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Introduction

This book contains a collection of lectures presented at the 2013 CIMPA-UNESCO-
South Africa School Evolutionary Equations with Applications in Natural Sciences.
The School was part of the initiative Mathematics of Planet Earth and it was
organized at the African Institute of Mathematical Sciences, http://www.aims.ac.
za/, in Muizenberg (Cape Town), South Africa, from 22nd July to 2nd August
2013, under the auspices of the Centre International de Mathématiques Pures et
Appliquées (CIMPA). CIMPA is a non-profit international organization whose
aim is to promote international cooperation in higher education and research in
mathematics for the benefit of developing countries. In accordance with CIMPA’s
mission, the School was aimed at postgraduate students and young researchers from
such countries.

The School consisted of 9 courses delivered by invited lecturers coming from
France, Germany, Poland, South Africa and Scotland, and attracted 29 participants
from countries as diverse as Algeria, Benin, Cameroon, Chad, Congo, DRC,
Ethiopia, Ivory Coast, Kenya, Lesotho, Mauritania, Morocco, Nigeria, Philippines,
Pakistan, Sudan, South Africa, and Zimbabwe.

The School was a truly multidisciplinary event, spanning the fields of theoretical
and applied functional analysis, partial differential equations, probability theory
and numerical analysis applied to various models coming from theoretical physics,
biology, engineering and complexity theory. The main emphasis was on the devel-
opment of modelling, analytical and computational skills in a range of disciplines
vital for the advancement of physical and natural sciences. The models discussed
were time dependent and this led naturally to evolutionary equations which included
ordinary, partial, integral or integro-differential equations. Particular examples
of such equations were reaction-diffusion equations, transport equations coupled
with Boltzmann type models and fragmentation-coagulation type equations, and
the lectures gave detailed accounts of the functional-analytic, probabilistic and
numerical frameworks for the analysis of such equations. This choice of programme
was highly relevant to emerging researchers in many applied sciences as it exposed
them to the diversity of applications of time dependent transport and kinetic type
models and also provided a panorama of techniques for their analysis.

v
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vi Introduction

This volume contains the lectures given during the School, with each chapter
devoted to the material presented by a specified lecturer. While each chapter is
different and focuses on a specific topic, there is a common thread joining all of
them—they are all concerned with evolution problems in a complex context and
a significant part of each chapter deals with deep analytical methods for solving
them. The lectures targeted postgraduate students and young researchers and thus
the volume contains an appropriate blend of material, from an introductory and
educational level at the beginning to a survey of cutting edge research at the end.

The foundation for all chapters is given by Wilson Lamb’s Applying functional
analytic techniques to evolution equations. This provides a gentle introduction to
the basic tools needed for evolution equations and demonstrates their applicability.
First the author discusses linear finite dimensional models, where the concept
of the operator semigroup is introduced. Then he moves to nonlinear systems
and discusses basic stability concepts. Finally, he discusses infinite dimensional
models, both linear and nonlinear, illustrating abstract concepts with the discrete
fragmentation-coagulation equation. We shall encounter the latter in a couple of
other chapters, where the state-of-the-art theory of fragmentation and coagulation
problems is developed.

The second chapter, Boundary conditions in evolutionary equations in biology
by Adam Bobrowski, joins the narrative of the first at the concept of semigroups of
operators, but takes this in a more general direction. First the author introduces
basic models such as the transport and diffusion equations on the whole space
and, writing them as Cauchy problems for abstract ordinary differential equations,
discusses their solvability using the Hille–Yosida theory which is covered in more
detail than in the first chapter. Next the author moves to the main subject of his
lectures; that is, how to incorporate boundary conditions for the discussed equations
so that they can be treated within the framework of semigroups of operators. Here
he describes Greiner’s approach and the method of images which are then applied
to McKendrick models for population dynamics and to Feller–Wentzell boundary
conditions. Finally, the author considers some singularly perturbed problems related
to the previous models and discusses their small parameter limits using the powerful
Sova–Kurtz approach.

The following chapter, Introduction to complex networks: structure and dynam-
ics by Ernesto Estrada, takes us in the direction of discrete evolutionary problems.
While, on the one hand, the author gives an introduction to the basic graph-
theoretical concepts, including the ‘small-world’ and ‘scale-free’ networks, thus
providing the mathematical foundations for the network transport problems con-
sidered in the next chapter, on the other hand he develops the theory of dynamical
processes on networks, beginning with the consensus model, synchronization and
Kuramoto models. The chapter is concluded by a discussion of a network version
of the epidemiological SIR model introduced in the first chapter and the replicator-
mutator model considered later in the lectures of R. Rudnicki.

In the next chapter, Kinetic models in natural sciences by Jacek Banasiak, we
return to semigroup theory moving, however, to more complex models. In the
study of so-called kinetic type equations (similar to Master Equations in Markov
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processes) one considers the loss and gain of agents at a particular state and the
solvability of such problems depends on a delicate balance of these terms. In
this chapter the author considers transport processes on networks, building on the
introduction by E. Estrada, discusses the nonlinear versions of the McKendrick
model presented in the lectures of A. Bobrowski and also extends the theory of
fragmentation-coagulation processes introduced in the lectures of W. Lamb. In
the process, the author further develops semigroup theory, discussed in the first
two chapters, by introducing concepts of positivity and analyticity of semigroups
and employing these ideas in various ways to arrive at solutions of the problems
formulated in the introductory part of the chapter. In particular, the author provides
the first proof of the existence of global classical solutions to fragmentation-
coagulation equation with unbounded rates.

Following these results, Philippe Laurençot in Weak compactness techniques
and coagulation equations presents an alternative way of approaching coagula-
tion problems. Whereas in previous chapters in which coagulation-fragmentation
processes are discussed, the coagulation part is treated as a perturbation of the
linear fragmentation part, thus enabling semigroup theory to be applied, here the
centre stage is taken by the continuous coagulation operator. The author presents
a powerful weak compactness technique, first discussing intricacies of weak L1
convergence and state-of-the-art methods of dealing with them. Next he moves
to the continuous coagulation equation, where he considers in detail the cases
in which the weak solutions are mass conserving and the cases where a phase
transition, called gelation, occurs. These results provide a powerful counterpoint to
the semigroup approach described in the chapter by J. Banasiak, and it is particularly
noteworthy that this book is the first in which both approaches are presented
together.

The next two chapters, although similar in that they present theories concerning
the long-term behaviour of solutions to abstract evolution equations are nevertheless
quite diverse in their approach. The chapter Stochastic operators and semigroups
and their applications in physics and biology by Ryszard Rudnicki focusses on
methods that have their origins in probability theory. The author begins with the
concept of stochastic operators and semigroups and introduces some examples
such as the Frobenius–Perron operators and stochastic integral operators. For the
former, he discusses their relations with the ergodic properties of the described
system. In the next step, he discusses the concept of substochastic and stochastic
semigroups, linking it nicely with the theory developed in the lectures of J. Banasiak.
The examples that follow include birth-and-death type problems, the continuity
equation, usual and degenerate diffusions (where the representation theorem by
Hörmander is presented), as well as piecewise deterministic Markov processes (a
special case of which is given by coupled systems of McKendrick models discussed
in the lectures of A. Bobrowski and J. Banasiak). The final part of the chapter is
devoted to the analysis of long-term properties of models fitting into the developed
theory. Here the main roles are played by the Lasota–Yorke lower function method,
partially integral semigroups, the Foguel alternative and the HasminskiMi function,
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applied, among others, to cell cycle models, birth-and-death processes, and the
description of the gene expression.

The chapter Spectral theory for neutron transport by Mustapha Mokhtar-
Kharroubi focusses on a single model of neutron transport and is devoted to the
classical approach to its analysis, spectral theory, which here is pushed to its limits.
The author builds on the semigroup results developed in the lectures of W. Lamb,
A. Bobrowski and J. Banasiak but leans more towards results on compactness of
the semigroups and spectral mapping theorems which are further fine-tuned to cater
for the advection and transport equations. The theory is first built for the advection
equation where, when dealing with the natural L1 space, the author makes a brief
excursion into the so-called sun-dual theory. Then, to deal with the full equation,
including the collision operator, he makes extensive use of perturbation theory and,
in particular, Dyson–Phillips equations. Again, the L1 theory is more difficult and
is linked with the weak compactness results described in more detail in the lectures
of P. Laurençot.

With the last two chapters, we move towards more concrete applications. The
penultimate chapter Reaction-diffusion-ODE models of pattern formation by Anna
Marciniak-Czochra begins with an introduction to pattern formation through Turing
instabilities and discusses the example of an activator-inhibitor model, pointing out
some limitations of the classical reaction-diffusion model. These limitations are
addressed by introducing reaction-diffusion-ODE models for which an extensive
theory of instabilities is developed. The theory presents a nontrivial extension of the
semigroup methods for semilinear equations introduced in the lectures of W. Lamb
and J. Banasiak, and of the spectral results discussed in detail in the preceding
chapter by M. Mokhtar-Kharroubi. The author applies it to models such as early
cancerogenesis and activator-inhibitor systems with non-diffusing activators. The
final part of the chapter is devoted to pattern formation in systems with bistability
and hysteresis and, in particular, to discontinuous patterns.

The final chapter, Nonlinear Hyperbolic Systems of Conservation Laws and
Related Applications by Mapundi Banda, presents a vista into a numerical world. It
begins with scalar conservation laws, the linear versions of which were discussed in
the lectures of A. Bobrowski, J. Banasiak, R. Rudnicki and M. Mokhtar-Kharroubi,
but quickly focuses on problems specific to quasi-linear cases such as weak,
discontinuous solutions, formation of shock waves and entropy conditions. After
introducing the basic toolbox for this field, the author moves to viscosity and entropy
solutions for scalar conservation laws and then for systems. The main contents
of the chapter are numerical methods for conservation laws. Here Godunov, Lax–
Friedrichs and relaxation schemes are described in detail and applied to particular
models. The chapter is concluded with numerical simulations of the flow in a
network, thus providing an extension of some results discussed in the lectures of
J. Banasiak to nonlinear models. The author also considers some aspects of the
boundary stabilization method.

The Co-Directors of the School, Jacek Banasiak and Mustapha Mokhtar-
Kharroubi, are deeply grateful to CIMPA for awarding the organization of the
School to them, and to the Director of the African Institute of Mathematical Sciences
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(AIMS), Professor Barry Green, for allowing the use of the excellent facilities
of AIMS. We are also grateful to Rene January from AIMS whose expertise and
enthusiasm greatly helped to make the School a success. The School would not have
happened without the generous support received from many institutions. Apart from
CIMPA, they are (in alphabetical order): AIMS, London Mathematical Society–
African Mathematics Millennium Science Initiative, Commission for Developing
Countries of the International Mathematical Union, French Embassy in Pretoria,
Hanno Rund Fund of the School of Mathematics, Statistics and Computer Science
of the University of KwaZulu-Natal, International Institute of Theoretical Physics,
Office of Naval Research Global, National Research Foundation of South Africa
and the National Institute of Theoretical Physics.

Finally our special thanks are due to our colleagues M.K. Banda, A. Bobrowski,
E. Estrada, W. Lamb, P. Laurençot, A. Marciniak–Czochra and R. Rudnicki for the
careful preparation and stimulating presentation of their lectures.

Durban, South Africa Jacek Banasiak
Besançon, France Mustapha Mokhtar-Kharroubi
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Applying Functional Analytic Techniques
to Evolution Equations

Wilson Lamb

1 Preliminaries

1.1 Introduction

Mathematical models arising in the natural sciences often involve equations that
describe how the phenomena under investigation evolve in time. Such evolution
equations can arise in a number of different forms; for example, the assump-
tion that time is a discrete variable could lead to difference equations, whereas
continuous-time models are often expressed in terms of differential equations.

The construction and application of a mathematical model usually proceeds in
the following manner.

• We make assumptions on the various factors that influence the evolution of the
time-dependent process that we are interested in.

• We obtain a ‘model’ by expressing these assumptions in terms of mathematics.
• We use mathematical techniques to analyse our model. If the model takes the

form of an equation, then ideally we would like to obtain an explicit formula for
its solution (unfortunately, this is impossible in the majority of cases).

• Finally, we examine the outcome of our mathematical analysis and translate this
back into the real world situation to find out how closely the predictions from our
model agree with actual observations.

In the case of kinetic models, where the interest is in describing, in mathematical
terms, the evolution of some population of objects, the modelling process usually

W. Lamb (�)
Department of Mathematics and Statistics, University of Strathclyde, Glasgow, UK
e-mail: w.lamb@strath.ac.uk
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2 W. Lamb

results in a so-called Kinetic (or Master) Equation. A nice account of the typical
steps involved in deriving such an equation is given in Sect. 1.1 of the contribution
to this volume by Jacek Banasiak [3].

Note that a mathematical model will usually be only an approximation to
what is actually happening in reality. Highly detailed models, incorporating many
different factors, inevitably mean very complicated mathematical equations which
are difficult to analyse, whereas crude models, which are easy to analyse, are most
likely to provide poor predictions of actual behaviour. In practice, a compromise has
to be reached; a small number of key factors are identified and used to produce a
model which is not excessively complicated.

When faced with a specific mathematical problem that has emerged from the
modelling process, an important part of the mathematical analysis is to establish
that the problem has been correctly formulated. The usual requirements for this to
be the case are the following.

1. Existence of Solutions. We require at least one solution to exist.
2. Uniqueness of Solutions. There must be no more than one solution.
3. Continuous Dependence on the Problem Data. The solution should depend

continuously on any input data, such as initial or boundary conditions.

Problems that meet these requirements are said to be well-posed. Note that
implicit in the above statements is that we know exactly what is meant by a solution
to the problem. Often there will be physical, as well as mathematical, constraints
that have to be satisfied. For example we may be only interested in solutions which
take the form of non-negative, differentiable functions. Also, in some cases, it may
be possible to define a solution in different ways, and this could lead to a well-posed
problem if we work with one type of solution but an ill-posed problem if we adopt
a different definition of a solution. When multiple solutions exist, then we may be
prepared to accept this provided a satisfactory explanation can be provided for the
non-uniqueness condition being violated.

In these notes, we shall present some techniques that have proved to be effective
in establishing the well-posedness of problems involving evolution equations. We
shall illustrate how these techniques can be applied to standard problems that arise
in population dynamics, beginning initially with the simple case of initial-value
problems (IVPs) for scalar ordinary differential equations (ODEs) (the Malthus
and Verhulst models of single-species population growth), and then going on to
IVPs for finite systems of ODEs (e.g. models of interacting species and epidemics).
We conclude by discussing and analysing models of coagulation–fragmentation
processes that are expressed in terms of an infinite system of differential equations.
To enable these problems to be treated in a unified manner, the techniques used
will be developed from a dynamical systems point of view and concepts and results
from the related theory of semigroups of operators will be introduced at appropriate
stages.
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1.2 Dynamical Systems

From a mathematical viewpoint, a dynamical system consists of the following two
parts:

• a state vector that describes the state of the system at a given time,
• a function that maps the state at one instant of time to the state at a later time.

The following definition expresses this more precisely; see [15, p.160].

Definition 1 Let X represent the state space (i.e. the space of all state vectors) and
let J be a subset of R (which we assume contains 0). A function � W J � X ! X

that has the two properties

(i) �.0;
ı
u/ D ı

u

(ii) �.s; �.t;
ı
u// D �.t C s;

ı
u/ ; for t; s; t C s 2 J; (the semigroup property)

is called a dynamical system on X .

Remarks

1. Throughout, we assume that X is a Banach space (i.e. a complete normed vector
space); see Sect. 1.3.2 for details.

2. We can regard �.t;
ı
u/ as the state at time t of the system that initially was at state

ı
u. The semigroup property then has the following interpretation: let the system

evolve from its initial state
ı
u to state �.t;

ı
u/ at time t , and then allow it to evolve

from this state for a further time s. The system will then arrive at precisely the

state �.t C s;
ı
u/ that it would have reached through a single-stage evolution of

t C s from state
ı
u.

3. In these notes, we shall consider only the case when J is an interval in R, usually
J D R

C D Œ0;1/. The dynamical system is then called a continuous-time
(semi- or forward) dynamical system. We shall abbreviate this to CDS.

In operator form, we can write

�.t;
ı
u/ D S.t/

ı
u;

where S.t/ is an operator mapping the state space X into X . Note that S.0/ D I

(the identity operator onX ) and the semigroup property (in the case when J D RC)
becomes

S.t/S.s/ D S.t C s/; 8t; s � 0:

The family of operators S D fS.t/gt�0 is said to be a semigroup of operators
on X (algebraically, S is a semigroup under the associative binary operation of
composition of operators).
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Example 1 As a simple illustration of how a CDS arises from a differential
equation, consider the initial value problem

u0.t/ D lu.t/ ; u.0/ D ı
u ; (1)

where l is a real constant. Routine methods show that a solution to (1) is u.t/ D etl ı
u.

This establishes that there exists at least one solution to (1). To prove that there is
no other differentiable solution (i.e. to establish the uniqueness of the solution that
we have produced), we argue as follows. Suppose that another solution v exists and
let t > 0 be arbitrarily fixed. Then, for 0 < s � t , we have

d

ds
.e.t�s/lv.s// D �le.t�s/lv.s/C e.t�s/lv0.s/

D �le.t�s/lv.s/C e.t�s/l lv.s/ D 0:

It follows from this that e.t�s/lv.s/ is a constant function of s on Œ0; t �. On choosing
s D 0 and s D t , we obtain

etlv.0/ D e.t�t /lv.t/ D v.t/:

Since this argument works for any t > 0 and we already know that v.0/ D u.0/ Dı
u,

we deduce that v.t/ D u.t/ D etl ı
u for all t � 0. Now let � W R�R ! R be defined

by

�.t;
ı
u/ D etl ı

u ; t;
ı
u 2 R ;

that is, �.t;
ı
u/ denotes the value at time t of the solution of the IVP (1). Clearly

(i) �.0;
ı
u/ Dı

u

(ii) �.s; �.t;
ı
u// D �.s; etl ı

u/ D esl etl ı
uD e.tCs/l ı

uD �.t C s;
ı
u/

and so � W R � R ! R is a CDS (by Definition 1).

Example 2 To make things a bit more interesting, we shall add a time-dependent
forcing term to the IVP (1) and consider the non-homogeneous problem

u0.t/ D lu.t/C g.t/; t > 0; u.0/ D ı
u; (2)

where g is some known, and suitably restricted, function of t . To find a solution
of (2), we use the following trick to reduce the problem to one that is more
straightforward. Suppose that the solution u can be written as u.t/ D etlv.t/: On
substituting into the non-homogeneous ODE, we obtain

letlv.t/C etlv0.t/ D letlv.t/C g.t/:
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It follows that v satisfies the ODE v0.t/ D e�tlg.t/ and therefore, from basic
calculus,

v.t/ � v.0/ D
Z t

0

v0.s/ ds D
Z t

0

e�slg.s/ ds:

Rearranging terms, and using the fact that v.0/ D ı
u, produces

v.t/ D ı
u C

Z t

0

e�slg.s/ ds;

and therefore a solution of the IVP (2) is given by

u.t/ D etl ı
u C

Z t

0

e.t�s/lg.s/ ds: (3)

Formula (3) is sometimes referred to as Duhamel’s (or the variation of constants)
formula. As we have actually found a solution, we have resolved the question of
existence of solutions to (2). But what about uniqueness? Do solutions to (2) exist
other than that given by the Duhamel formula? The following argument shows
that (3) is the only solution. Suppose that another solution, say w, of (2) exists and
consider z D u � w, where u is the solution given by (3). Then z must satisfy the
IVP z0.t/ D lz.t/; z.0/ D 0, and therefore, by the previous example, is given by
z.t/ D etl0 D 0 for all t � 0. Consequently, w.t/ D u.t/ for all t � 0. In this case,
if we define

�.t;
ı
u/ WD etl ı

u C
Z t

0

e.t�s/lg.s/ ds;

then we do not obtain a CDS as the semigroup property is not satisfied. The reason
for this is that the right-hand side of (2) depends explicitly on t through the function
g; i.e. the equation is non-autonomous. In the previous example, where the solution
of the IVP led to a CDS, the equation is autonomous since the right-hand side
depends on t only through the solution u.

In the sequel, we shall consider only autonomous differential equations. When
existence and uniqueness of solutions can be established for IVPs associated with
an equation of this type, then we end up with a CDS � W J �X ! X which we can
go on to investigate further. Typical questions that we would like to answer are the
following.

1. Given an initial value
ı
u, can we determine the asymptotic (long-term) behaviour

of �.t;
ı
u/ as t ! 1 ?

2. Can we identify particular initial values which give rise to the same asymptotic
behaviour?



6 W. Lamb

3. Can we say anything about the stability of the system? For example, if
ı
u is “close

to”
ı
v in X , what can be said about the distance between �.t;

ı
u/ and �.t;

ı
v/ for

future values of t?

In many situations, a dynamical system may also depend on a parameter (or
several parameters), that is, the system takes the form �� W J � X ! X where
� 2 R represents the parameter. In such cases, the following questions would also
be of interest.

4. Can we determine what happens to the behaviour of the dynamical system as the
parameter varies?

5. Can we identify the values of the parameter at which changes in the behaviour of
the system occur (bifurcation values)?

In some special cases, it is possible to find an explicit formula for the dynamical

system. For example, �.t;
ı
u/ D etl ı

u (where l can be regarded as a parameter). The
formula can then be used to answer questions 1–5 above. Unfortunately, in most
cases no such formula can be found and analysing the dynamical system becomes
more complicated.

1.3 Some Basic Concepts from Functional Analysis

The definition we gave of a dynamical system in Sect. 1.2, involved a state space
X . Recall that, from a mathematical point of view, a dynamical system is a function

� of time t and the state variable
ı
u 2 X . In the context of evolution equations,

ı
u

represents the initial state of the system (physical, biological, economic, etc.) that
is being investigated. We now examine the algebraic and analytical structure of the
state spaces that will be used in these notes. For a more detailed account, see any
standard book on Functional Analysis such as [16].

1.3.1 Vector Spaces

A complex vector space (or complex linear space) is a non-empty set X of
elements f; g : : : (often called vectors) together with two algebraic operations,
namely vector addition and multiplication of vectors by scalars (complex numbers).
Vector addition associates with each ordered pair .f; g/ 2 X�X a uniquely defined
vector f C g 2 X (the sum of f and g) such that

f C g D g C f and f C .g C h/ D .f C g/C h 8f; g; h 2 X:
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Moreover there exists a zero elementOX and, for each f 2 X , there exists �f 2 X ,
such that

f COX D f and f C .�f / D OX:

Multiplication by scalars associates with each f 2 X and scalar ˛ 2 C a uniquely
defined vector f̨ 2 X such that for all f; g 2 X and scalars ˛; ˇ we have

˛. f̌ / D .˛ˇ/f; 1x D x; ˛.f C g/ D f̨ C ˛g; .˛ C ˇ/f D f̨ C f̌:

Note that a real vector space, in which the scalars are restricted to be real numbers,
is defined analogously.

A linear combination of ff1; f2; : : : ; fmg � X is an expression of the form

˛1f1 C ˛2f2 C : : :C ˛mfm D
mX
jD1

˛j fj

where the coefficients ˛1; ˛2; : : : ; ˛m are any scalars. For any (non-empty subset)
M � X , the set of all linear combinations of elements in M is called the span of
M , written span .M/ (or sp .M/).

The vectors f1; f2; : : : ; fm are said to be linearly independent if

˛1f1 C ˛2f2 C : : :C ˛mfm D OX , ˛1 D ˛2 D : : : D ˛m D 0I

otherwise the vectors are linearly dependent. An arbitrary subsetM ofX is linearly
independent if every non-empty finite subset of M is linearly independent; M is
linearly dependent if it is not linearly independent.

A vector space X is said to be finite-dimensional if there is a positive integer n
such thatX contains a linearly independent set of n vectors whereas any set of nC1
or more vectors ofX is linearly dependent—in this caseX is said to have dimension
n and we write dimX D n. By definition, if X D fOX g, then dimX D 0. If
dimX D n, then any linearly independent set of n vectors fromX forms a basis for
X . If e1; e2; : : : ; en is a basis for X then each f 2 X has a unique representation as
a linear combination of the basis vectors; i.e.

f D ˛1e1 C ˛2e2 C : : :C ˛nen ;

with the scalars ˛1; ˛2; : : : ˛n uniquely determined by f .

1.3.2 Normed Vector Spaces and Banach Spaces

A norm on a vector spaceX is a mapping fromX into R satisfying the conditions

• kf k � 0 for all f 2 X and kf k D 0 , f D OX ;
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• k f̨ k D j˛j kf k for all scalars ˛ and f 2 X ;
• kf C gk � kf k C kgk for all f; g 2 X (the Triangle Inequality).

A vector space X , equipped with a norm k � k, is called a normed vector space,
denoted by .X; k�k/ (or simply byX when it is clear which norm is being used). Note
that a norm can be regarded as a generalisation to a vector space of the familiar idea
of the modulus of a number. Moreover, just as j˛�ˇj gives the distance between two
numbers, we can use kf � gk to measure the distance between two elements f; g
in .X; k � k/. This then enables us to discuss convergence of sequences of elements
and continuity of functions in a normed vector space setting.

We say that a sequence .fn/1nD1 in a normed vector space X (with norm k � k) is
convergent in X if there exists f 2 X (the limit of the sequence) such that

lim
n!1 kfn � f k D 0:

In this case we write fn ! f as n ! 1. Note that a convergent sequence .fn/1nD1
in X has a uniquely defined limit.

A sequence .fn/1nD1 in a normed vector space X is a Cauchy sequence if for
every � > 0; there exists N 2 N such that

kfm � fnk < � for all m; n � N:

The normed vector spaceX is said to be complete if every Cauchy sequence inX is
convergent, and we refer to a complete normed vector space as a Banach space. Note
that every finite-dimensional normed vector space is complete and hence a Banach
space.

Example 3 Let

C
n WD ff D .f1; : : : ; fn/ W fi 2 C for i D 1; : : : ng:

We say that two vectors f D .f1; : : : ; fn/ and g D .g1; : : : ; gn/ are equal in C
n if

f1 D g1; : : : ; fn D gn:

Also, if we define

f C g WD .f1 C g1; : : : ; fn C gn/; f; g 2 C
n;

f̨ WD . f̨1; : : : ; f̨n/; ˛ 2 C; f 2 C
n;

and

kf k WD
p

jf1j2 C � � � C jfnj2; f D .f1; : : : ; fn/ 2 C
n;
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then .Cn; k � k/ is a normed vector space with dimension n. Consequently .Cn; k � k/
is a Banach space. The Banach space .Rn; k � k/ consisting of all ordered n-tuples of
real numbers is defined in an analogous manner.

Example 4 For fixed � � 0, we define a vector space of scalar-valued sequences
.fi /

1
iD1 by

`1� WD ff D .fi /
1
iD1 W

1X
iD1

i�jfi j < 1g:

Equality, addition and multiplication by a scalar are defined pointwise in much the
same way as in C

n (e.g. .fi /1iD1 C .gi /
1
iD1 D .fi C gi /

1
iD1) and if we define a norm

on `1� by

kf k1;� D
1X
iD1

i�jfi j;

then .`1�; k � k1;�/ can be shown to be an infinite-dimensional Banach space.

1.3.3 Operators on Normed Vector Spaces

We now introduce some concepts related to functions that are defined on a normed
vector space X . Functions of this type are often referred to as operators (or
transformations) and we shall denote these by capital letters, such as L; S and T .
We shall concentrate only on cases where the operator, say T , maps each vector
f 2 D.T / � X onto another (uniquely defined) vector T .f / 2 X . Note that T .f /
is often abbreviated to Tf andD.T / is the domain of T .

The simplest type of operator on a normed spaceX is an operatorL that satisfies
the algebraic condition

L.˛1f1 C˛2f2/ D ˛1L.f1/C˛2L.f2/; 8 f1; f2 2 X and scalars ˛1; ˛2: (4)

Any operator L that satisfies (4) is said to be a linear operator on X . The set of all
linear operators mappingX into X will be denoted by L.X/ and, defining L1 CL2
and ˛L in L.X/ by .L1 C L2/.f / WD L1.f / C L2.f / and .˛L/.f / WD ˛L.f /,
where L1;L2; L 2 L.X/, f 2 X and ˛ is a scalar, L.X/ is a vector space.

An operator T W X ! X (T not necessarily linear) is said to be continuous at a
given f 2 X if and only if

fn ! f in X ) T .fn/ ! T .f / in X:

We say that T is continuous on X if it is continuous at each f 2 X .
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Another important concept is that of a bounded operator. We say that the operator
T W X ! X is bounded on the normed vector space X if

kT .f /k � M kf k for all f 2 X; (5)

where M is a positive constant that is independent of f ; i.e. the same constant M
works for all f 2 X . In the case of a linear operator L W X ! X , continuity and
boundedness are equivalent as it can be proved that

the linear operator L W X ! X is continuous on X , L is bounded on X:

We shall denote the collection of bounded linear operators on X by B.X/. It is
straightforward to verify that B.X/ is a subspace of L.X/. Moreover, if X is a
finite-dimensional normed vector space, then all operators in L.X/ are bounded (so
that, as sets, L.X/ D B.X/).

It follows from (5) that, if L is bounded, then

sup fkL.f /k W f 2 X and kf k � 1g

exists as a finite non-negative number. This supremum is used to define the norm of
a bounded linear operator in the vector space B.X/; i.e.

kLk WD sup fkL.f /k W f 2 X and kf k � 1g :

Equipped with this norm, B.X/ is a normed vector space in its own right, and
is a Banach space whenever X is a Banach space. Specific examples of bounded
and unbounded linear operators can be found in Sect. 1.1 of the contribution to this
volume by Adam Bobrowski [8].

1.3.4 Calculus of Vector-Valued Functions

The basic operations of differentiation and integration of scalar-valued functions
can be extended to the case of functions which take values in a normed vector space
.X; k�k/. A function of this type is said to be vector-valued because each value taken
by the function is an element in a vector space. In the sequel, we shall encounter
functions of the form u W J ! X where J � R is an interval. Thus, u.t/ 2 X for
all t 2 J . Such a function u is said to be strongly continuous at c 2 J if, for each
" > 0, a positive ı can be found such that

ku.t/ � u.c/k < " whenever t 2 J and jt � cj < ı:
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If u is strongly continuous at each point in J , then u is said to be strongly continuous
on J . Similarly, u is said to be strongly differentiable at c 2 J if there exists an
element u0.c/ 2 X such that

lim
h!0

u.c C h/� u.c/

h
D u0.c/; (6)

where the limit is with respect to the norm defined on X ; i.e. given " > 0, there
exists ı > 0 such that����u.c C h/� u.c/

h
� u0.c/

���� < " whenever c C h 2 J and 0 < jhj < ı: (7)

If u is strongly differentiable at each point in J then we say that u is strongly
differentiable on J .

As regards integration of a vector-valued function u W J ! X , it is a
straightforward task to extend the familiar definition of the Riemann integral of
a scalar-valued function. For example, if J D Œa; b�, then, for each partition Pn of
J of the form

a D t0 < t1 < t2 < : : : < tn D b;

there is a corresponding Riemann sum

S.uIPn/ WD
nX

kD1
u.�k/.tk � tk�1/;

in which �k is arbitrarily chosen in the sub-interval Œtk�1; tk�. We then define

Z b

a

u.t/ dt WD lim
kPnk!0

S.u; Pn/;

whenever this limit exists inX (and is independent of the sequence .Pn/ of partitions
and choice of �k). Here

kPnk WD max
1�k�n

.tk � tk�1/:

We refer to this integral as the strong (Riemann) integral of u over the interval
Œa; b�. The strong Riemann integral has similar properties to its scalar version. For
example, suppose that u W Œa; b� ! X is strongly continuous on Œa; b�. Then it can
be shown that, for each t 2 Œa; b�,
Z t

a

u.s/ ds exists ;

����
Z t

a

u.s/ ds

���� �
Z t

a

ku.s/k ds;
d

dt

�Z t

a

u.s/ ds

�
D u.t/I

see [7, Section 1.6] and also [4, Subsection 2.1.5].
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1.3.5 The Contraction Mapping Principle

As discussed earlier, when carrying out a rigorous investigation into problems
arising from mathematical models, the first step is usually to show that solutions
actually exist. Moreover, such solutions should be uniquely determined by the
problem data. Theoretical results which establish these properties are often referred
to as Existence-Uniqueness Results. To end this section, we present one of the most
important results of this type. We shall also supply a proof as this provides concrete
motivation for working with Banach spaces.

Theorem 1 (Banach Contraction Mapping Principle ) Let .X; k�k/ be a Banach
space and let T W X ! X be an operator with the property that

kTf � Tgk � ˛ kf � gk 8 f; g 2 X;

for some constant ˛ < 1 (such an operator T is said to be a (strict) contraction).
Then the equation

Tf D f

has exactly one solution (called a fixed point of T) in X . Moreover, if we denote
this unique solution by f and use T iteratively to generate a sequence of vectors
.f1; Tf1; T

2f1; T
3f1; : : :/, where f1 is any given vector in X , then

T nf1 ! f as n ! 1:

Proof Let the sequence .fn/1nD1 be defined as in the statement of the theorem. Then,
for n � 2,

kfnC1 � fnk D kTfn � Tfn�1k � ˛kfn � fn�1k � � � � � ˛n�1kf2 � f1k:

Note that the above inequality trivially holds for n D 1 as well. Hence, for any
m > n � 1, we have

kfm � fnk D kfm � fm�1k C kfm�1 � fm�2k C � � � C kfnC1 � fnk
� .˛m�2 C ˛m�3 C � � � C ˛n�1/kf2 � f1k

< ˛n�1.1C ˛ C ˛2 C � � � /kf2 � f1k D ˛n�1

1 � ˛ kf2 � f1k:
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Since

˛n�1

1 � ˛ kf2 � f1k ! 0 as n ! 1;

it follows that .fn/1nD1 is a Cauchy, and hence convergent, sequence in the Banach
space .X; k � k/. Let f 2 X be the limit of this convergent sequence. Then, by
continuity of the operator T , we obtain

fnC1 D Tfn ) lim
n!1fnC1 D lim

n!1Tfn D T
�

lim
n!1fn

�
) f D Tf;

and so f is a fixed point of T . To show that no other fixed point exists, suppose that
both f and g are fixed points, with f ¤ g. Then

kf � gk D kTf � Tgk � ˛kf � gk:

Dividing each side by kf � gk .¤ 0/ leads to 1 � ˛, which is a contradiction. ut

2 Finite-Dimensional State Space

In this section we give a brief account of some aspects of the theory associ-
ated with autonomous finite-dimensional systems of ODEs and will explain how
continuous-time dynamical systems defined on the finite-dimensional state-space
R
n arise naturally from such systems. This will pave the way for the discussion on

infinite-dimensional dynamical systems that will follow in the next section. Note
that the intention with these lectures is not to provide an exhaustive treatment of
systems of ODEs. Instead, we concentrate only on those results which will be
needed to analyse some selected problems arising in population dynamics. We
begin by examining the most straightforward case where we have a linear system
of constant-coefficient ODEs. We will then move on to systems involving nonlinear
equations and describe how, through the process of linearisation, useful information
on the long-time behaviour of solutions near an equilibrium solution can be obtained
from a related linear, constant-coefficient system. Obviously, before we can talk
about the long-time behaviour of solutions, we should make sure that solutions
do, in fact, exist. Hence, we shall highlight some conditions which, thanks to the
Contraction Mapping Principle, guarantee the existence and uniqueness of solutions
to systems of ODEs.
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2.1 Linear Constant-Coefficient Systems of ODEs

2.1.1 Matrix Exponentials

Consider the following IVP involving a linear system of n constant-coefficient
ODEs:

u0
1.t/ D l11u1.t/C l12u2.t/C � � � C l1nun.t/; u1.0/ D ı

u1;

u0
2.t/ D l21u1.t/C l22u2.t/C � � � C l2nun.t/; u2.0/ D ı

u2;

:::

u0
n.t/ D ln1u1.t/C ln2u2.t/C � � � C lnnun.t/; un.0/ D ı

un;

where l11; l12; : : : ; ln;n and
ı
u1; : : : ;

ı
un are real constants. The problem is to find n

differentiable functions u1; u2; : : : ; un of the variable t that satisfy the n equations
in the system. Obviously, before seeking solutions, we have to know that solutions
actually exist, and it is here that considerable progress can be made if we adopt
the strategy of working with matrix exponentials that was pioneered by the Italian
mathematician Guiseppe Peano in 1887 (see [13, pp. 503–504]).

The first step is to express the IVP system in the matrix–vector form

u0.t/ D Lu.t/; u.0/ D ı
u; (8)

where L is the n � n constant real matrix

L D

2
6664

l11 l12 � � � l1n
l21 l22 � � � l2n
:::
:::
: : :

:::

ln1 ln2 � � � lnn

3
7775 ;

and u.t/ D .u1.t/; : : : ; un.t// is interpreted as a column vector. A solution of (8)
will be a vector-valued function in the sense that u.t/ lies in the n-dimensional
Banach space R

n for each t . This means that our state space X is Rn.
Note that u0.t/ D .u0

1.t/; : : : ; u
0
n.t// with integrals of the vector-valued function

u being interpreted similarly; e.g.

Z t

0

u.s/ ds D .

Z t

0

u1.s/ ds; : : : ;
Z t

0

un.s/ ds/:
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Expressed as (8), the linear system of ODEs bears a striking resemblance to the
scalar equation u0.t/ D lu.t/, and so it is tempting to write down a solution in the
form

u.t/ D e tL ı
u : (9)

It turns out that the unique solution of (8) can indeed be written as (9), but this
obviously leads to the following questions.

Q1. What does e tL mean when L is an n � n constant matrix?
Q2. How do we verify that (9) is a solution of (8)?
Q3. How do we prove that (9) is the only differentiable solution of (8) that satisfies

the initial condition u.0/ D ı
u 2 R

n?
Q4. For a given n � n constant matrix L, can we actually express e tL in terms of

standard scalar-valued functions of t?

To answer Q1, we consider the power series definition of the scalar exponential
el , i.e.

e l D 1C l C l2

2Š
C l3

3Š
C � � � : (10)

This infinite series converges to the number e l D exp . l/ for each fixed l 2 R.
Motivated by this, Peano defined the exponential of an n � n constant matrix L by
a formula, which, in modern notation, takes the form

e L D exp .L/ D I C LC L2

2Š
C L3

3Š
C � � � : (11)

Here I is the n � n identity matrix, L2 represents the matrix product LL, L3 is
the product LLL D L2L D LL2 and so on. Note that the operation f 7! Lf ,
where f is a column vector in R

n, defines a bounded linear transformation that
maps Rn into R

n. If we use L to represent both the matrix and the bounded linear
operator that it defines, then it can be shown that the infinite series of n�n matrices
(or, equivalently, bounded linear operators in B.Rn/) will always converge (with
respect to the norm on B.Rn)) to a uniquely defined n� n matrix (which, as before,
can be interpreted as an operator in B.Rn/). Moreover

ke Lk � e kLk;

where kLk WD supfkLf k W f 2 R
n and kf k � 1g for any L 2 B.Rn/; see [15, pp.

82–84] and [13, p. 6]. It follows from (11) that, for any n� n constant matrix L and
any scalar t ,

e tL D exp .tL/ D I C tL C t2L2

2Š
C t3L3

3Š
C � � � ; (12)
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and

ke tLk � e jt j kLk:

The time-dependent matrix exponential defined by (12) has similar properties to
its one-dimensional “little brother”. For example, if L is any n � n constant matrix,
then

(P1) e 0L D I ;
(P2) e sLe tL D e .sCt /L for all s; t 2 RI
(P3) d

dt

�
e tLf

� D Le tLf for any given vector f 2 R
n.

The derivative in (P3) is interpreted as a strong derivative with respect to the norm
on R

n, so that
����e

.tCh/Lf � e tLf

h
� Le tLf

���� ! 0 as h ! 0:

Note that an R
n-valued function u is strongly differentiable at c 2 R if and only

if each of its scalar-valued components uk; k D 1; 2; : : : ; n; is differentiable at c;
the strong and pointwise (or component-wise) derivatives are then identical. In other
words, the notions of strong derivative and pointwise derivative coincide in this n-
dimensional case. It should also be remarked that a stronger version of (P3) can be
established. Since
����1h

�
e hL � I

� �L
���� �

1X
kD2

jhjk�1 kLkk
kŠ

D e jhj kLk � 1

jhj � kLk ! 0 as h ! 0;

and

e .tCh/L � e tL D �
e hL � I � e tL;

it follows that the operator-valued function t 7! e tL is strongly differentiable in
B.Rn/.

2.1.2 Existence and Uniqueness of Solutions

We can now answer Q2 and Q3. On setting u.t/ D e tL ı
u, it follows immediately

from properties (P1) and (P3) that

u.0/ D I
ı
u D ı

u

and

u0.t/ D Lu.t/:
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Therefore u.t/ D e tL ı
u is a solution of the IVP

u0.t/ D Lu.t/; u.0/ D ı
u :

To show that this IVP has no other differentiable solutions, we argue in exactly
the same way as for the scalar case. Suppose that another solution v exists; i.e.

v0.t/ D Lv.t/ and v.0/ D ı
u, and let t > 0 be arbitrarily fixed. Then, for 0 < s � t ,

we have

d

ds
.e.t�s/Lv.s// D �Le.t�s/Lv.s/C e.t�s/Lv0.s/

D �Le.t�s/Lv.s/C e.t�s/LLv.s/ D 0;

where 0 is the zero vector in R
n. It follows from this that e.t�s/Lv.s/ is a constant

vector for all s 2 Œ0; t �. On choosing s D 0 and s D t , we obtain

e tL ı
uD e tLv.0/ D e .t�t /L v.t/ D e 0L v.t/ D v.t/:

Since this argument works for any t > 0 and we already know that v.0/ D u.0/ D ı
u,

we deduce that v.t/ D u.t/ D e tL ı
u for all t � 0.

Note that this solution can be used to define the n-dimensional CDS
� W Œ0;1/ � R

n ! R
n, where �.t;

ı
u/ WD e tL ı

u. The associated semigroup of
operators fS.t/gt�0, S.t/ WD etl; is referred to as the semigroup generated by the

matrix L, and, for each
ı
u, the set fS.t/ ı

uW t � 0g � R
n is called the (positive semi-)

orbit of
ı
u. Geometrically, we can regard the orbit as a continuous (with respect to t)

“curve” (or path or trajectory), emanating from
ı
u, that lies in the state-space R

n for
all t � 0. The continuity property follows from the fact that

ke hL � Ik � e jhj kLk � 1 ! 0 as h ! 0:

A constant solution, u.t/ 	 u for all t , where u D .u1; : : : ; un/ 2 R
n is called

an equilibrium solution or steady state solution. The orbit of such a solution is the
single element (or point) u 2 R

n; u is called an equilibrium point (or rest point,
stationary point or critical point). If u is an equilibrium point, then Lu D 0. We
shall only consider the case when the matrixL is non-singular and therefore the only
equilibrium point of the system u0.t/ D Lu.t/ is u D 0: When each eigenvalue of
L has a negative real part, the equilibrium point 0 is globally attractive (or globally
asymptotically stable) since ke tLf k ! 0 as t ! 1 for all f 2 R

n; see [13, p.12].
In principle, e tL can be computed by using the fact that, if P is a non-singular

matrix and L D P�P�1, then e tL D Pe t�P�1. For example, if L has n distinct
real eigenvalues �1; : : : ; �n, then the corresponding eigenvectors can be used as the
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columns of a matrix P such that L D P�P�1, where � D diagf�1; : : : ; �ng, in
which case

e tL D P e t�P�1 with e t� D diagfe �1t ; : : : ; e �nt g:

More generally, it can be shown that the components uj .t/; j D 1; : : : ; n, of any
given solution u.t/ can be written as a linear combination of the functions

tke � t cos.	t/; t`e � t sin.	t/;

where �C i	 runs through all the eigenvalues of L, and k; ` are suitably restricted
non-negative integers; see [15, p.135].

One final remark in this subsection is that it should be clear that the restriction
t � 0 is unnecessary in all of the above, and that we could just as easily have defined
a group fe tLgt2R. We have focussed only on the semigroup case since this is usually
the best that we can hope to obtain when we look at the more complicated setting of
semigroups generated by operators defined in an infinite-dimensional state space.

2.2 Nonlinear Autonomous Systems of ODEs

We have seen that IVPs involving constant-coefficient linear systems of ODEs have
unique, globally defined solutions that can be expressed in terms of matrix exponen-
tials. For more general systems of ODEs, life becomes a bit more complicated and it
is usually difficult to obtain exact solutions. However, useful qualitative results can
sometimes be obtained. We shall consider the IVP

u0.t/ D F.u.t//; u.0/ D ı
u; (13)

where u.t/ D .u1.t/; : : : ; un.t//,
ı
uD .

ı
u1; : : : ;

ı
un/ and F W R

n 
 W ! R
n is a

vector-valued function F D .F1; : : : ; Fn/ defined on an open subset W of Rn. A
solution of (13) is a differentiable function u W J ! W defined on some interval
J � R, with 0 2 J , such that

u0.t/ D F.u.t// 8 t 2 J; and u.0/ D ı
u :

2.2.1 Existence and Uniqueness of Solutions

The following theorem provides sufficient conditions for the existence of a unique
solution to (13) on some interval J D .�a; a/. We shall denote such a solution by

�.�; ı
u/, i.e. at time t 2 .�a; a/, the solution is u.t/ D �.t;

ı
u/. We shall also express

�.t;
ı
u/ as S.t/

ı
u.
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Theorem 2 Let F be continuously differentiable on W .

(i) (Local Existence and Uniqueness) For each
ı
u 2 W , there exists a unique

solution �.�; ı
u/ of the IVP (13) defined on some interval .�a; a/ where a > 0.

(ii) (Continuous Dependence on Initial Conditions) Let the unique solution

�.�; ı
u/ be defined on some closed interval Œ0; b�. Then there exists a neigh-

bourhood U of
ı
u and a positive constant K such that if

ı
v 2 U , then the

corresponding IVP v0 D F.v/; v.0/ D ı
v, has a unique solution also defined

on Œ0; b� and

k�.t; ı
u/� �.t;

ı
v/k D kS.t/ ı

u �S.t/ ı
v k � eKtk ı

u � ı
v k 8 t 2 Œ0; b�:

(iii) (Maximal Interval of Existence) For each
ı
u 2 W , there exists a maximal open

interval Jmax D .˛; ˇ/ containing 0 (with ˛ and ˇ depending on
ı
u) on which

the unique solution �.t;
ı
u/ is defined. If ˇ < 1, then, given any compact

subset K of W , there is some t 2 .˛; ˇ/ such that u.t/ … K:
Remarks

(a) Proofs of these results can be found in [15, Chapter 8].
(b) The vector function F is said to be differentiable at g 2 W if there exists a

linear operator Fg 2 B.Rn/ such that

F.g C h/ D F.g/C Fg.h/C E.g; h/; h 2 R
n;

where

lim
khk!0

kE.g; h/k
khk D 0:

It can be shown that Fg can be represented by the n � n Jacobian matrix

DF D

2
6664

@1F1 @2F1 � � � @nF1
@1F2 @2F2 � � � @nF2
:::

:::
: : :

:::

@1Fn @2Fn � � � @nFn

3
7775

evaluated at g. The function F is continuously differentiable on W if all the
partial derivatives @j Fi exist and are continuous onW .

(c) The fact that F is continuously differentiable on W means that F satisfies a

local Lipschitz condition onW ; i.e. for each
ı
u 2 W there is a closed ball

Br.
ı
u/ WD ff 2 R

n W kf � ı
u k � rg � W



20 W. Lamb

and a constant k, which may depend on
ı
u and r , such that

kF.f / � F.g/k � k kf � gk 8f; g 2 Br.
ı
u/:

(d) The proof of Theorem 2(i) involves the Banach Contraction Mapping Principle.
The first step is to note that the IVP (13) is equivalent to the fixed point problem
u D T u; where T is the operator defined by

.T u/.t/ D ı
u C

Z t

0

F .u.s//ds;

i.e. u is a solution of (13) if and only if u satisfies the integral equation

u.t/ D ı
u C

Z t

0

F .u.s//ds:

The local Lipschitz continuity of F can then be used to establish that T is
a contraction on a suitably defined Banach space of functions; this yields
existence and uniqueness. It is also possible to produce a sequence of iterates

.un/ convergent to the unique solution �.�; ı
u/ by using the Picard successive

approximation scheme. We simply take u1.t/ 	 ı
u and then set

un.t/ D ı
u C

Z t

0

F .un�1.s//ds; n D 2; 3; : : :

(e) The proof of Theorem 2(ii) relies on Gronwall’s inequality which states that if
 W Œ0; b� ! R is continuous, non-negative and satisfies

 .t/ � C CK

Z t

0

 .s/ ds 8 t 2 Œ0; b�;

for constants C � 0; K � 0, then

 .t/ � CeKt 8 t 2 Œ0; b�:

(f) It can be shown that the operators S.t/ have the following semigroup property:

S.t/S.s/
ı
uD S.t C s/

ı
u;

where this identity is valid whenever one side exists (in which case, the other
side will also exist).
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2.2.2 Equilibrium Points

When analysing the nonlinear autonomous system of ODEs

u0 D F.u/; (14)

the starting point is usually to look for equilibrium points (corresponding to
constant, or steady-state solutions). In this case Nu is an equilibrium point if

F1.Nu/ D 0; : : : ; Fn.Nu/ D 0;

and the local stability properties of the equilibrium Nu are usually determined by
the eigenvalues of the Jacobian matrix .DF /.Nu/. The equilibrium Nu is hyperbolic if
.DF /.Nu/ has no eigenvalues with zero real part.

An equilibrium Nu is said to be stable if nearby solutions remain nearby for all
future time. More precisely, Nu is stable if, for any given neighbourhood U of Nu,
there is a neighbourhoodU1 of Nu in U such that

ı
u 2 U1 ) �.t;

ı
u/ exists for all t � 0 and �.t;

ı
u/ 2 U for all t � 0:

If, in addition,

ı
u 2 U1 ) �.t;

ı
u/ ! Nu as t ! 1;

then Nu is (locally) asymptotically stable. Any equilibrium which is not stable is said
to be unstable. When Nu is hyperbolic then it is either asymptotically stable (when all
eigenvalues of .DF /.Nu/ have negative real parts) or unstable (when .DF /.Nu/ has at
least one eigenvalue with positive real part).

The basic idea behind the proof of these stability results is that of linearisation.

Suppose that Nu is an equilibrium point and that
ı
u is sufficiently close to Nu. On setting

v.t/ D �.t;
ı
u/� Nu, we obtain

v0.t/ D F.Nu C v.t// � F.Nu/C .DF /.Nu/ v.t/

i.e. v0.t/ � .DF /.Nu/ v.t/:

Thus, in the immediate vicinity of Nu, the nonlinear ODE u0 D F.u/ can be
approximated by the linear equation

v0 D Lv; where L D .DF /.Nu/:

In effect, this means that in order to understand the stability of a hyperbolic
equilibrium point Nu of u0 D F.u/, we need only consider the linearised equation
v0 D .DF /.Nu/v.
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2.2.3 Graphical Approach in One and Two Dimensions

In the scalar case,

u0.t/ D F.u.t//; u.0/ Dı
u;

we can represent the asymptotic behaviour of solutions using a phase portrait.
Geometrically, the state space R

1 can be identified with the real line which, in this
context, is called the phase line, and so the value u.t/ of a solution u at time t
defines a point on the phase line. As t varies, the solution u.t/ traces out a trajectory,

emanating from the initial point
ı
u, that lies completely on the phase line. If we

regard u.t/ as the position of a particle on the phase line at time t , then the direction
of motion of the particle is governed by the sign of F.u.t//. If F.u.t// > 0 the
motion at time t is to the right; if F.u.t// < 0, then motion is to the left.

In two-dimensions, we use the phase plane. Here, we interpret the components
u1.t/ and u2.t/ of any solution u.t/ as the coordinates of a curve defined paramet-
rically (in terms of t) in the u1–u2 phase plane. Each solution curve plotted on the
phase plane is a trajectory. A trajectory can also be regarded as the projection of a
solution curve which “lives” in the three-dimensional space R

3 (with coordinates
u1; u2 and t) onto the two-dimensional u1–u2 plane. Phase plane trajectories have
the following important properties.

1. Each trajectory corresponds to infinitely many solutions.
2. Through each point of the u1–u2 phase plane there passes a unique trajectory and

therefore trajectories cannot intersect.
3. On the phase plane, an equilibrium point Nu D .Nu1; Nu2/ is the trajectory of the

constant solution

u1.t/ D Nu1; u2.t/ D Nu2; t 2 R:

4. The trajectory of a non-constant periodic solution is a closed curve called a cycle.

The key to establishing these properties is to use the uniqueness of solutions to IVPs.

For example, suppose that the point
ı
u lies, not only on the trajectory C.

ı
u/, but also

on the trajectory C.
ı
v/ corresponding to the solution �.�; ı

v/. Then,
ı
uD �.t0;

ı
v/ for

some t0 and therefore the function .t/ D �.t�t0; ı
v/ is a solution of the system that

satisfies the initial condition .0/ D ı
u. By uniqueness of solutions, .t/ D �.t;

ı
u/.

Therefore, the trajectories corresponding to  and �.�; ı
u/ (and hence �.�; ı

v/ and

�.�; ı
u/) are identical.
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2.3 Dynamical Systems and Population Models

Suppose we are interested in the long-term behaviour of the population of a partic-
ular species (or the populations of several inter-related species). By a “population”
we mean an assembly of individual organisms which can be regarded as being
alike. What is required is a mathematical model that contains certain observed or
experimentally determined parameters such as the number of predators, severity of
climate, availability of food etc. This model may take the form of a differential
equation or a difference equation, depending upon whether the population is
assumed to change continuously or discretely. We shall restrict our attention to the
case of continuous time. We can attempt to use the model to answer questions such
as:

1. Does the population ! 0 as t ! 1 (extinction)?
2. Does the population become arbitrarily large as t ! 1 ( eventual overcrowd-

ing)?
3. Does the population fluctuate periodically or even randomly?

Example 5 Single Species Population Dynamics (see [14, Section 2.1]). When
all individuals in the population behave in the same manner, then the net effect of
this behaviour on the total population is given by the product of the population
size with the per capita effect (i.e. the effect due to the behaviour of a typical
individual in the population). For example, if we consider the case of the production
of new individuals, then the rate of change of the population size N.t/ at time t in a
continuous-time model can be expressed as

dN

dt
D N � per capita reproduction rate: (15)

This can be written as

1

N

dN

dt
D per capita reproduction rate

or, equivalently,

d

dt
ln.N / D per capita reproduction rate.

(i) The Malthus Model. In this extremely simple model, the per capita
reproduction rate is assumed to be a constant, say ˇ, in which case Eq. (15)
becomes

dN

dt
D ˇN;
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and soN.t/ D eˇt
ı
N , where

ı
N D N.0/. This type of population growth is often

referred to as Malthusian growth. The Malthus model can easily be adapted
to include the effect of deaths in the population. If we also assume that the
mortality rate is proportional to the population size, then we obtain

dN

dt
D ˇN � ıN D rN;

where �ıN represents the decline in population size due to deaths, and the
parameter r D ˇ � ı is the net per capita “growth” rate. The solution now is
given by

N.t/ D ert
ı
N; (16)

where N.0/ D ı
N is the initial size of the population. It follows that:

r > 0 ) N.t/ ! 1 as t ! 1 .overcrowding/
r < 0 ) N.t/ ! 0 as t ! 1 .extinction/

r D 0 ) N.t/ D ı
N 8t � 0.

Clearly, the solution (16) leads to an unrealistic prediction of what will happen
to the size of the population in the long term and so we must include other
(nonlinear) effects to improve the model.

(ii) The Verhulst Model. A slightly more realistic model is given by

dN

dt
D G.N/N; t > 0I N.0/ D ı

N;

with a variable net growth rate G depending on the population size N . In some
cases we would expectG to reflect the fact that there is likely to be some intra-
specific competition for a limited supply of resources. This would require a
growth rate, G.N/, that would lead to a model predicting a small population
growth whenN is small, followed by more rapid population growth untilN hits
a saturation value, sayK , beyond which N will level off. If N ever manages to
exceedK , then G.N/ should be such that N rapidly decreases towards K .

For example, the equation of limited growth is

dN

dt
D r

�
1 � N

K

�
N; N.0/ D ı

N; (17)

where K and r are positive constants. To obtain this equation, we have set
G.N/ D r.1�N=K/. Note thatK is the population size at whichG is zero and
therefore dN=dt D 0 when N D K . Equation (17) is called the (continuous
time) logistic growth equation or Verhulst equation, the constantK is called the
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carrying capacity of the environment, and r is the unrestricted growth rate. The
method of separation of variables can be used to show that the solution of (17)
is

N.t/ D K

1 � .1�K=
ı
N/ exp.�rt/

; (18)

and thereforeN.t/ ! K as t ! 1:

Example 6 Models of Two Interacting Species (see [14, Section 2.2]). We now
consider how interactions between pairs of species affect the population dynamics of
both species. The type of interactions that can occur can be classified as follows:

• Competition: each species has an inhibitory effect on the other;
• Commensalism: each species benefits from the presence of others (symbiosis);
• Predation: one species benefits and the other is inhibited by interactions between

them.

In any given habitat, such as a lake, an island or a Petri dish, it is likely that a
number of different species will live together. A common strategy is to identify two
species as being the most important to each other, and then to ignore the effect on
them of all the other species in the habitat.

In the case when the two species are in competition for the same resources, any
increase in the numbers of one species will have an adverse effect on the growth rate
of the other. The competitive Lotka–Volterra system of equations used to model this
situation is given by

u0
1 D u1.r1 � l11u1 � l12u2/; u0

2 D u2.r2 � l21u1 � l22u2/; (19)

where

• u1.t/; u2.t/ are the sizes of the two species at time t ;
• r1; r2 are the intrinsic growth rates of the respective species;
• l11; l22 represent the strength of the intraspecific competition within each species,

with r1= l11 and r2= l22 the carrying capacities of the respective species;
• l12; l21 represent the strength of the interspecific competition (i.e. competition

between the species).

Each of the constants r1; r2; l11; l12; l21; l22 is positive.

It follows from the existence-uniqueness theorem that, for each initial state
ı
u,

there exists a unique solution u.t/ D S.t/
ı
u defined on some interval Œ0; tmax/, where

tmax < 1 only if ku.t/k diverges to infinity in finite time. Moreover, since the non-
negative u1 and u2 axes are composed of complete trajectories, any trajectory that
starts off in the positive first quadrant must remain there; i.e. solutions that start off
at positive values stay positive (recall from phase plane analysis that trajectories in
the phase plane cannot intersect).
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Let L be the matrix

L D
	
l11 l12
l21 l22



;

and assume that jLj ¤ 0. The system of Eq. (19) has four equilibria, namely

U1 D .0; 0/; U2 D .r1= l11; 0/; U3 D .0; r2= l22/ and U4 D .u�
1 ; u

�
2 /;

where

	
u�
1

u�
2



D L�1

	
r1

r2



D 1

jLj
	
r1l22 � r2l12
r2l11 � r1l21



:

Note that

jLj > 0 when
l12

l22
<
l11

l21

jLj < 0 when
l12

l22
>
l11

l21
:

From this, we can deduce that there are two scenarios that result in u�
1 > 0 and

u�
2 > 0, namely

Case I W l12
l22

<
r1

r2
<
l11

l21

Case II W l11
l21

<
r1

r2
<
l12

l22
:

The Jacobian matrix at .x; y/ is given by

.DF /.x; y/ D
	
r1 � 2l11 x � l12 y �l12 x

�l21 y r2 � l21 x � 2l22 y



:

For the equilibrium U1, we have

.DF/.0; 0/ D
	
r1 0

0 r2



;

and it follows immediately that U1 is unstable in each of Case I and Case II.
Consider now the other three equilibria when Case I applies. To determine the

stability properties of these, we note first that the characteristic equation of a real
2 � 2 matrix, say A, can be written in the form

�2 � trace.A/ �C jAj D 0:
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It follows that a non-singular matrix A will have two eigenvalues with negative real
parts when jAj > 0 and t race.A/ < 0, and will have exactly one positive eigenvalue
when jAj < 0. At U2 we have

.DF/.r1= l11; 0/ D
	�r1 �l12 r1= l11
0 r2 � l21 r1= l11



:

As the determinant of this Jacobian matrix is

�r1
�
r2 � l21 r1

l11

�
< 0;

the equilibrium U2 is unstable. Similarly, U3 is unstable. Now consider U4. In this
case,

.DF/.u�

1 ; u
�

2 / D
	
r1 � 2l11u�

1 � l12u�

2 �l12u�

1

�l21u�

2 r2 � l21u�

1 � 2l22u�

2



D
	�l11u�

1 �l12u�

1

�l21u�

2 �l22u�

2



:

Consequently, the characteristic equation takes the form

�2 C �.l11u
�
1 C l22u

�
2 /C u�

1u�
2 jLj D 0;

and therefore U4 is locally asymptotically stable (since the trace of the Jacobian
matrix is negative and the determinant is positive). In fact, it can be shown that
all trajectories in the positive first quadrant converge to U4 as t ! 1; see [14,
p. 32]. Thus, in Case I, the competing species may coexist in the long term. Note
that the condition l11l22 > l12l21, which holds here, can be interpreted as stating
that the overall intraspecific competition is stronger than the overall interspecific
competition.

In Case II, a similar analysis shows that U2 and U3 are both asymptotically
stable, with U4 unstable (in fact U4 is a saddle point). It follows that, in the long
term, one of the species will die out. The species that survives is determined by the
initial conditions. Since U4 is a saddle point, there exist stable and unstable orbits
emanating from U4; see [24, p. 21]. These orbits are referred to as separatrices.
As discussed in [14, p. 31], if the initial point on a trajectory lies above the stable

separatrix, then the trajectory converges to U3 (i.e. species u1 dies out). If
ı
u lies

below this separatrix, then the trajectory converges to U2 (i.e. species u2 dies out).
For an analysis of the case when U4 does not lie in the first quadrant of the phase

plane, see [14, Section 2.3]. Note also that the equations used to model two species
which are interacting in a co-operative manner are also given by (19), but now we
have l12 < 0; l21 < 0; l11 > 0 and l22 > 0.

Example 7 The SIR Models of Infectious Diseases (see [14, Chapter 3], [9,
Chapter 3] and [12, Chapter 6]). In simple epidemic models, it is often assumed
that the total population size remains constant. At any fixed time, each individual
within this population will be in one (and only one) of the following classes.
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• Class S : this consists of individuals who are susceptible to being infected (i.e.
can catch the disease).

• Class I : this consists of infected individuals (i.e. individuals who have the disease
and can transmit it to susceptibles).

• Class R : this consists of individuals who have recovered from the disease and
are now immune.

The class R is sometimes regarded as the Removed Class as it can also include
those individuals who have died of the disease or are isolated until recovery. The
SIR model was pioneered in a paper “Contribution to the Mathematical Theory of
Epidemics” published in 1927 by two scientists, William Kermack and Anderson
McKendrick, working in Edinburgh. In searching for a mechanism that would
explain when and why an epidemic terminates, they concluded that: “In general a
threshold density of population is found to exist, which depends upon the infectivity,
recovery and death rates peculiar to the epidemic. No epidemic can occur if the
population density is below this threshold value.”

If we let S.t/, I.t/ and R.t/ denote the sizes of each class, then the following
system of differential equations can be used to describe how these sizes change with
time:

ds

dt
D �ˇSI (20)

dI

dt
D ˇSI � 
I (21)

dR

dt
D 
I: (22)

Here we are making the following assumptions.

• The gain in the infective class is proportional to the number of infectives and the
number of susceptibles; i.e. is given by ˇSI , where ˇ is a positive constant. The
susceptibles are lost at the same rate.

• The rate of removal of infectives to the recovered class is proportional to the
number of infectives; i.e. is given by 
I , where 
 is a positive constant.

We refer to 
 as the recovery rate and ˇ as the transmission (or infection) rate.
Note that, when analysing this system of equations, we are only interested in

non-negative solutions for S.t/; I.t/ and R.t/. Moreover, the constant population
size is built into the system (20)–(22) since adding the equations gives

dS

dt
C dI

dt
C dR

dt
D 0;

showing that, for each t ,

S.t/C I.t/CR.t/ D N;
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whereN is the fixed total population size. The model is now completed by imposing
initial conditions of the form

S.0/ D ı
S � N; I.0/ D ı

I D N� ı
S > 0; R.0/ D 0:

Given particular values of ˇ; 
;
ı
S and

ı
I , we can use the model to predict whether

the infection will spread or not, and if it does spread, in what manner it will grow
with time. One observation that can be made more or less immediately is that the
infectious class will grow in size if dI=dt > 0. Since we are assuming that there
are infectious individuals in the population at time t D 0, Eq. (21) shows that I.t/

will increase from its initial value provided
ı
S > 
=ˇ. The parameter R0 D ˇ=


is called the Basic Reproductive Ratio and is defined as the average number of
secondary cases produced by an average infectious individual in a totally susceptible
population.

We shall determine the long term behaviour of solutions by arguing as follows.

• Since S.t/C I.t/C R.t/ D N for all t , the system is really only a 2-D system
and so we shall concentrate on the equations governing the evolution of S and
I . For this 2-D system, we have an infinite number of equilibria, namely .S; 0/,
where S can be any non-negative number in the interval Œ0; N �. Note that these
equilibria are not isolated (i.e. for each of these equilibria, no open ball centred
at the equilibrium can be found that contains no other equilibrium). This means
that the customary local-linearisation at an isolated equilibrium cannot be used
to determine the stability of the equilibria of this 2-D system.

• The non-negative S axis consists entirely of equilibrium points and the non-
negative I axis is composed of two complete trajectories, namely the equilibrium

.0; 0/ and the positive I axis. This means that solutions that start off with
ı
S > 0

and
ı
I > 0 remain positive.

• Since S.t/ > 0 and I.t/ > 0, it follows (from the equation for S ) that S.t/ is

strictly decreasing. Hence S.t/ <
ı
S for any t > 0 for which S.t/ exists. Note

that it is impossible for I.t/ to blow up in finite time since

I 0.t/ � .ˇ
ı
S �
/I.t/

)
Z t

0

I 0.s/
I.s/

ds �
Z t

0

.ˇ
ı
S �
/ ds D .ˇ

ı
S �
/t

) ln.I.t// � ln.
ı
I /C .ˇ

ı
S �
/t

) 0 < I.t/ � exp.ˇ
ı
S �
/t/ ı

I :

Therefore both S.t/ and I.t/ exist globally in time. Moreover, if
ı
S < 
=ˇ, then

I.t/ ! 0 as t ! 1.
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• For the epidemic to spread initially, we require
ı
S > 
=ˇ, since we will then have

I 0.0/ > 0. However, in this case there will exist some finite time, say t�, such
that S.t�/ < 
=ˇ. To see this, simply observe that if we assume that S.t/ � 
=ˇ

for all t then we obtain I.t/ � ı
I and S 0.t/ � �
 ı

I for all t . From this it follows
that

S.t/ � �
 ı
I tC ı

S! �1 as t ! 1;

which clearly is a contradiction. Arguing as before (but now with
ı
S replaced

by S.t�/) shows that once again I.t/ ! 0 as t ! 1, despite I.t/ initially
increasing.

• Since S.t/ is a strictly decreasing function that is bounded below (by zero), S.t/
must converge to some limit S1 � 0 as t ! 1. We now establish that S1 > 0,
showing that although the epidemic ultimately dies out, this is not caused by the
number of available susceptibles decreasing to zero. Here we make use of the
equation for R. We have

dS

dR
D dS=dt

dR=dt
D �ˇ



S ) S D exp.�ˇR=
/ ı

S :

Since R � N , we deduce that S is always greater than the positive constant

exp.�ˇN=
/ ı
S and therefore S1 > 0.

• Finally the trajectories in the S � I phase plane can be obtained from the ODE

dI

ds
D �1C 


ˇS
:

This has solution given by

I D N � S C .
=ˇ/ ln.S=
ı
S/I

here we have used the fact that
ı
S C ı

I D N . Consequently, on taking limits
(t ! 1) on each side, and rearranging, we obtain

S1 D N C .
=ˇ/ ln.S1=
ı
S/:

For each given
ı
S , this equation has only one positive solution S1.

To summarise, we have shown that each solution .S.t/; I.t// will converge to an
equilibrium .S1; 0/, with S1 > 0, which is determined by the initial value of S .
From this, it follows that .S.t/; I.t/; R.t// ! .S1; 0; N � S1/ as t ! 1. The
value ofN �S1 shows the extent to which the infection has affected the population.
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3 Infinite-Dimensional State Space

We now move into the realm of infinite-dimensional dynamical systems. There-
fore, in the following discussion, we shall assume that the state space X is an
infinite-dimensional Banach space with norm k � k. The aim now is to express
evolution equations in operator form as ordinary differential equations which are
posed in X . We shall consider only problems of the type

u0.t/ D L.u.t//CN .u.t//; t > 0; u.0/ D ı
u; (23)

where L W X 
 D.L/ ! X and N W X ! X are, respectively, linear and nonlinear
operators, with D.L/ a linear subspace of X . In (23), the derivative is interpreted
as a strong derivative, defined via (6) and (7), and a solution u W Œ0;1/ ! X is
sought. The operator LCN that appears in (23) governs the time-evolution of the
infinite-dimensional state vector u.�/, and the initial-value problem (23) is usually
called a (semi-linear) abstract Cauchy problem (ACP).

To provide some motivation for looking at infinite-dimensional dynamical sys-
tems, we shall investigate a particular mathematical model of a system of particles
that can coagulate to form larger particles, or fragment into smaller particles.
Coagulation and fragmentation (C–F) processes of this type can be found in many
important areas of science and engineering. Examples range from astrophysics,
blood clotting, colloidal chemistry and polymer science to molecular beam epitaxy
and mathematical ecology. An efficient way of modelling the dynamical behaviour
of these processes is to use a rate equation which describes the evolution of the
distribution of the interacting particles with respect to their size or mass; see [10,23]
and also Section 1 of the contribution to this volume by Philippe Laurençot [18].

Suppose that we regard the system under consideration as one consisting of a
large number of clusters (often referred to as mers) that can coagulate to form
larger clusters or fragment into a number of smaller clusters. Under the assumption
that each cluster of size n (n-mer) is composed of n identical fundamental units
(monomers), the mass of each cluster is simply an integer multiple of the mass of a
monomer. By appropriate scaling, each monomer can be assumed to have unit mass.
This leads to a so-called discrete model of coagulation–fragmentation, with discrete
indicating that cluster mass is a discrete variable which, in view of the above, can
be assumed to take positive integer values.

In many theoretical investigations into discrete coagulation–fragmentation mod-
els, both coagulation and fragmentation have been assumed to be binary processes.
Thus a j -mer can bind with an n-mer to form a .jCn/-mer or can break up into only
two mers of smaller sizes; see the review article [10] by Collet for further details.
However, a model of multiple fragmentation processes in which the break-up of
a n-mer can lead to more than two mers has also been developed by Ziff; for
example, see [25]. Consequently, we shall consider the more general model of
binary coagulation combined with multiple fragmentation in the work we present
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here. In this case, the kinetic equation describing the time-evolution of the clusters
is given by

u0
n.t/ D �anun.t/C

1X
jDnC1

aj bn;juj .t/

C1

2

n�1X
jD1

kn�j;jun�j .t/uj .t/ �
1X
jD1

kn;j un.t/uj .t/ ; (24)

un.0/ D ı
un ; n D 1; 2; 3; : : : ; (25)

where un.t/ is the concentration of n-mers at time t (where t is assumed to be
a continuous variable), an is the net rate of break-up of an n-mer, bn;j gives the
average number of n-mers produced upon the break-up of a j -mer, and kn;j D kj;n
represents the coagulation rate of an n-mer with a j -mer. Note that the total mass in
the system at time t is given by

M.t/ D
1X
nD1

nun.t/ ;

and for mass to be conserved we require

j�1X
nD1

nbn;j D j ; j D 2; 3; : : : : (26)

On using this condition together with (24), a formal calculation establishes that
M 0.t/ D 0.

When the fragmentation process is binary, the C-F equation is usually expressed
in the form

u0
n.t/ D �1

2
un.t/

n�1X
jD1

Fj;n�j C
1X

jDnC1
Fn;j�nuj .t/

C1

2

n�1X
jD1

kn�j;jun�j .t/uj .t/ �
1X
jD1

kn;j un.t/uj .t/ ; (27)

where Fn;j D Fj;n represents the rate at which an .n C j /-mer breaks up into an
n-mer and a j -mer. In this case,

2an D
n�1X
jD1

Fj;n�j ; bn;j aj D Fn;j�n
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and so

bn;j D Fn;j�n
aj

D 2Fn;j�nPj�1
rD1 Fr;j�r

)
j�1X
nD1

bn;j D 2I

i.e. the number of clusters produced in any fragmentation event is always two.
Equation (27) is the binary model that has been studied in [1] and [11], where

existence and uniqueness results are presented for various rate coefficients. The
underlying strategy common to each of these is to consider finite-dimensional
truncations of (27). Standard methods from the theory of ordinary differential
equations then lead to the existence of a sequence of solutions to these truncated
equations. It is then shown, via Helly’s theorem, that a subsequence exists that
converges to a function u that satisfies an integral version of (27). A solution
obtained in this way is called an admissible solution. A similar approach has
been used by Laurençot in [17] to prove the existence of appropriately defined
global mass-conserving solutions of the more general Eq. (24), and also, in [18],
of the continuous-size coagulation equation, which takes the form of an integro-
differential equation.

In contrast to the truncation approach used in the aforementioned papers, here
we shall show how results from the theory of semigroups of operators can be used
to establish the existence and uniqueness of solutions to (24). For simplicity, we
shall assume that kn;j D k for all n; j where k is a non-negative constant. Note,
however, that a semigroup approach can also deal with more general coagulation
kernels. In particular, results related to the concept of an analytic semigroup play
an important role. We shall not discuss analytic semigroups in these notes, but the
interested reader should consult the contribution to this volume by Banasiak [3]
where the continuous size C-F equation is investigated via analytic semigroups.

To see how an IVP for the discrete C–F equation can be expressed as an ACP, we
define u.t/ to be the sequence .u1.t/; u2.t/; : : : ; uj .t/; : : :/. Then u.t/ is a sequence-
valued function of t for each t � 0, and it therefore makes sense to seek a function u,
defined on Œ0;1/, that takes values in an infinite-dimensional state space consisting
of sequences. The state space that is most often used due to its physical relevance
is the Banach space `11 discussed in Example 4. The `11-norm of a non-negative
element f 2 `11 (i.e. f D .f1; f2; : : :/ with fj � 0 for all j ), given by

P1
jD1 jfj ,

represents the total mass of the system. Similarly, the `10-norm of such an f gives
the total number of particles in the system. Note that `11 is continuously imbedded
in `10 since

kf k0;1 � kf k1;1 8 f 2 `11:

The function u will be required to satisfy an ACP of the form

u0.t/ D L.u.t//CN .u.t//; u.0/ D ı
u;
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where L and N are appropriately defined operator versions of the respective
mappings

fn ! �anfn C
1X

jDnC1
aj bn;j fj and

fn ! k

2

n�1X
jD1

fn�j fj � k

1X
jD1

fnfj ; .n D 1; 2; 3; : : :/:

We begin our investigation into (23) by considering the case when only the linear
operator L appears on the right-hand side of the equation; i.e. (23) takes the form

u0.t/ D L.u.t//; t > 0; u.0/ D ı
u : (28)

In the context of our C–F model, this will represent a situation when no coagulation
is occurring; i.e. the coagulation rate constant k is zero.

A function u W Œ0;1/ ! X is said to be a strong solution to (28) if

(i) u is strongly continuous on Œ0;1/;
(ii) the strong derivative u0 exists and is strongly continuous on .0;1/;

(iii) u.t/ 2 D.L/ for each t > 0;
(iv) the equations in (28) are satisfied.

3.1 Linear Infinite-Dimensional Evolution Equations

3.1.1 Bounded Infinitesimal Generators

Although an infinite-dimensional setting may seem a bit daunting, it turns out that,
for a bounded linear operator L, the methods discussed earlier in finite dimensions
continue to work. Indeed, when L is bounded and linear on X , then the unique
strong solution of the linear infinite-dimensional ACP (28) is given by

u.t/ D e tL ı
u; (29)

where the operator exponential is defined by

e tL D I C tL C t2L2

2Š
C t3L3

3Š
C � � � ; (30)

with I denoting the identity operator on X . This infinite series of bounded, linear
operators on X always converges in B.X/ to a bounded, linear operator on X .
Moreover,

e 0L D I I e sLe tL D e.sCt /L for all s; t 2 RI e tL ı
u!ı

u in X as t ! 0I (31)
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see [19, Theorem 2.10]. It can easily be verified that the function �.t;
ı
u/ D e tL ı

u
defines a continuous, infinite-dimensional dynamical system on X .

The person who appears to have been the first to generalise the use of matrix
exponentials for finite-dimensional systems of ODEs to operator exponentials in
infinite-dimensional spaces is Maria Gramegna, a student of Peano, in 1910; see
[13]. Peano had considered some special types of infinite systems of ODEs in 1894,
but it was Gramegna who demonstrated that operator exponentials could be applied
more generally, not only to infinite systems of ODEs, but also to integro-differential
equations.

Example 8 We examine the simple case of an IVP for a fragmentation equation in
which aj D a for all j � 2, where a is a positive constant. We shall show that the
corresponding linear fragmentation operator L is bounded on `11. If we recall that
a1 D 0, and also that the mass-conservation condition (26) holds, then we obtain,
for each f 2 `11,

kLf k1;1 D
1X
nD1

n

ˇ̌
ˇ̌
ˇ̌�anfn C

1X
jDnC1

aj bn;j fj

ˇ̌
ˇ̌
ˇ̌

�
1X
nD1

nanjfnj C
1X
nD1

1X
jDnC1

naj bn;j jfj j

D
1X
nD1

nan jfnj C
1X
jD2

 
j�1X
nD1

nbn;j

!
aj jfj j

D
1X
nD1

nan jfnj C
1X
jD1

jaj jfj j

D 2a

1X
nD1

njfnj D 2akf k1;1:

It follows that L 2 B.`11/ and so the ACP

u0.t/ D L.u.t//; u.0/ D ı
u;

has a strong, globally-defined, solution given by

u.t/ D e tL ı
u :

As we shall demonstrate later when we consider the fragmentation equation with
less restrictive conditions imposed on the rate coefficients an, this strong solution is

non-negative whenever
ı
u is non-negative, and ku.t/k1;1 D k ı

u k1;1 for all t > 0,
showing that mass is conserved.
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3.1.2 Unbounded Infinitesimal Generators: The Hille–Yosida Theorem

In many applications that involve the analysis of a linear evolution equation,
posed in an infinite-dimensional setting, when an approach involving semigroups
of operators and exponentials of operators is tried, the restriction that L is bounded
and defined on all of the state space X is frequently too severe. In most cases,
L is unlikely to be bounded and is usually only defined on elements in X which
have specific properties. Is it possible that a family of exponential operators fetLgt�0
can be generated from an unbounded linear operator L and yield a unique solution
to the IVP (28) via (29)? The answer to this is yes. In 1948, Einar Hille and
Kôsaku Yosida, simultaneously and independently, proved a theorem (the Hille–
Yosida theorem) that forms the cornerstone of the Theory of Strongly Continuous
Semigroups of Operators. Since then, there has been a great deal of research
activity in the theory and application of semigroups of operators. Amongst many
other important developments, the Hille–Yosida theorem was extended in 1952
to a result that completely characterises the operators L that generate strongly
continuous semigroups on a Banach space X . What this means is that, when a
natural interpretation of “solution” is adopted, a unique solution to (28) exists if
and only if the operator satisfies the conditions of this more general version of the
Hille–Yosida theorem. Moreover, the solution is still given by (29), although, for
unbounded linear operators L, a different exponential formula has to be used to
define e tL. One such formula is

e tLf WD lim
n!1

hn
t
R.n=t; L/

in
f D lim

n!1

�
I � t

n
L

��n
f; (32)

where R.�;L/ denotes the inverse of �I � L. Compare this with the scalar
sequential formula for etl,

e tl D lim
n!1.1C t l=n/n:

There are many excellent books devoted to the theory of strongly continuous
semigroups; for example [6,19,21] and [13]. Important details can also be found in
the lecture notes by Banasiak [3, Section 2.5] and a nice gentle introduction to the
theory is given by Bobrowski [8, Section 1]. As in [8], the account of semigroups
that is presented here is not intended to be comprehensive; instead we merely
summarise several key results from this very elegant, and applicable, theory. We
begin with the following fundamental definition.

Definition 2 Let fS.t/gt�0 be a family of bounded linear operators on a complex
Banach space X . Then fS.t/gt�0 is said to be a strongly continuous semigroup (or
C0- semigroup) in B.X/ if the following conditions are satisfied.

S1. S.0/ D I , where I is the identity operator on X .
S2. S.t/S.s/ D S.t C s/ for all t; s � 0.
S3. S.t/f ! f in X as t ! 0C for all f 2 X .
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Associated with each strongly continuous semigroup fS.t/gt�0 is a unique linear
operator L defined by

Lf WD lim
h!0C

S.h/f � f

h
; D.L/ WD

�
f 2 X W lim

h!0C

S.h/f � f

h
exists in X

�
: (33)

The operatorL is called the infinitesimal generator of the semigroup fS.t/gt�0. For
example, the infinitesimal generator of the semigroup given by S.t/ D e tL, where
L 2 B.X/, is the operator L.

Before stating some important properties of strongly continuous semigroups and
their generators, we require some terminology.

Definition 3 Let L W X 
 D.L/ ! X be a linear operator.

(i) The resolvent set, �.L/, of L is the set of complex numbers

�.L/ WD f� 2 C W R.�;L/ WD .�I � L/�1 2 B.X/gI

R.�;L/ is called the resolvent operator of L (at �).
(ii) L is a closed operator (or L is closed) if whenever .fn/1nD1 � D.L/ is such

that fn ! f and Lfn ! g in X as n ! 1, then g 2 D.L/ and Lf D g.
(iii) An operator L1 W X � D.L1/ ! X is an extension of L, written L � L1, if

D.L/ � D.L1/ and Lf D L1f for all f 2 D.L/. The operator L is closable
if it has a closed extension, in which case the closure L of L is defined to be
the smallest closed extension of L.

(iv) L is said to be densely defined ifD.L/ D X , i.e. if the closure of the setD.L/
(with respect to the norm in X ) is X . This means that, for each f 2 X , there
exists a sequence .fn/1nD1 � D.L/ such that kf � fnk ! 0 as n ! 1.

Theorem 3 (Some Semigroup Results) Let fS.t/gt�0 � B.X/ be a strongly
continuous semigroup with infinitesimal generator L. Then

(i) S.t/f ! S.t0/f in X as t ! t0 for any t0 > 0 and f 2 X ;
(ii) S.t/f ! f in X as t ! 0C;

(iii) there are real constantsM � 1 and ! such that

kS.t/k � Me!t for all t � 0I (34)

(iv) f 2 D.L/ ) S.t/f 2 D.L/ for all t > 0 and

d

dt
S.t/f D LS.t/f D S.t/Lf for all t > 0 and f 2 D.L/I (35)

(iv) the infinitesimal generator L is closed and densely defined.
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We shall write L 2 G .M;!IX/ when L is the infinitesimal generator of a strongly
continuous semigroups of operators satisfying (34) on a Banach spaceX . When the
operator L 2 G .1; 0IX/, L is said to generate a strongly continuous semigroup of
contractions on X .

Theorem 4

(Hille–Yosida) The operator L is the infinitesimal generator of a strongly
continuous semigroup of contractions on X if and only if

(i) L is a closed, linear and densely-defined operator in X ;
(ii) � 2 �.L/ for all � > 0;

(iii) kR.�;L/k � 1=� for all � > 0.

(Hille–Yosida–Phillips–Miyadera–Feller)L 2 G .M;!IX/ if and only if

(i) L is a closed, linear and densely-defined operator in X ;
(ii) � 2 �.L/ for all � > !;

(iii) k.R.�;L//nk � M=.� � !/n for all � > !; n D 1; 2; : : :.

Proofs of these extremely important results can be found in [19, Chapter 3].
We can now state the following existence/uniqueness theorem for the linear ACP

u 0.t/ D L.u.t//; t > 0I u.0/ D ı
u 2 D.L/: (36)

Theorem 5 LetL be the infinitesimal generator of a strongly continuous semigroup
fS.t/gt�0 � B.X/. Then (36) has one and only one strong solution u W Œ0;1/ ! X

and this is given by u.t/ D S.t/
ı
u :

The operator S.t/ can be interpreted as the exponential e tL if we define the latter
by (32); see [19, Chaper 6] for a proof.

3.1.3 The Kato–Voigt Perturbation Theorem

Although the Hille–Yosida theorem and the generalisation due to Phillips et al. are
extremely elegant results, in practice it is often difficult to check that the resolvent
conditions are satisfied for a given linear operator L. One way to get round this is
to make use of perturbation theorems for infinitesimal generators; see the book by
Banasiak and Arlotti [4]. The basic idea is to treat, if possible, the linear operator
governing the dynamics of the system as the sum of two linear operators, say
A C B , where A is an operator which can easily be shown to generate a strongly
continuous semigroup fSA.t/gt�0 on a Banach space X , and B is regarded as a
perturbation of A. The question then is to identify sufficient conditions on B which
will guarantee that AC B (or some extension of AC B) also generates a strongly
continuous semigroup onX . A number of perturbation results of this type have been
established. We shall focus on just one of these, namely the Kato–Voigt Perturbation
theorem, but only for the specific case when the state space is the Banach space `1�
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of Example 4. An account of the general version of this important perturbation result
is given in [3, Section 2.6].

As mentioned earlier, non-negative elements in `1� are taken to be sequences
f D .f1; f2; : : :/ with fj � 0 for all j , in which case we write f � 0. An operator
T W `1� 
 D.T / ! `1�, is said to be non-negative if Tf � 0 for all non-negative
f 2 D.T /.
Theorem 6 (See [2, Theorem 2.1] and [4, Corollary 5.17]) Let the operators
A W `1� 
 D.A/ ! `1� and B W `1� 
 D.B/ ! `1� have the following properties.

(i) A is the infinitesimal generator of a semigroup of contractions fSA.t/gt�0 on
`1�, with SA.t/ � 0 for all t � 0.

(ii) B is non-negative andD.B/ 
 D.A/.
(iii) For each non-negative f in D.A/,

1X
jD1

j �.Af C Bf /j � 0:

Then there exists a strongly continuous semigroup of contractions, fS.t/gt�0; on `1�
satisfying the Duhamel equation

S.t/f D SA.t/f C
Z t

0

S.t � s/BSA.s/f ds; f 2 D.A/:

Each S.t/ is non-negative and the infinitesimal generator of the semigroup is an
extension L of AC B .

Example 9 We now show that a straightforward application of this perturbation
theorem establishes the existence and uniqueness of solutions to the fragmentation
equation for a wide class of fragmentation rate coefficients. Once again we work in
the state space `11, and we take A and B to be the operators

.Af /n WD �anfn; n 2 N; D.A/ D ff 2 `11 W Af 2 `11g;

.Bf /n WD
1X

jDnC1
bn;j aj fj ; n 2 N; D.B/ D D.A/:

Then

1. By arguing as in [8, Example 6], it is not difficult to prove that the operator A
is the infinitesimal generator of a strongly continuous semigroup of contractions
fSA.t/gt�0 on `11 given by

.SA.t/f /n WD e�antfn; n 2 N:

It is clear that SA.t/ � 0 for each t .
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2. The calculations used in Example 8 can be repeated to show that

kBf k �
1X
nD1

1X
jDnC1

naj bn;j jfj j

D
1X
jD2

 
j�1X
nD1

nbn;j

!
aj jfj j

D
1X
jD2

j aj jfj j D kAf k; 8 f 2 D.A/:

Consequently, B is well defined on D.A/ and Bf � 0 for all f 2 D.A/ with
f � 0.

3. A similar argument shows that

1X
nD1

n.Af C Bf /n D 0 8 f 2 D.A/ with f � 0:

Consequently, by the Kato–Voigt Perturbation Theorem, there exists a strongly
continuous semigroup of contractions fS.t/gt�0 generated by an extension L of
the operator .AC B;D.A//, with S.t/f � 0 for all non-negative f 2 `11.

In this example it is possible to show that L is the closure of .ACB;D.A// and
also that

1X
nD1

n.Lf /n D 0 8 f 2 D.L/ with f � 0I

see [20]. Consequently, the ACP

u0.t/ D L.u.t//; u.0/ D ı
u 2 D.L/; ı

u � 0;

with L D AC B , has a unique strongly differentiable solution u W Œ0;1/ ! D.L/

given by u.t/ D S.t/
ı
u.

Other results that can be established for this discrete-size fragmentation equation
are:

• If the sequence .an/ is monotonic increasing, then S.t/ W D.A/ ! D.A/ for all

t � 0 and therefore u.t/ D S.t/
ı
u is the unique strong solution of the ACP

u0.t/ D A .u.t//CB .u.t//; u.0/ D ı
u 2 D.A/; ı

u� 0:
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• Suppose that an > 0 for all n � 2. Then

.AC B/u D .0; 0; : : :/ in `11 , u D ce1;

where c is a constant and e1 D .1; 0; 0; : : :/. Moreover, it can be shown that

S.t/u0 ! M.
ı
u/e1 in `11 as t ! 1, where M.

ı
u/ D P1

nD1 n
ı
un. This situation

is similar to that observed with the SIR model in that we have infinitely many
equilibria, and the equilibrium that any given solution converges to is uniquely
determined by the initial data.

See [5] and [20] for further details.

3.2 Semi-linear Infinite-Dimensional Evolution Equations

To conclude, we return to the semi-linear ACP (23). We shall assume that the
linear operator L is the infinitesimal generator of a strongly continuous semigroup
fS.t/gt�0 on X. A strong solution on Œ0; t0/ of this ACP is a function u W Œ0; t0/ ! X

such that

(i) u is strongly continuous on Œ0; t0/;
(ii) u has a continuous strong derivative on .0; t0/;

(iii) u.t/ 2 D.L/ for 0 � t < t0;
(iv) u.t/ satisfies (23) for 0 � t < t0.

Suppose that u is a strong solution. Then, under suitable assumptions on N , u
will also satisfy the Duhamel equation

u.t/ D S.t/
ı
u C

Z t

0

S.t � s/N.u.s// ds; 0 � t < t0: (37)

This leads to the following definition of a weaker type of solution to the ACP.

Definition 4 A mild solution on Œ0; t0/ of (23) is a function u W Œ0; t0/ ! X such
that

(i) u is strongly continuous on Œ0; t0/;
(ii) u satisfies (37) on Œ0; t0/.

The definitions given earlier for a function on the finite-dimensional space
R
n to be Fréchet differentiable, or to satisfy a local Lipschitz condition, extend

to operators on infinite-dimensional spaces. In particular, the nonlinear operator

N W X ! X satisfies a local Lipschitz condition on X if, for each
ı
u 2 X , there

exists a closed ball Br.
ı
u/ WD ff 2 X W kf � ı

u k � rg such that

kN.f /�N.g/k � kkf � gk; 8f; g 2 Br.
ı
u/:
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Also, N is Fréchet differentiable at f 2 X if an operator Nf 2 B.X/ exists such
that

N.f C h/ D N.f /CNf .h/C E.f; h/; h 2 X;

where

lim
khk!0

kE.f; h/k
khk D 0:

The operatorNf is the Fréchet derivative of N at f .

Theorem 7 Let L 2 G .M;!IX/ and let N satisfy a local Lipschitz condition on
X . Then there exists a unique mild solution of the ACP on some interval Œ0; tmax/.
Moreover, if tmax < 1, then

ku.t/k ! 1 as t ! t�max:

Theorem 8 Let L 2 G .M;!IX/ and let N be continuously Fréchet differentiable

on X . Then the mild solution of the semi-linear ACP, with
ı
u 2 D.L/, is a strong

solution.

For proofs of these results, see [21, Chapter 6] and [7, Chapter 3].

Example 10 We now describe how these results have been applied to the discrete
C-F equation in [20,22] and [5]. Having already established that L D AC B is the
infinitesimal generator of a strongly continuous positive semigroup of contractions
on the space `11, we express the full C-F equation as the semi-linear ACP

u 0.t/ D L.u.t//CN .u.t//; t > 0; u.0/ D ı
u 2 D.L/;

where

.Nf /n WD k

2

n�1X
jD1

fn�j fj � k

1X
jD1

fnfj ; f 2 `11:

We shall show below that N.f / 2 `11 for all f 2 `11. For this it is convenient to
introduce the following bilinear operator

QN.f; g/ WD QN1.f; g/ � QN2.f; g/;

where, for f; g 2 `11,

Œ QN1.f; g/�n WD k

2

n�1X
jD1

fn�j gj ; Œ QN2.f; g/�n WD k

1X
jD1

fngj ; n 2 N:
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Note thatN.f / D QN.f; f /. Also, it is straightforward to verify that QN.�; �/ is linear
in both left-hand and right-hand arguments. Consequently,

QN.f C h; f C h/ D QN.f; f /C QN.f; h/C QN.h; f /C QN.h; h/: (38)

Now,

k QN1.f; g/k � k

2

1X
nD1

n�1X
jD1

njfn�j j jgj j

D k

2

1X
jD1

1X
nDjC1

njfn�j j jgj j

D k

2

1X
jD1

1X
iD1
.i C j /jfi j jgj j

� 2
k

2
kf k kgk D kkf k kgk:

Similarly,

k QN1.f; g/k � kkf k kgk:

Hence

k QN.f; g/k � 2kkf k kgk and kN.f /k � 2kkf k2:

In the case when N.f / � 0, we can also deduce that

kN.f /k D
1X
nD1

nŒN.f /�n

D k

2

 1X
iD1

ifi

!0
@ 1X
jD1

fj

1
AC k

2

 1X
iD1

fi

!0
@ 1X
jD1

jfj

1
A

�k
 1X
iD1

ifi

!0
@ 1X
jD1

fj

1
A D 0:

The bilinearity of QN.�; �/ leads immediately to the Fréchet differentiability of N .
From (38), we obtain

N.f C h/ D N.f /CNf .h/CN.h/;
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where

Nf .h/ WD QN.f; h/C QN.h; f /: (39)

For fixed f 2 `11, Nf is a linear operator on `11 and also

kNf .h/k � 4kkf k khk ; 8h 2 `11 (40)

showing that Nf 2 B.X/. Moreover,

kN.h/k
khk � 2kkhk ! 0 as khk ! 0:

Hence, N is Fréchet differentiable at each f 2 `11, with Fréchet derivative given
by (39). Moreover, inequality (40) can be used to establish that Nf is continuous in
f . (Note that this also means that N is locally Lipschitz continuous.) We can now
apply Theorems 7 and 8 to conclude that the semi-linear ACP has a unique, locally
defined (in time) strong solution.

To complete our analysis, we must show that the solution u.t/ is non-negative
for all t for which it is defined. We would also like to establish that the solution is
defined for all t � 0. It turns out that the latter can be deduced directly from the
former since

d

dt
ku.t/k D kL.u.t//CN .u.t//k D

1X
nD1

n.L .u.t//n C
1X
nD1

n.N .u.t//n D 0;

showing that ku.t/k cannot blow up in finite time. The proof that the solution
remains non-negative is the most involved part of the argument and so only some
outline details will be supplied here (see [20] for further information). In essence,
we use the following trick. The ACP is rewritten as

u 0.t/ D .L. u.t/ � ˛u.t//C .˛u.t/CN.u.t//;

where the constant ˛ is chosen so that .N C ˛/u.t/ � 0 for all t in some interval
Œ0; t0�. The operator L � ˛I is the infinitesimal generator of the positive semigroup
fe�˛tS.t/gt�0 (where fS.t/gt�0 is the positive semigroup generated by L). The
solution u of this modified equation satisfies the integral equation

u.t/ D e�˛tS.t/ ı
u C

Z t

0

e�˛.t�s/S.t � s/.N C ˛/u.s/ ds DW T˛.u.t//; t 2 Œ0; t0�:

The value t0 is selected so that the operator T˛ on the right-hand side of the above
equation is a contraction on a suitable Banach space of `11-valued functions and
so we can obtain the solution u (the fixed point of this contraction) by means of
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successive iterations of T˛ on the initial state
ı
u> 0. Since T˛ is positivity preserving,

it follows that u.t/ � 0 for all t 2 Œ0; t0�. We then repeat this argument, but now
with u.t0/ as the initial state, and continue in this manner.
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Boundary Conditions in Evolutionary Equations
in Biology

Adam Bobrowski

1 A Gentle Introduction to the Theory of Semigroups
of Operators

Let me start by quoting Walter Rudin, who in the prologue to his book [43] writes
about the exponential function:

This is the most important function in mathematics. It is defined, for every complex number
z; by:

exp.z/ D
1X
nD0

zn

nŠ
: (1)

We will try to extend this definition to the case where z may be replaced by a
linear operator: in fact, we will see that for a large class of operators A one may
construct a function

R
C 3 t 7! etA;

that will be in many aspects analogous to (1).
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1.1 Bounded Linear Operators and Their Exponentials

Roughly speaking, an operator is a function having functions as arguments and
values. For example we may think of the following maps:

f 7! f 0;

f 7! f 00;

f 7! f 2;

f 7! g; g.x/ D f .x C a/; x 2 R;

.f .1/; : : : ; f .n// 7! .f .1/; : : : ; f .n//An�n;

where a is a given number and An�n is a given square matrix. An operatorA is said
to be linear if for all scalars ˛ and ˇ we have

A. f̨ C ˇg/ D ˛Af C ˇAg; f; g 2 D.A/;

where D.A/ denotes the domain of A. From among the four operators listed above
only one is not linear. We note that it is customary to use no parentheses for
arguments of linear operators: hence, we write Af instead of A.f /:

The notion of continuity of operators requires extra structure, which is conve-
niently provided by Banach spaces, i.e., vector spaces with complete norm. To
recall, a function k � k mapping a vector space of functions into R

C is said to be
a norm iff for all f; g 2 X and all scalars ˛,

1. kf k D 0 iff f 	 0;

2. k f̨ k D j˛j kf k,
3. kf C gk � kf k C kgk;
the third property being commonly referred to as the triangle inequality. Examples
include the spaces of continuous functions on compact sets with supremum norm,
i.e., with topology of uniform convergence, absolutely integrable functions with
respect to a given measure (with norm being the integral of the absolute value of
a function), etc. Completeness of the norm simply means that all Cauchy sequences
converge, i.e., that the space does not have “holes”. An operatorA W B ! B mapping
a Banach space B into itself is said to be continuous if convergence of its arguments
implies convergence of the corresponding values:

kfn � f k ! 0 ) kAf n � Af k ! 0I

where k � k is the norm in B. We note that completeness of B is not required for
the definition of continuity, but normed spaces which are not complete do not have
good properties and the theory is less satisfactory.
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Strikingly, for linear operators continuity is equivalent to boundedness, i.e. to the
condition:

9M>08f 2B kAf k � M kf k:

The smallest constant M with property exhibited above is denoted kAk and is a
norm in the space of all bounded (continuous) operators in B, denoted L .B/. What
makes the theory beautiful (and useful) is that the space of bounded linear operators
on B is again a Banach space when equipped with this norm. (That L .B/ is a linear
space, becomes obvious once we define .˛AC ˇB/x WD ˛Ax C ˇBx.)

Having recalled the basic definitions, let us turn to the question of how to define
an operator exponential for a bounded operator. Of course, if the definition is to be
meaningful, this new object must resemble the exponential function for complex
numbers. In other words, we somehow need to mimic (1). Luckily, the very reason
that makes (1) work is the fact that the space of complex numbers is complete, and
the same argument may be applied to operators. To explain we recall that every
absolutely convergent series in a Banach space converges. This means that for any
sequence .fn/n�1 of elements of a Banach space condition

P
n�1 kfnk < 1 implies

that the series
P

n�1 fn is well-defined, i.e. the limit limn!1
Pn

kD1 fk exists. To see
this, we note that the triangle inequality implies, for all N � n,

k
NX
kDn

fkk �
NX
kDn

kfkk:

Hence, vectors gn D Pn
kD1 fk form a Cauchy sequence, implying existence of the

limit limn!1 gn:

This allows the following definition. For A 2 L .B/ and t 2 R (in fact, if B is
complex we could take complex t):

etA WD
1X
nD0

tnAn

nŠ
; t 2 R; (2)

for we have
P1

nD0
�� tnAn

nŠ

�� � P1
nD0

jt jnkAkn
nŠ

D ejt jkAk < 1. In the previous-to-last
step we have used the fact, easily established by the definition of the operator norm,
that

kABk � kAk kBk

for all A;B 2 L .B/:

Such a function has a number of good properties. To begin with, if A and B
commute (AB D BA), then

eACB D eAeB D eBeA: (3)
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In particular,

e.tCs/A D etAesA; e�tA D .etA/�1; et .A�I / D e�tetAI (4)

(if, for a given A 2 L .B/ there is a B 2 L .B/ such that BA D IB D AB, then
we write B D A�1I here IB is the identity operator defined by IBf D f ). The
first equality here is the important semigroup property (in fact, here it is a group
property, since the equality holds for all s; t 2 R).

Example 1 Take a � 0 and b � 0 such that a C b > 0; and let B D R
2: The space

L .B/ may be identified with the space of 2 � 2 matrices. For A D
��a; a
b; �b

�
we

have

etA D 1

a C b

�
b C ae�.aCb/t ; a � ae�.aCb/t
b � be�.aCb/t ; aC be�.aCb/t

�
:

To prove this we note first that etA D e�.aCb/tetB where

B D AC .aC b/IB D
�
b; a

b; a

�
:

Since B2 D .aC b/B , we have, by induction Bn D .a C b/n�1B . This shows that

etB D IB C 1

a C b

1X
nD1

tn.a C b/n

nŠ
B D IB C 1

aC b
.e.aCb/t � 1/B:

Therefore,

etA D e�.aCb/t IB C 1

aC b
.1 � e�.aCb/t /B D 1

aC b
.B � e�.aCb/tA/;

proving the claim.

We note that for t � 0; the entries of etA are transition probabilities of a
Markov chain with two states. At state 0 the chain waits for an exponential time
with parameter a and then jumps to 1, where it waits for an exponential time with
parameter b to come back to 0, and so on. The matrixA is an intensity matrix for this
chain. Denoting by X.t/ the state of the chain at time t � 0 we obtain for example
that the conditional probability of X.t/ being equal to 1 given that X.0/ D 1 is the
upper right entry in etA: Pr.X.t/ D 1jX.0/ D 0/ D a � ae�.aCb/t :

Example 2 Let B D C Œ0;1� be the space of continuous functions on Œ0;1� with
limits at 1: Equipped with the supremum norm, B is a Banach space, and for
given a > 0 the operator Af .x/ D aŒf .x C 1/ � f .x/�; x � 0 is bounded, since
kAf k � 2akf k: To compute etA for t � 0 we use the definition and the fact that
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B WD AC aIB is a scalar multiple of the shift operator: Bf .x/ D af .x C 1/; x � 0

so that Bnf .x/ D anf .x C n/; x � 0: Therefore,

etAf .x/ D e�atet .ACaI/f .x/ D
1X
nD0

e�at a
ntn

nŠ
f .x C n/

D Ef .x CN.t//; t � 0;

where E denotes expected value. In the last line N.t/ is a Poisson-distributed

random variable with parameter at : Pr.N.t/ D k/ D e�at .at/k

kŠ
: In other words,

the operator exponential etA; t � 0 describes a Poisson process. In this process, if
the starting point is x then after time t � 0 its position is random: with probability
Pr.N.t/ D k/ the process is at x C k:

Example 3 In the same space B D C Œ0;1�; let Af D f 0 with domain D.A/ D
C1Œ0;1�: A is unfortunately unbounded: for fn defined by fn.x/ D e�nx; x � 0;

we have kfnk D 1; while kAf nk D n; hence, there is no constant M such that
kAf nk � M kfnk: Thus, it is not clear whether the series (2) converges. In fact, its
nth term is defined merely for f 2 CnŒ0;1� (n-times continuously differentiable
functions with the nth order derivative in C Œ0;1�). However, for f 2 C1Œ0;1�

and x � 0 we can write:

etAf .x/ D
1X
nD0

tnAn

nŠ
f .x/

Df .x/C tf 0.x/C t2

2
f 00.x/C t3

3Š
f 000.x/C : : :

Df .x C t/;

with the last equality holding provided f is analytic. This suggests that for all f 2
C Œ0;1� we should define

etAf .x/ D f .x C t/:

It is easy to see that with such a definition etAesA D e.sCt /A, i.e., that the
semigroup property holds [since we are dealing with an unbounded operator,
the semigroup property is not a consequence of (4)]. The so-defined semigroup
describes deterministic movement to the right with speed v D 1: if the starting
point is x then at time t the process is at xC t: Note, however, that the operators etA

shift functions in B to the left.

An important moral to learn from this example is that with unbounded operators
we should not expect the exponent to be defined for negative t : here e�tA D .etA/�1
is undefined, since for t > 0 shifts to the left do not have inverses (part of the shape
of the shifted function is for ever lost). This example exemplifies also the fact that
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deterministic movements are usually described by means of first order differential
operators: here A D d

dx . Finally, despite the fact that here the exponential formula
somewhat worked, we should not expect that it would do its job in general. As
we shall see later, for unbounded linear operators (2) should be replaced by, for
example:

etA D lim
n!1

�
I � tA

n

��n
; t � 0:

1.2 Exponentials of Unbounded Operators

Before turning to the definition of an operator exponential for unbounded operators
A, we will investigate the question of where does the semigroup property come
from. A better understanding of this crucial condition, will allow constructing
exponentials in a new way. So what is the real reason for:

etAesA D e.sCt /A; s; t � 0‹

Previously, we have derived this property from (3) which in turn required defi-
nition (2) and some manipulations on the power series involved. Here, we will
proceed differently. Fixing a bounded A and f 2 B, we consider the function
u.t/ D etAf with values in B: A simple calculation reveals that u is differentiable
with u0.t/ D AetAf D Au.t/; t � 0: In other words, u is a solution to the differential
equation

u0.t/ D Au.t/

with initial condition u.0/ D f I i.e., a solution to the Cauchy problem related to
operator A. On the other hand, using the Banach fixed point theorem and the fact
that A is bounded it is easy to check that solutions to this equation are uniquely
determined. To continue, we fix s � 0 and consider v.t/ D e.tCs/Af D u.tCs/:We
have v0.t/ D u0.tCs/ D Au.tCs/ D Av.t/; t � 0:Now, since v.0/ D u.s/ D esAf ,
uniqueness of solutions forces

e.tCs/Af D v.t/ D etAv.0/ D etAesAf;

which, on account of f being arbitrary, is none other than the semigroup property.
In other words, we conclude that the semigroup property reflects uniqueness of
solutions of the Cauchy problem. The point is that there are many more operators
for which the Cauchy problem is well-posed in the sense provided below than these
for which the series (2) converges. In this context, the following theorem is not
surprising at all, but quite important.
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Theorem 1 If A is a (not necessarily bounded) operator such that the differential
equation (in a Banach space)

du.t/

dt
D Au.t/; t � 0; u.0/ D f

has exactly one solution uf for f in a dense set D, and if this solution depends
continuously on f , then the formula

etAf D uf .t/ (5)

defines an exponential function for A (a semigroup of operators).

The proof is quite obvious: for f 2 D uniqueness of solutions implies the
semigroup property, and the fact that D is dense allows defining etAf for f 2 B by
continuity.

Back to Example 3 A partial differential equation:

@u.t; x/

@t
D @u.t; x/

@x
; t � 0; u.0; x/ D f .x/; x 2 Œ0;1/;

has exactly one solution for f 2 C1Œ0;1�, given by

u.t; x/ D f .x C t/:

This equation is identical to the ordinary differential equation

du.t/

dt
D Au.t/; t � 0; u.0/ D f 2 C1Œ0;1�; (6)

in the Banach space C Œ0;1�;whereA D d
dx : Clearly,C1Œ0;1� is dense in C Œ0;1�

and solutions depend continuously on initial data f (in the sense that limn!1 kfn�
f k D 0 implies limn!1 kfn.� C t/ � f .� C t/k D 0). In view of Theorem 1, this
gives

et
d

dx f .x/ D f .x C t/;

in agreement with our previous guess.

Note that there is a couple of subtle points here: in (6) derivates are taken
in the sense of topology in C Œ0;1�, i.e., the topology of uniform convergence:
limh!0 ku0.t/� u.tCh/�u.t/

h
k D 0;while these in the original equation are point-wise,

calculated for each x separately. Hence, apparently, solutions of (6) are solutions of
the original equation, but not vice versa. A more thorough analysis, however, reveals
that the opposite statement is also true: solutions of the original equation solve (6) as
well. Moreover, we note that while for f 2 C1Œ0;1�, u.t; x/ D f .xCt/ solves (6),
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a similar statement for f 62 C1Œ0;1� does not make much sense since u is not even
differentiable—hence, we speak of generalized, or mild solutions.

Example 4 The PDE:

@u.t; x/

@t
D 1

2

@2u.t; x/

@x2
; t � 0; u.0; x/ D f .x/; x 2 R;

has the unique solution for f 2 C2Œ�1;1� given by

u.t; x/ D 1p
2�t

Z 1

�1
e� y2

2t f .x C y/ dy:

Hence, arguing as above, we obtain

et
1
2

d2

dx2 f .x/ D 1p
2�t

Z 1

�1
e� y2

2t f .x C y/ dy D Ef .x C w.t//;

where w.t/ is a normal variable with expected value 0 and variance t . In other

words, et
1
2

d2

dx2 describes position at time t of a random traveler performing a standard
Brownian motion on a line.

To recapitulate: Theorem 1 describes a class of linear operators A for which
an exponential function R

C 3 t 7! etA may be defined. (Such operators are
called generators of semigroups of operators.) This class includes the bounded
linear operators, but is in fact far larger than the latter. As it is seen from the
examples, such exponential functions describe both deterministic and stochastic
processes. Interestingly, the entire information on exponential function and hence
the information on the whole deterministic or stochastic process is hidden in a single
(usually unbounded) operator. For instance, in Example 1 all transition probabilities
are hidden in the intensity matrix, and in Example 4, the Gaussian distribution is
hidden in the operator of second derivative.

The generators in the spaces of continuous functions are quite often of the
following form:

Af .x/ D a.x/f 00.x/C b.x/f 0.x/C integral operator; x 2 R

where a > 0 and b are continuous functions. The related processes are ‘composi-
tions’ of three simpler ones:

• diffusion with variance a.x/ depending on position x,
• deterministic movement along trajectories of the ODE x0.t/ D b.x.t//, and
• jumps (for example, Poisson process),
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However, an operator is more than just a “map”. In fact, it is a “map” on a specific
domain, and as we shall see later the domain may include information on the
behavior of the underlying process on the boundary.

1.3 From Semigroups to Generators

As we have seen, given an unbounded operator A, sometimes we can construct its
exponential function R

C 3 t 7! etA. Denoting T .t/ D etA, we then obtain a family
of operators such that

T .t/T .s/ D T .s C t/; t � 0: (7)

For f 2 D.A/; we also have (see Theorem 1) limt!0C T .t/f D f , and it
transpires that this condition may be extended to all f 2 B:

lim
t!0CT .t/f D T .0/f D f; f 2 B: (8)

Such a family is called a (strongly continuous) semigroup of operators.
A natural question arises of whether given a strongly continuous semigroup of

operators fT .t/; t � 0g, one can find an operator A such that T .t/ D etA; t � 0:

The answer is in the positive, and Theorem 1 suggests the way to construct A: Af
should be the right-hand derivative of t 7! T .t/f at t D 0:

Af D lim
t!0C

1

t
.T .t/f �f /; D.A/ D ff j the limit lim

t!0C
1

t
.T .t/f �f / existsg:

It is a part of the Hille–Yosida theorem (see below) that t 7! T .t/ is indeed the
exponential function of the so-defined A. To recall, instead of saying that t 7! T .t/

is the exponential function of A, we also often say then that A generates fT .t/;
t � 0g:

Let us look at an example that will be of importance later.

