50 x 108 km), is known as the solar constant.2 Since we know that the Sun's output
is variable, the modern parlance is total solar irradiance.

Pre-space-age determinations of Fs(v) relied upon the cosecant law for the de-
pendence of the atmospheric optical path on zenith angle. To correct for atmospheric
extinction the ground-based measurements were extrapolated to their extraterrestrial
values through the Bouguer-Langley method. This consists of taking direct solar mea-
surements at several solar elevations as the Sun is rising or setting, preferably from
a high-altitude location. Since the direct solar radiation attenuates according to the
Extinction Law, a plot of the solar irradiance versus the secant of the solar zenith
angle on a semilogarithmic scale yields a straight line, if the atmosphere is horizon-
tally homogeneous and the solar elevation is not too small. This straight line is then
extrapolated to the (fictitious) point where the secant of the solar zenith angle becomes
zero (at "zero air mass"). Limitations are due primarily to the presence of atmospheric
aerosols, which generally are not homogeneously distributed in the horizontal. Never-
theless, ground-based measurements over the first half of the twentieth century yielded
a surprisingly accurate result (about 1,350 W • m~2) in comparison with the currently
accepted value derived from satellite measurements of 1,368 ± 5 W • m~2.

In Fig. 1.1 we showed the extraterrestrial solar spectrum in the region 200-700 nm.
Some of the more important aspects of the UW Visible spectrum should be mentioned:

1. Most of the emission arises within the photosphere, where the Sun's visible
optical depth reaches unity. The finer structure is due to Fraunhofer absorption
lines caused by gases in the cooler (higher) portions of the photosphere.

2. For 125 < k < 380 nm, the effective radiating temperature falls to values as
low as 4,500 K, due to increased numbers of overlapping absorbing lines
(so-called line blanketing). At still shorter wavelengths, some of the emission
originates in the hotter chromosphere, which overlies the photosphere, and the
effective temperature increases.

3. The UV irradiance is noticeably dependent upon the solar cycle, being more
intense at high solar activity than at low solar activity. Roughly speaking, this
variability is due to the chromospheric component and begins at about the
aluminum absorption edge at 210 nm, where the solar cycle modulation is
~ 5 % (peak to trough). At the wavelength of the hydrogen resonance line
(Lyman-alpha at 121.6 nm) it is ~70%, and in the extreme UV and X-ray
region the modulation can be factors of ten or more.

9.3 Optical Properties of the Earth-Atmosphere System

9.3.1 Gaseous Absorption and Penetration Depth

For wavelengths longer than 200 nm ozone is the most important species affecting
the penetration of UV radiation through the atmosphere (see Fig. 4.12). Unlike the
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well-mixed gases, whose densities fall off approximately exponentially with height
according to the hydrostatic balance (Eq. 1.4), the ozone density typically peaks at
about 20 km altitude. Most of the ozone in the atmosphere resides in the stratosphere.
For the U.S. Standard Atmosphere (tabulated in Appendix C) the column amount is
350 Dobson units (DU).3 Figure 9.1 shows the annual variation of the ozone amount
over Antarctica for 1987. From January until September the column ozone amount
varies between 250 and 300 DU. The severe ozone depletion referred to as the ozone
hole started in September this particular year. In October ozone column amounts less
than 140 DU were measured. In recent years column amounts less than 100 DU have
been observed over Antarctica, which is about 65% less than average for the rest of
the year. As shown in Fig. 9.2 during the austral spring ozone hole over Antarctica
the ozone concentration is most severely depleted in the altitude range between 12
and 25 km, where the depletion is nearly 100%. It is now well established that the
ozone hole over Antarctica is due to chlorine photochemistry. Aircraft observations
have demonstrated a clear anticorrelation between CIO and O3 over Antarctica (see
Fig. 9.2).4 High concentrations of CIO are observed only in air that earlier in winter had
experienced cold temperatures (less than —80°C; see Fig. 9.1), allowing the formation
of polar stratospheric clouds consisting of nitric acid and water condensed on sulfuric
acid particles. On these particles, inactive chlorine compounds are converted to CIO
molecules, which lead to catalytic destruction of ozone in the presence of sunlight.
The observed anticorrelation of CIO and ozone is considered to be the "smoking gun"
for ozone loss by chlorine compounds.

300
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Figure 9.1 The upper curve shows the annual variation in total ozone amount over
Antarctica in 1987. The shaded area indicates the ozone hole. The lower curve
shows the annual mean temperature between 14 and 19 km. The dark-shaded area
indicates that the temperature was less than — 80°C from June into October. The
vertical distribution on three days marked in this figure are shown in Fig. 9.2.
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Figure 9.2 Left panel: Ozone vertical distributions over Antarctica on three days in
1987 marked in the previous figure. The solid curve shows the vertical distribution on
June 5 when the total ozone amount was about 260 DU. The dashed line is for
September 17 when the ozone depletion was already substantial, and the dotted line
shows the extreme depletion in the 12 to 25 km region on October 16. Right panel:
Aircraft observations of CIO and ozone over Antarctica on September 16, 1987. As the
aircraft moves south into the Antarctic vortex, the abundance of CIO increases
dramatically, while the ozone amount decreases.

It is of interest to note that the main instrument to measure ozone from the ground
was designed by Dobson in the late 1920s.5 The fact that it is still in use attests to its ro-
bustness and ingenious design. The key feature behind its success is that it was designed
to measure ratios of spectral intensities (rather than absolute intensities; see Prob-
lem 9.5), thus avoiding problems with absolute calibrations, which still pose significant
challenges in spectrophotometry. A network of these instruments has been deployed
around the world for several decades, long before the launch of instruments for ozone
measurements on satellites starting in the 1970s. In fact, the discovery of the Antarctic
ozone hole was based on measurements with the Dobson spectrophotometer.6

The continuum in the O3 absorption longward of 310 nm is due to the Hug gins
bands. The weak but spectrally broad Chappuis bands of O3 at 450 < X < 750 nm
produce significant solar absorption for low solar elevation angle because of the large
amount of solar irradiance present at these wavelengths. An instructive way of looking
at the effects of gaseous absorption on incoming radiation is through the concept of
penetration depth? This is defined as the height at which the solar radiation reaches
optical depth unity, for a clear atmosphere exposed to an overhead Sun. The UV
penetration depth below 320 nm is shown in Fig. 9.3. The smallest penetration depths
occur in the thermosphere at the most opaque wavelengths. They arise from the very
high absorption coefficients of air in the X-ray (A, < 10 nm) and extreme-UV (10 <
\ < 100 nm) regions. In the far-UV between 100 and 200 nm (see Table 1.1), solar
radiation is absorbed in the lower thermosphere and mesosphere (50-120 km). Middle-
UV, or UV-C (200 < X < 280 nm), atmospheric absorption is dominated by the intense
Hartley bands due to O3. In the absence of O3, the Earth's land and ocean surface would



340 Shortwave Radiative Transfer

200

M 120

£
a
'£ 80

40

0

I i i i i i i I I i i i i r

O2O N2N

Schumann-Runge Continuum

Lyman alpha j

mi t

Schumann-Runge _

O3 Hartley
Bands -

N 2 O Ionization thresholds

I I I I I I I I I i I I I I I

thermosphere

mesosphere

stratosphere

' troposphere

0 40 80 120 160 200 240 280

Wavelength (nm)

Figure 9.3 Atmospheric penetration depth versus wavelength. Horizontal arrows
indicate the molecule (and band) responsible for absorption in that spectral region.
Vertical arrows indicate the ionization thresholds of the various species.

be irradiated directly by UV-C to the detriment, if not the total eradication, of surface
life. The absorption of this important energy band causes the inversion in the Earth's
stratospheric (15-50 km) temperature profile. Solar radiation near 250 nm, at the peak
of the Hartley band absorption, is absorbed near 50-km height where the warming rate
maximizes (see Problem 9.7). Living organisms are several orders of magnitude more
sensitive to damage by UV-B (280-320 nm) radiation than by radiation in the more
benign UV-A (320-400 nm) region. UV-B penetration is very sensitive to the total
column abundance of O3. The photosynthetically active radiation (PAR) spanning the
spectral range between 400 and 700 nm has the greatest clear-air transparency (except
for radio waves), because it contains only the weak absorption features of O2 and O3.
The eyes of humans (and animals) are most sensitive to light in this spectral range, a
fact of extreme importance for evolutionary adaptation.

9.3.2 Optical Properties of Atmospheric Aerosols

Small particles injected into the atmosphere may stay in the air (be suspended) for
some time depending on their size. Such suspended particles of a variety of origins are
genetically referred to as "aerosols" or "haze" because of their impact on visibility. The
particles in the lowest part of the atmosphere are generally due to wind-blown dust
and industrial pollution. Over the ocean, sea-salt spray from whitecaps is believed
to be a major source of aerosols. In addition there is evidence that dimethylsulfide
(DMS) gas of biogenic origin is another source of optically significant aerosol par-
ticles over the ocean. Tropospheric aerosol abundance may be conveniently related
to surface visibility. Based on available information on typical particle mass loading,
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composition, and size distribution, aerosol models have been constructed for a variety
of atmospheric conditions. Using these models we may compute the optical properties
from electromagnetic theory (the Mie-Debye theory), if we assume that the aerosol
particles have spherical shapes.

In the stratosphere the sources of aerosol particles are primarily volcanic eruptions
and combustion from fossil fuels. The stratospheric aerosol layer is typically situated
between 15 and 25 km. The impact of such aerosols on the radiation budget has been
the subject of several climate-related investigations. To derive the optical properties
we must know the mean particle size and refractive index; the latter depends on com-
position. Then if we assume that the particles have spherical shapes we may compute
their optical properties from theory. Data from in situ optical sampling devices carried
in sounding balloons following the El Chichon (1982) and Pinatubo (1991) volcanic
eruptions indicate that the perturbed stratospheric aerosol layer consisted primarily of
0.1-0.3 /xm radius spherical liquid droplets with a ~75% concentration (by weight)
of sulfuric acid. The quiet-time layer (the Junge layer) consists of smaller (<0.1 /xm)
sulfuric acid particles. At peak aerosol loading, the transmission of direct solar radi-
ation is appreciably altered. The optical properties of the stratospheric aerosol layer
change with time and location due to advective transport, gas-to-particle conversion,
and gravitational sedimentation. The single-scattering albedo and the asymmetry fac-
tor are shown in Fig. 9.4 for stratospheric aerosols of fresh and aged volcanic origin
as well as background conditions.
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Figure 9.4 Wavelength dependence of the single-scattering albedo
and the asymmetry factor for aerosols in the stratosphere. The solid
line pertains to fresh volcanic conditions, the dotted line to
background, and the dashed line to aged volcanic aerosol. For
comparison the dashed-dotted line shows the optical properties of a
cirrus cloud assumed to consist of spherical ice particles.
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Figure 9.5 Schematic illustration of cloud models made available
by the Phillips Laboratory. Typical number concentrations (N),
liquid water (LWC), or ice (IWC) contents as well as altitude ranges
are indicated for several cloud types.

9.3.3 Optical Properties of Warm (Liquid Water) Clouds

Observations from ground and from space show that a variety of cloud forms cover
about 60% of the Earth's surface, on average. Low clouds strongly reflect solar radia-
tion, while higher clouds tend to reduce the longwave radiation emitted to space. They
achieve this by absorbing terrestrial radiation and reemitting it at the colder cloud-top
temperature. Clouds therefore have a strong influence on the climate of the planet
by reflecting solar radiation (which cools the Earth) and trapping terrestrial radiation
(which tends to warm the Earth). Results from the Earth Radiation Budget Experiment^
indicate that clouds presently cool the Earth. A variety of cloud types occur in the at-
mosphere. A summary of cloud types for which models exist is provided in Fig. 9.5.

Assuming that cloud droplets are spherical, we may calculate their optical properties
from theory. The important output quantities are the scattering and absorption cross
sections and the asymmetry factor of the individual cloud droplets. Knowing these, we
may determine the bulk optical properties by an integration over the size distribution
of the cloud droplets. (Unfortunately, the size distribution is usually unknown.) These
computations are very time consuming and therefore not affordable in large-scale
models. Fortunately, it is possible to obtain accurate parameterizations of the Mie
computations in terms of the effective radius and the liquid water content of the cloud
droplets. It turns out that as far as the radiative properties are concerned these are the
only parameters that matter. Detailed information about the droplet size distribution,
such as skewness, width, and shape, is not required for this purpose.

The effective radius is defined as

<r) = drn(r)r2, (9.1)
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where n(r) is the cloud droplet size distribution [m~3 • /xm"1]. The numerator is
proportional to the liquid water content (LWC), while the denominator is related to
the extinction coefficient

oo

kc= fdrQext(r)n(r)r\ (9.2)

o

where the extinction efficiency, QexU is defined as the ratio of the extinction cross
section to the geometrical cross section (nr2) of the spherical droplet. If the size of
the droplet is large compared to the wavelength X (i.e., 2nr/k ^> 1), the extinction
efficiency asymptotically approaches 2. Therefore, in the visible range, where this
inequality applies, we find from Eqs. 9.1 and 9.2 that the extinction coefficient of the
cloud may be approximated by9

3 LWC
£ c ^ - — — (cgs units). (9.3)

This equation suggests that a parameterization of cloud optical properties in terms of
just the effective radius and the liquid water content might be expected to work well.
It turns out, in fact, that we can replace the lengthy Mie-Debye computations with a
small table of coefficients to derive the optical properties from the following simple
algebraic expressions:10

kQ/LWC = al(r)bl+cu (9.4)

l-ac=a2(r)b2+c2, (9.5)

gc = a3(r)b*+c3. (9.6)

Here kc is the cloud extinction coefficient, ac is the single-scattering albedo, and gc is
the asymmetry factor. The coefficients (the a?s, the Z?;S, and the QS) are determined by
fitting these expressions to exact computations. Comparison with exact computations
shows that this parameterization yields very accurate results. Optical properties of
water clouds are shown in the left panel of Fig. 9.6.

9.3.4 Optical Properties of Ice Clouds

Cirrus clouds are high-altitude ice clouds occurring over land and ocean. They are
present worldwide, covering 20-30% of the globe. These clouds consist of nonspheri-
cal ice crystals of various shapes, including hexagonal plates and columns. In the polar
regions ice clouds occur closer to the surface and, because of their small sizes, are
frequently referred to as "diamond dust."

A major difficulty in determining reliable and efficient radiative properties of ice
particles in clouds is associated with the nonspherical, irregular shape of ice crys-
tals. Attempts to use either area-equivalent or volume-equivalent ice spheres, so that
Mie-Debye theory could be applied to compute ice crystal scattering and absorption
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Figure 9.6 The three panels to the left show from top to bottom the volume extinction
coefficient (divided by liquid water content), the single-scattering co-albedo, and the
asymmetry factor versus wavelength for equivalent radii 3, 10, and 50 /xm. The panels to the
right show the same properties for ice clouds for equivalent diameters 10, 50, and 100 /xm.

properties, have been shown to be inadequate. It has been shown that11 (i) use of
an equivalent sphere model to infer cirrus cloud properties from remote sensing data
leads to significant underestimation of cloud optical depth and underestimation of cloud
height, (ii) interpretation of polarization measurements for ice clouds cannot be based
on spherical models, (iii) correct interpretation of broadband albedo of cirrus clouds
must rely on correct nonspherical scattering properties, and (iv) the climatic forcing
computed by spherical models will be seriously misleading. We should also expect that
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estimates of photolysis rates and UV exposure based on spherical aerosol/ice crystal
particle models will be unrealistic.

Nonspherical ice crystal size distributions are usually expressed in terms of the
maximum dimension (or length) L. Assuming that light scattering is proportional
to the cross-sectional area of nonspherical particles, we may define an effective size
(analogous to the effective radius for spherical droplets, Eq. 9.1) as follows:12

D e = dLD2 • L-n(L) I I dLDLn{

^min ^min

(9.7)

Here D(L) denotes the ice crystal width, n(L) is the ice particle distribution, and Lmax

and Lmin are the maximum and minimum lengths of ice particles. Thus, the effective
width (or size) is defined solely in terms of the ice particle size distribution. The
numerator is related to the ice water content (IWC) given by

T

IWC=——pi / dLD2 -L-n(L),
o J

where the volume of an hexagonal ice crystal, 3\/3D2L/8, is used and px is the bulk
density of ice. The extinction coefficient is defined by

= Ikc= I dLk(D,L)n(L). (9.9)

Here k(D, L) is the extinction cross section for a single crystal. In the geometric optics
limit, the extinction cross section is twice the effective cross-sectional area and may
be expressed as

k(D,L) = -D (9.10)

This expression for k(D, L) is based on the assumption that the ice crystals are hexago-
nal and randomly oriented in space. In this case it can be shown that kc/IWC is linearly
related to 1/Z)e, that is,

kc^IWC(a + b/De), (9.11)

where a and b are constants. By further assuming that the absorption is small, one
may express the absorption cross section as the product of the imaginary part of the
refractive index, mi, and the particle volume:

^ » D * L . (9.12)

The extinction and absorption cross sections defined above, combined with the notion
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that D and L are related, allow us to express the single-scattering co-albedo approxi-
mately as

l-ac^c + d-DQ, (9.13)

where c and d are best-fit constants.
For cases in which the geometric optics assumption (underlying Eq. 9.11) and

the assumption of small absorption (underlying Eq. 9.13) are not valid, higher-order
expansions may be used to represent the single-scattering properties of ice crystals
more accurately:

N N

kc=IWCY,an/Dn
Q, 1 -ac = X > / D e > (9.14)

n=0 n=0

where an and bn are coefficients to be determined by fitting accurate values to the above
expressions, and N is the total number of terms required to achieve a desired accuracy.
Note that Eqs. 9.14 reduce to Eqs. 9.11 and 9.13 for N = 1. Finally, the moments
of the phase function may be determined in a similar fashion. For example, the first
moment (i.e., the asymmetry factor, gc) may be expressed in terms of coefficients, cn,
as follows:

n=0

To determine the unknown coefficients one may use ray-tracing techniques devel-
oped for hexagonally shaped particles if De > 30. For smaller De, solutions developed
for spheroidally shaped particles may be adopted in the absence of solutions valid for
hexagonally shaped crystals. Since the smaller sizes are usually associated with IR
wavelengths where ice is highly absorbing, the detailed shape may not be critical in
scattering and absorption computations. Optical properties of ice clouds are shown in
the right panel of Fig. 9.6.

In spite of a considerable effort by several groups worldwide to compute the optical
properties of nonspherical particles the situation is less than satisfactory in that exact
and approximate solutions seem to be generally lacking for nonspherical particles with
size parameters between 20 and 30, in particular for shapes deviating substantially
from that of the sphere.13 For size parameters larger than 30, ray tracing based on
geometrical optics may be used, while a variety of approaches have been tried for
size parameters comparable to the wavelength of light. Because these approaches are
generally based on theories valid for relatively small departures from the spherical
shape, they suffer from numerical ill-conditioning14 when they are applied to particles
with (i) large real and/or imaginary refractive index, (ii) large size compared with the
wavelength of incident light, and (iii) extreme shapes that deviate substantially from
that of a sphere.
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9.3.5 Optical Properties of the Ocean

The underwater spectral radiation field depends on the spectral and angular distribution
of the solar radiation arriving at the water surface and on the optical properties of the
water body. The latter are determined by Rayleigh scattering and absorption by water
molecules (pure water) as well as scattering and absorption by suspended particles
of organic and inorganic origin. As explained previously it is important to take into
account the change in refractive index occurring at the atmosphere-ocean interface,
in order to describe accurately the transfer of radiation in the coupled atmosphere-
ocean system. In addition, modelers generally separate the atmosphere and ocean into
a sufficient number of equivalent layers to resolve adequately the optical properties
of each medium. Vertical profiles of atmospheric ozone, density, cloud cover, aerosol
loading, as well as suspended particles and dissolved organic materials in the ocean are
used to generate optical properties (optical depth, single-scattering albedo, and phase
function) for each layer of both the atmosphere and the ocean. Based on these inputs,
models are used to compute the radiation field throughout the coupled system.

Spectral absorption and scattering coefficients may be computed from a three-
component model15 with contributions from phytoplankton, nonchlorophyllous parti-
cles, and dissolved organic matter. The absorption coefficient, acasei (A.), in open oceanic
waters, which is commonly referred to as Case 1 waters, is

teasel (A.) = [aw(X) + 0.06a*(A)Ca65] [1.0 + 0.2 * Y(X)] [nT1]. (9.16)

Here aw(X) is the absorption coefficient for pure seawater, a^(X) is the specific
chlorophyll-a absorption with units [m"1 (mg • m"3)~° 6 5 ] , and C is the pigment con-
centration with units [mg • m~3]. Absorption by locally formed yellow substance cor-
related with the chlorophyll-a concentration is included in the second factor in Eq. 9.16
with a spectral variation Y(k) given as

Y(X) = e
r(k-Xo\ (9.17)

where Xo = 440 [nm] and F = —0.014 [nm"1]. For turbid coastal waters, commonly
referred to as Case 2 waters, we have

« W = acasei W + bs(Xs)as(X) + aY(X0)Y(X), (9.18)

where as(X) is the specific absorption by suspended matter, and bs(Xs) (with As =
550 nm) and aY (A.o) are measures of the concentrations of suspended matter and yellow
substance, respectively. aw(k), aw(X) (see below), a£(A,), and as(X) are tabulated.16

The total scattering coefficient is

or (A.) = orw(A.) + orc(A.) + ors(A.) [m"1], (9.19)

where crw(X) is the scattering coefficient of pure seawater. The scattering by
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phytoplankton <TC(A) is computed from the pigment concentration C by

orc(A) = A C0 6 2 —, (9.20)
A

where A is 0.3 m"1 (mg • m~3)~° 62 and AS = 550 nm. This empirical expression is
deduced from measurements in the near-UV and visible part of the spectrum (above
350 nm). Data for wavelengths shorter than 350 nm are generally lacking, but ab-
sorption and scattering by chlorophyll and dissolved organic matter seem to be the
principal contributors to extinction in the UV spectral range. However, the concen-
tration of dissolved organic matter seems to be influenced much more by natural (or
anthropogenic) land sources than by marine biological activity. Thus, in regions where
land sources are deemed to be of lesser importance - such as the open ocean or the
waters surrounding the Antarctic continent - it may be sufficient to include absorption
and scattering by chlorophyllous pigment. The scattering coefficient for chlorophyll
may then be computed from Eq. 9.20. Variations in the specific spectral absorption
coefficient are shown in Fig. 9.7.17

For more general situations, including coastal waters, we may use the total scattering
coefficient CT(AS) to characterize the scattering by nonchlorophyllous particles. The
contribution a$ (A) from nonchlorophyllous particles to the total scattering coefficient

is found by subtracting the contributions from algae and pure water,

as(AS) = a(As) - ac(AS) - aw(AS). (9.21)

The spectral variation of <TS(A) is given by

• (9-22)

Here n is a number between 0 and 2, which depends on the specific type of sediment.
Dissolved organic material (yellow substance) is assumed not to contribute to the total
scattering coefficient.

The total asymmetry factor is computed from the individual contributions as follows:

+
7 7 7 • (9.23)

Or (A)

If we adopt the Henyey-Greenstein phase function, this description is sufficient. For
Rayleigh scattering by water we have gw = 0. Chlorophyllous as well as nonchloro-
phyllous particles are large compared to the wavelength of light and therefore have
large g values (for example, gc ~ 0.99, and g$ ~ 0.97). However, the numerical
values of gc and gs will vary with the water type.

9.3.6 Optical Properties of Snow and Ice

Making the somewhat dubious assumption that snow consists of spherical particles,
we may obtain their optical properties from Mie-Debye computations, which require
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Figure 9.7 Optical properties of seawater. Upper panel: Scattering
and absorption coefficients for pure seawater. Lower panel:
Chlorophyll-specific spectral absorption coefficient for eight
species of phytoplankton.

the refractive index of ice and the mean radius as input. Surprisingly this approach
leads to results for predicted snow albedo that agree well with available observations.
The following reasons why one does not make large errors by assuming spherical
particles have been put forward by Craig Bohren:18

The orientationally averaged extinction cross section of a convex particle that is
large compared with the wavelength is one-half its surface area. The absorption
cross section of a large, nearly transparent particle is proportional to its volume
almost independent of its shape. The closer the real part of the particle's refractive
index is to 1, the more irrelevant the particle shape. The asymmetry parameter of
large particles is dominated by near-forward scattering, which does not depend
greatly on particle shape.
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In sea ice we must consider absorption by pure ice, scattering and absorption by
brine pockets and the solid salts trapped within the ice, and scattering by air bubbles.
Volume fractions of brine, air, and solid salts may be derived in an approximate manner
from the ice temperature, density, and salinity. Assuming again that the brine pockets,
air bubbles, and solid salts are spherical in shape, we may obtain the optical properties
from Mie-Debye computations. Each component of the sea ice interacts differently
with radiation. Pure ice acts mainly as an absorber. Although air bubbles and brine
pockets both scatter strongly, air bubbles scatter more efficiently, whereas brine pockets
also absorb radiation. The overall optical properties of the sea ice depend on the volume
occupied by each component.

Salinity, density, and temperature may vary within the sea ice. Conditions repre-
sentative for multiyear ice in the central Arctic in mid-May and September are: ice
thickness 3 m, salinity 0.3%, density 0.9 mg • m~3, and surface temperature — 10°C.
There is strong absorption in the infrared portion of the solar spectrum and relatively
weak absorption in the visible region. Salinity is unimportant for the optical properties
of seawater but plays a significant role for sea ice, because of brine pocket devel-
opment associated with brine rejection when sea ice melts. Therefore, the albedo of
first-year ice is only about half the value of multiyear ice due to air bubble and brine
pocket formation, leading to increased scattering in the uppermost layer of multiyear
ice. This is illustrated in Fig. 9.8, which shows a comparison between measured19 and
computed20 results. No attempt was made to tune the model to get better agreement.

0.5 0.6 0.7 0.8

Wavelength (urn)

0.9 1.0

Figure 9.8 The albedo of first-year melting blue (lower set of
curves) and multiyear white (upper set of curves) sea ice. The
salinity and density were taken to be constant within the ice, and
the temperature was assumed to vary linearly with depth from the
surface value to a bottom temperature fixed at — 2°C.
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9.4 Modeling of Shortwave Radiative Effects
in the Atmosphere

Band models will be discussed in more detail in Chapter 10. They are of great practi-
cal importance because in most atmospheric chemistry and climate models we cannot
afford to compute photolysis rates and warming/cooling rates line by line through-
out the spectrum. In Chapter 10 we describe how band models, which allow in-
clusion of multiple scattering, can be constructed to compute the radiation field in
various parts of the spectrum. Here we shall consider the relatively simple case of
UV/visible solar radiation. The simplicity stems from the fact that in the spectral
range 200-700 nm the absorption cross sections of the main absorbers - ozone and
molecular oxygen - vary quite smoothly with wavelength. This makes it straightfor-
ward to construct a band model by simply averaging over suitably chosen spectral
intervals. By contrast, in the near-IR part of the solar spectrum (beyond 700 nm) and
in the thermal IR the absorption cross sections vary erratically and substantially over
small spectral intervals. This circumstance implies that simple averaging becomes
inaccurate.

Integration over spectral ranges for which the absorption cross sections change
rapidly is discussed in the next chapter. Only a brief introduction is provided here. To
illustrate the problem let us consider the transmission of a normal beam of radiation
through a slab of optical thickness Arv. We write the mean beam transmission over a
wavelength interval Av as

A , - - - , (9.24)

Av

where Arv = an(v)J\f, and M is the column density of the absorbing gas. If the
wavelength interval is chosen to be narrow enough that the absorption cross section
an{v) is approximately constant, then the transmission reduces to the exponential
Extinction Law. Also, if an(v) varies smoothly and slowly across the wavelength
interval Av, we may approximate an(v) with a constant, which again leads to an ex-
ponential behavior. Finally, if an(v) varies rapidly and erratically across Av, we may
attempt to approximate the transmission function with a sum of exponential functions.
This is convenient because we have the same mathematical form (i.e., exponential
attenuation) as in the previous case. The exponential sum fitting of the transmis-
sion (ESFT) procedure has been used frequently in the past to deal with gaseous
absorption/emission (see Eq. 10.37). So has a physically different, but mathematically
similar, approach called the k-distribution method, which also reduces the transmis-
sion function to a sum of exponentials. As discussed in Chapter 10, the advantage
of this reduction to a sum of exponentials is that multiple scattering by cloud and
aerosol particles is easy to include in the calculation. This in turn implies that a uni-
fied treatment of radiative transfer may be achieved across the solar and terrestrial
spectra.
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The cross section for molecular oxygen is shown in Fig. 4.12. This figure shows

the weak Herzberg continuum in the spectral range 175-200 nm, and the more signif-

icant O2 absorption in the Schumann-Runge bands between 175 and 195 nm. At still

shorter wavelengths, the structure is very complex. The very deep O2 minimum, which

coincides almost exactly with the hydrogen Lyman-a line at 121.6 nm, has important

consequences in the upper atmosphere (above about 70 km). For A, < 102.65 nm, at-

mospheric absorption is caused by bound-free ionizing transitions. The cross section

in the Schumann-Runge bands varies rapidly over small wavelength intervals. It also

depends on temperature and therefore on altitude due to Doppler broadening. This im-

plies that it is better treated by line-by-line models or by the correlated-k distribution

and similar techniques discussed in Chapter 10.21

Example 9.1 Computational Strategies

To compute wanning and photolysis rates we need only the irradiance or the mean intensity of
the radiation field as explained in Chapter 5. We may therefore start with the azimuthally averaged
version of the equation describing the transfer of diffuse monochromatic radiation at wavelength
A in a scattering and absorbing atmosphere:

n(z)dz

°^ I du'pk(u\ u)h(z, u'y-™1™, (9.25)I

where Tk(z) is the extinction optical depth. For clarity we have written Eq. 9.25 for a single-
constituent atmosphere with number density n(z). Generalization to a multiconstituent medium is
easily achieved by summing over species. By dropping the solar forcing term in Eq. 9.25, so that
h(z,u) refers to the total diffuse plus direct intensity, and then integrating over 4n steradians, we
find that the irradiance F and the mean intensity I are related by

= -4jrn(z)a(k)I, (9.26)
dz

where we have dropped the X subscripts. Since the warming rate is proportional to the divergence
of the irradiance, and the photolysis rate depends on the mean intensity, we see that it is sufficient
to compute the mean intensity of the radiation field to derive both warming and photolysis rates.

From a numerical point of view it is advisable to use the mean intensity to compute the irra-
diance divergence because we avoid: (i) taking the difference between the upward and downward
irradiance to compute the net irradiance and (ii) then taking another difference between the net
irradiances at two nearby levels to compute the divergence medium, there will be little difference
between the net irradiance at two nearby levels, so that we end up subtracting two numbers that
are almost equal, which is numerically inaccurate. It is interesting to note that estimations of
the irradiance divergence in clouds from measurements of upward and downward hemispherical
irradiances have been fraught with difficulties for basically the same reason. The measurement of
upward and downward irradiance must be very accurate to avoid loss of accuracy associated with
the numerical differentiation used to derive the irradiance divergence from such measurements.
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It is clear that for the purpose of testing models it would be better to measure the mean intensity
than the irradiance divergence.

9.4.1 Spectral Averaging Procedure:
The Chandrasekhar Mean

Figure 1.1 shows that the solar irradiance at the top of the atmosphere falls off rapidly
with decreasing wavelength below 350 nm, whereas the ozone absorption cross section
increases rapidly between 350 and 250 nm. Because of these steep gradients in UV flux
and ozone cross sections, we must choose the wavelength bins carefully to avoid errors
caused by a wavelength resolution that is too coarse. Rather than using an arithmetic
mean of the cross section for any bin, we may define a mean absorption cross section
by weighting it with the solar flux across the bin as follows:

and analogously for the mean scattering cross section, (an). It is important to note that
all cross sections used in the calculations should be weighted in this manner.22 Thus,
we must define an average value for the absorption and scattering cross sections by
applying Eq. 9.27 to each of them, and in the integral defining the photolysis rate,
the photoabsorption cross section, al

n(X), and the quantum efficiency, rjl(X), must be
similarly averaged.

9.4.2 Solar Warming Rates Due to Ozone,
Aerosols, and Clouds

In the UV/visible part of the spectrum the major warming is due to absorption by ozone
in the Hartley-Huggins band for wavelengths between 200 and 350 nm. Ozone also
absorbs in the Chappuis band between 400 and 700 nm, but as shown in Fig. 1.1 the
cross section here is much weaker than in the Hartley band. Since there are no other
absorbers that provide real competition with ozone between 200 and 700 nm (except
the Schumann-Runge bands below 200 nm, which we do not include here for reasons
stated in the beginning of this chapter), we may ignore other absorbers and focus on
ozone for demonstration purposes. In Fig. 9.9 we show warming rates computed for a
solar zenith angle of 30°. We note that the warming rate has a broad maximum around
45 km altitude. It is proportional to the product of the mean intensity and the absorber
density. If we were to plot the mean intensity versus decreasing altitude, we would find
that intensity falls off rapidly, while the ozone density increases down to about 20 km
(see solid curve in Fig. 9.2). Thus, the product will maximize at the altitude where the
two curves cross each other. This explains the maximum in the warming rate, which
was first pointed out in the 1930s by S. Chapman (see Problem 9.7). Therefore, the
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Figure 9.9 Left panel: Instantaneous warming rate due to ozone absorption
between 200 and 700 nm for a solar zenith angle of 30°. For this computation
optical properties derived from O3 cross sections and the midlatitude summer
atmosphere (see Appendix C) were used as input to the DISORT radiative
transfer code (§8.8). Instantaneous warming rates for stratospheric aerosols
and a cirrus cloud are also shown. Right panel: Warming rate for a simulated
low-level warm cloud (see text) where the solar zenith angle is 60°.

shape of the curve is commonly referred to as a Chapman profile. Warming rates for
other species exhibit similar behavior.

To illustrate the radiative effects of stratospheric aerosols we show in Fig. 9.9 the
instantaneous solar warming rates for an extreme case of volcanic aerosol loading. We
note that this extreme volcanic aerosol loading enhances the solar warming rate by
up to 10 K/day within the peak of the aerosol layer. This is caused by the increased
near-IR absorption by the aerosols. We also note that backscattering of radiation by
the aerosol layer leads to enhanced warming by about 0.3 K/day throughout the strato-
sphere above the layer. For more moderate aerosol loadings the warming rates are
similar but smaller in magnitude. In contrast, in the troposphere, the reduced solar
transmission results in a cooling of the surface, although this response is delayed and
modulated by the slower ocean response. Compared to the solar warming, stratospheric
aerosols have a relatively modest effect on the terrestrial IR warming/cooling rate. For
an extreme volcanic aerosol model, although the IR effect is significant, it is a factor of
five smaller than the solar effect. Compared to the clear-sky case the extreme volcanic
aerosol model gives rise to a wanning (less cooling) below the aerosol layer due to
upwelling IR radiation that is backscattered by the aerosol layer and absorbed by the
underlying atmosphere. There is a corresponding cooling above the layer due to the
attenuation of the upwelling IR radiation. In summary, the effect of a stratospheric
aerosol layer on atmospheric warming/cooling rates is dominated by solar radiation,
so that the net (solar plus IR) radiative impact is to induce cooling below and warm-
ing within and above the layer. This behavior is in agreement with measurements of
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atmospheric temperature following volcanic eruptions. The size of the tropospheric
cooling depends on the magnitude of the eruption. For example, the recent Mount
Pinatubo eruption had a significant cooling23 effect at the surface, about 0.5°C, large
enough to offset temporarily the warming due to increases in anthropogenic trace
gases.

A cooling effect of tropospheric aerosols has been recently identified. This is due to
absorption from anthropogenic sulfate aerosols, which arise through a complex chain
of reactions involving gas-to-particle conversion. The globally averaged forcing is es-
timated to range from —0.3 up to —2 W • m~2 by various investigators.24 Thus along
with ozone depletion, the increase of aerosols may have at least partially mitigated the
positive forcing from greenhouse gases. Since the source of sulfate aerosols is atmo-
spheric pollution, the problem is complicated because the effect is strongly regional,
concentrating in large population centers mainly in the northern hemisphere.

A cirrus cloud scatters solar radiation efficiently because of its high single-scattering
albedo (see Fig. 9.4). The maximum instantaneous warming rate for a solar zenith angle
of 30° is about 5-6 K/day for this particular cloud. Backscattering of solar radiation
from the cirrus deck leads to a slight increase in the solar warming rate above the
cloud and a corresponding decrease below because the cloud prevents radiation from
reaching those levels.

A tropospheric water cloud strongly affects solar warming rates and net irradiances.
An example of the warming rate produced by a low-level cloud is displayed in the right
panel of Fig. 9.9. This particular cloud was simulated with a simple model25 mimicking
condensation of water vapor on cloud condensation nuclei. The model provides a
self-consistent treatment of the interaction between radiative and cloud microphysical
processes important for cloud formation in the Arctic. This model employs a convective
adjustment scheme similar to that discussed in Chapter 12 in connection with simple
climate models. As a consequence droplet spectra are mixed, leading to a significant
broadening of the droplet size distribution at cloud top. The shape of the computed
droplet spectra are in general agreement with observations. The droplet effective radius
changed from about 12 /xm at cloud top to about 7 /im at cloud bottom. The liquid
water content for this cloud is 0.8 g • m~3 at cloud top decreasing linearly toward cloud
bottom. The droplet concentration is nearly constant throughout the cloud. Thus, the
increase in liquid water content with height is caused by the increased droplet size.
The cloud formed (from clear air) between about 200 and 800 m.

9.4.3 Computation of Photolysis Rates

To compute the photolysis rate we need to integrate the radiation field multiplied by the
photoabsorption cross section and by the quantum efficiency for any particular species
of interest as indicated in Eq. 5.80. There are many chemical reactions that need to be
considered depending on the problem of interest. For example, one may be interested
in the effects of anthropogenic release of chlorofluorocarbons on the stratospheric



356 Shortwave Radiative Transfer

ozone abundance or the effects of industrial pollution on the tropospheric sulfur cycle.
Caution must be exercised in choosing bin sizes for the computation of photolysis
rates for all the different chemical processes in operation. The problem is that the
cross sections for these various photoabsorption processes vary substantially across
the UV/visible spectral range. Some of these cross sections are sharply peaked over a
narrow spectral range, whereas others vary more smoothly over a wider spectral region.
There is also overlap between cross sections of different species in some regions of the
spectrum. The presence of these factors emphasizes the importance of choosing the
bin sizes very carefully to avoid inaccuracies in the computed rates. A relatively coarse
grid that may provide good accuracy for one particular species may be inadequate for
another species whose cross section varies more rapidly over the same spectral range.
In practice this means that we need to be somewhat conservative in the choice of grid
size for the purpose of computing photolysis rates for a multitude of species.

By choice of a proper spectral grid an accurate integration over wavelength may be
reduced to a sum of monochromatic problems. However, there may still be errors in the
computation associated with the numerical solution of each of these monochromatic
problems owing to the choice of solution method. We know, for example, that a two-
stream approximation is less accurate than a high-order multistream method. However,
the larger the number of streams, the more expensive the computation. It is therefore
of interest to find out how well we can do in the lowest order of approximation, that is,
the two-stream approximation. As an example we consider photolysis of ozone (O3) in
which the oxygen atom is left either in the ground state O(3P) (X > 310 nm) or in the
excited state O(lD) (A. < 310 nm). Numerical results for a clear Rayleigh-scattering
atmosphere indicate that the error in photolysis rates computed by the two-stream
approximation as compared to an accurate multistream computation depends on solar
zenith angle and surface albedo and varies with altitude.26 It is noteworthy, however,
that the error is generally small compared to uncertainties in other parameters used in
photochemical modeling. Thus, for this particular example, the error incurred by use
of the two-stream approximation is less than 3% in the stratosphere and a maximum of
about 8% in the troposphere. The errors are therefore less than the combined uncertainty
in cross section and quantum yield, which is in the range 10-20%.

9.4.4 UV Transmission: Relation to Ozone Abundance

In spite of its small abundance, the large cross section of ozone causes it to absorb
very effectively the UV radiation shortward of 300 nm. For this reason ozone is said to
provide a protective "shield" against harmful UV radiation. To illustrate this shielding
effect we have plotted in Fig. 9.10a the optical depth of ozone versus wavelength for
several ozone column abundances. The Rayleigh-scattering optical depth is also shown
for comparison. The corresponding flux transmittance is shown in Fig. 9.10b.

Comparison of computed results for downward irradiance and mean intensity at
the surface, for dark and bright surfaces, shows that the mean intensity is much more
strongly affected by changes in surface albedo than is the downward flux. Since both
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Figure 9.10 (a) Wavelength dependence of total optical depth (Rayleigh scattering
plus ozone absorption) for several column amounts (100, 200, 300 DU).
(b) Corresponding flux transmittances. The solar zenith angle is 0° and the underlying
surface is totally absorbing. The U.S. Standard Atmosphere was used as input and
scaled to 100, 200, and 300 DU, and the DISORT code was used to do the radiative
transfer computation.

photolysis rates and warming rates are proportional to the mean intensity, they will
therefore be significantly affected by the value of the surface reflectance.

The strong (AT4) wavelength dependence of Rayleigh scattering is evident in
Fig. 9.10. This implies that molecular scattering will become progressively more
important toward shorter wavelengths. To illustrate the importance of multiple scat-
tering we show in Fig. 9.11 the direct and diffuse irradiance at the surface for two
solar zenith angles. It is clear that the smaller the solar elevation angle, the relatively
more important is the diffuse component. In fact, when the Sun is close to the horizon
the diffuse component dominates. This is clearly seen in the right panel of Fig. 9.11,
which pertains to a solar zenith angle of 75°.

9.4.5 UV Transmission and Dose Rates at the Earth's Surface

The biological effect of UV radiation may be expressed in terms of the dose rate defined
as a convolution of an action spectrum with the irradiance spectrum. Irradiance applies
if the exposure applies to a flat surface (see Eq. 5.81). However, the mean radiance
applies if our interest lies in the rate at which a small spherical particle receives energy
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Figure 9.11 Effect of solar zenith angle on the direct versus diffuse components of spectral
irradiance for solar zenith angles 30° and 75° as indicated.
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Figure 9.12 Action spectra for various biological responses. R-B meter stands
for a measuring device, known as the Robertson-Berger meter, that was
designed to mimic the sunburning response of Caucasian skin.

from the radiation field (see Eq. 5.82). Four different types of action spectra are shown
in Fig. 9.12: generalized damage spectra for (1) the DNA molecule and (2) plant
response, (3) a weighting spectrum for erythema (sunburning), and (4) the response
spectrum for one particular measuring device - the Robertson-Berger (R-B) meter -
designed to approximate the response of Caucasian skin.
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Figure 9.13 The annual effective UV dose at 60°N as a function of the
ozone depletion (logarithmic scale). The annual UV dose, with normal
ozone conditions throughout the year, is set to 100. The inset exhibits the
dotted area with the dose axis enlarged and given a linear scale. The annual
UV dose for latitude of 40°N (Mediterranean countries, California) and
countries along the equator, with normal ozone conditions, are indicated by
Mallorca and Kenya, respectively.

The computed annual effective UV dose for the erythema spectrum shown in
Fig. 9.12 varies by about 4% per degree in latitude in the nothern hemisphere. Predic-
tions based on ozone trend data, which show a small negative trend in ozone values
from 1969 to 1986 in the northern hemisphere, indicate a change in effective annual
dose that is small but positive for all latitudes. UV measurements at high elevations
in the Swiss Alps from 1981 to 1989 indicate a slight increase in solar UV radiation
of about 1% per year since 1981, in qualitative agreement with the reported ozone
depletion of about 3% from 1969 to 1986.27

The annual radiation dose at 60°N is shown in Fig. 9.13, as a function of ozone
depletion. The percent increase in UV dose per percent decrease in ozone abundance is
commonly referred to as the radiation amplification factor. For small ozone depletions
(less than 5%) the annual UV dose increases with an amplification factor close to
1 (see inset of Fig. 9.13). For larger ozone depletions the increase in annual UV dose
is enhanced, that is, the curve becomes nonlinear. Thus, according to Fig. 9.13, a 10%
depletion yields a 11.7% increase in UV dose, and a 20% depletion gives a 25.7%
increase. These values are smaller than those obtained for the DNA action spectrum
(Fig. 9.12), which falls off quite sharply with wavelength. This rapid falloff implies
that DNA is more sensitive to UV-B radiation, and thus to changes in ozone amount,
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than the erythemal response, which has a significant response to UV-A radiation.
Note also that the UV-A radiation is almost unaffected by ozone changes and is of
much larger magnitude than the UV-B component (see Fig. 1.4). An amplification
factor of 2 has often been adopted, implying that a 1% percent decrease in ozone
gives rise to a 2% increase in UV dose. Such a value is obtained for the DNA action
spectrum for typical midlatitude solar elevations and changes in ozone of 10% or
less, but the response of humans and animals to UV radiation is perhaps more properly
described by the erythema action spectrum. Hence, the amplification factor will depend
on the particular type of biological response considered as well as on latitude and
season.

