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Introduction

This book contains a collection of lectures presented at the 2013 CIMPA-UNESCO-
South Africa School Evolutionary Equations with Applications in Natural Sciences.
The School was part of the initiative Mathematics of Planet Earth and it was
organized at the African Institute of Mathematical Sciences, http://www.aims.ac.
za/, in Muizenberg (Cape Town), South Africa, from 22nd July to 2nd August
2013, under the auspices of the Centre International de Mathématiques Pures et
Appliquées (CIMPA). CIMPA is a non-profit international organization whose
aim is to promote international cooperation in higher education and research in
mathematics for the benefit of developing countries. In accordance with CIMPA’s
mission, the School was aimed at postgraduate students and young researchers from
such countries.

The School consisted of 9 courses delivered by invited lecturers coming from
France, Germany, Poland, South Africa and Scotland, and attracted 29 participants
from countries as diverse as Algeria, Benin, Cameroon, Chad, Congo, DRC,
Ethiopia, Ivory Coast, Kenya, Lesotho, Mauritania, Morocco, Nigeria, Philippines,
Pakistan, Sudan, South Africa, and Zimbabwe.

The School was a truly multidisciplinary event, spanning the fields of theoretical
and applied functional analysis, partial differential equations, probability theory
and numerical analysis applied to various models coming from theoretical physics,
biology, engineering and complexity theory. The main emphasis was on the devel-
opment of modelling, analytical and computational skills in a range of disciplines
vital for the advancement of physical and natural sciences. The models discussed
were time dependent and this led naturally to evolutionary equations which included
ordinary, partial, integral or integro-differential equations. Particular examples
of such equations were reaction-diffusion equations, transport equations coupled
with Boltzmann type models and fragmentation-coagulation type equations, and
the lectures gave detailed accounts of the functional-analytic, probabilistic and
numerical frameworks for the analysis of such equations. This choice of programme
was highly relevant to emerging researchers in many applied sciences as it exposed
them to the diversity of applications of time dependent transport and kinetic type
models and also provided a panorama of techniques for their analysis.


http://www.aims.ac.za/
http://www.aims.ac.za/

vi Introduction

This volume contains the lectures given during the School, with each chapter
devoted to the material presented by a specified lecturer. While each chapter is
different and focuses on a specific topic, there is a common thread joining all of
them—they are all concerned with evolution problems in a complex context and
a significant part of each chapter deals with deep analytical methods for solving
them. The lectures targeted postgraduate students and young researchers and thus
the volume contains an appropriate blend of material, from an introductory and
educational level at the beginning to a survey of cutting edge research at the end.

The foundation for all chapters is given by Wilson Lamb’s Applying functional
analytic techniques to evolution equations. This provides a gentle introduction to
the basic tools needed for evolution equations and demonstrates their applicability.
First the author discusses linear finite dimensional models, where the concept
of the operator semigroup is introduced. Then he moves to nonlinear systems
and discusses basic stability concepts. Finally, he discusses infinite dimensional
models, both linear and nonlinear, illustrating abstract concepts with the discrete
fragmentation-coagulation equation. We shall encounter the latter in a couple of
other chapters, where the state-of-the-art theory of fragmentation and coagulation
problems is developed.

The second chapter, Boundary conditions in evolutionary equations in biology
by Adam Bobrowski, joins the narrative of the first at the concept of semigroups of
operators, but takes this in a more general direction. First the author introduces
basic models such as the transport and diffusion equations on the whole space
and, writing them as Cauchy problems for abstract ordinary differential equations,
discusses their solvability using the Hille—Yosida theory which is covered in more
detail than in the first chapter. Next the author moves to the main subject of his
lectures; that is, how to incorporate boundary conditions for the discussed equations
so that they can be treated within the framework of semigroups of operators. Here
he describes Greiner’s approach and the method of images which are then applied
to McKendrick models for population dynamics and to Feller—Wentzell boundary
conditions. Finally, the author considers some singularly perturbed problems related
to the previous models and discusses their small parameter limits using the powerful
Sova—Kurtz approach.

The following chapter, Introduction to complex networks: structure and dynam-
ics by Ernesto Estrada, takes us in the direction of discrete evolutionary problems.
While, on the one hand, the author gives an introduction to the basic graph-
theoretical concepts, including the ‘small-world” and ‘scale-free’ networks, thus
providing the mathematical foundations for the network transport problems con-
sidered in the next chapter, on the other hand he develops the theory of dynamical
processes on networks, beginning with the consensus model, synchronization and
Kuramoto models. The chapter is concluded by a discussion of a network version
of the epidemiological SIR model introduced in the first chapter and the replicator-
mutator model considered later in the lectures of R. Rudnicki.

In the next chapter, Kinetic models in natural sciences by Jacek Banasiak, we
return to semigroup theory moving, however, to more complex models. In the
study of so-called kinetic type equations (similar to Master Equations in Markov
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processes) one considers the loss and gain of agents at a particular state and the
solvability of such problems depends on a delicate balance of these terms. In
this chapter the author considers transport processes on networks, building on the
introduction by E. Estrada, discusses the nonlinear versions of the McKendrick
model presented in the lectures of A. Bobrowski and also extends the theory of
fragmentation-coagulation processes introduced in the lectures of W. Lamb. In
the process, the author further develops semigroup theory, discussed in the first
two chapters, by introducing concepts of positivity and analyticity of semigroups
and employing these ideas in various ways to arrive at solutions of the problems
formulated in the introductory part of the chapter. In particular, the author provides
the first proof of the existence of global classical solutions to fragmentation-
coagulation equation with unbounded rates.

Following these results, Philippe Laurengot in Weak compactness techniques
and coagulation equations presents an alternative way of approaching coagula-
tion problems. Whereas in previous chapters in which coagulation-fragmentation
processes are discussed, the coagulation part is treated as a perturbation of the
linear fragmentation part, thus enabling semigroup theory to be applied, here the
centre stage is taken by the continuous coagulation operator. The author presents
a powerful weak compactness technique, first discussing intricacies of weak L
convergence and state-of-the-art methods of dealing with them. Next he moves
to the continuous coagulation equation, where he considers in detail the cases
in which the weak solutions are mass conserving and the cases where a phase
transition, called gelation, occurs. These results provide a powerful counterpoint to
the semigroup approach described in the chapter by J. Banasiak, and it is particularly
noteworthy that this book is the first in which both approaches are presented
together.

The next two chapters, although similar in that they present theories concerning
the long-term behaviour of solutions to abstract evolution equations are nevertheless
quite diverse in their approach. The chapter Stochastic operators and semigroups
and their applications in physics and biology by Ryszard Rudnicki focusses on
methods that have their origins in probability theory. The author begins with the
concept of stochastic operators and semigroups and introduces some examples
such as the Frobenius—Perron operators and stochastic integral operators. For the
former, he discusses their relations with the ergodic properties of the described
system. In the next step, he discusses the concept of substochastic and stochastic
semigroups, linking it nicely with the theory developed in the lectures of J. Banasiak.
The examples that follow include birth-and-death type problems, the continuity
equation, usual and degenerate diffusions (where the representation theorem by
Hormander is presented), as well as piecewise deterministic Markov processes (a
special case of which is given by coupled systems of McKendrick models discussed
in the lectures of A. Bobrowski and J. Banasiak). The final part of the chapter is
devoted to the analysis of long-term properties of models fitting into the developed
theory. Here the main roles are played by the Lasota—Yorke lower function method,
partially integral semigroups, the Foguel alternative and the Hasminskii function,
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applied, among others, to cell cycle models, birth-and-death processes, and the
description of the gene expression.

The chapter Spectral theory for neutron transport by Mustapha Mokhtar-
Kharroubi focusses on a single model of neutron transport and is devoted to the
classical approach to its analysis, spectral theory, which here is pushed to its limits.
The author builds on the semigroup results developed in the lectures of W. Lamb,
A. Bobrowski and J. Banasiak but leans more towards results on compactness of
the semigroups and spectral mapping theorems which are further fine-tuned to cater
for the advection and transport equations. The theory is first built for the advection
equation where, when dealing with the natural L; space, the author makes a brief
excursion into the so-called sun-dual theory. Then, to deal with the full equation,
including the collision operator, he makes extensive use of perturbation theory and,
in particular, Dyson—Phillips equations. Again, the L; theory is more difficult and
is linked with the weak compactness results described in more detail in the lectures
of P. Laurencot.

With the last two chapters, we move towards more concrete applications. The
penultimate chapter Reaction-diffusion-ODE models of pattern formation by Anna
Marciniak-Czochra begins with an introduction to pattern formation through Turing
instabilities and discusses the example of an activator-inhibitor model, pointing out
some limitations of the classical reaction-diffusion model. These limitations are
addressed by introducing reaction-diffusion-ODE models for which an extensive
theory of instabilities is developed. The theory presents a nontrivial extension of the
semigroup methods for semilinear equations introduced in the lectures of W. Lamb
and J. Banasiak, and of the spectral results discussed in detail in the preceding
chapter by M. Mokhtar-Kharroubi. The author applies it to models such as early
cancerogenesis and activator-inhibitor systems with non-diffusing activators. The
final part of the chapter is devoted to pattern formation in systems with bistability
and hysteresis and, in particular, to discontinuous patterns.

The final chapter, Nonlinear Hyperbolic Systems of Conservation Laws and
Related Applications by Mapundi Banda, presents a vista into a numerical world. It
begins with scalar conservation laws, the linear versions of which were discussed in
the lectures of A. Bobrowski, J. Banasiak, R. Rudnicki and M. Mokhtar-Kharroubi,
but quickly focuses on problems specific to quasi-linear cases such as weak,
discontinuous solutions, formation of shock waves and entropy conditions. After
introducing the basic toolbox for this field, the author moves to viscosity and entropy
solutions for scalar conservation laws and then for systems. The main contents
of the chapter are numerical methods for conservation laws. Here Godunov, Lax—
Friedrichs and relaxation schemes are described in detail and applied to particular
models. The chapter is concluded with numerical simulations of the flow in a
network, thus providing an extension of some results discussed in the lectures of
J. Banasiak to nonlinear models. The author also considers some aspects of the
boundary stabilization method.

The Co-Directors of the School, Jacek Banasiak and Mustapha Mokhtar-
Kharroubi, are deeply grateful to CIMPA for awarding the organization of the
School to them, and to the Director of the African Institute of Mathematical Sciences
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(AIMS), Professor Barry Green, for allowing the use of the excellent facilities
of AIMS. We are also grateful to Rene January from AIMS whose expertise and
enthusiasm greatly helped to make the School a success. The School would not have
happened without the generous support received from many institutions. Apart from
CIMPA, they are (in alphabetical order): AIMS, London Mathematical Society—
African Mathematics Millennium Science Initiative, Commission for Developing
Countries of the International Mathematical Union, French Embassy in Pretoria,
Hanno Rund Fund of the School of Mathematics, Statistics and Computer Science
of the University of KwaZulu-Natal, International Institute of Theoretical Physics,
Office of Naval Research Global, National Research Foundation of South Africa
and the National Institute of Theoretical Physics.

Finally our special thanks are due to our colleagues M.K. Banda, A. Bobrowski,
E. Estrada, W. Lamb, P. Laurengot, A. Marciniak—Czochra and R. Rudnicki for the
careful preparation and stimulating presentation of their lectures.

Durban, South Africa Jacek Banasiak
Besangon, France Mustapha Mokhtar-Kharroubi






Contents

Applying Functional Analytic Techniques to Evolution Equations......... 1
Wilson Lamb

Boundary Conditions in Evolutionary Equations in Biology................ 47
Adam Bobrowski

Introduction to Complex Networks: Structure and Dynamics.............. 93

Ernesto Estrada

Kinetic Models in Natural Sciences ...............coooiiiiiiiiiiiiiiiniinn.. 133
Jacek Banasiak

Weak Compactness Techniques and Coagulation Equations ............... 199
Philippe Laurencot

Stochastic Operators and Semigroups and Their Applications

in Physics and Biology ......... ..o 255
Ryszard Rudnicki

Spectral Theory for Neutron Transport ..........................oiiiiii... 319

Mustapha Mokhtar-Kharroubi

Reaction-Diffusion-ODE Models of Pattern Formation ..................... 387
Anna Marciniak-Czochra

Nonlinear Hyperbolic Systems of Conservation Laws
and Related Applications............... ... 439
Mapundi Kondwani Banda

xi



Applying Functional Analytic Techniques
to Evolution Equations

Wilson Lamb

1 Preliminaries

1.1 Introduction

Mathematical models arising in the natural sciences often involve equations that
describe how the phenomena under investigation evolve in time. Such evolution
equations can arise in a number of different forms; for example, the assump-
tion that time is a discrete variable could lead to difference equations, whereas
continuous-time models are often expressed in terms of differential equations.

The construction and application of a mathematical model usually proceeds in
the following manner.

* We make assumptions on the various factors that influence the evolution of the
time-dependent process that we are interested in.

* We obtain a ‘model’ by expressing these assumptions in terms of mathematics.

* We use mathematical techniques to analyse our model. If the model takes the
form of an equation, then ideally we would like to obtain an explicit formula for
its solution (unfortunately, this is impossible in the majority of cases).

* Finally, we examine the outcome of our mathematical analysis and translate this
back into the real world situation to find out how closely the predictions from our
model agree with actual observations.

In the case of kinetic models, where the interest is in describing, in mathematical
terms, the evolution of some population of objects, the modelling process usually
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2 W. Lamb

results in a so-called Kinetic (or Master) Equation. A nice account of the typical
steps involved in deriving such an equation is given in Sect. 1.1 of the contribution
to this volume by Jacek Banasiak [3].

Note that a mathematical model will usually be only an approximation to
what is actually happening in reality. Highly detailed models, incorporating many
different factors, inevitably mean very complicated mathematical equations which
are difficult to analyse, whereas crude models, which are easy to analyse, are most
likely to provide poor predictions of actual behaviour. In practice, a compromise has
to be reached; a small number of key factors are identified and used to produce a
model which is not excessively complicated.

When faced with a specific mathematical problem that has emerged from the
modelling process, an important part of the mathematical analysis is to establish
that the problem has been correctly formulated. The usual requirements for this to
be the case are the following.

1. Existence of Solutions. We require at least one solution to exist.

2. Uniqueness of Solutions. There must be no more than one solution.

3. Continuous Dependence on the Problem Data. The solution should depend
continuously on any input data, such as initial or boundary conditions.

Problems that meet these requirements are said to be well-posed. Note that
implicit in the above statements is that we know exactly what is meant by a solution
to the problem. Often there will be physical, as well as mathematical, constraints
that have to be satisfied. For example we may be only interested in solutions which
take the form of non-negative, differentiable functions. Also, in some cases, it may
be possible to define a solution in different ways, and this could lead to a well-posed
problem if we work with one type of solution but an ill-posed problem if we adopt
a different definition of a solution. When multiple solutions exist, then we may be
prepared to accept this provided a satisfactory explanation can be provided for the
non-uniqueness condition being violated.

In these notes, we shall present some techniques that have proved to be effective
in establishing the well-posedness of problems involving evolution equations. We
shall illustrate how these techniques can be applied to standard problems that arise
in population dynamics, beginning initially with the simple case of initial-value
problems (IVPs) for scalar ordinary differential equations (ODEs) (the Malthus
and Verhulst models of single-species population growth), and then going on to
IVPs for finite systems of ODEs (e.g. models of interacting species and epidemics).
We conclude by discussing and analysing models of coagulation—fragmentation
processes that are expressed in terms of an infinite system of differential equations.
To enable these problems to be treated in a unified manner, the techniques used
will be developed from a dynamical systems point of view and concepts and results
from the related theory of semigroups of operators will be introduced at appropriate
stages.
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1.2 Dynamical Systems

From a mathematical viewpoint, a dynamical system consists of the following two
parts:

* a state vector that describes the state of the system at a given time,
» a function that maps the state at one instant of time to the state at a later time.

The following definition expresses this more precisely; see [15, p.160].

Definition 1 Let X represent the state space (i.e. the space of all state vectors) and
let J be a subset of R (which we assume contains 0). A function¢ : J x X — X
that has the two properties

@) ¢(0,u) =u

(i) ¢(s,o(t,u)) = ¢ + s,u), fort,s,t +s € J, (the semigroup property)

is called a dynamical system on X .

Remarks

1. Throughout, we assume that X is a Banach space (i.e. a complete normed vector
space); see Sect. 1.3.2 for details.

2. We can regard ¢ (¢, I?t) as the state at time ¢ of the system that initially was at state
. The semigroup property then has the following interpretation: let the system

o o
evolve from its initial state u to state ¢ (¢, u) at time ¢, and then allow it to evolve
from this state for a further time s. The system will then arrive at precisely the
o

state ¢ (¢ + s, u) that it would have reached through a single-stage evolution of
t + s from state it.

3. In these notes, we shall consider only the case when J is an interval in R, usually
J = Rt = [0,00). The dynamical system is then called a continuous-time
(semi- or forward) dynamical system. We shall abbreviate this to CDS.

In operator form, we can write

o(t,u) = S(t)u,

where S(¢) is an operator mapping the state space X into X. Note that S(0) = 7
(the identity operator on X ) and the semigroup property (in the case when J = R)
becomes

S@)S(s) =St +s), Vt,5s > 0.
The family of operators S = {S(¢)};>0 is said to be a semigroup of operators

on X (algebraically, S is a semigroup under the associative binary operation of
composition of operators).
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Example 1 As a simple illustration of how a CDS arises from a differential
equation, consider the initial value problem

W) = @), u©) =u, (1

where [ is a real constant. Routine methods show that a solution to (1) is u(z) = e I,
This establishes that there exists at least one solution to (1). To prove that there is
no other differentiable solution (i.e. to establish the uniqueness of the solution that
we have produced), we argue as follows. Suppose that another solution v exists and
let # > 0 be arbitrarily fixed. Then, for 0 < s < ¢, we have

d
T (@) = —1e™v(s) + eIV (s)
S
= —1e"y(s) + e Iv(s) = 0.

It follows from this that e~ y(s) is a constant function of s on [0, #]. On choosing
s = 0and s = ¢, we obtain

e"v(0) = e y(1) = v(1).

Since this argument works for any ¢ > 0 and we already know that v(0) = u(0) :ft,

we deduce that v(¢) = u(t) = e'' 1t for all 1 > 0. Now let ¢ : R xR — R be defined
by

o tlo o
o, u)=e"u, tueR,

that is, ¢ (¢, ft) denotes the value at time ¢ of the solution of the IVP (1). Clearly
(i) ¢(0,u) =u

(i) ¢(s,p(t, 1)) = p(s,e"u) = e'eu= " u= ¢ (t + s, u)

andso ¢ : R x R — R is a CDS (by Definition 1).

Example 2 To make things a bit more interesting, we shall add a time-dependent
forcing term to the IVP (1) and consider the non-homogeneous problem

W (t) = lu(t) + g(t), t >0, u(0) = u, 2)

where g is some known, and suitably restricted, function of ¢. To find a solution
of (2), we use the following trick to reduce the problem to one that is more
straightforward. Suppose that the solution u can be written as u(t) = e"v(t). On
substituting into the non-homogeneous ODE, we obtain

le'v(t) + eV (t) = le'v(r) + g ().
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It follows that v satisfies the ODE V(1) = e "g(t) and therefore, from basic
calculus,

t t
v(t) —v(0) = / V(s)ds = / e *lg(s)ds.
0 0
Rearranging terms, and using the fact that v(0) = I?t, produces

t
v(it)=u —i—/ e *lg(s)ds,
0

and therefore a solution of the IVP (2) is given by

t
u(t) = e + / e g (s)ds. (3)
0

Formula (3) is sometimes referred to as Duhamel’s (or the variation of constants)
formula. As we have actually found a solution, we have resolved the question of
existence of solutions to (2). But what about uniqueness? Do solutions to (2) exist
other than that given by the Duhamel formula? The following argument shows
that (3) is the only solution. Suppose that another solution, say w, of (2) exists and
consider z = u — w, where u is the solution given by (3). Then z must satisfy the
IVP 7(¢t) = Iz(¢), z(0) = 0, and therefore, by the previous example, is given by
z(t) = "0 = 0 for all t > 0. Consequently, w(¢) = u(t) for all # > 0. In this case,
if we define

t
ot u) :=e'u +/ e g(s) ds,
0

then we do not obtain a CDS as the semigroup property is not satisfied. The reason
for this is that the right-hand side of (2) depends explicitly on ¢ through the function
g; i.e. the equation is non-autonomous. In the previous example, where the solution
of the IVP led to a CDS, the equation is autonomous since the right-hand side
depends on ¢ only through the solution u.