Example 5 Let B D L1.RC/ be the space of (classes of) absolutely integrable
functions on R

C, with the norm kf k D R
RC jf .x/j dx and consider the following

operators:

T .t/f .x/ D
(
f .x � t/; x � t;

0; x < t:
(9)

It is clear that T .t/f 2 L1.RC/ and kT .t/f k D kf k so that all these operators are
bounded with

kT .t/k D 1: (10)
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A simple calculation shows that the semigroup property (7) holds. For the proof
of (8) we consider e�; � > 0 where e�.x/ D e��x; x � 0: Then

kT .t/e� � e�k D
Z t

0

e��x dx C
Z 1

t

Œe��.x�t / � e��x� dx D 2

Z t

0

e��x dx;

which converges to 0, as t ! 0: It follows that (8) holds for all linear combinations
of e�; � > 0: On the other hand, since fe�; � > 0g is a total set in L1.RC/, a
three-epsilon argument based on (10) shows that (8) holds for all f 2 L1.RC/;
establishing that fT .t/; t � 0g is a semigroup of operators.

To find the generator of fT .t/; t � 0g we proceed as follows. Suppose f 2 D.A/
and Af D g: Then, for x > t > 0,

Z x

0

ŒT .t/f .y/ � f .y/� dy D
Z x

t

f .y � t/ dy �
Z x

0

f .y/ dy

D
Z x�t

0

f .y/ dy �
Z x

0

f .y/ dy

D �
Z x

x�t
f .y/ dy: (11)

Since

Z x

0

ˇ̌
ˇ̌T .t/f .y/ � f .y/

t
� g.y/

ˇ̌
ˇ̌ dy �

����T .t/f .y/ � f .y/
t

� g.y/

���� �!
t!0

0;

we have limt!0C
R x
0
T .t/f .y/�f .y/

t
dy D R x

0
g.y/ dy for all x > 0: On the other

hand, by (11), for almost all x > 0 (with respect to the Lebesgue measure),

lim
t!0C

Z x

0

T .t/f .y/ � f .y/
t

dy D � lim
t!0C

1

t

Z x

x�t
f .y/ dy D �f .x/:

Redefining f if necessary on a Lebesgue null set, we obtain

f .x/ D �
Z x

0

g.y/ dy: (12)

This implies that f is absolutely continuous with f .0/ D 0 and f 0.x/ D �g.x/:
Therefore,D.A/ is contained in the set of such functions and on this set Af D �f 0:

To prove the converse inclusion, we need an auxiliary result: Consider the
operators U.t/ 2 L .L1.RC//; t � 0 given by

U.t/h.x/ D
Z 1

0

h.x C ty/ dy; h 2 L1.RC/; x � 0:
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Clearly,

Z 1

0

jU.t/h.x/j dx �
Z 1

0

Z 1

0

jh.x C ty/j dx dy �
Z 1

0

khk dy D khk;

showing that U.t/h 2 L1.RC/ provided h 2 L1.RC/, and that kU.t/k � 1:

For e� defined at the beginning of this example, U.t/e� D R 1
0

e��.xCty/ dy D
e��x R 1

0
e��ty dy; i.e.,

U.t/e� D
Z 1

0

e��ty dy e�;

implying limt!0CU.t/e� D e�: The three-epsilon argument shows as before that

lim
t!0CU.t/h D h; for all h 2 L1.RC/: (13)

A similar (but simpler) reasoning proves that

lim
t!0CV.t/h D h; for all h 2 L1.RC/; (14)

where V.t/h.x/ D h.x C t/; x � 0; t � 0. (In fact, fV.t/; t � 0g is a semigroup of
operators.)

Coming back to the proof of the other inclusion, we consider f of the form (12).
Then
����T .t/f � f

t
� g

���� D
Z 1

t

ˇ̌
ˇ̌f .x � t/� f .x/

t
� g.x/

ˇ̌
ˇ̌ dxC

Z t

0

ˇ̌
ˇ̌f .x/
t

C g.x/

ˇ̌
ˇ̌ dx:

Since the second term does not exceed 1
t

R t
0

jf .x/j dx C R t
0

jg.x/j dx ! 0; as
t ! 0C; f being continuous with f .0/ D 0, we need to show that the first term
converges to 0, as t ! 0 C : Using f .x � t/ � f .x/ D R x

x�t g.y/ dy and writing
g.x/ D 1

t

R x
x�t g.x/ dy, we see that this term can be estimated by

Z 1

t

ˇ̌
ˇ̌1
t

Z x

x�t
Œg.y/ � g.x/� dy

ˇ̌
ˇ̌ dx D

Z 1

0

ˇ̌
ˇ̌1
t

Z xCt

x

Œg.y/ � g.x C t/� dy

ˇ̌
ˇ̌ dx

D
Z 1

0

ˇ̌
ˇ̌1
t

Z t

0

Œg.x C y/ � g.x C t/� dy

ˇ̌
ˇ̌ dx

D
Z 1

0

ˇ̌
ˇ̌Z 1

0

Œg.x C ty/ � g.x C t/� dy

ˇ̌
ˇ̌ dx

�
Z 1

0

ˇ̌
ˇ̌Z 1

0

Œg.x C ty/� g.x/� dy

ˇ̌
ˇ̌ dx



58 A. Bobrowski

C
Z 1

0

jg.x/ � g.x C t/j dx (15)

D kU.t/g � gk C kV.t/g � gk: (16)

This converges to 0 by (13) and (14), completing the proof of the fact that D.A/ is
composed precisely of f of the form (12) and that Af D �f 0:

1.4 The Hille–Yosida Theorem

In this section, we describe briefly the celebrated Hille–Yosida theorem [8, 21, 22,
29, 32, 41]. To explain, for construction of a semigroup of operators, Theorem 1
requires knowing that a certain Cauchy problem is well-posed, i.e. that its solutions
are unique on a dense set and that they depend continuously on initial data. However,
checking this in practice is usually very difficult, and there is the need for other
conditions guaranteeing existence of the semigroup.

The Hille–Yosida theorem says that an operatorA is the generator of a semigroup
fetA; t � 0g of contractions (i.e. such that ketAk � 1) iff it is closed, densely defined
and for all � > 0, � �A is invertible with a bounded inverse such that

k�.� � A/�1k � 1:

Moreover, if these conditions are satisfied

etA D lim
n!1

�
1 � t

n
A

��n
: (17)

We note that .1� t
n
A/�n WD Œ.1� t

n
A/�1�n D Œ�.��A/�1�n where � D n

t
; so that

all operators on the right-hand side of (17) are contractions.
To explain the theorem, we need to cover the notion of a closed operator first. An

operator A in a Banach space B is said to be closed iff for any sequence .fn/n�1 of
elements of its domainD.A/ the conditions limn!1 fn D f and limn!1 Af n D g

imply that f 2 D.A/ and Af D g: It is worth stressing that, although the definition
somewhat resembles that of continuity, it describes quite a different phenomenon:
the assumption that both limits limn!1 fn D f and limn!1 Af n D g exist is
much stronger than the sole requirement that limn!1 fn D f . For that reason, all
continuous operators are closed, but not vice versa. The definition simply means that
the graph of A, i.e., the set of points in B � B of the form .f;Af /; where f 2 D.A/
is closed; here, the Cartesian product B�B is equipped with one of the usual norms,
e.g. k.x; y/kB�B D kxkB C kykB:
Continuation of Example 3 As an instance, we know from Example 3 that A D

d
dx in C Œ0;1� is not a bounded operator. However, it is closed. To see this, we
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consider differentiable fn 2 C Œ0;1�; such f 0
n 2 C Œ0;1�; limn!1 fn D f; and

limn!1 f 0
n D g for some g 2 C Œ0;1�. These assumptions imply that for each

x � 0 we have

fn.x/ D fn.0/C
Z x

0

f 0
n.y/ dy; n � 1:

Estimating

ˇ̌
ˇ̌Z x

0

f 0
n.y/ dy �

Z x

0

g.y/ dy

ˇ̌
ˇ̌ �

Z x

0

jf 0
n.y/ � g.y/j dy

�
Z x

0

kf 0
n � gk dy � xkf 0

n � gk;

we deduce that the integrals
R x
0
f 0
n.y/ dy converge to

R x
0
g.y/ dy. Since uniform

convergence implies pointwise convergence, letting n ! 1 above yields

f .x/ D f .0/C
Z x

0

g.y/ dy; for all x � 0;

showing that f is differentiable with f 0 D g. This, however, establishes that A D
d

dx is closed, as desired.

Example 6 For another, simpler, example, consider the space l1 of absolutely
convergent sequences f D .f .k//k�1 equipped with the norm

kf k D
X
k�1

jf .k/j < 1:

Also, let Af D .�kf .k//k�1 with domain D.A/ D ff jPk�1 kjf .k/j < 1g. We
note that A is not bounded, because taking fn D .0; : : : ; 0; 1; 0; : : :/ (1 on the nth
coordinate), we obtain kfnk D 1 and Af n D �nfn; so that kAf nk D n: However,
A is closed. To see this, consider fn 2 D.A/ such that limn!1 fn D f and
limn!1 Af n D g 2 l1: Since Af n D .�kfn.k//k�1, this means that

lim
n!1

X
k�1

jg.k/C kfn.k/j D 0:

In particular, for all k, limn!1 kfn.k/ D �g.k/: Similarly, limn!1 fn.k/ D
f .k/; implying �kf .k/ D g.k/: Therefore,

P
k�1 jkf .k/j D P

k�1 jg.k/j < 1;

proving that f 2 D.A/ and Af D g:
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Coming back to the Hille–Yosida theorem: the idea of formula (17) is that A is
unbounded, hence “large”. This implies that .��A/�1 should be “small”, hopefully
bounded. More precisely, in the resolvent equation

�f � Af D g

where g is given and f is a solution we are searching for, the map f 7! �f � Af is
unbounded, hence g is large as compared to f . But this is the same as saying that f
is small as compared to g. The map g 7! f should be bounded. This is illustrated
in our example.

Continuation of Example 6 The operator A from Example 6 is densely defined (for
f 2 l1 take fn D .f .1/; : : : ; f .n � 1/; f .n/; 0; : : :/; then limn!1 kfn � f k D
limn!1

P1
k�nC1 jf .k/j D 0 and fn 2 D.A/). The resolvent equation for A takes

the form:

�.f .k//k�1 C .kf .k//k�1 D .g.k//k�1;

where � and g are given, and we are to find f 2 D.A/: This equation may be
written as �f .k/ C kf .k/ D g.k/ for all k or, f .k/ D 1

�Ck g.k/ for all k. In other
words, the unique solution to the resolvent equation is

.f .k//k�1 D .
1

�C k
g.k//k�1;

without no assumptions on g besides g 2 l1: Since we have

�kf k D
X
k�1

�

�C k
jg.k/j �

X
k�1

jg.k/j D kgk; � > 0

the conditions of the Hille–Yosida theorem are met.
To find the form of etA we note that

�
1 � t

n
A

��n
g D Œ�.� �A/�1�ng D

��
�

�C k

�n
g.k/

�
k�1

D
 

1

.1C kt
n
/n
g.k/

!

k�1

where � D n
t
. It follows that limn!1

�
1 � t

n
A
��n

g D .e�ktg.k//k�1: It is easy
to see that each coordinate of the left-hand side converges to the corresponding
coordinate of the right-hand side. The fact that the left-hand side converges to the
right-hand side in the l1 norm may be deduced from the Dominated Convergence
Theorem.



Boundary Conditions in Evolutionary Equations in Biology 61

2 Boundary Conditions

2.1 McKendrick–von Foerster Model

The semigroup of Example 5 may be thought of as an (oversimplified) model of
dynamics of an age-structured population. More specifically, we think of a non-
negative f 2 L1.RC/ as an age-profile of the population, so that

Z a2

a1

f .a/ da

represents the number of individuals of age in the interval Œa1; a2�: If there are
neither deaths nor births, and f is an initial population’s age-profile, then T .t/f
is its age-profile at time t > 0: This is because an individual that at time t is of age
a, was initially of age a � t , provided a > t I also, there are no individuals of age
a < t because there are no births.

A more realistic model is the one related to the semigroup

T�.t/f .a/ D
(

e� R a
a�t �.x/ dxf .a � t/; a � t

0; a < t;
f 2 L1.RC/; (18)

where � � 0 is a bounded, integrable function (the assumption of integrability may
be disposed of, we introduce it for simplicity merely). We think of � is a death rate
(mortality function), so that e� R a

0 �.y/ dy is the probability that an individual does not
die before age a > 0: Then

e� R a
a�t �.x/ dx D e� R a

0 �.x/ dx

e� R a�t
0 �.x/ dx

(19)

is the probability that an individual will reach age a given that we know he/she has
reached age a � t: Thus e� R a

a�t �.x/ dxf .a � t/ is the “number” of individuals who
were of age a � t at time 0 and survived to age a, i.e. the ‘number’ of individuals
of age a at time t: The second line of the definition of T� reflects the fact that the
model still does not account for births: at time t there are no individuals of age less
than t:

To find the generator of T�, we recall the following general scheme: Two
semigroups

�
etA
�
t�0 and

�
etB
�
t�0 defined in a Banach space B are said to be

isomorphic (or similar) [8, 21, 22] iff there is an isomorphism I 2 L .B/ such that

I etA D etBI; t � 0:

Then, as it is easy to check, f 2 D.A/ iff If 2 D.B/, and we have IAf D BIf :
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To see that this scheme applies to our situation, we consider I 2 L .L1.RC//
given by .If /.a/ D e

R a
0 �.x/ dxf .a/; a � 0. The operator I is an isomorphism of

L1.RC/ with kIk � e
R

1

0 �.a/ da (it is here that we use the assumption � 2 L1.RC/)
and .I�1f /.a/ D e� R a

0 �.x/ dxf .a/; a � 0 so that kI�1k � 1. A direct calculation
shows that

T�.t/ D I�1T .t/I;

i.e. that T� is similar to T .
Hence, D.A�/ (the domain of the generator A� of T�) is composed of f of the

form f .a/ D e
R a
0 �.x/ dxg.a/ where g 2 D.A/: Since the product of two absolutely

continuous functions is absolutely continuous, it follows that D.A�/ is the set of
absolutely continuous functions vanishing at x D 0: In other words, D.A�/ D
D.A/; and

A�f .a/ D I�1AIf .a/ D �e� R a
0 �.x/ dx

�
e
R a
0 �.x/ dxf .a/

�0

D �e� R a
0 �.x/ dx

�
�.a/e

R a
0 �.x/ dxf .a/C e

R a
0 �.x/ dxf 0.a/

�

D �f 0.a/ � �.a/f .a/;

where 0 denotes derivative with respect to a. To recapitulate: these semigroups have
the same domain

D.A/ D ff 2 L1.RC/j there is g 2 L1.RC/; such that f .x/ D
Z x

0

g.y/ dyg;

and

Af D �f 0 while A�f D Af � �f; f 2 D.A/: (20)

Therefore, the model taking account of deaths is obtained from a basic one by
perturbing the original generator. However, to include births one must resort to
another kind of perturbation, the perturbation of the domain of the generator, or
the perturbation of the boundary condition. To explain: let us look at the Cauchy
problem related to the operator A�: Formally, it reads

@u.t; a/

@t
D �@u.t; a/

@a
� �.a/u.t; a/ D ŒA�u�.t; a/; u.0; a/ D f .a/; (21)

where ŒA�u�.t; a/ denotes the value of the operator A� on u.t; �/ evaluated at a.
However, there are at least two remarks that have to be made here. First of all,
the time-derivative here is not taken pointwise but in the sense of L1.RC/; and
the equation holds almost everywhere with respect to a. Secondly, the problem is
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not well-posed and in fact does not model anything unless we specify “boundary
conditions”. For, as we have already mentioned, for general f 2 L1.RC/ the
function t 7! T�.t/f is merely a formal, or mild solution to the Cauchy problem. It
is only for f 2 D.A�/ that it “really” solves (21). In particular, for all t � 0, u.t; �/
is a member ofD.A�/ (otherwise, the right-hand side would not make sense), hence,
an absolutely continuous function with

u.t; 0/ D 0: (22)

This is the boundary condition we have alluded to above, and it clearly is visible in
the domain of the generator. Its meaning is transparent: there are no births, u.t; 0/
being the number of individuals of age 0 at time 0: It is only with this boundary
condition that (21) describes a population with deaths but no births.

Now, the full McKendrick–von Foerster model involves births that are introduced
via a birth rate function b, a bounded measurable function on R

C: Instead of (22)
we introduce the boundary condition

u.t; 0/ D
Z 1

0

b.a/u.t; a/ da; (23)

which interpreted means that the number of newborns at time t � 0 depends on
the birth rate and population structure at that time: b.a/u.t; a/ is the number of
individuals born of the members of the population of age a at time t , and we need
to integrate over a 2 R

C to obtain the total number of newborns.
Notably, births do not change the way the generator “acts”, but rather its domain.

Denoting byAMcK-F the generator in the full model, we have thus (comp. [21,22,33])

AMcK-Ff D �f 0 � �f;

D.AMcK-F/ D fabs. cont. functions with f .0/ D
Z 1

0

b.a/f .a/ dag: (24)

This is in fact the main point of this section: in modeling an age-structured
population’s dynamics we are led to a very natural, non-local boundary condition
for the involved equation, or to a semigroup of operators with the generator defined
on an interesting domain. The equation reads

@u.t; a/

@t
D �@u.t; a/

@a
� �.a/u.t; a/ D ŒAMcK-Fu�.t; a/; u.0; a/ D f .a/;

(25)

and is formally the same as (21), but features the different boundary condition (23).
This does not happen too often in the semigroup theory, but here we may find

a semi-explicit formula for the semigroup generated by AMcK-F. To see this, let us
recall that by (9), in the no-births no-deaths case, solutions of the Cauchy problem
u.t; a/ D T .t/f .a/ do not change on the lines a � t D const: (see Fig. 1). Above
the main diagonal they are determined by the initial condition f “propagated” along
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Fig. 1 Solutions to the
McKendrick–von Foerster
equation

these lines, below the main diagonal they are equal to zero. In the model involving
deaths (but still no births) the picture does not change much: above the diagonal the
solutions are “tempered” by the survival function (19), below the diagonal they are
left intact.

This picture changes substantially when births are incorporated; although this
does not influence the form of the solutions above the main diagonal, those below
the diagonal change drastically. More specifically, we have

TMcK-F.t/f .a/ D
(

e� R a
a�t �.x/ dxf .a � t/; a � t

e� R a
0 �.x/ dxB.t � a/; a < t;

f 2 L1.RC/; (26)

where

B.t/ WD TMcK-F.t/f .0/

is the total number of newborns at time t � 0, and the second line may be
explained as follows: An individual that at time t > a is of age a was born at
time t � a and e� R a

0 �.x/ dx is the probability of its survival to age a: In other words,
e� R a

0 �.x/ dxB.t � a/; is the fraction of individuals born at time t � a that survived to
time t: It is thus clear thatB , the value of u at the boundary where a D 0 determines
u below the diagonal (see again Fig. 1).

However, Eq. (26) defines TMcK-F by means of TMcK-F and should be untangled.
In fact, it suffices to calculateB . To this end, we consider the following McKendrick
renewal equation for B:

B.t/ D
Z 1

0

b.aC t/e� R aCt
a �.x/ dxf .a/ daC

Z t

0

b.t � s/e� R t�s
0 �.x/ dxB.s/ ds:
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To explain, the two terms in this equation correspond to the number of births from
the original population and to the number of births from the descendants of the
original population, respectively. More specifically, as in the cases described above,

e� R aCt
a �.x/ dxf .a/

is the fraction of individuals who at time t D 0 were of age a, and survived to
age aC t . The first integrand is thus the number of babes born of such individuals,
b.aC t/ being the intensity of giving birth at age a C t . As for the second term,
it describes individuals born of descendants of the original population: such a
descendant must have been born at some time s < t and e� R t�s

0 �.x/ dxB.s/ is the
number of such descendants who survived to time t (i.e., to age t � s); b.t � s/ is
the intensity of child-bearing at age t � s, and of course we need to integrate over
s 2 Œ0; t �:

We note that the first term, denoted F D F.t/, depends merely on f;� and b,
and may be treated as given. The other term is a convolution of B with b�.s/ D
b.s/e� R s

0 �.x/ dx so that the (McKendrick renewal) equation reads:

B.t/ D F.t/C b�  B.t/: (27)

An application of Banach’s fixed point theorem (see e.g. [20]) in an appropriate
space (see [11]) shows that this equation determines B uniquely and that

B D F C
1X
nD1

bn�
�  F;

with the series converging absolutely; here, bn�
� denotes the nth convolution power

of b�. The series has a natural interpretation. F , as we explained above, is the
number of direct descendants of the original population, say, daughters. The first
term in the series is then the number of grand-daughters, the second is the number
of grand-grand-daughters, and so on.

2.2 Feller–Wentzell Boundary Conditions

The partial differential equation of Example 4 models heat conduction in an infinite
thin rod (identified with the x-axis R). The similar Cauchy problem on the right
half-axis:

@u.t; x/

@t
D 1

2

@2u.t; x/

@x2
; x � 0; t � 0; u.0; x/ D f .x/:

is not well-posed unless boundary conditions are specified: we have encountered
such a situation already in discussing the McKendrick–von Foerster model. This
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is quite understandable physically: if the heat-flow is to be determined, conditions
at the rod-end need to be known. Physics suggests three types of such boundary
conditions: the first of these, the Neumann boundary condition

@u.t; 0/

@x
WD @u.t; x/

@x
jxD0 D 0; t � 0;

describes perfectly isolated end, and the Dirichlet boundary condition

u.t; 0/ D 0; t � 0;

describes the situation where the end is kept at a specified temperature (here equal
to zero). The intermediate Robin boundary condition

@u.t; 0/

@x
D 
u.t; 0/

models a non perfectly isolated end, where some loss of temperature may occur.
And, physically, at least at the beginning of the twentieth century, there seemed
to be no other interesting, natural boundary conditions mathematicians may study.
(That this is not the case at all, becomes crystal clear after reading excellent G.
Goldstein’s exposition [30].)

Anyway, this was the situation at the beginning of the twentieth century, when R.
A. Fisher and S. Wright came to the stage. They were scientists with mathematical
background, working in a field today termed mathematical biology. W. Feller who
took up part of their research, in the context of semigroups operators, writes on their
work in papers published in the 1950s as follows [25–27]:

The theory of evolution provides examples of stochastic processes which have not yet been
treated systematically.

Existing methods are : : : due to R. A. Fisher and S. Wright. They have : : : with great
ingenuity and admirable resourcefulness : : : discovered : : : facts of the general theory of
stochastic processes.

Essential part of Wright’s theory is equivalent to assuming a certain diffusion equation for
gene frequency : : :

This diffusion equation : : : is of a singular type and lead to new types of boundary
conditions.

thus acknowledging their role in the development of today’s theory of stochastic
processes.

To explain the way population genetics has lead to “new types of boundary
conditions”, we recall the Wright–Fisher model of genetic drift. To begin with,
we note that in spite of mutations which—given the state of a population—
occur independently in each individual, members of (especially: small) populations
exhibit striking similarities. This is due to genetic drift, mentioned above, one of
the most important forces of population genetics. Simply put, the reason for this
phenomenon is that in a population on the one hand new variants are introduced
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randomly by (neutral) mutations, and on the other many variants are also randomly
lost since not all members of the current generation pass their genetic material to
the next one.

Wright and Fisher model this phenomenon as follows [8,23,24]. We suppose the
population in question to be composed of 2N individuals; in doing so we identify
individuals with chromosomes (that come in pairs), or even with corresponding
loci (places) on these chromosomes. We assume there are only two possible alleles
(variants) at this locus: A and a. The size of the population is kept constant all
the time, and we consider its evolution in discrete non-overlapping generations
formed as follows: an individual in the daughter generation is the same as its parent
(reproduction is asexual) and the parent is assumed to be chosen from the parent
generation randomly, with all parents being equally probable. In other words, the
daughter generation is formed by 2N independent draws with replacement from
the parent generation. In each draw all parents are equally likely to be chosen and
daughters have the same allele as their parents. It should be noted here that such
sampling procedure models the genetic drift by allowing some parents not to be
selected for reproduction, and hence not contributing to the genetic pool.

Then, the state of the population at time n � 0 is conveniently described by a
single random variable Xn with values in f0; : : : ; 2N g being equal to the number
of individuals of type A. The sequence Xn; n � 0 is a time-homogeneous Markov
chain with transition probabilities:

pkl WD PrfXnC1 D l jXn D kg D
 
2N

l

!
plk.1 � pk/

2N�l ; where pk D k

2N
:

(28)

In other words, if Xn D k, thenXnC1 is a binomial random variable with parameter
k
2N

. A typical realization of the Wright–Fisher chain is depicted at Fig. 2, where
N D 5 and yellow and blue balls represent A and a alleles, respectively. The figure
illustrates also the fact that the states 0 and 2N are absorbing. This is to say that if
for some n, Xn D 0 we must have Xm D 0 for all m � n, and a similar statement
is true if Xn D 2N . Genetically, this expresses the fact that in finite populations,
in the absence of other genetic forces, genetic drift (i.e. random change of allele
frequencies) reduces variability of population by fixing one of the existing alleles.

Now, imagine that the number 2N of individuals is quite large and the individuals
are placed on the unit interval Œ0; 1� with distances between neighboring individuals
equal to 1

2N
, so that the kth individual is placed at k

2N
: Imagine also that the time

that elapses from one generation to the other is 1
2N

, so that there are 2N generations
in a unit interval. Then, the process we observe bears more and more resemblance to
a continuous-time continuous-path diffusion process on Œ0; 1�; as depicted at Fig. 3.

Since, conditional on Xn D k, the expected single-step displacement E Xn
2N

of
the approximating process equals 1

2N
2Npk � k

2N
D 0 with variance Var Xn

2N
D

1
2N
pk.1 � pk/, in the limit we expect the process starting at x 2 Œ0; 1� to have

infinitesimal variance x.1�x/ and infinitesimal displacement 0: Indeed, for eachN ,
a point x 2 Œ0; 1�may be identified with k

2N
where k D Œ2Nx�, and lettingN ! 1
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Fig. 2 Wright–Fisher model:
each row depicts a generation
sampled with replacement
from the one lying above it

Fig. 3 Diffusion
approximation: the border
line between the yellow and
blue balls resembles a path of
a diffusion process

in Œ2Nx�

2N
.1 � Œ2Nx�

2N
/, which is the infinitesimal variance in a unit time-interval, we

obtain x.1�x/:Moreover, the limiting process should inherit its boundary behavior
from the approximating Markov chains. Therefore, we expect that in the limit we
will obtain the process related to the semigroup in C Œ0; 1�, generated by

Af .x/ D x.1 � x/f 00.x/ (29)
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with domainD.A/ composed of twice continuously differentiable functions on (0,1)
such that limx!0C x.1 � x/f 00.x/ D limx!1� x.1 � x/f 00.x/ D 0, see e.g. [8,
section 8.4.20], [21, pp. 224–226], see also [39, p. 120]. (The requirement that the
process is absorbed at x D 0 and x D 1 is expressed in the fact that Af .0/ D
Af .1/ D 0:) The limiting process is often referred to as Wright’s diffusion, or the
Wright–Fisher diffusion (without mutations).

A noteworthy variant of the above limit procedure arises when mutations are
allowed. Suppose namely that in passing from one generation to the other an
individual with allele A may change its state to allele a with probability ˛

2N
, and

an individual with allele a may change its state to allele A with probability ˇ

2N
,

where ˛ and ˇ are non-negative numbers. Then, the number of A alleles is still a
Markov chain with transition probabilities of the form (28), but pk is now changed
to

pk D k

2N
.1 � ˛

2N
/C .1 � k

2N
/
ˇ

2N
:

Of course, this influences the expected single-step displacement and its variance
(conditional on Xn D k):

E
Xn

2N
D pk � k

2N
D 1

2N
.ˇ � .˛ C ˇ/

k

2N
/;

Var

�
Xn

2N

�
D 1

2N
pk.1 � pk/: (30)

This suggests that the limit process starting at x will have an infinitesimal unit-time
displacement of ˇ� .˛Cˇ/x and the corresponding variance x.1�x/; i.e. that the
limit process is related to the operator

Af .x/ D a.x/f 00.x/C b.x/f 0.x/; x 2 .0; 1/;

where a.x/ D x.1 � x/ and b.x/ D ˇ � .˛ C ˇ/x:

This suggests also the following question: can a particle, first of all, reach the
boundary? Perhaps it will never reach it and considering boundary conditions is
unnecessary? After all, at x D 0 the displacement coefficient (usually called ‘the
drift coefficient’ but we will not use this term, to avoid confusion with genetic drift
which is expressed in a rather than in b) equals ˇ > 0 meaning that at the boundary
there is a strong tendency to move to the right (this is the force of mutations that
causes this!); is diffusion (coefficient a) strong enough to overcome b, making xD 0

accessible? Can x D 1 be reached as well? Or perhaps, x D 0 not only allows no
particles to reach it, but also is a source of particles constantly entering the interval
from the left end? As it transpires, all these situations are possible for a general
diffusion process. In other words, a boundary point might be either (see Fig. 4)
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Fig. 4 Feller’s classification
of boundary points

boundary type accessible? absorbing?
regular Y N
exit Y Y

entrance N N
natural N Y

Fig. 5 Diffusion
approximation to
Wright–Fisher model with
mutations

b

a

• natural: a particle cannot reach the boundary from the interior, neither can it reach
the interior from the boundary,

• entrance: a particle cannot reach the boundary from the interior, but it can reach
the interior from the boundary,

• exit: a particle can reach the boundary from the interior, but it cannot reach the
interior from the boundary,

• or regular: a particle can reach the boundary from the interior, and it can reach
the interior from the boundary.

Before continuing, we note another interesting point. The scaled Wright–Fisher
process with mutation, after reaching 0

2N
, will not stay there for ever but for a

geometric time � : Pr.� � n/ D .1� ˇ

2N
/2Nn and then resume its motion (see Fig. 5).

Hence, general diffusion processes with regular boundary may behave similarly:
paths should be able to return to the interior of the unit interval after some random
time spent at the boundary.

Hence, we encounter at least two new phenomena, as compared to the interpre-
tation suggested by physicists. In the process modeled by the Neuman boundary
condition, heat particles are being reflected from the boundary, and in the Dirichlet
boundary condition they are being annihilated there. But here, they may stay at
the boundary for some time and then return to the interior. Of course, if we model
merely heat flow, the latter behavior is quite impossible (see, however, [30]), but
for general diffusion processes, such as the Wright–Fisher diffusion, we cannot rule
such a behavior out.
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In the case of a regular boundary, a diffusion process may both enter the boundary
or leave it, and the full characterization of the process requires description of
its behavior there (in the case of natural boundary, on the other hand, no such
description is needed and no boundary conditions are imposed). As an example, let
us consider the space C Œ0;1� of continuous functions on R

C D Œ0;1/ with limits
at infinity. Also, let A be the operator given by Af D f 00 with domain composed
of twice continuously differentiable functions with f 00 2 C Œ0;1�, satisfying the
boundary condition

af 00.0/� bf 0.0/C cf .0/� d

Z
R

C

�

f d� D 0; (31)

where � is a probability measure on R
C� D .0;1/, and a; b; c and d are given non-

negative constants with c � d and a C b > 0: Note that this boundary condition
involves merely x D 0, a regular boundary point, but does not touch x D 1, a
natural boundary point.

It may be proved that A generates a semigroup of operators in C Œ0;1�, and
that there is an underlying stochastic process for this semigroup. The form of the
generator (Af D f 00) tells us that, while away from the boundary x D 0, the process
behaves like a (re-scaled) Brownian motion. To specify the process completely,
however, we need to provide rules of its behavior at the boundary, and this is the
role of (31). Upon touching the boundary, the particle performing Brownian motion
may be stopped there, reflected or killed (i.e. removed from the space); it may also
jump somewhere into R

C: The coefficients a; b; c and d may be thought of as
describing relative frequencies of such events, and � is the distribution of particle’s
position right after the jump. In particular, the case a D 1; b D c D d D 0 is
the stopped Brownian motion (the particle reaching the boundary stays there for
ever), a D c D d D 0; b D 1 (Neumann boundary condition) is the reflected
Brownian motion whose paths are absolute values of paths of an unrestricted
Brownian motion, and a D b D d D 0; c D 1 (Dirichlet boundary condition)
is the minimal Brownian motion (the particle reaching the boundary disappears).

Consider in more detail the case where a 6D 0 and b D 0:

af 00.0/C cf .0/� d

Z
R

C

�

f d� D 0: (32)

This is the case of elementary return Brownian motion, in which the process after
reaching the boundary stays there for a random exponential time T with parameter
c=a (see Fig. 6):

P.T > t/ D e� c
a t ; t � 0:

At time T , the process either terminates, with probability 1 � d
c

, or jumps, with
probability d

c
, to a random point in R

C� , the distribution after the jump being �; and
starts its movement afresh.
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x

tT
P(T > t) = e− c

a t

p = d
c

m

p = 1− d
c - particle ‘dies’

Fig. 6 Elementary return Brownian motion

x

tT
P(T > t) = e− c

b t
+

m

p = 1− d
c - particle ‘dies’

Fig. 7 Elastic barrier

The elastic barrier where a D 0 and b 6D 0:

bf 0.0/ D cf .0/� d

Z
R

C

�

f d�: (33)

may be described by analogy (see Fig. 7). Here, after reaching the boundary the
trajectory is reflected and the process continues in this fashion for a random time
T . The times when the path touches x D 0 form a measurable subset of the time
axis, and the Lebesgue measure of this set is zero. There is, nevertheless, a way to
measure the time spent at the boundary, called the Lévy local time tCI tC itself
is a random process (on a separate probability space) increasing only when the
Brownian path is at the boundary [34–36,42]. As in the elementary return Brownian
motion, at time T distributed according to (see [34, p. 45] or [35, p. 426])

P.T > t/ D e� c
b t

C

; t � 0;
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the process either terminates, with probability 1 � d
c

, or jumps, with probability d
c

,
to a random point in R

C� , the distribution after the jump being �; and starts afresh.
For a more detailed analytic and probabilistic treatment of boundary conditions

see e.g. [26, 27, 30, 36, 40] (a very nice insight into boundary conditions may
also be gained by considering a characteristic operator—see [19]). A final remark
concerns terminology: the study of boundary conditions done by W. Feller for one-
dimensional diffusion processes was soon taken up by A.D. Wentzell in the case
of multi-dimensional processes [48]. Therefore, in today’s literature the boundary
conditions for diffusion processes are often called Wentzell boundary conditions, or
Feller–Wentzell boundary conditions.

3 Applications, and Recent Developments

3.1 Dealing with Boundary Conditions: Greiner’s Approach

Population dynamics with McKendrick-type equations has had a vigorous and long-
lasting impact on mathematics and on the theory of semigroups of operators in
particular [21,22,33,37,44,47]. A similar statement is also true for Feller–Wentzell
boundary conditions, the latter forming a core of nowadays theory of stochastic
processes [36,39]; for the influence on semigroups of operators see e.g. [30,46] and
works cited therein.

Within the theory of semigroups of operators, a particularly elegant approach to
boundary conditions viewed from the perspective of perturbation theory is due to G.
Greiner [31]. To explain, a “classic” perturbation theory deals with the problem of
when given a generatorA, one may claim thatACB is also a generator: for example,
the Phillips perturbation theorem says that this is the case when B is bounded. G.
Greiner’s paper is concerned with the similar question when it is not the operator
itself but its boundary that is perturbed. Here are the details: Let X and Y be two
Banach spaces, A W D.A/ ! X be a closed operator in X, and L W D.A/ ! Y be
a linear operator which is continuous with respect to the graph norm in D.A/. (The
graph norm is kf kA D kf k C kAf k.) Moreover, assume L to be surjective, and
suppose that A0, defined as the restriction of A to kerL, generates a semigroup of
operators in X. Given F 2 L .X;Y/, is the operator AF defined as the restriction
of A to ker.L�F /, the generator as well? This is precisely what is meant when we
say that the operator was left intact, but its boundary was “perturbed”.

While in general (see [31, Example 1.5]) the answer is in the negative, Greiner’s
first fundamental theorem [31, Thm 2.1] establishes that AF is the generator for any
F provided there is a constant 
 such that for � larger than some �0

kLf k � �
kf k; for all f 2 ker.� � A/: (34)
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To consider a particular example, let us come back to the McKendrick model.
Let W 1;1.RC/ be the set of absolutely continuous functions f 2 L1.RC/ with
f 0 2 L1.RC/, i.e., for f 2 W 1;1.RC/we have f .x/ D f .0/CR x

0
f 0.y/ dy; x � 0:

Also, let

A W W 1;1.RC/ ! L1.RC/ Af D �f 0;

and L W W 1;1.RC/ ! R be given by Lf D f .0/: The generator of the semigroup of
Example 5 is then A restricted to kerL, the Greiner’s operator A0. In view of (20),
the semigroup modeling aging and deaths [see Eq. (18)] is generated by the bounded
perturbation of A0, since the multiplication operator f 7! ��f is bounded. As we
have already stressed, this is not the case with the full McKendrick–von Foerster
semigroup: its generator involves a different kind of perturbation, the perturbation
of the boundary.

In the set up of Greiner, ker.��A/; � > 0 is spanned here by e� where e�.x/ D
e��x; x � 0: (For, f 2 ker.� � A/ forces f 0 D ��f , and this implies that f 0 is a
continuous function. In other words, f is a “usual” solution to �f C f 0 D 0, i.e, f
is a scalar multiple of e�:) Since Le� D 1 and ke�k D 1

�
; condition (34) is satisfied

with 
 D 1 (in fact, we have equality there). So, Greiner’s result (together with the
Phillips perturbation theorem) establishes existence of the semigroup generated by
the operator of (20) with perturbed domain given in (24).

For a second example, let C2Œ0;1� be the space of twice continuously differen-
tiable members f ofC Œ0;1�with f 00 2 C Œ0;1�, and let Af D f 00 and Lf D f 00.0/
on C2Œ0;1�. It is quite well-known that A restricted to kerL is the generator of a
semigroup. Now, for � > 0, all solutions to the differential equation �f �f 00 D 0 on
R

C, are of the form f .x/ D C e�p
�xCDe

p
�x: Since the choice of nonzeroD leads

out of C Œ0;1�, ker.��A/ is spanned by ep
� (see above for this notation). We have

Lep
� D � and kep

�k D 1. Hence, condition (34) holds again with 
 D 1. Greiner’s
theorem thus establishes that for any bounded linear functional F 2 .C Œ0;1�/�/
the operator A restricted to the kernel of L � F is a generator. In particular, for
Ff D d

R
R

C

�

f d� � cf .0/, we obtain existence of the semigroup related to the
elementary return Brownian motion [i.e., to boundary condition (32)]. A similar
reasoning works for the elastic barrier (33).

3.2 Dealing with Boundary Conditions: Lord Kelvin’s Method
of Images

Let us start with Feller’s construction of the semigroup describing reflected Brown-
ian motion [28, pp. 340–343], which he calls Lord Kelvin’s method of images.

The semigroup in question is generated by the operator Af D 1
2
f 00 in C Œ0;1�

with domain composed of twice continuously differentiable functions with f 00 2
C Œ0;1�, satisfying the boundary condition (31) with a D c D d D 0; i.e., the
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a b

c d

Fig. 8 Method of images: (a) a function, (b) its even extension, (c) the value of the unrestricted
Brownian motion semigroup on the even extension, and (d) the restriction of the latter to R

C

Neumann condition:

f 0.0/ D 0:

As it transpires, this semigroup may be constructed as follows using the semigroup
of Example 4. Given f 2 C Œ0;1� (Fig. 8a) we consider its even extension (b),
apply the semigroup of Example 4 to this extension (c), and then restrict the obtained
function to R

C (d).
That this method works is a miracle in itself, but of course the most intriguing

part of it is: How the Neumann boundary condition is related to even extensions?
A more general problem is

Can one follow similar lines in constructing semigroups related to the general boundary
conditions (31)?

The answer is in positive. But before presenting the solution, let us put method
of images in the context of similar or isomorphic semigroups, we have already
encountered in Sect. 2.1 in a particular case. Given two strongly continuous
semigroups fetA; t � 0g and fetG; t � 0g in Banach spaces X and B, respectively, we
say that they are similar or isomorphic if there exists an isomorphism I W X ! B

such that etA D I�1etGI; t � 0: Then, the generatorsA and G are related by

D.A/ D fx 2 XI Ix 2 D.G/g; Ax D I�1GIx: (35)

A particular case of this situation is as follows. Suppose that� is a subset of R, X
is a space of real (or complex) functions on�; and we are interested in proving that a
certain operatorA in X is the generator of a strongly continuous semigroup. Assume
also that there exists � � �0 � R and a strongly continuous semigroup fT .t/; t �
0g of operators in a space B0 of real (or complex) functions on �0, generated by an
operatorG0 resembling A. Usually, A is “G0 with a boundary condition”. One way
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to approach such a problem is extending functions in X to functions in B0 so that
the set of these extensions is an invariant subspace B � B0 for fT .t/; t � 0g. Then,
the part G of G0 in B is the generator of fT .t/jB; t � 0g. Moreover, quite often, X
and B are then isomorphic with natural isomorphism I mapping a function on � to
its extension to �0, and R WD I�1 mapping a function on �0 to its restriction on
�: Then, there exists the semigroup in X that is similar to fetG; t � 0g. Hence, to
show that A is the generator, it suffices to show (35). Then, as a bonus, we obtain
the explicit form of etA, referred to as the abstract Kelvin formula:

etAf D RetGIf ; f 2 X; t � 0: (36)

As with the Feller’s construction, the non-trivial part in the procedure described
above is finding the way of extending functions on � to functions on �0 so that
all the remaining steps are valid. To explain the idea of deriving formulae for such
extensions, let us recall that any strongly continuous semigroup leaves the domain
of its generator invariant. Hence, if members f of D.A/ are characterized by a
functional equation (a boundary condition), say F.f / D 0, then we must have
F.RetGIf / D 0; t � 0. This, when coupled with .If /j� D f; often determines
If ; f 2 D.A/; and, by density of D.A/, all If :

As we will see, the method of images often leads to the most natural approach
to the generation problem [11]. To begin with, let us consider the full McKendrick–
von Foerster semigroup generated by (24), and ask the question of whether given
f 2 L1.RC/ we may choose its extension Qf to the whole real line so that

TMcK-F.t/f .a/ D e� R a
a�t �.x/ dx Qf .a � t/; a; t � 0; (37)

where �.a/ D 0 for a < 0: Certainly, it suffices to find g.a/ D Qf .�a/; a � 0:

Since for f 2 D.AMcK-F/ the right-hand side of (37) has to belong to D.AMcK-F/ as
well, we calculate [see (24)]:

g.t/ D Qf .�t/ D
Z 1

0

b.a/e� R a
a�t �.x/ dx Qf .a � t/ da

D
Z 1

t

b.a/e� R a
a�t �.x/ dxf .a � t/ daC

Z t

0

b.a/e� R a
a�t �.x/ dxg.t � a/ da;

D
Z 1

0

b.aC t/e� R aCt
a �.x/ dxf .a/ da C

Z t

0

b.a/e� R a
0 �.x/ dxg.t � a/ da

where in the last step we used �.a/ D 0 for a < 0: In other words, g satisfies the
McKendrick renewal equation (27). Since the solution to this equation is unique, we
see that g D B , the total number of newborns. Of course, we could have obtained
this directly by comparing (37) with (26) but the point is that we have derived the
renewal equation, and the explicit form for TMcK-F without population dynamics
considerations.
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Coming back to the Brownian motion semigroups, we will, following [10, 16],
provide a construction for the case of the Robin boundary condition (the general
case of Feller–Wentzell boundary conditions (31) is treated in detail in [10]). We
start by re-writing the semigroup of Example 4 as follows:

et
1
2

d2

dx2 f .x/ D 1p
2�t

Z 1

�1
e� u2

2t
1

2
Œf .x C u/C f .x � u/� du

D 1p
2�t

Z 1

�1
e� u2

2t C.u/f .x/ du; (38)

where

C.u/f .x/ D 1

2
Œf .x C u/C f .x � u/� (39)

The family fC.t/; t 2 Rg is an example of an operator cosine family, since it satisfies
the functional equation:

2C.t/C.s/ D C.t C s/C C.t � s/:

Such families have similar properties to semigroups of operators [29]; a generator
of a cosine family is defined as

Af D lim
t!0

2
C.t/f � f

t2
;

on the domain composed of f for which the limit involved exists. A direct argument
shows that the generator of the cosine family (39) is Af D f 00 with domain
equal to the space C2Œ�1;1� (of twice continuously differentiable f with f 00 2
C Œ�1;1�).

As with semigroups, it transpires that cosine families preserve domains of their
generators:

C.t/ŒD.A/� � D.A/:

It is also important to note that each generator of a cosine family is the generator of
a semigroup (the two families being related by a formula of the type (38), termed
the abstract Weierstrass formula).

This suggests the following claim: the operator Af D f 00 with domain composed
of members of C2Œ0;1� (the space of twice continuously differentiable f with
f 00 2 C Œ0;1�/ satisfying f 0.0/ D 
f .0/ is not only the generator of a semigroup
but also of a cosine family. Moreover, for f 2 C Œ0;1� one may find its extension
Qf 2 C Œ�1;1� such that the cosine family in question is given by

C
.t/f .x/ D C.t/ Qf .x/; t 2 R; x � 0: (40)



78 A. Bobrowski

Again, we need to find g.x/ D Qf .�x/; x � 0: The requirement that C
 leaves the
domain of its generator invariant, forces

d

dx

h Qf .x C t/C Qf .x � t/
i

jxD0 D 
. Qf .t/C Qf .�t//; t � 0:

This, however, is the same as

f 0.t/ � g0.t/ D 
.f .t/C g.t//:

Using g.0/ D f .0/ ( Qf is supposed to be continuous!), we find the solution

g.t/ D f .t/ � 2

Z t

0

e�
.t�s/f .s/ ds:

It is easy to check that g 2 C Œ0;1�, i.e., that Qf 2 C Œ�1;1� and that if f 0.0/ D

f .0/, then g0.0/ D f 0.0/ � 2
f .0/ D �f 0.0/ and g00.0/ D f 00.0/ � 
.f 0.0/C
g0.0// D f 00.0/: These relations allow checking that Qf 2 C2Œ�1;1� provided
f 0.0/ D 
f .0/; and so (40) indeed defines the cosine family we were looking for.
The reader will notice that for 
 D 0, g defined above equals to f , recovering the
fact that for Neumann boundary condition the proper extension is the even one.

3.3 Solea Solea Population

Many population dynamics studies use the McKendrick equation as a building block
[44]: this is the case also in the model of a solea solea population with both age and
vertical structures, due to O. Arino et al. [1, 45]. In the model, the fish habitat is
divided into N spatial patches and the fish densities, or age profiles ui ; in the i th
patch satisfy the following system of equations:

@ui .t; a/

@t
C @ui .t; a/

@a
D ��i.a/ui .t; a/C ��1

NX
jD1

kij.a/uj .t; a/; (41)

ui .t; 0/ D
Z 1

0

bi .a/ui .t; a/ da; i D 1; : : : ; N;

where “t” stands for time, and �i and bi are age-specific and patch-specific
mortality and birth rates.

In the absence of the terms ��1PN
jD1 kij.a/uj .t; a/; each patch could be

treated separately and the population densities there would satisfy the McKendrick
equation. The matrix k.a/ D .kij.a// is composed of intensities of movements
between patches that occur on a daily basis: the sum of entries in each column of
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the matrix is zero. The factor ��1 (with � � 1) corresponds to the fact that the age-
related processes and vertical migrations (between the patches) occur at different
time scales, a day being the fast time scale as compared to the fish life time.

The main question addressed in [1] is whether in modelling such populations one
may disregard the vertical migration to work with a model that has been aggregated,
or averaged, over the whole water column. To this end, the authors assume that the
matrix k is irreducible and hence possesses the unique normalized right eigenvector
v.a/ D .vi .a//iD1;:::;N ; corresponding to the simple dominant eigenvalue 0. Since
this vector describes the stable population distribution among the patches, a heuristic
argument makes plausible the ansatz that approximately we have

ui .t; a/

u.t; a/
D vi .a/; i D 1; : : : ; N; a � 0; (42)

where u D PN
iD1 ui : In other words, it is assumed that the migrations governed by k

occur so fast, as compared to the ageing processes, that the population distribution
over the patches reaches the (age-specific) equilibrium long before the ageing
process intervenes. This corresponds to letting � ! 0 in (41). In such a simplified,
aggregated, model the population density satisfies the McKendrick equation with
averaged birth and mortality rates:

@u.t; a/

@t
C @u.t; a/

@a
D ��a.a/u.t; a/; (43)

u.t; 0/ D
Z 1

0

ba.a/u.t; a/ da;

where “a” stands for “aggregated”, �a D PN
iD1 vi�i and ba D PN

iD1 vi bi : Here,
the weights vi reflect the underlying, hidden spatial structure. Notably, the resulting
boundary condition is a convex combination of the boundary conditions occurring
in (41).

This effect is very similar to that observed in [9, 13, 14] where, motivated by
a number of biological models, the authors study convex combinations of Feller
generators resulting from “averaging” the stochastic processes involved. In fact,
these two effects are in a sense dual: under certain regularity conditions on the
model’s parameters, the predual of the McKendrick semigroup may be constructed
in a space of continuous functions [13]. Then, a perturbation of a boundary condition
becomes a perturbation of the generator, and the convergence discussed above may
be put in the context of [9, 13, 14], see [13] for details.

In [5, 6], the problem of the convergence of solutions of (41) as � ! 0 was
fully solved using asymptotic analysis (even in a more general model). However,
the authors did not consider the problem as an example of a convex combination
of boundary conditions. In [4], the problem is put in the framework of Greiner
[31] to deal with abstract boundary conditions, instead of the particular ones of the
McKendrick equation. More specifically, the semigroup with the generator’s domain
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equal to kerŒ˚1 ı ˛C˚2 ı .1� ˛/� is approximated by a family of semigroups with
the generators’ domains involving ker˚1 and ker˚2. We point out that this result
allows dealing only with the case where N—the number of patches in the model of
solea solea—is 2; it is not yet clear how to extend the methods of [4] to deal with the
general case. Note that the problem posed here is in a sense converse to the result
of [1, 5, 6]: there, a complex model is reduced to a simpler one involving convex
combination of the boundary conditions while here, given a convex combination of
Feller generators, we construct an approximating sequence of semigroups.

Here are the details: Throughout it is assumed that (34) holds. Also, given a
bounded linear operator ˛ 2 L .X/, and two operators F1; F2 2 L .X;Y/; we
define

Fa D F1˛ C F2ˇ

where ˇ D IX � ˛ (“a” for “average”). By Greiner’s theorem, Ai WD AFi and
Aa WD AFa , are generators with D.Ai / D ker˚i , where ˚i D L � Fi ; i D 1; 2 and
D.Aa/ D ker˚a; where ˚a D L � Fa.

Our main goal is to approximate
�
etAa

�
t�0 by means of semigroups build from�

etA1
�
t�0 and

�
etA2

�
t�0. To this end, we introduce operators A�; � > 0; in X � X

given by

D.A�/ D D.A1/ �D.A2/ D ker˚1 � ker˚2;

A� D
�
A1 0

0 A2

�
C �

��ˇ ˛

ˇ �˛
�

DW A0 C �Q:

We assume that the semigroup generated by A0, say
�
etA0

�
t�0 is semicontractive,

i.e., it satisfies

ketA0k � e!t ; t � 0; (44)

for some ! 2 R and that

P WD Q C IX�X D
�
˛ ˛

ˇ ˇ

�
(45)

is a contraction in X � X. (The former condition is automatically satisfied if�
etA0

�
t�0 is semicontractive—see the remark on page 215 in [31].) We note that

P is idempotent, hence

e�tQ D e��te�tP D e��t IX�X C .et� � 1/P�
D e��t IX�X C .1 � e��t /P : (46)
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It follows that ketQk � 1 and for the semigroups generated by A� (which exist by
the Phillips perturbation theorem) we have, by the Trotter product formula,

ketA� xk � lim
n!1

���
h
e
t
nA0e

�t
n Q
in
x
��� � e!tkxk; x 2 X � X;

so that

ketA�k � e!t ; � > 0; t � 0: (47)

Operator P is a projection on the subspace X
0 � X � X of vectors of the form�

˛x
ˇx

�
; the latter space is isomorphic to X with isomorphism I W X ! X

0 given by

I x D �
˛x
ˇx

�
.

Theorem 3.1 In the above setup, assume that ˛ leavesD.A/ invariant. Then,

lim
�!C1

etA�

 
x1

x2

!
D I etAaI �1P

 
x1

x2

!
D
 
˛etAa .x1 C x2/

ˇetAa .x1 C x2/

!
; t > 0; x1; x2 2 X:

(48)

For
�
x1
x2

� 2 X
0 the same is true for t D 0 as well, and the limit is almost uniform in

t 2 Œ0;1/I for other
�
x1
x2

�
the limit is almost uniform in t 2 .0;1/:

Intuitively, this result may be explained as follows. The components of the
semigroup

�
etA0

�
t�0 are uncoupled, while in

�
etA�

�
t�0 the coupling is realised by

the operatorQ which may be thought of as describing a Markov chain switching one
dynamics into the other (the jumps’ intensities are state-dependent, see examples
given later). As � ! 1, the Markov chain reaches its statistical equilibrium, so
that with “probability” ˛ it chooses the first dynamics, and with “probability” ˇ,
it chooses the second dynamics. This results in a convex combination of boundary
conditions in the limit semigroup. (Compare the main theorem in [9], see also [13].)

Theorem 3.2 Under conditions of the previous theorem, let B D
�
B1 0

0 B2

�
; where

B1 and B2 are bounded linear operators. Then,

lim
�!C1 et .A�CB/

 
x1

x2

!
D I et .AaCB1˛CB2ˇ/I �1P

 
x1

x2

!
; t > 0; x1; x2 2 X:

(49)

For
�
x1
x2

� 2 X
0 the same is true for t D 0 as well, and the limit is almost uniform in

t 2 Œ0;1/I for other
�
x1
x2

�
the limit is almost uniform in t 2 .0;1/:

Remark 1 For Theorems 3.1 and 3.2, besides (34) and (44), we assume that P;

defined in (45), is a contraction in X � X and ˛ leaves D.A/ invariant. While the
nature of the first and the last conditions is transparent, the other two require a
comment. As already mentioned, together they imply stability condition (47) (which
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is a common assumption in convergence theorems), and in fact our theorems remain
true if we simply assume (47). However, for the sake of applications it is more
convenient to assume the two conditions discussed above. Out of these two, the one
requiring P to be a contraction seems to be most restrictive, apparently excluding
spaces with supremum norm. On the other hand, this assumption is often satisfied
in L1-type spaces. (Similarly, the “dual” theorem in [9,13] is designed for spaces of
continuous functions.) In particular, if X is an AL-space, i.e. a Banach lattice such
that

kx C yk D kxk C kyk; x; y � 0;

and X � X is equipped with the order “
�
x
y

� � 0 iff x � 0 and y � 0” and the

norm
����xy
���� D kxk C kyk, then P is a contraction provided ˛ and ˇ are positive

operators. For, in such a case,

�����P
 
x

y

!����� D
�����
 
˛.x C y/

ˇ.x C y/

!����� D k˛.x C y/k C kˇ.x C y/k

D kx C yk �
�����
 
x

y

!����� ; x; y � 0;

and P is positive. Hence, [see e.g. [3, Proposition 2.67]]

kPk D sup���.xy/
���D1;.xy/�0

�����P
 
x

y

!����� � 1:

Example 7 As we have already seen, in the motivating example of dynamics of sola
sola,

A W W 1;1.RC/ ! L1.RC/ Af D �f 0;

and L W W 1;1.RC/ ! R is given by Lf D f .0/; and condition (34) is satisfied with

 D 1.

For bi 2 L1.RC/; i D 1; 2; the functionals Fif D R1
0 bi .a/f .a/ da are

linear and bounded. Hence, AFi generates a semigroup of operators and so does
AFi C Bi ; where given �i 2 L1.RC/, Bi is a (bounded) multiplication operator
f 7! ��if: It is well-known [see e.g. [11, 21, 33]] that there is ! such that
ket .AFiCBi /k � e!t ; i D 1; 2; implying (44).

Let ˛ 2 W 1;1.RC/ satisfy 0 � ˛ � 1: Then the related multiplication operator
(denoted by the same letter) is bounded in L1.RC/, and leaves D.A/ D W 1;1.RC/
invariant. Moreover, the related operator P [see (45)] in L1.RC/ � L1.RC/;
equipped with the norm

����f1f2
���� D kf1kL1.RC/ C kf2kL1.RC/; is a contraction
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(see Remark 1). Hence, all assumptions of Theorem 3.2 are satisfied. This again
establishes that the general model (41) (with N D 2 and normalized matrix k) may
be approximated by the averaged one (43).

3.4 Modelling Neurotransmitters

In our last section we discuss the results of [15], where a link between two recent
models of dynamics of synaptic depression was provided. This involves Feller–
Wentzell-type transmission conditions, as we explain in what follows.

In an attempt to understand phenomena behind synaptic depression, Aristizabal
and GlavinoviLc introduced a simple ODE model of dynamics of levels of
neurotransmitters [2]. They adopted the following widely accepted, simplified but
sufficiently accurate description (see papers cited in [2]): neurotransmitters are
localized in three compartments, or pools: the large pool, where also their synthesis
takes place, the small intermediate pool, and the immediately available pool, from
which they are released during stimulus. Moreover, they assumed that the dynamics
of levels Ui ; i D 1; 2; 3 of vesicles with neurotransmitters in the pools is analogous
to that of voltages across the capacitors in the electric circuit reproduced (with minor
changes) as our Fig. 9.

This results in the following system of ODEs for Ui :

0
@U

0
1

U 0
2

U 0
3

1
A D Q

0
@U1U2
U3

1
AC

0
B@

0

0
1

R3C3
.E � U3/

1
CA ; (50)

where

Q D

0
B@

� 1
R0C1

� 1
R1C1

1
R1C1

0
1

R1C2
� 1
R2C2

� 1
R1C2

1
R2C2

0 1
R2C3

� 1
R2C3

1
CA :

For the electric circuit, E denotes the electromotive source, the constants Ci s are
capacitors’ sizes, while Ri s characterize the resistors. Biologically, E represents

R3 R2 R1 R0

E C3 C2 C1Synthesis

Stimulus

Large pool Immediately available poolSmall pool

Fig. 9 The ODE model of Aristizabal and GlavinoviLc
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synthesis and Cis are the capacities to store vesicles, but Ri s do not have a clear
meaning. Merely the compounds 1

RiCj
are interpreted as the pools’ replenishment

rates.
A more recent PDE model of Bielecki and Kalita [7] zooms in on vesicles with

neurotransmitters, and assumes that they move according to a diffusion process in
a three dimensional domain ˝: As a result, in the linear version of the model, the
(unknown) concentration � of vesicles in the cytoplasm satisfies a Fokker-Planck-
type equation

@�

@t
D A�C ˇ.� � �/ (51)

where A is a second order, elliptic partial differential operator, ˇ W ˝ ! R is the
rate of neurotransmitters’ production, and � is a balance concentration of vesicles.

We are looking for a connection between these models. To this end, first we note
that equations (50) and (51) are of quite a different nature: while (in the absence
of stimulus and production) the latter is conservative, the former is not. However,
the dual to the matrix Q in (50) is an intensity matrix (it has non-negative off-
diagonal entries, and the sums of its entries in each column are zero), and the
dual equation to (50) is conservative. This suggests that to find a link between
the two models, one must first pass from the description of dynamics of densities
(concentrations), to that of expected values, i.e. instead of considering the Fokker-
Planck-type equation (51) one should pass to the dual Kolmogorov backward
equation. Moreover, to find such a link, one needs to specify the way vesicles move
from one pool to another, i.e. to specify the transmission conditions [17], which
are missing in Bielecki and Kalita’s model. (In proving formula (52) below, instead
of introducing appropriate transmission conditions, Bielecki and Kalita use what
they call “technical conditions”, without showing that these technical conditions are
satisfied.) These transmission conditions, describing communication between pools,
are of crucial importance in the analysis.

In [15] we introduced a one-dimensional version of the Bielecki and Kalita
model, where vesicles perform a Brownian motion on three adjacent intervals
(corresponding to pools) with diffusion coefficients varying from pool to pool, and
where the mechanism of passing from one pool to another is specified by means of
transmission conditions. Our main result says that as the diffusion coefficients in the
model tend to infinity and the boundary and transmission conditions are scaled in
an appropriate way, the solutions to the related Cauchy problems converge to those
of the model of Aristizabal and GlavinoviLc. Roughly speaking, if diffusion in three
separate pools is large and communication between pools is slow, the ODE model
is a good approximation of the PDE model.

We note that to show a connection between the two models, Bielecki and Kalita
also divide˝ into three subregions˝3;˝2 and˝1, corresponding to the three pools.
They assume that the diffusion process the vesicles perform is a three-dimensional
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Brownian motion and the diffusion coefficients, say �1; �2; �3 vary from region to
region, and suggest (see [7, Thm 2]) that the quantities

Ui D
R
˝i
�

volume˝i

; i D 1; 2; 3; (52)

satisfy the ODE system (50) of Aristizabal and GlavinoviLc with Ci D volume˝i
�i

:

However, this formula is at least doubtful: the proof of (52) given in [7] contains
a number of errors. Moreover, in the absence of stimulus and neurotransmitter’s
production, the total number of vesicles should remain constant. Hence, U1 CU2 C
U3 D const; provided volume˝i D 1; i D 1; 2; 3: However, system (50) is not
conservative, i.e. .U1 CU2 CU3/

0 6D 0 unless all Ci ’ are the same [no stimulus case
is obtained by letting R0 ! 1, and no production results in removing the second
summand in (50)]. Hence, formula (52) cannot hold unless all �i ’ are the same.

In our model we imagine the three pools as three adjacent intervals Œ0; r3�; Œr3; r2�
and Œr2; r1� of the real line, corresponding to the large, the small and the immediately
available pools, respectively. As in the model of Bielecki and Kalita, in each of those
intervals, vesicles perform Brownian motions with respective diffusion coefficients
�3; �2 and �1. The pools are separated by semi-permeable membranes located at
x D r3 and x D r2. (We note that no such membranes exist physically; they are
merely imaginary. Alternatively, instead of membranes and their permeability we
may speak of intensities of passing from one pool to the other.) Therefore, it is
convenient to think of the actual state space ˝ of the process performed by the
vesicles as the union of three intervals:

˝ WD ˝3 [˝2 [˝1 WD Œ0; r�
3 � [ ŒrC

3 ; r
�
2 � [ ŒrC

2 ; r1�:

(In order to keep our notations consistent with those of [2] and [7], the intervals are
numbered “from the right to the left”.) Note that r3 is now split into two points: r�

3

and rC
3 , representing positions to the immediate left and to the immediate right from

the first membrane; a similar remark concerns r2. Vesicles in all pools may permeate
through the imaginary membrane(s) to the adjacent pool(s), and their ability to filter
from the i th into the j th pool is characterized by permeability coefficients kij � 0,
i; j D 1; 2; 3; ji � j j D 1: The left end-point x D 0 is a reflecting boundary for
the process, and the right end-point x D r1 is an elastic boundary with elasticity
coefficient k10 � 0: The case k10 > 0 characterizes the boundary during stimulus,
and k10 D 0 describes it in between stimuli (i.e., when there is no stimulus, x D r1
is a reflecting boundary). Hence, k10 characterizes vesicles’ ability to be released
from the terminal bouton.

To describe our model more formally, we note that˝ is a (disconnected) compact
space and the function � defined on ˝ by

�.x/ D �i ; x 2 ˝i; i D 1; 2; 3;
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Fig. 10 A typical member of
C.˝/

x

f (x)

r2 r1r3

is continuous. A typical member of the Banach space

B D C.˝/

of complex continuous functions on˝ is depicted at Fig. 10. We note that the space
is isometrically isomorphic to the Cartesian product C.˝1/ � C.˝2/ � C.˝3/

of the spaces of continuous functions on the three intervals. In other words, a
member of C.˝/ may be identified with three continuous functions f1; f2; f3
being restrictions of f to the three intervals ˝1;˝2;˝3, respectively; we have
kf kC.˝/ D maxiD1;2;3 kfikC.˝i /:

The first result in [15] says that the operator A in C.˝/ defined as

Af D �f 00 (53)

for twice continuously differentiable functions f on ˝ satisfying the conditions:

f 0.0/ D 0; f 0.r�
3 / D k32Œf .r

C
3 /� f .r�

3 /�;

f 0.rC
3 / D k23Œf .r

C
3 / � f .r�

3 /�; f 0.r�
2 / D k21Œf .r

C
2 /� f .r�

2 /�;

f 0.rC
2 / D k12Œf .r

C
2 / � f .r�

2 /�; f 0.r1/ D �k10f .r1/; (54)

generates a semigroup fetA; t � 0g in C.˝/. The semigroup describes the dynamics
of expected values of neurotransmitters’ numbers in the three pools.

The results presented in Sect. 2.2 allow interpreting the boundary and transition
conditions (54) as follows. Turning, for example, to the third condition in (54),
we note that it has the form of the elastic barrier condition (33) with 0 replaced
by rC

3 , b D 1; c D d D k23 and � equal to the Dirac measure at r�
3 : Hence,

it describes the process in which the vesicles in ˝2 bounce from the imaginary
membrane separating it from ˝3 to filter into the latter interval at a random time T
with distribution:

P.T > t/ D e�k23tC ; t � 0:
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(Stochastic analysis of the related snapping out Brownian motion may be found in
[38].) In particular, the larger k23 is, the shorter is the time needed for the vesicle to
filter through the imaginary membrane. Hence, k23 is truly a permeability coefficient
for passing from ˝2 to ˝3. On the other hand, as indicated previously, dividing
k23 by �n, where .�n/n�1 is a sequence of positive numbers tending to infinity, and
letting n ! 1 we obtainP.T > t/ D 1, i.e. the time to filter through the membrane
is infinite and the boundary is reflecting. The interpretation of the other boundary
and transmission conditions in (54) is analogous.

The main point is to study the limit of the semigroups generated by the operators
A�n; n � 1 defined by (53) with � replaced by �n� and all permeability coefficients
in (54) divided by �n. More specifically, it is proved in [15] that

lim
n!1 etA�n f D etQPf ; t > 0; f 2 C.˝/ (55)

whereQ is given by

Q D
0
@�k0

10 � k0
12 k0

12 0

k0
21 �k0

21 � k0
23 k0

23

0 k0
32 �k0

32

1
A ; k0

ij D �ikij

j˝i j ; (56)

where j˝i j is the length of the i th interval, and the operator P given by

Pf D .j˝i j�1
Z
˝i

f /iD1;2;3

is a projection on the subspace B0 of C.˝/ of functions that are constant on each
of the three subintervals separately; the subspace may be identified with R

3, and its
members may be identified with triples of real numbers.

Intuitively, as the diffusion coefficients increase, the transition probabilities
between points in each interval separately tend to 1. As a result, the points become
indistinguishable and may be lumped together. Points from different intervals may
not be lumped together since as n ! 1 the permeability coefficients kij

�n
tend

to zero and in the limit the membranes become reflecting boundaries, separating
the intervals. However, because of the intimate relation between diffusion and
permeability coefficients, the three states of the limit process, i.e. the three intervals
contracted to three separate points, communicate as the states of a Markov chain
with intensity matrixQ (see Fig. 11).

Comparing intensity matrices of (50) and (56), we obtain the following relations
between parameters in the two models:

1

R0C1
D �1k10

j˝1j ;
1

R1C1
D �1k12

j˝1j ;
1

R1C2
D �2k21

j˝2j ;

1

R2C2
D �2k23

j˝2j ;
1

R2C3
D �3k32

j˝3j : (57)
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0

t

xr3 r2 r1

n → ∞

Large

Pool
Small
Pool

Imm.
Available
Pool

Fig. 11 Approximating a Markov chain by diffusion processes

0 21− 1+

Fig. 12 Two pools

These relations agree with the intuition that the replenishment rate from the i th to
the j th pool is directly proportional to permeability of the imaginary membrane
separating them and to the speed of diffusion in the i th interval, and inversely
proportional to the length of this interval.

Perhaps this mechanism will become yet more clear if we consider the case
of two pools. For simplicity, we assume, as at our Fig. 12, that two intervals
representing pools are of the same unit length, and consider first the operator Af D
f 00 defined for twice continuously differentiable functions in B D C Œ0; 1��C Œ1; 2�
(each pair of functions in B is identified with a single function on Œ0; 2�, continuous
in this interval except perhaps at x D 1 where it has limits from the left and from
the right), satisfying boundary and transmission conditions

f 0.0/ D f 0.2/ D 0;

f 0.1�/ D ˛Œf .1C/ � f .1�/�;
f 0.1C/ D ˇŒf .1C/ � f .1�/�;

where ˛ and ˇ play the role of permeability coefficients of the membrane located
at x D 1 (see Fig. 12). Now, if we replace Af D f 00 by Anf D nf 00 and divide
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the permeability coefficients by n; the related semigroups etAn will converge, as
n ! 1, to etQP where

Pf D
�Z 1

0

f;

Z 2

1

f

�

is a map from X to R
2 (identified with the subspace � X of functions that are

constant on each of the intervals) and

Q D
��˛ ˛

ˇ �ˇ
�
;

is the intensity matrix of the simplest Markov chain.
But, on the other hand, the principle discovered here is more general than it

appears [12]. In fact, we may forget about adjacent intervals and consider diffusions
on graphs. More specifically, imagine a finite graph G without loops, and a Markov
process on G obeying the following informal rules.

• While on the i th edge, imagined as a C1 curve in R
3, the process behaves like a

one-dimensional Brownian motion with variance �i > 0:
• Graph’s vertices are semi-permeable membranes, allowing communication

between the edges; permeability coefficients pij, describing the possibility to
filter through the membrane from the i th to the j th edge, depend on the edges.
In particular, pij is in general different from pji : At each vertice, the process
may also be killed and removed from the state-space.

Now, suppose the diffusion’s speed increases while membranes’ permeability
decreases (i.e. �i ! 1 and pij ! 0). As a result, points in each edge communicate
almost immediately and in the limit are lumped together, but the membranes
prevent lumping of points from different edges. It transpires, nevertheless, that the
assumption that the rate with which permeability coefficients tend to zero is the
same as the rate with which the diffusion coefficients tend to infinity, leads to
a limit process in which communication between lumped edges is possible. The
lumped edges form then the vertices in the so-called line graph of G (see [18])
and communicate as the states of a Markov chain with jumps’ intensities directly
proportional to permeability coefficients pij and the diffusion coefficients �i , and
inversely proportional to the edges’ lengths (see Fig. 13). The assumption on the rate
is important: if diffusion coefficients tend to infinity slower than the permeability
coefficients tend to zero, there is no communication between the vertices in the
limit line graph, and in the opposite case all points of the original graph are lumped
together, and nothing interesting happens.

This procedure may also be reversed: given a finite-state Markov chain, we may
find a graph G and construct a fast diffusion on G approximating the chain. See [12]
for details.
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A

B

C

D

E

F

G

A

B C D

FE

G

Fig. 13 From diffusion on G to a Markov chain on the vertices of the line graph of G ; edges
“shrink” to vertices, vertices “split” into edges
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Introduction to Complex Networks: Structure
and Dynamics

Ernesto Estrada

1 Introduction

1.1 Motivations

This chapter is written with graduate students in mind. During the very encour-
aging meeting at the African Institute for Mathematical Sciences (AIMS) for the
CIMPA-UNESCO-MESR-MINECO-South Africa Research School on “Evolution-
ary Equations with Applications in Natural Sciences” I noticed a great interest of
graduate and postgraduate students in the field of complex networks. This chapter
is then an elementary introduction to the field of complex networks, not only about
the dynamical processes taking place on them, as originally planned, but also about
the structural concepts needed to understand such dynamical processes. At the end
of this chapter I will provide some basic material for the further study of the topics
covered here, apart from the references cited in the main text. This is aimed to help
students to navigate the vast literature that has been generated in the last 15 years of
studying complex networks from an interdisciplinary point of view.

The study of complex networks has become a major topic of interdisciplinary
research in the twentyfirst century. Complex systems are ubiquitous in nature and
made-made systems, and because complex networks can be considered as the
skeleton of complex systems they appear in a wide range of scenarios ranging
from social and ecological to biological and technological systems. The concept
of “complexity” may well refer to a quality of the system or to a quantitative
characterisation of that system [40, 44]. As a quality of the system it refers to
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what makes the system complex. In this case complexity refers to the presence
of emergent properties in the system. That is, to the properties which emerge as
a consequence of the interactions of the parts in the system. In its second meaning,
complexity refers to the amount of information needed to specify the system.

In the so-called complex networks there are many properties that emerge as a
consequence of the global organisational structure of the network. For instance,
a phenomenon known as “small-worldness” is characterised by the presence of
relatively small average path length (see further for definitions) and a relatively high
number of triangles in the network. While the first property appears in randomly
generated networks, the second “emerges” as a consequence of a characteristic
feature of many complex systems in which relations display a high level of
transitivity. This second property is not captured by a random generation of the
network.

By considering complexity in its quantitative edge we may attempt to charac-
terise complex networks by giving the minimum amount of information needed
to describe them. For the sake of comparison let us also consider a regular and
a random graph of the same size of the real-world network we want to describe.
For the case of a regular graph we only need to specify the number of nodes
and the degree of the nodes (recall that every node has the same degree). With
this information many non-isomorphic graphs can be constructed, but many of
their topological and combinatorial properties are determined by the information
provided. In the case of the random network we need to specify the number of
nodes and the probability for joining pairs of nodes. As we will see in a further
section, most of the structural properties of these networks are determined by this
information only. In contrast, to describe the structure of one of the networks
representing a real-world system we need an awful amount of information, such
as: number of nodes and links, degree distribution, degree-degree correlation,
diameter, clustering, presence of communities, patterns of communicability, and
other properties that we will study in this chapter. However, even in this case a
complete description of the system is still far away. Thus, the network representation
of these systems deserves the title of complex networks because:

1. there are properties that emerge as a consequence of the global topological
organisation of the system,

2. their topological structures cannot be trivially described like in the cases of
random or regular graphs.

Complex networks can be classified according to the nature of the interactions
among the entities forming the nodes of the network. Some examples of these
classes are:

• Physical linking: pairs of nodes are physically connected by a tangible link, such
as a cable, a road, a vein, etc. Examples are: Internet, urban street networks, road
networks, vascular networks, etc.
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• Physical interactions: links between pairs of nodes represents interactions
which are determined by a physical force. Examples are: protein residue net-
works, protein-protein interaction networks, etc.

• “Ethereal” connections: links between pairs of nodes are intangible, such
that information sent from one node is received at another irrespective of the
“physical” trajectory. Examples are: WWW, airports network.

• Geographic closeness: nodes represent regions of a surface and their connections
are determined by their geographic proximity. Examples are: countries in a map,
landscape networks, etc.

• Mass/energy exchange: links connecting pairs of nodes indicate that some
energy or mass has been transferred from one node to another. Examples are:
reaction networks, metabolic networks, food webs, trade networks, etc.

• Social connections: links represent any kind of social relationship between
nodes. Examples are: friendship, collaboration, etc.

• Conceptual linking: links indicate conceptual relationships between pairs of
nodes. Examples are: dictionaries, citation networks, etc.

1.2 General Concepts of Networks

Here we define a network as the triple G D .V;E; f /, where V is a finite set
of nodes , E � V ˝ V D fe1; e2; � � � ; emg is a set of links and f is a mapping
which associates some elements of E to a pair of elements of V , such as that if
vi 2 V and vj 2 V then f W ep ! 

vi ; vj
�

and f W eq ! 
vj ; vi

�
[14, 23]. A

weighted network is defined by replacing the set of links E by a set of link weights
W D fw1;w2; � � � ;wmg , such that wi 2 <. Then, a weighted network is defined by
G D .V;W; f /. Two nodes u and v in a network are said to be adjacent if they are
joined by a link e D fu; vg. Nodes u and v are incident with the link e, and the link
e is incident with the nodes u and v. The node degree is the number of links which
are incident with a given node. In directed networks, those where each edge has an
arrow pointing from one node to another, the node u is adjacent to node v if there
is a directed link from u to v e D .u; v/. A link from u to v is incident from u and
incident to vI u is incident to e and v is incident from e. The in-degree of a node is
the number of links incident to it and its out-degree is the number of links incident
from it. The graph S D .V 0; E 0/ is called a subgraph of a network G D .V;E/ if
and only if V 0 � V and E 0 � E .

An important concept in the analysis of networks is that of walk. A
(directed) walk of length l is any sequence of (not necessarily different) nodes
v1; v2; � � � ; vl ; vlC1 such that for each i D 1; 2; � � � ; l there is link from vi to viC1.
This walk is referred to as a walk from v1 to vlC1. A closed walk (CW) of length l
is a walk v1; v2; � � � ; vl ; vlC1 in which vlC1 D v1. A walk of length l in which all the
nodes (and all the links) are distinct is called a path, and a closed walk in which all
the links and all the nodes (except the first and last) are distinct is a cycle. If there is
a path between each pair of nodes in a network, the network is said to be connected.
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Every connected subgraph is a connected component of the network. The analogous
concept for the directed network is that of strongly connected network. A directed
network is strongly connected if there is a path between each pair of nodes. The
strongly connected components of a directed network are its maximal strongly
connected subgraphs.

A common representation of the topology of a network G is through the
adjacency matrix. It is a square matrix A whose entries are defined by

Aij D
�
1 if i; j 2 E
0 otherwise

: (1)

A is symmetric for undirected networks and possibly un-symmetric for directed
ones.

Another important matrix representation of a network is through its Laplacian
matrix L, which is the discrete analogous of the Laplacian operator [32]. The entries
of this matrix are defined by

Luv D
8<
:

�1 if uv 2 E;
ku if u D v;
0 otherwise:

(2)

Let us designate by r the incidence matrix of the network, which is an n � m

matrix whose rows and columns represents the nodes and edges of the network,
respectively, such that

rue D
8<
:

C1 ife 2 Eis incoming to node u;
�1 ife 2 Eis outcoming from node u;
0 otherwise:

(3)

Then,

L D rrT : (4)

If we designate by K the diagonal matrix of node degrees in the network, the
Laplacian and adjacency matrices of a network are related as follows: L D K � A.

The spectrum of the adjacency matrix of a network can be written as

SpA D
�

�1.A/ �2.A/ � � � �n.A/
m.�1.A// m.�2.A// � � � m.�n.A//

�
; (5)

where �1.A/ � �2.A/ � � � � � �n.A/ are the distinct eigenvalues of A and
m.�1.A//;m.�2.A//; � � � ; m.�n.A// are their multiplicity.
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In the case of the Laplacian matrix the spectrum can be written in a similar way:

SpL D
�

�1.L/ �2L � � � �n.L/
m.�1.L// m.�2.L// � � � m.�n.L//

�
: (6)

The Laplacian matrix is positive semi-definite and the multiplicity of 0 as
an eigenvalue is equal to the number of connected components in the network.
Then, the second smallest eigenvalue of L, �2.L/, is usually called the algebraic
connectivity of the network [19].

An important property for the study of complex networks is its degree distribu-
tion. Let p.k/ D n.k/=n, where n.k/ is the number of nodes having degree k in the
network of size n [2]. That is, p.k/ represents the probability that a node selected
uniformly at random has degree k. The histogram of p.k/ versus k represents the
degree distribution of the network. Determining the degree distribution of a network
is a complicated task. Among the difficulties usually found we can mention the fact
that sometimes the number of data points used to fit the distribution is too small and
sometimes the data are very noisy. For instance, in fitting power-law distributions,
the tail of the distribution, the part which corresponds to high-degrees, is usually
very noisy. There are two main approaches in use for reducing this noise effect in
the tail of probability distributions. One is the binning procedure, which consists in
building a histogram using bin sizes which increase exponentially with degree. The
other approach is to consider the cumulative distribution function (CDF) [11].

There are many local properties which are used to characterise the nodes and
links of complex networks. One of the most important ones is the so-called
clustering coefficient introduced by Watts and Strogatz in 1998 [47]. For a given
node i the clustering coefficient is the number of triangles connected to this node
jC3.i/j divided by the number of triples centred on it

Ci D 2jC3.i/j
ki .ki � 1/

; (7)

where ki is the degree of the node. The average value of the clustering for all nodes
in a network NC has been extensively used in the analysis of complex networks

NC D 1

n

nX
iD1

Ci : (8)

Another group of local measures for the nodes of a network are the centrality
measures [17, 22, 25, 29]. These measures try to capture the notion of “importance”
of nodes in networks by quantifying the ability of a node to communicate directly
with other nodes, or its closeness to many other nodes or the number of pairs of
nodes which need a specific node as intermediary in their communications. The
simplest example of these measures is the degree of a node. A generalisation of this
concept can be seen through the use of the eigenvector associated with the largest
eigenvalue of the adjacency matrix of the network. This centrality, known as the
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eigenvector centrality, captures the influence not only of nearest neighbours but also
of more distant nodes in a network [8, 9]. It can be formally defined as

®.i/ D
�
1

�1
A®1

�
i

: (9)

The closeness centrality measures how close a node is from the rest of the nodes
in the network and [22] is expressed mathematically as follows

CC.u/ D n � 1

S.u/
; (10)

where the distance sum s.u/ is

S.u/ D
X

v2V.G/
d.u; v/: (11)

The betweenness centrality quantifies the importance of a node in the communi-
cation between other pairs of nodes in the network [22]. It measures the proportion
of information that passes through a given node in communications between other
pairs of nodes in the network and it is defined as:

BC.k/ D
X
i

X
j

�.i; k; j /

�.i; j /
; i ¤ j ¤ k: (12)

where ¡.i; j / is the number of shortest paths from node i to node j , and ¡.i; k; j /
is the number of these shortest paths that pass through the node k in the network.

The subgraph centrality counts the number of closed walks starting and ending
at a given node, which are mathematically given by the diagonal entries of Ak . A
penalisation is used for longer walks, such that they contribute less to the centrality
than the shortest walks [15–18]. It is defined as:

EE.i/ D
 1X
lD0

Al

l Š

!

ii

D .eA/ii: (13)

Another characteristic feature of complex networks is the presence of commu-
nities of nodes which are more tightly connected among them than with the rest of
the nodes in the network. In general it is considered that a community is a subset of
nodes in a network for which the density of connections is significantly larger than
the density of connections between them and the rest of the nodes. The reader is
directed to the specialised literature to obtain information about the many methods
available for detecting communities in networks [20].

The quality of a partition of a network into several communities can be measured
by mean of a few indices. The most popular among these quality criteria is the so-
called modularity index. In a network consisting of nV partitions, V1; V2; : : : ; VnC ,
the modularity is the sum over all partitions of the difference between the fraction
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of links inside each partition and the expected fraction by considering a random
network with the same degree for each node [36]:

Q D
nCX
kD1

2
64 jEkj
m

�

0
B@
P
j2Vk

kj

2m

1
CA
23
75 ; (14)

where jEkj is the number of links between nodes in the kth partition of the network.
Modularity is interpreted in the following way. If Q D 0, the number of intra-
cluster links is not bigger than the expected value for a random network. Otherwise,
Q D 1 means that there is a strong community structure in the network given by
the partition analysed.

2 Models of Networks

It is useful when studying complex networks to use random networks as models
to compare the properties we are studying. This allows us to understand whether
such property is the result of any natural evolutionary process or simply a randomly
appearing artefact of network generation. In a random network, a given set of nodes
are connected in a random way.

2.1 The Erdös-Rényi model

The simplest model of random network was introduced by Erdös and Rényi [13] in
which we start by considering n isolated nodes and with probability p > 0 a pair of
nodes is connected by an edge. Consequently, the network is determined only by the
number of nodes and edges and it can be written as G.n;m/ or G.n; p/. In Fig. 1
we illustrate some examples of Erdös-Rényi random graphs with the same number
of nodes and different linking probabilities.

Fig. 1 Illustration of the changes of an Erdös-Rényi random network with 20 nodes and
probabilities that increases from zero (left) to one (right)
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A few properties of Erdös-Rényi (ER) random networks are summarised below
[5, 24, 37, 48]:

(i) The expected number of edges per node:

Nm D n.n � 1/p
2

: (15)

(ii) The expected node degree:

Nk D .n � 1/p: (16)

(iii) The degrees follow a Poisson distribution of the form

p .k/ D e� Nk Nkk
kŠ

; (17)

as illustrated in Fig. 2:
(iv) The average path length for large n:

Nl.H/ D ln n � 

ln.pn/

C 1

2
; (18)

where 
 � 0:577 is the Euler-Mascheroni constant.

Fig. 2 Illustration of the
degree distribution of an
Erdös-Rényi (ER) random
network with 1,000 nodes and
4,000 links. The solid line is
the expected distribution and
the dots represents the values
for the average of 100
realizations
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(v) The average clustering coefficient:

NC D p D ı.G/: (19)

(vi) When increasing p, most nodes tends to be clustered in one giant component,
while the rest of nodes are isolated in very small components

(vii) The structure ofGER.n; p/ changes as a function of p D Nk=.n�1/ giving rise
to the following three stages:

(a) Subcritical Nk < 1, where all components are simple and very small. The
size of the largest component is S D O.lnn/.

(b) Critical Nk D 1, where the size of the largest component is S D ‚.n2=3/.
(c) Supercritical Nk > 1, where the probability that .f � "/n < S < .f C "/n

is 1 when n ! 1 " > 0 for, where f D f . Nk/ is the positive solution of
the equation: e� Nkf D 1 � f . The rest of the components are very small,
with the second largest having size about lnn.

(viii) The largest eigenvalue of the adjacency matrix in an ER network grows
proportionally to n W limn!1.�1.A/=n/ D p.

(ix) The second largest eigenvalue grows more slowly than �1 W limn!1.�2.A/
=n"/ D 0 for every " > 0:5.

(x) The smallest eigenvalue also grows with a similar relation to �2.A/ W
limn!1.�n.A/=n"/ D 0 for every " > 0:5.

(xi) The spectral density of an ER random network follows the Wigner’s
semicircle law, which is simply written as:

� .�/ D
( p

4��2
2�

�2 � �=r � 2; r D p
np.1 � p/

0 otherwise:
(20)

2.2 Small-World Networks

Despite the great usability of ER random networks as null models for studying
complex networks it has been observed empirically that they do not reproduce
some important properties of real-world networks. These empirical evidences can
be traced back to the famous experiment carried out by Stanley Milgram in 1967
[31]. Milgram asked some randomly selected people in the U.S. cities of Omaha
(Nebraska) and Wichita (Kansas) to send a letter to a target person who lives in
Boston (Massachusetts) on the East Coast. The rules stipulated that the letter should
be sent to somebody the sender knows personally. Although the senders and the
target were separated by about 2,000 km the results obtained by Milgram were
surprising because:

1. The average number of steps needed for the letters to arrive to its target was
around 6.



102 E. Estrada

2. There was a large group inbreeding, which resulted in acquaintances of one indi-
vidual feedback into his/her own circle, thus usually eliminating new contacts.

These results transcended to the popular culture as the “small-world” phe-
nomenon or the fact that every pair of people in the World are at “six degrees of
separation” only. Practically in every language and culture we have a phrase saying
that the World is small enough so that a randomly chose person has a connection
with some of our friends.

The Erdös-Rényi random network reproduces very well the observation concern-
ing the relatively small average path length, but it fails in reproducing the large group
inbreeding observed. That is, the number of triangles and the clustering coefficient
in the ER network are very small in comparison with those observed in real-world
systems. In 1998 Watts and Strogatz [47] proposed a model that reproduces the two
properties mentioned before in a simple way. Let n be the number of nodes and k be
an even number, the Watt-Strogatz model starts by using the following construction
(see Fig. 3):

1. Place all nodes in a circle;
2. Connect every node to its first k=2 clockwise nearest neighbours as well as to its
k=2 counter-clockwise nearest neighbours;

3. With probability p rewire some of the links in the circulant graph obtained
before.

The network constructed in the steps (i) and (ii) is a ring (a circulant graph), which
for k > 2 is full of triangles and consequently has a large clustering coefficient. The
average clustering coefficient for these networks is given by [4]

NC D 3.k � 2/

4.k � 1/
; (21)

which means that NC D 0:75 for very large values of k.

Fig. 3 Schematic representation of the evolution of the rewiring process in the Watts-Strogatz
model
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Fig. 4 Representation of the variation in the average path length and clustering coefficient with
the change of the rewiring probability in the Watts-Strogatz model with 100 nodes and 5,250 links

As can be seen in Fig. 3 (left) the shortest path distance between any pair of nodes
which are opposite to each other in the network is relatively large. This distance is,
in fact, equal to d n

k
e. Then

Nl � .n� 1/.nC k � 1/

2kn
: (22)

This relatively large average path length is far from that of the Milgram
experiment. In order to produce a model with small average path length and still
having relatively large clustering, Watts and Strogatz consider the step (iii) for
rewiring the links in that ring. This rewiring makes that the average path length
decreases very fast while the clustering coefficient still remains high. In Fig. 4 we
illustrate what happens to the clustering and average path length as the rewiring
probability change from 0 to 1 in a network.

2.3 “Scale-Free” Networks

The availability of empirical data about real-world complex networks allowed to
determine some of their topological characteristics. It was observed in particular
that one of these characteristics deviate dramatically from what is expected from
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a random evolution of the system in the form of ER or WS models. This
characteristic is the observed degree distribution of real-world networks. It was
observed [2] that many real-world networks display some kind of fat-tailed degree
distribution [21], which in many cases followed power-law fits, in contrast with the
expected Poisson-like distributions of ER and WS networks. In 1999 Barabási and
Albert [2] proposed a model to reproduce this important characteristic of real-world
complex networks.

In the Barabási-Albert (BA) model a network is created by using the following
procedure. Start from a small numberm0 of nodes. At each step add a new node u to
the network and connect it to m � m0 of the existing nodes v 2 V with probability

pu D kuP
w kw

: (23)

We can assume that we start from a connected random network of the Erdös-Rényi
type with m0 nodes, GER D .V;E/. In this case the BA process can be understood
as a process in which small inhomogeneities in the degree distribution of the ER
network growths in time. Another option is the one developed by Bollobás and
Riordan [7] in which it is first assumed that d D 1 and that the i th node is attached
to the j th one with probability:

pi D

8̂
ˆ̂<
ˆ̂̂:

kj

1C
i�1P
jD0

if j < i

1

1C
i�1P
jD0

if j D i
: (24)

Then, for d > 1 the network grows as if d D 1 until nd nodes have been created
and the size is reduced to n by contracting groups of d consecutive nodes into one.
The network is now specified by two parameters and we denote it by BA.n; d/.
Multiple links and self-loops are created during this process and they can be simply
eliminated if we need a simple network.

A characteristic of BA networks is that the probability that a node has degree
k � d is given by:

p.k/ D 2d.d � 1/

k.k C 1/.k C 2/
� k�3; (25)

as illustrated in Fig. 5.
This model has been generalised to consider general power-law distributions

where the probability of finding a node with degree k decays as a negative power
of the degree: p.k/ � k�
 . This means that the probability of finding a high-
degree node is relatively small in comparison with the high probability of finding
low-degree nodes. These networks are usually referred to as “scale-free” networks.
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Fig. 5 Illustration of the
characteristic power-law
degree distribution of a
network generated with the
BA model

The term scaling describes the existence of a power-law relationship between the
probability and the node degree:p.k/ D Ak�
 : multiplying the degree by a constant
factor c, only produces a proportionate scaling of the probability:

p.k; c/ D A.ck/�
 D Ac�
 � p.k/: (26)

Power-law relations are usually represented in a logarithmic scale, leading to
a straight line, lnp .k/ D �
 ln k C lnA, where �
 is the slope and lnA the
intercept of the function. Scaling by a constant factor c means that only the
intercept of the straight line changes but the slope is exactly the same as before:
lnp .k; c/ D �
 ln k � 
Ac.

In the case of BA networks, Bollobás [6] has proved that for fixed values d � 1,
the expected value for the clustering coefficient NC is given by

NC � d � 1

8

log2 n

n
; (27)

for n ! 1, which is very different from the value NC � n�0:75 reported by Barabási
and Albert [2] for d D 2.

On the other hand, the average path length has been estimated for the BA
networks to be as follows [7]:

Nl D ln n � ln .d=2/� 1 � 	
ln ln nC ln .d=2/

C 3

2
; (28)
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where 	 is the Euler-Mascheroni constant. This means that for the same number
of nodes and average degree, BA networks have smaller average path length
than their ER analogues. Other alternative models for obtaining power-law degree
distributions with different exponents 
 can be found in the literature [12]. In
closing, using this preferential attachment algorithm we can generate random
networks which are different from those obtained by using the ER method in
many important aspects including their degree distributions, average clustering and
average path length.

3 Dynamical Processes on Networks

Due to the fact that complex networks represent the topological skeleton of complex
systems there are many dynamical processes that can take place on the nodes and
links of these networks. We concentrate here in those cases where the topology of
the network is static, i.e., the nodes and links do not change in time. Then, we study
processes such as the consensus and synchronisation among the nodes in a network,
the diffusion of epidemics through the links of a network and the propagation of
beliefs by means of replication and mutation processes.

3.1 Consensus

The consensus is a dynamical process in which pairs of connected nodes try to
reach agreement regarding a certain quantity of interest [39]. Then, eventually the
network as a whole collapses into a consensus state, which is the state in which the
differences of the quantity of interest vanish for all pairs of nodes in the system. This
process is of great importance in social and engineering sciences where it models
situations ranging from social consensus to spatial rendezvous and alignment of
autonomous robots [39].

Let n D jV j be the number of agents forming a network, the collective dynamics
of the group of agents is represented by the following equations for the continuous-
time case:

Pui .t/ D
X
j�i


uj .t/ � ui .j /

�
; i D 1; � � � ; n (29)

ui .0/ D zi ; zi 2 <

which in matrix form are written as

Pu .t/ D �Lu .t/ ; (30)

u .0/ D u0; (31)
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where u0 is the original distribution which may represent opinions, positions in
space or other quantities with respect to which the agents should reach a consensus.
The reader surely already recognized that Eqs. (30)–(31) are identical to the heat
equation,

@u

@t
D hr2u; (32)

where h is a positive constant and r2 D �L is the Laplace operator. In general this
equation is used to model the diffusion of “information” in a physical system, where
by information we can understand heat, a chemical substance or opinions in a social
network.

A consensus is reached if, for all ui .0/ and all i; jD1; : : : ; n,
ˇ̌
ui .t/�uj .t/

ˇ̌! 0

as t ! 0. In other words, the consensus set A � <nis the subspace spanf1g, that is

A D ˚
u 2 <njui D uj ;8i; j

�
: (33)

A necessary and sufficient condition for the consensus model to converge to
the consensus subspace from an arbitrary initial condition is that the network is
connected.

The discrete-time version of the consensus model has the form

ui .t C 1/ D ui .t/C "
X

.i;j /2E
Aij

uj .t/ � ui .t/

�
(34)

u .0/ D u0; (35)

where ui .t/ is the value of a quantitative measure on node i and " > 0 is the step-
size. It has been proved that the consensus is asymptotically reached in a connected
graph for all initial states if 0 < " < 1=kmax, where kmax is the maximum degree
of the graph. The discrete-time collective dynamics of the network can be written in
matrix form as [39] as

u .t C 1/ D Pu .t/ ; (36)

u .0/ D u0; (37)

where P D I�"L, and I is the n�n identity matrix. The matrix P is the Perron matrix
of the network with parameter 0 < " < 1=kmax. For any connected undirected graph
the matrix P is an irreducible, doubly stochastic matrix with all eigenvalues �j in
the interval Œ�1; 1� and a trivial eigenvalue of 1. The reader can find the previously
mentioned concepts in any book on elementary linear algebra. The relation between
the Laplacian and Perron eigenvalues is given by: �j D 1 � "�j .
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Fig. 6 Time evolution of
consensus dynamics in a
real-world social network
with random initial states for
the nodes

In Fig. 6 we illustrate the consensus process in a real-world social network having
34 nodes and 78 edges.

The solution for the consensus dynamics problem is given by

u .t/ D e�tLu0; (38)

where

u.t/ D e�t�1 �'T1 u0
�
'1 C e�t�2 �'T2 u0

�
'2 C � � � C e�t�n �'Tn u0

�
'n: (39)

We remind the reader that

e�tL D e�t.UƒUT / D Ue�tƒUT (40)

D e�t�1'1'T1 C e�t�2'2'T2 C � � � C e�t�n'n'Tn ;

where

U D

0
BBB@

'1 .1/ '2 .1/ � � � 'n .1/
'1 .2/ '2 .2/ � � � 'n .2/
:::

:::
: : :

:::

'1 .n/ '2 .n/ � � � 'n .n/

1
CCCA ; (41)
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and

ƒ D

0
BBB@

�1 0 � � � 0
0 �2 � � � 0
:::
:::
: : :

:::

0 0 � � � �n

1
CCCA ; (42)

such that 0 D �1 < �2 � � � � � �n.
It is know that in a connected undirected network �1 D 0and �j > 0;8j ¤ 1.

Thus

u .t/ ! �
'T1 u0

�
'1 D 1T u0

n
1 as t ! 1: (43)

Hence u.t/ ! A as t ! 1. In other words, there is a global consensus.
As �2 is the smallest positive eigenvalue of the network Laplacian, it dictates the

slowest mode of convergence in the above equation. In other words, the consensus
model converges to the consensus set in an undirected connected network with a
rate of convergence that is dictated by �2.

As the states of the nodes evolve toward the consensus set, one has

d

dt
.1T u.t// D 1T .�Lu .t// D �u .t/T L1 D 0; (44)

Then

1Tu.t/ D
X
i

ui .t/; (45)

is a constant of motion for the consensus dynamics. Furthermore, the state trajectory
generated by the consensus model converges to the projection of its initial state, in
the Euclidean norm, onto the consensus space, since

arg min
u2A ku � u0k D 1T u0

1T 1
1 D 1T u0

n
1: (46)

As can be seen in Fig. 7 the trajectory of the consensus model retains the centroid
of the node’s states as its constant of motion.
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Fig. 7 Illustration of the
trajectory of the consensus
model (adapted from [30])
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Fig. 8 Illustration of the
different Laplacian matrices
for a simple network with two
leaders (nodes 5 and 6) and
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3.1.1 Consensus with Leaders

In many real-world scenarios a group of nodes in the network act as leaders that
drive the dynamics of the system. The set of nodes is then divided into leaders and
followers. The state of the leaders does not change during the consensus process and
the quantity of interest in the process for the followers converges to the convex hull
formed by the leaders. In this case the consensus dynamics can be written as

	 Puf
Pul



D �
	

Lf Lfl

0 0


 	
uf
ul



�
	

0
I



u; (47)

where the vector u and the Laplacian matrix have been split into their parts
corresponding to the leaders and followers. The Laplacian Lfl corresponds to the
interaction between leaders and followers in the network (see Fig. 8). The dynamics
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of the followers can then be expressed as:

Puf D �Lf uf � Lflul ; (48)

We know that L is positive semi-definite and if the network is connected we have
that N.L/ D spanf1g. Now, since

uTf Lf uf D
h

uTf 0
i

Lf

	
uf
0



; (49)

and
h

uTf 0
i

… N .L/ ; (50)

we have that

h
uTf 0

i
Lf

	
uf
0



> 0;8uf 2 <nf : (51)

That is, if the network G is connected then Lf is positive definite, Lf � 0. This
means that L�1

f exists and uf D �L�1
f Lflul is well defined. All of this implies

that given fixed leader opinions ul , the equilibrium point under the leader-follower
dynamics is

uf D �L�1
f Lflul ; (52)

which is globally asymptotically stable.
An example of a consensus with leaders-followers dynamics in a network is

illustrated in Fig. 9.

Fig. 9 Illustration of a
consensus dynamics in a
random network. Six nodes
are selected randomly as
leaders and the rest are
followers which are
represented as an hexagon.
Two quantities are designated
here as of interest for the
consensus, which are
designated as X- and Y-states
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3.1.2 Consensus in Directed Networks

Let us now consider the case of a weighted directed network, like the one illustrated
in Fig. 10.

In this case the equations governing the dynamical process can be written as

Pu1 .t/ D 0;

Pu2 .t/ D w21 .u1 .t/ � u2 .t// ; (53)

Pu3 .t/ D w32 .u2 .t/ � x3 .t//C w34 .u4 .t/ � u3 .t// ;

Pu4 .t/ D w42 .u2 .t/ � u4 .t//C w43 .u3 .t/ � u4 .t// :

In matrix form they are

Pu .t/ D

0
BB@

0 0 0 0

�w21 w21 0 0

0 �w32 w32 C w34 �w34
0 �w42 �w43 w42 C w43

1
CCA u.t/: (54)

This equation is similar to the consensus dynamics model that we have consid-
ered before and can be written as [30]

Pu.t/ D �L.D/u.t/;u.0/ D u0; (55)

1

2

3 4

w21

w32 w42w43

w34

Fig. 10 Illustration of a weighted directed network



Introduction to Complex Networks: Structure and Dynamics 113

where

L .D/ D Diag
�
AT 1

�� AT D

0
BB@

0 0 0 0

�w21 w21 0 0

0 �w32 w32 C w34 �w34
0 �w42 �w43 w42 C w43

1
CCA ; (56)

and

A D

0
BB@
0 w21 0 0

0 0 w32 w42
0 0 0 w43
0 0 w34 0

1
CCA : (57)

Let us now introduce a few definitions and results which will help to understand
when the system represented by a directed network converges to the consensus set,
i.e., when there is a global consensus in a directed network.

We start by introducing the concept of rooted out-branching subgraph [30]. A
rooted out-branching subgraph (ROS) is a directed subgraph such that

1. It does not contain a directed cycle and
2. It has a vertex vr (root) such that for every other vertex v there is a directed path

from vr to v.

An example of ROS is illustrated in Fig. 11 for a small directed network.
A directed network contains a ROS if and only if rank .L.D// D n � 1. In that

case, the nullity of the Laplacian N.L.D// is spanned by the all-ones vector. It is

Fig. 11 Illustration of a ROS for a directed network in which a node has been marked in red. The
ROS, represented in the left part of the figure, is constructed for the marked node. The figure has
been adapted from [30]



114 E. Estrada

known that for a directed network with n nodes the spectrum of L.D/ lies in the
region:

n
z 2 C j

ˇ̌
ˇz � Okin

ˇ̌
ˇ � Okin

o
; (58)

where Okin is the maximum (weighted) in-degree in D. That is, for every directed
network, the eigenvalues of L.D/ have non-negative real parts. That is, the
eigenvalues of L.D/ are contained in the Geršgorin disk of radius Okin centred at Okin.

Let L.D/ D PJ.ƒ/P�1 be the Jordan decomposition of L.D/. WhenD contains
a ROS, the non-singular matrix P can be chosen such that

J .ƒ/ D

0
BBBBB@

0 0 � � � 0

0 J .�2/ � � � 0

0 0 � � � 0
:::

:::
:::

:::

0 � � � 0 J .�n/

1
CCCCCA
; (59)

where �i .i D 2; : : : ; n/ have positive real parts, and J .�i / is the Jordan block
associated with eigenvalue �i . Consequently,

lim
t!1 e�tJ.ƒ/ D

0
BBBBB@

1 0 � � � 0
0 0 � � � 0
0 0 � � � 0
:::
:::
:::
:::

0 � � � 0 0

1
CCCCCA
; (60)

and lim
t!1 e�tL D p1qT1 , where p1 and qT1 are, respectively, the first column of P and

the first row of P�1, that is, where p1qT1 D 1.
Then, finally we have that for a directed network D containing a ROS, the

state trajectory generated by the consensus dynamic model, initialized from u0,
satisfies lim

t!1 u.t/ D �
p1qT1

�
u0, where p1 and qT1 , are, respectively, the right and

left eigenvectors associated with the zero eigenvalue of L.D/, normalized such that
p1qT1 D 1. As a result, one has u .t/ ! A, i.e., there is a global consensus, for all
initial conditions if and only if D contains a rooted out-branching.

Two examples from real-world directed networks are illustrated in Figs. 12
and 13.
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Fig. 12 Illustration of the consensus dynamics in the directed network representing the food web
of Coechella Valley, consisting of 30 species and their directed trophic relations. The rank of the
Laplacian matrix is n� 1 and a global consensus is reached in the system

Fig. 13 Illustration of the consensus dynamics in the directed network representing the food web
of Chesapeake Bay, consisting of 33 species and their directed trophic relations. The rank of the
Laplacian matrix is not n� 1 and a global consensus is not reached in the system

3.2 Synchronization in Networks

Synchronization is a phenomenon that appears very frequently in many natural and
man-made systems in which a collection of oscillators coupled to each other [1,10].
They include animal and social behaviour, neurons, cardiac pacemaker cells, among
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others. In this case the networkG D .V;E/ represents the couple oscillators, where
each node is an n-dimensional dynamical systems described by

Pxi D f .xi /C c

nX
jD1

LijH.t/xj ; i D 1; : : : ; n; (61)

where xi D .xi1; xi2; : : : ; xiN/ 2 <n is the state vector of the node i , c is a constant
representing the coupling strength, f .�/ W <n ! <n is a smooth vector valued
function which defines the dynamics, H .�/ W <n ! <n is a fixed output function
also known as outer coupling matrix, t is the time and Lij are the elements of the
Laplacian matrix of the network (sometimes the negative of the Laplacian matrix is
taken here). The synchronised state of the network is achieved if

x1.t/ D x2.t/ D � � � D xn.t/ ! s.t/; as t ! 1: (62)

Now, we consider that each entry of the state vector of the network is perturbed
by a small perturbation �i , such that we can write xi D sC �i (�i << s/. In order to
analyse the stability of the synchronised manifold x1 D x2 D : : : D xn, we expand
the terms in (61) as

f .xi / � f .s/C �if
0 .s/ ; (63)

H .xi / � H .s/C �iH
0 .s/ ; (64)

where the primes refers to the derivatives respect to s. In this way, the evolution of
the perturbations is determined by:

P�i D f 0 .s/ �i C c
X
j


LijH

0 .s/
�
�j : (65)

The eigenvectors of the Laplacian matrix are an appropriate set of linear
combinations of the perturbations and we can decouple the system of equations
for the perturbations by using such eigenvectors. Let �j be an eigenvector of the
Laplacian matrix of the network associated with the eigenvalue �j . Then

P�i D 
f 0 .s/C c�iH

0 .s/
�
�i : (66)

The solution of these decoupled equations can be obtained by considering that at
short times the variations of s are small enough. In this case we have

P�i .t/ D �0i exp
˚
f 0 .s/C c�iH

0 .s/
�
t
�
; (67)

where �0i is the initially imposed perturbation.
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Fig. 14 Schematic
representation of the typical
behaviour of the master
stability function

We now consider the term in the exponential of (67),ƒi D f 0.s/Cc�iH
0.s/. If

f 0.s/ > c�iH
0.s/, the perturbations will increase exponentially, while if f 0.s/ <

c�iH
0.s/ they will decrease exponentially. So, the behaviour of the perturbations

in time is controlled by the magnitude of �i . Then, the stability of the synchronised
state is determined by the master stability function:

ƒ.˛/ 	 max
s


f 0.s/C ˛H 0.s/

�
; (68)

which corresponds to a large number of functions f andH is represented in Fig. 14.
As can be seen the necessary condition for stability of the synchronous state

is that c�i is between ˛1and ˛2, which is the region where ƒ.˛/ < 0. Then, the
condition for synchronization is [3]:

Q WD �N

�2
<
˛2

˛1
: (69)

That is, the synchronisability of a network is favoured by a small eigenratio Q
which indeed depends only on the topology of the network. For instance, in the WS
model with rewiring probability p D 0, i.e., a circulant network of n nodes with
degree k D 2r , r >> 1, r << n, the largest and second smallest eigenvalues of the
Laplacian matrix are

�N � .2r C 1/ .1C 2=3�/ ; (70)

�2 � 2�2r .r C 1/ .2r C 1/ =
�
3n2

�
; (71)

such that the eigenratio is given by

Q WD �1

�n�1
� n2

r.r C 1/
: (72)

This means that the synchronizability of this network is very bad as for a fixed r ,
Q ! 1 as n ! 1.
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However, in the small-world regime the eigenratio is given by [33]

Q Š np Cp
2p .1 � p/ n logn

np �p
2p .1 � p/ n logn

; (73)

which means thatQ ! 1 as n ! 1. Indeed, small-world networks are expected to
show excellent synchronisability according to their low values of the eigenratio.

The effect of the degree distribution can also be analysed by writing [35]

Pxi D F .xi /C �

k
ˇ
i

X
j

LijH .xi /; (74)

where ˇ is a parameter and ki is the degree of the corresponding node. Then the
coupling matrix can be written as

C D K�ˇL; (75)

which allow us to write

det
�
K�ˇL � �I

� D det
�

K�ˇ=2LK�ˇ=2 � �I
�
; (76)

indicating that the coupling matrix is real and nonnegative.
Now, let us write

Pxi D F .xi /C �

k
ˇ
i

2
4kiH .xi /�

X
j�i

H
�
xj
�
3
5 (77)

D F .xi / � �k1�ˇi

 NHi �H .xi /
�
;

where

NHi D
X
j�i

H
�
xj
�
=ki : (78)

Let us now consider that the network is random and that the system is close to
the synchronised state s. In this case, NHi � H.s/ and we can write

Pxi D F .xi /� �k
1�ˇ
i ŒH .s/ �H .xi /� ; (79)

which implies that the condition for synchronisability is

˛1 < �k
1�ˇ
i < ˛2;8i: (80)
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That is, as soon as one node has degree different from the others the network is more
difficult to synchronise. In other words, as soon as a network departs from regularity
it is more difficult to synchronise. In fact, the eigenratio in this case is given by

Q D

8̂
ˆ̂<
ˆ̂̂:

�
kmax
kmin

�1�ˇ
ifˇ � 1;

�
kmin
kmax

�1�ˇ
ifˇ � 1:

(81)

Consequently, the minimum value of the eigenratio is obtained for ˇ D 1.

3.2.1 The Kuramoto Model

In real-world situations it is frequent to find that the oscillators are not identical. The
Kuramoto model simulates this kind of situations [28]. For describing this model let
us consider n planar rotors with angular phase xi and natural frequency !i coupled
with strengthK and evolving according to:

Pxi D !i CK
X
j�i

sin
�
xi � xj

�
; (82)

where
P
j�i

represents the sum over pairs of adjacent nodes. Using the incidence matrix

r (3) we can write (82) in matrix-vector form as follows

Px D ! CKr sin
�rT x

�
: (83)

The level of synchronisation is quantified by the order parameter:

r .t/ ei .t/ D 1

n

nX
jD1

eixj .t/: (84)

It represents the collective motion of the group of planar oscillators in the complex
plane. If we represent each oscillator phase xj as a point moving around a unit circle
in the complex plane, then the radius measures the coherence and .t/ is the average
phase of the rotors (see Fig. 15). The synchronisation is then observed when r.t/ is
non-zero for a group of oscillators and r.t/ ! 1 indicates a collective movement of
all the oscillators with almost identical phases.