Measurements of UV spectral irradiance during the Arctic summer have shown
that the diurnal variation in the UV-B region is much stronger than in the UV-A.
This demonstrates that diffuse radiation dominates the direct component in the UV
part of the spectrum. The proportion of diffuse radiation is less pronounced at lower
latitudes where the Sun is higher in the sky (see Fig. 9.11). In the Antarctic, the
spectral distribution of UV radiation reaching the surface has been measured with
scanning spectrometers deployed at four stations. The consequence of the Antarc-
tic ozone hole28 is evident in the data. For example, data taken at Palmer Station
(65°S) during austral spring 1988 show that irradiances at wavelengths shorter than
310 nm measured in October often equaled or exceeded values measured at summer
solstice.29 Similarly, the UV radiation levels at McMurdo Station (78°S) in 1990 were
substantially increased. UV irradiances in October exceeded the solstice value by a
factor 1.5 for a ten-day period; a threefold increase (compared to the "normal" value)
of the integrated daily dose of UV irradiance was measured at the surface.30 The
spectral measurements in both the Arctic and the Antarctic show that cloud cover pro-
vides substantial attenuation of UV radiation as well as large day-to-day variability.
It would be desirable to make routine measurements with sufficient spectral infor-
mation to identify ozone-related UV-B trends and to discriminate them from effects
due to natural cloud variability, because spectrally integrated data will not allow for
this kind of discrimination. In fact, it has recently been demonstrated that narrow-
band filter instruments with two or more channels in the UV are sufficient for such
discrimination.31 Spectral measurements obtained in New Zealand32 during two sep-
arate campaigns eight years apart showed no change in UV exposure between 1980
and 1988, but more data are obviously needed to establish a climatology of UV irra-
diance. Finally, at other midlatitude locations in the Southern Hemisphere, increases
in UV-B have been observed in connection with intrusions of ozone-depleted air from
Antarctica. For example, high UV-B levels in Melbourne, Australia have been associ-
ated with air coming from the Antarctic ozone hole after the breakup of the Antarctic
vortex.33

More recently UV measurements in Europe have been reported by several groups.34

Similar efforts are also ongoing in the United States and Canada35 and in the Southern
Hemisphere as well.36



9.4 Modeling of Shortwave Radiative Effects in the Atmosphere 361

9.4.6 Comparison of Measured and Computed
UV Irradiance at the Surface

Spectrally resolved measurements of UV irradiances transmitted to the surface can
be used to test model computations. To compare computed and measured irradiance
we should ideally use the solar irradiance measured at the top of the atmosphere
with the same instrument as input to our calculations. The measured solar irradi-
ance extrapolated to zero air mass by the Bouguer-Langley method would also be
useful for this purpose. Because such solar irradiance data are usually not available,
the comparison focuses on the ratio of the measured direct and diffuse irradiances
to the computed ratio, which is independent of the solar irradiance at the top of the
atmosphere.

Figure 9.14 shows a comparison between the measured and computed ratio of dif-
fuse to direct irradiance.37 This figure is for January 12, 1991 (which was prior to
the eruption of Mt. Pinatubo). The deviations between the measured and computed
results are also shown. Tropospheric aerosols are included in the computation. The
aerosol content is based on measured values. The surface albedo was not measured,

measured
calculated
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Figure 9.14 Comparison
between measured and
computed ratios of diffuse

450 to direct spectral irradiance
during cloud-free skies.
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but it was varied within reasonable bounds in an effort to improve agreement between
the measured and computed ratio. We can see from the right panel that the devia-
tion of diffuse/direct irradiance ratio between measurements and model computation
is less than 8% if the spikes in the measurement data on both days are ignored.38

Since the ratios are formed from combinations of measurements, the difference is
reasonable.

The ozone content used in the calculation was derived from the measurements by
taking the ratio of the measured downward irradiance (diffuse plus direct) at two UV
wavelengths (one of which is appreciably more absorbed by ozone than the other) and
comparing this ratio to a computed ratio derived from a radiative transfer calculation.
This in itself provides another example of the use of radiative transfer theory: To extract
ozone abundance from global (diffuse plus direct) spectral irradiance measurements,
the column ozone content in the model is varied until agreement between measured and
computed irradiance ratio is achieved. Comparisons with other methods (TOMS and
Dobson measurements) indicate that this method is reliable and accurate.39 Ground-
based retrieval of column ozone amounts under overcast conditions usually relies on
measurements of the zenith sky radiance, which has to be corrected for cloud effects.
This correction is usually based on empirical charts created for a particular location.
Use of the global irradiance instead of the zenith-sky radiance makes the ground-
based ozone retrieval insensitive to cloud conditions and obviates the need for such
corrections.

9.5 Modeling of Shortwave Radiation in the Ocean

9.5.1 Diffuse Radiation: Attenuation in the Ocean

The concept of exponential light penetration loses its usefulness when the multiply
scattered component becomes important. One might think that scattering effects cannot
be described by this simple beam-penetration notion. However, it is possible to extend
its definition to describe the height at which the total radiation field is attenuated by the
factor (l/e). This concept has been used extensively in ocean optics, where measure-
ments show that the total illumination is approximately exponential with ocean depth z.
Thus it is natural to define an apparent extinction coefficient K, which may be defined
in several different ways - in terms of the variation of the upward (upwelling) irradi-
ance, the downward (downwelling) irradiance, the mean intensity (scalar irradiance),
or the upwelling zenith intensity:

dz dz ( 9 2 8 )

d(\n[Iv(z)])
, , KI+(v) = .

dz dz

These are also called the diffuse attenuation coefficients. These apparent optical prop-
erties are distinguished from the intrinsic properties (such as extinction, scattering,
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and absorption coefficients, phase functions, etc.). Clearly their values depend not only
upon the ocean properties, but also upon the surface illumination, reflection from the
ocean bottom, etc. Although they are not very satisfactory in this respect, they are
easily measured and have practical value in conveniently describing the general falloff
of radiation with depth. For example, apparent properties are useful in determin-
ing the maximum vertical extent to which photosynthesis would occur (the euphotic
zone).

To be consistent with common usage in ocean optics we shall in the remainder of
this section take z to be positive downward (from the ocean surface) and the polar
angle 0 to be 0° along the positive z axis. (Note that ocean optics people refer to the
upwelling radiance in the direction 0 = 180° as the "nadir" radiance and to the down-
welling radiance in the direction 0 = 0° as the "zenith" radiance.)

9.5.2 Two-Stream Model Appropriate for Deep Water

Consider a body of water deep enough that the radiation field in the upper layers is
unaffected by radiation reflected from the bottom. This situation is typical of the open
ocean. Measurements indicate that if the solar irradiance incident at the ocean surface
is F~(0), the depth dependence of the irradiance can be expressed as

F~(z) = F-(0)e~Kz, (9.29)

where K is the attenuation coefficient for downward irradiance defined above (we
have dropped the d subscript). For simplicity let us assume that a layer of the upper
ocean near the surface has constant optical properties. Then by inserting Eq. 9.29
into Eq. 7.139, we find that (see Problem 9.2) the two-stream approximation for the
attenuation coefficient is

2

where a± and ^ are defined in Eqs. 7.136. The expression for the irradiance re-
flectance is easily found to be

A useful relation between K and p that does not involve ^ ± is (see Problem 9.3)

(9.32)

where /x± are defined in Eqs. 7.136 and a is the absorption coefficient (not to be
confused with a ± ) .



364 Shortwave Radiative Transfer

It can be shown (see Problem 9.4) that p increases monotonically when the single-
scattering albedo a = cr/(cr +a) increases. In fact, for small values of a = a/(a + a),
Eq. 9.31 reduces to

r + ab
P — 1 1 •

1 + /X+//X" a

Physically this makes sense because we expect the reflectance to decrease with in-
creasing absorption in the near-surface waters.

If other factors remain the same, the attenuation coefficient will increase if a in-
creases (more absorption), or if ab increases, where b is the backscattering coefficient.
If absorption dominates over backscattering (crb/a is small enough) the attenuation
coefficient (Eq. 9.30) can be approximated by (see Problem 9.3)

K « (a + r+ob)/pL+ « a/fl+. (9.33)

Thus, when ab/a is sufficiently small, K depends primarily on the absorption coeffi-
cient a and the downward average cosine /x+.

When backscattering dominates over absorption (ab/a ^> 1), K can be approxi-
mated by (see Problem 9.2)

a \+r+/r~
K ^ ——- (9 34)

A + l + (r+A-/r-A+)' { }

Thus, while K depends linearly on the backscattering coefficient ab (Eq. 9.33) when
absorption dominates over backscattering, K becomes independent of ab (Eq. 9.34)
when backscattering dominates over absorption.

9.5.3 Backscattering by Ocean Particles: The Role
of Shape Factors

In recent years there has been significant emphasis in the ocean optics community on
understanding the role of particulate scattering in determining the angular shape of
the upwelling underwater radiation field. Considerable effort has been expended on
devising simple means to describe the upwelling radiance in terms of inherent optical
properties. / +(0 , —/x, (p) is the upwelling radiance that leaves the water and is available
for measurement by sensors deployed on a ship, an airborne platform, or a satellite.41

We consider the equation describing the upwelling radiance

(9.35)
dz

Note that, although we use —/x to denote the upward hemisphere (JJL = |cos0|), we
retain the notation / + for upwelling radiance. The term j + = kS+ is the corresponding
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emission coefficient (see §2.8) due to multiple scattering, given by (see Eq. 6.9)

2TT I

Ait J
o

l

f ' ' '

fjt'piz, /JL\ 0'; —/x, 0 ) / (z, /x', 0')

Lo

(9.36)

Note that j + has the units of energy emitted per unit volume ([W • m 3]), and differs
from the source function ([W • m~2]) by the factor of the extinction coefficient k. Note
also that z is positive downward so that the first integral (involving integrations over
+///) represents the contribution to the emission coefficient from backscattered down-
welling radiation. To isolate the influence of backscattered radiation on the upwelling
radiance we introduce a dimensionless shape factor defined by

s
(z)

Here b is the backscattering coefficient defined in Eq. 7.116, and / (z) =
(2n)~l J0

27r d(j) / J d/jil~(z, /x, 0) is the mean downward intensity (note that 2nl~(z)
is the downward scalar irradiance in ocean optics terminology).

The shape factor / b is the ratio of downwelling radiation backscattered into direction
(—/x, 0) to the radiation that would be backscattered in the direction (—/x, 0) if (1)
the downwelling radiation were equal to I~(z, /x', 00 and (2) the phase function were
constant and equal to b(z)/47t.

To account for the radiation scattered in the forward direction we introduce another
shape factor defined by

/ / + ( Z , - M , 0 ) = Jo ^ o -

(9.38)

We see that //+(z, —fi, 0) is the ratio of upwelling radiation scattered into direction
(—/x, 0) to the amount of radiation that would be scattered into direction (—/x, 0) if
(1) the upwelling radiation were equal to / + (z , — /xr, 00 and (2) the phase function
were constant and equal to 2(1 — b).

With these definitions the emission coefficient may be written

, /X, 0) =

+ / / + (z , -/x, 0 M z ) [ l - £(z)]/+(z, -/x, 0). (9.39)
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Thus, the radiative transfer equation for the upward radiance becomes

z, - » , 0) + /b(z, -/*, 4>)cr

+ fi+(z, -fi, 0 M z ) [ l - b(z)]I+(z, -11, 0). (9.40)

We define the radiance attenuation coefficient as

, /x, 0) = — — — . (9.41)
/ + ( z - / x , 0 ) dz

Substituting Eq. 9.41 into Eq. 9.40 and solving for / + (z , —/x, 0 ) / / (z), we find

Pi(z, - /x, 0) = Z--(^—

Mz,-ui,4>)cr(zMz)
, 0) + k(Z) - MZ, -\l, 0)OT(Z)[1 " b(Z)] '

(9.42)

which is the upwelling intensity normalized to the mean downwelling intensity. This
quantity, which is referred to as the remotely sensed reflectance, plays an important
role in attempts to determine the inherent optical properties from remote sensing.
For a zenith-viewing instrument measuring radiation upwelling in the nadir direction
(/x = 1), we have (K^z, - 1 ) = A7+; see Eq. 9.29)

Mz,-l)cr(z)b(z)
P / U f ^ KI++k(z)-Mz,-l)<r(z)[l-Hz)Y K' }

where

Mz,_l}=fo^^^-^^ ( 9 . 4 4 )
2b(z)I (z)

and

Here p(z, /JL', — 1) is the azimuthally averaged phase function. Note that Eq. 9.43 is
exact because so far we have made no approximations. We have merely rewritten
Eq. 9.35 in terms of the shape factors, /b and //+, defined above.

According to Eqs. 9.43 and 9.44 the remotely sensed radiance is due primarily to
single scattering of downwelling light at the angle where the radiance distribution max-
imizes. We recall from §7.2.1 that the single-scattering approximation is valid when
ar* <^ 1. Thus, when absorption is sufficiently low, p/(z, — 1) is directly proportional
to the phase function, which is useful in determining the identity of the ocean particles.
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9.5.4 Approximate Expressions for the Remotely
Sensed Reflectance

From Eq. 9.42 the remotely sensed reflectance, p/(z, —1), is directly proportional to
/b(z, — 1). If we assume that the incident light is dominated by light from a particular
direction /xm (which is usually the solar zenith angle), then we may approximate the
expression for /b(z, — 1) as

p(z, /xm, - 1 ) Jp1 diirl-(z, /x') _ p(z, Mm, -1 )

' 2b()I-(z) ~ 2b(z) '

where 0 < /xm < /zc, and /xc is the critical angle defined by Eq. 6.45. Substituting this
approximate expression for /b(z, —1) into Eq. 9.43, we have

Pl(Z, Mm, - 1 ) ^ ~ y / , , v 7 7 . , , , n TTTT. (9.46)
2 &(z) + 2T/+ - /7(z, - l ) a (z ) [ l fe(z)]

We have removed the unmeasurable parameter /b(z, — 1), but we need to find an
approximation for the parameter / / (z, — 1), which is not easily measured either. How-
ever, /L(Z, —1) depends on the ratio /(z, /xO//+(z, —1), which is greater than unity
because the upwelling radiance is smallest in the nadir direction (// = 1). Thus, we
expect /i(z, —1) > 1. We may rewrite Eq. 9.46 as (with k(z) = a(z) + <x(z))

P/(Z, /Xm, - 1 ) ^ - — — — —— — .
2 a(z) + KI+ + {1 - / /(z, -1)[1 - b(z)]} a(z)

The above formula can be used for turbid waters when scattering is large compared to
absorption. For many oceanic situations the term in curly brackets in the denominator
is small compared to the sum of the first two terms (which are approximately equal to
2a). For such situations the above formula simplifies to

p(z , /xm , - l )a (z )
Pl(z, /xm, - 1 ) « .

2[a(z) + Av+]

Finally, since only the numerator in Eq. 9.46 depends on the downwelling light field,
the ratio of the remotely sensed reflectance at two different values of /xm becomes

P/(Z, /Xm2, - 1 ) p ( z , Mm2, - 1 ) '

Thus, the shape of the phase function can be obtained from the remotely sensed re-
flectance, and this information can, at least in principle, be inverted to provide insight
into the particulate properties of the near-surface layer of the ocean.



368 Shortwave Radiative Transfer

9.5.5 Modeling the UV Transmission into the Ocean

Many marine organisms are sensitive to UV radiation. The increase in UV exposure
as a function of geographic location and depth in the ocean due to ozone depletion
remains uncertain. The extent to which these marine organisms will be able to adapt to
the expected increases in UV exposure is also unknown. Recent investigations indicate
that increased levels of UV-B radiation may impact phytoplankton communities by
(i) initiating changes in cell size and taxonomic structure, (ii) reducing productivity,
(iii) influencing protein content, dry weight, and pigment concentration, (iv) induc-
ing chloroplast damage, and (v) directly affecting the proteins of the photosynthetic
apparatus.42

Ultraviolet light penetration in the ocean is strongly influenced by small plankton
and thus by biological productivity, which provides a close link between biological
and optical oceanography. Important aspects of the ozone depletion issue include
the effects of increased UV levels on algae, plankton, and fish larvae. As sources of
atmospheric sulfur compounds involved in cloud formation, plankton may indirectly
affect atmospheric transmission, thereby linking atmospheric radiative transfer with
ocean biology.

The impact of decreased ozone levels on aquatic systems may be assessed by a
radiation model that provides a solution of the coupled radiative transfer equations for
the atmosphere-ocean system. We assume that this system consists of two strata with
different indices of refraction separated by a plane interface, as explained previously
in Chapters 5 and 8. The relative refractive index for air is taken to be unity and that of
the ocean to be 1.33 (neglecting for simplicity the slight wavelength dependence). To
account for the vertical inhomogeneity of the atmosphere and the water, we divide each
stratum into a sufficient number of layers to resolve the changes in optical properties
with height in the atmosphere and depth in the ocean. To estimate the UV penetration
through this coupled atmosphere-ocean system we need the spectral distribution of
the radiation incident at the top of the atmosphere (see Fig. 1.1, top panel) as well
as the optical properties of the atmosphere and water media. For a clear atmosphere
the optical properties are determined mainly by ozone absorption (absorption cross
sections for ozone and molecular oxygen are shown in the bottom panel of Fig. 1.1)
and molecular (Rayleigh) scattering.

Phytoplankton dwell in the top layers of the water column, the euphotic zone,
because of their requirement for solar radiation (PAR) to drive photosynthesis. In
the euphotic zone, they would be exposed to any increase in UV radiation. If all other
factors remain constant, ozone depletion would lead to increased transmission of UV-B
radiation through the atmosphere and into the water column. Model results indicate that
UV-B radiation is significantly absorbed in the first couple of meters into the water. At
high latitudes (70°) an ozone depletion of 30% (compared to normal) will increase UV-
B exposure 10 meters below the surface by as much as 33% on October 1 in the Southern
Ocean and by 23% at summer solstice. Thus, the relative amount of UV-B increase in
the water column due to ozone depletion is most pronounced in spring, which happens
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to be the time when polar ozone depletion is most severe. Chlorophyll pigment in
the water reduces the penetration of UV-B radiation into the water. The larger the
chlorophyll concentration, the less the UV-B transmission; however the UV-B to PAR
ratio is relatively unaffected by the chlorophyll concentration. Thus, the species that
depend on a certain level of PAR for photosynthesis, and therefore adjust their depth
in the water to optimize PAR, will be exposed to a similar level of UV-B regardless of
chlorophyll content.

9.5.6 Measured and Computed UV Irradiance in the Ocean

Underwater spectral irradiance was measured in situ with a UV/visible spectrometer
submersed into the ocean off Palmer Peninsula, Antarctica.43 Figure 9.15 compares
the measured and computed ratio of the irradiance integrated across the UV-B range
( F U V - B , 280-320 nm) to that integrated across the complete measured range (Ftotah

280-700 nm). Ratios for both undepleted ozone levels (350 DU, labeled "outside
hole") and depleted levels (150 DU, labeled "inside hole") are shown. The aim of this

10 10 - 3 10 -2

i / F total

Figure 9.15 Comparison between model computations (solid lines) and measurements
(dotted lines) of depth versus Fuv-B/^totai- Inside the ozone hole, the ozone abundance
was 150 DU, the solar zenith angle was 56°, and the vertical distribution of chlorophyll
concentration was 0.57 mg • m~3 from the surface to 20 m depth, and 0.47 mg • m~3

below 20 m. Outside the ozone hole, the ozone abundance was 350 DU, the solar
zenith angle was 57°, and the vertical distribution of chlorophyll concentration was
1.9 mg • m~3 from the surface to 10 m depth, 1.6 mg • m~3 from 10 to 20 m, and
1.5 mg • m~3 below 2 m.
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comparison is to examine how well the model reproduces the underwater downwelling
irradiance, when it is constrained to yield the correct surface irradiance by adjusting
the cloud/aerosol optical depth (which was not measured). There is good agreement
between computed and measured ratios below the surface, but some curvature in
the computed ratio just below the surface is absent in the ratio inferred from the
measurements. A possible reason for this discrepancy is the neglect of surface waves
in the model, which assumes a plane atmosphere-ocean interface.

Solar zenith angle has an important influence on UV radiation reaching the Earth's
surface. It was overcast during the measurements, but the solar zenith angle was al-
most the same for the measurements taken inside and outside the ozone hole. Since the
optical properties of clouds and aerosols depend weakly on wavelength, the impact of
clouds and aerosols on the ratio (Fuv-B/^totai) is expected to be small. This circum-
stance allows us to investigate the impact of changes in ozone abundance on the surface
and submarine irradiance ratio. Ozone depletion will increase the surface and underwa-
ter UV irradiance. Although the vertical distributions of chlorophyll in the water were
different under and outside the ozone hole, the impact of this difference on the vertical
variation in the ratio Fuv-B/^totai is small. Thus, the vertical attenuation coefficients
are nearly the same inside and outside the ozone hole. Therefore, if UV-B exposure
is doubled at the surface, it will be doubled at all depths, and the critical depth above
which UV-B damage may occur will be correspondingly deeper in the water column.

9.6 Interaction of Solar Radiation with Snow and Ice

At high latitudes snow and ice are present for long periods of the year. In the polar
regions sea ice plays an important role in the radiative energy balance by reflecting solar
radiation in summer and insulating the upper ocean from the atmosphere in winter.
Therefore the absorption, scattering, and emission of radiation by snow, ice, and water
surfaces play major roles in radiative transfer on our planet. The radiative transfer
model pertinent for the coupled atmosphere-ocean system described previously in
Chapter 5 may be applied to describe radiative energy transfer in a stratified system
consisting of the atmosphere above a slab of snow and ice overlying the ocean.44 The
solar radiative energy distribution throughout this system as well as the radiative energy
absorbed within the ice and transmitted into the ocean depend on atmospheric structure
(including cloudiness), snow properties, sea ice state, and the optical properties of the
seawater below the ice. Radiation absorbed within the snow or sea ice may change the
internal structure of snow and ice and thereby their optical properties. These changes
result in an alteration of the radiative energy transmitted into the ocean and reflected
back to the atmosphere, which, in turn, affects the stratification and circulation of the
atmosphere and ocean.

A study of the radiative transfer process within the coupled atmosphere-sea ice-
ocean system would allow us to assess how the physical properties of each subsystem
affect the partitioning of the solar radiative energy within the atmosphere, sea ice, and
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Figure 9.16 Spectral distribution of net downward irradiance at the top of the atmosphere,
the surface, and several levels in the sea ice for clear- (top panel) and overcast-sky conditions
(bottom panel). The computation was done with a comprehensive radiative transfer model
based on the multistream discrete-ordinate approximation to the radiative transfer equations
appropriate for the coupled atmosphere-sea ice-ocean system (as described in Chapters 5
and 8, and in the reference by Jin et. al. provided in Endnote 16.) The curves show from
top to bottom the net flux at the following levels: top of the atmosphere, just beneath the
ice surface (—0 m), 0.1 m in the ice, 0.5 m in the ice, 1.0 m in the ice, and 3.0 m in the ice.

ocean. To do this we must take into account over the entire solar spectrum the multiple

scattering and absorption by atmospheric gases, clouds, snow, ice, and seawater, as

well as inclusions in the ice consisting of air bubbles and brine pockets. To account

for vertical inhomogeneity, each stratum of the model must be divided into a sufficient

number of layers to resolve variations in optical properties.
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In the following example, the solar spectrum is divided into twenty-four bands, and
the ESFT method described in Chapter 10 is used to approximate the atmospheric
absorption by water vapor, carbon dioxide, oxygen, and ozone within each band. A
high-latitude model atmosphere divided into twenty-five layers is adopted.

The computed net downward irradiance for this spectral range is shown in the upper
panel of Fig. 9.16 at various levels for solar elevation of 30° and clear-sky conditions.
Since the net downward irradiance is just the difference between the downward and
upward irradiances, the vertical distance between any two lines in Fig. 9.16 repre-
sents the radiative energy absorbed between the corresponding two levels. Thus, the
area beneath the bottom line represents the total absorption of radiation by the ocean.
Figure 9.16 indicates that much of the solar energy will be absorbed within the up-
permost 0.1 m of the ice. The absorption also varies greatly with wavelength. Only
visible radiation can penetrate into the deeper layers of the ice and into the ocean.
The bottom panel of Fig. 9.16 is for the same conditions except that a typical arctic
stratus cloud (mean droplet radius of 7 /xm, and liquid water path of 60 g • m~2) was
added. This leads to a substantial increase in atmospheric absorption, especially at the
longer wavelengths. Therefore, absorption by the ice and the ocean will decrease. This
reduction is most pronounced in the uppermost layer of the ice.

9.7 Summary

In this chapter we have given sample applications of the theory presented in the previ-
ous chapters for the interaction of solar radiation with the atmosphere and underlying
ocean and surface. To provide a suitable context and focus for the subsequent discus-
sion we introduced two problems of great current interest in which radiation plays
a vital role. The first issue concerns ozone depletion and the related harmful effects
of enhanced levels of solar UV radiation reaching the biosphere. It is also well es-
tablished that UV/visible radiation plays an important role in the ozone chemistry
through its impact on photolysis rates. Several important chemical reactions in the
ozone chemistry occur at temperature-dependent rates. Therefore warming/cooling
rates, which involve radiation across the solar and terrestrial regions of the spectrum,
must be correctly computed in models aimed at predicting the evolution of ozone
abundance. These rates in turn affect dynamical processes. It becomes clear that in
the ozone-depletion problem there is a tight coupling between radiation, chemistry,
and dynamics. The second issue concerns the potential for global warming and its
relation to radiative effects of enhanced abundances of greenhouse gases. This issue
is considered in Chapter 12.

In the thermal-IR and the near-IR part of the spectrum, rapid and erratic variations
of the gaseous absorption cross sections across small spectral intervals complicate the
radiative transfer treatment because the Extinction Law does not apply. An exception is
the UV/visible part of the spectrum: Here ozone is the main absorber and its absorption
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cross section varies relatively smoothly with wavelength between 200 and 700 nm. In
this chapter we focused mainly on the UV/visible region of the spectrum where the
Extinction Law can be assumed to hold over broad spectral regions.

Comparisons of computed and observed spectra between 200 and 300 nm in the
stratosphere illustrated that, in one case, there is significant disagreement between the-
oretical predictions and observations. Comparisons between computed and observed
spectral UV and visible irradiances and intensities at the ground (including snow- and
ice-covered surfaces) and in the ocean were provided for illustration purposes and to
give a sense of the state of the art in this field. Several examples were provided to
illustrate how radiation penetrates through the atmosphere and to various levels in the
coupled atmosphere-ocean system. The tight coupling of the atmosphere and ocean
through solar radiation should be emphasized. Solar radiation drives ocean biology,
which in turn modifies the optical properties of the ocean and therefore affects radia-
tive transfer. Thus, there are numerous atmosphere-ocean interactions and feedbacks
involving radiative transfer. The study and illumination of such interactions and feed-
backs will require radiative transfer models of the type described in this book that
are applicable to the coupled system. Some of these were briefly demonstrated in this
chapter.

Problems

9.1 This problem involves the determination of the solar insolation Q, which is the
daily received solar energy at the top of the atmosphere at latitude, X, and day of the
year, t. The solar inclination angle 8 is the angular distance of the Sun north (positive)
or south (negative) of the equator. The angle 8 varies with time of year according to
the approximate formula 8 = 23.5° x sin(360f/365.25).
(a) Show that the angle between the local vertical and the Sun's rays (the solar zenith

angle) is given by

cos 6O = sin X sin 8 + cos A. cos 8 cos(/z),

where h is the solar hour angle - the angle through which the Earth must turn to
bring the meridian directly under the Sun.

(b) The daily insolation Q is derived by integrating the instantaneous flux F =
S(r®/r)2 cos 00 over all hour angles from sunrise to sunset:

/ r ® \ 2 f dh
Q = S[ — 1 / —[sin X sin 8 + cos X cos 8 cos (/*)]•

\ r J J co
-H

Here r® is 1 AU, r is the instantaneous Earth-Sun distance in AU, and co = 2n
rad/day is the angular velocity of Earth's rotation. H is the half-day length, given
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by

tan 0 sin e sin X
H = .,

(1 — sin 6 sin

where e = 23.5° is the obliquity of the ecliptic. Carry out the above integration
analytically, and evaluate Q in units of J • m~2. Assume r varies sinusoidally with
a maximum on January 3 (where r^/r2 = 1.0344) and a minimum on July 5
(where r^/r2 = 0.9674). Compare your contour plot of Q(X, t) with Fig. 2.10 on
p. 47 of K-N. Liou, An Introduction to Atmospheric Radiation, Academic Press,
New York.

9.2
(a) Derive Eq. 9.30 for the attenuation coefficient.
(b) Show that when ob/a is sufficiently small the attenuation coefficient becomes

K & (a
p+

(c) If ob/a ^> 1, show that the value for K may be written

K ^ a l + r + / r "

9.3 Derive Eqs. 9.32, and 9.33.

9.4
(a) Show that when the absorption dominates over backscattering (ob/a < 1) the

irradiance reflectance given by Eq. 9.31 is written

r+ ob

1 + /X+//X OL

(b) Use the above expression to explain how brown algae give rise to green ocean
color.

(c) Show that when obi a ^> 1 the reflectance p asymptotically approaches the result

(d) Discuss the significance of the above expressions for remote sensing of ocean
properties.

9.5 Atmospheric ozone shields the Earth from harmful ultraviolet radiation by ab-
sorbing most of the radiation with wavelengths shorter than 300 nm. For longer wave-
lengths some radiation penetrates to the surface, but the absorption by ozone is strongly
wavelength dependent, being much stronger at 310 nm than at 330 nm. By measuring
direct sunlight at these two wavelengths we may determine the amount of ozone in the
atmospheric column above the observation point.
(a) Show that if we know the solar irradiance incident at the top of the atmosphere

Fs , and we measure the corresponding direct irradiance Fdir penetrating to the
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surface, then the column density, ATOzom, c a n be determined from the formula

. , _ [log(F; r /Fd i r ) - log(Fs7Fs)] /x (a - a')
7 V o z o n e " («-«') («-«')'

where /x is the solar zenith angle. The primed quantities refer to the longer wave-
length (330 nm), and the unprimed ones to the shorter one (310 nm). Here a is the
absorption coefficient for ozone, and a is the scattering coefficient for atmospheric
constituents.

(b) Sketch a graph of log(i^ir/Fdir) as a function of JJL, and explain how one might
use observations from the ground to infer the solar irradiance at the top of the
atmosphere.

The UV radiation backscattered to space is used to infer the ozone amount by
instruments on satellites. Here the ratios of the backscattered radiation to the solar
irradiance (both of which are measured) at two or more wavelengths are used to
determine the ozone amount using the same principle as from the ground.

(c) Volcanic eruptions sometimes eject large quantities of aerosols into the ozone layer.
Assume that these aerosols scatter radiation but are nonabsorbing. Explain briefly
how the presence of these aerosol particles influences our ability to determine the
ozone amount from space. Will ignoring the aerosols lead to an overestimation or
an underestimation of ozone?

(d) Discuss how these aerosols will influence the amount of UV radiation at the
surface. Show that they may lead to an increase or a decrease in UV exposure
depending on solar zenith angle.

(e) Most of the ozone in the atmosphere resides in the stratosphere (10-30 km above
the surface) with a much smaller tropospheric component. However, the tro-
pospheric component is increasing due to industrial pollution. Assume that the
total column amount of ozone is unchanged but that the stratospheric compo-
nent is decreased and the tropospheric component increased by the same amount.
Discuss how this situation might influence the UV irradiance at the surface. Do
you expect an increase or a decrease, and will there be a solar elevation depen-
dence?

9.6 Consider an isothermal, one-constituent atmosphere in hydrostatic equilibrium.
(a) Show that the warming rate is proportional to

dt

where r* is the optical thickness and H is the scale height.
(b) At what altitude zmax does the warming rate maximize?

9.7 Consider a partially reflecting surface illuminated by a collimated beam of ra-
diation of incidence angle cos"1 /x0 and flux (normal to the beam) Fs. Surfaces are
sometimes modeled as a scattering and absorbing medium in much the same way as
an atmosphere.
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(a) Assume that the surface can be considered a semi-infinite medium with single-
scattering albedo a and phase function /?(cos 0 ) , where 0 is the scattering angle.
Show that the single-scattering contribution to the reflected intensity can be ex-
pressed as

An MO + M

where cos"1 \x is the angle of reflection.
(b) Assume for simplicity that the multiple-scattering contribution can be derived

under the assumption of isotropic scattering [/?(cos 0 ) = 1], and show that then
(using the expression above valid for single scattering) the total BRDF becomes

a 1
p(ji, Mo, </>) = —[p(cos 0 ) + H(jio)H(ji) - 1],

An MO + M

where H(/JL) is Chandrasekhar's //-function.
If the dimensions of the scattering elements are considerably larger than the

wavelength of the incident radiation, and the elements are sufficiently close to-
gether, the scattering elements cast a shadow on each other. This leads to a phe-
nomenon called the opposition effect, which gives enhanced scattering in the
backward direction.

(c) Assume that the opposition effect can be described by simply replacing the phase
function p(cos 0 ) by p(cos 0)[1 + B(cos 0 ) ] , where 2?(cos 0 ) is a backscatter
function. Show that then the BRDF becomes

p(M, Mo, 4>) = T —[P(cos0) ( l + /?(cos0)) + //(/xo)//(M) - 1]-
An Mo + M

(d) Under what circumstances (i.e., for what values of a and for what kind of phase
functions p(cos 0) ) do you expect the above expression to be accurate?

(e) Generalize the approach in (c) above by relaxing the assumption of isotropic
multiple scattering, and show that the BRDF then can be written

a 1
p(M, MO,</>) = /?(cos0)£(cos0) + F(r = 0; M, Mo, 0)

An MO + M

and define F(r = 0; M, MO, </>)•

9.8 Consider light penetration in and backscattering from the ocean. To make the
problem simple let us assume that the ocean is infinitely deep and that its scattering
and absorption properties are independent of depth (i.e., the ocean is optically homo-
geneous). Further let us assume that we have scaled the phase function to become
isotropic by using the 5-isotropic approximation discussed in §6.7.
(a) Show that if we ignore the coupling between the atmosphere and the ocean, then

the angular distribution of direct solar radiation diffusely reflected from a calm
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ocean surface can be expressed in terms of Chandrasekhar's //-function as

/(r = ra, ^ H(a>riFe

1 + /x//xOm

where a is the single-scattering albedo of the ocean, ra is the total optical depth of
the atmosphere, /xom = \/\ — (1 — /Xo)m êl, and mre\ is the real index of refraction
in the ocean relative to the atmosphere.

(b) Assume that single scattering prevails in the atmosphere as well as in the oecan, and
derive an expression in terms of HG-functions for the diffusely reflected radiation
due to single scattering. (Assume that the atmosphere too can be represented by a
homogeneous slab for this purpose.)

Assume now that the sky is overcast so that the radiation arriving at the ocean
surface can be taken to be predominantly diffuse and approximately uniform.
The uniform cloud field is taken to be nonabsorbing and optically thick. Assume
that we measure the downwelling intensity at the ocean surface /dn = constant
independent of direction (by assumption).

(c) Derive an expression for the intensity distribution of the light diffusely reflected
from the ocean in this case.

(d) What is the albedo of the ocean under the given assumptions?
Assume that the downwelling radiation in the ocean can be described in terms

of an effective bulk attenuation coefficent, K.
(e) How does the angular distribution of the reflected light depend on Kl Could mea-

surements of the angular distribution be used to characterize the bulk attenuation
coefficient Kl

9.9 Consider the light reflected from the atmosphere-ocean system. We assume that
the atmosphere is a homogeneous slab and that the ocean is a homogeneous semi-
infinite medium.
(a) Assume that single scattering prevails in the atmosphere as well as the ocean, and

derive an expression for the radiation reflected at the top of the atmosphere.
(b) Assume some properties about the atmosphere and the ocean and evaluate the

angular distribution seen by a satellite.
(c) Quantify how the reflected radiation depends on the optical properties of the ocean.

9.10 Consider light penetration into the ocean. Use the solution of Problem 7.12 to
study ocean heating.
(a) Derive an expression for the heating rate using the two-stream solution of Prob-

lem 7.12.
(b) At what depth does the heating rate maximize?
(c) How does the heating rate depend on the optical properties?

9.11 Consider the angular distribution of the light field in the ocean.
(a) Use the expression for the source function provided in Problem 7.12 to derive

expressions for the upward and downward intensity fields.
(b) What is the asymptotic value of the intensity distribution?
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(c) Explore the relationship between the light distribution described in terms of ap-
parent optical properties versus inherent ones.

9.12 It is difficult to measure the inherent absorption in the ocean directly. There-
fore, many attempts have been made to infer it from measurements of bulk quanti-
ties such as reflectances, /?±(z), irradiance attenuation coefficients, K±(z), and ra-
tios of hemispherical intensities (scalar irradiances) and irradiances, D±(z) = 2n
Jo J /x/±(z, /JL)/2n Jo d/x/z/^z, /z). Here the plus (+) sign refers to upwelling and
the minus (—) sign to downwelling light.

One such formula is

x K-(z)-R-(z)K+(z)

where x is some measure of the inherent absorption. Use the two-stream solutions
provided in Problem 7.12 to demonstrate that this formula gives a measure of the
inherent absorption, and quantify this measure.

9.13 Consider the transfer of radiation through a medium illuminated by a collimated
beam of radiation. Let the medium consist of nonabsorbing molecules and scattering
and absorbing particles. The molecular optical depth is assumed to be TRAY = 0.1 to
mimic the Earth's atmosphere at 500 nm. The medium overlies a partially reflecting
surface, which we will assume acts as a Lambert reflector with albedo PL-
(a) Assume that the particles have total optical depth rp = rs + ra, where rs is

the scattering and ra the absorption optical depth. Assume that the medium is
homogeneous so that the particles and molecules have a constant mixing ratio.
Show that the single-scattering albedo and the phase function for this medium can
be expressed as

a = 1 - ra/rt , p(cos 0 ) = bpRAY(cos 0 ) + (1 - b)pv(cos 0 ) ,

where rt = TRAY + rp, b = TRAY/OS + ^RAY), and /?RAY(COS 0 ) and pp(cos 0 ) are
the phase functions for molecular (Rayleigh) and particle scattering, respectively.

(b) Assume that the particles scatter according to the Henyey-Greenstein phase func-
tion with asymmetry factor g. Show that the Legendre polynomial moments of
the phase function for the medium (molecules plus particles) are

Xo = l, Xi = ( ! - * ) * . X2 = 0Ab+(l-b)g2,

Xi = (1 - b)gl for / > 2.

(c) Use DISORT to check the duality relations pertaining to a homogeneous slab con-
necting the reflectance and transmittance for parallel beam incidence to the emerg-
ing intensities for uniform illumination. Do this by computing the reflectance
and transmittance for a nonreflecting surface by first applying beam incidence
(IBCDN = 0 in DISORT), and then repeating the computation for uniform inci-
dence (IBCDN = 1 in DISORT). Use a = 0.99999 and a = 0.5; g = 0.75 and
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g = 0.5. Compute reflectance and transmittance for JJL = 0.1, 0 .2 , . . . , 0.9, 1.0
both ways.
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Chapter 10

Transmission in Spectrally Complex Media

10.1 Introduction

Having established some concepts of absorption and line-broadening processes in
Chapters 3 and 4, we may now discuss more practical aspects of determining the
transmission and radiative transfer within spectrally complex media. We first consider
how radiation is transmitted through a medium characterized by absorption within
a single, spectrally isolated line. This introduces the historically important quantity,
the equivalent width. A generalization of this notion to include progressively more
realistic absorption properties brings us to the various parameterizations of complex
transmission processes, known as molecular band models. A large number of such
models have been introduced over the years, all attempting to replace a very messy
transmission problem with one or more analytic functions having a minimum number
of parameters. These band parameters are derived from either comparisons with lab-
oratory data or, since the advent of fast computers, with accurate line-by-line (LBL)
computations. Since these classical methods are limited in accuracy, and cannot gener-
ally accommodate the simultaneous effects of scattering and absorption, it has been a
goal in the field for many years to improve these descriptions. Many attempts have been
made toward this end, and considerable progress has been made. Since many other
references have covered band-model theory, we will provide only a few examples, be-
fore discussing the more modern methods, with emphasis on performing calculations
for realistic inhomogeneous gaseous media.

There are two basic reasons why the absorption properties of a molecular gas
depend very strongly upon wavenumber: (1) The line strengths can vary drastically
over a given band, and (2) within a given line, the absorption coefficient changes many
orders of magnitude over small wavenumber intervals. An additional complication is
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the fact that the radiation field itself will generally have strong spectral variations. At
low spectral resolution the solar radiation field approximates a continuous spectrum.
However, at higher resolution, it reveals a rich structure indicative of the physical
conditions in the solar photosphere and chromosphere. The terrestrial IR radiation field
has these same general characteristics, consisting of: (1) a near-blackbody component,
that part emitted by the surface or the ocean, and (2) a more complicated component
arising from the atmospheric emission. The latter will largely mirror the complex
absorption properties of the medium through Kirchhoff's Law. Thermal emission is
comparatively high at the centers of strong absorption lines and low in the transparent
spectral windows. Even though photons are emitted most copiously at line center, their
mean free path can be very short. However, very few photons are emitted within the
spectral window regions, and yet they can be transmitted a long distance in the medium.
Consequently, it is not obvious which frequencies contribute to a given quantity, for
example, the flux or flux divergence. In transmission calculations care must be given
not to truncate a spectral line wing too close to line center, since an important part of
the energy in the wings could be missed. As usual, some insight can be gained from
even a simple example. We will begin with consideration of a single spectral line.

10.2 Transmission in an Isolated Line

We define the spectral beam transmittance %{v) (§5.2.10) and beam absorptance
ab(v) as the ratios of the transmitted and absorbed intensity [r(v)] to the incident
intensity 70:

Tb(v) = 7[r(v)]//o = exp[-r(v)], ab(v) = 1 - Tb(v). (10.1)

The term "beam" refers to collimated radiation, to distinguish it from the flux trans-
mittance, which applies to an integration of the angular distribution of the radiation
over a hemisphere. For a single line, the optical path at wavenumber v along the path
0 —> s is given by

s

r(v, s) = / ds'Sn(s')®(y). (10.2)

Here S is the (frequency-integrated) line strength (see Eq. 4.58) in units of m2 • s l.
In general S and the line profile function O remain inside the integral because their
path depends on pressure and temperature. This complication will be avoided for the
present, by assuming a homogeneous optical path. In practical terms, we can think of
a horizontal optical path approximating this condition. Under these assumptions

(10.3)

where AT is the column number (cm"2) of absorbing molecules, assumed to be a
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single-absorbing species. The situation of two or more molecular bands that overlap
in wavenumber is discussed in §10.3.3 and 11.2.4. It is more common to describe the
path in terms of the column mass, u. In this case the line strength is defined1 per unit
mass, and T(V) = Su<£>(v).

Suppose a homogeneous medium is illuminated by a collimated beam, which has a
flat, or "white" spectrum. In practice, this need only apply to a rather narrow spectral
region centered on a given spectral line, which we assume is well separated from other
lines. We allow this radiation to pass through successively longer and longer path
lengths. We imagine measuring the emergent light with a spectrometer of very high
resolution. This situation is illustrated in Fig. 10.1. For optically thin paths (r(v) <£ 1
for all y) the radiation at each wavenumber will be attenuated in proportion to the
respective optical path. The shape of the absorption line will be proportional to the
product of the line profile O(y) and the mass path u. For larger w, the exponential in
Eq. 10.1 will begin to be important, and the absorption will no longer be proportional
to the optical path.

Suppose instead we are interested in the mean absorption over the entire line. We
choose an averaging wavenumber interval Ay to encompass the line center, y0, and
to be large compared to the line width. The mean beam absorptance and mean beam
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Figure 10.1 Transmittance of a homogeneous medium having a Lorentz profile, of varying
line-center optical depths, r/n (0.01, 0.1, 1.0, 10.0, and 100.0). The transmittance is almost
unity for T/TT = 0.01 and decreases rapidly with increasing r so that the line center is opaque
for T/TT > 10. When multiplied by the line half-width a^, the area under the curve is called
the equivalent width.



10.2 Transmission in an Isolated Line 387

transmittance for the spectral line are defined as

(cxb> = 1 - (Tb) EE-L [dvah(v) = ^z [dv[l-e-T™]=^. (10.4)
Ay J Av J l J Av

Av Av

The product W = (o?b) Av (defined here in units of wavenumber) is called the equiv-
alent width. This quantity is the area between the horizontal line and the lower curves
in Fig. 10.1. Suppose we were to replace this area with a rectangle having the same
area with complete absorption inside and zero absorption outside. The width of this
equivalent rectangle is just (ab) A v, giving rise to the term "equivalent width." An im-
portant consideration for the energetics is that W is a measure of the radiative energy
removed by the gas. The relationship of W to u is called the curve of growth, which
generally depends upon the detailed line profile.