In the sequel, we shall consider only autonomous differential equations. When
existence and uniqueness of solutions can be established for IVPs associated with
an equation of this type, then we end up witha CDS ¢ : J x X — X which we can
go on to investigate further. Typical questions that we would like to answer are the
following.

]
1. Given an initial value u, can we determine the asymptotic (long-term) behaviour
]
of p(t,u) ast - oo ?
2. Can we identify particular initial values which give rise to the same asymptotic
behaviour?
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3. Can we say anything about the stability of the system? For example, if s “close

o o o
to” v in X, what can be said about the distance between ¢ (¢, u) and ¢ (t,v) for
future values of ¢?

In many situations, a dynamical system may also depend on a parameter (or
several parameters), that is, the system takes the form ¢, : J x X — X where
1 € R represents the parameter. In such cases, the following questions would also
be of interest.

4. Can we determine what happens to the behaviour of the dynamical system as the
parameter varies?

5. Can we identify the values of the parameter at which changes in the behaviour of
the system occur (bifurcation values)?

In some special cases, it is possible to find an explicit formula for the dynamical

system. For example, ¢ (¢, 13) =e'n (where [ can be regarded as a parameter). The
formula can then be used to answer questions 1-5 above. Unfortunately, in most
cases no such formula can be found and analysing the dynamical system becomes
more complicated.

1.3 Some Basic Concepts from Functional Analysis

The definition we gave of a dynamical system in Sect. 1.2, involved a state space
X . Recall that, from a mathematical point of view, a dynamical system is a function

¢ of time ¢ and the state variable it € X. In the context of evolution equations, i
represents the initial state of the system (physical, biological, economic, etc.) that
is being investigated. We now examine the algebraic and analytical structure of the
state spaces that will be used in these notes. For a more detailed account, see any
standard book on Functional Analysis such as [16].

1.3.1 Vector Spaces

A complex vector space (or complex linear space) is a non-empty set X of
elements f, g ... (often called vectors) together with two algebraic operations,
namely vector addition and multiplication of vectors by scalars (complex numbers).
Vector addition associates with each ordered pair ( f, g) € X x X a uniquely defined
vector f 4+ g € X (the sum of f and g) such that

f+g=g+fand f+(g+h)=(f+g+h Vigh e€X.
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Moreover there exists a zero element Oy and, foreach f € X, there exists — f € X,
such that

J+O0x = fand f+(-f) = Ox.

Multiplication by scalars associates with each f € X and scalar « € C a uniquely
defined vector of € X such that for all f, g € X and scalars &, 8 we have

aBf) =@p)f. Ix=x, alf+g=af tag. (@+ph)f =af +Bf

Note that a real vector space, in which the scalars are restricted to be real numbers,
is defined analogously.
A linear combination of { fi, f>,..., fim} C X is an expression of the form

m
arfitarfo+ ...t ayfn= Zajfj

Jj=1

where the coefficients «;, oz, . .., @, are any scalars. For any (non-empty subset)
M C X, the set of all linear combinations of elements in M is called the span of
M, written span (M) (or sp (M)).

The vectors fi, f3, ..., fm are said to be linearly independent if

afitwfh+...tanfm=0x S oa=ar=...=a, =0;

otherwise the vectors are linearly dependent. An arbitrary subset M of X is linearly
independent if every non-empty finite subset of M is linearly independent; M is
linearly dependent if it is not linearly independent.

A vector space X is said to be finite-dimensional if there is a positive integer n
such that X contains a linearly independent set of n vectors whereas any set of n + 1
or more vectors of X is linearly dependent—in this case X is said to have dimension
n and we write dim X = n. By definition, if X = {Ox}, then dimX = 0. If
dim X = n, then any linearly independent set of n vectors from X forms a basis for
X.Ifey,es,...,e, is abasis for X then each f € X has a unique representation as
a linear combination of the basis vectors; i.e.

f=ae; +aer+...+aye,,

with the scalars o, oz, . . . &, uniquely determined by f.

1.3.2 Normed Vector Spaces and Banach Spaces

A norm on a vector space X is a mapping from X into R satisfying the conditions

e |fll=0forall f €e Xand| f|| =0< f = Oy;
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o |laf|l = |e|||.f] forall scalars & and f € X;
e I +gl <IfIl+ gl forall f,g € X (the Triangle Inequality).

A vector space X, equipped with a norm || - ||, is called a normed vector space,
denoted by (X, ||-||) (or simply by X when it is clear which norm is being used). Note
that a norm can be regarded as a generalisation to a vector space of the familiar idea
of the modulus of a number. Moreover, just as |« — | gives the distance between two
numbers, we can use || f — g|| to measure the distance between two elements f, g

in (X, || - ||). This then enables us to discuss convergence of sequences of elements
and continuity of functions in a normed vector space setting.
We say that a sequence (f,)2, in a normed vector space X (with norm || - ||) is

convergent in X if there exists f € X (the limit of the sequence) such that
lim || f, — fIl = 0.
n—>oo

In this case we write f, — f as n — oo. Note that a convergent sequence ( f,,)52,
in X has a uniquely defined limit.

A sequence (f,)52, in a normed vector space X is a Cauchy sequence if for
every € > 0, there exists N € N such that

| fn — full <€ forallm,n > N.

The normed vector space X is said to be complete if every Cauchy sequence in X is
convergent, and we refer to a complete normed vector space as a Banach space. Note
that every finite-dimensional normed vector space is complete and hence a Banach
space.

Example 3 Let
C:={f=,....fn): fieCfori =1,...n}.
We say that two vectors f = (fi,..., fn) and g = (g1, ..., g,) are equal in C" if
Sr=2gu-. fu=gn
Also, if we define

f+g:(ﬁ+glssﬁl+gn)v f,ge(C”,
of = (afi.....af,), acC, feC"

and

LA = VIAR -+ 1l f=(fisen s ) €CY
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then (C", || - ||) is a normed vector space with dimension n. Consequently (C", | - ||)
is a Banach space. The Banach space (R”, || - ||) consisting of all ordered n-tuples of
real numbers is defined in an analogous manner.

Example 4 For fixed © > 0, we define a vector space of scalar-valued sequences
(f)7Z, by

G = {f = ()2 Y i fi] < oo}.

i=1

Equality, addition and multiplication by a scalar are defined pointwise in much the
same way as in C" (e.g. (f;){2, + (g:)2, = (fi + &){2,) and if we define a norm
on ), by

oo

L e =D it Al

i=1

then (K}L, | - Il1,.) can be shown to be an infinite-dimensional Banach space.

1.3.3 Operators on Normed Vector Spaces

We now introduce some concepts related to functions that are defined on a normed
vector space X. Functions of this type are often referred to as operators (or
transformations) and we shall denote these by capital letters, such as L, S and T'.
We shall concentrate only on cases where the operator, say 7', maps each vector
f € D(T) C X onto another (uniquely defined) vector 7( ) € X. Note that T( f)
is often abbreviated to 7 f and D(T') is the domain of T'.

The simplest type of operator on a normed space X is an operator L that satisfies
the algebraic condition

L(ay fi+az fo) = a1 L(fi) +aaL(f2), VY fi, f2 € X and scalars oy, 2. (4)

Any operator L that satisfies (4) is said to be a linear operator on X. The set of all
linear operators mapping X into X will be denoted by L(X) and, defining L; + L,
and oL in L(X) by (L + Lo)(f) := Li(f) + Lo(f) and («L)(f) := aL(f),
where L1, L,, L € L(X), f € X and « is a scalar, L(X) is a vector space.

An operator T : X — X (T not necessarily linear) is said to be continuous at a
given f € X if and only if

fu— finX = T(f,) > T(f) in X.

We say that T is continuous on X if it is continuous at each f € X.
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Another important concept is that of a bounded operator. We say that the operator
T : X — X is bounded on the normed vector space X if

IT(HOI =M | f] forall f € X, )

where M is a positive constant that is independent of f'; i.e. the same constant M
works for all f € X. In the case of a linear operator L : X — X, continuity and
boundedness are equivalent as it can be proved that

the linear operator L : X — X is continuouson X < L is bounded on X.

We shall denote the collection of bounded linear operators on X by B(X). It is
straightforward to verify that B(X) is a subspace of L(X). Moreover, if X is a
finite-dimensional normed vector space, then all operators in L (X) are bounded (so
that, as sets, L(X) = B(X)).

It follows from (5) that, if L is bounded, then

sup{[[ L) : f € Xand | f] <1}

exists as a finite non-negative number. This supremum is used to define the norm of
a bounded linear operator in the vector space B(X); i.e.

ILIl := sup {I LA = f € X and | | < 1}

Equipped with this norm, B(X) is a normed vector space in its own right, and
is a Banach space whenever X is a Banach space. Specific examples of bounded
and unbounded linear operators can be found in Sect. 1.1 of the contribution to this
volume by Adam Bobrowski [8].

1.3.4 Calculus of Vector-Valued Functions

The basic operations of differentiation and integration of scalar-valued functions
can be extended to the case of functions which take values in a normed vector space
(X, ]I-1D- A function of this type is said to be vector-valued because each value taken
by the function is an element in a vector space. In the sequel, we shall encounter
functions of the form u : / — X where J C R is an interval. Thus, u(¢) € X for
all € J. Such a function u is said to be strongly continuous at ¢ € J if, for each
& > 0, a positive § can be found such that

|lu(z) — u(c)|| < € whenever ¢t € J and |t — c| < 6.
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If u is strongly continuous at each point in J, then u is said to be strongly continuous
on J. Similarly, u is said to be strongly differentiable at ¢ € J if there exists an
element «'(c) € X such that

tim w — 4 (o). 6)

where the limit is with respect to the norm defined on X; i.e. given ¢ > 0, there
exists § > O such that

u(c +h) —ul(c) 3

A ' (c)

< & whenever ¢ +h € J and 0 < |h| < 4. @)

If u is strongly differentiable at each point in J then we say that u is strongly
differentiable on J.

As regards integration of a vector-valued function u : J — X, itis a
straightforward task to extend the familiar definition of the Riemann integral of
a scalar-valued function. For example, if J = [a, b], then, for each partition P, of
J of the form

a=th<h<b<..<t,=bh,
there is a corresponding Riemann sum

n

S(u; Py) i= Y ulE) (i — i),

k=1

in which & is arbitrarily chosen in the sub-interval [fx—;, #;]. We then define

b
/ u(t)dt:= lim S(u, P,),
a P ll—0

whenever this limit exists in X (and is independent of the sequence (P,) of partitions
and choice of & ). Here

[ Pull := max (tx — tg—1).
1<k<n
We refer to this integral as the strong (Riemann) integral of u over the interval

[a, b]. The strong Riemann integral has similar properties to its scalar version. For
example, suppose that u : [a,b] — X is strongly continuous on [a, b]. Then it can

be shown that, for each ¢ € [a, b],
t d t
< [wonas. S ([ wras) =uon

/ut u(s) ds

see [7, Section 1.6] and also [4, Subsection 2.1.5].

t
/ u(s) ds exists ,
a
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1.3.5 The Contraction Mapping Principle

As discussed earlier, when carrying out a rigorous investigation into problems
arising from mathematical models, the first step is usually to show that solutions
actually exist. Moreover, such solutions should be uniquely determined by the
problem data. Theoretical results which establish these properties are often referred
to as Existence-Uniqueness Results. To end this section, we present one of the most
important results of this type. We shall also supply a proof as this provides concrete
motivation for working with Banach spaces.

Theorem 1 (Banach Contraction Mapping Principle ) Ler (X, ||-||) be a Banach
space and let T : X — X be an operator with the property that

ITf —Tgl <allf—gl VY/fgeX,

for some constant o« < 1 (such an operator T is said to be a (strict) contraction).
Then the equation

Tf=f

has exactly one solution (called a fixed point of T) in X. Moreover, if we denote
this unique solution by f and use T iteratively to generate a sequence of vectors
(fi, THi, T>fi, T3 f1,...), where fi is any given vector in X, then

T" fi — f asn — oo.

Proof Let the sequence (f,)7, be defined as in the statement of the theorem. Then,
forn > 2,

1 fotr = full =W T = Thaall < @l fo = fuil < =" o= fill-

Note that the above inequality trivially holds for n = 1 as well. Hence, for any
m >n > 1, we have

”fm - fn” = ”fm - fm—l” + ”fm—l - fm—2|| +- ||fn+l - fn”
<@+ " A A

an—l

<" Ml+a+ad+-)lf- fil = 12— Al

l—«
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Since

Oln_l

lf2— fill = 0asn — oo,
l—«a

it follows that ( f,)°2, is a Cauchy, and hence convergent, sequence in the Banach

space (X, || - ||). Let f € X be the limit of this convergent sequence. Then, by
continuity of the operator 7', we obtain

foy1 =Tfy = lim fypy = lim TF, :T(lim fn) = f=Tf,
n—o0 n—o0 n—o0

and so f is a fixed point of T'. To show that no other fixed point exists, suppose that
both f and g are fixed points, with f # g. Then

If =gl =ITf = Tgll = el f -zl

Dividing each side by || f — g|| (£ 0) leads to 1 < &, which is a contradiction. O

2 Finite-Dimensional State Space

In this section we give a brief account of some aspects of the theory associ-
ated with autonomous finite-dimensional systems of ODEs and will explain how
continuous-time dynamical systems defined on the finite-dimensional state-space
R" arise naturally from such systems. This will pave the way for the discussion on
infinite-dimensional dynamical systems that will follow in the next section. Note
that the intention with these lectures is not to provide an exhaustive treatment of
systems of ODEs. Instead, we concentrate only on those results which will be
needed to analyse some selected problems arising in population dynamics. We
begin by examining the most straightforward case where we have a linear system
of constant-coefficient ODEs. We will then move on to systems involving nonlinear
equations and describe how, through the process of linearisation, useful information
on the long-time behaviour of solutions near an equilibrium solution can be obtained
from a related linear, constant-coefficient system. Obviously, before we can talk
about the long-time behaviour of solutions, we should make sure that solutions
do, in fact, exist. Hence, we shall highlight some conditions which, thanks to the
Contraction Mapping Principle, guarantee the existence and uniqueness of solutions
to systems of ODE:s.
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2.1 Linear Constant-Coefficient Systems of ODEs
2.1.1 Matrix Exponentials

Consider the following IVP involving a linear system of n constant-coefficient
ODEs:

W (1) = Ly (6) + Lioua(t) + -+ + Lty (1), u1(0) = 1y,

uy(t) = by (t) + lour(t) + -+ + Lyun (1), u2(0) = '32,

(1) = Ly (6) + Loz (1) + -+ + Lunttn (£), 1un(0) = 1ty

where [11,l12,...,1,» and l?tl, ey I?t,, are real constants. The problem is to find n
differentiable functions uy, us, ..., u, of the variable ¢ that satisfy the n equations
in the system. Obviously, before seeking solutions, we have to know that solutions
actually exist, and it is here that considerable progress can be made if we adopt
the strategy of working with matrix exponentials that was pioneered by the Italian
mathematician Guiseppe Peano in 1887 (see [13, pp. 503-504]).

The first step is to express the IVP system in the matrix—vector form

W (1) = Lu(t). u(0) = u, ®)
where L is the n X n constant real matrix

Iy iy -l
Iy Iy -+ 1oy

lnl ln2 lnn

and u(t) = (ui(t),...,u,(t)) is interpreted as a column vector. A solution of (8)
will be a vector-valued function in the sense that u(¢) lies in the n-dimensional
Banach space R” for each 7. This means that our state space X is R".

Note that u/(t) = (u}(¢).....u,(t)) with integrals of the vector-valued function
u being interpreted similarly; e.g.

/Ot u(s)ds = (/Otul(s)ds,...,/ot () ds).
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Expressed as (8), the linear system of ODEs bears a striking resemblance to the
scalar equation u'(t) = [u(t), and so it is tempting to write down a solution in the
form

ut) = e™u. )

It turns out that the unique solution of (8) can indeed be written as (9), but this
obviously leads to the following questions.

Q1. What does el mean when L is an n x n constant matrix?

Q2. How do we verify that (9) is a solution of (8)?

Q3. How do we prove that (9) is the only differentiable solution of (8) that satisfies
the initial condition u#(0) =1 € R"?

Q4. For a given n x n constant matrix L, can we actually express e* in terms of
standard scalar-valued functions of ¢?

To answer Q1, we consider the power series definition of the scalar exponential
1

e ie.

; 2 13
This infinite series converges to the number e/ = exp (/) for each fixed / € R.
Motivated by this, Peano defined the exponential of an n x n constant matrix L by
a formula, which, in modern notation, takes the form

L> L}
L _ —
e —exp(L)—I+L+7+?+---. (11)

Here [ is the n x n identity matrix, L? represents the matrix product LL, L3 is
the product LLL = L?L = LL? and so on. Note that the operation f + Lf,
where f is a column vector in R”, defines a bounded linear transformation that
maps R” into R”. If we use L to represent both the matrix and the bounded linear
operator that it defines, then it can be shown that the infinite series of n X n matrices
(or, equivalently, bounded linear operators in B(R")) will always converge (with
respect to the norm on B(R")) to a uniquely defined n x n matrix (which, as before,
can be interpreted as an operator in B(R")). Moreover

le“ |l < e,

where |L| :=sup{||Lf| : f € R"and || f| < 1} forany L € B(R"); see [15, pp.
82-84] and [13, p. 6]. It follows from (11) that, for any n x n constant matrix L and
any scalar ¢,

21> B3
etL:eXp(tL):1+tL+T+T+"', (12)
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and

||etL|| < e tHILI

The time-dependent matrix exponential defined by (12) has similar properties to
its one-dimensional “little brother”. For example, if L is any n X n constant matrix,
then

(P1) e =1;

(P2) eslel = ¢GHDL forall s,t € R;

(P3) £ (e™ f) = Le™f forany given vector f € R".

The derivative in (P3) is interpreted as a strong derivative with respect to the norm
on R”, so that

e(t+h)Lf _ eth
h

—LethH—>Oash—>0.

Note that an R”-valued function u is strongly differentiable at ¢ € R if and only
if each of its scalar-valued components ux, k = 1,2,...,n, is differentiable at c;
the strong and pointwise (or component-wise) derivatives are then identical. In other
words, the notions of strong derivative and pointwise derivative coincide in this n-
dimensional case. It should also be remarked that a stronger version of (P3) can be
established. Since

e ILl _ g

1 e} hk—l L k
le S —|IL]| = 0ash — 0,
k=2

H—(ehL—I)—L

h k! 7]

and

e(t+h)L_etL — (ehL—I)etL,

it follows that the operator-valued function ¢ > e’ is strongly differentiable in
B(R").

2.1.2 Existence and Uniqueness of Solutions

We can now answer Q2 and Q3. On setting u(t) = e'* I?t, it follows immediately
from properties (P1) and (P3) that

u@0)=Iu=u
and

u'(t) = Lu(t).
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Therefore u(t) = e L 1t is a solution of the IVP
W (t) = Lu(t), u(©0)=1u.