The Kuramoto model is frequently solved by considering a complete network of
oscillators, i.e., each pair of oscillators is connected, coupled with the same strength
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Fig. 15 Representation of
the Kuramoto model where
the phases correspond to
points moving around a unit
circle in the complex plane.
The blue circle represents the
centre of mass of these
points, which is defined by
the order parameter

jx

j

r ψ

Fig. 16 Mean-field results of
the Kuramoto model

cK 0K

r

1

K D K0=n , with finiteK0. Then, by multiplying both sides of the order parameter
by e�ixl and taking imaginary parts we obtain [45]:

r sin . � xl / D 1

n

nX
jD1

sin
�
xj � xl

�
: (85)

So that

Pxl D !l CK0r sin .xl �  / ; (86)

in which the interaction term is given by a coupling with the mean phase  and the
intensity is proportional to the coherence r .

The results can be graphically analysed by considering Fig. 16. It indicates the
existence of a critical pointKc , below which there is no synchronization, i.e., r D 0.
Above this critical point a finite fraction of the oscillators synchronise, and when
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n ! 1 and t ! 1 becomes
�
K0 �Kc

�ˇ
with Kc depending on the natural

frequencies and ˇ D 1=2. Thus, in general

r D
(
0 K0 < Kc;�
K0 �Kc

�ˇ
K0 � Kc:

(87)

In small-world networks it has been empirically found that the order parameter
is scaled as

r .n;K/ D n�ˇ=	F

.K �Kc/ n

1=	
�
; (88)

whereF is a scaling function and 	 describes the divergence of the typical
correlation size .K �Kc/

�	 . These results indicate that in the Watts-Strogatz model
there is always a rewiring probability p for which a finiteKc exists and the network
can be fully synchronised as illustrated in Fig. 17. It has been empirically found that
the values of ˇ and 	 are fully compatible with those expected from the mean field
model.

In the case of oscillators with varying degree it has been found that the critical
coupling parameter scales as

Kc D c
hki
hk2i ; (89)

where h�i indicates average and c is a constant that depends on the distribution
of individual frequencies. Because the quantity

˝
k2
˛
= hki indicates the level of

heterogeneity of the degree distribution of the network, it is then clear that if the
network has very large degree heterogeneity the synchronisation threshold goes to
zero as n ! 1.

Fig. 17 Relation of the
critical coupling parameter
Kc with the rewiring
probability p in the
Watts-Strogatz model of
small-world networks
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3.3 Epidemics on Networks

The study of epidemics in complex networks has become a major area of research
at the intersection of network theory and epidemiology. In general, these models
are extensions of the classical models used in epidemiology which consider the
influence of the topology of a network on the propagation of an epidemic [26]. The
simplest model assumes that an individual who is susceptible (S) to an infection
could become infected (I). In a second model the infected individual can also recover
(R) from infection. The first model is known as a SI model, while the second is
known as a SIR model. In a third model, known as SIS, an individual can be re-
infected, so that infections do not confer immunity on an infected individual. Finally,
a model known as SIRS allows for recovery and reinfection as an attempt to model
the temporal immunity conferred by certain infections. We describe here two of the
most frequently analysed epidemic models.

Let us start by considering a random uncorrelated network G D .V;E/ with
degree distribution P.k/, where a group of nodes S � V are considered susceptible
and they can be infected by direct contact with infected individuals. By uncorrelated
we mean that the probability that a node with degree k is connected to a node of
degree k0 is independent of k. Let nk be the number of nodes with degree kin the
network, and Sk , Ik,Rk be the number of such nodes which are susceptible, infected
and recovered, respectively. Then, sk D Sk

nk
, xk D Ik

nk
and rk D Rk

nk
represent the

densities of susceptible, infected and recovered individuals with degree k in the
network, respectively. The global averages are then given by

s D
X
k

skP .k/ ; x D
X
k

xkP .k/ ; r D
X
k

rkP .k/ : (90)

The evolution of these probabilities in time is governed by the following equations
that define the model:

Pxk .t/ D ˇksk .t/ �k .t/ � 	xk .t/ ; (91)

Psk .t/ D �ˇksk .t/ �k .t/ ; (92)

Prk .t/ D 	xk .t/ ; (93)

where ˇ is the spreading rate of the pathogen, 	is the probability that a node recovers
or dies, i.e., the recovery rate, and �k.t/ is the density of infected neighbours of
nodes with degree k. The initial conditions for the model are: xk.0/ D 0, rk .0/ D 0

and sk.0/ D 1 � xk.0/. This model is known as the SIR (susceptible-infected-
recovered) model, where there are three compartments as sketched in Fig. 18:
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Fig. 18 Diagrammatic representation of a SIR model

When the initial distribution of infected nodes is homogeneous and very small,
i.e.,xk .0/ D x0 ! 0, and sk .0/ � 1 the solution of the model is given by

sk .t/ D e�ˇk�.t/; (94)

rk .t/ D 	

Z t

0

xk .�/d�; (95)

where

� .t/ D 1

	 hki
X
k

.k � 1/P .k/ rk .t/ : (96)

The evolution of � .t/ in time is given by

P� .t/ D 1 � hki�1 � 	� .t/ � hki�1X
k

.k � 1/P .k/sk .t/ ; (97)

which allows us to obtain the total epidemic prevalence r1 D P
k P .k/ rk .t ! 1/

as

r1 D
X

k
P .k/ .1 � sk .t ! 1//: (98)

Using geometric arguments it can be shown that the prevalence of the infection
at an infinite time is larger than zero, i.e., r1 > 0 if

ˇ hki�1X
k

k .k � 1/ � 	; (99)

which defines the following epidemic threshold [34]

ˇ

	
D hki

hk2i � hki : (100)

Below this threshold the epidemic dies out, r1 D 0, and above it there is a finite
prevalence r1 > 0

The second model that we consider here is the SIS (susceptible-infected-
susceptible) model, in which the general flow chart of the infection can be
represented as in Fig. 19.
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Fig. 19 Diagrammatic
representation of a SI model

Fig. 20 Illustration of the
total prevalence of disease in
both the SIR and SIS models
in networks with
homogeneous (WS) and
heterogeneous (SF) degree
distributions

The SIS model can be written mathematically as follow

Pxk .t/ D ˇk Œ1 � xk .t/� �k .t/ � 	xk .t/ ; (101)

where the term 	 represents here the rate at which individuals recover from infection
and become susceptible again.

The number of infected individuals at the infinite time limit can be obtained by
imposing the stationary condition Pxk .t/ D 0. Then,

xk D ˇk�k

�k C ˇk�k
: (102)

Following a similar procedure as for the SIR model, the epidemic threshold for
the SIS model is obtained as [43]

ˇ

	
D hki

hk2i : (103)

A schematic illustration of the phase diagram for both SIR and SIS models is
given in Fig. 20. As can be seen for networks with heterogeneous degree distri-
butions, e.g., Scale Free(SF) networks, there is practically no epidemic threshold
because ˇ

	
is always larger than x1 for SIS or r1 for SIR. This contrasts with the

existence of an epidemic threshold for networks with more homogeneous degree
distributions like the ones generated with the Watts-Strogatz (WS) model.
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4 Replicator-Mutator Dynamics

We turn here our attention to the so-called replicator-mutator model, which
describes the dynamics of complex adaptive systems, such as in population genetics,
autocatalytic reaction networks and the evolution of languages [27, 38, 41, 42].
Let us consider a series V D fv1; v2; : : : ; vng of n agents such that each agent
plays one of the n behaviours or strategies available at b D fb1; b2; : : : ; bng. Let
x D fx1; x2; : : : ; xng be a vector such that 0 � xi � 1 is the fraction of individuals
using the i th behaviour. Furthermore, we assume that xT 1 D 1, where 1 is an n � 1
all-ones vector. Let us assume that if an individual change from behaviour bj to
behaviour bi she is rewarded with a payoff Aij � 0. Therefore, we can consider
that two individuals vi and vj that can change from one behaviour to another are
connected to each other in such a way that the connection has a weight equal to
Aij > 0. The set of connections is E � V � V , such that we can define a graph
G D .V;E;W; �/, where W is the set of rewards, and � W W ! E is a surjective
mapping of the set of rewards onto the set of connections. The rewards between pairs
of individuals are then defined by the weighted adjacency matrix A of the graph. In
this case we consider that every node has a self-loop such that Aii D 1;8i 2 V .

The fitness fi of behaviour bi is usually assumed to have the following form

fi D f0 C
nX

jD1
Aijxj ; (104)

wheref0 is the base fitness, here assumed to be zero. The fitness vector can then be
obtained as

f D Ax; (105)

and the average fitness of the population is defined to be

� D
nX

jD1
fixj D xTAx: (106)

Let us now introduce the probability qij that an individual having behaviour bi
ends up with behaviour bj . Thus, qii gives the reliability for an individual with
strategy bi to remain with it. Such probabilities can be represented through the row-
stochastic matrix Q such that

nX
jD1

qij D 1: (107)
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The rate of change of the fraction of individuals using the i th behaviour with
respect to the time is modelled by the replicator-mutator equation

Pxi D
nX

jD1
xj fj qji � xi�

D xi
�
fiqji � �

�C
X
j¤i

fj xj qji; (108)

i D 1; 2; : : : ; n:

This is a generalization of the replicator dynamics widely studied in game theory
and population dynamics, where Pxi is assumed to be proportional to xi and to how
far the fitness of that individual exceeds the average fitness of the whole population:

Pxi D xi .fi � '/ ; i D 1; 2; : : : ; n: (109)

In matrix form Eqs. (108) and (109) are expressed respectively as

Px D QTFx � 'x; (110)

Px D Fx � 'x; (111)

where F D diag .f/. Then, it is obvious that (111) is the particular case in which
Q D I, where I is the corresponding identity matrix.

The entries of the matrix Q have been defined in different ways in the literature
[27, 38, 41, 42] and the approach to be developed in the current work is compatible
with all of them. However, for its simplicity and mathematical elegance we will
follow here the approach developed by Olfati-Saber in [38], where the entries of Q
are defined as:

qij D
�
�wij; i ¤ j

1 � � .1 � wii/ ; i D j;
(112)

where � is the mutation rate and

wij D AijP
j Aij

; (113)

such that the matrix W D Œwij� is the weighted adjacency matrix of the graph.
Let us define the following operator

= D I � K�1A; (114)

where

K D diag
�
1TA

�
: (115)



Introduction to Complex Networks: Structure and Dynamics 127

Then, the matrix Q can be obtained as

Q D I � �=
D .1� �/ I C �W (116)

D .1� �/ I C �K�1A:

Let us say a few words about the operator =. It is known that in a Markov
process defined on a graph G D .V;E/ with a suitable probability measure, the
semigroup transition function P .x; t; G/ ; t 2 Œ0;1/ evolves according to the
diffusion equation:

dP .x; t; G/
dt

D �=P .x; t; G/ ; (117)

where

= D d

dx
fa .x/ dx C b .x/g ; (118)

and P.x; t; G/ D exp.�t=/ is a solution of (118). Therefore, = D I � K�1A is
the discrete Fokker-Planck operator defined for a Markov process on a graph [46].
Consequently, we can write (117) as

Px D .I � �=/T Fx � 'x; (119)

and the discrete-time version of it is written as

x .t C 1/ D x .t/C "
�

I � �=T �Fx .t/ � 'x .t/
�
; (120)

where " > 0 is the time-step of integration/discretization.
At a given time step of the dynamical evolution of the system, the number of

individuals in steady-state is accounted for by the diversity ne .x/ of the system,
which has been defined as [38]

ne .x/ D
 X

i

x2i

!�1
: (121)

An order parameter was also introduced in [38] as

� D
ˇ̌
ˇ̌
ˇ̌
nX

jD1
xj e

i�j

ˇ̌
ˇ̌
ˇ̌ ; (122)

where �j D 2�j=n, j D 1; : : : ; n and i D p�1.
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Using the diversity measure the following phases of evolution have been
identified on the basis of the values of the diversity at a very large time, i.e.,
t ! 1 [38]:

1. Behavioural flocking: ne D 1, which indicates that a single dominant behaviour
emerges.

2. Cohesion: 1 < ne << n, in which a few dominant behaviours emerge.
3. Collapse: 1 << ne < n, where many dominant behaviours emerge.
4. Complete collapse: ne D n, where no dominant behaviour emerges.

Fig. 21 Illustration of the results obtained with the replicator-mutator model for an ER network
with 20 nodes and 40 links. The values of the mutation parameter are 0.001; 0.15; 0.5; 10. The
corresponding values of the diversity are 1.04; 2.5; 7.2; 20.0. The order parameters are 0.99; 0.51;
0.24; 0.05
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The four phases of the evolution of the replicator-mutator dynamic in a random
graph with Erdös-Rényi topology with 20 nodes and 40 links are illustrated
in Fig. 21. Notice that in the behavioural flocking phase, the order parameter is close
to unity, while in the total collapse phase it goes close to zero.
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Kinetic Models in Natural Sciences

Jacek Banasiak

1 Introduction

1.1 Preliminaries

In our terminology, a kinetic type equation describes an evolution of a population
of objects, depending on attributes from a certain set ˝ , subject to a given set of
conservation laws. Equations of this type also are referred to as Master Equations.
One of the natural ways to describe such a population is by providing the density of
the objects with respect to the attributes and investigate how it changes in time. The
density, say u.x/, is either the number of elements with an attribute x (if the number
of possible attributes is finite or countable), or a gives the quantity of elements with
attributes in a set A, according to the formula

Z

A

u.x/d�; (1)

if x is a continuous variable.
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In many cases we are interested in tracking the total number of elements of the
population which, for a given time t , is given by

X
x2˝

u.x; t/; (2)

if ˝ is countable, and by

Z

˝

u.x; t/dx; (3)

if ˝ is a continuum.
A kinetic equation for u usually is built in the following way. Let u.x; t/ be the

density of individuals with respect to the attribute(s) x 2 ˝ at a time t . Then we
balance, for any subset A � ˝;

1. the loss of individuals with attributes in A due to changes of the attributes to the
ones outside A;

2. the gain of individuals who changed the attributes from outside A to the ones
in A;

3. transport through A.

This results in the Master, or Kinetic, Equation of the process,

@tu.x; t/ D ŒKu�.x; t/ WD ŒT u�.x; t/C ŒAu�.x; t/C ŒBu�.x; t/; (4)

where A is the loss operator, B is the gain operator, while T describes the transport
phenomena. Equation (4) is supplemented with the initial state of the system

u.x; 0/ D ı
u .x/; x 2 ˝: (5)

Only in exceptional circumstances can the problem (4), (5) be solved. Usually we
have to prove the existence, uniqueness and other relevant properties of the solution
u without knowing its explicit form. There are various ways of doing this. We
shall follow the dynamical systems approach. Here, the evolution of the system
is described using a family of operators .G.t//t�0, parameterised by time, that map

an initial state
ı
u of the system to all subsequent states in the evolution; that is, the

solution is represented as

u.t/ D G.t/ ı
u : (6)

The solutions of (4); that is, the states of the system, belong to some appropriate
state space which is chosen partly due to its relevance to the problem but also for the
mathematical convenience. By no means is this choice unique: it is a mathematical
intervention into the model.
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In the processes discussed in these lectures, an appropriately defined integral of
the density over the space of attributes is the total amount of individuals, or the total
mass of the system. Due to the conservation laws used to construct the equation, this
integral is constant, or changes in some pre-defined way.

From this point of view it is natural to consider such processes as evolutions of
densities in an appropriateL1 space; that is, in the space

L1.˝;�/ D
8<
:uI kuk D

Z

˝

jujd� < C1
9=
; ;

where � is an appropriate measure relevant to the process. Such a space will be our
state space; that is, the state of the system will be described by a density with finite
integral over ˝; which we often will be calling the total mass (irrespective of its
real interpretation).

However, we can try to control the process using some other gauge function.
For instance, if we were interested in controlling the maximal concentration of the
particles, a more proper choice would be to use the functional

sup
x2˝

ju.x/j

as the gauge function.
This approach leads in a natural way to a class of abstract spaces called the

Banach spaces.

1.1.1 Interlude: Banach Spaces and Linear Operators

In what follows we shall restrict our attention to the state spaces which are Banach
spaces, though more general state spaces such metric or topological vector spaces
are also possible, see e.g. [36]. For an in-depth information on the topics discussed
here the reader is referred to [23,26,47]. To recall, a Banach space is a vector space
X , equipped with a finite gauge function k � k, called norm, satisfying kxk D 0 if
and only if x D 0, k˛xk D j˛jkxk for each scalar ˛ and kx C yk � kxk C kyk;
x; y 2 X and which is complete with respect to the convergence defined by the
norm (a space is complete if it contains limits of all its Cauchy sequences).

Example 1 We introduce a class of Banach spaces which will play crucial role in
the theory of differential equations which will be used throughout the lectures: the
Sobolev spaces.

In general considerations, when dealing with partial derivatives of functions,
often only the order of the derivative is important. In such cases, to shorten
calculations, we introduce the following notation. Let ˛ D .˛1; : : : ; ˛n/, ˛i 2
N0; i D 1; : : : ; n, be a multi-index and denote j˛j D ˛1 C � � � C ˛n. Then, for
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a given (locally integrable) function u; we denote any generalized (distributional)
derivative of u of order j˛j by

@˛u D @j˛j

@x
˛1
1 � � � @x˛nn u:

The Sobolev spaces W m
1 .˝/ are defined as

W m
1 .˝/ WD fu 2 L1.˝/I @˛u 2 L1.˝/; j˛j � mg :

In the same way, starting from the spaceLp.˝/ of functions integrable with a power
p 2 Œ1;1Œ, we can define Sobolev spaces W m

p .˝/; p 2 Œ1;1Œ. For p D 1 the
corresponding space L1.˝/ is the space of functions which are bounded almost
everywhere on ˝; and W m1.˝/ is the space in which all generalized derivatives up
to the orderm have this property as well.

An object intimately related with a Banach space is a linear operator. A (linear)
operator from X to Y is a linear function A W D.A/ ! Y , where D.A/ is a linear
subspace of X , called the domain of A. We often use the notation .A;D.A// to
denote the operatorAwith domainD.A/; if the domain is obvious, we simply write
A. By L.X; Y / we denote the space of all bounded operators betweenX and Y ; that
is, the operators for which

kAk WD sup
kxk�1

kAxk D sup
kxkD1

kAxk < C1: (7)

The space L.X;X/ is abbreviated as L.X/. We further define the kernel (or the
null-space) of A by

KerA D fx 2 D.A/I Ax D 0g

and the range of A by

RanA D fy 2 Y I Ax D y for some x 2 D.A/g

Furthermore, the graph of A is defined as the set f.x; y/ 2 X � Y I x 2 D.A/; y D
Axg:We say that the operatorA is closed if its graph is a closed subspace ofX � Y .
Equivalently, A is closed if and only if for any sequence .xn/n2N � D.A/, if
lim
n!1xn D x in X and lim

n!1 Axn D y in Y , then x 2 D.A/ and y D Ax.

An operator A in X is closable if the closure of its graph is itself a graph of an
operator. In such a case the operator whose graph is G.A/ is called the closure of A
and denoted by A.

Example 2 Consider the operator Af D f 0 in C.Œ0; 1�/ and L1.Œ0; 1�/. Then, [13,
Example 2.3], A is unbounded in both spaces, closed in C.Œ0; 1�/ and not closed,
but closable, in L1.Œ0; 1�/.
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In this way, (4) can be written as the Cauchy problem for an ordinary differential
equation in an appropriate Banach space X : find RC 3 t ! u.t/ 2 X such that

@tu D Ku; t > 0; u.0/ D ı
u2 X; (8)

whereK W D.K/ ! X is a realization of the expression K; defined on some subset
D.K/ of the chosen state spaceX: It is clear that a minimum requirement forD.K/
is that ŒKu�.�/ 2 X for u 2 D.K/. It is important to remember that the expression
K usually has multiple realizations and finding an appropriate one, such that with
.K;D.K// the problem (8) is well posed (often called the generator of the process),
is a very difficult task.

We mention the so-called maximal realization of the expression K, Kmax defined
as the restriction of K to

D.Kmax/ D fu 2 X I x ! ŒKu�.x/ 2 Xg:

The generator may be, or may be not, equal toKmax. In the former case, typically (4)
is uniquely solvable in X .

1.2 The Models

Here we introduce the examples which will be discussed in the course.

1.2.1 Transport on Networks

Let us consider a network with some substance flowing along the edges and being
redistributed in the nodes. The process of the redistribution of the flow is the loss-
gain process governed by the Kirchoff’s law (flow-in D flow-out). Thus, though this
model does not exactly fit into the framework of (4), it is an example of a kinetic
process as defined above.

The network under consideration is represented by a simple directed graph
G D .V .G/;E.G// D .fv1; : : : ; vng; fe1; : : : ; emg/ with n vertices v1; : : : ; vn and
m edges (arcs), e1; : : : ; em. We suppose that G is connected but not necessarily
strongly connected, see e.g. [21, 28]. Each edge is normalized so as to be identified
with Œ0; 1�;with the head at 0 and the tail at 1. The outgoing incidence matrix,˚� D
.��

ij /1�i�n;1�j�m, and the incoming incidence matrix, ˚C D .�C
ij /1�i�n;1�j�m, of

this graph are defined, respectively as

��
ij D

(
1 if vi

ej!
0 otherwise;

�C
ij D

(
1 if

ej! vi
0 otherwise:
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If the vertex vi has more than one outgoing edge, we place a non negative weight
wij on the outgoing edge ej such that for this vertex vi ,

X
j2Ei

wij D 1;

where Ei is defined by saying that j 2 Ei if the edge ej is outgoing from vi .
Naturally, wij D 1 if Ei D fj g and, to shorten notation, we adopt the convention
that wij D 1 for any j if Ei D ;. Then the weighted outgoing incidence matrix,
˚�

w , is obtained from ˚� by replacing each nonzero ��
ij entry by wij. If each vertex

has an outgoing edge, then ˚�
w is row stochastic, hence ˚� �˚�

w

�T D In (where
the superscript T denotes the transpose). The (weighted) adjacency matrix A D
.aij/1�i;j�n of the graph is defined by taking aij D wjk if there is ek such that

vj
ek! vi and 0 otherwise; that is, A D ˚C.˚�

w /
T . An important role is played by

the line graphQ of G: To recall, Q D .V .Q/;E.Q// D .E.G/;E.Q//; where

E.Q/ D fuvI u; v 2 E.G/; the head of u coincides with the tail of vg
D f"j g1�j�k:

By B we denote the weighted adjacency matrix for the line graph; that is,

B WD .˚�
w /

T ˚C: (9)

If there is an outgoing edge at each vertex then, from the definition of B, we see that
it is column stochastic. A vertex v will be called a source if it has no incoming edge
and a sink if there are no outgoing edges.

Example 1.1 Consider the following graph.

For this graph, the matrices ˚�; ˚C are given below.

˚� D

0
BBBBB@

1 1 0 0 0 0 0

0 0 1 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

1
CCCCCA
; ˚C D

0
BBBBB@

0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 1 0 1 0 1 0

0 0 0 0 0 0 1

0 0 1 0 1 0 0

1
CCCCCA
;
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while the adjacency matrix is given by

0
BBBBB@

0 0 0 0 0

1 0 0 0 0

1 1 0 1 0

0 0 0 0 1

0 1 1 0 0

1
CCCCCA
:

We are interested in a flow on a closed networkG. Then the standard assumption
is that the flow satisfies the Kirchoff law at the vertices

mX
jD1

��
ij cj uj .1; t/ D wij

mX
jD1

�C
ij cjuj .0; t/; t > 0; i 2 1; : : : ; n;

which, in this context, is the conservation of mass law: the total inflow of mass per
unit time equals the total outflow at each node (vertex) of the network.

Let uj .x; t/ be the density of particles at position x and at time t � 0 flowing
along edge ej for x 2 Œ0; 1�. The particles on ej are assumed to move with velocity
cj > 0 which is constant for each j . We consider a generalization of Kirchoff’s
law by allowing for a decrease/amplification of the flow at the entrances and exits
of each vertex. Then the flow is described by

8̂
<̂
ˆ̂:

@tuj .x; t/ D cj @xuj .x; t/; x 2 .0; 1/; t � 0;

uj .x; 0/ D fj .x/;

��
ij �j cj uj .1; t/ D wij

mP
kD1

�C
ik .
kckuk.0; t//;

(10)

where 
j > 0 and �j > 0 are the absorption/amplification coefficients at,
respectively, the head and the tail of the edge ej : If 
j D �j D 1 for all
j D 1; � � � ; m, then we recover the Kirchoff law at the vertices.

Remark 1 We observe that the boundary condition in (10) takes a special form if vi
is either a sink or a source. If it is a sink, thenEi D ; and, by the convention above,

0 D
mX
kD1

�C
ik .
kckuk.0; t//; t > 0; (11)

and

��
ij �j cjuj .1; t/ D 0; t > 0; j D 1; : : : ; m; (12)

if it is a source. The last condition is nontrivial only if j 2 Ei as then ��
ij ¤ 0.
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We consider (10) as an abstract Cauchy problem

ut D Au; u.0/ D f; (13)

inX D .L1.Œ0; 1�//
m, whereA is the realization of the expression A D .cj @x/1�j�m

on the domain

D.A/ D fu 2 .W 1
1 .Œ0; 1�//

mI u satisfies the b: c: in .10/g: (14)

We denote C D diag.cj /1�j�m;K D diag.�j /1�j�m and G D diag.
j /1�j�m: It
can be proved, [18], that

D.A/ D fu 2 .W 1
1 .Œ0; 1�//

mI u.1/ D K
�1
C

�1
BGCu.0/g: (15)

We note that a numerical analysis of a related problem for a nonlinear transport
equation is presented in [20].

1.2.2 Epidemiological Models with Age Structure

The gain and loss parts in this model are given by the SIRS system

S 0 D ��.I/S C ıI;

I 0 D �.I/S � .ı C 
/I;

R0 D 
I; (16)

where S; I;R are, respectively, the number of susceptibles, infectives and recovered
(with immunity) and 
; ı are recovery rates with and without immunity. In other
words, the loss and gain operators of (4) are given by

A

0
@ SI
R

1
A D �

0
@ �.I/S

.ı C 
/I

0

1
A I B

0
@ SI
R

1
A D

0
@ ıI

�.I /S


I

1
A : (17)

For many diseases the rates of infection and recovery significantly vary with age.
Thus the vital dynamics of the population and the infection mechanism can interact
to produce a nontrivial dynamics. To model it, we assume that the total population in
the absence of disease can be modelled by the linear McKendrick model describing
the evolution in time of the density of the population with respect to age a 2 Œ0; !�;
! < 1, denoted by n.a; t/. The evolution is driven by the processes of death and
birth with vital rates �.a/ and ˇ.a/, respectively. Due to the epidemics, we split the
population into susceptibles, infectives and recovered,

n.a; t/ D s.a; t/C i.a; t/C r.a; t/;
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so that the scalar McKendrick equation for n splits, according to (16), into the
system

@t s.a; t/C @as.a; t/C �.a/s.a; t/ D ��.a; i.�; t//s.a; t/C ı.a/i.a; t/;

@t i.a; t/C @ai.a; t/C �.a/i.a; t/ D �.a; i.�; t//s.a; t/ � .ı.a/C 
.a//i.a; t/;

@t r.a; t/C @ar.a; t/C �.a/r.a; t/ D 
.a/i.a; t/; (18)

where now the rates are age specific, see [31]. The function � is the infection rate
(or the force of infection). In the so-called intercohort model, which will be analysed
later in these lectures, we use

�.a; i.�; t// D
!Z

0

K.a; a0/i.a0; t/da0; (19)

whereK is a nonnegative bounded function which accounts for the age dependence
of the infections. For instance, for a typical childhood disease, K should be large
for small a; a0 and close to zero for large a or a0 (not necessarily 0, as usually adults
can contract it). System (18) is supplemented by the boundary conditions

s.0; t/ D
!Z

0

ˇ.a/.s.a; t/C .1 � p/i.a; t/C .1 � q/r.a; t//da;

i.0; t/ D p

!Z

0

ˇ.a/i.a; t/da; r.0; t/ D q

!Z

0

ˇ.a/r.a; t/da; (20)

where p; q 2 Œ0; 1� are the vertical transmission parameters of infectiveness and
immunity, respectively. Finally, we prescribe the initial conditions

s.a; 0/ Dı
s .a/; i.a; 0/ Dı

i .a/; r.a; 0/ Dı
r .a/: (21)

1.2.3 Fragmentation–Coagulation Processes

The name may seem very specific, but such processes occur in a wide range of
applications, see [34]. Also, they possibly are the most rewarding kinetic processes
to study from the analytical point of view.

Fragmentation and coagulation may be discrete, when we assume that there
is a minimal size of interacting particles and all clusters are finite ensembles of
such fundamental building blocks, and continuous with the matter assumed to be
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a continuum. The first model is described in the lecture [34]; for the latter see
e.g. [35, 36]. Here we only consider the continuous model. In the case of pure
fragmentation a standard modelling process leads to the following equation:

@tu.x; t/ D �a.x/u.x; t/C
1Z

x

a.y/b.xjy/u.y; t/dy; (22)

u is the density of particles of mass x, a is the fragmentation rate and b describes the
distribution of particle masses x spawned by the fragmentation of a particle of mass
y; that is, the expected number of particles of mass x resulting from fragmentation
of a particle of mass y. Further

M.t/ D
1Z

0

xu.x; t/dx (23)

is the total mass at time t . Local conservation principle requires

yZ

0

xb.xjy/dx D y; (24)

while the expected number of particles produced by a particle of mass y is given by
n0.y/ D R y

0
b.xjy/dx:

Fragmentation can be supplemented by growth/decay, transport or diffusion
processes, [11–13, 15], but we will not discuss them here.

If we combine the fragmentation process with coagulation, we will get

@tu.x; t/ D �a.x/u.x; t/C
1Z

x

a.y/b.xjy/u.y; t/dy (25)

�u.x; t/

1Z

0

k.x; y/u.y; t/dy C 1

2

xZ

0

k.x � y; y/u.x � y; t/u.y; t/dy:

The coagulation kernel k.x; y/ represents the likelihood of a particle of size x
attaching itself to a particle of size y and, for a moment, we assume that it is a
symmetric nonnegative positive function.

Since the fragmentation and coagulation processes just rearrange the mass among
the clusters, (23) implies that the natural space to analyse them is

X1 D L1.RC; xdx/ D
8<
:uI kuk1 D

1Z

0

ju.x/jxdx < C1
9=
; :
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However, for the coagulation processes it is important to control also the number of
particles, or even some higher moments of the density. The best results are obtained
in the scale of spaces X1;m, m � 1; where

X1;m D L1.RC; .1C xm/dx/ D
8<
:uI kuk0;m D

1Z

0

juj.1C xm/dx < C1
9=
; :

2 The Main Tool Box

2.1 Basic Positivity Concepts

The common feature of the introduced models is that the solution originating from
a nonnegative density should stay nonnegative; that is, the solution operator should
be a ‘positive’ operator. Since we are talking about general Banach spaces, we have
to define what we mean by a nonnegative element of a Banach space. Though
in all cases discussed here our Banach space is an L1.˝;�/ space, where the
nonnegativity of a function f is understood as f .x/ � 0 �-almost everywhere,
it is more convenient to work in a more abstract setting.

2.1.1 Defining Order

In a given vector space X an order can be introduced either geometrically, by
defining the so-called positive cone (in other words, what it means to be a positive
element of X ), or through the axiomatic definition:

Definition 1 Let X be an arbitrary set. A partial order (or simply, an order)
on X is a binary relation, denoted here by ‘ �’, which is reflexive, transitive, and
antisymmetric, that is,

(1) x � x for each x 2 X ;
(2) x � y and y � x imply x D y for any x; y 2 X ;
(3) x � y and y � z imply x � z for any x; y; z 2 X .

The supremum of a set is its least upper bound and the infimum is the greatest lower
bound. The supremum and infimum of a set need not exist. For a two-point set fx; yg
we write x ^ y or inffx; yg to denote its infimum and x _ y or supfx; yg to denote
supremum.

We say that X is a lattice if every pair of elements (and so every finite collection
of them) has both supremum and infimum.

From now on, unless stated otherwise, any vector space X is real.
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Definition 2 An ordered vector space is a vector space X equipped with partial
order which is compatible with its vector structure in the sense that

(4) x � y implies x C z � y C z for all x; y; z 2 X ;
(5) x � y implies ˛x � ˛y for any x; y 2 X and ˛ � 0.

The set XC D fx 2 X I x � 0g is referred to as the positive cone of X .
If the ordered vector space X is also a lattice, then it is called a vector lattice or

a Riesz space.

For an element x in a Riesz space X we can define its positive and negative part,
and its absolute value, respectively, by

xC D supfx; 0g; x� D supf�x; 0g; jxj D supfx;�xg;

which are called lattice operations. We have

x D xC � x�; jxj D xC C x�: (26)

The absolute value has a number of useful properties that are reminiscent of the
properties of the scalar absolute value.

As the next step, we investigate the relation between the lattice structure and the
norm, when X is both a normed and an ordered vector space.

Definition 3 A norm on a vector lattice X is called a lattice norm if

jxj � jyj implies kxk � kyk: (27)

A Riesz space X complete under the lattice norm is called a Banach lattice.

Property (27) gives the important identity:

kxk D kjxjk; x 2 X: (28)

2.1.2 AM- and AL-Spaces

Two classes of Banach lattices playing here a significant role are AL- and AM-
spaces.

Definition 4 We say that a Banach lattice X is

(i) an AL-space if kx C yk D kxk C kyk for all x; y 2 XC,
(ii) an AM-space if kx _ yk D maxfkxk; kykg for all x; y 2 XC.
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Example 3 Standard examples of AM-spaces are offered by the spaces C.˝/,
where ˝ is either a bounded subset of R

n, or in general, a compact topological
space. Also the space L1.˝/ is an AM-space. On the other hand, most known
examples of AL-spaces are the spaces L1.˝/. These examples exhaust all (up to a
lattice isometry) cases of AM- and AL-spaces. However, particular representations
of these spaces can be very different.

2.2 Positive Operators

Definition 5 A linear operator A from a Banach lattice X into a Banach lattice Y
is called positive, denoted A � 0, if Ax � 0 for any x � 0.

An operator A is positive if and only if jAxj � Ajxj. This follows easily from
�jxj � x � jxj so, if A is positive, then �Ajxj � Ax � Ajxj. Conversely, taking
x � 0, we obtain 0 � jAxj � Ajxj D Ax.

A frequently used property of positive operators is given in

Theorem 1 If A is an everywhere defined positive operator from a Banach lattice
to a normed Riesz space, then A is bounded.

Proof If A were not bounded, then we would have a sequence .xn/n2N satisfying
kxnk D 1 and kAxnk � n3, n 2 N. Because X is a Banach space, x WDP1

nD1 n�2jxnj 2 X . Because 0 � jxnj=n2 � x, we have 1 > kAxk �
kA.jxnj=n2/k � kA.xn=n2/k � n for all n, which is a contradiction. ut

The norm of a positive operator can be evaluated by

kAk D sup
x�0; kxk�1

kAxk: (29)

Indeed, since kAk D supkxk�1 kAxk � supx�0;kxk�1 kAxk, it is enough to prove the
opposite inequality. For each x with kxk � 1 we have jxj D xC C x� � 0 with
kxk D kjxjk � 1. On the other hand,Ajxj � jAxj, hence kAjxjk � kjAxjk D kAxk.
Thus supkxk�1 kAxk � supx�0;kxk�1 kAxk and the statement is proved.

As a consequence, we note that

0 � A � B ) kAk � kBk: (30)

Moreover, it is worthwhile to emphasize that if A � 0 and there exists K such that
kAxk � Kkxk for x � 0, then this inequality holds for any x 2 X . Indeed, by (29),
we have kAk � K and using the definition of the operator norm, we obtain the
desired statement.
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2.3 Relation Between Order and Norm

There is a useful relation between the order, norm (absolute value) and the
convergence of sequences if we are in R—any monotonic sequence which is
bounded (in absolute value), converges. One would like to have a similar result
in Banach lattices. It turns out to be not so easy.

Existence of an order in some set X allows us to introduce in a natural way the
notion of (order) convergence. Proper definitions of order convergence require nets
of elements but we do not need to go to such details.

For a non-increasing sequence .xn/n2N we write xn # x if inffxnI n 2 Ng D x.
For a non-decreasing sequence .xn/n2N the symbol xn " x have an analogous
meaning. Then we say that an arbitrary sequence .xn/n2N is order convergent to x if
it can be sandwiched between two monotonic sequences converging to x. We write

this as xn
o! x. One of the basic results is:

Proposition 1 Let X be a normed lattice. Then:

(1) The positive cone XC is closed.
(2) If .xn/n2N is nondecreasing and limn!1 xn D x in the norm of X , then

x D supfxnI n 2 Ng:

Analogous statement holds for nonincreasing sequences.

In general, the converse of Proposition 1(2) is false; that is, we may have
xn " x but .xn/n2N does not converge in norm. Indeed, consider xn D
.1; 1; 1 : : : ; 1; 0; 0; : : :/ 2 l1, where 1 occupies only the n first positions. Clearly,
supn2N xn D x WD .1; 1; : : : ; 1; : : :/ but kxn � xk1 D 1.

However, such a converse holds in a special class of Banach lattices, called
Banach lattices with order continuous norm. There we have, in particular, that
0 � xn" x and xn � x for all n 2 N if and only if .xn/n2N is a Cauchy sequence,
[1, Theorem 12.9].

All Banach lattices Lp.˝/ with 1 � p < 1 have order continuous norms. On
the other hand, neither L1.˝/ nor C. N̋ / (if ˝ does not consist of isolated points)
has order continuous norm.

The requirement that .xn/n2N must be order dominated often is too restrictive.
The spaces we are mostly concerned belong to a class which have a stronger
property.

Definition 6 We say that a Banach lattice X is a KB-space (Kantorovič–Banach
space) if every increasing norm bounded sequence of elements of XC converges in
norm in X .

We observe that if xn" x, then kxnk � kxk for all n 2 N and thus any KB-space has
order continuous norm. Hence, spaces which do not have order continuous norm
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cannot be KB-spaces. This rules out the spaces of continuous functions, l1 and
L1.˝/, from being KB-spaces.

Any reflexive Banach space is a KB-space, [13, Theorem 2.82]. That AL-spaces
(so, in particular, all L1 spaces) are also KB-spaces follows from the following
simple argument.

Theorem 2 Any AL-space is a KB-space.

Proof If .xn/n2N is an increasing and norm bounded sequence, then for 0 � xn �
xm, we have

kxmk D kxm � xnk C kxnk

as xm � xn � 0 so that

kxm � xnk D kxmk � kxnk D jkxmk � kxnkj :

Because, by assumption, .kxnk/n2N is monotonic and bounded, and hence conver-
gent, we see that .xn/n2N is a Cauchy sequence and thus converges. ut

2.3.1 Series of Positive Elements in Banach Lattices

We note the following two results which are series counterparts of the dominated
and monotone convergence theorems in Banach lattices.

Theorem 3 ([14]) Let .xn.t//n2N be family of nonnegative sequences in a Banach
lattice X , parameterized by a parameter t 2 T � R, and let t0 2 T .

(i) If for each n 2 N the function t ! xn.t/ is non-decreasing and lim
t%t0

xn.t/ D xn

in norm, then

lim
t%t0

1X
nD0

xn.t/ D
1X
nD0

xn; (31)

irrespective of whether the right hand side exists in X or k
1P
nD0

xnk WD

supfk
NP
nD0

xnkI N 2 Ng D 1. In the latter case the equality should be

understood as the norms of both sides being infinite.
(ii) If lim

t!t0
xn.t/ D xn in norm for each n 2 N and there exists .an/n2N such that

xn.t/ � an for any t 2 T; n 2 N with
1P
nD0

kank < 1, then (31) holds as well.
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Remark 2 Note that if X is a KB-space, then limt%t0

P1
nD0 xn.t/ 2 X implies

convergence of
P1

nD0 xn. In fact, since xn � 0 (by closedness of the positive
cone), N ! PN

nD0 xn is non-decreasing, and hence either
P1

nD0 xn 2 X , or
kP1

nD0 xnk D 1 and, in the latter case,
��limt%t0

P1
nD0 xn.t/

�� D 1.

2.4 Complexification

Due to the construction, solutions to all our models must be real. Thus, our problems
should be posed in real Banach spaces. However, to take full advantage of the tools
of functional analysis, such as the spectral theory, it is worthwhile to extend our
spaces to include also complex valued functions, so that they become complex
Banach spaces. While the algebraic and metric structure of Banach spaces can be
easily extended to the complex setting, the extension of the order structure must be
done with more care. This is done by the procedure called complexification.

Definition 7 LetX be a real vector lattice. The complexificationXC ofX is the set
of pairs .x; y/ 2 X �X where, following the scalar convention, we write .x; y/ D
x C iy. Vector operations are defined as in scalar case while the partial order is
defined by

x0 C iy0 � x1 C iy1 if and only if x0 � x1 and y0 D y1: (32)

Remark 3 Note that from the definition it follows that x � 0 in XC is equivalent to
x 2 X and x � 0 in X . In particular, XC with partial order (32) is not a lattice.

Example 4 Any positive linear operator A on XC is a real operator; that is, A W
X ! X . In fact, let X 3 x D xC � x�. By definition, AxC � 0 and Ax� � 0 so
AxC;Ax� 2 X and thus Ax D AxC � Ax� 2 X .

It is a more complicated task to introduce a norm onXC because standard product
norms, in general, fail to preserve the homogeneity of the norm, see [13, Example
2.88].

Since XC is not a lattice, we cannot define the modulus of z D x C iy 2 XC in a
usual way. However, following an equivalent definition of the modulus in the scalar
case, for x C iy 2 XC we define

jx C iyj D sup
�2Œ0;2��

fx cos � C y sin �g:

It can be proved that this element exists.
Such a defined modulus has all standard properties of the scalar complex

modulus. Thus, one can define a norm on the complexificationXC by
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kzkc D kx C iykc D kjx C iyjk: (33)

Properties (a)–(c) and jxj � jzj, jyj � jzj imply that k � kc is a norm onXC ; which is
equivalent to the Euclidean norm on X �X , denoted by k � kC . As the norm k � k is a
lattice norm onX , we have kz1kc � kz2kc , whenever jz1j � jz2j, and k � kc becomes
a lattice norm on XC .

Definition 8 A complex Banach lattice is an ordered complex Banach space
XC that arises as the complexification of a real Banach lattice X , according to
Definition 7, equipped with the norm (33).

Remember: a complex Banach lattice is not a Banach lattice!
Any linear operator A on X can be extended to XC according to

AC .x C iy/ D Ax C iAy:

We observe that if A is a positive operator between real Banach lattices X and Y
then, for z D x C iy 2 XC , we have

.Ax/cos � C .Ay/sin � D A.x cos � C y sin �/ � Ajzj;

therefore jAC zj � Ajzj. Hence for positive operators

kAC kc D kAk: (34)

There are, however, examples where kAk < kACkc .
Note that the standardLp.˝/ and C.˝/ norms are of the type (33). These spaces

have a nice property of preserving the operator norm even for operators which are
not necessarily positive, see [13, p. 63].

Remark 4 If for a linear operator A; we prove that it generates a semigroup of say,
contractions, in X , then this semigroup will be also a semigroup of contractions on
XC , hence, in particular, A is a dissipative operator in the complex setting. Due to
this observation we confine ourselves to real operators in real spaces.

2.5 First Semigroups

As mentioned before, we are concerned with methods of finding solutions of the
Cauchy problem:

Definition 9 Given a complex or real Banach space and a linear operator A with

domain D.A/ and range RanA contained in X; and also given an element
ı
u2 X ,

find a function u.t/ D u.t;
ı
u/ such that
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1. u.t/ is continuous on Œ0;1Œ and continuously differentiable on �0;1Œ in the
norm of X ,

2. for each t > 0, u.t/ 2 D.A/ and

@tu.t/ D Au.t/; t > 0; (35)

3.

lim
t!0C

u.t/ D u0 (36)

in the norm of X .

A function satisfying all conditions above is called the classical solution
of (35), (36). If u.t/ 2 D.A/ (and thus u 2 C1.Œ0;1Œ; X/), then such a function is
called a strict solution to (35), (36).

To shorten notation, we denote byCk.I;X/ a space of functions which, for each t 2
I � R satisfy u.t/ 2 X and are continuously differentiable k times in t with respect
to the norm of X: Thus, e.g. a classical solution u satisfies u 2 C.Œ0;1Œ; X/ \
C1.�0;1Œ; X/.

2.5.1 Definitions and Basic Properties

If the solution to (35), (36) is unique, then we can introduce a family of operators
.G.t//t�0 such that u.t; u0/ D G.t/u0. Ideally,G.t/ should be defined on the whole
space for each t > 0, and the function t ! G.t/u0 should be continuous for each
u0 2 X , leading to well-posedness of (35), (36). Moreover, uniqueness and linearity
of A imply thatG.t/ are linear operators. A fine-tuning of these requirements leads
to the following definition.

Definition 10 A family .G.t//t�0 of bounded linear operators on X is called a
C0-semigroup, or a strongly continuous semigroup, if

(i) G.0/ D I ;
(ii) G.t C s/ D G.t/G.s/ for all t; s � 0;

(iii) limt!0C G.t/x D x for any x 2 X .

A linear operator A is called the (infinitesimal) generator of .G.t//t�0 if

Ax D lim
h!0C

G.h/x � x
h

; (37)

with D.A/ defined as the set of all x 2 X for which this limit exists. Typically the
semigroup generated by A is denoted by .GA.t//t�0.
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If .G.t//t�0 is a C0-semigroup, then the local boundedness and (ii) lead to the
existence of constantsM > 0 and ! such that for all t � 0

kG.t/kX � Me!t (38)

(see, e.g., [41, p. 4]). We say that A 2 G.M;!/ if it generates .G.t//t�0
satisfying (38). The type of .G.t//t�0 is defined as

!0.G/ D inff!I there is M such that (38) holdsg: (39)

Let .GA.t//t�0 be the semigroup generated by A. The following properties of
.GA.t//t�0 are frequently used, [41, Theorem 2.4].

(a) For x 2 X

lim
h!0

1

h

tChZ

t

GA.s/xds D GA.t/x: (40)

(b) For x 2 X ,
R t
0 GA.s/xds 2 D.A/ and

A

tZ

0

GA.s/xds D GA.t/x � x: (41)

(c) For x 2 D.A/, GA.t/x 2 D.A/ and

d

dt
GA.t/x D AGA.t/x D GA.t/Ax: (42)

(d) For x 2 D.A/,

GA.t/x �GA.s/x D
tZ

s

GA.�/Axd� D
tZ

s

AGA.�/xd�: (43)

From (42) and condition (iii) of Definition 10 we see that if A is the generator of

.GA.t//t�0, then for
ı
u2 D.A/ the function t ! GA.t/

ı
u is a classical solution of the

following Cauchy problem,

@tu.t/ D A.u.t//; t > 0; (44)

lim
t!0C

u.t/ D ı
u : (45)
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We note that ideally the generatorA should coincide with A but in reality very often
it is not so. However, for most of this chapter we are concerned with solvability
of (44), (45); that is, with the case when A of (35) is the generator of a semigroup.

We noted above that for
ı
u2 D.A/ the function u.t/ D GA.t/

ı
u is a classical

solution to (44), (45). For
ı
u2 X n D.A/, however, the function u.t/ D GA.t/

ı
u is

continuous but, in general, not differentiable, norD.A/-valued, and, therefore, not a
classical solution. Nevertheless, from (41), it follows that v.t/ D R t

0
u.s/ds 2 D.A/

and therefore it is a strict solution of the integrated version of (44), (45):

@tv D AvC ı
u; t > 0

v.0/ D 0; (46)

or equivalently,

u.t/ D A

tZ

0

u.s/dsC ı
u : (47)

We say that a function u satisfying (46) (or, equivalently, (47)) is a mild solution or

integral solution of (44), (45). It can be proved that t ! G.t/
ı
u,

ı
u2 D.A/, is the

only solution of (44), (45) taking values in D.A/. Similarly, for
ı
u2 X , the function

t ! G.t/
ı
u is the only mild solution to (44), (45).

Thus, if we have a semigroup, we can identify the Cauchy problem of which it
is a solution. Usually, however, we are interested in the reverse question; that is,
in finding the semigroup for a given equation. The answer is given by the Hille–
Yoshida theorem (or, more properly, the Feller–Miyadera–Hille–Phillips–Yosida
theorem). Before, however, we need to recall some terminology related to the
spectrum of an operator.

2.5.2 Interlude: The Spectrum of an Operator

Let us recall that the resolvent set of A is defined by

�.A/ D f� 2 CI .�I � A/�1 2 L.X/g

and, for � 2 �.A/, we define the resolvent of A by

R.�;A/ D .�I � A/�1:
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The complement of �.A/ in C is called the spectrum of A and denoted by �.A/.
In general, it is possible that either �.A/ or �.A/ is empty. The spectrum is usually
subdivided into several subsets.

• Point spectrum �p.A/ is the set of � 2 �.A/ for which the operator �I � A is
not one-to-one. In other words, �p.A/ is the set of all eigenvalues of A.

• Residual spectrum �r .A/ is the set of � 2 �.A/ for which �I � A is one-to-one
and Ran .�I �A/ is not dense in X .

• Continuous spectrum �c.A/ is the set of � 2 �.A/ for which the operator �I �A
is one-to-one and its range is dense in, but not equal to, X

The resolvent of any operator A satisfies the resolvent identity

R.�;A/ � R.�;A/ D .�� �/R.�;A/R.�;A/; �; � 2 �.A/: (48)

For any bounded operator the spectrum is a compact subset of C so that �.A/ ¤ ;.
If A is bounded, then the limit

r.A/ D lim
n!1

n
p

kAnk (49)

exists and is called the spectral radius. Clearly, r.A/ � kAk. Equivalently,

r.A/ D sup
�2�.A/

j�j: (50)

To show that � 2 C belongs to the spectrum we often use the following result.

Theorem 4 Let A be a closed operator. If � 2 �.A/, then dist.�; �.A// D
1=r.R.�;A// � 1=kR.�;A/k: In particular, if �n ! �, �n 2 �.A/, then � 2 �.A/
if and only if fkR.�n; A/kgn2N is unbounded.

For an unbounded operator A the role of the spectral radius often is played by
the spectral bound s.A/ defined as

s.A/ D supf<�I � 2 �.A/g: (51)

2.5.3 Hille–Yosida Theorem

Theorem 5 A 2 G.M;!/ if and only if

(a) A is closed and densely defined,
(b) there exist M > 0;! 2 R such that .!;1/ � �.A/ and for all n � 1; � > !,

k.�I �A/�nk � M

.� � !/n
: (52)
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If A is the generator of .GA.t//t�0, then

R.�;A/x D
1Z

0

e��tGA.t/xdt;<� > !; (53)

is valid for all x 2 X:
A widely used approximation formula, which can also be used in the generation

proof, is the operator version of the well-known scalar formula. Precisely, [41,
Theorem 1.8.3], if A is the generator of a C0-semigroup .GA.t//t�0, then for any
x 2 X;

GA.t/x D lim
n!1

�
I � t

n
A

��n
x D lim

n!1
�n
t
R
�n
t
; A
��n

x (54)

and the limit is uniform in t on bounded intervals.

2.5.4 Dissipative Operators and Contractive Semigroups

Let X be a Banach space (real or complex) and X� be its dual. From the Hahn–
Banach theorem, for every u 2 X there exists u� 2 X� satisfying < u�; u>D
kuk2 D ku�k2: Therefore the duality set

J .u/ D fu� 2 X�I <u�; u>D kuk2 D ku�k2g (55)

is nonempty for every u 2 X .

Definition 11 We say that an operator .A;D.A// is dissipative if for every u 2
D.A/ there is u� 2 J .u/ such that

< <u�;Ax>� 0: (56)

If X is a real space, then the real part in the above definition can be dropped. An
important equivalent characterisation of dissipative operators, [41, Theorem 1.4.2],
is that A is dissipative if and only if for all � > 0 and u 2 D.A/;

k.�I � A/uk � �kuk: (57)

Combination of the Hille–Yosida theorem with the above property gives a genera-
tion theorem for dissipative operators, known as the Lumer–Phillips theorem ([41,
Theorem 1.4.3] or [27, Theorem II.3.15]).
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Theorem 6 For a densely defined dissipative operator .A;D.A// on a Banach
space X , the following statements are equivalent.

(a) The closure A generates a semigroup of contractions.
(b) Ran.�I �A/ D X for some (and hence all) � > 0.

If either condition is satisfied, then A satisfies (56) for any u� 2 J .u/.

We observe that a densely defined dissipative operator is closable, [41, Theorem
1.4.5], so that the statement in item (a) makes sense. In other words, to prove that
(the closure of) a dissipative operators generates a semigroup, we only need to show
that the equation

�u � Au D f (58)

is solvable for f from a dense subset ofX for some � > 0. We do not need to prove
that the solution to (58) defines a resolvent satisfying (52).

In particular, if we know that A is closed, then the density of Ran.�I � A/ is
sufficient for A to be a generator. On the other hand, if we do not know a priori that
A is closed, then Ran.�I �A/ D X yields A being closed and consequently that it
is a generator.

Example 5 Let us have a look at the classical problem which often is incorrectly
solved. Consider

Au D �@xu; x 2 .0; 1/;

on D.A/ D fu 2 W 1
1 .I /I u.0/ D 0g, where I D�0; 1Œ. The state space is real

X D L1.I /. For a given u 2 X , we have

J .u/ D
� kuksignu.x/ if u.x/ ¤ 0;

˛ 2 Œ�kuk; kuk� if u.x/ D 0:

Note that J is a multivalued function. Further, [23], any element of W 1
1 .I / can be

represented by an absolutely continuous function on I .
Now, for v 2 J .u/ we have

<�@xu; v> D �kuk
1Z

0

@xu.x/signu.x/dx

D �kuk

0
B@

Z

fx2I I u.x/>0g
@xu.x/dx �

Z

fx2I I u.x/<0g
@xu.x/dx

1
CA :
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Since u is continuous, both sets IC WD fx 2 I I u.x/ > 0g and I� WD fx 2
I I u.x/ < 0g are open. Then, see [2, p. 42],

I˙ D
[
n

�˛ṅ ; ˇṅ Œ

where �˛ṅ ; ˇṅ Œ are non overlapping open intervals. Then

Z

I
˙

@xu.x/dx D
X
n

.u.ˇṅ /� u.˛ṅ // D
�

u.1/ if 1 2 I˙;
0 if 1 … I˙;

as 1 only can be the right end of the component intervals and we used u.0/ D 0.
Now, if 1 2 IC, then u.1/ > 0; if 1 2 I�, then u.1/ < 0, and if 1 … IC [ I�, then
u.1/ D 0. In any case,

<�@xu; v>� 0

and the operator .A;D.A// is dissipative. Clearly, the solution of

�u C @xu D f; u.0/ D 0;

is given by u.x/ D e��x xR
0

e�sf .s/ds and, for � > 0,

kuk �
1Z

0

e��x
0
@

xZ

0

e�sjf .s/jds

1
A dx � kf k;

which gives solvability of (58) in X . We note that, of course, with a more
careful integration we would be able to obtain the Hille–Yosida estimate (52). This
additional work is, however, not necessary for dissipative operators.

2.5.5 Analytic Semigroups

In the previous paragraph we noted that if a closed operator is dissipative, then we
can prove that it generates a semigroup, provided (58) is solvable. It turns out that
the solvability of (58) can be used to prove that A generates a semigroup without
assuming that it is dissipative but then we must consider complex �. Note that the
considerations below are valid for an arbitrary Banach space.

Hence, let the inverse .�I �A/�1 exists in the sector

S�
2 Cı WD f� 2 CI jarg�j < �

2
C ıg [ f0g; (59)
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for some 0 < ı < �
2

, and let there exist C such that for every 0 ¤ � 2 S�
2 Cı the

following estimate holds:

kR.�;A/k � C

j�j : (60)

ThenA is the generator of a uniformly bounded semigroup .GA.t//t�0 (the constant
M in (38) not necessarily equals C ) and .GA.t//t�0 is given by

GA.t/ D 1

2�i

Z

�

e�tR.�;A/d�; (61)

where � is an unbounded smooth curve in S�
2 Cı. The reason why .GA.t//t�0 is

called analytic is that it extends to an analytic function on Sı.
The estimate (60) is sometimes awkward to prove as it requires the knowledge

of the resolvent in the whole sector. The result given in [27, Theorem II 4.6] allows
to restrict the estimates to a positive half plane.

Theorem 7 An operator .A;D.A// on a Banach space X generates a bounded
analytic semigroup .GA.z//z2Sı in a sector ˙ı if and only if A generates a bounded
strongly continuous semigroup .GA.t//t�0 and there exists a constant C > 0 such
that

kR.r C is; A/k � C

jsj (62)

for all r > 0 and 0 ¤ s 2 R.

This result can be generalized to arbitrary analytic semigroups: .A;D.A// generates
an analytic semigroup .GA.z//z2Sı if and only if A generates a strongly continuous
semigroup .GA.t//t�0 and there exist constants C > 0; ! > 0 such that

kR.r C is; A/k � C

jsj (63)

for all r > ! and 0 ¤ s 2 R.
If A is the generator of an analytic semigroup .GA.t//t�0, then t ! GA.t/ has

derivatives of arbitrary order on �0;1Œ. This shows that t ! GA.t/
ı
u solves the

Cauchy problem (36) for arbitrary
ı
u 2 X . This is a significant improvement upon

the case of C0-semigroup, for which
ı
u 2 D.A/ was required.
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Fractional Powers of Generators and Interpolation Spaces

If A generates an analytic semigroup, then (61) can be regarded as the extension of
the definition of etA via the so-called Dunford integral type functional calculus, [41].
In a similar way we can define f .A/where f is any scalar function which is analytic
in an open neighbourhood of the spectrum of A and such that the integral (61) is
convergent.

One of the most important choices of f is

f .�/ D .��/�˛ D ei�˛��˛;

where �˛ is real for � > 0 and has a cut along the positive real axis. This gives rise
to bounded operators .�A/�˛ and, by inversion, to unbounded operators .�A/˛ .

We denote by D..�A/˛/ the domain of .�A/˛ . It follows that

D.A/ � D..�A/˛/ � X

if 0 < ˛ < 1. For example, if A D  on the maximal domain in L2.Rn/, then
D.A/ D W 2

2 .R
n/ andD..�A/˛/ D W 2˛

2 .Rn/, see [37, 38].
We note an important property of fractional powers of generators and of the

corresponding analytic semigroups, which will used in the sequel. If .GA.t//t�0 is
an analytic semigroup, then for every t > 0 and ˛ � 0 the operator .�A/˛GA.t/.D
GA.t/.�A/˛/ is bounded and

kt˛.�A/˛GA.t/k � M˛ (64)

for some constant M˛.

Example 6 Let us consider briefly the classical example of the Dirichlet problem
for the heat equation in X D L2.R

n/:

@tu D u;

u.0; x/ D ı
u 2 X: (65)

If we define A D  on the domain D.A/ D fu 2 W 1
2 .R

n/I u 2 Xg then, using
the integration by parts for Sobolev space functions, we obtain

Z

Rn

.�u �u/Nudx D �

Z

Rn

uNudx C
Z

Rn

rurudx DW a.u; u/

and it is easy to see that for u 2 W 1
2 .R

n/

a.u; u/ � ˛kuk2
W 1
2 .R

n/
;
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for ˛ D minf�; 1g so that A is coercive. This, on the one hand gives the
solvability of

�u � Au D f

by the Lax–Milgram lemma; that is, the existence of .�I � A/�1, and on the other
hand, by dropping the term kuk2

W 1
2 .R

n/
, we obtain the Hille–Yosida estimate

k.� �A/�1f kX � ��1kf kX ; � > 0:

Since A is closed andD.A/ is dense in X , A generates a semigroup of contractions
.GA.t//t�0 on X D L2.R

n/.
With some more work, see e.g. [42, Chapter 4], one can show that the resolvent

satisfies also the estimate (60) yielding the analyticity of .GA.t//t�0. Hence, the

problem (65) is solvable for any initial value
ı
u2 L2.Rn/ and the solutionGA.t/

ı
u is

infinitely many times differentiable for t > 0 and such that for t > 0

GA.t/
ı
u2

\
n�0

D.An/ �
\
n�0

W 2n
2 .˝/ � C1.˝/:

The last property expresses the smoothing property of the heat semigroup—for any
initial value the solution becomes instantly infinitely smooth.

Furthermore,D..�A/˛/ D W 2˛
2 .Rn/ for ˛ > 0, see e.g. [37, 38].

The spaces D..�A/˛/ form an important class of intermediate spaces between
D.A/ and X . However, in some situations they are not sufficient as they are not
a priori independent of the form of A. To remove this drawback, first we observe
that (64) can be written as

kt1�˛AGA.t/xk 2 L1.�0; 1Œ/;

whenever x 2 D..�A/˛/. Taking this formula as the starting point, let .A;D.A//
be the generator of an analytic semigroup .GA.t//t�0 on a Banach space X . Then
we construct a family of intermediate spaces, DA.˛; r/; 0 < ˛ < 1; 1 � r � 1 in
the following way:

DA.˛; r/ WD fx 2 X W t ! v.t/ WD kt1�˛�1=rAGA.t/xkX 2 Lr.I /g; (66)

kxkDA.˛;r/ WD kxkX C kv.t/kLr .I /; (67)

where I WD .0; 1/; see [38, p. 45]. It turns out that these spaces can be identified with
real interpolation spaces between X and D.A/ and one can use a rich theory of the
latter. In particular, by [38, Corollary 2.2.3], these spaces do not depend explicitly
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on A, but only on D.A/ and its graph norm. This is in contrast to the property of
D..�A/˛/ mentioned above, where we only have

DA.˛; 1/ � D..�A/˛/ � DA.˛;1/ (68)

so in generalD..�A/˛/ may depend on the particular form of A.
Which makes the spaces DA.˛; r/ as useful as D..�A/˛/ in dealing with the

semigroup generated by A is the fact that

kR.�;A/xkDA.˛;r/D kR.�;A/xkL.X/C
0
@

1Z

0

ks1�˛�1=rAGA.s/R.�;A/xkrX

1
A
1=r

D kR.�;A/xkL.X/ C
0
@

1Z

0

kR.�;A/.s1�˛�1=rAGA.s/x/krXds

1
A
1=r

� kR.�;A/kL.X/

0
B@kxkX C

0
@

1Z

0

k.s1�˛�1=rAGA.s/x/krXds

1
A
1=r
1
CA

� kR.�;A/kL.X/kxkDA.˛;r/:

This leads to the following observation.

Proposition 2 Let A˛;r be the part of A in DA.˛; r/. Then �.A˛;r / � �.A/,
kR.�;A˛;r /kL.DA.˛;r// � kR.�;A/kL.X/ for � 2 �.A/. Consequently, A˛;r
generates an analytic semigroup in DA.˛; r/.

2.5.6 Nonhomogeneous Problems

Let us consider the problem of finding the solution to the Cauchy problem:

@tu D Au C f .t/; 0 < t < T;

u.0/ D ı
u; (69)

where 0 < T � 1, A is the generator of a semigroup and f W .0; T / ! X is a
known function.

If we are interested in classical solutions, then clearly f must be continuous.
However, this condition proves to be insufficient. Thus we generalise the concept
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of the mild solution introduced in (47). We observe that if u is a classical solution
of (69), then it must be given by

u.t/ D G.t/
ı
u C

tZ

0

G.t � s/f .s/ds (70)

(see, e.g., [41, Corollary 4.2.2]). The integral is well defined even if f 2
L1.Œ0; T �; X/ and

ı
u2 X . We call u defined by (70) the mild solution of (69). For an

integrable f such a u is continuous but not necessarily differentiable, and therefore
it may be not a solution to (69).

We have the following theorem giving sufficient conditions for a mild solution to
be a classical solution (see, e.g., [41, Corollaries 4.2.5 and 4.2.6]).

Theorem 8 Let A be the generator of a C0-semigroup .GA.t//t�0 and x 2 D.A/.
Then (70) is a classical solution of (69) if either

(i) f 2 C1.Œ0; T �; X/, or
(ii) f 2 C.Œ0; T �; X/ \ L1.Œ0; T �;D.A//.

The assumptions of this theorem are often too restrictive for applications. On the
other hand, it is not clear exactly what the mild solutions solve. A number of weak
formulations of (69) have been proposed (see e.g. [29, pp. 88–89] or [9]), all of them
having (70) as their solutions. We present here a result from [27, p. 451] which is
particularly suitable for applications.

Proposition 3 A function u 2 C.RC; X/ is a mild solution to (69) with f 2
L1.RC; X/ in the sense of (70) if and only if

R t
0

u.s/ds 2 D.A/ and

u.t/ Dı
u CA

tZ

0

u.s/ds C
tZ

0

f .s/ds; t � 0: (71)

If the semigroup .GA.t//t�0 generated by A is analytic, then the requirements
imposed on f can be substantially weakened. We have then the following counter-
part of Theorem 8.

Theorem 9 Let A be the generator of an analytic semigroup .GA.t//t�0,
ı
u 2 X

and f 2 L1.Œ0; T �; X/. Then (70) is the classical solution of (69) if either

(i) f is locally Hölder continuous on �0; T Œ, or
(ii) there exists ˛ > 0 such that f 2 C.�0; T �; X/ \ L1.Œ0; T �;D..�A/˛// and

t ! k.�A/˛f .t/kX is bounded over compact subsets of �0; T �.

Part (ii) of this theorem has been proved in [10].
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An important refinement of this result, which becomes very useful in nonlinear
problems is that, actually, the solution has a better regularity. In fact, under
assumption (i), we additionally have

u 2 C0;1�r
loc .�0; T Œ;D..�A/r //; 0 � r < 1: (72)

By (68), the statement of the above theorem holds if the domains of the fractional
powers are replaced by appropriate intermediate spacesD.˛; 1/.

2.5.7 Positive Semigroups

Definition 12 Let X be a Banach lattice. We say that the semigroup .G.t//t�0 on
X is positive if for any x 2 XC and t � 0,

G.t/x � 0:

We say that an operator .A;D.A// is resolvent positive if there is ! such that
.!;1/ � �.A/ and R.�;A/ � 0 for all � > !.

Remark 5 In this section, because we address several problems related to spectral
theory, we need complex Banach lattices. Let us recall, Definitions 7 and 8, that
a complex Banach lattice is always a complexification XC of an underlying real
Banach lattice X . In particular, x � 0 in XC if and only if x 2 X and x � 0 in X .

It is easy to see that a strongly continuous semigroup is positive if and only
if its generator is resolvent positive. In fact, the positivity of the resolvent for
� > ! follows from (53) and the closedness of the positive cone; see Proposition 1.
Conversely, the latter, together with the exponential formula (54), shows that
resolvent positive operators generate positive semigroups.

Positivity of a semigroup allows for strengthening of several results pertaining to
the spectrum of its generator.

Theorem 10 ([43]) Let .GA.t//t�0 be a positive semigroup on a Banach lattice,
with the generator A. Then

R.�;A/x D
1Z

0

e��tGA.t/xdt (73)

for all � 2 C with <� > s.A/. Furthermore,

(i) Either s.A/ D �1 or s.A/ 2 �.A/;
(ii) For a given � 2 �.A/, we have R.�;A/ � 0 if and only if � > s.A/;

(iii) For all <� > s.A/ and x 2 X , we have jR.�;A/xj � R.<�;A/jxj.
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We conclude this section by briefly describing an approach of [3] which leads to
several interesting results for resolvent positive operators. To fix attention, assume
for the time being that ! < 0 (thus, in particular, A is invertible and �A�1 D
R.0;A/) and � > 0. The resolvent identity

�A�1 D .� � A/�1 C �.� �A/�1.�A�1/;

can be extended by induction to

�A�1 D R.�;A/C �R.�;A/2 C � � � C �nR.�;A/n.�A�1/: (74)

Now, because all terms above are nonnegative, we obtain

sup
n2N;�>!

f�nk.� � A/�n.�A�1/kX g D M < C1:

This is ‘almost’ the Hille–Yosida estimate and allows us to prove that the Cauchy

problem (44), (45) has a mild Lipschitz continuous solution for
ı
u2 D.A2/. If, in

addition,A is densely defined, then this mild solution is differentiable, and thus it is
a strict solution (see, e.g., [4] and [6, pp. 191–200]). These results are obtained by
means of the integrated, or regularised, semigroups, which are beyond the scope of
this lecture and thus we do not enter into details of this very rich field. We mention,
however, an interesting consequence of (74) for the semigroup generation, which
has already found several applications and which we use later.

Theorem 11 ([4, 22]) Let A be a densely defined resolvent positive operator. If
there exist �0 > s.A/; c > 0 such that for all x � 0,

kR.�0; A/xkX � ckxkX ; (75)

then A generates a positive semigroup .GA.t//t�0 on X .

Proof Let us take s.A/ < ! � �0 and set B D A � !I so that s.B/ < 0. Because
R.0;B/ D R.!;A/ � R.�0; A/, it follows from (75) and (30) that

kR.0;B/xkX � kR.�0; A/xkX � ckxkX
for x � 0. Using (74) for B and x D �nR.�;B/ng, g � 0; we obtain, by (75),

k�nR.�;B/ngkX � c�1kR.0;B/�nR.�;B/ngk � M kgkX ;

for � > 0. Again, by (30), we can extend the above estimate onto X proving the
Hille–Yosida estimate. BecauseB is densely defined, it generates a bounded positive
semigroup and thus kGA.t/k � Me!t . ut



164 J. Banasiak

2.6 Perturbation Techniques

Verifying conditions of the Hille–Yosida, or even of the Lumer–Phillips, theorems
for a concrete problem is quite often a formidable task. On the other hand, in
many cases the operator appearing in the evolution equation at hand is built as
a combination of much simpler operators that are relatively easy to analyse. The
question now is to what extent the properties of these simpler operators are inherited
by the full equation. More precisely, we are interested in the problem:

Problem P. Let .A;D.A// be a generator of a C0-semigroup on a Banach space X and
.B;D.B// be another operator in X . Under what conditions does AC B; or an extension
K of ACB , generates a C0-semigroup on X?

We note that the situation when K D A C B is quite rare. Usually at best we
can show that there is an extension of A C B (another realization of K D A C B)
which is the generator. The reason for this is that, unless B is in some sense strictly
subordinated to A; addingB to Amay significantly alter some vital properties of A.
The identification of K in such cases usually is a formidable task.

A Spectral Criterion

Usually the first step in establishing whether A C B , or some of its extensions,
generates a semigroup is to find if �I � .AC B/ (or its extension) is invertible for
all sufficiently large �.

In all cases discussed here we have the generator .A;D.A// of a semigroup and
a perturbing operator .B;D.B// with D.A/ � D.B/.

We note that B is A-bounded; that is, for some a; b � 0 we have

kBxk � akAxk C bkxk; x 2 D.A/; (76)

if and only if BR.�; A/ 2 L.X/ for � 2 �.A/.
In what follows we denote by K an extension of A C B . We now present an

elegant result relating the invertibility properties of �I �K to the properties of 1 as
an element of the spectrum of BR.�; A/, first derived in [30].

Theorem 12 Assume that � D �.A/ \ �.K/ ¤ ;.

(a) 1 … �p.BR.�; A// for any � 2 �;
(b) 1 2 �.BR.�; A// for some/all � 2 � if and only if D.K/ D D.A/ and K D

AC B;
(c) 1 2 �c.BR.�; A// for some/all � 2 � if and only if D.A/   D.K/ and K D

AC B;
(d) 1 2 �r.BR.�; A// for some/all � 2 � if and only if K © AC B .
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Corollary 1 Under the assumptions of Theorem 12, K D A C B if one of the
following criteria is satisfied: for some � 2 �.�/ either

(i) BR.�; A/ is compact (or, if X D L1.˝; d�/, weakly compact), or
(ii) the spectral radius r.BR.�; A// < 1.

Proof If (ii) holds, then obviously I �BR.�; A/ is invertible by the Neumann series
theorem:

.I � BR.�; A//�1 D
1X
nD0
.BR.�; A//n; (77)

giving the thesis by Theorem 12(b). Additionally, we obtain

R.�;AC B/ D R.�;A/.I � BR.�; A//�1 D R.�;A/

1X
nD0
.BR.�; A//n: (78)

If (i) holds, then either BR.�; A/ is compact or, in L1 setting, .BR.�; A//2 is
compact, [26, p. 510], and therefore, if I � BR.�; A/ is not invertible, then 1 must
be an eigenvalue, which is impossible by Theorem 12(a). ut

If we write the resolvent equation

.�I � .AC B//x D y; y 2 X; (79)

in the (formally) equivalent form

x �R.�;A/Bx D R.�;A/y; (80)

then we see that we can hope to recover x provided the Neumann series

R.�/y WD
1X
nD0
.R.�;A/B/nR.�;A/y D

1X
nD0

R.�;A/.BR.�; A//ny: (81)

is convergent. Clearly, if (77) converges, then we can factor out R.�;A/ from the
series above getting again (78). However,R.�;A/ inside acts as a regularising factor
and (81) converges under weaker assumptions than (77) and this fact is frequently
used to construct the resolvent of an extension of AC B (see e.g. Theorem 16 and,
in general, results of Sect. 2.6.1).

The most often used perturbation theorem is the Bounded Perturbation Theorem,
see e.g. [27, Theorem III.1.3]

Theorem 13 Let .A;D.A// 2 G.M;!/ for some ! 2 R;M � 1. If B 2 L.X/,
then .K;D.K// D .AC B;D.A// 2 G.M;! CM kBk/.
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In many cases the Bounded Perturbation Theorem gives insufficient information.
Then it can be combined with the Trotter product formula, [27, 41]. Assume K0

is of type .1; !0/, ! 2 R; and K1 is of type .1; !1/. If .K;D.K0/ \ D.K1// WD
.K0 CK2;D.K0/ \D.K1// generates a semigroup, then

GK.t/x D lim
n!1 .GK0.t=n/GK1.t=n//

n x; x 2 X; (82)

uniformly in t on compact intervals and K is of type .1; !/ with ! D !0 C !1.
Moreover, if both semigroups .GK0.t//t�0 and .GK1.t//t�0 are positive, then
.GK.t//t�0 is positive.

The assumption of boundedness of B , however, is often too restrictive. Another
frequently used result uses special structure of dissipative operators.

Theorem 14 LetA andB be linear operators inX withD.A/ � D.B/ andACtB
is dissipative for all 0 � t � 1. If

kBxk � akAxk C bkxk; (83)

for all x 2 D.A/ with 0 � a < 1 and for some t0 2 Œ0; 1� the operator
.AC t0B;D.A// generates a semigroup (of contractions), then AC tB generates a
semigroup of contractions for every t 2 Œ0; 1�.

2.6.1 Positive Perturbations of Positive Semigroups

Perturbation results can be significantly strengthened in the framework of positive
semigroups. This approach goes back to the work of Kato [33]. His results were
extended in [13,44] and recently, in a more abstract setting, in [8,39]. The presented
results are based on the exposition of [13] which is sufficient for our purposes.

We have seen in (77) that the condition r.BR.�; A// < 1 implies invertibility of
�I �.ACB/. It turns out that this condition is equivalent to invertibility for positive
perturbations of resolvent positive operators.

Theorem 15 ([45]) Assume thatX is a Banach lattice. LetA be a resolvent positive
operator in X and � > s.A/. Let B W D.A/ ! X be a positive operator. Then the
following are equivalent,

(a) r.B.�I �A/�1/ < 1;
(b) � 2 �.AC B/ and .�I � .AC B//�1 � 0.

If either condition is satisfied, then

.�I � A� B/�1 D .�I � A/�1
1X
nD0
.B.�I � A� B/�1/n � .�I � A/�1: (84)
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Kato–Voigt Type Results

Here we consider only X D L1.˝;�/: Let .G.t//t�0 be a strongly continuous
semigroup on X . We say that .G.t//t�0 is a substochastic semigroup if for any
t � 0 and f � 0, G.t/f � 0 and kG.t/f k � kf k, and a stochastic semigroup if
additionally kG.t/f k D kf k for f 2 XC.

Theorem 16 Let X D L1.˝/ and let the operators A and B satisfy

1. .A;D.A// generates a substochastic semigroup .GA.t//t�0;
2. D.B/ � D.A/ and Bu � 0 for u 2 D.B/C;
3. for all u 2 D.A/C

Z

˝

.Au C Bu/d� � 0: (85)

Then there is an extension .K;D.K// of .ACB;D.A// generating a C0-semigroup
of contractions, say, .GK.t//t�0. The generatorK satisfies

R.�;K/u D
1P
kD0
R.�;A/.BR.�; A//ku; � > 0: (86)

Proof First, assumption (85) gives us dissipativity on the positive cone. Next, let
us take u D R.�;A/x D .�I � A/�1x for x 2 XC so that u 2 D.A/C. Because
R.�;A/ is a surjection from X ontoD.A/, by

.AC B/u D .AC B/R.�;A/x D �x C BR.�; A/x C �R.�;A/x;

we have

�
Z

˝

x d�C
Z

˝

BR.�; A/x d�C �

Z

˝

R.�;A/x d� � 0: (87)

Rewriting the above in terms of the norms, we obtain

�kR.�;A/xk C kBR.�; A/xk � kxk � 0; x 2 XC; (88)

from which kBR.�; A/k � 1.
We define operators Kr , 0 � r < 1 by Kr D AC rB, D.Kr/ D D.A/. We see

that the spectral radius of rBR.�; A/ does not exceed r < 1, the resolvent .�I �
.AC rB//�1 exists and is given by

R.�;Kr/ WD .�I � .AC rB//�1 D R.�;A/

1X
nD0

rn .BR.�; A//n ; (89)
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where the series converges absolutely and each term is positive. Hence,

kR.�;Kr/yk � ��1kyk (90)

for all y 2 X . Therefore, by the Lumer–Phillips theorem, for each 0 � r < 1,
.Kr;D.A// generates a contraction semigroup which we denote .Gr.t//t�0. Since
.R.�;Kr/x/0�r<1 is increasing as r " 1 for each x 2 XC; fkR.�;Kr/xkg0�r<1 is
bounded and X D L1.˝/ is a KB-space, there is an element y�;x 2 XC such that

lim
r!1�

R.�;Kr/x D y�;x

in X . By the Banach–Steinhaus theorem we obtain the existence of a bounded
positive operator on X , denoted by R.�/, such that R.�/x D y�;x . We use the
Trotter–Kato theorem to obtain that R.�/ is defined for all � > 0 and it is the
resolvent of a densely defined closed operator K which generates a semigroup of
contractions .GK.t//t�0. Moreover, for any x 2 X ,

lim
r!1�

Gr.t/x D GK.t/x; (91)

and the limit is uniform in t on bounded intervals and, provided x � 0, monotone
as r " 1. By the monotone convergence theorem, Theorem 3,

R.�;K/x D
1X
kD0

R.�;A/.BR.�; A//kx; x 2 X (92)

and R.�;K/.�I � .AC B//x D x which shows that K 
 AC B . ut
The identification of K is a much more difficult task. We note that (85) can be
written as

Z

˝

.Au C Bu/ d� D �c.u/ � 0; (93)

where c is a positive functional on D.A/. We assume that c has a monotone
convergence property: if c.un/ ! cu for un " u, then cu D c.u/ (for instance,
it is an integral functional). We note that a more general version of this assumption
is considered in [8,39]. The following theorem is fundamental for characterizing the
generator of the semigroup.

Theorem 17 For any fixed � > 0, there is 0 � ˇ� 2 X� with kˇ�k � 1 such that
for any f 2 XC,

�kR.�;K/f k D kf k� <ˇ�; f> � c .R.�;K/f / (94)

and c extends to a nonnegative continuous linear functional on D.K/.
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It turns out that

.BR.�; A//�ˇ� D ˇ�: (95)

and hence, if ˇ� ¤ 0, then �p.BR.�; A//� ¤ ;. This implies that �r.BR.�; A// ¤ ;
and, by Theorem 12(d),K ¤ AC B .

Another result, though not as elegant, is often more useful. It is based on the
observation that the following are equivalent:

(a) K D T C B .

(b)
R
˝

Ku d� � �c.u/; u 2 D.K/C:

Though the implication (b) ) (a) seems to be useless as it requires the knowledge of
K which is what we are looking for, we note that if we can prove it for an extension
of K (for instance Kmax), then it will be valid for K . Hence

Theorem 18 ([7]) If there exists an extension K such that
R
˝
Ku d� � �c.u/ for

all u 2 D.K/C, thenK D AC B.

Arendt–Rhandi Theorem

Theorem 19 ([5]) Assume that X is a Banach lattice, .A;D.A// is a resolvent
positive operator which generates an analytic semigroup and .B;D.A// is a
positive operator. If .�0I � .ACB/;D.A// has a nonnegative inverse for some �0
larger than the spectral bound s.A/ of A, then .AC B;D.A// generates a positive
analytic semigroup.

Proof The proof is an application of Theorem 15. Under assumptions of this

theorem, we obtain that r.BR.�0; A// < 1. In particular, the series
1P
nD0
.BR.�0; A//n

converges in the uniform operator topology. Next, by Theorem 10, R.�;A/ � 0 if
and only if �.A/ 3 � > s.A/: Thus, using the resolvent identity we have

R.�;A/ D R.�0; A/ � .� � �0/R.�0; A/R.�;A/ � R.�0; A/

whenever� � �0. Since BR.�; A/ is bounded inX , see Theorem 1,B W D.A/ ! X

is bounded in the graph norm of D.A/. Let us now take � 2 C with <� � �0,
R 3 � > �0 and f 2 D.A/. Then �R.�;A/R.�;A/f ! R.�;A/f as � ! 1
in the graph norm ofD.A/, see e.g., [41, Lemmas 1.3.2 and 1.3.3] and we have, for
f 2 D.A/;

jBR.�; A/f j D lim
�!1 j�BR.�;A/R.�;A/j � lim

�!1�BR.�;A/R.<�;A/jf j

D BR.�;A/R.<�;A/jf j;
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where we used jR.�;A/f j � R.<�;A/jf j for <� > s.A/, see Theorem 10. Thus,
by density,

jBR.�; A/f j � BR.<�;A/jf j (96)

for all f 2 X and therefore

r.BR.�; A// � r.BR.�0; A// < 1

for any � 2 C with <� � �0: In particular,
1P
nD0
.BR.�; A//n converges to a bounded

linear operator with
�����

1X
nD0
.BR.�; A//nf

����� �
�����

1X
nD0
.BR.�0; A//

njf j
����� � M�0kf k;

uniformly for � 2 C with <� > �0. This, in particular, shows that ACB generates
a C0-semigroup. Indeed, from (84) and the above estimate we see that

kR.�;AC B/f k � M�0kR.�;A/kkf k
for � > �0; so the claim follows since A satisfies the Hille–Yosida estimates (52)
there.

Next we consider the analyticity issue. Using Theorem 7, for the operator A,
there are !A and MA such that

kR.r C is; A/k � MA

jsj
for r > !A: Taking now ! > maxf�0; !Ag we have, by (84),

kR.r C is; AC B/f k D
�����R.�; A/

1X
nD0

.BR.�; A//nf

����� � MA

jsj

�����
1X
nD0

.BR.�; A//nf

�����
� MAM�0

jsj kf k; f 2 X;

for all r > !. Therefore .AC B;D.A// generates an analytic semigroup. ut

2.7 Semi-Linear Problems

Let us introduce now the simplest nonlinearity and consider the semilinear abstract
Cauchy problem

@tu D Au C f .t; u/; t > 0;

u.0/ D ı
u; (97)
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where A is a generator of a C0-semigroup .GA.t//t�0 and f W Œ0; T � �X ! X is a
known function. Since a priori we know no properties of the solution u (which may
even fail to exist), it is plausible to start from a weaker formulation of the problem,
i.e. from the integral equation:

u.t/ D GA.t/
ı
u C

tZ

0

GA.t � s/f .s; u.s//ds: (98)

This form is typical for fixed point techniques. Here, depending on the properties
of .GA.t//t�0 and f , we can use two main fixed point theorems: the Banach
contraction principle and Schauder’s theorem.

We shall focus on the Banach contraction principle which leads to Theorem 20
below. It requires a relatively strong regularity from f .

We say that f W Œ0; T � �X ! X is locally Lipschitz continuous in u, uniformly
in t on bounded intervals, if for all t 0 2 Œ0; T Œ and c > 0 there exists L.c; t 0/ such
that for all t 2 Œ0; t 0� and kuk; kvk � c we have

kf .t; u/ � f .t; v/kX � L.c; t 0/ku � vkX :

Theorem 20 Let f W Œ0;1Œ�X ! X be continuous in t 2 Œ0;1Œ and locally
Lipschitz continuous in u, uniformly in t , on bounded intervals. If A is the generator

of a C0-semigroup .GA.t//t�0 on X; then for any
ı
u2 X there exists tmax > 0 such

that the problem (98) has a unique mild solution u on Œ0; tmaxŒ. Moreover, if tmax <

C1, then lim
t!1 ku.t/kX D 1.

The proof is done by Picard iterations, as in the scalar case. Also, similarly to the
scalar case, a sufficient condition for the existence of a global mild solution is that
f be uniformly Lipschitz continuous on X . Uniform Lipschitz continuity yields at
most linear growth in kxk of kf .t; x/k. In fact, even for f .u/ D u2 and A D 0, the
blow-up occurs in finite time.

There are two standard sufficient conditions ensuring that the mild solution,
described in Theorem 20, is a strict solution. Both follow from the corresponding
results for nonhomogeneous problems. They are either that f W Œ0;1Œ�X !
X is continuously differentiable with respect to both variables, or that f W
Œ0;1Œ�D.A/ ! D.A/ is continuous. Certainly, in both cases to ensure that the

solution is strict we must assume that
ı
u2 D.A/.

As in the subsection on nonhomogeneous problems, a substantial relaxation of
requirements can be achieved if A generates an analytic semigroup. A crucial role
is played by the domains of fractional powers of generators. Let us denote X˛ D
D..�A/˛/ with the usual graph norm. We have
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Theorem 21 Let U � R�X˛, a 2 R; be an open set and f W U ! X is such that
for any .t; x/ 2 U there exist .t; x/ 2 V � U;L > 0 and 0 < � � 1 such that

kf .t1; x1/� f .t2; x2/k � L.jt1 � t2j� C kx1 � x2kX˛ /; .ti ; xi / 2 V; i D 1; 2;

and let an invertible A, satisfying 0 2 �.A/ be the generator of a bounded analytic

semigroup. If .0;
ı
u/ 2 U , then there is Nt D Nt .ı

u/ such that (97) has a unique
local classical solution u 2 C.Œ0; Nt Œ; X/ \ C1.�0; Nt Œ; X/. Moreover, the solution
continuously depends on the initial data and is not global in time if it either reaches
the boundary of U or its X˛ norm blows up in finite time.

In fact, we have a better regularity result. If the constants � and L are uniform
in U , then u 2 C1C	.�0; Nt Œ; X/; that is, @tu is Hölder continuous on �0; Nt Œ with
	 D minf�; ˇg with 0 < ˇ < 1 � ˛.

We formulated the above theorem in the form usually found in the literature on
dynamical systems. However, as was pointed out earlier, using X˛ D D..�A/˛/
often is inconvenient as it may depend on the particular form of A:

However, in [38, Chapter 7] we can find a parallel theory in whichX˛ can be any
interpolation space discussed in the section on analytic semigroups. In particular,
under the assumptions of Theorem 21, the solution u is a strict solution; that is

u 2 C.Œ0; tmaxŒ;D.A// \ C1.Œ0; tmaxŒ; X/, provided
ı
u 2 D.A/ and A

ı
u Cf .0; ı

u/.
The last condition follows from the fact that @tu, if it exists, is a mild solution of the
equation:

@tu.t/ D GA.t/A.
ı
u Cf .0; ı

u//C
tZ

0

AGA.t � s/�.s/ds (99)

where �.s/ D f .s; u.s// is Hölder continuous by the regularization property
mentioned above. Then continuity of @tu follows from Theorem 9.

3 Transport on Graphs

Let us recall that we consider the system of equations
8̂
<̂
ˆ̂:

@tuj .x; t/ D cj @xuj .x; t/; x 2 .0; 1/; t � 0;

uj .x; 0/ D fj .x/;

��
ij �j cjuj .1; t/ D wij

mP
kD1

�C
ik .
kckuk.0; t//;

(100)

where ˚� D .��
ij /1�i�n;1�j�m and ˚C D .�C

ij /1�i�n;1�j�m are, respectively,
the outgoing and incoming incidence matrices, while 
j > 0 and �j > 0 are the
absorption/amplification coefficients at, respectively, the head and the tail of the
edge ej .
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Theorem 22 ([18]) The following conditions are equivalent:

1. .A;D.A// generates a C0-semigroup;
2. Each vertex of G has an outgoing edge.

Proof 1: ) 2: Assume that there is a semigroup .TA.t//t�0 generated by A and
consider a classical solution u.t/ D TA.t/f with f 2 D.A/. Suppose that a vertex,
say, vi has no outgoing edge. Then, by (11),

0 D
mX
kD1

�C
ik 
kckuk.0; t/; t > 0:

In particular, uk.x; t/ D fk.x C ckt/ for 0 � x C ckt � 1 so uk.0; t/ D f .ckt/ for
0 � t � 1

ck
. Thus

0 D
mX
kD1

�C
ik 
kckfk.ckt/; 0 � t � c�1 WD minfc�1

k g:

Let .fr /r2N; fr 2 D.A/; approximate 1 D .1; 1; : : : ; 1/ in X . Then

0 � k1j.0;c�1/ � .f r
k .ck �//1�k�mkX D

mX
kD1

1

ck

c�1ckZ

0

j1 � f r
k .z/jdz

�
mX
kD1

1

ck

1Z

0

j1 � f r
k .z/jdz ! 0

as r ! 1. Since X -convergence implies convergence almost everywhere of a

subsequence, we have 0 D
mP
kD1

�C
ik 
kck almost everywhere on .0; c�1/; and thus

everywhere. Since, however, the graph is connected and we assumed that there is no
outgoing edge at vi , there must be an incoming edge and thus at least one term of
the sum is positive while all other terms are nonnegative. Thus, if there is a vertex
with no outgoing edge, then the set of initial conditions satisfying the boundary
conditions is not dense in X and thus .A;D.A// cannot generate a C0-semigroup.
1: ) 2: It can be proved that, under assumption 2., the boundary conditions can

be incorporated into the domain of the operator in the following compact form:

D.A/ D fu 2 .W 1
1 .Œ0; 1�//

mI u.1/ D K
�1
C

�1
BGCu.0/g; (101)

where B is the adjacency matrix defined in (9). Clearly, .C1
0 ..0; 1///

m � D.A/ and
henceD.A/ is dense in X . Let us consider the resolvent equation for A. We have to
solve

�uj � cj @xuj D fj ; j D 1; : : : ; m; x 2 .0; 1/;
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with u 2 D.A/. Integrating, we find the general solution

cjuj .x/ D cj e
�
cj
x
vj C

1Z

x

e
�
cj
.x�s/

fj .s/ds; (102)

where v D .v1; : : : ; vm/ is an arbitrary vector. Let E�.s/ D diag

�
e
�
cj
s
�
1�j�m

.

Then (102) takes the form

Cu.x/ D CE�.x/v C
1Z

x

E�.x � s/f.s/ds:

To determine v so that u 2 D.A/, we use the boundary conditions. At x D 1 and at
x D 0 we obtain, respectively

Cu.1/ D CE�.1/v; Cu.0/ D Cv C
1Z

0

E�.�s/f.s/ds

so that

KCE�.1/v D KCu.1/ D BGCu.0/ D BG

0
@Cv C

1Z

0

E�.�s/E�.�s/f.s/ds

1
A ;

which can be written as

.I � E�.�1/C�1
K

�1
BGC/v D E�.�1/C�1

K
�1
BG

1Z

0

E�.�s/f.s/ds:

Since the norm of E�.�1/ can be made as small as one wishes by taking large �,
we see that v is uniquely defined by the Neumann series provided � is sufficiently
large and hence the resolvent of A exists. We need to find an estimate for it. First we
observe that the Neumann series expansion ensures that A is a resolvent positive
operator and hence the norm estimates can be obtained using only nonnegative
entries. Next, we recall that B is column stochastic; that is, each column sums to
1. Adding together the rows in

KCE�.1/v D BGCv C BG

1Z

0

E�.�s/f.s/ds:
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we obtain

mX
jD1

�j cj e
�
cj vj D

mX
jD1


j cj vj C
mX
jD1


j

1Z

0

e
� �
cj
s
fj .s/ds:

By (102), we can evaluate, for j 2 f1; : : : ; mg,

1Z

0

uj .x/dx D vj

1Z

0

e
�
cj
x
dx C 1

cj

1Z

0

1Z

x

e
�
cj
.x�s/

fj .s/dsdx

D vj cj
�

�
e
�
cj � 1

�
C 1

�

1Z

0

�
1 � e

� �
cj
s
�
fj .s/ds

so that, renormingX with the norm kuk� D Pm
jD1 �j kujkL1.Œ0;1�/; we have

kuk� D
mX
jD1

�j

1Z

0

uj .x/dx (103)

D 1

�

mX
jD1

�j vj cj

�
e
�
cj � 1

�
C 1

�

mX
jD1

�j

1Z

0

�
1 � e� �

cj
s
�
fj .s/ds

D 1

�

mX
jD1

cj vj .
j � �j /C 1

�

mX
jD1

�

j � �j

� 1Z

0

e
� �
cj
s
fj .s/ds C 1

�

mX
jD1

�j

1Z

0

fj .s/ds:

We consider three cases (the first one being similar to [25, Proposition 3.3]).

(a) 
j � �j for j D 1; : : : ; m: Let us consider the iterates in the Neumann series
for v, .E�.�1/C�1

K
�1
BGC/n. Using the fact that C;G and K are diagonal so

that they commute, we find

E�.�1/C�1
K

�1
BGC � .CK/�1E�.�1/B.CK/:

Since B is (column) stochastic, r.E�.�1/C�1
K

�1
BGC/ < 1 for any � > 0.

Hence R.�;A/ is defined and positive for any � > 0. Under the assumption of
this item, by dropping two first terms in the second line, (103) gives

kuk� � 1

�

mX
jD1

�j

1Z

0

fj .s/ds D 1

�
kfk� ; � > 0:

Since D.A/ is dense in X , .A;D.A// generates a positive semigroup of
contractions in .X; k � k�/.
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(b) 
j � �j for j D 1; : : : ; m: Then (103) implies that for some � > 0 and c D 1=�

we have

kR.�;A/fk� � ckfk�
and, by density of D.A/, the application of the Arendt–Batty–Robinson
theorem, Theorem 11, gives the existence of a positive semigroup generated
by A in .X; k � k�/. Since, however, the norm k � k� and the standard norm k � k
are equivalent, we see that A generates a positive semigroup in X .

(c) 
j < �j for j 2 I1 and 
j � �j for j 2 I2; where I1 \ I2 D ; and I1 [ I2 D
f1; : : : ; mg. Let L D diag.lj / where lj D �j for j 2 I1 and lj D 
j for j 2 I2.
Then

E�.�1/C�1
K

�1
BGC � .CK/�1E�.�1/B.CL/:

Thus, denoting by AL the operator given by the expression A restricted to

D.A/ D fu 2 .W 1
1 .Œ0; 1�//

mI u.1/ D K
�1
C

�1
BLCu.0/g;

we see that

0 � R.�;A/ � R.�;AL/ (104)

for any � for which R.�;AL/ exists. But, by item (b), AL generates a positive
semigroup and thus satisfies the Hille–Yosida estimates. Since clearly (104)
yields Rk.�;A/ � Rk.�;AL/ for any k 2 N, for some ! > 0 and M � 1

we have

kRk.�;A/k � kRk.�;AL/k � M.� � !/�k; � > !

and hence we obtain the generation of a semigroup by A.
ut

4 Epidemiology

This chapter is based on [19, 40]. To simplify the exposition we replace the SIRS
model given by (18) with the SIS model describing the evolution of epidemics which
does not convey any immunity. Setting 
 D 0 in the system (18) and thus discarding
the ‘recovered’ class, we have

@t s.a; t/C @as.a; t/ D ��.a/s.a; t/ ��.a; i.�; t//s.a; t/C ı.a/i.a; t/;

@t i.a; t/C @ai.a; t/ D ��.a/i.a; t/C�.a; i.�; t//s.a; t/� ı.a/i.a; t/;
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s.0; t/ D
Z !

0

ˇ.a/ fs.a; t/C .1 � q/i.a; t/g da;

i.0; t/ D q

Z !

0

ˇ.a/i.a; t/ da;

s.a; 0/ D s0.a/ D �s.a/;

i.a; 0/ D i0.a/ D �i.a/; (105)

for 0 � t � T � C1, 0 � a � ! � C1.
The force of infection is defined by (19); the concrete assumptions will be

introduced when needed. In both cases we deal with a semilinear problem; that
is, with a nonlinear (algebraic) perturbation of a linear problem. As in Sect. 2.7, the
decisive role is played by the semigroup generated by the linear part of the problem.

Problems like (105) have been relatively well-researched, including the cases
where � and ˇ are nonlinear functions depending on the total population, see
[24, 46] and reference therein. Our model most resembles that discussed in [46],
the main difference being that in op. cit. the maximum age ! is infinite which
makes it plausible to assume that � is bounded. However, a biologically realistic
assumption is that ! < C1 which, however, necessitates building into the model a
mechanism ensuring that no individual can live beyond !. It follows, e.g. [31], that
the probability of survival of an individual till age a is given by

˘.a/ D e� R a
0 �.s/ ds:

Thus˘.!/ D 0 which requires

Z !

0

�.s/ ds D C1: (106)

Hence, � cannot be bounded as a ! !�. This is in contrast with the case
! D C1, where commonly it is assumed that � is a bounded function on RC, and
introduces another unbounded operator in the problem. We note that this difficulty
was circumvented by Inaba in [32] by introducing the maximum reproduction age
a� < ! and ignoring the evolution of the post-reproductive part of the population.
Also, in papers such as [24], though ! < C1, the assumption that the population is
constant removes the death coefficient from the equation. The analysis of the model
without any simplification in the scalar and linear case was done in [31] by reducing
it to an integral equation along characteristics. It can be proved that the solution of
such a problem is given by a strongly continuous semigroup. Here we shall prove
this directly by refining the argument of [32].
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4.1 Notation and Assumptions

We will work in the space X D L1
�
Œ0; !�;R2

�
with norm k.p1; p2/kX D kp1k C

kp2k, where the norm k�k refers to the norm in L1.Œ0; !�/; the relevant norm in R
2

will be denoted by j � j. We also introduce necessary assumptions (cf. [31]) on the
coefficients of (105) where, in what follows, for any measurable function � on Œ0; !�
we shall use the notation

N� D ess sup
a2Œ0;!�

�.a/; � D ess inf
a2Œ0;!� �.a/: (107)

(H1) 0 � � 2 L1;loc
�
Œ0; !/

�
, satisfying (106), with � > 0;

(H2) 0 � ˇ 2 L1
�
Œ0; !�

�
;

(H3) 0 � ı 2 L1
�
Œ0; !�

�
;

(H4) 0 � K 2 L1�Œ0; !�2�.
Let W1

1

�
Œ0; !�;R2

�
be the Sobolev space of vector valued functions. Further,

we define S D diag f�@a;�@ag on D.S/ D W1
1

�
Œ0; !�;R2

�
, M�.a/ D

diag f��.a/;��.a/g on D.M�/ D f' 2 X W �' 2 Xg,

Mı.a/ D
�
0 ı.a/

0 �ı.a/
�

I (108)

Mı 2 L.X/. Further, for a fixed q 2 Œ0; 1�,

B.a/ D
�
ˇ.a/ .1 � q/ˇ.a/

0 qˇ.a/

�
(109)

with

B' D
Z !

0

B.a/'.a/ daI

the operator B is bounded. Moreover, we introduce the linear operator A� defined
on the domain

D
�
A�

� D ˚
' 2 D.S/ \D.M�/I '.0/ D B'

�
(110)

by

A� D S C M�: (111)
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Let Q be the linear operator defined on the domain D.Q/ D D.A�/ by Q D
A� C Mı . Using this notation, we see that (105) can be rewritten in the following
compact form

@tu D A�u C Mıu C F.u/;

u.0; t/ D
Z !

0

B.a/u.a; t/ da;

u.a; 0/ D u0.a/ D '.a/; (112)

where u D .s; i/T and F is a nonlinear function defined by

F
�
u
� D

���.�; i /s
�.�; i /s

�

with � defined by (19).

4.2 The Linear Part

To prove that (105) is well-posed in X; first we consider the linear operator Q on
D.Q/ D D.A�/.

Theorem 23 The linear operator Q generates a strongly continuous positive
semigroup .TQ.t//t�0 in X.

To carry out the proof of Theorem 23, it is sufficient to prove the generation
result for A� and use Theorem 13 (the Bounded Perturbation Theorem) to prove
the generation for Q; then we use some other tools to show the positivity of the
combined semigroup. In this setting, first we have

Theorem 24 The linear operator A� generates a strongly continuous positive
semigroup

�
TA�.t/

�
t�0 in X such that

kT A�.t/kL.X/ � e.ˇ��/t : (113)

We prove this theorem in a sequence of lemmas in which we construct and estimate
the resolvent of A�. We begin with introducing the survival rate matrix L.a/, which
represents the survival rate function in a multi-state population. L.a/ is a solution
of the matrix differential equation:

dL
da
.a/ D M�.a/L.a/; L.0/ D I; (114)
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where I denotes the 2� 2 identity matrix. The solution of (114) is a diagonal matrix
given by

L.a/ D e� R a
0 �.r/ drI: (115)

From the above formula, we see that L.a/ is invertible for all a 2 Œ0; !/; its inverse
is denoted L�1.a/. The inverse satisfies

dL�1

da
.a/ D �M�.a/L�1.a/; L�1.0/ D I: (116)

Hence, we can define the fundamental matrix L.a; b/ by

L.a; b/ D L.a/L�1.b/:

Lemma 1 If � > ˇ � �, then
�
�I � A�

��1
is given by

' D �
�I � A�

��1
 

D e��aL.a/
�

I�
Z !

0

e���B.�/L.�/ d�
��1Z !

0

B.a/
Z a

0

e�.��a/L.a; �/ .�/d�da

C e��aL.a/
Z a

0

e��L�1.�/ .�/ d�: (117)

Proof Let � > ˇ � � and  2 X. A function ' 2 D.A�/ if and only if

�'.a/C d

da
'.a/ � M�.a/'.a/ D  .a/;

'.0/ D
Z !

0

B.a/'.a/ da; �' 2 X: (118)

By Duhamel’s formula, the first equation of (118) gives

'.a/ D e��aL.a/'.0/C
Z a

0

e��.a�s/L.a; s/ .s/ ds;

D e��a�R a0 �.r/ dr'.0/C
Z a

0

e��.a�s/�R as �.r/ dr .s/ ds; (119)

for some unspecified as yet initial condition '.0/. For a fixed '.0/; we denote by
R'.0/.�/ the operator .s/ ! ' defined above; it is easy to see that

.�I � S � M�/R'.0/.�/ D  ; (120)



Kinetic Models in Natural Sciences 181

for a.a. a 2 Œ0; !/. The unknown '.0/ can be determined from the boundary
condition (118) by substituting (119); we get

'.0/ D
Z !

0

e��a�R a0 �.r/ drB.a/'.0/ da

C
Z !

0

e��a�R a0 �.r/ drB.a/
�Z a

0

e�sC
R s
0 �.r/ dr .s/ ds

�
da:

Since

ˇ̌
ˇ̌Z !

0

e��a�R a0 �.r/ drB.a/ da

ˇ̌
ˇ̌ � ˇ

Z !

0

e�.�C�/a da � ˇ

�C �
< 1 (121)

for � > Ň ��; I � R !
0
e��a�R a0 �.r/ drB.a/ da is invertible with the inverse satisfying

ˇ̌
ˇ̌
ˇ
�

I �
Z !

0

e��s�R s0 �.r/ drB.s/ ds

��1 ˇ̌ˇ̌
ˇ � �C �

� � .ˇ � �/
: (122)

Hence

'.0/ D
�

I �
Z !

0

e��a�R a0 �.r/ drB.a/ da

��1

Z !

0

e��a�R a0 �.r/ drB.a/
�Z a

0

e�sC
R s
0 �.r/ dr .s/ ds

�
da

and we can substitute that '.0/ in the operator R'.0/.�/ to define

R.�/ .a/

D e��a�R a0 �.r/ dr

�
I �

Z !

0

e��s�R s0 �.r/ drB.s/ ds

��1 Z !

0

e��a�R a0 �.r/ drB.a/

�
Z a

0

e�sC
R s
0 �.r/ dr .s/ ds da C e��a�R a0 �.r/ dr

Z a

0

e�sC
R s
0 �.r/ dr .s/ ds:

The above calculations show that � � A� is one-to-one for � > ˇ � �: Routine
calculations show that

��R.�/ ��X � 1

� � .ˇ � �/

�� ��X: (123)

Thus R.�/ is a bounded operator in X.
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Further, by lengthy calculations we also can show that

Z !

0

j�.a/R.�/ .a/j da �
 
1C ˇ

� � .ˇ � �/

!�� ��X:

Hence R.�/X � D.M�/. Further, since for any  2 X, ' D R.�/ satisfies

�R.�/ C d

da
R.�/ � M�R.�/ D  

almost everywhere, we have

d

da
R.�/ D  � �R.�/ C M�R.�/ ;

where, by the above estimates, all terms on the right hand side are in X. Hence
R.�/ 2 W1

1

�
Œ0; !�;R2

�
and, consequently, R.�/ 2 D.A�/.

Since the boundary condition holds, using the results above we see that the
operator R.�/, given by .�I � A�/R.�/ D  , is such that maps R.�/ W X !
D.A�/. Then R.�/ is a right-inverse of the operator �I � A�.

Summarizing, R.�/ is the right inverse of .�I � A�;D.A�//. To prove that
it is also a left inverse, we repeat the standard argument. Assume that for some
' 2 D.A�/ we have

R.�/.�I � A�/' D Q' ¤ ':

Since R.�/ W X ! D.A�/, we can write

.�I � A�/' D .�I � A�/R.�/.�I � A�/' D .�I � A�/ Q'

since R.�/ is a right inverse of �I � A�. But we proved that the linear operator
.�I � A�/ is one-to-one for � > ˇ � �, ' D Q' and hence R.�/ D .�I � A�/

�1.
ut

Lemma 2 D.A/C D XC.

Proof A proof of this result (with some gaps) is provided in [32, p. 60]. A more
comprehensive proof can be found in [46]. We present a simpler proof which,
moreover, allows for an approximation of f 2 XC by elements of D.A�/C.

Fix f 2 XC. First we note that for any given � there is 0 � � 2 C1
0 ..0; !/;R

2/

such that kf � �kX � �: Clearly, � 2 D.M�/ but typically

'.0/ ¤
Z !

0

B.a/'.a/ da:
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Take a function 0 � � 2 C1
0 .Œ0; !// with �.0/ D 1 and let ��.a/ D �.a=�/:

Further, let ˛ D .˛1; ˛2/ be a vector and consider

 D 'C ��˛:

Clearly,  2 W 1
1 .Œ0; !�;R

2/ \ D.M�/. As far as the boundary condition is
concerned we have, by the properties of the involved functions,

˛ D
Z !

0

B.a/'.a/ da C
0
@

�!Z

0

�
ˇ.a/��.a/ .1 � q/ˇ.a/��.a/
0 qˇ.a/��.a/

�
da

1
A˛: (124)

Now, since

0 �
�!Z

0

ˇ.a/��.a/da D �

!Z

0

ˇ.�s/�.s/ds � � Ň;

the matrix l1�norm satisfies

ˇ̌
ˇ̌
ˇ̌
0
@

�!Z

0

�
ˇ.a/��.a/ .1 � q/ˇ.a/��.a/
0 qˇ.a/��.a/

�
da

1
A
ˇ̌
ˇ̌
ˇ̌
L.R2/

� � Ň:

Thus, (124) is solvable for sufficiently small �. Further, by the positivity of the above
matrix and the properties of the Neumann series expansion, ˛ is nonnegative and

j˛j �
ˇ̌
ˇ̌Z !

0

B.a/'.a/ da

ˇ̌
ˇ̌ .1 � � Ň/�1 � C

for some constant C , which is independent of � for sufficiently small � (the norm of
k'k; which depends on �, can be bounded by e.g. kf k C 1 for � < 1). Hence we
have

kf � kX � kf � 'kX C j˛jk��k � .1C C/�:

Proof of Theorem 24 Since the inverse of a bounded operator is closed, we see
that �I � A�, and hence A�, are closed. Thus the above lemmas with the
estimate (123) show that A� satisfies the assumptions of the Hille–Yosida theory.
Hence, it generates a semigroup satisfying (113). Since the resolvent is positive, the
semigroup is positive as well. ut
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Proof of Theorem 23 Since Mı 2 L .X/, with
��Mı.a/

��
L.X/ � 2ı, Theorem 13

(the Bounded Perturbation Theorem) is applicable and states that the linear operator
.Q;D.A// generates a strongly continuous semigroup denoted by

�
T Q.t/

�
t�0.

Using the estimate (113) we have:

kT Q.t/kL.X/ � et.ˇ��C2Nı/:

Using the structure of Mı we can improve this estimate and also show that the
semigroup .T Q.t//t�0 is positive. Since the variable a plays in Mı the role of a
parameter, we find

T Mı
.t/ D

�
1 1 � e�tı.a/
0 e�tı.a/

�

and so

kT Mı
.t/kL.X/ D 1:

Also, .T Mı
.t//t�0 is positive. Hence, by (82), we obtain

kT Q.t/kL.X/ � et.ˇ��/ (125)

and .T Q.t//t�0 is positive. ut
Remark 6 The estimates (113) and (125) are not optimal. In fact, for the scalar
problem

@tn.a; t/ D �@an.a; t/ � �.a/n.a; t/; t > 0; a 2 .0; !/

n.0; t/ D
!Z

0

ˇ.a/n.a; t/da;

n.a; 0/ D ı
n .a/; (126)

it can be proved, [31], that there is a unique dominant eigenvalue �� of the problem,
which is the solution of the renewal equation

1 D
!Z

0

ˇ.a/e
��a�

aR
0

�.s/ds
da; (127)

such that

kn.t/k � Met�
�

(128)
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for some constant M . This eigenvalue is, respectively, positive, zero or negative if
and only if the basic reproduction number

R D
!Z

0

ˇ.a/e
�

aR
0

�.s/ds
da (129)

is bigger, equal, or smaller, than 1.

Consider now an initial condition .
ı
s;

ı
i/ 2 D.A�/: Since the semigroup

.T Q.t//t�0 is positive, the strict solution .s; i/ of the linear part of (105) is nonneg-
ative and the total population 0 � s.a; t/ C i.a; t/ D n.a; t/ satisfies (126). Using
nonnegativity, we find s.a; t/ � n.a; t/ and i.a; t/ � n.a; t/ and consequently

kT Q.t/.
ı
s;

ı
i/kX � Met�

�k.ı
s;

ı
i/kX

for .
ı
s;

ı
i/ 2 D.A�/C. However, by Lemma 2, the above estimate can be extended to

XC and, by (29), to X.
Note that the crucial role in the above argument is played by the fact that .s; i/

satisfies the differential equation (105)—if it was only a mild solution, it would be
difficult to directly prove that the sum s C i is the mild solution to (126).

4.3 The Nonlinear Problem

In the case of intercohort transmission, discussed in these lectures, individuals of
any age can infect individuals of any age, though with possibly different intensity.
Then

�.a; i/ D
Z !

0

K.a; a0/i.a0/ da0; (130)

whereK.a; a0/ is a nonnegative bounded function on Œ0; !�� Œ0; !� which accounts
for the age-specific probability of becoming infected through contact with infectives
of a particular age.