10.2.1 Isolated Lorentz Line

Suppose the spectral profile is given by Eq. 3.10,

3>L(V) = . , \ 2 | 21 , (10.5)
7T [(v - VO)2 + a{\

where a^ is the Lorentz half-width [cm"1]. Setting x = (v — vo)/Av and y = O?L/ AV,
and introducing the dimensionless mass path u = Su/lna^, we find that the mean
beam absorptance is written

(«„(«)> = J dx [l - e x p ( - J ^ ) ] . (10.6)
—oo

We have extended the lower wavenumber limit to — oo, which should be of no conse-
quence. This integral can be evaluated2 in closed form to give

<Ob(i0) = 2ityue-~u [I0(u) + h(u)] = 2nyL(u). (10.7)

L(u) is called the Ladenburg-Reiche function, after the authors who first described it
in the literature, in 1913. It is expressed in terms of the Bessel function of imaginary
argument? In (n = 0, 1,...). We can find analytic results in two limits. First, let
u <£i 1, the weak-line limit. Then 70 ^ 1 and 7i & —u/2, and

Su
(ab(u)) « 2nyu = — (u « 1). (10.8)

Equation 10.8 tells us that in this limit the mean beam absorptance is directly pro-
portional to the column mass of absorbing molecules. This is also called the linear
regime and describes an optically thin situation. This result is independent of the line-
broadening mechanism. To see how this occurs, we expand the exponential inside the
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integral for small argument. Then we find

1 f Su f Su
(a\y(u)} = — / dv[l — exp (—<Sw<J>(v))] = — / JvO(v) = — ,

Av J Av J Av
Av Av

where we used the normalization property of <£(v).
Now consider the opposite case, the strong-line limit in which u ^> 1. We can ignore

the y2 term, in comparison to JC2, and write

<e*b(i0> « I dx[\ - exp (-2uy2/x2)]. (10.9)

—oo

Let 6 = 2uy2/x2. Changing the variable of integration, we find

(10.10)/

Because of the square-root dependence on the column mass, this part of the curve of
growth is called the square-root or saturated regime. The square-root law has been
verified by numerous spectroscopic experiments, and it is to be contrasted with the
exponential Extinction Law, 1 — {ah) = exp(-ku), where k = <SO(v) is a constant. The
departure of absorption from an exponential behavior is the most important mathemat-
ical complication of nongrayness. It means we must abandon the convenient analytical
properties of the solutions found in, for example, the prototype problems of Chapters 7
and 8. We now consider an array of overlapping lines.

10.3 Band Models

10.3.1 The Elsasser Band Model

Consider a band with equally spaced lines. Imagine that the mass path is large enough
to be in the square-root regime, but the widths of the absorption lines are small com-
pared to the line separation. As the mass path increases, the effect of line overlap
becomes substantial because of absorption in the far wings. Then the mean absorp-
tance cannot continue to grow like <fu. A further increase in u can produce only a
small increase in mean absorptance, and eventually it comes to a halt as the entire band
becomes "blacked out." These effects are described in the highly idealized Elsasser
band model, which approximates a band with a periodic pattern of lines of equal inten-
sity and of equal width. At a given wavenumber v, it is necessary to consider that all
lines in the band contribute to the absorption at that wavenumber. The Elsasser band
assumes an infinite number of lines, all separated by the line spacing 8. For Lorentzian
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lines the mass absorption coefficient is written as

am(v)= > ~T~z 2 FT' (10.11)

Elsasser showed that this function is mathematically identical to the following periodic
function of wavenumber (see Problem 10.1):

where x = v/8 and y = aL/8. We may then evaluate the expression for the mean
transmittance by averaging with respect to x = v/8 from x = —1/2 to x = +1/2,
that is, from the wavenumber of minimum absorption to maximum absorption, and
back again. The expression for the beam transmittance is from Eq. 10.4,

+1/2

cosh(27r v) — cos 2nx J
-1/2

The beam absorptance for the Elsasser model, (a\j(y, u)) = l — (%(y, M)),isplotted
in Fig. 10.2 versus the dimensionless mass path u = Sujlna^ for a variety of y values.
(Since we have selected the averaging interval A v to be the mean line spacing 8, then
y = aL/8.) Here y can be thought of as a graynessparameter. For small y the behavior
of the mean absorption departs radically from monochromatic absorption: At small u,
only the line centers absorb, and most radiation passes through the medium between
the lines. At larger v, the regions between the lines begin to absorb strongly as the
lines become saturated, thus accounting for the more pronounced dependence on u.
For large y (y > 10), the lines completely overlap and the beam transmittance may be
shown (Problem 10.2) to be given by exp(—2nyu) = exp(—Su/a^J, the gray limit.

Another asymptotic region4 is the strong-line limit (u ^> 1) for which it may be
shown (Problem 10.3) that (ah) & erf [jty\/2U], where erf denotes the error function.

Few bands in nature resemble the regular array visualized by Elsasser. However,
this model has played an important role in the historical development of the subject.
Furthermore, it is useful in exploring the general nature of nongray absorption. For
example, the width of the nongray cooling-to-space function for an Elsasser band
(described in Chapter 11) is found to depend upon the single parameter v.

10.3.2 Distributed Line Intensities

A glance at any real absorption spectrum reveals that line strengths are distributed
over a wide range of values and that line separations are also far from a constant,
as assumed in the Elsasser model. (Variations of line widths within a given band
are usually small and thus will be neglected here.) We first consider the situation of
an array of nonoverlapping lines. We define a function p, such that p{S)dS is the
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Figure 10.2 Mean beam absorptance, {ab(y, u)), versus absorber
amounts u for the Lorentz-Elsasser model (Eq. 10.13, solid lines)
and the random-Lorentz-Malkmus model (shown only for y = 0.1,
Eq. 10.25, dashed line). Each curve applies to a particular value of
v = O?L/AV, the grayness parameter. For y ^> 1, the absorptance
obeys the Extinction Law for a gray-absorbing medium.

number of lines of strength, in the interval <S, S + dS. In the limit of an infinite number
of lines, the interval dS can be made very small, and the mean beam absorptance may
be written as an integral

<«„(«)) = f
Av

Ay
(10.14)

Several analytic line-strength distributions are in use. These are chosen more for
analytic convenience than for their fidelity in reproducing actual distributions, which
are usually quite irregular.5 Three of the most common are

Exponential Distribution:

Godson Distribution:

p(S) = «S/(«Smax«S) ( 5 < «Smax),

p(S) = 0 ( « S > 5 m a x ) ;

Malkmus Distribution:

(10.15)

(10.16)

(10.17)
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where the average line strength is defined as

o

dSSp(S). (10.18)
• - / •

These distributions are normalized so that /0°° dSp(S) = 1. An additional distribution
is the trivial one in which all values of S collapse to a single value. This is called the 8-
function distribution, p (S) = 8 (S — S). An example of this distribution is the Elsasser
band model.

Example 10.1 Absorptance in a Lorentz-Exponential Model

We illustrate the usefulness of the analytic ^-distributions to derive an analytic expression
for the beam absorptance. Assuming the exponential distribution (Eq. 10.15), and interchanging
orders of integration in Eq. 10.14, we can carry out the inner integration analytically:

<«b(«)> = -̂  [Av J
dv

v)
Av 0 Av

Adopting a Lorentz profile for O(v), Eq. 10.5, we may integrate analytically to obtain

(10.20)<obW) /
VI + Su/7taL

To proceed further, we need to determine the numerical values for the parameters S and S/aL.
Both can be determined by requiring that the results match the accurate asymptotic expressions in
the strong- and weak-line limits (see Problem 10.4).

Example 10.2 Absorptance in a Lorentz-Malkmus Model

Using the Malkmus distribution (Eq. 10.17), we proceed as in Example 10.1, by interchanging
orders of integration. The result for the beam absorptance is

(ah(u)) = — / dv\n[l + S<P(v)u]. (10.21)
Av J

Av

Assuming a Lorentz profile, we integrate analytically to obtain

(o

Note that Eqs. 10.20 and 10.22 are not valid for values of the parameters for which the lines
overlap.

ab(u)} = g | [v
/l+4<SW/7TQfL - l] = (Try/2) [VTTSU - l l ] . (10.22)

10.3.3 Random Band Model

In some irregular spectral bands (e.g., water vapor), the line positions appear to vary
randomly over the spectrum. What is described below comes under various names,
including the statistical, random, and Goody-Meyer band models. We delve only
briefly into this formulation, because there are excellent references on the subject.6
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Let the band interval of width Av consist of n lines of average separation 8, so
that Av = n8. If the line positions are uncorrelated, the transmission of the band
can be written in terms of the products of the individual line transmittances {%) and
absorptances {at):

= (Tl)(T2)
oo

-4 /dv I dSp{S)e-Su*m

Av

(10.23)

Taking the limit n -> oo, and noting that (1 — x/n)n —• e~x
9 we find in general that

(%(u)) =e-
{ah(u)). (10.24)

This result says that the beam transmittance of randomly placed overlapping lines
is equal to the exponential of (minus) the nonoverlapped single-line beam absorp-
tance.

Applying this result to the Lorentz-Malkmus band model, we find

(Tii(ii)) = exp - (10.25)

where y = a^/8 and u = Su/2na\^. Equation 10.25 fits laboratory data and transmis-
sion values derived from LBL calculations with very good accuracy. In particular, it
better accounts for the weak lines (for example in the H2O 6.3 /xm band) than does the
random-exponential model. The curve of growth for this model is shown in Fig. 10.2
for y = 0.1 (dashed line) in order to compare with the Elsasser model. Note that
for this value of y, the random model yields more transmission (less absorption) for
all optical paths. This occurs because of the occasional wide gap that is not present
in regular-array models. The random-Malkmus model (Eq. 10.25) is one of the best
all-round analytic band formulations and will be discussed later in connection with
the ^-distribution method (§10.4.2).

10.3.4 MODTRAN: A Moderate-Resolution Band Model

This computer code7 was devised to be efficient, user friendly, upgradeable, well
maintained, and readily available to the community. It provides the user with the means
to quickly evaluate atmospheric transmittance for a large variety of user-specified
atmospheric conditions. Three band-model parameters are used in MODTRAN: 1. an
effective absorption coefficient S/d, 2. a line density, and 3. a line width d. For a given
wavenumber interval Av,-, the effective absorption coefficient is a measure of the total
strength of lines in this interval, the line density is the average number of lines, and the
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line width is the average wavenumber bin width (both weighted by the line strengths):

SJ(T), (10.26)

where Slj is the line strength (see Eq. 4.64) of the / th line of a specific molecule in
wavenumber bin / at temperature T. The line strengths are scaled from the HITRAN
data base using Eq. 4.64 with a reference temperature of 296 K, the standard value
adopted in HITRAN. This definition of the line spacing is appropriate for the finite
bin widths considered in MODTRAN. The transmittance in MODTRAN is based
on the random band model (see §10.3.3) in which the parameters are calculated in
1 cm"1 intervals. The parameters are computed from line data in the HITRAN data
base (see §4.5.3), which contains data on 709,308 molecular lines in the wavenumber
range 0 to 23,000 cm"1. Computation of the transmittance across a bin involves four
steps:

i. integration of the Voigt line shape of an "average" line over the 1 cm"1 interval;

ii. if a bin contains more than one line of a given species, the lines are assumed to

be randomly distributed with statistical overlap;

iii. the contribution from lines with centers in nearby bins is calculated as a

molecular "continuum" component;

iv. the H-C-G approximation (see §10.5.1) is used to replace an inhomogeneous

path with a homogeneous one by using average values for the band-model

parameters.

The molecular transmittance is based on the random band model (Eq. 10.23) for a
finite number of lines within a spectral interval Av:

(%) = [l - | ^ 1 , (10.28)

where (a^) Av is the single-line equivalent width and (n) is the path-averaged effective
number of lines in the bin (n) = Av(l/d). Here (1 / d) is the path-averaged line spacing
or line density. For mixed Lorentz-Doppler absorption, the single-line equivalent width
(ab) Av is computed from

= Av[l - {%)] = [dv[\ _ (10.29)

where 4>v(v) is the Voigt profile (see §3.3.3).
To compensate for the line wings outside the finite bin width, the contributions from

lines located in the wing interval (outside of a given bin but within ±25 cm"1) are
computed separately from line wing band-model parameters determined by integrating
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the Lorentz profile over the wing interval. Wing contributions beyond ±25 cm"1 are
ignored.

The MODTRAN code includes the previous coarser resolution (20 cm"1) band
model LOWTRAN8 as an option. In fact, since spectroscopic data in the HITRAN
data base (to which MODTRAN is linked) stop at 23,000 cm"1, MODTRAN converts
to LOWTRAN as a default for higher wavenumbers.

Unfortunately, most band models are incompatible with the requirements for "quasi-
monochromatic" treatment of multiple scattering. Thus, inclusion of multiple scatter-
ing requires the use of methods like the ^-distribution approach described below. In
fact, the popular LOWTRAN code with 20 cm"1 resolution uses this approach. In
contrast, the MODTRAN code, which has a "fixed-wavenumber" sampling of 1 cm"1

(and a nominal resolution of 2 cm"1), is assumed to be quasi-monochromatic and is
automatically compatible with multiple-scattering treatments. The original two-stream
algorithm for multiple scattering in MODTRAN has now been replaced by the more
accurate DISORT algorithm. The adequacy of this quasi-monochromatic treatment of
multiple scattering must be checked against line-by-line computations. Tests indicate
that MODTRAN performs well, but more extensive tests are needed across the solar
and thermal infrared regions. We note, however, that the MODTRAN code is far too
expensive (computationally) to use in global climate models and is most affordable
for one-dimensional models.

10.4 Spectral Mapping Transformations
for Homogeneous Media

Although a great deal of effort and mathematical ingenuity has been expended on
band models over the past fifty years or so, they still have definite limitations, given
the necessity in modern climate models to obtain radiative fluxes and heating rates to
1 % accuracy. Fortunately it is now possible to calculate these quantities by brute-force
line-by-line (LBL) methods to 0.1% accuracy. (This assumes perfect accuracy of the
spectroscopic parameters, which of course is far from true.) Since the heating rates
must be computed at nearly every grid point of a General Circulation Model (GCM),
LBL calculations represent significant computational demands even on modern super-
computers. Thus, LBL results are most useful as a standard of comparison for less
accurate, but much more efficient algorithms.

An algorithm that has received much attention in the recent literature is the k-
distribution and its associated correlated k-distribution method. These methods pro-
vide much better accuracy than the conventional band models, and yet they require
two to three orders of magnitude less computer time than LBL methods (described
in §10.5.2). Furthermore, such methods can accommodate multiple scattering in a
straightforward manner. A disadvantage is that an LBL calculation is needed to derive
the parameters. But since the simplified calculations are then repeated many times
over, the cost savings can be substantial.
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10.4.1 Method of the k- Distribution

Consider a spectral interval Av = vi — v2, which is large enough to contain a signifi-
cant number (say >20) of spectral lines, but small enough that the Planck function is
essentially constant over A v. The definition of the beam transmittance over a homo-
geneous mass path u is

(%{u)) = — dve~k^\ (10.30)

where k(i>) denotes the mass extinction coefficient,9 which is equal to the mass ab-
sorption coefficient for a purely absorbing medium.

To compute (%(u)) accurately using the above form would require division of the
spectral interval into subintervals 8i> small enough so that k(v) is essentially constant.
This requires 8v to be ^ l O ^ - l O " 5 cm"1, which requires a total of Av/8v ^ 104-106

quadrature points for a small part (say 10 cm" l) of the spectrum. This must be repeated
over the entire band, for all absorption bands, and over the full range of u. In addition
it must be repeated for the range of pressures and temperatures encountered in the
atmosphere. Clearly, this kind of "frontal attack" is computationally prohibitive.

A more efficient approach involves a transformation of Eq. 10.30 that recognizes
the fact that the same value of k is encountered many times over in the spectral interval.
If we were to combine, or bin, all the values of & into groups, and perform the transmit-
tance calculation only once for a given k, then we could eliminate all the redundancy
of Eq. 10.30. Furthermore, if we order the groups into monotonically increasing values
of &, we will obtain a much-more "orderly" function f(k), which has more desirable
characteristics than the wildly varying k(v). Choosing a suitably small interval Ak,
the k-distribution can be formally defined by the following grouping algorithm:

1
V (10.31)

dk

Here Wi(k) is the "window" function, equal to unity when k1^ < k < kl
maK, and

zero otherwise. M is the number of monotonically varying wavenumber subintervals
in which the absorption coefficient switches from increasing to decreasing values (or
vice versa). In the /th subinterval, the absorption coefficient varies from k\^n to kl

m^.
The absolute value of the derivative is taken, because we want to count the value
whether or not k is increasing or decreasing with wavenumber. Note that k is consid-
ered to be a continuous variable. Equation 10.30 can then be rewritten as a finite sum

j j e - k J \ (10.32)
7 = 1

where TV is the total number of monotonic subintervals over the entire range of k val-
ues. In the limit of Ak —> 0 (assuming that the number of lines is always large within
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Ak), the above sum becomes an integral

^max

<Tb(M)>= j dkf(k)e-ku, (10.33)

where k^Q and &max are the minimum and maximum values of k over the entire spectral
interval, Av.

It is clear that if we sum f(k) over all binned values of £, we should get unity, that is,

N fcmax

]T f(kj)Akj = 1, or for Akj -^ 0, / dkf(k) = 1. (10.34)

^min

If we sum the distribution up to some value of kn < kmax, we may define the cumulative
k-distribution as

*
g(kn) = J2 f(ki)AkJ> o r f o r AkJ " • °. S(k) = / dk' / (* ' ) . (10.35)

;=i o

We can now write Eqs. 10.32 and 10.33 as

;
(%(u)) « ] T e-^Agj, or for Akj -> 0, (%(u)) = / dge'k(g)u.

i=' o
(10.36)

Note that the upper limit of unity is consistent with g being a cumulative ^-distribution,
that is, the total number of k values smaller than k. Writing out Eq. 10.36 as

) « Agle-klU + Ag2e-k2U + • • • + Ag^e'^, (10.37)

we see that we have an approximation to the transmittance as a weighted sum of mono-
chromatic transmittances. This approximation, known as the exponential-sum fit trans-
mittance or ESFT approximation, has a long history in the field. Clearly, it is desirable
to reduce the nongray problem to a finite number of gray problems, since we have
developed many computational tools to handle the latter problem. If we had knowl-
edge of the transmittance measured in the laboratory under low spectral resolution,
or if we had access to LBL calculations of (%(u)), we could in principle perform
a nonlinear least-squares fit of Eq. 10.37 to the "data" to any desired accuracy. This
would yield the "coefficients" of the fit (g\, g2,...; h,k2,.. .)• Unfortunately, this
problem is mathematically ill posed, and special analysis techniques must be app-
lied for this method to be practical.10

Fortunately, the current availability of accurate synthetic absorption spectra (see
Fig. 10.3) means that we can compute the ^-distribution directly, and the coefficients
of the EFST approximation may be determined without least-squares fitting, simply
by numerical quadrature. It is a straightforward, but time-consuming, task for the
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Figure 10.3 Absorption coefficient spectrum for the 1510-1520 cm"1 portion of the 63-fim
water vapor band, (a) Line-by-line absorption coefficients for a pressure of 10 mbar and
temperature 240 K and (b) for a pressure of 1 bar and 296 K. The spectra utilize the HITRAN
1982 atmospheric line compilation and include 141 lines with absorption contributions from
outside of the interval within a 5 cm"1 Lorentz wing cutoff limit, (d) and (e) Absorption
coefficient frequency distributions corresponding to absorption spectra in Figs, (a) and (b),
respectively, (c) Cumulative frequency distributions of the absorption coefficient spectra in
Figs, (a) and (b). (f) The k distributions of the absorption coefficient spectra Figs, (a) and
(b). Malkmus band model equivalents, obtained to provide best fit to line-by-line
transmission, are shown by dashed lines. From Lacis and Oinas, Fig. 1, see Endnote 11.

computer to construct sorted tables of absorption coefficients to derive f(k) and g(k)

from say, a spectroscopic data base (such as HITRAN). The inverse k-distribution

k(g) is also needed in order to perform spectral mapping. An "inverse table" k versus

g is easily constructed by computer methods. Examples of numerical determinations

of / ( £ ) , g(k), and k(g) are shown in Fig. 10.3.n
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Example 10.3 ^-Distribution for a Spectral Line

There is an interesting analogy between k(g) and the normalized line profile O(JC), where
x = v/Av. We can best understand this relationship by deriving f(k) and g(k) in the simple case
of an isolated line. For a single line, Eq. 10.31 simplifies to

f(k) = l-^±W(k), (10.38)
Av dk

where we have redefined the spectral interval to run from — Ay/2 to 4-Av/2. Noting the sym-
metrical form of &(v), we have considered only half of the line. The factor of 2 comes from
the fact that there are two values of k in the whole-line distribution. Note also that the absolute
value has been dropped, since we have picked the small-v half of the line where the derivative is
positive. We now integrate the above equation to find g(k), noting that W = 1 over the range of
integration:

(10.39)fdk^W(k) 4
Av J dk' Av

This correspondence between g and v means that there is a unique spectral mapping from the
variable g to a specific wavenumber v (and vice versa). As g increases from 0 to 1, the normalized
wavenumber varies from v(A;min)/(Av/2) to 0. As Av —> oo, the wings are truncated less and
less, until the line is completely defined.

Example 10.4 ^-Distribution for a Lorentz Line

For a Lorentz line, Eq. 10.5, we set the variable v equal to zero at line center so that

kL(y) = ^ ~ r - (10.40)
TC[V2 + «£]

Note that the range of v is —v(&min) < v < +v(£min). Solving for v, we find

= ±y/(SaL/nk)-al (10.41)

Selecting the positive sign and carrying out the derivative we find

(Av/2) dk Avnk y/(SaLk/7r) - a[k2 (10.42)

At small k (corresponding to the line wings), f(k) oc k 3/2, which is characteristic of the Lorentzian
wings. This behavior also shows up in the ^-distribution in more complicated bands. The cumulative
distribution follows from Eqs. 10.39 and 10.41. Since we are considering a finite bandwidth Av
over which to average, we should set v(fcmin) = Av/2. Thus,

2
v , _ _ , . . . . , at-1. (10.43)

Av
Finally, the inverse of the cumulative distribution is obtained by solving for k:

kL(g) = g;\k) = ^ . . . J T 1 / * , . (10.44)

Note the resemblance between Eqs. 10.44 and 10.40.
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10.4.2 k- Distribution for the Malkmus Band Model

We now ask whether we can derive analytic expressions for / (£ ) , given analytic band-
model representations of {%(u)). To illustrate how this can be done in certain cases,
we examine a limiting form of Eq. 10.33, where we set the limits of integration on
k equal to (0, oo). This is permissible since large and small k values contribute very
little to the integral. Then

oo

/ •
= Jdkf(k)e-ku=Cf(k), (10.45)

where C denotes the Laplace transform. For a given analytic expression for the trans-
mission, we may find f{k) provided the inverse Laplace transform of (%(u)) can be
determined, so that

f(k) = £-1(%(u)). (10.46)

It can be shown (see Problem 10.5) that the inverse transform exists in analytic form
for the statistical-Malkmus model,

f(k) = (l/2)k-3/2y/S^txp\(y/S)(2-j - | ) 1 . (10.47)

If the parameter y = 27raL/Av becomes large, we have very broad, overlapping lines
and the distribution becomes gray, that is, k = constant, as discussed previously for
the Elsasser band. In the other limit of y small, the line overlap becomes less and less
important, and smaller and smaller values of k will appear in the absorption minimum
(the spectral "window") between adjacent lines. The cumulative distribution (but not
the inverse cumulative distribution) can also be determined in closed form.12 These
distributions are shown in Fig 10.3.

10.5 Transmission in Nongray Inhomogeneous Media

Up to now we have dealt with homogeneous paths, that is, the pressure and tempera-
ture are assumed constant along the beam. However, unless the beam direction is hor-
izontal, this is never valid, and we must deal with the inhomogeneous nature of the
medium. In general, the mean beam transmittance in a slab medium over an inhomo-
geneous path of a beam making an angle 0 with the vertical is given by

I U

1 f \ f ,
(%(u, 9)) = — / dv I exp - / duS(u)&(u , vAv J I J

(10.48)
\ J I

Av

To understand better the structure of Eq. 10.48, let us reconsider the simple case of
an isolated Lorentz line, but now let the line of sight be taken over an inhomogeneous
optical path. This leads to an analytic result, only in the special case of a well-mixed
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gas and a pure-Lorentzian line profile. Although it is not necessary, we will assume
a vertical path (0 = 0). The volume density of the absorber is given by wmp(z). Here
wm is its mass mixing ratio (assumed constant) and p (z) is the total atmospheric mass
density. The optical path between the heights z and z! may be transformed from the
mass path variable to the geometric height variable dz", so that du" — -wmp{z")dz"'.
Then

7t[(v-vo)
2 + aL(zf/)2]

l n —7Z—~ , 2 ^ 2 • (10.50)

in ;; ; ; L ; 2 ao.49)
l(v - v0)

2 + aL(z')2J
where the hydrostatic equation, dp = —p(z)gdz, was used. To obtain the second form
we changed integration variables from dz" to daL and integrated analytically. It is
easily checked that the leading term in the second result is dimensionless, as it must
be. It is also a constant, since aL(z) is proportional to p(z), the total gas pressure (see
Eq. 3.11).

We will simplify the algebra to a situation in which the path is from z to z! -> oo.
Now the vertical mass path is simply u = wmp/g (assuming g is constant with height).
Assuming aL(z') approaches aD, the Doppler width, we find for a well-mixed gas

The absorption coefficient for an inhomogeneous vertical path:

=
 Su

2naL

To be more accurate, a Voigt line shape should be used in the limit z! —• oo.
Equation 10.50 describes the behavior of the absorption profile of a spectral line

for very high resolution. With modern spectroscopic techniques, the resolving power
is now sufficient to test such predictions. An example is shown in Fig. 4.5 of an indivi-
dual CO2 line profile measured by absorption of near-IR sunlight. The observed shape
closely resembles the theoretical prediction, showing that the Lorentz profile (applica-
ble to a homogeneous, horizontal path, Eq. 3.6) does not apply to a column-integrated
inhomogeneous path.

10.5.1 The H-C-G Scaling Approximation

One might hope that the simple expressions derived for the homogeneous case, say for
absorptance, (ab(«))hom, could somehow be used for the inhomogeneous case, if only
we could define equivalent values for the effective pressure (/?), effective temperature
(T), and effective path length (u), such that

(ab(w))inhom = («b((w), (/?), (jT)))hom- (10.51)

If we compare Eqs. 10.49 or 10.50 for an inhomogeneous medium with that for
the absorption coefficient in a homogeneous medium, Eq. 10.6, it is clear that there
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are significant differences in the wavenumber dependence. This tells us that scaling
relations can at best be approximations, except under certain circumstances. Perhaps
the most accurate such scaling relation is that due to Van de Hulst, Curtis, and Godson,
the H-C-G approximation. For a constant mixing ratio and temperature along the
path, this approximation yields the following: (u) =u, (p) = ^(p + //)> where p and
p' are the pressures of the beginning and end points. In Problem 10.6 it is shown that
this H-C-G scaling yields the same as the accurate value of both (1) the absorption
coefficient in the wings of the line (v — vo ̂ > C*L) and (2) the integrated line absorption
(i.e., the area under the line). The H-C-G approximation is probably the best scaling
approximation available, particularly for well-mixed species. However, for species
such as water vapor and ozone whose mixing ratio varies appreciably with height, this
scaling can produce errors in heating rate as large as 10%.

10.5.2 LBL Transmission Computation: Inhomogeneous Paths

The problem is that lines are pressure broadened at low altitudes (for which a Lorentz
profile is adequate), while they become Doppler broadened at high altitudes. Spectral
sampling strategies allowing for efficient yet accurate integration of the Voigt profile
for a given temperature and pressure (i.e., a homogeneous path) were briefly discussed
in §10.4. The extension to nonuniform atmospheric paths with varying temperature,
pressure, and absorber concentration is usually done by approximating the real atmo-
sphere by a series of homogeneous layers in which the parameters are taken to be
constant in each layer but are allowed to vary from layer to layer.

Using FASCODE13 as an example we note that it uses a sampling interval that is
a suitable fraction of the average half-width of the line. Since the pressure decreases
exponentially with altitude, the average half-width and therefore the sampling interval
become smaller at higher rather than at lower levels in the atmosphere. The absorption
coefficient for each layer may then be merged with those from neighboring layers in
such a way that the absorptance for a path through two adjacent layers has the resolution
of the higher layer. This is accomplished by interpolating the coarser-resolution results
for the lower layer into the finer-resolution ones of the higher layer. In FASCODE this
procedure is executed in a systematic manner so that the spectral absorptance for a given
atmospheric slant path is obtained with the finest spectral resolution at all atmospheric
levels. The transmittance between any two boundaries may now be computed and used
to obtain the radiance along a given path (assuming LTE so that the emission is given
by the Planck function), depending exclusively on wavenumber and temperature.

The need to speed up the computation by using bigger wavenumber steps in the line
wings and a fine grid over the line center is recognized in most algorithms designed to
perform line-by-line computations. For example, in another generally available LBL
code, GENLN2 (A General Line-by-Line Atmospheric Transmittance and Radiance
Code14), the user-specified spectral range is first divided into a number of wide mesh
intervals, which may be of constant or variable spacing. In GENLN2, the line-by-line
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computation proceeds in two stages: a "wide-pass" stage followed by a "fine-pass"
computation. The wide-pass stage computes absorption due to line wings of lines
whose centers fall into a fixed range from the wide mesh boundaries. This step also
considers absorption due to precomputed continua accounting for the absorption of
the line wings at separations greater than 25 cm"1 from the line center. In addition,
high-resolution cross-section data are used to account for absorption by molecules
for which line data are lacking. The fine-pass stage uses a fine spectral grid, which is
determined by the width of the narrowest line encountered over a particular path. For
applications to the Earth's atmosphere, this implies that the width of the lines in the
uppermost atmospheric layer of the path (where the lines are narrowest) determines
the resolution. All lines within the wide mesh boundaries are included in the fine-pass
stage, and line wings up to 25 cm"1 from the line center are taken into account.

Finally, the wide-pass absorptions, interpolated to the fine spectral grid points, are
added to the fine-pass absorptions at these same points to yield the monochromatic
absorption coefficient. For a vertical path the optical depth is obtained as the product
of the absorption coefficient and the absorber amount. For several absorbing gases the
total optical depth is obtained by adding the contributions from the individual gases.
Thus, the total monochromatic absorbing optical depth may be written as

ra(y) = Y, r(y)^earlines + x (v)fewings + r (v))roadhand, ( i a 5 2 )
j

where the broadband absorption includes the contribution from continua and molecular
cross sections. The sum extends over all absorbing species.

Comparing the line-by-line computation in FASCODE and GENLN2, we see that,
despite differences in detailed approach, they both compute absorption at a fine spectral
grid spacing, and both codes employ a variable computational grid to produce the
final result: an overall absorption coefficient or optical path (summed over absorbing
species in the path) at a fine spectral resolution that may be considered monochromatic.
The main difference between the two codes lies in the subsequent computation of
transmittance and radiance. Whereas GENLN2 proceeds with the transmittance and
radiance computation based on the fine grid spectral resolution, which is the same in
every atmospheric layer, FASCODE attempts to speed up this part of the computation
by computing transmittance with a spectral resolution that varies from layer to layer,
as mentioned above.

10.5.3 Inclusion of Multiple Scattering in LBL Computations

In principle, it is almost trivial to include multiple scattering in LBL computations.
The reason is that LBL computations are monochromatic and therefore automati-
cally consistent with multiple-scattering algorithms. Thus, if a line-by-line code can
be used to compute gaseous optical depths layer by layer throughout the medium,
this information can be combined with data on scattering and absorption coefficients
(Eqs. 3.9-3.10) of other scattering and absorbing species to obtain the layer-by-layer
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optical depth, single-scattering albedo, and phase function. These are the data re-
quired to perform monochromatic radiative transfer computations including multi-
ple scattering. The gaseous absorption contribution to the optical depth is given by
Eq. 10.52.

In view of the above, it may appear surprising to learn that, in practice, the inclu-
sion of multiple scattering in LBL codes has not been done in a satisfactory manner.
In an effort to explain this situation we will briefly discuss below the design of two
such codes. These are the FASCODE and GENLN2 codes discussed previously. The
main problem is that these codes (and most available LBL codes) do not employ
radiative transfer schemes that are well suited to perform multiple-scattering compu-
tations. The radiative transfer schemes were designed to work in the thermal IR, where
scattering can be safely ignored unless aerosols and clouds are present. Thus, there
was little incentive to employ radiative transfer methods that are suitable for multiple
scattering: The radiative transfer scheme was not designed for the computation of
multiple-scattering effects. As a consequence, the radiative transfer schemes used in
most LBL codes integrate along the line of sight to obtain the intensity, assuming that
the source function is known, which is the case when scattering is ignored. However,
we know from Chapters 7 and 8 that the source function due to multiple scattering
depends on the intensity, which is an unknown. Hence, it is a nontrivial task to compute
the multiply scattered radiation field. This implies that most LBL codes will require a
major overhaul to remedy this shortcoming.

The original version of FASCODE treated particle scattering as equivalent to ab-
sorption so that all scattered radiation is treated as reemitted energy that was previously
absorbed.15 An approximate treatment of multiple scattering was later introduced by
using a two-stream approximation combined with an adding algorithm. This approach
was chosen because it is consistent with the radiance/transmittance computation in
FASCODE, which treats one layer at a time, but which employs a spectral step size that
may vary from layer to layer. However, this approach is inconsistent with monochro-
matic multiple-scattering treatments, which require the use of a fixed wavenumber
throughout the medium.

Scattering is not considered in the GENLN2 code. However, this code can be
used to compute monochromatic absorption optical depth, because it utilizes the same
spectral step size in all atmospheric layers. Thus, the spectral sampling in GENLN2 is
compatible with monochromatic multiple-scattering algorithms. Similarly, the gaseous
optical depths computed in FASCODE can be interpolated to the same spectral step
size in all atmospheric layers and thereby become compatible with monochromatic
multiple-scattering algorithms.

The bottom line is: Both of these codes can be used to compute the quantity re-
quired for LBL multiple-scattering computations, namely the monochromatic (fixed
wavenumber) absorption optical depth; however, the radiative transfer schemes em-
ployed in most existing LBL codes, including FASCODE and GENLN2, are ill suited
to perform multiple-scattering computations. Efforts to design and implement com-
prehensive LBL multiple-scattering codes are currently in progress.
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Finally, we note that properly designed LBL codes that include multiple scattering in
a rigorous manner would provide a testbed for benchmark computations against which
alternative approaches aimed at enhanced efficiency may be tested. One possible way
to proceed in the pursuit of an efficient yet accurate inclusion of multiple scattering in
LBL codes would be to attempt to reduce the need for multiple-scattering computations
by exploiting the existing redundancy in absorption coefficients across a given spectral
interval over which the particle scattering and absorption coefficients do not vary
appreciably. In principle, such an approach resembles the philosophy underlying the
^-distribution method.

10.5.4 The Correlated-k Method

The average transmittance, Eq. 10.48, may be written in ^-distribution form for an
inhomogeneous path, in analogy to Eq. 10.33, as

&ma

(%(u))= f dkf*(k)exp - f dufk{u') (10.53)

or, in finite-difference form,

7=1 l=h

(10.54)

We have assumed a vertical path, 0 — 0. The kj are the absorption coefficients appro-
priate to the j th layer, assuming each of the layers are thin enough to be considered
homogeneous. The integration extends from the center of the layer identified by w/2
to the center of the layer w/2. Here / * and g* denote the distribution and the cumula-
tive distribution (respectively) of the absorption coefficients along the inhomogeneous
path. Clearly / * and g* are not equal to the distributions / and g, discussed previously,
since these applied to a homogeneous path.

In terms ofthe cumulative distribution variable g*(k*) = Jo dk'f*(k'), we can write
Eq. 10.54 as

u))

1 u

= /dg*exp - [du'k(g*,u')
J J

(10.55)

Note carefully the difference between Eqs. 10.55 and 10.36, the latter equation apply-
ing to a homogeneous path. The function k(g*, uf) refers to the distribution function
appropriate to the particular level u'. However, the distribution g* is the cumulative
distribution of k values/or the inhomogeneous line of sight. The finite-difference form
of the above equation is

(10.56)
7=1 i=h
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The correlated-k (c-k) method consists of replacing Eqs. 10.55 and 10.56 with

l

(10.57)(Th(u)) = Jdgexp -fdu'k(g, u'

and

JL r A
(10.58)

The replacement of the variable g* with g implies that the single variable g maps into
the distribution functions at all levels u''. Since g is effectively a wavenumber variable,
this says that there is a one-to-one correspondence, or mapping, of wavenumbers from
one level to another. Thus the optical depth at a specific wavenumber g is given by
the integral of k(g, ur) over the appropriate range of u\ with g fixed. This applies
uniquely to every value of g so that the net transmittance is the weighted average over
all values of g. Equations 10.57 and 10.58 essentially describe the integration over a
pseudo-spectral line, as described earlier.

Example 10.5 Isolated Lorentz Line

It is instructive to once again consider the simplest inhomogeneous case for which we have
exact analytic solutions. We may find the ^-distributions for the inhomogeneous line of sight from
Eq. 10.50, where for simplicity we let z' -> oo. Denoting k£ by simply k and solving for v(k) we
find

vL(k) = —=^==- (10.59)

Note that this result depends upon the height z through the dependence of ctL on z. (More generally,
it depends upon both z and z' and upon 0.)

The ^-distribution for the inhomogeneous path is

\3/2JhK AV dk ^(e2naLk/S _l\3/2

Note also that since &max = S/2noi^ the denominator —> 0, and f*(k) —> oo as k —> kmax. This
presents no difficulty in practice. (Note that the same thing occurs for the homogeneous case,
Eq. 10.42.) Proceeding as in the homogeneous case, we can solve analytically for the cumulative
distribution g*(k) and its inverse

As in the homogeneous case, the correspondence of v in the band and the variable g in the
pseudo-line are one to one.



406 Transmission in Spectrally Complex Media

For an isolated line, the monotonic ordering by strength of absorption coefficients
retains the relative spectral alignment of absorption lines between different levels in
the atmosphere. We can carry out a mapping from the variable v to the variable g at one
height, say z\; we then go to a second height, and map this same variable g back into a
wavenumber vf at the height z2- The wavenumber v' will be found to be exactly the same
wavenumber v, or, in other words, there is a perfect spectral correlation at different
pressure levels (see Fig. 10.4). Problem 10.7 shows how this mapping works in detail
for the isolated Lorentz line. Clearly, this should work for any isolated line profile, so
long as the line center remains fixed in wavenumber and the broadening maintains a
symmetrical line shape. It can also be shown to apply to an Elsasser band and to a band
for which the lines are randomly distributed in a spectral interval A v. In the latter case,
it is valid if the averaged absorptance corresponding to a single line can be identified.

Unfortunately, this one-to-one uniqueness does not work for a general molecular
band, except in the weak-line and strong-line limits.16 It is clear that for a real molecular

k"

V" = V?

Figure 10.4 Illustration of perfect wavenumber correlation at different
pressure levels for an isolated line. The mapping begins at pressure p\
and wavenumber v (upper left panel). The absorption coefficient k'
corresponding to this wavenumber (actually k£ in Eq. 10.50) maps into
the "pseudo-wavenumber" variable g\ (k') (upper right panel) using
Eq. 10.61. We now move to a different pressure level /?2 and map this
value of g\ using the inverse relationship to go from g to k (Eq. 10.62), but
using different pressure half-width (lower right panel). This wavenumber v"
turns out to be the same v' chosen at the initial pressure level.
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band, a single value of k may correspond to a large number of wavenumber values v\,
v2, etc. This value of k will map into a certain value of g (or more accurately a band of
values Ag around g) at the height z\. We then take this same value of g and find the
corresponding value of A: at a different height z2, by using the relationship £(z2, g)-
A way of testing to see whether there is good correlation between levels would then
be to replot the mapped spectrum at the original wavenumber values v1? v2, etc. If
the mapped spectrum matches closely the actual spectrum calculated at z2, then the
correlation is good.

An example of this mapping is shown in Fig. 10.5, which uses two contiguous atmo-
spheric slabs separated by a large pressure difference (0.1-1.0 bars), a more extreme
example than what is normally encountered in the atmosphere.17 The mapped spec-
trum (dashed lines) is seen to be very close to the actual spectrum (dark lines). Another
way of assessing the error in the assumption of correlation is shown in Figs. 10.6. The
left-hand panels show the CO2 absorption spectra for two different levels in a model
atmosphere. In the right-hand panels is shown a mapping from wavenumber to g such
that k increases monotonically for the bottom (high-pressure) layer. The same map-
ping was applied to the A;-spectrum of other layers in the atmosphere. The fundamental

-2.0

-3.0
1510 1514 1518

Wavenumber (cm-1)
0.2 0.4 0.6 0.8 1.0

(c) 2.0

1510 1514 1518
Wavenumber (cm -1)

Figure 10.5 Spectral correlation for the transmission across a pressure inhomogeneity of
0.1-1.0 bars, (a) Results for the 1,510-1,520 cm"1 portion of the 6.3-/xm water band at 0.1 bar
and (c) 1.0 bar, respectively; (b) and (d) Numerical ^-distributions of respective absorption
spectra in (a) and (c); The dashed line in (a) is the result of mapping the absorption
spectrum in (c) via the ^-distribution in (b).
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5000 1.05010 5020 5030 5040
Wavenumber (cm"l)

Figure 10.6 Left panel: CO2 absorption coefficient spectra computed for three different
pressure-temperature values, which (from top to bottom) are respectively (0.05 bar,
200 K), (0.25 bar, 245 K), and (0.9 bar, 295 K). The coefficients for the second layer have
been multiplied by 10"1 and those for the third layer by 10~7. Right panel: Spectra sorted by
wavenumber such that k increases monotonically for the third layer (bottom curve). The
wavenumber was mapped onto g according to the procedure described in the text. Note
the nonmonotonic behavior, illustrating the inadequacies of this mapping procedure in this
particular example.

assumption of the c-k method is that a single mapping will produce a monotonically in-
creasing A:-spectrum in every layer. On the contrary, Fig. 10.6 shows that a mapping that
produces a monotonically increasing ^-spectrum for one layer produces a ^-spectrum
for other layers in which neighboring k values fluctuate by orders of magnitude.18

More sophisticated mapping algorithms than those described here19 have been de-
vised to minimize the errors in the c-k technique. In general, this approximation can
produce fluxes and heating rate values with errors less than 1%. Although they are
much more efficient (typically by factors of 1,000) than LBL methods, they are most
suitable for one-dimensional radiative-convective models. They are generally too slow
for three-dimensional GCM models, and more drastic approximations are necessary.
Overlapping absorption by bands from different constituents is easily accomodated by
the correlated-A: technique, and these refinements are discussed elsewhere.20

10.5.5 Inclusion of Multiple Scattering
in the Correlated-k Method

It is straightforward to include scattering particles or Rayleigh scattering from air
molecules in the c-k method, since most multiple-scattering methods assume mono-
chromatic absorption. The assumption is made that the scattering coefficient, single-
scattering albedo, and phase function are constant over the spectral regions correspond-
ing to the subintervals k\,k\ + A&i, k2, k2 + Ak2, etc. The single-scattering albedo for
the ith spectral interval is a{ = rsc(/)/(rsc(/) + ra(i) + ktu), etc., where rsc(0 is the
total scattering optical depth (molecules plus particles), ra(/) is the particle absorption
optical depth, and ktu is the molecular absorption optical depth. The extinction optical
depth for the ith interval is given by T,- = rsc(0 + r a(0 + ktu. For example, the mean
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transmittance and mean reflectance of a nongray, scattering atmosphere are

N N

(%) =^%(Ti,ai)Agi, (p) = ^p ( r , - , ^ )A^ , (10.63)
i=\ i=\

where Ag( is the relative weighting of the /th ^-interval. Note that the monochromatic
transmittance, % (t;, at), and the corresponding reflectance, p (r,, at), can be calculated
from two-stream methods or from a doubling algorithm (described in Chapters 7 and
8) for each atmospheric layer. By combining the layers using an adding algorithm
the intensity and irradiance are obtained. Alternatively, the radiative transfer equation
can be solved layer by layer for each spectral subinterval, and then the layers can be
combined using two-stream methods or the DISORT algorithm. Thus, the most general
problem of scattering and absorption in a vertically inhomogeneous atmosphere can
be solved accurately with such methods. Such techniques are the state of the art (in
terms of band models) at the present time.