To show that this IVP has no other differentiable solutions, we argue in exactly
the same way as for the scalar case. Suppose that another solution v exists; i.e.

V/(t) = Lv(¢) and v(0) = li, and let ¢ > 0 be arbitrarily fixed. Then, for 0 < s <1,
we have

d
7 (@TV(9)) = —Le™Vhv(s) + T (s)
)
= —Le"™y(s) + e Ly(s) = 0,

where 0 is the zero vector in R”. It follows from this that e“~9%y(s) is a constant
vector for all s € [0, ¢]. On choosing s = 0 and s = ¢, we obtain

e u=e™y(0) = e "L (1) = e"Lv(t) = v(1).

Since this argument works for any # > 0 and we already know that v(0) = u(0) = I?l,

we deduce that v(¢) = u(t) = e uforall t > 0.

Note that this solution can bg used to geﬁne the n-dimensional CDS
¢ :[0,00) x R" — R", where ¢(t,u) := e’ u. The associated semigroup of
operators {S(t)},>0, S(t) := e, is referred to as the semigroup generated by the
matrix L, and, for each I?t, the set {S(¢) 0 t > 0} C R” is called the (positive semi-)
orbit of . Geometrically, we can regard the orbit as a continuous (with respect to t)

o
“curve” (or path or trajectory), emanating from u, that lies in the state-space R” for
all r > 0. The continuity property follows from the fact that

||ehL—I||fethILH_l_)()aSh_)O'

A constant solution, u(¢) = u for all ¢, where u = (uy,...,u,) € R” is called
an equilibrium solution or steady state solution. The orbit of such a solution is the
single element (or point) # € R”; u is called an equilibrium point (or rest point,
stationary point or critical point). If % is an equilibrium point, then Lu = 0. We
shall only consider the case when the matrix L is non-singular and therefore the only
equilibrium point of the system «’(#) = Lu(t) is u = 0. When each eigenvalue of
L has a negative real part, the equilibrium point 0 is globally attractive (or globally
asymptotically stable) since |l f|| — 0 ast — oo forall f € R"; see [13, p.12].

In principle, e > can be computed by using the fact that, if P is a non-singular
matrix and L = PAP~!, then e = Pe'A P~!. For example, if L has n distinct
real eigenvalues A1, . .., A,, then the corresponding eigenvectors can be used as the
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columns of a matrix P such that L = PAP™', where A = diag{A;,...,A,}, in
which case

et = Pe P! with e’ = diag{eM’, ... e*"}.

More generally, it can be shown that the components u;(¢), j = 1,...,n, of any
given solution u(¢) can be written as a linear combination of the functions

tkeHt cos(vi), tte™ sin(vt),

where ( + i v runs through all the eigenvalues of L, and k, £ are suitably restricted
non-negative integers; see [15, p.135].

One final remark in this subsection is that it should be clear that the restriction
t > 0is unnecessary in all of the above, and that we could just as easily have defined
a group {e"};cr. We have focussed only on the semigroup case since this is usually
the best that we can hope to obtain when we look at the more complicated setting of
semigroups generated by operators defined in an infinite-dimensional state space.

2.2 Nonlinear Autonomous Systems of ODEs

We have seen that IVPs involving constant-coefficient linear systems of ODEs have
unique, globally defined solutions that can be expressed in terms of matrix exponen-
tials. For more general systems of ODE:s, life becomes a bit more complicated and it
is usually difficult to obtain exact solutions. However, useful qualitative results can
sometimes be obtained. We shall consider the IVP

W (1) = F(u(t)), u(0)=u, (13)

where u(t) = (ui(t), ... un(t)), t= (Uy,...,up)and F : R" D W — R'isa
vector-valued function F = (Fj,..., F,) defined on an open subset W of R". A
solution of (13) is a differentiable function u : J — W defined on some interval
J C R, with 0 € J, such that

W(t) = Fu(t)) Vt e J, and u(0) = u .

2.2.1 Existence and Uniqueness of Solutions

The following theorem provides sufficient conditions for the existence of a unique
solution to (13) on some interval J/ = (—a, a). We shall denote such a solution by

o, l?t), i.e. attime ¢ € (—a, a), the solution is u(¢) = ¢ (¢, I?t) We shall also express
G(t, 1) as S(1) .
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Theorem 2 Let F be continuously differentiable on W.

(i)

(ii)

(iii)

o
(Local Existence and Uniqueness) For each ue W, there exists a unique

solution ¢ (-, ft) of the IVP (13) defined on some interval (—a, a) where a > 0.
(Continuous Dependence on Initial Conditions) Let the unique solution

o(, 13) be defined on some closed interval [0, b]. Then there exists a neigh-
bourhood U of i and a positive constant K such that if ve U , then the

corresponding IVP V' = F(v), v(0) = ;, has a unique solution also defined
on [0, b] and

g, u) — pt, V)| = SO u—S@)v || <eXJu—-v| Vielob]

(Maximal Interval of Existence) For each e W, there exists a maximal open
interval Jy. = (a, B) containing 0 (with o and B depending on I?l) on which

the unique solution ¢(t, li) is defined. If B < oo, then, given any compact
subset K of W, there is some t € («, B) such that u(t) ¢ K.

Remarks

(a)
(b)

©

Proofs of these results can be found in [15, Chapter 8].
The vector function F is said to be differentiable at g € W if there exists a
linear operator F, € B(R") such that

F(g+h) =F(g)+ F,(h)+ E(g,h), h e R",

where

IEG.DI _
=0 ||l ’

It can be shown that F,, can be represented by the n x n Jacobian matrix

81F1 82F1 8nF1

81F2 82F2 8,,F2
DF = : oL
a1}:)1 aZFn an}711

evaluated at g. The function F is continuously differentiable on W if all the
partial derivatives d; F; exist and are continuous on W.
The fact that F is continuously differentiable on W means that F satisfies a

local Lipschitz condition on W i.e. for each ie W there is a closed ball

B(w):={f eR": | f-ul<riCW
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(d)

(e

®
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o
and a constant k, which may depend on u and r, such that

IF() = F@ll <klf—gll VYfgeB .
The proof of Theorem 2(i) involves the Banach Contraction Mapping Principle.

The first step is to note that the IVP (13) is equivalent to the fixed point problem
u = Tu, where T is the operator defined by

(Tu)(t) = u + /0 F(u(s))ds.

i.e. u is a solution of (13) if and only if u satisfies the integral equation

ut) = u + / r F(u(s))ds.
0

The local Lipschitz continuity of F' can then be used to establish that 7" is
a contraction on a suitably defined Banach space of functions; this yields
existence and uniqueness. It is also possible to produce a sequence of iterates

o
(u,) convergent to the unique solution ¢ (-, #) by using the Picard successive
o
approximation scheme. We simply take u;(¢) = u and then set

1
Un(t) = 1t +/ F(up—1(s))ds, n=23,...
0

The proof of Theorem 2(ii) relies on Gronwall’s inequality which states that if
¥ : [0, b] — R is continuous, non-negative and satisfies

v(i)<C +K/0t1p(s)ds Vit el0,b],
for constants C > 0, K > 0, then
V() < CeX vielo,b].
It can be shown that the operators S(¢) have the following semigroup property:
S(6)S(s) = S(t + ) 1,

where this identity is valid whenever one side exists (in which case, the other
side will also exist).
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2.2.2 Equilibrium Points
When analysing the nonlinear autonomous system of ODEs
u = F(u), (14)

the starting point is usually to look for equilibrium points (corresponding to
constant, or steady-state solutions). In this case u is an equilibrium point if

Fi() =0, ..., F(@) =0,

and the local stability properties of the equilibrium u are usually determined by
the eigenvalues of the Jacobian matrix (DF) (). The equilibrium u« is hyperbolic if
(DF)(u) has no eigenvalues with zero real part.

An equilibrium # is said to be stable if nearby solutions remain nearby for all
future time. More precisely, u is stable if, for any given neighbourhood U of u,
there is a neighbourhood U; of # in U such that

e Uy = ¢(t,u) exists forall # > 0 and ¢ (¢, 1) € U forall t > 0.

If, in addition,
e U = q&(z,f)) —uast — oo,

then u is (locally) asymptotically stable. Any equilibrium which is not stable is said
to be unstable. When u is hyperbolic then it is either asymptotically stable (when all
eigenvalues of (DF)(u) have negative real parts) or unstable (when (DF)(ut) has at
least one eigenvalue with positive real part).

The basic idea behind the proof of these stability results is that of linearisation.
Suppose that u is an equilibrium point and that Iis sufficiently close to u. On setting

v(t) = ¢(t, I?l) — u, we obtain
V(t) = F(u +v(t)) ~ F(t) + (DF)(@) v(t)

ie. V(t) ~ (DF) (i) v(1).

Thus, in the immediate vicinity of i, the nonlinear ODE «' = F(u) can be
approximated by the linear equation

V' =Lv, where L = (DF)(&).
In effect, this means that in order to understand the stability of a hyperbolic

equilibrium point & of ¥’ = F(u), we need only consider the linearised equation
V' = (DF)(n)v.
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2.2.3 Graphical Approach in One and Two Dimensions

In the scalar case,

W (t) = Fu(t)), u(0) =u,

we can represent the asymptotic behaviour of solutions using a phase portrait.
Geometrically, the state space R' can be identified with the real line which, in this
context, is called the phase line, and so the value u(z) of a solution u at time ¢
defines a point on the phase line. As ¢ varies, the solution u(#) traces out a trajectory,

emanating from the initial point I?l, that lies completely on the phase line. If we
regard u(¢) as the position of a particle on the phase line at time ¢, then the direction
of motion of the particle is governed by the sign of F(u(z)). If F(u(t)) > O the
motion at time ¢ is to the right; if F(u(¢)) < 0, then motion is to the left.

In two-dimensions, we use the phase plane. Here, we interpret the components
uy(t) and uy(¢) of any solution u(t) as the coordinates of a curve defined paramet-
rically (in terms of ¢) in the u;—u, phase plane. Each solution curve plotted on the
phase plane is a trajectory. A trajectory can also be regarded as the projection of a
solution curve which “lives” in the three-dimensional space R* (with coordinates
uy, up and t) onto the two-dimensional u;—u, plane. Phase plane trajectories have
the following important properties.

1. Each trajectory corresponds to infinitely many solutions.

2. Through each point of the u;—u, phase plane there passes a unique trajectory and
therefore trajectories cannot intersect.

3. On the phase plane, an equilibrium point # = (i, i) is the trajectory of the
constant solution

ur(t) =u1, w()=u, tek

4. The trajectory of a non-constant periodic solution is a closed curve called a cycle.

The key to establishing these properties is to use the uniqueness of solutions to IVPs.
For example, suppose that the point i lies, not only on the trajectory C (I?t), but also
on the trajectory C (3) corresponding to the solution ¢ (-, 3) Then, = ¢ (to, 3) for
some 7y and therefore the function ¥ (¢t) = ¢ (t —1o, 5) is a solution of the system that
satisfies the initial condition ¥ (0) = . By uniqueness of solutions, ¥ (¢) = ¢ (¢, 13).
Therefore, the trajectories corresponding to ¥ and ¢ (., Z) (and hence ¢ (-, 3) and

o, z)t)) are identical.
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2.3 Dynamical Systems and Population Models

Suppose we are interested in the long-term behaviour of the population of a partic-
ular species (or the populations of several inter-related species). By a “population”
we mean an assembly of individual organisms which can be regarded as being
alike. What is required is a mathematical model that contains certain observed or
experimentally determined parameters such as the number of predators, severity of
climate, availability of food etc. This model may take the form of a differential
equation or a difference equation, depending upon whether the population is
assumed to change continuously or discretely. We shall restrict our attention to the
case of continuous time. We can attempt to use the model to answer questions such
as:

1. Does the population — 0 as ¢ — oo (extinction)?

2. Does the population become arbitrarily large as ¢ — oo ( eventual overcrowd-
ing)?

3. Does the population fluctuate periodically or even randomly?

Example 5 Single Species Population Dynamics (see [14, Section 2.1]). When
all individuals in the population behave in the same manner, then the net effect of
this behaviour on the total population is given by the product of the population
size with the per capita effect (i.e. the effect due to the behaviour of a typical
individual in the population). For example, if we consider the case of the production
of new individuals, then the rate of change of the population size N(¢) at time ¢ in a
continuous-time model can be expressed as

dN
i N x per capita reproduction rate. (15)
This can be written as
1 dN

— —— = per capita reproduction rate
N p p p

or, equivalently,

7 In(N) = per capita reproduction rate.

(i) The Malthus Model. In this extremely simple model, the per capita
reproduction rate is assumed to be a constant, say §, in which case Eq. (15)
becomes

dN
— = N,
dt Z
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andso N(t) = e ]{,/ , where ]{,/ = N(0). This type of population growth is often
referred to as Malthusian growth. The Malthus model can easily be adapted
to include the effect of deaths in the population. If we also assume that the
mortality rate is proportional to the population size, then we obtain

dN

— = BN —86N =rN,

dt P
where —§N represents the decline in population size due to deaths, and the
parameter r = f — § is the net per capita “growth” rate. The solution now is
given by

N(t) =" N. (16)

o

where N(0) = N is the initial size of the population. It follows that:

r>0= N()—>o00 ast—>oo (overcrowding)
r<0= N(t)—0 ast — oo (extinction)

r:O:N(t)z]Cf VYt > 0.

Clearly, the solution (16) leads to an unrealistic prediction of what will happen
to the size of the population in the long term and so we must include other
(nonlinear) effects to improve the model.

The Verhulst Model. A slightly more realistic model is given by

‘% —G(N)N, t>0;. N©O) =N,

with a variable net growth rate G depending on the population size N. In some
cases we would expect G to reflect the fact that there is likely to be some intra-
specific competition for a limited supply of resources. This would require a
growth rate, G(N), that would lead to a model predicting a small population
growth when N is small, followed by more rapid population growth until N hits
a saturation value, say K, beyond which N will level off. If N ever manages to
exceed K, then G(N) should be such that N rapidly decreases towards K.

For example, the equation of limited growth is

dN N o
— =r|{l——=|N, N@O=N, 17
T=r(1-g)% Nvo =X (1)
where K and r are positive constants. To obtain this equation, we have set
G(N) = r(1—N/K). Note that K is the population size at which G is zero and
therefore dN/dt = 0 when N = K. Equation (17) is called the (continuous
time) logistic growth equation or Verhulst equation, the constant K is called the
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carrying capacity of the environment, and r is the unrestricted growth rate. The
method of separation of variables can be used to show that the solution of (17)
is

K
1-(1-K/ ]C[)exp(—rt) ’

N(t) = (18)

and therefore N(t) — K ast — oo.

Example 6 Models of Two Interacting Species (see [14, Section 2.2]). We now
consider how interactions between pairs of species affect the population dynamics of
both species. The type of interactions that can occur can be classified as follows:

* Competition: each species has an inhibitory effect on the other;

* Commensalism: each species benefits from the presence of others (symbiosis);

* Predation: one species benefits and the other is inhibited by interactions between
them.

In any given habitat, such as a lake, an island or a Petri dish, it is likely that a
number of different species will live together. A common strategy is to identify two
species as being the most important to each other, and then to ignore the effect on
them of all the other species in the habitat.

In the case when the two species are in competition for the same resources, any
increase in the numbers of one species will have an adverse effect on the growth rate
of the other. The competitive Lotka—Volterra system of equations used to model this
situation is given by

uy = wi(ry — Iy — lous),  uhy = us(ry — byuy — Inuy), (19)

where

e uy(t),us(t) are the sizes of the two species at time ¢;

* 11, Iy are the intrinsic growth rates of the respective species;

e [11, I, represent the strength of the intraspecific competition within each species,
with /11 and r,/ [, the carrying capacities of the respective species;

* 12,1y represent the strength of the interspecific competition (i.e. competition
between the species).

Each of the constants ry, 15, [11, l12, [21, [22 is positive.
o
It follows from the existence-uniqueness theorem that, for each initial state u,

there exists a unique solution u(t) = S(¢) it defined on some interval [0, tinax), Where
tmax < 00 only if |lu(?)|| diverges to infinity in finite time. Moreover, since the non-
negative u; and u, axes are composed of complete trajectories, any trajectory that
starts off in the positive first quadrant must remain there; i.e. solutions that start off
at positive values stay positive (recall from phase plane analysis that trajectories in
the phase plane cannot intersect).
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Let L be the matrix
I 112i|
L = ,
[121 In

and assume that |L| # 0. The system of Eq. (19) has four equilibria, namely

Uy =(0,0), Uy = (r1/111,0), Us = (0,12/ [5) and Uy = (u7, u3),

where
[”T:| ! I:”1:| _ 1 |:r1122—r2112:|
uy r |L| [ ra2lin —rila
Note that
/ /
|L| > 0 when L2
»n Dy
/ l
|L| < O0when 22 > 1.
lyy Iy

From this, we can deduce that there are two scenarios that result in u’f > 0 and
uj > 0, namely

lp o In
< - <

Casel : — —
Il 1 Iy
/ /
Case Il : £< n < ﬁ.
by rn  In

The Jacobian matrix at (x, y) is given by

(DF)(x, y) = |:r1—2111x—112y —lipx :|
—lyy r—lix—=2lny

For the equilibrium U, we have

(DF)(0,0) = [’1 0} ,
0 r

and it follows immediately that U, is unstable in each of Case I and Case II.

Consider now the other three equilibria when Case I applies. To determine the
stability properties of these, we note first that the characteristic equation of a real
2 x 2 matrix, say A4, can be written in the form

A2 —trace(A) A + |A]| = 0.
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It follows that a non-singular matrix A will have two eigenvalues with negative real
parts when |A| > Oand trace(A) < 0, and will have exactly one positive eigenvalue
when |A| < 0. At U, we have

(DF)(r1/ 11.0) = [—rl ~lpri/In ]

0 rn—IDir/l

As the determinant of this Jacobian matrix is

[
) <o
11

the equilibrium U, is unstable. Similarly, Us is unstable. Now consider Uy. In this
case,

(DF) @ ut) = |:r1 — 2y — houy —liou¥ ] _ [—lnuf _zuu;«]

—121145’< Iy — Zzll/t’lk — 2122143< —121145’< —Zzzu;
Consequently, the characteristic equation takes the form
A%+ At + boud) +ufui |L| =0,

and therefore U, is locally asymptotically stable (since the trace of the Jacobian
matrix is negative and the determinant is positive). In fact, it can be shown that
all trajectories in the positive first quadrant converge to Uy as t — oo; see [14,
p. 32]. Thus, in Case I, the competing species may coexist in the long term. Note
that the condition 11l > [j2051, which holds here, can be interpreted as stating
that the overall intraspecific competition is stronger than the overall interspecific
competition.

In Case 1II, a similar analysis shows that U, and U; are both asymptotically
stable, with U, unstable (in fact Uy is a saddle point). It follows that, in the long
term, one of the species will die out. The species that survives is determined by the
initial conditions. Since Uy is a saddle point, there exist stable and unstable orbits
emanating from Uy; see [24, p. 21]. These orbits are referred to as separatrices.
As discussed in [14, p. 31], if the initial point on a trajectory lies above the stable

separatrix, then the trajectory converges to Us (i.e. species u; dies out). If it lies
below this separatrix, then the trajectory converges to U, (i.e. species u; dies out).

For an analysis of the case when Uy does not lie in the first quadrant of the phase
plane, see [14, Section 2.3]. Note also that the equations used to model two species
which are interacting in a co-operative manner are also given by (19), but now we
have 112 < O, 121 < 0,[11 > 0 and 122 > 0.