Since the nonlinear term F is quadratic, standard calculations, see [41], give

Proposition 4 F is continuously Fréchet differentiable with respect to � 2 X and
for any � D �

�s; �i
�
;  D �

 s;  i
� 2 X the Fréchet derivative at �, F�, is

defined by

�
F� 

�
.a/ WD

0
BBBB@

� s .a/
!R
0

K .a; a0/ �i .a0/ da0 � �s .a/
!R
0

K .a; a0/  i .a0/ da0

 s .a/
!R
0

K .a; a0/ �i .a0/ da0 C �s .a/
!R
0

K .a; a0/  i .a0/ da0

1
CCCCA :
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Hence we can apply Theorem 20 to claim that for each
ı
u D .

ı
s;

ı
i/ 2 X, there is a

t.
ı
u/ such that the problem (112) has a unique mild solution on Œ0; t.

ı
u/Œ3 t ! u.t/;

this solution is strict if
ı
u 2 D.A�/.

We recall that the proof consists in showing that the Picard iterates

u0 D ı
u

un.t/ D T Q.t/
ı
u C

tZ

0

T Q.t � s/F.un�1.s//ds (131)

converge in C.Œ0; t.
ı
u/Œ; B.

ı
u; �// where B.

ı
u; �/ D fu 2 XI ku� ı

u kX � �g for
some constant �. Since the nonlinearity is quadratic, it is not globally Lipschitz
continuous and thus the question whether this solution can be extended to Œ0;1Œ

requires employing positivity techniques.
Since F is not positive on XC;we cannot claim that the constructed local solution

is nonnegative, as the iterates defined by (131) need not be positive even if we start

with
ı
u � 0. Hence, we re-write (112) in the equivalent form

8<
:
du
dt

D .Q � �I / u C .�I C F/
�
u
�
; t > 0;

u.0/ D ı
u;

(132)

for some � 2 RC to be determined. Denote Q� D Q � �I ; then .T Q;�.t//t�0 D
.e��tT Q/t�0 and hence .T Q;� .t//t�0 is positive. It is also easy to see that the
following result holds.

Lemma 3 For any � there exists � such that
�
�I C F

�
.XC \ B.

ı
u; �// � XC.

Then the Picard iterates corresponding to (132),

u.t/ D e��tT .t/ıu C
Z t

0

e��.t�s/TQ.t � s/��I C F
�
.u.s// ds; 0 � t < t.

ı
u/;

are nonnegative and we can repeat the standard estimates to arrive at

Theorem 25 Assume that
ı
u2 XC and let u W Œ0; t.ı

u/Œ! X be the unique mild
solution of (112). Then this solution is nonnegative on the maximal interval of its
existence. Moreover, the solutions continuously depend on the initial conditions on
every compact subinterval of their joint interval of existence.
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4.4 Global Existence

Since quadratic nonlinearities do not satisfy the uniform Lipschitz condition, we
cannot immediately claim that the solutions to (112) are global in time. In fact,
it is well known that, even for ordinary differential equations, the solution with
a quadratic nonlinearity can blow up in a finite time. Here, we use positivity to
show that positive solutions exist globally in time. For this, we have to show that
t ! ��u.t/

��
X does not blow up in finite time. We state the following result:

Theorem 26 For any
ı
u2 D.A�/ \ XC, the problem (112) has a unique strict

positive solution u.t/ defined on the whole time interval Œ0;1Œ.

Proof The proof uses the ideas of Remark 6. Under the adopted assumptions, we
have a positive strict solution u.t/ D �

s.t/; i.t/
�

to (105) in L1.Œ0; !�;R2/ defined
on its maximum interval of existence Œ0; tmaxŒ. But then

��u.t/
��

X D
Z !

0

.s.a; t/C i.a; t// da D
Z !

0

u.a; t/ da; t 2 Œ0; tmaxŒ;

where u.a; t/ is the solution to the McKendrick equation (126). But then, as long as

0 � t < t.
ı
u/,

��u.t/
��

X � e.ˇ��/t�� ı
u
��

X:

Hence
��u.t/

��
X does not blow up in finite time and the solution is global. ut

Corollary 2 For any
ı
u2 XC, the problem (112) has a unique mild positive solution

u.t/ defined on the whole time interval Œ0;1Œ.

The proof follows from the fact that D.A�/C is dense in XC and the continuous
dependence on initial conditions.

5 Coagulation–Fragmentation Equation

Recall that we deal with the equation

@tu.x; t/ D �a.x/u.x; t/C
1Z

x

a.y/b.xjy/u.y; t/dy (133)

�u.x; t/

1Z

0

k.x; y/u.y; t/dy C 1

2

xZ

0

k.x � y; y/u.x � y; t/u.y; t/dy;
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where x 2 RC WD .0;1/ is the size of the particles/clusters. Here u is the density of
particles of mass/size x, a is the fragmentation rate and b describes the distribution
of masses x of particles spawned by a particle of mass y.

The fragmentation rate a is assumed to satisfy

0 � a 2 L1;loc.Œ0;1Œ/; (134)

that is, we allow a to be unbounded as x ! 1. Further, b � 0 is a measurable
function satisfying b.xjy/ D 0 for x > y and (24).

The expected number of particles resulting from a fragmentation of a size y
parent, denoted by n0.y/, is assumed to satisfy

n0.y/ < C1 (135)

for any fixed y 2 RC. Further, we assume that there are j 2 .0;1/, l 2 Œ0;1/ and
a0; b0 2 RC such that for any x 2 RC

a.x/ � a0.1C xj /; n0.x/ � b0.1C xl /: (136)

The coagulation kernel k.x; y/ represents the likelihood of a particle of size x
attaching itself to a particle of size y. We assume that it is a measurable symmetric
function such that for some K > 0 and 0 � ˇ � ˛ < 1

0 � k.x; y/ � K..1C a.x//˛.1C a.y//ˇ C .1C a.x//ˇ.1C a.y//˛/: (137)

This will suffice to show local in time solvability of (133), whereas to show that the
solutions are global in time we need to strengthen (137) to

0 � k.x; y/ � K..1C a.x//˛ C .1C a.y//˛/ (138)

for some 0 � ˛ < 1.
In fragmentation and coagulation problems, two spaces are most often used due

to their physical relevance. In the space L1.RC; xdx/ the norm of a nonnegative
element u, given by

R1
0 u.x/xdx; represents the total mass of the system, whereas

the norm of a nonnegative element u in the space L1.RC; dx/;
R1
0 u.x/dx; gives the

total number of particles in the system.
We use the scale of spaces with finite higher moments

Xm D L1.RC; dx/\ L1.RC; xmdx/ D L1.RC; .1C xm/dx/; (139)

where m 2 M WD Œ1;1/. We extend this definition to X0 D L1.RC/. We note
that, due to the continuous injection Xm ,! X1, m � 1, any solution in Xm is also
a solution in the basic space X1.

Thus, we denote by k � km the natural norm in Xm defined in (139). To shorten
notation, we define

wm.x/ WD 1C xm:
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5.1 Analyticity of the Fragmentation Operator

To formulate the main results, we have to introduce more specific assumptions and
notation. First we define

nm.y/ WD
yZ

0

b.xjy/xmdx

for any m 2 M0 WD f0g [ M and y 2 RC. Further, let

N0.y/ WD n0.y/ � 1 and Nm.y/ WD ym � nm.y/; m � 1:

It follows that

N0.y/ D n0.y/ � 1 � 0

and

Nm.y/ D ym �
yZ

0

b.xjy/xmdx � ym � ym�1
yZ

0

b.xjy/xdx D 0 (140)

form � 1 with N1 D 0.
Next, form 2 M, let .Amu/.x/ WD a.x/u.x/ onD.Am/ D fu 2 Xm W au 2 Xmg

and let Bm be the restriction to D.Am/ of the integral expression

ŒBu�.x/ D
1Z

x

a.y/b.xjy/u.y/dy:

Theorem 27 ([12]) Let a; b satisfy (24), (135) and (136), and let m be such that
m � j C l if j C l > 1 and m > 1 if j C l � 1.

(a) The closure .Fm;D.Fm// D .�Am CBm;D.Am// generates a positive quasi-
contractive semigroup, say .SFm.t//t�0, of the type at most 4a0b0 on Xm.
Furthermore, if u 2 D.Fm/C, then

Nm.x/a.x/u.x/ 2 X0; m 2 M0: (141)

(b) If, moreover, for some m there is cm > 0 such that

lim inf
x!1

Nm.x/

xm
D cm; (142)

then Fm D �Am C Bm and .SFm.t//t�0 is an analytic semigroup on Xm.
(c) If (142) holds for some m0, then it holds for all m � m0.

We note that (142) cannot hold for m D 1 as N1 D 0.
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Proof We shall fix m satisfying m � j C l if j C l > 1 and m > 1 otherwise;
see (136). First we show thatBm WD BjD.Am/ is well defined. Next, direct integration
gives for u 2 D.Am/

1Z

0

.�Am CBm/u.x/wm.x/dx D ��m.u/ WD
1Z

0

.N0.x/ �Nm.x//a.x/u.x/dx:

(143)

If the term N0.x/ > 0 were not present, then (143) would allow a direct application
of the substochastic semigroup theory. In the present case we note that for u 2
D.Am/C we have, by (140),

��m.u/ �
1Z

0

N0.y/a.y/u.y/dy � 4a0b0

1Z

0

u.x/wm.x/dx DW �kukm;

Then we have Q�m.u/ WD �m.u/ C �
R1
0

u.x/wm.x/dx � 0 for 0 � u 2 D.Am/C
and the operator . QAm;D.Am// WD .Am C �I;D.Am// satisfies

1Z

0

.� QAm C Bm/u.x/wm.x/dx D � Q�m.u/

D ��
Z 1

0

u.x/wm.x/dx C
1Z

0

.N0.x/ �Nm.x//a.x/u.x/dx � 0:

Hence an extension QFm of � QAm C Bm generates a substochastic semigroup
.S QFm.t//t�0 and thus there is an extension Fm of .�Am C Bm;D.Am//; given by

.Fm;D.Fm// D . QFmC�I;D. QFm//; generating a positive semigroup .SFm.t//t�0 D

.e�tS QFm.t//t�0 on Xm.

Furthermore, Q�m extends to D.Fm/ by monotone limits of elements of D.Am/:
Thus, let u 2 D.Fm/C with D.Am/ 3 un % u. Then, since

1Z

0

N0.x/a.x/u.x/dx < 1;

1Z

0

u.x/wm.x/dx < 1;

by (136), m � j C l and D.Fm/ � Xm, and the fact that Q�m.un/ tends to a finite
limit, we have

lim
n!1

1Z

0

Nm.x/a.x/un.x/dx D
1Z

0

Nm.x/a.x/u.x/dx < C1:
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To prove part (b), we begin by observing that inequality (140) implies that 0 �
Nm.x/ � xm: This, together with (142), yields cmxm=2 � Nm.x/ � xm for large
x which, by (141), establishes that if u 2 D.Fm/; then au 2 Xm or, in other words,
thatD.Fm/ � D.Am/. Since .Fm;D.Fm// is an extension of .�AmCBm;D.Am//,
we see that D.Fm/ D D.Am/.

It is clear that the semigroup generated by �Am is bounded. Furthermore, if
� D r C is then j�C a.x/j2 � s2 and therefore, for all r > 0

kR.r C is;�Am/f km D
1Z

0

ˇ̌
ˇ̌ 1

r C is C a.x/

ˇ̌
ˇ̌ jf .x/j.1C xm/dx � 1

jsj kf km:

The analyticity of the fragmentation semigroup then follows from the Arendt–
Rhandi theorem, Theorem 19. ut
Example 7 One of the forms of b.xjy/ most often used in applications is

b.xjy/ D 1

y
h

�
x

y

�
(144)

which is referred to as the homogeneous fragmentation kernel. In this case the
distribution of the daughter particles does not depend directly on their relative sizes
but on their ratio. In this case

nm.y/ D 1

y

yZ

0

h

�
x

y

�
xmdx D ym

1Z

0

h.z/zmd z DW hmym:

Since

y D n1.y/ D 1

y

yZ

0

h

�
x

y

�
xdx D y

1Z

0

h.z/zd z D h1y;

we have h1 D 1 so that hm < 1 for any m > 1 and Nm.y/ D ym.1 � hm/:

Hence, (142) holds.
On the other hand, fragmentation processes in which daughter particles accumu-

late close both to 0 and to the parent’s size may not satisfy (142), [17].
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5.2 Existence of Solutions to the Fragmentation–Coagulation
Problem

Next, we introduce a nonlinear operator Cm in Xm defined for u from a suitable
subset of Xm by the formula

.Cmu/.x/ WD �u.x/

1Z

0

k.x; y/u.y/dy C 1

2

xZ

0

k.x � y; y/u.x � y/u.y/dy

so that the initial value problem for (133) can be written as an abstract semilinear
Cauchy problem in Xm;

@tu D �Amu C Bmu C Cmu; u.0/ D ı
u : (145)

To formulate the main theorems we have to introduce a new class of spaces which, as
we shall see later, is related to intermediate spaces associated with the fragmentation
operator Fm and its fractional powers. We set

X.˛/
m WD

�
u 2 XmI

Z 1

0

ju.x/j.! C a.x//˛.1C xm/ dx < 1
�
; (146)

where ! is a sufficiently large constant. Then we have

Theorem 28 ([17]) Assume that a; b; k satisfy (24), (135), (136), (137)and (142)

for somem0 > 1, and letm � maxfj C l; m0g hold. Then, for each
ı
u 2 X.˛/

m;C; there
is � > 0 such that the initial value problem (145) has a unique nonnegative classical
solution u 2 C.Œ0; ��; X

.˛/
m / \ C1..0; �/; Xm/ \ C..0; �/;D.Am//. Furthermore,

there is a measurable representation of u which is absolutely continuous in t 2 .0; �/
for any x 2 RC and which satisfies (133) almost everywhere on RC � .0; �/.

Finally, for the global in time solvability we need to restrict the growth rate of k.
Namely, we have

Theorem 29 ([17]) Let the assumptions of Theorem 28 hold with ˇ D 0, that is, let
k satisfy (138). Furthermore, let the constant j from assumption (136) be such that
j̨ � 1. Then any local solution of Theorem 28 is global in time.

5.2.1 Interlude: Intermediate Spaces Associated with Fm

From now one, we shall assume that b.xjy/ is such that (142) is satisfied. Define,
for a fixed constant ! > 4a0b0,

Fm;! WD Fm � !I; Am;! WD Am C !I;

D.Fm;!/ D D.Fm/ D D.Am/ D D.Am;!/; (147)
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The operators .Fm;!;D.Am// and .�Am;!;D.Am// generate analytic semi-
groups .SFm;! .t//t�0 D .e�!tSFm.t//t�0 and, respectively, .S�Am;! .t//t�0 D
.e�!tS�Am.t//t�0 on Xm. Since each operator is invertible, the norms kukm;A WD
kAm;!ukm and kukm;F WD kFm;!ukm; u 2 D.Am/ are equivalent to each other
and also to the corresponding graph norms on D.Am/. Then we have (up to the
equivalence of the respective norms)

DFm;! .˛; r/ D D�Am;! .˛; r/: (148)

We find it most convenient to use D�Am;! .˛; 1/ which equals the real interpolation
space .Xm;D.Am;!//˛;1. It follows that

.Xm;D.Am;!//˛;1 D X.˛/
m D

8<
:u 2 XmI

1Z

0

ju.x/j.! C a.x//˛.1C xm/ dx < 1
9=
; ;

which hereafter we equip with the norm

kuk.˛/m WD
Z 1

0

ju.x/j.! C a.x//˛.1C xm/ dx: (149)

In other words, there is a constant c1 � 1 such that

c�1
1 kuk.˛/m � kukDFm;! .˛;1/ � c1kuk.˛/m ; 8 u 2 DFm;! .˛; 1/: (150)

Proof of Theorem 28 Here we assume that a and b satisfy the assumptions of
Theorem 27(b) so that, in particular, (142) holds for some m � j C l or m > 1

if j C l � 1. Furthermore, the coagulation kernel is such that (137) is satisfied. We
fix ! > maxf4a0b0; 1g and denote a˛!.x/ WD .! C a.x//˛ . Similarly to (132), we
consider the following modified version of (133)

@tu.x; t/ D �.a!.x/C 
a˛!.x//u.x; t/C
1Z

x

a.y/b.xjy/u.y; t/dy

C.
a˛!.x/C !/u.x; t/ � u.x; t/

1Z

0

k.x; y/u.y; t/dy

C1

2

xZ

0

k.x � y; y/u.x � y; t/u.y; t/dy; (151)

where 
 is a constant to be determined and ˛ is the index appearing in (137).
Then, see [41, Corollary 3.2.4], .F
 ;D.F
 // WD .Fm;!�
A˛m;D.Am// generates an
analytic semigroup, say .SF
 .t//t�0, on Xm. Since .SFm;! .t//t�0 and .S�
A˛m.t//t�0
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are positive and contractive, we can use the Trotter product formula to deduce that
.SF
 .t//t�0 is also a positive contraction on Xm. Furthermore, since S�
A˛m.t/ � I

for t � 0, using again the Trotter formula

SF
 .t/u � SFm;! .t/u; u 2 Xm;C: (152)

and thus, for u 2 X.˛/
m

kSF
 .t/uk.˛/m � c21kuk.˛/m : (153)

Next consider the set

U D fu 2 X.˛/
m;C W kuk.˛/m � 1C bg; (154)

for some arbitrary fixed b > 0 and set


 D 2K.b C 1/: (155)

Then on U we obtain

.C
u/.x/ WD �u.x/

1Z

0

k.x; y/u.y/dy C .
.a˛!.x/C !/u.x/

C1

2

xZ

0

k.x � y; y/u.x � y/u.y/dy � 0:

Similarly, on U we have kC
ukm � K1.U/; as well as

k.
A˛m C !I/u � .
A˛m C !I/vkm � .! C 
/ku � vk.˛/m
and

kC
u � C
vkm � K2.U/ku � vk.˛/m ; (156)

for some constantsK1.U/;K2.U/. Hence, for
ı
u 2 X.˛/

m;C satisfying k ı
u k.˛/m � c�2

1 b,

for b of (154) and c1 from (153), there is � D �.
ı
u/ such that the mapping

.T u/.t/ D SF
 .t/
ı
u C

tZ

0

SF
 .t � s/C
u.s/ds
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is a contraction on Y D C.Œ0; ��;U/;withU defined by (154) and the metric induced

by the norm ku.t/kY WD sup
0�t��

ku.t/k.˛/m .Therefore, for any
ı
u 2 X

.˛/
m;C; there is a

unique mild solution u to (145) in X.˛/
m;C which, moreover, satisfies

u 2 C1..0; �/; Xm/ \ C..0; �/;D.Am//:

ut
Proof of Theorem 29 The local solution, constructed in the previous section, can

be extended in a usual way to the maximal forward interval of existence Imax D
Œ0; �max.

ı
u//. We also denote I 0max D .0; �max.

ı
u// Thus, to show that u is globally

defined, we need to show that ku.t/k.˛/m is a priori bounded uniformly in time.
Let us denote byMr the r-th moment of u,

Mr.u/ WD
1Z

0

xru.x/dx:

Then, for some constant L;

kuk.˛/m � L

1Z

0

ju.x/j.1C xmCj˛/dx D L.M0.u/CMmCj˛.u//: (157)

Though for a given m; Theorem 28 does not ensure the differentiability of MmC j̨ ,

it is valid in the scale of spaces Xr with r � m provided, of course,
ı
u 2 X

.˛/
r .

Since the embeddingX.˛/
r � X

.˛/
m is continuous for r � m, the solutions emanating

from the same initial value
ı
u 2 X

.˛/
r � X

.˛/
m in each space, by construction, must

coincide. Hence, let
ı
u 2 X.˛/

mCj˛ � XmCj˛ � X
.˛/
m so that

u 2 C.Imax; X
.˛/
mCj˛/ \ C1.I 0max; XmCj˛/ \ C.I 0max;D.AmCj˛//;

with possibly different, but still nonzero length of the interval Imax. This, in
particular, yields differentiability of ku.�/k0 D M0.u.�// and, consequently, of
MmCj˛.u.�//: To get the moment estimates we use the inequality, [16],

.xCy/r � xr � yr � .2r � 1/.xr�1yCyr�1x/ DW Gr.xr�1yCyr�1x/; (158)

for r � 1, x; y 2 RC. Then

1Z

0

xr .Cu/.x/dx D GrKL˛.MrCj˛�1M1 CMr�1M1Cj˛ C 2Mr�1M1/: (159)
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For the particular cases r D 0 and r D 1 we obtain

1Z

0

.Cu/.x/dx D �1
2

1Z

0

k.x; y/u.x; t/u.y; t/dxdy � 0;

1Z

0

x.Cu/.x/dx D 0:

Hence, using the estimates for the linear part, we obtain on I 0max

M0;t � 4a0b0.M0 CMm/;

M1;t D 0; (160)

MmCj˛;t � GmCj˛KL˛.MmC2j˛�1M1 CMmCj˛�1.M1Cj˛ C 2M1//:

We see that if 1 � r � r 0, then

Mr � M1 CMr 0 (161)

as xr � x on Œ0; 1� and xr � xr
0

on Œ1;1/. Thus, we see that in order for the
moment system (160) to be closed, we must assume that j˛ � 1: This allows us to
re-write (160) as

M0;t � 4a0b0.2M0 CMmCj˛/; (162)

MmCj˛;t � GmCj˛KL˛..MmCj˛ CM1/M1 C .MmCj˛ CM1/.M2 C 3M1//;

where M1 is constant and where we used j˛ � 1. To find the behaviour of M2,
again we use (143) and (159), with an obvious simplification of (158), to get the
estimate for M2 as

M2;t � 4KL˛.M1Cj˛M1 CM2
1 / � 4KL˛.M2M1 C 2M2

1 /:

Hence,M2 is bounded on its interval of existence. Then, from the second inequality
in (162), we see that MmCj˛ satisfies a linear inequality with bounded coefficients
and thus it also is bounded on I 0max: This in turn yields the boundedness of M0.

Hence, ku.�/k.˛/m is bounded and thus u exists globally.

To ascertain global existence of solutions emanating from any initial datum
ı
u2

X
.˛/
m we observe that sinceX.˛/

mCj˛ is dense inX.˛/
m , finite blow-up of such a solution

would contradict the theorem on continuous dependence of solutions on the initial
data. ut



Kinetic Models in Natural Sciences 197

References

1. Ch.D. Aliprantis, O. Burkinshaw, Positive Operators (Academic, Orlando, 1985)
2. T. Apostol, Mathematical Analysis (Addison-Wesley, Reading, 1957)
3. W. Arendt, Resolvent positive operators. Proc. Lond. Math. Soc. 54(3), 321–349 (1987)
4. W. Arendt, Vector-valued Laplace transforms and Cauchy problems. Israel J. Math. 59(3),

327–352 (1987)
5. W. Arendt, A. Rhandi, Perturbation of positive semigroups. Archiv der Mathematik 56(2),

107–119 (1991)
6. W. Arendt, Ch.J.K. Batty, M. Hieber, F. Neubrander, Vector-Valued Laplace Transforms and

Cauchy Problems (Birkäuser, Basel, 2001)
7. L. Arlotti, J. Banasiak, Strictly substochastic semigroups with application to conservative and

shattering solutions to fragmentation equations with mass loss. J. Math. Anal. Appl. 293(2),
693–720 (2004)

8. L. Arlotti, B. Lods, M. Mokhtar-Kharroubi, On perturbed substochastic semigroups in abstract
state spaces. Zeitschrift fur Analysis und ihre Anwendung 30(4), 457–495 (2011)

9. J.M. Ball, Strongly continuous semigroups, weak solutions, and the variation of constants
formula. Proc. Amer. Math. Soc. 63(2), 370–373 (1977)

10. J. Banasiak, Remarks on solvability of inhomogeneous abstract Cauchy problem for linear and
semilinear equations. Questiones Mathematicae 22(1), 83–92 (1999)

11. J. Banasiak, Kinetic-type models with diffusion: conservative and nonconservative solutions.
Transp. Theory Stat. Phys. 36(1–3), 43–65 (2007)

12. J. Banasiak, Transport processes with coagulation and strong fragmentation. Discrete Contin-
uous Dyn. Syst. Ser B 17(2), 445–472 (2012)

13. J. Banasiak, L. Arlotti, Positive Perturbations of Semigroups with Applications (Springer,
London, 2006)

14. J. Banasiak, M. Lachowicz, Around the Kato generation theorem for semigroups. Studia
Mathematica 179(3), 217–238 (2007)

15. J. Banasiak, W. Lamb, Coagulation, fragmentation and growth processes in a size structured
population. Discrete Continuous Dyn. Syst. Ser B 11(3), 563–585 (2009)

16. J. Banasiak, W. Lamb, Global strict solutions to continuous coagulation–fragmentation
equations with strong fragmentation. Proc. Roy. Soc. Edinburgh Sect. A 141, 465–480 (2011)

17. J. Banasiak, W. Lamb, Analytic fragmentation semigroups and continuous coagulation–
fragmentation equations with unbounded rates. J. Math. Anal. Appl. 391, 312–322 (2012)

18. J. Banasiak, P. Namayanja, Asymptotic behaviour of flows on reducible networks. Networks
and Heterogeneous Media 9(2), 197–216, (2014)

19. J. Banasiak, R.Y. M’pika Massoukou, A singularly perturbed age structured SIRS model with
fast recovery. Discrete Continuous Dyn. Syst. Ser B 19(8), 2383–2399 (2014)

20. M.K. Banda, Nonlinear hyperbolic systems of conservation laws and related applications, in
Evolutionary Equations with Applications to Natural Sciences, ed. by J. Banasiak, M. Mokhtar-
Kharroubi. Lecture Notes in Mathematics (Springer, Berlin, 2014)

21. J. Bang-Jensen, G. Gutin, Digraphs: Theory, Algorithms and Applications, 2nd edn. (Springer,
London, 2009)

22. C.J.K. Batty, D.W. Robinson, Positive one-parameter semigroups on ordered Banach spaces.
Acta Appl. Math. 2(3–4), 221–296 (1984)

23. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations (Springer,
New York, 2011)

24. S. Busenberg, M. Iannelli, H. Thieme, Global behavior of an age-structured epidemic. SIAM
J. Math. Anal. 22(4), 1065–1080 (1991)

25. B. Dorn, Semigroups for flows in infinite networks. Semigroup Forum 76, 341–356 (2008)
26. N. Dunford, J.T. Schwartz, Linear Operators, Part I: General Theory (Wiley, New York, 1988)
27. K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations (Springer,

New York, 1999)



198 J. Banasiak

28. E. Estrada, Dynamical and evolutionary processes on complex networks, in Evolutionary
Equations with Applications to Natural Sciences ed. by J. Banasiak, M. Mokhtar-Kharroubi.
Lecture Notes in Mathematics (Springer, Berlin, 2014)

29. H.O. Fattorini, The Cauchy Problem (Addison-Wesley, Reading, 1983)
30. G. Frosali, C. van der Mee, F. Mugelli, A characterization theorem for the evolution semigroup

generated by the sum of two unbounded operators. Math. Meth. Appl. Sci. 27(6), 669–685
(2004)

31. M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Applied Mathe-
matics Monographs, Consiglio Nazionale delle Ricerche C.N.R., vol. 7 (Giardini, Pisa, 1995)

32. H. Inaba, A semigroup approach to the strong ergodic theorem of the multistate stable
population process. Math. Popul. Stud. 1(1), 49–77 (1988)

33. T. Kato, On the semigroups generated by Kolmogoroff’s differential equations. J. Math. Soc.
Jap. 6, 1–15 (1954)

34. W. Lamb, Applying functional analytic techniques to evolution equations, in Evolutionary
Equations with Applications to Natural Sciences ed. by J. Banasiak, M. Mokhtar-Kharroubi.
Lecture Notes in Mathematics (Springer, Berlin, 2014)

35. P. Laurençot, On a class of continuous coagulation–fragmentation equations. J. Differ. Equ.
167, 245–274 (2000)

36. P. Laurençot, Weak compactness techniques and coagulation equations, in Evolutionary
Equations with Applications to Natural Sciences ed. by J. Banasiak, M. Mokhtar-Kharroubi.
Lecture Notes in Mathematics (Springer, Berlin, 2014)

37. J.L. Lions, E. Magenes, Nonhomogeneous Boundary Value Problems and Applications, vol. 1
(Springer, New York, 1972)

38. A. Lunardi, Analytic Semigoups and Optimal Regularity in Parabolic Problems (Birkhäuser,
Basel, 1995)

39. M. Mokhtar-Kharroubi, J. Voigt, On honesty of perturbed substochastic C0-semigroups in L1-
spaces. J. Operat. Theor. 64(1), 131–147 (2010)

40. R.Y. M’pika Massoukou, Age structured models of mathematical epidemiology, Ph.D. thesis,
UKZN, 2014

41. A. Pazy Semigroups of Linear Operators and Applications to Partial Differential Equations
(Springer, Berlin, 1983)

42. R. Showalter, Hilbert Space Methods for Partial Differential Equations (Longman, Harlow,
1977)

43. J. van Neerven, The Asymptotic Behaviour of Semigroups of Linear Operators (Birkhäuser,
Basel, 1996)

44. J. Voigt, On substochastic semigroups C0-semigroups and their generators. Transp. Theory
Stat. Phys. 16, 453–466 (1987)

45. J. Voigt, On resolvent positive operators and positive C0-semigroups on AL-spaces. Semigroup
Forum 38(2), 263–266 (1989)

46. G.F. Webb, Theory of Nonlinear Age Dependent Population Dynamics (Marcel Dekker,
New York, 1985)

47. K. Yosida, Functional Analysis, 5th edn. (Springer, Berlin, 1978)



Weak Compactness Techniques and Coagulation
Equations

Philippe Laurençot

1 Introduction

Coagulation is one of the driving mechanisms for cluster growth, by which clusters
(or particles) increase their sizes by successive mergers. Polymer and colloidal
chemistry, aerosol science, raindrops and soot formation, astrophysics (formation of
planets and galaxies), hematology, and animal herding are among the fields where
coagulation phenomena play an important role, see [18, 33, 37, 75] for instance.
This variety of applications has generated a long lasting interest in the modeling
of coagulation processes. One of the first contributions in that direction is due to
the Polish physicist Smoluchowski who derived a model for the evolution of a
population of colloidal particles increasing their sizes by binary coagulation while
moving according to independent Brownian motion [78, 79]. Neglecting spatial
variations he came up with the discrete Smoluchowski coagulation equations

df 1
dt

D �
1X
jD1

K.1; j /f1fj ; t > 0 ; (1)

df i
dt

D 1

2

i�1X
jD1

K.j; i � j /fi�j fj �
1X
jD1

K.i; j /fifj ; i � 2 ; t > 0 : (2)

Here the sizes of the particles are assumed to be multiples of a minimal size
normalized to one and the coagulation kernelK.i; j / accounts for the rate at which

Ph. Laurençot (�)
Institut de Mathématiques de Toulouse, UMR 5219, Université de Toulouse, CNRS, 31062
Toulouse Cedex 9, France
e-mail: laurenco@math.univ-toulouse.fr; philippe.laurencot@math.univ-toulouse.fr

© Springer International Publishing Switzerland 2015
J. Banasiak, M. Mokhtar-Kharroubi (eds.), Evolutionary Equations
with Applications in Natural Sciences, Lecture Notes in Mathematics 2126,
DOI 10.1007/978-3-319-11322-7__5

199

mailto:laurenco@math.univ-toulouse.fr
mailto:philippe.laurencot@math.univ-toulouse.fr


200 Ph. Laurençot

a particle of size i and a particle of size j encounter and merge into a single particle
of size i C j . In the derivation performed in [78, 79] K is computed to be

Ksm.x; y/ WD �
x1=3 C y1=3

� � 1

x1=3
C 1

y1=3

�
(3)

and then reduced to K0.x; y/ WD 2 to allow for explicit computations of solutions
to (1)–(2).

The function fi , i � 1, denotes the size distribution function of particles of size
i � 1 at time t � 0 and the meaning of the reaction terms in (1)–(2) is the following:
the second term on the right-hand side of (2) describes the depletion of particles of
size i by coalescence with other particles of arbitrary size while the first term on the
right-hand side of (2) accounts for the gain of particles of size i due to the merging
of a particle of size j 2 f1; � � � ; i � 1g and a particle of size i � j . Note that the
assumption of a minimal size entails that there is no formation of particles of size
1 by coagulation. Schematically, if Px stands for a generic particle of size x, the
coagulation events taken into account in the previous model are:

Px C Py �! PxCy : (4)

The formation of particles of size i corresponds to the choice .x; y/ D .j; i � j /

in (4) with i � 2 and 1 � j � i � 1 and the disappearance of particles of size i
to .x; y/ D .i; j / in (4) with i � 1 and j � 1. A salient feature of the elementary
coagulation reaction (4) is that no matter is lost and we shall come back to this point
later on.

Smoluchowski’s coagulation equation was later on extended to a continuous size
variable x 2 .0;1/ and reads [64]

@tf .t; x/ D 1

2

Z x

0

K.y; x � y/ f .t; y/ f .t; x � y/ dy

�
Z 1

0

K.x; y/ f .t; x/ f .t; y/ dy ; .t; x/ 2 .0;1/ � .0;1/ : (5)

In contrast to (1)–(2) which is a system of countably many ordinary differential
equations, Eq. (5) is a nonlinear and nonlocal integral equation but the two terms
of the right-hand side of (5) have the same physical meaning as in (1)–(2). The
coagulation kernelK.x; y/ still describes the likelihood that a particle of mass x >0
and a particle of mass y > 0 merge into a single particle of mass x C y according
to (4). Besides Smoluchowski’s coagulation kernel (3) [78, 79] and the constant
coagulation kernel K0.x; y/ D 2, other coagulation kernels have been derived in
the literature such as K.x; y/ D .ax C b/.ay C b/, a > 0, b � 0 [84], K.x; y/ D�
x1=3 C y1=3

�3
, K.x; y/ D �

x1=3 C y1=3
�2 ˇ̌

x1=3 � y1=3
ˇ̌
, and K.x; y/ D x˛yˇ C

xˇy˛ , ˛ � 1, ˇ � 1, the latter being rather a model case which includes the constant
coagulation kernel K0 (˛ D ˇ D 0), the additive one K1.x; y/ WD x C y (˛ D 0;

ˇ D 1), and the multiplicative one K2.x; y/ WD xy (˛ D ˇ D 1). Observe that
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this short list of coagulation kernels already reveals a wide variety of behaviours for
large values or small values of .x; y/ (bounded or unbounded) and on the diagonal
x D y (positive or vanishing).

A central issue is which predictions on the coagulation dynamics can be made
from the analysis of Smoluchowski’s coagulation equation (5) and to what extent
these predictions depend upon the properties of the coagulation kernel K . It was
uncovered several years ago that the evolution of (5) could lead to two different
dynamics according to the properties ofK and is closely related to the conservation
of matter already alluded to. More precisely, recall that there is neither loss nor gain
of matter during the elementary coagulation reaction (4) and this is expected to be
true as well during the time evolution of (5). In terms of f , the total mass of the
particles distribution at time t � 0 is

M1.f .t// WD
Z 1

0

xf .t; x/ dx

and mass conservation reads

M1.f .t// D M1.f .0// ; t � 0 ; (6)

provided M1.f .0//is finite. To check whether (6) is true or not, we first argue
formally and observe that, if # is an arbitrary function, multiplying (5) by #.x/
and integrating with respect to x 2 .0;1/ give, after exchanging the order of
integration,

d

dt

Z 1

0

#.x/f .t; x/ dx

D 1

2

Z 1

0

Z 1

0

Œ#.x C y/� #.x/ � #.y/�K.x; y/f .t; x/f .t; y/ dydx: (7)

Clearly, the choice #.x/ D x leads to a vanishing right-hand side of (7) and
provides the expected conservation of mass. However, one has to keep in mind
that the previous computation is only formal as it uses Fubini’s theorem without
justification. That some care is indeed needed stems from [52] where it is shown
that (6) breaks down in finite time for the multiplicative kernel K2.x; y/ D xy
for all non-trivial solutions. An immediate consequence of this result is that the
mass-conserving solution constructed on a finite time interval in [57, 58] cannot be
extended forever. Soon after the publication of [52] a particular solution to (1)–(2)
was constructed for K.i; j / D .ij/˛ , ˛ 2 .1=2; 1/ which fails to satisfy (6) for
all times [50]. At the same time, it was established in [53, 90] that the condition
K.i; j / � �.i C j / was sufficient for (1)–(2) to have global mass-conserving
solutions, that is, solutions satisfying (6). Thanks to these results, a distinction was
made between the so-called non-gelling kernels for which all solutions to (1)–(2)
and (5) satisfy (6) and gelling kernels for which (6) is infringed in finite time for all
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non-trivial solutions. The conjecture stated in the beginning of the 1980s is that a
coagulation kernel satisfying

K.x; y/ � �.2C x C y/ ; .x; y/ 2 .0;1/ � .0;1/ ; (8)

is non-gelling while a coagulation kernel satisfying

K.x; y/ � �.xy/˛ ; ˛ >
1

2
; .x; y/ 2 .0;1/ � .0;1/ ; (9)

is gelling [24, 38, 53]. Following the contributions [53, 90] the conjecture for
non-gelling coagulation kernels (8) is completely solved in [4] for the discrete
coagulation equations (1)–(2), an alternative proof being given in [45]. It took
longer for this conjecture to be solved for the continuous coagulation equation (5),
starting from the pioneering works [1, 61] for bounded kernels and continuing with
[20, 46, 81, 83]. Of particular importance is the contribution by Stewart [81] where
weak L1-compactness techniques were used for the first time and turned out to
be a very efficient tool which was extensively used in subsequent works. As for
the conjecture for gelling kernels (9), it was solved rather recently in [26, 39].
An intermediate step is the existence of solutions to (1)–(2) and (5) with non-
increasing finite mass, that is, satisfying M1.f .t// � M1.f .0// for t � 0, see
[23, 44, 46, 52, 70, 80] and the references therein.

The purpose of these notes is twofold: on the one hand, we collect in Sect. 2
several results on the weak compactness in L1-spaces which are scattered through-
out the literature and which have proved useful in the analysis of (5). We recall
in particular the celebrated Dunford–Pettis theorem (Sect. 2.2) which characterizes
weakly compact sequences inL1 with the help of the notion of uniform integrability
(Sect. 2.3). Several equivalent forms of the latter are given, including a refined
version of the de la Vallée Poussin theorem [14, 16, 49] (Sect. 2.4). We also point
out consequences of the combination of almost everywhere convergence and weak
convergence (Sect. 2.5). On the other hand, we show in Sect. 3 how the results stated
in Sect. 2 apply to Smoluchowski’s coagulation equation (5) and provide several
existence results including that of mass-conserving solutions (Sect. 3.2). For the
sake of completeness, we supplement the existence results with the occurrence of
gelation in finite time for gelling kernels [26] (Sect. 3.3) and with uniqueness results
(Sect. 3.4). For further information on coagulation equations and related problems
we refer to the books [9, 19] and the survey articles [2, 48, 51, 89].

We conclude the introduction with a few words on related interesting issues: we
focus in these notes on the deterministic approach to the modeling of coagulation
and leave aside the stochastic approach which has been initiated in [54, 55, 78, 79]
and further developed in [2,8,9,15,22,23,29,39,40,70] and the references therein.

Another important line of research is the dynamics predicted by Smoluchowski’s
coagulation equation (5) for large times for homogeneous non-gelling kernels (8)
and at the gelation time for homogeneous gelling kernels (9). In both cases the
expected behaviour is of self-similar form (except for some particular kernels with
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homogeneity 1) but the time and mass scales are only well identified for non-gelling
kernels and for the multiplicative kernel K2.x; y/ D xy, see the survey articles
[51, 65, 86] and the references therein. Existence of mass-conserving self-similar
solutions for a large class of non-gelling kernels have been constructed recently [28,
30] and their properties studied in [11, 25, 31, 60, 66]. Still for non-gelling kernels,
the existence of other self-similar solutions (with a different scaling and possibly
infinite mass) is uncovered in [8] for the additive kernel K1.x; y/ D x C y and
in [62] for the constant kernel K0.x; y/ D 2, both results relying on the use of
the Laplace transform which maps (5) either to Burgers’ equation or to an ordinary
differential equation. Since the use of the Laplace transform has not proved useful
for other coagulation kernels, a much more involved argument is needed to cope
with a more general class of kernels [67, 68].

Finally, coagulation is often associated with the reverse process of fragmen-
tation and there are several results available for coagulation-fragmentation equa-
tions, including existence, uniqueness, mass conservation, and gelation. Actually,
the approach described below in Sect. 3 works equally well for coagulation-
fragmentation equations under suitable assumptions on the fragmentation rates.
Besides the survey articles [19,48,89], we refer for instance to [4,12,39,40,45,80]
for the discrete coagulation-fragmentation equations and to [1,5,6,20,23,26,27,34–
36,43,44,46,56,61,81,82] for the continuous coagulation-fragmentation equations.

2 Weak Compactness in L1

Let .˝;B; �/ be a �-finite measure space. For p 2 Œ1;1�, Lp.˝/ is the usual
Lebesgue space and we denote its norm by k � kp . If p 2 .1;1/, the reflexivity
of the space Lp.˝/ warrants that any bounded sequence in Lp.˝/ has a weakly
convergent subsequence. In the same vein, any bounded sequence in L1.˝/ has
a weakly-? convergent subsequence by a consequence of the Banach–Alaoglu
theorem [10, Corollary 3.30] sinceL1.˝/ is the dual of the separable spaceL1.˝/.
A peculiarity of L1.˝/ is that a similar property is not true as a consequence of
the following result [91, Appendix to Chap. V, Sect. 4], the space L1.˝/ being not
reflexive.

Theorem 1 (Eberlein–Šmulian) Let E be a Banach space such that every
bounded sequence has a subsequence converging in the �.E;E 0/-topology. Then E
is reflexive.

2.1 Failure of Weak Compactness in L1

In a simpler way, a bounded sequence in L1.˝/ need not be weakly sequentially
compact in L1.˝/ as the following examples show:
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Concentration Consider f 2 C1.RN / such that f � 0, supp f � B.0; 1/ WD
fx 2 R

N W jxj < 1g, and kf k1 D 1. For n � 1 and x 2 R
N , we define

fn.x/ D nNf .nx/ and note that

kfnk1 D kf k1 D 1 : (10)

Thus .fn/n�1 is bounded in L1.RN /. Next, the function f being compactly
supported, we have

lim
n!1fn.x/ D 0 for x ¤ 0 :

The only possible weak limit of .fn/n�1 in L1.RN / would then be zero which
contradicts (10). Consequently, .fn/n�1 has no cluster point in the weak topology
of L1.RN /. In fact, .fn/n�1 converges narrowly towards a bounded measure, the
Dirac mass, that is,

lim
n!1

Z
RN

fn.x/  .x/ dx D  .0/ for all  2 BC.RN / ;

where BC.RN / denotes the space of bounded and continuous functions on R
N .

The sequence .fn/n�1 is not weakly sequentially compact in L1.RN / because it
concentrates in the neighbourhood of x D 0. Indeed, for r > 0, we have

Z
fjxj�rg

fn.x/ dx D
Z

fjxj�nrg
f .x/ dx �!

n!1 1 ;

and
Z

fjxj�rg
fn.x/ dx D

Z
fjxj�nrg

f .x/ dx �!
n!1 0 :

Vanishing For n � 1 and x 2 R, we set fn.x/ D exp .�jx � nj/. Then

kfnk1 D 2 ; (11)

and .fn/n�1 is bounded in L1.R/. Next,

lim
n!1fn.x/ D 0 for all x 2 R ;

and we argue as in the previous example to conclude that .fn/n�1 has no cluster
point for the weak topology ofL1.R/. In that case, the sequence .fn/n�1 “escapes
at infinity” in the sense that, for every r > 0,

lim
n!1

Z 1

r

fn.x/ dx D 2 and lim
n!1

Z r

�1
fn.x/ dx D 0 :
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The above two examples show that the mere boundedness of a sequence in
L1.˝/ does not guarantee at all its weak sequential compactness and additional
information is thus required for the latter to be true. It actually turns out that, roughly
speaking, the only phenomena that prevent a bounded sequence in L1.˝/ from
being weakly sequentially compact in L1.˝/ are the concentration and vanishing
phenomena described in the above examples. More precisely, a necessary and
sufficient condition for the weak sequential compactness in L1.˝/ of a bounded
sequence in L1.˝/ is given by the Dunford–Pettis theorem which is recalled below.

2.2 The Dunford–Pettis Theorem

We first introduce the modulus of uniform integrability of a bounded subset F of
L1.˝/ which somehow measures how elements of F concentrate on sets of small
measures.

Definition 2 Let F be a bounded subset of L1.˝/. For " > 0, we set

�fF ; "g WD sup

�Z
A

jf j d� W f 2 F ; A 2 B ; �.A/ � "

�
; (12)

and we define the modulus of uniform integrability �fF g of F by

�fF g WD lim
"!0

�fF ; "g D inf
">0
�fF ; "g : (13)

With this definition, we can state the Dunford–Pettis theorem, see [7, Part 2,
Chap. VI, Sect. 2], [16, pp. 33–44], and [21, IV.8] for instance.

Theorem 3 Let F be a subset of L1.˝/. The following two statements are
equivalent:

(a) F is relatively weakly sequentially compact in L1.˝/.
(b) F is a bounded subset of L1.˝/ satisfying the following two properties:

�fF g D 0 ; (14)

and, for every " > 0, there is ˝" 2 B such that �.˝"/ < 1 and

sup
f 2F

Z
˝n˝"

jf j d� � ": (15)

As already mentioned, the two conditions required in Theorem 3b to guarantee
the weak sequential compactness of F in L1.˝/ exclude the concentration and
vanishing phenomena: indeed, the condition (14) implies that no concentration can
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take place while (15) prevents the escape to infinity which arises in the vanishing
phenomenon.

Remark 4 The condition (15) is automatically fulfilled as soon as �.˝/ < 1 (with
˝" D ˝ for each " > 0).

Thanks to the Dunford–Pettis theorem, the weak sequential compactness of a
subset of L1.˝/ can be checked by investigating the behaviour of its elements
on measurable subsets of ˝ . However, the characteristic functions of these sets
being not differentiable, applying the Dunford–Pettis theorem in the field of partial
differential equations might be not so easy. Indeed, as (partial) derivatives are
involved, test functions are usually required to be at least weakly differentiable (or
in a Sobolev space) which obviously excludes characteristic functions. Fortunately,
an alternative formulation of the condition �fF g D 0 is available and turns out to
be more convenient to use in this field.

2.3 Uniform Integrability in L1

Definition 5 A subset F of L1.˝/ is said to be uniformly integrable if F is a
bounded subset of L1.˝/ such that

lim
c!1 sup

f 2F

Z
fjf j�cg

jf j d� D 0 : (16)

Before relating the uniform integrability property with the weak sequential
compactness in L1.˝/, let us give some simple examples of uniformly integrable
subsets:

• If F is a bounded subset of Lp.˝/ for some p 2 .1;1/, then F is uniformly
integrable as

sup
f 2F

Z
fjf j�cg

jf j d� � 1

cp�1 sup
f 2F

Z
fjf j�cg

jf jp d� � 1

cp�1 sup
f 2F

fkf kppg :

• If f0 2 L1.˝/, the set F WD ˚
f 2 L1.˝/ W jf j � jf0j �� a.e.

�
is uniformly

integrable.
• If F is a uniformly integrable subset of L1.˝/, then so is the set F� defined by

F� WD fjf j W f 2 F g.
• If F and G are uniformly integrable subsets of L1.˝/, then so is the set F C G

defined by F C G WD ff C g W .f; g/ 2 F � G g.

We next state the connection between the Dunford–Pettis theorem and the
uniform integrability property.
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Proposition 6 Let F be a subset of L1.˝/. The following two statements are
equivalent:

(i) F is uniformly integrable.
(ii) F is a bounded subset of L1.˝/ such that �fF g D 0.

In other words, the uniform integrability property prevents the concentration on
sets of arbitrary small measure. Proposition 6 is a straightforward consequence of
the following result [77].

Lemma 7 Let F be a bounded subset of L1.˝/. Then

�fF g D lim
c!1 sup

f 2F

Z
fjf j�cg

jf j d� : (17)

Proof We put

�? WD lim
c!1 sup

f 2F

Z
fjf j�cg

jf j d� D inf
c�0 sup

f 2F

Z
fjf j�cg

jf j d� :

We first establish that �fF g � �?. To this end, consider " > 0, A 2 B, g 2 F ,
and c 2 .0;1/. If �.A/ � ", we have

Z
A

jgj d� D
Z
A\fjgj<cg

jgj d�C
Z

fA\jgj�cg
jgj d�

� c �.A/C
Z

fjgj�cg
jgj d�

� c "C sup
f 2F

Z
fjf j�cg

jf j d� ;

whence

�fF ; "g � c "C sup
f 2F

Z
fjf j�cg

jf j d� :

Passing to the limit as " ! 0 leads us to

�fF g � sup
f 2F

Z
fjf j�cg

jf j d�

for all c 2 .0;1/. Letting c ! 1 readily gives the inequality �fF g � �?.
We now prove the converse inequality. For that purpose, we put

� WD sup
f 2F

fkf k1g < 1 ;
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and observe that

� .fx 2 ˝ ; jf .x/j � cg/ � �

c

for all f 2 F and c > 0. Consequently,

sup
f 2F

� .fx 2 ˝ ; jf .x/j � cg/ � �

c
;

from which we deduce that

�? � sup
f 2F

Z
fjf j�cg

jf j d� � �

�
F ;

�

c

�
:

Since the right-hand side of the previous inequality converges towards �fF g as
c ! 1, we conclude that �? � �fF g and complete the proof of the lemma. ut

Owing to Proposition 6, the property �fF g D 0 can now be checked by studying
the sets where the elements of F reach large values. This turns out to be more
suitable in the field of partial differential equations as one can use the functions
r 7�! .r � c/C WD max f0; r � cg. For instance, if ˝ is an open set of RN and u
is a function in the Sobolev space W 1;p.˝/ for some p 2 Œ1;1�, then .u � c/C
has the same regularity with r.u � c/C D sign..u � c/C/ru. This allows one in
particular to use .u � c/C as a test function in the weak formulation of nonlinear
second order elliptic and parabolic equations and thereby obtain useful estimates. A
broader choice of functions is actually possible as we will see in the next theorem.

2.4 The de la Vallée Poussin Theorem

Theorem 8 Let F be a subset of L1.˝/. The following two statements are
equivalent:

(i) F is uniformly integrable.
(ii) F is a bounded subset of L1.˝/ and there exists a convex function ˚ 2

C1.Œ0;1// such that ˚.0/ D ˚ 0.0/ D 0, ˚ 0 is a concave function,

˚ 0.r/ > 0 if r > 0; (18)

lim
r!1

˚.r/

r
D lim

r!1˚ 0.r/ D 1; (19)

and

sup
f 2F

Z
˝

˚ .jf j/ d� < 1: (20)
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When F is a sequence of integrable functions .fn/n�1, Theorem 8 is established
by de la Vallée Poussin [14, pp. 451–452] (without the concavity of ˚ 0 and the
regularity of ˚) and is stated as follows: a sequence .fn/n�1 is uniformly integrable
(in the sense that the subset ffn W n � 1g of L1.˝/ is uniformly integrable) if and
only if there is a non-decreasing function ' W Œ0;1/ ! Œ0;1/ such that '.r/ ! 1
as r ! 1 and

sup
n�1

Z
˝

'.jfnj/ jfnj d� < 1 :

This result clearly implies Theorem 8. Indeed, if ˚ denotes the primitive of '
satisfying ˚.0/ D 0, the function ˚ is clearly convex and the convexity inequality
˚.r/ � r '.r/ ensures that .˚.jfnj//n�1 is bounded in L1.˝/. When �.˝/ < 1,
a proof of Theorem 8 may also be found in [16] and [72, Theorem I.1.2] but the first
derivative of ˚ is not necessarily concave. As we shall see in the examples below,
the possibility of choosing ˚ 0 concave turns out to be helpful. The version of the
de la Vallée Poussin theorem stated in Theorem 8 is actually established in [49].
The proof given below is slightly different from those given in the above mentioned
references and relies on the following lemma:

Lemma 9 Let˚ 2 C1.Œ0;1// be a non-negative and convex function with˚.0/ D
˚ 0.0/ D 0 and consider a non-decreasing sequence of integers .nk/k�0 such that
n0 D 1, n1 � 2, and nk ! 1 as k ! 1. Given f 2 L1.˝/ and k � 1, we have
the following inequality:

Z
fjf j<nkg

˚.jf j/ d� � ˚ 0.1/
Z
˝

jf j d�

C
k�1X
jD0

�
˚ 0.njC1/ �˚ 0.nj /

� Z
fjf j�nj g

jf j d�: (21)

Proof As ˚ is convex with ˚ 0.0/ D 0, ˚ 0 is non-negative and non-decreasing and

˚.r/ � r ˚ 0.r/; r 2 Œ0;1/ :

Fix k � 1. We infer from the properties of ˚ that

Z
fjf j<nkg

˚.jf j/ d� �
Z

fjf j<nkg
˚ 0.jf j/ jf j d�

D
Z

f0�jf j<1g
˚ 0.jf j/ jf j d�C

k�1X
jD0

Z
fnj�jf j<njC1g

˚ 0.jf j/ jf j d�
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� ˚ 0.1/
Z

f0�jf j<1g
jf j d�C

k�1X
jD0

˚ 0.njC1/
Z

fnj�jf j<njC1g
jf j d�

D ˚ 0.1/
Z

f0�jf j<1g
jf j d�C

k�1X
jD0

˚ 0.njC1/
Z

fjf j�nj g
jf j d�

�
kX

jD1
˚ 0.nj /

Z
fjf j�nj g

jf j d�

� ˚ 0.1/
Z
˝

jf j d�

C
k�1X
jD0

�
˚ 0.njC1/ �˚ 0.nj /

� Z
fjf j�nj g

jf j d� ;

whence (21). ut
The inequality (21) gives some clue towards the construction of a function ˚

fulfilling the requirements of Theorem 8. Indeed, it clearly follows from (21) that,
in order to estimate the norm of ˚.f / in L1.˝/ uniformly with respect to f 2 F ,
it is sufficient to show that one can find a function ˚ and a sequence .nk/k�0 such
that the sum in the right-hand side of (21) is bounded independently of f 2 F and
k � 1. Observing that this sum is bounded from above by the series

1X
jD0

�
˚ 0.njC1/ �˚ 0.nj /

�
Xj (22)

with

Xj WD sup
f 2F

Z
fjf j�nj g

jf j d� ; j � 0 ;

and that Xj ! 0 as j ! 1 by (16), the proof of Theorem 8 amounts to showing
that one can find ˚ and .nk/k�0 such that the series (22) converges.

Proof of Theorem 8 (i) H) (ii). Consider two sequences of positive real numbers
.˛m/m�0 and .ˇm/m�0 satisfying

1X
mD0

˛m D 1 and
1X
mD0

˛mˇm < 1: (23)
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It then follows from (16) that there exists a non-decreasing sequence of integers
.Nm/m � 0 such that N0 D 1, N1 � 2 and

NmC1 �
�
1C ˛m

˛m�1

�
Nm; m � 1 ; ; (24)

sup
f 2F

Z
fjf j�Nmg

jf j d� � ˇm; m � 1 : (25)

Let us now construct the function ˚ and first look for a C1-smooth function
which is piecewise quadratic on each interval ŒNm;NmC1�. More precisely, we
assume that, for eachm � 0,

˚ 0.r/ D Am r C Bm; r 2 ŒNm;NmC1� ;

the real numbersAm andBm being yet to be determined. In order that such a function
˚ fulfills the requirements of Theorem 8, Am and Bm should enjoy the following
properties:

(c1) .Am/m�0 is a non-increasing sequence of positive real numbers, which implies
the convexity of ˚ and the concavity of ˚ 0,

(c2) AmC1 NmC1CBmC1 D Am NmC1CBm,m � 0, which ensures the continuity
of ˚ 0,

(c3) Am Nm C Bm ! 1 as m ! 1, so that (19) is satisfied,
(c4) the series

P
Am .NmC1 �Nm/ ˇm converges, which, together with (25),

ensures that the right-hand side of (21) is bounded uniformly with respect to
f 2 F .

Let us now prove that the previously constructed sequence .Nm/m�0 allows us to
find .Am;Bm/ complying with the four constraints (c1)–(c4). According to (23) and
(c4), a natural choice for Am is

Am WD ˛m

NmC1 �Nm
; m � 0 :

The positivity of .˛m/ and (24) then ensure that the sequence .Am/m�0 satisfies (c1).
Next, (c2) also reads

AmC1 NmC1 C BmC1 D Am Nm CBm C ˛m ;

from which we deduce that

Am Nm CBm D
m�1X
iD0

˛i C A0 N0 C B0 :
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The above identity allows us to determine the sequence .Bm/m�0 by

B0 WD 0 and Bm WD
m�1X
iD0

˛i C A0 N0 �Am Nm ; m � 1 ;

and (c3) is a straightforward consequence of (23).
We are now in a position to complete the definition of ˚ . We set

˚ 0.r/ WD

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

˛0

N1 �N0
r for r 2 Œ0; N1/ ;

˛m .r �Nm/

NmC1 �Nm
C

m�1X
iD0

˛i C ˛0

N1 �N0
for r 2 ŒNm;NmC1/ ;

m � 1;

and

˚.r/ WD
Z r

0

˚ 0.s/ ds; r 2 Œ0;1/ :

Clearly ˚.0/ D ˚ 0.0/ D 0 and, for m � 1,

lim
r!Nm�˚

0.r/ D ˚ 0.Nm/ D
m�1X
iD0

˛i C ˛0

N1 �N0
: (26)

Consequently, ˚ 0 2 C.Œ0;1// and thus ˚ 2 C1.Œ0;1//. Moreover, ˚ 0 is
differentiable in .0;N1/ and in each open interval .Nm;NmC1/ with

˚ 00.r/ D

8̂
<
:̂

˛0

N1 �N0
for r 2 .0;N1/ ;

˛m

NmC1 �Nm
for r 2 .Nm;NmC1/; m � 1 ;

and (24) ensures that ˚ 00 is non-negative and non-increasing, whence the convexity
of ˚ and the concavity of ˚ 0. We then deduce from the monotonicity of ˚ 0, (23),
and (26) that ˚ 0 fulfills (18) and

lim
r!1˚ 0.r/ D 1 :

The property (19) then follows by the L’Hospital rule.
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We finally infer from (21), (25), and (26) that, for f 2 F and m � 1, we have

Z
fjf j<Nmg

˚.jf j/ d� � ˚ 0.1/
Z
˝

jf j d�C
m�1X
jD0

˛j ˇj

� ˚ 0.1/ sup
g2F

Z
˝

jgj d�C
1X
jD0

˛j ˇj ;

and the right-hand side of the above inequality is finite by (23) and the boundedness
of F in L1.˝/. We let m ! 1 in the above inequality and conclude that
f˚.jf j/ W f 2 F g is bounded in L1.˝/.

We next modify the function ˚ constructed above in order to improve its
regularity. To this end, we define ˚1 2 C1.R/ by

˚1.r/ WD ˚.r/ for r � 0 and ˚1.r/ D ˚ 00.0/
r2

2
for r � 0 :

As ˚ 0
1.r/ � 0 D ˚ 0

1.0/ for r � 0, ˚ 0
1 is non-decreasing so that ˚1 is convex.

Similarly, ˚ 00
1 .r/ D ˚ 00.0/ for r � 0, which guarantees that ˚ 00

1 is non-increasing
and thus the concavity of ˚ 0

1.
Consider next # 2 C1

0 .R/ such that

# � 0 ; supp # D .�1; 1/ ;
Z
R

#.r/ dr D 1 :

We define a function � by

�.r/ WD .#  ˚1/.r/ � .#  ˚1/.0/� .#  ˚ 0
1/.0/ r ; r 2 R :

Clearly, � 2 C1.R/ satisfies �.0/ D � 0.0/ D 0. Next, thanks to the non-
negativity of # , the convexity of ˚1 and the concavity of ˚ 0

1 imply the convexity
of � and the concavity of � 0. Moreover, we have � 0.r/ > 0 for r > 0. Indeed,
assume for contradiction that � 0.r0/ D 0 for some r0 > 0. Then

0 D � 0.r0/ D
Z
R

#.s/
�
˚ 0
1.r0 � s/� ˚ 0

1.�s/
�

ds ;

from which we infer that #.s/
�
˚ 0
1.r0 � s/� ˚ 0

1.�s/
� D 0 for s 2 R by the non-

negativity of # and the monotonicity of ˚ 0
1. Taking s D 0, we conclude that 0 D

˚ 0
1.r0/ D ˚ 0.r0/, and a contradiction. Consequently, � fulfills (18).
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We next check that � is superlinear at infinity. To this end, we consider r � 2

and deduce from the monotonicity of ˚ 0
1 and (19) that

� 0.r/ D
Z 1

�1
#.s/ ˚ 0

1.r � s/ ds � .#  ˚ 0
1/.0/

� ˚ 0
1.r � 1/

Z 1

�1
#.s/ ds � .#  ˚ 0

1/.0/

� ˚ 0.r � 1/ � .#  ˚ 0
1/.0/ �!

r!1 1 ;

and we use again the L’Hospital rule to conclude that � fulfills (19).
Let us finally show that there is a constant C > 0 such that

�.r/ � C .r C ˚.r// ; r � 0 : (27)

Indeed, either r > 1 and r � s � 0 for all s 2 .�1; 1/ or r 2 Œ0; 1�. In the former
case, as ˚1 is non-decreasing in Œ0;1/ and non-negative in R, we have

�.r/ �
Z 1

�1
#.s/ ˚1.r C 1/ ds � r

Z 1

�1
#.s/ ˚ 0

1.�s/ ds

� ˚.r C 1/C sup
Œ�1;1�

fj˚ 0
1jg r :

On the other hand, the concavity of˚ 0, the convexity of˚ , and the property˚.0/ D
˚ 0.0/ D 0 entail that

˚.r/ D
Z r

0

˚ 0
�

s

r C 1
.r C 1/

�
ds �

Z r

0

s

r C 1
˚ 0.r C 1/ ds

D r2

2.r C 1/2
.r C 1/˚ 0.r C 1/ � ˚.r C 1/

4
:

Combining the previous two estimates gives (27) for r � 1. When r 2 Œ0; 1�, the
convexity of ˚1 and the concavity of ˚ 0

1 ensure that

�.r/ �
Z 1

�1
#.s/ .r � s/ ˚ 0

1.r � s/ ds � r

Z 1

�1
#.s/ ˚ 0

1.�s/ ds

� r

Z 1

�1
#.s/

�
˚ 0
1.r � s/� ˚ 0

1.�s/
�

ds

� r

Z 1

�1
#.s/ r ˚ 00

1 .�s/ ds � r ˚ 00.0/ ;

whence (27).
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Now, since F and f˚.jf j/ W f 2 F g are two bounded subsets of L1.˝/, the
boundedness of f�.jf j/ W f 2 F g in L1.˝/ readily follows from (27), which
completes the proof of (i) H) (ii) in Theorem 8.

(ii) H) (i). Let c 2 .0;1/. Owing to the convexity of ˚ , the function r 7!
˚.r/=r is non-decreasing and

sup
f 2F

Z
fjf j�cg

jf j d� D sup
f 2F

Z
fjf j�cg

jf j
˚.jf j/ ˚.jf j/ d�

� c

˚.c/
sup
f 2F

Z
˝

˚.jf j/ d� :

It then follows from (19) that

lim
c!1 sup

f 2F

Z
fjf j�cg

jf j d� D 0 ;

whence (16). ut
Remark 10 Notice that the sequences .˛m/ and .ˇm/ used in the proof of Theorem 8
can be a priori chosen arbitrarily provided they fulfill the condition (23). In
particular, with the choice ˛m D 1, the above construction of the function ˚ is
similar to that performed in [49].

For further use, we introduce the following notation:

Definition 11 We define CVP as the set of convex functions˚ 2 C1.Œ0;1// with
˚.0/ D ˚ 0.0/ D 0 and such that ˚ 0 is a concave function satisfying (18). The set
CVP;1 denotes the subset of functions in CVP satisfying the additional property (19).

A first consequence of Theorem 8 is that every function in L1.˝/ enjoys an
additional integrability property in the following sense.

Corollary 12 Let f 2 L1.˝/. Then there is a function ˚ 2 CVP;1 such that
˚.jf j/ 2 L1.˝/.
Proof Clearly F D ff g fulfills the assertion (i) of Theorem 8. ut
Remark 13 If �.˝/ < 1, we have

[
p>1

Lp.˝/ � L1.˝/ ;

but this inclusion cannot be improved to an equality in general. For instance, the
function f W x 7�! x�1 .ln x/�2 belongs to L1.0; 1=2/ but f 62 Lp.0; 1=2/ as soon
as p > 1. A consequence of Corollary 12 is that L1.˝/ is the union of the Orlicz
spaces L˚ , see [72] for instance.
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Let us mention here that Corollary 12 is also established in [42, pp. 60–61],
[63, Proposition A1] and [73], still without the requirement that ˚ has a concave
first derivative. However, the convex function˚ constructed in [63, Proposition A1]
and [73] enjoys the properties (28) and (31) stated below, respectively. In fact, it
follows clearly from the proof of Theorem 8 that there is some freedom in the
construction of the function ˚ and this fact has allowed some authors to endow
it with additional properties according to their purpose. In particular, the concavity
of ˚ 0 is useful to establish the existence of weak solutions to reaction-diffusion
systems [71], while the property (28) is used to study the spatially homogeneous
Boltzmann equation [63] and the property (31) to show the existence of solutions
to the spatially inhomogeneous BGK equation [73]. The possibility of choosing ˚ 0
concave is also useful in the proof of the existence of solutions to the continuous
coagulation-fragmentation equation as we shall see in Sect. 3. We now check that
all these properties are actually a consequence of the concavity of ˚ 0.

Proposition 14 Consider ˚ 2 CVP . Then

r 7! ˚.r/

r
is concave in .0;1/ ; (28)

˚.r/ � r ˚ 0.r/ � 2 ˚.r/ ; (29)

s ˚ 0.r/ � ˚.r/C ˚.s/ ; (30)

˚.�r/ � max f1; �2g ˚.r/ ; (31)

.r C s/ .˚.r C s/ �˚.r/ �˚.s// � 2 .r ˚.s/C s ˚.r// ; (32)

for r � 0, s � 0, and � � 0.

Proof The inequalities (29)–(32) being obviously true when r D 0 or s D 0, we
consider r > 0, s > 0, and t 2 Œ0; 1�. Thanks to the concavity of ˚ 0, we have

˚.tr C .1 � t/s/

t r C .1 � t/s D
Z 1

0

˚ 0.z.t r C .1 � t/s// dz

�
Z 1

0

�
t ˚ 0.zr/C .1 � t/ ˚ 0.zs/

�
dz

� t
˚.r/

r
C .1 � t/

˚.s/

s
;

whence (28).
Next, the convexity of ˚ ensures that

˚.0/�˚.r/ � �r ˚ 0.r/ ; r � 0 ;
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from which the first inequality in (29) follows. Similarly, we deduce from (28) that,
for r � 0, we have

˚ 0.0/� ˚.r/

r
� �r

�
˚ 0.r/
r

� ˚.r/

r2

�

�˚.r/
r

� �˚ 0.r/C ˚.r/

r

r ˚ 0.r/ � 2 ˚.r/ ;

which completes the proof of (29).
Combining the convexity of ˚ with (29) gives

s˚ 0.r/ D .s � r/˚ 0.r/C r˚ 0.r/ � ˚.s/ �˚.r/C 2˚.r/

for r � 0 and s � 0, hence (30).
Consider now r � 0 and � 2 Œ0; 1�. We infer from the monotonicity (18) of ˚

that

˚.�r/ � ˚.r/ � max f1; �2g ˚.r/ :

Next, for r � 0, s 2 Œ0; r�, and � > 1, it follows from the concavity and non-
negativity of ˚ 0 that

˚ 0.s/ D ˚ 0
�
�s

�
C
�
1 � 1

�

�
0

�
� ˚ 0.�s/

�
:

We integrate this inequality with respect to s over .0; r/ to obtain

˚.r/ � ˚.�r/

�2
;

and complete the proof of (31).
Finally, let r � 0, s � 0, � 2 Œ0; r�, and � 2 Œ0; s�. We infer from the concavity

of ˚ 0 that

˚ 0.�C �/ � ˚ 0.�/ � � ˚ 00.�C �/ and ˚ 0.�C �/ �˚ 0.�/ � � ˚ 00.�C �/ ;

whence

.� C �/ ˚ 00.�C �/C 2 ˚ 0.�C �/ � 4 ˚ 0.�C �/ �˚ 0.�/� ˚ 0.�/ : (33)

We use once more the concavity of ˚ 0 to obtain

˚ 00.�/ � ˚ 00.� C �/ ; � � 0 :



218 Ph. Laurençot

Integrating this inequality with respect to � over .0; �/ we conclude that

˚ 0.�C �/ � ˚ 0.�/C ˚ 0.�/ ; (34)

since ˚ 0.0/ D 0. It next follows from (33) and (34) that

.� C �/ ˚ 00.�C �/C 2 ˚ 0.�C �/ � 3
�
˚ 0.�/C ˚ 0.�/

�
:

As

.r C s/ ˚.r C s/ � r ˚.r/ � s ˚.s/

D
Z r

0

Z s

0

˚
.�C �/ ˚ 00.�C �/C 2 ˚ 0.�C �/

�
d�d� ;

the previous inequality gives the upper bound

.r C s/ ˚.r C s/ � r ˚.r/ � s ˚.s/ � 3

Z r

0

Z s

0

�
˚ 0.�/C˚ 0.�/

�
d�d�

D 3 .s ˚.r/C r ˚.s// ;

which we combine with

.r C s/ .˚.r C s/ �˚.r/ � ˚.s// D .r C s/ ˚.r C s/� r ˚.r/� s ˚.s/

�s ˚.r/ � r ˚.s/ ;
to obtain (32). ut
Remark 15 The property (31) implies that ˚ enjoys the so-called 2-condition,
namely, there exists ` > 1 such that ˚.2r/ � ` ˚.r/ for r � 0. It also follows
from (29) that ˚ grows at most quadratically at infinity.

2.5 Weak Convergence in L1 and a.e. Convergence

There are several connections between weak convergence in L1 and almost
everywhere convergence. The combination of both is actually equivalent to the
strong convergence in L1.˝/ according to Vitali’s convergence theorem, see [21,
Theorem III.3.6] for instance.

Theorem 16 (Vitali) Consider a sequence .fn/n�1 in L1.˝/ and a function f 2
L1.˝/ such that .fn/n�1 converges�-a.e. towards f . The following two statements
are equivalent:

(i) .fn/n�1 converges (strongly) towards f in L1.˝/.
(ii) The set ffn W n � 1g is bounded in L1.˝/ and fulfills the conditions (14)

and (15).
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In other words, the weak convergence in L1.˝/ coupled with the �-almost
everywhere convergence imply the convergence in L1.˝/.

Proof As the proof that (i) H) (ii) is obvious, we turn to the proof of the converse
and fix " > 0. On the one hand, we deduce from (15) and the integrability of f that
there exist ˝" 2 B with �.˝"/ < 1 such that

sup
n�1

Z
˝n˝"

.jfnj C jf j/ d� � " :

On the other hand, since f 2 L1.˝/ and .fn/n�1 is bounded in L1.˝/, we have

Z
fjfn�f j�Rg

jfn � f j d� � 1

R

 
kf k1 C sup

m�1
fkfmk1g

!
for R > 0 :

Then,

kfn � f k1 �
Z
˝n˝"

.jfnj C jf j/ d�C
Z
˝"

jfn � f j 1fjfn�f j�"�1g d�

C
Z
˝"

jfn � f j 1fjfn�f j>"�1g d�

� "

 
1C kf k1 C sup

m�1
fkfmk1g

!
C
Z
˝"

jfn � f j 1fjfn�f j�"�1g d� :

Since ˝" has a finite measure, we now infer from the almost everywhere conver-
gence of .fn/n�1 and the Lebesgue dominated convergence theorem that the last
term of the right-hand side of the above inequality converges to zero as n ! 1.
Consequently,

lim sup
n!1

kfn � f k1 � "

 
1C kf k1 C sup

m�1
fkfmk1g

!
:

Letting " ! 0 completes the proof. ut
Remark 17 The �-a.e. convergence of .fn/n�1 in Theorem 16 can be replaced by
the convergence in measure.

Another useful consequence is the following result which is implicitly used in
[17, 81], for instance, see also [47, Lemma A.2]. It allows one to identify the limit
of the product of a weakly convergent sequence in L1 with a bounded sequence
which has an almost everywhere limit.
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Proposition 18 Let .fn/n�1 be a sequence of measurable functions in L1.˝/ and
.gn/n�1 be a sequence of measurable functions inL1.˝/. Assume further that there
are f 2 L1.˝/ and g 2 L1.˝/ such that

fn * f in L1.˝/ ; (35)

jgn.x/j � M and lim
n!1gn.x/ D g.x/ � � a.e. (36)

Then

lim
n!1

Z
˝

jfnj jgn � gj d� D 0 and fngn * fg in L1.˝/ : (37)

The proof of Proposition 18 combines the Dunford–Pettis theorem (Theorem 3)
with Egorov’s theorem which we recall now, see [74, p. 73] for instance.

Theorem 19 (Egorov) Assume that �.˝/ < 1 and consider a sequence .hn/n�1
of measurable functions in ˝ such that hn ! h ��a.e. for some measurable
function h. Then, for any ı > 0, there is a measurable subset Aı 2 B such that

�.Aı/ � ı and lim
n!1 sup

x2˝nAı
jhn.x/� h.x/j D 0 :

Proof of Proposition 18 Let " 2 .0; 1/. On the one hand, the Dunford–Pettis
theorem and (35) ensure that there exist ı > 0 and ˝" � ˝ such that �.˝"/ < 1,

sup
n�1

Z
˝n˝"

jfnj d� � "

4M
; and � f.fn/n�1; ıg � "

4M
:

On the other hand, since �.˝"/ < 1, we deduce from Egorov’s theorem and (36)
that there is O" � ˝" such that

�.˝" n O"/ � ı and lim
n!1 sup

x2O"

j.gn � g/.x/j D 0 :

Then
Z
˝

jfnj jgn � gj d� � 2M

Z
˝n˝"

jfnj d�C 2M

Z
˝"nO"

jfnj d�

C
Z
O"

jfnj jgn � gj d�

� "C sup
m�1

kfmk1 sup
x2O"

j.gn � g/.x/j :
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Consequently,

lim sup
n!1

Z
˝

jfnj jgn � gj d� � " ;

and .fn.gn �g//n�1 converges strongly towards zero in L1.˝/. Since g 2 L1.˝/,
the second statement in Proposition 18 readily follows from the first one and (35).

ut
Remark 20 Proposition 18 is somehow an extension of the following classical
result: Let p 2 .1;1/. If fn * f in Lp.˝/ and gn �! g in Lp=.p�1/.˝/, then
fngn * fg in L1.˝/.

The final result of this section is a generalization of Proposition 18 and
Remark 20.

Proposition 21 Let  2 C.Œ0;1/ be a non-negative convex function satisfying
 .0/ D 0 and  .r/ � C0r for r � 1 and some C0 > 0, and denote its convex
conjugate function by  �. Assume that �.˝/ < 1 and consider two sequences
.fn/n�1 and .gn/n�1 of real-valued integrable functions in˝ enjoying the following
properties: there are f and g in L1.˝/ such that

1. fn * f in L1.˝/ and

C1 WD sup
n�1

Z
˝

 .jfnj/ d� < 1 ;

2. gn �! g ��a.e. in ˝ ,
3. for each " 2 .0; 1�, the family G" WD f �.jgnj="/ W n � 1g is uniformly

integrable in L1.˝/.

Then

fngn * fg in L1.˝/ :

Proof We first recall that, given " 2 .0; 1�, the uniform integrability of G" in L1.˝/
ensures that

C2."/ WD sup
n�1

Z
˝

 �
� jgnj
"

�
d� < 1 ; (38)

and

lim
ı!0

�fG"; ıg D 0 ; (39)

the modulus of uniform integrability � being defined in Definition 2. We next
observe that, thanks to Young’s inequality

rs �  .r/C  �.s/ ; .r; s/ 2 Œ0;1/2 ; (40)
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which ensures, together with (38) (with " D 1), that

Z
˝

jfngnj d� �
Z
˝

�
 .jfnj/C  �.jgnj/

�
d� � C1 C C2.1/ :

Consequently, .fngn/n�1 is a bounded sequence in L1.˝/. Furthermore, the
convexity of  , the weak convergence of .fn/n�1, and a weak lower semicontinuity
argument entail that

 .jf j/ 2 L1.˝/ with
Z
˝

 .jf j/ d� � C1 ; (41)

while the �-almost everywhere convergence of .gn/n�1 along with (38) and the
Fatou lemma ensure that, for each " 2 .0; 1� and ı > 0,

Z
˝

 �
� jgj
"

�
d� � C2."/ and �

��
 �

� jgj
"

��
; ı

�
� �fG"; ıg : (42)

In particular, fg 2 L1.˝/ as a consequence of (40)–(42).
We now fix " 2 .0; 1� and ı 2 .0; 1/. On the one hand, since �.˝/ < 1, we

infer from Egorov’s theorem that there is a measurable subset Aı of ˝ such that

�.Aı/ � ı and lim
n!1 sup

x2˝nAı
jgn.x/ � g.x/j D 0 : (43)

On the other hand, since g 2 L1.˝/, there exists kı � 1 such that

� .fx 2 ˝ W jg.x/j � kıg/ � ı ; (44)

and we define gı WD g 1.�kı;kı/.g/.
Now, for � 2 L1.˝/, we define

I.n/ WD
Z
˝

.fngn � fg/� d� ;

which we estimate as follows:

jI.n/j �
ˇ̌
ˇ̌Z
˝

.fn � f /g� d�
ˇ̌
ˇ̌C

ˇ̌
ˇ̌Z
˝

fn.gn � g/� d�
ˇ̌
ˇ̌

�
ˇ̌
ˇ̌
Z
˝

.fn � f /gı� d�
ˇ̌
ˇ̌C

Z
˝

.jfnj C jf j/jg � gıjj�j d�

C
Z
˝nAı

jfnjjgn � gjj�j d�C
Z
Aı

jfnj.jgnj C jgj/j�j d� :
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It first follows from Young’s inequality (40) and the convexity of  that

I1.n; ı/ WD
Z
˝

.jfnj C jf j/jg � gıjj�j d� �
Z
˝\fjgj�kıg

.jfnj C jf j/jgjj�j d�

�k�k1
Z
˝\fjgj�kıg

	
 ."jfnj/C  ."jf j/C 2 �

� jgj
"

�

d�

�k�k1
	
"

Z
˝

. .jfnj/C  .jf j// d�C 2

Z
˝\fjgj�kıg

 �
� jgj
"

�
d�



:

We then infer from (41), (42), and (44) that

I1.n; ı/ � 2k�k1 ."C1 C �fG"; ıg/ : (45)

Next,

I2.n; ı/ WD
Z
˝nAı

jfnjjgn � gjj�j d� � k�k1 sup
˝nAı

fjgn � gjg sup
m�1

fkfmk1g :
(46)

We finally infer from (40), (42), (43), and the convexity of  that

I3.n; ı/ WD
Z
Aı

jfnj.jgnj C jgj/j�j d�

�k�k1
Z
Aı

	
2 ."jfnj/C  �

� jgnj
"

�
C  �

� jgj
"

�

d�

�2k�k1
	
"

Z
˝

 .jfnj/ d�C �fG"; ıg



�2k�k1 ."C1 C �fG"; ıg/ : (47)

Combining (45)–(47) we end up with

jI.n/j �
ˇ̌
ˇ̌
Z
˝

.fn � f /gı� d�
ˇ̌
ˇ̌C k�k1 sup

˝nAı
fjgn � gjg sup

m�1
fkfmk1g

C 4k�k1 ."C1 C �fG"; ıg/ : (48)

Now, we first let n ! 1 in the above inequality and use the weak convergence
of .fn/n�1 in L1.˝/, the boundedness of gı , and the uniform convergence (43) to
obtain

lim sup
n!1

ˇ̌
ˇ̌Z
˝

.fngn � fg/� d�
ˇ̌
ˇ̌ � 4k�k1 ."C1 C �fG"; ıg/ :
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We next use the uniform integrability (39) to pass to the limit as ı ! 0 in the above
estimate and find

lim sup
n!1

ˇ̌
ˇ̌Z
˝

.fngn � fg/� d�
ˇ̌
ˇ̌ � 4"C1k�k1 :

We finally let " ! 0 to complete the proof. ut

3 Smoluchowski’s Coagulation Equation

We now turn to Smoluchowski’s coagulation equation

@tf .t; x/ D 1

2

Z x

0

K.y; x � y/ f .t; y/ f .t; x � y/ dy

�
Z 1

0

K.x; y/ f .t; x/ f .t; y/ dy ; .t; x/ 2 .0;1/ � .0;1/ ; (49)

f .0; x/ D f in.x/ ; x 2 .0;1/ ; (50)

and collect and derive several properties of its solutions in the next sections. As
outlined in the introduction, some of these properties depend heavily on the growth
of the coagulation kernel K which is a non-negative and symmetric function. For
further use, we introduce the following notation: For � 2 R, the space of integrable
functions with a finite moment of order � is denoted by

L1�.0;1/ WD
�
g 2 L1.0;1/ W kgk1;� WD

Z 1

0

.1C x�/jg.x/j dx < 1
�
;

(51)

and we define

M�.g/ WD
Z 1

0

x�g.x/ dx ; g 2 L1�.0;1/ :

Note thatL10.0;1/ D L1.0;1/ and k�k1;0 D k�k1. Next, for a measurable function
g and x > 0, we set

Q1.g/.x/ WD 1

2

Z x

0

K.y; x � y/ g.y/ g.x � y/ dy ;

L.g/.x/ WD
Z 1

0

K.x; y/ g.y/ dy ; Q2.g/.x/ WD g.x/L.g.x// ;

whenever it makes sense.
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3.1 Existence: Bounded Kernels

The first step towards the existence of solutions to (49)–(50) is to handle the case of
bounded coagulation kernels.

Proposition 22 If there is �0 > 0 such that

0 � K.x; y/ D K.y; x/ � �0 ; .x; y/ 2 .0;1/ � .0;1/ ; (52)

and

f in 2 L1.0;1/ ; f in � 0 a.e. in .0;1/ ; (53)

then there is a unique global solution f 2 C1.Œ0;1/IL1.0;1// to (49)–(50) such
that

f .t; x/ � 0 for a.e. x 2 .0;1/ and kf .t/k1 � kf ink1 ; t � 0 : (54)

Furthermore, if f in 2 L11.0;1/, then

f .t/ 2 L11.0;1/ and M1.f .t// D M1.f
in/ ; t � 0 : (55)

Proof Step 1 We first consider an initial condition f in satisfying (53) and
prove the first statement of Proposition 22. We note that Q1 and Q2 are locally
Lipschitz continuous from L1.0;1/ to L1.0;1/ with

kQi.f /�Qi.g/k1 � �0 .kf k1 C kgk1/ kf � gk1
for .f; g/ 2 L1.0;1/ � L1.0;1/ and i D 1; 2. Then, denoting the positive
part of a real number r by rC WD max fr; 0g, the map f 7! Q1.f /C is
also locally Lipschitz continuous from L1.0;1/ to L1.0;1/ and it follows
from classical results on the well-posedness of differential equations in Banach
spaces (see [3, Theorem 7.6] for instance) that there is a unique solution
f 2 C1.Œ0; Tm/IL1.0;1// defined on the maximal time interval Œ0; Tm/ to the
differential equation

df

dt
D Q1.f /C �Q2.f / ; t 2 .0; Tm/ ; (56)

with initial condition f .0/ D f in. Since the positive part is a Lipschitz
continuous function and f 2 C1.Œ0; Tm/IL1.0;1//, the chain rule gives

@t .�f /C D �signC.�f / @tf ;



226 Ph. Laurençot

where signC.r/ D 1 for r � 0 and signC.r/ D 0 for r < 0. We then infer
from (56) that

@t .�f /C D �signC.�f / Q1.f /C C signC.�f / Q2.f / � .�f /C L.f /

and thus

d

dt
k.�f /Ck1 �

Z 1

0

.�f /C L.f / � �0kf k1k.�f /Ck1 :

Since .�f /C.0/ D .�f in/C D 0, we readily deduce that .�f /C.t/ D 0 for all
t 2 Œ0; Tm/, that is, f .t/ � 0 a.e. in .0;1/. Consequently, Q1.f /C D Q1.f /

and it follows from (56) that f is a solution to (49)–(50) defined for t 2 Œ0; Tm/.
To show that Tm D 1, it suffices to notice that, thanks to the just established
non-negativity of f , Fubini’s theorem gives

d

dt
kf .t/k1 D

Z 1

0

ŒQ1.f /.t; x/ �Q2.f /.t; x/� dx

D �1
2

Z 1

0

Z 1

0

K.x; y/f .t; x/f .t; y/ dydx � 0 ;

for t 2 Œ0; Tm/, which prevents the blowup in finite time of the L1-norm of f
and thereby guarantees that Tm D 1.
Step 2 A straightforward consequence of Fubini’s theorem is the following
identity for any # 2 L1.0;1/:

d

dt

Z 1

0

#.x/f .t; x/ dx D 1

2

Z 1

0

Z 1

0

Q#.x; y/K.x; y/f .t; x/f .t; y/ dydx

(57)

where

Q#.x; y/ WD #.x C y/ � #.x/ � #.y/ ; .x; y/ 2 .0;1/ � .0;1/ : (58)

As a consequence of (57) (with # 	 1), we recover the already observed
monotonicity of t 7! M0.f .t// and complete the proof of (54).
Step 3 We now turn to an initial condition f in having a finite first moment and
aim at proving (55). Formally, (55) follows from (57) with the choice #.x/ D x

since Q# 	 0 in that case. However, id W x 7! x does not belong to L1.0;1/

and an approximation argument is required to justify (55). More precisely, given
A > 0, define #A.x/ WD minfx;Ag for x > 0. The corresponding function Q#A
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given by (58) satisfies

Q#A.x; y/ D

8̂
<̂
ˆ̂:

0 if 0 � x C y � A ;

A� x � y if 0 � maxfx; yg � A < x C y ;

� minfx; yg if 0 � minfx; yg � A < maxfx; yg < x C y ;

�A if A � minfx; yg :
(59)

In particular Q#A � 0 and it follows from (57) that

Z 1

0

#A.x/f .t; x/ dx �
Z 1

0

#A.x/f
in.x/ dx � M1.f

in/ ; t � 0 :

Since #A ! id as A ! 1, the Fatou lemma entails that

M1.f .t// � M1.f
in/ ; t � 0 ; (60)

and thus that f .t/ 2 L11.0;1/ for all t � 0. To prove the conservation of matter,
we use again (57) with # D #A and find

Z 1

0

#A.x/f .t; x/ dx �
Z 1

0

#A.x/f
in.x/ dx

D �
Z t

0

.I1.s; A/C I2.s; A/C I3.s; A// dx (61)

with

I1.s; A/ WD1

2

Z A

0

Z A

A�x
.x C y �A/K.x; y/f .s; x/f .s; y/ dydx ;

I2.s; A/ WD
Z A

0

Z 1

A

xK.x; y/f .s; x/f .s; y/ dydx ;

I3.s; A/ WDA

2

Z 1

A

Z 1

A

K.x; y/f .s; x/f .s; y/ dydx :

On the one hand, it readily follows from (52) and (60) that

I2.s; A/C I3.s; A/ � �0

A
M1.f .s//

2 � �0

A
M1.f

in/2 : (62)

On the other hand, by (52),

0 � I1.s; A/ � �0

2

Z A

0

Z A

A�x
yf .s; x/f .s; y/ dydx

� �0

2

Z 1

0

Z 1

0

1.0;A/.x/1.A;1/.x C y/yf .s; x/f .s; y/ dydx :
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Owing to (54) and (60), the Lebesgue dominated convergence theorem guaran-
tees that

lim
A!1

Z t

0

I1.s; A/ ds D 0 : (63)

Thanks to (62) and (63) we may pass to the limit asA ! 1 in (61) and conclude
that M1.f .t// D M1.f

in/ for t � 0. This completes the proof.
ut

Remark 23 Another formal consequence of (57) is that, whenever it makes sense,
t 7! M�.f .t// is non-increasing for � 2 .�1; 1/ and non-decreasing for � 2
.1;1/. Similarly,

t 7!
Z 1

0

.e˛x � 1/ f .t; x/ dx is non-decreasing for ˛ > 0 :

3.2 Existence: Unbounded Kernels

As already mentioned, most of the coagulation rates encountered in the literature
are unbounded and grow without bound as .x; y/ ! 1 or as .x; y/ ! .0; 0/. In
that case, there does not seem to be a functional framework in which Q1 and Q2

are locally Lipschitz continuous and implementing a fixed point procedure does not
seem to be straightforward. A different approach is then required and we turn to a
compactness method which can be summarized as follows:

1. Build a sequence of approximations of the original problem which depends on
a parameter n � 1, for which the existence of a solution is simple to show, and
which converges in some sense to the original problem as n ! 1.

2. Derive estimates which are independent of n � 1 and guarantee the compactness
with respect to the size variable x and the time variable t of the sequence of
solutions to the approximations.

3. Show convergence as n ! 1.

To be more precise, let K be a non-negative and symmetric locally bounded
function and consider an initial condition

f in 2 L11.0;1/ ; f in � 0 a.e. in .0;1/ : (64)

Given an integer n � 1, a natural approximation is to truncate the coagulation kernel
K and define

Kn.x; y/ WD minfK.x; y/; ng ; .x; y/ 2 .0;1/ � .0;1/ : (65)

Clearly, Kn is a non-negative, bounded, and symmetric function and we infer
from (64) and Proposition 22 that the initial-value problem (49)–(50) with Kn
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instead of K has a unique non-negative solution fn 2 C1.Œ0;1/IL1.0;1// which
satisfies

M0.fn.t// � M0.f
in/ and M1.fn.t// D M1.f

in/ ; t � 0 : (66)

The compactness properties provided by the previous estimates are rather weak and
the next step is to identify an appropriate topology for the compactness approach to
work. A key observation in that direction is that, though being nonlinear, Eq. (49)
is a nonlocal quadratic equation, in the sense that it does not involve nonlinearities
of the form f .t; x/2 but of the form f .t; x/f .t; y/ with x ¤ y. While the former
requires convergence in a strong topology to pass to the limit, the latter complies
well with weak topologies. As first noticed in [81] the weak topology of L1 turns
out to be a particularly well-suited framework to prove the existence of solutions
to (49)–(50) for several classes of unbounded coagulation kernels. In the remainder
of this section, we will show how to use the tools described in Sect. 2 to achieve this
goal.

3.2.1 Sublinear Kernels

We first consider the case of locally bounded coagulation kernels with a sublinear
growth at infinity. More precisely, we assume that there is � > 0 such that

0 � K.x; y/ D K.y; x/� �.1Cx/.1Cy/; .x; y/2 .0;1/� .0;1/; (67)

!R.y/ WD sup
x2.0;R/

K.x; y/

y
�!
y!1 0 : (68)

The following existence result is then available, see [46, 52, 70, 80].

Theorem 24 Assume that the coagulation kernel K satisfies (67)–(68) and con-
sider an initial condition f in satisfying (64). There is a non-negative function

f 2 C.Œ0;1/IL1.0;1//\L1.0;1IL11.0;1//

such that
Z 1

0

#.x/
�
f .t; x/ � f in.x/

�
dx

D 1

2

Z t

0

Z 1

0

Z 1

0

Q#.x; y/K.x; y/f .s; x/f .s; y/ dydxds (69)

for all t > 0 and # 2 L1.0;1/ (with Q# given by (58)) and

M0.f .t// � M0.f
in/ and M1.f .t// � M1.f

in/ ; t � 0 : (70)



230 Ph. Laurençot

On the one hand, Theorem 24 excludes the two important (and borderline) cases
K1.x; y/ D x C y and K2.x; y/ D xy which will be handled in Sect. 3.2.2 and
Sect. 3.2.3, respectively. On the other hand, owing to the possible occurrence of the
gelation phenomenon already mentioned in the introduction, it is not possible to
improve the second inequality in (70) to an equality in general.

We now turn to the proof of Theorem 24: for n � 1 define Kn by (65) and
let fn 2 C1.Œ0;1/IL1.0;1// be the non-negative solution to (49)–(50) with Kn

instead of K which satisfies (66). To prove the weak compactness in L1.0;1/ of
.fn.t//n�1 for each t � 0, we aim at using the Dunford–Pettis theorem (Theorem 3).
To this end, we shall study the behaviour of .fn.t//n�1 on sets with small measure
and for large values of x. Owing to (68), we shall see below that the boundedness
of .M1.fn.t///n�1 guaranteed by (66) is sufficient to control the behaviour for large
x. We are left with the behaviour on sets with small measure which we analyze in
the next lemma.

Lemma 25 Let � 2 CVP be such that �.f in/ 2 L1.0;1/, the set CVP being
defined in Definition 11. For each R > 0, there is C1.R/ > 0 depending only on K ,
f in, and R such that

Z R

0

�.fn.t; x// dx �
�Z R

0

�.f in.x// dx

�
eC1.R/t ; t � 0 ; n � 1 : (71)

Proof Fix R > 0. Since � 0, Kn, and fn are non-negative functions and Kn � K ,
we infer from (49) and Fubini’s theorem that

d

dt

Z R

0

�.fn.t; x// dx

� 1

2

Z R

0

Z x

0

K.x � y; y/fn.t; x � y/fn.t; y/ dy � 0.fn.t; x// dx

�
Z R

0

Z R

y

K.x � y; y/fn.t; x � y/ � 0.fn.t; x// dx fn.t; y/ dy :

Since � 2 CVP we deduce from (30), (66), and (67) that

d

dt

Z R

0

�.fn.t; x// dx �
Z R

0

Z R

y

K.x � y; y/�.fn.t; x � y// dx fn.t; y/ dy

C
Z R

0

Z R

y

K.x � y; y/�.fn.t; x// dx fn.t; y/ dy

�2�.1CR/2 M0.fn/

Z R

0

�.fn.t; x// dx

�2�.1CR/2 M0.f
in/

Z R

0

�.fn.t; x// dx :
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Setting C1.R/ WD 2�.1CR/2 M0.f
in/ we obtain (71) after integration with respect

to time. ut
The next step towards the proof of Theorem 24 is the time equicontinuity of the

sequence .fn/n�1 which we prove now.

Lemma 26 There is C2 > 0 depending only on K and f in such that

kfn.t/ � fn.s/k1 � C2.t � s/ ; 0 � s � t ; n � 1 : (72)

Proof Fix R > 0. We infer from (49), Fubini’s theorem, (66), and (67) that

k@tfn.t/k1 �1
2

Z 1

0

Z 1

y

K.y; x � y/fn.t; x/fn.t; y/ dxdy

C
Z 1

0

Z 1

0

K.x; y/fn.t; x/fn.t; y/ dydx

�3�
2

Z 1

0

Z 1

0

.1C x/.1C y/fn.t; x/fn.t; y/ dydx

�3�
2

kfn.t/k21;1 � C2 WD 3�

2
kf ink21;1 ;

from which (72) readily follows. ut
We are now in a position to complete the proof of Theorem 24.

Proof of Theorem 24 We first recall that, owing to the de la Vallée Poussin theorem
(in the form stated in Corollary 12), the integrability of f in ensures that there is
˚ 2 CVP;1 such that

Z 1

0

˚.f in.x// dx < 1 : (73)

We then combine Lemma 25 (with � D ˚) and (73) to conclude that, for each
t � 0, n � 1, and R > 0,

Z R

0

˚.fn.t; x// dx � k˚.f in/k1eC1.R/t ; (74)

where C1.R/ only depends on K , f in, and R.

Step 1: Weak Compactness. According to a variant of the Arzelà–Ascoli
theorem (see [88, Theorem 1.3.2] for instance), the sequence .fn/n�1 is relatively
sequentially compact in C.Œ0; T �I w �L1.0;1// for every T > 0 if it enjoys the
following two properties:

The sequence .fn.t//n�1 is weakly compact in L1.0;1/ for each t � 0,
(75)
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and:

The sequence .fn/n�1 is weakly equicontinuous in L1.0;1/ at every t � 0,
(76)

see [88, Definition 1.3.1]. Recall that the space C.Œ0;1/I w � L1.0;1// is the
space of functions h which are continuous in time with respect to the weak
topology of L1.0;1/, that is,

t 7!
Z 1

0

#.x/h.t; x/ dx 2 C.Œ0;1// for all # 2 L1.0;1/ :

We first prove (75). To this end, we recall that we have already established (74)
and note that (66) entails that

Z 1

R

fn.t; x/ dx � 1

R

Z 1

R

xfn.t; x/ dx � M1.f
in/

R
: (77)

Since˚ 2CVP;1, the properties (74) and (77) imply that the sequence .fn.t//n�1
is uniformly integrable in L1.0;1/ for each t � 0 while (77) ensures that the
condition (15) of the Dunford–Pettis theorem (Theorem 3) is satisfied. We are
thus in a position to apply the Dunford–Pettis theorem to obtain (75).
Let us now turn to (76) and notice that Lemma 26 entails that .fn/n�1 is
equicontinuous for the strong topology of L1.0;1/ at every t � 0 and thus
also weakly equicontinuous in L1.0;1/ at every t � 0, which completes the
proof of (76).
We have thereby established that the sequence .fn/n�1 is relatively sequentially
compact in C.Œ0; T �I w � L1.0;1// for every T > 0 and a diagonal process
ensures that there are a subsequence of .fn/n�1 (not relabeled) and f 2
C.Œ0;1/I w � L1.0;1// such that

fn �! f in C.Œ0; T �I w � L1.0;1// for all T > 0 : (78)

Since fn is non-negative and satisfies (66) for each n � 1, we readily deduce
from the convergence (78) that f .t/ is non-negative and satisfies (70).
Step 2: Convergence. We now check that the function f constructed in the
previous step solves (49)–(50) in an appropriate sense. To this end, let us first
consider t > 0 and a function # 2 L1.0;1/ with compact support included in
.0;R0/ for some R0 > 0. By (57),

Z 1

0

#.x/
�
fn.t; x/ � f in.x/

�
dx D 1

2
.I1;n.t/C I2;n.t/C I3;n.t// ; (79)

with

I1;n.t/ WD
Z t

0

Z R0

0

Z R0

0

Q#.x; y/Kn.x; y/fn.s; x/fn.s; y/ dydxds ;
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I2;n.t/ WD
Z t

0

Z R0

0

Z 1

R0

Q#.x; y/Kn.x; y/fn.s; x/fn.s; y/ dydxds ;

I3;n.t/ WD
Z t

0

Z 1

R0

Z 1

0

Q#.x; y/K.x; y/fn.s; x/fn.s; y/ dydxds :

Let us first identify the limit of I1;n.t/. Since .Kn/n�1 is a bounded sequence of
L1..0;R0/� .0;R0// by (67) and converges a.e. towardsK in .0;R0/� .0;R0/,
we infer from Proposition 18 and the convergence (78) that

lim
n!1 I1;n.t/ D

Z t

0

Z R0

0

Z R0

0

Q#.x; y/K.x; y/f .s; x/f .s; y/ dydxds : (80)

Next, Q#.x; y/ D �#.x/ for .x; y/ 2 .0;R0/ � .R0;1/ and

I2;n.t/ D �
Z t

0

Z R0

0

Z 1

R0

#.x/Kn.x; y/fn.s; x/fn.s; y/ dydxds :

For R > R0, we split I2;n.t/ into two parts

I2;n.t/ D I21;n.t; R/C I22;n.t; R/ (81)

with

I21;n.t; R/ WD �
Z t

0

Z R0

0

Z R

R0

#.x/Kn.x; y/fn.s; x/fn.s; y/ dydxds ;

I22;n.t; R/ WD �
Z t

0

Z R0

0

Z 1

R

#.x/Kn.x; y/fn.s; x/fn.s; y/ dydxds :

On the one hand we argue as for I1;n.t/ to conclude that

lim
n!1 I21;n.t; R/ D �

Z t

0

Z R0

0

Z R

R0

#.x/K.x; y/f .s; x/f .s; y/ dydxds :

(82)
On the other hand, using (66) and (68), we find

jI22;n.t; R/j �k#k1
Z t

0

Z R0

0

Z 1

R

!R0.y/yfn.s; x/fn.s; y/ dydxds

�k#k1
Z t

0

M0.fn.s//M1.fn.s// ds sup
y2.R;1/

f!R0.y/g

�tk#k1M0.f
in/M1.f

in/ sup
y2.R;1/

f!R0.y/g �!
R!1 0 : (83)
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Similarly, owing to (68) and (70) (recall that (70) has been established at the end
of Step 1),

Z t

0

Z R0

0

Z 1

R

#.x/K.x; y/f .s; x/f .s; y/ dydxds

� tk#k1M0.f
in/M1.f

in/ sup
y2.R;1/

f!R0.y/g �!
R!1 0 : (84)

Combining (80)–(84) and letting first n ! 1 and then R ! 1, we end up with

lim
n!1 I2;n.t/ D

Z t

0

Z R0

0

Z 1

R0

Q#.x; y/K.x; y/f .s; x/f .s; y/ dydxds : (85)

Finally, Q#.x; y/ D �#.y/ for .x; y/ 2 .R0;1/ � .0;R0/ and Q#.x; y/ D 0 if
.x; y/ 2 .R0;1/ � .R0;1/ so that

I3;n.t/ D �
Z t

0

Z 1

R0

Z R0

0

#.y/Kn.x; y/fn.s; x/fn.s; y/ dydxds ;

and we argue as for I2;n.t/ to obtain

lim
n!1 I3;n.t/ D

Z t

0

Z 1

R0

Z 1

0

Q#.x; y/K.x; y/f .s; x/f .s; y/ dydxds : (86)

Using once more the convergence (78), we may use (80), (85), and (86) to pass
to the limit as n ! 1 in (79) and conclude that f satisfies (69) for all functions
# 2 L1.0;1/ with compact support. Thanks to (67) and (70), a classical
density argument allows us to extend the validity of (69) to arbitrary functions
# 2 L1.0;1/.
Step 3: Strong Continuity. We now argue as in the proof of Lemma 26 to
strengthen the time continuity of f . More precisely, let t � 0, s 2 Œ0; t �, and
# 2 L1.0;1/. We infer from (67), (69), and (70) that

ˇ̌
ˇ̌Z 1

0

.f .t; x/ � f .s; x//#.x/ dx

ˇ̌
ˇ̌

� 3�

2
k#k1

Z t

s

Z 1

0

Z 1

0

.1C x/.1C y/f .�; x/f .�; y/ dydxd�

� 3�

2
k#k1

Z t

s

kf .�/k21;1 d�

� 3�

2
k#k1kf ink21;1 jt � sj :
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Therefore,

kf .t/ � f .s/k1 D sup
#2L1.0;1/

�
1

k#k1

ˇ̌
ˇ̌
Z 1

0

.f .t; x/ � f .s; x//#.x/ dx

ˇ̌
ˇ̌
�

�3�
2

kf ink21;1 jt � sj ;

which completes the proof of Theorem 24.
ut

3.2.2 Linearly Growing Kernels

We next turn to coagulation kernels growing at most linearly at infinity, that is, we
assume that there is �1 > 0 such that

0 � K.x; y/ D K.y; x/ � �1.2C x C y/ ; .x; y/ 2 .0;1/ � .0;1/ : (87)

Observe that coagulation kernels satisfying (87) also satisfy (67) but need not
satisfy (68).

For this class of coagulation kernels, we establish the existence of mass-
conserving solutions to (49)–(50) [4, 20, 46, 81, 83].

Theorem 27 Assume that the coagulation kernel K satisfies (87) and consider an
initial condition f in satisfying (64). There is a non-negative function

f 2 C.Œ0;1/IL1.0;1//\L1.0;1IL11.0;1//

satisfying (69) and

M0.f .t// � M0.f
in/ and M1.f .t// D M1.f

in/ ; t � 0 : (88)

The main difference between the outcomes of Theorem 24 and Theorem 27 is
the conservation of massM1.f .t// D M1.f

in/ for all t � 0 for coagulation kernels
satisfying (87).

Since the growth assumption (87) is more restrictive than (67), it is clear that
the proof of Theorem 27 has some common features with that of Theorem 24. In
particular, both Lemma 25 and 26 are valid in that case as well. The main difference
lies actually in the control of the behaviour of fn.t; x/ for large values of x which is
provided by the boundedness ofM1.fn.t// in (66). This turns out to be not sufficient
for coagulation kernels satisfying (87) and we first show that this assumption is
particularly well-suited to control higher moments.
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Lemma 28 Let  2 CVP be such that x 7!  .1C x/f in.x/ 2 L1.0;1/. There is
a positive constant C3 > 0 depending only on K and f in such that, for t � 0 and
n � 1,

Z 1

0

 .1C x/fn.t; x/ dx �
�Z 1

0

 .1C x/f in.x/ dx

�
eC3t ; (89)

the function fn being still the solution to (49)–(50) with Kn instead of K , the
coagulation kernel Kn being defined by (65).

Proof Fix A > 0 and define  A.x/ WD minf .1 C x/;  .1 C A/g D  .1 C
minfx;Ag/ for x > 0. Then  A 2 L1.0;1/ and it follows from (57) that

d

dt

Z 1

0

 A.x/fn.t; x/ dx D 1

2

Z 1

0

Z 1

0

Q A.x; y/Kn.x; y/fn.t; x/fn.t; y/ dydx :

Owing to the monotonicity and non-negativity of  , we note that

Q A.x; y/ D  .1C x C y/ �  .1C x/ �  .1C y/

�  .2C x C y/ �  .1C x/

� .1C y/ if y 2 .0; A� x/ and x 2 .0; A/ ;
Q A.x; y/ D  .1CA/ �  .1C x/ �  .1C y/

�  .2C x C y/ �  .1C x/

� .1C y/ if y 2 .A� x;A/ and x 2 .0; A/ ;
Q A.x; y/ D � .1C x/ � 0 if .x; y/ 2 .0; A/ � .A;1/ ;

Q A.x; y/ D � .1C y/ � 0 if .x; y/ 2 .A;1/ � .0; A/ ;
Q A.x; y/ D � .1CA/ � 0 if .x; y/ 2 .A;1/ � .A;1/ :

Consequently,

d

dt

Z 1

0

 A.x/fn.t; x/ dx

� 1

2

Z A

0

Z A

0

. .2C x C y/ �  .1C x/

� .1C y//Kn.x; y/fn.t; x/fn.t; y/ dydx ;

and we infer from (32) and (87) that

. .2C x C y/�  .1C x/ �  .1C y//Kn.x; y/

� �1 . .2C x C y/ �  .1C x/ �  .1C y// .2C x C y/

� 2�1 ..1C x/ .1C y/C .1C y/ .1C x// :
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Combining the above two estimates leads us to

d

dt

Z 1

0

 A.x/fn.t; x/ dx � 2�1kfn.t/k1;1
Z A

0

 .1C x/fn.t; x/ dx :

Using (66), we end up with

d

dt

Z 1

0

 A.x/fn.t; x/ dx � 2�1kf ink1;1
Z 1

0

 A.x/fn.t; x/ dx ;

and (89) follows by integration with C3 WD 2�1kf ink1;1. ut
Proof of Theorem 27 As in the proof of Theorem 24, the de la Vallée Poussin
theorem (Theorem 8) ensures the existence of a function ˚ 2 CVP;1 such that
˚.f in/ 2 L1.0;1/. Moreover, observing that the property f in 2 L1.0;1I .1 C
x/ dx/ also reads x 7! 1 C x 2 L1.0;1If in.x/ dx/, we use once more the de
la Vallée Poussin theorem (now with � D f indx) to obtain a function ' 2 CVP;1
such that x 7! '.1 C x/ belongs to L1.0;1If in.x/ dx/. Summarizing we have
established that there are two functions ˚ and ' in CVP;1 such that

Z 1

0


˚.f in.x//C '.1C x/f in.x/

�
dx < 1 : (90)

We now infer from (90), Lemma 25 (with � D ˚) and Lemma 28 (with  D ')
that, for each t � 0, n � 1, and R > 0,

Z R

0

˚.fn.t; x// dx � k˚.f in/k1eC1.R/t ; (91)

Z 1

0

'.1C x/fn.t; x/ dx �
�Z 1

0

'.1C x/f in.x/ dx

�
eC3t ; (92)

where C1.R/ only depends on K , f in, and R and C3 onK and f in.

Step 1: Weak Compactness. We argue as in the first step of the proof of
Theorem 24 with the help of (66) and (91) to conclude that there are a
subsequence of .fn/n�1 (not relabeled) and a non-negative function f 2
C.Œ0;1/I w � L1.0;1// such that

fn �! f in C.Œ0; T �I w � L1.0;1// for all T > 0 : (93)

Step 2: Convergence. We keep the notation used in the proof of Theorem 24
and notice that (80) and (82) are still valid. A different treatment is required for



238 Ph. Laurençot

I22;n.t; R/: thanks to (66), (87), (90), (92), and the monotonicity of r 7! '.r/=r ,
we obtain

I22;n.t; R/ ��1k#k1
Z t

0

Z R0

0

Z 1

R

.2C x C y/fn.s; x/fn.s; y/ dydxds

�2�1k#k1
Z t

0

Z R0

0

Z 1

R

.1C x/.1C y/fn.s; x/fn.s; y/ dydxds

�2�1R
'.R/

k#k1
Z t

0

kfn.s/k1;1
Z 1

R

'.1C y/fn.s; y/ dyds

�2�1R
'.R/

k#k1kf ink1;1
�Z 1

0

'.1C y/f in.y/ dy

�
eC3t

C3
;

and the right-hand side of the above inequality converges to zero as R ! 1
since ' 2 CVP;1. Arguing in a similar way to handle I3;n.t/, we complete
the proof of (69) as in the proof of Theorem 24. Finally, the mass conservation
M1.f .t// D M1.f

in/ for each t > 0 follows by passing to the limit as n ! 1
in the equalityM1.fn.t// D M1.f

in/ from (66) with the help of (90), (92), (93),
and the property ' 2 CVP;1 to control the behaviour for large values of x.

ut

3.2.3 Product Kernels

The last class of kernels we consider allows us to get rid of any growth condition
on K provided it has a specific form. More precisely, we assume that there is a
non-negative continuous function r 2 C.Œ0;1// such that r.x/ > 0 for x > 0 and

K.x; y/ D r.x/r.y/ ; .x; y/ 2 .0;1/� .0;1/ : (94)

The celebrated multiplicative kernel K2.x; y/ D xy fits into this framework with
r.x/ D x for x > 0. Observe that no growth condition is required on r .

For this class of kernels, the existence result is similar to Theorem 24 and reads:

Theorem 29 Assume that the coagulation kernel K satisfies (94) and consider an
initial condition f in satisfying (64). There is a non-negative function

f 2 C.Œ0;1/IL1.0;1//\L1.0;1IL11.0;1//

satisfying (69) and

M0.f .t// � M0.f
in/ and M1.f .t// � M1.f

in/ ; t � 0 : (95)
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To prove Theorem 29, it turns out that it is easier to work with the following
truncated version of K which differs from (65). Given an integer n � 1 and x > 0,
we define rn.x/ WD minfr.x/; ng and

QKn.x; y/ WD rn.x/rn.y/ ; .x; y/ 2 .0;1/ � .0;1/ : (96)

Clearly, QKn is a non-negative, bounded, and symmetric function and we infer
from (64) and Proposition 22 that the initial-value problem (49)–(50) with QKn

instead of K has a unique non-negative solution gn 2 C1.Œ0;1/IL1.0;1// which
satisfies

M0.gn.t// � M0.f
in/ and M1.gn.t// D M1.f

in/ ; t � 0 : (97)

Without a control on the growth of K , the estimate (97) on kgn.t/k1;1 is not
sufficient to control the behaviour of gn.t; x/ for large values of x. As we shall
see now, it is the specific form (94) of K which provides this control.