Example 10.6 Application of the Correlated-fc Method

Suppose we wish to solve for the mean flux reflectance of an absorbing/scattering slab over
the spectral interval Av. Then

&max 1

{p(2n)) = j ^ fdvp(2jt,v) = I dkf(k)p(27t,k)= fdgp[27i,k(g)l

Av kmn 0

where p(2n, k) is the flux reflectance calculated for a specific value of k. To be specific, let the slab
be homogeneous and semi-infinite. (The same ideas apply to an inhomogeneous slab, except that
analytic solutions will not exist.) We solved this problem for a specific single-scattering albedo in
Chapter 7:

- VI -
1 + VI - <r/(<r + k)

Thus

(10.64)

The relationship of k to g is given by the particular line or band profile - it may be an analytic
result (such as in Example 10.5), or more likely it will be derived as a table of k values versus
g values. For a molecular band this table will be constructed from the spectroscopic parameters
of the lines within the spectral interval Ay. The mean reflectance is then evaluated by numerical
quadrature of Eq. 10.64.

10.6 Summary

Radiative transfer in spectral lines and bands depends on the spectral optical path from
which the spectral transmittance and absorptance are determined. An isolated Lorentz
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line was used (for analytical convenience) to illustrate the basic dependence of the
transmission on line parameters and absorber mass path. The desire for efficient com-
putation motivates the discussion of band models. Classical narrow-band models as
well as the more sophisticated MODTRAN computational code were described and
the limitations and strengths of such models were briefly discussed. A brief descrip-
tion of the principles behind line-by-line radiative transfer schemes was also provided
and the potential for including accurate multiple scattering into such schemes was dis-
cussed. The H-C-G scaling technique for turning inhomogeneous paths into equivalent
homogeneous paths was covered briefly. We discussed the concept of ^-distributions
by which the absorption cross section across a specified spectral region is reordered by
increasing magnitude to allow for the rapidly varying magnitude with wavenumber to
be replaced by a smooth, monotonically increasing function. This approach allows for
rapid yet accurate computation of fluxes and heating/cooling rates. The ^-distribution
is valid for a homogeneous path. To generalize this approach to inhomogeneous sit-
uations the correlated ^-distribution was invented to allow for accurate computations
between altitude levels over which the line profile may change substantially from, say,
a pressure-broadened Lorentz shape to a thermally broadened Doppler shape. This
method is readily generalized to include the simultaneous effects of scattering and
absorption in spectrally complex media.

Problems

10.1 Show numerically that the following two expressions (see Eqs. 10.11 and 10.12)
are identical (JC = v/8 and y = aL/8):

S5 aL S sinh(2ny)

n f ^ o n (v- n8)2 + al 8 cosh(2ny) - cos 2nx'

10.2 Show that in the gray limit (y ^> 1), the Elsasser band transmittance (Eq. 10.13)
reduces to (Tb)=e-*ry*.

10.3 Show that in the strong-line limit (w ̂ > 1), the Elsasser band transmittance is
given by (o?b> ^ erf [7ry>/2fi], where erf denotes the error function, given by

— 7 - / '
V* J

erf(jc) = -== I die'*

o

10.4 Show that when the band absorptance defined by the Lorentz-exponential model
(Example 10.1) is taken in its strong- and weak-line limits, the resulting expressions
can be used to empirically determine the two band parameters S and $/aL.

10.5 It was shown in Eq. 10.45 that the average transmittance can be written

<Tb(H)> = f dkf(k)e~ku = Cf(k), (10.65)

o
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where C denotes the Laplace transform. Show that for the statistical-Malkmus model,
Eq. 10.25 has the following Laplace transform:

ivexp — ^ 2 - - - - . (10.66)

|_4Av V k SJ\

10.6 The H-C-G approximation is given by

(a(w))inhom= (oi((u), (p), {T)))hom. (10.67)

For a constant mixing ratio and temperature along the path, this approximation yields
the following: (u) = «, (p) = \ (p + pf), where p and p' are the pressures of the begin-
ning and end points. Show that this scaling yields the exact value of the absorption
coefficient in the wings of the line (v ^> arL) and the exact value of the integrated line
absorption (i.e., the area under the line), for the optically thin limit.
10.7 Show explicitly how the spectral mapping works for the isolated Lorentz line,
using Eqs. 10.59 through 10.62, and starting from Eq. 10.50,

In
2TT(XL

Show that the wavenumber v has a one-to-one correspondence with the variables k and
g at the pressure p. This variable then maps into a different pressure level p', where
the new absorption coefficient k! and the new wavenumber v' are derived by using the
inverse relationships k(g) and v(g). The mapping back into wavenumber space should
result in the same wavenumber v' = v, and thus the correlated-A: method is exact for
this case.

Notes

To be consistent with our notation scheme where the subscripts n and m refer to per
molecule and per unit mass, respectively, we should denote the corresponding quantities
Sn and Sm. However, this leads to too many confusing subscripts later on. We will here-
after refer to Sm as simply S.

The evaluation of the integral in Eq. 10.6 in terms of Bessel functions is described by
Elsasser, W. M., Heat Transfer by Infrared Radiation in the Atmosphere, pp. 29-30,
Harvard University Blue Hill Meteorological Observatory, Boston, 1942.
Tabulations of the Ladenburg-Reiche function can be found in several references:
Whittaker, E. T. and G. N. Watson, Modern Analysis, Cambridge Univ. Press, Cambridge,
Ch. 17 and 23, 1915; Jahnke, E. and F. Emde, Tables of Functions, Dover, New York,
1945; Appendix 7 of Goody, R. M., and Y. L. Yung, Atmospheric Radiation, Theoretical
Basis, 2nd ed., Oxford University Press, New York, 1989.

A thorough description of the various asymptotic limits is given by Goody and Yung,
pp. 148-54 (see Endnote 3 for full citation).

For example, see Fig. 4.7 of Goody and Yung (see Endnote 3) for a plot of water vapor
line strength distributions.
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6 Goody and Yung (see Endnote 3 for full citation).
7 The MODTRAN model is described by Berk, A., L. S. Bernstein, and D. C. Robertson,

MODTRAN: A moderate resolution model for LOWTRAN 7, Report GL-TR-89-0122,
Geophysics Laboratory, Air Force Systems Command, United States Air Force,
Hanscom, AFB, MA 01731, 1989, and Anderson, G. P. et al., "MODTRAN 2: Suitabil-
ity for remote sensing," Proceedings of the Society of Photo-Optical Instrumentation
Engineers, Vol. 1968, 514-25, 1993.

8 Progressively improved versions of the LOWTRAN code are described by Selby, J. E. A.,
F. X. Kneizys,E. P. Shettle, J. H. Chetwynd, andR. A. McClatchey, Computer code LOW-
TRAN 4, AFGL-TR-78-0053, Air Force Geophysics Laboratory, Hanscom, AFB, MA
01731,1978; Kneizys, F. X., E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu,
J. E. A. Selby, R. W. Fenn, and R. A. McClatchey, Atmospheric transmittance/radiance:
Computer code LOWTRAN 6, AFGL-TR-83-0287, Air Force Geophysics Labora-
tory, Hanscom, AFB, MA 01731, 1983; Kneizys, F. X., E. P. Shettle, L. W. Abreu,
J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, and S. A. Clough, Users
guide to LOWTRAN 7, Report AFGL-TR-88-0177, Air Force Geophysics Laboratory,
Hanscom, AFB, MA 01731, 1988.

9 For consistency of notation with the journal literature we have dropped the subscript m
on km for the present purposes.

10 This problem is addressed and solved in the paper by Wiscombe, W. J. and J. W. Evans,
"Exponential-sum fitting of radiative transmission functions," /. Comput. P/ry.s.,24,416-
44, 1977.

11 This figure is based on Fig. 1 of Lacis, A. A. and V. Oinas, "A description of the corre-
lated-A: distribution method for modeling nongray gaseous absorption, thermal emission,
and multiple scattering in vertically inhomogeneous atmosphere," /. Geophys. Res., 96,
9,027-63, 1991.

12 This is Eq. 21 in Lacis and Oinas (see Endnote 11 for full citation).
13 Clough, S. A., F. X. Kneizys, E. P. Shettle, and G. P. Anderson, Atmospheric Radiance

and Transmittance: FASCODE2, Proceedings of the Sixth Conference on Atmospheric
Radiation, pp. 141-144, Milliamsburg, VA, 1986.

14 The line-by-line code GENLN2 is described in Edwards, D. P., A general line-by-line
atmospheric transmittance and radiance model, NCAR Technical note, NCAR/TN-
367+STR. NCAR, Boulder, CO, 1992.

15 Inclusion of multiple scattering is described by Isaacs, R. G., W-C. Wang, R. D. Worsham,
and S. Goldenberg, "Multiple scattering LOWTRAN and FASCODE models," Applied
Optics, 26, 1272-81, 1987.

16 This statement is proven in the reference Goody, R. M., R. West, L. Chen, and D. Crisp,
"The correlated-/: method for radiation calculations in nonhomogeneous atmospheres,"
J. Quant. Spectrosc. Radiative Transfer, 42, 539-50, 1989.

17 Taken from Lacis and Oinas, Fig. 11 (see Endnote 11 for full citation).
18 Taken from the article by West, Crisp, and Chen, cited in Endnote 19.
19 West, R., D. Crisp, and L. Chen, "Mapping transformations for broadband atmospheric

radiation calculations," J. Quant. Spectrosc. Radiative Transfer, 43, 191-9, 1990.

20 An excellent reference for the correlated-fc method is the article by Lacis and Oinas cited
in Endnote 11.



Chapter 11

Radiative Transfer in Nongray Media

i l l Introduction

In comparison with shortwave radiative transfer, where nonlocal effects of multiple
scattering are important, longwave radiative transfer is simple. This simplicity stems
from the fact that the LTE source function (the Planck function) is determined strictly
by the local temperature and is a smooth, analytic function of wavenumber. However,
it is more complicated, because of the strong dependence of the absorption coeffi-
cient on wavenumber, and if that were not enough, a dependence on the pressure
and temperature along the optical path. In this chapter we concentrate on the more
practical aspects of computation of atmospheric fluxes and heating rates that are im-
portant for the energy flow. Infrared remote sensing is not considered, as other fine
references are available.1 Generally speaking, IR radiative transfer in the ocean is
not an important mode of energy transfer, except at the outermost "skin" (see Exam-
ple 11.1), which acts like an opaque surface in transferring energy to and from the
atmosphere.

We first consider the basic equations describing monochromatic transfer of radiation
in a slab medium, consisting of purely absorbing (nonscattering) molecules. The nec-
essary averaging of the flux equations over wavenumber and angle to yield quantities
relevant to the energy flow pose significant computational problems. These problems
are of a "mechanical" nature and have not yet been fully overcome, despite the current
availability of superfast computers. Various schemes to solve this problem are dis-
cussed, including the brute-force line-by-line methods, narrow-band, and wide-band
models. The IR warming (cooling) rate is derived in a wide-band context, providing a
convenient framework for introducing the important cooling-to-space concept. The no-
tion of photon escape probabilities is used to help conceptualize the cooling-to-space
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and radiative-exchange contributions to the heating rate. Modern correlated-^; tech-
niques are discussed briefly, and some examples of accurate cooling rates are shown.

Atmospheric particles (cloud droplets and ice particles and aerosols) add additional
richness and complications to the radiative transfer problem. Here, the uncertainties
become greater because of the wide ranges of cloud types and shapes, cloud particle
distributions, and optical properties. Ultimately, the problem is so complicated that
statistical techniques are needed, since clouds and aerosol distributions are generally
not available in the detail needed for conventional radiative transfer computations.
Furthermore, even if we were capable of measuring the entire microphysical struc-
ture of a particle ensemble, it would change with time and furthermore would strain
even today's computational resources. Nevertheless, classical descriptions of clouds
in terms of plane-parallel entities embrace a significant portion of the effects of clouds
on climate. Thus we confine our attention to these nonexistent (but useful) abstractions.
Weighting the clear-air and cloudy equations by the cloud "fractional coverage" is a
useful device in constructing one-dimensional models of climate that are still useful
today, despite its apparently crude nature. Derivation of the flux equations inside a
cloud provides insight into the IR heating occurring near the cloud boundaries. In-
frared cloud properties have traditionally been reduced to a few low-order moments
of the particle size distribution and its vertical integral - for example, liquid (or ice)
water path and the mean particle radius. In optically thin clouds,2 scattering needs to
be taken into account even in the IR. Aerosols are briefly discussed in general terms,
as important components of the energy budget and as agents of climatic change.

11.2 Radiative Flux and Heating Rate: Clear-Sky Conditions

Infrared molecular absorption is due almost entirely to trace gases, of which H2O,
CO2, and O3 are the most abundant. Since these molecules play such a crucial role
in the greenhouse warming problem, it is natural to begin with a consideration of the
transfer problem under clear-sky conditions. The equations will apply to the fairly rare
situation of a cloudless, particle-free atmosphere. We need to consider only thermal
emission and absorption processes, since in the thermal IR (X > 3.5 /xm) molecular
scattering is unimportant compared to absorption. If we assume local thermodynamic
equilibrium (appropriate for heights below the mesopause), the source function is equal
to the Planck function evaluated at the local value of temperature T. We also assume
that T as well as the height distributions of all significant IR absorbers, are specified.
To keep the equations manageable, the approximation is made that the overlying near-
surface atmospheric temperature T(r*) is equal to the surface temperature Ts. This is
not the case (see § 12.2), and neglect of this difference can lead to errors in the upward
flux by as much as 4 W • m~2. Since it is becoming universally used in the infrared
community, we will use wavenumber, v, in this chapter rather than frequency, v or
wavelength X. Finally, we note that optical depth r is due to gaseous absorption and,
accordingly, is a very strong function of wavenumber.
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11.2.1 Monochromatic Flux Equations
The solution of the monochromatic radiative transfer equation for the hemispherical
fluxes is written (see §5.3)

atmospheric emission

r*

+( fR+(r) = 2n / dyi\i \ —B~v{1 J I*
X

surface emission

1

4(v) f
o

reflected component

1

+ [1 - 4(v)]Fr(r*) 2 f dnn exp[-(r* - t)/fi],

o
atmospheric emission

1 r

/

r Av
dfifi —Bv(t)exp[-(T-t)/ii\. (11.1)

0 0

The surface is assumed to have a flux emittance ejKv) = e(v; 2n) (see Eq. 6.11).
The third term in the upward flux equation is the contribution from reflection (assu-
med Lambertian) of the downward flux, owing to the nonblack nature of the surface.

Interchanging orders of integration, we eliminate the explicit dependence on angle
by using the definition of the flux transmittance for uniform illumination (see Eq. 5.33):

T(v; -2TT, -In) = 2 f dfifie-T^z^)/l1 = 2E3 f dz"a{v, z") (11.2)

Here ^ [ r ] is the exponential integral (defined by Eq. 5.61) of order 3, and a is the
absorption coefficient. We will subsequently use the shorthand notation, %(y\ z, z'),
for the diffuse flux transmittance. If we transform to height z and use dt — —adz',
the flux equations become

= j dzfnBdT(z')] ̂ ^f' Z) + €s
F(v)B,(Ts)%(v; 0, z)

o

+ [1 - 4(v)] Fr(z = 0)TF(y; 0, z),

F.v (z) = - / rfz TTBO^CZ )] — , (ll.3)
J
Z
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where we have used the relationships

= 2a(v)E2[t - T(V)], — = -2a(v)E2[r(v) - t].2a(v)E2[t T(V)],

Equations 11.3 express the flux in terms of height integrations over the Planck
function, weighted by the monochromatic transmittance (and its derivative). Of course,
to study the energy flow we require spectrally integrated quantities. Integrating over the
Planck function presents no special problems, since it is a smooth analytic function
of v and T. However, computation of the absorption coefficient poses significant
practical problems because of its nearly discontinuous variation with v. In the following
subsections, we describe some common techniques for performing this integration in
an efficient manner.

The most straightforward (but inefficient) technique to evaluate the integrated flux
is to specify a(v) at very small intervals (10~4 to 10~2 cm"1). This is a tedious task,
since a(v) depends upon the locations (%), strengths (Si), and line profile functions
(<!>;) of all lines throughout the IR spectrum. As discussed in §4.5, the absorption
coefficient is written as a sum over all lines (/) for which there is significant overlap
at wavenumber v:

Computation of a(v) and /dv%(v) is accomplished one wavenumber at a time
throughout the spectrum.3 Use of this line-by-line technique, already discussed in
Chapter 10, has become widespread in recent years with the availability of high-speed
computers and documented spectral line data. The main data bases of spectral param-
eters of atmospheric gases are HITRAN4 and GEIS A.5 The limitation in the accuracy
of LBL computations is mainly that of the line intensities (believed to be known to
within 5-10% for the strongest lines), and to a lesser extent in the specification of
the line profiles, O(v). The latter are usually taken to be the Voigt profile (§3.3.3).
Depending upon the particular band, some investigators have adopted sub-Lorentian
line wings (which fall off faster than Voigt) or super-Lorentzian wings (which fall off
more slowly) to achieve better agreement with laboratory measurements.

To compute spectrally integrated fluxes with moderate computing resources, a con-
cept that remains quite useful is that of a band model (see Chapter 10). There are two
general categories, determined by whether one selects comparatively small spectral
bands over which to integrate (typically 10-100 cm"1 wide) or broader intervals (up
to the entire IR spectrum). These are called narrow-band and wide-band models, re-
spectively. In the following, we illustrate how the frequency-integrated flux equations
can be manipulated to yield computationally useful forms.

Unfortunately, narrow-band models are computationally expensive. Therefore, the
wide-band emissivity approach has been adopted in most climate models. We start by
considering this category of band models, which has played an important part in the
historical development of the subject.
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11.2.2 Wide - Band Emittance Models

Instead of dividing the spectrum into small intervals, in this method one integrates
over the entire IR spectrum. The spectrally integrated fluxes are written

+(z) = _ J dz'
0 0

V',z',z)

oo

f dv7tB,(Ts)[l-a¥(v;0,z)l
o

(z)= / dz / Jy7r5v[r(z)] , (11.4)
J J dz'
z 0

where aF = 1 — % is the flux absorptance. Using the Stefan-Boltzmann law for the
integrated Planck function, /0°°dvnBy{T) = aBT4, and defining the wide-band
Planck-weighted flux emittance (eF) and Planck-weighted flux transmittance (7p),

oo

<€F(z, Z')> = 1 " ( ^ a , z')) = — U / rfvap(v; z, zf)icBt(T), (11.5)
0

we rewrite the flux equations as

z

F+(z) = aBTs
4[l - (eF(0, z)>] - fdz'aBT4(z'

d{€F(z',z))
) rv / '

(11.6)

F~(z) = / dzcr^T^iz') .

A note about signs is in order. We have consistently defined the hemispherical
fluxes to be positive. This accounts for the presence of the minus signs (—) in some
of the above equations. For example, (—)8(6F(z/, z))/dzr in Eq. 11.6 is positive, since
for z > z', 9(eF(z', z))/dzf is negative.

The broadband flux equations (Eq. 11.6) are written in terms of a simple integration
over the entire spectrum. However, most bands occupy a restricted portion of the
spectrum. For example, the 15-/zm band of CO2 and the 9.6-/zm band of O3 are con-
fined to the intervals 540-800 cm"1 and 980-1,100 cm"1, respectively. In practice,
(eF) is divided into a sum of specific band contributions

^AiJ;, (11.7)

where the sum is over all bands. Here pt is the fraction of the Planck spectrum occupied
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by the ith band,

Pi = f (11.8)

The flux emittance within the ith band is

(H.9)

The product Pi{€^} is therefore the efficiency with which the band radiates like a
blackbody. The quantity (ep)AiJj is the band area, A;(w), which is the molecular-
band counterpart of the equivalent width (appropriate to a single line). Note that
At (u -> oo) —>• AD/. As noted previously, these definitions need to be modified when
bands overlap.

Figure 11.1 displays the Planck-weighted flux absorptance for the three major
absorbers, H2O, CO2, and O3, versus mass path for a homogeneous atmosphere (cons-
tant temperature and pressure).6 The H2O emittance is for the entire IR spectrum
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Figure 11.1 Broadband flux absorptance for CO2 (upper panel), H2O,
and O3 (lower panel). The CO2 and the O3 absorptance for the
540-800 cm"1 region and the 980-1,100 cm"1 region, respectively,
are taken from LBL computations.



11.2 Radiative Flux and Heating Rate: Clear-Sky Conditions 419

(0-3,000 cm ! ) and is computed from Eq. 11.7, where nine individual spectral intervals
are used.7 This figure shows that increasing pressure broadens the lines and increases
the overall absorption at a fixed value of u. Not shown is a weaker dependence on
temperature, which has a similar line-broadening effect.

A counterexample of narrow-band absorption is water vapor, which extends over
most ofthe spectrum, particularly in the far-IR(y < 550 cm"1). Table 11.1 summarizes

Table 11.1. Vibrational and rotational transitions for the important radiatively active
gases in the Earth's atmosphere.61

Constituent,
abundance

co2

356 ppmv

H2O
10-5-0.02
(trop)
2-7 ppmv
(strat)

O3 (strat)
0.2-10 ppmv

CH4
1.714 ppmv

N2O
311 ppbv

Band, /xm
(cm-1)

15 (667)

10.4 (961)
9.4 (1064)

57 (175)
24 (425)
15 (650)
8.5(1180)
7.4(1350)
6.2 (1595)

9.6(1110)

7.6 (1306)

7.9 (1286)
4.5 (2224)

Transition

v2; P, Q, R,
hot bands

overtone
combination

rotation, P, R
rot., p-type
rot., e-type
e-type, p-type
e-type, p-type
v2;P,R; p-type

Vi;P,R

y4

v3

Band interval
(cm-1)

540-800

830-1250

0-350
350-500
500-800
1110-1250
1250-1450
1450-1880

980-1100*

950-1650*

1200-1350
2120-2270

Pi

(T = 290 K)

0.268

0.258

0.133
0.147
0.311
0.062
0.0576
0.051

00.058

0.250

0.0522
0.003

0.761

0.0877

1

0.988
0.611
0.238
0.880
1

0.441

0.166

0.319

/>•<€•,)(«*)

0.204

2.25 xlO"2

0.133
0.145
0.190

1.47 xlO"2

5.03 xlO-2

0.0511

2.37xl0-2

0.0420

0.0170

Gt

32

75

10

8

flOnly those transitions are listed that are important for the radiative energy budget and
global warming. Abundances are given as mixing ratio by volume, ppmv and ppbv indicate
parts per million and parts per billion, respectively. In the second column the approximate
location ofthe band center is given in both /xm and wavenumber (cm"1). In the third column
P, Q, and R refer to branches. The H2O continuum in the 10-/xm region originates either
from the distant wings of lines or the water vapor dimer (H2O)2. e-type and p-type continua
refer to the self-broadened and foreign-broadened processes. The band interval Ay is the
total breadth of the completely saturated (optically thick) band, pi is the fraction of the
thermal emission within the bandwidth Av. (eF) is the broadband flux emittance for that
band or collection of closely associated bands (including isotopic and hot bands), pi (6p>
is the contribution of that band to the total flux emittance (€p) = YLi Pi(T)(€h)' T n e las t

column is the greenhouse effect Gt (see §12.13) attributable to the ith molecule, calculated
from an accurate band model.



420 Radiative Transfer in Nongray Media

O 0
O2O2O2 O2 O3

oioo
j§ 80
< 60

40
20
0

100

50

0
^ 50
^ 0

I 50| .
O 50

50 -

O3LMJ H2O I H2O\j C02|HD0l H2O| O3 LjN2O
5 7 T H2O CO2 |CH4 N2O N2O CO2

H2O H2O CH4

H2O (rotation)

1

V ^—Jl A^ A A

-

- ' ' '.
.M

M

11
i

111

AL
(c).

1 (d)

yL CH4

K
O 2 and O3 -

0.1 0.15 0.2 0.3 0.5 10 15 20 30 50 100

Wavelength (|Lim)

Figure 11.2 (a) Blackbody curves for solar radiation (6,000 K) and terrestrial
radiation (255 K). Absorption spectra for (b) the entire vertical extent of the
atmosphere, (c) the portion of the atmosphere above 11 km, and for (d) the various
atmospheric gases between the top of the atmosphere and surface of the Earth.

the vibrational and rotational transitions for all atmospheric constituents with appre-
ciable longwave absorption properties.8

Figure 11.2 shows the spectral position and extent of the major absorption features,
along with the solar and terrestrial blackbody curves.9

Example 11.1 Radiative Flux from a Water Surface

To a first approximation, a liquid water medium, like most good conductors, is an opaque
blackbody over the entire IR spectrum. Actually the surface emission takes place over a very thin
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"skin." Let the skin depth be Az, and define depth below the surface as negative values of z.
Then

o

/
') — (€F) = aBfs

4 - (€F(0)>] = orBfs
4 (11.10)

since (CF(0)) = 0 and (€F(—Az)) = 1. Here Ts is the average temperature over the skin layer.
For a slant optical depth 2a(H2O)Az ~ 1, the skin depth is ^ [ ( ^ ^ O ) ] " 1 . The absorption
coefficient is given by a = Aixnii/X, where mx is the imaginary index of refraction (see Ap-
pendix H). At X = 10 /xm, Wi ~ 0.035, a n d a - 2 x 104 m"1. Thus we find Az ~ 25 /xm(!).
The value of the effective skin temperature fs is directly relevant to the heat loss from the ocean.
It is usually different (up to several degrees Celsius) from sea-surface temperature values derived
from microwave thermal emission, which has a thicker skin depth, or from temperature sensors
on surface buoys. It is thus important to know how fs is measured in assessing its usefulness
in deriving emitted surface flux. Note that crBT* does not represent the net loss of energy from
the surface - it represents only the upward integrated flux. Not only the Sun but the atmosphere
contributes an appreciable downward radiative flux at the sea surface. The atmospheric contribu-
tion to the surface irradiance (if it is considered black) is given as F~(0) in Eq. 11.6. As shown
in §12.2, as temperature increases, the net flux from the sea surface can actually decrease as
a result of the "backwarming" from increased atmospheric moisture content (and thus optical
depth).

n.2.3 Narrow-Band Absorption Model

In this method, one integrates the monochromatic flux equations over spectral intervals

large enough to contain a significant number of lines, but small enough for the Planck

function to be considered constant. To obtain expressions that are directly comparable

to those in the research literature, we hereafter approximate the surface as a blackbody.

This approximation has been shown10 to produce errors ~10% in outgoing flux values

for the most highly reflecting surface (sandy desert for which (€p) = 0.88). Errors

for water surfaces (0.97), ice (0.95), and nondesert land (0.95) are correspondingly

smaller. If we set €p(v) = 1, the integrated hemispherical fluxes are given by

2(0,z))

Lo

/ dz'Uz')"-^-

(11.11)

where Bt denotes the value of n By at the center of the band, A v, is the spectral interval

and ( ) denotes the spectral average

FV,Z)> = ̂ ; J dvTF(v;Z',z). (11.12)
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The above equations are often the starting point in the research literature.11 The
total flux is found by summing the individual contributions, F±(z) = J2t F±(i> z).
The number of terms is typically ~30, spanning a range from 0 to ~3,000 cm"1.

The key to obtaining integrated flux (and heating rate; see §10.4) is to determine
the spectrally averaged transmittance (7p) for a homogeneous path. The most com-
mon independent variable is the vertical path, either the mass per unit-area column
u [g • cm"2 or kg • m~2] or the number per unit-area column when compressed to stan-
dard temperature and pressure [cm • atm]. In addition, the pressure and temperature
need to be specified, since these are important for the line strengths and the line widths.
After the functional dependence on these three quantities is determined, (7p) may be
estimated by scaling the inhomogeneous path to an equivalent homogeneous one,

where (u), (/?), and (T) are the scaled amount of absorber mass path, pressure, and
temperature for the vertical path from z to z' (§10.5.1).

11.2.4 Band Overlap

When we examine the spectral locations of the various band absorptions (see Fig. 11.2),
we find that more than one molecule can absorb within the same wavenumber interval
Av. For example, H2O and CO2 both absorb in the spectral region 580-750 cm"1.
This is no problem in LBL models because the optical depth at a specific wavenumber
is simply the sum of the individual optical depths. To take into account overlap in
band models, reliance has been placed on the multiplication property of multiple
bands, discussed in §10.3.3 with respect to the derivation of the random-band-model
transmittance. If u\, u2,..., uN denote the absorber amounts for the various gases,
the net transmission over the ith spectral interval is written

(7?(MI, i i2 , . . . , uN)) = < 7 ? ( I H ) ) ( 7 ? ( I I 2 ) ) • • • (7?W)>. (H.13)

Although it has been widely employed, the multiplication property actually applies
only to a restricted number of transmission functions. It is valid only if the correlation
between the line positions of the various gases is small. Ignoring the overlap of H2O and
CO2 in a narrow-band model causes a significant error in the change in the downward
flux when CO2 is increased.12

11.2.5 The Diffusivity Approximation

The integration over angle in Eq. 11.2 is not a difficult numerical problem because of
the slow variation of intensity with angle. Low-order quadrature schemes are quite ac-
curate. The lowest-order scheme is a one-point quadrature equivalent to that used in the
two-stream approximation (Chapter 7). In the band-model literature, this is called the
diffusivity approximation. We set (see Eq. 5.61) E3(r) = /0 d/z/xe~T//x & fle~T/fl =
r~le~rT, where r = jl~l is the diffusivity factor and jl is the mean inclination, defined
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in §7.3.2. This approximation was first employed by W. M. Elsasser13 in 1942. Its
use causes typical errors of order 1-2%, which is considerably less than other errors.
It is customary to assume that r is constant, with 5/3 being a frequently used value.
As discussed in §7.3.2, r actually varies with optical depth. For greater accuracy a
convenient best-fit expression14 is

^ 1 5 ( 1 L 1 4 )

11.2.6 Equations for the Heating Rate
The atmospheric heating rate H was defined in §5.7 as the divergence of the radiative
flux vector, or in plane-parallel geometry

oo

H = - I dv^F* = -^(F+-F-) [W-nT3]. (11.15)

OO

The warming (cooling) rate W was defined in §5.7 as the tendency of the atmosphere
to change its temperature in response to a radiative heating, if there were no other heat
transport processes,

W = — = - ^ - ( F + - F " ) [K-s-1], (11.16)
pcp cp dp

where p is the total gas density, cp is the specific heat of air at constant pressure, and g
is the acceleration of gravity. The second form follows from the hydrostatic equation
dp = —pgdz, where p is the total gas pressure.

In the thermal IR, W is generally negative. This explains why it is called a cooling
rate in the present context. Knowledge of W is important for climate modeling, as it
provides the basic forcing of atmospheric motions. Here, we examine how LTE cool-
ing rates are derived from a knowledge of the temperature structure and atmospheric
absorption properties. We consider the contribution from a narrow band, with the un-
derstanding that the total heating rate is the sum of the individual spectral contributions,
1-1 — V 1-1

Climate modelers usually evaluate the heating rate from Eq. 11.16 by differencing
the fluxes in adjacent layers. From a computational point of view it would be preferable
to compute the heating rate from the mean intensity, which is proportional to the
flux divergence, because we avoid computational errors associated with numerical
differencing in obtaining both the net flux and its derivative. Before considering the
general case of a nonisothermal atmosphere, we first consider an idealized situation
of an isothermal atmosphere in the example below.

Example 11.2 Isothermal Atmosphere: Cooling to Space

It is instructive to examine the flux and heating equations in an isothermal atmosphere. The
most useful forms for this purpose are the wide-band equations. By rewriting Eqs. 11.6 in terms
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of the mass path {du' = —pdz'), one can show that (see Problem 11.1)

(11.17)

The upward flux is constant and equal to that which would be emitted by a blackbody at
temperature T. This is because the atmosphere replaces with emission what it removes from
the thermal radiation emanating upward from the surface. The downward flux is given by the
blackbody flux multiplied by the emissivity (ep(w)), which depends upon the mass path {u) above
the level in question.

The heating rate for the isothermal slab also has a simple form. From Eq. 11.15 expressed in
terms of w, we have

H = P^~{F+ - F~) = Hcs = -oBTAp^(ev{u)). (11.18)
du du

This is the cooling-to-space term, which is a useful concept, even in the more general context
of a nonisothermal medium (see §11.2.7 below). 7YCS is always negative, that is, the medium is
cooled everywhere at a rate that depends upon the product pd(eF{u))/du. Although photons will
be absorbed by the surrounding medium at all levels u', these regions will also warm the region at
u at a rate that exactly compensates their contribution to the cooling. The exchange of heat with
its surroundings has a zero net effect only for an isothermal medium. Consequently, an isothermal
medium cools as if the photons escape directly to space.

What is the behavior of 7ics with height? This is most easily understood by approximating the
path dependence of (€F{u)) with the expression 1 — exp(—aub), where a and b are coefficients
determined by a least-square fit to the actual emissivity. The cooling-to-space term is easily seen to
be proportional to ub exp{—aub), which maximizes at a level where aub = 1. Thus the function is
a maximum where the "optical depth" equals unity. This is in accord with the principle described
in Chapter 1, that the radiation emitted by a planet, or star, at a given part of the spectrum originates
at one optical depth from the surface.

Assuming that the band transmittance is given by the Elsasser model (§10.3.1), we define the
dimensionless cooling-to-space function

1/2
u*Hcs _d(Th{u)} _ d f \ 27tuysmh{27Ty) ]

CSF = — = u =u— / Jjcexp
crBT4p0 du du J |_ cosh(27r;y) - COS(27TJC) J

-1/2

V2 r i/ 2nuy sinh(27ry) 2nuy sinh(27ry)— _ / dx eXp I (H.19)
J cosh(27T y) — COS(27TJC) [ cosh {2TT y) — cos {27tx) J

-1/2

where u = Su/27Tp.aL is the (effective) dimensionless mass path for an isotropic radiation field.
(see §10.2.1). Note that we have used the diffusivity approximation to transform the beam trans-
mittance to a flux transmittance. The density po is the mass density of the absorber at z = 0,
which is assumed to vary exponentially with height so that p ex u/u*. (This is appropriate for
water vapor or carbon dioxide, which may be characterized by a constant scale height Ha, so that
both p and u a exp(—z/Ha), but not for ozone.). The above expression may be evaluated by
numerical integration. Figure 11.3 shows how the shape of the dimensionless cooling-to-space
function varies with optical path, for various values of the grayness parameter y = ctL/Av. For
small values of y, the function is broad and maximizes deep within the medium. This happens as
a result of photons escaping from the line centers near u = 0. At progressively deeper levels, the



11.2 Radiative Flux and Heating Rate: Clear-Sky Conditions 425

0.4

U

0.0

log10u

Figure 11.3 Cooling-to-space function, CSF, computed by numerically
evaluating the integral in Eq. 11.19. CSF is a nondimensional cooling rate for
a homogeneous atmosphere of vertical thickness u = Su/27T[laL, which
absorbs according to the Elsasser band model, y = o?L/ Av is the grayness
parameter (see §10.2.1).

cooling occurs more and more from the line wings, always occurring where the monochromatic
optical depth is approximately unity. For large y, the line widths exceed the line separation 8.
The line profiles are blurred into a constant value of the absorption coefficient, that is, the band
approximates a continuum absorber. In this gray case, the cooling occurs over a narrower layer,
maximizing at an optical depth Inyu = Su/8 = 1.

The CSF is related to the Chapman function, CF, defined in a different context in §9.4.2. In IR
applications, the CSF defines the shape of the region where radiation escapes from the medium.
In shortwave applications, the CF defines the region where collimated solar radiation is deposited.
It is clear that the two concepts are closely related in an inverse sense. In fact they would be
mathematically identical if IR radiation escaped in a collimated beam - or if solar radiation were
isotropic. We now consider the more general situation of a variable temperature.

n.2.7 Clear-Sky Radiative Cooling: Nonisothermal Medium
By differentiating the above narrow-band expressions for flux (Eqs. 11.11), we find,
after cancellation of two terms,

Hi
z

"i^lA+ fdz'Btiz')
dz J

z'BAz') (11.20)
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This equation illustrates the fact that the heating rate depends upon the second deriva-
tive of the transmittances.

It is convenient to rewrite Eq. 11.20 to explicitly separate out terms involving ex-
change between layers and exchange between a given layer and the boundaries. The
upper boundary is normally the half-space vacuum, which may be thought of as a
boundary at zero temperature. The lower boundary is normally the surface, but it
might also be a cloud deck characterized by a temperature and surface emittance. To
accomplish this separation we proceed as follows.

Suppose we substituted Bt (z) for Bt (z
r) in the first integral term in Eq. 11.20. This

new term simplifies as follows:

0

= -B,(z)
dz

A similar substitution in the second integral term in Eq. 11.20 yields a similar closed-
form expression:

OO
rFfeOO))

dz

If we now add and subtract the above two terms to Eq. 11.20, we obtain the following
form for the exact heating rate in the ith spectral interval:

exchange heating from surface cooling to space

Hi ~ - 3(73(0,
L = [ B ( 0 ) B(z)] V F ;[ B ( 0 ) Bi(z)] ; Bi(z)

Av,- dz dz
exchange from below

- Idz'[Bi(z) - Biiz)]-

0

oo

- f dz'[Bi(z') - Bi(z)]-

exchange from above

The first term represents the contribution to the heating as a result of the transfer of
energy between the surface and the region at height z. Since the term (—) 3/3z7p ((0, z))
is positive, the overall sign of this term is positive when the surface emission exceeds
the local Planck function. If the surface emittance is unity, another way to say this
is that a heating (or cooling) occurs when the surface temperature exceeds (or is less
than) the atmospheric temperature T(z).
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The second term is the cooling-to-space term, appropriate to the local temperature
T(z). Note the resemblance of the first and second terms.

The third and fourth terms are the exchange terms, which describe the net effect of
transfer between different layers. These cancel in an isothermal situation, as described
in the previous section. It is found in practice that the fourth term is usually quite small,
compared to the third term.

11.2.8 Computations of Terrestrial Cooling Rates

The approaches outlined above describe traditional ways of computing warming/cool-
ing rates in planetary atmospheres. Unfortunately they work only under clear-sky
conditions when scattering can be neglected. They are not useful in solar absorption
calculations because then molecular (Rayleigh) scattering must be taken into account.
In general they are not applicable in any region of the spectrum (solar or terrestrial) if
clouds and/or aerosols are present. Thus, under circumstances where scattering plays a
significant role, we must find ways of computing the warming/cooling rates that allow
us to include the effects of multiple scattering.

In principle, we could compute the radiation field with such fine spectral resolution
throughout the solar and terrestrial range that we would account for the absorption,
emission, and scattering within every single spectral line, and for arbitrary distributions
of particles. However, this has not been the conventional approach.

The idea of band models was introduced in Chapter 10. Band models are of great
practical importance because in most atmospheric chemistry and climate models we
cannot afford to compute warming/cooling rates line by line throughout the spectrum.
In Chapter 10 we described how band models that allow inclusion of multiple scattering
can be constructed to compute the radiation field in various parts of the spectrum. The
clear-sky cooling rates due to H2O, CO2, and O3 are shown in Fig. 11.4 for a standard

15 14 13 12 11 10 9 8 7 6 5 4 3 2

Cooling rates (K/day)

1 0 - 1 - 2 - 3 - 4 -5

Figure 11.4 Clear-sky cooling rates based on line-by-line computations
for H2O (dotted line), CO2 (dashed line), and O3 (dashed-dotted line). The
solid line gives the total cooling rate.
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atmosphere. These are based on line-by-line computations.15 Note that the cooling
rate for each individual gas was computed in the absence of the other gases. Because
of overlapping absorption the total cooling rate is less than the sum of the individual
cooling rates. The correlated-k distribution method accurately captures the individual
cooling rates as well as the overlapping absorption between different gases.16

11.3 The IR Radiative Impact of Clouds and Aerosols

In the presence of clouds, the flux equations need modification to account for the addi-
tional sources of opacity and emission. Suspended particles will contribute additional
absorption and scattering opacity, and more importantly, destroy the plane-parallel
symmetry that applies to the clear-sky case. Owing to their longer lifetimes, aerosols
tend to be distributed more uniformly than clouds. In addition to geometric complexity,
aerosol and cloud particles are distributed over a wide range of sizes, and in the case of
ice, over a variety of shapes. Furthermore, for aerosols there may even be variation in
their index of refraction from particle to particle. Consequently, it is unrealistic to ex-
pect to frame the radiative transfer equations with the same confidence, as is common
in the molecular case.

11.3.1 Heating Rate in an Idealized Cloud

Let a geometrically thin cloud of thickness Az = zt — Zb be imbedded in an atmosphere
at a height where the temperature is T(zb ^ Zt) = Tc. Here zb and zt are the height of
the cloud base and top, respectively. We first consider how the cloud interacts with the
IR atmospheric radiation in physical terms; we then derive equations from a simple
model to verify these expected effects. We will ignore solar heating, although it should
be kept in mind that it competes with IR cooling, especially near the cloud top.

The cloud particles will absorb IR radiation from their surroundings (both other
cloud particles and the atmospheric gases) in proportion to the mean intensity of the
ambient radiation. The particles will also radiate, at a given wavenumber, according
to the product of their absorption coefficient and the Planck function at tempera-
ture Tc. In general, the absorption and emission rates will not balance. In addition
to the radiative heating, moist convection will warm the atmosphere (and the imbed-
ded cloud particles). It is clear that the IR radiative warming is likely to be strong
and positive at the cloud base, since the incident radiation is emitted by the lower,
warmer atmosphere and surface. Furthermore, the tendency for the cloud base to cool
is inhibited by the overlying cloud opacity. At the cloud top, the opposite occurs.
The incident radiation is mainly due to the downward flux, which is small (its effec-
tive temperature is lower than Tc) because of reduced emission from the overlying
cooler layers. The upward flux is attenuated by the cloud opacity. However, the cloud
radiates according to the local temperature Tc. Since an optically thick cloud approx-
imates a blackbody, its cooling to space can be quite efficient. In summary, we would
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expect strong warming on the bottom side of the cloud and strong cooling on the
topside.

The above effects can be reproduced by making use of a simplified model of the
cloud and the radiation field. We assume the cloud is gray, plane parallel, and geo-
metrically thin. To avoid the presence of exponential integrals, we approximate the
flux transmittance by the diffusivity (or two-stream) approximation (§11.2.3). The ra-
diation field incident on the lower and upper faces of the medium are assumed to be
known. We denote the incident fluxes as F+(zb) and F~(zt). The spectrally integrated
radiation emitted by the cloud particles into a hemisphere is denoted by Bc = crBrc

4,
which is assumed constant.

The upward flux within the cloud is the sum of two contributions: (1) the transmitted
atmospheric flux, F+(zb) exp[—r(rc* — rc)], and (2) the emitted flux from the cloud
particles, Bc[l — exp[—r(rc* — rc)]. Here rc* and rc are respectively, the total optical
depth and the optical depth coordinate at an arbitrary height in the cloud, z. Note that
we have ignored the atmospheric attenuation, which is permissible for a geometrically
thin cloud. To avoid the presence of "sharp edges" (and unrealistic warming/cooling
rates) we adopt a Gaussian function for the cloud-particle height distribution. Then
the optical depth rc is given by

- Cn[(z - Ze)/Az]}, (11.22)c(z)

where \/2Az is the l/e cloud thickness17 and Cn is the cumulative normal function

The downward flux within the cloud is also the sum of the transmitted flux,
F~(zt)exp(—rc//2), and emitted flux, Bc[(l — exp(—rc//x)], from the cloud itself.
The hemispherical fluxes interior to the cloud are therefore

T*-T<)/fl + Bc[l - *-<*-*>//*], (11.23)

F~(rc) = F+(zt)e~Tc/A + Bc[l - e~Tc/fl]. (11.24)

Note that if the cloud is optically thick (r* ^ 1), the fluxes inside the cloud far away
from the cloud boundaries are equal to the blackbody radiation Bc, and the radiation
field is isotropic. No heating occurs within the deep interior of an optically thick cloud.
In contrast, for a very thin cloud (rc* <$C 1), the fluxes are simply those of the upward
and downward atmospheric fluxes.

The heating rate within the cloud is the derivative of the net flux (eqn. 5.77),

n = - | -[F+(z) - F~(z)] = ~d-^^-[F+{z) - F~(z)l (11.25)
oz oz ozc

From Eq. 11.22, dxjdz = - ( r* /Az)exp[ - ( l /2 ) (z - zb)2/Az2], and we find after
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cancellation

mz) = ^

-[F~(zt)-Bc]e-Zc/iX}, (11.26)

where rc is a function of z, through Eq. 11.22. The above result is easy to interpret.
The first term dominates over the second term at the cloud base and is positive since
F+(zb) > Bc. However, the second term dominates at the top, where it is negative,
since F~(zt) < Bc. Thus we verify the expected physical processes of heating at the
bottom and cooling at the top.