Example 7 The SIR Models of Infectious Diseases (see [14, Chapter 3], [9,
Chapter 3] and [12, Chapter 6]). In simple epidemic models, it is often assumed
that the total population size remains constant. At any fixed time, each individual
within this population will be in one (and only one) of the following classes.
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e Class S : this consists of individuals who are susceptible to being infected (i.e.
can catch the disease).

¢ C(lass I : this consists of infected individuals (i.e. individuals who have the disease
and can transmit it to susceptibles).

¢ Class R : this consists of individuals who have recovered from the disease and
are now immune.

The class R is sometimes regarded as the Removed Class as it can also include
those individuals who have died of the disease or are isolated until recovery. The
SIR model was pioneered in a paper “Contribution to the Mathematical Theory of
Epidemics” published in 1927 by two scientists, William Kermack and Anderson
McKendrick, working in Edinburgh. In searching for a mechanism that would
explain when and why an epidemic terminates, they concluded that: “In general a
threshold density of population is found to exist, which depends upon the infectivity,
recovery and death rates peculiar to the epidemic. No epidemic can occur if the
population density is below this threshold value.”

If we let S(¢), I(¢) and R(¢) denote the sizes of each class, then the following
system of differential equations can be used to describe how these sizes change with
time:

d
i — _BSI (20)
dl
= BSI=yI Q1)
dR

Here we are making the following assumptions.

* The gain in the infective class is proportional to the number of infectives and the
number of susceptibles; i.e. is given by BS1, where f is a positive constant. The
susceptibles are lost at the same rate.

* The rate of removal of infectives to the recovered class is proportional to the
number of infectives; i.e. is given by yI, where y is a positive constant.

We refer to y as the recovery rate and 8 as the transmission (or infection) rate.

Note that, when analysing this system of equations, we are only interested in
non-negative solutions for S(¢), I(¢) and R(¢). Moreover, the constant population
size is built into the system (20)—(22) since adding the equations gives

ds  dl  dR _
dt ' dt  dr

showing that, for each ¢,

S@)+ 1(t) + R(t) = N,
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where N is the fixed total population size. The model is now completed by imposing
initial conditions of the form

SO =S~N, I0)=1=N—-§>0, R0)=0.

Given particular values of 3, v, § and ]0 , we can use the model to predict whether
the infection will spread or not, and if it does spread, in what manner it will grow
with time. One observation that can be made more or less immediately is that the
infectious class will grow in size if dI/dt > 0. Since we are assuming that there
are infectious individuals in the population at time ¢ = 0, Eq. (21) shows that /(¢)

will increase from its initial value provided § > y/B. The parameter Ry = B/y
is called the Basic Reproductive Ratio and is defined as the average number of
secondary cases produced by an average infectious individual in a totally susceptible
population.

We shall determine the long term behaviour of solutions by arguing as follows.

e Since S(¢) + I(t) + R(t) = N for all ¢, the system is really only a 2-D system
and so we shall concentrate on the equations governing the evolution of S and
I. For this 2-D system, we have an infinite number of equilibria, namely (S, 0),
where S can be any non-negative number in the interval [0, N]. Note that these
equilibria are not isolated (i.e. for each of these equilibria, no open ball centred
at the equilibrium can be found that contains no other equilibrium). This means
that the customary local-linearisation at an isolated equilibrium cannot be used
to determine the stability of the equilibria of this 2-D system.

* The non-negative S axis consists entirely of equilibrium points and the non-
negative [ axis is composed of two complete trajectories, namely the equilibrium

(0, 0) and the positive I axis. This means that solutions that start off with § >0

and / > 0 remain positive.
e Since S(t) > 0 and I(¢) > 0, it follows (from the equation for .S) that S(¢) is

strictly decreasing. Hence S(¢) < § for any ¢ > 0 for which S(¢) exists. Note
that it is impossible for 7(¢) to blow up in finite time since

I'(t) < (BS —)I(0)

l‘I/(S) - t ° _ ° 3
:/0 - ds_/o(/ss “pyds=(BS —py

= In(I(1) <In(1) + (BS —p)

= 0 < I(1) <exp(BS 1)) I .

Therefore both S(¢) and /(¢) exist globally in time. Moreover, if 50‘ < y/B, then
I(t) > 0ast — oo.
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* For the epidemic to spread initially, we require § > y/B, since we will then have
I'(0) > 0. However, in this case there will exist some finite time, say ¢*, such
that S(¢*) < y/B. To see this, simply observe that if we assume that S(¢t) > y/8

for all ¢ then we obtain I(¢) > ; and S'(¢t) < —y ; for all 7. From this it follows
that

S(Z)f—y;t+§—>—ooast—>oo,

which clearly is a contradiction. Arguing as before (but now with 50‘ replaced
by S(t*)) shows that once again /(t) — 0 as ¢ — oo, despite /(¢) initially
increasing.

» Since S(¢) is a strictly decreasing function that is bounded below (by zero), S(¢)
must converge to some limit Soc > 0 as  — co. We now establish that So, > 0,
showing that although the epidemic ultimately dies out, this is not caused by the
number of available susceptibles decreasing to zero. Here we make use of the
equation for R. We have

as  dsjdi B .
L = P55 = exp(—pR .
dR " aRjdi = yo 7 ST exPPRINS

Since R < N, we deduce that S is always greater than the positive constant

exp(—,BN/y)§ and therefore So, > 0.
* Finally the trajectories in the S — I phase plane can be obtained from the ODE

B R
ds BS’

This has solution given by
I'=N—=S§+(y/B)In(S/S);

here we have used the fact that § + ; = N. Consequently, on taking limits
(t — o0) on each side, and rearranging, we obtain

Soo = N + (1/B) In(Seo/ S).

o
For each given §, this equation has only one positive solution S.

To summarise, we have shown that each solution (S(¢), I(¢)) will converge to an
equilibrium (S, 0), with S > 0, which is determined by the initial value of S.
From this, it follows that (S(¢), 1(¢), R(t)) = (S00,0, N — Sxo) as t — o0. The
value of N — S shows the extent to which the infection has affected the population.
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3 Infinite-Dimensional State Space

We now move into the realm of infinite-dimensional dynamical systems. There-
fore, in the following discussion, we shall assume that the state space X is an
infinite-dimensional Banach space with norm | - ||. The aim now is to express
evolution equations in operator form as ordinary differential equations which are
posed in X. We shall consider only problems of the type

W) = L u(t)) + N u@), t >0, u(0)=u, (23)

where L : X D D(L) — X and N : X — X are, respectively, linear and nonlinear
operators, with D(L) a linear subspace of X. In (23), the derivative is interpreted
as a strong derivative, defined via (6) and (7), and a solution u : [0,00) — X is
sought. The operator L 4+ N that appears in (23) governs the time-evolution of the
infinite-dimensional state vector u(-), and the initial-value problem (23) is usually
called a (semi-linear) abstract Cauchy problem (ACP).

To provide some motivation for looking at infinite-dimensional dynamical sys-
tems, we shall investigate a particular mathematical model of a system of particles
that can coagulate to form larger particles, or fragment into smaller particles.
Coagulation and fragmentation (C-F) processes of this type can be found in many
important areas of science and engineering. Examples range from astrophysics,
blood clotting, colloidal chemistry and polymer science to molecular beam epitaxy
and mathematical ecology. An efficient way of modelling the dynamical behaviour
of these processes is to use a rate equation which describes the evolution of the
distribution of the interacting particles with respect to their size or mass; see [10,23]
and also Section 1 of the contribution to this volume by Philippe Laurencot [18].

Suppose that we regard the system under consideration as one consisting of a
large number of clusters (often referred to as mers) that can coagulate to form
larger clusters or fragment into a number of smaller clusters. Under the assumption
that each cluster of size n (n-mer) is composed of n identical fundamental units
(monomers), the mass of each cluster is simply an integer multiple of the mass of a
monomer. By appropriate scaling, each monomer can be assumed to have unit mass.
This leads to a so-called discrete model of coagulation—fragmentation, with discrete
indicating that cluster mass is a discrete variable which, in view of the above, can
be assumed to take positive integer values.

In many theoretical investigations into discrete coagulation—fragmentation mod-
els, both coagulation and fragmentation have been assumed to be binary processes.
Thus a j-mer can bind with an #n-mer to form a (j +n)-mer or can break up into only
two mers of smaller sizes; see the review article [10] by Collet for further details.
However, a model of multiple fragmentation processes in which the break-up of
a n-mer can lead to more than two mers has also been developed by Ziff; for
example, see [25]. Consequently, we shall consider the more general model of
binary coagulation combined with multiple fragmentation in the work we present
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here. In this case, the kinetic equation describing the time-evolution of the clusters
is given by

w,(1) = —anuy (1) + Y ajby ju; (1)
j=n+1
1n—l e’}
5 D gt (O (€)= 3 ke juan (0 (1) (24)
j=1 J=l1
un(0) = ,, n=12.3,..., 25)

where u,(¢) is the concentration of n-mers at time ¢ (where ¢ is assumed to be
a continuous variable), a, is the net rate of break-up of an n-mer, b, ; gives the
average number of n-mers produced upon the break-up of a j-mer, and k,, ; =k,
represents the coagulation rate of an n-mer with a j-mer. Note that the total mass in
the system at time ¢ is given by

M(@0) =) nuy(0)

n=1

and for mass to be conserved we require

j—1
Y onbyy=j. j=2.3.... (26)
n=1

On using this condition together with (24), a formal calculation establishes that
M'(t) =0.

When the fragmentation process is binary, the C-F equation is usually expressed
in the form

n—l1 o)
1
u;(z)z—zun(r);Fj,n_,»+ > Fujonuj(0)

j=n+1
1 n—1 o)
+5 D kit (O (1) =k jun (Ouj (1) 27)
j=1 J=l1

where F, ; = F;, represents the rate at which an (n + j)-mer breaks up into an
n-mer and a j-mer. In this case,

n—1
2a,,: E F]‘J,_J’, b,,,jaj:F,,,j_,,
=1
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and so

-1
Fn j—n 2Fn j—n g
bn,j = -/ = '—l,] = an.j =2
4 YiaiFjr D

i.e. the number of clusters produced in any fragmentation event is always two.

Equation (27) is the binary model that has been studied in [1] and [11], where
existence and uniqueness results are presented for various rate coefficients. The
underlying strategy common to each of these is to consider finite-dimensional
truncations of (27). Standard methods from the theory of ordinary differential
equations then lead to the existence of a sequence of solutions to these truncated
equations. It is then shown, via Helly’s theorem, that a subsequence exists that
converges to a function u that satisfies an integral version of (27). A solution
obtained in this way is called an admissible solution. A similar approach has
been used by Laurencot in [17] to prove the existence of appropriately defined
global mass-conserving solutions of the more general Eq. (24), and also, in [18],
of the continuous-size coagulation equation, which takes the form of an integro-
differential equation.

In contrast to the truncation approach used in the aforementioned papers, here
we shall show how results from the theory of semigroups of operators can be used
to establish the existence and uniqueness of solutions to (24). For simplicity, we
shall assume that k, ; = k for all n, j where k is a non-negative constant. Note,
however, that a semigroup approach can also deal with more general coagulation
kernels. In particular, results related to the concept of an analytic semigroup play
an important role. We shall not discuss analytic semigroups in these notes, but the
interested reader should consult the contribution to this volume by Banasiak [3]
where the continuous size C-F equation is investigated via analytic semigroups.

To see how an IVP for the discrete C—F equation can be expressed as an ACP, we
define u(t) to be the sequence (u;(t), ux(),...,u;(t),...). Then u(z) is a sequence-
valued function of ¢ for each ¢t > 0, and it therefore makes sense to seek a function u,
defined on [0, 00), that takes values in an infinite-dimensional state space consisting
of sequences. The state space that is most often used due to its physical relevance
is the Banach space E} discussed in Example 4. The 6%-n0rm of a non-negative
element f € £ (ie. f = (f1, f2,...) with f; > Oforall j), givenby 372, jf;,
represents the total mass of the system. Similarly, the K(l)-norm of such an f gives
the total number of particles in the system. Note that 6% is continuously imbedded
in £} since

[flox < I flli YV f €tl.

The function u will be required to satisfy an ACP of the form

W (1) = L(u(t)) + N (ut)), u(0) = u,
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where L and N are appropriately defined operator versions of the respective
mappings

oo

fo— —an fu + Z ajby,;f;and

j=n+1

kn—l fo%e)
Jn = ngn—jfj—kanf;, (n=1,2,3,..).

J=1 Jj=1

We begin our investigation into (23) by considering the case when only the linear
operator L appears on the right-hand side of the equation; i.e. (23) takes the form

W) =Lu@), t >0, u©)=u. (28)

In the context of our C—F model, this will represent a situation when no coagulation
is occurring; i.e. the coagulation rate constant k is zero.
A function u : [0, c0) — X is said to be a strong solution to (28) if

(i) u is strongly continuous on [0, c0);

(ii) the strong derivative u’ exists and is strongly continuous on (0, 00);
(iii) u(t) € D(L) foreacht > 0;
(iv) the equations in (28) are satisfied.

3.1 Linear Infinite-Dimensional Evolution Equations
3.1.1 Bounded Infinitesimal Generators

Although an infinite-dimensional setting may seem a bit daunting, it turns out that,
for a bounded linear operator L, the methods discussed earlier in finite dimensions
continue to work. Indeed, when L is bounded and linear on X, then the unique
strong solution of the linear infinite-dimensional ACP (28) is given by

u(t) = e'™u, (29)
where the operator exponential is defined by

IZLZ l3L3
tL __
e —I+tL+—2! + 3

TR (30)

with I denoting the identity operator on X. This infinite series of bounded, linear
operators on X always converges in B(X) to a bounded, linear operator on X.
Moreover,

e = [ esLe = o6HDL forall st € R: e u—su in X ast — O (31)
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see [19, Theorem 2.10]. It can easily be verified that the function ¢ (¢, ft) = ey
defines a continuous, infinite-dimensional dynamical system on X .

The person who appears to have been the first to generalise the use of matrix
exponentials for finite-dimensional systems of ODEs to operator exponentials in
infinite-dimensional spaces is Maria Gramegna, a student of Peano, in 1910; see
[13]. Peano had considered some special types of infinite systems of ODEs in 1894,
but it was Gramegna who demonstrated that operator exponentials could be applied
more generally, not only to infinite systems of ODE:s, but also to integro-differential
equations.

Example 8 We examine the simple case of an IVP for a fragmentation equation in
which a; = a for all j > 2, where a is a positive constant. We shall show that the
corresponding linear fragmentation operator L is bounded on Zi. If we recall that
a; = 0, and also that the mass-conservation condition (26) holds, then we obtain,
for each f € (!,

o0 o0
ILfha =) n|—anfo+ Y ajbu;f

n=1 j=n+1
o0 o0 o0

< nadful Y D najbalfil
n=1 n=1 j=n+1
00 00 j—1

=Y na, Ifn|+Z<Z”bn,j) aj|fil
n=1 j=2 \n=1
o0 o0

= nay | ful + ) jaj | fj]
n=1 j=1

o0
=24y nlfyl = 2] f .

n=1

It follows that L € B(£}) and so the ACP
W' (6) = L (u(t). u(0) = u,
has a strong, globally-defined, solution given by
u(t) = el .

As we shall demonstrate later when we consider the fragmentation equation with
less restrictive conditions imposed on the rate coefficients a,, this strong solution is
o o
non-negative whenever u is non-negative, and |lu(¢)||1; = || # ||;.; forall z > 0,
showing that mass is conserved.
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3.1.2 Unbounded Infinitesimal Generators: The Hille—Yosida Theorem

In many applications that involve the analysis of a linear evolution equation,
posed in an infinite-dimensional setting, when an approach involving semigroups
of operators and exponentials of operators is tried, the restriction that L is bounded
and defined on all of the state space X is frequently too severe. In most cases,
L is unlikely to be bounded and is usually only defined on elements in X which
have specific properties. Is it possible that a family of exponential operators {e'-},>o
can be generated from an unbounded linear operator L and yield a unique solution
to the IVP (28) via (29)? The answer to this is yes. In 1948, Einar Hille and
Kdsaku Yosida, simultaneously and independently, proved a theorem (the Hille—
Yosida theorem) that forms the cornerstone of the Theory of Strongly Continuous
Semigroups of Operators. Since then, there has been a great deal of research
activity in the theory and application of semigroups of operators. Amongst many
other important developments, the Hille—Yosida theorem was extended in 1952
to a result that completely characterises the operators L that generate strongly
continuous semigroups on a Banach space X. What this means is that, when a
natural interpretation of “solution” is adopted, a unique solution to (28) exists if
and only if the operator satisfies the conditions of this more general version of the
Hille—Yosida theorem. Moreover, the solution is still given by (29), although, for
unbounded linear operators L, a different exponential formula has to be used to
define e L. One such formula is

e f = lim [ER(n/r,L)]"f — lim (l—iL)_ f. (32)
n—oo Lt n—oo n

where R(A, L) denotes the inverse of Al — L. Compare this with the scalar
sequential formula for e”,

e = lim (1 +11/n)".
n—>o00

There are many excellent books devoted to the theory of strongly continuous
semigroups; for example [6, 19,21] and [13]. Important details can also be found in
the lecture notes by Banasiak [3, Section 2.5] and a nice gentle introduction to the
theory is given by Bobrowski [8, Section 1]. As in [8], the account of semigroups
that is presented here is not intended to be comprehensive; instead we merely
summarise several key results from this very elegant, and applicable, theory. We
begin with the following fundamental definition.

Definition 2 Let {S(¢)},>0 be a family of bounded linear operators on a complex
Banach space X. Then {S(¢)},>0 is said to be a strongly continuous semigroup (or
Cy- semigroup) in B(X) if the following conditions are satisfied.

S1. S(0) = I, where [ is the identity operator on X.
S2. S(#)S(s) =S +s) forallz,s > 0.
S3. S(t)f — finXast — 0% forall f € X.
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Associated with each strongly continuous semigroup {S(¢)};>o is a unique linear
operator L defined by
M, D(L):=1{feX: lim

h h—0+

S(h)i—_fexistsinX . (33)

The operator L is called the infinitesimal generator of the semigroup {S(¢)};>¢. For
example, the infinitesimal generator of the semigroup given by S(¢) = e, where
L € B(X), is the operator L.

Before stating some important properties of strongly continuous semigroups and
their generators, we require some terminology.

Definition 3 Let L : X D D(L) — X be a linear operator.

(i) The resolvent set, p(L), of L is the set of complex numbers
p(L):={AeC:RA,L):=AI -—L)"" e B(X)};

R(A, L) is called the resolvent operator of L (at A).

(ii) L is a closed operator (or L is closed) if whenever (f,)52, C D(L) is such
that f, — fand Lf, — gin X asn — oo,then g € D(L) and Lf = g.

(iii) An operator L; : X D D(L;) — X is an extension of L, written L. C Ly, if
D(L) € D(Ly)and Lf = L, f forall f € D(L). The operator L is closable
if it has a closed extension, in which case the closure L of L is defined to be
the smallest closed extension of L.

(iv) L is said to be densely defined ifm = X, i.e. if the closure of the set D(L)
(with respect to the norm in X) is X. This means that, for each f € X, there
exists a sequence ( f,)°2, C D(L) such that || f — f,|| = 0asn — oo.

Theorem 3 (Some Semigroup Results) Ler {S(t)};>0 C B(X) be a strongly
continuous semigroup with infinitesimal generator L. Then

(i) S@)f —> Sty)finXast - tyforanyty>0and f € X;
(i) SO)f — finXast — 0%F;
(iii) there are real constants M > 1 and w such that

IS@)| < Me®" forallt > 0, (34)
(iv) feD(L)= Sk)f € D(L) forallt >0 and

%S(I)f =LSt)f =SE)Lf forallt >0and f € D(L); (35)

(iv) the infinitesimal generator L is closed and densely defined.
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We shall write L € 4(M, w; X) when L is the infinitesimal generator of a strongly
continuous semigroups of operators satisfying (34) on a Banach space X. When the
operator L € 4(1,0; X), L is said to generate a strongly continuous semigroup of
contractions on X .