Lemma 30 For t > 0, A > 0, and n � 1,

Z t

0

�Z 1

0

rn.x/gn.s; x/ dx

�2
ds �2M0.f

in/ ; (98)

Z t

0

�Z 1

A

rn.x/gn.s; x/ dx

�2
ds �2M1.f

in/

A
: (99)

Proof On the one hand, the bound (98) readily follows from (57) (with # 	 1), (96),
and the non-negativity of gn. On the other hand, let A > 0 and define #A.x/ WD
minfx;Ag for x > 0 as in the proof of Proposition 22. Owing to (59), we deduce
from (57) and the non-negativity of gn that

Z t

0

Z 1

A

Z 1

A

QKn.x; y/gn.s; x/gn.s; y/ dydxds � 2

A

Z 1

0

#A.x/f
in.x/ dx

�2M1.f
in/

A
:

Combining (96) and the above inequality gives (99). ut
We next derive the counterpart of the equicontinuity property established in

Lemma 26.

Lemma 31 There is a modulus of continuity ! (that is, a function ! W .0;1/ !
Œ0;1/ satisfying !.z/ ! 0 as z ! 0) such that

kgn.t/ � gn.s/k1 � !.t � s/ ; 0 � s � t ; n � 1 : (100)
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Proof For R > 0 we introduce

m.R/ WD sup
x2.0;R/

�
r.x/

1C x

�
;

which is well-defined according to the continuity of r . We infer from (49) and
Fubini’s theorem that

Z R

0

jgn.t; x/ � gn.s; x/j dx

�
Z t

s

Z R

0

Z R

y

QKn.y; x � y/gn.�; x � y/gn.�; y/ dxdyd�

C
Z t

s

Z R

0

Z 1

0

QKn.x; y/gn.�; x/gn.�; y/ dydxd�

D
Z t

s

Z R

0

Z R�y

0

rn.x/rn.y/gn.�; x/gn.�; y/ dxdyd�

C
Z t

s

Z R

0

Z 1

0

rn.x/rn.y/gn.�; x/gn.�; y/ dydxd�

� 2

Z t

s

Z R

0

Z 1

0

rn.x/rn.y/gn.�; x/gn.�; y/ dydxd� :

We next use (97), Hölder’s inequality, and (98) to obtain

Z R

0

jgn.t; x/ � gn.s; x/j dx

� 2

Z t

s

m.R/kgn.�/k1;1
Z 1

0

rn.y/gn.�; y/ dyd�

� 2m.R/kf ink1;1
p
t � s

"Z t

s

�Z 1

0

rn.y/gn.�; y/ dy

�2
d�

#1=2

� �
2kf ink1;1

�3=2
m.R/

p
t � s :

Combining (97) and the above inequality leads us to

kgn.t/ � gn.s/k1 �
Z R

0

jgn.t; x/ � gn.s; x/j dx C
Z 1

R

.gn.t; x/C gn.s; x// dx

� �2kf ink1;1
�3=2

m.R/
p
t � s C 2

R
M1.f

in/ ;
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hence

kgn.t/ � gn.s/k1 � C4
1C Rm.R/

p
t � s

R
(101)

for some positive constant C4 depending only on f in.
Now, R 7! Rm.R/ is a non-decreasing and continuous function such that

Rm.R/ ! 0 as R ! 0, Rm.R/ > 0 for R > 0, and Rm.R/ ! 1 as R ! 1.
Introducing its generalized inverse

Q.z/ WD inf fR � 0 W Rm.R/ � zg ; z � 0 ;

the functionQ is also non-decreasing with

Q.0/ D 0 ; Q.z/ > 0 for z > 0 ; and Q.z/ ! 1 as z ! 1 :

Setting

1

!.z/
WD 3

4
Q

�
1

z

�
; z > 0 ;

and choosing R D 1=!.
p
t � s/ in (101) we end up with

kgn.t/ � gn.s/k1 � 2C4!.
p
t � s/ :

The properties of Q ensure that 2C4!.
p�/ is a modulus of continuity and the proof

of Lemma 31 is complete. ut
Proof of Theorem 29 The proof proceeds along the same lines as that of Theo-
rem 24, the control on the behaviour for large x and the time equicontinuity being
provided by Lemmas 30 and 31 instead of (66) and Lemma 26. Note that Lemma 25
is still valid owing to the local boundedness of r . ut
Remark 32 As in [44], it is possible to extend Theorem 29 to perturbations of
product kernels of the form K.x; y/ D r.x/r.y/ C QK.x; y/ provided 0 �
QK.x; y/ � �1r.x/r.y/ for x > 0, y > 0, and some �1 > 0.

Another peculiar extension of Theorem 29 is the possibility of constructing
mass-conserving solutions for coagulation kernels of the form (94) satisfying
r.x/=

p
x ! 1 as x ! 1.

Proposition 33 Assume that the coagulation kernel K satisfies (94) and that r 2
C.Œ0;1//\ C1..0;1// is a concave and positive function such that

Z 1

1

dx

r.x/2
D 1 : (102)
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Consider an initial condition f in satisfying (64) together with f in 2 L12.0;1/.
Then there exists a solution f to (49)–(50) such thatM1.f .t// D M1.f

in/ for each
t � 0.

The function r.x/ D p
2C x .ln .2C x//˛ satisfies the assumptions of Proposi-

tion 33 for ˛ 2 .0; 1=2�.
Proof of Proposition 33 We keep the notations of the proof of Theorem 29, the
existence part of Proposition 33 being a consequence of it. To show that the solution
f constructed in the proof of Theorem 29 is mass-conserving, we check that (102)
allows us to control the time evolution of the second momentM2.f .t// for all times
t � 0. Indeed, for n � 1, we deduce from (57) that

d

dt
M2.gn.t// D

�Z 1

0

rn.x/ x gn.t; x/ dx

�2
:

Since r is concave, so is rn and Jensen’s inequality and (97) ensure that

d

dt
M2.gn.t// � M1.f

in/2
	
r

�
M2.gn.t//

M1.f in/

�
2
:

Now, the assumption (102) guarantees that the ordinary differential equation

dY

dt
D M1.f

in/2
	
r

�
Y

M1.f in/

�
2
; t � 0 ;

has a global solution Y 2 C1.Œ0;1// satisfying Y.0/ D M2.f
in/ which is locally

bounded. The comparison principle then implies that M2.gn.t// � Y.t/ for all
t � 0 and n � 1. We next use the convergence of .gn/n�1 towards f to conclude
that M2.f .t// � Y.t/ for all t � 0. We finally combine this information with (97)
to show that M1.f .t// D M1.f

in/ for t > 0 and complete the proof. ut

3.3 Gelation

In Sect. 3.2.2 we have shown the existence of mass-conserving solutions to (49)–
(50) for coagulation kernels satisfying the growth condition (87). As already
mentioned this property fails to be true in general for coagulation kernels which
grows sufficiently fast for large x and y, a fact which has been known/conjectured
since the early 1980s [24,38,53,92] but only proved recently in [26,39]. In fact, the
occurrence of gelation was first shown for the multiplicative kernel K2.x; y/ D xy
by an elementary argument [52] and conjectured to take place for coagulation
kernels K satisfying K.x; y/ � �m.xy/�=2 for some � 2 .1; 2� and �m > 0

[24,38,53,92]. This conjecture was supported by a few explicit solutions constructed
in [13, 50, 85]. A first breakthrough was made in [39] where a stochastic approach
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is used to show that, for a dense set of initial data, there exists at least one gelling
solution to the discrete coagulation equations. A definitive and positive answer is
provided in [26] where the occurrence of gelation in finite time is proved for all
weak solutions starting from an arbitrary initial condition f in satisfying (64) and
f in 6	 0.

More precisely, let K be a non-negative and symmetric function such that

K.x; y/ � r.x/r.y/ ; .x; y/ 2 .0;1/ � .0;1/ ; (103)

for some non-negative function r . Consider an initial condition f in, f in 6	 0,
satisfying (64) and let

f 2 C.Œ0;1/IL1.0;1//\ L1.0;1IL11.0;1// ; f � 0 ;

be a solution to (49)–(50) satisfying (69) and (70) (such a solution exists for a large
class of coagulation kernels, see Theorems 24 and 29).

Theorem 34 ([26]) If there are � 2 .1; 2� and �m > 0 such that r.x/ D �mx
�=2,

x > 0, then gelation occurs in finite time, that is, there is Tgel 2 Œ0;1/ such that

M1.f .t// < M1.f
in/ for t > Tgel :

The cornerstone of the proof of Theorem 34 is the following estimate.

Proposition 35 ([26]) Let � W Œ0;1/ �! Œ0;1/ be a non-decreasing differen-
tiable function satisfying �.0/ D 0 and

I� WD
Z 1

0

� 0.A/ A�1=2 dA < 1 : (104)

Then, for t > 0,

Z t

0

�Z 1

0

r.x/�.x/ f .s; x/ dx

�2
ds � 2I 2� M1.f

in/ : (105)

Let us mention at this point that, besides paving the way to a proof of the
occurrence of gelation in finite time, other important consequences can be drawn
from Proposition 35 due to the possibility of choosing different functions �. These
consequences include temporal decay estimates for large times as well as more
precise information on f across the gelation time [26].

Before proving Proposition 35, let us sketch how to use it to establish The-
orem 34. Since r.x/ D �mx

�=2, a close look at (105) indicates that the choice
�.x/ D x.2��/=2 gives

Z t

0

M1.f .s//
2 ds D

Z t

0

�Z 1

0

x�=2 �.x/ f .s; x/ dx

�2
ds � 2I 2� M1.f

in/

�2m
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for all t > 0. Consequently, t 7! M1.f .t// belongs to L2.0;1/ and thusM1.f .t//

cannot remain constant throughout time evolution. However this choice of � does
not satisfy (104) as

Z 1

1

� 0.A/ A�1=2 dA < 1 but
Z 1

0

� 0.A/ A�1=2 dA D 1 :

We shall see below that a suitable choice is �.x/ D .x � 1/.2��/=2C .

Proof of Proposition 35 Fix A > 0 and take #A.x/ D min fx;Ag, x > 0, in (69).
Recalling (59), we deduce from the non-negativity of f that

Z t

0

Z 1

A

Z 1

A

K.x; y/f .s; x/f .s; y/ dydxds � 2

A

Z 1

0

#A.x/f
in.x/ dx

� 2M1.f
in/

A
:

Using (103) we end up with

Z t

0

�Z 1

A

r.x/f .s; x/ dx

�2
ds � 2M1.f

in/

A
: (106)

We then infer from (106), Fubini’s theorem, and Cauchy–Schwarz’ inequality that

Z t

0

�Z 1

0

r.x/�.x/ f .s; x/ dx

�2
ds

D
Z t

0

�Z 1

0

Z x

0

r.x/� 0.A/ f .s; x/ dAdx
�2

ds

D
Z t

0

�Z 1

0

� 0.A/
Z 1

A

r.x/f .s; x/ dxdA

�2
ds

� I�

Z t

0

Z 1

0

� 0.A/
p
A

�Z 1

A

r.x/f .s; x/ dx

�2
dAds

� 2M1.f
in/I�

Z 1

0

� 0.A/p
A
dA ;

hence (105). ut
Proof of Theorem 34 It first follows from (69) with # 	 1, (103), the choice of r ,
and the non-negativity of f that

Z t

0

�Z 1

0

x�=2f .s; x/ dx

�2
ds � 2M0.f

in/

�2m
;
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which implies, since x � 2.2��/=2x�=2 for x 2 .0; 2/,
Z t

0

�Z 2

0

xf .s; x/ dx

�2
ds � 23��M0.f

in/

�2m
: (107)

We next take �.A/ D .A� 1/
.2��/=2
C , A > 0, in Proposition 35 and note that

I� D 2 � �

2

Z 1

1

.A� 1/��=2A�1=2 dA < 1

as � > 1. Since x � 1 � x=2 for x � 2, we infer from (105) that

1

22��

Z t

0

�Z 1

2

xf .s; x/ dx

�2
ds �

Z t

0

�Z 1

0

x�=2 .x � 1/.2��/=2C f .s; x/ dx

�2
ds

� 2I 2� M1.f
in/

�2m
: (108)

Combining (107) and (108) implies that t 7! M1.f .t// belongs to L2.0;1/

and thus M1.f .t// cannot remain constant throughout time evolution. Since
M1.f .t// � M1.f

in/ for all t > 0 by (70), we conclude that Tgel < 1. ut
Using the same approach, we can actually extend Theorem 34 to a slightly wider

setting encompassing the power functions.

Proposition 36 Assume that r 2 C.Œ0;1//\C1..0;1// is a concave and positive
function which satisfies also

Z 1

1

dx

x1=2 r.x/
< 1 and lim

x!1
r.x/

x1=2
D lim

x!1
x

r.x/
D 1 ; (109)

as well as r.x/ � ıx for x 2 .0; 1/ for some ı > 0. Then Tgel < 1.

A typical example of function r satisfying all the assumptions of Proposition 36
is a positive and concave function behaving as

p
x .lnx/1C˛ for large x for some

˛ > 0.

Proof The proof is similar to that of Theorem 34, the main difference being the
choice of the function � in the use of Proposition 35. As r is concave and positive,
the function x 7! x=r.x/ is non-decreasing and we set

�.x/ WD
�

x

r.x/
� 1

r.1/

�
C
; x > 0 :
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Then � is a positive and non-decreasing differentiable function with �.0/ D 0.
Moreover, (109) guarantees that

I� D
	
A

r.A/
A�1=2


AD1

AD1
C 1

2

Z 1

1

A

r.A/
A�3=2 dA

D � 1

r.1/
C 1

2

Z 1

1

dA

r.A/ A1=2
< 1 :

We are therefore in a position to apply Proposition 35. Since there is x? > 1 such
that x=r.x/ � 2=r.1/ for x � x? by (109), we deduce from (105) that

Z t

0

�Z 1

x?

x f .s; x/ dx

�2
ds � 8I 2� M1.f

in/ : (110)

We finally infer from (69) with # 	 1, (103), and the non-negativity of f that

Z t

0

�Z 1

0

r.x/ f .s; x/ dx

�2
ds � 2M0.f

in/ ;

and the assumptions on r ensure that there is ı? 2 .0; ı/ such that ı?x � r.x/ for
x 2 .0; x?/. Consequently,

Z t

0

�Z x?

0

xf .s; x/ dx

�2
ds � 2M0.f

in/

ı2?
:

Combining this estimate with (110) allows us to conclude that t 7! M1.f .t// 2
L2.0;1/ and complete the proof. ut

3.4 Uniqueness

The uniqueness issue has been investigated by several authors but the results
obtained so far are restricted to mass-conserving solutions, an exception being the
multiplicative kernelK2.x; y/ D xy. Actually two approaches have been developed
to establish the uniqueness of solutions to (49)–(50): a direct one which consists
in taking two solutions and estimating a weighted L1-norm of their difference and
another one based on a kind of Wasserstein distance. To be more specific, since the
pioneering works [59, 61], uniqueness has been proved in [4, 20, 34, 40, 45, 70, 82]
by the former approach and is summarized in the next result.

Proposition 37 Assume that there is a non-negative subadditive function ' (that is,
'.x C y/ � '.x/C '.y/, x > 0, y > 0), such that

K.x; y/ � '.x/'.y/ ; x > 0 ; y > 0 :
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Let T > 0 and f in 2 L1.0;1I'.x/ dx/, f in � 0. There is at most one solution

f 2 C.Œ0; T �IL1.0;1I'.x/dx//\ L1.0; T IL1.0;1I'.x/2dx//

to (49)–(50).

Let us point out two immediate consequences of Proposition 37. First, if
'.x/ � x1=2, Proposition 37 implies the uniqueness of the solution constructed
in Theorem 27 since it belongs to L1.0;1IL11.0;1//. Next, if '.x/ D x, it gives
the uniqueness of solutions to (49)–(50) as long asM2.f / 2 L1.0; T /. While this is
only true up to a finite time T in the general framework considered in Theorem 24,
it follows from Theorem 27 and Lemma 28 (with  .x/ D x2) that, if f in belongs
to L12.0;1/ and satisfies (64), then the solution f to (49)–(50) constructed in
Theorem 27 is such that t 7! M2.f .t// 2 L1.0; T / for any T > 0. According
to Proposition 37, this solution is unique.

Proof of Proposition 37 Let f1 and f2 be two solutions to (49)–(50) enjoying the
properties listed in Proposition 37. We infer from (49) that

d

dt

Z 1

0

j.f1 � f2/.t; x/j'.x/ dx

D 1

2

Z 1

0

Z 1

0

K.x; y/.f1 C f2/.t; y/.f1 � f2/.t; x/�.t; x; y/ dydx

with � WD sign.f1 � f2/ and

�.t; x; y/ WD Œ.'�/.t; x C y/� .'�/.t; x/ � .'�/.t; y/� :

Observing that

.f1 � f2/.t; x/�.t; x; y/ D j.f1 � f2/.t; x/j�.t; x/�.t; x; y/
D j.f1 � f2/.t; x/j


.'�/.t; x C y/�.t; x/ � '.x/�.t; x/2 � .'�/.t; y/�.t; x/

�

� j.f1 � f2/.t; x/j Œ'.x C y/ � '.x/C '.y/�

� 2'.y/j.f1 � f2/.t; x/j ;

we further obtain

d

dt

Z 1

0

j.f1 � f2/.t; x/j'.x/ dx

�
Z 1

0

Z 1

0

K.x; y/.f1 C f2/.t; y/j.f1 � f2/.t; x/j'.y/ dydx
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�
Z 1

0

Z 1

0

'.x/'.y/2.f1 C f2/.t; y/j.f1 � f2/.t; x/j dydx

D
Z 1

0

'.y/2.f1 C f2/.t; y/ dy
Z 1

0

'.x/j.f1 � f2/.t; x/j dx ;

and the conclusion follows by Gronwall’s inequality. ut
The second approach stems from the study of the well-posedness of (49)–(50)

for the constant kernel K0.x; y/ D 2, the additive kernel K1.x; y/ D x C y, and
the multiplicative kernelK2.x; y/ D xy performed in [62]. Roughly speaking, there
is a uniqueness result for the kernel Ki in the weighted space L1.0;1I xidx/, i D
0; 1; 2. It is worth pointing out that the homogeneity of the weight matches that of the
coagulation kernel. Though the main tool used in [62] is the Laplace transform, an
alternative argument involving a weighted Wasserstein distance has been developed
in [32] to extend this uniqueness result to a wider class of homogeneous kernels
with arbitrary homogeneity. For simplicity, we restrict ourselves to the coagulation
kernel

K.x; y/ D x˛yˇ C xˇy˛ ; x > 0 ; y > 0 ; (111)

and assume that its homogeneity � WD ˛Cˇ lies in .0; 1�. We refer to [32] for more
general assumptions on K and f in and homogeneities in .�1; 0/ or in .1; 2/.

Proposition 38 Let T > 0 and f in 2 L1�.0;1/, f in � 0. There is at most one
solution f 2 C.Œ0; T /I w �L1�.0;1// to (49)–(50) (recall that the space L1�.0;1/

is defined in (51)).

Proof Let f1 and f2 be two solutions to (49)–(50) enjoying the properties listed in
Proposition 38. For i D 1; 2, we introduce the cumulative distribution function Fi
of fi given by

Fi .t; x/ WD
Z 1

x

fi .t; y/ dy ; t > 0 ; x > 0 ;

and set E WD F1 � F2 and

R.t; x/ WD
Z x

0

z��1 sign.F1 � F2/.t; z/ dz ; t > 0 ; x > 0 :

We infer from (49) after some computations (see [32, Proposition 3.3]) that

d

dt

Z 1

0

x��1jE.t; x/j dx � 1

2
.A1.t/C A2.t// ; (112)

where

A1.t/ WD
Z 1

0

Z 1

0

K.x; y/

.x C y/��1 � x��1� .f1 C f2/.t; y/jE.t; x/j dydx
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and

A2.t/ WD
Z 1

0

Z 1

0

@xK.x; y/ QR.t; x; y/.f1 C f2/.t; y/E.t; x/ dydx ;

QR.t; x; y/ WDR.t; x C y/� R.t; x/ �R.t; y/ :

On the one hand, since � < 1,

K.x; y/

.x C y/��1 � x��1� � 0 ; x > 0 ; y > 0 ;

so that

A1.t/ � 0 : (113)

On the other hand, it follows from the definition of R and the subadditivity of
x 7! x� that

ˇ̌ QR.t; x; y/ˇ̌ D
ˇ̌
ˇ̌
ˇ
Z xCy

maxfx;yg
z��1 sign.E/.t; z/ dz C

Z minfx;yg

0

z��1 sign.E/.t; z/ dz

ˇ̌
ˇ̌
ˇ

� 1
�


.x C y/� � maxfx; yg� C minfx; yg��

� 2
�

minfx; yg� :

We deduce from the previous inequality and (111) that there is C5 > 0 depending
only on ˛ and ˇ such that

j@xK.x; y/j
ˇ̌ QR.t; x; y/ˇ̌ � C5 x

��1y� :

Consequently,

A2.t/ � C5 M�..f1 C f2/.t//

Z 1

0

x��1jE.t; x/j dx : (114)

Collecting (112)–(114) we end up with

d

dt

Z 1

0

x��1jE.t; x/j dx � C5

2
M�..f1 C f2/.t//

Z 1

0

x��1jE.t; x/j dx ;

and the conclusion follows by integration. ut
Even though there is a version of Proposition 38 when K is given by (111)

with � 2 .1; 2� (and is thus a gelling kernel), the requirement f 2 C.Œ0; T /I w �
L1�.0;1// is only true for T < Tgel and thus provides no clue about uniqueness
past the gelation time.
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The only result we are aware of which deals with the uniqueness of solu-
tions exhibiting a gelation transition is available for the multiplicative kernel
K2.x; y/D xy. In that particular case, using the Laplace transform, it is possible
to characterize M1.f .t// for all times, prior and past the gelation time, and this
information allows one to prove uniqueness [19, 41, 69, 76, 87].
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Stochastic Operators and Semigroups
and Their Applications in Physics and Biology

Ryszard Rudnicki

1 Introduction

Stochastic operators are positive linear operators defined on the space of integrable
functions preserving the set of densities. They appear in ergodic theory of dynamical
systems and iterated function systems. They also describe the evolution of Markov
chains. The interested reader can find results concerning probabilistic and functional
properties of stochastic operators in monographs [34, 74]. The book of Lasota and
Mackey [55] is an excellent survey of many results concerning of their applications
in ergodic theory. Applications of stochastic operators to statistical mechanics are
presented in [65]. Stochastic semigroups are continuous semigroups of stochastic
operators and they have been intensively studied because they play a special role in
applications. They are generated by partial differential equations of different types
and describe the behaviour of the distributions of Markov processes like diffusion
processes, piecewise deterministic processes and hybrid stochastic processes. In
this chapter we present many examples of stochastic operators and semigroups: the
Frobenius–Perron operator, diffusion semigroups, flow semigroups with jumps and
switching and semigroups related to hybrid systems. Then we present some results
concerning their long-time behaviour: asymptotic stability, sweeping, completely
mixing and convergence to self-similar solutions. The results concerning stochastic
operators are applied to study ergodicity, mixing and exactness of dynamical
systems and to integral operators appearing in the theory of cell cycle. The general
results concerning stochastic semigroups are applied to diffusion processes, jump
processes and biological models described by piecewise deterministic stochastic
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processes: birth-death processes, the evolution of the genome, gene expression and
physiologically structured models.

The organization of the chapter is as follows. Section 2 introduces stochas-
tic operators and semigroups and results concerning generators of stochastic
semigroups. We also present methods of constructing stochastic semigroups by per-
turbation theorems. All theoretical results are illustrated by examples of stochastic
operators and semigroups. We show the utility of the Frobenius–Perron operator to
study ergodic properties of dynamical systems. We present here stochastic operators
related to iterated function systems and probability transition functions. We study
in detail stochastic semigroups in the space l1 corresponding to continuous time
Markov chains. We introduce semigroups related to non-degenerate and degenerate
diffusion processes and deterministic flows. As an illustration of perturbation theory
we present semigroups related to piecewise deterministic Markov processes such as
a pure jump process, flow with jumps and dynamics governed by a number of flows
with switching. Another examples are stochastic hybrid systems: randomly flashing
and multi-state diffusion. We also present some elementary nonlinear stochastic
operators and semigroups.

In Sect. 3 we study the long-time behaviour of stochastic operators and semi-
groups. We start with the concept of asymptotic stability and illustrate it by showing
that the tent and a logistic map are exact (have very strong ergodic property).
Then we present the lower function theorem of Lasota–Yorke and its application
to stochastic matrices. Our main results concern long-time behaviour of partially
integral semigroups. We introduce the notion of sweeping and present some result
which leads to the Foguel alternative, i.e. we find conditions when a partially
integral semigroup is asymptotic stability or sweeping. We start with the definition
of a partially integral semigroup. In particular we give sufficient and necessary
conditions for asymptotic stability and sweeping of stochastic semigroups on the
space l1. We present also some auxiliary results which can be useful in studying
of piecewise deterministic Markov processes. Then we introduce the notion of the
Hasminskiı̆ function. This notion is very useful in proofs of asymptotic stability of
stochastic semigroups if we known that they fulfill the Foguel alternative. We also
consider other long-time properties of stochastic semigroups as completely mixing
property, sectorial limits, convergence after rescaling and self-similar solutions and
illustrate them by applications to diffusion and jump processes.

Section 4 contains applications of general results to specific models. We present
applications which come from population dynamics: cell cycle model, birth-death
processes and structured-population models and from genetics: paralog families
and gene expression. We also present some physical applications as the Ehrenfest
model, diffusion and jump processes. The last part of this section is devoted
to nonlinear stochastic operators and semigroups. Nonlinear stochastic operators
and semigroups appear in models which contains binary operations. We present a
stochastic operator which describes the relation between frequencies of genotypes
in the parent and offspring generations. We also present some stochastic semigroups
related to coagulation-fragmentation processes and to the Boltzmann kinetic theory
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of gases. It is interesting that similar semigroups can model aggregation processes
in phytoplankton populations and phenotype-structured populations.

2 Stochastic Operators and Semigroups

In this section we give definitions and examples of stochastic operators and
semigroups.

2.1 Definitions

Let the triple .X;˙;m/ be a �-finite measure space. Denote by D the subset of the
space L1 D L1.X;˙;m/ which contains all densities

D D ff 2 L1 W f � 0; kf k D 1g:

A linear operator P WL1 ! L1 is called a stochastic (or Markov) operator if
P.D/ � D. If a linear operator P WL1 ! L1 is positive and if kPf k � kf k
for f 2 L1 then P is called substochastic. In particular, each stochastic operator is
substochastic. We can also consider nonlinear stochastic operators and define them
as continuous operators P WD ! D.

One can define a stochastic operator by means of a transition probability
function. We recall that P.x; A/ is a transition probability function on .X;˙/ if
P.x; �/ is a probability measure on .X;˙/ and P.�; A/ is a measurable function.
Assume that P has the following property

m.A/ D 0 H) P.x; A/ D 0 for m-a.e. x and A 2 ˙: (1)

Then for every f 2 D the measure

�.A/ D
Z
f .x/P.x; A/m.dx/

is absolutely continuous with respect to the measure m. This fact is a simple
consequence of the Radon–Nikodym theorem, which says that the measure 	 is
absolutely continuous with respect to the measure m iff the following implication
m.A/ D 0 ) 	.A/ D 0 holds for all sets A 2 ˙ . Now, the formula Pf D d�=dm
defines a stochastic operator P W L1 ! L1. Moreover, if P �WL1 ! L1 is
the adjoint operator of P then P �g.x/ D R

g.y/P.x; dy/. There are stochastic
operators which are not given by transition probability functions [30]. But if X is a
Polish space (i.e. a complete separable metric space),˙ D B.X/ is the �-algebra of
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Borel subsets ofX , andm is a probability Borel measure onX , then every stochastic
operator on L1.X;˙;m/ is given by a transition probability function [40].

Before giving the definition of a stochastic semigroup we recall the definition of
C0-semigroups of operators in a Banach space and their elementary properties. Let
.E; k�k/ be a Banach space and let fP.t/gt�0 be a family of linear bounded operators
on E . The family fP.t/gt�0 is called a C0-semigroup or strongly continuous
semigroup if it satisfies the following conditions:

(a) P.0/ D I , i.e., P.0/f D f ,
(b) P.t C s/ D P.t/P.s/ for s; t � 0,
(c) for each f 2 E the function t 7! P.t/f is continuous.

Let D.A/ be the set of such f 2 E , that there exists the limit

Af D lim
t!0C

P.t/f � f

t
: (2)

Then the set D.A/ is a linear subspace dense in E , and A is a linear operator
from D.A/ to E . The operator A is called the infinitesimal generator (briefly the
generator) of the semigroup fP.t/gt�0. We also say that the operatorAWD.A/ ! E

generates the semigroup fP.t/gt�0.
The notions of a C0-semigroup and its generator is strictly connected with

differential equations in the Banach space E . Let fP.t/gt�0 be C0 semigroup on
E and A W D.A/ ! E its generator. Then for every f0 2 D.A/ the function
f W Œ0;1/ ! E defined by the formula f .t/ D P.t/f0 is differentiable (in the
sense of Fréchet) for t � 0 and satisfies the equation

f 0.t/ D Af .t/; with initial condition f .0/ D f0: (3)

Equation of the form (3) is called an evolution equation. We will say that
equation (3) generates semigroup fP.t/gt�0.

If E D L1.X;˙;m/ and fP.t/gt�0 is a C0-semigroup of stochastic (sub-
stochastic) operators on E then fP.t/gt�0 is called, respectively, a stochastic
(substochastic) semigroup. We can also define a nonlinear stochastic semigroup. A
family fP.t/gt�0 of nonlinear stochastic operators is called a nonlinear stochastic
semigroup if it satisfies conditions (a), (b), and the map .t; f / 7! P.t/f is
continuous. We recall that in the definition of a nonlinear stochastic operator P
we only require that it is defined on the set of densities.

Now we give some examples of stochastic operators and semigroups.

2.2 Frobenius–Perron Operator

Stochastic operators were introduced to study properties of dynamical systems.
A dynamical system is a measurable transformation S WX ! X , where .X;˙/
is a measurable space. We are interested in the behaviour of trajectories
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fx; S.x/; S2.x/; : : : g of points x 2 X . If the system is chaotic, then it is very
difficult to describe the behaviour of a single trajectory. Instead of this we can study
stochastic properties of this system. That is, we choose a probability measure � on
.X;˙/ and observe the evolution of this measure under the action of the system.
For example, if we start with the probability measure concentrated at point x, i.e.
the Dirac measure ıx , then under the action of the system we obtain the measure
ıS.x/. In general, if a measure � describes the distribution of points in the phase
spaceX , then the measure 	 given by the formula 	.A/ D �.S�1.A// describes the
distribution of points after the action of the transformation S . In typical spaces we
have some standard measurem, e.g., the Lebesgue on the space R

d or the counting
measure on a countable space. Then we can only consider initial measures � which
are absolutely continuous with respect to m, i.e., there exists a density f such that
�.A/ D R

A
f .x/m.dx/, for A 2 ˙ . If the measure 	 is also absolutely continuous

with respect to m, and g D d	=dm, then we define an operator PS by PSf D g.
This operator corresponds to the transition probability function P.x; A/ on .X;˙/
given by

P.x; A/ D
(
1; if S.x/ 2 A,

0; if S.x/ … A.
(4)

The operator PS is correctly defined if the transition probability function P.x; A/

satisfies condition (1). Now condition (1) takes the form

m.A/ D 0 H) m.S�1.A// D 0 for A 2 ˙ (5)

and the transformation S which satisfies (5) is called non-singular. This operator
can be extended to a bounded linear operator PS WL1 ! L1, and PS is a stochastic
operator. The operator is called the Frobenius–Perron operator or the transfer
operator or the Ruelle operator.

Now we give a formal definition of the Frobenius–Perron operator. Let .X;˙;m/
be a �-finite measure space and let S be a measurable nonsingular transformation
of X . An operator PS WL1 ! L1 which satisfies the following condition

Z
A

PSf .x/m.dx/ D
Z
S�1.A/

f .x/m.dx/ for A 2 ˙ and f 2 L1 (6)

is called the Frobenius–Perron operator for the transformation S . The adjoint of the
Frobenius–Perron operator P �WL1 ! L1 is given by P �g.x/ D g.S.y// and is
called the Koopman operator or the composition operator.

Observe that there are measurable transformations which do not satisfy (5). For
example, if m is a Lebesgue measure on X D R

n and S.x/ D a for all x 2 X ,
then S�1.A/ D X if A D fag and (5) does not hold. It means that the Frobenius–
Perron operator may not exist even for smooth transformations. It is not easy to
check condition (5) and to find the Frobenius–Perron operator for an arbitrary
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transformation. We consider only piecewise smooth transformations of subsets of
R
d . Let X be a subset of Rd with nonempty interior and with the boundary of zero

Lebesgue measure. Let S WX ! X be a measurable transformation. We assume
that there exists pairwise disjoint open subsets U1,. . . ,Un of X having the following
properties:

(a) the sets X0 D X nSn
iD1 Ui and S.X0/ have zero Lebesgue measure,

(b) maps Si D S
ˇ̌
ˇ
Ui

are diffeomorphisms from Ui onto S.Ui/, i.e., Si are C1 and

invertible transformations and detS 0
i .x/ ¤ 0 at each point x 2 Ui .

Then transformations 'i D S�1
i are also diffeomorphisms from S.Ui/ onto Ui .

Then the Frobenius–Perron operator PS exists and is given by the formula

PSf .x/ D
X
i2Ix

f .'i .x//j det' 0
i .x/j; (7)

where Ix D fi W'i.x/ 2 Uig. Indeed,

Z
S�1.A/

f .x/ dx D
nX
iD1

Z
S�1.A/\Ui

f .x/ dx D
nX
iD1

Z
'i .A/

f .x/ dx

D
nX
iD1

Z
A\S.Ui /

f .'i .x//j det' 0
i .x/j dx

D
Z
A

X
i2Ix

f .'i .x//j det' 0
i .x/j dx D

Z
A

PSf .x/ dx:

Example 1 Let S W Œ0; 1� ! Œ0; 1� be the transformation given by

S.x/ D
(
2x; for x 2 Œ0; 1=2�;
2 � 2x; for x 2 .1=2; 1�. (8)

The transformation S is called the tent map. We have U1 D .0; 1=2/,U2 D .1=2; 1/

and the maps 'i W .0; 1/ ! .0; 1/ are given by '1.x/ D 1
2
x i '2.x/ D 1 � 1

2
x. Thus

the Frobenius–Perron operator PS is of the form

PSf .x/ D 1
2
f . 1

2
/C 1

2
f .1 � 1

2
x/: (9)

Frobenius–Perron operators can be successfully used to study ergodic properties
of transformations [55]. Before formulating results concerning this subject we
recall some definitions. Let S WX ! X be a measurable transformation of some
measurable space .X;˙/. A measure � defined on �-algebra ˙ is called invariant
with respect to the transformation S if �.S�1.A// D �.A/ for every set A 2 ˙ .
An invariant measure � is called ergodic if �.A/ D 0 or �.X n A/ D 0 for
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any measurable set A such that A D S�1.A/. Ergodic transformations have many
interesting properties. One of them is the following seminal theorem.

Theorem 1 (Birkhoff Ergodic Theorem) Let S WX ! X be a measurable
transformation of .X;˙;�/ and � be a probability ergodic measure invariant with
respect to S . Then for every f 2 L1.X;˙;�/

lim
T!1

1

T

T�1X
nD0

f .Sn.x// D
Z
X

f .x/�.dx/ for �- a.e. x: (10)

If f D 1A then the formula has an interesting interpretation. It takes the form

lim
T!1

#fn 2 f0; : : : ; T � 1gW Sn.x/ 2 Ag
T

D �.A/ for �- a.e. x: (11)

where #E is the number of elements ofE . Formula (11) means that the average time
spent in a measurable set A by the trajectory fx; S.x/; S2.x/; : : : g of almost every
point x equals the measure of this set.

A stronger property than ergodicity is mixing. Let .X;˙;�; S/ be a dynamical
system with an invariant probability measure �. This system is called mixing if

lim
n!1�.A \ S�n.B// D �.A/�.B/ for all A;B 2 ˙: (12)

If P D � and P.B/ > 0 then condition (12) can be written in the following way

lim
n!1P.Sn.x/ 2 Ajx 2 B/ D �.A/ for all A 2 ˙;

which means that the trajectory of almost all points enters a set A with asymptotic
probability �.A/. The stronger property than mixing is exactness. A system
.X;˙;�; S/ with a double measurable transformation S , i.e. S.A/ 2 ˙ and
S�1.A/ 2 ˙ for allA 2 ˙ , and an invariant probability measure� is called exact if
for every set A 2 ˙ with �.A/ > 0 we have limn!1�.Sn.A// D 1. Observe that
a mixing dynamical system .X;˙;�; S/ with the double measurable and invertible
transformation S is not exact because

�.Sn.A// D �.S�n.Sn.A/// D �.A/:

For example, if X D Œ0; 1�2, ˙ D B.X/, m is the Lebesgue measure, and S WX !
X is the baker transformation given by

S.x; y/ D
(
.2x; 1

2
y/; for x 2 Œ0; 1

2
�, y 2 Œ0; 1�;

.2x � 1; 1
2
y C 1

2
/; for x 2 . 1

2
; 1�, y 2 Œ0; 1�; (13)

then the system is mixing but not exact.
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Table 1 The relations
between ergodic properties of
the dynamical system
.X;˙; �; S/ and the
Frobenius–Perron operator
PS

� f�

Invariant PSf� D f�

Ergodic f� is a unique fixed point of PS in D

Mixing w-limn!1 Pn
S f D f� for every f 2 D

Exact limn!1 Pn
S f D f� for every f 2 D

Now let .X;˙;m/ be a �-finite measure space, S be a measurable nonsingular
transformation of X , and PS WL1 ! L1 be the Frobenius–Perron operator. Let � be
a given probability measure absolutely continuous with respect to m and let f� be
the density of �. Then the measure � is invariant with respect to S iff PSf� D f�;
� is ergodic iff f� is a unique fixed point of PS in the set of densities; � is mixing
iff for every f 2 D the density f� is the weak limit of Pn

S f as n ! 1; � is
exact iff limn!1Pn

S f D f� for every f 2 D. By the weak limit limn!1 Pn
S f we

understand a function h 2 L1 such that for every g 2 L1 we have

Z
X

P n
S f .x/g.x/m.dx/ D

Z
X

h.x/g.x/m.dx/

and we denote it by w-limn!1Pn
S f . We collect the relations between ergodic

properties of a dynamical system and the behavior of the Frobenius–Perron operator
in Table 1.

2.3 Iterated Function System

In many applications, especially, in construction of fractals and in the methods of
image compression, we use iterated function systems. An iterated function system
on a complete metric space .X; �/ is a sequence of maps S1; : : : ; Sn, where Si WX !
X , for i D 1; : : : ; n. Having this system we can define a transformation on some
spaceH.X/ of subsets ofX or on the set of probability measures on some �-algebra
of subsets of X [12, 42, 58]. In the first case we usually assume that maps Si are
contractions,H.X/ consists of all compact subsets of X and the map F WH.X/ !
H.X/ is given by

F.A/ D S1.A/[ � � � [ Sn.A/:

If we introduce the Hausdorff metric on H.X/ given by

h.A;B/ D max
x2A �.x; B/C max

x2B �.x;A/;

where �.x;A/ D minf�.x; y/ W y 2 Ag, then .H.X/; h/ is a complete metric space
and the map F is a contraction. From the Banach contraction principle it follows
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that there exists a unique compact subset A� of X such that F.A�/ D A� and we
have limk!1 F k.A/ D A� for each compact set A. In construction of fractals we
usually assume that X D R

2 and Si are contractive similarity transformations, and
from the formula F.A�/ D A� it follows that the limit set A� is made up of the
union of several smaller copies of itself, i.e., of the sets Si .A�/. It is why the set A�
has a self-similar fractal nature.

Since it is rather difficult, to iterate sets and go to the limit set, in practice,
we construct fractals in a different way. Let p1.x/; : : : ; pn.x/ be non-negative
continuous functions defined onX such that p1.x/C� � �Cpn.x/ D 1 for all x 2 X .
We consider the following process. Take a point x0. We choose a transformation Si
with probability pi .x0/ and we go to the point x1 D Si .x0/. The point x1 describes
the new state of the iterated function system. We repeat the procedure but now with
the initial point x1, etc. In this way we obtain a random sequence of points .xn/.
Precisely, for any initial point x0 2 X we can find a Markov process �x0n , n 2 N, on
X such that �x00 D x0 and with the transition probability function

P.x; B/ D
X

i2IB.x/
pi .x/; where B 2 B.X/ and IB.x/ D fi WSi.x/ 2 Bg.

Under suitable assumptions on functions pi , for every initial point x0 2 X the limit
set of almost every sample path �x0n .!/, n 2 N, is A�. We recall that the limit set
of a sequence is the set of all its accumulation points. Observe that if we start from
the point a, i.e., the initial state is described by the Dirac measure ıa, then the new
state of the system is described by the probability measure

Pn
iD1 pi .a/ıSi .a/. If the

initial state is random and described by a probability measure � then the next state
is given by the probability measure

P�.A/ D
nX
iD1

Z
S�1
i .A/

pi .x/ �.dx/: (14)

In this way we obtain a stochastic operator on probability measures. Under suitable
assumptions on functions pi (see e.g. [58]), the sequence of measures Pk� is
weakly convergent to a probability measure �� as k ! 1 and the set A� is the
topological support of ��.

Though, in the theory of fractals it is more convenient to consider stochastic oper-
ators on measures, we can also study stochastic operators on densities corresponding
to iterated function systems. Now, we assume that S1; : : : ; Sn are non-singular
transformations of the space .X;˙;m/. Let P1; : : : ; Pn be the Frobenius–Perron
operators corresponding to the transformations S1; : : : ; Sn. If the measure � is
absolutely continuous with respect tom and f D d�=dm, then from (14) it follows

P�.A/ D
nX
iD1

Z
S�1
i .A/

pi .x/f .x/m.dx/ D
nX
iD1

Z
A

Pi .pif /.x/m.dx/;
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which means that the measure P� has the density
Pn

iD1 Pi .pif /. Thus, the
evolution of densities is described by the stochastic operator

Pf D
nX
iD1

Pi .pif /:

2.4 Integral Stochastic Operators

Let .X;˙;m/ be a �-finite measure space. If kWX � X ! Œ0;1/ is a measurable
function such that Z

X

k.x; y/m.dx/ D 1

for almost all y 2 X , then

Pf .x/ D
Z
X

k.x; y/f .y/m.dy/ (15)

is a stochastic operator. The function k is called the kernel of the operator P and P
is called an integral or kernel operator.

In finite or countable spaces all stochastic operators are integral. We consider, for
example, the space .N; ˙;m/, where N D f0; 1; : : :g, ˙ D 2N is the �-algebra of
all subsets of N andm is the counting measure, i.e.,m.A/ is the number of elements
of A. Any function f WN ! R is represented as a sequence x D .xi /i2N. Thus, the
integral in this space is given by

Z
N

xi m.di/ D
1X
iD0

xi

and a sequence x D .xi /i2N is integrable iff

1X
iD0

jxi j < 1: (16)

We use the notation l1 D L1.N; ˙;m/. The elements of l1 are real valued sequences
x D .xi /i2N satisfying (16) and the norm is given by kxk D P1

iD0 jxi j. Let us
observe that an arbitrary stochastic operator P W l1 ! l1 is an integral operator.
Indeed, for each i the function x 7! .Px/i is a continuous linear functional from l1

to R. Thus, for each i 2 N there is a sequence .pij/j2N 2 l1 such that

.Px/i D
1X
jD0

pijxj D
Z
N

pijxj m.dj/:
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Moreover, the operator P is represented by a stochastic matrix Œpij�, i.e., a matrix
with nonnegative entries pij with each column summing to one:

P1
iD0 pij D 1 for

each j 2 N.
Many biological and physical processes can be modelled by means of stochastic

integral operators. Some important examples are obtained by some random per-
turbation of dynamical systems. Let S be a (deterministic) dynamical system on
a metric space X and assume that this system is perturbed by an external source
of noise. The noise can be, for example, additive, i.e., xnC1 D S.xn/ C �n or
multiplicative, i.e., xnC1 D S.xn/�n. Such systems are generally of the form

xnC1 D S.xn; �n/; (17)

where .�n/1nD0 is a sequence of independent random variables (or elements) with
the same distribution and the initial value of the system x0 is independent of the
sequence .�n/1nD0. Studying systems of the form (17) we are often interested in the
behaviour of the sequence of the measures .�k/ defined by

�n.A/ D Prob .xn 2 A/; (18)

where A 2 ˙ , and ˙ is the �-algebra of Borel subset of X . The evolution of these
measures can be described by a stochastic operator P on the space of probability
Borel measures given by�nC1 D P�n. Letm be a given Borel measure on the phase
space X . Assume that for almost all y the distribution 	y of the random variable
S.y; �n/ is absolutely continuous with respect tom. Let k.x; y/ be the density of 	y
and the operator P be given by (15). Then P is a stochastic integral operator. If the
measure �0 is absolutely continuous with respect to m and has the density f , then
the measures�n are also absolutely continuous with respect tom and has the density
Pnf . It means that the operator P describes the evolution of the system (17).

2.5 Continuous Time Markov Chain

Now we give some examples of stochastic semigroups. The simplest example are
stochastic semigroups on finite spaces. Such semigroups appears in the theory of
continuous time Markov chains.

Now, we consider a measure space .X;˙;m/ with X D f1; 2; : : : ; ng, ˙ D 2X

and the measurem given by

m.A/ D
X
i2A

pi ; (19)

where .p1; : : : ; pn/ is a sequence with positive terms pi . In this space the function
f WX ! R is represented as a sequence y D .y1; : : : ; yn/, the integral of y over X
is given by

Pn
iD1 yipi . Thus, the space L1.X/ is isomorphic to the space R

n with
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the norm kyk D jy1jp1 C � � � C jynjpn. Now we construct a stochastic semigroup
which corresponds to the system of linear differential equations

y0
i .t/ D

nX
jD1

aijyj .t/; dla i D 1; : : : ; n: (20)

We assume that the coefficients aij have the following properties

(i) aij � 0 for i 6D j ,
(ii)

Pn
iD1 piaij D 0 for j D 1; : : : ; n.

Let y D .y1; : : : ; yn/ and let P.t/y D y.t/ for t � 0, where y.t/ D
.y1.t/; : : : ; yn.t// is the solution of (20) with the initial condition y.0/ D y. We
show that fP.t/gt�0 is a stochastic semigroup. First, we check that if y is a sequence
with nonnegative terms, then y.t/ is a sequence with nonnegative terms for t > 0.
In order to do it we define � D � minfaii W i D 1; : : : ; ng, bij D aij for i ¤ j and
bii D aii C�. Then bij � 0 for all i; j . Let B D Œbij�. Then the function y.t/ satisfies
equation

y0.t/ D ��y.t/C By.t/: (21)

The solution of this equation can be written in the form

y.t/ D e��t eBty; (22)

where

eBt D
1X
kD0

tkBk

kŠ
: (23)

Since the matrix B has nonnegative entrances, also the matrix eBt has nonnegative
entrances. From formula (22) it follows immediately that y.t/ is a nonnegative
sequence for t > 0. We check that

Pn
iD1 piyi .t/ does not depend on t :

d

dt

� nX
iD1

piyi .t/

�
D

nX
iD1

nX
jD1

piaijyj .t/ D
nX

jD1

� nX
iD1

piaij

�
yj .t/ D 0:

Thus, we have shown that if y 2 D, then y.t/ 2 D, therefore, P.t/.D/ � D for
t > 0. Since (20) is a homogeneous linear system of differential equations, P.t/
is a linear operator. Hence P.t/ is a stochastic operator for t > 0. Now we check
conditions (a), (b), (c) of the definition of a stochastic semigroup. Condition (a) is
obvious because P.0/y D y.0/ D y. Condition (b) is due to the fact that (20) is an
autonomous system (its right-hand side does not depend on t). Condition (c) is a



Stochastic Operators and Semigroups and Their Applications in Physics and Biology 267

simple consequence of the continuity of solutions. Thus, fP.t/gt�0 is a stochastic
semigroup.

In a special case when m is a counting measure, i.e., p1 D � � � D pn D 1,
equation (20) generates a stochastic semigroup iff

(i) aij � 0 for i 6D j ,
(ii)

Pn
iD1 aij D 0 for j D 1; : : : ; n.

2.6 Uniformly Continuous Stochastic Semigroups

The generator of the semigroup defined in 2.5 is a bounded operator A and it is of
the form A D ��I C B , where B is a positive and bounded operator. Generally, if
the generator A of a C0-semigroup fP.t/gt�0 in a Banach space E is bounded then
the semigroup fP.t/gt�0 is uniformly continuous, i.e.,

lim
t!t0

kP.t/ � P.t0/k D 0 for t0 � 0: (24)

This result is a simple consequence of the formula

P.t/ D eAt D
1X
kD0

tkAk

kŠ
: (25)

It is also a well known fact that the generator of a uniformly continuous semigroup
is a bounded operator and that a bounded operator A is a generator of a positive
semigroup on a Banach lattice iffACkAkI � 0 (see e.g. Theorem 1.11, p. 255 [3]).
In particular, if the operator A is a generator of a uniformly continuous stochastic
semigroup fP.t/gt�0 then there exist a bounded and positive operator B and � � 0

such that A D ��I CB . On the other hand, since P.t/ D I C tA C o.t/ and P.t/
preserves the integral we obtain

Z
X

Af .x/m.dx/ D 0 for f 2 L1: (26)

Thus
R
X

Bf .x/m.dx/ D � for f 2 D. Assume that � ¤ 0 and let P D B=�.
Then A D ��I C�P , where P is a stochastic operator. Therefore, a generator of a
uniformly bounded stochastic semigroup fP.t/gt�0 is of the form A D ��I C �P .
Let u0 2 L1 and u.t/ D P.t/u0. Then u.t/ satisfies the evolution equation

u0.t/ D ��u.t/C �Pu.t/: (27)
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For every u0 2 L1 equation (27) has the solution of the form

u.t/ D
1X
kD0

.�t/ke��t

kŠ
P ku0: (28)

Since u.t/ is an element of L1 we often use notation u.t; x/ D u.t/.x/ and write
equation (26) as the partial differential equation

@u.t; x/

@t
D ��u.t; x/C �Pu.t; x/: (29)

2.7 Generators of Substochastic and Stochastic Semigroups

As we have observed in 2.6, a bounded linear operator AWL1 ! L1 is a generator
of a stochastic semigroup iff

AC�I � 0 for some � > 0 and
Z
X

Af .x/m.dx/ D 0 for all f 2 L1. (30)

Generally, if an operator AWD.A/ ! L1, D.A/ � L1, is a generator of a
stochastic semigroup then

R
X

Af .x/m.dx/ D 0 for f 2 D.A/. If a linear operator
AWD.A/ ! L1 is unbounded and

R
X

Af .x/m.dx/ D 0 then condition AC �I � 0

does not hold for any � > 0 and the question whether this operator is a generator
of a stochastic semigroup is highly non-trivial. We only recall here some needful
results. The interested reader is referred to [6, 8, 82, 112].

Usually, in applications, we have an operator of the form A C B and we know
that A is a generator of a stochastic or substochastic semigroup and B is another
linear operator and we want to check whether AC B also generates a stochastic or
substochastic semigroup. One of the answer on this questions the following Kato–
Voigt–Banasiak theorem.

Theorem 2 Assume that .A;D.A// is the generator of a substochastic semigroup
on L1 and BWD.A/ ! L1 is a positive operator such that

Z
E

.Af .x/C Bf .x//m.dx/ � 0 for f 2 D.A/; f � 0: (31)

Then for each r 2 .0; 1/ the operator .A C rB;D.A// is the generator of a
substochastic semigroup fPr.t/gt�0 on L1 and the family of operators fP.t/gt�0
defined by

P.t/f D lim
r!1�

Pr.t/f; f 2 L1; t > 0;
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is a substochastic semigroup on L1 with generator .C;D.C // being an extension
of the operator .AC B;D.A//:

D.A/ � D.C / and Cf D Af C Bf for f 2 D.A/:

The semigroup fP.t/gt�0 is a minimal semigroup related to ACB , i.e., if fT .t/gt�0
is another positive semigroup generated by an extension of .A C B;D.A// then
T .t/f � P.t/f for all f 2 D.A/, f � 0.

The problem when the minimal substochastic semigroup defined in Theorem 2
is stochastic was studied in [7, 8, 108, 109]. In particular we have the following
characterization.

Theorem 3 Assume that .A;D.A// is the generator of a substochastic semigroup
on L1 and BWD.A/ ! L1 is a positive operator such that

Z
E

.Af .x/C Bf .x//m.dx/ D 0 for f 2 D.A/; f � 0: (32)

Let � > 0 and R.�;A/ D .�I � A/�1 . Then the following conditions are
equivalent:

1. The minimal semigroup fP.t/gt�0 related to AC B is stochastic.
2. The generator of fP.t/gt�0 is the closure of .AC B;D.A//.
3. If for some f 2 L1, f � 0, we have .BR.�; A//�f D f then f D 0, where
.BR.�; A//� denotes the adjoint of BR.�; A/.

If A is a generator of a stochastic semigroup fS.t/gt�0 and BWL1 ! L1 is a
bounded operator such that

R
X

Bf .x/ dx D 0 for f 2 L1, then from condition (2) of
Theorem 3 it follows thatACB is a generator of a stochastic semigroup fP.t/gt�0.
The semigroup fP.t/gt�0 can be given by the Dyson–Phillips expansion

P.t/f D
1X
nD0

Sn.t/f;

where

S0.t/f D S.t/f; SnC1.t/f D
Z t

0

Sn.t � s/BS.s/f ds; n � 0:

A special role in applications is played by generators of the formAC�K��I , where
A is a generator of a stochastic semigroup fS.t/gt�0, K is a stochastic operator and
� > 0. The semigroup fP.t/gt�0 generated by AC �K � �I is of the form

P.t/f D e��t
1X
nD0

�nSn.t/f; (33)
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where

S0.t/f D S.t/f; SnC1.t/f D
Z t

0

Sn.t � s/KS.s/f ds; n � 0: (34)

2.8 Stochastic Semigroups on l 1

Now we study stochastic semigroups on the space l1 D L1.N; 2N; m/, where m is
the counting measure, and the elements of l1 are real valued sequences x D .xi /i2N
such that

P1
iD0 jxi j < 1. Any linear operator (bounded or unbounded) is given

by an infinite dimensional matrix Q D Œqij�, i.e., .Qx/i D P1
jD0 qijxj for j 2 N.

The question is what are necessary and sufficient conditions for the matrix Q to be
a generator of a stochastic semigroup? One can expect that Q D Œqij� should be a
Kolmogorov matrix, i.e., its entries have the following properties

(i) qij � 0 for i 6D j ,
(ii)

P1
iD0 qij D 0 for j D 0; 1; 2; : : : .

Indeed, if Q is a Kolmogorov matrix and the operator QW l1 ! l1 is bounded, then
Q is a generator of a stochastic semigroup fP.t/gt�0 given by P.t/ D eQt. The
matrix Q defines a bounded operator on l1 if there exists a constant c such that for
each j we have

P1
iD0 jqijj < c. If Q is a Kolmogorov matrix then the boundedness

of Q is equivalent to

sup
j2N

jqjjj < 1: (35)

The problem when the unbounded operator given by a Kolmogorov matrix Q is
is a generator of a stochastic semigroup is more complex and can be solved by using
Theorems 2 and 3. In order to do it we need an auxiliary notion. A matrixQ D Œqij�

is called a sub-Kolmogorov matrix if it satisfies condition (i) and the condition

(ii’)
P1

iD0 aij � 0 for j D 0; 1; 2; : : : .

Corollary 1 Let Q be a sub-Kolmogorov matrix. Then there is the minimal
substochastic semigroup fP.t/gt�0 related to Q.

Proof Let

D0.Q/ D fx 2 l1W
1X
jD0

jqjjjjxj j < 1g: (36)

The set D0.Q/ is dense in the space l1 and the matrix Q defines a linear operator
on D0.Q/ with values in l1. Let A be the diagonal part of Q, i.e., A D Œaij�, ajj D
qjj and aij D 0 for i ¤ j , and let B D Œbij� be the off-diagonal part of Q, i.e.,
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B D Q � A. The operator A with domain D.A/ D D0.Q/ is the generator of a
substochastic semigroup fP0.t/gt�0 on l1 given by .P0.t/x/i D xie

�aiit for i 2
N. The operator BWD.A/ ! l1 is positive. By Theorem 2, there is the minimal
substochastic semigroup fP.t/gt�0 related to Q. ut

Now observe that in our case condition (3) of Theorem 3 can be written as
B�x D .�I � A/�x or equivalently, Q�x D �x, where the symbol C � denotes
the transpose of the matrix C . If Q is a Kolmogorov matrix, condition (32) holds
and from Theorem 3 we obtain the following Kato result [46].

Theorem 4 Let Q be a Kolmogorov matrix and let � > 0 be a positive constant.
We denoteQ� D .q�

i;j /i;j�1, where q�
i;j D qj;i for i; j � 1 The minimal semigroup

related to Q is a stochastic semigroup on l1 iff the equation Q�x D �x has no
nonzero solution x 2 l1 and x � 0 .

If the minimal semigroup fP.t/gt�0 related to a Kolmogorov matrix A is a
stochastic semigroup then the matrix A is called non-explosive.

2.9 Continuity Equation

Now, we move on to semigroups related to partial differential equations. We start
with the continuity equation called also the transport equation and the Liouville
equation.

Consider a moving particle in an open set G � R
d . We assume that if a particle

is at point x then its velocity is b.x/. It means that if x.t/ is its position at time t
then the function x.t/ satisfies the following equation

x0.t/ D b.x.t//: (37)

We also assume that the particle does not leave the set G. We choose the initial
position x of the particle randomly with a density distribution function u0. If u.t; x/
is the density of distribution of x.t/ then u satisfies the following equation

@u.t; x/

@t
D �div.b.x/u.t; x//; (38)

where

div.b.x/u.t; x// D
dX
iD1

@

@xi
.bi .x/u.t; x//: (39)
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Indeed, given a domain D � G with the smooth boundary S , consider the fluxes
into the set D in the time interval of the length t :

I.t/ D
Z
D

u.t Ct; x/ dx �
Z
D

u.t; x/ dx: (40)

Since the fluxes are through the surface S and since the speed at which particles
cross the surface is �n.x/ � b.x/, where n.x/ is the outward-pointing unit normal
vector to S , we have

I.t/ D �t
Z
S

.n.x/ � b.x/u.t; x// d�.x/C o.t/: (41)

According to the Gauss–Ostrogradski theorem we have

Z
S

.n.x/ � b.x/u.t; x// d�.x/ D
Z
D

div.b.x/u.t; x// dx: (42)

Equations (40), (41) and (42) imply (38). Equation (38) generates a stochastic
semigroup given by P.t/u0.x/ D u.t; x/.

The semigroup fP.t/gt�0 can be given explicitly. Namely, for each Nx 2 G we
denote by �t Nx the solution x.t/ of (37) with the initial condition x.0/ D Nx. Let
us fix t > 0 and define a transformation S WG ! G by S. Nx/ D �t Nx. Then S is a
nonsingular and invertible transformation and according to (7) the Frobenius–Perron
operator corresponding to the map S is given by

P.t/f .x/ D PSf .x/ D
8<
:
f .��t x/ det

h d
dx
��t x

i
; if x 2 �t .G/,

0; if x … �t .G/.
The adjoint semigroup fP �.t/gt�0 of Koopman operators P �.t/WL1 ! L1
is given by P �.t/f .x/ D f .�tx/. This semigroup fP �.t/gt�0 is not strongly
continuous but if we choose f sufficiently smooth then the function u.t; x/ D
P �.t/f .x/ satisfies the following equation

@u.t; x/

@t
D

dX
iD1

bi .x/
@u.t; x/

@xi
: (43)

2.10 Diffusion Semigroup

Semigroups generated by continuity equations are special subclass of stochastic
semigroups related to diffusion processes. Consider the Itô equation of the form

dXt D �.Xt / dW t C b.Xt/ dt; (44)
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where Wt is a m-dimensional Brownian motion, �.x/ D Œ�ij .x/� is a d �m matrix

and b.x/ is a vector in R
d for every x 2 R

d . We assume that for all i D 1; : : : ; d ,
j D 1; : : : ; m the functions bi , �ij are sufficiently smooth and have bounded
derivatives of all orders, and the function �ij are also bounded. The process Xt ,
t � 0 is called diffusion process. Recall that the Stratonovitch equivalent equation
is of the form

dXt D �.Xt / ı dW t C �0.Xt/ dt; (45)

where �i0 D bi � 1
2

Pm
kD1

Pd
jD1 �

j

k

@�ik
@xj

. Assume that Xt is a solution of (44) or (45)
such that the distribution of X0 is absolutely continuous and has the density v.x/.
ThenXt has also the density u.t; x/ and u satisfies the Fokker–Planck equation (also
called the Kolmogorov forward equation)

@u

@t
D

dX
i;jD1

@2.aij.x/u/

@xi@xj
�

dX
iD1

@.bi .x/u/

@xi
; (46)

where aij.x/ D 1
2

Pm
kD1 �ik.x/�

j

k .x/. Equation (46) can be written in another
equivalent form

@u

@t
D

dX
iD1

@

@xi

0
@ dX
jD1

aij.x/
@u

@xj

1
A �

dX
iD1

@.�i0.x/u/

@xi
: (47)

Note that the d � d -matrix a D Œaij� is symmetric and nonnegative definite, i.e.
aij D aji and

dX
i;jD1

aij.x/�i�j � 0 (48)

for every � 2 R
d and x 2 R

d , so we only assume weak ellipticity of the operator
on the right hand side of equation (46). Let us consider the operator

Af D
dX

i;jD1

@2.aij.x/u/

@xi@xj
�

dX
iD1

@.bi .x/u/

@xi
(49)

on the set E D ff 2 L1.Rd /\C2
b .R

d /W Af 2 L1.Rd /g, where C2
b .R

d / denotes the
set of all twice differentiable bounded functions whose derivatives of order � 2 are
continuous and bounded. If v 2 C2

b .R
d / then equation (46) has in any time interval

Œ0; T � a unique classical solution u which satisfies the initial condition u.0; x/ D
v.x/ and this solution and its spatial derivatives up to order 2 are uniformly bounded
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on Œ0; T � � R
d (see [36, 104]). But if the initial function has a compact support, i.e.

v 2 C2
c .R

d /, then the solution u.x; t/ of (46) and its spatial derivatives converge
exponentially to 0 as kxk ! 1. From the Gauss–Ostrogradski theorem it follows
that the integral

R
u.t; x/ dx is constant. Let P.t/v.x/ D u.t; x/ for v 2 C2

c .R
d / and

t � 0. Since the operator P.t/ is a contraction on C2
c .R

d / it can be extended to a
contraction on L1.Rd /. Thus the operators fP.t/gt�0 form a stochastic semigroup.
We have P.t/.C 2

c .R
d // � C2

b .R
d / for t � 0. According to Proposition 1.3.3 of

[33] the closure of the operator A generates the semigroup fP.t/gt�0. The adjoint
operators fP �.t/gt�0 form a semigroup on L1.Rd / given by the formula

P �.t/g.x/ D
Z
Rd

g.y/P.t; x; dy/ for g 2 L1.Rd /;

where P.t; x; A/ is the transition probability function for the diffusion processXt ,
i.e.P.t; x; A/ D Prob .Xt 2 A/ andXt is a solution of equation (45) with the initial
condition X0 D x. If g is C2-function, then the function u.t; x/ D P �.t/f .x/
satisfies the Kolmogorov backward equation

@u

@t
D

dX
i;jD1

aij.x/
@2u

@xi @xj
C

dX
iD1

bi .x/
@u

@xi
: (50)

If we assume that the functions aij satisfy the uniform elliptic condition

dX
i;jD1

aij.x/�i�j � ˛j�j2 (51)

for some ˛ > 0 and every � 2 R
d and x 2 R

d then the stochastic semigroup
generated by the Fokker–Planck equation (46) is an integral semigroup. That is

P.t/f .x/ D
Z
Rd

q.t; x; y/f .y/ dy; t > 0

and the kernel q is continuous and positive.
Now we consider degenerate diffusion processes, where instead of (51) we

only assume (48). The fundamental theorem on the existence of smooth densities
of the transition probability function for degenerate diffusion processes is due to
Hörmander. In a series of papers [67,68] Malliavin has developed techniques, called
Malliavin calculus, to give probabilistic proof of this fact. Now we recall some
results from this theory. Let a.x/ and b.x/ be two vector fields on R

d . The Lie
bracket Œa; b� is a vector field given by

Œa; b�j .x/ D
dX
kD1

�
ak
@bj

@xk
.x/ � bk

@aj

@xk
.x/

�
:
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We assume Hörmander’s condition as in [73]

(H) For every x 2 R
d vectors

�1.x/; : : : ; �m.x/; Œ�i ; �j �.x/0�i;j�m; Œ�i ; Œ�j ; �k��.x/0�i;j;k�m; : : :

span the space R
d . Here �1.x/; : : : ; �m.x/ are column vectors of the diffusion

matrix �.x/ and �0.x/ is the drift vector which occur in the Stratonovitch
equation (45).

Note that the vector �0 appears only through brackets.

Theorem 5 (Hörmander) Under hypothesis (H) the transition probability func-
tion P.t; x; A/ has a density k.t; y; x/ and k 2 C1..0;1/ � R

d � R
d /.

There is one important difference between a non-degenerate diffusion and a
degenerate diffusion which satisfies condition (H), namely, the kernel k is strictly
positive if diffusion is non-degenerate, but in the degenerate case the kernel k can
vanish on some subsets. We check where the kernel k is positive using a method
based on support theorems [1, 16, 105]. Let U.x0; T / be the set of all points y for
which we can find a � 2 L2.Œ0; T �IRm/ such that there exists a solution of the
equation

x�.t/ D x0 C
Z t

0

�
�.x�.s//�.s/C �0.x�.s//

�
ds (52)

satisfying the condition x�.T / D y. From the support theorem for diffusion
processes it follows that the topological support of the measureP.T; x0; �/ coincides
with closure in R

d of the set U.x0; T /. Let Dx0;� be the Frechét derivative of the
function h 7! x�Ch.T / from L2.Œ0; T �IRm/ to R

d . By QU .x0; T / we denote all
points y such that x�.T / D y and the derivativeDx0;� has rank d . Then

QU .x0; T / D fy W k.T; y; x0/ > 0g and cl QU .x0; T / D clU.x0; T /;

where cl D closure. The derivativeDx0;� can be found by means of the perturbation
method for ordinary differential equations. Let

�.t/ D d�0

dx
.x�.t//C

mX
iD1

d�i

dx
.x�.t//�i .t/ (53)

and let Q.t; t0/, for T � t � t0 � 0, be a matrix function such that Q.t0; t0/ D I

and
@Q.t; t0/

@t
D �.t/Q.t; t0/. Then

Dx0;�h D
Z T

0

Q.T; s/�.x�.s//h.s/ ds: (54)
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Remark 1 In many applications diffusion processes are defined on some subset G
of Rd . In this case we should know the description of the process Xt when it hits
(or approaches) the boundary @G of G. The simples situation is if the process Xt
starting from any pointG does not hit the boundary. Then such a boundary is called
a natural boundary and then the theory of such a diffusion is the same as in the
case G D R

d , i.e., this diffusion is related to some stochastic semigroup and the
both Kolmogorov equations can be considered without boundary conditions. If we
consider a diffusion process which hits the boundary @G then, in order to still have a
stochastic semigroup, we should assume that after hitting the boundary it returns to
G. In this case we usually assume that the process is reflected at the boundary @G.
Then the Kolmogorov backward equation should be considered with the boundary
condition

@u.t; x/

@n.x/
D 0 for x 2 @G,

where n.x/ is the normal vector to the boundary at x 2 @G. It means that if A� is

the adjoint operator of A and if g 2 D.A�/ then
@g

@n
D 0 on @G. Now from the

formula
Z
G

.Af /.x/g.x/ dx D
Z
G

f .x/.A�g/.x/ dx

one can find the proper boundary condition for the Fokker–Planck equation.

Remark 2 In some applications, especially in population dynamics, the drift vector
b.x/ does not have a globally bounded partial derivatives. The situation is similar to
that in ordinary differential equations, namely, we are only able to prove the local
existence of solutions of (44) in general case and, consequently, we cannot define
a stochastic semigroup. But in some cases, for example in the stochastic version of
the logistic equation

dXt D .˛Xt � ˇX2
t / dt C 
Xt dW t ; ˛; ˇ; 
 > 0; (55)

the derivatives of b.x/ D ˛x � ˇx2 are unbounded, but, using some comparison
theorems, we are able to check the global existence of its solutions (precisely, if
X0 � 0). Hence there exists a stochastic semigroup defined on L1.0;1/ related
to (55).

2.11 Piecewise Deterministic Markov Process

Now, we consider stochastic semigroups related to piecewise deterministic Markov
processes. According to a non formal definition by Davis [28], the class of piecewise
deterministic Markov processes (PDMPs) is a general family of stochastic models
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covering virtually all non-diffusion applications. A more formal definition is the
following: a continuous time Markov process X.t/, t � 0, is a PDMP if there is an
increasing sequence of random times .tn/, called jumps, such that sample paths of
X.t/ are defined in a deterministic way in each interval .tn; tnC1/. We consider two
types of behavior of the process at jump times: the process can jump to a new point
or can change the dynamics which defines its trajectories.

We start with a continuous time version of the iterated function system. We have
a set of flows �it , i 2 I D f1; : : : ; kg. Each flow �it is defined as the solution of a
system of differential equations x0 D bi .x/ on G � R

d (see 2.9). The state of the
system is a pair .x; i/ 2 G � I . If the system is at state .x; i/ then x can change
according to the flow �it and after time t reaches the state .�it .x/; i/ or jump to the
state .x; j / with a bounded and continuous intensity qij.x/. The pair .x.t/; i.t//
constitutes a Markov process X.t/ on G � I . Let fSi .t/gt�0 be the stochastic
semigroup related to �it , i.e., the semigroup of Frobenius-Perron operators and let
the operator Ai be its generator. We assume that the random variable X.0/ has an
absolutely continuous distribution, then so are X.t/ for t > 0. Define the functions
ui , i 2 I , by the formula

Prob .x.t/ 2 E; i.t/ D i/ D
Z
E

ui .t; y/ dy:

and let u D .u1; : : : ; uk/ be a vertical vector and Au D .A1u1; : : : ; Akuk/ is also a
vertical vector. Let qjj.x/ D �Pi¤j qij.x/ and denote by Q.x/ the matrix Œqij.x/�.
Then the vector u satisfies the following equation

@u

@t
D Qu C Au; (56)

Let B.G � I / be the �-algebra of Borel subsets of G � I and let m be the product
measure on B.G � I / given by m.B � fig/ D �.B/ for each B 2 B.G/ and
1 � i � k, where � is the Lebesgue measure on G. The operator A generates a
stochastic semigroup fS.t/gt�0 on the space L1.G � I;B.G � I /;m/ given by the
formula

S.t/f D .S1.t/f1; : : : ; S
k.t/fk/;

where fi .x/ D f .x; i/ for x 2 G, 1 � i � k. Since

Z
G�I

Qf dm D
kX
iD1

Z
G

.Qf /i .x/ dx D
kX
iD1

Z
G

� kX
jD1

qij.x/fj .x/
�

dx

D
kX

jD1

Z
G

� kX
iD1

qij.x/
�
fj .x/ dx D 0
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the operator A C Q is a generator of stochastic semigroup fP.t/gt�0. If we put
� D sup

x2G
maxf�q11.x/; : : : ;�qkk.x/g and K D ��1Q C I . Then K is a stochastic

operator and Q D ��I C �K . Thus the semigroup fP.t/gt�0 can be given by (33)
and (34).

2.12 Flow with Jumps

Now we consider the second type of piecewise deterministic Markov processes a
flow with jumps. A particle x moves on an open set G � R

d with velocity b.x/
(see 2.9) and with a measurable and bounded intensity �.x/ it jumps to a point y.
The location of y is described by a transition function P.x; A/, i.e., P.x; A/ is
the probability that y 2 A. We assume that P satisfies (1), therefore, there is a
stochastic operator P WL1.G/ ! L1.G/ such that

Z
G

f .x/P.x; A/ dx D
Z
A

Pf .x/ dx for f 2 L1.G/ and A 2 B.G/. (57)

Let x.t/ be the location of a particle at time t . We also assume that the particle does
not leave the set G. We choose the initial position x of the particle randomly with a
density distribution u0. If u.t; x/ is the density of distribution of x.t/ then u satisfies
the following equation

@u.t; x/

@t
D �div.b.x/u.t; x// � �.x/u.t; x/C P.�u/.t; x/: (58)

The proof of (58) is almost the same as the formula (38) we should only add to the
right-hand side of (41) the term

Z
G

�.x/f .x/P.x;D/ dx t �
Z
D

�.x/f .x/ dx t C o.t/

and apply the formula (57). Since Bf D ��f C P.�f / is a bounded operator on
L1.G/ and

R
G

Bf .x/ dx D 0 for f 2 L1.G/, equation (58) generates a stochastic
semigroup on L1.G/.

Equations of type (58) appear in such diverse areas as the theory of jump pro-
cesses [86,107], in astrophysics—where describes the fluctuations in the brightness
of the Milky-Way [25] and in population dynamics. An example of application to
population dynamics is presented in 4.8.
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2.13 Stochastic Hybrid Systems

Stochastic hybrid systems (SHSs) is a general class of stochastic processes which
includes continuous and discrete, deterministic and stochastic flows. Such systems
have appeared as stochastic versions of deterministic hybrid systems—systems
described by differential equations and jumps. Piecewise deterministic Markov
processes and Markov process with diffusion belong to SHSs. One can find a
definition of stochastic hybrid systems and many examples of their applications in
[19, 24, 115]. We only present here two examples stochastic semigroups related to
SHSs which can be obtained in the same way as those in 2.11 and in 2.12 but we
need to replace deterministic flows by diffusion flows.

Example 2 The first example is a randomly flashing diffusion. Let us consider the
stochastic equation

dXt D .Yt�.Xt // dW t C b.Xt/ dt; (59)

where Wt , t � 0 is a Wiener process, Yt is a homogeneous Markov process with
values 0; 1 independent of Wt and X0. We assume that the process Yt jumps from 0

to 1 with intensity q0 and from 1 to 0 with intensity q1. Equation (59) describes the
process which randomly jumps between stochastic and deterministic states. Such
processes appear in transport phenomena in sponge—type structures [5,18,64]. The
pair .Xt ; Yt / is a Markov process on R � f0; 1g/. Let A0v.x/ D ��b.x/v.x//0,
A1v.x/ D 1

2

�
�2.x/v.x/

�0 � �
b.x/v.x//0 and

f D
	
f0

f1



; Af D

	
A0f0

A1f1



; Qf D

	�q0f0 C q1f1

q0f0 � q1f1



;

where we identify the function f WR� f0; 1g ! R with a vertical vector .f1; f2/ by
fi .x/ D f .x; i/. SinceA is a generator of a stochastic semigroup onL1.R�f0; 1g/,
Q is a bounded operator on L1.R � f0; 1g/, and the integral of Qf is zero, A CQ

also generates a stochastic semigroup on L1.R � f0; 1g/.
Generally, if we replace in 2.11 the generators Ai of flows by the generators of

the Fokker–Planck equations of the form (49), we introduce a stochastic semigroup
[90] related to a multi-state diffusion on R

d .

Example 3 We can also replace the generator A of a continuity equation by the
generator of the Fokker–Planck equation in 2.12. In this way we introduce a
stochastic semigroup on R

d related to diffusion with jumps.
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2.14 Nonlinear Stochastic Operators

We recall that ifD � L1.X;˙;m/ is the set of densities, then a nonlinear stochastic
operator is any continuous operator P WD ! D. A large class of nonlinear
stochastic operators can be obtained in the following way. Fix a positive integer
r and consider a measurable function qWXrC1 ! Œ0;1/ such that

Z
X

q.x; y1; : : : ; yr /m.dx/ D 1 for a.e. y D .y1; : : : ; yn/: (60)

Then we can define r-linear positive and continuous operatorQW .L1/r ! L1 by

Q.f1; : : : ; fr /.x/ D
Z
X

: : :

Z
X

f1.y1/ : : : fr .yr /q.x; y1; : : : ; yr /m.dy1/ : : : m.dyr /:

(61)

If f1; : : : ; fr 2 D thenQ.f1; : : : ; fr / 2 D. This implies that the operator

P.f / D Q.f; : : : ; f /; f 2 D; (62)

is a nonlinear stochastic operator. The operator P is Lipschitz continuous:

kP.f / � P.g/k � rkf � gk for f; g 2 D.

Indeed, let

Pih D P.f; : : : ; f„ ƒ‚ …
r�i

; h; g; : : : ; g„ ƒ‚ …
i�1

/.x/

for i D 1; : : : ; r . Then Pi are (linear) stochastic operators on L1.X;˙;m/ and

kPf � Pgk D k
rX
iD1

�
Pr�i f � Pr�i g

�k �
rX
iD1

kPr�i .f � g/k � rkf � gk:

If P1; : : : ; Pn are nonlinear stochastic operators on D � L1.X;˙;m/ and
c1; : : : ; cn are nonnegative constants such that c1 C � � � C cn D 1 then the operator

P D c1P1 C � � � C cnPn

is also a nonlinear stochastic operator.
A special role in applications play stochastic operators acting on l1 and 11d spaces

and given by bilinear operators. Such operators are of the form

P.x/k D
X
i2X

X
j2X

akij xixj ;
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for all k 2 X , where X D N if P acts on D � l1 and X D f1; : : : ; d g in the
second case. We assume that the cubic matrix


akij
�

has nonnegative entries akij andP
k2X

akij D 1 for all i; j 2 X .

2.15 Nonlinear Stochastic Semigroups

We recall that a family fP.t/gt�0 of nonlinear stochastic operators is called a
nonlinear stochastic semigroup if P.0/ D I , P.t C s/ D P.t/P.s/ for s; t � 0,
and the map .t; f / 7! P.t/f is continuous. Now, we present a general method of
constructing nonlinear stochastic semigroups. Let fS.t/gt�0 be a (linear) stochastic
semigroup on the space L1.X;˙;m/ and let A be its generator with domain D.A/.
Let P be a nonlinear stochastic operator on the set of densities D � L1.X;˙;m/

and assume that P satisfies the global Lipschitz condition, i.e., kP.f / � P.g/k �
Lkf � gk for all f; g 2 D and some L > 0. Let � > 0. Consider the following
evolution equation

u0.t/ D Au.t/ � �u.t/C �Pu.t/; u.0/ D u0; (63)

where u0 2 D. By a solution of (63) we understand a mild solution, i.e., a continuous
function uW Œ0;1/ ! D such that

u.t/ D T .t/u0 C
Z t

0

�T .t � s/P.u.s// ds for t � 0; (64)

where the semigroup fT .t/gt�0 is given by T .t/ D e��tS.t/. The existence and
uniqueness of solutions of equation (64) is a simple consequence of the method of
variation of parameters (see e.g. [76]).

A special role in application plays equation (63) with A D 0. A linear change of
time t leads to the case with � D 1, thus, we can consider the equation

u0.t/C u.t/ D Pu.t/; u.0/ D u0 2 D; (65)

which has a strong solution uW Œ0;1/ ! D given by

u.t/ D e�t
1X
nD0
.1 � e�t /nun;

where the sequence .un/, n 2 N is defined by the recurrent formulae

un D 1

n

n�1X
kD0

Q.uk; un�1�k/ for n � 1:
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3 Asymptotic Properties of Stochastic Operators
and Semigroups

Now we introduce some notions which characterize the behaviour of iterates of
stochastic operators Pn, n D 0; 1; 2; : : : , when n ! 1 and stochastic semigroups
fP.t/gt�0 when t ! 1. Since the iterates of stochastic operators also form a
(discrete time) semigroup we use notation P.t/ D P t for their powers and we
formulate most of definitions and results for both types of semigroups without
distinguishing them.

3.1 Asymptotic Stability

Consider a stochastic semigroup fP.t/gt�0. A density f� is called invariant if
P.t/f� D f� for each t > 0. The stochastic semigroup fP.t/gt�0 is called
asymptotically stable if there is an invariant density f� such that

lim
t!1 kP.t/f � f�k D 0 for f 2 D:

If the semigroup fP.t/gt�0 is generated by some evolution equation u0.t/ D Au.t/
then the asymptotic stability of fP.t/gt�0 means that the stationary solution u.t/ D
f� is asymptotically stable in the sense of Lapunov and this stability is global on the
set D.

Remark 3 Let fP.t/gt�0 be a continuous time stochastic semigroup andP D P.t0/

for some t0 > 0. Then the semigroup fP.t/gt�0 is asymptotically stable iff the
discrete semigroup fPngn2N is asymptotically stable. The proof of this fact goes as
follows. Assume that the discrete semigroup fPngn2N is asymptotically stable. For
f 2 D and " > 0 we find ı > 0 such that kP.t/f �P.s/f k < " if jt � sj � ı. Let
k � t0=ı be an integer and let fi D P.it0=k/f for i D 1; : : : ; k. Then there exists
n0 2 N such that kPnfi � f�k < " for n � n0 and for i D 1; : : : ; k. Therefore,
kP.t/f � f�k < 2" for t � n0t0.

Example 4 Let PS be the Frobenius–Perron operator related to the tent map defined
in Example 1, i.e., PS is given by

PSf .x/ D 1
2
f . 1

2
x/C 1

2
f .1 � 1

2
x/:

We check that the semigroup determined by PS is asymptotically stable, which is
equivalent to exactness of the tent map. The function f� D 1Œ0;1� is an invariant
density. Since any Frobenius–Perron operator is a contraction it is sufficient to check
that limn!1Pnf D f� for f from a dense subset D0 of D. We assume that D0
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is a set of densities which are Lipschitz continuous. Let f 2 D0 and let L be the
Lipschitz constant for f . Then

jPf .x/ � Pf .y/j � 1
2
jf .x

2
/� f .

y

2
/j C 1

2
jf .1 � 1

2
x/C f .1 � 1

2
y/j � L

2
jx � yj:

Thus L=2 is the Lipschitz constant for Pf and by induction we conclude that L=2t

is the Lipschitz constant for P tf . Hence, the sequenceP tf converges uniformly to
a constant function. Since .P tf / are densities, .P tf / converges to f� uniformly,
which implies the convergence in L1.

Example 5 The second example is the logistic map S.x/ D 4x.1 � x/ on Œ0; 1�.
Denote by T the tent map and let ˚.x/ D 1

2
� 1

2
cos.�x/. We check that S ı ˚ D

˚ ı T . Indeed

S.˚.x// D 4. 1
2

� 1
2

cos.�x//. 1
2

C 1
2

cos.�x// D 1� cos2.�x/;

˚.T .x// D 1
2

� 1
2

cos.�T .x// D 1
2

� 1
2

cos.2�x/ D 1
2

� 1
2
.2 cos2.�x/ � 1/

D 1 � cos2.�x/:

Since S ı ˚ D ˚ ı T we have PSP˚ D P˚PT . Which gives PS D P˚PT P˚�1

and, by induction, Pn
S D P˚P

n
T P˚�1 . Let f 2 D. Then P˚�1f 2 D and from the

previous example limn!1Pn
T P˚�1f D 1Œ0;1�. Therefore

lim
n!1Pn

S f D P˚1Œ0;1� D 1Œ0;1�.˚
�1.x//.˚�1.x//0 D .˚�1.x//0:

Since ˚�1.x/ D 1
�

arccos.1 � 2x/ we have .˚�1.x//0 D 1

�
p
x.1 � x/

. It means

that the logistic map S.x/ D 4x.1 � x/ on Œ0; 1� is exact and has the invariant
density

f�.x/ D 1

�
p
x.1 � x/

:

3.2 Lower Function Theorem

Now we present a very useful result concerning asymptotic stability called the lower
function theorem of Lasota and Yorke. A function h 2 L1, h � 0 and h ¤ 0 is called
a lower function for a stochastic semigroup fP.t/gt�0 if

lim
t!1 k.P.t/f � h/�k D 0 for every f 2 D. (66)
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Here we use the notation f �.x/ D 0 if f .x/ � 0 and f �.x/ D �f .x/ if f .x/ < 0.
The condition (66) can be written equivalently as: there are functions ".t/ 2 L1 such
that limt!1 k".t/k D 0 and P.t/f � h � ".t/. Observe that if the semigroup is
asymptotically stable then its invariant density f� is a lower function for it. Lasota
and Yorke [57] proved the following converse result.

Theorem 6 Let fP.t/gt�0 be a stochastic semigroup. If there exists a lower func-
tion h for a stochastic semigroup fP.t/gt�0 then this semigroup is asymptotically
stable.

Now, we present an application of this result.

Example 6 Let X D f1; : : : ; d g, ˙ D 2X , and m be the counting measure on
X . Then we use the notation l1d D L1.X;˙;m/. Let P W l1d ! l1d be a stochastic
operator, i.e., the operator P is represented by a stochastic matrix P WRd ! R

d

such that pij � 0 for each i; j 2 X and
Pd

iD1 pij D 1 for each j 2 X . A sequence
.x1; : : : ; xd / is a density if it has nonnegative elements and x1 C � � � C xd D 1. We
show that if for some r � 1 the matrix P r has all positive entries, the operator P
is asymptotically stable, i.e., there exists a density � D .�1; : : : ; �d / with positive
elements �i such that limn!1Pnx D � for every density x. In order to prove this
claim we observe that the entries of the matrix P r are greater or equals some c > 0,
which implies that P rx � Œc; : : : ; c� for any density x. Therefore, for n � r and
x 2 D we have

Pnx � P r.P n�rx/ � Œc; : : : ; c�

because Pn�rx is also a density. Thus, Œc; : : : ; c� is a lower function and Theorem 6
completes the proof.

Remark 4 The result presented in Example 6 is a special case of the Perron–
Frobenius theorem for non-negative matrices [71]. In particular, by spectral argu-
ments, one can prove that the sequence fPnxg converges exponentially to � . We
can also replace the assumption on positivity of the matrix P r by a weaker one that
P is irreducible, but in this case we can only prove asymptotic periodicity of the
sequence fPnxg.

The second application of the lower function theorem is given in 4.5.

3.3 Partially Integral Semigroups

Now and in 3.4 we present our main results concerning long-time behaviour of
stochastic and substochastic semigroups. The proofs of these results are based on
the theory of Harris operators [34, 44] and we do not give their here. We start with
the definition of a partially integral semigroup.
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A substochastic semigroup fP.t/gt�0 is called partially integral if there exists a
measurable function kW .0;1/ �X �X ! Œ0;1/, called a kernel, such that

P.t/f .x/ �
Z
X

k.t; x; y/f .y/m.dy/

for every density f and

Z
X

Z
X

k.t; x; y/m.dy/m.dx/ > 0

for some t > 0.

Theorem 7 ([90]) Let fP.t/gt�0 be a partially integral stochastic semigroup.
Assume that the semigroup fP.t/gt�0 has an invariant density f�. Moreover, we
assume that the semigroup fP.t/gt�0 has no other periodic points in the set of
densities, i.e., if P.t/f D f for some f 2 D and t > 0, then f D f�. If f� > 0

a.e. then the semigroup fP.t/gt�0 is asymptotically stable.

For any f 2 L1.X/ the support of f is defined up to a set of measure zero by
the formula

suppf D fx 2 X W f .x/ ¤ 0g:

We say that a stochastic semigroup fP.t/gt�0 spreads supports if for every set
A 2 ˙ and for every f 2 D we have

lim
t!1m.suppP.t/f \A/ D m.A/

and overlaps supports, if for every f; g 2 D there exists t > 0 such that

m.suppP.t/f \ suppP.t/g/ > 0:

Now we formulate corollaries which are often used in applications.

Corollary 2 ([90]) A partially integral stochastic semigroup which spreads sup-
ports and has an invariant density is asymptotically stable.

Corollary 3 ([90]) A partially integral stochastic semigroup which overlaps sup-
ports and has an invariant density f� > 0 a.e. is asymptotically stable.

Remark 5 The above corollaries generalize some earlier results [19, 66, 85, 89]
for integral stochastic semigroups. Another proof of Corollary 3 is given in [11].
Corollary 2 remains true also for the Frobenius–Perron operators. Precisely, let S
be a double-measurable transformation of a probability measure space .X;˙;m/.
If S preserves the measure m and the iterates of the Frobenius–Perron operator PS
spread supports, then the semigroup of iterates ofPS is asymptotically stable [90]. It
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is interesting that if we assume only that a stochastic operator (or semigroup) P has
an invariant density f� and spreads supports, thenP is weakly asymptotically stable
(mixing). It means that for every f 2 D the sequencePnf converges weakly to f�.
One can expect that we can drop in Corollary 2 the assumption that the semigroup is
partially integral, but its is no longer true. Indeed, in [92] we construct a stochastic
operator P WL1Œ0; 1� ! L1Œ0; 1� which spreads supports and P 1 D 1 but it is not
asymptotically stable.

If fP.t/gt�0 is a continuous time stochastic semigroup then we can strengthen
considerably Theorem 7 and formulate the main result of this part.

Theorem 8 ([81]) Let fP.t/gt�0 be a continuous time partially integral stochastic
semigroup. Assume that the semigroup fP.t/gt�0 has a unique invariant density f�.
If f� > 0 a.e., then the semigroup fP.t/gt�0 is asymptotically stable.

Remark 6 The assumption that the invariant density is unique can be replaced by an
equivalent one: that does not exist a set E 2 ˙ such thatm.E/ > 0,m.X nE/ > 0
and P.t/E D E for all t > 0. Here P.t/ is the operator acting on the �-algebra ˙
defined by: if f � 0, suppf D A and supp Pf D B then PA D B .

Remark 7 Theorem 8 is not longer true if we replace a continuous time semigroup
by a discrete time semigroup (i.e., the iterates of a stochastic operator). Indeed, the
stochastic operator P on the space l12 given by P.x1; x2/ D .x2; x1/ is an integral
operator and it has a unique density . 1

2
; 1
2
/ but it is not asymptotically stable.

3.4 Sweeping and Foguel Alternative

The second important notion which describes the long-time behaviour of stochastic
semigroups is sweeping. The notion of sweeping was introduced by Komorowski
and Tyrcha [49] and it is also known as zero type property. A stochastic semigroup
fP.t/gt�0 is called sweeping with respect to a set B 2 ˙ if for every f 2 D

lim
t!1

Z
B

P.t/f .x/m.dx/ D 0:

It is clear that if a stochastic semigroup is sweeping then it cannot be asymptotically
stable. Our main aim in this part is to find such conditions on a semigroup to have
alternative between asymptotic stability and sweeping.

The crucial role in results concerning sweeping plays the following condition:

(KT) There exists a measurable function f� such that: 0 < f� < 1 a.e.,
P.t/f� � f� for t � 0, f� … L1 and

R
A
f� dm < 1 for some set A 2 ˙

with m.A/ > 0 .
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Theorem 9 ([49]) Let fP.t/gt�0 be an integral stochastic semigroup which has no
invariant density. Assume that the semigroup fP.t/gt�0 and a set A 2 ˙ satisfy
condition .KT /. Then the semigroup fP.t/gt�0 is sweeping with respect to A.

In paper [90] it was shown that Theorem 9 holds for a wider class of operators than
integral ones. In particular, the following result was proved (see [90] Corollary 4
and Remark 6).

Theorem 10 Let fP.t/gt�0 be a stochastic semigroup which overlaps supports.
Assume that the semigroup fP.t/gt�0 and a set A 2 ˙ satisfy condition .KT/. Then
the semigroup fP.t/gt�0 is sweeping with respect to A.

The main difficulty in applying Theorems 9 and 10 is to prove that a stochastic
semigroup satisfies condition .KT/. Now we formulate a criterion for sweeping
which will be useful in applications.

Theorem 11 ([90]) Let X be a metric space and ˙ D B.X/ be the �—algebra
of Borel subsets of X . We assume that a partially integral stochastic semigroup
fP.t/gt�0 with the kernel k has the following properties:

(a) for every f 2 D we have
R1
0
P.t/f dt > 0 a.e.,

(b) for every y0 2 X there exist " > 0, t > 0, and a measurable function � � 0

such that
R
� dm > 0 and

k.t; x; y/ � �.x/

for x 2 X and y 2 B.y0; "/, where B.y0; "/ is the open ball with center y0 and
radius ". If the semigroup fP.t/gt�0 has no invariant density then it is sweeping
with respect to compact sets.

Remark 8 If fP.t/gt�0 is a discrete time semigroup then condition (a) is of the
form: for every f 2 D we have

P1
nD0 P nf > 0 a.e.

From Theorem 8 and Theorem 11 it follows

Corollary 4 Let fP.t/gt�0 be a continuous time partially integral stochastic
semigroup on L1.X;B.X/;m/, where X is a metric space. Assume that conditions
(a) and (b) of Theorem 11 hold. Then the semigroup fP.t/gt�0 is asymptotically
stable if it has an invariant density and it is sweeping with respect to compact sets
if it has no invariant density. In particular, if X is compact then the semigroup
fP.t/gt�0 is asymptotically stable.

The property that a stochastic semigroup fP.t/gt�0 is asymptotically stable or
sweeping from a sufficiently large family of sets is called the Foguel alternative [55].
We use the notion of the Foguel alternative in a narrow sense, when the sweeping is
from all compact sets.

From Theorems 7 and 11 it follows
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Corollary 5 The Foguel alternative holds for a partially integral stochastic
semigroup fP.t/gt�0 on L1.X;B.X/;m/ with a continuous and positive kernel
k.t; x; y/ for t > 0.

Now we present a result concerning long-time behaviour of stochastic semi-
groups given in [78] which generalizes Theorems 8 and 11.

Theorem 12 Let X be a metric space and and ˙ D B.X/. Let fP.t/gt�0 be a
continuous time partially integral substochastic semigroup on L1.X/ with kernel k
and which has a unique invariant density f�. Let S D suppf�. We assume that for
some t0 > 0

Z
S

Z
S

k.t0; x; y/m.dx/m.dy/ > 0:

Moreover, we assume that for some t1 > 0

(a) there is no nonempty measurable set B ¨ X n S such that P �.t1/1B � 1B ,
(b) for every y0 2 X n S there exist " > 0 and a measurable function � � 0 such

that
R
XnS � dm > 0 and

k.t1; x; y/ � �.x/ (67)

for x 2 X and y 2 B.y0; "/.
Then for every f 2 D there exists a constant c.f / such that

lim
t!1 1SP.t/f D c.f /f�

and for every compact set F 2 ˙ and f 2 D we have

lim
t!1

Z
F\XnS

P.t/f .x/m.dx/ D 0:

Remark 9 If we drop in Theorem 11 condition (b) then it is not longer true. Indeed,
there is an integral stochastic operator with a strictly positive kernel which has no
invariant density but it is not sweeping from compact sets (see [90], Remark 7).
The notion of sweeping operators is similar to the notion of dissipative operators. A
stochastic operator is called dissipative if

P1
nD0 P nf .x/ < 1 a.e. for a density with

f > 0 a.e. This definition is independent of the choice of f . There are dissipative
stochastic operators which are no sweeping (see [49] Example 1). It is interesting
that a stochastic operator on L1.R/ can be sweeping from compact sets but can be
no sweeping from sets of finite Lebesgue measure (see [90], Remark 3).

From our general results concerning the Foguel alternative it is easy to prove the
following well-known results on continuous time irreducible Markov chains (see
[82] for the proof in the case l1).
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Theorem 13 Let fP.t/gt�0 be a stochastic semigroup on l1d generated by the
equation

x0.t/ D Qx.t/:

Let us assume that the entries of the matrix Q satisfy the following condition
(T) for all 1 � i; j � d there exists a sequence of integers i0; i1; : : : ; ir such that

i0 D j , ir D i and

qir ir�1 : : : qi2i1qi1i0 > 0: (68)

Then the semigroup fP.t/gt�0 is asymptotically stable, i.e., there exists a density
� D .�1; : : : ; �d / with positive elements �i such that limt!1.P.t/x/i D �i for
every density x and 1 � i � d .

Proof We apply Corollary 4. Since X D f1; : : : ; d g is a discrete space, the
semigroup fP.t/gt�0 is integral with a continuous kernel k and the kernel k satisfies
condition (b). From (T) it follows that condition (a) holds. Since the spaces X is
compact, the semigroup fP.t/gt�0 cannot be sweeping from compact sets, and,
consequently, it is asymptotically stable. ut
Remark 10 By spectral arguments one can prove a stronger version of Theorem 13
with exponential convergence of P.t/x to � as t ! 1.

Theorem 14 Let fP.t/gt�0 be a stochastic semigroup on l1 generated by the
equation

x0.t/ D Qx.t/:

Let us assume that the entries of the matrix Q satisfy the following condition
(T) for all i; j 2 N there exists a sequence of nonnegative integers i0; i1; : : : ; ir

such that i0 D j , ir D i and

qir ir�1 : : : qi2i1qi1i0 > 0: (69)

Then the semigroup fP.t/gt�0 satisfies the Foguel alternative:

(a) if the semigroup fP.t/gt�0 has an invariant density, then it is asymptotically
stable,

(b) if the semigroup fP.t/gt�0 has no invariant density, then for every x 2 l1 and
i 2 N we have

lim
t!1.P.t/x/i D 0: (70)

Now we return to a piecewise deterministic Markov process considered in 2.11.
The main problem with application of the Foguel alternative is to check that the
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stochastic semigroup related to this process is partially integral and its kernel
satisfies condition (b). Now we discuss this subject. As in 2.11 we assume that
the system is governed by k flows �it and each flow �it is defined as the solution
of a system of differential equations x0 D bi .x/ on G � R

d . We also assume
that all transition intensities qij.x/ are continuous and positive functions. Denote
by fP.t/gt�0 the semigroup corresponding to this system. Let .i1; : : : ; idC1/ be a
sequence of integers from the set I D f1; : : : ; kg. For x 2 X and t > 0 we define
the function  x;t on the set t D f� D .�1; : : : ; �d /W �i > 0; �1 C � � � C �d � tg by

 x;t .�1; : : : ; �d / D �
idC1

t��1��2������d ı �id�d ı � � � ı �i2�2 ı �i1�1 .x/:

Assume that for some y0 2 X , t0 > 0 and �0 2 t0 we have

det

	
d y0;t0 .�

0/

d�



¤ 0: (71)

Then, according to [81], there exists a continuous function kWG �G ! Œ0;1/ and
a point x0 2 G such that k.x0; y0/ > 0 and

P.t0/f .x/ �
Z
G

k.x; y/f .y/ dy for f 2 D.

Remark 11 Condition (71) can be formulated using Lie brackets (see for their
definition page 274). Assume that qij.y0/ > 0 for all 1 � i; j � k. If vectors

b2.y0/ � b1.y0/; : : : ; bk.y0/� b1.y0/; Œb
i ; bj �.y0/1�i;j�k; Œbi ; Œbj ; bl ��.y0/1�i;j;l�k; : : :

span the space R
d then (71) holds (see , e.g., [13] Theorem 4).

3.5 Hasminskiı̆ Function

An advantage of the formulation of Corollary 4 in the form of an alternative is
that in order to show asymptotic stability we do not need to prove the existence
of an invariant density. It is enough to check that the semigroup is not sweeping
with respect to compact sets then, automatically, the semigroup fP.t/gt�0 is
asymptotically stable. We can eliminate the sweeping by means some method
similar to that of Lyapunov function called Hasminskiı̆ function.
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Consider a continuous time stochastic semigroup fP.t/gt�0 and let A be its
generator. Let R D .I � A/�1. A measurable function V W X ! Œ0;1/ is called
a Hasminskiı̆ function for the semigroup fP.t/gt�0 and a set Z 2 ˙ if there exist
M > 0 and " > 0 such that

Z
X

V.x/Rf .x/ dm.x/ �
Z
X

.V.x/ � "/f .x/ dm.x/C
Z
Z

MRf .x/ dm.x/:

(72)

Theorem 15 ([79]) Let fP.t/g be a stochastic semigroup generated by the
equation

@u

@t
D Au:

Assume that there exists a Hasminskiı̆ function for this semigroup and a set Z. Then
the semigroup fP.t/g is not sweeping with respect to the set Z.

In application we take V such that the function A�V is “well defined” and it
satisfies the following condition A�V.x/ � �c < 0 for x … Z. Then we check
that V satisfies inequality (72). We called the function V the Hasminskiı̆ function
because he has showed [39] that the semigroup generated by a non-degenerate
Fokker–Planck equation has an invariant density iff there exists a positive function
V such that A�V.x/ � �c < 0 for kxk � r . We applied this method to multi-
state diffusion processes [79] and diffusion with jumps [80], where inequality (72)
was proved by using some generalization of the maximum principle. This method
was also applied to flow with jumps (58) in [77] but the proof of inequality (72) is
different and based on an approximation of V by a sequence of elements from the
domain of the operator A�.

Now, we present a result on asymptotic stability of stochastic semigroups on l1

which is based on the idea of Hasminskiı̆ function (see [82] for the proof).

Theorem 16 Let Q D Œqij�, i; j D 0; 1; 2; : : : , be a non-explosive Kolmogorov
matrix. We assume that there exist a sequence v D .vi / of nonnegative numbers and
positive constants ", m, and k such that

1X
iD0

qijvi �
(
m; for j � k,

�"; for j > k.
(73)

Then the stochastic semigroup fP.t/gt�0 related to Q is not sweeping from the set
f0; 1; : : : ; kg. In particular, if the matrix Q satisfies conditions (T) and (73), then
the semigroup fP.t/gt�0 is asymptotically stable.
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3.6 Completely Mixing

A stochastic semigroup fP.t/gt�0 is called completely mixing if

lim
t!1 kP.t/f � P.t/gk D 0 (74)

for any densities f and g. If a stochastic semigroup is completely mixing and has
an invariant density f� then it is asymptotically stable. However, the semigroup
fP.t/gt�0 can be completely mixing, but it can have no invariant density. For

example, the heat equation
@u

@t
D u generates the semigroup which is completely

mixing and has no invariant density. It is easy to check that if a stochastic semigroup
fP.t/gt�0 is completely mixing then all fixed points of the semigroup fP �.t/gt�0
are constant functions.

Remark 12 Let fP.t/gt�0 be a continuous time stochastic semigroup and P D
P.t0/ for some t0 > 0. Then the semigroup fP.t/gt�0 is completely mixing iff
the discrete semigroup fPngn2N is completely mixing.

Completely mixing property for non-degenerate Fokker–Planck equations was
studied in the papers [23,87]. The most general result in this direction was received
in [14]:

Theorem 17 Assume that all coefficients in the Fokker–Planck equation are
bounded with their first and second partial derivatives, and the diffusion term
satisfies uniform elliptic condition (51). Then the semigroup fP.t/gt�0 generated
by this equation is completely mixing iff all fixed points of the semigroup fP �.t/gt�0
are constant functions, i.e., if all bounded solutions of the elliptic equation

nX
i;jD1

aij.x/
@2u

@xi @xj
C

nX
iD1

bi .x/
@u

@xi
D 0

are constant.

It is worth pointing out that this theorem is no longer true if the boundedness of
the drift coefficient b.x/ is replaced with its linear growth. A counter-example in
one-dimensional case with constant diffusion is given in [87].

Completely mixing property is strictly connected with the notion of the relative
entropy. For any continuous and convex function � and densities f , g the �-entropy
of f relative to g is defined by

H�.f j g/ D
Z
X

g.x/�

�
f .x/

g.x/

�
m.dx/:
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Relative entropy is also called statistical distance and was introduced by Csiszár
[27]. The most interesting examples of relative entropy are following:

1. if �.u/ D u log u, then H�.f j g/ D R
.f logf � f logg/ dm is called the

Kullback–Leibler entropy or information of f relative to g,
2. if �.u/ D j1� uj, thenH�.f jg/ D kf � gk,
3. if �.u/ D �ua, a 2 .0; 1/, then H�.f jg/ D � R f ag1�a dm.

The following result connects the notion of the relative entropy with stochastic
operators and completely mixing property.

Theorem 18 Let P be a stochastic operator andH� be the relative entropy. Then

H�.Pf j Pg/ � H�.f j g/: (75)

If H�.fn j gn/ ! �.1/, then fn � gn ! 0 in L1.

A simple proof of this results can be found in [63].

Remark 13 Let PS be the Frobenius–Perron operator for a measurable transfor-
mation S of a �-finite measure space .X;˙;m/. Then PS is completely mixing
iff
T1
nD1 S�n˙ D f;; Xg (see [59]). If additionally the measure m is invariant

then the transformation S is exact. In the paper [83] we give an example of a
piecewise linear and expanding transformation of the interval Œ 0; 1�, called the one-
dimensional Smale horseshoe, which is completely mixing but for every density f
the iterates Pn

S f converge weakly to the standard Cantor measure. In particular, this
transformation has no invariant density, and, therefore, it is not mixing. On the other
hand the system given by the baker transformation (13) is mixing but not completely
mixing.

Remark 14 Many abstract results concerning completely mixing property can be
found in books [72, 74]. Completely mixing property of an integral stochastic
operator appearing in a model of cell cycle was studied in [91].

3.7 Sectorial Limit

Now, we consider a stochastic semigroup fP.t/gt�0 corresponding to a diffusion
process on R

d . Let S D fx 2 R
d W kxk D 1g and A be a measurable subset of S .

Denote by K.A/ the cone spanned by A:

K.A/ D fx 2 R
d W x D �y; y 2 A; � > 0g:
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Then the function

pA.t/ D
Z
K.A/

P.t/f .x/ dx; f 2 D;

describes the mass of particles which are in the cone K.A/. If the semigroup
fP.t/gt�0 is completely mixing and sweeping from compact sets then the asymp-
totic behaviour of pA.t/ as t ! 1 does not depend on f . It is interesting when the
following limit exists: pA D limt!1 pA.t/. If this limit exists then pA measures
the sectorial limit distribution of particles.

The problem of finding the limit distribution pA for arbitrary diffusion process
in d—dimensional space is difficult. Some partial results can be obtained under
additional assumption that all functions aij and bi are periodic with the same periods
(we recall that a function f W Rd ! R is periodic if there exist independent vectors
v1; : : : ; vd such that f .x C vi / D f .x/ for each x 2 R

d and i D 1; : : : ; d ).
In one-dimensional space we can consider the function pC.t/ D R1

c
u.x; t/ dx

which describes the mass of particles in the interval .c;1/. The paper [88] provides
a criterion for the existence of the limit limt!1 pC.t/ and the formula for its value.
In particular, if the diffusion coefficient � 	 1 and the finite limits

lim
x!1

Z x

0

b.y/ dy D r and lim
x!�1

Z x

0

b.y/ dy D s

exist, then

lim
t!1pC.t/ D e2r

e2r C e2s
:

In the same paper an example is constructed such that the following condition holds

lim sup
t!1

1

t

Z t

0

pC.s/ ds D 1 and lim inf
t!1

1

t

Z t

0

pC.s/ ds D 0: (76)

In this example � 	 1 and b.x/ ! 0 as jxj ! 1. Condition (76) is rather
surprising because even if diffusion is constant and the drift coefficient is small
particles can synchronously oscillate between C1 and �1.
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3.8 Convergence After Rescaling and Self-Similar Solutions

If a stochastic semigroup fP.t/gt�0 on the space L1.Rd / has no invariant density
one can investigate its convergence after rescaling. We say that a stochastic
semigroup fP.t/gt�0 is convergent after rescaling if there exist a density g and
functions ˛.t/, ˇ.t/ such that

lim
t!1

Z
Rd

jP.t/f .x/ � ˛d .t/g�˛.t/x C ˇ.t/
�j dx D 0 for every f 2 D.

(77)

If there exists a density f such that P.t/f .x/ D ˛d .t/g
�
˛.t/xCˇ.t/� then u.t/ D

P.t/f is called a self-similar solution of the equation u0.t/ D Au.t/, where A is
the generator of the semigroup. For example, the stochastic semigroup fP.t/gt�0
generated by the heat equation

@u

@t
D u satisfies (77) with ˛.t/ D .1C t/�1=2 and

ˇ.t/ D 0. It has also a self-similar solution with g.x/ D .4�/�d=2e�kxk2=4.
Condition (77) implies completely mixing property. One of the weak versions

of this condition is the central limit theorem. In papers [85, 86] it is shown that
semigroups connected with processes with jumps satisfy condition (77), precisely,
these processes are asymptotically log-normal.

3.9 Supplementary Remarks

In the previous subsections we have concentrated mainly on properties of partially
integral stochastic semigroups and we omit a lot of important classical results
concerning dynamical systems and Markov processes. Now we give some remarks
concerning classical results on this subject. The interested reader in ergodic
properties of dynamical systems is referred to the monographs [26, 51, 55, 84]. We
begin with the well known Krylov–Bogoliubov theorem [22]:

Theorem 19 Let f�tgt�0 be a (discrete or continuous time) dynamical system on
a compact metric space. Then there exists a probability Borel measure � invariant
and ergodic with respect to f�t gt�0.
Theorem 19 can be generalized to Markov processes which satisfy Feller property.
A family of time homogeneous Markov processes on a metric space X with the
transition probability function P.t; x; A/ is called a Feller family if the operators
P �.t/f .x/ D R

X
f .y/P.t; x; dy/ form a C0-semigroup on the space C.X/ of

continuous and bounded functions f WX ! R. Every Feller family on a compact
metric space has an invariant probability measure �, which also means that the
Markov process with the initial distribution � and with the transition probability
function P.t; x; A/ is stationary. This result can be generalized to the case when X
is a Polish space (complete and separable) but then we need to assume additionally
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that there exists a point x 2 X such that the set of measures fP.t; x; �/W t > 0g
is tight. We recall that a family of measures M on a Polish space X is tight if for
any " > 0 there is a compact subset K" of X such that, for all measures m 2 M ,
m.X nK"/ < ".

The Krylov–Bogoliubov theorem does not provide us information if the invariant
measure � has a density with respect to the standard measure m on X . One of the
classical tool to prove the existence of invariant densities is the abstract ergodic
theorem due to Kakutani and Yosida (see [55] Theorem 5.2.1):

Theorem 20 Let P be a stochastic operator on the space L1.X;˙;m/. If for a
given f 2 D the sequence

Anf D 1

n

n�1X
kD0

P kf

is weakly precompact, then it converges strongly to some f� 2 D and Pf � D f�.

In particular, if for some f 2 D there exists a g 2 L1 such that Anf � g for
all n 2 N, then the sequence fAnf g is weakly precompact and, consequently, the
operator P has an invariant density.