Warming at the cloud bottom and cooling at the top tend to destabilize the air,
as described in Chapters 1 and 12. The initial effect is to cause increased convection,
increased vertical motion, entrainment of dry air, and eventual dissipation of the cloud.
However, clouds are often the result of such dynamical processes. Understanding
the combined effects of latent warming/cooling, convective transport, and radiative
warming/cooling on the cloud particles, and the feedback due to the change in cloud
optical properties, is one of the most challenging areas of atmospheric research.18

n.3.2 Detailed Longwave Radiative Effects of Clouds

We now consider the more detailed interactions of cloud particles with IR radiation.
We have already discussed in §9.4 the shortwave (0.2 < k < 3.5 /xm) heating due to
cloud particles, and we discussed the fact that optical properties (extinction coefficient,
single-scattering albedo, and the asymmetry factor) can be described in terms of two
basic cloud properties, the liquid water content (LWC) and the effective particle radius
(r). A simple parameterization of cloud optical properties that is valid across the solar
and thermal IR spectral regions was also discussed. We consider first the approximation
of complete absorption, that is, we ignore scattering.

It is useful to describe the cloud optical properties in the thermal IR spectrum in
an approximate manner, which in turn allows us to describe in simple physical terms
how clouds can affect the Earth's climate. We will focus mainly on the effects of water
clouds, although we will make some remarks about the effects of high, cold, cirrus
clouds on the surface temperature. If we are given the cloud particle size distribution
n(r, z), the absorption coefficient for spherical particles is given by a weighting of the
absorption cross section over the particle sizes r:

a(v, z) = I dr n(r, z)Qabs(v, r)nr\ (11.27)
o

where Qabs is the absorption efficiency of a droplet of radius r, calculated from Mie-
Debye theory. The above formula is of little practical use because the quantity n(r, z)
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is rarely known. We can reformulate the problem in terms of the liquid water path
within the cloud and a small number of parameters derivable from experiment. We
convert a (y) to a mass absorption coefficient by dividing by the density of liquid water
in the cloud, denoted previously by the liquid water content (LWC):

LWC(z) Jo dr ( 1 L 2 8 )

Here pi is the bulk density of liquid water [kg • m~3]. Mie-Debye theory predicts that
<2abs increases linearly with particle radius when the size parameter x (= Inr/k) is not
too large (JC < 10). For a wavelength close to the peak of the terrestrial spectrum (near
11 /xm), <2abs is in the linear regime if r < 10 /xm. Since typical values for the mean
radius (r) are in the range 5-15 /xm, this is an adequate approximation. Setting <2abs =
c(v)r for r < rm, where c(v) is some wavenumber-dependent factor, the result is simply
am(v) = |c(v). For liquid water droplets, c(v) may be determined from Mie-Debye
theory. Cloud IR optical depth is therefore written approximately as r(v) = otm(v)
LWP, where LWP is the (vertical) liquid water path through the cloud usually expressed
in [g • m~2]. A typical value for am is 0.1 [m2 • g ], which yields IR optical depths
between 1 and 10 for values of LWP between 10 and 100 [g • m~2].

The determination of the monochromatic IR optical depth for clouds is only the
first step in computing spectrally averaged quantities, such as fluxes and heating rates.
The next step is to compute absorption and scattering coefficients over suitably cho-
sen spectral intervals as described in §9.4. Then one combines the cloud and gaseous
absorption coefficients (based, for example, on the ^-distribution approach; see §10.5)
to obtain effective values of optical depth within the gaseous absorption bands (pri-
marily H2O, CO2, and O3) for gases and cloud droplets. To include scattering we
need also effective values of the single-scattering albedo and the asymmetry factor.
These are the required input parameters that must be specified spectrally and layer
by layer throughout the medium to solve the radiative transfer equation. Although
scattering can easily be accommodated if the ^-distribution approach is adopted, it
is usually ignored because it has been customary to assume that the single-scattering
albedo is small in the thermal IR. As we shall see below this assumption is not always
justifiable.

A more traditional method is to employ the concept of broadband emittance (see
§10.3). The spectrally averaged flux emittance of the cloud is

where e[t//x] = 1 — exp[—r//x] is the directional emittance in the direction given
by cos"1 /x. Note that the above relationship between the absorptance exp[—r//x]
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and the emittance is valid only as long as scattering can be ignored. The diffusivity
approximation is usually invoked, so that

1

/ - exp[-am(y)LWP/p,].

If we further assume that am(v) is spectrally flat, so that otm(y) ~ otm = constant, then
the expression for the emittance simplifies to

6F(Av) » 1 - exp[-amLWP/p,l (11.29)

To determine fluxes and heating rates, one uses the above results in equations similar
to those for clear-sky conditions (§11.2). In climate modeling, the difference in the
outgoing overcast and clear-sky fluxes is called the cloud forcing.

11.3.3 Accurate Treatment Including Scattering

An accurate treatment of longwave radiative effects of water clouds must rely on Mie-
Debye computations. In §9.3.3 we discussed a parameterization in terms of liquid water
content and effective radius that can be used to avoid time-consuming computations.
We noted that this approach yields an accurate description of shortwave net flux and
warming rates. Similar results pertaining to terrestrial radiation show that the difference
in the net flux computed from the parameterization and the exact computation is less
than 1%, while the error in the cooling rate is within 4% of the total terrestrial cloud
forcing.

Figure 11.5 displays the longwave cloud forcing at the top of the atmosphere as a
function of liquid water path, LWP, for four different values of the effective radius,
(r). The cloud forcing increases with LWP and reaches an asymptotic value corre-
sponding to an optically thick, although not black, cloud (where the outgoing long-
wave radiation does not change with increasing LWP). For the smallest cloud drops
((r) = 3 /im) the cloud reaches an asymptotic value (but is nonblack) when the
LWP reaches 20 g • m~2. As the effective radius (r) increases to 50 /im, the out-
going longwave radiation increases with LWP until the cloud becomes very thick
(LWP ^ 150 g • m~2). This clearly demonstrates that the cloud greenhouse effect
is sensitive to scattering of longwave radiation. Thus, ignoring longwave scatter-
ing effects in climate models can lead to significant errors, especially for thin
clouds.

Figure 11.5 demonstrates that the longwave cloud radiative impact is determined
not only by cloud-top temperature, but also by the droplet distribution. The optical
properties of water clouds for longwave radiation are shown in Fig. 11.6 as a function
of cloud droplet effective radius. This figure explains why there is more outgoing
longwave radiation (less longwave cloud radiative forcing) for thick clouds with large
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Figure 11.5 Dependence of longwave cloud forcing on liquid water path and effective droplet
radius (r). The middle panel shows the result obtained by fixing the absorption coefficient at
0.1 m"1 as in Eq. 11.29 and ignoring scattering effects, which are approximations used in many
climate models, including the NCAR Community Climate Model (CCM3). The bottom panel
shows the difference between the results given in the upper and the middle panel.

equivalent radius. The difference is due to the scattering: The larger the cloud drops,
the more efficient the scattering. We note that both the single-scattering albedo and the
asymmetry factor increase with (r). Thus, as a result of cloud scattering the outgoing
longwave radiation increases and the longwave cloud radiative forcing decreases with
increasing drop size.
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11.4 Summary

This chapter was devoted to radiative transfer in nongray media. We started by dis-

cussing radiative transfer under clear-sky conditions, ignoring scattering. This allowed

us to focus on the physical processes responsible for warming and cooling of the
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atmosphere. The heating rate was explained in terms of exchange of heat between
(i) the surface and the atmosphere, (ii) different layers within the atmosphere, and
(iii) the atmosphere and space (cooling to space). Wide-band emittance models have
played an important part in the development of fast computations of warming/cooling
rates. Such models are still used in climate models to compute IR cooling rates. Al-
though narrow-band models allow for more accurate treatment of gaseous absorption,
they are computationally expensive compared to wide-band models. Such models
based on the ^-distribution method have the additional advantage that they reduce the
integration over wavelength (or wavenumber) to a sum of "monochromatic" problems,
allowing for a unified treatment of shortwave and longwave radiative transfer. This re-
duction also facilitates the inclusion of multiple scattering from aerosol and cloud par-
ticles, which cannot be treated accurately within the framework of wide-band models.

With increasing wavenumber interval, Av, wide-band models tend to overestimate
the true absorption.19Although the various LBL models are within 1% of one another,
the more efficient, but less accurate, narrow-band and wide-band models show a spread
of 10 to 20%. The agreement20is worse in calculations of changes in radiatively impor-
tant variables, such as CO2 and H2O. Clearly, such errors could contribute substantial
errors in climate-change predictions of a GCM. Thus, even in the relatively simple
clear-sky case, there is still considerable room for improvement in radiative modeling.
As one might expect, the situation deteriorates further when clouds and aerosols are
introduced into the models.

Problems

11.1 Show that the upward and downward fluxes in an isothermal atmosphere are
given by Eqs. 11.17.

11.2 This problem involves the transmittance and cooling rate in the troposphere,
due to CO2 at its present concentration (the 1 x CO2 scenario) and in a future altered
climate (the 2 x CO2 scenario). We will use the random-Lorentz-exponential model
(see Eqs. 9.20 and 9.24).
(a) Show that the 15-/xm cooling-to-space approximation to the cooling rate in pres-

sure coordinates is

2L B{, = 667w nB{, 6 6 7 c m ; r ( f 0 ] A p
pcp cp dp

where

TF(667 cm"'; P, 0) = exp \-S± ( l + 4

In the above jl is the mean inclination; S is the 15-/xm average band strength
per unit mass; 8 is the mean line spacing; u = wmp/g, where wm is the mass
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mixing ratio of CO2, p is the pressure, and g is the gravitational acceleration; cp

is the specific heat per unit mass; and aL(p, 0) is the H-C-G scaled value of the
Lorentz half-width = aL(po) x (p/2p0), where p0 is 1 bar.

(b) Show that % in part (a) is of the form e~ap where a is a pressure-independent
quantity. Thus prove that

(c) Using the results of part (a), evaluate the flux transmittance from 30 mb to space
for the 1 x CO2 and 2 x CO2 scenarios. Use the following values: /2 = 3/5; w,
the volumetric mixing ratio (see §1.6.4) for the present atmosphere, is 360 ppmv;
Sm/8 = 718.7 c m V 1 ; 7ta(po)/S = 0.448.

(d) Using the above results find the cooling rate (in K/day) at 30 mb for the two
scenarios. Let T = 220 K and B[v = 667 cm"1; 220 K]Av = 24.36 W • m"2.
Compare with the accurate results shown in Fig. 11.4.

(e) Make the argument that since a CO2 doubling causes an increased cooling at
30 mb and throughout the stratosphere (Fig. 11.4) this would tend to cause the
stratospheric temperature to be lowered, in contrast to warming in the lower tro-
posphere. Contrast the different radiative transfer processes in the two regions.
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Chapter 12

The Role of Radiation in Climate

12.1 Introduction

As mentioned in the previous chapter, there are several radiatively active molecules -
the so-called greenhouse gases - that strongly absorb and emit infrared radiation
and thereby trap radiative energy that would otherwise escape to space. The global
warming issue is concerned with the effects enhanced abundances of these trace gases
and changes in aerosol loading (due in part to human activities) and cloud cover may
have on the overall radiative energy balance of the Earth and hence on climate.

The bulk of the Earth's atmosphere (99% by mass) consists of molecular nitro-
gen and oxygen, in the form of radiatively inactive homonuclear, diatomic molecules.
Trace amounts of polyatomic molecules are responsible for atmospheric absorption
and emission of radiation in several hundred thousands of individual spectral lines
arising from rotational and vibrational transitions. Water vapor, carbon dioxide, and
ozone are the main absorbers (and emitters) contributing to warming and cooling of
the atmosphere and underlying surface. These gases warm our planet by absorbing
radiation emitted by the surface; without them the Earth would be some 33°C colder
than at present and therefore uninhabitable. Hence, the so-called greenhouse effect is
very important for life itself. Other trace gases make smaller contributions to warm-
ing/cooling of the atmosphere and surface. Some have natural origins, while others
are partially (like methane) or wholly (like the chlorofluorocarbons) anthropogenic.

Figure 12.1 is a schematic diagram of the significant components of the Earth's
energy balance. Of the incoming solar flux (342 W • m~2 averaged over the entire
planet), 31 % is reflected to space. The absorbed solar energy (235 W • m~2) is balanced
by an equal amount radiated to space in the IR. Within the atmosphere, the land surface,
and the ocean's mixed layer, the transformation of radiative energy into chemical,
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Figure 12.1 Earth's energy budget based on the study of Kiehl and Trenberth (see Endnote 16).

thermal, and kinetic energy drives the "engine" of weather and climate. Perturbations
of this complex system can arise internally. Examples of internal forcing would be a
change in atmospheric chemical composition or distribution of land masses. External
forcing of the climate can arise from a change in the Sun's output and by changes in
the orbital elements of the Earth's orbit.

The most important radiative interaction is the greenhouse effect, without which
the Earth would be so cold that it would probably be in a state of permanent glaciation.
This effect also explains the high surface temperature of Venus, and it may have played
a key role in maintaining temperatures high enough in an early primitive atmosphere
of Mars to sustain liquid water and possibly even primitive life.

The well-documented increase in CO2 abundance, above what is believed to be
the natural level existing in the preindustrial era, has been a matter of considerable
concern. The reason for this concern is simply that the enhanced levels of CO2 (and
other already existing greenhouse gases or the release of new ones) absorb and trap
terrestrial radiation that would otherwise escape to space. This causes an imbalance
between the energy received and emitted by the planet. If the planet receives more
energy from the Sun than it is able to emit to space, then by increasing its temperature
it will increase the energy emitted (by the Stefan-Boltzmann law) until a new radia-
tive equilibrium between the Sun and the Earth is established. Hence, this additional
trapping of terrestrial radiation by the enhanced levels of greenhouse gases is expected
to lead to a warming so as to make the net energy emitted by the planet equal to that
received.

The amount of warming depends crucially on how the entire Earth climate sys-
tem including the atmosphere, the land, the ocean, the cryosphere (snow and ice),
and living things (the biosphere) responds to this warming. For example, could the
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Earth partly compensate for this extra heat source by increasing its albedo? On the
one hand, an increase in low clouds in response to warming (which is expected to
enhance evaporation) may lead to increased reflection of solar energy and thus offset
the warming. But more high clouds (cirrus) could, on the other hand, lead to additional
trapping of terrestrial radiation and therefore an amplification of the wanning.

In the previous two chapters we considered IR radiation and its interaction with
atmospheric molecules. We now consider how both visible and IR radiative interac-
tions affect the Earth's climate. We will not consider the manifold of climate variables
(including precipitation, wind, ice and snow cover, etc.) but deal only with the tem-
perature structure (the global warming problem). Furthermore, to isolate the basic
radiative forcing, and the atmosphere's most elementary response, we employ an an-
alytic model based on the two-stream solution to the radiative transfer equation. This
model will be found to be remarkably flexible and very adaptable to problems of cli-
mate change. It will describe the static, globally averaged temperature structure of a
planet's atmosphere.

The ocean serves as a heat storage medium, and in this simple picture1 it acts only to
delay the approach of the climate system to an equilibrium state. In more realistic re-
gional models, the role of the ocean becomes one of mediating seasonal responses
and of transporting heat poleward from the low-latitude regions of heating excess,
to mention only a few effects. We do not mean to discount the role of the oceans in
climate. Our point is simply that the ocean's true importance to climate can only be
simulated using methods far beyond the level and scope of our treatment. This chapter
thus offers only an introduction to a vast subject.

Rather than presenting a tutorial on the physics of climate and climate change,2 this
chapter focuses more narrowly on the radiative aspects of climate and climate change.
Even in this limited context, it is necessary to simplify a complicated situation. A model
that has been very useful for this purpose is the (globally averaged) one-dimensional
radiative-convective approximation. Because much of the energy transfer is in the
vertical direction, this model captures much of the relevant physics. It is a natural
vehicle to use to study greenhouse warming in great detail. However, it cannot be
used to study regional effects, land-sea differences, or transient climate change, to
mention just a few limitations. We will begin this chapter with the classic radiative
equilibrium problem and follow this with successive improvements to include solar
absorption, convective transport, variable water content, a spectral window, clouds,
aerosols, water vapor feedback, and specific greenhouse forcing from individual gas
species.

12.2 Radiative Equilibrium with Zero Visible Opacity

This simplest useful solution of energy balance is based on the assumption that the
atmosphere has negligible absorption for visible radiation. Although it can scatter vis-
ible light, these shortwave effects contribute only to the visible albedo. In actuality,
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the atmosphere absorbs about 20% of the solar energy available to the atmosphere
(see Fig. 12.4). The majority of this energy is due to absorption by H2O in the near-IR,
of which ~ 70% is confined within 2 km of the surface. Thus our assumption that
the initial solar energy deposition is at the surface is reasonable. The other neglected
contribution is the small (~3%) fraction that is absorbed by stratospheric O3 in the
UV. The subsequent heating caused by this absorption is largely responsible for the
stratospheric temperature inversion.

The surface is reflective in the visible and assumed to be black in the IR. Thus the
surface is heated by incoming solar radiation and by downwelling IR radiation from
the atmosphere. The atmosphere is heated by IR radiation, emitted by both the surface
and by surrounding atmospheric layers. The absorption of outward-flowing IR energy
will heat the atmosphere, setting up a diffusivelike temperature gradient throughout
the optically thick region. At the upper "edge" where the slant opacity is of order
unity, the atmosphere radiates to space with a globally averaged effective temperature
Te determined by the overall energy balance. For a rotating planet, we found in §1.4.5
that the effective temperature is given by

(.2.1,

where S is the solar constant, p is the spherical albedo, and aB is the Stefan-Boltzmann
constant. With no "blanketing" atmosphere to trap radiation emitted by the surface, the
effective temperature is equal to the surface temperature. For the Earth, the effective
temperature is Te = 255 K.

The gray approximation will be used extensively in this chapter. We will solve
the infrared transfer equation in a gray, perfectly absorbing atmosphere in LTE. The
governing equations for this case have been previously derived in §5.3.1. As discussed
above, we will impose the condition of radiative equilibrium. The boundary conditions
are: (1) a black surface of temperature Ts underlying a slab atmosphere of IR optical
depth r * and (2) zero incoming IR radiation from space. For a thermal source function
the gray approximation implies

- / •
S(T) = B(T) = I dvBv = GBT ( t ) . (12.2)

TV

If we set the single-scattering albedo a = 0, the radiative transfer equation for the
frequency-integrated intensity becomes

I(r,u)-B(r) (12.3)u ^ I(r,u)B(r)
dx

and the corresponding half-range equations are

- B(r), -/J^l = 7-( t, M) _

(12.4)
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Adding and subtracting these equations, we obtain

dx

dx

(12.5)

(12.6)

We now impose radiative equilibrium by setting the net flux F(x) equal to the out-
going emitted radiation, crBre

4, which is constant for all r. Integration of Eq. 12.3
over solid angles yields dF/dx = 47t(I — B) = 0. Thus we obtain the relationship
/ = B(x), or in words, in radiative equilibrium the source function is equal to the mean
intensity,

B(r) = - dul(t,u) = - dfj,I

.0

(12.7)

Thus, the gray radiative transfer equation becomes

• 1 1

dl(r,u) 1 [ + f
dx 2 J ' J

.0 0

which in radiative equilibrium must be solved subject to the constraint

(12.8)

I

F = d/x/x = constant.
7t

(12.9)

The two-stream approximation will play a prominent role in the results of this chap-
ter, and so we will review and extend some of the basic ideas discussed in Chapter 7. As
previously discussed, this method replaces the angular dependence of the azimuthally
averaged intensity / ( r , /x) with a constant, that is, / ( r , /x = jl), where jl is the av-
erage inclination of the rays in each hemisphere. Its value will remain undetermined
for now. If we use the notation / ± ( r ) = / ± ( r , jl), the two-stream equations follow
immediately from the equations for the half-range intensities (Eqs. 12.5 and 12.6)

(12.10)

dx
= /+-/-

which must be solved subject to the constraint (Eq. 12.9)

F = 27r/2[/+(r) - / - ( T ) ] = 2/xaBre
4.

(12.11)

(12.12)

Inserting B(x) — ( l / 2 ) ( / + + / " ) into the left-hand side of Eq. 12.11, and express-
ing the right-hand side in terms of the net flux F = 2JIGBT* = 27T/x(/+ - / " ) , we
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obtain a differential equation for the source function,

= <*H = constant. (12.13)
ax

We may integrate the above equation immediately, to obtain

£(r) = - ^ r + C, (12.14)
Z7T/Z

where C is a constant of integration. This constant may be evaluated by solving for
the hemispherical fluxes at the bottom of the medium (r = r*). First, we note that
the upward flux at the surface is simply the surface thermal emission, F+(r*) =
27r/x/+(r*) = 2flcrBT4. Second, since the net flux at this point (as it is at all points)
is 2jlcrBT4, then 27rA[/+(r*) - /"(r*)] = 2jlcrBT4. Solving for the downward flux
at the surface, we have

F " ( T * ) = 2TTA/-(T*) = 2flaB(Ts
4 - T4). (12.15)

Continuing with the determination of C, we may now evaluate the source function
at the bottom of the medium:

c = W>
2

(12.16)

Solving for C, we find C = {\/2n)[2aBT4 - aBT4(l + r*//x)]. Thus the source
function is

B(r) = ^{^BT4 - aBT4[l + (r* - r)/£]}. (12.17)

A much simpler result is found by expressing Ts in terms of Te and r*. Evaluating
the source function (Eq. 12.7) at r = 0, we find B(0) = ( l /2)/+(0), since 7"(0) = 0
from boundary condition (2). Since F(0) = 27T/x/+(0) = 2\xoBT4, we find that B(0) =
GBT4/2TT. Setting r = 0 in Eq. 12.17, equating the two results for B(0), and solving
for Ts we find

Ts = re(l + r*/2/2)1/4 = TeG
l/4. (12.18)

The quantity Q = (Ts/ Te)
4 is called the (surface) greenhouse factor. It may be thought

of as a source function "trapping factor," which depends linearly on the infrared optical
depth r*. An additional measure of the trapping effect is the greenhouse effect, defined
as the difference of the surface and TOA fluxes:

G = 2£ofc(r8
4 - T4) = 2fXaBT4[G - 1]. (12.19)
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From Eq. 12.15, G is also the downward flux at the surface (the "backwarming").
Eliminating Ts from the source function, Eq. 12.17; we find3 after some algebra

(12.20)

We must now consider the relationship between the thermal source function B(x)
and the atmospheric temperature T(z). In accordance with Eq. 12.2 we set B(x) =
aBr4(r)/7r, which is consistent with the result obtained by evaluating Eq. 12.20 at
x = jl yielding B(x = jl) = a^T^/n. Using this relationship and Eq. 12.20, we find
the

Radiative equilibrium expression for the atmospheric temperature:

/ 1 r \ 1 / 4

rre(r) = re I - + — J = rea1/4(r). (12.21)

Here G(x) is the (dimensionless) greenhouse factor for an arbitrary level r. This
shows that the temperature increases monotonically downward from an outer skin
temperature rre(0) = re/(2)1 / 4 to a lower boundary temperature rre(r*) whose value is
less than Ts. We now discuss this interesting discontinuity between the air immediately
above the surface and the surface itself.

The relative temperature change over the interface between the air and the surface
is

[I + r* /u l 1 / 4

AT/TS = [Ts - r(r*)]/rs = 1 - I2 + T ^ l • (12-22)

The value of this relative jump is ~16% for optically thin media, and it decreases to
zero as r* -> oo. This peculiarity arises from the fact that the surface is heated by
both the Sun and the atmosphere, whereas the overlying atmospheric layer is heated
only by the neighboring regions. Conservation of energy across this interface leads
to a surface that is hotter than the immediately overlying atmosphere. This artificial
condition implies AT varies from about 40.6 K at r*//2 = 0 to 21.0 K at x*/jl = 2
andl5.0Katr*/ /x = 4.

Equation 12.21 ignores the possibility of dynamical heat transport across the inter-
face. In the real world, convection tends to erase the discontinuity extremely quickly
but not necessarily eliminate it.4 Convective transport will be described in more detail
in §12.4.

We shall later (§12.4) have occasion to evaluate the flux in the two-stream, gray
approximation where the temperature is an arbitrary function of r. If we approximate
the exponential integrals according to

l

= $En(x) = $dwn-2e-T/iX « jln-2e-T/fl, (12.23)
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then Eqs. 5.59 and 5.60 become

X*

t \X) — Z{JL<7BIS e v "^ -\- L \ ax oBi \x ) e ,

X

X
(12.24)

These integrals may be evaluated analytically in terms of the radiative equilibrium
solutions. Thus, by inserting Eq. 12.18 for r 4 and Eq. 12.21 for T4(x) into Eqs. 12.24
and carrying out the integrations, we find

F+(r) = 2/xaB7;4(l + r/2A), F"( r ) = aBT*x. (12.25)

These are consistent with Eqs. 12.15 and 12.18 and therefore are valuable checks on
the solutions.

The distribution of temperature with height z is obtained from the relationship of r
with z. For the Earth's troposphere, the dominant IR absorber is water vapor, which has
a scale height H&&2 km (see Fig. 1.6). From Eq. 1.9 and the perfect gas law (Eq. 1.2),
the optical depth at height z is given approximately by (see Eq. 1.8)

oo

= (am) f dz'Poe-z'/H° = r*e-z/H>, (12.26)

where r* = (am)poHa is the effective (gray) optical depth, (am) is the spectrally aver-
aged mass absorption coefficient, and p0 is the water vapor density at the surface.

To evaluate (am) we must average over the spectrum, weighting the absorption
coefficient with the spectrally dependent radiation field. Unfortunately, there is no
unique weighting scheme suitable for all situations. Two of the more commonly used
schemes are the Planck mean,

(am)P= fdvam(v)Bv(T)/aBT\

IR

and the Ross eland mean,

, _ JIRdva-Hv)(dBv/dT)
R " JlRdv(dBv/dT) •

The Planck mean is applicable to optically thin problems where the transmission
is governed by the strong absorption bands. The Rosseland mean is appropriate for
optically thick situations where the radiative transfer takes place not in the opaque
spectral regions but in the nearly transparent (window) regions. The value of (am)
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Figure 12.2 Pure-radiative (dashed lines) and radiative-convective
equilibrium (solid lines) temperature profiles for four different optical
depths, and forp = 0.30. Open circles: The 1976 Standard Atmosphere.
The radiative-convective adjustment procedure is discussed in §12.4.

produced by both these definitions depends upon height, through the dependence of
the line strengths on temperature and pressure. However, the gray approximation is
rather crude, and the extra labor involved in computing (am) is seldom justified. Since
we are interested in physical insight, rather than numerical accuracy, it is useful to
think of r* or (am) as adjustable parameters in the model, whose values are derived
from fitting the model to the observed temperature profiles.

The distribution of temperature from Eq. 12.18 is shown in Fig. 12.2 (as the dashed
lines) for several values of r*. Equation 12.21 requires that r*/2/x = 1.127 to obtain
a surface temperature of 288 K (assuming Te = 255 K). This is the current globally
averaged surface temperature. This radiative equilibrium solution was originally de-
rived by K. Schwarszchild in 1906, and later by R. Emden in 1907, and by T. Gold and
W. J. Humphreys in 1909. It became generally accepted as the explanation for the de-
clining tropospheric temperature and the cold isothermal stratosphere.5 We now know
that the lower stratosphere is only approximately isothermal. As shown in Fig. 1.3
a temperature inversion occurs in the upper stratosphere, as a result of absorption of
solar UV radiation by ozone. However, the skin temperature derived from Eq. 12.21,
T(0) = 255x2" 1 / 4 K = 214 K, is a good estimate for the globally averaged minimum
(tropopause) temperature. In other words, the existence of a tropopause temperature
minimum can be understood from purely radiative considerations. However, in the
real atmosphere, the lapse rate in the troposphere is controlled largely by dynamical
transport effects.
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Extension of the principle of radiative balance to explain latitudinal variations
yields temperatures that are too high in the tropics and too low in the polar regions.
Even though the annual variation of the incoming solar flux (the solar insolation) is
defined precisely by geometry and celestial mechanics (see Problems 1.2 and 9.1),
the meridional transport of heat by air motions and ocean currents is an important
heating/cooling term in the energy balance equation. Consequently, as Figure 12.8
shows, there is an (annually averaged) radiative imbalance at most latitudes, with an
excess shortwave heating in the tropics and an excess longwave cooling at the higher
latitudes.6 Simple diffusive models of this horizontal transport played important roles
in early studies of phenomena such as the effect of solar variations on the snow and
ice cover in the polar regions.7 This subject is discussed again in § 12.7. We will return
to the study of radiation by considering how shortwave absorption affects the mean
radiative balance.

12.3 Radiative Equilibrium with Finite Visible Opacity

Any realistic atmosphere absorbs radiation at both IR and visible wavelengths. In addi-
tion some planets (such as Venus) have optically thick atmospheres. For our purposes
such media may be regarded as semi-infinite, implying that there is no need to con-
sider the lower boundary surface. We assume that the heating is governed by a diurnal
average over all incident solar angles, so that the average cosine is /x0. The average
solar flux absorbed by a rotating planet over a diurnal period8 is defined to be /x0Fa

s.
Other than allowing for a spherical albedo, we ignore scattering as before. The total
(visible plus IR) net radiative flux is written

Ftot(z) = -Fv(z) + FlR(z) = - A o ^ ~ T v / A o + FIR(Z), (12.27)

where r v is the frequency-averaged visible optical depth. Radiative equilibrium re-
quires Ftot = constant, or d Ftot/ dz = 0. Using the chain rule of differentiation, we have

dFtot = dFv | dFlR = d(jloFle-^^o) drY | dFlR

dz dz dz dry dz dz
1 y-T

dz
= 0,

where ky is the (gray) visible absorption coefficient, so that dry = —kydz. This equa-
tion provides us with the desired relationship between the infrared flux derivative and
the solar heating rate Hv = -dFy/dz = kyFle~Ty/^.

An expression relating the derivative of the infrared flux to the source function is
obtained from the generalized Gershun ys Law (see Eq. 5.77) applied to a gray, perfectly
absorbing medium,

1 r)F Fs

B(r) = i-—?-*= 7(T) + -^e-***>,
4TT ax Ann
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where dx = —kmdz, and n denotes the ratio of IR and visible absorption coefficients,
n = &IR//CV. The radiative transfer equation becomes

+1

i / / ( t ' M ) = /(r, u) - B(x) = /(r, u) - - [ dul(x, u) - I^e-
x/nfl\

dx 2 J Ann
- l

(12.28)

which is identical to Eq. 12.8 except that it contains an "imbedded source." This
equation is mathematically identical to that of Prototype Problem 3, provided we set
a = 1, p = 1, and make the correspondences Fs -> F^/n and /x0 -> njl0. The
two-stream solution for the source function for a semi-infinite atmosphere (see Exam-
ple 7.9, Eq. 7.100) was found to be

Fs

S(x) = — [(1 - m2)e~T/fl0 + m(l + m)]
An L J

£ ^ [ 1 - y2^e~z/yfl + y d + y)]> (12-29)

where m = /xo/A and y =njlo/jl. Requiring that the absorbed solar energy be linked
directly to (i.e., it drives) the effective temperature, we set IJLQF* = 2/2orBre

4, which
yields 5(r) = crBT*/n for y = 1 (isothermal case). Thus, setting 5(r) = 5 ( r ) =
orBr4(r)/7r is consistent with Eq. 12.29 for y = 1. Using the above correspondences,
and S(r) = aBT4(x)/n, we find that the greenhouse factor may be expressed in terms
of the parameter y as

Q(x) = T\x)/Te
4 = J - [(1 - Y

2)e-T/Y* + yd + y)]. (12.30)

In this simple model, y is the ratio of the slant opacity in the IR (rIR//x) to that in
the visible (rv/Ao)- The temperature profiles versus optical depth for several different
values of y are shown in Fig. 12.3. There are three interesting cases:

1. y ^> 1, or equivalently, &IR ^> ky is the strong greenhouse limit where the solar
radiation penetrates deeply in the atmosphere, and the resulting IR radiation is
trapped. The atmosphere acts like a one-way valve allowing the incoming flux
(jIoFl) to enter easily but the resulting IR flux to escape with difficulty. In the
deep atmosphere, the greenhouse enhancement "saturates" to the constant
value Q(x* —> oo) = (1 + y)/2. Thus the asymptotic temperature is
T(r* - • oo) = r e ( l / 2 + «/lo/2/l)1/4 » re(fcIR/l0/fcv)1/4.

As we might expect, the two-stream approximation to the full solution of the
gray radiative transfer problem is quite accurate, as one might expect for this
optically thick, gray situation. The resemblance of the y ^> 1 solutions to the
temperature structure of Venus was noted in the 1960s, when observations of
that planet in the microwave spectrum indicated a surface temperature near
800 K. A pure radiative-equilibrium solution is found to be a good
approximation for Venus's lower atmosphere.9 However, the modest
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Figure 12.3 Greenhouse factor Q for a homogeneous, semi-infinite atmosphere
versus optical depth for five different values of y, the ratio of infrared slant
optical depth to the visible slant optical depth.

greenhouse trapping experienced on Earth and Mars is not well described by
the above formula because of the importance of the surface in the radiative
transfer, and also because of our neglect of convective heat transport (the latter
process is addressed in the next section and in Problem 12.6).

2. y = I represents an isothermal (T = Te) situation where the solar heating
exactly balances the IR escape. The n = 1 case also describes conservative
scattering from a homogeneous, semi-infinite atmosphere for which S.
Chandrasekhar10 found an exact solution in 1949. Comparing the exact value
of the ratio of source functions S(r —>• oo)/S(r = 0) = /20V?> with the
two-stream result /Io/A> o n e immediately infers that \x = 1/V3 is the best
value to use in optically thick situations.

3. y <̂C 1, or fciR <C ky, represents the antigreenhouse case. This is relevant to
numerous phenomena in the solar system:
• An inverted temperature structure characterizes Earth's upper stratosphere,

where high middle-UV opacity due to ozone absorption gives rise to a
temperature inversion.

• The antigreenhouse case also describes the radiative equilibrium
temperature distribution for the nuclear-winter scenario. This (hopefully!)
hypothetical situation corresponds to a reduced surface temperature caused
by a perturbed stratosphere loaded with aerosols (such as soot), which
absorb strongly in the visible.
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• The antigreenhouse scenario may also have occurred naturally in Earth's
past history. Worldwide cooling causing mass extinction is believed to have
occurred 65 million years ago from the injection of massive quantities of
dust, as a result of an impact of one or more 10-km-diameter meteoroids.

• Stratospheric aerosols (with optical depth estimated to range up to 10)
resulting from the gigantic Mt. Toba volcanic eruption some 70,000 years
ago may have been responsible for a subsequent cooling of Earth's climate
for a period of 200 years.11

• The antigreenhouse solution is also applicable to the dusty atmospheres of
Mars (compare Fig. 12.3 with Fig. 1.7) and of Titan, the largest satellite of
the planet Saturn.

12.4 Radiative-Convective Equilibrium

In 1913, R. Emden12 first pointed out that radiative-equilibrium solutions (such as
those discussed in the previous section) are convectively unstable in sufficiently op-
tically thick portions of a planetary atmosphere. When solar energy is absorbed deep
within the atmosphere, the radiative-equilibrium lapse rate, dT/dz, can be large and
negative. As discussed in Chapter 1, if this gradient exceeds a certain limit, the atmo-
sphere becomes convectively unstable and spontaneously adjusts to a new adiabatic
lapse rate. For a noncondensing atmosphere (no phase changes) the "dry" adiabatic
lapse rate applies, Fd = —g/cp. For Earth's atmosphere Fd is about —9.8 K • km"1.

For a saturated atmosphere, condensation or deposition (evaporation or sublimation)
can occur in the rising (sinking) air parcel, and latent heat exchange must be consid-
ered. The release of the latent heat of condensation or deposition partially offsets the
expansional cooling in ascending air parcels. In descending air parcels, the evaporation
of water droplets or sublimation of ice crystals extracts heat energy from the air, thus
partially offsetting the compressional heating. The resulting moist adiabatic lapse rate
Fm usually lies in the range —9.8 K • km"1 < Fm < —3 K • km"1.

The global mean tropospheric temperature gradient is about Fa = —6.5 K • km"1.
We will refer to this as the environmental lapse rate. A first-principles description of the
convective transport of heat and constituent concentrations has challenged modelers
for many years. A proper treatment involves a complex set of processes.13 An artifice
that yields satisfactory results is to assume that in regions of instability, resulting
from imposing radiative equilibrium, the radiative-equilibrium temperature gradient
is replaced by the environmental temperature gradient, Fa.

It is easy to identify the optical depth at which this occurs (Problem 12.4). We denote
this optical depth as rc, and the corresponding height, zc. Unfortunately, if we simply
force the temperature gradient to be equal to the adiabatic value below the height of in-
stability, this temperature distribution is unphysical. This is because it violates energy
conservation. To see why, let us compare the radiative-equilibrium flux Fr+(rc) =
aBT*(l + Tc/2jd) immediately above zc to the convective equilibrium flux Fc+nv
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immediately below zc. These must be equal, because at this height radiation is the only
mode of heat transport. (Actually only the net fluxes need to be equal to conserve en-
ergy; however, the downward flux is unchanged, and so therefore the upward flux must
also be unchanged.) The flux from the constant-gradient region below zc is given by

Jr*

r'e-«-^aB[Ts + Faz(r')]4 (12.31)

Here z(r) is expressed as a function of r through the relationship z(r) = //a ln(r*/r)
(see Eq. 12.26). Since the temperature Ts + Faz is less than TTe for all z < zc, then
F^m(r) < Fr+. This is only possible if there is a delta-function energy source located
atzc.

This problem is solved by recognizing that convective adjustment sets only the
gradient of the temperature. Thus we are free to vary the actual values of the tempera-
ture. If we increase the temperature everywhere in the convective region, then clearly
this will increase the flux emanating from that region. We can therefore match the
radiative-equilibrium flux value, but since the intersection point of the radiative and
convective curves shift upward, we need to also recompute the radiative-equilibrium
flux. The procedure is straightforward but requires repeated evaluations of Eq. 12.31
by numerical integration. The net result is that the transition region zc (the tropopause)
is several kilometers above the "initial" point of instability. The flux across the bound-
ary is continuous, but the slope of the temperature itself is discontinuous. Several
examples of the adjusted radiative-convective equilibrium temperature distributions
are shown in Fig. 12.2. Note that the surface temperature and tropopause height of
the r* = 4.05 model agree well with the 1976 global mean temperature model. The
favorable comparison of the "tuned" radiative-convective temperature profile with the
standard model is of course not surprising.

Net fluxes for the r* = 4.05 case are shown in Fig. 12.4, both for incident visible
radiation and for the outgoing IR radiation. These results are compared with those
computed from a state-of-the-art nongray radiative-convective model.14 This fig-
ure shows that some near-IR solar absorption by water vapor occurs in the atmo-
sphere. The differences between the approximate and accurate IR flux computations is
attributed to the neglect of this absorption. Note also that in the simple model the net
IR flux becomes equal to the incoming solar flux at the tropopause, above which there
is zero flux divergence (and zero solar heating). In the realistic case, the two values
approach one another more gradually with height, but together they do not approach
the asymptotic value (240 W • m~2) until above the stratopause, that is, above the peak
of the ozone heating region.

The variation of Ts with optical depth computed from the simple two-stream
radiative-convective model is shown in Fig. 12.5, along with the computed varia-
tion of tropopause height. The results of a change in albedo by ±5% are also shown in
Fig. 12.5. Although derived from simple considerations, this figure embodies several
important properties of the greenhouse effect and its possible modifications by changes
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in IR optical depth (through changes in infrared active species, such as CO2 and CH4)
and albedo (through changes in the clouds, aerosols, or snow/ice cover).

12.5 The Concept of the Emission Height

Our model requires a numerical integration to match fluxes at the tropopause. This
limits its conceptual usefulness. We will adopt a simple analytic approximation for
the surface temperature that fits the above results quite accurately. We introduce the
concept of the emission height as the level where the slab medium experiences its
maximum radiative cooling. The cooling has its maximum at an optical depth re, where
the temperature is approximately Te. Its value in the radiative-equilibrium problem
previously discussed is easily found from Eq. 12.21 by setting rre(Te) = Te. The result
is re = /x, which is physically reasonable, since a medium effectively cools where
its mean slant optical depth r/jl is unity. The optical depth re will take on different
values for other temperature distributions. The geometric height is easily found from
Eq. 12.26 to be ze = #am(T*/re)- We set the greenhouse increase in temperature
(over the effective temperature) equal to the product of the lapse rate Fa and ze, or

Ts = Te + |ra |ze = Te + | r a | / / a ln(r*/re) . (12.32)

If jl = 0.5, then the numerical results for Ts(r*) shown in Figs. 12.2 and 12.5 are in ex-
cellent agreement with Eq. 12.32 provided that r* > 0.4 and re depends upon r* ac-
cording to the following numerical fit of the curve of Ts versus r*:

T"1 = 3.125 + 0.235/r*2. (12.33)

The asymptotic value for re as r* —> oo is 0.32. As previously mentioned, this value
is slightly different from that derived from the radiative-equilibrium case (re = jl =
0.5). For a convective atmosphere, our clear-air model has the parameters r* = 4,
Ha = 2 km, and zQ = 5 km.

Using Eq. 12.32, we can tune the optical depth r* to simulate the greenhouse ef-
fect in a realistic atmosphere. We write r* as a sum of the opacities of the nonwater
greenhouse gases (r*) and a linear function of the liquid water path, bw, where b
is an empirical constant and w = p0Ha is the precipitable water [g • cm"2]. To de-
termine the numerical values of r* and b in our model, we impose two constraints:
(1) The clear-sky greenhouse effect G = oBT^ — o^T^ (see Eq. 12.19) for w = 0
should be equal to 50 W • m~2, and (2) the clear-sky greenhouse factor Q = T*/T*
defined by Eq. 12.32 is consistent with observed values. Constraint (1) comes from de-
tailed modeling studies15 and constraint (2) comes from data from the Earth Radiation
Budget Experiment (ERBE) on the Nimbus 7 spacecraft.16 These two constraints yield
the following result for the clear-sky IR optical depth:

r* = r* + bw, (12.34)
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Figure 12.6 Solid curves: Greenhouse factor Q as a function of precipitable
water for three different values of the environmental lapse rate Fa. Open circles:
Q values inferred from satellite data are also shown for comparison. The error
bars (omitted on several of the points for clarity of presentation) indicate the
spread of the data points. To compare with data it was necessary to account for
the observed change of FTOA (or equivalently Te) with sea-surface temperature.
The empirical relationship (which applies to this figure only) was found to be
re « 153 + 70 x g.

where z* = 0.788 and b = 1.1 cm2-g l. For a global average value of w =
1.32 g • cm"2, the combination of CO2, CH4, N2O, O3, and the various CFCs con-
tribute ~35% of the total clear-sky optical depth. We find G = oBT*(x*) - crBT* =
53 W • m~2 by using rn* = 0.788, Ta = -6 .5 K. km"1, and Ha = 2 km in Eq. 12.32.
The greenhouse factor, Q — (Ts/Te)

4 = (1 + | r a | z e / r e ) 4 , agrees reasonably well with
ERBE results as shown in Fig. 12.6, provided the lapse rate is about —6.5 K • km"1.
These results will be used later in assessing the water-vapor feedback effect.

12.6 Effects of a Spectral Window

A gray model may be made more realistic by allowing for transparency in the 8—
12 /xm spectral window. We define the temperature-dependent transparency factor as
the fraction of the blackbody radiation available across the window

P(T)
V2

dvBt(T)/aBT4 (12.35)
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Here, \>\ and v2 are the lower and upper limits for the spectral window. We assume that
the fraction fi (0 < P < 1) of the blackbody emission from the surface is transmitted
freely to space and that the remaining fraction (1 — P) is trapped. Then Eq. 12.31 for
the upward flux Fc+nv(/3 = 0; r) is modified to the following:

^conv(£; r) -> (1 - P)F+m(P = 0; r) + PcrBTs\ (12.36)

The expression for the downward flux is the same as for the zero transparency case
with the correction factor (1 — /?),

r(z)

^nv(^; z) = 2(1 - fi) j dT'aBT\T')e-™-x'M. (12.37)

Because we will henceforth refer only to a radiative-convective model we will drop
the "conv" subscript. It can be shown (see Problem 12.3) that the greenhouse equation
Ts = Ql/4Te (Eq. 12.18) is modified in the presence of a spectral window to

G(P=O) 11 / 4 _ _

Note that when the atmosphere is completely transparent (P = 1), Ts = Te, as it must.
It is also possible to show (see Problem 12.3) that in terms of the emission height, the
modified surface temperature is given by

0) Te + |r a |ze

[i - p + prs
4(P = o)/re

4]1/4 [l - p + p(i + |ra |ze/re)4]1 / 4 '

(12.39)

It is clear from the above results that for a fixed optical depth, the effect of the window
is to decrease the surface temperature because of the higher rate of surface cooling
and decreased IR trapping.