Theorem 4

(Hille-Yosida) The operator L is the infinitesimal generator of a strongly
continuous semigroup of contractions on X if and only if

(i) L is a closed, linear and densely-defined operator in X ;
(ii) A € p(L) forall A > 0;
(iii) ||R(A,L)|| < 1/A forall A > 0.

(Hille-Yosida—Phillips—Miyadera—Feller) L € 9 (M, w; X) if and only if

(i) L is a closed, linear and densely-defined operator in X ;
(ii) A € p(L) forall A > w;
(iii) |(RAA,L)'| < M/(A—w)" forallA >w, n=1,2,...

Proofs of these extremely important results can be found in [19, Chapter 3].
We can now state the following existence/uniqueness theorem for the linear ACP

W' (t) = L (u(t)), t >0; u(0)=ue D(L). (36)

Theorem S Let L be the infinitesimal generator of a strongly continuous semigroup
{S(t)}1>0 C B(X). Then (36) has one and only one strong solution u : [0,00) = X

and this is given by u(t) = S(t)l?t .

The operator S(¢) can be interpreted as the exponential e ' if we define the latter
by (32); see [19, Chaper 6] for a proof.

3.1.3 The Kato—Voigt Perturbation Theorem

Although the Hille—Yosida theorem and the generalisation due to Phillips et al. are
extremely elegant results, in practice it is often difficult to check that the resolvent
conditions are satisfied for a given linear operator L. One way to get round this is
to make use of perturbation theorems for infinitesimal generators; see the book by
Banasiak and Arlotti [4]. The basic idea is to treat, if possible, the linear operator
governing the dynamics of the system as the sum of two linear operators, say
A 4+ B, where A is an operator which can easily be shown to generate a strongly
continuous semigroup {S4(¢)};>0 on a Banach space X, and B is regarded as a
perturbation of A. The question then is to identify sufficient conditions on B which
will guarantee that A 4+ B (or some extension of A + B) also generates a strongly
continuous semigroup on X . A number of perturbation results of this type have been
established. We shall focus on just one of these, namely the Kato—Voigt Perturbation
theorem, but only for the specific case when the state space is the Banach space EL
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of Example 4. An account of the general version of this important perturbation result
is given in [3, Section 2.6].

As mentioned earlier, non-negative elements in Z}L are taken to be sequences
f = (f1, f,...) with f; > Oforall j, in which case we write f > 0. An operator
T : Z}L > D(T) — Z}L, is said to be non-negative if Tf > 0 for all non-negative
f e D).

Theorem 6 (See [2, Theorem 2.1] and [4, Corollary 5.17]) Let the operators
A: EL D D(A) —» EL and B : EL D> D(B) —> Z}L have the following properties.

(i) A is the infinitesimal generator of a semigroup of contractions {S4(t)};>0 on
EL, with S4(t) > 0 forallt > 0.
(ii) B is non-negative and D(B) 2 D(A).
(iii) For each non-negative f in D(A),

> JMASf +Bf); <0.

Jj=1

Then there exists a strongly continuous semigroup of contractions, {S(t)};>0, on EL
satisfying the Duhamel equation

t
St f=8S40)f +/ S(t —s)BS4(s) fds, [ € D(A).
0
Each S(t) is non-negative and the infinitesimal generator of the semigroup is an

extension L of A + B.

Example 9 We now show that a straightforward application of this perturbation
theorem establishes the existence and uniqueness of solutions to the fragmentation
equation for a wide class of fragmentation rate coefficients. Once again we work in
the state space £!, and we take A and B to be the operators

(Af)n = —anfy. neN, D(A)={fell:Af etl},

(Bf)w:= Y bujajf;.n€N, D(B)=D(A).

j=n+1

Then

1. By arguing as in [8, Example 6], it is not difficult to prove that the operator A
is the infinitesimal generator of a strongly continuous semigroup of contractions
{S4(t)}1>0 on £} given by

(Sa@) fn:=e""" fo, n € N.

It is clear that S4(¢) > O for each ¢.
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2. The calculations used in Example 8 can be repeated to show that

IBFI <> > najbu;lfil

n=1 j=n+1

g(gnb,,,)a,m

a;lf,l— IAfIl. ¥ f € D(A).

Consequently, B is well defined on D(A) and Bf > O for all f € D(A) with
f=0.

3. A similar argument shows that

o

> n(Af +Bf)y =0V f € D(A) with f > 0.

n=1

Consequently, by the Kato—Voigt Perturbation Theorem, there exists a strongly
continuous semigroup of contractions {S(¢)};>0 generated by an extension L of
the operator (4 + B, D(A)), with S(¢) f > 0 for all non-negative f € £1.

In this example it is possible to show that L is the closure of (4 + B, D(A)) and
also that

oo

> n(Lf)a =0V f € D(L) with f > 0;

n=1

see [20]. Consequently, the ACP
W' (1) = L(u(t)), u(0) = ue D(L), u> 0,

with L = A + B, has a unique strongly differentiable solution « : [0, c0) — D(L)
given by u(t) = S(¢) i,
Other results that can be established for this discrete-size fragmentation equation
are:
o If the sequence (a,) is monotonic increasing, then S(¢) : D(A) — D(A) for all
t > 0 and therefore u(t) = S (l‘)l?l is the unique strong solution of the ACP

W' (t) = A ut)) + B (ut)), u(0) = ue D(A), u> 0.
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* Suppose that a, > 0 for all » > 2. Then
(A+ B)i=(0,0,...)in ] & =ce,

where ¢ is a constant and e; = (1,0,0,...). Moreover, it can be shown that
o ] ]

S(t)up — M(u)e; in £; as t — oo, where M(u) = > 7| n u,. This situation

is similar to that observed with the SIR model in that we have infinitely many

equilibria, and the equilibrium that any given solution converges to is uniquely

determined by the initial data.

See [5] and [20] for further details.

3.2 Semi-linear Infinite-Dimensional Evolution Equations

To conclude, we return to the semi-linear ACP (23). We shall assume that the
linear operator L is the infinitesimal generator of a strongly continuous semigroup
{S(#)}1>0 on X. A strong solution on [0, #y) of this ACP is a function u : [0, tp) = X
such that

(i) u is strongly continuous on [0, ty);
(i1) u has a continuous strong derivative on (0, #y);
(iii) u(t) € D(L) for 0 <t < to;
(iv) u(r) satisfies (23) for 0 <t < .
Suppose that u is a strong solution. Then, under suitable assumptions on N, u
will also satisfy the Duhamel equation

u(t) = S(t)l?t + /[ St —s)N(u(s))ds, 0=t <t. 37
0

This leads to the following definition of a weaker type of solution to the ACP.

Definition 4 A mild solution on [0, 7o) of (23) is a function « : [0,7) — X such
that

(i) wu is strongly continuous on [0, #y);
(ii) u satisfies (37) on [0, ty).

The definitions given earlier for a function on the finite-dimensional space
R" to be Fréchet differentiable, or to satisfy a local Lipschitz condition, extend
to operators on infinite-dimensional spaces. In particular, the nonlinear operator

N : X — X satisfies a local Lipschitz condition on X if, for each Iie X, there
exists a closed ball E,(l?t) ={feX:|f- I | < r} such that

INC(f) = NIl <kllf —gll. VfgeB ().
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Also, N is Fréchet differentiable at f € X if an operator Ny € B(X) exists such
that

N(f +h) = N(f)+ Ne(h) + E(f h), h € X,

where

IECE M _
im ——— = 0.
Inll—o 7]l
The operator N is the Fréchet derivative of N at f.

Theorem 7 Let L € (M, w; X) and let N satisfy a local Lipschitz condition on
X. Then there exists a unique mild solution of the ACP on some interval [0, tyay).
Moreover, if tiax < 00, then

|lu@)|| > ccast —t,,,.

Theorem 8 Let L € 9 (M, w; X) and let N be continuously Fréchet differentiable

on X. Then the mild solution of the semi-linear ACP, with fte D(L), is a strong
solution.

For proofs of these results, see [21, Chapter 6] and [7, Chapter 3].

Example 10 We now describe how these results have been applied to the discrete
C-F equation in [20,22] and [5]. Having already established that L = A + B is the
infinitesimal generator of a strongly continuous positive semigroup of contractions
on the space £!, we express the full C-F equation as the semi-linear ACP

W' (t) = L u(t)) + N (u(t)), t >0, u(0)=ue D(L),
where
k n—I1 o0
(Nfwi= 5D faify =k Y IS S €L,
j=1 j=1

We shall show below that N(f) € £} for all f € £}. For this it is convenient to
introduce the following bilinear operator

N(f.8) = Ni(f.8) = Na(f. ),

where, for f, g € {1,

~ k n—1 _ o)
N b =5 foigin Na(fi)lni=kD_ fugj. n€N.
j=1

Jj=1
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Note that N(f) = N (f. f). Also, it is straightforward to verify that N (-, -) is linear
in both left-hand and right-hand arguments. Consequently,

N(f+h f+h) =N f)+N(f.h)+ Nk, f)+ N, h. (38)

Now,
k oo n—l1
1MLl = 520 Y nlfamsllg)]
n=1 j=1
k o0 o0
=52 2 nlhllg)l
j=ln=j+l1
k o0 o ‘
=320 D+ NIfillg]
j=1i=1
k
<2 Ellfll gl =&lI/1 gl
Similarly,
IN LI < kILIIgI-
Hence

INCL @)l <2k /1 lgll and [NCOI < 2kI1 £ 17,

In the case when N( f) > 0, we can also deduce that

[e.]

INCOHI = Z NGO

TS

i=1

i=1

The bilinearity of N(, -) leads immediately to the Fréchet differentiability of N.
From (38), we obtain

N(f +h) = N(f)+ Ny(h) + N(h),
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where
Ny(h) == N(f.h) + N(h. f). (39)
For fixed f € £}, N is a linear operator on ¢} and also
INy B < 4kN fIIRIL Yh e 6 (40)
showing that Ny € B(X). Moreover,

NG|
(1721l

< 2k|[h]| — Oas ||| — O.

Hence, N is Fréchet differentiable at each f € £!, with Fréchet derivative given
by (39). Moreover, inequality (40) can be used to establish that N/ is continuous in
f. (Note that this also means that N is locally Lipschitz continuous.) We can now
apply Theorems 7 and 8 to conclude that the semi-linear ACP has a unique, locally
defined (in time) strong solution.

To complete our analysis, we must show that the solution u(#) is non-negative
for all ¢ for which it is defined. We would also like to establish that the solution is
defined for all # > 0. It turns out that the latter can be deduced directly from the
former since

[e.]

d o0
@l =1L @(@) + N @)l =D n(L (@)n + (N @(t)n =0,

n=1 n=1

showing that ||u(¢)|| cannot blow up in finite time. The proof that the solution
remains non-negative is the most involved part of the argument and so only some
outline details will be supplied here (see [20] for further information). In essence,
we use the following trick. The ACP is rewritten as

w'(t) = (L(u(t) —ou(t)) + (u(t) + N(u()).

where the constant « is chosen so that (N + «)u(z) > 0 for all ¢ in some interval
[0, o). The operator L — o is the infinitesimal generator of the positive semigroup
{e7* S(t)}1>0 (where {S(¢)};>0 is the positive semigroup generated by L). The
solution u of this modified equation satisfies the integral equation

u(t) = e~ S(t)u + /t e I8t — $)(N + a)uls)ds =: Toy(u(t)), t € [0, t].
0

The value 1 is selected so that the operator 7}, on the right-hand side of the above
equation is a contraction on a suitable Banach space of £-valued functions and
so we can obtain the solution u (the fixed point of this contraction) by means of
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o
successive iterations of T;, on the initial state u> 0. Since T}, is positivity preserving,
it follows that u(¢) > 0 for all ¢ € [0, #p]. We then repeat this argument, but now
with u(ty) as the initial state, and continue in this manner.
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Boundary Conditions in Evolutionary Equations
in Biology

Adam Bobrowski

1 A Gentle Introduction to the Theory of Semigroups
of Operators

Let me start by quoting Walter Rudin, who in the prologue to his book [43] writes
about the exponential function:

This is the most important function in mathematics. It is defined, for every complex number
z, by:

o0 n

exp() = % N
n=0"""

We will try to extend this definition to the case where z may be replaced by a
linear operator: in fact, we will see that for a large class of operators A one may
construct a function

Rt 5> e,

that will be in many aspects analogous to (1).
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48 A. Bobrowski
1.1 Bounded Linear Operators and Their Exponentials

Roughly speaking, an operator is a function having functions as arguments and
values. For example we may think of the following maps:

f=f

f=f

fe 12

fg g)=flx+a), xeR,
(S, f) = (D)., f(1)Apxn,

where a is a given number and A, x, is a given square matrix. An operator 4 is said
to be linear if for all scalars o and 8 we have

Alaf + Bg) = aAf + BAg, f.g € D(A),

where D(A) denotes the domain of A. From among the four operators listed above
only one is not linear. We note that it is customary to use no parentheses for
arguments of linear operators: hence, we write Af instead of A(f).

The notion of continuity of operators requires extra structure, which is conve-
niently provided by Banach spaces, i.e., vector spaces with complete norm. To
recall, a function || - | mapping a vector space of functions into R¥ is said to be
anorm iff for all f, g € X and all scalars «,

L | fIl = 0iff f =0,
2. laf = leel 111
3f +el = 1A+ gl

the third property being commonly referred to as the triangle inequality. Examples
include the spaces of continuous functions on compact sets with supremum norm,
i.e., with topology of uniform convergence, absolutely integrable functions with
respect to a given measure (with norm being the integral of the absolute value of
a function), etc. Completeness of the norm simply means that all Cauchy sequences
converge, i.e., that the space does not have “holes”. An operator A : B — B mapping
a Banach space B into itself is said to be continuous if convergence of its arguments
implies convergence of the corresponding values:

Ifo=fI=0 = [Af, —Af] = 0

where | - || is the norm in B. We note that completeness of B is not required for
the definition of continuity, but normed spaces which are not complete do not have
good properties and the theory is less satisfactory.
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Strikingly, for linear operators continuity is equivalent to boundedness, i.e. to the
condition:

Iuso¥re AfI <= M| f].

The smallest constant M with property exhibited above is denoted ||A|| and is a
norm in the space of all bounded (continuous) operators in B, denoted .Z(B). What
makes the theory beautiful (and useful) is that the space of bounded linear operators
on B is again a Banach space when equipped with this norm. (That . (B) is a linear
space, becomes obvious once we define (¢4 + fB)x := aAx + BBx.)

Having recalled the basic definitions, let us turn to the question of how to define
an operator exponential for a bounded operator. Of course, if the definition is to be
meaningful, this new object must resemble the exponential function for complex
numbers. In other words, we somehow need to mimic (1). Luckily, the very reason
that makes (1) work is the fact that the space of complex numbers is complete, and
the same argument may be applied to operators. To explain we recall that every
absolutely convergent series in a Banach space converges. This means that for any
sequence ( f,),; of elements of a Banach space condition ), || f»|| < oo implies
that the series in>1 [ is well-defined, i.e. the limit lim,, oo Z_Z=1 fx exists. To see
this, we note that the triangle inequality implies, for all N > n,

N N
DIRAEDN AR
k=n k=n

Hence, vectors g, = Y ,_, fk form a Cauchy sequence, implying existence of the
limit lim, - 00 8-

This allows the following definition. For A € Z(B) and ¢ € R (in fact, if B is
complex we could take complex ?):

o0
A . __ A"
c «— Z n_!s Z [S Rs (2)

n=0
for we have Y00 || 24" | < y°00 IAIE — elll4l < oo, In the previous-to-last
step we have used the fact, easily established by the definition of the operator norm,
that

IAB|| < [[A[l ]I B
for all A, B € Z(B).
Such a function has a number of good properties. To begin with, if A and B

commute (AB = BA), then

e =e’e” =e’e". 3)
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In particular,

e(1,‘+S)A — etAexA, e—tA — (etA)—l7 ez‘(A—I) — e—tetA; (4)

(if, for a given A € Z(B) there is a B € .Z(B) such that BA = Iy = AB, then
we write B = A~!; here I is the identity operator defined by Iy f = f). The
first equality here is the important semigroup property (in fact, here it is a group
property, since the equality holds for all 5,7 € R).

Example 1 Takea > 0 and b > 0 such thata + b > 0, and let B = R?. The space

£ (B) may be identified with the space of 2 x 2 matrices. For A = (_ba’ ab) we

have

A _ 1 b+ ae_(“_H’)t, a — ge—(atb)
© T a1 b \b—be@td g 4 pe—tathr |-

A _ e—(u+b)tetB

To prove this we note first that e where

B=A+(a+b)13=(b’a).
b, a

Since B> = (a + b) B, we have, by induction B" = (a + b)"~! B. This shows that

t(a+b)” 1
B _ Z B=1Is+——(“™" —1)B.
Bt +b A )

Therefore,
1 1
e = e—(u+b)t1 +—(1- e—(u+b)t B = B— e—(a+b)tA .
B a—+ b ( ) a+ b ( )

proving the claim.

We note that for ¢ > 0, the entries of e are transition probabilities of a
Markov chain with two states. At state 0 the chain waits for an exponential time
with parameter a and then jumps to 1, where it waits for an exponential time with
parameter b to come back to 0, and so on. The matrix A is an intensity matrix for this
chain. Denoting by X (¢) the state of the chain at time # > 0 we obtain for example
that the conditional probability of X (¢) being equal to 1 given that X(0) = 1 is the
upper right entry in e: Pr(X () = 1|X(0) = 0) = a — ae~ @),

Example 2 Let B = CJ0, oo] be the space of continuous functions on [0, co] with
limits at co. Equipped with the supremum norm, B is a Banach space, and for
given a > 0 the operator Af(x) = a[f(x + 1) — f(x)],x > 0 is bounded, since
lAf]l < 2a| f]l. To compute e for ¢ > 0 we use the definition and the fact that
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B := A + alp is a scalar multiple of the shift operator: Bf (x) = af(x + 1), x > 0
sothat B" f(x) = a" f(x + n),x > 0. Therefore,

at

n!

erAf(x) — e—aret(A-i—aI)f(x) — Ze—at " f(x + n)
n=0

=E f(x + N(1)), t >0,

where E denotes expected value. In the last line N(¢) is a Poisson-distributed

random variable with parameter at: Pr(N(¢t) = k) = e_“’%. In other words,
the operator exponential ¢4, > 0 describes a Poisson process. In this process, if
the starting point is x then after time # > 0 its position is random: with probability
Pr(N(t) = k) the process is at x + k.

Example 3 In the same space B = C|0, 00], let Af = f” with domain D(A4) =
C'[0, oc]. A is unfortunately unbounded: for f; defined by f,(x) = e, x > 0,
we have || f,|| = 1, while ||Af,|| = n; hence, there is no constant M such that
lAf, Il < M| full. Thus, it is not clear whether the series (2) converges. In fact, its
nth term is defined merely for f € C"[0, oo] (n-times continuously differentiable
functions with the nth order derivative in C[0, oo]). However, for f € C°°[0, oo]
and x > 0 we can write:

ety =Y A

n=0

" f)

n!

2 3
— ) + 1 () + %f”(x) + %f”/(x) ¥
=f(x +1),

with the last equality holding provided f is analytic. This suggests that for all f €
C10, oo] we should define

e f(x) = f(x +1).
It is easy to see that with such a definition ee® = el™94 je. that the
semigroup property holds [since we are dealing with an unbounded operator,
the semigroup property is not a consequence of (4)]. The so-defined semigroup
describes deterministic movement to the right with speed v = 1: if the starting
point is x then at time ¢ the process is at x + ¢. Note, however, that the operators €4
shift functions in B to the left.