A kind of uniform weak compactness of iterates of a stochastic operator P leads
to another interesting asymptotic property. A stochastic operator P WL1 ! L1 is
called constrictive if there exists a weakly compact subset F of L1 such that

lim
n!1d.P nf; F / D 0 for f 2 D;

where d.P nf; F / denotes the distance, in L1 norm, between the element f and the
set F . The importance of constrictiveness is a consequence of the following theorem
of Komorník [48]:

Theorem 21 (Spectral Decomposition Theorem) The iterates of a constrictive
operator P can be written in the form

Pnf D
rX
iD1

�i .f /g˛n.i/ CQnf for f 2 L1;

where:

• g1; : : : ; gr are densities with disjoint supports;
• �1; : : : �r are linear functionals on L1;
• ˛ is a permutation of numbers 1; : : : ; r such that Pgi D g˛.i/ and ˛n denotes the
nth iterate of ˛; and

• Qn is a sequence of operators such that lim
n!1 kQnf k D 0 for f 2 L1.
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The operator P which fulfills the thesis of Theorem 21 is called asymptotically
periodic. In particular, if there exists an upper function f 2 L1 for the operator P ,
i.e.,

lim
n!1 k.P nf � h/Ck D 0 for every f 2 D, (78)

then the operator P is weakly constrictive and, consequently, P is asymptotically
periodic.

4 Applications

In this section we give a number of applications of stochastic operators and
semigroups to diffusion and jump processes, population dynamics, cell cycle
models, gene expression and gene evolution. Our examples appear in an order
related to Sect. 2.

4.1 Models of the Cell Cycle

We start with a simple model of the cell cycle which describes the relation between
the size (mass, volume) x of a mother and a daughter cell. We assume that g.x/ is
the growth rate of a cell with size x, i.e., x.t/ satisfies the differential equation

dx

dt
D g.x.t//: (79)

Denote by '.x/ the division rate of a cell with size x, i.e., a cell with size x replicates
during a small time interval of lengtht with probability '.x/t Co.t/. Finally,
we assume that a daughter cell has a half size of the mother cell. Given growth and
division rate functions and the initial size x0 of a cell it is not difficult to find the
distribution of its life-span and the distribution of it size at the point of division. Let
�.t; x0/ be the size of a cell at age t if its initial size were x0, i.e., �.t; x0/ D x.t/,
where x is the solution of the equation x0 D g.x/ with the initial condition x.0/ D
x0. The life-span of a cell is a random variable T which depends on the initial size
x0 of a cell. Let ˚.t/ D Prob .T > t/ be the survival function, i.e., the probability
that the life-span of a cell with initial size x0 is greater than t . Then

Prob .t < T � t Ct jT > t/ D ˚.t/ � ˚.t Ct/

˚.t/
D '.�.t; x0//t C o.t/:
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From this equation we obtain

˚ 0.t/ D �˚.t/'.�.t; x0//

and after simple calculations we get

˚.t/ D exp
n

�
Z t

0

'.�.s; x0// ds
o
: (80)

For y � x0 we define t.x0; y/ to be the time t such that �.t; x0/ D y. Since

@t

@y
� g.�.t; x0// D 1;

we see that

@t

@y
D 1

g.y/

and

@

@y

� Z t .x0;y/

0

'.�.s; x0// ds
�

D '.y/

g.y/
:

Let Y be the size of the cell at the moment of division. Then

Prob .Y > y/ D Prob .�.t; x0/ > y/ D exp
n

�
Z t .x0;y/

0

'.�.s; x0// ds
o

D exp
�

�
Z y

x0

'.r/

g.r/
dr
�

D exp.Q.x0/ �Q.y//;
(81)

whereQ.x/ D
xR
0

'.r/

g.r/
dr: Let � be a random variable with exponential distribution,

i.e., Prob .� > x/ D e�x . Then

Prob .Y > y/ D exp.Q.x0/ �Q.y// D Prob
�
� > Q.y/�Q.x0/

�
D Prob

�
Q�1�Q.x0/C �

�
> y

�
;

which means that the random variables Y and Q�1�Q.x0/ C �
�

have the same
distribution. From this it follows that if the random variable x0 and x1 are initial
sizes of a mother and a daughter cell, respectively, then

x1
dD 1

2
Q�1�Q.x0/C �

�
; (82)
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where � is a random variable independent of x0 and with exponential distribution,

and the symbol
dD means that both variable have the same distribution. In general,

if random variable xn is the initial size of the cell in the n-th generation then

xnC1
dD 1

2
Q�1�Q.xn/C �n

�
; (83)

where .�n/ is a sequence of independent random variables with exponential
distribution and all variables .�n/ are also independent of x0.

The model (83) is of the form (17) with S.y; z/ D 1
2
Q�1�Q.y/ C z

�
. Now we

will find the density of the random variable S.y; �n/. We have

Prob
�
1
2
Q�1�Q.y/C �n

� � x
� D Prob

�
Q.y/C �n � Q.2x/

�
D Prob .�n � Q.2x/�Q.y// D 1 � eQ.y/�Q.2x/

for x � y=2. Thus the random variable S.y; �n/ has the density

k.x; y/ D � @
@x
eQ.y/�Q.2x/ D 2Q0.2x/eQ.y/�Q.2x/1fy�2xg:

If fn is the density of the distribution function of xn, n 2 N, then fnC1 D
Pfn, where P is a stochastic operator P on L1Œ0;1/ given by Pf .x/ DR1
0 k.x; y/f .y/ dy.

Integral stochastic operators appear in a two phase model of cell cycle proposed
by Tyrcha [110] which generalizes the model of Lasota–Mackey [54] and the
tandem model of Tyson–Hannsgen [111]. The cell cycle is the series of events that
take place in a cell leading to its replication. In Tyrcha model a cell cycle have two
phases:A which has a random duration tA andB with constant length tB . A cell can
move from phase A to B with rate '.x/. Also Tyrcha model can be described by a
randomly perturbed dynamical system (see e.g. [94]) and the relation between the
size of cells in consecutive generations is given by a stochastic operator

Pf .x/ D
�.x/Z

0

�0.x/Q0.�.x//eQ.y/�Q.�.x//f .y/ dy; (84)

where �.x/ D �.�tB ; 2x/. The operatorP given by (84) can also be used in another
one-phase model of the cell cycle in which a cell is characterized by its maturity x.
In this model we have the same assumption concerning the growth of x and the
division rate, but we assume that if the mother cell has maturity x at the moment of
division then a new born daughter cell has maturity 
.x/. If � is the inverse function
to 
 then the operator P describes the relation between the maturity of cells in
consecutive generations.
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The asymptotic properties of the operatorP given by (84) depend on the function
˛.x/ D Q.�.x// �Q.x/. We have

(a) If ˛.x/ > 1 for sufficiently large x, then P is asymptotically stable, i.e., there
exists a density f � such that

lim
n!1 kPnf � f �k D 0 for f 2 D.

(b) If ˛.x/ � 1 for sufficiently large x, then P is sweeping or zero type, i.e.,

lim
n!1

Z c

0

P nf .x/ dx D 0 for f 2 D and c > 0.

(c) If inf˛.x/ > �1, then the operator P is completely mixing, i.e.,

lim
n!1 kPnf � Pngk D 0 for f; g 2 D.

These results were proved, respectively, (a) in [35], (b) in [62], and (c) in [91].

4.2 Ehrenfest Model

In 1907 Tatiana and Paul Ehrenfest proposed a simple model of diffusion to explain
the second law of thermodynamics. We have two boxes containing d balls and they
are labeled 1; : : : ; d . The balls represent the molecules of gas in the process of
diffusion or the number of balls corresponds to temperature in the description of the
heat exchange. Balls independently change boxes at a rate �. Let �t , t � 0, be the
number of balls in the first box and let xi .t/ D Prob .�t D i/. Observe that

Prob .�tCt D i j �t D i/ D 1 � �dt C o.t/ for 0 � i � d ,

Prob .�tCt D i j �t D i C 1/ D �.i C 1/t C o.t/ for 0 � i � d � 1,

Prob .�tCt D i j �t D i � 1/ D �.d C 1 � i/t C o.t/ for 1 � i � d ,

Prob .�tCt D i j �t D j / D o.t/ for ji � j j > 1.

From the law of total probability we obtain

xi .tCt/ D .1��dt/xi .t/C�.iC1/txiC1.t/C�.dC1�i/txi�1.t/Co.t/;

which leads to

xi .t Ct/� xi .t/

t
D ��dxi .t/C�.iC1/xiC1.t/C�.dC1� i/xi�1.t/C o.t/

t
;
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and the limit passage t ! 0 gives

x0
i .t/ D �.d C 1� i/xi�1.t/ � �dxi .t/C �.i C 1/xiC1.t/

for i D 0; 1; : : : ; d . In this way we obtain a system x0 D Ax of .d C 1/ equations,
where the matrixA has entries ai;i D ��d , ai;i�1 D �.dC1�i/, ai;iC1 D �.iC1/
and ai;j D 0 otherwise. This equation generates a stochastic semigroup on the space
X D f0; 1; : : : ; d g with the counting measure. Since condition (T) holds, according
to Theorem 13 this semigroup is asymptotically stable. The invariant density � D
.�0; : : : ; �d / is given by �i D �

d
i

�
2�d for 0 � i � d .

4.3 Pure Jump Process

We consider the following process which can serve as a model of a kangaroo
movement [75]. A kangaroo is jumping on a plane. If it is at a position x then after
jump its new location y is described by a transition function P.x; A/, i.e., P.x; A/

is the probability that y 2 A. We assume that the kangaroo jumps with intensity �,
i.e., �tCo.t/ is the probability that the kangaroo changes its position in the time
interval Œt; t C t�. We also assume that P satisfies (1), and, consequently, there
exists a stochastic operator P corresponding to P . Let fP.t/gt�0 be a uniformly
continuous stochastic semigroup with the generator A D ��I C �P . If u0 is a
density of the distribution of the location of the kangaroo at time 0, then P.t/u0
describes its location at time t . The domain of the generator A is the whole space
L1. Let u0 2 L1 and u.t/ D P.t/u0. Then u.t/ satisfies the evolution equation

u0.t/ D ��u.t/C �Pu.t/: (85)

and according to (28) the solution u.t/ is given by the formula

u.t/ D
1X
kD0

.�t/ke��t

kŠ
P ku0: (86)

It is simple to check that if there exists a density f� such that limk!1Pkf D f�
for every density f , then limt!1 u.t/ D f� if u0 2 D.

4.4 Birth-Death Process

Now, we give two examples of applications of stochastic semigroups acting on the
space l1. The first one is a birth-death process described by the following system of
equations

x0
i .t/ D �aixi .t/C bi�1xi�1.t/C diC1xiC1.t/ (87)
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for i � 0, where b�1 D d0 D 0, bi � 0, diC1 � 0 for i � 0, a0 D b0, ai D bi C di
for i � 1. There are many different interpretations of the system (87). For example
it can describe the time evolution of the size of a given population. Let �t , t � 0,
be the number of individuals at time t . If the population size is i then bi and di are,
respectively, birth and death rates. It means that if �t D i then Prob .�t D 1/ D
bit and Prob .�t D �1/ D dit , where�t D �tCt � �t .

Two special types of birth-death processes are pure birth process if di D 0 for
all i � 0 and pure death process if di D 0 for all i � 0. A Poisson process N.t/
with intensity � is a pure birth process with bi D � for all i � 0. The process with
bi D bi and di D di is related to a population in which each individual dies or gives
birth to a new individual with the rates d and b, respectively, and it is called a simple
birth-death processes. Also the process considered in 4.2 is a finite state birth-death
process.

The matrix Q corresponding to equation (87) is a Kolmogorov matrix. Assume
that bi � ˛i C ˇ for all i � 0 and some ˛ and ˇ. It means that the birth sequence
bi does not grow too quickly. We check that if x 2 l1, x � 0, satisfies Q�x D �x

for some � > 0 then x D 0. IndeedQ�x D �x holds if

dixi�1 � .bi C di /xi C bixiC1 D �xi

for all i � 0. Then since x � 0, bi � 0, and di � 0 we have

bixiC1 � .�C bi/xi

for all i � 0. If bi0 D 0 some i0 � 0, then x0 D � � � D xi0 D 0, and we can consider
only this inequality for i > i0. Thus, without loss of generality, we can assume that
bi > 0 for all i � 0. Then

xiC1 �
�
1C �

bi

�
xi ;

and consequently

xn � x0

n�1Y
iD0

�
1C �

bi

�
for n � 1.

Since the product
1Y
iD0

�
1 C �

bi

�
diverges we have x … l1 and according to

Theorem 4 the matrixQ generates a stochastic semigroup.
Now, let us consider again a birth-death process with bi > 0 and diC1 > 0 for

all i � 0. Let us assume that there exists " > 0 such that bi � di � " for i � k.
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Then the system (87) generates a stochastic semigroup and condition (T) holds. Let
vi D i for i � 0, then

1X
iD0

vi qij D .j � 1/dj � j.bj C dj /C .j C 1/bj D bj � dj � �"

for j � k, which implies condition (73). Hence, the stochastic semigroup generated
by the system (87) is asymptotically stable.

4.5 Paralog Families

Now, we present a model describing the evolution of paralog families in a genome
[97]. Two genes present in the same genome are said to be paralogs if they are
genetically identical. It is not a precise definition of paralogs but it is sufficient
for our purposes. We are interested in the size distribution of paralogous gene
families in a genome. We divide genes into classes. The i -th class consists of all
i -element paralog families. Let xi be a number of families in the i -th class. Based
on experimental data Słonimski et al. [103] suggested that

xi � 1

2i i
; i D 2; 3; : : : :

On the other hand, Huynen and van Nimwegen [41] claimed that

xi � i�˛; i D 1; 2; 3; : : : ;

where ˛ 2 .2; 3/ depends on the size of the genome and ˛ decreases if the total
number of genes increases. It is very difficult to decide which formula is correct if
only experimental data are taken into account because one can compare only first
few elements of both sequences. We present a simple model of the evolution of
paralog families which can help to solve this problem.

The model is based on three fundamental evolutionary events: gene loss,
duplication and accumulated change called for simplicity mutation. A single gene
during the time interval of lengtht can be:

• duplicated with probability dt C o.t/ and duplication of it in a family of the
i -th class moves this family to the .i C 1/-th class,

• removed from the genome with probability rt C o.t/. For i > 1, removal of
a gene from a family of the i -th class moves this family to the .i � 1/-th class;
removal of a gene from one-element family results in elimination of this family
from the genome. A removed gene is eliminated permanently from the pool of
all genes,

• changed with probability mt C o.t/ and the gene starts a new one-element
family and it is removed from the family to which it belonged.
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Moreover, we assume that all elementary events are independent of each other. Let
si .t/ be the number of i -element families in our model at the time t . It follows from
the description of our model that

s0
1.t/ D �.d C r/s1.t/C 2.2mC r/s2.t/Cm

1X
kD3

ksk.t/; (88)

s0
i .t/ D d.i � 1/si�1.t/ � .d C r Cm/isi .t/C .r Cm/.i C 1/siC1.t/ (89)

for i � 2. Let s.t/ D P1
iD1 si .t/ be the total number of families. Then the sequence

.pi .t//, wherepi .t/ D si .t/=s.t/ is the size distribution of paralogous gene families
in a genome at time t .

We construct a stochastic semigroup related to (88). First, we change variables.
Let

yi .t/ D e.r�d/t isi .t/:

Then

y0
1 D �.2d Cm/y1 C .mC r/y2 C

1X
kD1

myk; (90)

y0
i D �.d C r CmC d�r

i
/iyi C diyi�1 C .r Cm/iyiC1 (91)

for i � 2. We claim that the system (90)–(91) generates a stochastic semigroup on
l1. Indeed, the system (90)–(91) can be written in the following way y0.t/ D Qy.t/
and Q is a Kolmogorov matrix. Let � > 0 and x 2 l1, x � 0 satisfies Q�x D �x.
Here

.Q�x/1 D �2dx1 C 2dx2;

.Q�x/2 D .2mC r/x1 � .r C 2mC 3d/x2 C 3dx3;

.Q�x/n D mx1 C .n � 1/.r Cm/xn�1 � .r.n � 1/C d.nC 1/C mn/xn

C .nC 1/dxnC1

for n � 3. We consider the case of d ¤ 0 (the case of d D 0 is trivial). The
sequence x D .xi /i�1 satisfies equationQ�x D �x iff

x2 D
�
1C �

2d

�
x1;

x3 D
�
1C r C 2mC �

3d

�
x2 � r C 2m

3d
x1;

xnC1 D
�
1C .n� 1/r C nm C �

.nC 1/d

�
xn � .n � 1/.r Cm/

.nC 1/d
xn�1 � m

.nC 1/d
x1
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for n � 3. The above system of equations can be replaced by one equation

xnC1 D
�
1C �

.nC 1/d

�
xn C .n � 1/.r Cm/

.nC 1/d
.xn � xn�1/C m

.nC 1/d
.xn � x1/

for n � 1. Hence, the sequence .xn/ is increasing. Thus

xnC1 �
�
1C �

.nC 1/d

�
xn;

and consequently

xn � x1

nY
iD2

�
1C �

di

�
for n � 2.

Since the product
1Y
iD1
.1 C �d�1i�1/ diverges we have x … l1 and according to

Theorem 4 the matrixQ generates a stochastic semigroup.
Now we prove the following result about asymptotic behaviour of the solution

.si .t// of (88) and (89).

Theorem 22 Assume that m > 0. Let E be the space of sequences .xi / which
satisfy the condition

P1
iD1 i jxi j < 1. There exists a sequence .s�

i / 2 E such that
for every solution .si .t// of (88) and (89) with .si .0// 2 E we have

lim
t!1 e.r�d/t si .t/ D Cs�

i (92)

for every i D 1; 2; : : : and C dependent only on the sequence .si .0//. Moreover if
d D r then

lim
t!1 si .t/ D C

˛i

i
; (93)

where ˛ D r

r Cm
.

In the case d D r the total number of genes in a genome is constant. It means that
the genome is in a stable state. In this case the distribution of paralog families is
similar to that stated in Słonimski’s conjecture, and both distributions are the same
if r D d D m.

Proof First we check that the stochastic semigroup fP.t/gt�0 generated by the
system (90)–(91) is asymptotically stable. From equation (90):

y0
1 D �.2d Cm/y1 C .mC r/y2 C

1X
kD1

myk
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applied to densities y.t/, i.e., nonnegative sequences such that
P1

iD1 yi .t/ D 1, we
obtain

y0
1.t/ � �.2d Cm/y1.t/Cm:

This implies that

lim inf
t!1 y1.t/ � m

2d Cm
: (94)

Let h D .
m

2d Cm
; 0; 0; : : : /. Then h is a lower function and the semigroup

fP.t/gt�0 is asymptotically stable. Let y� D .y�
i / be an invariant density for

fP.t/gt�0. If we return to the original system we obtain (92) with s�
i D y�

i = i .

If r D d , then the invariant density is of the form y�
i D m

r

� r

r Cm

�i
, which

gives (93). ut
Another proof of Theorem 22 can be done by Theorem 14. The Kolmogorov

matrix Q related to the stochastic semigroup fP.t/gt�0 generated by the sys-
tem (90)–(91) satisfies qi�1;i > 0 for i � 2 and qiC1;i > 0 for i � 1,
therefore, condition (T) holds and, consequently, the semigroup satisfies the Foguel
alternative. From inequality (94) we conclude that this semigroup is not sweeping
from the set f1g. Hence, this semigroup is asymptotically stable.

4.6 Examples of Diffusion Semigroups

Though the semigroups generated by Fokker–Planck equations has originated from
diffusion processes, now they are widely used to describe variety of phenomena
with random noise. We present some applications of the theory developed in 3.3
and 3.4 to diffusion semigroups. We begin with one dimensional diffusion on some
open interval˘ D .˛; ˇ/. The Fokker–Planck equation is the form

@u

@t
D @2

@x2
.a.x/u/� @

@x
.b.x/u/: (95)

We assume that a.x/ > 0 for all x 2 ˘ . A stationary solution u of (95) is a solution
of the ordinary differential equation

�
a.x/u.x/

�00 � �
b.x/u.x/

�0 D 0: (96)

Let x0 2 ˘ and

f�.x/ D 1

a.x/
exp

� Z x

x0

b.s/

a.s/
ds
�
: (97)
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Then all solutions of (96) are of the form

u.x/ D c1f�.x/C c2f�.x/
Z x

x0

dy

f�.y/
; c1; c2 2 R:

Observe that if
R1

�1 f�.x/ dx < 1 then the semigroup fP.t/gt�0 generated by (95)
has an invariant density f�=kf�k and consequently it is asymptotically stable. IfR ˇ
˛
f�.x/ dx D 1 then, after careful checking, we deduce that the semigroup

fP.t/gt�0 has no invariant density, which means that it is sweeping from compact
subsets of ˘ . In some cases we are able to show stronger results. For example,
if f� is not integrable but

R ˇ
c
f�.x/ dx < 1 then the semigroup fP.t/gt�0 is

also sweeping from the interval Œc; ˇ/. Indeed, since f� > 0, Af � D 0 andR ˇ
c
f�.x/ dx < 1 the semigroup fP.t/gt�0 and the set Œc; ˇ/ satisfy condition (KT).

Thus Theorem 10 implies that the semigroup fP.t/gt�0 is sweeping from Œc; ˇ/.

Example 7 Consider the following equation

dXt D �Xt dW t C bXt dt: (98)

Equation (98) has an universal character and can describe, e.g., the price of a stock
or the size of the population. In the case of the population model, b is the growth
rate which is perturbed by an external source of additive noise � dW t . The solution
of (98) is given by

Xt D X0e
.a��2=2/tC� Wt : (99)

This equations generates a stochastic semigroup on the space L1.0;1/ which is
related to the Fokker–Planck equation

@u

@t
D �2

2

@2

@x2
.x2u/� @

@x
.bxu/: (100)

We take x0 D 1 and find the function f� defined earlier

f�.x/ D 2

�2x2
exp

� Z x

1

2bs

�2s2
ds
�

D 2

�2x2
exp

�2b
�2

logx
�

D 2

�2
x2b=�

2�2:
(101)

Since
R1
0
f�.x/ dx D 1 the related stochastic semigroup is sweeping from

compact subsets of .0;1/. Moreover, if 2b < �2, then we have
R1
c
f�.x/ dx < 1

for c > 0, thus this semigroup is also sweeping from all intervals Œc;1/. If 2b > �2,
then we have

R c
0
f�.x/ dx < 1 for c > 0, thus this semigroup is sweeping from all

intervals Œ0; c/.
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Example 8 Now we consider one dimensional Langevin equation

dV t D �bV t dt C � dW t ; (102)

which describes the velocity Vt of a moving particle. Here, b > 0 is a coefficient of
friction, and � is a diffusion coefficient. The solution of (102) is of the form

Vt D e�btV0 C �

Z t

0

e�b.t�s/ dWs: (103)

The process Vt is called Orstein–Uhlenbeck process and if V0 is a Gaussian random
variable then so are Vt , t > 0. The Fokker–Planck equation is of the form

@u

@t
D �2

2

@2u

@x2
C @

@x
.bxu/: (104)

We take x0 D 0 and find

f�.x/ D 2

�2
exp

�
�
Z x

0

2bs

�2
ds
�

D 2

�2
exp

�
� bx2

�2

�
: (105)

Since
R1
0
f�.x/ dx < 1, the related stochastic semigroup has an invariant density

u� D f�=kf�k, therefore, it is asymptotically stable.

Example 9 In Remark 2 the following stochastic version of the logistic equation
has appeared

dXt D .˛Xt � ˇX2
t / dt C 
Xt dW t ; ˛; ˇ; 
 > 0: (106)

This equation generates a stochastic semigroup defined on L1.0;1/. It is easy to
check that the function

f� D x2˛=�
2�2 exp

�
� 2ˇx

�2

�

is a stationary solution of the Fokker–Planck equation. If 2˛ > �2 then f� is an
integrable function. Hence, the semigroup is asymptotically stable in this case. If
2˛ � �2 then the semigroup is sweeping from all sets Œc;1/, c > 0.

Now we consider a non-degenerate diffusion in R
d , i.e., with diffusion coeffi-

cients which satisfy (51). Then the stochastic semigroup generated by the Fokker–
Planck equation (46) is an integral semigroup with the continuous and positive
kernel. According to Corollary 5 this semigroup is asymptotically stable or is
sweeping with respect to compact sets. Assume then there exist a non-negative C2-
function V , " > 0 and r � 0 such that

A�V.x/ � �" for kxk � r;
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then V is a Hasminskiı̆ function for our semigroup and, consequently, this semi-
group is asymptotically stable. This theorem generalizes earlier results [32, 100].

Remark 15 The semigroup related to a non-degenerate diffusion in R
d is asymp-

totically stable or sweeping with respect to the family of sets with finite Lebesgue
measures.

The problem of the long-time behaviour of stochastic semigroups related to
a degenerate diffusion or a diffusion in subsets of R

d is much more difficult.
Such diffusion processes appear in biological models and usually involve advanced
method (see 2.10). Some techniques useful in studying semigroup related to
degenerate diffusion are presented in the papers [93, 96] devoted to a prey-predator
type stochastic system. The interested reader in applications of degenerate diffusion
to biological models is also referred to the papers [45, 61, 102].

4.7 Gene Expression

Now we consider a simple piecewise deterministic Markov process modelling
gene expression. Gene expression is a complex process which involves three
processes: gene activation/inactivation, mRNA transcription/decay and protein
translation/decay. Now we consider a very simple model when proteins production
is regulated by a single gene and we omit the intermediate process of mRNA
transcription. A gene can be in an active or an inactive state and it can be transformed
into an active state or into an inactive state, with intensities q0 and q1, respectively.
The rates q0 and q1 depend on the number of protein molecules x.t/. If the gene is
active then proteins are produced with a constant speed p. In both states of the gene
protein molecules undergo the process of degradation with rate �. It means that the
process x.t/, t � 0, satisfies the equation

x0.t/ D pa.t/ � �x.t/; (107)

where a.t/ D 1 if the gene is active and a.t/ D 0 in the opposite case. Since the
right-hand side of equation (107) is negative for x.t/ > p

�
we can restrict values

of x.t/ to the invariant interval

0;

p

�

�
. Thus, we have two one-dimensional flows

on

0;

p

�

�
with b1.x/ D ��x and b2.x/ D p � �x. The process .x.t/; a.t// has

jump points when the gene changes its activity and it is an example of the process
studied in 2.11. We check that if q0 and q1 are continuous and positive functions
then the stochastic semigroup fP.t/gt�0 related to this process is asymptotically
stable. The semigroup fP.t/gt�0 is defined on the space L1.X;B.X/;m/, where
X D 

0;
p

�

� � f0; 1g. Since the space X is compact, according to Corollary 4 it is
sufficient to check that conditions (a) and (b) of Theorem 11 hold. In order to check
condition (b) we apply the criterion from Remark 11. In our case b1.x/ � b0.x/ D
p ¤ 0 for all x 2 Œ0; 1�, therefore, the vector b1.x/ � b0.x/ span R. Checking
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condition (a) is a little more technical but it follows from the fact that any two states
.x; i/, .y; j / can be joined by a path of the process .x.t/; a.t//.

A more advance model which includes mRNA molecules and mRNA transcrip-
tion was introduced by Lipniacki et al. [60] and studied in [20]. In this model x1.t/
is the number of mRNA molecules and x2.t/ the number of protein molecules. If
the gene is active then mRNA transcript molecules are synthesized with a constant
speed r . The protein translation proceeds with the rate px1.t/, where p is a constant.
The mRNA and protein degradation rates are �r and �p , respectively. Now, instead
of (107) we have

(
x0
1.t/ D ra.t/ � �rx1.t/;
x0
2.t/ D px1.t/ � �px2.t/

(108)

and a.t/ the same function as in the previous model. The main result of the paper
[20] is also the asymptotic stability of the semigroup fP.t/gt�0 related to this
process. The proof is more advanced and its main idea is the following. First it
is shown that the transition function of the related stochastic process has a kernel
(integral) part. Then we find a set E � X , which is a stochastic attractor and
condition (a) and (b) hold on this set. Since E is a compact set, from Corollary 4 it
follows that the semigroup is asymptotically stable.

4.8 Flows with Jumps in Population Dynamics

A large part of population dynamics are structured models. Models of this type
describe the densities of distribution of some characteristics of individuals like their
age, size or position in the space. Since living creatures reproduce from time to time,
the evolution of these characteristics have a “jumping nature”. Now, we present a
very simple model, which leads directly to the process considered in 2.12. After that
we provide some information about more advanced models.

Example 10 We consider a size structured model of a cellular population with
conservation of the total number of cells. In this model a cell is characterized by its
size x.t/ which grows according to the equation x0.t/ D b.x.t//. We also assume
that the death and division rates for a cell with size x are the same and given by d.x/.
This assumption guarantees that the total number of cells is constant. We assume an
equal division, i.e., a daughter cell has size a half of the size of the mother cell.
By u.t; x/ we denote the density of distribution of x at time t . Then u satisfies
equation (58) with �.x/ D 2d.x/ and Pf .x/ D 2f .2x/ because

P.x; B/ D
(
1; if x=2 2 B;
0; if x=2 … B:
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Very important role in population dynamics play two models. The first one is
the Sharpe–Lotka–McKendrick age-structured model [69, 101] given by a partial
differential equation with boundary and initial conditions:

@u.t; a/

@t
C @u.t; a/

@a
D ��.a/u.t; a/

u.t; 0/ D 2

Z 1

0

u.t; a/b.a/ da; u.0; a/ D u0;

(109)

where u.t; a/ is a (non-probabilistic) density of age-distribution, � and b are death
and birth rates. The second model is a size-structure model of a cellular population
introduced by Bell and Anderson [15]:

@

@t
u.t; x/C @

@x
.g.x/u.t; x// D �.�.x/Cb.x//u.t; x/C4b.2x/u.t; 2x/ (110)

with u.0; x/ D u0.x/, where u is the density of size distribution and g is the growth
rate. Both models were intensively studied and generalized [29, 37, 70, 95, 114].

In [10] it is considered a model whose special cases are both models (109)
and (110). The model is given by an evolution equation u0 D Au. The main result
of this paper is asynchronous exponential growth of the population. Precisely, under
suitable assumptions there exist � 2 R, an integrable function f�, and a linear
functional c on the set of initial conditions such that

e��tu.t; x/ ! c.u0/f�.x/ in L1 as t ! 1: (111)

The proof goes as follows. First we show that A is an infinitesimal generator of a
continuous semigroup fT .t/gt�0 of linear operators on the space L1.F / with the
Lebesgue measure on some interval F . Then we prove that there exist � 2 R, and
continuous and positive functions v and w such that Av D �v and A�w D �w.
From this it follows that the semigroup fP.t/gt�0 given by P.t/ D e��tT .t/ is a
stochastic semigroup on the space L1.F;B.F /;m/, where m is a measure given
by m.B/ D R

B
w.x/ dx. We can find ˛ > 0 such that the function f� D ˛v is

an invariant density with respect to fP.t/gt�0. Then we check that the semigroup
fP.t/gt�0 is partially integral. Finally, from Theorem 8 we conclude that this
semigroup is asymptotically stable. Since the Lebesgue measure and the measure
m are equivalent we have (111).
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4.9 Remarks on Applications of Nonlinear Stochastic
Operators and Semigroups

Nonlinear stochastic operators and semigroups appear in models which contain
binary operations, i.e., maps of the form f WX � X ! X . This operations can be
random. For example the genotype of a child is a result of some random operation—
each chromosome of a child is chosen randomly from parents.

The simplest examples of binary operations appear in the classical Mendelian
genetics [38]. Each gene can have some variant forms called alleles. We consider
the simplest case of two alleles A and a. Assume also that each individual have a
pair of alleles of a given gen: AA or Aa or aa called for simplicity the genotype and
the genotype decides about some phenotypic trait. A child inherits randomly one
allele from both his parents. For example if parents have genotype AA and aa then
their children have only the pair Aa. Now we consider a population with random
mating. If the frequencies of genotypes AA, Aa, and aa in the parent generation are
x1, y1 and z1, respectively, then in the offspring generation these frequencies are the
following:

x2 D x21 C 2x1

�y1
2

�
C
�y1
2

�2 D
�
x1 C y1

2

�2 D p2;

y2 D 2x1z1 C 2x1

�y1
2

�
C 2

�y1
2

�2 C 2
�y1
2

�
z1 D 2

�
x1 C y1

2

��
z1 C y1

2

�
D 2pq;

z2 D z21 C 2z1
�y1
2

�
C
�y1
2

�2 D
�

z1 C y1

2

�2 D q2;

where p D x1C y1
2

and q D z1C y1
2

are, respectively, frequencies of alleles A and a
in the population. The operatorP given byP.x1; y1; z1/ D .x2; y2; z2/ is a nonlinear
stochastic operator and from the above formulas Hardy–Weinberg principle follows:

Pn.x1; y1; z1/ D P.x1; y1; z1/ D .p2; 2pq; q2/; for n � 1;

i.e., the frequencies of genotypes stabilize in the offspring generation and remains
constant. Observe that the expected frequencies .p2; 2pq; q2/ depends on the initial
frequencies .x1; y1; z1/, what makes the difference between nonlinear stochastic
operator and linear one. In linear operators the limit densities were usually
independent of the initial density. One can consider more advance models with the
greater number of alleles and when a genotype depends on three or more alleles.
Also in this case the frequencies of genotypes stabilize but not in one generation.

Examples of physical binary processes are coagulation and collision. Both
phenomena leads to interesting mathematical models. The first model of coagulation
processes is due to Smoluchowski [113] and it is given by the following equation

dxi
dt

D 1

2

i�1X
jD1

Kj;i�j xj xi�j �
1X
jD1

Ki;j xixj : (112)
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The matrix K D ŒKij� describes the rate at which particles of size i coagulate with
particles of size j and xi .t/ is the frequency of particles of size i at time t . A
continuous size version of this model is following:

@u.t; x/

@t
D 1

2

Z x

0

K.x � y; y/u.t; x � y/u.t; y/ dy �
Z 1

0

K.x; y/u.t; x/u.t; y/ dy

(113)

Under suitable assumptions on the matrix or the function K , equations (112)
and (113) generate nonlinear stochastic semigroups on l1 and L1Œ0;1/, respec-
tively. Some modification of equation (112) is used to model aggregation processes
in phytoplankton populations [43]. We cannot expect the existence of invariant
densities for coagulation equations because the frequencies of particles with small
size decrease. We can consider also models which describe both fragmentation
and coagulation processes [2, 4, 9, 17, 52, 98]. In this case one can expect some
results concerning size stabilization. In the coagulation-fragmentation model of
size-structured phytoplankton aggregates [4] the four process are involved: growth,
death, fragmentation, and coagulation of aggregates and the coagulation operator
differs considerably from the operatorK in (113) and it is of the form

Kf .x/ D
R x
0 f .x � y/f .y/.x � y/yg.x � y/g.y/ dy

x
R1
0

zg.z/f .z/ dz
;

where g.x/ is the ability of an aggregate of size x to glue to another aggregate.
The second type of equations which generate nonlinear stochastic semigroups

are related to the Boltzmann kinetic theory of gases, which describes a gas as a
large number of moving particles which collide with each other. The fundamental
object in this theory is the Boltzmann equation for the density distribution function
of velocity of particles [15, 31]. One of versions of the Boltzmann equation is the
Tjon–Wu equation (see [21, 50, 106]) on the density distribution function of the
particles’ energy. The Tjon–Wu equation is a special case of the equation (65)

u0.t/C u.t/ D Pu.t/; u.0/ D u0 2 D; (114)

considered in 2.15. The classical Tjon–Wu equation is defined on densities in the
space L1Œ0;1/ and the operator P is of the form

Pf .x/ D
Z 1

x

1

y

Z y

0

f .y � z/f .z/ dz dy: (115)

One can consider more general stochastic operator P of the form

Pf .x/ D
Z 1

0

Z 1

0

k.x; y; z/f .y/f .z/ dy dz; (116)
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where kW Œ0;1/3 ! Œ0;1/ is a measurable function such that

Z 1

0

Z 1

0

k.x; y; z/ dx D 1 for x; y � 0.

In the case of (115) we have

k.x; y; z/ D 1

y C z
h

�
x

y C z

�
(117)

with h D 1Œ0;1�. The asymptotic stability of the classical Tjon–Wu equation was
proven by Kiełek (see [47]) and when P is given by (116) and (117) with arbitrary
h by Lasota and Traple (see [53,56]). It is interesting that equation (116) can be used
in modelling of phenotype-structured populations [99]. In [99] one can find also a
new result concerning asymptotic stability of equation (114) with a general kernel
given by (116).
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Spectral Theory for Neutron Transport
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1 Introduction

These notes resume a lecture given in the Cimpa School “Evolutionary equations
with applications in natural sciences” held in South Africa (Muizenberg, July 22–
August 2, 2013). However, the oral style of the lecture has been changed and
the bibliography augmented. This version benefited also from helpful remarks and
suggestions of a referee whom I would like to thank. The notes deal with various
functional analytic tools and results around spectral analysis of neutron transport-
like operators. A first section gives a detailed introduction (mostly without proofs)
to fundamental concepts and results on spectral theory of (non-selfadjoint) operators
in Banach spaces; in particular, we provide an introduction to spectral analysis
of semigroups in Banach spaces and its consequences on their time asymptotic
behaviour as time goes to infinity. A special attention is paid to positive semigroups
in ordered spaces (i.e. semigroups leaving invariant the cone of positive elements)
because of their fundamental interest in neutron transport theory. We focus on
the analysis of essential spectra and isolated eigenvalues with finite multiplicities.
A second section deals with spectral analysis of weighted shift (or collisionless
transport) semigroups. A third section is devoted to spectral analysis of perturbed
semigroups in Banach spaces, in particular to stability of essential type for perturbed
semigroups. A last section deals with a thorough analysis of compactness problems
for general models of neutron transport; the results are very different depending on
whether we work in Lp spaces (1 < p < 1) or in (the physical) L1 space; this
issue is the very core of spectral analysis of neutron transport operators and allow
the abstract theory to cover them.
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Transport theory provides a statistical description of large populations of
“particles” moving in a host medium (see e.g. [17]) and is of interest in various
fields such as radiative transfer theory, nuclear reactor theory, gas dynamics, plasma
physics, structured population models in mathematical biology etc. Among the most
classical kinetic equations, we mention the one governing the transport of neutrons
through the uranium fuel elements of a nuclear reactor. The aim of this lecture is
to present various functional analytic tools and results motivated by this class of
equations. In a nuclear reactor, the proportion of neutrons with respect to the atoms
of the host medium, is infinitesimal (about 10�11), so the possible collisions between
neutrons are negligible in comparison with the collisions of neutrons with the atoms
of the host material. Thus (in absence of feedback temperature) neutron transport
equations as well as radiative transfer equations for photons are genuinely linear.
The population of particles is described by a density function f .t; x; v/ of particles
at time t > 0, at position x and with velocity v. In particular

Z Z
f .t; x; v/dxdv

is the expected number of particles at time t > 0: One sees immediately that
L1 spaces are natural settings in transport theory! Various models are used in nuclear
reactor theory:

(1) Inelastic model for neutron transport

@f

@t
C v:

@f

@x
C �.x; v/f .t; x; v/ D

Z
V

k.x; v; v0/f .t; x; v0/dv0

where .x; v/ 2 ˝�V; ˝ � R
3; V D ˚

v 2 R
3I c0 � jvj � c1

�
(0 � c0 < c1 <

1/ and dv is Lebesgue measure, with initial condition f .0; x; v/ D f0.x; v/
and boundary condition

f .t; x; v/j��
D 0

where

�� WD f.x; v/ 2 @˝ � V I v:n.x/ < 0g

and n.x/ is the unit exterior normal at x 2 @˝ . The collision frequency �.:; :/
and the scattering kernel k.:; :; :/ are nonnegative.

(2) Multiple scattering: This physical model differs from the previous “reactor
model” by the fact that ˝ D R

3 (no boundary condition) but �.x; v/ and
k.x; v; v0/ are compactly supported in space.
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(3) The presence of delayed neutrons
Besides the prompt neutrons (appearing instantaneously in a fission process),

some neutrons may appear after a time delay as a decay product of radioactive
fission fragments and induce a suitable source term in the usual equation

@f

@t
C v:

@f

@x
C �.x; v/f .t; x; v/ D

Z
R3

k.x; v; v0/f .t; x; v0/dv0 C
mX
iD1

�igi

which is thus coupled to m differential equations

dgi
dt

D ��igi C
Z
R3

ki .x; v; v
0/f .t; x; v0/dv0 .1 � i � m/

where �i > 0 .1 � i � m/ are the radioactive decay constants; see [48,
Chapter 4] and references therein.

(4) Multigroup models (motivated by numerical calculations)

@fi

@t
C v:

@fi

@x
C �i .x; v/fi .t; x; v/ D

mX
jD1

Z
Vj

ki;j .x; v; v
0/fj .t; x; v0/�j .dv0/;

.1 � i � m/ where the spheres

Vj WD ˚
v 2 R

3; jvj D cj
�
; 1 � j � m; .cj > 0/

are endowed with surface Lebesgue measures �j and fi .t; x; v/ is the density
of neutrons (at time t > 0 located at x 2 ˝) with velocity v 2 Vi :

(5) Partly inelastic models

@f

@t
C v:

@f

@x
C �.x; v/f .t; x; v/ D Kef CKif

inLp.˝�V /where, e.g. V D ˚
v 2 R

3I c0 � jvj � c1
�
. The inelastic scattering

operator is just

Kif D
Z
V

k.x; v; v0/f .x; v0/dv0

while the elastic scattering operator is given by

Kef D
Z
S2
k.x; �; !; !0/f .x; �!0/dS.!0/

where v D �!: The presence of an elastic scattering operator acting only on the
angles ! 2 S2 of velocities changes strongly the spectral structure of neutron
transport operators [35, 68].
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(6) Diffusive models

@f

@t
� 4xf C �.x; v/f D

Z C1

0

k.x; v; v0/f .t; x; v0/dv0

(motivated also by numerical calculations) where the transport operator @f
@t C

v: @f
@x is replaced by the parabolic operator @f

@t � 4xf where 4x denotes the
Laplacian in space variable x 2 ˝ with Dirichlet boundary condition, (here
v > 0 denotes a “ kinetic energy” instead of a velocity); see e.g. [14, p. 133].
In the same spirit, we mention that diffusion (i.e. heat) equations with Dirichlet
boundary condition turn out to be asymptotic approximations (as " ! 0) of
usual neutron transport equations appropriately rescaled by means of a small
parameter " (typically the mean free path); see e.g. [6] and references therein.
We find in [49] an approach of the diffusion approximation of neutron transport
(on the torus) via spectral theory.

In this lecture, we ignore the presence of delayed neutrons but deal with an
abstract velocity measure�.dv/ (with support V ) covering a priori different models,
e.g. Lebesgue measure on R

n or on spheres or even combinations of the two.
In absence of scattering event (i.e. k.x; v; v0/ D 0) the density of neutral particles

(e.g. neutrons) is governed by

@f

@t
C v:

@f

@x
C �.x; v/f .t; x; v/ D 0

with initial condition f0 and is solved explicitly by the method of characteristics

f .t; x; v/ D e� R t
0 �.x��v;v/d�f0.x � tv; v/1ft�s.x;v/g

where

s.x; v/ D inf fs > 0I x � sv … ˝g
is the first exit time function. This defines a positive C0-semigroup .U.t//t>0 on
Lp.˝ � R

3I dx ˝ d�/

U.t/ W g ! e� R t
0 �.x��v;v/d�g.x � tv; v/1ft�s.x;v/g

called the advection semigroup. Its generator T is given (at least for smooth domains
˝) by

Tg D �v:
@g

@x
� �.x; v/g.x; v/; g 2 D.T /

D.T / D
�
g 2 Lp.˝ � R

3/I v:
@g

@x
2 Lp; gj��

D 0

�
I
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(see e.g. [12, 13] for a trace theory in neutron transport theory). Then the treatment
of the full equation follows naturally by perturbation theory. For instance, if the
scattering operator

K W g !
Z
R3

k.x; v; v0/g.x; v0/�.dv0/

is bounded on Lp.˝ � R
3/ then, by standard perturbation theory,

A WD T CK .D.A/ D D.T //

generates a positive C0-semigroup .V .t//t>0 which solves the full neutron transport
equation.

There are two basic eigenvalue problems in nuclear reactor theory:

(1) Criticality eigenvalue problem
This problem consists in looking for .
; g/ where 
 > 0 and g is a nontrivial

nonnegative solution to

0 D �v:
@g

@x
� �.x; v/g.x; v/C

Z
V

ks.x; v; v
0/g.x; v0/�.dv0/

C 1




Z
V

kf .x; v; v
0/g.x; v0/�.dv0/; gj��

D 0I

here ks.x; v; v0/ and kf .x; v; v0/ are the scattering kernel and the fission kernel,
see e.g. [41, 66].

(2) The “time eigenelements”

This problem consists in looking for .�; g/ with nontrivial g such that

�v:
@g

@x
� �.x; v/g.x; v/ C

Z
V

k.x; v; v0/g.x; v0/�.dv0/ D �g.x; v/; gj��
D 0

and in relating them to time asymptotic behaviour (t ! C1) of the semigroup
.V .t//t>0 :

In this lecture, we focus on the second class of problems. There exists a
considerable literature on the subject; we refer to [48] and references therein for
the state of the art up to 1997. In these lecture, we present mostly new developments
on this topic.

We note that this conventional neutron transport theory deals with the expected
(or mean) behaviour of neutrons. In order to describe the fluctuations from the mean
value of neutron populations, probabilistic formulations of neutron chain fissions
were proposed very early, in particular in [7]. This leads to nonlinear problems
governing divergent neutron chain fissions. Such problems are strongly related to
spectral theory of usual (linear) neutron transport operators, see [30, 46, 57, 64].
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We end this introduction by some historical notes. The beginning of spectral
theory of neutron transport dates back to the beautiful and seminal paper by J.
Lehner and M. Wing [36] devoted to a simplified model (constant cross sections)
in slab geometry. The time asymptotic behaviour of neutron transport semigroups
in bounded geometries is well-understood for a long time in the case when the
velocities are bounded away from zero; this is a classical result by K. Jorgens:

Theorem 1 ([31]) Let ˝ be bounded and convex, let

V D ˚
v 2 R

3I c0 � jvj � c1 < 1�

and let the scattering kernel k.:; :; :/ be bounded. If c0 > 0 then V.t/ is compact on
L2.˝ � V / for t large enough. In particular, for any ˛ 2 R

�.A/ \ fRe� > ˛g

consists at most of finitely many eigenvalues with finite algebraic multiplicities
f�1; : : : :�mg with spectral projections fP1; : : : :Pmg and there exists ˇ < ˛ such
that

V.t/ D
mX
jD1

e�j t etDj Pj CO.eˇt /

where Dj WD .T � �j /Pj :
The picture gets more complicated when arbitrarily small velocities must be

taken into account. In this case, the (essential) spectrum of the generator T (of the
advection semigroup fU.t/I t > 0g) on L2.˝ � V / consists of a half-plane

f� 2 CI Re� � ���g

where “typically” �� D inf �.x; v/; see S. Albertoni and B. Montagnini [2]. More-
over, important compactness results were obtained very early, (see e.g. Demeru-
Montagnini [16], Borysiewicz-Mika [8] and S. Ukai [74]) implying, for most
physical scattering kernels, that the scattering operatorK is T -compact on L2.˝ �
V / i.e.

K W D.T / ! L2.˝ � V /

is compact where D.T / is endowed with the graph norm. It follows that the
spectrum of A D T CK consists of a left half-plane f� 2 CI Re� � ���g and at
most of isolated eigenvalues with finite algebraic multiplicities located in the right
half-plane

f� 2 CI Re� > ���g :
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(Note that it may happen that this set of isolated eigenvalues is empty for small
bodies [2].) Then the time asymptotic behaviour of the solution is traditionally dealt
with by means of inverse Laplace transform (Dunford calculus)

V.t/f D lim

!C1

1

2i�

Z �Ci


��i

e�t .� �A/�1fd�

(with � large enough). If for some " > 0

�.T CK/\ f�I Re� > ��� C "g D f�1; : : : :�mg

(with spectral projections fP1; : : : :Pmg) is finite and non-empty then, by shifting the
path of integration and picking up the residues, we get an asymptotic expansion

V.t/f D
mX
jD1

e�j t etDj Pj f COf .e
ˇt / .ˇ < ��� C "/I

for smooth initial data f ; see, e.g. M. Borysiewicz and J. Mika [8] (see also M.
Mokhtar-Kharroubi [45]). The drawbackof the approach is that we need very regular
initial data (say f 2 D.A2/) to estimate the transcient part of the solution. To
remedy this situation, a more relevant approach, initiated by I. Vidav [76], consists
in studying the spectrum of the semigroup .V .t//t>0 itself instead of the spectrum of
its generator because of the lack (in general) of a spectral mapping theorem relating
spectra of semigroups and spectra of their generators. The perturbed semigroup
.V .t//t>0 is expanded into a Dyson–Phillips series

V.t/ D
1X
nD0

Un.t/

where U0.t/ D U.t/ is the advection semigroup and

UnC1.t/ D
Z t

0

U.t � s/KUn.s/ds .n > 0/:

Theorem 2 ([76]) If some remainder term Rn.t/ WD P1
jDn Uj .t/ is compact for

large t then �.V.t// \
n
�I j�j > e���t

o
consists at most of isolated eigenvalues

with finite multiplicities. In particular, 8" > 0;

�.T CK/\ f�I Re� > ��� C "g D f�1; : : : :�mg
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is finite and

V.t/ D
mX
jD1

e�j t etDj Pj CO.eˇt /

in operator norm where ˇ < ��� C ":

Vidav’s result had relevant applications to realistic models of kinetic theory much
later; see Y. Shizuta [71], G. Greiner [25], J. Voigt [77, 79], P. Takak [72], M.
Mokhtar-Kharroubi [42, 43] and L. Weiss [82]. The role of positivity in peripheral
spectral theory of neutron transport was emphasized by I. Vidav [75], T. Hiraoka-S.
Ukaï [29], Angelescu-Protopopescu [4] and more recently, in others directions, e.g.
by G. Greiner [26], J. Voigt [78] and M. Mokhtar-Kharroubi [43–45, 47].

2 Fundamentals of Spectral Theory

This section is a crash course (mostly without proofs) on the fundamental concepts
and results on spectral theory of closed linear operators on complex Banach spaces
with a special emphasis on generators of strongly continuous semigroups. Because
of their importance in transport theory, the basic spectral properties of positive
operators (i.e. leaving invariant the positive cone of a Banach lattice) are also given.
Finally, we show the role of peripheral spectral theory of positive semigroups in their
time asymptotic behaviour as t ! C1: Apart from Subsection 2.10, the material
of this section is widely covered by the general references [15,20–22,32,61,73] and
will be used in the sequel without explicit mention. Subsection 2.10 presents a class
of positive semigroups whose real spectra can be described completely; this class
covers weighted shift (i.e. advection) semigroups we deal with in Sect. 3.

2.1 Basic Definitions and Results

We start with some basic definitions and results. Let X be a complex Banach space
and let

T W D.T / � X ! X

be a linear operator defined on a subspaceD.T /. We say that T is a closed operator
if its graph

f.x; T x/I x 2 D.T /g

is closed in X �X . We define the resolvent set of T by

�.T / WD f� 2 CI � � T W D.T / ! X is bijectiveg ;



Spectral Theory for Neutron Transport 327

the spectrum of T by

�.T / WD f� 2 CI � … �.T /g

and the resolvent operator by

.� � T /�1 W X ! X .� 2 �.T //:

In particular, if there exists x 2 D.T / � f0g and � 2 C such that T x D �x then
� 2 �.T /. In this case, � is an eigenvalue of T and

ker.T / WD fx 2 D.T /I .T � �/x D 0g

is the corresponding eigenspace. In contrast to finite dimensional spaces, in general,
�.T / is not reduced to eigenvalues! For instance, one can show that the spectrum of
the multiplication operator on C.Œ0; 1�/ (endowed with the sup norm)

T W f 2 C.Œ0; 1�/ ! Tf 2 C.Œ0; 1�/

where Tf .x/ D xf .x/ is equal to Œ0; 1� and that T has no eigenvalue. For
unbounded operators, the spectrum may be empty or equal to CŠ For example, let
X D C.Œ0; 1� I C/ endowed with the sup-norm and

Tf D df

dx
; D.T / D C1.Œ0; 1�/:

Then 8� 2 C, x 2 Œ0; 1� ! e�x 2 C is an eigenfunction of T so �.T / D C: If we
replace .T;D.T // by

OT f D df

dx
; D. OT / D ˚

f 2 C1.Œ0; 1�/I f .0/ D 0
�

then 8� 2 C and 8g 2 X; the equation

�f � df

dx
D g; f .0/ D 0

is uniquely solvable; thus �. OT / D C and �. OT / D ¿:
It is useful to decompose the spectrum of T as follows: The point spectrum

�p.T / D f� 2 CI � � T W D.T / ! X is not injectiveg :

The approximate point spectrum

�ap.T / D f� 2 CI � � T W D.T / ! X not injective or .� � T /X not closedg I
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this terminology is motivated by the fact that � 2 �ap.T / if and only if there exists
a sequence .xn/n � D.T / such that

kxnk D 1; kT xn � �xnk ! 0:

The residual spectrum

�res.T / D f� 2 C; .� � T /X is not denseg :

We note that

�.T / D �res.T / [ �ap.T /

is a non-disjoint union. Among the first results, we note:

• .��T /�1 W X ! X is a bounded operator for � 2 �.T /, i.e. .��T /�1 2 L.X/,
(by the closed graph theorem).

• �.T / is an open subset of C (so �.T / is closed) and

� 2 �.T / ! .� � T /�1 2 L.X/

is holomorphic.

More precisely, if � 2 �.T / then � 2 �.T / if j� � �j < ��.�� T /�1
���1

and
then

.� � T /�1 D
C1X
0

.� � �/n

.�� T /�1

�nC1
:

It follows that j� � �j >
��.� � T /�1���1

for any � 2 �.T / and then

dist.�; �.T // >
��.� � T /�1���1

:

In particular
��.� � T /�1�� ! 1 as dist.�; �.T // ! 0:

Bounded operators T 2 L.X/ enjoy specific properties:

• �.T / is bounded and non-empty.
• The spectral radius of T 2 L.X/, defined by

r� .T / WD sup fj�j I � 2 �.T /g ;

is equal to limn!1 kT nk 1
n D infn kT nk 1

n :
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• In particular r� .T / � kT k and .� � T /�1 is given by a Laurent’s series

.� � T /�1 D
1X
1

��nT n�1 .j�j > r�.T //

with T m D 1
2i�

R
C
�m.� � T /�1d� where C is any circle (positively oriented)

centered at the origin with radius> r�.T /:

If T W D.T / � X ! X is densely defined linear operator, we can define its dual
operator

T 0 W D.T 0/ � X 0 ! X 0

by

hT x; y0iX;X 0 D hx; T 0y0iX;X 0

with domain

D.T 0/ D ˚
y0 2 X 0I 9c > 0;

ˇ̌hT x; y0iˇ̌ � c kxk 8x 2 D.T /� :
We note that T 0 is closed but not necessarily densely defined. But if X is reflexive
then T 0 is densely defined, .T 0/0 D T , �.T 0/ D �.T / and .� � T 0/�1 D�
.� � T /�1�0. In particular if T 2 L.X/ then r� .T 0/ D r� .T /:

We end this section with a spectral mapping theorem for bounded operators. Let
T 2 L.X/ and let˝ 3 � ! f .�/ 2 C be holomorphic on some open neighborhood
˝ of �.T /: Then there exists an open set ! such that �.T / � ! � ! � ˝ and @!
consists of finitely many simple closed curves that do not intersect. One defines a
Dunford integral

f .T / D 1

2i�

Z
@!

f .�/.� � T /�1d� 2 L.X/

where @! is properly oriented (the definition does not depend on the choice of !).
In particular if f .�/ is a polynomial then f .T / coincides with the usual meaning of
f .T /: Then we have a spectral mapping theorem

�.f .T // D f .�.T //.

2.2 Spectral Decomposition and Riesz Projection

Let X be a complex Banach space such that

X D X1 ˚X2



330 M. Mokhtar-Kharroubi

(direct sum) where Xi .i D 1; 2/ are closed subspaces. Let P W x 2 X ! Px be
the (continuous) projection on X1 along X2: Let

T W D.T / � X ! X

be a closed linear operator such that P.D.T // � D.T / and Xi .i D 1; 2/ are
invariant under T . The parts Ti .i D 1; 2/ of T on Xi .i D 1; 2/ are defined by

D.Ti / D D.T /\ Xi; Tix D T x .x 2 D.Ti //:

We say that T is reduced by Xi .i D 1; 2/. Then

�.T / D �.T1/[ �.T2/

(not necessarily a disjoint union),

�p.T / D �p.T1/[ �p.T2/ and �ap.T / D �ap.T1/[ �ap.T2/:

Similar results hold for any finite direct sum: X D X1 ˚ : : : ˚ XnI see e.g. [73,
Theorem 5.4, p. 289].

Let now T W D.T / � X ! X be a closed linear operator such that �.T / is
a disjoint union of two non-empty closed subsets �1 and �2 and let �1 be compact.
Then there exists � , a finite number of rectifiable simple closed curves properly
oriented enclosing an open set O which contains �1 and such that �2 is included in
the exterior of O . Then

P WD
Z
�

.� � T /�1d�I P2 D P

and X D X1 ˚ X2 (X1 D PX and X2 D .I � P/X D KerP ) reduces T (i.e. Xi
are T invariant), �.Ti / D �i where Ti WD TjXi and T1 is bounded. P is the spectral
projection associated with �1. If �1 consists of finitely many points .�1; : : : ; �n/
then

P D P1 C : : :C Pn; PjPk D ıjkPj

Pj WD
Z
�j

.� � T /�1d�

(where �j is e.g. a small circle enclosing �j ). Pj is the spectral projection
associated with �j : We study now the structure of the resolvent around an isolated
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singularity. Let � 2 �.T / be an isolated point of �.T /: There exists a Laurent’s
series around �

.� � T /�1 D
C1X
nD�1

.� � �/nUn

where

Un D 1

2i�

Z
C

.� � T /�1

.� � �/nC1 d� .n 2 Z/

whereC is a small circle positively oriented centered at�. In particular, the residues

U�1 D 1

2i�

Z
C

.� � T /�1d�

is the spectral projection P . In addition

U�.nC1/ D .�1/n.� � T /nP .n > 0/:

We have

U�.nC1/U�.mC1/ D U�.nCmC1/

so � is a pole of the resolvent (i.e. there exists k > 0 such that U�k ¤ 0 and U�n D
0 8n > k) if and only if there exists k > 0 such that U�k ¤ 0 and U�.kC1/ D 0:

Then k is the order of the pole. In this case, � is an eigenvalue of T and PX D
Ker.� � T /k: The algebraic multiplicity ma � C1 of � is the dimension of PX .
Conversely, ifma < C1, i.e.P is of finite rank, then .��T /maP D 0 and then� is
a pole of the resolvent of order � ma:Actually, the order k of the pole is the smallest
j 2 N such that .��T /jP D 0. The subspace Ker.��T /k contains the generalized
eigenvectors; it coincides with the eigenspace if and only if PX D Ker.�� T /, i.e.
k D 1 (simple pole); � is said to be a semi-simple eigenvalue. We say that � is
algebraically simple if ma D 1.

2.3 Application to Riesz-Schauder Theory

As a first illustration of the interest of Riesz projections, we show why the non zero
eigenvalues of compact operators have finite algebraic multiplicities. Let T W X !
X be a compact operator (i.e. maps bounded sets into relatively compact ones).
Then �.T /= f0g consists at most of isolated eigenvalues. Let ˛ 2 �.T / with ˛ ¤ 0:

Define T� (in the neighborhood of ˛) by

.� � T /�1 D ��1 C T�:
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Then .�� T /.��1 C T�/ D I implies that T� D T .��1T� C ��2I / is compact. So
(C being a small circle around ˛ positively oriented) the spectral projection

U�1 D 1

2i�

Z
C

.� � T /�1d� D 1

2i�

Z
C

��1d�C 1

2i�

Z
C

T�d�

D 1

2i�

Z
C

T�d�

is compact too. Since U�1 has a closed range then the open mapping theorem and
Riesz theorem imply that U�1 has finite-dimensional range. Hence ˛ has a finite
algebraic multiplicity.

This result extends to power compact operators. Indeed, let T 2 L.X/ and n 2 N

(n > 2/ such that T n is compact. The spectral mapping theorem

�.T n/ D .�.T //n

implies that �.T /= f0g consists at most of isolated points. Let ˛ 2 �.T /with ˛ ¤ 0:

Then, for � close to ˛; .�n �T n/ D .�n�1I C�n�2T C : : :CT n�1/.��T / implies

.� � T /�1 D .�n � T n/�1.�n�1I C �n�2T C : : :C T n�1/

D Œ��n C C�� .�
n�1I C �n�2T C : : :C T n�1/

D ��n.�n�1I C �n�2T C : : :C T n�1/

CC�.�n�1I C �n�2T C : : :C T n�1/

(where C� is compact) so the spectral projection

U�1 D 1

2i�

Z
C

.� � T /�1d� D 1

2i�

Z
C

C�.�
n�1I C �n�2T C : : :C T n�1/d�

is compact and we argue as previously.

2.4 Spectral Mapping Theorem for a Resolvent

Let T W D.T / � X ! X be closed linear operator and �0 2 �.T /: The spectral
links between T and its resolvent .�0 � T /�1 are completely described by:

• �

.�0 � T /�1

� nf0g D .�0��.T //�1 (so r�

.�0 � T /�1� D Œdist.�0; �.T //�

�1)
• �p


.�0 � T /�1� n f0g D .�0 � �p.T //�1

• �ap

.�0 � T /�1

� n f0g D .�0 � �ap.T //
�1

• �res

.�0 � T /�1� n f0g D .�0 � �res.T //

�1
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• � is an isolated point of �.T / if and only if .�0 � �/�1 is an isolated point of
�

.�0 � T /�1

�
: In this case, the residues and the orders of the pole of .��T /�1

at � and of

� � .�0 � T /�1��1 at .�0 � �/�1 coincide.

See [20, Chapter IV]. These properties are of interest e.g. when we deal with
Riesz-Schauder theory of operators with compact resolvent.

2.5 Fredholm Operators

A closed operator T W D.T / � X ! X is said to be a Fredholm operator if
dim Ker.T / < 1 and the range R.T / of T is closed with finite codimension (i.e.
dim X

R.T /
< 1). Let T W D.T / � X ! X be closed linear operator; its Fredholm

domain is defined by

�F .T / WD f� 2 CI � � T W D.T / ! X is Fredholmg :

Then �F .T / is open and �.T / � �F .T /. If �0 is an isolated eigenvalue of T with
finite algebraic multiplicity then �0 2 �F .T /, (see [32, Chapter IV]).

We recall that T 2 L.X/ is Fredholm if and only if there exists S 2 L.X/ such
that I � ST and I � TS are finite rank operators (see [21] p. 190). The essential
spectrum of T is defined by

�ess.T / WD Cn�F .T /:

Let K.X/ � L.X/ be the closed ideal of compact operators. The Calkin algebra

C.X/ WD L.X/
K.X/

is endowed with the quotient norm (for OT WD T C K.X/)
��� OT
���
C.X/

D inf
K2K.X/kT CKk D dist.T;K.X//:

Then

�F .T / D �. OT / and �ess.T / D �. OT /:

The essential norm of T 2 L.X/ is defined by

kT kess WD
��� OT
���
C.X/

:
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In particular, kT kess � kT k and the essential norm k:kess is submultiplicative, i.e.

kT1T2kess � kT1kess kT2kess .Ti 2 L.X/; i D 1; 2/:

The essential radius of T 2 L.X/ is defined by

ress.T / WD r�. OT /:

Then

ress.T / D sup
n
j�j I � 2 �. OT /

o
D sup fj�j I � 2 �ess.T /g :

In addition

ress.T / D lim
n!1

���
� OT
�n���

1
n

C.X/
D lim

n!1

��� OT n
���
1
n

C.X/
D lim

n!1 kT nk 1
n
ess :

The unbounded component of �F .T / consists of resolvent set and at most of isolated
eigenvalues with finite algebraic multiplicities, (see [21, p. 204]). Then the essential
radius of T 2 L.X/ is also given by

inf fr > 0I � 2 �.T /; j�j > r ) � 2 �discr.T / g

where �discr.T / refers to the isolated eigenvalues of T with finite algebraic
multiplicities. Note that for any " > 0; �.T / \ fj�j > ress.T /C "g consists at
most of finitely many eigenvalues with finite algebraic multiplicities. We point out
that there exist several non equivalent definitions of essential spectrum for bounded
operators but the corresponding essential radius is the same for all them, see [19,
Corollary 4.11, p. 44].

2.6 Semigroups and Generators

Let X be a complex Banach space. By a C0-semigroup on X we mean a family
.S.t//t>0 of bounded linear operators on X indexed by t > 0 such that S.0/ D
I; S.t/S.s/ D S.t C s/ and such that the strong continuity condition holds:

Œ0;C1Œ 3 t ! S.t/x 2 X

is continuous for all x 2 X . By the uniform boundedness theorem, .S.t//t>0 is
locally bounded in L.X/. The infinitesimal generator of .S.t//t>0 is the unbounded
linear operator defined by

T W x 2 D.T / � X ! lim
t!0

S.t/x � x
t

2 X
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with domain

D.T / D
�
xI lim

t!0

S.t/x � x
t

exists in X

�
:

Then T is closed and densely defined. In addition,D.T / is invariant under S.t/ and
S.t/T x D TS.t/x 8x 2 D.T /: Finally, 8x 2 D.T /;

f W t > 0 ! S.t/x 2 X is C1

and

f 0.t/ D Tf .t/; f .0/ D xI

see e.g. [15].
If

p W RC ! Œ�1;C1Œ

is subadditive (i.e. p.t C s/ � p.t/C p.s/) and locally bounded from above then

lim
t!C1

p.t/

t
D inf

t>0

p.t/

t
:

see e.g. [15]. Since

t = 0 ! p.t/ WD ln.kS.t/k/ 2 Œ�1;C1Œ

is subadditive and locally bounded from above then

! WD inf
t>0

ln.kS.t/k/
t

D lim
t!C1

ln.kS.t/k/
t

2 Œ�1;C1Œ :

In particular .S.t//t>0 is exponentially bounded, i.e.

8˛ > ! 9M˛ > 1I kS.t/k � M˛e
˛t 8t = 0I

! is called the type or growth bound of .S.t//t>0. In addition, for any t > 0

r�.S.t// D lim
n!C1 kS.t/nk 1

n D lim
n!C1 kS.nt/k 1

n

D lim
n!C1 exp

1

n
ln kS.nt/k D lim

n!C1 exp t
1

nt
ln kS.nt/k D e!t :
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We recall that fRe� > !g � �.T / and

.� � T /�1 D
Z C1

0

e��tS.t/dt .Re� > !/

where the integral converges in operator norm. Thus �.T / � fRe� � !g and the
spectral bound of T

s.T / WD sup fRe�I � 2 �.T /g � !:

We end this section with the famous Hille–Yosida–Phillips–Miyadera–Feller theo-
rem (commonly called Hille–Yosida theorem) which provides a general framework
for a huge amount of linear evolution equations of mathematical physics and
probability theory [22].

Theorem 3 Let T W D.T / � X ! X be a closed densely defined linear
operator. Then T is the generator of a C0-semigroup .S.t//t>0 satisfying the
estimate kS.t/k � Me˛t 8t = 0 if and only if �.T / � fRe� � ˛g and

���.� � T /�1�n
��� � M

.Re� � ˛/n
.Re� > ˛/ 8n 2 N:

We note that if X is a reflexive complex Banach space and if .S.t//t>0 is a
C0-semigroup with generator T then the dual semigroup .S 0.t//t>0 is strongly
continuous and its generator is given by T 0. In particular .S.t//t>0 and .S 0.t//t>0
have the same type while T and T 0 have the same spectral bound.

2.7 Partial Spectral Mapping Theorems for Semigroups

In general, there exist partial spectral links between a C0-semigroup and its
generator, see [20, Chapter IV].

Theorem 4 Let X be a complex Banach space and .S.t//t>0 be a C0-semigroup
on X with generator T:Then:

(i) et�ap.T / � �ap.S.t//n f0g :
(ii) et�p.T / D �p.S.t//n f0g :

(iii) et�res.T / D �res.S.t//n f0g :
(iv) mg.�; T / � mg.e

�t ; S.t//

(v) ma.�; T / � ma.e
�t ; S.t//

(vi) k.�; T / � k.e�t ; S.t//:
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Here mg (resp. ma, resp. k) refers to geometric multiplicity (resp. algebraic
multiplicity, resp. multiplicity of a pole). We note that the possible failure of the
spectral mapping theorem stems from the approximate point spectrum. The link
between the eigenvalues of .S.t//t>0 and those of its generator T is clarified
further by:

Theorem 5 Let X be a complex Banach space and .S.t//t>0 be a C0-semigroup
on X with generator T: Then:

(i) Ker.� � T / D \t>0Ker.e�t � S.t//:
(ii) Ker.e�t � S.t// D linn2ZKer.�C 2i�n

t
� T / 8t > 0:

Theorem 6 ([24] Proposition 1.10 or [20] p. 283) Let X be a complex Banach
space and .S.t//t>0 be a C0-semigroup on X with generator T and let t > 0 be
fixed. Let e�t be a pole of S.t/ of order k and let Q be the corresponding residue.
Then

(i) For every n 2 Z; �C 2i�n
t

is (at most) a pole of .� � T /�1 of order at most k
and residue Pn:

(ii) QX D linn2ZPnX:

Corollary 1 Let X be a complex Banach space and .S.t//t>0 be a C0-semigroup
on X with generator T and let t > 0 be fixed. Let ˛ ¤ 0 be an isolated
eigenvalue of S.t/ with finite algebraic multiplicity and with residue Q: Then
Q D Pn

jD1 Pj where the Pj are the residues of .� � T /�1 at f�1; : : : ; �ng, the

(finite and nonempty) set of eigenvalues of T such that e�i t D ˛:

2.8 Essentially Compact Semigroups

The fact that k:kess is submultiplicative implies that

t = 0 ! pess.t/ WD ln.kS.t/kess/ 2 Œ�1;C1Œ

is subadditive. It is also locally bounded from above so

!ess WD inf
t>0

ln.kS.t/kess/

t
D lim

t!C1
ln.kS.t/kess/

t
2 Œ�1; !� :

In particular 8˛ > !ess 9M˛ > 1 such that

kS.t/kess � M˛e
˛t 8t = 0I
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!ess is called the essential type (or essential growth bound) of .S.t//t>0. For any
t > 0

ress.S.t// D lim
n!C1 kS.t/nk

1
n
ess D lim

n!C1 kS.nt/k
1
n
ess

D lim
n!C1 exp

1

n
ln .kS.nt/kess/

D lim
n!C1 exp t

1

nt
ln .kS.nt/kess/ D e!esst :

A C0-semigroup .S.t//t>0 on a complex Banach spaceX is said to be essentially
compact if its essential type is less than its type (i.e. !ess < !/: Such semigroups
have a nice finite-dimensional asymptotic structure.

Theorem 7 Let X be a complex Banach space and .S.t//t>0 be an essentially
compact C0-semigroup on X with generator T: Then:

(i) �.T / \ fRe� > !essg consists of a nonempty set of isolated eigenvalues with
finite algebraic multiplicities.

(ii) For any !0 such that !ess < !0 < !; �.T / \ fRe� > !0g consists of a finite
set (depending on !0) f�1; : : : ; �mg of eigenvalues of T:

(iii) Let Pj be the residues of .� � T /�1 at �j and let P WD Pm
jD1 Pj . Then the

projector P reduces .S.t//t>0 and

S.t/ D
mX
jD1

e�j t etDj Pj CO.e.!
0�"/t /

(for some " > 0) where Dj WD .T � �j /Pj are nilpotent bounded operators

(D
kj
j D 0 where kj is the order of the pole �j ).

Proof Let !0 be such that !ess < !0 < !. Let t > 0 be fixed. Then e!esst < e!
0t <

e!t and

�.S.t// \
n
�I j�j > e!

0t
o

consists of a finite (and nonempty) set of eigenvalues with finite algebraic multiplic-
ities f�1; : : : ; �ng while

�.S.t// \
n
�I j�j < e!0t

o
�
n
�I j�j < e.!0�"/t

o

for some " > 0. For each j (1 � j � n) let
n
�1j ; : : : ; �

lj
j

o
be the (finite and

nonempty) set of eigenvalues � of T such that e�t D �j : Then the residue of the
pole �j of the resolvent of S.t/ is given by

Qj D
ljX
kD1

P k
j



Spectral Theory for Neutron Transport 339

where Pk
j is the residue of the �kj of the resolvent of T . Let Q D Pn

jD1 Qj be
the spectral projection corresponding to the eigenvalues f�1; : : : ; �ng of S.t/ inn
�I j�j > e!

0t
o
. One sees that Q D Pn

jD1
Plj

kD1 P k
j is nothing but the spectral

projection corresponding to the eigenvalues of T in fRe� > !0g. We decompose
S.t/ as S.t/Q C S.t/.I � Q/. We know that �.S.t/jImQ/ D f�1; : : : ; �ng while

�.S.t/jKerQ/ �
n
�I j�j < e.!0�"/t

o
so the type of S.t/jKerQ is � !0 � ": Finally,

S.t/jImQ is generated by the bounded operator

T .

mX
jD1

Pj / D
mX
jD1

TPj D
mX
jD1


�jPj C .T � �j /Pj

� D
mX
jD1


�jPj CDj

�

so S.t/jImQ D Pm
jD1 e�j t etDj Pj :

2.9 Peripheral Spectral Theory and Applications

In ordered Banach spaces, positive semigroups (i.e. leaving invariant the positive
cone) enjoy nice spectral properties. For the sake of simplicity, we restrict ourselves
to Lebesgue spaces

X D Lp .˝;A; �/ .1 � p � C1/

where .˝;A; �/ is a measure space (i.e. ˝ is a set, A is a �-algebra of subsets of
˝ and � is a �-finite measure on A) although most of the results hold in general
Banach lattices. For short, we will writeLp.�/ (or justLp) instead ofLp .˝;A; �/.
Let LpC .�/ be the cone of nonnegative a.e. functions. Then

Lp .�/ D L
p
C .�/� L

p
C .�/ :

More precisely

f D fC � f�; 8f 2 Lp .�/

where

fC D sup ff; 0g ; f� D sup f�f; 0g :

In particular

jf j D fC C f�; kf k D kjf jk
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where jf j .x/ WD jf .x/j. An operator G 2 L.X/ is said to be positive if Gf 2
L
p
C .�/ 8f 2 LpC .�/. We write G > 0: In this case

jGf j D jGfC �Gf�j � GfC CGf� D G .jf j/

and consequently

kGk D sup
kf k�1; f 2Lp

C

kGf k :

It follows that if 0 � G1 � G2 with Gi 2 L.Lp/(i D 1; 2/ then kG1k � kG2k. This
last property applied to the iterates shows that r� .G1/ � r�.G2/. It is easy to see
that G 2 L.Lp/ is positive if and only if its dual operator G0 2 L.Lp0

/ is positive.
A C0-semigroup .S.t//t>0 onX is said to be positive if 8t > 0, S.t/ is a positive

operator. A C0-semigroup .S.t//t>0 with type ! and generator T is positive if and
only if the resolvent .� � T /�1 is positive for � > !; this follows from

.� � T /�1f D
Z C1

0

e��tS.t/fdt .� > !/

and the exponential formula

S.t/f D lim
n!C1.I � t

n
T /�nf:

A fundamental result for positive C0-semigroups .S.t//t>0 on Lebesgue spaces
Lp .�/ is that the type of .S.t//t>0 coincides with the spectral bound s.T / of
its generator T (see e.g. [20]). Another fundamental spectral property of positive
operators G 2 L.X/ (in general Banach lattices) is that the spectral radius belongs
to the spectrum

r�.G/ 2 �.G/:

Let us show an analogous property for a generator T of a positive semigroup
.S.t//t>0:

s.T / > �1 ) s.T / 2 �.T /:

Indeed, note first that

ˇ̌
.� � T /�1f ˇ̌ �

Z C1

0

e�Re�tS.t/ jf j dt .8Re� > s.T //

so
��.� � T /�1

�� � ��.Re� � T /�1�� .8Re� > s.T // : By assumption there exists
a sequence .ˇn/n � �.T / such that Reˇn ! s.T /. We build a sequence .�n/n
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with Re�n > s.T / (so .�n/n � �.T /), Im�n D Imˇn and Re�n ! s.T /. Then
j�n � ˇnj ! 0 and

��.�n � T /�1�� ! C1: Thus
��.Re�n � T /�1

�� ! C1 and
consequently s.T / 2 �.T /:

LetG 2 L.Lp/ be positive. We say thatG is irreducible if 8f 2 LpC.�/; f ¤ 0

and 8g 2 Lp0

C .�/; g ¤ 0 there exists n 2 N (depending a priori on f and g) such
that

hGnf; giLp;Lp0 > 0:

Forp < C1; this is equivalent to saying that there is no closed subspaceLp.˝ 0; �/
(with �.˝ 0/ > 0 and �.˝=˝ 0/ > 0) invariant by G. For instance, if Gf > 0 a.e.
8f 2 LpC.˝/; f ¤ 0 (we say thatG is positivity-improving) thenG is irreducible.
A positive C0-semigroup .S.t//t>0 is said to be irreducible if 8f 2 LpC.�/; f ¤ 0

and 8g 2 L
p0

C .�/; g ¤ 0 there exists t > 0 (depending a priori on f and g) such
that

hS.t/f; giLp;Lp0 > 0:

Forp < C1; this is equivalent to saying that there is no closed subspaceLp.˝ 0; �/
(with�.˝ 0/ > 0 and�.˝=˝ 0/ > 0) invariant by all S.t/:A positiveC0-semigroup
.S.t//t>0 with generator T is irreducible if and only if .� � T /�1 is positivity-
improving for some � > s.T /. This follows easily from

h.� � T /�1f; gi D
Z C1

0

e��t hS.t/f; gidt:

We recall a useful result combining compactness and irreducibility:

Theorem 8 ([63]) If G 2 L.X/ is compact and irreducible then r� .G/ > 0:

The fact that r� .Gn/ D r� .G/
n implies easily:

Corollary 2 If some power of G 2 L.X/ is compact and positivity-improving then
r�.G/ > 0:

The following result can be found in [61, Chapter CIII].

Theorem 9 Let .S.t//t>0 be a positive C0-semigroup on Lp .�/ with generator T:
If s.T / is a pole of the .� � T /�1 then the boundary spectrum

�b.T / WD �.T /\ .s.T /C iR/

consists of poles of the resolvent and is cyclic in the sense that there exists ˛ > 0

such that

�b.T / WD s.T /C i˛Z:
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Corollary 3 Let .S.t//t>0 be a positive C0-semigroup on Lp .˝;A; �/ with
generator T: We assume that .S.t//t>0 is essentially compact (i.e. !ess < !). Then

�b.T / D fs.T /g

i.e. s.T / is the leading eigenvalue and is strictly dominant (i.e. 9" > 0I Re� �
s.T /� " 8� 2 �.T /; � ¤ s.T /).

Proof According to the theorem above, �b.T / is either unbounded or reduces to
fs.T /g. The fact that !ess < ! implies that �b.T / is finite. �

By combining essential compactness and positivity arguments we get a funda-
mental functional analytic result:

Theorem 10 ([61] Prop 3.5, p. 310) Let .S.t//t>0 be an irreducible C0-semigroup
on Lp .˝;A; �/ with generator T: We assume that .S.t//t>0 is essentially compact
(i.e. !ess < !). Then s.T / is the leading eigenvalue, is strictly dominant and is
algebraically simple. In particular there exists " > 0 such that

S.t/f D es.T /t
�Z

f .x/v.x/�.dx/

�
u CO.e.s.T /�"/t /

where u is the (strictly positive almost everywhere) eigenfunction of T associated
to s.T / and v is the (strictly positive almost everywhere) eigenfunction of T 0
associated to s.T 0/ D s.T / with the normalization

R
u.x/v.x/�.dx/ D 1:

2.10 Semigroups with Dense Local Quasinilpotence Subspace

This subsection deals with a class of positive semigroups whose real spectra can
be described completely. This class is well-suited to weighted shift semigroups we
consider in the next section. We resume here some abstract results from [56]. For the
sake of simplicity, we restrict ourselves to complex Lebesgue spaces X D Lp.�/

(1 � p � 1/: Let .S.t//t>0 be a positive semigroup on Lp.�/. We define its local
quasinilpotence subset by

Y D
�
f 2 Lp.�/I lim

t!C1 kS.t/ jf jk 1
t D 0

�

where jf j is the absolute value of f 2 Lp.�/:
Lemma 1 Y is a subspace of Lp.�/ invariant under .S.t//t>0:
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Proof

(i) Linearity: Clearly �f 2 Y if f 2 Y: Let " > 0; f; g 2 Y be given. There
exists t > 0 depending on them such that

kS.t/ jf jk � "t and kS.t/ jgjk � "t 8t > t :

So kS.t/ jf C gjk � kS.t/ .jf j C jgj/k � 2"t 8t > t and

kS.t/ jf C gjk 1
t � 2

1
t " � 2" 8t > max.t ; 1/:

(ii) Invariance: Let � > 0; f 2 Y .

kS.t/ jS.�/f jk 1
t � kS.t/ .S.�/ jf j/k 1

t

D kS.t C �/ .jf j/k 1
t D

�
kS.t C �/ .jf j/k 1

tC�

� tC�
t ! 0

as t ! C1I i.e. S.�/f 2 Y:
Theorem 11 Let .S.t//t>0 be a positive semigroup on Lp.�/ with type !. If its
local quasinilpotence subspace is dense in Lp.�/ then Œ0; e!t � � �ap.S.t//:

Proof Let t > 0 be fixed. Let 0 < � < e!t and y 2 Y . The equation

�x � S.t/x D yI .y 2 Y; kyk D 1/

can be solved by

x D 1

�

1X
kD0

1

�k
S.t/ky D 1

�

1X
kD0

1

�k
S.kt/y

provided that this series converges. This is the case since

���� 1�k S.kt/y
����
1
k

D 1

�

�
kS.kt/yk 1

kt

�t ! 0 as k ! C1:

In particular x > 0 for y > 0 and

kxk > 1

�kC1
��S.t/ky�� 8k 2 N:

There exists zk 2 LpC.�/ such that kzkk D 1 and

��S.t/kzk
�� > 1

2

��S.t/k�� :
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By the denseness of Y , 9 yk 2 Y such that kykk D 1

��S.t/kyk�� > 1

3

��S.t/k�� :

We may assume that yk > 0 since
��S.t/k jykj

�� >
��S.t/kyk�� and jykj 2 Y: The

solution Oxk of

� Oxk � S.t/ Oxk D yk

satisfies

k Oxkk > 1

�kC1
��S.t/kyk�� > 1

3

1

�kC1
��S.t/k�� :

So

lim inf
k!C1 k Oxkk 1

k > 1

�
lim

k!C1
��S.t/k�� 1

k D e!t

�
> 1

and then limk!C1 k Oxkk D 1: Finally xk WD Oxk
k Oxkk is such that

kxkk D 1 and k�xk � S.t/xkk ! 0

i.e. � 2 �ap.S.t//. The closedness of �ap.S.t// ends the proof. �

Lemma 2 Let .S.t//t>0 be a positive semigroup on Lp.�/ with generator T . Let
Y be the local quasinilpotence subspace of .S.t//t>0: Then, for any � > !;

lim
k!1

��.� � T /�ky
�� 1
k D 0 8y 2 Y:

Proof For any y 2 Y and any " > 0 there exists ty;" > 0 such that

kS.t/yk � "t 8t > ty;"

i.e. (write " D e�A)

kS.t/yk � e�At 8t > ty;"

so 9My;A > 0 such that

kS.t/yk � My;Ae
�At 8t > 0:
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Hence

��.� � T /�ky
�� D

����
Z C1

0

dt1 : : :
Z C1

0

dtke
��.t1C:::Ctk/S.t1 C : : :C tk/y

����

�
Z C1

0

dt1 : : :
Z C1

0

dtke
��.t1C:::Ctk / kS.t1 C : : :C tk/yk

� My;A

Z C1

0

dt1 : : :
Z C1

0

dtke
��.t1C:::Ctk/e�A.t1C:::Ctk/

D My;A

.�C A/k

and

lim sup
k!C1

��.� � T /�ky
�� 1
k � 1

�C A

which ends the proof since A > 0 is arbitrary. �

Theorem 12 Let .S.t//t>0 be a positive semigroup onLp.�/with generatorT . Let
s.T / be the spectral bound of T . If the local quasinilpotence subspace of .S.t//t>0
is dense in Lp.�/ then

.�1; s.T /� � �ap.T /:

Proof Let � < s.T / < � be fixed. Consider

1

� � �x � .�� T /�1x D y 2 Y:

Arguing as for the semigroup, we show the existence of .xk/k with kxkk D 1 and

���� 1

�� �
xk � .� � T /�1xk

���� ! 0

i.e. 1
��� 2 �ap..� � T /�1/ or equivalently � 2 �ap.T /. The closedness of �ap.T /

ends the proof. �
Corollary 4 Let .S.t//t>0 be a positive semigroup on Lp.�/ with type ! and
generator T . We assume that the local quasinilpotence subspace of .S.t//t>0 is
dense in Lp.�/:

(i) If �.T / is invariant under translations along the imaginary axis then

�.T / D f� 2 CI Re� � !g :
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(ii) If �.S.t// is invariant under rotations then

�.S.t// D ˚
� 2 CI j�j � e!t

�
:

3 Spectral Analysis of Advection Semigroups

Neutron transport theory is mainly a perturbation theory (by scattering operators) of
suitable weighted shift semigroups called advection semigroups

U.t/ W g ! e� R t
0 �.x��v;v/d�g.x � tv; v/1ft�s.x;v/g

where

s.x; v/ D inf fs > 0I x � sv … ˝g

is the (first) exit time function from the spatial domain ˝: We describe here the
spectra of such semigroups. This section resumes essentially [56]; (an alternative
approach is given in [78]).

3.1 On Advection Semigroups

Let ˝ � R
n be an open subset and let � be a positive Borel measure on R

n with
support V . Let

� W ˝ � V ! RC

be measurable and such that

lim
t!0

Z t

0

�.x � �v; v/d� D 0 a.e.

Let

s.x; v/ D inf fs > 0I x � sv … ˝g

be the so-called exit time function. Then

S.t/ W g ! e� R t
0 �.x��v;v/d�g.x � tv; v/1ft�s.x;v/g

defines a positive semigroup on Lp.˝ � V I dx ˝ �.dv// (for any 1 � p � C1),
strongly continuous when p < C1, see e.g. [78]. The dual streaming semigroups
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in Lp
0

.˝ � V / are given by

S 0.t/ W f ! e� R t
0 �.xC�v;v/d�f .x C tv; v/1ft�s.x;�v/g:

3.2 Invariance Property of Transport Operators

Let � f0g D 0 and

˛ W .x; v/ 2 ˝ � V ! x:v

jvj2 :

For any � > 0

M� W f 2 Lp.˝ � V / ! e�i�˛.x;v/f 2 Lp.˝ � V /

is an isometric isomorphism.

Theorem 13 ([78]) M�1
� S.t/M� D ei�tS.t/: In particular �.S.t// is invariant by

rotations.

Proof We have

S.t/M�f D e� R t
0 �.x��v;v/d�M�f .x � tv; v/1ft�s.x;v/g

D e� R t
0 �.x��v;v/d�e

�i� .x�tv/:v

jvj
2 f .x � tv; v/1ft�s.x;v/g

so

M�1
� S.t/M�f D e

i� x:v
jvj
2 e

�i� .x�tv/:v

jvj
2 S.t/f D ei�tS.t/f

so M�1
� S.t/M� D ei�tS.t/. Hence �.M�1

� S.t/M�/ D �.ei�tS.t//: On the other
hand, by similarity,

�.M�1
� S.t/M�/ D �.S.t//

and

�.ei�t S.t// D ei�t �.S.t//

so we are done. �
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As previously we have:

Theorem 14 Let T be the generator of a streaming semigroup .S.t//t>0. Then
M�1
� TM� D T C i�I: In particular �.T / is invariant by translation along the

imaginary axis.

Proof Let f 2 D.T /. Then

S.t/M�f �M�f

t
D M�

M�1
� S.t/M�f � f

t

D M�

ei�tS.t/f � f
t

D M�

ei�tS.t/f � ei�tf
t

CM�

ei�tf � f

t

D ei�tM�

S.t/f � f
t

C ei�t � 1
t

M�f

! M�Tf C i�M�f

so M�f 2 D.T / and TM�f D M�Tf C i�M�f or M�1
� TM� D T C i�I: By

similarity, �.T / D �.M�1
� TM�/ D �.T /C i�8� 2 R. �

3.3 Decomposition of the Phase Space

We consider the partition of the phase space ˝ � V according to

E1 D f.x; v/ 2 ˝ � V I s.x;�v/ < C1g ;

E2 D f.x; v/ 2 ˝ � V I s.x;�v/ D C1; s.x; v/ < C1g ;

E3 D f.x; v/ 2 ˝ � V I s.x;�v/ D C1; s.x; v/ D C1g :

This induces a direct sum

Lp.˝ � V I dx ˝ �.dv// D Lp.E1/˚ Lp.E2/˚ Lp.E3/

where, we identify Lp.Ei / to the closed subspace of functions f 2 Lp.˝ � V /

vanishing almost everywhere on ˝ �V n Ei . If some set Ei has zero measure then
we drop out Lp.Ei / from the direct sum above.

Theorem 15 The subspaces Lp.Ei/ .i D 1; 2; 3/ are invariant under .S.t//t>0::
For each i D 1; 2; 3, we denote by .Si .t//t>0 the part of .S.t//t>0: on Lp.Ei / and



Spectral Theory for Neutron Transport 349

by Ti its generator. Then

�.S.t// D �.S1.t// [ �.S2.t// [ �.S3.t//

�.T / D �.T1/ [ �.T2/[ �.T3/:

We have also similar results where �.:/ is replaced by �p.:/ or �ap.:/: In addition,
if �.:; :/ is bounded then .S3.t//t>0 extends to a positive group.

Proof We check that the direct sum Lp.˝ � V / D Lp.E1/ ˚ Lp.E2/ ˚ Lp.E3/

reduces .S.t//t>0: We restrict ourselves to Lp.E1/: Let f 2 Lp.E1/, i.e. f
vanishes almost everywhere on E2 [ E3. We have to show that S.t/f 2 Lp.E1/

i.e. S.t/f vanishes almost everywhere on E2 [ E3. Since

S.t/f .x; v/ D e� R t
0 �.x��v;v/d�f .x � tv; v/1ft�s.x;v/g

is zero for t > s.x; v/, we assume from the start that t � s.x; v/. One notes that
.x; v/ 2 E2 [ E3 , s.x;�v/ D C1 and

s.x � tv;�v/ D t C s.x;�v/

so that .x � tv;�v/ 2 E2 [ E3 and f .x � tv; v/ D 0. Since the projection Pi
on Lp.Ei/ along Lp.˝ � V n Ei/ commutes with .S.t//t>0: then the direct sum
above reduces also the generator T . Finally, on E3 (if �.:; :/ is bounded) .S3.t//t>0
extends to a positive group where

S3.t/
�1g D e

R t
0 �.xC�v;v/d�f .x C tv; v/ .t > 0/:

3.4 Spectra of the First Reduced Advection Semigroup

Lemma 3 Let t > 0 be fixed. For any f 2 Lp.E1/

kS1.t/f kp D
Z

ft<s.y;�v/g\fs.y;�v/<1g
e�p R t0 �.yC�v;v/d� jf .y; v/jp dx�.dv/:

Proof We have to compute the norm of S1.t/f on the set

ft � s.x; v/g \ fs.x;�v/ < C1g ;

so kS1.t/f kp is equal to

Z
ft�s.x;v/g\fs.x;�v/<C1g

e�p R t0 �.x��v;v/d� jf .x � tv; v/jp dx�.dv/:
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Since s.x � tv;�v/ D t C s.x;�v/ is finite if and only if s.x;�v/ is finite then the
change of variable

y WD x � tv 2 ˝

gives s.y;�v/ > t and

kS1.t/f kp D
Z

ft<s.y;�v/g\fs.y;�v/<1g
e�p R t0 �.yC�v;v/d� jf .y; v/jp dy�.dv/:

The type of .S1.t//t>0 is equal to ���
1 where

��
1 D lim

t!C1 inf
ft<s.y;�v/g\fs.y;�v/<1g

1

t

Z t

0

�.y C �v; v/d�:

because

kS1.t/k D sup
ft<s.y;�v/g\fs.y;�v/<1g

e� R t
0 �.yC�v;v/d�

D e
� infft<s.y;�v/g\fs.y;�v/<1g

R t
0 �.yC�v;v/d�

so

ln kS1.t/k
t

D � inf
ft<s.y;�v/g\fs.y;�v/<1g

1

t

Z t

0

�.y C �v; v/d�

and

!1 D � lim
t!C1 inf

ft<s.y;�v/g\fs.y;�v/<1g
1

t

Z t

0

�.y C �v; v/d�:

We have

�.S1.t// D
n
� 2 CI j�j � e���

1 t
o
; �.Ti / D f� 2 CI Re� � ���

1 g :

Indeed, it suffices to show that the local quasinilpotence subspace of .S1.t//t>0 is
dense in Lp.E1/: Let

Om WD fx; v/ 2 ˝ � V I s.x;�v/ � mg :

We note that [mL
p.Om/ is dense in Lp.E1/ because of

[mOm D fx; v/ 2 ˝ � V I s.x;�v/ < C1g :
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Finally

kS1.t/f kp D
Z

ft<s.y;�v/g\fs.y;�v/<1g
e�p R t0 �.yC�v;v/d� jf .y; v/jp dy�.dv/

shows that, for f 2 Lp.Om/; kS1.t/f k D 0 for t > m so [mL
p.Om/ is included

in the local quasinilpotence subspace of .S1.t//t>0. �

3.5 Spectra of the Second Reduced Advection Semigroup

We deal now with .S2.t//t>0 on Lp.E2/ where

E2 D f.x; v/ 2 ˝ � V I s.x;�v/ D C1; s.x; v/ < C1g :
We consider first the case 1 < p < C1: Indeed, by duality �.S2.t// D �.S 0

2.t//

where

S 0
2.t/f D e� R t

0 �.xC�v;v/d�f .x C tv; v/:

Thus kS2.t/f kp0

is equal to
Z

fs.x;�v/D1; s.x;v/<1g
e�p0

R t
0 �.yC�v;v/d� jf .x C tv; v/jp dx�.dv/

D
Z

fs.y;�v/D1; t�s.y;v/<1g
e�p0

R t
0 �.yC�v;v/d� jf .y; v/jp dy�.dv/:

Introducing the sets

O 0
m WD fx; v/ 2 E2I s.y; v/ � mg

one sees that [mL
p0

.O 0
m/ is dense in Lp

0

.E2/ because of

[mOm D E2:

Since in Lp
0

.O 0
m/; kS2.t/f k D 0 for t > m then the local quasinilpotence subspace

of .S 0
2.t//t>0 is dense. This ends the proof because �.S2.t// D �.S 0

2.t// and
�.T2/ D �.T 0

2/. �

3.6 Spectra of the Third Reduced Advection (Semi)group

Theorem 16 Let S WD �.T3/\ R be the real spectrum of T3. Then

�.T3/ D S C iR and �.S3.t// D et�.T3/:
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Moreover, supS D ���
3 and infS D ����

3 where

��
3 D lim

t!C1 inf
f s.y;�v/D1; s.y;v/D1g

1

t

Z t

0

�.y C �v; v/d�

��
3 D lim

t!C1 sup
f s.y;�v/D1; s.y;v/D1g

1

t

Z t

0

�.y C �v; v/d�:

Proof The fact that �.T3/ is invariant by translation along the imaginary axis
and that et�.T3/ is invariant under the rotations is a general feature of streaming
semigroups in arbitrary geometry. The spectral mapping property for the real
spectrum is due to the fact that .S3.t//t2R is a positive C0-group (see [27]). The
type ���

3 of .S3.t//t>0 is obtained as for .S1.t//t>0 or .S2.t//t>0: Finally, ��
3 is the

spectral bound of the generator of .S3.�t//t>0, (i.e. �T3) and is obtained similarly.
�

Theorem 17 If � W ˝ � V ! RC is space-homogeneous then S WD �.T3/ \ R is
nothing but the essential range of ��.:/:

See the details in [56]; in particular, S WD �.T3/ \ R need not be connected.
The description of �.T3/ \ R for general collision frequency � W ˝ � V ! RC
seems to be open. When ˝ D R

n, the situation is well understood for bounded and
compactly supported (in space) collision frequencies; see [28].

3.7 Reminders on Sun-Dual Theory

To study �.S2.t// inL1 spaces, we need to recall some material. LetX be a complex
Banach space and let .S.t//t>0 be a C0-semigroup on X with generator T . Let
.S 0.t//t>0 be the dual semigroup on the dual space X 0: If X is not reflexive then a
priori .S 0.t//t>0 is not strongly continuous. Let

Lˇ WD ˚
x0 2 X 0I ��S 0.t/x0 � x0�� ! 0 as t ! 0

�

the subspace of strong continuity of .S 0.t//t>0: Then

• Lˇ is a closed subspace of X 0 invariant under .S 0.t//t>0:
• Lˇ D D.T 0/ (the closure in X 0).

We denote by .Sˇ.t//t>0 the restriction of .S 0.t//t>0 to Lˇ (sun-dual C0-
semigroup). Its generator is given by

D.Tˇ/ D ˚
x0 2 D.T 0/; T 0x0 2 Lˇ� and Tˇx0 D T 0x0



Spectral Theory for Neutron Transport 353

and we have �.T / D �.T 0/ D �.Tˇ/ and �.S.t// D �.S 0.t// D �.Sˇ.t//I see
e.g. [20, Chapter IV].

3.8 Sun-Dual Theory for Advection Semigroups

We consider .S2.t//t>0 in L1.E2/ where

E2 D f.x; v/ 2 ˝ � V I s.x;�v/ D C1; s.x; v/ < C1g

and assume that

� W ˝ � V ! RC is bounded.

Since

�.S2.t// D �.S 0
2.t// D �.Sˇ

2 .t//;

it suffices to identify �.Sˇ
2 .t//. Because of the boundedness of �;

Lˇ D
(
f 2 L1.E2/; sup

.x;v/
jf .x C tv; v/� f .x; v/j ! 0 as t ! 0

)
:

Actually, we are going to work in the smaller closed subspace

Lˇ
0 WD

(
f 2 Lˇ; sup

f.y;v/; s.y;v/>rg
jf .y; v/j ! 0 as r ! 1

)
:

Lemma 4 .S 0.t//t>0 leaves invariant Lˇ
0 :

Proof

ˇ̌�
S 0.t/f

�
.y; v/

ˇ̌ � jf .y C tv; v/j

and s.yCtv; v/ D s.y; v/Ct ! 1 if and only if s.y; v/ ! 1 so that S 0.t/f 2 Lˇ
0

if f 2 Lˇ
0 . �

Let
�
Sˇ
0 .t/

�
t>0 be the restriction of

�
Sˇ
2 .t/

�
t>0 to Lˇ

0 and let Tˇ
0 be its

generator. Then �ap.S
ˇ
0 .t// � �ap.S

ˇ
2 .t// and �ap.T

ˇ
0 / � �ap.T

ˇ
2 /. In particular,

�ap.S
ˇ
0 .t// � �.S2.t// and �ap.T

ˇ
0 / � �.T2/. Let

Lˇ
00 WD ˚

f 2 Lˇ; 9r > 0; f .y; v/ D 0 for s.y; v/ > r
�
:
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Theorem 18 Lˇ
00 is dense in Lˇ

0 :

Corollary 5 The local quasinilpotence subspace of
�
Sˇ
0 .t/

�
t>0 is dense in Lˇ

0 :

Proof of Corollary 5: The local quasinilpotence subspace of
�
Sˇ
0 .t/

�
t>0 contains

Lˇ
00. �

Before proving Theorem 18, we need:

Lemma 5 Lˇ is an algebra.

Proof For eachm 2 N, let 
m W Œ0;C1Œ ! Œ0; 1� be smooth (say C1) and such that


m.s/ D
�
1 if s � m

0 if s > 2m:

Lemma 6 8m 2 N; .x; v/ ! 
m.s.x; v// belongs to Lˇ
00:

Proof We have just to show that .x; v/ ! 
m.s.x; v// belongs to Lˇ. Since 
m is
Lipschitz then

j
m.s.x C tv; v//� 
m.s.x; v//j D j
m.s.x; v/C t/ � 
m.s.x; v//j
� C t 8.x; v/:

�

Proof of Theorem 18: Let f 2 Lˇ
0 then 8m 2 N; .x; v/ ! 
m.s.x; v//f .x; v/

belongs to Lˇ
00.

j
m.s.x; v//f .x; v/ � f .x; v/j D j.1 � 
m.s.x; v///f .x; v/j
� sup

s.x;v/>2m
jf .x; v/j ! 0 asm ! 1

since f 2 Lˇ
0 . �

By the general theory,

�.Tˇ
0 / D ˚

Re� � !ˇ
0

�
; �.Sˇ

0 .t// D
n
�I j�j � e!

ˇ

0 t
o

where !ˇ
0 is the type of

�
Sˇ
0 .t/

�
t>0. We have to identify !ˇ

0 Š The fact that��Sˇ
0 .t/

�� � ��S 0
2.t/

�� D kS2.t/k implies

!ˇ
0 � !2 D type of .S2.t//t>0 :

On the other hand,

gm W .x; v/ ! 
m.s.x; v//
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belongs to Lˇ
0 and kgmk � 1 so that

��Sˇ
0 .t/

�� >
��Sˇ

0 .t/gm
�� D sup

.y;v/

�
e� R t

0 �.yC�v;v/d�
m.s.y C tv; v//
�

D sup
.y;v/

�
e� R t

0 �.yC�v;v/d�
m.s.y; v/C t/
�

8m 2 N:

But 
m.s.y; v/C t/ D 1 if s.y; v/ � m � t so

��Sˇ
0 .t/

�� > sup
fs.y;v/�m�tg

e� R t
0 �.yC�v;v/d� 8m 2 N:

Finally

��Sˇ
0 .t/

�� > sup
fs.y;v/<C1g

e� R t
0 �.yC�v;v/d� D kS2.t/k

whence !2 � !ˇ
0 and we are done. �

A similar theory can be built for general vector fields. Indeed, consider
F W R

n ! R
n a Lipschitz vector field and denote by ˚.x; t/ the unique global

solution to

d

dt
X.t/ D F.X.t//; t 2 R

X.0/ D x:

Let ˝ � R
n be an open set and let

s˙.x/ WD inf fs > 0I ˚.x;˙s/ … ˝g

be the exit times from ˝ (with the convention that inf ; D C1/. We define a
weighted shift semigroup

U.t/ W f ! U.t/f

where

U.t/f D e� R t
0 	.˚.x;�s//dsf .˚.x;�t//�ft<s�.x/g.x/:

We introduce the sets

˝1 D fx 2 ˝I sC.x/ < 1g ; ˝2 D fx 2 ˝I sC.x/ D 1; s�.x/ < 1g
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and

˝3 D fx 2 ˝I sC.x/ D 1; s�.x/ D 1g :

Then Lp.˝i/ (i D 1; 2; 3/ are invariant under .U.t//t>0 and we can extend the
previous spectral theory of advection semigroups, see [39].

4 Spectra of Perturbed Operators

This section deals with functional analytic results on stability of essential spectra
for perturbed generators or perturbed semigroups on Banach spaces. Let X be a
complex Banach space and D � C be open and connected. A compact operator
valued meromorphic mapping

A W D ! C.X/

(C.X/ � L.X/ is the closed subspace of compact operators) is called essentially
meromorphic on D if A is holomorphic on D except at a discrete set of points
zk 2 D where A has poles with Laurent expansions

A.z/ D
1X

nD�mk
.z � zk/

mAn.zk/ .0 < mk < 1/

where An.zk/.n D �1;�2; : : : ;�mk/ are finite rank operators. We recall now a
fundamental analytic Fredholm alternative:

Theorem 19 ([65] Corollary II) Let X be a complex Banach space andD � C be
open and connected. Let

A W D ! C.X/

be essentially meromorphic. Then

(i) Either � D 1 is an eigenvalue of all A.z/
(ii) or ŒI � A.z/��1 exists except for a discrete set of points and ŒI �A.z/��1 is

essentially meromorphic onD.

Let T W D.T / � X ! X be a closed operator. We define its “essential resolvent
set” as

�e.T / D �.T / [ �discr.T /

where �discr.T / refers to the isolated eigenvalues of T with finite algebraic
multiplicities. This set is open. We note that if T 2 L.X/ then the unbounded
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component of �e.T / coincides with the unbounded component of the Fredholm
domain �F .T / (see [21, p. 204]). We give first a result from [77] and some of its
consequences.

Theorem 20 Let T W D.T / � X ! X be a closed operator and let ˝ be a
connected component of �e.T /: Let B W D.T / ! X be T -bounded such that there
exists n 2 N and


B.� � T /�1

�n
is compact .� 2 ˝ \ �.T //:

We assume that there exists some � 2 ˝ \ �.T / such that I � 
B.� � T /�1

�n
is

invertible (i.e. 1 is not an eigenvalue of

B.� � T /�1�n). Then˝ � �e.T CB/ and


B.� � T � B/�1�n is compact .� 2 ˝ \ �.T C B//:

Proof We note that .��T /�1 is essentially meromorphic on˝: ThenB� WD B.��
T /�1 and Bn

� D 
B.� � T /�1

�n
are also essentially meromorphic on ˝: Since Bn

�

is operator compact valued then, by the analytic Fredholm alternative .I �Bn
�/

�1 is
also essentially meromorphic on˝: On the other hand

I � Bn
� D .I � B�/.I C B� C : : :C Bn�1

� /

shows that

.I � B�/�1 D .I � Bn
�/

�1.I C B� C : : :C Bn�1
� /

is also essentially meromorphic on ˝ and then so is

.� � T � B/�1 D .� � T /�1.I � B�/�1

i.e. ˝ � �e.T C B/. Finally


B.� � T � B/�1

�n D 
B�.I � B�/

�1�n D Bn
�.I � B�/�n

is also compact on ˝ \ �.T C B/. �

We give now a more precise version of the theorem above under an additional
assumption.

Corollary 6 Let T W D.T / � X ! X be a closed operator and let ˝ be a
connected component of �e.T /: Let B W D.T / ! X be T -bounded such that there
exists n 2 N and


B.� � T /�1

�n
is compact .� 2 ˝ \ �.T //:
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We assume that there exists a sequence
�
�j
�
j

� ˝ \ �.T / such that

��B.�j � T /�1
�� ! 0 .j ! C1/:

Then
�
�j
�
j

� �.T C B/ for j large enough and
��B.�j � T � B/�1

�� ! 0 as
j ! C1. Furthermore ˝ is a component of �e.T C B/.

Proof We note that for j large enough

��B.�j � T � B/�1
�� D ��B�j .I � B�j /

�1�� �
1X
kD1

��B�j ��k ! 0 .j ! C1/

Let ˝ 0 be the component of �e.T C B/ which contains˝: We know that


B.� � T � B/�1

�n

is compact .� 2 ˝ \�.T CB//. By analyticity, this extends to˝ 0 \�.T CB/: By
considering T as .T CB/�B and reversing the arguments in the previous theorem
one gets ˝ 0 � �e.T / and consequently˝ D ˝ 0. �

Corollary 7 Let T;B 2 L.X/. We assume that

B.� � T /�1

�n
is compact on the

unbounded component of �.T /, i.e.


B.� � T /�1

�n
is compact .� 2 ˝ \ �.T //

where ˝ is the unbounded connected component of �e.T /: The unbounded compo-
nents of �e.T / and �e.T C B/ coincide and then

re.T / D re.T C B/:

Proof Since
��.� � T /�1�� ! 0 as j�j ! 1 we apply the corollary above. �

Corollary 8 Let T;B 2 L.X/:

(i) If B is compact then re.T / D re.T C B/:

(ii) If X D L1.�/ and B is weakly compact then re.T / D re.T CB/:

Proof The case (i) is clear with n D 1: In the case (ii) B.� � T /�1 is also weakly
compact on L1.�/ and consequently its square is compact. �

4.1 Strong Integral of Operator Valued Mappings

Let .˝;�/ be a finite measure space and let X; Y be two Banach spaces. Let

G W ! 2 ˝ ! G.!/ 2 L.X; Y /
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be bounded and strongly measurable in the sense that for each x 2 X

! 2 ˝ ! G.!/x 2 Y

is (Bochner) measurable. We define the strong integral of G on ˝ as the bounded
operator

Z
˝

G W x 2 X !
Z
˝

G.!/x�.d!/ 2 Y:

We note that strongly continuous mappings appear everywhere in semigroup theory!

Theorem 21 ([33, 80, 82]) Under the conditions above, assume in addition that
8! 2 ˝;G.!/ 2 C.X; Y / (i.e. G.!/ is a compact operator). Then

Z
˝

G 2 C.X; Y /:

In the statement above, we can replace “compact” by “weakly compact” [69].
Direct proofs in Lebesgue spaces relying on Kolmogorov’s compactness criterion
and the Dunford-Pettis criterion of weak compactness are given in [50].

4.2 Spectra of Perturbed Generators

Theorem 22 Let X be a complex Banach space. Let .U.t//t>0 be a C0-semigroup
with generator T and let K 2 L.X/. We denote by .V .t//t>0 the C0-semigroup
generated by T CK:We assume that K is T -power compact i.e. there exists n 2 N

such that (for � in some right half-plane included in �.T CK/)


K.� � T /�1�n is compact.

Then the components of �e.T / and �e.T C K/ containing a right half-plane
coincide. In particular

�.T CK/\ fRe� > s.T /g

consists at most of isolated eigenvalues with finite algebraic multiplicities.

The proof follows from Corollary 6 since
��.� � T /�1�� ! 0 as Re� goes to C1:

This theorem is a refinement of a first version due to I. Vidav [75].
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4.3 Dyson–Phillips Expansions

The perturbed semigroup .V .t//t>0 is related to the unperturbed one .U.t//t>0 by
an integral equation (Duhamel equation)

V.t/ D U.t/C
Z t

0

U.t/KV.t � s/ds:

The integrals are interpreted in a strong sense i.e.

V.t/x D U.t/x C
Z t

0

U.t/KV.t � s/xds .x 2 X/:

The Duhamel equation is solved by standard iterations

VjC1.t/x D U.t/x C
Z t

0

U.t/KVj .t � s/xds .j > 0/ V0 D 0

and

8C > 0; sup
t2Œ0;C �

��Vj .t/ � V.t/
��
L.X/ ! 0 as j ! C1:

Finally, .V .t//t>0 is given by a Dyson–Phillips series

V.t/ D
C1X
0

Uj .t/

where

UjC1.t/ D
Z t

0

U0.t/KUj .t � s/ds .j > 0/ U0.t/ D U.t/:

By remainder terms of Dyson–Phillips expansions we mean

Rm.t/ WD
C1X
jDm

Uj .t/ .m > 0/:

For any strongly continuous mappings f; g W RC ! L.X/, we define their
convolution by (the strong integral)

f  g D h.t/ WD
Z t

0

f .s/g.t � s/ds
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and note Œf �n the n-fold convolution of f with the convention Œf �1 D f . Then we
can express Uj .:/ for j > 1 as

Uj .:/ D ŒUK�j  U D U  ŒKU �j .j > 1/:

Theorem 23 ([48] Chapter 2) Let n 2 N� be given. Then Un.t/ is compact for all
t > 0 if and only if Rn.t/ WD PC1

jDn Uj .t/ is compact for all t > 0. If X D L1.�/

then we can replace “compact” by “weakly compact”.