The heating rate H is obtained by differentiating the net flux:

H(P, z) = ~^-[F+(P; z) - F~(P; z)]
dz

— [F+(P = 0; T) - F~(P = 0; r)]. (12.40)

We find that the heating rate including a transparent window is given by (1 — P) times
the value with no window (jS = 0). Carrying out the differentiations, we find

z) =

T

IT (12.41)
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By setting T = constant in the above equation, we find that the cooling-to-space
term (§11.2.6) is given by

^ ^ . (12.42)

In Problem 12.3, it is shown that Hcs reaches its maximum cooling rate where
r(ze)/A ^ 1. In this particular case, cooling to space is a reasonable approxima-
tion to the total cooling rate (including exchange terms).

12.7 Radiative Forcing

We previously defined the greenhouse effect G to be the difference between the plan-
etary mean flux emitted by the surface and the planetary mean outgoing flux at the top
of the atmosphere. It may be defined on a local basis, and at a specific wavenumber,
as Gy = Fj~(r*) — Fp

+(0). The spectrally integrated greenhouse effect is thus

G = dvGy = crBrs
4 — FJOA- (12.43)

On a global average, FTOA = GBTQ. Figure 12.7 shows the spectral variation of these
two fluxes, illustrating how their difference maximizes in the optically thick bands of
the major greenhouse gases. A change in a climate variable will cause a perturbation
in G, AG, which gives rise to a change in the equilibrium surface temperature (A7S).
There are several drawbacks to the definition of AG that limit its usefulness as a
forcing function:

1. Since G and AG involve surface temperature, they include the feedback
response of the climate system.

2. AG is a measure of the change in the atmospheric backwarming of the surface;
a more satisfactory definition would include the entire atmospheric column.

3. Surface temperature is not easily measured from satellites, especially over land
surfaces.

What is needed is a strictly radiative definition that defines the initial forcing.17 A
quantity that fulfills these requirements is the difference between the incoming and
outgoing fluxes at the top of the atmosphere,

N = Nsw - Mw = (1 - P)F& - FTOA- (12.44)

TV is equal to the instantaneous column-integrated radiative heating resulting from an
imbalance between the shortwave heating and the longwave cooling. Note that this
definition involves local (or regional) quantities. Thus, N can vary with latitude and
even time of day. Note also that the plane albedo p, the solar flux Fs, and the outgoing
IR flux FTOA are readily measured from space.
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Figure 12.7 Upper panel: The upper smooth curve is the emission from the
surface (assumed black) in the model of J. Kiehl and K. Trenberth (their
Fig. 1; see reference in Endnote 15). The lower curve is the flux at the top of
the atmosphere, computed from their narrow-band model (their Fig. 2; see
reference in Endnote 15). Lower panel: greenhouse effect
Gx = F+(z = 0) - F+fe -> oo) for the Kiehl-Trenberth model.

To illustrate the role of N as a radiative forcing, we consider the more general
energy balance equation18 applying to a particular region,

dt
= N — dz div Fh = N — (12.45)

Here Eatm is the zonally and column-averaged atmospheric energy (see Eq. 1.11 for a
more general definition involving both the atmospheric and oceanic columns) and O
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Figure 12.8 Curves labeled "Net Radiation": zonally and annually
averaged net radiative flux (N) from satellite observations. Curves labeled
"meridional transport" is the north-south transport JdzF^ implied by the
above variation of (N) with latitude, and assuming a balance between
meridional transport and radiative heating, d(Eatm)/dt = 0 (see Eq. 12.45).
The two pairs of curves are from two different data sets. Note that the
meridional transport term does not have the same units as N. Adapted from
Fig. 3 of Hartmann et al. (Endnote 18).

is the zonally and column-averaged flux divergence of energy leaving the atmospheric
column horizontally as a result of meridional transport by large-scale atmospheric
circulation and ocean currents. If we average the above equation over the Earth's
surface, the transport terms will drop out, so that d£atm/dt = N. Further averaging
over one year (or a period of several years) yields a global balance,

= (N) = 0.
dt

The requirement that (N) = 0 is a useful check on the accuracy of radiation budget
measurements. Figure 12.8 shows the measured variation of (N) with latitude and the
inferred meridional transport of energy (JdzFh), assuming (N) = 0. More detailed
geographical distributions of N are found in the research literature.19

12.8 Climate Impact of Clouds

We now consider the combined shortwave and longwave radiative effects of clouds
on the atmospheric heat balance. The climatic effects of increasing greenhouse gases
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can be amplified, or dampened, depending upon whether the consequent changes in
clouds lead to a warming (due to an enhanced greenhouse effect) or to a cooling
(due to an increased shortwave albedo). Unfortunately many uncertainties still exist
in present-day climate models. Variations in cloud forcing between different climate
models20 can be as large as the entire radiative forcing due to a doubling of CO2! A
detailed discussion of such problems is beyond our scope. Fortunately, some of the
basic radiative transfer aspects may be illustrated by a simple extension of the gray
radiative-convective model, described in the previous section.

In §9.3.3, §9.3.4, and §11.3 we described the optical properties of low clouds con-
sisting of spherical water droplets, and high clouds, containing irregular ice crystals.
More complicated situations (middle clouds and spatially extended cumulo-nimbus
clouds) consist of mixed water phases. We ignored their complicated three-dimensional
structures even though, as will be discussed shortly, this is certainly not correct even
for large-scale energy budget studies. However, some cloud types (marine stratus for
example) can be approximated by the plane-parallel assumption. We showed earlier
in Chapters 9 and 11 that this allows us to capture their salient properties by two
quantities, their liquid (LWC) or ice water (IWC) content and their mean particle size
(r). The absorption and scattering coefficients and the asymmetry factor may be related
to the above quantities by simple algebraic relationships, determined by fitting them
to accurate scattering computations. From these specifications, and by knowing the
temperature of the cloud (determined by its height), we can use the computational
tools described in this book to find the cloud albedo, its emittance and absorptance, its
optical depth, etc.

In the following, we will illustrate how these cloud properties enter into the mean
radiative energy balance. For this purpose, we once again turn to simple models.

12.8.1 Longwave Effects of Water Clouds

The IR opacity of stratus-type water-droplet clouds adds to that of the gaseous opac-
ity, further blanketing the surface and inducing additional warming. This greenhouse
warming effect is particularly apparent during a cloudy night, following a clear day
of intense solar heating. The combination of a realistic scattering-absorbing cloud
imbedded in an absorbing atmosphere introduces a host of complications to the ra-
diative transfer problem, many of which have not yet been overcome. In order to
examine some of the first-order effects of clouds, we will ignore most of these compli-
cations. For example, we ignore shortwave absorption within the cloud on the grounds
that it is small compared with the IR absorption, and we ignore IR scattering. Also,
we assume a homogeneous cloud with plane-parallel geometry, and in the spirit of
the earlier sections, we adopt the gray, two-stream approximation for describing the
radiative-equilibrium radiation field. As much of the radiative transfer occurs in the
window region, we adopt values for the gray absorption coefficient at 11 /xm. It is suf-
ficient to approximate the cloud optical depth r* as the product of the mass absorption
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coefficient a^ in [m2 • g l] and the liquid water path LWP in [g • m 2 ] . Note that a
convenient unit of water content in clouds is [g • m~2] (rather than [g • cm"2]) because
clouds generally contain much less water than air.

In our first attempt to estimate the IR effect of clouds, we recognize that the cloud
particles introduce additional opacity rc* in a convective atmosphere. If the cloud
is introduced above the clear-air emission height, it will raise the effective emitting
level to a cooler region. The lower cooling rate implies a higher surface temperature,
as discussed in §12.4. In our first approximation, we therefore correct the effective
cooling height ze in Eq. 12.32 to include the additional cloud opacity. The surface
temperature in a cloudy atmosphere is thus written as

|ra|//ln
+bw +

r*(H2O) }/re]
(12.46)

To compare the above result with observations, we again use data for the greenhouse
factor Q = (Ts/Te)

4, derived from satellite observations in the presence of clouds of
known liquid water path. Figure 12.9 shows Q = a^T^/F^ox derived from satellite
data21 for: (1) the sea-surface temperature Tss, (2) the outgoing flux FT OA, and for
(3) the liquid water path LWP.22 We also show for comparison the prediction of the
analytic formula (Eq. 12.46) for two different values of o^. It is encouraging that
the best-fit values of ac

m (0.10-0.14) fall within the range of theory (§10.3.3) and

200 250

Liquid Water Path (g • nr2)

Figure 12.9 Greenhouse factor Q for a cloudy atmosphere versus liquid water path
of the cloud droplets. Data are shown as open circles with error bars, indicating the
dispersion around the mean. The data are taken from Figure 9b of Stephens and
Greenwald (Endnote 21). The solid curves are for the analytic expression,
Eq. 12.46, for two different values of the cloud droplet absorption coefficient.
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observation23 (0.06 < a^ < 0.16). This successful application of the theory suggests
that the principal IR effect of clouds (introduced above the effective clear-air emission
height) is simply to raise the effective radiating height. The importance of the cloud
height itself will be addressed in a later section.

12.8.2 Shortwave Effects of Water Clouds

The importance of shortwave absorption by cloud particles is a question of current
research interest, which is somewhat controversial.24 The controversy stems from the
interpretation of aircraft measurements that suggest a surprising amount of absorption
by cloud particles, which are expected to absorb only modestly at near-IR wavelengths.
The two possibilities are that either the radiation is absorbed within the cloud or it
escapes from the sides of the cloud and thus avoids detection by the aircraft instruments.
To explore this further would take us into areas not suitable for a textbook. The only
other major effect to consider for the energy budget is the change in albedo due to the
presence of clouds. Increased reflection (largerp) causes the amount of absorbed energy
(1 — p)Fs to be lowered and thus reduces the mean surface temperature. Generally
speaking, shortwave effects of water clouds tend to cool the Earth, in contrast to IR
effects, which generally warm the Earth. As in the previous section, we choose a
simple model to illustrate how cloud opacity and cloud fractional coverage influence
the surface temperature. We will continue to rely upon our analytic approximation
for the surface temperature in a radiative-convective atmosphere. Thus we need to
consider only the change in the effective temperature, due to addition of a cloud.

For this purpose, we will adopt the two-stream solutions derived in Chapter 7 for
Prototype Problem 3. We found previously that the solution for the plane albedo pc of
a conservative (a = 1) and isotropically scattering (p = 1), plane-parallel medium is
(Eq. 7.98)

2 ^ + (M-MQ)(l-g-2^)
2Z?cr* + 2/2

where r* is the (gray) visible optical depth of the cloud, \x is the mean cosine of the
multiply scattered photons, /x0 is the cosine of the solar zenith angle, bc = (1 — gc)/2
is the cloud backscattering coefficient, and gc is the asymmetry factor.

In order to evaluate the albedo in terms of the liquid water path, we will use the pa-
rameterizations of the optical properties derived from accurate Mie-scattering results,
as discussed in §9.4. The optical depth and asymmetry factor are written (see Eqs. 9.5
and 9.6)

r* = kc
mLWP « (ai(r)* + cx)LWP,

(12.48)
l 2 b ( ) b

where the coefficients at, bt, and ct are best-fit values, dependent upon wavelength
and upon the particle size regime,25 and (r) is the mean particle radius.
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Figure 12.10 Plane albedo of a cloud versus liquid water path, calculated from
the two-stream solution, Eq. 12.47. Values of the asymmetry factor and
absorption coefficient are taken from Eq. 12.48. Different curves apply to
different values of the mean particle radius (r) in /mi. The dashed curves, taken
from Stephens and Greenwald (Endnote 21) enclose 97% of all observations for
the tropics and midlatitudes.

As before, Eq. 12.47 should be tested by comparison with data. Figure 12.10 shows
the 97% occurrence zones (divided into latitude zones) of cloud albedo values extracted
from Nimbus 7 and ERBE satellite data.26 For comparison, predictions are given from
the two-stream formula (Eq. 12.47) using the parameterization formulas, Eq. 12.48,
for a wavelength of 0.459 /xm. (The scattering coefficient is spectrally flat in the range
0.3-0.7 /xm; a single value characterizes the entire visible range.)

As discussed by Stephens and Greenwald27 this figure reveals a serious discrepancy,
since in situ measurements show that cloud particle sizes (r) are in the range 5-10 /xm.
The errors in the two-stream results are too small to explain the discrepancy. The fact
that the LWP measurements are not sensitive to ice particles above the main clouds
is also inadequate to explain the discrepancy. The theory for plane-parallel clouds
appears to predict albedo values higher than observed. This suggested to Stephens
and Greenwald that the neglected macrophysical effects of finite cloud size are probably
larger than the errors introduced from the uncertainties in the knowledge of the cloud
microphysics. This unsolved problem poses a significant barrier to understanding the
effects of cloud feedback on climate.

We now consider how the albedo of the surface-atmosphere-cloud system enters
into the overall energy balance of the planet. First we should recognize the fact that the
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Earth's surface reflects visible light, with an average (spherical) albedo28 ps = 0.11.
This value is low, because of the very low (5-10%) reflectance of ocean water, which
covers nearly three-fourths of the planet's surface. We must also include the small but
still significant effects of the clear-sky (Rayleigh-scattering) contribution, as well as
the shortwave solar absorption by the molecular atmosphere. The spherical albedo of
the atmosphere (assuming an underlying dark surface) is pa = 0.07.29 To take into
account multiple reflections between the surface and the atmosphere, we apply the
formula derived in §6.11 (Eq. 6.76) to obtain the effective spherical albedo of the
combined atmosphere and surface:

- P s P a
(12.49)

Substituting in the above numerical values forpa andps, we findpas = 0.166, in good
agreement with the observed range 0.14-0.18 found by satellite measurements.30

Assuming that clouds of spherical albedo pc (again assuming a black underlying
surface) overlie the atmosphere-surface system, we can apply the same formula to
estimate the spherical albedo of a cloudy atmosphere,

(12-50)

We must also include the fact that the Earth is partially covered with clouds with a
fractional coverage Ac (0 < Ac < 1). Thus, we weight the clear-sky albedo pas with
the fraction of clear sky (1 — Ac) so that the total spherical albedo of the Earth system
is approximated by

Ptot = ^cPcas + (1 - Ac)pas. (12.51)

For the determination of cloud albedo, it is desirable to relate pc to more basic cloud
properties, such as liquid water path (LWP) or ice water path (IWP). Two approaches are
possible: analytic and empirical. To pursue the first course, we again use the two-stream
approximation. The spherical albedo is given by the average of Eq. 12.47 over all solar
zenith angles. However, it is much simpler to invoke the Duality Principle to equate
the spherical albedo for Prototype Problem 3, p3, to the plane albedo for Prototype
Problem 7, px. The latter is given by (see Eq. 7.52) pc = p\ = p3 = r*/(r* + 2/x),
or, when properly scaled to account for anisotropic scattering,

pc = — ~ * C -• (12.52)

(Note that the averaging procedure to derive the spherical albedo from the plane albedo
amounts to simply setting /J,Q = jl in Eq. 12.47.) An alternative to the above formula,
discussed in the next section, is to use an empirical relationship between pc and LWP.
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12.8.3 Combined Shortwave and Longwave Effects of Clouds

It should be apparent that if the total albedo ptot is higher than some critical value
pcrit, clouds will result in a net cooling (referenced to a clear atmosphere). However, if
Ptot < Pcrif a n e t warming will occur. We can estimate this critical value as a function
of cloud thickness by expressing the surface temperature in terms of the products of
the clear-air (Gc\r) and cloudy (Gc\d) greenhouse factors:

Ts
4 = (1 - Ptot)T^£cid = T*(LWP = 0)^~P_iot). [l + -LWP] . (12.53)

4r (1 P ) | C\ J

The clear-air surface flux is aBTs
4(LWP = 0) = (1 -pas)(S/4)£cir(r*), in accor-

dance with the results of §12.5 and Fig. 12.6. r* is the clear-air optical depth. We have
also approximated Qc\d as a linear function of liquid water path (shown in Fig. 12.9).
The cloudy greenhouse factor has been written as a linear fit to data, Qc\d = c\ -\-d\LWP,
where c\ = 1.56 and d\ — 4.09 x 10~3. Now for no cloud cover (LWP = 0) the
greenhouse factor is <?cir(t*) = c\. Defining the critical albedo as that value which
yields TS(LWP) = TS(LWP = 0) = constant as liquid water path varies in Eq. 12.53,
then we can solve for the critical albedo,

This result is fairly general since it is based on an empirical correlation of surface
temperature with cloud thickness. It results from an assumption of a steady state, but
it does not require radiative equilibrium. It thus is valid at any latitude (for which the
net radiative flux N may be nonzero). However, as the cloud properties vary, it does
require a fixed proportion of incoming radiation, outgoing radiation, and meridional
transport.

We have defined pcrit to be the albedo value for which there is no effect on surface
temperature. Thus, we expect that ptot > pcrit will correspond to a cooling and ptot <
pCTit to a warming. This is illustrated in Fig. 12.11, which shows that the critical albedo
separates domains of cooling and warming. Clouds in midlatitude regions are seen to
have a net cooling effect, whereas those in tropical regions are mainly in the warming
domain. This behavior is immediately apparent from an inspection of Fig. 12.10, where
it is seen that tropical clouds are much weaker functions of cloud water content than
those at midlatitude. This result, although based on simple ideas, is consistent with
conclusions in the research literature.31

To obtain an alternate model for the surface temperature we use the concept of
effective radiating height in a formulation involving partial cloud coverage. Both the
albedo and the effective radiating height depend upon the liquid water path of the
clouds, and upon the cloud fractional coverage, Ac. The effective temperature and
radiating height contributions are weighted by the contribution from clouds (Eq. 12.46)
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Figure 12.11 Albedo versus liquid water path of clouds. Heavy solid line:
Critical planetary albedo pcrit dividing regions of net warming and net
cooling, given by Eq. 12.54. The albedo of the clear air plus surface pas is
set equal to 0.166, as inferred from Eq. 12.49. di/ci = 2.622 x 1CT3. The
ellipses define the regions containing 97% of all observations for the tropics
and midlatitudes. They were computed from Eq. 12.50 where pc is given by
the ellipses in Fig. 12.10. If ptot is in the upper domain (ptot > pcrit), net
cooling occurs. If it is in the lower domain,(ptot < pcrit), net warming occurs.

and from clear air (Eq. 12.32). The result is

Ts =
Fs(l-

+ Ac//d d |rci d | In [(rn* + bw + a^LWP)/re]

- Ac)#cl r |r c l r | In [(TW* + bw)/re (12.55)

where Fs = S/A is the incident solar flux averaged over the planet and over twenty-
four hours (see Eq. 12.1), and S is the solar constant. Note that both the scale height
(either i/clr or Hc\d) and the lapse rate (either rcir or rcid) are allowed to vary between
clear and cloudy regions. The above equation may be used to study the effects on the
surface temperature of a planet of variable cloud cover Ac, moisture content of the air
w, and cloud water path LWP.

In the next section we consider cloud height, another important influence on green-
house warming.

12.9 Climate Impact of Cloud Height

One expects that low clouds, being relatively warm, would have different effects on the
energy balance than high clouds, which are relatively cold. In order to include the cloud
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height as an additional climate variable, we adopt a more general formulation of ra-
diative equilibrium, while still retaining the simplicity of the gray approximation. This
method employs the outgoing IR flux FTOA at the top of the atmosphere and assumes
that the surface temperature Ts is an adjustable variable. By adjusting 7S, we effectively
adjust the temperature in the entire convective region where T{x) = Ts + Fz(t) .
For simplicity, we assume a geometrically thin cloud (zb ^ Z\ = zc) and a con-
stant transparency factor /3. The cloud is characterized by the flux emittance and
absorptance, equal to ec and (1 — ec), respectively. In a two-stream gray approxi-
mation ec is simply 1 — e~T*/fl, where r* is the cloud optical depth. The outgoing
flux for both clear and cloudy regions may be considered to be a function of Ts, with
specified cloud parameters 6C and zc:

; € C , Z C ) = 2 / 2 ( 1 - P ) e c V B *

+ 2(1-/3) f dr'aBT4(r')e-Tl/ii

o
+ 2/1(1 - ,6)(1 - €c)aBTs

4e~T'/il + 2jipaBTs
4(l - ec)

T*

+ 2(1 - fi) j drfaBT\rf)(l - ec)e~T7A. (12.56)

Here r* is the clear-sky total optical depth. Radiative equilibrium means that the
absorbed solar flux (aBre

4) and the outgoing IR flux are equal, that is,

a B r e
4 = ACFTOA(TS; €C, Zc) + (1 - AC)FTOA(TS; ec = 0). (12.57)

The clear and cloudy parts are weighted by the clear-air and cloudy fractions, (1 — Ac)
and Ac, respectively. Since Ts is a variable parameter in the above equation, it can
be changed until the equality is satisfied. The results of this numerical exercise are
shown in Fig. 12.12 as a function of the cloud fraction Ac. Several cloud heights and
opacities have been selected to illustrate how high cold clouds warm the surface and
low warm clouds cool the surface. The former effect arises because of the reduced
emission to space, and the latter effect is due to an increased emission to space. The
optically thick middle cloud (zc = 4.1 km) model was tuned (by varying r*) to yield
the globally average mean surface temperature of 288 K for a cloud fraction of 60%.
This diagram suggests how Earth's mean temperature might be affected as a result of
changing cloud coverage, cloud height, or cloud opacity.

Other factors complicate this simple picture. For example, the effects of low clouds
over highly reflecting surfaces can result in an overall warming, since longwave green-
house warming can offset the effects of the small variation in total albedo from clear
to overcast conditions. More accurate radiative transfer computations show that the
warming from high clouds is due, not only to suppressed cooling to space, but also
to ice crystals having effectively larger values of n = hR/ky than water droplets.
This is the "one-way valve" effect of radiative trapping, discussed in §12.3. As dis-
cussed previously, the latitude differences of cloud albedo properties make the surface
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Figure 12.12 Radiative-convective equilibrium surface temperature as a
function of cloud areal coverage for low (2.7 km) and middle (4.1 km) clouds
of emittance unity, and a high (10 km) cloud with three different values of
cloud emittance. These results were obtained from a numerical integration of
Eq. 12.56 in which Ts is adjusted until Eq. 12.57 is satisfied. The clear-air
albedo is assumed to be given by 0.166, and the completely overcast albedo
is 0.389. The clear-air optical depth (r*) is assumed to be 6. Combined with
the value of the window transparency factor (/3 = 0.22), these parameters
yield Ts = 288 K for the middle cloud model when Ac = 0.6.
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temperature relationship more involved than discussed above. Actually, the latitude
differences of cloud heights is only one contributing factor in explaining why mid-
latitude clouds cool the surface and tropical clouds warm the surface. In the following
section, we discuss a concept that describes climate change in terms of a flux change,
rather than as a change in the (fictitious) radiative-equilibrium temperature.

12.10 Cloud and Aerosol Forcing

To focus on the radiative effects of clouds (an identical formulation applies to aerosols),
it is common to use the concept of cloud radiative forcing32:

CF = 7Vcki - Nch = SWCF + LWCF. (12.58)

Here iVcid and A ĉir are the cloudy and clear fluxes measured at the top of the atmo-
sphere. If CF is determined empirically, use is made of different scenes (cloudy or
clear) at the same latitude and above the same type of surface. By referencing the clear
atmosphere, we isolate the effects of clouds from other radiative effects, for example,
changes of water vapor or surface albedo.
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Cloud forcing CF (which should not be confused with the Chapman function hav-

ing the same symbol) is conveniently separated into shortwave (SWCF) and longwave

(LWCF) contributions. Clearly

SWCF = (1 - pcas)Fs - (1 - pas)Fs = (pas - pcas)Fs,

LWCF = fW(clr) - FTOA(cld).

pcas is the plane albedo of the cloudy atmosphere (clouds plus atmosphere plus surface)

and pas is that for the clear atmosphere (atmosphere plus surface). Note that since

clouds usually increase the overall albedo, SWCF is generally negative. Since clouds

generally reduce the outgoing flux, LWCF is generally positive.

Example 12.1 Longwave Cloud Forcing in a Model Atmosphere:

Cloud Overlap

We will compute the longwave forcing from a model atmosphere (the 1976 U.S. Standard
Atmosphere33) for the following distribution of clouds: (1) a high cloud with a cloud-top height
zt

(1) =11 km, emittance e™ = 0.06, and fractional area coverage Aj.1} = 0.20; (2) a midlevel
cloud with z[2) = 6 km, ec

(2) = 0 . 1 , and A <2} = 0.06; and a low cloud with zt
(3) = 2 km, 6C

(3) = 0 . 1 ,
and A£3) = 0.49. We require the outgoing IR flux for both the clear and cloudy cases to find the
longwave cloud forcing. The clear case has been computed from an accurate narrow-band spectral
model by Kiehl and Trenberth.34 Their value is FTOA(CIT) = 262 W • m~2, in excellent agreement
with clear-air ERBE data (265 W • m~2).

The outgoing flux in the cloudy case will be estimated from the gray, two-stream model with
no spectral window (ft = 0). We use Eq. 12.56 to include the presence of a single cloud with
cloud-top height zt. It is easy to show that the flux at the top of the atmosphere is

FTOA(cld) = 2jiaBTs\l - ec)e"r*/A + ecoBT\zd + 2
/ '

+ 2(1 - €C) / dx'e-{x'-x)/ilaBTA[z\. (12.60)

Here €c is the cloud flux emittance, (1 — ec) is the cloud flux transmittance, and r is shorthand for
r(zt). The cloud has been assumed to be geometrically thin.

We simplify the above expression for each of the three clouds by ignoring the atmospheric con-
tributions (the integrals) for all except the thin upper cloud. In that case, we approximate the atmo-
spheric contribution as (1 — €c) FTOA (clr). Then we can write down the individual contributions from
each cloud, assuming that they are independent (a false assumption that we will correct shortly):

F^A(cld) = e<»aBr4(z,(1)) + (1 - C^FTOACCIT) = 184.5 W m " 2 ,

F^gA(cld) = ffBr4(zt
(2))e-r(z?))/A = 146.8 W • I IT 2 , (12.61)

F$A(cld) = aBT\z?})e-^)w = 262 W-m"2,

where we have set €^2) = e^ = 1 and /2 = 0.5. Using the values of temperature from the 1976
Standard Atmosphere we find the numerical results given above.
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To find the net flux, it is necessary to consider cloud overlap. The net flux is a weighted sum
of fluxes,

= Y^ PIFTOA + (12.62)

Here pl
c is the probability that a given vertical line of sight intersects the /th cloud, without

intersecting any other cloud, and pnc is the probability of no clouds (i.e., clear air). Since A[ is the
probability of cloud occurrence, and (1 - A[) is the probability of "no-cloud" occurrence, then it
is clear that

= 0.2, PV> = A® (1 - A<») = 0.048,

(1 - A<») (1 - A f ) = 0.368,

Pnc = (1 - A<») (1 - A?>) (1 - A f ) (1 - A<4>) = 0.384.

(12.63)

It is easily checked that ^ \ p[ + pnc = 1, as it must. The effective cloud area is £ \ pjA^ = 0.62,
which is less than ^ \ A[ = 0.75 because of random overlapping.

Using Eq. 12.26 for x{z) and setting r* = 4 from the results of §12.2, we find from Eq. 12.62
that FTOA(cld) = 241 W • m~2, in excellent agreement with the accurate results (235 W • m~2) of
Kiehl and Trenberth (who also considered cloud overlap effects). The longwave cloud forcing is
thus LWCF = FTOA(cld) - FTOA(clr) = 265 - 241 = 24 W • m~2 (two-stream), or 262 - 235 =
30 W • m~~2 (accurate results).

The spectral variation of the longwave cloud forcing is shown in Fig. 12.13, calcu-

lated with an accurate narrow-band radiative transfer model. This figure is contrasted

Wavelength (urn)

Figure 12.13 Spectral variation of longwave cloud forcing (W • m~2 • /xm-1),
the difference between the clear-air flux at the top of the atmosphere, and the
cloudy outgoing longwave flux. From Kiehl and Trenberth (see Endnote 15).
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with the greenhouse effect (Fig. 12.7) where the optically thick bands dominate. In the
cloud case, the transparent window at 8-12 /xm dominates the longwave cloud forcing.

12.10.1 Aerosol Forcing

Volcanic aerosols have long been suspected to be important agents of global climate
change. Of greatest importance for climate are those particles that originate in the
stratosphere as a result of an explosive injection of sulfates (mainly sulfur dioxide)
from so-called Plinian volcanic eruptions. Growth of sulfuric acid occurs as a result
of both heterogeneous nucleation on existing aerosols (Junge layer particles) and
homogeneous nucleation in supercooled regions. These liquid particles persist in the
stratosphere for several years following major eruptions, such as El Chichon in 1982
and Mt. Pinatubo in 1991. The optical properties are similar to those of small cloud
particles in that they tend to cool the atmosphere in the shortwave and tend to warm it
in the longwave spectral range. It turns out that the sign of the overall forcing depends
upon mean particle size. If the effective radius exceeds ~ 2 /xm, the tendency is to
produce warming of the surface (see Fig. 12.14). The effects of aerosol composition,
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Figure 12.14 Change of shortwave and longwave fluxes at the tropopause
(longwave and shortwave forcing) caused by adding a stratospheric
(20-25 km) aerosol layer with r(0.55 /xm) = 0.1 in a one-dimensional
radiative-convective model with fixed surface temperature. From A. Lacis,
J. Hansen, and M. Sato, "Climate forcing by stratospheric aerosols," Geophys.
Res. Lett, 19, 1607-10, 1992.
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size distribution, and altitude are less important than the mean size. Since stratospheric
aerosols of volcanic origin are in the size range 0.5-1.5 /xm (depending upon time
after the eruption), the overall effect is to cool the Earth. In fact, the largest eruption
of this century, Mt. Pinatubo, caused a peak radiative forcing35 of about 4-5 W • m~2.
This caused an apparent cooling in the northern hemisphere lower troposphere of
0.5-0.7°C, compared with pre-Pinatubo levels.36

12.11 Water-Vapor Feedback

In Chapter 1 and §12.7 we discussed the concept of radiative forcing Nsw — N\w

as a quantitative measure of greenhouse warming. Here the subscripts refer to the
separate shortwave (sw) and longwave (lw) forcing contributions. In our simple model,
Afsw = (1 — p)Fs and iViw = FTOA- N is the net radiative flux at the top of the
atmosphere and is zero in radiative equilibrium. In Chapter 1 we showed that in a
"zero-D" model, the surface temperature response to a forcing is written as the product
of a direct response ATs

d and the gain / of the system,

ATS = fAT* = l N (12.64)
(1 h) ( 4 ^ / T)

The various feedback parameters, A./, are measures of individual feedback processes.
The parameter Xt is written in terms of a general temperature-dependent climate vari-
able Qi as

Xi = [Ts/4FTOA]~^. (12.65)
oQi dTs

Here we consider the most important terrestrial feedback influence due to the change
in IR opacity resulting from the temperature dependence of the water-vapor content.
The atmosphere becomes more (less) moist in a warmer (colder) climate resulting
in more (less) greenhouse warming. The underlying principle of the temperature-
moisture content relationship is described by the Clausius-Clapeyron equation, ex-
pressing the dependence of the saturation vapor pressure on temperature. The following
empirical relationship between the precipitable water w and the sea-surface tempera-
ture Ts has been determined from an analysis of satellite measurements37:

w = aweh^~2SS\ (12.66)

where Ts is in K, aw = 1.753 g • cm"2, and bw = 0.0686 K"1. This result is consis-
tent with an average surface relative humidity (RH) of 85% over the world's oceans,
provided the mean scale height for water vapor is 2 km. The relative humidity tends
to remain fixed as the sea-surface temperature changes, whereas the absolute water
content w is exponentially dependent on temperature.
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We now have the necessary equations to estimate water-vapor feedback in the
clear-sky atmosphere. We previously specified a relationship (see Eq. 12.34) between
the atmospheric optical depth and the column water amount: r* = r* + bw, where
x* denotes the clear-sky opacity due to nonwater-vapor greenhouse gases and b is a
constant determined from fitting the model greenhouse factor to satellite data. We note
that the temperature-dependent variable in Eq. 12.65 is Q = r(H20) = bw. Since
Aflw = crBT*, which can be expressed in terms of optical depth r* from Eq. 12.32,
Aflw = aB[Ts — | r a | / / a ln(r*/re)]4, we may evaluate the feedback parameter

X = ( Ts \ (—) (—\ f—\ = |ra|//a(Z?)(Z?wU;)
 (i2 67)

Note that X > 0, indicating a positive feedback. Substituting in the value for the ave-
rage water-vapor column amount w = 1.32 g • cm"2 and the values for b, bw, etc., we
find X = 0.66. This result is in excellent agreement with numerical climate models
and observed variations of clear-sky temperature and water vapor.38 More elaborate
methods yield values of X in the range 0.59 to 0.77.

If X —• 1, / —• oo, which refers to a situation called the runaway greenhouse, in
which higher temperatures cause more water-vapor IR opacity and still higher tem-
peratures, causing more evaporation, etc. The end result is that all the oceans are
evaporated, a fate that may have been experienced by the early atmosphere of Venus.
Problem 12.8 addresses the likelihood of this happening on Earth if it experiences a
significantly warmer climate in the future.

12.12 Effects of Carbon Dioxide Changes

The observed increase in the mean temperature of the Earth by ~0.5°C since 1900
suggests that the rise of CO2 from 200 to 240 parts per million may be partly respon-
sible. Figure 1.8 shows the radiative forcings from CO2, as well as other greenhouse
gases, and the changes in these forcings that have occurred since the industrial era.

A formula39 that approximates accurate climate model results for the CO2 radiative
forcing is

tfiw(x) = 32 + 6.3 ln(x/xo) [W • m"2], (12.68)

where xo is the present-day concentration of CO2. A standard scenario for climate
change is that of CO2 doubling - an eventuality that is predicted to occur late in the
twenty-first century at the current rate of world industrial output. The formula above
predicts a forcing N\w = 6.3 In 2 = 4.37 W • m~2. The predicted climate response is,
from Eq. 12.64, ATS = 1.2/°C. Model analyses using empirical data suggest that the
gain falls in the range 2 < / < 4. Thus the rise in mean surface temperature for a
doubling of CO2 is expected to be in the range 2.4-4.8 K, in agreement with accurate
model40 predictions (1.5-4.5 K). However, it should be emphasized that this is an
equilibrium response. As will be seen below, the response time can be very long.
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Let us use Eq. 12.64 to predict the temperature change over the period 1900 to 1990
due to the known greenhouse forcing (due to all greenhouse gas increases) that has
occurred over this period (1.92 W • m~2). Equation 12.64 predicts a direct temperature
change of 0.36 K. With a gain of 2.9 from the water-vapor feedback effect, the predicted
change of 1 K exceeds the observed value (0.5 K). To explain this discrepancy, a number
of factors may be responsible. At least part of the problem stems from the neglect of a
time lag in the system response. This time lag due to the slow overturning of the mixed
layer of the ocean is estimated to be over 100 years.41 Thus ultimately, time-dependent
ocean-atmosphere interactions must be included in any realistic climate model.

12.13 Greenhouse Effect from Individual Gas Species

It is convenient to isolate the radiative forcings from individual greenhouse gases, in
order to assess their relative importance. For this purpose we generalize the definition
of the greenhouse effect G (Eq. 12.19) to apply to individual spectral bands. The
specific greenhouse effect is defined as the difference between the surface and TOA
fluxes in the spectral interval Avt:

d = F+(z = 0) - F+(TOA). (12.69)

Here F* is defined by Eq. 11.6, but for the spectral interval Av,

F?{z) = Pi(Ts)aBTs
4[l - ( 4 (0 , z))]

J (12.70)

Here pt(T) = nBv(T)/crBTA is the fraction of the Planck spectrum occupied by the
band if it were completely opaque over AD/, and {<el

F) is the Planck-weighted (wide-
band) flux emittance for the interval /. From Eqs. 11.2 and 11.5, the flux emittance is
defined for the mass path u and temperature T as

t u

u))= [ dv \ 1 - 2E3 /du'aiy, u) (12.71)

where a(v, uf) is the absorption coefficient at wavenumber v and at the height corre-
sponding to the vertical mass path u'. E3 is the exponential integral of order 3 (see
Eq. 12.23). We now approximate the surface flux by ignoring the atmospheric contri-
bution (second term in Eq. 12.70). Setting the upward surface flux F^(z = 0) equal to
Pi (TS)&BT*, substituting this into Eq. 12.70, and summing over the individual spectral
bands for a given species j , we find

4 (« j ) ) • (12.72)
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We find that the (clear-sky) specific greenhouse effect is approximately the fraction of
the Planck flux emitted by the surface that is occupied by all the bands of a specific
greenhouse gas. Clearly, if we ignore band overlap between various spectral bands,

In Table 11.1, the quantities pj (el
F) are tabulated for current-day values of the verti-

cal mass paths Uj for the various greenhouse gases. The last column in the table shows
the specific greenhouse effects calculated from an accurate model. As can be easily
verified, a comparison with results from an accurate narrow-band model shows good
agreement with our simple model. The accurate results show that H2O is the dominant
contributor to the greenhouse effect (75 W • m"2), followed by CO2 (32 W • m"2), O3

(10 W • m"2), and CH4 (8 W • m~2). This important result tells us that in the atmo-
spheric greenhouse effect the atmospheric blocking effect on surface emission is more
important for surface warming than the reduced atmospheric emission from cooler
regions.

More realistic results are obtained by calculating the spectral fluxes with models
containing today's globally averaged cloudiness. The model of Kiehl and Trenberth
shows that the above results are modified to yield the following values of G7: CO2
(24 W • m-2), H2O (51 W • m~2). O3 (7 W • m"2), and CH4 (4 W • m"2). Thus clouds
alter the numerical values but do not change the relative importance of the various
forcings.

12.14 Summary

This chapter was devoted to the fundamentals of the role of radiation in climate. The
greenhouse effect was discussed in terms of simple two-stream models that never-
theless include the basic physical principles. We first discussed radiative-equilibrium
situations for a clear (transparent in the visible) atmosphere whose underlying surface
is heated by the Sun and by downwelling IR radiation. We then considered a more real-
istic case of solar absorption combined with greenhouse trapping by an optically thick
atmosphere. This latter problem illustrates the stratospheric temperature inversion and
also the antigreenhouse effect typified by the nuclear-winter scenario. Because most
planetary atmospheres, constrained to be in radiative equilibrium, are convectively
unstable, we then introduced a convective adjustment to create a simple radiative-
convective model based on the notion of a constant lapse rate with an upper effective
radiating region. A simple generalization of the gray model allows for transparency
through a spectral window, described by the transparency factor /3. The notion of radia-
tive forcing is defined. The effects of clouds were included by adding the reflecting and
IR-trapping properties of cloud particles. Low clouds were found to generally cool the
Earth, and high clouds were found to produce a warming effect. Cloud radiative forcing
is defined as the difference between the fluxes at the top of the atmosphere evaluated for
a cloudy and clear atmosphere. Aerosol forcing was defined in an analogous manner.
An example was given of a positive climate feedback, due to water-vapor increase from



12.14 Summary 475

enhanced evaporation in a warmer climate. The standard scenario of a carbon-dioxide
doubling was shown to lead to an enhanced surface temperature, whose value depends
upon the feedback parameter, / , which contains all (positive and negative) feedbacks
of the climate system. The time-dependent response must also include the time lag
due to the slow overturning of ocean water through the mixed layer and the still slower
response of the deep ocean. Finally, the specific greenhouse effect Gt was defined to
describe individual clear-air radiative forcings from the principal greenhouse gases.
Comparison of approximate values of Gt with accurate results show that greenhouse
forcing is predominantly due to the effects of atmospheric blocking of surface emission.

Problems

12.1 Consider the problem addressed in §12.2 from a different viewpoint. Let the
model atmosphere consist of a stack of N plane-parallel isothermal layers, each about
one optical depth. Consider each layer to be approximately opaque, so that the flux
absorptance and emittance are both unity. The IR energy will flow through the stack
by a succession of emissions and absorptions. The energy emitted both upward and
downward by the rath layer (with temperature Tn) is aB T*. Because this layer is opaque
in the IR, it absorbs energy from the two adjoining layers in the amounts oBT^_x and
<7B T*+l. The uppermost layer n = 1 radiates to space and therefore receives no energy
from above. Its temperature is Te.
(a) Equate the energy absorbed and emitted by each layer and show that the temper-

ature of the nth layer is

Tn = nl'ATQ.

(b) In addition to the overlying IR emission, the surface also receives (unattenuated)
solar energy in the amount S(l — p)/4. Show that the surface temperature is
determined from the balance of absorption and emission,

and thus the temperature jump (Ts — TN) follows naturally from the energy balance
at the air-surface interface.

(c) Now consider an additional optically thin layer at the top, having a temperature
r0. Identify the temperature of this layer as the skin temperature. Assume that it
has flux emittance and flux absorptance 6 = a < 1. As before, the layer loses
energy in both directions but gains it from only one direction. Show that the skin
temperature for this outermost layer is

To = T1/(2)1/4 = TQ/(2)1'4.

12.2 Prove Eqs. 12.38 and 12.39 by using Eq. 12.37 for the TOA flux and requiring

that FTOA = ^ B ^ 4 f° r b ° m m e window (/3 ^ 0) and the nonwindow (P = 0) cases.
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These two equations can be related by requiring that T(j5; z) bears a fixed ratio to
T(fi = 0; z) at all heights. Show that this ratio is given by [1 + fi(G - 1)]"1/4.

12.3 By setting d7ics/dz = 0 (in Eq. 12.42) and by solving for r = re for a
radiative-convective atmosphere show that

re//x = r(ze)//x = 1 +

12.4 For the problem of §12.2, assume that the absorbing gas is well mixed in the
atmosphere and obeys the hydrostatic equation dpa/dz = —Pag, where pa is the partial
pressure of the absorbing gas and pa is the absorber mass density.
(a) Define the optical depth as r = (am) J™ dz'Pa(z'), where (am) is the (gray)

absorption coefficient per unit mass. Show that

3 1 1/4

+ -{am)p\

(b) Show that the radiative equilibrium temperature lapse rate is given by

From this result show that the atmosphere becomes convectively unstable only if
cp > 4Ra. Here cp and Ra are the specific heat and gas constant per unit mass,
respectively.

(c) From the above results show that for the Earth, where the scale height of the
chief absorber (H2O) is 2 km, the height at which the temperature gradient equals
-e .SK.km-Ms

z6.5=21og(T*/0.205).

Show that this equation yields numerical values in agreement with Table 9.1 of
Goody and Yung, Atmospheric Radiation, Theoretical Basis, vol. 2, Oxford Univ.
Press, 1989, p. 406.

12.5 Estimate the temperature of the stratosphere by approximating it as a single
optically thin ozone layer overlying the "stacked-layer" model atmosphere of Prob-
lem 12.1. Assume the outer layer (n = 0) absorbs solar UV according to the ab-
sorptance auy ~ ruv. Show that the skin temperature, or stratopause temperature, is
approximately given by

T0
4 « (l/2)7\4 + (WtIR)Suv/4<rB.

Here we have approximated ctiR = em = TIR, SUV is the solar constant evaluated for
wavelengths X < 290 nm, and T\ is the tropopause temperature, approximately equal
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to Te. Find the ratio (ruv/riR) necessary to obtain a mean stratopause temperature of
250 K, where Suv is 0.1% of the solar constant S.

12.6
(a) Use the greenhouse solution T(y\ r ) , where y > 1 (Eq. 12.30) to show that an at-

mosphere becomes convectively unstable if y exceeds a critical value yc, given
by

= ycH)/Ter
3 = 2/N.

2yce

Here N is the effective number of degrees of freedom (including translational)
of the radiatively active molecular constituent (assumed to also be the only con-
stituent), such that cp = NRa/2. (For example, N = 5 for CO2.) e is the base of
the natural logarithm, and the scale height Ha is assumed to be equal to RaTe/g.
Ra is the specific gas constant (see Chapter 1).
Hint: First show that the maximum lapse rate, for a fixed y, occurs where
x/yjl = 1.

(b) This result shows that convection can occur even in a very cold planetary atmo-
sphere, since yc is independent of temperature. Estimate the range of correspond-
ing critical values of N (and the corresponding number of atoms in the molecule).
Make the argument that convective heat transport should be a common feature of
planetary atmospheres, regardless of their solar distances. How would clouds or
an upper haze layer influence your conclusion?

12.7 Suppose that the environmental lapse rate Fa were to change as a result of
altered dynamical heat exchange processes.
(a) Show from Eq. 12.32 that the radiative forcing and the temperature response due

to a change AFa are given by

(b) Find the relative change in lapse rate (AFa/ Fa) leading to a global cooling that ex-
actly cancels the warming due to a CO2 doubling (see §12.12). This result should
be independent of / .

12.8
(a) Show that the runaway greenhouse effect, A, = 1, occurs if \r&\Habw > 1 (see

Eq. 12.67). Evaluate this factor for current terrestrial conditions, and comment on
the likely occurrence of this phenomenon in the future. How would other feedback
factors aid or abet this effect?