An important moral to learn from this example is that with unbounded operators
we should not expect the exponent to be defined for negative ¢: here e = (e")~!
is undefined, since for # > 0 shifts to the left do not have inverses (part of the shape
of the shifted function is for ever lost). This example exemplifies also the fact that
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deterministic movements are usually described by means of first order differential
operators: here A = d . Finally, despite the fact that here the exponential formula
somewhat worked, we should not expect that it would do its job in general. As
we shall see later, for unbounded linear operators (2) should be replaced by, for
example:

A\ "
e = lim (1——) , t>0.
n

1.2 Exponentials of Unbounded Operators

Before turning to the definition of an operator exponential for unbounded operators
A, we will investigate the question of where does the semigroup property come
from. A better understanding of this crucial condition, will allow constructing
exponentials in a new way. So what is the real reason for:

ehett = 0 +n04, s,t>0?

Previously, we have derived this property from (3) which in turn required defi-
nition (2) and some manipulations on the power series involved. Here, we will
proceed differently. Fixing a bounded A and f € B, we consider the function
u(t) = e f with values in B. A simple calculation reveals that u is differentiable
withu/(t) = Ae" f = Au(t),t > 0.In other words, u is a solution to the differential
equation

W' (t) = Au(t)

with initial condition u(0) = f; i.e., a solution to the Cauchy problem related to
operator A. On the other hand, using the Banach fixed point theorem and the fact
that A is bounded it is easy to check that solutions to this equation are uniquely
determined. To continue, we fix s > 0 and consider v(t) = eT94 f = u(t +s). We
have V(1) = u'(t +s) = Au(t +5) = Av(t),t > 0. Now, since v(0) = u(s) = e f,
uniqueness of solutions forces

e(z+s)Af =v() = e’Av(O) = ¢ eYAf

which, on account of f being arbitrary, is none other than the semigroup property.
In other words, we conclude that the semigroup property reflects uniqueness of
solutions of the Cauchy problem. The point is that there are many more operators
for which the Cauchy problem is well-posed in the sense provided below than these
for which the series (2) converges. In this context, the following theorem is not
surprising at all, but quite important.



Boundary Conditions in Evolutionary Equations in Biology 53

Theorem 1 If A is a (not necessarily bounded) operator such that the differential
equation (in a Banach space)

du(t)
dt

= Au(t),t > 0, u0) = f

has exactly one solution uy for f in a dense set D, and if this solution depends
continuously on f, then the formula

A f = (1) 5)

defines an exponential function for A (a semigroup of operators).

The proof is quite obvious: for f € D uniqueness of solutions implies the
semigroup property, and the fact that D is dense allows defining e” f for f € B by
continuity.

Back to Example 3 A partial differential equation:

du(t, x) _ al,t(t,x)’Z -
ot ox -

0, u(0,x) = f(x),x €]0,00),

has exactly one solution for f € C'[0, o], given by

u(t,x) = f(x +1).
This equation is identical to the ordinary differential equation

du(?)

m = Au(t),t > 0, u(0) = f € C'0, 00], (6)

in the Banach space C [0, oo], where A = d—‘i. Clearly, C'[0, oo] is dense in C [0, o0]
and solutions depend continuously on initial data f (in the sense that lim,, . || f —
fl = 0 implies lim, o0 || /4 (- + 1) — f(- + t)|| = 0). In view of Theorem 1, this
gives

e f(x) = flx +1),

in agreement with our previous guess.

Note that there is a couple of subtle points here: in (6) derivates are taken
in the sense of topology in CJ[0, o], i.e., the topology of uniform convergence:
limy— ||u’ (£)— w | = 0, while these in the original equation are point-wise,
calculated for each x separately. Hence, apparently, solutions of (6) are solutions of
the original equation, but not vice versa. A more thorough analysis, however, reveals
that the opposite statement is also true: solutions of the original equation solve (6) as
well. Moreover, we note that while for f € C'[0, oo, u(t, x) = f(x+t) solves (6),
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a similar statement for f ¢ C![0, oo] does not make much sense since u is not even
differentiable—hence, we speak of generalized, or mild solutions.

Example 4 The PDE:

du(t,x)  10%u(t,x) _
S = 2 a3 1 >0, u(0,x) = f(x),x € R,

has the unique solution for f € C?[—o0, 00] given by

1
V2t

Hence, arguing as above, we obtain

u(t,x) =

o0 2
/ e_yTrf(x + y)dy.
—0o0

1 _d? 1

S0 = V2t

where w(?) is a normal variable with expected value O and variance 7. In other
1 . . . .
words, e’ 2 a? describes position at time ¢ of a random traveler performing a standard

Brownian motion on a line.

[_ e f(x + y)dy = E f(x + w(0),

To recapitulate: Theorem 1 describes a class of linear operators A for which
an exponential function Rt > ¢ > e may be defined. (Such operators are
called generators of semigroups of operators.) This class includes the bounded
linear operators, but is in fact far larger than the latter. As it is seen from the
examples, such exponential functions describe both deterministic and stochastic
processes. Interestingly, the entire information on exponential function and hence
the information on the whole deterministic or stochastic process is hidden in a single
(usually unbounded) operator. For instance, in Example 1 all transition probabilities
are hidden in the intensity matrix, and in Example 4, the Gaussian distribution is
hidden in the operator of second derivative.

The generators in the spaces of continuous functions are quite often of the
following form:

Af(x) = a(x) f"(x) + b(x) f'(x) + integral operator, xeR
where a > 0 and b are continuous functions. The related processes are ‘composi-

tions’ of three simpler ones:

« diffusion with variance a(x) depending on position x,
* deterministic movement along trajectories of the ODE x’(¢) = b(x(t)), and
* jumps (for example, Poisson process),
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However, an operator is more than just a “map”. In fact, it is a “map” on a specific
domain, and as we shall see later the domain may include information on the
behavior of the underlying process on the boundary.

1.3 From Semigroups to Generators

As we have seen, given an unbounded operator A, sometimes we can construct its
exponential function Rt 5 ¢ — e, Denoting T (t) = e”, we then obtain a family
of operators such that

TW)T(s)=T(s +1), t>0. (7

For f € D(A), we also have (see Theorem 1) lim;—o+ 7(t) f = f, and it
transpires that this condition may be extended to all f € B:

Jm T@)f =TO)f =/  [feB (®)

Such a family is called a (strongly continuous) semigroup of operators.

A natural question arises of whether given a strongly continuous semigroup of
operators {T'(¢),t > 0}, one can find an operator A such that T(t) = e, > 0.
The answer is in the positive, and Theorem 1 suggests the way to construct A: Af
should be the right-hand derivative of t > T'(¢) f att = O:

Af = lim ;(T(t) f=f) D(A)={f]thelimit lim ;(T(t) f—f) exists}.

It is a part of the Hille—Yosida theorem (see below) that ¢ — 7'(¢) is indeed the
exponential function of the so-defined A. To recall, instead of saying that t — T'(¢)
is the exponential function of A, we also often say then that A generates {7'(¢),
t > 0}.

Let us look at an example that will be of importance later.

Example 5 Let B = L'(R™) be the space of (classes of) absolutely integrable

functions on R, with the norm || f|| = Jr + [f(x)| dx and consider the following
operators:
fx—1), x>t,
T(n)f(x) = €))
0, X <t.

Itis clear that 7(t) f € L'(R*) and | T(¢) f || = || f|| so that all these operators are
bounded with

IT@] = 1. (10)
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A simple calculation shows that the semigroup property (7) holds. For the proof
of (8) we consider ¢;, A > 0 where e)(x) = e™** x > 0. Then

t 0 ;
IT(@)ex — el = / e M dx + / [0 — e dx = 2/ e M dx,
0 t 0

which converges to 0, as t — 0. It follows that (8) holds for all linear combinations
of ey,A > 0. On the other hand, since {e),A > 0} is a total set in LI(R+), a
three-epsilon argument based on (10) shows that (8) holds for all f € L'(R"),
establishing that {T'(¢), t > 0} is a semigroup of operators.

To find the generator of {7'(¢), ¢t > 0} we proceed as follows. Suppose f € D(A)
and Af = g. Then, forx > ¢ > 0,

/ [T £ () — f()]dy = / F—1)dy — / F()dy
0 t 0
=/ f(y)dy—/ f(y)dy
0 0

- —/_ F0) dy. (an

Since

[

we have lim/—o4 [, w dy = J; g(y)dy for all x > 0. On the other
hand, by (11), for almost all x > 0 (with respect to the Lebesgue measure),

/Ox Tt)f(y)— f(»y) dy = — lim l/i FO)dy = —f(x).

t t—>0+ ¢

rof»—r») g rofo)—r»)
t t

-g()

— 0,
0

(y)‘ dy <

lim
t—0+

Redefining f if necessary on a Lebesgue null set, we obtain

Fx) = — /0 ") dy. (12)

This implies that f is absolutely continuous with f(0) = 0 and f'(x) = —g(x).
Therefore, D(A) is contained in the set of such functions and on this set Af = — f”.

To prove the converse inclusion, we need an auxiliary result: Consider the
operators U(t) € Z(L'(R")),t > 0 given by

1
Ut)h(x) = /0 h(x +ty)dy,  heL'®%),x > 0.
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Clearly,

o0 1 o0 1
/0 |U(z>h(x)|dxs/0 /0 |h(x+zy)|dxdys/0 Ikl dy = |4l

[y

showing that U(1)h € L'(R") provided h € L'(R"), and that |U(¢)|| <
For e, defined at the beginning of this example, U(t)e, = fol e M) dy =
e —Ax fol e Mdy,ie.,

1
U(t)ey :/ e M dy e,
0

implying lim,_,o+ U(t)ey = e, . The three-epsilon argument shows as before that

11%1+ U(t)h = h, forall h € L'(R™). (13)
t—

A similar (but simpler) reasoning proves that

m& V(t)h = h, forall h € L'(RY), (14)
t—

where V(t)h(x) = h(x +1),x > 0,¢ > 0. (In fact, {V(¢),¢ > 0} is a semigroup of
operators.)

Coming back to the proof of the other inclusion, we consider f of the form (12).
Then

HT(t)f—f_ H_/m‘f(x—t)—f(x)_
— ¢ =) T

t

f(x)

== + (0| dx.

g(x)‘ dx—i—/ot

Since the second term does not exceed %f(f | f(x)|dx + fot lg(x)|dx — 0, as
t — 04, f being continuous with f(0) = 0, we need to show that the first term
converges to 0,as t — 0 + . Using f(x —¢) — f(x) = f;_t g(y)dy and writing
gx) = % /. xx—t g(x) dy, we see that this term can be estimated by

J i
t

o :[g(w — ()] dy‘ ar= [

:/0 ;/O[g(x+y)—g(x+r)1dy

o0

x—+t
[ e - s

dx

dx

o0 1
=/ /[g<x+ty)—g(x+r>1dy
0 0

o0 1
5/ ‘/ [g(x+zy)—g(x)1dy‘dx
0 0
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+ /0 lg(x) — g(x + 1) dx (15)
— [U()g — gl + IVD)g — gl (16)

This converges to 0 by (13) and (14), completing the proof of the fact that D(A) is
composed precisely of f of the form (12) and that Af = — f”.

1.4 The Hille-Yosida Theorem

In this section, we describe briefly the celebrated Hille—Yosida theorem [8, 21,22,
29, 32, 41]. To explain, for construction of a semigroup of operators, Theorem 1
requires knowing that a certain Cauchy problem is well-posed, i.e. that its solutions
are unique on a dense set and that they depend continuously on initial data. However,
checking this in practice is usually very difficult, and there is the need for other
conditions guaranteeing existence of the semigroup.

The Hille—Yosida theorem says that an operator A is the generator of a semigroup
{e,t > 0} of contractions (i.e. such that |le*|| < 1) iff it is closed, densely defined
and for all u© > 0, u — A is invertible with a bounded inverse such that

lp(u—A)~" < 1.

Moreover, if these conditions are satisfied

—n
e = lim (1 —5A) ) (17)
n—o00 n
We note that (1 — £4)™ := [(1 = £4)7']" = [u(u — A)~"]" where o = 2, so that

all operators on the right-hand side of (17) are contractions.

To explain the theorem, we need to cover the notion of a closed operator first. An
operator A in a Banach space B is said to be closed iff for any sequence ( f,),~; of
elements of its domain D(A) the conditions lim, o f, = f and lim, o0 Af, = g
imply that f € D(A) and Af = g. It is worth stressing that, although the definition
somewhat resembles that of continuity, it describes quite a different phenomenon:
the assumption that both limits lim, e f, = f and lim,_ Af, = g exist is
much stronger than the sole requirement that lim, ., f;, = f. For that reason, all
continuous operators are closed, but not vice versa. The definition simply means that
the graph of A4, i.e., the set of points in B x B of the form ( f, Af), where f € D(A)
is closed; here, the Cartesian product B x B is equipped with one of the usual norms,

e.g [|(x. )llzxs = [x[e + [yls.

Continuation of Example 3 As an instance, we know from Example 3 that A =

d

4y in C[0, 0] is not a bounded operator. However, it is closed. To see this, we



Boundary Conditions in Evolutionary Equations in Biology 59

consider differentiable f, € C[0, 0], such f, € CI0, 0], lim,—o0 f4 = f, and
lim, oo f, = g for some g € C[0, o0]. These assumptions imply that for each
x > 0 we have

fn(x>=fn(0)+/0 FOydy,  n=1

Estimating

‘/Ox () dy — /OX g(y)dy

5/0 | £, (v) —g(y)|dy
/_ d /_ ,
5/0 1f! = glldy < xIf/ — gl

we deduce that the integrals fox S/ (y)dy converge to fox g(y)dy. Since uniform
convergence implies pointwise convergence, letting n — oo above yields

F) = £(0) + /0 e()dy,  forallx =0,

showing that f is differentiable with f/ = g. This, however, establishes that A =

d—dY is closed, as desired.

Example 6 For another, simpler, example, consider the space /! of absolutely
convergent sequences f = (f(k))ir>1 equipped with the norm

LA =Y 1f (k)] < 0.

k>1

Also, let Af = (—kf(k))k>1 with domain D(A) = {f|D ;- k| f(k)| < oco}. We
note that A is not bounded, because taking f, = (0,... ,0,1,0,.. .) (1 on the nth
coordinate), we obtain || f,|| = 1 and Af,, = —nf,, so that ||Af,|| = n. However,
A is closed. To see this, consider f, € D(A) such that lim,—. f, = f and
lim, 00 Af,, = g € ['. Since Af, = (—kf,(k))k>1, this means that

dim > " 1g(k) + k£ (k)] = 0.

k>1

In particular, for all k, lim,—e0 kf, (k) = —g(k). Similarly, lim, f,(k) =

f(k), implying —kf (k) = g(k). Therefore, 3 -, [kf (k)| = > 4> 18(k)| < o0,
proving that f € D(A) and Af = g.
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Coming back to the Hille—Yosida theorem: the idea of formula (17) is that A is
unbounded, hence “large”. This implies that (. — A) ™! should be “small”, hopefully
bounded. More precisely, in the resolvent equation

wf—Af =g

where g is given and f is a solution we are searching for, the map f — uf —Af is
unbounded, hence g is large as compared to f. But this is the same as saying that f
is small as compared to g. The map g — f should be bounded. This is illustrated
in our example.

Continuation of Example 6 The operator A from Example 6 is densely defined (for

felltake f, = (f(1),..., f(n = 1), f(),0,...); then lim, o || f, — fI| =
lim, -0 Zgoan | f(k)] = 0and f, € D(A)). The resolvent equation for A takes
the form:

w(f(k))k=1 + (K (k)i=1 = (g(k))k=1,

where p and g are given, and we are to find f € D(A). This equation may be
written as juf (k) + kf(k) = g(k) forall k or, f(k) = M—lekg(k) for all k. In other
words, the unique solution to the resolvent equation is

1
(fk)i=1 = (mg(k))kzl,

without no assumptions on g besides g € /!. Since we have

o
plfll=>"———lg®)| <Y gk =lgll, ©>0
k>1 wtk k>1

the conditions of the Hille—Yosida theorem are met.
To find the form of e we note that

(1-54) s =m-are=(( A7) =)

1
- ((1 m %’)”g(k))kzl

—n

where 1 = 2. It follows that lim, o0 (1 — £A4) " g = (e7Mg(k))i>1. It is easy
to see that each coordinate of the left-hand side converges to the corresponding
coordinate of the right-hand side. The fact that the left-hand side converges to the
right-hand side in the /! norm may be deduced from the Dominated Convergence
Theorem.
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2 Boundary Conditions

2.1 McKendrick—von Foerster Model

The semigroup of Example 5 may be thought of as an (oversimplified) model of
dynamics of an age-structured population. More specifically, we think of a non-
negative f € L'(R™) as an age-profile of the population, so that

/ f(@)da

represents the number of individuals of age in the interval [a;,a]. If there are
neither deaths nor births, and f is an initial population’s age-profile, then 7'(¢) f
is its age-profile at time ¢ > 0. This is because an individual that at time ¢ is of age
a, was initially of age a — ¢, provided a > t; also, there are no individuals of age
a < t because there are no births.

A more realistic model is the one related to the semigroup

L i p(g
el fla=n, azt iy, (18)

s a<t,

Tu(1) f(a) =

where ;1 > 0 is a bounded, integrable function (the assumption of integrability may
be disposed of, we introduce it for simplicity merely). We think of u is a death rate
(mortality function), so thate™ Jo n») 4y i the probability that an individual does not
die before age a > 0. Then

e f(;l p(x)dx

e~ Ja—i M) dx _ (19)

e~ S pu(x) dx

is the probability that an individual will reach age a given that we know he/she has
reached age a — . Thus e~ Ja— K9 £(q — ¢) is the “number” of individuals who
were of age a — ¢ at time 0 and survived to age a, i.e. the ‘number’ of individuals
of age a at time . The second line of the definition of T}, reflects the fact that the
model still does not account for births: at time ¢ there are no individuals of age less
than ¢.

To find the generator of 7,, we recall the following general scheme: Two
semigroups (e'4) _ and (e'?),_, defined in a Banach space B are said to be
isomorphic (or similar) [8,21,22] iff there is an isomorphism / € Z(B) such that

Je = ¢, t>0.