Proof If Un.t/ is compact for all t > 0 then

UnC1.t/ D
Z t

0

U.s/KUn.t � s/ds

is compact for all t > 0 as a strong integral of “compact operator” valued mappings.
By induction Uj .t/ is compact (for all t > 0) for all j > n and then Rn.t/ is
compact for all t > 0 since the series converges in operator norm. Conversely, let
Rn.t/ be compact for all t > 0. Then

RnC1.t/ D
C1X

jDnC1
Uj .t/ D

C1X
jDnC1

�
ŒUK�j  U �

D ŒUK� 
C1X

jDnC1

�
ŒUK�j�1  U

�

D ŒUK� 
C1X
jDn

�
ŒUK�j  U �

D ŒUK� Rn.t/ D
Z t

0

U.s/KRn.t � s/ds

shows that RnC1.t/ is also compact for all t > 0 as a strong integral of “compact
operator” valued mappings. Finally Un.t/ D Rn.t/ � RnC1.t/ is also compact for
all t > 0. �

The following result is given in [81] for unbounded perturbations. We give here a
slightly different (and simpler) presentation of the proof thanks to the boundedness
of K:

Theorem 24 Let X be a complex Banach space. Let .U.t//t>0 be a C0-semigroup
with generator T and let K 2 L.X/. We denote by .V .t//t>0 the C0-semigroup
generated by T CK . If some remainder term

Rn.t/ WD
C1X
jDn

Uj .t/
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is compact for t large enough then !e.V / � !e.U / where !e.V / (resp. !e.U /) is
the essential type of .V .t//t>0 (resp. .U.t//t>0). If X D L1.�/ then we can replace
“compact” by “weakly compact”.

Proof Let ˇ > !e.U / then there exists a finite range projectionPˇ commuting with
.U.t//t>0 such that for any ˇ0 > ˇ

��U.t/.I � Pˇ/
�� � Mˇ0eˇ

0t .t > 0/:

(with Pˇ D 0 if ˇ > !.U / the type of .U.t//t>0). On the other hand, by stability
of essential radius by compact (or weakly compact if X D L1.�// perturbation

re.V .t// D re.

n�1X
jD0

Uj .t// D re.

n�1X
jD0

ŒUK�j  U /

for t large enough. We note that

ŒUK�j D 
U.I � Pˇ C Pˇ/K.I � Pˇ C Pˇ/

�j
D 

U.I � Pˇ/K.I � Pˇ/
�j C Cj .t/

where Cj .t/ is a sum of convolutions where each convolution involves at least one
term of the form U.I � Pˇ/KPˇ; UPˇKPˇ or UPˇK.I � Pˇ/. Such terms are
compact (of finite rank) because of Pˇ so that the convolutions are compact for
all time as strong integrals of “compact operator” valued mappings. Thus Cj .t/
is compact for all t > 0: Once again, the stability of essential radius by compact
perturbation gives for t large enough

re.V .t// D re..I � Pˇ/U.t/.I � Pˇ/C
n�1X
jD1


U.I � Pˇ/K.I � Pˇ/

�j  U /

�
������.I � Pˇ/U.t/.I � Pˇ/C

n�1X
jD1


U.I � Pˇ/K.I � Pˇ/

�j  U
������

� ��.I � Pˇ/U.t/.I � Pˇ/
��C

n�1X
jD1

���U.I � Pˇ/K.I � Pˇ/
�j  U

��� :

Observe that


U.I � Pˇ/K.I � Pˇ/

�  U D  QUK�  QU
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where
� QU .t/�

t>0 is the semigroup
�
U.t/.I � Pˇ/

�
t>0. More generally


U.I � Pˇ/K.I � Pˇ/

�j  U D  QUK�j  QU :

By using the estimate

�� QU .t/�� � Mˇ0eˇ
0t .t > 0/;

an elementary calculation shows that
��� QUK�j  QU

��� � cj t
j eˇ

0t so

re.V .t// � pn.t/e
ˇ0t

where pn.t/ is a polynomial of degree n: To end the proof, let ˇ00 > ˇ0. Then there
exists a constant Mˇ00 such that

re.V .t// � Mˇ00eˇ
00t

for t large enough. Let !e.V / be the essential type of .V .t//t>0. The fact that

re.V .t// D e!e.V /t

implies that !e.V / � ˇ00. Hence !e.V / � !e.U / since ˇ0 > !e.U / and ˇ00 > ˇ0
are chosen arbitrarily. �

Remark 1 A classical weaker estimate !e.V / � !.U / (where !.U / is the type of
.U.t//t>0) is due to I. Vidav [76]. The estimate !e.V / � !e.U / is also derived in
[70, 82] by using the properties of measure of noncompactness of strong integrals.

We have seen that if some remainder term Rn.t/ WD PC1
jDn Uj .t/ is compact (or

weakly compact when X D L1.�/) for large t then !e.V / � !e.U /:We show now
that if some remainder term is compact (or weakly compact when X D L1.�/) for
all t > 0 then !e.V / D !e.U /: We need a preliminary result:

Lemma 7 ([48] Chapter 2) Let X be a complex Banach space. Let .U.t//t>0 be
a C0-semigroup with generator T and let K 2 L.X/. We denote by .V .t//t>0 the
C0-semigroup generated by T CK . Let V.t/ D PC1

0 Uj .t/ be the Dyson–Phillips
expansion of .V .t//t>0 : Let U.t/ D PC1

0 Vj .t/ be the Dyson–Phillips expansion
of .U.t//t>0 considered as a perturbation of .V .t//t>0 (i.e. T D .T CK/C .�K/).
For any j 2 N�; Uj .t/ is compact for all t > 0 if and only if Vj .t/ is compact for
all t > 0. If X D L1.�/ then we can replace “compact” by “weakly compact”.

By reversing the role of .U.t//t>0 and .V .t//t>0 we obtain:

Corollary 9 Let X be a complex Banach space. Let .U.t//t>0 be a C0-semigroup
with generator T and let K 2 L.X/. We denote by .V .t//t>0 the C0-semigroup
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generated by T CK . Let

UjC1.t/ D
Z t

0

U0.t/KUj .t � s/ds .j > 0/ U0.t/ D U.t/

be the terms of the Dyson–Phillips expansion of .V .t//t>0. If for some n 2 N�; Un.t/
is compact (resp. weakly compact if X D L1.�// for all t > 0 then

!e.V / D !e.U /:

Remark 2 We note that the stability of essential type appears also in [70,81,82] but
under stronger assumptions.

4.4 Short Digression on Resolvent Approach

The following “resolvent characterization” is due to S. Brendle [9].

Theorem 25 Let n 2 N�. Then Un.t/ is compact for all t > 0 if and only if:

(i) t > 0 ! Un.t/ 2 L.X/ is continuous in operator norm
and

(ii)

.˛ C iˇ � T /�1K�n .˛ C iˇ � T /�1 is compact for some ˛ > !.U / and all
ˇ 2 R .

This is useful in some applications (for example for kinetic equations involv-
ing boundary operators relating the incoming and outgoing fluxes) where the
unperturbed semigroup .U.t//t>0 is not explicit while the resolvent .� � T /�1 is
“tractable”! The cost of the approach is that we need a priori that

t > 0 ! Un.t/ 2 L.X/

is continuous in operator norm. The following result gives sufficient conditions of
continuity in operator norm.

Theorem 26 ([9]) Let n 2 N: If X is a Hilbert space and if

���.˛ C iˇ � T /�1K
�n
.˛ C iˇ � T /�1

��� ! 0 as jˇj ! C1

then t > 0 ! UnC2.t/ 2 L.X/ is continuous in operator norm.

Note that the continuity of t > 0 ! U1.t/ 2 L.X/ (if we want to show the
compactness of V.t/ � U.t/) is out of reach of this theorem. We give now Sbihi’s
criterion of continuity in operator norm.
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Theorem 27 ([67]) Let X be a Hilbert space and let T be dissipative (i.e.
Re .T x; x/ � 0 8x 2 D.T /). If

��K�.� � T /�1K
��C ��K.� � T /�1K��� ! 0 as jIm�j ! C1

then t > 0 ! U1.t/ 2 L.X/ is continuous in operator norm.

Useful applications of this result are given in [34, 38, 67].

5 Collisional Transport Theory

In this section, we show how the previous functional analytic tools apply to neutron
transport theory. We start with an unperturbed (advection) semigroup in Lp.˝ �
V I dx ˝ �.dv//

U.t/ W g ! e� R t
0 �.x��v;v/d�g.x � tv; v/1ft�s.x;v/g .t > 0/

(with generator T ) where

s.x; v/ D inf fs > 0I x � sv … ˝g

is the first exit time function from the spatial domain ˝ . We regard the scattering
operator

K W f !
Z
V

k.x; v; v0/f .x; v0/�.dv0/

as a bounded perturbation of T (we refer to [58] and references therein for
generation results with unbounded scattering operators) and denote by .V .t//t>0
the perturbed neutron transport semigroup. We are faced with two main questions:

• When is

.� � T /�1K�n compact in Lp.˝ � V / for some n 2 N� ?

• When is some remainder term Rm.t/ compact in Lp.˝ � V / ?

We point out that the resolvent .��T /�1 of T cannot be compact (e.g. in bounded
geometries, �.T / is a half-plane when 0 2 V Š). The scattering operator

K W f !
Z
V

k.x; v; v0/f .x; v0/�.dv0/

is local with respect to the space-variable x so thatK cannot be compact onLp.˝�
V /. The good news is that compactness will emerge from subtle combinations of
properties of T and those of K . For information, we recall some classical results:
Under quite general assumptions on the scattering kernel k.x; v; v0/; for bounded
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domains ˝ and Lebesgue measure dv on R
n as velocity measure, the second order

remainder term R2.t/ is compact in Lp.˝ � V / (1 < p < 1) or weakly compact
in L1.˝ � V /I see e.g. [25, 43, 45, 72, 79, 82].

We introduce now a useful class of scattering operators. Let ˝ � R
n .n > 1/ be

an open subset and let � be a positive Radon measure with support V: Let

X WD Lp.˝ � V I dx ˝ �.dv//

with 1 � p < C1: Let

k W .x; v; v0/ W ˝ � V � V ! k.x; v; v0/ 2 RC

be measurable and such that

K W f 2 Lp.˝ � V / !
Z
V

k.x; v; v0/f .x; v0/dv0 2 Lp.˝ � V /

is a bounded operator on Lp.˝ � V /. Since K is local in space variable, we may
interpret it as a family of bounded operators on Lp.V / indexed by the parameter
x 2 ˝ i.e. a mapping

K W x 2 ˝ ! K.x/ 2 L.Lp.V //:

Then

kKkL.Lp.˝�V // D sup
x2˝

kK.x/kL.Lp.V // :

5.1 Lp Theory (1 < p <1)

In this section, we restrict ourselves to 1 < p < 1. A scattering operator K is
called regular if

(i) fK.x/I x 2 ˝g is a set of collectively compact operators on Lp.V /, i.e. the set

˚
K.x/'I x 2 ˝; k'kLp.V / � 1

�

is relatively compact in Lp.V /:
(ii) For any  0 2 Lp

0

.V /; the set fK 0.x/ 0I x 2 ˝g is relatively compact in
Lp

0

.V / where p0 is the conjugate exponent and K 0.x/ is the dual operator of
K.x/.

We note that the compactness of K with respect to velocities (at least in L2.V /)
is satisfied by most physical models [8].
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Theorem 28 ([51]) The class of regular scattering operators is the closure in the
operator norm of L.Lp.˝ � V // of the class of scattering operators with kernels

k.x; v; v0/ D
X
j2J

˛j .x/fj .v/gj .v
0/

where ˛j 2 L1.˝/; fj ; gj continuous with compact supports and J finite.

The first part of the following lemma is given in ([48, Chapter 3, p. 32]) and the
second part in [51].

Lemma 8 Let � be a finite Radon measure on R
n.

(i) If the hyperplanes (through the origin) have zero �-measure then

sup
e2Sn�1

� fvI jv:ej � "g ! 0 as " ! 0:

(ii) If the affine (i.e. translated) hyperplanes have zero �-measure then

sup
e2Sn�1

�˝ �
˚
.v; v0/I ˇ̌.v � v0/:e

ˇ̌ � "
� ! 0 as " ! 0:

Theorem 29 ([51]) We assume that ˝ has finite Lebesgue measure and the
scattering operator is regular in Lp.˝ � V I dx ˝ �.dv// (1 < p < 1). If the
hyperplanes have zero �-measure then .� � T /�1K and K.� � T /�1 are compact
on Lp.˝ � V I dx ˝ �.dv//:

Remark 3 The compactness ofK.��T /�1 can be expressed as an averaging lemma
in open sets ˝ with finite volume, i.e. if ± is a bounded subset of D.T / (for the
graph norm) then

fK'I ' 2 ±g is relatively compact in Lp.˝ � V /:

We note that if

sup
e2Sn�1

� fvI jv:ej � "g � c"˛

and if ˝ is bounded and convex then the compactness can be measured in terms of
fractional Sobolev regularity [23], (see also [1]).

Corollary 10 We assume that ˝ has finite Lebesgue measure, the scattering
operator is regular in Lp.˝ � V I dx ˝ �.dv// (1 < p < 1) and the hyperplanes
have zero �-measure. Then

�ess.T CK/ D �ess.T /:
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In particular �.T C K/ \ fRe� > s.T /g consists at most of isolated eigenvalues
with finite algebraic multiplicities where

s.T / D � lim
t!C1 inf

.y;v/

1

t

Z t

0

�.y C �v; v/d�:

Theorem 30 ([51]) We assume that ˝ has finite Lebesgue measure and the
scattering operator is regular in Lp.˝ � V I dx ˝ �.dv// (1 < p < 1). If the
hyperplanes have zero �-measure then

V.t/ � U.t/ is compact on Lp.˝ � V / .t > 0/;

i.e. the first remainder R1.t/ D PC1
jD1 Uj .t/ is compact on Lp.˝ � V /:

Strategy of the proof:

• R1.t/ D PC1
jDm Uj .t/ is compact for all t > 0 if and only if U1.t/ D R t

0
U.t �

s/KU.s/ds is. So we deal with U1.t/:
• U1.t/ depends (linearly and) continuously on the scattering operator K: So, by

approximation, we may assume that

k.x; v; v0/ D
X
j2J

˛j .x/fj .v/gj .v
0/

where ˛j 2 L1.˝/; fj ; gj continuous with compact supports and J is finite.
• By linearity, we may even choose

k.x; v; v0/ D ˛.x/f .v/g.v0/

where ˛ 2 L1.˝/; f; g are continuous with compact supports. In this case,
U1.t/ operates on all Lq.˝ � V / (1 � q � C1). So, by an interpolation
argument, we may restrict ourselves to the case p D 2:

• Domination arguments: In Lp spaces (1 < p < 1), if Oi .i D 1; 2/ are two
positive operators such that

O1f � O2f 8f 2 LpC
and if O2 is compact then O1 is also compact; see [3]. So we may assume that V
is compact, ˛ D f D g D 1 and � D 0 :

• Because of � D 0

U.t/' D '.x � tv; v/1ft�s.x;v/g

where s.x; v/ D inf fs > 0I x � sv … ˝g : If Q' 2 L2.Rn � V / is the trivial
extension of ' by zero outside˝ � V then, for nonnegative '

U.t/'.x; v/ � Q'.x � tv; v/ 8.x; v/ 2 ˝ � V:
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so U.t/' � RU1.t/E' where E W L2.˝ � V / ! L2.Rn � V / is the trivial
extension operator, R W L2.Rn � V / ! L2.˝ � V / is the restriction operator
and

U1.t/ W  2 L2.Rn � V / !  .x � tv; v/ 2 L2.Rn � V /:

• Thus

U1.t/ D
Z t

0

RU1.t � s/EKRU1.s/Eds

D R
�Z t

0

U1.t � s/EKRU1.s/ds
�
E

� R
�Z t

0

U1.t � s/KU1.s/ds
�
E :

and we are led to deal with the compactness of

R
Z t

0

U1.t � s/KU1.s/ds W L2.Rn � V / ! L2.˝ � V /:

• Note that

Z t

0

U1.t � s/KU1.s/ ds D
Z t

0

ds

Z
V

 .x � .t � s/v � sv0; v0/�.v0/:

For any  .:; :/ 2 L2.Rn � V /, we denote by

O .�; v/ D lim
M!1

1

.2�/
n
2

Z
j�j�M

 .x; v/e�i�:xd�

its partial Fourier transform with respect to space variable where the limit holds
in L2.Rn � V / norm. Then

k k2L2.Rn�V / D
Z
V

Z
Rn

ˇ̌
ˇ O .�; v/

ˇ̌
ˇ2 d��.dv/

and

 .x; v/ D lim
M!1

1

.2�/
n
2

Z
j�j�M

O .�; v/ei�:xd�

where the limit holds in L2.Rn � V / norm.
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Hence

Z t

0

U1.t � s/KU1.s/ ds

D
Z t

0

ds

Z
V

 .x � .t � s/v � sv0; v0/�.dv0/

D lim
M!1

1

.2�/
n
2

Z
j�j�M

eix:�
Z t

0

ds

Z
V

O .�; v/e�i..t�s/vCsv0/:��.dv0/

D lim
M!1

1

.2�/
n
2

Z
j�j�M

Z
V

eix:� O .�; v/
�Z t

0

dse�i..t�s/vCsv0/:�ds

�
�.dv0/

where the limit holds in L2.Rn � V / norm. For each M > 0; let

OM W L2.Rn � V / ! L2.Rn � V /

 !
Z

j�j�M

Z
V

eix:� O .�; v/
�Z t

0

dse�i..t�s/vCsv0/:�ds

�
�.dv0/:

We observe that ROM is a Hilbert Shmidt operator because ˝ has finite volume
and V is compact (keep in mind that x 2 ˝!). It suffices to show that

OM !
Z t

0

ds

Z
V

 .x � .t � s/v � sv0; v0/�.dv0/

in L2.Rn � V / uniformly in k kL2.Rn�V / � 1, i.e.

Z
j�j>M

eix:�
Z
V

O .�; v0/
�Z t

0

e�i..t�s/vCsv0/:�ds

�
�.dv0/ ! 0

inL2.Rn�V / uniformly in k kL2.Rn�V / � 1. By the Parseval identity, this amounts
to

Z
V

�.dv/
Z

j�j>M
d�

ˇ̌
ˇ̌Z
V

O .�; v0/
�Z t

0

e�i..t�s/vCsv0/:�ds

�
�.dv0/

ˇ̌
ˇ̌2 ! 0

uniformly in k kL2.Rn�V / � 1: Using Cauchy-Schwarz inequality, we majorize by

sup
j�j>M

Z
V�V

�.dv0/�.dv/

ˇ̌
ˇ̌Z t

0

e�i..t�s/vCsv0/:�ds

ˇ̌
ˇ̌2 Z

Rn�V

ˇ̌
ˇ O .�; v0/

ˇ̌
ˇ2

� sup
j�j>M

Z
V�V

�.dv0/�.dv/

ˇ̌
ˇ̌Z t

0

e�i..t�s/vCsv0/:�ds

ˇ̌
ˇ̌2 8 k k � 1:
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Now

Z
V�V

�.dv0/�.dv/

ˇ̌
ˇ̌Z t

0

e�i..t�s/vCsv0/:�ds

ˇ̌
ˇ̌2

D
Z
V�V

�.dv0/�.dv/

ˇ̌
ˇ̌
Z t

0

eis.v�v0/:�ds

ˇ̌
ˇ̌2

D
Z
V�V

�.dv0/�.dv/

ˇ̌
ˇ̌Z t

0

eisj�j.v�v0/:eds

ˇ̌
ˇ̌2

where � D j�j e; .e 2 Sn�1/ and

Z
V�V

�.dv0/�.dv/

ˇ̌
ˇ̌Z t

0

eisj�j.v�v0/:eds

ˇ̌
ˇ̌2

D
Z

fj.v�v0/:ej�"g
�.dv0/�.dv/

ˇ̌
ˇ̌Z t

0

eisj�j.v�v0/:eds

ˇ̌
ˇ̌2

C
Z

fj.v�v0/:ej>"g
�.dv0/�.dv/

ˇ̌
ˇ̌
Z t

0

eisj�j.v�v0/:eds

ˇ̌
ˇ̌2

� t2
Z

fj.v�v0/:ej�"g
�.dv0/�.dv/

C
Z

fj.v�v0/:ej>"g
�.dv0/�.dv/

ˇ̌
ˇ̌Z t

0

eisj�j.v�v0/:eds

ˇ̌
ˇ̌2 :

The first term can made arbitrarily small for " small enough (assumption on the
velocity measure �) and, for " fixed, the second term goes to zero as j�j ! 1
because of

R t
0
eisj�j.v�v0/:eds (Riemann-Lebesgue lemma). This ends the proof. �

Corollary 11 We assume that ˝ has finite Lebesgue measure, the scattering
operator is regular in Lp.˝ � V I dx ˝ �.dv// (1 < p < 1) and the hyperplanes
have zero �-measure. Then

�ess.V .t// D �ess.U.t//:

In particular !e.V / D !e.U / and �.V.t// \ ˚
ˇI jˇj > es.T /t� consists at most of

isolated eigenvalues with finite algebraic multiplicities.

Here !e.U / denotes the essential type of .U.t//t>0 etc. The assumption on the
velocity measure � is “optimal”:

Theorem 31 ([51]) Let � be finite, ˝ bounded and

K W ' 2 L2.˝ � V / !
Z
V

'.x; v/�.dv/:
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Let there exist a hyperplane H D fvI v:e D cg .e 2 Sn�1; c 2 R/ with positive
�-measure. Then there exists t > 0 such that V.t/ � U.t/ is not compact on
L2.˝ � V / for 0 < t � t .

and

Theorem 32 ([51]) In the general setting above, if every ball centred at zero
contains at least a section (by a hyperplane) with positive �-measure then V.t/ �
U.t/ is not compact on L2.˝ � V / for all t > 0:

The assumption that the scattering operator is regular is “nearly optimal”:

Theorem 33 ([51]) Let � be an arbitrary positive measure. We assume that its
support V is bounded. If V.t/ � U.t/ is compact on Lp.˝ � V / for all t > 0

then, for any open ball B � ˝ , the strong integral

Z
B

K.x/dx

is a compact operator on Lp.V /:

Corollary 12 Besides the conditions of Theorem 33, we assume that

x 2 ˝ ! K.x/ 2 L.Lp.V //

is measurable (not simply strongly measurable!) e.g. is piecewise continuous in
operator norm. ThenK.x/ is a compact operator on Lp.V / for almost all x 2 ˝:
Proof

1

jBj
Z
B

K.x/dx ! K.x/ in L.Lp.V // as jBj ! 0

at the Lebesgue points x of K W ˝ ! L.Lp.V //. �

5.2 L1 Theory

As noted previously, L1 space is the physical setting for neutron transport because

Z
˝

Z
V

f .x; v; t/dx�.dv/

is the expected number of particles. The L1 mathematical results are very different
from those in Lp theory (p > 1/ and the analysis is much more involved! Weak
compactness is a fundamental tool for spectral theory of neutron transport in L1

spaces. To this end, we recall first some useful results. Let .E;m/ be a �-finite
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measure space. A bounded subset B � L1.E;m/ is relatively weakly compact if

sup
f 2B

Z
A

jf jdm ! 0 as m.A/ ! 0

and (if m.E/ D 1) there exists measurable sets En � E , m.En/ < C1, En �
EnC1, [En D E such that

sup
f 2B

Z
Ecn

jf j dm ! 0 as n ! 1:

A bounded subset B � L1.E;m/ is relatively weakly compact if and only if B is
relatively sequentially weakly compact. A bounded operatorG on L1.E;m/ is said
to be weakly compact if G sends a bounded set into a relatively weakly compact
one. If Gi W L1.E;m/ ! L1.E;m/ (i D 1; 2/ are positive operators and G1f �
G2f 8f 2 L1C.E;m/ then G1 is weakly compact if G2 is; this follows easily
from the above criterion of weak compactness. If Gi (i D 1; 2/ are two weakly
compact operators onL1.E;m/ thenG1G2 is a compact operator [18]. We are going
to present (weak) compactness results for neutron transport operators and show their
spectral consequences. We give here an overview of [52]. We treat first a model case
where

�.x; v/ D 0; � is finite and k.x; v; v0/ D 1.

We start with negative results:

Theorem 34 ([52]) Let ˝ � R
n be an open set with finite Lebesgue measure and

� an arbitrary finite positive Borel measure on R
n with support V . Let n > 2 (or

n D 1 and 0 2 V /. Let

K W ' 2 L1.˝ � V / !
Z
V

'.x; v/�.dv/ 2 L1.˝/:

Then K.� � T /�1 is not weakly compact.

Proof We can assume without loss of generality that 0 2 ˝ . Consider just the case
n > 2: Let .fj /j � Cc.˝�V / a normalized sequence in L1.˝ �V / converging in
the weak star topology of measures to the Dirac mass ı.0;v/. Then for any 2 Cc.˝/

hK.� � T /�1fj ;  i D
Z
˝

 .x/dx
Z
V

�.dv/
Z s.x;v/

0

e��tfj .x � tv; v/dt

D
Z
˝

Z
V

fj .y; v/

"Z s.y;�v/

0

e��t .y C tv/dt

#
dy�.dv/

!
Z s.0;�v/

0

e��t .tv/dt
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i.e. K.� � T /�1fj tends, in the weak star topology of measures, to a (non-trivial)
Radon measure

m W  2 Cc.˝/ !
Z s.0;�v/

0

e��t .tv/dt

with support included in a segment. Hence m … L1.˝/ and K.� � T /�1 is not
weakly compact. �

We note that this property was noted for the first time in the whole space in [23].
We have also:

Theorem 35 ([52]) Let n > 3 and let ˝ � R
n be an open set with finite Lebesgue

measure. Let � be an arbitrary finite positive Borel measure on R
n with support V

and

K W ' 2 L1.˝ � V / !
Z
V

'.x; v/�.dv/ 2 L1.˝/:

Then

(i) .� � T �K/�1 � .� � T /�1 is not weakly compact.
(ii) V.t/ � U.t/ is not weakly compact.

We note that this theorem is false for n D 1 while the case n D 2 is open, see
[52]. We recall now a necessary condition on �.

Theorem 36 ([52]) We assume that the velocity measure is invariant under the
symmetry v ! �v: Let there exist m 2 N such that


K.� � T /�1�m

is compact on L1.˝ � V /: Then the hyperplanes (through zero) have zero
�-measure.

We note that for any m 2 N


K.� � T /�1K

�m � R

K.� � T1/�1K

�m E

where

E W L1.˝ � V / ! L1.Rn � V /

is the trivial extension operator,

R W L1.Rn � V / ! L1.˝ � V /
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is the restriction operator and T1 is the generator of

U1.t/ W  2 L1.Rn � V / !  .x � tv; v/ 2 L1.Rn � V /:
We start with a fundamental observation:

Lemma 9 Let � be an arbitrary finite positive measure on R
n with support V and

K W ' 2 L1.˝ � V / !
Z
V

'.x; v/�.dv/ 2 L1.˝/:

For any � > 0 there exists a finite positive measure ˇ on R
n (depending on �) such

that

K.� � T1/�1K' D ˇ K':
Moreover,

Ǒ.�/ D 1

.2�/
n
2

Z
Rn

�.dv/

�C i�:v
:

Proof

K.� � T1/�1K' D
Z
Rn

�.dv/
Z 1

0

e��t .K'/.x � tv/dt

D
Z 1

0

e��tdt
Z
Rn

.K'/.x � tv/�.dv/

D
Z 1

0

e��tdt
Z
Rn

.K'/.x � z/�t .d z/

D
Z 1

0

e��t Œ�t K'� dt

where �t is the image of � under the dilation v ! tv. So

K.� � T1/�1K' D ˇ K'

where ˇ WD R1
0
e��t�tdt (strong integral). Finally Ǒ.�/ is given by

Z 1

0

e��t O�t .�/dt D 1

.2�/
n
2

Z 1

0

e��t
	Z

Rn

e�i�:v�t.dv/



dt

D 1

.2�/
n
2

Z 1

0

e��t
	Z

Rn

e�i t�:v�.dv/



dt

D 1

.2�/
n
2

Z
Rn

�.dv/

�C i�:v
:

This ends the proof. �
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Remark 4 Ǒ.�/ D R
Rn

�.dv/
�Ci�:v ! 0 for j�j ! 1 if and only if the hyperplanes

(through zero) have zero �-measure; see [52]. We are going to show that the
compactness results rely on how fast Ǒ.�/ goes to zero as j�j ! 1:

Theorem 37 ([52]) We assume that ˝ � R
n is an open set with finite Lebesgue

measure. Let the velocity measure � be finite and such that

Z
Rn

ˇ̌
ˇ Ǒ.�/

ˇ̌
ˇ2m d� < C1

for some m 2 N: Then

K.� � T /�1K�m is weakly compact in L1.˝ � V / and

K.� � T /�1K�mC1
is compact in L1.˝ � V /:

Proof We start from


K.� � T1/�1K

�m
' D ˇ.m/ K'

where

ˇ.m/ D ˇ  : : : :  ˇ .m times/:

Since

Oˇ.m/.�/ D
� Ǒ.�/

�m

then our assumption amounts to Oˇ.m/ 2 L2.Rn/: In particular ˇ.m/ 2 L2.Rn/ (ˇ.m/

is now a function!). It follows that


K.� � T1/�1K

�m
' D ˇ.m/ K' 2 L2.Rn/

and then

K.� � T1/�1K

�m
maps continuouslyL1.Rn � V / into L2.Rn/: Hence

R

K.� � T1/�1K

�m W L1.Rn � V / ! L1.˝/

is weakly compact because the imbedding of L2.˝/ into L1.˝/ is weakly compact
since ˝ has finite Lebesgue measure (a bounded subset of L2.˝/ is equi-
integrable). Finally


K.� � T /�1K

�m
is also weakly compact by a domination

argument. It follows that

K.� � T /�1K

�2m
is compact as a product of two weakly

compact operators. Actually


K.� � T /�1K�mC1 D K.� � T /�1K K.� � T /�1K

�m

is compact because K.� � T /�1 is a Dunford-Pettis operator, see below. �
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We give now a geometrical condition on � implying the compactness results.

Theorem 38 ([52]) Let ˝ � R
n be an open set with finite Lebesgue measure. Let

the velocity measure � be finite and there exist ˛ > 0, c > 0 such that

sup
e2Sn�1

� fvI jv:ej � "g � c"˛:

Then

K.� � T /�1K�mC1

is compact in L1.˝ � V / for m >
n.˛C1/
2˛

:

Proof Note that Ǒ.�/ is a continuous function. According to the preceding theorem,

we need just check the integrability of
ˇ̌
ˇ Ǒ.�/

ˇ̌
ˇ2m at infinity. Up to a factor .2�/� n

2

ˇ̌
ˇ Ǒ.�/

ˇ̌
ˇ D

ˇ̌
ˇ̌
Z
Rn

�.dv/

�C i�:v

ˇ̌
ˇ̌ �

Z
Rn

�.dv/q
�2 C j�j2 je:vj2

where e D �

j�j : So, for any " > 0;

ˇ̌
ˇ Ǒ.�/

ˇ̌
ˇ �

Z
fje:vj<"g

�.dv/q
�2 C j�j2 je:vj2

C
Z

fje:vj>"g
�.dv/q

�2 C j�j2 je:vj2

� ��1� fje:vj < "g C k�k
j�j " � ��1c"˛ C k�k

j�j " :

Optimizing with respect to " yields

ˇ̌
ˇ Ǒ.�/

ˇ̌
ˇ2m � C

j�j 2m˛˛C1

for some positive constant C depending on �. We are done if 2m˛
˛C1 > n i.e. if

m >
n.˛C1/
2˛

:�

In the same spirit (but with more involved estimates) we can show:

Theorem 39 ([52]) Let ˝ � R
n be an open set with finite Lebesgue measure. Let

the velocity measure � be finite and there exist ˛ > 0, c > 0 such that

sup
e2Sn�1

�˝ �
˚
.v; v0/I ˇ̌.v � v0/:e

ˇ̌ � "
� � c"˛:

Then Um.t/ is weakly compact in L1.˝ � V / for all t > 0 and for m > m0 where
m0 is the smallest odd integer greater than n.˛C1/

2˛
C 1:

We point out that in Theorems 38 and 39, the condition on m does not depend
on the constant c in the statement; this fact is fundamental if we want to pass from
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model cases to more general models. We show now how to treat by approximation
more general velocity measures and scattering kernels. Indeed, in the approximation
procedure, a general (a priori infinite) velocity measure � is approximated, by
truncation, by a sequence of finite measures �j such that

sup
e2Sn�1

�j ˝ �j
˚
.v; v0/I ˇ̌.v � v0/:e

ˇ̌ � "
� � cj "

˛

where ˛ is independent of j .
A scattering operatorK in L1.˝ � V / is said to be regular if fK.x/I x 2 ˝g is

a set of collectively weakly compact operators on L1.V /, i.e. the set

˚
K.x/'I x 2 ˝; k'kL1.V / � 1

�

is relatively weakly compact inL1.V /: This class of scattering kernels appears (with
Lebesgue measure dv on R

n/ in P. Takak [72] and L. W. Weis [82]. See B. Lods [37]
for the extension of P. Takak’s construction to abstract velocity measures �:

Theorem 40 ([37]) Let K be a regular scattering operator in L1.˝ � V /. Then
there exists a sequence .Kj /j of scattering operators such that:

(i) 0 � Kj � K

(ii)
��K �Kj

��
L.L1.˝�V // ! 0 as j ! C1:

(iii) For eachKj there exists fj 2 L1.V / such that

Kj' � fj .v/
Z
'.x; v0/�.dv0/ 8' 2 L1C.˝ � V /:

We are ready to show:

Theorem 41 ([52]) Let ˝ � R
n be an open set with finite Lebesgue measure and

let K be a regular scattering operator in L1.˝ � V /. We assume that the velocity
measure� is such that: There exists ˛ > 0 such that for any c1 > 0 there exists c2 >
0 such that

sup
e2Sn�1

� fvI jvj � c1; jv:ej � "g � c2"
˛:

Then the components of �e.T / and �e.T C K/ containing a right half-plane
coincide. In particular

�.T CK/\ fRe� > s.T /g

consists at most of isolated eigenvalues with finite algebraic multiplicities where

s.T / D � lim
t!C1 inf

.y;v/

1

t

Z t

0

�.y C �v; v/d�:
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Proof Let us show that

K.� � T /�1K�mC1

is weakly compact in L1.˝ � V / for

m >
n.˛C1/
2˛

. We fix m >
n.˛C1/
2˛

. It suffices to show the weak compactness of
Kj .� � T /�1Kj

�mC1
for all j (Kj from Theorem 40). By domination, we may

replaceKj by OKj where

cKj' D fj .v/
Z
'.x; v0/�.dv0/:

By approximation again we may suppose that fj is continuous with compact
support. Let j be fixed and denote by Vj the support of fj . We note thathcKj .� � T /�1cKj

im
leaves invariant L1.˝ � Vj / and cKj maps L1.˝ � V / into

L1.˝ � Vj /. By replacing fj .v/ by its supremum, the model case (dealt with
previously) in L1.˝ � Vj / insures that


Kj .� � T /�1Kj

�m
is weakly compact on

L1.˝ � Vj / so


Kj .� � T /�1Kj

�mC1 D 
Kj .� � T /�1Kj

�m 
Kj .� � T /�1Kj

�

is weakly compact on L1.˝ � V /. Finally some power of K.� � T /�1 is compact
on L1.˝ � V / and we conclude by the general theory. �

Theorem 42 ([52]) Let ˝ � R
n be an open set with finite Lebesgue measure and

let K be a regular scattering operator in L1.˝ � V /. We assume that the velocity
measure� is such that: There exists ˛ > 0 such that for any c1 > 0 there exists c2 >
0 such that

sup
e2Sn�1

�˝ �
˚
.v; v0/I jvj ; ˇ̌v0 ˇ̌ � c1 ;

ˇ̌
.v � v0/:e

ˇ̌ � "
� � c2"

˛:

Then .V .t//t>0 and .U.t//t>0 have the same essential type. In particular

�.V.t// \ ˚
˛ 2 CI j˛j > es.T /t�

consists at most of isolated eigenvalues with finite algebraic multiplicities.

Proof Let us show that RmC1.t/ is weakly compact in L1.˝ � V / for all t > 0 and
for m > m0 where m0 is the smallest odd integer greater than n.˛C1/

2˛
C 1: We fix

m > m0. It suffices to show that RjmC1.t/ is weakly compact in L1.˝ �V / for all j

whereRjmC1.t/ is the remainder term of ordermC1 corresponding to a perturbation
Kj in place of K (Kj from Theorem 40). By domination, we may replace Kj by
cKj where

cKj' D fj .v/
Z
'.x; v0/�.dv0/:
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By approximation again we may suppose that fj is continuous with compact
support. Let j be fixed and denote by Vj the support of fj . We note that Rjm.t/
leaves invariantL1.˝ � Vj / and cKj maps L1.˝ � V / into L1.˝ � Vj /: Note also
that

R
j
mC1 D Rjm 

hcKjU
i

D
Z t

0

Rjm.t � s/cKjU.s/ds:

By dominating fj by its supremum, the previous model case (and a domination
argument) shows that Rjm.t � s/ is weakly compact in L1.˝ � Vj /. Thus Rjm.t �
s/cKjU.s/ is weakly compact in L1.˝�V / and then so is RjmC1 as a strong integral
of “weakly compact operator” valued mapping. We conclude by the general theory.
�
Remark 5 The conditions on � in Theorems 41 and 42 are satisfied e.g. for
Lebesgue measure on R

n or on spheres (multigroup models).

5.3 Dunford-Pettis Operators in Transport Theory

A bounded operator G 2 L.L1.	// is called a Dunford-Pettis (or a completely
continuous) operator if G maps a weakly compact subset into a (norm) compact
subset. For instance, a weakly compact operator on L1.	/ is Dunford-Pettis; this
explains why the product of two weakly compact operators on L1.	/ is compact.
More generally, if G2 is weakly compact on L1.	/ and G1 is Dunford-Pettis on
L1.	/ thenG1G2 is compact onL1.	/. We have seen that various relevant operators
for neutron transport are not weakly compact in L1.˝ � V /; for instance:

K.� � T /�1; .� � T �K/�1 � .� � T /�1 and V.t/ � U.t/:

We can show however that they are all Dunford-Pettis, (see [50] for more informa-
tion). This explains why we claimed in the proof of Theorem 37 that


K.� � T /�1K�mC1 D K.� � T /�1K K.� � T /�1K

�m

is compact since

K.� � T /�1K�m is weakly compact andK.��T /�1 is Dunford-

Pettis. We restrict ourselves to:

Theorem 43 ([50]) Let ˝ � R
n be an open set with finite Lebesgue measure and

let K be a regular scattering operator in L1.˝ � V /. If the affine hyperplanes have
zero �-measure then V.t/ � U.t/ is a Dunford-Pettis operator on L1.˝ � V /:
Proof We note first that V.t/ � U.t/ D P1

1 Uj .t/ is Dunford-Pettis for all t > 0

if and only if U1.t/ is [50]. By approximation, we may assume that their exists f
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continuous with support in fjvj < cg such that

K' � f .v/
Z
'.x; v0/�.dv0/ 8' 2 L1C.˝ � V /:

Let E � L1.˝ � V / be relatively weakly compact. In particular

sup
'2E

Z
jvj>c

�.dv/
Z
˝

j'.x; v/j dx ! 0 as c ! C1:

We decompose ' 2 E as

' D '�fjvj<cg C '�fjvj>cg

so

��U1.t/.'�fjvj>cg/
�� � kU1.t/k

��'�fjvj>cg
�� ! 0 as c ! C1

uniformly in ' 2 E: On the other hand '�fjvj<cg is zero for jvj > c and (for c > c)
for any  2 L1.˝ � V /; K is zero for jvj > c. So we may assume from the
beginning that V is bounded and then K maps also L2.˝ � V / into itself. We
decompose ' 2 E as

' D '1˛ C '2˛ WD '�fj'j<˛g C '�fj'j>˛g

and note that
Z

j'j >
Z

fj'j>˛g
j'j > ˛ .dx ˝ � fj'j > ˛g/

so

dx ˝ � fj'j > ˛g ! 0 as ˛ ! C1:

The equi-integrability of E implies that

��'2˛
��
L1

! 0 as ˛ ! C1

uniformly in ' 2 E and finally
��U1.t/'2˛

��
L1

! 0 as c ! C1 uniformly in
' 2 E . Since,

˚
'1˛
�

is bounded in L1 and in L1 then the interpolation inequality

��'1˛
��
L2

� ��'1˛
�� 12
L1

��'1˛
�� 12
L1
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shows that
˚
'1˛
�

is also bounded in L2.˝ � V /. We know (from the L2 theory) that
U1.t/ is compact in L2.˝ � V / so

˚
U1.t/'

1
˛

�
is relatively compact in L2.˝ � V /

and then relatively compact in L1.˝ � V / since ˝ � V has a finite measure. Thus
fU1.t/'I ' 2 Eg is as close to a relatively compact subset ofL1.˝�V / as we want
and finally fU1.t/'I ' 2 Eg is relatively compact. �

6 Comments

6.1 Measure Convolution Operators in Transport Theory

The compactness results for neutron transport operators in Lp spaces with 1 < p <
1 (see Subsection 5.1) can also be derived from the analysis of just two particular
measure convolution operators on R

n, see [59].

6.2 Unbounded Geometries

The compactness results given in this lecture in spatial domains ˝ with finite
Lebesgue measure need no be true in general domains, e.g. the results are false in the
whole space (i.e.˝ D R

n) and space homogeneous cross-sections. However, under
suitable assumptions on the cross-sections, we can recover the compactness results
above in unbounded geometries [60]. Actually, for general geometries and cross-
sections, the relevant perturbation theory does not concern the essential spectra (and
the essential types) but rather the critical spectra (and the critical types); we refer
to [10, 53, 54, 59, 62, 67] for the abstract theory and how to use it in the context of
neutron transport theory.

6.3 Leading Eigenvalue of Neutron Transport

The time asymptotic behaviour of neutron transport semigroup is meaningful if the
latter has a spectral gap or equivalently if its generator has a leading eigenvalue. This
topic relies on peripheral spectral analysis of neutron transport. The first relevant
question concerns irreducibility criteria of neutron transport semigroups for which
we refer e.g. to [26, 47, 78] and [48, Chapter 5]. The second relevant question
concerns the effective existence of leading eigenvalues; besides the isotropic case
dealt with by [29], we refer to ([48, Chapter 5]) for general tools. Variational
characterizations of the leading eigenvalue in Lp spaces (InfSup or SupInf
criteria) and lower bounds of this eigenvalue are given in [55]. The criticality
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eigenvalue problem is dealt with in [41,66] and [48, Chapter 5]. Finally, we refer to
[40] for variational characterizations of the criticality eigenvalue.

6.4 Partly Elastic Scattering Operators

Most of the literature on spectral theory of neutron transport is devoted either to
one speed models or to inelastic models. Despite their apparent difference, these
two models can be covered by a unique general formalism as we did in Sect. 5.
However, more complex models which take into account of both elastic and inelastic
scatterings appear e.g. in [35]:

@f

@t
C v:

@f

@x
C �.x; v/f .t; x; v/ D Kef CKif

where

Kif D
Z
R3

k.x; v; v0/f .x; v0/dv0 (inelastic operator)

and

Kef D
Z
S2
k.x; �; !; !0/f .x; �!0/dS.!0/ (elastic operator)

where v D �!: The peculiarity of the elastic scattering operator is that it is not
compact “in velocities” in contrast to usual inelastic scattering operators. This
explains the complexity of �.T C Ke/ which consists of a half-plane and various
“curves”[35]. We find in [68] various compactness results (due to Ki ) and spectral
results. In particular the semigroups generated by T CKe and by T CKe CKi have
the same essential type.

6.5 Generalized Boundary Conditions

We point out that “zero incoming flux” is the natural (i.e. physical) boundary
condition for neutron transport. However, various boundary conditions (relating e.g.
the incoming and outgoing fluxes) were also considered in kinetic theory [11] or
in structured cell population models (see e.g. [5]). The literature on the subject is
considerable and we do not try to comment on it. We just note that the corresponding
advection semigroup is no longer explicit and, for this reason, spectral analysis of
such kinetic models with non local boundary conditions is much more technical. We
refer for instance to [38] and references therein.
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Reaction-Diffusion-ODE Models of Pattern
Formation

Anna Marciniak-Czochra

1 Introduction

This chapter is devoted to analysis of a class of reaction-diffusion type models
arising from mathematical biology. We focus on mechanisms pattern formation
in reaction-diffusion equations coupled to ordinary differential equations. Such
systems are applied to modelling of interactions between cellular processes and
diffusing signalling factors.

After introducing the classical Turing concept of pattern formation in two
reaction-diffusion equations, we present recent results concerning reaction-
diffusion-ODE models accounting for:

1. Diffusion-driven instability of all regular stationary solutions (including spatially
heterogenous ones).

2. Mass concentration and dynamical spike patterns in the systems with autocatal-
ysis of the non-diffusing component.

3. Stable discontinuous patterns in the systems with hysteresis in the
quasi-stationary ODE subsystem.

The material is illustrated by examples from mathematical biology. The theoretical
concepts presented in this paper can be applied to construct and analyse models of
biological pattern formation.

The chapter is organised as follows: Sect. 2 is devoted to the Turing mechanism
of pattern formation in classical models consisting of two linear reaction-diffusion
equations. We provide a systematic mathematical analysis of the phenomenon of the
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diffusion-driven instability (DDI) and characterise Turing patterns. Then, we focus
on the models with a degenerated diffusion, i.e. reaction-diffusion-ODE systems.
Our aim is to show novelty and mathematical challenges arising in such models. In
Sect. 3 we summarise results on the existence and regularity of solutions of such
models and the corresponding linearised stability principle. In Sect. 4 we focus on
systems coupling one reaction-diffusion equation with one ODE and exhibiting
DDI. We investigate Turing-type phenomenon and show that autocatalysis of
non-diffusing component is a necessary and sufficient condition for DDI in such
systems. However, the same mechanism which destabilises constant solutions,
destabilises also all continuous spatially heterogenous stationary solutions. We
provide a rigorous result on nonlinear (in)stability analysis, which is extended to
discontinuous patterns for a specific class of nonlinearities. Simulations, supple-
mented by numerical analysis, indicate a novel pattern formation phenomenon based
on non-stationary structures tending asymptotically to the sum of Dirac deltas.
Finally, Sect. 5 is devoted to a systematic description of hysteresis-driven pattern
formation. The emerging structures may be monotone, periodic or irregular. We
show that bistability without a hysteresis effect is not sufficient for the existence of
stable patterns and provide a criterion for nonlinear stability of the discontinuous
stationary solutions in case of a basic reaction-diffusion-ode model.

2 Models with Diffusion-Driven Instability

2.1 Turing Instability

Classical concept for pattern formation in reaction-diffusion equations originates
from the seminal paper of Allan Turing [66]. The Turing hypothesis can be stated
as follows: When two chemical species with different diffusion rates react with each
other, the spatially homogeneous state may become unstable, thereby leading to a
nontrivial spatial structure.

The idea looks counter-intuitive, since diffusion is expected to lead to the uniform
distribution of the particles. In case of a scalar reaction-diffusion equation in a
convex domain, all stationary spatially heterogenous solutions are unstable and the
only stable equilibria are spatially homogenous, see e.g. [7].

Mathematical analysis of reaction-diffusion equations provides explanation for
the phenomenon postulated by Turing. The mechanism is related to a local
behaviour of solutions of a reaction-diffusion system in the neighbourhood of a
constant stationary solution that is destabilised through diffusion. Patterns arise
through a bifurcation, called diffusion-driven instability (DDI) or Turing instability,
which is defined as follows:

Definition 1 (Turing Instability) A system of reaction-diffusion equations
exhibits diffusion-driven instability (DDI; Turing instability), if and only if there
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exists a constant stationary solution, which is stable to spatially homogenous
perturbations, but unstable to spatially heterogenous perturbations.

The emerging patterns can be spatially monotone corresponding to the gradients
in positional information or spatially periodic. They are located around the desta-
bilised constant equilibrium (close to equilibrium patterns).

The original concept was presented by Turing on the example of two linear
reaction-diffusion equations describing dynamics of two substances (chemical or
biochemical) of the form

@w

@t
D D4w C Aw in ˝;

@nw.t; 0/ D 0 on @˝;

w.0; x/ D w0.x/; (1)

where w 2 R
2 is a vector of two variables w D .u; v/, D is a diagonal matrix with

nonnegative coefficients du, dv on the diagonal, and @n D @
@n

, where n denotes the
unit outer normal vector to @˝ (no-flux condition), and ˝ is a bounded region.

Following Turing [66], we formulate the following result on DDI

Theorem 1 (Conditions for Turing Instability) Assume that

trA < 0;

detA > 0; (2)

and dv > 0. There exists du > 0 (small enough) such that the constant steady state
.0; 0/ is unstable for the reaction-diffusion equation (1).

The proof is based on a spectral decomposition of the Laplace operator with
homogenous Neumann boundary conditions and calculation of eigenvalues of
obtained finite dimensional operator.

Proposition 1 (Spectral Decomposition) If the domain˝ is C1, connected, open
and bounded, then there exists a spectral basis .�k; �k/k�1 such that

�4�k D �k�k in ˝;

@n�k D 0 on @˝:

1. �k is a nondecreasing sequence 0 D �1 < �2 � : : : � �k ! 1,
2. .�k/k�1 is an orthonormal basis in L2.˝/,
3. �1.x/ D 1

j˝j1=2 > 0 and .�k/k>1 change the sign on˝ .

Remark 1 Connectivity of ˝ guarantees that the first eigenvalue is simple and the
corresponding eigenfunction is positive on ˝ .
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Remark 2 The eigenvalues of the Laplacian �k are called wave numbers related to
�k .

Proof (of Theorem 1) First we consider a system of two ordinary differential
equations

du

dt
D a11u C a12v;

dv

dt
D a21u C a22v (3)

fulfilling stability conditions (2). Consequently, the matrix

A D
�
a11 a12

a21 a22

�
: (4)

has two eigenvalues with a negative real part (or one negative eigenvalue and the
Jordan form) and the constant stationary solution .Nu; Nv/ D .0; 0/ is asymptotically
stable.

Then, we consider a corresponding system of reaction-diffusion equations on a
bounded domain˝ ,

@u

@t
D duu C a11u C a12v;

@v

@t
D dvv C a21u C a22v; (5)

with zero-flux boundary conditions on @˝ ,

@nu D 0;

@nv D 0;

and initial conditions u.0; x/ D u0.x/, v.0; x/ D v0.x/.
In the remainder of this section, we assume positive diffusion coefficients du > 0

and dv > 0.
To investigate the spectrum of DCA, we apply spectral decomposition of the

Laplace operator with Neumann homogeneous boundary conditions provided by
Proposition 1. We use the orthonormal basis of eigenfunctions .�k/k�1 associated
with positive eigenvalues to decompose the solutions, which can be written in the
form

u.t; x/ D ˙1
kD1˛k.t/�k.x/;

v.t; x/ D ˙1
kD1ˇk.t/�k.x/; (6)
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Projecting the system on the finite dimensional space spanned by those eigenfunc-
tions, we obtain a system of linear ordinary differential equations with coefficients
depending on the wave numbers.

For simplicity of presentation, we restrict further calculations to one-dimensional
domain˝ D Œ0; 1�. The eigenelements ..�k/k�1; �k/ can be directly calculated

�k D k2�2;

�k D cos.k�x/:

We search for solutions with exponential growth in time, i.e. having a form

�
u.t; x/

barv.t; x/

�
D e�t

�
c1 cos k�x
c2 cos k�x

�
: (7)

Inserting (7) to (5) yields

�e�t c1 cos.k�x/ D �due
�t c1 cos.k�x/.k�/2

Ca11e�t c1 cos.k�x/C a12e
�t c2 cos.k�x/;

�e�t c2 cos.k�x/ D �dve
�t c2 cos.k�x/.k�/2 C a21e

�t c1 cos.k�x/

Ca22e�t c2 cos.k�x/

and we obtain

�c1 D �duc1.k�/
2 C a11c1 C a12c2;

�c2 D �dvc2.k�/
2 C a21c1 C a22c2:

This is a system of linear algebraic equations for .c1; c2/ and it has a nonzero
solution if and only if its determinant vanishes. The number � is then an eigenvalue
of the matrix

QA D
�
a11 � du.k�/

2 a12

a21 a22 � dv.k�/
2

�

and it depends on the model parameters and on the wave numbers �k D .k�/2.

Definition 2 The dependence �.�k/ is called a dispersion relation.

The question arises whether there exists � with a positive real part and how it
depends on the wave numbers, see Fig. 1.
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Fig. 1 Dispersion relation
for model (5)

Since tr QA is always negative, only one (if any) eigenvalue can change the sign.
The necessary condition for that is det QA < 0. Hence, we obtain a necessary and
sufficient condition for existence of an eigenvalue � of the matrix QA such that
Re� > 0

.a11 � du.k�/
2/.a22 � dv.k�/

2/ � a12a21 < 0: (8)

The left hand-side of (8) is a second order polynomial of �k D .k�/2.
Since du and dv are positive, we may rewrite the above inequality as

�2k � �k dua22 C dva11

dudv
C a11a22 � a12a21

dudv
< 0:

The estimates �k > 0 and .a11a22�a12a21/=.dudv/ > 0 yield that the polynomial
can take negative values only if .dua22 C dva11/=.dudv/ > 0 large enough and
.a11a22 � a12a21/=.dudv/ small enough.

We take � D du=dv and calculate roots of the above polynomial

�˙ D 1

2dv�
.a22� C a11 ˙

p
.a22� C a11/2 � 4�.a11a22 � a12a21//;

�˙ D a22� C a11

2dv�
.1˙

s
1 � 4�.a11a22 � a12a21/

.a22� C a11/2
/:

It remians to show that there exists �k 2 Œ��; �C�. For this purpose, we restrict
ourselves to the regime of small � . Using Taylor expansion we obtain

�˙ � a11

2dv�
.1˙ .1 � 2�.a11a22 � a12a21/

.a22� C a11/2
//:

Therefore, �� � a11a22�a12a21
a11dv

D O.1/ and �C � a11
�dv

. For small du and for dv of
order 1, the interval Œ��; �C� becomes large and hence we know that there exist
some �k which are from that interval.
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Since limk!1 �k D C1; there exist only a finite number of unstable modes
�k . ut

Turing patterns corresponding to different unstable wave numbers are presented
in Fig. 2.

Remark 3 (Two-Dimensional Domain) In a rectangle .0; L1/ � .0; L2/, the family
of eigenelements has the form

�kl D .
�k

L1
/2 C .

�l

L2
/2;

wkl D cos
�kx

L1
cos

�ly

L2
:

In a narrow domain, i.e. L2 � 0 and L1large, the condition �kl 2 Œ��; �C� yields
l D 0. Otherwise �kl is very large and it does not belong to the required interval.

monotone

2 modes

3 modes

ū

ū

ū

ū

ū

ū

Fig. 2 Example of Turing patterns corresponding to different unstable wave numbers
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Fig. 3 Spatial patterns obtained in numerical simulation of a reaction-diffusion system with
Schnakenberg kinetics on the unit square with Neumann boundary conditions. Upper panel
solutions (values of the activator u) of the model; lower panel a pattern obtained by assigning
a grey color to all points of domain with the value of activator being above a certain threshold
(Courtesy of Dirk Hartmann)

The corresponding eigenfunctions are constant in y (bands parallel to y axis). If
L1 � L2, we obtain equal repartition in both directions (spots patterns) (Fig. 3)

Due to the local character of Turing instability, the notion can be extended in a
natural way to nonlinear equations using linearisation around a constant positive
steady state. We consider a system of equations

@u

@t
D Duu C f .u; v/;

@v

@t
D Dvv C g.u; v/ (9)

with homogeneous Neumann boundary conditions on @˝

@nu D 0;

@nv D 0

and initial conditions u.0; x/ D u0.x/, v.0; x/ D v0.x/, for x 2 ˝ � R
n, ˝ open,

bounded.
Let .Nu; Nv/ 2 R

2 be a constant stationary solution, i.e.

f .Nu; Nv/ D 0;

g.Nu; Nv/ D 0:

We study the behaviour of the solution in a neighbourhood of .Nu; Nv/ using the
linearisation
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f .u; v/ � fu.Nu; Nv/u C fv.Nu; Nv/v;
g.u; v/ � gu.Nu; Nv/u C gv.Nu; Nv/v:

For the principle of linearised stability in reaction-diffusion equations we refer
to [60] and [16, Theorem 5.1.3]. The case with a degenerated matrix of diffusion
coefficients, i.e. allowing some of the coefficients to be equal to zero, will be studied
in details in the next section.

Remark 4 The nonlinearities are typically satisfying the inequalities fu > 0 and
gv < 0. Then, the DDI phenomenon requires the condition fugv � fvgu > 0, and
therefore, fv and gu satisfy also the following compensation condition

gu
�Nu; Nv�fv

�Nu; Nv� < 0: (10)

Consequently, the signs of fv and gu should be opposite and there are only two
possibilities

�
fu fv

gu gv

�
D either

�C �
C �

�
or

�C C
� �

�
;

what is called the activator-inhibitor system, and the resource-consumer system,
respectively.

We refer to the Murray book [47] and to the review article [62] and references
therein for more information on DDI in the case of two component reaction-
diffusion systems and to the paper [58] in the case of several component systems.

Following all these observations, we define Turing patterns in the following way:

Definition 3 (Turing Patterns) By Turing patterns we call the solutions of
reaction-diffusion equations that are

• stable,
• stationary,
• continuous,
• spatially heterogenous and
• arise due to the Turing instability (DDI) of a constant steady state. See Fig. 4

A system of reaction-diffusion equations may also exhibit a Turing-type Hopf
bifurcation, which leads to spatio-temporal oscillations [24]. In general, we can
distinguish two types of Turing patterns (depending on the imaginary part of the
eigenvalue with positive real part):

• Stationary patterns, when a single eigenvalue becomes positive and the bifur-
cating solution is a nonconstant steady state. Long-time solutions are stationary,
spatially heterogeneous structures.

• Wave patterns, when 2 complex conjugate eigenvalues cross the imaginary axis.
It is a supercritical Hopf bifurcation from a homogeneous solution to a stable
periodic and nonconstant solution.
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Fig. 4 Growth of patterns in two-dimensional domain after a small spatially random perturbation
of a constant stationary solution exhibiting DDI. Each panel presents the solution at a different
time step as the time progresses. We observe evolution of a regular, spatially periodic pattern from
a randomly perturbed constant state (Courtesy of Dirk Hartmann)

Remark 5 Stationary Turing patterns are possible in a 2-equation system, while for
wave bifurcation 3 variables are necessary.

2.2 A Prominent Example: Activator-Inhibitor Model of Gierer
and Meinhardt

The most famous realisation of Turing’s idea in a mathematical model of biological
pattern formation and the first numerical simulation of a system exhibiting Turing
patterns is the activator-inhibitor model proposed by Gierer and Meinhardt in 1972
[13]. The model, defined on one-dimensional domain .0; 1/ consists of two reaction-
diffusion equations

@

@t
a D Da

@2

@x2
a C �a

a2

h
C �a � �aa;

@

@t
h D Dh

@2

@x2
hC �ha

2 C �h � �hh; (11)

completed by homogeneous Neumann boundary conditions and initial conditions.
Variables a and h denote concentrations of two morphogens, called activator

and inhibitor, respectively. The parameters �a and �h describe de novo production,
�a and �h are the rates of degradation and �a and �h the parameters of the
activator-inhibitor interactions.
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Fig. 5 Simulations of the activator-inhibitor model. Formation of a gradient-like pattern of
activator A and inhibitor I from a randomly perturbed homogeneous steady state

The model and several its modifications have been applied to various problems
from developmental biology, see e.g. [41–43, 47] and references therein. It aims
to explain symmetry breaking and de novo pattern formation due to a coupling
of a local activation and a long-range inhibition process. The activator promotes
the differentiation process and stimulates its own production. The inhibitor acts
as a suppressant against the self-enhancing activator to prevent the system from
unlimited growth. Gradients of morphogens are formed by the DDI mechanism, see
Fig. 5 for numerical simulation of gradient-like patterns.

Due to its interesting mathematical features and emerging singularities, the
model has attracted also a lot of attention from the side of mathematical analysis.
Existence and boundedness of solutions of (11) and its generalisations have been
studied by Masuda and Takahashi [40], Li et al. [26], Jiang [19] and Suzuki
[61], while existence of spatially heterogenous stationary solutions have been
analysed by Takagi [65] in one-dimensional domain, and by Ni and Takagi [53] in
multi-dimensional domains with certain symmetries, see also [50–52]. Additionally,
the location, profiles, and stability of spike-layer patterns have been investigated,
see [48, 69] for a survey. The model leads also to interesting phenomena such as a
collapse of patterns studied in [64] and stable periodic solutions proven in [20].

2.3 Extensions and Limitations

The majority of theoretical studies in theory of pattern formation due to DDI focus
on the analysis of systems of two reaction-diffusion equations. The Turing theory
has been also extended to systems of n reacting and diffusing chemicals [58].
However, it consists only in conditions for DDI, while long term behaviour of the
model solutions is determined by the character of nonlinearities.
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The mechanism of pattern selection, by which one mode is chosen from many
admissible modes to grow to heterogeneous steady state, is a complex issue. The
dispersion relation, algebraic equation for the growth rate, indicates which modes
can grow to determine the final long term pattern. All wave numbers in the region
where Re �.�k/ > 0 are linearly unstable. The best-known dispersion relation (i.e.
known from two-component systems), such as in Fig. 1, determines the bounded
range of unstable modes the size of which depends on the bifurcation parameter
du. Then a certain range of du can be determined for which there exists only
one unstable mode. This feature of the Turing type systems is usually used in
the applications. It allows to select (changing the scaling parameter du) the mode
which grows to the long-term heterogeneous pattern. If the range of unstable modes
is finite but includes more values, then there is a competition between patterning
modes. Murray [47] suggests that the mechanism of initiation of pattern formation
may determine the mode selected, but so far there is no systematic analysis of this
problem. Interestingly, in case of systems with degenerated diffusion, there exists
an infinite range of unstable modes [15, 29].

Furthermore, it may happen in a reaction-diffusion system with DDI that all
Turing patterns are unstable. A solution may converge to another constant solution,
to some discontinuous structures or even exhibit unbounded growth and blow-up.
In summary, Turing instability is neither sufficient nor necessary condition for
emergence of stable patterns in reaction-diffusion type systems.

Another important problem, related to pattern selection, arises in the models with
multiple constant solutions. In such cases, there may exist heterogenous far from
equilibrium structures and the global behaviour of the solutions cannot be predicted
by the properties of the linearised system, e.g. [33, 63].

We observe a variety of possible dynamics depending on the type of nonlineari-
ties. Tight control of the initial conditions is needed to select the desired pattern. In
particular, in case of models with DDI, the scaling parameter (corresponding to the
domain size and diffusion coefficients) must have proper relative magnitudes.

The concept of Turing instability can be extended also to degenerated sys-
tems such as reaction-diffusion-ODE models or integro-differential equations, for
example reaction-diffusion equations with nonlocal terms such as the nonlocal
Fisher/KPP equation [4] or shadow systems obtained through reduction of the
reaction-diffusion model [36]. We will address these issues in the next section.

3 Reaction-Diffusion-ODE Models

In this section we focus on models consisting of a single reaction-diffusion equation
coupled to an ordinary differential equation (ODE).

ut D f .u; v/; for x 2 ˝; t > 0; (12)

vt D dvv C g.u; v/ for x 2 ˝; t > 0 (13)
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in a bounded domain˝ � R
N for N � 1, with a sufficiently regular boundary @˝ ,

supplemented with the Neumann boundary condition

@nv D 0 for x 2 @˝; t > 0; (14)

and initial data

u.x; 0/ D u0.x/; v.x; 0/ D v0.x/: (15)

The nonlinearities f D f .u; v/ and g D g.u; v/ are assumed to be locally Lipschitz
continuous functions.

Such systems of equations arise, e.g., from modelling of interactions between
cellular or intracellular processes and diffusing growth factors and have already
been employed in various biological contexts, see e.g. [17, 21, 29, 32, 34, 54, 67].
In some cases they can be obtained as a homogenisation limit of the models
describing coupling of cell-localised processes with cell-to-cell communication via
diffusion in a cell assembly [31, 35]. Other initial-boundary value problems, where
one reaction-diffusion equation is coupled with a system of ordinary differential
equations are discussed e.g. in [8, 10, 39, 46, 68] and in references therein. To
understand the role of non-diffusive components in pattern formation process, we
focus on systems involving a single reaction-diffusion equation coupled to ODEs. It
is an interesting case, since a scalar reaction-diffusion equation cannot exhibit stable
spatially heterogenous patterns [7].

In the remainder of this section we present a summary of results on existence,
regularity and stability of solutions of reaction-diffusion-ode models. We focus on
two-equation system (12)–(13) with nonlinearities f D f .u; v/ and g D g.u; v/
being arbitrary C2-functions that satisfy certain growth properties. Since we can
rescale the time variable and the functions f and g so that dv D 1, we assume
diffusivity to be equal to one.

In these notes, we consider only non-degenerate stationary solutions, i.e. such
that

fu.Nu; Nv/C gv.Nu; Nv/ ¤ 0; det

�
fu.Nu; Nv/ fv.Nu; Nv/
gu.Nu; Nv/ gv.Nu; Nv/

�
¤ 0; and fu.Nu; Nv/ ¤ 0:

(16)

The first two conditions in (16) allow us to study the asymptotic stability of a
constant stationary solution .Nu; Nv/ as a solution to the corresponding kinetic system
of ordinary differential equations

du

dt
D f .u; v/;

dv

dt
D g.u; v/; (17)
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by analyzing eigenvalues of the corresponding linearisation matrix. The last condi-
tion in (16) guarantees that the equation f .U; V / D 0 can be uniquely solved with
respect to U in the neighbourhood of .Nu; Nv/.

3.1 Existence of Solutions

We begin our study of the initial-boundary value problem (12)–(15) by recalling the
results on local-in-time existence and uniqueness of solutions for all bounded initial
conditions.

Theorem 2 (Local-in-Time Solution) Assume that u0; v0 2 L1.˝/. Then, there
exists T D T .ku0k1; kv0k1/ > 0 such that the initial-boundary value prob-
lem (12)–(15) has a unique local-in-time mild solution u; v 2 L1�Œ0; T �; L1.˝/

�
.

We recall that a mild solution of problem (12)–(15) is a couple of measurable
functions u; v W Œ0; T ��˝ 7! R satisfying the following system of integral equations

u.x; t/ D u0.x/C
Z t

0

f
�
u.x; s/; v.x; s/

�
ds; (18)

v.x; t/ D S.t/v0.x/C
Z t

0

S.t � s/g�u.x; s/; v.x; s/� ds; (19)

where S is the semigroup of linear operators generated by Laplacian with homoge-
neous Neumann boundary conditions.

Since our nonlinearities f D f .u; v/ and g D g.u; v/ are locally Lipschitz
continuous, to construct a local-in-time unique solution of system (18)–(19), it
suffices to apply the Banach fixed point theorem. Details of this approach and
the proof of Theorem 2 for more general systems of reaction-diffusion equations
can be found in the book of Rothe [56, Theorem 1, p. 111], see also [37, Chap. 3]
for a construction of nonnegative solutions of a particular reaction-diffusion-ODE
problems.

Remark 6 For more regular initial conditions v0 2 H2
N .˝/ D fv 2 H2.˝/ j @nv D

0 on @˝g, we obtain more regular solutions .u; v/ 2 C
�
˝IH2

N .˝/ � L1.˝/
�
. It

can be proven using theory of strongly continuous semigroups [6].

Remark 7 If u0 2 C˛.˝/, v0 2 C2C˛.˝/ for some ˛ 2 .0; 1/, and the compatibil-
ity condition holds @nv0 D 0 on @˝ , then the mild solution of problem (12)–(15)
is smooth and satisfies u 2 C1;˛

�
Œ0; T � � ˝

�
and v 2 C1C˛=2; 2C˛ �Œ0; T � �˝�.

We refer to [56, Theorem 1, p. 112] as well as to [12] for studies of general
reaction-diffusion-ODE systems in Hölder spaces.
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3.2 Linearised Stability Principle for Reaction-Diffusion-ODE
Problems

The next goal of this section is to provide a linearised stability principle for
reaction-diffusion-ODE problems. Here, we are interested in showing that insta-
bility of the solutions of linearised system imply instability in the nonlinear system.

We recall the approach applied recently to reaction-diffusion-ODE models
by Marciniak-Czochra et al. [38], and based on theory developed originally for
analysis of the Euler equation and other fluid dynamics models [11, 25]. This
classical method has been also applied by Mulone and Solonnikov [46] to specific
reaction-diffusion-ODE problems, however under assumptions which are not satis-
fied by pattern formation models considered by us.

We formulate our problem as a general evolution equation having a form

wt D Lw C N .w/; w.0/ D w0 (20)

where L (in our case the Laplace operator with Neumann homogeneous boundary
conditions) is a generator of a C0-semigroup of linear operators fetL gt�0 on a
Banach space

Z D L2.˝/ � L2.˝/;

and N is a nonlinear operator such that N .0/ D 0.
Now we recall the notion of nonlinear stability of a trivial solution of equa-

tion (20).

Definition 4 (Spectral Gap) L has a spectral gap if there exists a subset of the
spectrum �.L /, which has a positive real part, separated from zero.

Definition 5 (Nonlinear Stability and Instability) Let .X;Z/ be a pair of Banach
spaces such that X � Z with a dense and continuous embedding. A solution w 	 0

of the Cauchy problem (20) is nonlinearly stable if for every " > 0, there exists
ı > 0 such for w.0/ 2 X and kw.0/kZ < ı it holds:

1. There exists a global in time solution to (20) such that w 2 C.Œ0;1/IX/;
2. kw.t/kZ < " for all t 2 Œ0;1/.

An equilibrium w 	 0 that is not stable in the above sense is called Lyapunov
unstable.

Theorem 3 (Criterion for Nonlinear Instability) Assume that

• The semigroup of linear operators fetL gt�0 on Z satisfies the spectral gap
condition, i.e. for every t > 0, the spectrum � of the linear operator etL can
be decomposed: � D �.etL / D �� [ �C with �C ¤ ;, where

�� � fz 2 C W e�t < jzj < e�t g and �C � fz 2 C W eMt < jzj < e�t g
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and

�1 � � < � < M < � < 1 for some M > 0:

• The nonlinear term N satisfies

kN .w/kZ � C0kwkXkwkZ for all w 2 X with kwkX < � (21)

for some constants C0 > 0 and � > 0.

Then, the trivial solution w0 	 0 of equation (20) is nonlinearly unstable.

The proof of this theorem follows the one by Friedlander et al. [11, Theorem 2.1],
with a modification concerning the estimate from below for the constant �.
This extension to infinite � is important to deal with the operator L related to
our reaction-diffusion problem generating a semigroup of linear operators with
unbounded sequence of eigenvalues.

In the next step, we apply this result to problem (12)–(15). Let .U; V / be a
bounded stationary solution of problem (12)–(15). Substituting

u D U C Qu and v D V C Qv

into (12)–(13), we obtain an initial-boundary value problem for the perturbation
from stationary solution .Qu; Qv/ having a form

@

@t

� Qu
Qv
�

D L

� Qu
Qv
�

C N

� Qu
Qv
�
; (22)

where the linear operator L is given by

L

� Qu
Qv
�

D
�
0

Qv
�

C
�
fu.U; V / fv.U; V /

gu.U; V / gv.U; V /

�� Qu
Qv
�

(23)

with homogeneous Neumann boundary condition @	 Qv D 0:

Lemma 1 (Spectral Mapping Theorem) The linear operator L given by (23)
with D.L / D L2.˝/ � W 2;2.˝/ generates an analytic semigroup fetL gt�0
of linear operators on L2.˝/ � L2.˝/, which satisfies

�.etL / n f0g D et�.L / for every t � 0: (24)

Proof Operator L is a bounded perturbation of the linear operator

L0

� Qu
Qv
�

	
�
0

Qv
�
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with homogeneous Neumann boundary condition for Qv and domain of definition
D.L0/ D L2.˝/ �W 2;2.˝/, which generates an analytic semigroup on L2.˝/ �
L2.˝/, and therefore also L generates an analytic semigroup, for details see e.g.
[6, 9].

Every analytic semigroup of linear operators is eventually norm-continuous
(see [9, Chap. IV, Corollary 3.12]) and property (24) is satisfied for eventually
norm-continuous semigroups (see [9, Chap. IV.3.10]), what completes the proof.

ut
Now we show that the nonlinearity in equation (22) satisfies the assumption (21)

in Theorem 3.

Lemma 2 Let .U; V / be a bounded stationary solution of (12)–(15). The nonlinear
operator N given by

N

� Qu
Qv
�

	
�
f .U C Qu; V C Qv/� f .U; V /

g.U C Qu; V C Qv/� g.U; V /

�
�
�
fu.U; V / fv.U; V /

gu.U; V / gv.U; V /

�� Qu
Qv
�

satisfies

kN .Qu; Qv/kL2�L2 � C.�; kU kL1 ; kV kL1/
�kQukL1 C kQvkL1

��kQukL2 C kQvkL2
�

D C.�; kU kL1 ; kV kL1/k.Qu; Qv/kL1�L1 k.Qu; Qv/kL2�L2

for all Qu; Qv 2 L1 such that kQukL1 < � and kQvkL1 < �, for an arbitrary constant
� > 0.

Proof Applying Taylor formula to C2-nonlinearities f D f .u; v/ and g D g.u; v/.
ut

4 Reaction-Diffusion-ODE Models with Turing Instability

4.1 DDI in Two-Component Reaction-Diffusion-ODE Systems

In this section, we provide a systematic analysis of the DDI phenomenon in models
of one reaction-diffusion equation coupled to one ODE. The presented material is
based on two recent papers by Marciniak-Czochra et al. [37, 38] and a paper by
Härting and Marciniak-Czochra [15]. DDI in the case of three component systems
with some diffusion coefficients equal to zero has been considered in the recent
work [1].

Theorem 4 (DDI in a Reaction-Diffusion-ODE Model) Let .Nu; Nv/ be a constant
stationary solution of problem (12) such that

trA < 0; detA > 0; (25)
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with

A D
�
fu.Nu; Nv/ fv.Nu; Nv/
gu.Nu; Nv/ gv.Nu; Nv/

�
:

Then, the autocatalysis condition, i.e.

a11 D fu
�Nu; Nv� > 0 (26)

is a necessary and sufficient condition for DDI of .Nu; Nv/.
Remark 8 Inequality (26) can be interpreted as a self-enhanced growth of u at the
steady state .Nu; Nv/.
Proof The proof follows the same lines as the proof of Theorem 1. Conditions (25)
provide local stability of .Nu; Nv/ to spatially homogenous perturbations. Then, apply-
ing spectral decomposition of the Laplace operator with Neumann homogeneous
boundary conditions leads to

QA D
�
fu.Nu; Nv/ fv.Nu; Nv/
gu.Nu; Nv/ gv.Nu; Nv/ � �k

�
:

The resulting characteristic polynomial has solutions with a positive real part if and
only if there exists unstable wave numbers, i.e. �k such that

��ka11 C detA < 0:

It provides the assertion of the theorem, since detA > 0 and �k ! 1. ut
Remark 9 We observe that the degeneration of the system by setting one diffusion
coefficient to zero leads to completely different shape of dispersion relation. In
particular, the autocatalysis condition, if satisfied, provides DDI independently on
the size of diffusion. Moreover, DDI is related to infinitely many unstable modes.
Changing the size of diffusion leads to a shift of the minimal unstable mode (see
Fig. 6).

4.2 Nonhomogenous Stationary Solutions and Their Instability

We search for Turing patterns of problem (12)–(14), i.e. solutions of the boundary
value problem

f .U; V / D 0 for x 2 ˝; (27)

V C g.U; V / D 0 for x 2 ˝; (28)

@	V D 0 for x 2 @˝: (29)
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Fig. 6 Dispersion relation
for the operator resulting
from a linearisation of (12) at
.Nu; Nv/. There exists an infinite
range of unstable modes
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k

Re λ

Solutions of (27)–(29) satisfy the following elliptic problem

V C h.V / D 0 for x 2 ˝; (30)

@	V D 0 for x 2 @˝;

where

h.V / D g
�
k.V /; V

�
and U.x/ D k.V.x//: (31)

Equations of this type, so called systems with one degree of freedom have been
intensively studied in classical mechanics. For a deeper analysis of the system on
one-dimensional domain we refer to the book of Arnold [2, Sect. 12]. We recall
this classical approach and apply it to a system in one-dimensional domain in
Sect. 5. In case of a multidimensional domain and corresponding solutions to elliptic
boundary-value problems we refer to the review paper and the book of Ni [48, 49].

Here, we skip a proof of existence of regular stationary solutions and focus
on their properties. In particular, we show that all regular stationary solutions
are unstable. We start by showing that a non-constant solution .U; V / touches a
constant solution .Nu; Nv/.
Lemma 3 Assume that .U; V / is a non-constant regular solution of stationary
problem (27). Then, there exists x0 2 ˝, such that vector .Nu; Nv/ 	 �

U.x0/; V .x0/
�

is a constant solution of problem (27).

Proof Integrating the elliptic equation over ˝ and using the Neumann boundary
condition, we obtain

R
˝
g
�
U.x/; V .x/

�
dx D 0: Due to continuity of U and V ,

we conclude that there exists x0 2 ˝ such that g
�
U.x0/; V .x0/

� D 0 and hence,
f
�
U.x0/; V .x0/

� D 0: ut
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Now we can formulate our main result for problem (12)–(15) under the auto-
catalysis condition required for DDI.

Theorem 5 (Instability of Regular Solutions) Let .U; V / be a regular solution
of problem (27) satisfying autocatalysis condition

fu
�
U.x/; V .x/

�
> 0 for all x 2 ˝: (32)

Then, .U; V / is an unstable solution of problem (12)–(15).

The instability results from Theorem 4 and Theorem 5 can be summarised in
the following way: In case of a single reaction-diffusion equation coupled to ODE
the same mechanism which destabilizes constant solutions, destabilizes also all
non-constant regular stationary solutions. Consequently, no Turing patterns can be
stable.

In the proof of Theorem 5 the following general result on a family of compact
operators is applied.

Theorem 6 (Analytic Fredholm Theorem) Assume thatH is a Hilbert space and
denote byL.H/ the Banach space of all bounded linear operators acting onH . For
an open connected set D � C, let f W D ! L.H/ be an analytic operator-valued
function such that f .z/ is compact for each z 2 D. Then, either

(a) .I � f .z//�1 exists for no z 2 D, or
(b) .I � f .z//�1 exists for all z 2 D n S , where S is a discrete subset of D (i.e. a

set which has no limit points in D).

A proof of this analytic Fredholm theorem can be found in the book by Reed and
Simon [55, Theorem VI.14].

We present below a sketch of the proof. For details of the proof we refer to [38].

Proof (of Theorem 5) Let .U.x/; V .x// be a regular stationary solution to prob-
lem (12)–(15). To show instability of .U.x/; V .x// using Theorem 3 combined with
Lemmas 1 and 2, it suffices to study the spectrum �.L / of the linear operator L
defined by formula (23) with D.L / D L2.˝/ �W 2;2.˝/.

To show that L has a spectral gap, we prove that the spectrum �.L / � C

consists of two parts:

1. All numbers from the interval Œ�0;�0�, where

�0 D inf
x2˝

fu
�
U.x/; V .x/

�
> 0 and �0 D sup

x2˝
fu
�
U.x/; V .x/

�
> 0;

(33)

where positivity of �0 is a consequence of the autocatalysis condition (26);
2. A set of eigenvalues of .L ;D.L // which are isolated points in C, see Fig. 7.
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Fig. 7 The spectrum �.L /

is marked by thick dots and
by the interval Œ�0; �0� in the
sector ˙ı;!0 . The spectral gap
is represented by the strip
f� 2 C W � � Re� � M g
without elements of �.L /

Part I: Interval Œ�0;�0�. We show that for each � 2 Œ�0;�0� the operator

L � �I W L2.˝/ �W 2;2.˝/ ! L2.˝/� L2.˝/

defined by formula

.L � �I/.';  / D �
.fu � �/' C fv ;  C gu' C .gv � �/ 

�
;

where the derivatives are evaluated at the stationary solution
�
U.x/; V .x/

�
, cannot

have a bounded inverse.
We show it by contradiction using eliptic regularity of our problem: Suppose that

.L ��I/�1 exists and is bounded. Then, it holds for a constantK D k.L ��I/�1k
that

k'kL2.˝/ C k kW 2;2.˝/

� K
�k.fu � �/' C fv kL2.˝/ C k C gu' C .gv � �/ kL2.˝/

�
:

(34)

A contradiction is obtained by showing that inequality (34) does not hold for all
.';  / 2 L2.˝/ �W 2;2.˝/. Consequently, we obtain that each � 2 Œ�0;�0�

belongs to �.L /.



408 A. Marciniak-Czochra

Part II: Eigenvalues. To show that the remainder of the spectrum of
�
L ;D.L /

�
consists of a discrete set of eigenvalues f�ng1

nD1 � C n Œ�0;�0�, we consider the
resolvent equations

.fu � �/' C fv D F in ˝ (35)

 C gu' C .gv � �/ D G in ˝ (36)

@	 D 0 on @˝; (37)

with arbitrary F;G 2 L2.˝/. Solving equation (35) with respect to ' and
substituting the resulting expression

' D .F � fv /=.fu � �/ 2 L2.˝/

into (36), we obtain for any � 2 C n Œ�0;�0� the boundary value problem

 C q.�/ D p.�/ for x 2 ˝; (38)

@	 D 0 for x 2 @˝; (39)

where

q.�/ D q.x; �/ D � gufv

fu � �
C gv � �;

p.�/ D p.x; �/ D G � guF

fu � �
: (40)

For a fixed � 2 CnŒ�0;�0�, by Theorem 6, either the inhomogeneous problem (38)–
(39) has a unique solution or else the homogeneous boundary value problem

 C q.�/ D 0 for x 2 ˝; (41)

@	 D 0 for x 2 @˝; (42)

has a nontrivial solution  . Hence, it suffices to consider those � 2 C n Œ�0;�0�, for
which problem (41)–(42) has a nontrivial solution.

It can be proven that the set �.L /n Œ�0;�0� consists only of isolated eigenvalues
of L by rewriting (41)–(42) in the form

 D G
 � .q.�/C `/ 

� 	 R.�/ ; (43)

and applying Theorem 6 to the resulting operator R.�/ W L2.˝/ ! L2.˝/ .
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G D . � `I /�1 in (43) is an operator supplemented with Neumann homoge-
neous boundary conditions, ` 2 R is a fixed number different from eigenvalues
of Laplacian with Neumann homogeneous boundary condition. For each � 2 C n
Œ�0;�0�,R.�/ is a compact operator as the superposition of the compact operatorG
and of the continuous multiplication operator with the function q.�/C` 2 L1.˝/.
The mapping � 7! R.�/ from an open set C n Œ�0;�0� into the Banach space of
linear compact operators is analytic, which can be easily seen using the explicit form
of q.�/ in (40). Showing invertibility of I � R.�/ for some � 2 C n Œ�0;�0�, we
exclude the case (a) in Theorem 6. Finally, we conclude that the set �.L /n Œ�0;�0�

consists of isolated points.
Part III: Spectral gap. By Lemma 1, there exists a number !0 � 0 such

that the operator
�
L � !0I;D.L /

�
generates a bounded analytic semigroup on

L2.˝/ � L2.˝/, hence, this is a sectorial operator, see [9, Chap. II, Theorem 4.6].
In particular, there exists ı 2 .0; �=2� such that �.L / � ˙ı;!0 	 f� 2 C W
jarg .� � !0/j � �=2 C ıg; see Fig. 7. The part of the spectrum �.L / in
˙ı;!0 \ f� 2 C W Re � > 0g consists of all numbers from the interval Œ�0;�0� with
�0 > 0 and of a discrete sequence of eigenvalues with accumulation points restricted
to the interval Œ�0;�0�. Thus, there exist infinitely many 0 � � < M � �0; for
which the spectrum �.L / can be decomposed as required in Theorem 3 using (24).
Due to the relation jezj D eRe z for every z 2 C, the spectral gap condition holds if
for every � 2 �.L /, either Re� 2 .�; �/ or Re� 2 .M;�/. ut

Interestingly, in case of several models from applications the derivative
fu.U.x/; V .x// is constant along regular stationary solutions. In such case the
spectrum �.L / can be closer characterised for systems satisfying additionally a
compensation condition, which is an extension of condition (10) to x-dependent
solutions.

Definition 6 A regular solution .U; V / of problem (27) satisfy the compensation
condition if

gu
�
U.x/; V .x/

�
fv
�
U.x/; V .x/

�
< 0 for all x 2 ˝: (44)

Corollary 1 Let .U; V / be a regular solution of problem (27). Assume that there
exists a constant �0 > 0 such that

0 < �0 D fu
�
U.x/; V .x/

�
for all x 2 ˝; (45)

and that the compensation condition (44) holds at the stationary solution .U; V /.
Then, the spectrum �.L / contains �0, which is an element of the continuous
spectrum of L and a sequence of real eigenvalues f�ng1

nD1 of L converging
towards �0.

For the proof of this result we refer to [38].
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4.3 Discontinuous Stationary Solutions

The initial-boundary value problem (12)–(15) may also have non-regular steady
states in the case when the equation f .U; V / D 0 is not uniquely solvable. Choosing
different branches of solutions of the equation f

�
U.x/; V .x/

� D 0, we obtain the
relation U.x/ D k

�
V.x/

�
with a discontinuous, piecewise C1-function k.

Definition 7 A couple
�
U; V

� 2 L1.˝/ � W 1;2.˝/ is a weak solution of
problem (27)–(29) if the equation f

�
U.x/; V .x/

� D 0 is satisfied for almost all
x 2 ˝ and if

�
Z
˝

rV.x/ � r'.x/ dx C
Z
˝

g
�
U.x/; V .x/

�
'.x/ dx D 0

for all test functions ' 2 W 1;2.˝/.

For existence of such discontinuous solutions we refer to classical works [3, 45, 57]
as well as to a recent paper [37, Theorem 2.9] for explanation how to construct
such solutions to one dimensional model of cancerogenesis presented in Sect. 4.4
using the phase portrait analysis. In Sect. 5 we will apply the method to a reaction-
diffusion-ODE model with hysteresis.

As next, we aim to find a counterpart of the autocatalysis condition (26), which
leads to instability of weak (including discontinuous) stationary solutions.

The following two corollaries can be proven in the same way as Theorem 5.

Corollary 2 Assume that .U; V / is a weak bounded solution of problem (27)–(29)
satisfying the following counterpart of the autocatalysis condition

Rangefu.U; V / 	 ffu.U.x/; V .x// W x 2 ˝g � Œ�0;�0� (46)

for some constants 0 < �0 � �0 < 1. Suppose, moreover, that there exists x0 2 ˝
such that fu.U; V / is continuous in a neighbourhood of x0. Then, .U; V / is an
unstable solution the initial-boundary value problem (12)–(15).

The following corollary covers the case in which the generalised autocatalysis
condition (46) is not satisfied.

Corollary 3 (Instability of Weak Solutions) Assume that the nonlinear term in
equation (12) satisfies f .0; v/ D 0 for all v 2 R. Suppose that .U; V / is a weak
bounded solution of problem (27)–(29) with the following property: there exist
constants 0 < �0 < �0 < 1 such that

�0 � fu
�
U.x/; V .x/

� � �0 for all x 2 ˝; where U.x/ ¤ 0: (47)

Suppose, moreover, that there exists x0 2 ˝ such that U.x0/ ¤ 0 and that the
functions U D U.x/ as well as fu.U; V / are continuous in a neighbourhood of x0.
Then, .U; V / is an unstable solution the initial-boundary value problem (12)–(15).
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Remark 10 A typical nonlinearity satisfying the assumptions of Corollary 3 has the
form f .u; v/ D r.u; v/u and appears in the models where the unknown variable u
evolves according to the Malthusian law with a growth rate r depending on u and
other variables of the model.

4.4 Examples of Reaction-Diffusion-ODE Models
with Autocatalysis

We present here examples of models from mathematical biology, to which the pre-
sented theory applies. We show that both, the autocatalysis and the compensation,
conditions are satisfied. Consequently, we obtain instability of all positive regular
stationary solutions of the considered models.

4.4.1 Activator-Inhibitor System with a Nondiffusing Activator

Let us start with a generic version of activator-inhibitor model (11) introduced
in Sect. 2, i.e. with zero source terms but general activation/inhibition nonlineari-
ties, i.e.

f .u; v/ D �u C up

vq
;

g.u; v/ D �v C ur

vs
;

where the exponents satisfy p > 1, q; r > 0 and s � 0.

Remark 11 Such generic activator-inhibitor model can be characterised by two
numbers essential for its dynamics.

• The net self-activation index �A 	 .p � 1/=r comparing the strength of
self-activation of the activator with the cross-activation of the inhibitor. If �A
is large, then the net growth rate of the activator is large in spite of the inhibitor.

• The net cross-inhibition index �I 	 q=.s C 1/ comparing how strongly the
inhibitor suppresses the production of the activator with that of itself. The large
value of �I means that the production of the activator is strongly suppressed by
the inhibitor.

Guided by biological interpretation of the model, it is assumed that

0 <
p � 1

r
<

q

s C 1
; (48)
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In the remainder of this section, we assume no diffusion of activator and consider
the following system of equations

ut D f .u; v/ for x 2 ˝; t > 0; (49)

vt D v C g.u; v/ for x 2 ˝; t > 0; (50)

supplemented with positive initial data and with the zero-flux boundary condition
for v D v.x; t/.

Every positive regular stationary solution satisfies the relation

Up�1 D V q;

and hence, the function V D V.x/ is a solution of the boundary value problem

V � V C V Q D 0 for x 2 ˝; (51)

@	V D 0 for x 2 @˝; (52)

whereQ D qr=.p � 1/� s.
This problem with Q > 1 was considered in a series of papers, e.g. [27, 51, 52,

65]. In particular, for 1 < Q < NC2
N�2 for N � 3, and 1 < Q < 1 for N D 1; 2,

existence of a positive solution V for a sufficiently large domain˝ has been proven,
see the review article [48] for further comments and references.

Since derivative fu, evaluated at a stationary solution, does not depend on x, we
can easily check its sign

fu.U; V / D �1C p
Up�1

V q
D �1C p > 0 for Up�1 D V q:

It follows that �0 D fu
�
U.x/; V .x/

�
does not depend on x and the autocatalysis

condition (26) is satisfied at all regular stationary solutions of system (49)–(50).
Also the compensation assumption (44) can be checked directly

fv
�
U; V

� �gu
�
U; V

� D
�

�q U p

V qC1

��
r
U r�1

V s

�
D �rqU

pCr�1

V sCqC1
< 0 for all x 2 ˝;

for every positive stationary solution .U; V /.
Applying Corollary 3, we conclude about instability of all positive regular

stationary solutions of the activator-inhibitor model with a non-diffusing activator.
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4.4.2 Gray-Scott Model

As a next example we consider a model proposed to describe pattern formation in
chemical reactions [14] with non-diffusing activator

ut D �.B C k/u C u2v for x 2 ˝; t > 0;
vt D v � u2v C B.1 � v/ for x 2 ˝; t > 0;

where B and k are positive constants, with the zero-flux boundary condition for v
and with nonnegative initial conditions.

Regular positive stationary solutions .U; V / satisfy the following boundary value
problem

U D .B C k/=V;

V � BV � .B C k/2

V
C B D 0 for x 2 ˝;
@	V D 0: for x 2 @˝:

Similarly as in the previous example, fu
�
U.x/; V .x/

�
evaluated at a stationary

solution, i.e. satisfying the condition U D .BCk/=V , is independent of x. It holds

�0 D fu
�
U.x/; V .x/

� D �.BCk/C2U.x/V .x/ D BCk > 0 for all x 2 ˝:

and the autocatalysis assumption (32) is satisfied.
Since the compensation assumption (44) is also satisfied at a positive solution

.U; V / is also valid due to the following calculation

fv.U; V / � gu.U; V / D �2U 3V < 0

for all positive stationary solutions, we can apply Corollary 5 to conclude about
instability of all Turing patterns.

4.4.3 Model of Early Carcinogenesis

Finally, we introduce an example of a reaction-diffusion-ODE system describing
growth of a spatially-distributed cell population which proliferation is controlled
by diffusing growth factors. We consider a system having a form of one ordinary
differential equation coupled to one reaction-diffusion equation

ut D
� auw

1C uw
� dc

�
u for x 2 ˝; t > 0; (53)

wt D Dw � dgw � db

db C d
u2w C �0 for x 2 ˝; t > 0: (54)
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supplemented with zero-flux boundary conditions for the function w

@nw D 0 for x 2 @˝ and t > 0 (55)

and with nonnegative initial conditions.

u.x; 0/ D u0.x/; w.x; 0/ D w0.x/: (56)

All model parameters a; dc; db; dg; d;D; �0 are positive constants.
This system is a reduction of a three-equation model introduced and applied to

study various biological scenarios related to early lung cancer development in the
series of papers [32–34]. For the proof of model reduction using quasi-steady state
approximation we refer to [38]. The three-equation model was analysed in [37], and
the reduced model was investigated in [15]. A stochastic version of the model has
been investigated in [5].

The autocatalysis assumption (45) and the compensation assumption (44) are
satisfied by simple calculations, which are analogous to those in previous examples.
As a consequence, all nonnegative stationary solutions of system (53)–(54) are
unstable due to Theorem 5 and Corollary 3. A corresponding result for the original
three-equation model has been proven in [37].

4.5 Dynamical Spike Patterns in Reaction-Diffusion-ODE
Models with DDI

In the previous sections we showed that in reaction-diffusion-ODE models with a
single diffusing species, all Turing patterns are unstable. Then, beside a possibility
of pattern collapse, two scenarios may be observed: (1) either the model solutions
tend to discontinuous far from equilibrium patterns, or (2) the emerging spatially
heterogeneous structures have a dynamical character. The mechanism leading
to emergence of discontinuous patterns will be presented in the next section.
Dynamical patterns have been observed in the models for which the instability result
holds also for discontinuous patterns, as in Corollary 3. Simulations of different
models of this form indicate formation of dynamical, multimodal and apparently
irregular structures, the shape of which depends strongly on initial conditions
[15, 33, 54].

An example of such dynamics is given by the cancerogenesis model (53)–
(54), see Fig. 8 for simulation of the model showing emergence of one or two
spike solutions depending on the size of diffusion (scaling coefficient). Simulations
suggest that the number of peaks corresponds to the minimal unstable mode for
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Fig. 8 Numerical simulation of reaction-diffusion-ode model (53)–(54) defined on one-
dimensional domain. We observe growth of dynamical spike patterns in the non-diffusing
component u. The two solutions are obtained for the same model parameters and initial data but
different diffusion coefficient. We observe a shape of final pattern corresponding to the smallest
unstable mode (Courtesy of Steffen Härting)

initial data in being a small perturbation of the constant steady state. However, for
large perturbations a variety of patterns may be induced depending of the shape of
initial data. Systematic numerical study of this phenomenon is provided in [15].

Analysis of the shadow-type limit of the model shows possibility of
unbounded growth and mass concentration in [36]. Since solutions of the system
remain uniformly bounded in absence of diffusion, we call this phenomenon
diffusion-driven unbounded growth. Interestingly, in some cases DDI may even
lead to a finite time blow-up of solutions (diffusion-driven blow-up) [36].

5 Reaction-Diffusion-ODE Models with Bistability
and Hysteresis

In this section we show a different mechanism of pattern formation in
reaction-diffusion-ODE models, which leads to formation of far from equilibrium
patterns. The phenomenon is based on existence of multiple quasi-stationary
solutions in the ODE subsystem. Diffusion tries to average different states and
is the cause of spatio-temporal patterns.

These concepts proved to be basis for the explanation of the morphogenesis of
Hydra [30], dorso-ventral patterning in Drosophila [67] as well as for modelling of
formation of growth patterns in populations of micro-organisms [18]. The patterns
observed in such models are not Turing patterns and the system does not need to
exhibit DDI. In most cases its constant steady states do not change stability.

The material of this section is based on the recent results by Köthe and
Marciniak-Czochra [22, 23] and Marciniak-Czochra et al. [39].
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5.1 Configuration of the Bistability and Hysteresis Kinetics

We present hysteresis-driven pattern formation on example of a reaction-diffusion-
ODE system of the form (12)–(15) with diffusion coefficient dv D 1



and

nonlinearities

f .u; v/ D v � p.u/;

g.u; v/ D ˛u � ˇv;
(57)

where ˛; ˇ are positive constants and

p.u/ D a2u
3 C a1u

2 C a0u

is a polynomial of degree three. The parameters are chosen so that the nullclines
f .u; v/ D 0 and g.u; v/ D 0 have three intersection points with nonnegative
coordinates.

S0 D .0; 0/; S1 D .u1; v1/ and S2 D .u2; v2/: (58)

For simplicity of presentation, we restrict our considerations in this section to
one-dimensional domain .0; 1/.

Our aim is to understand the role of bistability and hysteresis in pattern formation.
Therefore, we analyze two cases of the kinetic functions of the form (57) with
monotone and non-monotone dependence v D p.u/:

Case 1 Monotone increasing p.u/ (see Fig. 9 left panel).
Case 2 Non-monotone S-shaped p.u/ (see Fig. 9 right panel).

Fig. 9 Configurations of the zero sets of kinetic functions with monotone (on the left hand-side)
and non-monotone (hysteresis) (on the right hand-side) dependence v D p.u/ corresponding to
Case (1) and (2), respectively. In both cases there exist three intersection points S0 D .0; 0/, S1
and S2 giving three constant stationary solutions of the model
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In both cases we obtain bistability in the kinetic system. Case 2 exhibits additionally
the hysteresis effect. In this case we denote by H D .vH; uH/ D .p.uH/; uH/
the local maximum of u 7! p.u/ and by T D .vT ; uT / D .p.uT /; uT / the local
minimum of u 7! p.u/. Moreover, we assume that the coordinates of H and T are
positive and limu!C1 p.u/ D C1, see Fig. 9.

We start our investigations with analysis of the kinetic system.

Lemma 4 Consider the kinetic system

ut D f .u; v/; vt D g.u; v/: (59)

with nonlinearities given by (57). The stationary solutions S0 and S2, as defined
in (58), are asymptotically stable and S1 is a saddle.

Proof We calculate Jacobian matrix A at a steady state .Nu; Nv/:

A D
�
@uf .Nu; Nv/ @vf .Nu; Nv/
@ug.Nu; Nv/ @vg.Nu; Nv/

�
D
��p0.Nu/ 1

˛ �ˇ
�
:

As ˛=ˇ is the slope of g.u; v/ D 0 solved with respect to u, we obtain

p0.0/ > ˛=ˇ > 0;

p0.u2/ > ˛=ˇ > 0:

Hence, detA.S0/ > 0 and detA.S2/ > 0, whereas the trace is negative at
both states. Therefore, linearisation of the model at S0 and S2 has only negative
eigenvalues.

For S1 we have to distinguish between the two cases. In Case 2, it holds p0.u1/ <
0, hence detA.S1/ < 0. In Case 1 it holds p0.u1/ > 0, but p0.u1/ < ˛=ˇ, thus
detA.S1/ < 0. Consequently, linearisation of the system at S1 has one positive and
one negative eigenvalue. ut
Remark 12 There exists a stable manifoldW s providing a separatrix for the kinetic
system (59). Consequently, the solutions tend either to S0 or S2, depending on the
position of initial data in respect to W s . For details we refer to [22, 39].

Remark 13 Model (12)–(15) with nonlinearities (57) does not satisfy autocatalysis
condition neither in S0 nor in S2. Hence, Theorem 4 yields that the model does not
exhibit DDI and does not belong to the class of pattern formation models considered
in the previous section.
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5.2 Instability of all Spatially Heterogenous Solutions
in the Model Without Hysteresis

When discussing systems with multistability, we face a question whether the
bistability without a hysteresis effect is sufficient for creation of stable patterns.
Now, following [23], we show that the model with monotone kinetics behaves in this
respect as a scalar reaction-diffusion equation, i.e. there exist no stable stationary
spatially heterogenous solutions.

Theorem 7 There exists no stable spatially heterogeneous stationary solution
.U; V / of the generic model (12)–(15) with nonlinearities (57) satisfying Case 1.

First, we recall the Sturm comparison principle, which we will apply in the proof
of this theorem.

Proposition 2 (Sturm Comparison Principle) Let �1 and �2 be nontrivial solu-
tions of the equations

Dwxx C q1.x/w D 0 and

Dwxx C q2.x/w D 0;

respectively, for x 2 .0; 1/ and the diffusion coefficient D > 0. We assume that the
functions q1 and q2 are continuous on Œ0; 1� and that the inequality

q1.x/ � q2.x/

holds for all x 2 Œ0; 1�. Then between any two consecutive zeros x1 and x2 of �1,
there exists at least one zero of �2 unless q1.x/ 	 q2.x/ on Œ0; 1�.

Proof (of Theorem 7) We consider system (12)–(15), with nonlinearities (57) and
diffusion coefficient dv D 1



, linearised at .U.x/; V .x//

�Qut
Qvt
�

D
 
0

1



Qvxx

!
C
��p0.U.x// 1

˛ �ˇ
��Qu

Qv
�

DW L
�Qu

Qv
�

with boundary conditions Qvx.0/ D Qvx.1/ D 0.
The eigenvalue equation

L

�
'

 

�
D �

�
'

 

�

with boundary condition  x.0/ D  x.1/ D 0 reads

 � .p0.U.x//C �/' D 0 (60)

1



 xx � .ˇ C �/ C ˛' D 0: (61)
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We will show that all nonconstant stationary solutions are linearly unstable.
We define a depending on � operator

A.�/ W  7! 1



 xx C r.�; x/ 

with

r.�; x/ WD ˛

�C p0.U.x//
� ˇ;

and domain of definition

D
�
A.�/

� D f 2 C2
�
Œ0; 1�

� j  x.0/ D  x.1/ D 0g:

By assumptions of Case 1, polynomial p is monotone increasing. Denoting

K D min
x2Œ0;1� p

0.U.x// > 0;

we observe that for � > �K , the denominator �Cp0.U.x// is positive and linearly
growing in �. Therefore, r.�; x/ is decreasing in � and it holds

˛

�C p0.U.x//
� ˇ � ˛

p0.U.x//
� ˇ D r.0; x/ � ˛

K
� ˇ DW C:

C is positive, because otherwise for ˛=ˇ < K the graph of p would be entirely
on one side of g D 0, which contradicts the assumption of the existence of three
intersection points.

Hence, we obtain that there exists C > 0 independent of � � 0 such that

ˇ̌
r.�; x/

ˇ̌ � C

for all x 2 Œ0; 1�. Consequently, the eigenvalue problem (60)–(61) is equivalent to
the equation

A.�/ D � :

To show instability of all patterns, we denote by �0.�/ the largest eigenvalue of
the Neumann problem

A.�/ D �.�/  x.0/ D  x.1/ D 0;

and by 	0.�/ the largest eigenvalue of the Dirichlet problem

A.�/ D 	.�/  .0/ D  .1/ D 0:
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Using Proposition 2 we can show that

�0.�/ > 	0.�/

holds. Indeed, �0.�/ � 	0.�/ yields

q2.x/ WD r.�; x/ � �0.�/ � r.�; x/ � 	0.�/ DW q1.x/:

By definition, the principal eigenfunction of the Dirichlet problem does not change
sign and it has its only zeros at x D 0 and x D 1. Hence, the Sturm comparison
principle yields that the principal eigenfunction corresponding to the Neumann
problem has a zero in .0; 1/, what leads to a contradiction, since the principal
eigenfunction of the Neumann problem does not change sign (see Proposition 1).

Further, calculating the derivative of equation (13) leads to

0 D 1



.Vxx/x C ˛h0.V /Vx � ˇVx D 1



.Vx/xx C

�
˛

1

p0.U /
� ˇ

�
Vx D A.0/Vx:

Hence, we obtain that Vx.x/ is an eigenfunction for the eigenvalue 0 of the Dirichlet
problem with � D 0. Hence, 	.0/ � 0 and, therefore, �.0/ > 0.

Furthermore, �.�/ depends continuously on � and it can be expressed as

�.�/ D sup
 2W 1;2.0;1/;jj jj2D1

�
� 1



h x; xi C hr.�; x/ ; i

�
;

where h�; �i denotes the L2-scalar product.
We obtain

�
Z 1

0

1



 x xdx C

Z 1

0

r.�; x/ 2dx � �
Z 1

0

1



 x xdx C

Z 1

0

C 2dx � C:

Therefore,�.�/ is bounded and, hence, there exists a value O� > 0 fulfilling �. O�/ D
O�. It yields existence of an eigenfunction O ¤ 0 satisfying

A. O�/ O D �. O�/ O D O� O with O x.0/ D O x.1/ D 0;

which proves the existence of a positive eigenvalue of problem (60)–(61). ut
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5.3 Existence of Monotone Discontinuous Patterns

In this section, we show how to construct discontinuous stationary solutions in a
model with hysteresis (Case 2). We focus on monotone increasing solutions having
a form of transition layers or boundary layers.

The stationary problem corresponding our problem can be reduced to a boundary
value problem for a single reaction-diffusion equation with discontinuous nonlin-
earity. Construction of transition layer solutions for such systems was undertaken
in Mimura et al. [45] by using a shooting method. The result was applied by
Mimura [44] to show the existence of discontinuous patterns in a model with
density dependent diffusion. While in those models, the transition layer solution
was unique, in the system face the problem of the existence of infinite number of
solutions with changing connecting point. To deal with this difficulty we apply the
approach proposed recently in [39] to construct all monotone stationary solutions
having either a transition layer or a boundary layer. The analysis presented in this
section follows [22].

In Case 2, the polynomial equation f .U; V / D 0 cannot be solved uniquely with
respect to U . We denote U D hH.V / the solution branch connecting .0; 0/ with
the turning point .vH ; uH/ and U D hT .V / the branch connecting .vT ; uT / with S2
(see Fig. 9 right panel).

Remark 14 We do not analyse the third solution branch U D h0.V / (the middle
one), since this branch contains the unstable solution S1. We may check later that,
in fact, this branch does not satisfy the stability condition.

Solving stationary problem (27)–(29) (as described in Sect. 4.2), we obtain a
boundary value problem

0 D 1



Vxx C g.V; hi .V //; for x 2 .0; 1/ (62)

with zero-flux boundary condition Vx.0/ D Vx.1/ D 0, for any of the two branches
hi , i D H;T of stationary solutions of the algebraic equation f .U; V / D 0.

However, in this case phase plane analysis provides no solution of this problem
neither for i D H nor i D T .

Lemma 5 Neither (62) with i D T , nor (62) with i D H has a nonconstant
solution fulfilling zero-flux boundary conditions.

Proof We rewrite the equations as systems of first order ODEs

Vx D W

Wx D �gi .V / for i D H;T;
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Fig. 10 Phase plane analysis for equation Vxx C qNv.V / D 0: the blue trajectory .V .x/; Vx.x//
connects the points .v0; 0/ and .ve ; 0/ and it provides a solution of the boundary value problem with
Vx.0/ D Vx.L/ D 0 for some L. The solution is given by Vx D p

2.QNv.v0/�QNv.V //. V .x/
is C1, the derivative Vx.x/ is continuous, but not differentiable, whereas U.x/ is discontinuous at
x D Nx (Courtesy of Alexandra Köthe)

where gi .V / D g.V; hi .V //. By definition, gH.0/ D 0 and �gH .V / > 0 for
v 2 .0; vH/. It means that the flux at the point .v0; 0/ always points upwards and to
the right. Therefore, a solution starting at .v0; 0/ for 0 < v0 will never reach the
W -axis again. Similarly, gT .v2/ D 0 and �gT .V / < 0 for v 2 .vT ; v2/.
Consequently, all orbits ending at .ve; 0/ with ve < v2 have started at some point
with positive W -component, compare Fig. 10 (left panel). ut

We conclude that there exist no stable patterns which are continuous in u. Next,
we notice that the phase planes associated to (62) for i D H and i D T overlap for
v 2 .vT ; vH/. Heuristically, to construct a solution, we select a value Nv 2 .vT ; vH/
and “glue” the phase planes together at Nv.

Definition 8 We denote by qNv the function with discontinuity at Nv defined by

qNv.v/ D
(
g.v; hH .v// when v � Nv
g.v; hT .v// when v > Nv:

Equation (62) can be then rewritten as

1



Vxx C qNv.V / D 0 for x 2 .0; 1/ (63)

Vx.0/ D Vx.1/ D 0:

Definition 9 A pair of functions
�
U; V

�
is called a solution with jump at Nv, if V 2

C1.Œ0; 1�/ is a weak solution (as in Definition 7) of problem (63). The function
U 2 L1.0; 1/ is given for almost all x 2 Œ0; 1� by

U.x/ D
(
hH.V.x// if V.x/ � Nv
hT .V .x// if V.x/ > Nv:
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Definition 10 The value 0 < Nx < 1 with V. Nx/ D Nv is called the layer position of
the solution

�
U; V

�
.

Remark 15 For x such that V.x/ < Nv the function V.x/ is a classical solution of
1


Vxx C qH .V / D 0 and, therefore, it is a C2 function. Similarly, V.x/ is a classical

solution of 1


Vxx C qT .V / D 0 for x such that V.x/ > Nv. The branches can be

connected satisfying V 2 C1.Œ0; 1�/. The functionU has a discontinuity at the layer
position Nx.

Theorem 8 For all diffusion coefficients 1



with 
 > 0, stationary problem (63) has

a unique monotone increasing solution
�
U; V

�
with jump at Nv 2 �vT ;min.vH ; v2/

�
.

To analyse equation (63), we apply the method of phase plane analysis [2] and
the analysis of time-maps [59].

Changing variables x 7! Lx, where L D p

 , we transform problem (63) into

Vxx C qNv.V / D 0 for x 2 .0; L/ (64)

with boundary condition

Vx.0/ D Vx.L/ D 0: (65)

This leads to a boundary value problem for a system of first order equations

Vx D W;

Wx D �qNv.V /: (66)

The first integral of (64) is given by

V 2
x .x/

2
CQNv.V .x// D E; (67)

where QNv.v/ D R u
0
qNv.Qv/d Qv is called the potential. The constant E 2 R is arbitrary

and corresponds to the total energy of the system.
A monotone increasing solution of problem (64) is given by a solution of

system (66) such that

�
V.0/;W.0/

� D .v0; 0/ and
�
V.L/;W.L/

� D .ve; 0/; (68)

where v0; ve 2 R satisfy v0 < ve and W.x/ > 0 for all x 2 .0; L/. Such solution
describes a curve in the phase plane, see Fig. 10 (left panel).
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Calculating first integral yields (67)

W D Vx D p
2.E �QNv.V // (69)

The Neumann homogeneous boundary condition at x D 0 and x D L provides

E D QNv.v0/ D QNv.ve/: (70)

Moreover, (69) leds to inequalityQNv.V .x// � E for a solution V and x 2 Œ0; L�.
By definitionQNv satisfies

Q0
Nv.v/ D qNv.v/

and

QNv.0/ D 0:

It is continuous for all v but not differentiable at Nv. Equalities

qNv.0/ D f .hH .0/; 0/ D f .0; 0/ D 0

and

qNv.v2/ D f .hH .v2/; v2/ D f .u2; v2/ D 0

guarantee existence of local maxima of the potential at v D 0 and at v D v2,
respectively. It has a local minimum at v D Nv, requiring that Nv < v2. Therefore,
for Nv 2 �vT ;min.vH ; v2/

�
, there exist 0 < v0 < Nv < ve < v2 satisfying (70) and such

that QNv.v/ < QNv.v0/ for all v 2 .v0; ve/.
Solving equation (69) provides L such that a trajectory starting at

�
V.0/;

W.0/
� D .v0; 0/ for a fixed value v0 2 .0; Nv/ satisfiesW.L/ D 0 and V.L/ D ve.v0/

for the first time.