(b) Generalize Eq. 12.67 to include a spectral window, described by the quantity /3.
Repeat part (a) above.
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Appendix A

Nomenclature: Glossary of Symbols

So diverse are the number of applications of radiative transfer techniques that over the
years a large variety of terms, symbols, and units have been used for the same set of
quantities. This has caused much confusion and wasted effort. To rectify this situation
many fields of physical science have established standards, sometimes by design and
sometimes by de facto recognition of the usage of a single author. Although the issue
of a standard set of units is by now settled, at least in the geophysical sciences, it is
another matter when it comes to nomenclature and symbols.

An attempt to set forth a uniform set of nomenclature and symbols was made in
1978 by the Radiation Commission of the International Association of Meteorology
and Atmospheric Physics. Although the SI system recommended by them has been
adopted by most atmospheric and oceanic journals, there is not yet any degree of
acceptance of nomenclature. For example, even in texts published in the 1990s, the
basic quantity of radiation, the radiance L, is still referred to by its traditional name
(intensity) and symbol / . Also, the irradiance E is frequently referred to by its familiar
name/?wjt and symbol F. Some of the factors explaining this lack of compliance are:
(1) traditional inertia of workers trained in an earlier era; (2) the strong influence of a
few classic references, such as that of S. Chandrasekhar; and (3) the uneven acceptance,
or lack thereof, of the agreements adopted by the international scientific bodies, such
as the International Commission on Illumination, the Commission for Symbols, Units
and Nomenclature of the International Union of Pure and Applied Physics.1

The subject that is in almost total disarray is that of symbols. For example, in 1978 the
Radiation Commission advocated abandonment of the traditional symbol for optical
depth (r), substituting the decidedly untraditional 8. The motivation for this is to have

1 See Wolfe, H. C , "Symbols, units and nomenclature in physics," Phys. Today, 15, 19-30, 1962.

481



482 Nomenclature: Glossary of Symbols

a uniform set of Greek symbols for transmittance (r), reflectance (p), absorptance
(a), and emittance (e). We believe that this "flying in the face of tradition" is carrying
consistency too far. If nothing else, r has been the de facto symbol for optical depth
for too long. Astrophysicists began this tradition, and they still cling to it today. Our
opinion is that it is too firmly ingrained in the literature to change at this late date. We
have chosen to retain r as optical depth and to depart from consistency in the symbols
for boundary properties, letting T represent the transmittance.

Another example of variety in the literature is the choice for the interaction prop-
erties - the scattering, absorption, and extinction coefficients. After some thought, we
chose the symbols a for absorption coefficient in [m"1 ], a for the scattering coefficient,
and the traditional k for extinction coefficient (k = a + a). Similarly, for the cross
sections, we attach the subscript n to denote cross section per molecule, or particle.
Thus cross sections [m2] are kn — kin, on = cr/n, and an = a/n. Similarly, the
subscript m denotes cross section per unit mass [m2 • kg"1], am = a/p, etc., where p
is mass density.

With most of the symbols adopted in this book, we attempted to use a "rational"
system, or perhaps it could be called more aptly a "user-friendly" system. Very simply,
we use the first letter of the name of the quantity as the symbol, either as a capital
Arabic letter or a Greek letter. Such schemes are useful in computer system languages,
playing the same role as mnemonics. All other things being equal, it is preferable for a
computer command to be given as an abbreviation of the function itself: "dir" should
be a command for consulting a directory file, "del" should be a command to delete a
file, etc.

We have accepted the suggestion by H. C. van de Hulst and have decided to throw
on the scrap pile one traditional symbol: m — o/k will be replaced by the symbol a
for single-scattering albedo.

This fuss over symbols and nomenclature may be considered to be much ado about
nothing. We would agree that there are many more serious issues. What is important
is to define the terms and to be at least consistent within the same article (or series of
articles by the same authors). We can only promise that our own book will be internally
consistent (and if there is ever another book, to continue that same consistency).

In this appendix we display our system of symbols, along with their units that are in
common use. Note that some symbols are unavoidably shared by more than one term.
However, because the quantities represented are sufficiently different, and appear in
different contexts, confusion should rarely occur. We have not attempted to list all the
various subscripts and superscripts attached to the basic quantities. Hopefully these
will be obvious from the context. A few examples follow: "s" refers to "specular"
as in specular reflection (but when attached to a temperature refers to the surface
value); "d" refers to "diffuse"; "L" refers to "Lambertian" reflection; "i" refers to the
"/th" molecular species, etc. We have attempted to avoid double subscripts whenever
possible.

It should also be noted that frequency v, wavelength A,, or wavenumber v are
used as subscripts when the quantity is per unit frequency, or per unit wavelength,
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for example, Iv or Fv. However, when it is only a function of frequency, we do not

use the subscript, but denote it as a functional dependence, for example r (v). We use

two notations for averaging: the overbar symbol (") refers to angular (for example,

7y) or global averages (for example p), whereas angle brackets (()) denote frequency

or ensemble averaging. It should be noted that esu refers to the electrostatic unit of

charge. Finally, Table A.I contains all the symbols used more than once in the text.

Table A.I. Glossary of symbols.

Symbol

h
h
/+, / -

h
Sv

A.,A.o

Fy

Fv

F
F s

1

uv
H
W
A

A,7

&>

V

Name

intensity, radiance
average intensity, radiance
half-range intensity, radiance
nth Legendre polynomial of intensity
source function
first-order source function
wavelength, wavelength in a vacuum
feedback parameter
vector flux, irradiance
flux, irradiance
half-range flux, irradiance
frequency-integrated flux, irradiance
extraterrestrial solar flux, irradiance
incident isotropic intensity
spectral energy density
heating rate
warming rate
area
spontaneous emission coefficient (j < i)

induced absorption (j > 1) or emission
coefficient (j < i)

solid angle
angular frequency

frequency

Units

W - m - ^ H z ^ s r " 1

W-m"2 -Hz^sr"1

Wm^-Hz-^r"1

W-m^-Hz^r4

W-m"2 -Hz-^r"1

Wm^-Hz-^r"1

/xm or nm

W • m~2 - Hz"1

W - m"2 - Hz"1

W • m~2 • Hz"1

W-m"2

W-m"2

Wm^-Hz-^r"1

J - m~3 • Hz"1

W-m"3

K- day"1

m2

s"1

m2 • W"1

sr

s"1

cycles • s"1 or Hz"1

Q\ Q propagation unit vector in (out)
Qx, Qy, Qz rectangular components of Q

^o (0o, 0O) solar beam direction
@ scattering angle
0, 0o azimuthal angle, solar azimuthal angle
0, #o polar angle, solar polar angle

/ x , IJLQ |cos0|, |cos0ol

U COS0

jl average cosine over a hemisphere
Bv Planck function
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Table A.I (cont.)

Symbol

aB

T

P
n
k(v)
OT(V)

a(v)
a

km,am,am

kn^n,an

s
r(v)
^aO), Ts(y)

TS(V)

jv

P
a

XI
H
H

Ecol

R

R*
M
M,u
M

8
P,Pi
cp

p(-ft', Q)
P(-2TT, Q)

p(-ft,27T)

T(-&, -Q)

T(-Q\ -lit)
T(-2TT, -Cl)

Poo
%(-Q, -Q)

Name

Stefan-Boltzmann constant

temperature
mass density
concentration or number density
extinction coefficient
scattering coefficient
absorption coefficient
climate sensitivity
mass extinction, scattering

absorption coefficients
extinction, scattering, absorption

cross sections
distance along a ray
extinction optical depth
absorption, scattering optical depths
optical path (line of sight)
emission coefficient
scattering phase function
single-scattering albedo

Legendre polynomial moment of p

scale height
Chandrasekhar's H-function
column-averaged thermal energy
Boltzmann's constant
molar gas constant
specific gas constant
column number, column density
column mass, column mass density
molecular weight
acceleration of gravity

gas pressure, partial pressure
specific heat at constant pressure

bidirectional reflectance function (BDRF)
hemispherical-directional reflectance

directional-hemispherical, flux reflectance,
or plane albedo

bidirectional transmittance
directional-hemispherical or flux transmittance
hemispherical-directional transmittance
flux reflectance of a semi-infinite atmosphere
beam transmittance
diffuse transmittance

Units

W • m"2 • K- 4

K,°C
kg • m~3

m"3

m"1

m"1

m"1

K • W- 1 • m2 • s
m2 • kg"1

m2

W • m"2 • Hz"1 • sr"1

sr-1

km

J

IK"1

J • K"1 • kmol"1

J • K"1 • kg"1

m" 2

kg • m"2

kg • kmol"1

m • s~2

N-ni"2

J • kg"1 • K-1
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Table A.I (cont.)

Symbol

rF
Ps(0)

Pd(-&\ £i)
PL

p"

€ F , € ( 2 7 T )

orF, or(-27r)
6F, 6(27T)

a

A(v)

»7(v)
8(x)

stj

En

A
AT
pm

Pi
r

q
G

g
jm

P
b

g, xi
V

z,zo
Na

N
w
wm

h
a
V-
V

Name

flux transmittance
specular reflection function
diffuse reflection function

Lambert reflectance
spherical or Bond albedo
directional absorptance
directional emittance
flux emittance

volume emittance
flux absorptance
flux emittance
backscattering or phase angle
action spectrum
quantum yield
Dirac 8 -function
Kronecker delta
planetary, (Earth) solar distance
exponential integral of order n
inverse thermalization length
normalized associated Legendre polynomial
associated Legendre polynomial
Legendre polynomial
diffusivity factor (= jl~l)
Hopf function

greenhouse effect
greenhouse factor
azimuthal intensity component in a Legendre

polynomial expansion
azimuthally averaged phase function
backscattering fraction
asymmetry factor

volume
height, height of reference level
Avogadro's number
radius of planet, radius of Earth
radiative forcing

volume mixing ratio or molar fraction
mass mixing ratio
ocean depth
conductivity
gradient operator
wavenumber

Units

X " 1

km or AU

W m ~ 2

W • m~2 • sr"1

m3

m"3

km
W-m~2

gm • gm"1

m

m"1

cm"1
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Table A.I {cont.)

Symbol Name Units

c, co

/

m

mr, mi

£

h

mfp

fv photon distribution function phot • m~3 • s"1 • Hz"1 • sr"

p(Et)

Q
<S>(k)

COS§;

J

D

P_
T
a

V(x,l-
V{x)

Pn
Ch
T(n)

V

Q

f
Q
Q
Q

speed of light, in vacuum

index of refraction (m = mT + i • m\)
real, imaginary parts of index of

refraction
intensity components of plane wave
radiative energy
Planck's constant
molecular polarizability
photon mean free path
photon distribution function
Gibbs distribution of energy E{
partition function
density of states with wavenumber k
term in Lommel-Seeliger model
inelastic collisional cross section
elastic, inelastic excitation coefficients
direction cosine in ith direction
photolysis rate
UV dose rate
spherical (Bond) albedo
spherical transmittance
spherical absorptance
directional escape probability
hemispherical escape probability
escape probability after n scatterings
Chapman function
Lamda iteration operator for rath-order

scattering
Lambert reflectance, (flux) reflectance
denominator in two-stream solution
Hopf function
point-direction gain
climate gain
temperature-dependent climate parameter
extinction efficiency
solar insolation
ice crystal width, length
Chandrasekhar X- and F-functions
quadrature weight
eigenvalue of discrete-ordinate solution
energy of the /th quantum state

m • s l

W m " 2

J
J s
esu • m
m
phot • m~3 • s"1

J"1

m"3 • s2

cm3 • s"1

m"3 • s"1

W • n r 3 • s"1

sr"1

J-m-2

m

J
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Table A.I (cont.)

Symbol Name Units

E(v)

AB, AB*

<TC, oe\

km

k[n

/MB(V)

gj
tco\\

O(v)
k* (y)
Ctj
J

€v

g(k)
k(g)
f(k)
£, C~x

u
p
G, F,T

coe, coexe

pi

S
C
/
Bv, Br

Dv

v
Sn, S
Y
me

e
V

(«b)
(7b)

instantaneous spectral radiative energy
ground-state diatomic, excited molecule
collision, elastic cross section
collision excitation cross section
deexcitation or quenching cross section
Maxwell-Boltzmann distribution
concentration, or volume density of 7 th

quantum state

degeneracy, or statistical weight of 7 th state
collisional lifetime of quantum state
normalized absorption line profile
absorption coefficient in LTE
collisional excitation coefficient per molecule
absorption profile-weighted mean intensity
volume emittance
cumulative ^-distribution
inverse ^-distribution
^-distribution function
Laplace, inverse Laplace transform
scaled mass path
scaled pressure along path
vibrational, rotational, electronic term values
vibrational coefficients for electronic term values
diffuse extinction coefficient for upward flux
diffuse extinction coefficient for downward flux
diffuse extinction coefficient for mean intensity
remotely sensed reflectance
specific gravity of liquid
solar constant

molecular angular momentum
molecular moment of inertia
vibrational, rotational constant
anharmonic rotational constant
wavenumber

line strength per molecule, per unit mass
natural damping coefficient
electron mass
electron charge
bulk polarization

Lorentz, Doppler, Voigt half-width
mean beam absorptance
mean beam transmittance

m2

m2

- l
s-m

s
Hz"1

m"1

s"1

Wm - 2

cm

kg • m"2

N-m"2

cm"1

cm
m-1

- 1

- 1

- 1

w-
kg-
kg-
cm"
cm"

cm"
m2

s"1

kg
esu
esu
Hz

m"2

9

nr • s
m2

-l

-l

•kg-1

•m-2
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Table A.I (cont.)

Symbol

rF
w
P(S)
PiiT)
d

gik)
CSF
CF
CF
Fd, rm, r a

Name

flux transmittance
equivalent width (wavenumbers)
line-strength distribution of S
fraction of Planck flux within the iih band
average line width over a spectral interval
^-distribution
cumulative ^-distribution
cooling-to-space function
Chapman function
Cloud forcing
lapse rate (dry, moist, environmental)

Units

cm"1

k g m 2

cm"1

k g m 2

W-m"2

K-km"1



Appendix B

Physical Constants

Table B.I. Physical constants.61

Physical constant Value

Stefan-Boltzmann constant, CTB
speed of light in a vacuum, co

Boltzmann's constant, &B
Planck's constant, h
Loschmidt's number, n^
Avogadro's number, N&

molar gas constant, R
specific gas constant, Ra

mean molecular mass, M
standard surface pressure (1 bar)
standard temperature
standard density
atomic mass unit (amu)
specific heat of dry air (STP), cp

mass of an electron, me

charge of an electron, e
permittivity of a vacuum, e0

astronomical unit, r® or AU
acceleration of gravity (sea level, 45° lat),
solar constant, S
mean Earth radius, R®

5.67032 x 10-8 W • m~2 • K~4

2.997925 x 108 m • s"1

1.380622 x 10-23 J-K-1

6.626196 x 10"34 J • s
2.686754 x 1025 mol • m"3

6.022169 x 1026 mol • kmol"l

8.31434 x 103 J-KT1 • kmol"l

2.8700 x 102 J • K"1 • kg"1

28.964 kg-kmol"1

1.01325 x 105 Pa
0°C, 273.16 K
1.2925 kg- m~3

1.660531 x 10-27 kg
1.006 x 103 J-kg"1 -K"1

9.109558 x 10"31 kg
1.602192 x 10~19 coulombs (C)
8.854199 x 10"12 C2 • N"1 • m~2

1.4960 x 1011 m
9.80616 m • s~2

l,368=t5W-m-2

6,371 km

aSource: B. N. Taylor, W. H. Parker, and D. N. Langenberg, "Determination of e/h, us-
ing macroscopic quantum phase coherence in superconductors: Implications for quantum
electrodynamics and the fundamental physical constants," Reviews of Modern Physics, 41,
375-496, 1969.
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Appendix C

Model Atmospheres

Reference atmospheric models have long been used for a variety of purposes: validation
of theoretical atmospheric models, intercomparison of radiation codes, and design and
mission planning for aerospace systems, to mention a few applications. Standard atmo-
spheres typically provide numerical values for the thermodynamic variables (pressure,
temperature, density, etc.) and concentrations of minor species.

Atmospheric models may be considered to be the result of an ingestion of the
best data sets available at the time; consequently, the older models (such as the 1976
U. S. Standard Atmosphere) do not represent the current state-of-the-art knowledge.
For our purposes they are most useful for comparing the output of radiation codes.1

In Tables C.I to C.6 we present six model atmospheres, which contain, among other
variables, the temperature and constituent concentrations for H2O, CO2, O3, and NO2.
With the exception of CH4 (not listed) these five species are the most important infrared-
active gases in Earth's atmosphere. It should be mentioned that the tabulated values
of H2O and NO2 in the upper stratosphere and mesosphere are not to be trusted as
representative of the Earth's upper regions, since these models were created more than
twenty-five years ago.2 Modern remote sensing measurements of these constituents
provide much more accurate values of H2O, O3, and NO2,3 as well as other species,
such as NO and O.

1 For example, see R. G. Ellingson and Y. Fouquart, "The intercomparison of radiation codes in
climate models: An overview," /. Geophys. Res., 96, 8925-27, 1991.

2 McClatchey, R. A., R. W. Fenn, J. E. A. Selby, F. E. Volz, and J. S. Garing, "Optical properties of
the atmosphere," Rep. AFCRL-71-0279, 85 pp., Air Force Cambridge Res. Lab., Bedford, MA,
1973.

3 Rees, D., J. J. Barnett and K. Labitzke (eds.), COSPAR International Reference Atmosphere,
Part II: Middle Atmosphere Models in Advances in Space Research, 10, No. 12, 328-34,
Permagon Press, Elsevier Science Inc., Tarrytown, NY, 1990.
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Tab led . AFGL atmospheric constituent profiles, U.S. standard atmosphere 1976 (AFGL-TR-86-0110).

z(km)

100.000
95.000
90.000
85.000
80.000
75.000
70.000
65.000
60.000
55.000
50.000
47.500
45.000
42.500
40.000
37.500
35.000
32.500
30.000
27.500
25.000
24.000

23.000
22.000
21.000
20.000
19.000
18.000
17.000
16.000
15.000
14.000
13.000
12.000
11.000
10.000
9.000
8.000
7.000
6.000
5.000
4.000
3.000
2.000
1.000
0.000

p(mb)

0.00032
0.00076
0.00184
0.00446
0.01050
0.02400
0.05220
0.10900
0.21900
0.42500
0.79780
1.09000
1.49100
2.06000
2.87100
4.15000
5.74600
8.01000

11.97000
17.43000
25.49000
29.72000

34.67000
40.47000
47.29000
55.29000
64.67000
75.65000
88.50000

103.50000
121.10000
141.70000
165.80000
194.00000
227.00000
265.00000
308.00000
356.50000
411.10001
472.20001
540.50000
616.59998
701.20001
795.00000
898.79999

1013.00000

T-(K)

195.100
188.400
186.900
188.900
198.600
208.400
219.600
233.300
247.000
260.800
270.700
270.600
264.200
257.300
250.400
242.900
236.500
230.000
226.500
224.000
221.600
220.600

219.600
218.600
217.600
216.700
216.700
216.700
216.700
216.700
216.700
216.700
216.700
216.700
216.800
223.300
229.700
236.200
242.700
249.200
255.700
262.200
268.700
275.200
281.700
288.200

air (cm 3)

1.187967E+13
2.921760E+13
7.130506E+13
1.710073E+14
3.829322E+14
8.341139E+14
1.721670E+15
3.383947E+15
6.421832E+15
1.180302E+16
2.134605E+16
2.917498E+16
4.087489E+16
5.798815E+16
8.304447E+16
1.237464E+17
1.759731E+17
2.522415E+17
3.827699E+17
5.635873E+17
8.331283E+17
9.757872E+17

1.143492E+18
1.340895E+18
1.574064E+18
1.847990E+18
2.161503E+18
2.528494E+18
2.957987E+18
3.459340E+18
4.047595E+18
4.736121E+18
5.541629E+18
6.484174E+18
7.583652E+18
8.595457E+18
9.711841E+18
1.093179E+19
1.226845E+19
1.372429E+19
1.531006E+19
1.703267E+19
1.890105E+19
2.092331E+19
2.310936E+19
2.545818E+19

O3 (cm-3)

4.756001E+06
2.046800E+07
4.995200E+07
8.555000E+07
1.149600E+08
2.086750E+08
5.169000E+08
2.370200E+09
7.068600E+09
2.125800E+10
6.621600E+10
1.197200E+11
2.147250E+11
3.597860E+11
6.066300E+11
9.656401E+11
1.380096E+12
1.860945E+12
2.509799E+12
3.272892E+12
4.266877E+12
4.518265E+12

4.768192E+12
4.894274E+12
4.769100E+12
4.768571E+12
4.390890E+12
4.015110E+12
3.513520E+12
3.012286E+12
2.634525E+12
2.383717E+12
2.132992E+12
2.008345E+12
1.630876E+12
1.129443E+12
8.910379E+11
6.526804E+11
6.151052E+11
5.645776E+11
5.772576E+11
5.771448E+11
6.274337E+11
6.778279E+11
6.779402E+11
6.777680E+11

O2(cm-3)

1.902400E+12
5.263200E+12
1.355840E+13
3.422000E+13
8.008879E+13
1.744523E+14
3.601070E+14
7.076740E+14
1.343034E+15
2.468290E+15
4.464240E+15
6.102800E+15
8.548099E+15
1.212827E+16
1.736790E+16
2.587420E+16
3.680490E+16
5.275160E+16
8.004700E+16
1.178760E+17
1.742433E+17
2.040885E+17

2.390960E+17
2.804780E+17
3.291750E+17
3.864410E+17
4.520670E+17
5.287700E+17
6.186399E+17
7.235580E+17
8.464500E+17
9.904510E+17
1.159114E+18
1.356201E+18
1.586101E+18
1.797818E+18
2.031271E+18
2.286460E+18
2.566520E+18
2.869570E+18
3.201880E+18
3.561360E+18
3.952190E+18
4.376460E+18
4.834170E+18
5.325320E+18

H2O(cm-3)

4.756001E+06
1.578960E+07
6.065600E+07
2.275630E+08
7.855600E+08
2.358028E+09
6.030500E+09
1.422120E+10
3.052350E+10
6.023100E+10
1.116060E+11
1.533000E+11
2.137025E+11
2.988545E+11
4.175775E+11
6.128100E+11
8.628900E+11
1.217830E+12
1.809675E+12
2.580300E+12
3.689123E+12
4.198950E+12

4.804800E+12
5.455230E+12
6.260625E+12
7.211100E+12
8.327550E+12
9.677249E+12
1.139600E+13
1.367490E+13
2.025000E+13
2.808805E+13
6.017410E+13
1.236803E+14
2.741906E+14
6.017959E+14
1.538518E+15
4.011698E+15
7.024160E+15
1.270574E+16
2.140204E+16
3.677232E+16
6.017162E+16
9.697315E+16
1.404222E+17
1.973426E+17

CO2 (cm"3)

2.318550E+09
7.894800E+09
2.212160E+10
5.475200E+10
1.256896E+11
2.754510E+11
5.685899E+11
1.117380E+12
2.120580E+12
3.897300E+12
7.048799E+12
9.636000E+12
1.349700E+13
1.914990E+13
2.742300E+13
4.085400E+13
5.811300E+13
8.329200E+13
1.263900E+14
1.861200E+14
2.751210E+14
3.222450E+14

3.775200E+14
4.428600E+14
5.197500E+14
6.101700E+14
7.137900E+14
8.349000E+14
9.768000E+14
1.142460E+15
1.336500E+15
1.563870E+15
1.830180E+15
2.141370E+15
2.504370E+15
2.838660E+15
3.207270E+15
3.610200E+15
4.052400E+15
4.530900E+15
5.055600E+15
5.623200E+15
6.240300E+15
6.910200E+15
7.632900E+15
8.408400E+15

NO2 (cm"3)

2.021300E+03
5.146240E+03
1.305888E+04
3.285120E+04
7.740640E+04
1.794605E+05
3.980130E+05
8.566580E+05
1.831410E+06
4.003590E+06
9.462480E+06
1.944720E+07
4.703500E+07
1.259251E+08
3.348930E+08
7.749880E+08
1.282008E+09
1.819804E+09
2.359280E+09
2.712840E+09
3.118038E+09
2.988090E+09

2.951520E+09
2.898720E+09
2.772000E+09
2.570110E+09
2.292780E+09
1.950630E+09
1.536240E+09
1.104378E+09
6.925500E+08
3.544772E+08
2.467970E+08
2.044035E+08
1.988318E+08
2.047276E+08
2.254808E+08
2.516200E+08
2.824400E+08
3.157900E+08
3.523600E+08
3.919200E+08
4.349300E+08
4.816201E+08
5.319900E+08
5.860400E+08
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Table C.2. AFGL atmospheric constituent profiles, tropical (AFGL-TR-86-0110).

z(km)

100.000
95.000
90.000
85.000
80.000
75.000
70.000
65.000
60.000
55.000
50.000
47.500
45.000
42.500
40.000
37.500
35.000
32.500
30.000
27.500
25.000
24.000
23.000
22.000
21.000
20.000
19.000
18.000
17.000
16.000
15.000
14.000
13.000
12.000
11.000
10.000
9.000
8.000
7.000
6.000
5.000
4.000
3.000
2.000
1.000
0.000

p(mb)

0.00029
0.00069
0.00172
0.00440
0.01100
0.02600
0.05800
0.12100
0.23900
0.45600
0.85400
1.16000
1.59000
2.20000
3.05000
4.26000
6.00000
8.52000

12.20000
17.63000
25.70000
30.00000
35.00000
40.90000
48.00000
56.50000
66.60000
78.90000
93.70000

111.00000
132.00000
156.00000
182.00000
213.00000
247.00000
286.00000
329.00000
378.00000
432.00000
492.00000
559.00000
633.00000
715.00000
805.00000
904.00000

1013.00000

T-(K)

190.700
184.300
177.000
177.100
184.800
201.800
218.900
236.000
253.100
263.400
270.200
269.600
264.800
259.400
254.000
248.500
243.100
237.700
232.300
227.000
221.400
219.200
217.000
214.600
210.700
206.700
202.700
198.800
194.800
197.000
203.700
210.300
217.000
223.600
230.100
237.000
243.600
250.300
257.000
263.600
270.300
277.000
283.700
287.700
293.700
299.700

air (cm 3)

1.097638E+13
2.703802E+13
7.038287E+13
1.799476E+14
4.311244E+14
9.331769E+14
1.919084E+15
3.713515E+15
6.839393E+15
1.253894E+16
2.289203E+16
3.116377E+16
4.349016E+16
6.142774E+16
8.697170E+16
1.241638E+17
1.787632E+17
2.596105E+17
3.803842E+17
5.625204E+17
8.407510E+17
9.912712E+17
1.168208E+18
1.380402E+18
1.650017E+18
1.979793E+18
2.379755E+18
2.874567E+18
3.483874E+18
4.081019E+18
4.693478E+18
5.372756E+18
6.074680E+18
6.899532E+18
7.774853E+18
8.740364E+18
9.782062E+18
1.093812E+19
1.217482E+19
1.351859E+19
1.497882E+19
1.655144E+19
1.825402E+19
2.026599E+19
2.229340E+19
2.448130E+19

O3 (cm"3)

4.392000E+06
1.353000E+07
3.662360E+07
9.005000E+07
1.423620E+08
1.680840E+08
5.760000E+08
2.415400E+09
7.528400E+09
2.259000E+10
6.414800E+10
1.076055E+11
1.958400E+11
3.626730E+11
6.527249E+11
1.093840E+12
1.735330E+12
2.559030E+12
3.540510E+12
4.390620E+12
4.543020E+12
4.265600E+12
3.974600E+12
3.314400E+12
2.971800E+12
2.773400E+12
2.261950E+12
1.438500E+12
8.715000E+11
5.897296E+11
5.899431E+11
5.645850E+11
5.646784E+11
5.395476E+11
5.144914E+11
4.893947E+11
4.894500E+11
4.895745E+11
5.143614E+11
5.397117E+11
5.646733E+11
5.897016E+11
6.401807E+11
6.777576E+11
7.027649E+11
7.029050E+11

O2 (cm-3)

1.756800E+12
4.870800E+12
1.338170E+13
3.602000E+13
9.016260E+13
1.951642E+14
4.012800E+14
7.766440E+14
1.430396E+15
2.622950E+15
4.788190E+15
6.518710E+15
9.095680E+15
1.284723E+16
1.818927E+16
2.597870E+16
3.739010E+16
5.429820E+16
7.956630E+16
1.176461E+17
1.758317E+17
2.073280E+17
2.443210E+17
2.886290E+17
3.450590E+17
4.140290E+17
4.976290E+17
6.012930E+17
7.285740E+17
8.535560E+17
9.816730E+17
1.123793E+18
1.270511E+18
1.442936E+18
1.626020E+18
1.828123E+18
2.045901E+18
2.288550E+18
2.545620E+18
2.827770E+18
3.132910E+18
3.461040E+18
3.818430E+18
4.238520E+18
4.662790E+18
5.120500E+18

H2O(cm-3)

4.392000E+06
1.461240E+07
5.986550E+07
2.341300E+08
9.059399E+08
3.081540E+09
8.640000E+09
2.006640E+10
4.106400E+10
7.530000E+10
1.374600E+11
1.840210E+11
2.480640E+11
3.380850E+11
4.525560E+11
6.090700E+11
8.229400E+11
1.117140E+12
1.522800E+12
2.026440E+12
2.734225E+12
3.174400E+12
3.390100E+12
3.866800E+12
4.375150E+12
5.150600E+12
6.190600E+12
7.911750E+12
1.010940E+13
1.225200E+13
1.878800E+13
3.344494E+13
6.018210E+13
2.005612E+14
5.684068E+14
1.672426E+15
4.011532E+15
8.362515E+15
1.570002E+16
2.842653E+16
5.015654E+16
7.354296E+16
1.571220E+17
3.110952E+17
4.348219E+17
6.352850E+17

CO2 (cm"3)

2.141100E+09
7.306201E+09
2.183330E+10
5.763200E+10
1.414992E+11
3.081540E+11
6.336000E+11
1.226280E+12
2.258520E+12
4.141500E+12
7.560300E+12
1.029270E+13
1.436160E+13
2.028510E+13
2.871990E+13
4.101900E+13
5.903700E+13
8.573400E+13
1.256310E+14
1.857570E+14
2.776290E+14
3.273600E+14
3.857700E+14
4.557300E+14
5.448300E+14
6.537300E+14
7.857300E+14
9.494100E+14
1.150380E+15
1.347720E+15
1.550010E+15
1.774410E+15
2.006070E+15
2.278320E+15
2.567400E+15
2.886510E+15
3.230370E+15
3.613500E+15
4.019400E+15
4.464900E+15
4.946700E+15
5.464800E+15
6.029100E+15
6.692400E+15
7.362299E+15
8.085000E+15

NO2 (cm"3)

1.866600E+03
4.762560E+03
1.288869E+04
3.457920E+04
8.714280E+04
2.007670E+05
4.435200E+05
9.401481E+05
1.950540E+06
4.254450E+06
1.014913E+07
2.077254E+07
5.004800E+07
1.333899E+08
3.507309E+08
7.78118OE+O8
1.302392E+09
1.873158E+09
2.345112E+09
2.707549E+09
3.146462E+09
3.035520E+09
3.016020E+09
2.982960E+09
2.905760E+09
2.753590E+09
2.523860E+09
2.218167E+09
1.809234E+09
1.302796E+09
8.031870E+08
4.021996E+08
2.705155E+08
2.174760E+08
2.038360E+08
2.081786E+08
2.271048E+08
2.518500E+08
2.801400E+08
3.111900E+08
3.447700E+08
3.808800E+08
4.202100E+08
4.664400E+08
5.131300E+08
5.635000E+08
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Table C.3. AFGL atmospheric constituent profiles, midlatitude summer (AFGL-TR-86-0110).
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z(km)

100.000
95.000
90.000
85.000
80.000
75.000
70.000
65.000
60.000
55.000
50.000
47.500
45.000
42.500
40.000
37.500
35.000
32.500
30.000
27.500
25.000
24.000
23.000
22.000
21.000
20.000
19.000
18.000
17.000
16.000
15.000
14.000
13.000
12.000
11.000
10.000
9.000
8.000
7.000
6.000
5.000
4.000
3.000
2.000
1.000
0.000

P(mt>)

0.00026
0.00062
0.00164
0.00448
0.01200
0.03000
0.06700
0.13900
0.27200
0.51500
0.95100
1.29000
1.76000
2.41000
3.33000
4.64000
6.52000
9.30000

13.20000
19.07000
27.70000
32.20000
37.60000
43.70000
51.00000
59.50000
69.50000
81.20000
95.00000

111.00000
130.00000
153.00000
179.00000
209.00000
243.00000
281.00000
324.00000
372.00000
426.00000
487.00000
554.00000
628.00000
710.00000
802.00000
902.00000

1013.00000

r(K)

190.500
178.300
165.000
165.100
174.100
196.100
218.100
240.100
257.100
269.300
275.700
275.200
269.900
263.700
257.500
251.300
245.200
239.000
233.700
228.450
225.100
223.900
222.800
221.600
220.400
219.200
217.900
216.800
215.700
215.700
215.700
215.700
215.800
222.300
228.800
235.300
241.700
248.200
254.700
261.200
267.200
273.200
279.200
285.200
289.700
294.200

air (cm 3)

9.809267E+12
2.538870E+13
7.198993E+13
1.965363E+14
4.992227E+14
1.108040E+15
2.225005E+15
4.193093E+15
7.662644E+15
1.385105E+16
2.498363E+16
3.395104E+16
4.723040E+16
6.619401E+16
9.366532E+16
1.337326E+17
1.925923E+17
2.818363E+17
4.090977E+17
6.046045E+17
8.912839E+17
1.041630E+18
1.222319E+18
1.428313E+18
1.675986E+18
1.966021E+18
2.310146E+18
2.712742E+18
3.189961E+18
3.727217E+18
4.365209E+18
5.137515E+18
6.007772E+18
6.809554E+18
7.692404E+18
8.649604E+18
9.709126E+18
1.085558E+19
1.211414E+19
1.350416E+19
1.501707E+19
1.664910E+19
1.841852E+19
2.036745E+19
2.255121E+19
2.493898E+19

O3 (cm"3) O2 (cm-3)

3.926400E+06 1 .570560E+12
1.778700E+07 4.573800E+12
5.403000E+07 1
1.121190E+08 :
9.992000E+07 1
2.107100E+08 :
8.908001E+08 ^
3.356800E+09 i
9.968400E+09 1
2.494800E+10 :
7.000000E+10 f
1.189300E+11
2.126700E+11 <
3.908160E+11 ]
7.076615E+11 1

.368760E+13
S.934000E+13
.044164E+14

'.317810E+14
L654430E+14
S.769640E+14
.602612E+15

'.896740E+15
S.225000E+15
M01820E+15
J.877339E+15
.384416E+16
.958957E+16

1.164060E+12 2.796420E+16
1.715030E+12 4.027430E+16
2.284200E+12 f
2.865800E+12 i
3.630000E+12 1
4.281120E+12 ]
4.168000E+12 :
4.158200E+12 :
4.144100E+12 :
4.024800E+12 :
3.934000E+12 <•
3.468000E+12 <
2.715000E+12 i
2.234400E+12 (
2.238000E+12 '
2.184000E+12 <
2.262040E+12
1.803600E+12
1.519522E+12
1.380251E+12
1.128742E+12
1.079448E+12 :
9.910836E+11 :
9.409968E+11 ;
8.657207E+11 :
8.284536E+11 :
8.031786E+11 :
7.781146E+11 :

5.8938OOE+16
S.556460E+16
.264450E+17
.864071E+17

'.177780E+17
'.556070E+17
'.986610E+17
5.504930E+17
U11030E+17
1.832080E+17
5.674350E+17
5.671280E+17
7.795700E+17
J.129120E+17
L.074469E+18
L.256508E+18
L424126E+18
L.608882E+18
L.809104E+18
'.030644E+18
J.269740E+18
J.533080E+18
L823590E+18
5.14127OE+18
5.481940E+18
3.85187OE+18

7.528372E+11 4.259420E+18
7.531609E+11 4.717130E+18
7.530432E+11 i5.216640E+18

H2O(cm-3)

3.926400E+06
1.372140E+07
6.123400E+07
2.616110E+08
1.049160E+09
3.271550E+09
8.239900E+09
1.846240E+10
3.834000E+10
7.415099E+10
1.375000E+11
1.868900E+11
2.575670E+11
3.510720E+11
4.780230E+11
6.690000E+11
9.538649E+11
1.367700E+12
1.924180E+12
2.692250E+12
3.745980E+12
4.168000E+12
4.708550E+12
5.144399E+12
5.785650E+12
6.491100E+12
7.398400E+12
8.552250E+12
1.021440E+13
1.230900E+13
1.485120E+13
2.570500E+13
4.809600E+13
2.006042E+14
7.356209E+14
2.139763E+15
4.011736E+15
7.019904E+15
1.236240E+16
2.040010E+16
3.344175E+16
6.352458E+16
1.102851E+17
1.972784E+17
3.110146E+17
4.682496E+17

CO2(cm-3)

1.914120E+09
6.860700E+09
2.233240E+10
6.294400E+10
1.638688E+11
3.659700E+11
7.349100E+11
1.384680E+12
2.530440E+12
4.573800E+12
8.250000E+12
1.121340E+13
1.559580E+13
2.185920E+13
3.093090E+13
4.415400E+13
6.359100E+13
9.306000E+13
1.351020E+14
1.996500E+14
2.943270E+14
3.438600E+14
4.035900E+14
4.715700E+14
5.534100E+14
6.491100E+14
7.629600E+14
8.959500E+14
1.053360E+15
1.230900E+15
1.441440E+15
1.696530E+15
1.983960E+15
2.248620E+15
2.540340E+15
2.856480E+15
3.206280E+15
3.583800E+15
3.999600E+15
4.458300E+15
4.959900E+15
5.497800E+15
6.081900E+15
6.725400E+15
7.448100E+15
8.236800E+15

NO2 (cm~3)

1.668720E+03
4.472160E+03
1.318332E+04
3.776640E+04
1.009192E+05
2.384350E+05
5.144370E+05
1.061588E+06
2.185380E+06
4.698540E+06
1.107500E+07
2.263068E+07
5.434900E+07
1.437408E+08
3.777319E+08
8.375880E+08
1.402856E+09
2.033220E+09
2.521904E+09
2.910050E+09
3.335706E+09
3.188520E+09
3.155340E+09
3.086640E+09
2.951520E+09
2.734130E+09
2.450720E+09
2.093265E+09
1.656648E+09
1.189870E+09
7.469280E+08
3.845468E+08
2.675340E+08
2.146410E+08
2.016876E+08
2.060128E+08
2.254112E+08
2.497800E+08
2.787600E+08
3.107300E+08
3.456900E+08
3.831800E+08
4.238900E+08
4.687400E+08
5.191100E+08
5.740800E+08
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TableC.4. AFGLatmosphericconstituentprofiles,midlatitudewinter(AFGL-TR-86-0110).

z(km)

100.000
95.000
90.000
85.000
80.000
75.000
70.000
65.000
60.000
55.000
50.000
47.500
45.000
42.500
40.000
37.500
35.000
32.500
30.000
27.500
25.000
24.000
23.000
22.000
21.000
20.000
19.000
18.000
17.000
16.000
15.000
14.000
13.000
12.000
11.000
10.000
9.000
8.000
7.000
6.000
5.000
4.000
3.000
2.000
1.000
0.000

j?(mb)

0.00041
0.00088
0.00198
0.00456
0.01030
0.02220
0.04700
0.09500
0.18800
0.36200
0.68300
0.94000
1.29000
1.80000
2.53000
3.60000
5.18000
7.56000

11.10000
16.46000
24.40000
28.60000
33.40000
39.10000
45.80000
53.70000
62.80000
73.60000
86.10000

100.70000
117.80000
137.80000
161.10001
188.20000
219.89999
256.79999
299.29999
347.29999
401.60001
462.70001
531.29999
608.09998
693.79999
789.70001
897.29999

1018.00000

T(K)

218.600
208.300
199.500
199.800
210.100
220.400
230.700
240.900
250.800
260.600
265.700
265.100
258.500
250.800
243.200
235.500
227.900
220.400
217.400
215.500
215.200
215.200
215.200
215.200
215.200
215.200
215.200
215.700
216.200
216.700
217.200
217.700
218.200
218.700
219.200
219.700
225.700
231.700
237.700
243.700
249.700
255.700
261.700
265.200
268.700
272.200

air (cm 3)

1.349841E+13
3.049454E+13
7.188431E+13
1.653032E+14
3.550774E+14
7.295469E+14
1.475577E+15
2.856266E+15
5.429278E+15
1.006111E+16
1.861834E+16
2.568206E+16
3.614440E+16
5.198245E+16
7.534749E+16
1.107193E+17
1.646256E+17
2.484403E+17
3.698071E+17
5.532155E+17
8.212197E+17
9.625772E+17
1.124129E+18
1.315971E+18
1.541470E+18
1.807356E+18
2.113631E+18
2.471380E+18
2.884426E+18
3.365754E+18
3.928234E+18
4.584612E+18
5.347523E+18
6.232793E+18
7.266018E+18
8.465970E+18
9.604770E+18
1.085652E+19
1.223704E+19
1.375168E+19
1.541108E+19
1.722488E+19
1.920182E+19
2.156753E+19
2.418699E+19
2.708766E+19

O3 (cm-3)

5.404000E+06
2.441600E+07
5.755200E+07
9.097000E+07
8.171900E+07
1.825250E+08
4.726400E+08
1.571900E+09
5.433000E+09
1.711900E+10
5.123250E+10
9.509000E+10
1.663820E+11
3.069180E+11
5.202600E+11
7.977600E+11
1.169370E+12
1.690480E+12
2.257610E+12
3.100160E+12
4.191180E+12
4.527510E+12
4.837501E+12
5.136300E+12
5.400500E+12
5.246100E+12
4.864500E+12
4.451400E+12
4.040400E+12
3.704800E+12
3.537900E+12
3.670400E+12
3.764963E+12
3.263198E+12
2.635010E+12
2.007864E+12
1.506200E+12
1.128354E+12
9.666475E+11
8.031712E+11
7.278240E+11
6.149508E+11
6.150400E+11
6.148142E+11
6.776000E+11
7.531159E+11

O2(cm-3)

2.161600E+12
5.493600E+12
1.366860E+13
3.308000E+13
7.425770E+13
1.525909E+14
3.086930E+14
5.973220E+14
1.135497E+15
2.104630E+15
3.893670E+15
5.371300E+15
7.559530E+15
1.087218E+16
1.575860E+16
2.315720E+16
3.442230E+16
5.195740E+16
7.735090E+16
1.157024E+17
1.717562E+17
2.013297E+17
2.351250E+17
2.752530E+17
3.224870E+17
3.780810E+17
4.420350E+17
5.168570E+17
6.031740E+17
7.039120E+17
8.215790E+17
9.588920E+17
1.118359E+18
1.303533E+18
1.519639E+18
1.770648E+18
2.008908E+18
2.269740E+18
2.560250E+18
2.875840E+18
3.222780E+18
3.603160E+18
4.016980E+18
4.510220E+18
5.057800E+18
5.665990E+18

H2O (cm"3)

5.404000E+06
1.648080E+07
6.114900E+07
2.199820E+08
7.106000E+08
1.971270E+09
4.874100E+09
1.143200E+10
2.444850E+10
4.883950E+10
9.221850E+10
1.285000E+11
1.808500E+11
2.601000E+11
3.732300E+11
5.429200E+11
7.987950E+11
1.193280E+12
1.757975E+12
2.601920E+12
3.821370E+12
4.431180E+12
5.118751E+12
5.966010E+12
6.943500E+12
8.140500E+12
9.517500E+12
1.112850E+13
1.298700E+13
1.549280E+13
1.847570E+13
2.202240E+13
2.675500E+13
3.742200E+13
7.271000E+13
2.507712E+14
5.350039E+14
1.169622E+15
2.843225E+15
7.021728E+15
1.270762E+16
2.206720E+16
4.013136E+16
6.016504E+16
8.358680E+16
1.170068E+17

CO2 (cm~3)

2.634450E+09
8.240400E+09
2.230140E+10
5.292800E+10
1.165384E+11
2.409330E+11
4.874100E+11
9.431400E+11
1.792890E+12
3.323100E+12
6.147900E+12
8.481000E+12
1.193610E+13
1.716660E+13
2.488200E+13
3.656400E+13
5.435100E+13
8.203800E+13
1.221330E+14
1.826880E+14
2.711940E+14
3.178890E+14
3.712500E+14
4.346100E+14
5.091900E+14
5.969700E+14
6.979500E+14
8.160900E+14
9.523800E+14
1.111440E+15
1.297230E+15
1.514040E+15
1.765830E+15
2.058210E+15
2.399430E+15
2.795760E+15
3.171960E+15
3.583800E+15
4.042500E+15
4.540800E+15
5.088600E+15
5.689200E+15
6.342600E+15
7.121400E+15
7.986000E+15
8.946300E+15

NO2 (cm~3)