Then, as it is easy to check, f € D(A) iff If € D(B), and we have IAf = BIf.
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To see that this scheme applies to our situation, we consider I € .Z(L'(R"))
given by (If)(a) = eh ") £(4),a > 0. The operator I is an isomorphism of
L'(R*) with || ]| <elo #@da (it is here that we use the assumption j € L'(R*))
and (17! f)(a) = e~ ") f(g) a > 0so that | I7'|| < 1. A direct calculation
shows that

T,(t)=1""TW)I,

i.e. that T, is similar to 7.
Hence, D(A,) (the domain of the generator A, of T},) is composed of f of the

form f(a) = e/o "0 & g(q) where g € D(A). Since the product of two absolutely
continuous functions is absolutely continuous, it follows that D(A,,) is the set of
absolutely continuous functions vanishing at x = 0. In other words, D(A4,) =
D(A), and

Auf(@) = 17 Alf (@) = e B 10 (el 10 pi))
— e~ Jo mx)dx (M(a)efél H A £(g) 4 oo 1) d"f’(a))
=~ /'@~ p@ (@),

where ’ denotes derivative with respect to a. To recapitulate: these semigroups have
the same domain

X

D(A) ={f € L'(R")| thereis g € L'(R™), such that f(x) = / g(y)dy},
0

and

Af =—f' while A,f =Af—uf.  f € D(A). (20)

Therefore, the model taking account of deaths is obtained from a basic one by
perturbing the original generator. However, to include births one must resort to
another kind of perturbation, the perturbation of the domain of the generator, or
the perturbation of the boundary condition. To explain: let us look at the Cauchy
problem related to the operator A,,. Formally, it reads

du(t,a) _8u(l,a) B
a da

w@u(t,a) = [Auult.a),  u0,a0) = fla). @21

where [A,u](t,a) denotes the value of the operator A, on u(t,-) evaluated at a.
However, there are at least two remarks that have to be made here. First of all,
the time-derivative here is not taken pointwise but in the sense of L'(R™), and
the equation holds almost everywhere with respect to a. Secondly, the problem is
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not well-posed and in fact does not model anything unless we specify “boundary
conditions”. For, as we have already mentioned, for general f € L'(R™) the
function ¢ +— T),(¢) f is merely a formal, or mild solution to the Cauchy problem. It
is only for f € D(A,) that it “really” solves (21). In particular, for all £ > 0, u(z, -)
is amember of D(A,) (otherwise, the right-hand side would not make sense), hence,
an absolutely continuous function with

u(t,0) = 0. (22)

This is the boundary condition we have alluded to above, and it clearly is visible in
the domain of the generator. Its meaning is transparent: there are no births, u(z, 0)
being the number of individuals of age O at time 0. It is only with this boundary
condition that (21) describes a population with deaths but no births.

Now, the full McKendrick—von Foerster model involves births that are introduced
via a birth rate function b, a bounded measurable function on R™. Instead of (22)
we introduce the boundary condition

u(t,0) = /000 b(a)u(t,a)da, (23)

which interpreted means that the number of newborns at time # > 0 depends on
the birth rate and population structure at that time: b(a)u(t,a) is the number of
individuals born of the members of the population of age a at time ¢, and we need
to integrate over a € R to obtain the total number of newborns.

Notably, births do not change the way the generator “acts”, but rather its domain.
Denoting by Amck-r the generator in the full model, we have thus (comp. [21,22,33])

Avekr f = —f" = pf.
o0
D(Anmck.r) = {abs. cont. functions with f(0) = / b(a) f(a)da}. 24)
0
This is in fact the main point of this section: in modeling an age-structured
population’s dynamics we are led to a very natural, non-local boundary condition

for the involved equation, or to a semigroup of operators with the generator defined
on an interesting domain. The equation reads

du(t,a) 3 du(t,a)
o da

—u@u(t,a) = [Avekrul(t,a),  u(0,a) = f(a),
(25)

and is formally the same as (21), but features the different boundary condition (23).

This does not happen too often in the semigroup theory, but here we may find
a semi-explicit formula for the semigroup generated by Aycx.r. To see this, let us
recall that by (9), in the no-births no-deaths case, solutions of the Cauchy problem
u(t,a) = T(t) f(a) do not change on the lines a — t = const. (see Fig. 1). Above
the main diagonal they are determined by the initial condition f “propagated” along
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these lines, below the main diagonal they are equal to zero. In the model involving
deaths (but still no births) the picture does not change much: above the diagonal the
solutions are “tempered” by the survival function (19), below the diagonal they are
left intact.

This picture changes substantially when births are incorporated; although this
does not influence the form of the solutions above the main diagonal, those below
the diagonal change drastically. More specifically, we have

e~ Jut RO f(g —1), a>t

3 e L'(RY), 26
e o ROKPBG —q), a<t, 4 ®") (20)

Tvex (1) f(a) =

where

B(t) := Tvek-r(t) £(0)

is the total number of newborns at time ¢ > 0, and the second line may be
explained as follows: An individual that at time ¢ > a is of age a was born at
time 1 — g and e~ /o #) 9 g the probability of its survival to age a. In other words,
e~ Jonaxp (t — a), is the fraction of individuals born at time ¢ — a that survived to
time ¢. It is thus clear that B, the value of u at the boundary where a = 0 determines
u below the diagonal (see again Fig. 1).

However, Eq. (26) defines Tyck-r by means of Tyck.r and should be untangled.
In fact, it suffices to calculate B. To this end, we consider the following McKendrick
renewal equation for B:

o0 t ? "t—S
B(1) = / b(a + e li T 1O £y da + / b(t —s)e”Jo  HNW B(g)ds,
0 0
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To explain, the two terms in this equation correspond to the number of births from
the original population and to the number of births from the descendants of the
original population, respectively. More specifically, as in the cases described above,

el H9 £(q)

is the fraction of individuals who at time + = 0 were of age a, and survived to
age a + t. The first integrand is thus the number of babes born of such individuals,
b(a + t) being the intensity of giving birth at age @ + ¢. As for the second term,
it describes individuals born of descendants of the original population: such a
descendant must have been born at some time s < ¢ and e~ /o r)dX B(s) is the
number of such descendants who survived to time ¢ (i.e., to age t — s); b(t — ) is
the intensity of child-bearing at age t — s, and of course we need to integrate over
s € [0,¢].

We note that the first term, denoted F = F(¢), depends merely on f, u and b,
and may be treated as given. The other term is a convolution of B with b, (s) =

b(s)e™ Jo mx)dx gq that the (McKendrick renewal) equation reads:
B(t) = F(t) + b, * B(1). 27

An application of Banach’s fixed point theorem (see e.g. [20]) in an appropriate
space (see [11]) shows that this equation determines B uniquely and that

o
B=F+) b*«F.

n=1

with the series converging absolutely; here, bﬁ* denotes the nth convolution power
of b,. The series has a natural interpretation. F, as we explained above, is the
number of direct descendants of the original population, say, daughters. The first
term in the series is then the number of grand-daughters, the second is the number
of grand-grand-daughters, and so on.

2.2 Feller-Wentzell Boundary Conditions

The partial differential equation of Example 4 models heat conduction in an infinite
thin rod (identified with the x-axis R). The similar Cauchy problem on the right
half-axis:

du(t, x 1 %u(t, x
(az ):E aiz )» x>0,1>0,u(0,x) = f(x).

is not well-posed unless boundary conditions are specified: we have encountered
such a situation already in discussing the McKendrick—von Foerster model. This
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is quite understandable physically: if the heat-flow is to be determined, conditions
at the rod-end need to be known. Physics suggests three types of such boundary
conditions: the first of these, the Neumann boundary condition

du(t,0)  du(t, x)
ax  Ox

|X=0 - Os t 2 Os

describes perfectly isolated end, and the Dirichlet boundary condition
u(t,0) =0, t >0,

describes the situation where the end is kept at a specified temperature (here equal
to zero). The intermediate Robin boundary condition

du(t,0)

= yu(t,0
o yu(z,0)

models a non perfectly isolated end, where some loss of temperature may occur.
And, physically, at least at the beginning of the twentieth century, there seemed
to be no other interesting, natural boundary conditions mathematicians may study.
(That this is not the case at all, becomes crystal clear after reading excellent G.
Goldstein’s exposition [30].)

Anyway, this was the situation at the beginning of the twentieth century, when R.
A. Fisher and S. Wright came to the stage. They were scientists with mathematical
background, working in a field today termed mathematical biology. W. Feller who
took up part of their research, in the context of semigroups operators, writes on their
work in papers published in the 1950s as follows [25-27]:

The theory of evolution provides examples of stochastic processes which have not yet been
treated systematically.

Existing methods are ... due to R. A. Fisher and S. Wright. They have ... with great
ingenuity and admirable resourcefulness ... discovered ... facts of the general theory of
stochastic processes.

Essential part of Wright’s theory is equivalent to assuming a certain diffusion equation for
gene frequency . ..

This diffusion equation ... is of a singular type and lead to new types of boundary
conditions.

thus acknowledging their role in the development of today’s theory of stochastic
processes.

To explain the way population genetics has lead to “new types of boundary
conditions”, we recall the Wright-Fisher model of genetic drift. To begin with,
we note that in spite of mutations which—given the state of a population—
occur independently in each individual, members of (especially: small) populations
exhibit striking similarities. This is due to genetic drift, mentioned above, one of
the most important forces of population genetics. Simply put, the reason for this
phenomenon is that in a population on the one hand new variants are introduced
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randomly by (neutral) mutations, and on the other many variants are also randomly
lost since not all members of the current generation pass their genetic material to
the next one.

Wright and Fisher model this phenomenon as follows [8,23,24]. We suppose the
population in question to be composed of 2N individuals; in doing so we identify
individuals with chromosomes (that come in pairs), or even with corresponding
loci (places) on these chromosomes. We assume there are only two possible alleles
(variants) at this locus: A and a. The size of the population is kept constant all
the time, and we consider its evolution in discrete non-overlapping generations
formed as follows: an individual in the daughter generation is the same as its parent
(reproduction is asexual) and the parent is assumed to be chosen from the parent
generation randomly, with all parents being equally probable. In other words, the
daughter generation is formed by 2N independent draws with replacement from
the parent generation. In each draw all parents are equally likely to be chosen and
daughters have the same allele as their parents. It should be noted here that such
sampling procedure models the genetic drift by allowing some parents not to be
selected for reproduction, and hence not contributing to the genetic pool.

Then, the state of the population at time n > 0 is conveniently described by a
single random variable X,, with values in {0,...,2N} being equal to the number
of individuals of type A. The sequence X,,n > 0 is a time-homogeneous Markov
chain with transition probabilities:

2N _ k
pu =Pr{ X1 = 1| X, =k} = ( ; )p,l{(l — ), where p; = N

(28)

In other words, if X,, = k, then X,,4 is a binomial random variable with parameter
%. A typical realization of the Wright-Fisher chain is depicted at Fig.2, where
N =5 and yellow and blue balls represent A and a alleles, respectively. The figure
illustrates also the fact that the states 0 and 2N are absorbing. This is to say that if
for some n, X,, = 0 we must have X,, = 0 for all m > n, and a similar statement
is true if X;, = 2N. Genetically, this expresses the fact that in finite populations,
in the absence of other genetic forces, genetic drift (i.e. random change of allele
frequencies) reduces variability of population by fixing one of the existing alleles.
Now, imagine that the number 2N of individuals is quite large and the individuals
are placed on the unit interval [0, 1] with distances between neighboring individuals
equal to ﬁ, so that the kth individual is placed at % Imagine also that the time
that elapses from one generation to the other is ﬁ, so that there are 2N generations
in a unit interval. Then, the process we observe bears more and more resemblance to
a continuous-time continuous-path diffusion process on [0, 1], as depicted at Fig. 3.
Since, conditional on X, = k, the expected single-step displacement £ % of
the approximating process equals ﬁZN Pk — % = 0 with variance Var Azﬁ” =
ﬁ pr(1 — pr), in the limit we expect the process starting at x € [0, 1] to have
infinitesimal variance x (1 —x) and infinitesimal displacement 0. Indeed, for each NV,

apoint x € [0, 1] may be identified with % where k = [2N x], and letting N — oo
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Fig. 2 Wright-Fisher model:
each row depicts a generation
sampled with replacement

from the one lying above it e o o

Fig. 3 Diffusion

approximation: the border

line between the yellow and

blue balls resembles a path of

a diffusion process .

in %(1 — %), which is the infinitesimal variance in a unit time-interval, we
obtain x (1 —x). Moreover, the limiting process should inherit its boundary behavior
from the approximating Markov chains. Therefore, we expect that in the limit we
will obtain the process related to the semigroup in C|[0, 1], generated by

Af(x) = x(1-x) f"(x) (29)
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with domain D(A) composed of twice continuously differentiable functions on (0,1)
such that lim, o4 x(1 — x) f”(x) = limy—;—x(1 — x) f"(x) = 0, see e.g. [8,
section 8.4.20], [21, pp. 224-226], see also [39, p. 120]. (The requirement that the
process is absorbed at x = 0 and x = 1 is expressed in the fact that Af(0) =
Af(1) = 0.) The limiting process is often referred to as Wright’s diffusion, or the
Wright-Fisher diffusion (without mutations).

A noteworthy variant of the above limit procedure arises when mutations are
allowed. Suppose namely that in passing from one generation to the other an
individual with allele A may change its state to allele a with probability 5%, and
an individual with allele ¢ may change its state to allele A with probability %,
where « and § are non-negative numbers. Then, the number of A alleles is still a
Markov chain with transition probabilities of the form (28), but pi is now changed
to

k o kK B
= a2 ra- 2
pe= o0 —ap) T U=35)3N

Of course, this influences the expected single-step displacement and its variance
(conditional on X,, = k):

AX, k 1 k
E = —_—— = — —_— -— ),
N = PETan 2N(ﬂ (a+ﬂ)2N)
Ve AX) _ 1 (1 ) (30)
T\oN ) T an P T PR

This suggests that the limit process starting at x will have an infinitesimal unit-time
displacement of B — (o + f)x and the corresponding variance x (1 — x), i.e. that the
limit process is related to the operator

Af(x) = a(x) f"(x) +b(x) f'(x).  x€(0.1),

where a(x) = x(1 —x) and b(x) = B — (o + B)x.

This suggests also the following question: can a particle, first of all, reach the
boundary? Perhaps it will never reach it and considering boundary conditions is
unnecessary? After all, at x = 0 the displacement coefficient (usually called ‘the
drift coefficient’ but we will not use this term, to avoid confusion with genetic drift
which is expressed in a rather than in b) equals 8 > 0 meaning that at the boundary
there is a strong tendency to move to the right (this is the force of mutations that
causes this!); is diffusion (coefficient a) strong enough to overcome b, making x =0
accessible? Can x = 1 be reached as well? Or perhaps, x = 0 not only allows no
particles to reach it, but also is a source of particles constantly entering the interval
from the left end? As it transpires, all these situations are possible for a general
diffusion process. In other words, a boundary point might be either (see Fig. 4)
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Fig. 4 Feller’s classification boundary type |accessible? |absorbing?
of boundary points regular Y N
exit Y Y
entrance N N
natural N Y
Fig. 5 Diffusion ceeeeeeee,

approximation to
Wright—Fisher model with
mutations

* natural: a particle cannot reach the boundary from the interior, neither can it reach
the interior from the boundary,

* entrance: a particle cannot reach the boundary from the interior, but it can reach
the interior from the boundary,

* exit: a particle can reach the boundary from the interior, but it cannot reach the
interior from the boundary,

* or regular: a particle can reach the boundary from the interior, and it can reach
the interior from the boundary.

Before continuing, we note another interesting point. The scaled Wright-Fisher
process with mutation, after reaching %, will not stay there for ever but for a

geometric time 7: Pr(t > n) = (1— %)ZN " and then resume its motion (see Fig. 5).
Hence, general diffusion processes with regular boundary may behave similarly:
paths should be able to return to the interior of the unit interval after some random
time spent at the boundary.

Hence, we encounter at least two new phenomena, as compared to the interpre-
tation suggested by physicists. In the process modeled by the Neuman boundary
condition, heat particles are being reflected from the boundary, and in the Dirichlet
boundary condition they are being annihilated there. But here, they may stay at
the boundary for some time and then return to the interior. Of course, if we model
merely heat flow, the latter behavior is quite impossible (see, however, [30]), but
for general diffusion processes, such as the Wright—Fisher diffusion, we cannot rule
such a behavior out.
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In the case of a regular boundary, a diffusion process may both enter the boundary
or leave it, and the full characterization of the process requires description of
its behavior there (in the case of natural boundary, on the other hand, no such
description is needed and no boundary conditions are imposed). As an example, let
us consider the space C [0, o] of continuous functions on R* = [0, 0o0) with limits
at infinity. Also, let A be the operator given by Af = f” with domain composed
of twice continuously differentiable functions with f” € CJ[0, oo], satisfying the
boundary condition

af"(0) — bf'(0) + ¢f (0) — d /R L Sdu=0, 31)

where p is a probability measure on Rj = (0,00),and a, b, ¢ and d are given non-
negative constants with ¢ > d and a + b > 0. Note that this boundary condition
involves merely x = 0, a regular boundary point, but does not touch x = oo, a
natural boundary point.

It may be proved that A generates a semigroup of operators in C |0, co], and
that there is an underlying stochastic process for this semigroup. The form of the
generator (Af = f) tells us that, while away from the boundary x = 0, the process
behaves like a (re-scaled) Brownian motion. To specify the process completely,
however, we need to provide rules of its behavior at the boundary, and this is the
role of (31). Upon touching the boundary, the particle performing Brownian motion
may be stopped there, reflected or killed (i.e. removed from the space); it may also
jump somewhere into R*. The coefficients a,b,c and d may be thought of as
describing relative frequencies of such events, and p is the distribution of particle’s
position right after the jump. In particular, the case a = 1,b = ¢ = d = 0 is
the stopped Brownian motion (the particle reaching the boundary stays there for
ever),a = ¢ = d = 0,b = 1 (Neumann boundary condition) is the reflected
Brownian motion whose paths are absolute values of paths of an unrestricted
Brownian motion, and ¢ = b = d = 0,c¢ = 1 (Dirichlet boundary condition)
is the minimal Brownian motion (the particle reaching the boundary disappears).

Consider in more detail the case where a # 0 and b = 0:

af"(0) + £ (0) — d /R L fdu=o. (32)

This is the case of elementary return Brownian motion, in which the process after
reaching the boundary stays there for a random exponential time 7" with parameter
c¢/a (see Fig. 6):

P(T >t)=e"a', >0.

At time T, the process either terminates, with probability 1 — %, or jumps, with

probability %, to a random point in R, the distribution after the jump being j, and
starts its movement afresh.
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p= %T p=1-2 - particle ‘dies’

T t

Fig. 6 Elementary return Brownian motion

I p=1— % - particle ‘dies’

T t
P(T>t)=¢"

S

Fig. 7 Elastic barrier

The elastic barrier where a = 0 and b # 0:
b O =@ —d [ fan (33)
Ry

may be described by analogy (see Fig.7). Here, after reaching the boundary the
trajectory is reflected and the process continues in this fashion for a random time
T. The times when the path touches x = 0 form a measurable subset of the time
axis, and the Lebesgue measure of this set is zero. There is, nevertheless, a way to
measure the time spent at the boundary, called the Lévy local time t*; ¢ itself
is a random process (on a separate probability space) increasing only when the
Brownian path is at the boundary [34-36,42]. As in the elementary return Brownian
motion, at time 7" distributed according to (see [34, p. 45] or [35, p. 426])

P(T>t)=e b, >0,
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the process either terminates, with probability 1 — %, or jumps, with probability %,
to a random point in R}, the distribution after the jump being u, and starts afresh.

For a more detailed analytic and probabilistic treatment of boundary conditions
see e.g. [26, 27, 30, 36, 40] (a very nice insight into boundary conditions may
also be gained by considering a characteristic operator—see [19]). A final remark
concerns terminology: the study of boundary conditions done by W. Feller for one-
dimensional diffusion processes was soon taken up by A.D. Wentzell in the case
of multi-dimensional processes [48]. Therefore, in today’s literature the boundary
conditions for diffusion processes are often called Wentzell boundary conditions, or
Feller—Wentzell boundary conditions.

3 Applications, and Recent Developments

3.1 Dealing with Boundary Conditions: Greiner’s Approach

Population dynamics with McKendrick-type equations has had a vigorous and long-
lasting impact on mathematics and on the theory of semigroups of operators in
particular [21,22,33,37,44,47]. A similar statement is also true for Feller—Wentzell
boundary conditions, the latter forming a core of nowadays theory of stochastic
processes [36,39]; for the influence on semigroups of operators see e.g. [30,46] and
works cited therein.