L D 1p
2

Z L

0

Vx.x/dxp
E �QNv.V .x//

D 1p
2

Z ve

v0

dvp
E �QNv.v/

:

For further calculation, we split the integral at the minimum of the potential Nv, and
denote

T 1Nv .v0/ D 1p
2

Z Nv

v0

dvp
QNv.v0/�QNv.v/

; T 2Nv .ve/ D 1p
2

Z ve

Nv
dvp

QNv.ve/ �QNv.v/
:

T 1Nv .v0/ is classically interpreted as “time” x, for which a forward orbit in the phase
plane, associated to system (66) with qNv.v/ D f .v; hH .v//, starting at .0; v0/ needs
to reach the v D Nv axis for the first time. Analogously, T 2Nv .ve/ is a “time” x, for
which a backward orbit in the phase plane, associated to system (66) with qNv.v/ D
f .v; hT .v//, starting at .ve; 0/ needs to reach the v D Nv axis for the first time.
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Thus, we can calculate the total “time” to connect .v0; 0/ with .ve; 0/

TNv.v0/ WD T 1Nv .v0/C T 2Nv .ve.v0/;

where ve depends on v0 by relation (70). A monotone increasing solution of (64)
starts at V.0/ D v0 which satisfies

TNv.v0/ D L:

To show existence of a monotone solution for a given diffusion coefficient 1



, we
find a corresponding time map with TNv.v0/ D p


 . We characterise the time maps
with following lemmas.

Lemma 6 The maps T 1Nv W .0; Nv/ ! .0;1/ and T 2Nv W .Nv; v2/ ! .0;1/ are
well-defined, continuous and surjective.

Proof Follows [37, 59].
To show surjectivity we investigate behaviour of the time-maps for v0 and ve in

the limits at the borders of their domain of definition.
Taylor expansion at 0 and existence of a local maximum of QNv at 0 yield the

estimate

QNv.v0/ �QNv.v/ � QNv.0/�
h
QNv.0/C qH .0/.v/C q0

H.�/

2
v2
i

� Cv2;

where C D max�2.0;Nv/
q0

H .�/

2
. Hence, we obtain

lim
v0!0

T 1Nv .v0/ � lim
v0!0

1p
2C

Z Nu

v0

dvp
v2

D lim
v0!0

1p
2C

�
ln.Nv/� ln.v0/

� D 1:

For v0 and v close to Nv, we use the Taylor expansion of QNv at v0 and obtain

QNv.v0/ �QNv.v/ D QNv.v0/� �
QNv.v0/C qH .�/.v � v0/

� D �qH .�/.v � v0/:

with � 2 .v0; v/. Thus, we calculate the limit

lim
v0!NvT

1Nv .v0/ D lim
v0!Nv

1p
2

Z Nv

v0

dvp�qH .�/.v � v0/

� lim
v0!Nv

 
min
�2.v0;Nv/

1p
2jqH.�/j

!Z Nv

v0

dvp
v � v0

D 1p
2jqH.Nv/j

lim
v0!Nv 2

p
Nv � v0 D 0:

The corresponding results for T 2Nv .ve/ are obtained in a similar way. ut
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The maps T 1Nv and T 2Nv are defined for all v0 2 .0; Nv/ and ve 2 .Nv; v2/, respectively.
By definition of TNv, they must satisfy (70). Thus, they depend on the local maxima
of the potential. Therefore, for QNv.v2/ � QNv.0/ D 0, we denote vmin D 0 and
Nv < vmax � v2 is the solution of QNv.vmax/ D 0. For QNv.v2/ � 0, we denote
vmax D v2 and 0 � vmin < Nv is the solution ofQNv.vmin/ D QNv.v2/.

To show existence of a monotone increasing solution of problem (63) for every
diffusion coefficient 1



> 0, we prove:

Lemma 7 The map TNv W .vmin; Nv/ ! .0;1/ is well-defined, continuous and
surjective.

Proof TNv is continuous as sum and composition of continuous functions. Continuity
of QNv yields that u0 ! Nv implies ve ! Nv and, therefore,

lim
v0!NvTNv.v0/ D lim

v0!NvT
1Nv .v0/C lim

ve!NvT
2Nv .ve/ D 0:

Finally, we know that either vmin D 0 or vmax D u2, which yields

lim
v0!vmin

TNv.v0/ D lim
v0!vmin

T 1Nv .v0/C lim
ve!vmax

T 2Nv .ve/ D 1;

because either the first or the second limit is infinite. ut
In the next step, we show uniqueness of this solution, i.e. monotonicity of the

time-map TNv. For this we use the following representation of derivatives of the time-
maps.

Lemma 8 The time-maps are differentiable and their derivatives satisfy

d

dv0
T 1Nv .v0/ D

� 1p
2
qH .v0/

QNv.v0/�QNv.Nv/
Z Nv

v0

	
.QNv.v/�QNv.Nv//q0

H.v/

qH .v/2
� 1

2



dvp

QNv.v0/�QNv.v/
(71)

and

d

dve
T 2Nv .ve/D

� 1p
2
qT .ve/

QNv.ve/�QNv.Nv/
Z ve

Nv

	
.QNv.v/�QNv.Nv//q0

T .v/

qT .v/2
� 1

2



dup

QNv.ve/�QNv.v/
:

(72)

Proof Under the assumption qNv 2 C0 with piecewise continuous q0Nv and qNv.Nu/ D 0,
this formula has been proven by Loud in [28]. Our problem does not satisfy Loud’s
hypotheses. However, the formula holds, what can be shown by adapting the proof
given in [28]. ut
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Proposition 3 Derivatives of T 1Nv and T 2Nv satisfy

d

dv0
T 1Nv .v0/ < 0

d

dve
T 2Nv .ve/ > 0:

Therefore, for all jumps Nv 2 �vT ;min.vH ; v2/
�
, it holds

d

dv0
TNv.v0/ < 0:

Proof To show the negativity of d
dv0
T 1Nv .v0/, we rewrite the integral representa-

tion (71) of the derivative of the time-map as

d

dv0
T 1Nv .v0/ D � qH .v0/p

2.QNv.v0/ �QNv.Nv//
�
Z Nv

v0

lH .v/
dvp

QNv.v0/ �QNv.v/
;

with a function lH defined by

lH .v/ D
�
QNv.v/�QNv.Nv/

�
q0
H.v/

qH .v/2
� 1

2
:

We observe that � 1p
2
qH .v0/.QNv.v0/ �QNv.Nv//�1 is positive, as qH .v0/ < 0 and QNv

is decaying on .0; Nv/. Thus, it remains to show that lH is negative for v 2 Œv0; Nv�.
Multiplying lH by the square of qH and calculating the derivative

d

dv

�
qH .v/

2lH .v/
� D .QNv.v/�QNv.Nv//q00

H.v/

and using

qH .v/
2lH .v/jvDNv D �1

2
qH .Nv/2 DW �CH < 0;

we obtain the representation

qH .v/
2lH .v/ D �CH C

Z v

Nv
.QNv.Qv/ �QNv.Nv//q00

H.Qv/dQv

D �CH �
Z Nv

v
.QNv.Qv/�QNv.Nv//q00

H.Qv/dQv:

To show negativity of this expression, we notice that the second derivative q00
H.v/ D

˛h00
H .v/ D �˛p00.hH .v//=p0.hH .v//3 is positive. Indeed, for all v 2 .v0; Nv/, we

have p0.hH .v// > 0 as well as p00.hH .v// < 0. Finally, we obtain lH .v/ < 0, which
proves d

dv0
T 1Nv .v0/ < 0. Similarly, the we can prove that d

dve
T 2Nv .ve/ > 0 .
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To accomplish the proof, we deduce

d

dv0
ve.v0/ D qH .v0/

qT .ve/
< 0;

by differentiating (70) with respect to u0. It yields

d

dv0
TNv.v0/ D d

dv0
T 1Nv .v0/C d

dve
T 2Nv .ve/ � d

dv0
ve.v0/ < 0:

ut

5.4 Stability of Discontinuous Patterns

In this section we provide a stability condition for monotone discontinuous station-
ary solutions of system (12)–(15) with nonlinearities (57) satisfying Case 2. Due
to discontinuity of patterns, linearised stability analysis cannot be directly applied.
To cope with this difficulty, an approach using a special topology which allows
for disclosure of the discontinuity points was proposed by Weinberger in [70] and
applied in [3] in analysis of a model with density dependent diffusion. We present
here analysis based on direct estimates as proposed in [22] for this particular model.

5.5 L1 Versus L2 Perturbations

As shown in the previous section, a generic model with hysteresis admits an infinite
number of monotone increasing stationary solutions. Simulations indicate that the
resulting pattern strongly depends on the initial conditions. More precisely, the
stationary solution depends on the position of the initial condition relative to the
separatrix of the initial condition. For this reason it is suitable to consider stability
in L1.0; 1/ sense. A perturbation which is small in L1.0; 1/ cannot change the
position of points on the stationary solution

�
U; V

�
from one side of the separatrix

to the other side. In contrast, a smallL2.0; 1/ perturbation may lead to large changes
of values on some small interval, leading to another stationary solution.

Example 1 We consider a model with hysteresis and nonlinearities satisfying
g.u; v/ D 1:4u � v and p.u/ D u3 � 6:3u2 C 10u. Let

�
U.x/; V .x/

�
be a monotone

increasing stationary solution with layer position at Nx D 0:4 (see Fig. 11, upper left
panel).

We observe that after a random perturbation of the stationary solution�
U.x/; V .x/

�
with

�
'0.x/;  0.x/

�
such that k'0kL1.0;1/ D k 0kL1.0;1/ D 0:4,

the solution with initial condition
�
U.x/ C '0.x/; V .x/ C  0.x/

�
converges back

to
�
U.x/; V .x/

�
, see Fig. 11 (upper right panel).
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Fig. 11 Simulations of the generic model in the hysteresis case for different types of perturbations
of a stationary solution. The plots show the initial condition (dotted lines) and the approached
stationary solution (continuous lines) after a sufficiently large time tend . Upper left panel a
monotone increasing stationary solution

�
U.x/; V .x/

�
with layer position at Nx D 0:4. Upper right

panel a perturbation which is small in L1.0; 1/ norm does not change the stationary solution.
Lower left panel a perturbation which is small in L2.0; 1/, but not in L1.0; 1/ norm shifts the
layer position. Lower right panel a perturbation which is small in L2.0; 1/, but not in L1.0; 1/

norm leads to a nonmonotone stationary solution

Next, we apply a perturbation with a step function

'0.x/ D  0.x/ D
(
5 for x 2 Œ0:39; 0:4�
0 else:

It is small inL2.0; 1/, but large inL1.0; 1/, and we observe a simulated pattern with
a shift of the layer position, see Fig. 11 (lower left panel). The solution converges
to a stationary transition layer with Nx D 0:39.

Perturbations which are small in L2.0; 1/ but large in L1.0; 1/ may also lead to
a stationary solution which is not monotone anymore, see Fig. 11 (lower right panel)
for the solution of the model with

'0.x/ D  0.x/ D
(
5 for x 2 Œ0:19; 0:2�
0 else:
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5.6 Stability Analysis of a Reaction-Diffusion-Ode Model
with Hysteresis

Let .U.x/; V .x// be a nonhomogeneous stationary solution of system (12)–(15)
with nonlinearities (57) satisfying Case 2. In the remainder of this section we assume
that the following condition holds

ess infx2Œ0;1� p0.U.x// WD K >
˛

ˇ
: (73)

We call (73) the stability condition.
We consider a small nonlinear perturbation of the stationary solution in the

L1.0; 1/-norm, i.e.

u.t; x/ D U.x/C '.t; x/;

v.t; x/ D V.x/C  .t; x/ (74)

with .';  / 2 C �.0;1/IL1.0; 1/ � L1.0; 1/
�
.

Lemma 9 The nonlinear perturbation

.';  / 2 C �.0;1/IL1.0; 1/� L1.0; 1/
�
;

with bounded initial data, is a solution of the system

't.t; x/ D  .t; x/ � p0.U.x//'.t; x/CR.x/'2.t; x/; t > 0; x 2 Œ0; 1� (75)

 t.t; x/ D 1



 xx.t; x/C ˛'.t; x/ � ˇ .t; x/; t > 0; x 2 .0; 1/

(76)

with homogenous Neumann boundary conditions and a bounded function R.x/.

Proof Using the linearity of g.u; v/, we directly obtain (76) from (74). For (75), we
calculate

't D ut D VC �p.UC'/ D  Cp.U /�p.UC'/ D  �p0.U.x//'�1
2
p00.�.x//'2;

where we use the Taylor expansion of p.U.x// for x fixed with �.x/ being the rest.
Since �.x/ 2 .0; u2/ and p00.u/ D 6a1u C 2a2 is bounded for u being in some
interval, we conclude the proof by setting R.x/ WD p00.�.x// which has the desired
property. ut
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Proposition 4 The nonlinear system (75)–(76) with bounded initial condition
'.0; x/ D '0.x/ 2 L1.0; 1/ and  .0; x/ D  0.x/ 2 L1.0; 1/ under boundary
condition  x.t; 0/ D  x.t; 1/ D 0 has a unique bounded solution

.';  / 2 C �.0;1/IL1.0; 1/ � L1.0; 1/
�
:

given by

'.t; x/ D e�p0.U.x//t'0.x/C
Z t

0

e�.t�s/p0.U.x// .s; x/ds

C
Z t

0

e�.t�s/p0.U.x//R.x/'2.s; x/ds; (77)

 .t; x/ D S.t/ 0.x/C ˛

Z t

0

S.t � s/'.s; x/ds; (78)

where S.t/ is the semigroup generated by the operator

D.A/ D fu 2 H2.0; 1/ j vx.0/ D vx.1/ D 0g;

A WD 1



vxx � ˇv for v 2 D.A/;

which fulfils the estimate

kS.t/ 0k1 � e�tˇk 0k1: (79)

Remark 16 By smoothing property of the analytic semigroup ŒS.t/�t�0 generated
by 
�1d 2=dx2 � ˇ on Lp.0; 1/, for  0 2 L1.0; 1/ � \1<p<1Lp.0; 1/ we obtain
that S.t/ 0 is a smooth function on 0 � x � 1 whenever t > 0. Hence, S.t/ 0 2
C0Œ0; 1� � L1.0; 1/ for t > 0. If in addition, kS.t/ 0 �  0k1 ! 0 as t # 0, then
it must necessarily hold  0 2 C0Œ0; 1�, because the continuous functions converge
uniformly to a continuous limit. It yields that ŒS.t/�t�0 cannot be interpreted as
a strongly continuous semigroup on L1.0; 1/. Nevertheless, L1 is a convenient
space to handle nonlinearities. To circumvent this difficulty, we make use of the
fact that kS.t/ 0k1 � e�tˇk 0k1 for initial data  0 2 L1.0; 1/ and t > 0.
Then, for g 2 L1..0; T / � Œ0; 1�/ the function s ! S.t � s/g.s; �/ is meaningful
as a function from 0 � s � t into L2.0; 1/ and we obtain a continuous function
t ! R t

0
S.t � s/g.s; �/ds from 0 � s � t to L2.0; 1/.

Theorem 9 (Nonlinear Stability) If '0 and  0 are initial perturbations of a
stationary solution fulfilling assumption (73) with k'0k1 and k 0k1 sufficiently
small, then k'.t; �/k1 and k .t; �/k1 stay small for all times t . More precisely, let
R0 D ess supx2Œ0;1� R.x/ and let the initial perturbations fulfil

k 0k1 CKk'0k1 � 1

4R0

�
K � ˛

ˇ

�2
; (80)
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and

k'0k1 � 1

2R0

n
.K � ˛

ˇ
/ �

r
.K � ˛

ˇ
/2 � 4R0.k 0k1 CKk'0k1/

o
(81)

then the following estimates hold

k'.t; �/k1 <
1

2R0

�
K � ˛

ˇ

�
; (82)

k .t; �/k1 < k 0k1 C ˛

ˇ

1

2R0

�
K � ˛

ˇ

�
; (83)

for all t 2 Œ0;1/.

Proof We define increasing continuous functions

˚.t/ WD sup
0���t

k'.�; �/k1 �.t/ WD sup
0���t

k .�; �/k1:

Using the integral representation (78), the estimate of the semigroup (79) and
taking the supremum over � 2 Œ0; t �, we obtain

�.t/ � k 0k1 C ˛

Z t

0

e�ˇ.t�s/˚.s/ds (84)

and similarly using (77), we obtain

˚.t/ � k'0k1 C
Z t

0

e�K.t�s/�.s/ds CR0

Z t

0

e�K.t�s/˚2.s/ds: (85)

˚.t/ and �.t/ are increasing by definition, thus, estimates (84) and (85) yield

˚.t/ � k'0k1 C �.t/

Z t

0

e�K.t�s/ds CR0˚
2.t/

Z t

0

e�K.t�s/ds;

� k'0k1 C 1

K
�.t/C 1

K
R0˚

2.t/:

(86)

�.t/ � k 0k1 C ˛˚.t/

Z t

0

e�ˇ.t�s/ds � k 0k1 C ˛

ˇ
˚.t/: (87)

Substituting (87) into (86) and multiplying by K , we obtain the estimate

0 � Kk'0k1 C k 0k1 C
�˛
ˇ

�K
�
˚.t/CR0˚

2.t/: (88)
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The graph of

y 7! k'0k1 CKk 0k1 C
�˛
ˇ

�K
�
y CR0y

2 (89)

is a parabola which is positive at y D 0. As the linear term is negative by the
stability condition (73), this parabola intersects the y-axis if the constant term
Kk 0k1k'0k1 is small enough.

Thus, because ˚.t/ is nonnegative for all times, it is bounded by the smallest
zero of the parabola, provided ˚.0/ D k'0k1 is smaller than this zero.

To be more precise, we calculate the discriminant of the parabola (89)

D D
�
K � ˛

ˇ

�2 � 4R0.k 0k1 CKk'0k1/:

Therefore, under the condition (81) the discriminantD is positive, which yields that
the parabola has two zeros, given by

y1 D 1

2R0

�
K � ˛

ˇ
� p

D
�
; y2 D 1

2R0

�
K � ˛

ˇ
C p

D
�
:

The smallest zero is necessarily less than 1
2R0
.K � ˛

ˇ
/, which leads to the bound for

˚.t/. Together with the estimate

�.t/ � k 0k1 C ˛

ˇ
˚.t/:

we obtain the bound for �.t/. ut
Theorem 10 (Asymptotic Stability) Let

�
U.x/; V .x/

�
be a stationary solution

fulfilling the stability condition (73). If '0 and  0 are initial perturbations, which
fulfil the estimate (81), then for the nonlinear perturbation .';  / holds

�k'.t; �/k1; k .t; �/k1
� ! .0; 0/

for t ! 1.

Proof We define the values

˚NL WD lim sup
t!1

k'.t; �/k1 and �NL WD lim sup
t!1

k .t; �/k1;

which are finite due to Proposition 4.
Using the integral representation (78) for  yields

�NL � lim sup
t!1

e�ˇtk 0k1 C ˛˚NL lim sup
t!1

Z t

0

e�ˇ.t�s/ds:
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Together with (79), we deduce the inequality

�NL � ˛

ˇ
˚NL: (90)

From (77) we deduce in the same way

˚NL � lim sup
t!1

e�Ktk'0k1 C �NL lim sup
t!1

Z t

0

e�K.t�s/ds

CR0.˚NL/2 lim sup
t!1

Z t

0

e�K.t�s/ds

and, thus,

˚NL � 1

K
�NL C R0

K
.˚NL/2: (91)

The inequalities (91) and (90) lead to

0 �
�˛
ˇ

�K
�
˚NL CR0.˚

NL/2:

Assuming that 0 � �
˛=ˇ �K

�CR0˚
NL yields ˚NL � 1

R0

�
K � ˛=ˇ

�
. Theorem 9

provides for initial perturbations fulfilling (81) that ˚NL D limt!1˚.t/ �
1
2R0

�
K � ˛=ˇ

�
, which is a contradiction. Finally, we obtain ˚NL D 0. ut

At the first glance, the stability condition seems to be difficult to check, because
it depends on the stationary solution. However, it can be translated into a condition
for the jump. For this purpose, we denote by vcr

H the zero of q0
H in Œ0; vH � and by

vcr
T the zero of q0

T in ŒvT ; v2�. These values exist and they are unique. Their relative
position depends on the kinetic functions.

Corollary 4 We consider the model (12)–(15) with nonlinearities (57) such that
vcr
T < vcr

H . Let
�
U.x/; V .x/

�
be a stationary solution with jump vcr

T < Nv < vcr
H , then�

U.x/; V .x/
�

is asymptotically stable.

Proof For x 2 Œ0; 1� fulfilling V.x/ � Nv < vcr
H , it holds q0

H.V.x// < 0 by definition
of vcr

H .

q0
H.V.x// D ˛

1

p0.hH .V.x///
� ˇ D ˛

� 1

p0.hH .V.x///
� ˇ

˛

�
< 0:

Moreover, for those x the function U.x/ is given by hH .V.x// and we obtain that
the stability condition p0.hH .V.x/// > ˛

ˇ
is fulfilled.
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Similarly, for x 2 Œ0; 1� fulfilling V.x/ > Nv > vcr
T it holds

q0
T .V .x// D ˛

1

p0.hT .V .x///
� ˇ D ˛

� 1

p0.hT .V .x///
� ˇ

˛

�
< 0:

Thus, p0.hT .V .x/// > ˛
ˇ

is fulfilled. ut
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Nonlinear Hyperbolic Systems of Conservation
Laws and Related Applications

Mapundi Kondwani Banda

1 Introduction

In this chapter, we present an overview of evolution equations defined by non-
linear hyperbolic conservation laws. This overview is not comprehensive rather it
is a bird’s eye view of the ideas that govern the analysis of nonlinear hyperbolic
conservation equations. Various mathematical concepts as well as some ideas
related to their discrete algorithms will be presented. Thus basic ideas of viscous
regularisation, entropy, monotonicity, total variation bounds and the Riemann
problem are discussed. These are also the underlying ideas in the development of
discrete solutions as well as discrete theory. Finite volume methods such as the
relaxation schemes will also be introduced. This is not a recommendation for the
reader to use the method but rather a bias due to the author’s previous work in the
field. Some examples of applications of the nonlinear conservation laws in networks
as well as optimal control leading to stabilisation of the system of interacting
equations will be presented.

By a nonlinear conservation law in one space dimension, we imply a first-order
partial differential equation (PDE) of the form:

@�

@t
C @.�u/

@x
D 0: (1)

In this equation � represents a conserved quantity, for example, the mass density.
The variables t and x are independent variables representing time and space,
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respectively, and u is a flow velocity variable. The term .�u/.x; t/ is the mass flux
of the conserved quantity through a cross-section of the flow domain in the normal
direction at a point x and t . Equation (1) is popularly referred to as a continuity
equation [50].

Examples of such equations include the density of gas flowing in a pipe
considering that significant changes in the flow are one-dimensional, the continuity
equation represents the flow of density of a non-viscous (inviscid) gas in which
the flux represents a flow rate of gas through the cross-section of the pipe at a
point x and t . To get a closed relation between � and u, one needs a constitutive
relation or additional conservation laws. If u is known, the equation is referred to
as an advection equation. Another popular example is the traffic flow model on a
section of a single lane highway. Assume that on a highway section the car density
is defined by �, cars are a conserved quantity giving Eq. (1). To close the equation,
there is need for a relation between � and u, for example [50]

u D u.�/ D umax

�
1 � �

�max

�

i.e. the denser the traffic, the slower the cars will move. Here umax is the maximum
velocity and �max is the maximum traffic density, i.e. when the cars are so-to-say
bumper-to-bumper. This defines the flux as

f .�/ D �umax

�
1 � �

�max

�
:

The two equations discussed are prototypes of hyperbolic scalar conservation laws
in one space dimension.

A popular protoype for a system of conservation laws is the inviscid Euler
Equations of gas dynamics model, a system of hyperbolic conservation laws. In
this case density (mass), momentum and energy are conserved. Let the flow of a
gas be defined by its density �, velocity v, energy E and pressure p. To model the
complete system, there is need for additional conservation laws (i.e. a system). The
model takes the form:

�t C .�v/x D 0I conservation of mass, (2a)

.�v/t C .�v2 C p/x D 0I conservation of momentum, (2b)

Et C .v.E C p//x D 0I conservation of energy. (2c)

The subscripts in this case represent partial differentiation with respect to the
variable in the subscript. To close the system there is need for constitutive relations.
Assume T is the absolute temperature of a gas then:

p D �T I the ideal gas law,

E D �v2

2
C cv�T I representing kinetic and thermal (internal) energy.
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In this case a system of three equations for three conserved quantities is obtained. To
close the system a relation involving variablep which depends on �, v,E is assumed
based on empirical considerations. In this case the hyperbolic conservation laws can
be written in the familiar form with

u D
0
@ ��v
E

1
A and F.u/ D

0
@ �v
�v2 C p.u/

v.E C p.u//

1
A

giving a hyperbolic system of conservation laws in one space dimension:

@tu C @xf .u/ D 0: (3)

A further simplification of the above system would be the isothermal Euler
equations of gas dynamics: assume temperature, T , is constant then

p D a2�

where a is the speed of sound in the gas. Hence we obtain a system that takes the
form:

�t C .�v/x D 0I conservation of mass,

.�v/t C .�v2 C a2�/x D 0I conservation of momentum.

The flow is referred to as isothermal flow.
The above are but a few examples of conservation laws. In general the Cauchy

problem for the hyperbolic conservation laws consists of Eq. (3) with initial
conditions

u.x; 0/ D u0.x/: (4)

In this chapter, a lot of discussion will centre around the Riemann problem which
is (3) with initial conditions of the form:

u.x; 0/ D
(

uL; for x < 0I
uR; for x � 0:

(5)

The solution for a nonlinear Riemann problem can either be a shock propagating, a
contact discontinuity or a rarefaction wave.

In this introductory review, we give an overview of the mathematical methods
used in investigating the well-posedness and constructing of solutions of the scalar
nonlinear conservation laws (1). This discussion will be extended to systems in
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one space dimension (3). This will be undertaken in Sect. 2. For further reading,
we recommend [46, 63, 71]. For the theory of numerical methods, the reader
may consult [33, 50, 64]. A brief introduction of numerical methods based on the
Relaxation schemes will be presented in Sect. 3. Applications of these methods to
networked flow or evolution equations can be found in 4. The interested reader is
also encouraged to consult the following references: [62] for a classical treatment of
systems; [48,59] for more recent aspects of nonlinear hyperbolic conservation laws;
[31] for conservation laws on networks; [14,30,42] for careful studies and advances
in the theory of low-order numerical approximation of hyperbolic conservation
laws.

2 Mathematical Modelling and Analysis with Hyperbolic
Conservation Laws

In this section the basic formulation of conservation laws will be discussed.
These are derived from the basic physical principles of conservation, for example,
conservation of mass or momentum, as alluded to in Sect. 1. Examples of conser-
vations laws have been presented. Such equations are also popularly referred to as
evolution equations. To be more specific, the special case of hyperbolic systems
of conservation laws will be discussed in detail. These are first-order hyperbolic
partial differential equations (PDE). They also play a prominent role in modelling
flow and transport processes. It needs to be noted that interesting cases of this class
of equations are usually nonlinear. It can be said that due to their nonlinear nature
these models present special difficulties: formation of shocks (jump discontinuities)
even though the initial data is continuous. As a consequence a great deal about their
mathematical structure is not yet known. A popular alternative to approximate the
solutions of these models is to apply numerical approximations which are also able
to resolve such jump discontinuities.

We would like to point out that systems of conservation laws in a single space
variable have been well-studied. For example, Euler equations of compressible
flow, the inviscid gas dynamics equations in Eq. (2), are an important example
of a hyperbolic system of conservation laws. The second popularly discussed
model is the linear wave equation. In such phenomena signals propagate with
finite speed. Singularities propagate along characteristics, such singularities arise
spontaneously, leading to formation of shocks or jump discontinuities. Therefore,
in nonlinear cases, time is not reversible as for linear equations thus future and
past are different [46]. There is loss of information as time moves forward, which
can be interpreted as an increase in entropy. Basic existence theory of solutions
of hyperbolic conservation laws in single space variables was discussed in [32].
In general, apart from isolated results, no comparable theory exists for more space
dimensions.
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In this chapter we will, therefore, discuss the case of one spatial dimensional
problems. In general, we seek a weak solution u W R � Œ0; T � ! R

k to the Cauchy
problem, see also Eq. (3):

@tu C @xf .u/ D 0I u.x; 0/ D u0.x/

with f W Rk ! R
k , which is a system of k conservation laws in R � Œ0; T � with

flux functions f . In this case T represents the final time. This system can also be
written in quasilinear form as:

@tu C A.u/@xu D 0I u.x; 0/ D u0.x/: (6)

where

A.u/ D
� @fi
@uj

.u/
�
1�i;j�k

is the Jacobian matrix of f D .f1; f2; : : : ; fk/
T i.e. A.u/ D Duf .

For smooth solutions, the solutions for Eqs. (3) and (6) are equivalent. In cases
where it is not possible to obtain classical or smooth solutions, we seek weak
solutions which will be discussed in Sect. 2.1. For basic knowledge on conservation
laws, we recommend the following literature [26,33,46,52,63]. The peculiarities of
the conservation laws include:

1. the evolution of shock discontinuities which require weak (in the distributional
sense) solutions of (3).

2. non-uniqueness of weak solutions of (3).
3. identification of unique ‘physically relevant’ weak solutions of (3). In general we

seek a solution, u D u.x; t/, which can be defined as a viscosity limit solution,
u D lim

�!0
u� such that [15, 26, 33]

@tu
� C @xf .u

�/ D �@x.	@xu�/; �	 > 0:

4. The entropy condition which requires that for all convex entropy functions, �.u/,
the following holds:

�.u/t C  .u/x � 0:

The viscosity limit solution is somehow related to the entropy solution, u.

At this point, we would like to give a formal definition of a hyperbolic system in
Definition 1.
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Definition 1 Consider the quasilinear system in Eq. (6). The system is referred to
as (strictly) hyperbolic if and only if the matrixA.u/ has only real (pairwise disjoint)
eigenvalues (characteristic speeds) and the eigenvectors form a basis of Rk .

Examples such as the inviscid Euler equations of gas dynamics have been given
in Sect. 1. For the one-dimensional scalar conservation laws, the equation is always
strictly hyperbolic. For Eq. (6) one needs to investigate the matrix A.u/. Below we
give some examples of hyperbolic conservation laws.

One-Dimensional Isentropic Gas Dyamics Equations Consider a one-
dimensional isentropic gas dynamics model in Lagrangian coordinates [33]:

@v

@t
� @u

@x
D 0I

@u

@t
C @

@x
p.v/ D 0I

v is specific volume, u is the velocity, and the pressure p.v/. For a polytropic
isentropic ideal gas: p.v/ D ˛v�
 for some constant ˛ D ˛.s/ > 0 (depending
on entropy), 
 > 1. The above system in quasilinear form is of the form:

@w

@t
C A.w/

@w

@x
D 0I

where A.w/ is the Jacobian matrix with two real distinct eigenvalues

�1 D �p.�p0.v// < �2 D p
.�p0.v//

i.e. p0.v/ < 0. Hence the system is strictly hyperbolic provided p0.v/ < 0. This is
also referred to as the p-system. The p-system is the simplest nontrivial example of
a nonlinear system of conservation laws.

Nonlinear Wave Equation Consider any nonlinear wave equation [33]

@2g

@t2
� @

@x

�
�.
@g

@x
/
�

D 0:

This equation can be re-written in the form of a p-system as follows: set

u D @g

@t
; v D @g

@x
; p.v/ D ��.v/:

Isothermal Flow Consider the isothermal Euler equation [33, 50]:

u D
�
�

q

�
I f .u/ D

 
q

q2

�
C a2�

!
I A.u/ D

 
0 1

� q2

�2
C a2

2q

�

!
(7)
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where the momentum q D �v. The matrix has eigenvalues

�1 D v C aI �2 D v � a

where a is the speed of sound in the flow.

2.1 Weak Solutions

In this section, the idea of a weak solution will be presented. Two one-dimensional
examples will be presented: the Burgers equation with a smooth initial condition
and periodic boundary conditions and secondly the inviscid Euler equations of gas
dynamics with jump initial conditions. The first example demonstrates the evolution
of a jump discontinuity even though the initial conditions are continuous. The latter
example will introduce the three types of solutions expected: propagating shocks,
rarefaction waves as well as contact discontinuities.

2.1.1 Burgers Equation

Consider the Burgers equation with the given initial condition:

@tu C @x

�u2

2

�
D 0I u.x; 0/ D 0:5C sin.x/; x 2 Œ0; 2��:

According to Fig. 1, as time evolves the solution develops steep gradients which
eventually become a discontinuity which propagates with time. Such discontinuous
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Fig. 1 Evolution of the solution for the Burgers equation at different times up to T D 2:5 to
demonstrate the development of a jump discontinuity
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solutions do not satisfy the PDE in the classical sense at all points. Therefore, there
is need for a weaker definition of a solution of the PDE.

2.1.2 Sod’s Problem

In this example, a nonlinear system of inviscid Euler Equations of gas dynamics,
Eq. (2), is considered. The system is considered subject to the following initial
conditions, a Riemann problem, with boundary conditions.

u.x; 0/ D
�

uL; x < 0I
uR; x > 0I and transparent boundary conditions,

where uL D .1; 0; 2:5/T and uR D .0:125; 0; 0:25/T . This can be considered as
a case of a gas in a long pipe in which the two halves of the pipe are initially
separated by a membrane. The gas on the left side of the membrane is subjected
to a higher pressure (density) and as the experiment starts, the membrane is broken.
In the solution in Fig. 2 in which different numerical schemes were used to resolve
the solution, it can be seen that on the left hand side of the pipe a rarefaction wave
(smooth solution) moving leftwards has developed. Around the position x D 6 a
contact discontinuity has developed in which there is a jump in density but not in
pressure and velocity. Lastly around x D 8 one observes a shock wave travelling to
the right. This is a jump discontinuity.

The two examples demonstrate that there is need to re-think what we mean by a
solution. Thus we seek weak solutions rather than classical ones. The idea of weak
solutions will be discussed below. Before we discuss weak solutions, we would
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Fig. 2 Solution of the Sod’s problem at time t D 0:1644 obtained using three methods: the
upwind scheme (Upw), the second-order relaxation scheme (JX) and the third order relaxation
scheme (RCWENO) [39] based on central weighted essentially non-oscillatory (CWENO) inter-
polation [44] compared with the exact solution (Exact)
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like to demonstrate how discontinuities actually develop by using the method of
characteristics in the next section.

2.2 Method of Characteristics

In this section a Cauchy problem for scalar conservation laws is considered:

ut C f .u/x D 0I u W R � R
C ! R; f W R ! R; (8)

u.x; 0/ D u0.x/; x 2 R: (9)

To solve the problem, the method of characteristics will be discussed. For simplicity,
consider an advection equation:

ut C aux D 0; a 2 R; (10)

or the Burgers Equation:

ut C
�u2

2

�
x

D 0: (11)

The solution of the Cauchy problem for the advection equation is:

u.x; t/ D u0.x � at/;

i.e. the initial data travels unchanged with velocity a. The left side of Eq. (10) can
be interpreted as a directional derivative with:

du

dt
D 0;

dx

dt
D a:

The equation
dx

dt
D a; x.0/ D x0 is the characteristic line which cuts through x0 in

the .x; t/-plane, i.e.

x D x0 C at:

It can be shown that along the characteristics the solution is constant [33,50]. Hence
suppose .x; t/ is such that x D x0 C at holds, then

u.x; t/ D u0.x0/ D u0.x � at/

is constant.
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On the other hand Eq. (8) can be written in the form

ut C f 0.u/ux D 0

for smooth solution u. The term f 0.u/ is referred to as the characteristic velocity,
the velocity with which information propagates. To find characteristics one needs to
solve:

x0.t/ D f 0.u.x.t/; t//; x.0/ D x0:

Along the solution x.t/, u.x; t/ is constant, i.e.:

d

dt
u.x.t/; t/ D @u.x.t/; t/

@t
C @

@x
u.x.t/; t/x0.t/ D ut C f 0.u/ux D 0:

Therefore, x0.t/ is constant since f 0.u.x.t/; t/ is constant. Thus characteristics are
straight lines given by:

x D x.t/ D x0 C f 0.u.x0; 0//t D x0 C f 0.u0.x0//t: (12)

If the above can be solved for x0 for all .x; t/, then the solution of the conservation
law takes the form:

u.x; t/ D u.x0; 0/ D u0.x0/

where x0 is implicitly given as:

x D x0 C f 0.u0.x0//t:

Unfortunately, Eq. (12) above cannot always be uniquely solved—the characteristics
can intersect after some time. For example, in the case of the Burgers equation
f .u/ D u2

2
. Let the initial value be given by u0.x/ D �x. Then the characteris-

tics are

x D x.t/ D x0 � x0t

and this gives

t D x0 � x
x0

D 1 � x

x0

and also

u.x; t/ D u0.x0/ D u0
� x

1 � t
�
:



Nonlinear Hyperbolic Systems of Conservation Laws and Related Applications 449

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

x

t

Fig. 3 Characteristics showing intersection resulting in shock development
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Fig. 4 Evolution of waves—development of a multi-valued function

The characteristics intersect at the point .x; t/ D .0; 1/. In this case there is no
unique solution for .x; t/ anymore, see Figs. 3 and 4

In these figures, it can be seen that one attains a multivalued solution of the
equation. Physically, for example, the density of a gas cannot be multivalued. In
this case the discontinuity propagates as a shock. This can now be mathematically
accurately treated with the help of weak (non-differentiable) solutions. In this case
we seek solutions in L1.

Definition 2 A function u D u.x; t/ is called a weak solution of the Cauchy–
Problem, Eq. (8), if

Z
R

Z 1

0

Œu�t C f .u/�x� dt dx C
Z

R

u0.x/ �.x; 0/ dx D 0; 8� 2 C1
0 .R � R/:
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If u is a smooth solution of the equation, then

Z
R

Z 1

0

Œ�ut C �f .u/x� dt dx D 0; 8� 2 C1
0 .R � R/: (13)

Integration by parts gives

Z
R

	
�
Z 1

0

�tudt C �u
ˇ̌
ˇ1
0



dx C

Z 1

0

	
�
Z
R

�xf .u/dx C �f .u/
ˇ̌
ˇ1�1



D 0:

So smooth solutions are also weak solutions. Indeed, if the Riemann problem in
Eq. (5) is considered, a weak solution is, for example, the shock wave

u.x; t/ D
(

ul ; x < st

ur ; x > st;

where s is the shock speed:
To find s, the shock speed, the Rankine–Hugoniot conditions

s D f .ul / � f .ur /
ul � ur

DW Œf �
Œu�

are applied [33, 50].
In addition the differential equation can be integrated to obtain:

Z t2

t1

Z x2

x1

n
@tu.x; t/C @xf .u.x; t//

o
dx dt D 0I u.x; 0/ D u0.x/

and further giving the following integral forms:

1.
Z x2

x1

u.x; t2/dx D
Z x2

x1

u.x; t1/dx C
Z t2

t1

f .u.x1; t//dt �
Z t2

t1

f .u.x2; t//dt

2.
d

dt

Z x2

x1

u.x; t/dx D f .u.x1; t// � f .u.x2; t//:

These are more difficult to work with than the differential equation. As a con-
sequence, the “weak” form of the PDE is introduced. The weak form allows
discontinuous solutions and is easier to work with. This form is also fundamental in
development and analysis of numerical methods. Integrating (13) gives:

Z 1

0

Z 1

�1

n
�tu.x; t/C �xf .u.x; t//

o
dxdt D

Z 1

�1
�.x; 0/u.x; 0/dx

8� 2 C1
0 .R � R/
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which is integration over a bounded domain. This approach introduces a new
problem: non-uniqueness of solutions with same initial data—hence a criterion
for finding the physically relevant solution is necessary. As an example, consider
Burgers equation

f .u/ D u2

2
; s D 1

2
� u2l � u2r

ul � ur
D 1

2
.ul C ur /: (14)

If the characteristics run into the shock, then it is called stable otherwise unstable.
The mean value theorem implies:

s D f .ul /� f .ur /

ul � ur
D f 0.�/; � 2 .ul ; ur / or � 2 .ur ; ul /:

If f is convex, i.e. f 0 is monotone increasing, then

ul > ur ) f 0.ul / > f 0.�/ > f 0.ur /;

one has a stable shock, see Fig. 5, if on the other hand

ul < ur ) f 0.ul / < f 0.�/ < f 0.ur /;

then one has an unstable shock [33, 46, 50].
Another weak solution for ul < ur is given by the so called rarefaction wave

u.x; t/ D

8̂
ˆ̂<
ˆ̂̂:

ul ;
x
t

� f 0.ul /

v. x
t
/; f 0.ul / � x

t
� f 0.ur /

ur ;
x
t

� f 0.ur /

with f 0.v.�// D � (Figs. 6 and 7).

Fig. 5 Characteristics for
ul > ur

x

t

0

urul



452 M.K. Banda

Fig. 6 A rarefaction wave
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t
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1
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Fig. 7 Characteristics for rarefaction wave

For the Burgers equation (f 0.u/ D u; v.�/ D �) then

u.x; t/ D

8̂
ˆ̂<
ˆ̂̂:

ul ; x � ul t

x
t
; ul � x

t
� ur

ur ; x � ur t

;
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i.e. for ul < ur , we obtain two weak solutions, not a unique solution. But only
one can be physically correct. Supplement the PDE by additional “jump conditions”
that are satisfied across discontinuities. Rankine-Hugoniot conditions give the shock
speed, s. Unfortunately, even if equations have the same smooth solutions, it does
not necessarily mean that their weak solutions will remain the same in cases where
a discontinuity develops. For example, multiplying the Burgers equation (11) by 2u
gives

@t .u
2/C @x

�2
3

u3
�

D 0I (15)

which is also a conservation law for u2. Equation (11) and (15) possess the same
smooth solution. Considering a Riemann Problem with ul > ur , one can observe
that Eq. (15) has shocks travelling at speed

s2 D Œ 2
3
u3�

Œu2�
D 2

3

�u3r � u3l
u2r � u2l

�
:

A comparison of the shock speeds for Eqs. (11) and (15) shows that

s2 � s D 1

6

.ul � ur /2

.ul C ur /

hence s2 ¤ s when ul ¤ ur . Hence, we obtain different discontinuous solutions
[50]. Also note that to obtain equation (15), careful manipulation of the smooth
solution had to be undertaken. To obtain a unique solution, it is possible to use
viscosity regularisation or to supplement the conservation law with an entropy
condition. In the following section, we will discuss the entropy condition which
is a concept that finds its roots in thermodynamics.

2.3 Energy and Entropy

In this section a discussion of entropy will be undertaken. Entropy is usually at the
centre of defining solutions of hyperbolic conservation laws in the weak sense (non-
classical solutions). It is usually used to identify weak solutions that are of physical
relevance. The entropy used as such is referred to as mathematical entropy. Before
the concept of entropy is discussed in subsequent sections, a short discussion of the
physical entropy will be undertaken.

In this section the presentation in [38] will be followed closely. It is known that
the energy content of a system is measured by its internal energy per unit mass e.
In a fluid, the total energy considered in the conservation of energy equation is the
sum of its internal energy and its kinetic energy per unit mass:
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E D e C v2

2

whereE denotes the total energy. Using the first law of thermodynamics the sources
of variation of the total energy is due to work of forces acting on the system as well
as heat transmitted to the system. Hence two fluxes are considered: the convective
flux FC :

FC D �v.e C v2

2
/ D �vE

as well as the diffusive flux FD:

FD D �
��re
where � is the thermal diffusivity coefficient and is defined empirically while 
 is
the ratio of specific heat coefficients under constant pressure and constant volume:


 D cp=cv:

It can be noted that the diffusion flux represents the diffusion of heat in a medium
at rest due to molecular conduction. Under Fourier’s law of heat conduction it can
be written as

FD D �krT
where T is the absolute temperature and k is the thermal conductivity coefficient.

Furthermore, one can also consider energy variations due to two sources: the
volume sources which are due to work of the volume forces fe and heat source
other than conduction (radiation, chemical reactions) denoted by qH giving Qv D
�fe � v C qH . There are also surface energy sources due to work done by internal
shear stresses acting on the surface of the volume Qs D � � v D �pv C � � v where
p is the pressure, � are the viscous shear stresses. Accounting for all the energy
contributions, the conservation of energy takes the form:

@

@t
.�E/C r � .�vE/ D r � .krT /C r � .� � v/CWt C qH

whereWt is the work of the external volume forcesWt D �fe � v.
From the equation above, one can obtain an equation of internal energy of the

form:

@

@t
.�e/C r � .�vh/ D .v � r/p C "v C qH C r � .krT / (16)

where h D e C p

�
and "v is the dissipation term. For details the reader may consult

[38]. In addition the dissipation term "v takes the form
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"v D .� � r/ � v D 1

2�
.� ˝ �T / D �ij

@vi
@xj

where � is the dynamic viscosity.
Introducing the continuity equation, Eq. (1), in Eq. (16) above, one obtains:

�
de

dt
D �p.r � v/C "v C r � .krT /C qH (17)

where:
d

dt
D @

@t
C v � r is the material or convective derivative, p.r � v/ is the

reversible work of the pressure forces (vanishes in incompressible flows). Other
terms are considered as heat additions: "v dissipation term—acting as an irreversible
heat source; FC D �krT is flux due to heat conduction (Fourier’s Law); qH are
heat sources as discussed above.

To clarify the entropy contribution, the entropy s per unit mass will be introduced
through the thermodynamic relation

T ds D de C p d
�1
�

� D dh � dp

�
(18)

where h is the enthalpy. Thus it is now possible to separate reversible and irreversible
heat additions using:

T ds D dq C dq0

where dq is a reversible heat addition and dq0 is an irreversible heat addition. From
the Second Principle of Thermodynamics: dq0 � 0, i.e. in adiabatic flow (dq D 0).
Hence entropy will always increase. Introducing Eq. (18) in (17) the following
equation is obtained:

�T
ds

dt
D "v C r � .krT /C qH (19)

where the last two terms are reversible heat addition by conduction and other
sources. For qH D 0 and k D 0 the non-negative dissipation term "v is a
non-reversible heat source. Equation (19) is the entropy equation of the flow. In
conclusion it can be noted that this equation is important but not independent from
the energy equation. Therefore, either this equation or the energy conservation
equation needs to be added to the mass and momentum conservation equations.
In addition entropy can not be classified as a ‘conservative’ quantity in the sense
discussed above.

Thus mathematical expression of second principle of thermodynamics for an
adiabatic flow without heat conduction or heat sources can be expressed as:
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�T
ds

dt
D "vI

�T
�@s
@t

C v � rs� D "v:

The viscous dissipation is positive i.e. "v � 0 which implies that solutions of the
inviscid Euler equations, which also physically imply a vanishing viscosity limit,
need to satisfy the following entropy condition

�T
�@s
@t

C v � rs� � 0:

In other words any solution of Euler equations with a physical meaning satisfies
the entropy condition above. Therefore, entropy is used as an additional condition,
where necessary, to exclude non-physical solutions for uniqueness.

To conclude, it must be noted also that non-viscous, non-heat-conducting fluid,
flow in the limit of vanishing viscosity admits both continuous and discontinuous
solutions. Therefore, entropy variations for continuous flow variations give the
entropy equation:

�T
�@s
@t

C v � rs� D 0

i.e. entropy constant along flow path. In absence of discontinuities, inviscid Euler
equation describes isentropic flows where the value of entropy only varies from
one flow path to another. From the inviscid Euler equations classical solutions also
satisfy the entropy equation which can be derived as:

@.�S/

@t
C @.v�S/

@x
D 0

where S is the specific entropy. For a strict convex entropy function, for example,
of the form U D ��S [33] it can be shown that the limit of the viscosity solution
will also satisfy, in the weak sense, the entropy inequality

@.�S/

@t
C @.v�S/

@x
� 0:

This is an instance of the Clausius-Duhem inequality [26].
Nature has its own way of solving the same problems. Equations are models of

reality and some physical effects are ignored. For example, fluid flow always has
viscous effects: strong near discontinuity i.e. a discontinuity can be thought of as a
thin region with very steep gradients. Thus, one needs further conditions, in order
to eliminate the non-physical weak solutions. Such a simple additional assumption
is the entropy-condition [33, 46, 50, 63]. We observe, geometrically, for the Burgers
equation that
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• for convex f and ul > ur we need to get a stable shock.
• For ul < ur the shock solution disappears. In this case the rarefaction wave is the

correct physical solution.

For convex f the entropy conditions discussed above are sufficient, but we need a
more general solution, in which case we appeal to viscosity regularisation:

1. introduce a diffusive term in equation: consider linear advection equation:

@tu C a@xu D 0I u.x; 0/ D u0.x/ gives u.x; t/ D u0.x � at/;

2. to obtain an advection-diffusion equation:

@tu C a@xu D DuxxI u.x; 0/ D u0.x/ where the flux is f D f .u; ux/:

The parabolic, conservation law, always has a smooth solution for t > 0 even
if u is discontinuous. As the reader may notice, for D � 1, it is a good
approximation for a linear advection equation.

3. Letting D ! 0—gives a “vanishing viscosity” method which is useful for
analysis, in general, but practically not optimal [50].

For practical purposes, the entropy condition has been well accepted. Let � be a
convex function and let  exist, for which we have for all smooth solutions u of the
conservation law:

�.u/t C  .u/x D 0;

i.e. �0.u/ut C  0.u/ux D 0. For smooth solutions ut C f 0.u/ux D 0 or �0.u/ut C
�0.u/f 0.u/ux D 0 giving

�0.u/f 0.u/ D  0.u/: (20)

Equation (20) needs to be solvable for the case n � 2. Such functions .�;  / are
called entropy–entropy flux pairs. The entropy condition is sufficient for existence
and uniqueness of weak solutions. The function u.x; t/ is the entropy solution if,
for all convex entropy functions, �.u/, and corresponding entropy fluxes,  .u/, the
inequality

�.u/t C  .u/x � 0;

is satisfied in the weak sense: i.e.

Z

R

1Z

0

.�t�.u/C �x .u// dt dx C
Z

R

�.x; 0/�.u/.x; 0/ dx � 0

8� 2 C1
0 .R � R/; � � 0:

(21)
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Now we are able to define what we mean by an entropy solution:

Definition 3 Let u be a weak solution of the conservation law. Moreover, suppose
u fulfills (21) for any entropy–entropy flux pairs .�;  /, then the function u is called
an entropy solution.

For scalar conservation laws every convex function � leads to an entropy, i.e. there
exist infinite many entropies. It is also interesting to note that for multi-dimensional
systems, entropy weak solutions are not unique. Recent results show that the usual
concept of entropy solutions is inadequate for uniqueness of compressible and
incompressible Euler equations [18, 27, 29].

At this point it is convenient to introduce more function spaces that are useful
in analysing nonlinear conservation laws. These spaces are also well exploited in
designing numerical schemes for approximating solutions for these equations. Here
the notions of monotonicity, total variation bounds are significant.

Definition 4 Let u 2 L1.˝/; ˝ � R
n be open. Then the total variation of u is

defined by

TV.u/ D lim sup
"!0

1

"

Z

˝

ju.x C "/� u.x/j dx:

The space of bounded variation is

BV.˝/ WD fu 2 L1.˝/ W TV.u/ < 1g:

If u0 2 L1.˝/ holds, then

TV.u/ D
Z

˝

ju0j dx:

Theorem 1 (Kruskov[43]) The scalar Cauchy-Problem

ut C .f .u//x D 0; f 2 C1.R/I
u.x; 0/ D u0.x/; u0 2 L1.R/

has a unique entropy solution u 2 L1.R�R
C/, having the following properties:

(i) ku.�; t/kL1 � ku0.�/kL1 ; t 2 R
C;

(ii) u0 � v0 ) u.�; t/ � v.�; t/; t 2 R
C;

(iii) u0 2 BV.R/ ) u.�; t/ 2 BV.R/ and TV.u.�; t// � TV.u0/;

(iv) u0 2 L1.R/ )
Z

R

u.x; t/ dx D
Z

R

u0.x/ dx; t 2 R
C;

(i)–(iv) are called L1-stability, monotonicity, TV-stability, conservativity.
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The theorem can be extended to several dimensions x 2 R
d ; d > 1. The theorem

cannot be extended to the general case of systems .k > 1/. Until now, there is no
general proposition proved for the system case.

At this point some general remarks are in order [67]:

1. The family of admissible entropies in the scalar case consists of all convex
functions, and the envelop of this family leads to Kruzkov’s entropy pairs[43]

�.uI c/ D ju �cj;  .u; c/ D sgn.u �c/.f .u/�f .c//; c 2 R: (22)

2. L1-contraction. If u1, u2 are two entropy solutions of the scalar conservation law,
then

ku2.�; t/ � u1.�; t/kL1.x/ � ku20.�/� u10.�/kL1.x/
This implies that the entropy solution operator related to scalar conservation laws
in L1 is non-expansive or contractive and by Crandall-Tartar lemma [24], it is
monotone

u20.�/ � u10.�/ ) u2.�; t/ � u1.�; t/

3. Semi-group: Let fSt ; t � 0g be a one-parameter family of operators which form a
semi-group of constant-preserving, monotone operators.St preserves constants if

St Œu 	 Const� D Const (23)

and its monotonicity implies

u20.�/ � u10.�/ ) u2.�; t/ � u1.�; t/; 8t � 0: (24)

Assuming fStg satisfies basic semi-group relations:

StCs D StSs; S0 D I;

and it has an infinitesimal generator,

@xA.u/ D lim
t#0

.t/�1.St .u/� u/:

Thus Stu0 D u.t/ may be identified as the solution of the abstract Cauchy
problem

ut C @xf .u.t// D 0 (25)

subject to initial conditions u.0/ D u0. For an L1-setup for quasilinear
evolution equations, the reader may consult [23]. In addition monotone, constant
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preserving solution operators of the Cauchy problem (25) are uniquely identified
by the following entropy condition [67].

Theorem 2 (Kruzkov’s Entropy Condition) Assume
˚
u.t/; t � 0

�
is a family

of solutions for the Cauchy problem (25) which is constant-preserving, (23), and
satisfies the monotonicity condition (24). Then the following entropy inequality
holds:

@t
ˇ̌
u.t/ � c

ˇ̌C @x
˚
sgn.u � c/.f .u/ � f .c//� � 0; 8c:

Hence one observes that monotonicity and constant preserving properties recover
Kruzkov entropy pairs.

2.4 Analysis of Systems

At this point we would like to delve into the ideas that guide the construction of
solutions for one-dimensional systems. The building block for such constructions is
the Riemann problem discussed in Sect. 2.1. We will firstly consider linear problems
and then close with a brief discussion of the nonlinear systems. In this case we will
only concentrate on the strict hyperbolic case.

Consider systems of conservation laws in one-space-dimension in (3) with
x 2 R; u; f 2 R

k; f D .f1; : : : ; fk/. In quasilinear form, Eq. (6),

A.u/ D f 0.u/ D @f .i/.u/

@uj
; 1 � i; j � k:

Hence the linear systems are denoted as

ut C Aux D 0; A 2 R
k�k; u.x; 0/ D u0.x/:

For a hyperbolic equation A is diagonalisable with eigenvalues �1; : : : ; �k and
eigenvectors r1; : : : ; rk . Let R D .r1j : : : jrk/; AR D RD; A D RDR�1. Using
this, we can diagonalise the system as follows: Let v D R�1u (characteristic
variables)

Rvt C RDR�1Rvx D 0 or vt C Dvx D 0;

since R is constant. We obtain k scalar problems for .v1; : : : ; vp; : : : ; vk/ with
solutions

vp.x; t/ D vp.x � �pt; 0/:
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Given v.x; 0/ D R�1u0.x/, we obtain

u.x; t/ D Rv.x; t/ D
kX

pD1
vp.x; t/rp D

kX
pD1

vp.x � �pt; 0/rp:

The curves x D x0C�pt are called characteristics of the p-th family .x0
p.t/ D �p/.

The characteristics of the p-th family are given by xp.t/ and take the form

x0
p.t/ D �p; xp.0/ D x0; p D 1; : : : ; k:

Note that in general problems depend on u and are strongly coupled due to R D
R.u/. In terms of the Riemann problem, we consider systems of conservation laws
in one-space-dimension:

ut C Aux D 0;

where A is a constant matrix and initial conditions as given in Eq. (4). Assume we
can express the initial conditions as

uL D
kX

pD1
˛prp; uR D

kX
pD1

ˇprp; vp.x; 0/ D
(
˛p; x < 0I
ˇp; x > 0:

Now

vp.x; t/ D
(
˛p; x � �pt < 0I
ˇp; x � �pt > 0:

Hence

u.x; t/ D
k0X
pD1

ˇprp C
kX

pDk0C1
˛prp:

where k0 is the minimal value of p with x � �pt > 0, .�1 � � � � � �k/. State u can
also be expressed in terms of jump discontinuities as follows:

u.x; t/ D
kX

pD1
˛prp C

k0X
pD1

ˇprp �
k0X
pD1

˛prp

D uL C
k0X
pD1

.ˇp � ˛p/rp

D uR �
kX

pDk0C1
.ˇp � ˛p/rp
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and

uR � uL D
kX

pD1
.ˇp � ˛p/rp

Hence the solution of a Riemann problem can be considered as a splitting of
difference uR � uL in a sum of jumps, which move with velocity �p in the direction
rp in the phase space. For k D 2 a phase plot can be used to determine the
intermediate states between uL and uR. If um is the intermediate state:

uR � uL D .ˇ1 � ˛1/r1 C .ˇ2 � ˛2/r2 D um � uL C uR � um

The jump um � uL moves with velocity �1 in the direction r1 and the jump uR � um
with �2 in the direction r2. Now �1 � �2, which implies velocity of um � uL is
smaller, thus this must be the first jump (recall, entropy conditions).

In the general nonlinear case, we consider Eq. (3). Rewriting the equation in
quasilinear form, we obtain:

ut C A.u/ux D 0

for which A.u/ has eigenvalues �1.u/; : : : ; �k.u/ and eigenvectors r1.u/; : : : ; rk.u/.
In this case hyperbolicity needs to be understood in the sense that A.u/ has
a complete real eigensystem. For the ensuing discussion strict hyperbolicity is
assumed, i.e. distinct eigenvalues �i .u/ ¤ �j .u/ for i ¤ j .

We first start with introducing the Lax entropy conditions:

Definition 5 (Lax Entropy Condition) A discontinuity with left state uL and right
state uR, moving with speed s for a conservation law with a convex flux function is
entropy satisfying if

f 0.uL/ > s > f 0.uR/:

This implies that the characteristics are ingoing into the shock as time evolves. We
also note that if f is convex then the correct weak solution is the limit as � ! 0 of
the viscous problem if and only if the Lax entropy condition holds [63].

Definition 6 The p-th characteristic field is genuinely nonlinear, if

r�p.u/ � rp.u/ ¤ 0; 8u

or it is linear degenerate, if

r�p.u/ � rp.u/ D 0; 8u:

At this point we observe that in the linear case all fields are linear degenerate.
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The building block for constructing solutions in the one-dimensional case is the
solution of the Riemann problem. A solution for (3) is sought subject to initial
conditions (4). The solution is composed of k simple waves. Each of these waves
is associated with one eigenpair .�p.u/; rp.u//; 1 � p � k. The simple waves
come in three forms as pointed out in the Sod’s problem: if thep-th field is genuinely
nonlinear, the waves are either p-shock or p-rarefaction waves. On the other hand if
the p-th field is linearly degenerate, we obtain a contact wave. These simple waves

are centred and depend on � D x

t
. This is how the simple waves are determined:

1. A p-shock discontinuity of the form

u.�/ D
(

uL; � < s

uR; � > s:

As usual s denotes the shock speed which can be determined by the Rankine-
Hugoniot condition and to be entropy satisfying �p.uL/ > s > �p.uR/.

2. A p-rarefaction wave, u.�/, directed along the p-eigenvector, Pu.�/ D rp.u.�//.
The eigenvector is normalised such that rp � r�p 	 1. This ensures that the gap
between �p.uL/ < �p.uR/ is filled with a fan of the form

�p.u.�// D

8̂
<̂
ˆ̂:
�p.uL/; � < �p.uL/

�; �p.uL/ < � < �p.uR/

�p.uR/; �p.uR/ < �:

3. A p-contact discontinuity of the form

u.�/ D
(

uL; � < s

uR; � > s:

As usual s denotes the shock speed which can be determined by the Rankine-
Hugoniot condition such that �p.uL/ D s D �p.uR/.

The admissibility of systems has been discussed in [46]. The theorem below
summarises the admissibility of systems:

Theorem 3 (Lax Solution of Riemann Problems [15]) The strictly hyperbolic
admissible system (3), subject to Riemann initial data (4) with uL � uR sufficiently
small, admits a weak entropy solution, which consists of shock-, rarefaction- and
contact-waves.

For more discussion on the solution of Riemann problems, the reader may consult
[16]. An extension to generalised Riemann problems subject to piecewise-linear
initial data can be found in [13, 49].
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In conclusion to this section we would like to briefly mention Glimm’s theorem
[32] which is celebrated as essential for existence theorems which are designed for
general one-dimensional systems, see also [53, 60]

Theorem 4 ([67]) There exists a weak entropy solution, u.�; t/ 2 L1ŒBV \
L1.R/; Œ0; T ��, of strictly hyperbolic systems (3), subject to initial conditions with
sufficiently small variation, kuo.�/kBV\L1.R/ � �:

In the next section, we will consider numerical approximations for solutions
of nonlinear hyperbolic equations. The relaxation scheme will be considered. Its
simplicity and ease of implementation has been a motivation for presenting this
scheme.

3 Numerical Approximation

In this section numerical approximations of solutions of nonlinear hyperbolic
conservation laws will be presented. We will start by presenting the simplest and
basic scheme in the finite volume framework. In the latter part of the section
derivation of the relaxation scheme will be presented and numerical results on
inviscid Euler gas dynamics equations will be presented.

3.1 Design Ideas of Numerical Schemes: The Godunov
Upwind Scheme and the Lax-Friedrichs Scheme

Consider a scalar equation of the form in Eq. (3) with a linear flux function f .u/ D
au in which a D const, also referred to as a wave propagation speed. To approximate
the solution on the spatial domain which is a subinterval of R, we discretise the
interval to approximate the solution at discrete points by taking a uniform grid
with mesh-size x. In addition we similarly discretise the time variable t using
t . Denote uni as an approximation of u.xi ; tn/ at the point xi D ix which is the
midpoint of the cell Œxi�1=2; xiC1=2�, tn D nt . Thus we need explicit conservation
schemes to approximate the equation in (3) in the form:

unC1
i D uni C t

x


fi�1=2 � fiC1=2

�
; i 2 Z; n � 0 (26)

where fiC1=2 is the intercell numerical flux and u0i for which the continuous version
is given in (4). For more details on discrete solution methods, the reader may consult
[33, 50, 67]. A first-order scheme referred to as the upwind scheme can be defined
as follows: for a > 0:
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unC1
i D uni � t

x


aui � aui�1

�

and for a < 0:

unC1
i D uni � t

x


auiC1 � aui

�
:

The above schemes can be generalised by defining the discrete flux function as

fiC1=2 D 1

2

�
f .uiC1/C f .ui /

� � 1

2
jaj�uiC1 � ui

�
:

This is the simplest case of the famous Godunov methods [33, 50, 67]. It is also
referred to as the Rusanov Scheme.

In general,

fiC1=2 D F.uni�kC1; : : : ; uniCk/ (27)

where F is a continuous numerical flux. The Lax-Friedrichs Method takes the form:

unC1
i D 1

2
.uniC1 C uni�1/� at

2x
.uniC1 � uni�1/:

One has to also consider stability issues when designing the method [33,50,67]. For
example, the Lax-Friedrichs Method is stable for

ˇ̌
ˇat
x

ˇ̌
ˇ� 1=2:

As a consequence the methods are versatile but due to the fact that waves of
different families are averaged together at each computational cell, their resolution
is very diffuse.

Alternatively, one discretises space leaving time continuous to obtain a system
of ordinary differential equations. This is referred to as a semi-discretisation or a
method of lines. A stability analysis can be carried out on the system of ordinary
differential equations. For Cauchy-Problems consider a subinterval e.g. Œ0; 1� and
prescribe a boundary condition. Prescription of boundary conditions depends on
the direction of transport (i.e. wind direction). For example, for a > 0, we need
a condition at x D 0. On the other hand, periodical boundary conditions can be
given as

u.0; t/ D u.1; t/; 8t � 0:

To construct finite difference or finite volume schemes of the form discussed
above, we will discuss some properties that the numerical flux needs to satisfy. Let
the numerical flux be defined as in Eq. (27) which is an approximation of f .u/,
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a flux across the interface between neighbouring cells. The essential feature of
the numerical scheme in Eq. (26) is their conservation form. This implies that the
discrete flux over any spatial domain needs to depend on the discrete flux across the
boundaries of the domain.

Definition 7 Now consider the hyperbolic conservation law in discretised form
given in Eq. (26). The scheme is said to be consistent if

F.u; u; : : : ; u/ D f .u/; 8u:

This is a .2k C 1/-point scheme, for k D 1 it is a three-point scheme.

Definition 8 Consider Eq. (26) where fiC1=2 is the intercell numerical flux and u0i
is given. The scheme (26) is also referred to as a conservative scheme and it is in
conservative form.

Theorem 5 (Lax and Wendrof [47]) Consider the conservative difference
scheme (26), with consistent numerical flux. Let t # 0 with fixed grid-

ratios �j D t

xj
	 constj , and let ut D funi g denote the corresponding

solution (parameterised with respect to the vanishing grid-size). Assume that ut

“converges” strongly to a function u (in some sensible way), the limit u is a weak
solution of Eq. (3).

It can be pointed out that the Lax-Wendroff theorem is fundamental in designing
the so called shock-capturing schemes. In these schemes, instead of tracking jump
discontinuities (evolving smooth pieces of the approximate solution on both sides
of the discontinuity), conservative schemes capture a discrete shock discontinuity.

To study stability of the scheme, use the (discrete) Lp-norms for the sequences
un D .unj /. Other notions which are used in understanding the convergence behavior
of discrete sequences of solutions of conservation laws are monotonicity/TVD.
These will be considered in the scalar case:

Definition 9 • A scheme is monotone if given two sequences v0 D .v0j / and w0 D
.w0j /, v0 � w0 then v1 � w1, where v � w means for all j , vj � wj and
v1j D .v1j /

• A scheme is Total Variation Diminishing (TVD) if 8v0 D .v0j /,

TV.vn/ � TV.v0/; (28)

where

TV.v/ D
X
j2Z

jvjC1 � vj j:
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In general, monotonicity and thus the TVD property is ensured if

min
k

funkg � unC1
j � max

k
funkg:

Hence it transforms a monotone sequence, say non-decreasing one, into a mono-
tone (non-decreasing) sequence. Therefore, oscillations can not occur. Numerical
solutions of conservation laws that satisfy the TVD property (28), also possess the
following properties [67]:

• Convergence: the piecewise-constant numerical solution, ux.x; tn/ DP
i uniXi .x/, where Xi is a characteristic function defined on the cell

ŒxiC1=2; xi�1=2�, converges strongly to a limit function, u.x; tn/, as the spatial
grid is refined. This with equicontinuity in time (in the L1-norm) and the Lax-
Wendroff theorem, give a weak solution, u.x; t/, of the conservation law (3).

• Spurious solutions can not occur due to the TVD condition, also the BV condition
in Sect. 2.

• Accuracy: one can derive schemes of accuracy higher than first-order. Monotone
schemes are at most first-order accurate [36]. TVD schemes are instead not
restricted to first-order at least in one-dimension. This means we replace L1-
contractive solutions with (the weaker) condition of bounded variation solutions.

Thus to apply the schemes, the discrete equations must be written in conservation
form which is able to capture the correct speeds of discontinuities. To obtain fiC1=2,
one needs an extrapolation of the solution in the cell to the boundary of the cell
i.e. need uiC1=2. The Godunov first-order upwind method uses piecewise constant
data to extrapolate the solution to cell edges. A higher-order method, the Modified
Upwind Scheme for Conservation Law (MUSCL), modifies the piecewise constant
data, replaces the Godunov approach by some monotone first-order centred scheme,
avoiding explicitly solving the Riemann Problem as follows: Consider piecewise
constant data funi g, replace constant states uni , understood as integral averages in
cells Ii D Œxi�1=2; xiC1=2�, by piecewise linear functions ui .x/:

ui .x/ D uni C .x � xi /

x
i ; x 2 Œ0;x�

where i is a suitably chosen slope of ui .x/ in cell Ii . For a discussion of slope
choices, we refer to [33, 50], in which slope limiters based on TVD constraints are
employed to remove possible oscillations. Thus one chooses Ni D �i where � is
a slope limiter function, for example, minmod, van Leer [69], or Superbee [66]. The
centre of xi in local coordinates is x D 1

2
x and ui .xi / D uni . Thus the boundary

extrapolated values are:

uLi D ui .0/ D uni � 1

2
Ni I

uRi D ui .x/ D uni C 1

2
Ni :
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The values uLi and uRi are the new arguments of the numerical flux function,
fiC1=2.uLiC1; uRi /. Thus the problem reduces to a flux estimate at each interface.
For ideas on different flux approximations, we refer to [45, 68].

The characteristic variables play an essential role: upwind schemes are generally
derived for a scalar equation hence for systems, the quantities that are being con-
vected are the characteristic variables. Therefore, to prevent spurious oscillations,
characteristic variables must also be numerically transported.

3.2 The Relaxation Schemes

Below a scheme, which is simple to implement since it does not actively consider
the direction of the flow, is presented [2, 5, 39]. The scheme is developed with the
spirit of central schemes like the Rusanov or Lax-Friedrichs but based on kinetic
considerations of the flow [1, 55]. The conservation law in Eq. (3) is re-written as a
balance law in which the right-hand side is a stiff relaxation term as follows:

ut C vx D 0I (29)

vt C a2ux D �1
"
.v � f .u//I (30)

where a is a value yet to be determined. Equation (29)–(30) can be rewritten in the
form:

�
u
v

�
t

C
�
0 1

a2 0

��
u
v

�
x

D 1

"
g.u/:

The eigenvalues of this Jacobian matrix are ˙a. The characteristic variables take

the form:

�
v C au
v � au

�
DW W from which we obtain a semi-linear system coupled by

the source term that takes the form:

@W

@t
C�

@W

@x
D 1

"
G:

3.2.1 Spatial Discretisation

Let x D xiC1=2 � xi�1=2, t D tnC1 � tn, and !niC1=2 WD !.xiC1=2; tn/ with the
cell average

!ni D 1

x

Z xC1=2

x�1=2
!.x; tn/ dx:
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Then the semi-discrete relaxation system takes the form:

dui
dt

CDxvi D 0I (31)

dvi
dt

C a2Dxui D �1
"
.vi � f .ui //I (32)

where Dx is the discrete equivalent of @x . Now the flux at cell boundaries can
be approximated as follows: consider interval Ii D Œxi�1=2; xiC1=2�, denote an
approximating polynomial on cell Ii by pi.x; t/ then

Qu.x; t/ D
X
i

pi .x; t I u/Xi .x/I

where X is a characteristic function defined on cell Ii . Denote the values of u at
cell boundary point between cell Ii and IiC1, xiC1=2, as:

uR.xiC1=2I u/ D piC1.xiC1=2I u/I
uL.xiC1=2I u/ D pi .xiC1=2I u/:

To apply the MUSCL approach, characteristic variables are used in the reconstruc-
tion

.v � au/iC1=2 D .v � au/RiC1=2 D piC1.xiC1=2I v � au/I

.v C au/iC1=2 D .v C au/LiC1=2 D pi .xiC1=2I v C au/I

giving:

uiC1=2 D 1

2a

�
pi .xiC1=2I v C au/� piC1.xiC1=2I v � au/

�
I

viC1=2 D 1

2

�
pi .xiC1=2I v C au/C piC1.xiC1=2I v � au/

�
:

The first-order schemes are derived by choosing the polynomial: pi .x; u/ D ui
giving .v C au/iC1=2 D .v C au/i and .v � au/iC1=2 D .v � au/iC1 and

uiC1=2 D ui C uiC1
2

� viC1 � vi
2a

I

viC1=2 D vi C viC1
2

� auiC1 � ui
2

:

A second-order polynomial with slope limiters can also be used, giving:
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uiC1=2 D ui C uiC1
2

� viC1 � vi
2a

C �C
i C ��

iC1
4a

I

viC1=2 D vi C viC1
2

� auiC1 � ui
2

C �C
i � ��

iC1
4

:

Using Sweby’s notation: slopes of v ˙ au can be defined as:

�˙ D .viC1 ˙ auiC1 � vi � aui /�.�i̇ /I

�i̇ D vi ˙ aui � vi�1 � aui�1
viC1 ˙ auiC1 � vi � aui

:

Below, some popular slope limiters are presented: Minmod Slope Limiter:

�.�/ D max.0;min.1; �//

and van Leer slope limiter:

�.�/ D j� j C �

1C j� j :

It should be observed that if �i̇ D 0 or � D 0, we obtain the first-order
discretisation.

To complete the description of the relaxation systems initial conditions are
approximated as: u.x; 0/ D u0.x/; v.x; 0/ D v0.x/ D f .u0.x//: It should also
be pointed out that the choice of a, the free parameter, must be made such that
the problem is well-defined. For this the regularisation properties of the relaxation
framework are exploited in the choice of a as " ! 0. The Chapman-Enskog
asymptotic analysis [39] gives the sub-characteristic condition:

� a � f 0.u/ � aI 8u: (33)

The limit " ! 0 also gives the discretization of the original conservation law given
in (3). In practice, for the cases where " ! 0, the constraint v D f .u/ is used in
Eqs. (29)–(30) (in which case the first-order scheme becomes the Rusanov scheme).
This scheme is also referred to as the relaxed scheme. Otherwise one chooses a
small value of ", for example, " D 10�6, and solves (29)–(30) numerically. This
scheme is referred to as the relaxing scheme.

3.2.2 Time Discretization

In general the time discretisation schemes can be derived using TVD Runge-Kutta
schemes [34]. Consider Eq. (31). In this case, it can be observed that the strategy is
as follows:
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• Treat space discretizations separately using a MUSCL-type formulation.
• Treat time by an ordinary differential equation (ODE) solver (method of lines),

for example, Implicit-Explicit (IMEX) schemes since the source term (RHS) is
stiff.

• Choice of a2 is wide as long as the sub-characteristic condition (33) is satisfied:
ai ’s can be chosen as global characteristic speeds, local speeds, depending on the
stability and accuracy needs of implementation.

• Source terms are incorporated accordingly.

The semi-discrete formulation above is a system of ODEs which can be integrated
using Implicit-Explicit (IMEX) Runge-Kutta approaches as follows: consider the
semi-discrete equation (31) in a general form as follows [56–58]:

dY

dt
D F .Y / � 1

"
G .Y /;

In general the following strategy is applied in solving the system:

1. Treat non-stiff stage, F , with an explicit Runge-Kutta scheme.
2. Treat the stiff stage, G , with a diagonally implicit Runge-Kutta (DIRK) scheme.
3. Scheme must be asymptotic-preserving.
4. The limiting Scheme i.e. as " ! 0must be Strong Stability Preserving (SSP) [34]

kY nC1k � kY nk:

Here Y n is the approximate solution at t D nt . Examples of these schemes can
be represented using the so called Butcher tables [58]:

Qc1 Qa11 Qa12 Qa13 � � � Qa1s c1 a11 a12 a13 � � � a1s
Qc2 Qa21 Qa22 Qa23 � � � Qa2s c2 a21 a22 a23 � � � a2s
Qc3 Qa31 Qa32 Qa33 � � � Qa3s c3 a31 a32 a33 � � � a3s
:::
:::

:::
:::

:::
:::

:::
:::

:::
:::

:::
:::

Qcs Qas1 Qas2 Qas3 � � � Qass cs as1 as2 as3 � � � assQb1 Qb2 Qb3 � � � Qbs b1 b2 b3 � � � bs
For practical purposes, the IMEX method is implemented as follows:

• For l D 1; : : : ; s,

1. Evaluate K�
l as:

K�
l D Y n Ct

l�1X
mD1

QalmF .Km/� t

"

l�1X
mD1

almG .Km/:
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2. Solve for Kl :

Kl D K�
l � t

"
allG .Kl /:

• Update Y nC1 as:

Y nC1 D Y n Ct

sX
lD1

QblF.Kl /� t

"

sX
lD1

blG .Kl /:

Below, we present some examples of the Butcher tables for the second-order and
third-order schemes:

Second-Order Scheme

0 0 0

1 1 0

1
2
1
2

�1 �1 0
2 1 1

1
2

1
2

Third-Order Scheme

0 0 0 0 0 0 0 0


 
 0 0 
 0 
 0

1� 
 
 � 1 2 � 2
 0 1 � 
 0 1 � 2
 


0 1
2

1
2

0 1
2

1
2

where 
 D 3Cp
3

6
. The advantage of this approach is that numerically neither linear

algebraic nor nonlinear source terms can arise. As " �! 0 the time integration
procedure tends to an SSP time integration scheme of the limit equation (3). The
only restriction is the usual CFL condition

CFL D max

�
t

x
; �
t

x

�
� 1:

In the following section, we present some numerical examples for which the
relaxation scheme have been applied. We also wish to point out that the results in
Figs. 1 and 2 were also produced by the relaxation schemes of different accuracy. In
the case below, we extend the application of the scheme to two dimensional Euler
equations.
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3.2.3 Some Numerical Results

In this section, examples of results produced using the above defined schemes are
presented. The one-dimensional examples have been presented in Sect. 2 above. A
dimension-by-dimension extension can be undertaken to solve problems in higher
space dimensions [4, 5, 7, 61]. It must be mentioned here that one advantage of the
finite volume formalism is the ability to deal with unstructured meshes in multi-
dimensional problems while still applying the one-dimensional numerical schemes.
Here, two examples of two dimensional inviscid Euler problems are presented:

@t�C @xmC @yn D 0I (35a)

@tmC @x.�u2 C p/C @y.�uv/ D 0I (35b)

@tnC @x.�uv/C @y.�v2 C p/ D 0I (35c)

@tE C @x.u.E C p//C @y.v.E C p// D 0I (35d)

p D .
 � 1/.E � �

2
.u2 C v2//: (35e)

Double Mach Reflection Problem [72]

Consider flow in the domain ˝ D Œ0; 4� � Œ0; 1�, the bottom wall is a reflecting
wall in interval: Œ1=6; 4�. A Mach 10 shock is introduced at x D 1=6, y D 0, 600

angle with x-axis. Further, exact post-shock condition at bottom boundary Œ0; 1=6�
are imposed. The rest of the boundary is a reflective boundary. On the top boundary
exact motion of a Mach 10 shock is used. Results are displayed at t D 0:2 in Fig. 8.
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Δ

Δ Δ

Δx = y = 1/240

Fig. 8 Solution of the double Mach reflection problem obtained using the fifth-order relaxation
scheme [5]
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Fig. 9 Solution of forward-facing step problem obtained using the fifth-order relaxation scheme
[5]

Forward-Facing Step Problem [72]

The next experiment involves a right-going Mach 3 uniform flow entering a wide
tunnel 1 unit by 3 units long. The step is 0.2 units high located 0.6 units from
left hand end of tunnel. As initial conditions a uniform right-going Mach 3 flow is
considered. The boundary conditions are defined by a reflecting boundary condition
along walls, inflow and outflow boundary conditions are applied at entrance and exit
of tunnel. Results at t D 4:0 are given in Fig. 9.

3.2.4 Other Applications of the Relaxation Schemes

The relaxation approach has been applied in numerical methods for equations that
avail themselves to being expressed in a kinetic formulation. In this formulation
the u.x; t/ can be represented as an average of a ‘microscopic’ density function,
f .x; v; t/. The formulation is based on classical kinetic models such as the Boltz-
mann equation. The useful tool is the velocity averaging which yields equations
of moments of the kinetic model. These moments are solutions of the classical
fluid flow equations like the incompressible Navier-Stokes equations. The most
popular numerical approach for this is the Lattice Boltzmann Model (LBM). The
relaxation approach can also be derived from the Boltzmann model by way of
asymptotic analysis based on the Hilbert expansion in the small Knudsen and Mach
number. Without going into details, this approach has been applied in simulating
incompressible Navier-Stokes equations [7, 11, 40, 41], turbulent flow [6], the
incompressible flow models with radiative transfer [10].
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4 Applications in Networked Flows

Consider applications which have an inherent network and transport structure: traffic
flow, gas or water transportation networks, telecommunication, blood flow or pro-
duction systems (supply chain networks). The network is considered as a directed
graph with arcs (edges/links) and vertices (nodes). Flow or Transport phenomena
along each arc are sufficiently described by a one-dimensional hyperbolic equation,
for example, a conservation law or a balance law (conservation law with source
terms). To define flow or transport at the vertex, physical coupling conditions at
each vertex are described by an algebraic condition. The mathematical problem can
be considered as a coupled system of hyperbolic balance or conservation laws. In
this section we discuss or develop an appropriate model for the arcs then define
coupling conditions at nodes. To close the section, we will also investigate optimal
control problems such as boundary stabilisation.

4.1 Modelling and Simulation of Networked Flow

In network flow problems, the mathematical model of the underlying physical
process is formulated by an interconnected hierarchy of dynamics on the arcs/edges
using mathematical modelling principles. These dynamics are coupled and interact
with other processes by transmission conditions at the vertices/nodes of the
graph/network. The transmission conditions might obey other independent dynamic
laws defined based on physical, chemical or engineering considerations, the reader
may refer to Banda et al. [8, 9] and references therein.

Arising mathematical issues deal with modelling and the interaction of different
dynamics on arcs and the influence of the transmission conditions on the local
and global dynamics of the network. This in particular involves the interaction
between different dynamic and/or discrete models. Other problems arise due to the
underlying complex physics and governing principles inside the vertices which are
usually not known exactly, but need to be formulated in a concise mathematical
formulation for further treatment.

From a practical point of view, network problems are usually large-scale and
contain additional complexity due to their geometry. Hence, efficient numerical
methods and new techniques are required to compute solutions for given accuracy
and within a reasonable time. In most cases real-time solutions would be the desired
goal.

To address such problems, one considers modelling of the dynamics on the
arcs and development or application of efficient and accurate numerical methods
for resolving these dynamics. Already developed models are available and can
be applied. Where necessary a careful derivation of simplified dynamics which
yields a trade-off between accuracy and computability can be considered. The
second step is the modelling of transmission or coupling conditions informed
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by the underlying physical processes and mathematical analysis of the derived
conditions. In particular, the compatibility of the coupling with both mathematical
and engineering needs are of interest. For example, in the case of gas dynamics
in pipelines, results are already available. The details of mathematical proofs of
existence of solutions to a coupled system of dynamics on arcs and vertices are
presented in [8, 9]. Here we give a summary of the results that are known from
literature:

1. Gas Networks: conditions of conservation of mass and equal pressure at the
nodes are well-posed.

2. Compressor condition and conservation of mass through compressor are well-
posed.

3. Assumption of gas with minor losses at the junction was not taken into
consideration (i.e. pressure drop factor—depends on geometry, flow and density).
In addition results on three-dimensional flow, which is more realistic have not
been considered.

4.1.1 Flow in a Single Pipe

To present flow in a network of pipes, it is necessary to consider flow in a single
pipe. Thereafter extensions of single pipe flow to coupled pipes in a network will be
discussed. The link between the two are algebraic relations which are defined using
physical considerations.

The flow model is a non-linear partial differential equation (PDE) presented in
Eq. (7). Some simplifications assumed on the Euler equations are as follows. For
pipelines the cross-section of the pipes is very small compared to the length of
the pipeline segments (pipes). Such being the case, the flow is assumed to be one-
dimensional. Hence, pressure and velocity variations across the cross-sectional area
are assumed negligible. The temperature of the gas is assumed to be constant. This
is the case since most of the pipes in the real-world are buried underground and
the soil is assumed to be a large heat sink. Therefore, the flow is assumed to be
in thermodynamic equilibrium. Only two forces acting on the gas are considered
significant: internal friction of the pipe and inclination of the pipe due to topography.

With these assumptions the isothermal Euler equations in one space dimension
augmented with non-linear source terms are obtained [8, 9]:

@�

@t
C @q

@x
D 0I (36a)

@.�u/

@t
C @

@x

�q2
�

C p.�/
�

D s1.�; u/C s2.x; �/: (36b)

As described in Sect. 1, the first equation defines the conservation of mass. The
second equation is based on Newton’s laws of motion and describes the conservation
of momentum (mass flux of the gas) q D �u where �.x; t/ is the mass density of the
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gas, u.x; t/ is the gas velocity and p.�/ is a pressure law. The pressure law satisfies
the following properties:

(P) p 2 C2.RCIRC/ with p.0/ D 0 and p0.�/ > 0 and p00 � 0 for all � 2 R
C.

With the above assumptions, p.�/ is often chosen as

p.�/ D ZRT

Mg

� D a2�; (37)

where Z is the natural gas compressibility factor, R the universal gas constant, T
the absolute gas temperature, and Mg the gas molecular weight. Since temperature
has been assumed constant, one considers the constant a to be the speed of sound in
the gas. Also note that a depends on the type of gas as well as the temperature.

For the sake of simplicity, further assumptions are made [28, 54, 65]: pipe wall
expansion or contraction under pressure loads is negligible; hence, pipes have
constant cross-sectional area. The diameter,D, of the pipe is constant.

The source term modelling the influence of friction is modelled by assuming
steady state friction for all pipes [54, 73]. The friction factor fg is calculated using
Chen’s equation [17]:

1p
fg

WD �2 log
� "=D

3:7065
� 5:0452

NRe
log
� 1

2:8257

� "
D

�1:1098 C 5:8506

0:8981NRe

��
(38)

whereNRe is the Reynolds numberNRe D �uD=�, � the gas dynamic viscosity and
� the pipeline roughness, which are again assumed to be the same for all pipes. With
the above assumptions, the friction term takes the form

s1.�; u/ D � fg

2D
�ujuj:

The pipe inclination takes the form

s2.x; �/ D �g� sin˛.x/

where g is acceleration due to gravity and ˛.x/ is the slope of the pipe.
In addition, two additional assumptions need to be made:

A1. There are no vacuum states, i.e. � > 0.
A2. All flow states are subsonic, i.e. q

�
< a.

These assumptions are backed by physical considerations. It is reasonable to
assume that atmospheric pressure is the lower bound for the pressure in the pipes.
Lower pressure can occur due to waves travelling through the pipe. Waves which
would create vacuum states are untenable since they would cause the pipe to explode
or implode. Generally pipelines are operated at high pressure (40–60 bar) and the
gas velocity is very low (< 10m/s). As the speed of sound in natural gas is around
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370 m/s, the second assumption also makes sense. In pipeline networks, all states
are a reasonable distance from the sonic states so that travelling waves cannot create
sonic or supersonic states.

Briefly, some mathematical properties of the above system will be discussed
[50]. These mathematical properties are used to discuss the well-posedness of the
flow problem in a single pipe. With the above assumptions Eq. (36) is also strictly
hyperbolic. To solve Riemann problems, characteristic fields based on Lax-curves
are employed [26, 50]. The discussion of the Riemann problems has been given in
Sect. 2.

4.1.2 Flow in Networks or Coupling Pipes and Nodes

To complete the discussion of flows in networks it is necessary to discuss coupling
of different pipes at a node. Coupling of pipes is believed to be the major part of gas
networks [65]. Approaches in the engineering community are exploited.

Definition 10 A network is a finite directed graph .I ;V /. The arcs, Ij 2 I , are
connected together by vertices or nodes, v 2 V .

We need to study a Cauchy problem on the whole network. This depends on the
solution at the vertices.

Applying assumption A2 and the notation in [8, 35], a set of edges is denoted by
J and a set of nodes is denoted by V . Both sets are taken to be non-empty. Each
edge j 2 J corresponds to a pipe parametrised by an interval Ij WD Œxaj ; x

b
j �. Each

node v 2 V corresponds to a single intersection of pipes. For each node v 2 V , the
set of all indices of pipes j 2 J ingoing and outgoing to the node can be separated
into two sets ı�

v and ıC
v , respectively. The set of all pipes intersecting at a node

v 2 V can be denoted as ıv D ı�
v [ ıC

v . In addition, the degree of a vertex v 2 V is
the number of pipes connected to the node.

Further, the nodes V can also be classified according to their physical use. Any
node of degree one, i.e. jı�

v [ ıC
v j D 1, is either an inflow (ı�

v D ;) or an
outflow (ıC

v D ;) boundary node for the network. These nodes can be interpreted
as suppliers or consumers of gas and the sets of such nodes can be denoted as VI
or VO , respectively. Some nodes of degree two are controllable nodes (for example,
compressor stations or valves). This subset of nodes is denoted by VC � V . The rest
of the nodes, VP D V n.VI [VO[VC /, can be considered the standard pipe-to-pipe
intersections.

In addition to the above assumptions, the following can also be imposed:

A3. All pipes have the same diameter D. The cross-sectional area is given by

A D D2

4
� . Similar to a single pipe, the walls do not expand or contract due to

pressure load.
A4. The friction factor, fg , is the same for all pipes.

In general, the value at a node v depends only on the flow in the ingoing and
outgoing pipes and where needed some (possibly) time-dependent controls. Thus
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for the network, on each edge l 2 J , assume that the dynamics is governed by
the isothermal Euler equation (36) for all x 2 Œxal ; xbl � and t 2 Œ0; T � supplemented
with initial data U 0

l : In addition, on each vertex v 2 V systems of the type (36) are
coupled by suitable coupling conditions:

�.�.l1/; q.l1/; : : : ; �.ln/; q.ln// D ˘.t/; ıv D fl1; : : : ; lng:

Hence the network model for gas flow in pipelines consisting of m pipes takes the
form

@�.l/

@t
C @q.l/

@x
D 0I (39a)

@q.l/

@t
C @

@x

� .q.l//2
�

C a2�.l/
�

D s.x; �.l/; q.l//; l 2 f1; : : : ; ngI (39b)

�.�.l1/; q.l1/; : : : ; �.lm/; q.ln// D ˘.t/: (39c)

Now let us consider different junctions and the resulting coupling conditions.

Inflow and Outflow Nodes

The inflow and outflow nodes v 2 VI [ VO can be identified with boundary
conditions for the Eq. (36), modelling time-dependent inflow pressure or the
outgoing mass flux of the gas. This formulation is well known and widely discussed
in the literature [50].

Standard Junctions

On junctions v 2 VP , the amount of gas is conserved at pipe-to-pipe intersections:

X
l2ıC

v

q.l/ D
X
Nl2ı�

v

q.
Nl/

In addition, pressure is assumed equal for all pipes at the node [25, 28, 70], i.e.

p.�.l// D p.�.
Nl//; 8 l; Nl 2 ı�

v [ ıC
v :

An introduction of such coupling conditions was undertaken in [9] and analysed
in [8]. The conservation of mass at the nodes is unanimously agreed upon in
the literature. The pressure conditions, however provide room for debate. The
engineering community apply pressure tables but it is still not clear how these can
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be represented in mathematical terms. Different conditions can be applied [19].
Here we assume there is ‘good mixing’ at each vertex so that the condition of
equal pressure can be imposed. Hence at the vertex the pipes are coupled using
the following conditions:

�.�.l1/; q.l1/; : : : ; �.ln/; q.ln// D

0
BBB@

P
l2ıC

v
q.l/ �P

Nl2ı�

v
q.

Nl/

p.�.l1// � p.�.l2//
� � �

p.�.l1//� p.�.ln//

1
CCCA D 0 (40)

for ı�
v [ ıC

v D fl1; : : : ; lng.
To solve the problem at the vertex, ideas from solutions of the standard Riemann

problem are adopted [15, 26, 50] also presented in Sect. 2. Half-Riemann problems
are solved instead [37]. In addition to that a few remarks on the process are
in order. Given a node with n pipes coupled through coupling conditions (40),
in each of the n pipes assume a constant subsonic state . N�.l/; Nq.l//. The states
. N�.1/; Nq.1//; : : : ; . N�.n/; Nq.n/// need not satisfy the coupling conditions. Hence, similar
to the Riemann problem for a simple domain, we construct the intermediate states
that develop at the node as in the state um in Sect. 2.4. Unfortunately, solutions
to this problem are only realisable if the waves generated travel with negative
speed in incoming pipes and with positive speed in outgoing pipes, which means
the coupling conditions do not provide feasible solutions to all choices of states
. N�.1/; Nq.1//; : : : ; . N�.n/; Nq.n///.

A solution of a Riemann problem is a vector .u.1/.x; t/; : : : ; u.n/.x; t// of
functions u.l/ W Il � .0;1/ ! ˝ satisfying:

• for every l 2 f1; : : : ; ng, u.l/ is a restriction to Il � .0;1/ of the solution to the
classical Riemann Problem:

.u.l//t C f .u.l//x D 0; t > 0; x 2 RI
u.l/.x; 0/ D Nu.l/; x < 0I
u.l/.x; 0/ D v.l/.0/; x > 0

Coupling or transmission conditions in Eq. (40) guarantee that we obtain a well-
posed model. Of course, we have to prove that we indeed yield a well-posed
mathematical model for the junction. See [8, 9, 12] for details. In addition, the
derivation of v.l/.0/ is a result of the process of solving Riemann Problems at the
junction [8, 9].

• for every l 2 f1; : : : ; ng

lim
t!0C

u.l/.�; t/ D Nu.l/

with respect to the L1loc topology.



Nonlinear Hyperbolic Systems of Conservation Laws and Related Applications 481

The coupling conditions as presented above are well-posed. This result was
discussed in [8, 37]. Below a numerical example will be presented. In addition, this
work has been extended further to prove well-posedness for multi-phase flows. The
special case of the drift-flux model has been investigated in [12].

In summary, the following is the general result: consider the Cauchy Problem
and a Riemann solver. Under some strict technical assumptions on the initial
conditions as the case might be, there exists a unique weak solution at vertex v:
.u.1/.x; t/; u.2/.x; t/; : : : ; u.n/.x; t// such that

1. for every l 2 f1; : : : ; ng, u.l/.x; 0/ D u.l/0 .x/ for a.e. x 2 Il ;
2. for a.e. t > 0 a solution for the Riemann solver exists.

Moreover, for up to a 2 � 2 system, the solution depends in a Lipschitz continuous
way on the initial conditions. As pointed out above, the main assumption is the
initial data needs to be sub-sonic and small TV-norm of initial data and

det
�
D1�.Nu/; : : : ;Dn�.Nu/

�
¤ 0 where Dj�.Nu/ D @

@uj
�.Nu/:

A solution may contain shock waves just as in the Cauchy problem.

4.1.3 Numerical Results

At this point an example taken from [8] is presented. A time-splitting approach can
be applied:

@t

�
�.l/

q.l/

�
C @x

 
q.l/

q.l/
2
=�.l/ C P .l/.�.l//

!
D
�
0

0

�
I

@t

�
�.l/

q.l/

�
D
�

0

s.�.l/; q.l//

�
:

1. A high resolution scheme is applied to the homogeneous system.
2. An exact solution can be computed for the ordinary differential equations.

A One-to-One Network Example

Consider an incoming wave on pipe l D 1, which cannot freely pass the intersection,
due to a given low flux profile on the outgoing pipe l D 2: Friction in the pipes is
taken to be fg D 10�3. The sound speeds are al D 360m/s and the pipe diameter
is D D 0:1 m. An inflow of qin D 70 kg m�2 s�1 at x D xa1 and an outflow
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Fig. 10 Snapshots of the
solution �l to the problem of
two connected pipes at
different times t [8]
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of qout D 1 at x D xb2 is prescribed. Both pipes have the same initial condition
U 0
j D Œ 1

360
; 1�. In Fig. 10, snapshots of the density evolution are shown. Take note

that the inflow profile moves on pipe 1 until it reaches the intersection. Since the
maximal flow on the outgoing pipe is q� D 1; a backwards moving shock wave on
pipe 1 develops and increases the density near the intersection.

A Five-Pipe Network

In the following example, we consider a small network with five pipes, refer to
Fig. 11. The initial conditions are defined as follows: on pipes 1,3,5 we set the
density and flux as: .4; 2/, .4; 4/, .4; 6/.

The initial conditions on pipe 2,4 are a realisation of a pressure increase and
decrease as follows:

U 0
2 .x/ D

(
.4; 2/; x < 1

2
I

.4C 1
2

sin.�.2x � 1//; 2/; x > 1
2
I

U 0
4 .x/ D

(
.4C 1

2
sin.4�.x � 1

4
//; 2/; 1

2
< x < 3

4

.4; 2/; else.

The flow in the pipes 1, 3, 5 is displayed in Fig. 12. In the figure it can be seen
that the pressure equality has been achieved. The evolution of the shocks due to the
pressure variations is also visible.
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Fig. 11 Network setup
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Fig. 12 Pressure distribution in time for pipes 1, 3, 5

4.2 Boundary Stabilisation of a Dynamic System of Hyperbolic
Conservation Equations

Consider dynamic systems described by hyperbolic partial differential equations.
The problem now is to find methods for designing certain control action at the
boundary of a domain in order to attain a desired stable equilibrium status. This
kind of need can be observed in daily activities such as the use of traffic lights on
traffic flow networks or the installation of gates for hydraulic networks. For such
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networks to guarantee navigation, a critical issue is to stabilise the water level
in the reaches taking into consideration the variations of the water flow rate of
the river. The stability of a boundary control system is crucial to attain a desired
equilibrium status. Convergence of the solution towards the desired equilibrium is
due to boundary damping only.

The significant tool that has been introduced in the study of boundary stabilisa-
tion problems are suitable Lyapunov functions. For stability of the solution to the
partial differential equation, the exponential decay of such a Lyapunov function can
be established in a variety of cases—see [22], for example. For a more detailed
discussion, the reader may refer to [21] and the references therein. Our focus was
the analysis of the numerical discretisation analogous to the continuous results.
Therefore, the conditions under which, in a numerical scheme, an exponential decay
of the discrete solution to the hyperbolic system can be observed were derived [3].
Mathematical proofs for explicit decay rates for general three-point finite volume
schemes, using the discrete counterpart of the Lyapunov function, are presented in
[3]. In general, for a numerical discretisation the exponential decay of discrete L2-
Lyapunov functions up to a given finite terminal time only has been proved.

4.2.1 The Continuous Results

The following results are (probably) the most generally available continuous
stabilisation results [20, 22]. Consider the non-linear hyperbolic partial differential
equation

@u

@t
C @f .u/

@x
D 0; u.x; 0/ D u0.x/; (41)

where t 2 Œ0;C1/, x 2 Œ0; L�, u W Œ0; L� � Œ0;C1/ ! R
k and f W R

k !
R
k denotes a possibly non-linear smooth flux function. The gas dynamics model

discussed above is a special case of this with k D 2. The flux function f is assumed
to be strictly hyperbolic. If the solution, u, is smooth, solving Eq. (41) is equivalent
to solving

@u

@t
C A.u/

@u

@x
D 0; x 2 Œ0; L�; t 2 Œ0;C1/; u 2 R

k (42)

with A.u/ D Duf .u/ a k � k real matrix and

u.x; 0/ D u0.x/: (43)

It must be emphasised that here solution in H2 are considered, and not general
discontinuous solutions as in the previous sections. Consider the case where L D 1

and hence x 2 Œ0; 1�. In addition, kakq denotes the q-norm of the vector a 2 R
k;

k > 1; and kxk denotes the absolute value of a real number x 2 R.
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Feedback boundary conditions [21, 22, 51] for (42) can be prescribed as follows:

�
uC.0; t/
u�.1; t/

�
D G

�
uC.1; t/
u�.0; t/

�
; t 2 Œ0;C1/ (44)

whereG W Rk ! R
k is a possible non-linear function. The variables uC and u� will

be defined at a later stage below. Denote by �i for i D 1; : : : ; k the eigenvalues of
A.0/. As in [22], A.0/ may be assumed to be diagonal (otherwise an appropriate
state transformation is applied). Due to the strict hyperbolicity the eigenvalues are
distinct, i.e. �i 6D �j for i 6D j . In addition, assume that �i 6D 0 for all i D
1; : : : ; k. The eigenvalues are ordered such that �i > 0 for i D 1; : : : ; m and
�i < 0 for i D mC 1; : : : ; k. For any u 2 R

k , define uC 2 R
m and u� 2 R

k�m by
requiring

u D
�

uC
u�

�
:

Hence, u˙ are the components of the vector u 2 R
k corresponding to the positive

and negative eigenvalues of the diagonal matrix A.0/. Thus u is now defined in
the eigenvector basis of A.0/ corresponding to ordered eigenvalues. Similarly, for
A (and G), define for AC W R

k ! R
m�k; GC W R

k ! R
m and A� W R

k !
R
k�m�k; G� W Rk ! R

k�m by

A.u/ D
�
AC.u/
A�.u/

�
and G.u/ D

�
GC.u/
G�.u/

�
:

Again, assume that A˙.u/ and G˙.u/ are diagonal, for all u. Let GC.u/ D
GC..uC; u�/T /. The partial derivatives with respect to uC and u� will be denoted
by G0C;uC

.u/ and G0C;u�

.u/, respectively and analogously for G�. This notation is
as in [22]. Then, the definition of stability of the equilibrium solution u 	 0 is
given by:

Definition 11 (Definition 2.2[22]) The equilibrium solution u 	 0 of the non-
linear system (42)–(43) is exponentially stable (in the H2-norm) if there exists
� > 0, 	 > 0, C > 0 such that, for every u0 2 H2..0; 1/IRk/ satisfying
ku0kH2..0;1/IRk/ � � and the compatibility conditions

 
u0C.0/
u0�.1/

!
D G

 
u0C.1/
u0�.0/

!
I

AC.u0.0//u0x.0/ D G0C;uC

 
u0C.1/
u0�.0/

!
AC.u0.1//u0x.1/CG0C;u�

 
u0C.1/
u0�.0/

!
A�.u0.0//u0x.0/I

A�.u0.1//u0x.1/ D G0�;uC

 
u0C.1/
u0�.0/

!
AC.u0.1//u0x.1/CG0�;u�

 
u0C.1/
u0�.0/

!
A�.u0.0//u0x.0/I
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the classical solution u to the Cauchy problem (42) and (43) with boundary
conditions (44) is defined for all t 2 Œ0;C1/ and satisfies

ku.�; t/kH2..0;1/IRk/ � C exp.�	t/ku0kH2..0;1/IRp/: (45)

For any real k�k matrixA, �1.A/ WD inffkA�1k2 W  2 Dk;Cg, where Dk;C
is the set of all real k �k diagonal matrices with strictly positive diagonal elements.
Then, the following general result holds:

Theorem 6 (Theorem 2.3[22]) Assume A.0/ is diagonal with distinct and non-
zero eigenvalues and A is of class C2.Rk IRk/ in a neighbourhood of zero. Take
A.0/ D diag.�i /

k
iD1 and�i > 0 for i D 1; : : : ; m and�i < 0 for i D mC1; : : : ; k

and �i 6D �j for i ¤ j . Assume G is of class C2.Rk IRk/ in a neighbourhood of
zero and G.0/ D 0.

Let �1.G0.0// < 1; then the equilibrium u 	 0 for (42) with boundary conditions
given by (44) is exponentially stable.

In this context, in [3] an analysis of the Lyapunov function for a discrete case was
developed. Up to now a discrete counter-part to Theorem 6 has not been proved. A
weaker result concerning the L2-stabilisation was developed in [3].

4.2.2 Stabilisation of a Discrete Problem

The finite volume numerical schemes for boundary L2-stabilisation of one-
dimensional non-linear hyperbolic systems were adopted. In order to facilitate
the proofs, we will need additional assumptions discussed below.

The boundary conditions are considered as in (44) with G being a diagonal
matrix. To simplify the discussion, let

A.u/ D diag.�i .u//
m
iD1; �i .u/ > 0; �i .u/ 6D �j .u/; i 6D j: (46)

In the following u denotes all components of u, i.e., u WD .uj /mjD1: Let ı > 0 and
denote by Mı.0/ WD fu W juj j � ı; j D 1; : : : ; mg. Assume ı is sufficiently small
such that

Mı.0/ � B�.0/:

Further, let x denote the cell width of a uniform spatial grid and N the number
of cells in the discretisation of the domain Œ0; 1� such thatxN D 1with cell centres
at xi D .i C 1

2
/x, i D 0; : : : ; N � 1. Further x�1 and xN denote the cell centres

of the cells outside the computational domain on the left-hand and right-hand side
of the domain, respectively. The interfacial numerical fluxes are computed at cell
boundaries xi�1=2 D ix for i D 0; : : : ; N . The left and right boundary points are
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at x�1=2 and xN�1=2, respectively. The temporal grid is chosen such that the CFL
condition holds:

�
t

x
� 1; � WD max

jD1;:::;m max
u2Mı.0/

�j .u/ (47)

and tn D nt for n D 0; 1; : : : ; K where by possibly further reducing t , it
can be assumed that Kt D T: The value of uj .x; t/ at the cell centre xi is
approximated by uni;j for i D 0; : : : ; N � 1 and for each component j at time tn for
n D 0; 1; : : : ; K . The left boundary is discretized using un�1;j . The initial condition
is discretized as

u0i;j WD 1

x

Z xiC1=2

xi�1=2

u0j .x/dx

where u0j .x/; j D 1; : : : ; m denotes the components of solution vector u.
Hence, the following discretisation of (42)–(44) for n D 0; : : : ; K � 1 is

introduced:

unC1
i;j D uni;j � t

x
�j .uni /

�
uni;j � uni�1;j

�
; i D 0; : : : ; N � 1I (48a)

unC1
�1;j D �junC1

N�1;j I (48b)

u0i;j D 1

x

Z xiC1=2

xi�1=2

u0j .x/dx; i D 0; : : : ; N � 1I j D 1; : : : ; mI (48c)

u0�1;j D �ju0N�1;j : (48d)

Note that the last condition is the discrete compatibility condition for u0:

The discrete Lyapunov function at time tn with positive coefficients �j , j D
1; : : : ; m takes the form

Ln D x

N�1X
iD0

mX
jD1

�
uni;j

�2
exp.��j xi /: (49)

The numerical result is as follows:

Theorem 7 Let T > 0 and assume (46) holds. For any �j ; j D 1 : : : ;m such that

0 < �j <

vuutDmin
j

Dmax
j

; (50)
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where max
u2Mı.0/

t
x
�j .u/ DW Dmax

j � 1 and t
x
�j .uni / � min

u2Mı.0/

t
x
�j .u/ DW

Dmin
j > 0 the following holds:
there exists �j > 0; j D 1; : : : ; m and ı > 0 such that for all initial data u0i;j

with

ku0i;jk � ı, k u0i;j�u0i�1;j
x

k � ı, and k un0;j�un
�1;j

x
k � ı exp

�
tn max

�2Mı.0/
kru�j .�/k1

�

for all i D 0; : : : ; N � 1I j D 1; : : : ; m, the numerical solution uni;j defined by (48)
satisfies

Ln � exp.�	tn/L0; n D 0; 1; : : : ; K (51)

for some 	 > 0: Moreover, uni;j is exponentially stable in the discrete L2-norm

x

N�1X
iD0

mX
jD1

�
uni;j

�2 � QC exp.�	tn/x
N�1X
iD0

mX
jD1

�
u0i;j

�2
; n D 0; 1; : : : ; K: (52)

The by-product of this analysis is that, assuming (50), the explicit form of bounds

and constants such as �j , ı, 	 are derived and QC D C1

C0
D max

jD1;:::;m exp.�j xN�1/.
The grid size x;t is not fixed and can be chosen arbitrarily provided that the
CFL condition is satisfied.

Remark 1 One observes that the presented result is weaker than the corresponding
continuous result obtained in [22, Theorem 2.3]. Therein, no assumption on the
boundedness of T is required. The continuous Lyapunov function can be shown to
be equivalent to theH2-norm of u: The exponential decay of this Lyapunov function
therefore yields the global existence of u:

A simple linear transport is considered [3]:

@

@t

�
u1
u2

�
C @

@x

�
1 0

0 �1
��

u1
u2

�
D 0; x 2 Œ0; 1�; t 2 Œ0; T � (53)

and subject to the boundary and initial conditions

u1.t; 0/ D � u2.t; 0/; u2.t; 1/ D � u1.t; 1/; ui .0; x/ D u0i : (54)

In this example, the analytical decay rates 	 of the Lyapunov function is of
interest. In the following numerical computations, a three point scheme given in
Eq. (48a) above is used in each component as in Eq. (48). A time horizon fixed at
T D 12 is taken and constant initial data u01 D � 1

2
and u02 D 1

2
are prescribed.

The value of the Lyapunov function is computed by Lexact
n WD L0 exp.�	tn/ with

	. These values are compared to those of the numerical Lyapunov function Ln: The
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Table 1 The number of cells
in the spatial domain Œ0; 1� is
denoted by N

N Linf L2 � 	

100 4.32E�03 7.48E�04 5.66E�01 5.69E�01

200 2.18E�03 2.67E�04 5.70E�01 5.72E�01

400 1.09E�03 9.49E�05 5.73E�01 5.73E�01

800 5.48E�04 3.36E�05 5.74E�01 5.74E�01

1,600 2.74E�05 1.19E�05 5.75E�01 5.75E�01

Linf denotes the norm k.Lexact
n /n � .Ln/nk1 and L2 the

norm k.Lexact
n /n � .Ln/nk2. The CFL constant is equal to

one and � D 3
4

[3]

L2- andL1-difference between both for different choices of the computational grid,
boundary damping � and values of the CFL constant are considered.

The parameter is fixed at � D 3
4

and the sharpest possible bound is set for the
CFL constant, CFL D 1: In Table 1, the results for different grid sizes x D 1

N
are

presented. In the L2 and Linf the expected first-order convergence of the numerical
discretisation is observed. Further, the values of � and 	 also converge towards the
theoretical value in the case x ! 0 which are given by � D ln ��2= 5.75E-01
and 	 D �:

In conclusion, we claim that the analysis of the stabilisation process using a
three-point scheme gives very good indicators of the parameters to be used in the
stabilisation process.

5 Summary

In this chapter, a review of the evolution equations also referred to as conservation
laws have been presented. These are hyperbolic partial differential equations. In
general, they model flow or transport processes and their applications are abundant.
Furthermore, for the interesting cases, these equations are nonlinear and pose a lot of
challenges in mathematical analysis. Examples of their peculiarities include the fact
that admissible solutions include discontinuous functions. In such cases the concept
of a solution is defined in a weak topology. To identify unique solutions physical
insight is employed, especially the idea of entropy. For general approximations of
solutions, numerical methods are required. All these ideas have been demonstrated
in the chapter with a few examples to demonstrate the ideas.

Towards the end of the chapter extensions of applications of conservation laws
to networked flows have been discussed. The idea of solving a Riemann problem at
a network vertex has been discussed and some computational ideas and results also
presented. In addition boundary stabilisation has been discussed. This is the case in
which a particular equilibrium profile is desired. To achieve this profile, boundary
conditions are manipulated.
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This is not a complete presentation in developments involving conservation laws.
A vast collection of literature exists including manuscripts which have been cited in
the course of the discussion in the chapter. The reader is encouraged to consult these
references to have more detailed and relevant ideas on the mathematical analysis,
computational methods as well as applications in networked flows, design, shape
optimisation, as well as boundary stabilisation just to mention a few.
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