2.296700E+03
5.371520E+03
1.316502E+04
3.175680E+04
7.177059E+04
1.569715E+05
3.411870E+05
7.230740E+05
1.548405E+06
3.413730E+06
8.253090E+06
1.711620E+07
4.159550E+07
1.128834E+08
3.038620E+08
6.936080E+08
1.199016E+09
1.792406E+09
2.279816E+09
2.662816E+09
3.073532E+09
2.947698E+09
2.902500E+09
2.844720E+09
2.715680E+09
2.514510E+09
2.241900E+09
1.906683E+09
1.497834E+09
1.074392E+09
6.722010E+08
3.431824E+08
2.381195E+08
1.964655E+08
1.905002E+08
2.016336E+08
2.229984E+08
2.497800E+08
2.817500E+08
3.164800E+08
3.546600E+08
3.965200E+08
4.420600E+08
4.963400E+08
5.566000E+08
6.235300E+08
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Table C.5. AFGL atmospheric constituent profiles, subarctic summer (AFGL-TR-86-0110).

z(km)

100.000
95.000
90.000
85.000
80.000
75.000
70.000
65.000
60.000
55.000
50.000
47.500
45.000
42.500
40.000
37.500
35.000
32.500
30.000
27.500
25.000
24.000
23.000
22.000
21.000
20.000
19.000
18.000
17.000
16.000
15.000
14.000
13.000
12.000
11.000
10.000
9.000
8.000
7.000
6.000
5.000
4.000
3.000
2.000
1.000
0.000

/?(mb)

0.00025
0.00061
0.00161
0.00451
0.01250
0.03200
0.07100
0.14700
0.28800
0.53700
0.98700
1.34000
1.82000
2.48000
3.40000
4.72000
6.61000
9.40000

13.40000
19.23000
27.80000
32.28000
37.50000
43.60000
50.70000
59.00000
68.60000
79.80000
92.80000

108.00000
126.00000
146.00000
170.00000
197.70000
230.00000
267.70001
310.79999
359.00000
413.00000
474.00000
541.00000
616.00000
700.00000
792.90002
896.00000

1010.00000

r(K)

190.400
176.800
161.600
161.700
170.600
193.600
216.600
239.700
262.700
274.000
277.200
276.200
273.600
269.500
262.100
254.600
247.200
240.000
235.100
231.000
228.100
226.600
225.200
225.200
225.200
225.200
225.200
225.200
225.200
225.200
225.200
225.200
225.200
225.200
225.200
225.200
232.200
239.200
246.100
253.100
260.100
265.500
270.900
276.300
281.700
287.200

air (cm 3)

9.434015E+12
2.482574E+13
7.215997E+13
2.020125E+14
5.306923E+14
1.197172E+15
2.374169E+15
4.441822E+15
7.940434E+15
1.419501E+16
2.578907E+16
3.513929E+16
4.818004E+16
6.665071E+16
9.395583E+16
1.342751E+17
1.936711E+17
2.836798E+17
4.128230E+17
6.029470E+17
8.827370E+17
1.031776E+18
1.206076E+18
1.402264E+18
1.630615E+18
1.897560E+18
2.206315E+18
2.566530E+18
2.984637E+18
3.473499E+18
4.052416E+18
4.695657E+18
5.467545E+18
6.358433E+18
7.397267E+18
8.609776E+18
9.694616E+18
1.087039E+19
1.215487E+19
1.356432E+19
1.506498E+19
1.680459E+19
1.871548E+19
2.078497E+19
2.303737E+19
2.547116E+19

O3 (cm-3)

3.776400E+06
1.987200E+07
6.498900E+07
1.314300E+08
9.559800E+07
2.396000E+08
9.504000E+08
3.556000E+09
9.535200E+09
2.415700E+10
6.452500E+10
1.125120E+11
2.024820E+11
3.601800E+11
6.581400E+11
1.048320E+12
1.492260E+12
1.958910E+12
2.354670E+12
3.198020E+12
3.975300E+12
4.338600E+12
4.465900E+12
4.629900E+12
4.406400E+12
3.987900E+12
3.753600E+12
3.338400E+12
2.987000E+12
2.954600E+12
2.838500E+12
2.819400E+12
2.735500E+12
2.608830E+12
2.257610E+12
1.628424E+12
1.377542E+12
9.916032E+11
9.409409E+11
8.907348E+11
8.034624E+11
7.531996E+11
7.280351E+11
7.028321E+11
6.776700E+11
6.148188E+11

O2(cm-3)

1.510560E+12
4.471200E+12
1.371990E+13
4.044000E+13
1.109999E+14
2.503820E+14
4.965840E+14
9.290050E+14
1.660714E+15
2.969890E+15
5.394290E+15
7.348440E+15
1.007589E+16
1.394030E+16
1.965018E+16
2.808960E+16
4.050420E+16
5.933510E+16
8.633790E+16
1.261106E+17
1.846306E+17
2.158970E+17
2.522630E+17
2.932270E+17
3.410880E+17
3.968910E+17
4.614720E+17
5.367120E+17
6.242830E+17
7.264840E+17
8.474950E+17
9.820909E+17
1.143439E+18
1.329867E+18
1.547018E+18
1.800744E+18
2.027509E+18
2.273920E+18
2.541440E+18
2.836130E+18
3.151720E+18
3.515380E+18
3.914570E+18
4.347200E+18
4.817450E+18
5.327410E+18

H2O(cm-3)

3.776400E+06
1.341360E+07
6.137850E+07
2.689260E+08
1.062200E+09
3.234600E+09
7.840800E+09
1.778000E+10
3.575700E+10
6.891850E+10
1.277595E+11
1.758000E+11
2.410500E+11
3.335000E+11
4.701000E+11
6.720000E+11
9.690000E+11
1.419500E+12
2.065500E+12
2.986830E+12
4.328660E+12
5.010049E+12
5.829810E+12
6.734400E+12
7.670400E+12
8.735400E+12
9.936000E+12
1.104240E+13
1.209735E+13
1.390400E+13
1.622000E+13
1.879600E+13
2.434595E+13
3.817800E+13
9.844661E+13
3.653184E+14
1.261130E+15
4.347648E+15
9.692736E+15
1.804810E+16
3.344744E+I6
5.685160E+16
9.027860E+16
1.404000E+17
2.005581E+17
3.043506E+17

CO2 (cm"3)

1.840995E+09
6.706800E+09
2.238510E+10
6.470400E+10
1.742008E+11
3.953400E+11
7.840800E+11
1.466850E+12
2.622180E+12
4.689300E+12
8.517300E+12
1.160280E+13
1.590930E+13
2.201100E+13
3.102660E+13
4.435200E+13
6.395400E+13
9.368700E+13
1.363230E+14
1.991220E+14
2.915220E+14
3.408900E+14
3.983100E+14
4.629900E+14
5.385600E+14
6.266700E+14
7.286400E+14
8.474400E+14
9.857100E+14
1.147080E+15
1.338150E+15
1.550670E+15
1.805430E+15
2.099790E+15
2.442660E+15
2.843280E+15
3.201330E+15
3.590400E+15
4.012800E+15
4.478100E+15
4.976400E+15
5.550600E+15
6.180900E+15
6.864000E+15
7.606500E+15
8.411700E+15

NO2 (cm"3)

1.604970E+03
4.371840E+03
1.321443E+04
3.882240E+04
1.072822E+05
2.575700E+05
5.488560E+05
1.124585E+06
2.264610E+06
4.817190E+06
1.143383E+07
2.341656E+07
5.544150E+07
1.447390E+08
3.789006E+08
8.413440E+08
1.410864E+09
2.046919E+09
2.544696E+09
2.902354E+09
3.303916E+09
3.160980E+09
3.114060E+09
3.030480E+09
2.872320E+09
2.639610E+09
2.340480E+09
1.979928E+09
1.550253E+09
1.108844E+09
6.934050E+08
3.514852E+08
2.434595E+08
2.004345E+08
1.939324E+08
2.050608E+08
2.250632E+08
2.502400E+08
2.796800E+08
3.121100E+08
3.468400E+08
3.868600E+08
4.307900E+08
4.784000E+08
5.3O15OOE+O8
5.862700E+08
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Table C.6. AFGL atmospheric constituent profiles, subarctic winter (AFGL-TR-86-0110).

z(km)

100.000
95.000
90.000
85.000
80.000
75.000
70.000
65.000
60.000
55.000
50.000
47.500
45.000
42.500
40.000
37.500
35.000
32.500
30.000
27.500
25.000
24.000
23.000
22.000
21.000
20.000
19.000
18.000
17.000
16.000
15.000
14.000
13.000
12.000
11.000
10.000
9.000
8.000
7.000
6.000
5.000
4.000
3.000
2.000
1.000
0.000

p{mb)

0.00042
0.00091
0.00202
0.00450
0.00966
0.02000
0.04000
0.07900
0.15500
0.29900
0.57190
0.79000
1.11300
1.57000
2.24300
3.23000
4.70100
6.91000

10.20000
15.13000
22.56000
26.49000
31.09000
36.47000
42.77000
50.14000
58.75000
68.82000
80.58000
94.31000

110.30000
129.10001
151.00000
176.60001
206.70000
241.80000
282.89999
330.79999
385.29999
446.70001
515.79999
593.20001
679.79999
777.50000
887.79999

1013.00000

T(K)

218.500
211.000
202.300
213.100
223.900
234.700
245.400
248.400
250.900
259.100
259.300
253.200
247.000
240.800
234.700
228.500
222.300
218.500
216.000
213.600
211.200
211.800
212.400
213.000
213.600
214.200
214.800
215.400
216.000
216.600
217.200
217.200
217.200
217.200
217.200
217.200
217.200
220.600
227.300
234.100
240.900
247.700
252.700
255.900
259.100
257.200

air (cm 3)

1.402170E+13
3.113413E+13
7.239309E+13
1.529470E+14
3.124891E+14
6.172040E+14
1.180585E+15
2.303495E+15
4.474483E+15
8.358255E+15
1.597458E+16
2.259827E+16
3.263698E+16
4.722316E+16
6.921943E+16
1.023831E+17
1.531661E+17
2.290543E+17
3.420253E+17
5.130379E+17
7.736723E+17
9.058741E+17
1.060176E+18
1.240132E+18
1.450273E+18
1.695418E+18
1.981004E+18
2.314093E+18
2.702000E+18
3.153632E+18
3.678134E+18
4.305051E+18
5.035342E+18
5.889016E+18
6.892749E+18
8.063216E+18
9.433762E+18
1.086105E+19
1.227754E+19
1.382058E+19
1.550802E+19
1.734551E+19
1.948443E+19
2.200604E+19
2.481759E+19
2.852662E+19

O3 (cm-3)

5.612000E+06
2.492800E+07
5.795200E+07
1.148250E+08
4.065100E+07
2.038080E+08
5.905000E+08
1.498250E+09
4.254100E+09
1.338240E+10
4.157400E+10
6.783000E+10
1.339060E+11
2.410260E+11
4.086930E+11
6.406250E+11
9.504599E+11
1.352280E+12
1.848420E+12
2.515660E+12
3.638740E+12
4.169900E+12
4.774500E+12
5.212200E+12
5.804000E+12
6.278900E+12
6.144200E+12
5.674200E+12
5.137600E+12
4.734000E+12
4.417200E+12
3.877200E+12
3.275350E+12
2.357200E+12
2.414300E+12
2.420700E+12
1.982400E+12
1.130480E+12
8.912709E+11
6.148818E+11
5.899152E+11
5.647208E+11
5.395650E+11
5.143872E+11
5.146847E+11
5.144710E+11

O2 (cm"3) ]

2.244800E+12 .
5.608800E+12
1.376360E+13 (
3.062000E+13 :
6.535430E+13 <
1.290784E+14
2.468290E+14 :
4.817450E+14 <
9.359020E+14 :
1.748076E+15 '
3.341910E+15
4.725491E+15
6.825940E+15
9.877339E+15 :
1.447743E+16 :
2.142250E+16 i
3.203970E+16 '
4.790280E+16
7.154070E+16
1.073006E+17 ;
1.618078E+17 :

H2O(cnr3)

5.612000E+06
1.682640E+07
5.157400E+07
'.036230E+08
5.254000E+08
L667520E+09
5.8973OOE+O9
).220000E+09
'.015100E+10
1.056540E+10
7.915O5OE+1O
1.13O5OOE+11
L.633000E+11
'.363000E+11
5.4635OOE+11
5.125OOOE+11
7.664999E+11
L146000E+12
L711500E+12
'.567000E+12
5.871OOOE+12

1.894585E+17 4.532500E+12
2.217490E+17 f5.251950E+12
2.593690E+17 6.080900E+12
3.032590E+17 '
3.546730E+17 i
4.142380E+17 <
4.840440E+17
5.651360E+17
6.596040E+17
7.693290E+17
9.003720E+17
1.053151E+18 :
1.231637E+18 :

7.O3735OE+12
U45601E+12
J.414500E+12
1.088520E+13
1.257360E+13
1.451760E+13
1.674855E+13
1.938600E+13
'.242355E+13
S.535800E+13

1.441682E+18 6.898000E+13
1.686421E+18
1.972960E+18 :
2.271830E+18 :
2.568610E+18 1
2.890470E+18 :
3.243680E+18 (
3.628240E+18 1
4.075500E+18 :
4.602180E+18 :

.613800E+14
>.809344E+14
5.678408E+14
.806630E+15

S.276327E+15
5.687568E+15
.371093E+16

'.273700E+16
U42254E+16

5.191560E+18 4.011660E+16
5.966950E+18 4.011275E+16

CO2(cm-3)

2.735850E+09
8.413200E+09
2.245640E+10
4.899200E+10
1.025656E+11
2.038080E+11
3.897300E+11
7.606500E+11
1.477740E+12
2.760120E+12
5.276700E+12
7.461300E+12
1.077780E+13
1.559580E+13
2.285910E+13
3.382500E+13
5.058900E+13
7.563600E+13
1.129590E+14
1.694220E+14
2.554860E+14
2.991450E+14
3.501300E+14
4.095300E+14
4.788300E+14
5.600100E+14
6.540600E+14
7.642800E+14
8.923200E+14
1.041480E+15
1.214730E+15
1.421640E+15
1.662870E+15
1.944690E+15
2.276340E+15
2.662770E+15
3.115200E+15
3.587100E+15
4.055700E+15
4.563900E+15
5.121600E+15
5.728800E+15
6.435000E+15
7.266600E+15
8.197200E+15
9.421500E+15

NO2 (cm"3)

2.385100E+03
5.484160E+03
1.325652E+04
2.939520E+04
6.316540E+04
1.327840E+05
2.728110E+05
5.831650E+05
1.276230E+06
2.835396E+06
7.083570E+06
1.505826E+07
3.755900E+07
1.025542E+08
2.791581E+08
6.416500E+08
1.116024E+09
1.652532E+09
2.108568E+09
2.469454E+09
2.895508E+09
2.773890E+09
2.737380E+09
2.680560E+09
2.553760E+09
2.358830E+09
2.100920E+09
1.785636E+09
1.403376E+09
1.006764E+09
6.294510E+08
3.222384E+08
2.242355E+08
1.856295E+08
1.807276E+08
1.920422E+08
2.190080E+08
2.500100E+08
2.826700E+08
3.180900E+08
3.569600E+08
3.992800E+08
4.485000E+08
5.064600E+08
5.713200E+08
6.566500E+08



Appendix D

Ocean Optics Nomenclature

Radiative transfer in the ocean occupies a central role in physical oceanography: Light
provides the energy that powers primary productivity in the ocean; light diffusely re-
flected by the ocean provides the signal for the remote sensing of subsurface constituent
concentrations; light absorbed by the water heats the ocean's surface layer; light ab-
sorbed by chemical species, particularly dissolved organics, provides energy for their
breakup; and the rate at which light extinction varies with depth provides an estimate
of planktonic activity.

From the above, it is clear that ocean optics is concerned with the distribution of
visible light with angle, depth, and wavelength. Infrared radiation is important only for
surface cooling, since the mean free path is very small (the opacity of water in the in-
frared is very high). Unfortunately the absorption and scattering properties of water are
usually poorly known, because of the great variety of suspended particulates that occur
in nature. In addition, the measurement capabilities are not yet sufficiently accurate to
test the predictions of radiative transfer theory. Consequently, mathematically accurate
solutions to the radiative transfer equation are not usually needed, although recently
Monte Carlo techniques have become popular in the ocean optics literature. Approxi-
mate solutions are usually adequate, particularly when comparing with measurements
made at great depth, where asymptotic solutions become valid.

Ocean optics developed only in the past fifty years, although some pioneering work
was done by Petersson and colleagues in the 1930s. Although it was influenced by
early workers in atmospheric radiation, such as Chandrasekhar and van de Hulst,
its close connections with experiment and emphasis on empirical aspects has distin-
guished it from the atmospheric radiation community, which in the 1960s and 1970s
was, in general, more detached from experiment. This detachment resulted from the
fact that atmospheric absorption and scattering could be successfully reproduced by
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504 Ocean Optics Nomenclature

theoretical modeling to a much greater extent than its aqueous counterpart. Careers
could be built by becoming an expert in atmospheric radiative transfer calculations. In
contrast, ocean optics remained largely an empirical science, evolving separately with
its own nomenclature and jargon. One important difference in approach that emerged
was that of apparent and inherent properties of ocean water. Due to the behavior of the
marine radiation field varying approximately exponentially with depth, the decay could
be described by Beer's Law (our Extinction law) coefficients of absorption and scat-
tering. Generally speaking, these coefficients included the effects of multiple scatter-
ing, and therefore they were apparent properties, rather than inherent properties of the
medium (§9.4.7). However, they are easily measured and may be interpreted in terms
of the actual absorption and scattering properties, for example in certain asymptotic
limits (see §9.4.8). In these cases, measurements may be "inverted" to yield physical
properties of the liquid medium.

Table D.I. Ocean optics nomenclature.

Ocean optics
nomenclature

n

W, Q
<f>
I

L

Ed, Eu

E

Eo
Eod, EQU

Es

P<, fid, AM

R

A

T

a,b

c

P(0f -> 0)

a\ b\ c*

h,bf
a

Definition and remarks

index of refraction
quantity of energy
radiant flux (O = dW/dt)
intensity, the radiant flux

emitted by a point source,
/ = d^/dco (eo = solid angle)

radiance, intensity
L = d2®/dAcos0dco

downward, upward irradiance
vector irradiance, (+ downward)
scalar irradiance
downward, upward scalar irradiance
spherical irradiance
average cosine in a hemisphere
irradiance ratio, R = Eu/Ed
flux absorptance
flux transmittance
absorption, scattering coefficient
extinction coefficient, c = a + b
volume scattering coefficient
specific absorption, scattering, extinction

af = di/iii (nt is particle concentration)
single-scattering albedo, (b/c)
back-, forward-scattering coefficient
coalbedo, (a/c)

Nomenclature
(this book)

m

E

dE/dt

not used
/

- F

ATTI

27TI-,2TTI+

nl

E+/F~
Gfp, 0i(—27t)

T
a, a
k

crp(0\ 0)
an, crn,kn

a

b,l-b
l-a
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In recent decades with the advent of coupled ocean-atmosphere models, and with
increasing interest in atmospheric radiation effects on the biosphere, there has grown
a need for the two areas to combine forces. This effort is complicated by the usual
interdisciplinary obstacles. Since it is clear that the two fields really describe the
same basic physical phenomena, we believe that more communication is vital to an
understanding of many problems dealing with this important interface. In this spirit,
we present in this appendix a "translation table" of terms, which hopefully will make
it easier for students and specialists alike to read the research papers and books in both
fields. Although ocean scientists have not yet reached complete consensus on their
own system, they have nevertheless reached a degree of standardization that is at least
as good, if not superior to, that in the field of atmospheric radiation. In particular, the
community has adopted most of the 1985 recommendations of the IAPSO Working
Group on Symbols, Units and Nomenclature in Physical Oceanography.1 In Table D. 1
we compare the material from Table II.4 of the IAPSO report, prepared by A. Morel,
with the quantities defined in this book. We include only those quantities that differ
from our notation and only those basic quantities that are of central importance to a
description of the radiation field and the optical properties of the medium. As usual
we consider only those aspects dealing with unpolarized radiation.

UNESCO Technical Papers in Marine Science, IAPSO Scientific Publication No. 32, The
International System of Units (SI) in Oceanography, Report of the IAPSO Working Group on
Symbols, Units and Nomenclature in Physical Oceanography, UNESCO, 1985.



Appendix E

Reflectance and Transmittance at an Interface

When a light wave encounters the interface between two media with different indices
of refraction, the ray splits into two components, a transmitted (refracted) ray and
a reflected ray. We will assume that in both media there is neither scattering nor
absorption. With reference to Fig. E.I, it is shown in Problem 1 that the angle of
reflection is given by ft = n — ft- and that the angle of refraction is given by Snell's
law:

sin ft/ sin ft = ct/ct = mt/mi = mre\. (E.I)

Here ct and ct are the propagation speeds in the first and second media, respectively,
and mi and mt denote the respective indices of refraction. No loss of generality results
from assuming mt > m,-, so that sin ft = (mi/mt) sin ft < sin ft. This means there is
a real angle ft for every angle of incidence. (In the case mt < rrit total reflection can
occur for a range of incidence angles.) We first derive the expressions for the trans-
mitted and reflected electric and magnetic field components in terms of the respective
incident quantities. This is achieved by relating the two fields through the plane-wave
relationships, and imposing continuity of the tangential components of the fields across
the interface. The key observation is that the time-dependent part of the plane wave is
the same for all components. This part is denoted by </> = co(t — ̂ —), where co is the
angular frequency, r the position vector of a point in space, Q the propagation vector
of the wave, and c the propagation speed in the medium. Carrying out the dot product,
we write for the incident wave

/ jcs inf t+zcosf t \
=colt l— 1-\. (E.2)

We now consider the amplitudes of the electric field components. We write these

506
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Figure E.I Vectors are in the plane of incidence. Those components
marked with "_L" indicate the component of the electric or magnetic
field perpendicular to the plane of incidence, and those marked with
"||" denote the component parallel to the plane of incidence.

components as A\\ and Ax, parallel to and perpendicular to the plane of incidence.
From the figure, it can be verified the rectangular components of the electric field are
given by

El = —An cos ft 4 = A±e~ E[ = A,, sin ft * (E.3)

Here we have ignored the constant part of the phase angle. The components of the mag-
netic field vector are obtained from the plane-wave relationship, H = y/e/iiQ x E =
(m//jLco)£l x E. From the definition of the cross product, we have

lxcoH
l = m Q\, Ql = me~

i j k

sin ft 0 cos ft

i—Ancosft A_L An sin ft

Using the rules of matrix expansion, we find

[icoH
l
7 = A±mt sin ft e~i<f>i.

(E.4)

(E.5)

If T and R represent the complex amplitudes of the transmitted and reflected waves,
respectively, we can show in an analogous fashion that the corresponding components
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of the transmitted field vectors are

El
x = - 7 | | cos0te~i(l>t, Ey = T±e~i(f>t, E\ = 7,, s i n f t e " ^ , (E.6)

fjLCoH* = — T±cos0tmte ~1^, l^c0Hy = —T^m\.e~l<^\

/xCoHl = T± sin0tmte-i<fh, (E.7)

where

(pt = o ) ( t ) = Q ) \ t

The procedure is identical for the reflected component:

E\ = -T\\ cos0te-^, Er
y = T±e~i<f>\ E\ = 7,, s i n ^ " 1 ^ , (E.9)

where

The boundary conditions for the electric and magnetic fields require that the tangential
(x- and y-components) of E and H be continuous across the interface, that is,

By substituting the expressions above into these two equations, one can verify that the
following four relationships are obtained:

cos ft (A|| - R\\) = cosft7||, (E.14)

nit cos ft (A± - #_L) = mt cos 0tT±, (E.16)

m/(Al| + J?|l) =mtr , , . (E.17)

Here we have ignored the small change in the magnetic susceptibility /x between the
two media.1 We note that there are two pairs of equations dealing separately with the
parallel and perpendicular components. This shows that the two waves are indepen-
dent. It can be verified that, by solving for the transmitted and reflected components,
the results are

nii cos ft — rat cos ft wzt cos ft — nit cos ft
R± = Aj_, R\\ = AN,

nti cos ft + rat cos ft w/ cos ft + wt cos ft
2m i cos ft 2m i cos ft

mt cos ft + mt cos ft ' m, cos ft + fwt cos ft

1 We assume that the entire change in index of refraction is due to the differences between the
permittivity e.
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The above four equations are called the Fresnel formulae, and were derived by Fresnel
in 1823 on the basis of his elastic theory of light (but in a somewhat less general form).
We found in Appendix H that the time-averaged Poynting vector for the plane wave
describes the energy flow normal to the beam,

(S) =
TYl

- [£„ • SI + S± • SI
YYL

{
where the second equation defines A2. When the wave is incident on an interface at
the angle ft, the incident energy per unit area per unit time is

m7;»• = —— |A|2cos6>£-.
2/xco

Ff = (S

In a similar way, we write the fluxes of the reflected and transmitted waves as

F+ = - ^ |
2fico

The ratios of the fluxes for the flux albedo and flux transmittance for an incoming
collimated plane wave are therefore

|A|2

Now let us assume that the incident light is unpolarized. Then |A|2 = Aj + A]_, and
A^ = A\. The flux albedo and transmittance are thus

ii -m r e i /x t

i 4- ^relMt + mrelAt,-

1

+ ^relMt

1

Mt + W

(E.18)

(E.19)

Here we used Snell's law (Eq. E.I and denoted fit = cos ft and /xt = cos ft). We
recall that the bidirectional reflectance function (BRDF) p(—Q\ Q) (see §5.2.4.) was
defined as the sum of a specular reflectance ps and a diffuse reflectance pd:

ps5(cosft + cosft)5(7r (E.20)

The Dirac 8 -functions contribute only when the reflection angle is equal to the incident
angle, and the reflected ray is in the plane of incidence. In the same way, we may define
the bidirectional transmittance function (see §5.2.9) as

T(-Q\ Q) = Td + i sin ft - mt sinft)(5(<& - 0t), (E.21)

where % is the specular transmittance. We may now define these quantities in terms
of the incident, reflected, and transmitted intensities. We consider a cone of incident
light waves instead of a collimated beam. /,-, /r and 7t are the incident, reflected and
transmitted intensities, respectively. A cone of incident light within an infinitesimal
solid angle dcoi will shrink or expand (depending the value of the relative index of
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refraction of the two media) to the solid angle da)t after passing the interface, and their
relationship can be derived by making use of Snell's law,

da)t 2n sin 0td0t \±i

In sin ft dft
(E.22)

Applying the definition of ps and % for the irradiance and making use of Eq. E.22, we
find

b^Ltj!\i(ik\ (E.23)

U cos Oidcoj ( Ir\ I ( /,-
) /P* 7 E T \ 2 ) / \

// cosOidcot \mf ) I \mf J
Equations E.23 and E.24 show that if we define the transmittance and reflectance
with respect to the invariant intensity, 7/ra2, instead of the actual intensity, then the
expressions for the reflectance and transmittance will have the same forms as for
the parallel light beam. Such a definition has the additional advantage of satisfying
reciprocity for the lightwave propagating in the opposite direction. If we denote the
reflectance and transmittance specified by Eqs. E.18 and E.19 by ps(—/x;, mt/mi) and
%(—IJLi, nti/nti) for downwelling incidence, and by ps(Mt, w//mt) and 7^(/xt, r
for upwelling incidence, then the reciprocity relationship can be expressed as

(E.25)

Finally, it is easy to show that ps + % = 1, which of course follows from our assump-
tion of a medium that neither scatters nor absorbs (pd = 0 and 7^ = 0).

Problem

E.l

(a) Show that if we require the time dependence of all three waves to be the same,
that is, </>i(t) = <f>t(t) = 0r(O> we obtain

Ci Ci Ct ' d Ct Ct

(b) Argue that the above equations prove that & and QT lie in the plane of incidence.
(c) Using Q[ = cos ft > 0, QT

Z = cos ft < 0, and £l\ = cos ft > 0, show that these
equations yield

sin ft sin ft sin ft

ct ct ct

and thus argue that the above equations prove both the law of reflection and Snell's
Law, Eq. E.I.
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absorption, 3, 56

absorption coefficient (LTE), 49, 120
absorption cross-section, 49
absorption line strength, 119
actinic flux 40, 164
actinic radiation, 164
action spectrum, 164

activation temperature, 100
Addition Theorem for Spherical Harmonics, 178
adiabatic interactions, 72
adiabatic process, 11
aeronomy, 10
aerosol forcing, 467, 470
aerosols, 7
air-mass factor, 182
albedo, 138

allowed transition, 69, 114
Angstrom, 2
angular beam, 36
angular scattering cross section, 74

angular wave number, 78
anharmonic oscillator, 115
anti-greenhouse, 449
anti-Stokes line, 81
apparent extinction coefficient, 362
aqueous matter, 7
associated Legendre polynomials, 79, 178
asymmetric top molecule, 118
asymmetry factor, 178
atmosphere-cm (atm • cm), 15

Avagadro's number, 10
average spectral intensity, 40
azimuthally-averaged intensity, 175
azimuthally-symmetric distribution, 42

backscattering angle, 142

backscattering coefficient, 261

band area, 418
band sequence, 124

band system, 122, 124

band-gap (in solids), 86

basic radiance, 44
beam, 36

beam transmittance, 50, 145
Beer-Lambert-Bougher Law, 46

Bessel function of imaginary argument, 387

bidirectional reflectance distribution function

(BRDF), 134

bidirectional transmittance function, 145

biogenic gas, 13

blackbody cavity, 93

blackbody radiation, 94

Boltzmann distribution of photon energy states, 96,
101

Boltzmann equation for photons, 52
Boltzmann factor, 100
Bond albedo, 146
Bouguer-Langley method, 337
bound-bound processes, 98
bound-free processes, 98
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bound-unbound molecular states, 86

Boyle's Law, 8
BRDF, 134
brightness, 45
bulk polarization, 61
bulk properties of atmosphere, 8

Cabannes line, 68
canonical (Gibbs) distribution, 96
Case 1 water, 347
Case 2 waters, 347
Chandrasekhar mean absorption coefficient,

353
Chapman function, 182
Chapman profile, 354, 425
Chappuis band (O3), 124
chemical equilibrium, 93
chlorophyll-a absorption, 347
chromosphere, 4, 337
Clausius-Clapeyron equation, 471
climate sensitivity, 20
cloud forcing, 432
cloud overlap, 468
cloud radiative forcing, CF, 467
co-albedo, 150
coherent scattering, 67
collimated radiation component, 138
collimated (intensity) distribution, 41
collision cross-section, 99
collisional excitation (de-excitation), 99, 100
collisional line broadening, 69
collisional narrowing, 72
collisional quenching, 99
color of objects, 87
column number, 15, 47
combination band, 114
compaction parameter, 143
complete frequency redistribution, 107
compressible, incompressible media, 8
concentration, 8, 10, 46
conservative (non-conservative) scattering, 68
continuous spectrum, 124
cooling-to-space approximation, 223
cooling-to-space function, CSF, 389, 424
correlated k-distribution, 394, 404-409
cosine law, 74

cross-wavelength process, 68
cumulative k-distribution, 396
curve of growth, 387

5-function line intensity distribution, 391

Dalton's Law, 10

damping parameter, 66
damping rate, 65
damping ratio, 71
Debye relaxation, 87
decay of an excited state, 98
delta-Henyey-Greenstein approximation, 195
delta-isotropic approximation, 192
delta-N approximation, 194, 195
delta-two-term approximation, 193
dicothermal layer, 25
differential elastic collision cross-section, 99
differential radiative transfer equation, 52
diffraction, 35
diffraction fringes, 35
diffraction peak, 189
diffuse attenuation coefficients, 362
diffuse component of radiation, 138, 171
diffuse radiation, 63
diffuse reflection problem, 199
diffuse transmittance, 145
diffuse, specular reflection, 135
diffusion equation, 228
diffusivity approximation, 422
diffusivity factor, 422
dipole-allowed transition, 114
dipole-forbidden transition, 114
Dirac 8-function, 41
direct component of radiation, 170
directional absorptance, 132
directional emittance, 131
discrete-dipole method, 88
discrete-ordinate method, 281
discreteness of matter, 57
DISORT code, 307
dispersion, 35
Dobson unit, 338
Doppler broadening, 70
Doppler line width, 71
dose rate, 164
Double-Gauss method, 284, 285
doubling rules, 324
dry (moist) adiabatic lapse rate, 11, 450
Duality Principle, 202

Eddington approximations, 194, 249-253
effective radius, 343
effective size (ice crystal), 345
effective temperature, 19, 441
eigenvalue problem, 294
Einstein coefficient (A, B), 104
Einstein relations, 105
elastic (inelastic) collisions, 98
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elastic (inelastic) scattering, 68

elastic collision cross section, 99

electric quadrupole transition, 113

elementary solution, 151

Elsasser band model, 388

emergent intensity, 153

emission of radiation, 56

emission coefficient, 51

emission coefficient for scattering, 150

emission height, 453

energy density (radiation), 40, 121

environmental lapse rate, 450

equation of state of water, 24

Equipartition Theorem, 96

equivalent width, 387

error function, 389

escape probability, 207, 211

euphotic zone, 363

Ewald-Oseen Extinction Theorem, 60

exchange term (for cooling), 427

exponential integral (En), 158

exponential line intensity distribution, 390

exponential sum fit transmittance (ESFT), 352, 396

exponential-kernel approximation, 235

extinction of radiation, 46

extinction coefficient, 47

Extinction Law, 46, 48

extinction optical path, opacity, 48

extinction efficiency, 343

FASCODE, 401

Feautrier method, 328

feedback processes, 6

fine, hyperfine structure, 118

First Law of Thermodynamics, 18

first-order scattering, 63

fluids, properties of, 7

fluorescence, 68

flux absorptance, 132

flux reflectance, 138

flux transmittance, 20, 146

flux, bulk emittance, 132

forbidden transition, 113

forward (backward) scattering, 74

Fourier cosine series, 180

Fraunhofer absorption lines, 337

free-free processes, 98

frequency, 2

Fresnel reflectance, 144

Fresnel's equations, 36, 72, 87, 137

fundamental band, 114

Gaia hypothesis, 32
gain of climate system, 22
gas density, 9
gas pressure, 9
gaseous matter, properties of, 7
Gauss-Seidel iteration, 327
Gaussian function, 71
GENLN2 code, 401
geometric optics, 35
Gershun's Law, 162, 447
Gibbs distribution, 96
gigaHertz, 115
Godson line intensity distribution, 390
Goody-Meyer band model, 391
gray approximation, 158
graybody, blackbody, 131
grayness parameter, 389
Green's function, 212
greenhouse effect, 443
greenhouse factor, 443
greenhouse gases, 13

half-range intensity, 155, 219
half-range source function, 219
harmonic oscillator, 65
Hartley bands (O3), 98, 122
heating rate, 161, 162
hectoPascal, 9
Heiligenschein, 142
Heisenberg's Uncertainty principle, 68
hemispherical flux, 37
hemispherically-isotropic (intensity) distribution, 41
Henyey-Greenstein phase function, 189
Herzberg, Schumann-Runge continuum (O2), 122
HITRAN data base, 121
hohlraum, 93
homeostasis, 32
homogeneous (intensity distribution), 39
homopause, 9
Hooke's Law, 58
Hopf function, 241
Hopf-Bronstein relationship, 241
hot band, 121
hot-spot phenomenon, 142
hydrostatic equation, 8, 9, 423
hydrostatic equilibrium, 8
hygrosols, 7

ice water content IWC, 345
ice-albedo feedback, 31
ideal gas law, 8
ill-conditioning, 302



514 Index

illumination, 45
imaginary (real) index of refraction, 87
incoherent scattering, 62
independent scatterer assumption, 62
index of refraction, 35
induced dipole moment, 59
inelastic (elastic) collisions, 98
inelastic cross section, 99
integral equation, 160, 221
integrating factor, 151
integro-differential equation, 151, 205
Intensity Theorem I, 42
Intensity Theorem II, 43
Intensity Theorem III, 44
Interaction Principle, the, 323
invariant embedding, 327
inverse k-distribution, 397
irradiance, 3
isothermal medium, 153
isotropic (anisotropic) medium, 50
isotropic (intensity distribution), 39, 40

Junge layer, 341

k-distribution band model, 394-399
kernel of integral equation, 206
kilogram-mole, 10
Kirchhoff's Law, 6, 17, 133, 148
Kramers-Kronig relations, 72
Kronecker delta, 178

L'Hospital's rule, 233
laboratory frame of reference, 70
Ladenberg-Reiche function, 387
Lagrange's interpolation formula, 282
Lambda iteration, 220
Lambda operator, 221
Lambert surface, 45, 135
Laplace (inverse) transform, 399
Legendre polynomial, 177
level of vibrational relaxation, 102
line core, 66
line profile function, 104
line strength or intensity, 66, 67, 119
line wings, 66
line-by-line transmission (LBL) calculation, 401
linear molecule, 115
linear polarization, 76
linear regime (of curve of growth), 387
Liouville's Theorem, 53
liquid water content, LWC, 343, 431
liquid water path, LWP, 432

local radiative equilibrium, 17

local thermodynamic equilibrium (LTE), 102

locally stratified medium, 11

Lommel-Seeliger model, 141

longwave radiation, 2

Lorentz profile, 66

Lorentz theory of matter, 58

Lorentz width, 69

Lorentz-Lorenz equation, 73

Loschmidt's number, 16, 69

luminance, 45

macroscopic radiative transfer equation, 106

magnetic dipole transition, 114

Malkmus line intensity distribution, 390

mass absorption coefficient, 49

mass density, 47

mass path, 47

matrix element for dipole transition, 113

Maxwell-Boltzmann Law, 70, 100

mean beam absorptance, 386

mean beam transmittance, 385, 386-387

mean free path (photon), 51

mean inclination jl, 227

mean molecular mass, 8, 10

mean molecular speed, 101

mechanical equilibrium, 93

mesopause, 12

mesosphere, 12

micrometers, 2

microscopic radiative transfer equation, 106

Mie-Debye scattering, 78, 188

Mie-Debye Theory, 59

millibar, 9

Milne problem, 199

Milne-Schwarzschild equation, 206

Minnaert reflectance formula, 140

mixed layer of ocean, 25

mixing ratio, 16

mksa units, 29

MODTRAN band model, 392

moist (dry) adiabatic lapse rate, 450

molar fraction, 16

molar gas constant, 8

molecular band, 89

molecular mean speed, 71

monochromatic quantity, 35

Monte-Carlo method, 328

multiple scattering, 49, 63, 220

multiple-scattered component of radiation, 171

multiplication property of band transmission, 422
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Nakajima-Tanaka correction procedure, 309
nanometer, 2
natural broadening, 69
negative absorption, 106
negative feedback, 17, 21
net flux, net irradiance, 37
Neumann series expansion, 221
Newton-Cotes formulas, 284
nomenclature, 29
non-local thermodynamic equilibrium (NLTE), 102
non-stratified medium, 181
nonisothermal atmosphere, 4
normal modes, 111
normal reflectance, 141
nuclear angular momentum, 116
nuclear spin (of electron), 116

ocean depth variable, 24
off-nadir angle, 141
opacity, 3
opposition effect, 142
opposition enhancement factor, 143
optical constants, 87
optical depth, 3, 154
optical lifetime, 69
optically active, 46
optically-thick medium, 51, 64
optically-thin medium, 63
oscillator strength, 66
overtone band, 114
ozone hole, 338

P-branch, 116
partial pressure, 9, 10
particle density, 47
particle size distribution, 430
pencil of radiation, 35
penetration depth (of atmosphere), 339
penetration depth (of ocean), 28
Perturbation Theory, 98

phase angle, 142
phase function, 74, 187
phase matrix for scattering, 187
phonons, 87
photochemical reaction, 86
photochemically-active gas, 13
photodissociation, 86
photolysis, 13
photolysis rate, 164
photometric surface property, 131
photon distribution function, 52
photon mean free path, 50, 51

photon partition function, 96
photosphere, 4
phytoplankton scattering, 348
Planck function, 94, 96
Planck mean absorption coefficient, 445
Planck-weighted flux emittance, transmittance, 417,

418
plane albedo, 138
plane-parallel medium, 11, 154
planetary problem, 174
planetary radiative equilibrium, 17, 93, 163
point-direction gain, 208
polar substance, 87
polarizability, 61
positive feedback, 21
positive ion, 86
Poynting vector, 37
precipitable water, 453
predissociation, 122
Principle of Detailed Balance, 100
Principle of Duality, 202
Principle of Reciprocity, 141
prototype problems, 197
pseudo-spherical approximation, 182
pycnocline, 25

quadrature formulas, 282
quantum yield, 164
quasi-single scattering approximation, 190
quenching coefficient, 100

R-branch, 116
radiant exitance, 38
radiation amplification factor, 359
radiation dose, 164
radiation resistance, 65
radiative damping force, 65
radiative decay, 98
radiative equilibrium, 93
radiative flux vector, 37
radiative forcing, 18, 456, 471
radiative lifetime, 69
radiative transfer equation (microscopic), 106
radiative transfer equation (differential), 52
radiative transfer equation (integral), 205-206
radiatively-active gas, 13
random band model, 391
random medium, 62
random walk (photon), 232
ray, 36
Rayleigh scattering, 24, 61, 72, 75
Rayleigh scattering coefficient, 73



516 Index

Rayleigh-Jeans limit, 94
real (imaginary) index of refraction, 87
Reciprocity Principle, 202
reflection, transmission operators, 324
remotely sensed reflectance, 366
resonance scattering, 65
resonances (in solids), 86
rest frame of reference, 70
Ricatti-Bessel function, 79
rigid rotator, 114
Robertson-Berger meter, 359
Rosseland mean absorption coefficient,

445
rotational constant, 114
rotational partition function, 119
rotational quantum number, 114
rotational Raman scattering, 68, 80-81
runaway greenhouse effect, 472

saturated regime (of curve of growth), 388
scalar approximation, 34, 187
scalar intensity, 34
scalar irradiance, 262
scale height, 8
scaling approximation, 190
scaling transformation, 190
scattered radiation component, 138

scattering, 57
scattering amplitude, 79
scattering angle, 76
scattering coefficient, 50
scattering cross-section, 50, 65
scattering efficiency, 78
scattering matrix, 187
scattering phase function, 74, 187
scattering plane, 75
Schumann-Runge bands (O2), 122
Schuster-Schwarzschild equations, 286

selection rules, 114
semi-classical theory of radiation, 98
shape factor, 365
shortwave radiation, 2
SI system, 29
similarity relations, 193
Simpson's rule, 283
single scattering approximation, 218-219
single-flight escape probability, 211
single-scattering albedo, 150
single-scattering source function, 172
size parameter, 79
slab medium, 11, 154
slant column mass, 13

Snell's Law, 36,54,61
Sobolev approximation, 223
solar component of radiation, 170
solar constant, 3, 337
solar insolation, 373
solar zenith angle, 146
source function, 52, 101-102
specific gas constant, 9
specific greenhouse effect, 473
spectral beam absorptance, 385
spectral beam transmittance, 385
spectral energy density, 40
spectral flux, 3, 37
spectral intensity, 38
spectral quantity, 35
spectral reflection function, 135
spectral window, 4, 92, 454
spectroscopic constants, 118
spherical absorptance, 146
spherical albedo, 146
spherical harmonic method, 326
spherical shell medium, 181
spherical transmittance, 146
spontaneous emission, 103
square-root regime (of curve of growth), 388
standard problem, 174
standard temperature and pressure (STP), 9, 15
state variable, 34
statistical band model, 391
statistical equilibrium equation, 107
Stefan-Boltzmann Law, 95
stimulated emission, 103
Stokes (anti-Stokes) components, 68, 81
Stokes vector, 37
stratosphere, 11
streaming term, 52
strong-line limit (of band model), 388
super (sub-) Lorentzian wings, 72
symmetric top molecule, 116

temperature tendency, 163
term value, 115
thermosphere, 12
terrestrial radiation, 2
thermal emission coefficient, 148
thermal energy content, 18
thermal equilibrium, 93
thermalization length, 232
thermocline, 25
thermodynamic equilibrium (TE), 39, 93, 102
Thomsen scattering, 80
total molecular angular momentum, 116
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total energy density, 40
total solar irradiance, 3, 337
translational (kinetic) temperature, 108
transmittance, 145
transparency factor, 454
transport approximation, 193
trapezoidal rule, 282
tropopause, 11
troposphere, 11
turbidity, 184
two-level atom, 102
two-stream approximation, 41, 194, 226

v'—, v"—progression, 124
van de Hulst-Curtis-Godson (H-C-G)

scaling, 400
vertical column mass, 15
vibrating rotator, 115
vibration-rotation band, 115

vibrational constant, 111
vibrational quantum number, 111
virtual states, 57
Voigt profile, 71
volume emittance, 109, 148

warming rate, 163
wavelength, 1
wavenumber, 4
weak-line limit (of band model), 387
wide-band emittance model, 417
Wien Displacement Law, 94
Wien's limit, 94

window, 4, 92, 454

X-, Y-, and H-functions, 210

yellow substance, 29, 347