Within the theory of semigroups of operators, a particularly elegant approach to
boundary conditions viewed from the perspective of perturbation theory is due to G.
Greiner [31]. To explain, a “classic” perturbation theory deals with the problem of
when given a generator A, one may claim that A+ B is also a generator: for example,
the Phillips perturbation theorem says that this is the case when B is bounded. G.
Greiner’s paper is concerned with the similar question when it is not the operator
itself but its boundary that is perturbed. Here are the details: Let X and Y be two
Banach spaces, A : D(A) — X be a closed operator in X, and L : D(A) — Y be
a linear operator which is continuous with respect to the graph norm in D(A). (The
graph norm is || |4 = || £l + |Af|.) Moreover, assume L to be surjective, and
suppose that Ay, defined as the restriction of A to ker L, generates a semigroup of
operators in X. Given F € Z(X,Y), is the operator Ar defined as the restriction
of A to ker(L — F), the generator as well? This is precisely what is meant when we
say that the operator was left intact, but its boundary was “perturbed”.

While in general (see [31, Example 1.5]) the answer is in the negative, Greiner’s
first fundamental theorem [31, Thm 2.1] establishes that A ¢ is the generator for any
F provided there is a constant y such that for A larger than some A¢

ILFI = Ayl £, forall f € ker(A — A). (34)
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To consider a particular example, let us come back to the McKendrick model.
Let WLI(R™) be the set of absolutely continuous functions f € L'(R™) with
f'e L'(RY),ie., for f € WI(RT) we have f(x) = f(0)+ [, f'(y)dy.x > 0.
Also, let

A:WHRT) - LIRYY  Af=—f,

and L : WIM(RY) — R be given by Lf = £(0). The generator of the semigroup of
Example 5 is then A restricted to ker L, the Greiner’s operator Ay. In view of (20),
the semigroup modeling aging and deaths [see Eq. (18)] is generated by the bounded
perturbation of Ay, since the multiplication operator f +— —uf is bounded. As we
have already stressed, this is not the case with the full McKendrick—von Foerster
semigroup: its generator involves a different kind of perturbation, the perturbation
of the boundary.

In the set up of Greiner, ker(A — A), A > 0 is spanned here by e, where e (x) =
e, x > 0. (For, f € ker(A — A) forces f' = —Af, and this implies that f is a
continuous function. In other words, f is a “usual” solutionto Af + f' =0, i.e, f
is a scalar multiple of e,.) Since Le;, = 1 and |le, | = % condition (34) is satisfied
with y = 1 (in fact, we have equality there). So, Greiner’s result (together with the
Phillips perturbation theorem) establishes existence of the semigroup generated by
the operator of (20) with perturbed domain given in (24).

For a second example, let C2[0, oo] be the space of twice continuously differen-
tiable members f of C[0, co] with f” € C[0, o0],andletAf = f” and Lf = f"(0)
on C?2[0, oo]. It is quite well-known that A restricted to ker L is the generator of a
semigroup. Now, for A > 0, all solutions to the differential equation A f — /" = 0 on
R, are of the form f(x) = C e~V** 4 Dev**_Since the choice of nonzero D leads
outof C[0, 00], ker(4 — A) is spanned by e_; (see above for this notation). We have
Le sz = Aand |le s7|| = 1. Hence, condition (34) holds again with y = 1. Greiner’s
theorem thus establishes that for any bounded linear functional F € (CJ0, co])*)
the operator A restricted to the kernel of L — F is a generator. In particular, for
Ff =d ij fdu — ¢f(0), we obtain existence of the semigroup related to the
elementary return Brownian motion [i.e., to boundary condition (32)]. A similar
reasoning works for the elastic barrier (33).

3.2 Dealing with Boundary Conditions: Lord Kelvin’s Method
of Images

Let us start with Feller’s construction of the semigroup describing reflected Brown-
ian motion [28, pp. 340-343], which he calls Lord Kelvin’s method of images.

The semigroup in question is generated by the operator Af = % f” in C[0, 0]
with domain composed of twice continuously differentiable functions with f” €
C[0, o0], satisfying the boundary condition (31) witha = ¢ = d = 0, i.e., the
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a b

T T T

Fig. 8 Method of images: (a) a function, (b) its even extension, (c) the value of the unrestricted
Brownian motion semigroup on the even extension, and (d) the restriction of the latter to RT

Neumann condition:
f'(0)=0.

As it transpires, this semigroup may be constructed as follows using the semigroup
of Example 4. Given f € C]0, co] (Fig.8a) we consider its even extension (b),
apply the semigroup of Example 4 to this extension (c), and then restrict the obtained
function to Rt (d).

That this method works is a miracle in itself, but of course the most intriguing
part of it is: How the Neumann boundary condition is related to even extensions?
A more general problem is

Can one follow similar lines in constructing semigroups related to the general boundary
conditions (31)?

The answer is in positive. But before presenting the solution, let us put method
of images in the context of similar or isomorphic semigroups, we have already
encountered in Sect.2.1 in a particular case. Given two strongly continuous
semigroups {e, 7 > 0} and {e’“, 7 > 0} in Banach spaces X and B, respectively, we
say that they are similar or isomorphic if there exists an isomorphism / : X — B
such that e = I~ 'e/“J,¢ > 0. Then, the generators A and G are related by

D(A) = {x € X;Ix € D(G)}, Ax = I7'GIx. (35)

A particular case of this situation is as follows. Suppose that A is a subset of R, X
is a space of real (or complex) functions on A, and we are interested in proving that a
certain operator A in X is the generator of a strongly continuous semigroup. Assume
also that there exists A C A’ C R and a strongly continuous semigroup {7T'(¢),¢ >
0} of operators in a space By of real (or complex) functions on A’, generated by an
operator Gy resembling A. Usually, 4 is “G with a boundary condition”. One way
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to approach such a problem is extending functions in X to functions in By so that
the set of these extensions is an invariant subspace B C B for {7'(¢), ¢ > 0}. Then,
the part G of Gy in B is the generator of {7'(¢)jz, ¢ > 0}. Moreover, quite often, X
and B are then isomorphic with natural isomorphism / mapping a function on A to
its extension to A’, and R := I~ mapping a function on A’ to its restriction on
A. Then, there exists the semigroup in X that is similar to {e’G,t > 0}. Hence, to
show that A is the generator, it suffices to show (35). Then, as a bonus, we obtain
the explicit form of e, referred to as the abstract Kelvin formula:

e f = Re'CIf, feX,t>0. (36)

As with the Feller’s construction, the non-trivial part in the procedure described
above is finding the way of extending functions on A to functions on A’ so that
all the remaining steps are valid. To explain the idea of deriving formulae for such
extensions, let us recall that any strongly continuous semigroup leaves the domain
of its generator invariant. Hence, if members f of D(A) are characterized by a
functional equation (a boundary condition), say F(f) = 0, then we must have
F(Re™If) = 0,t > 0. This, when coupled with (If)|, = f, often determines
If, f € D(A), and, by density of D(A), all If.

As we will see, the method of images often leads to the most natural approach
to the generation problem [11]. To begin with, let us consider the full McKendrick—
von Foerster semigroup generated by (24), and ask the question of whether given
f € L'(RT) we may choose its extension f to the whole real line so that

Taiekr(t) fa) = e = HOS fq ) a1 >0, 37)

where pu(a) = 0 for a < 0. Certainly, it suffices to find g(a) = f(—a),a > 0.
Since for f € D(Apmck.r) the right-hand side of (37) has to belong to D(Amck.r) as
well, we calculate [see (24)]:

g0 = fen = [ b@e Fm0% o 1) da
0
0 t
= / b(a)e o= H W £ — 1) da + / b(a)e it H o (4 — g) da,
t 0
oo . t "
= / b(a + t)eJi PO £(4) da + / b(a)e™Jo HO (s — ) da
0 0

where in the last step we used w(a) = 0 for a < 0. In other words, g satisfies the
McKendrick renewal equation (27). Since the solution to this equation is unique, we
see that g = B, the total number of newborns. Of course, we could have obtained
this directly by comparing (37) with (26) but the point is that we have derived the
renewal equation, and the explicit form for Tyx.p Without population dynamics
considerations.
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Coming back to the Brownian motion semigroups, we will, following [10, 16],
provide a construction for the case of the Robin boundary condition (the general
case of Feller—Wentzell boundary conditions (31) is treated in detail in [10]). We
start by re-writing the semigroup of Example 4 as follows:

3 ) = J_ 52 f(x +u)+ f(x —u)]du
=75=/ e_f C(u) f(x) du, (38)
where
Cu) f(x) = %[f(x +u) + f(x —u)] (39)

The family {C(¢),t € R} is an example of an operator cosine family, since it satisfies
the functional equation:

2C(1)C(s) =C(t +5) + C(t — ).

Such families have similar properties to semigroups of operators [29]; a generator
of a cosine family is defined as
cOf -1

Af = —

t—>0

on the domain composed of f for which the limit involved exists. A direct argument
shows that the generator of the cosine family (39) is Af = f” with domain
equal to the space C?[—o0, 00| (of twice continuously differentiable f with f” €
C[—o0, 00)).

As with semigroups, it transpires that cosine families preserve domains of their
generators:

C([D(A)] C D(A).

It is also important to note that each generator of a cosine family is the generator of
a semigroup (the two families being related by a formula of the type (38), termed
the abstract Weierstrass formula).

This suggests the following claim: the operator Af = f" with domain composed
of members of C2[0, oc] (the space of twice continuously differentiable f with
f" € CJ[0, 00]) satisfying f/(0) = yf(0) is not only the generator of a semigroup
but also of a cosine family. Moreover, for f € C[0, oo] one may find its extension
f € C[—o00, o] such that the cosine family in question is given by

C,()f(x) =C) f(x), teR,x>0. (40)
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Again, we need to find g(x) = f (=x),x > 0. The requirement that C, leaves the
domain of its generator invariant, forces

S[fatn+ia-0] _ =vO+ feo. =0

lx=

This, however, is the same as

F1(6)=g' @) =y(f() +g@)).

Using g(0) = f(0) ( f is supposed to be continuous!), we find the solution
t
80 = £ -2y [ 7 f)as
0

It is easy to check that g € C[0, o], i.e., that f € C[—o00, 00] and that if f/(0) =
yf(0), then g"(0) = f'(0) —2yf(0) = —f"(0) and g"(0) = " (0) — y(f"(0) +
2’(0)) = f”(0). These relations allow checking that f € C?[—o0, oc] provided
£7(0) = y£(0), and so (40) indeed defines the cosine family we were looking for.
The reader will notice that for y = 0, g defined above equals to f, recovering the
fact that for Neumann boundary condition the proper extension is the even one.

3.3 Solea Solea Population

Many population dynamics studies use the McKendrick equation as a building block
[44]: this is the case also in the model of a solea solea population with both age and
vertical structures, due to O. Arino et al. [1,45]. In the model, the fish habitat is
divided into N spatial patches and the fish densities, or age profiles u;, in the ith
patch satisfy the following system of equations:

dui(t,a)  du;(t,a) Y
oy S = ~Hi@ui(t.a) + 1Z=1k,-,-(a)u,~(r,a), (41)

u,-(Z,O):/ bi(@)u;(t,a)da, i=1,...,N,
0

9

where “¢” stands for time, and u; and b; are age-specific and patch-specific
mortality and birth rates.

In the absence of the terms ¢! Z?;lkij(a)uj (t,a), each patch could be
treated separately and the population densities there would satisfy the McKendrick
equation. The matrix k(a) = (k;(a)) is composed of intensities of movements
between patches that occur on a daily basis: the sum of entries in each column of
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the matrix is zero. The factor € ~! (with € < 1) corresponds to the fact that the age-
related processes and vertical migrations (between the patches) occur at different
time scales, a day being the fast time scale as compared to the fish life time.

The main question addressed in [1] is whether in modelling such populations one
may disregard the vertical migration to work with a model that has been aggregated,
or averaged, over the whole water column. To this end, the authors assume that the
matrix k is irreducible and hence possesses the unique normalized right eigenvector
v(a) = (vi(a))i=1...~, corresponding to the simple dominant eigenvalue 0. Since
this vector describes the stable population distribution among the patches, a heuristic
argument makes plausible the ansatz that approximately we have

i (7, .
i ( a)zw(a), i=1...,Naz=0, (42)
u(t,a)

where u = Z,N: | 4; . In other words, it is assumed that the migrations governed by k
occur so fast, as compared to the ageing processes, that the population distribution
over the patches reaches the (age-specific) equilibrium long before the ageing
process intervenes. This corresponds to letting € — 0 in (41). In such a simplified,
aggregated, model the population density satisfies the McKendrick equation with
averaged birth and mortality rates:

t.a) WD @t a), “3)
ot da

u(t,0) = /000 b.(a)u(t,a)da,

where “a” stands for “aggregated”, u, = Zf\':l vi; and b, = Zf\':l vib;. Here,
the weights v; reflect the underlying, hidden spatial structure. Notably, the resulting
boundary condition is a convex combination of the boundary conditions occurring
in (41).

This effect is very similar to that observed in [9, 13, 14] where, motivated by
a number of biological models, the authors study convex combinations of Feller
generators resulting from “averaging” the stochastic processes involved. In fact,
these two effects are in a sense dual: under certain regularity conditions on the
model’s parameters, the predual of the McKendrick semigroup may be constructed
in a space of continuous functions [13]. Then, a perturbation of a boundary condition
becomes a perturbation of the generator, and the convergence discussed above may
be put in the context of [9, 13, 14], see [13] for details.

In [5, 6], the problem of the convergence of solutions of (41) as € — 0 was
fully solved using asymptotic analysis (even in a more general model). However,
the authors did not consider the problem as an example of a convex combination
of boundary conditions. In [4], the problem is put in the framework of Greiner
[31] to deal with abstract boundary conditions, instead of the particular ones of the
McKendrick equation. More specifically, the semigroup with the generator’s domain
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equal to ker[@; o @ + @, o (1 — «)] is approximated by a family of semigroups with
the generators’ domains involving ker @; and ker ®,. We point out that this result
allows dealing only with the case where N —the number of patches in the model of
solea solea—is 2; it is not yet clear how to extend the methods of [4] to deal with the
general case. Note that the problem posed here is in a sense converse to the result
of [1,5, 6]: there, a complex model is reduced to a simpler one involving convex
combination of the boundary conditions while here, given a convex combination of
Feller generators, we construct an approximating sequence of semigroups.

Here are the details: Throughout it is assumed that (34) holds. Also, given a
bounded linear operator ¢ € Z(X), and two operators Fi, F;, € Z(X,Y), we
define

F, = Fia + B>

where § = Ix — « (“a” for “average”). By Greiner’s theorem, A; := Af, and
A, = Ap,, are generators with D(4;) = ker &;, where &; = L — F;,i = 1,2 and
D(A,) = ker®,, where &, = L — F,.

Our main goal is to approximate (e’ Aa) ;>0 Dy means of semigroups build from

(e?’Al)tZO and (e’AZ)tZO. To this end, we introduce operators o7,k > 0, in X x X
given by

D(e,) = D(A) x D(A;) = ker @, x ker @,,

_ (A1 0 B a) _.
JZZ{—(O A2)+K(,3 —a) = 9 +«Z2.

. t,Q{ . . .
We assume that the semigroup generated by %, say (e 0) ;>0 18 semicontractive,
i.e., it satisfies

e < e, t>0, (44)

for some w € R and that
9:=Q+1xx=(aa) 45)
) BB

is a contraction in X x X. (The former condition is automatically satisfied if
(e’fAO)t>O is semicontractive—see the remark on page 215 in [31].) We note that
& is idempotent, hence

ektfj — e—Kfer.@ — e Kt [IXXX + (etl( _ 1)9]

= e_’”IXXX + (11— e_”)f@. (46)
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It follows that ||’ || < 1 and for the semigroups generated by <7, (which exist by
the Phillips perturbation theorem) we have, by the Trotter product formula,

K n
le'“x| < lim H [e%%e#°] xH <e|xl,  xeXxX,
n—>00
so that
le" || < e, k>0,1>0. 47)

Operator & is a projection on the subspace X' C X x X of vectors of the form
(g;), the latter space is isomorphic to X with isomorphism .# : X — X’ given by

Ix = (g’;)

Theorem 3.1 [In the above setup, assume that o leaves D(A) invariant. Then,

"
lim e (xl) - ye%y—lgz(x‘) = (“e () +x2)), t>0,x,x% €X.

k—>~+o0 X> X7 ,BCZE{“(XI + XZ)
(48)

For (f;) € X' the same is true for t = 0 as well, and the limit is almost uniform in

t € [0, 00); for other ( ) the limit is almost uniformin t € (0, 00).

x1
X2

Intuitively, this result may be explained as follows. The components of the
semigroup (e”zfo) .~ are uncoupled, while in (e’ Q{K) .~o the coupling is realised by
the operator 2 which may be thought of as describing a Markov chain switching one
dynamics into the other (the jumps’ intensities are state-dependent, see examples
given later). As k — oo, the Markov chain reaches its statistical equilibrium, so
that with “probability” « it chooses the first dynamics, and with “probability” B,
it chooses the second dynamics. This results in a convex combination of boundary
conditions in the limit semigroup. (Compare the main theorem in [9], see also [13].)

B 0

Theorem 3.2 Under conditions of the previous theorem, let 28 = ( 0 B
2

) , where

B and B, are bounded linear operators. Then,

) x _ X
lim ef(“z{”‘@)( 1) = geatBiatBp) g 13”( 1), t>0,x1,x X
k—-+00 X2 X2

(49)
For (;;) € X' the same is true for t = 0 as well, and the limit is almost uniform in
t € [0, 00); for other (f;) the limit is almost uniform in t € (0, 00).
Remark 1 For Theorems 3.1 and 3.2, besides (34) and (44), we assume that &2,
defined in (45), is a contraction in X x X and « leaves D(A) invariant. While the
nature of the first and the last conditions is transparent, the other two require a
comment. As already mentioned, together they imply stability condition (47) (which
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is a common assumption in convergence theorems), and in fact our theorems remain
true if we simply assume (47). However, for the sake of applications it is more
convenient to assume the two conditions discussed above. Out of these two, the one
requiring & to be a contraction seems to be most restrictive, apparently excluding
spaces with supremum norm. On the other hand, this assumption is often satisfied
in L'-type spaces. (Similarly, the “dual” theorem in [9, 13] is designed for spaces of
continuous functions.) In particular, if X is an AL-space, i.e. a Banach lattice such
that

lx+yl=lxl+lyll.  xy=0,
and X x X is equipped with the order “(’y‘ ) > 0iff x > Oand y > 0” and the

()

operators. For, in such a case,

()

norm = ||x|| + ||¥||, then & is a contraction provided & and 8 are positive

(a(x +y)

Blx + y)) " = atx + ) + 1B(x + Y

X
y
and &7 is positive. Hence, [see e.g. [3, Proposition 2.67]]
P X

y

Example 7 As we have already seen, in the motivating example of dynamics of sola
sola,

=[x +yll = . Xy =0,

2= sup
G)|=1.6)=0

<.

A:WHRY - LIRY)  Af=—f,

and L : WH(RY) — Ris given by Lf = £(0), and condition (34) is satisfied with
y =1

For b; € L®R"),i = 1,2, the functionals F; f = fooo bi(a) f(a)da are
linear and bounded. Hence, Af, generates a semigroup of operators and so does
AF, + B;, where given y; € L®(R™), B; is a (bounded) multiplication operator
f = —u; f. It is well-known [see e.g. [11, 21, 33]] that there is w such that
efAr 8| < e i = 1,2, implying (44).

Let o € WI°(R™) satisfy 0 < o < 1. Then the related multiplication operator
(denoted by the same letter) is bounded in L' (R™"), and leaves D(4) = WII(R™T)
invariant. Moreover, the related operator & [see (45)] in L'(RT) x L'(RY),

equipped with the norm H (2) H = [fileiw+) + /2l L1 ®+), is a contraction
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(see Remark 1). Hence, all assumptions of Theorem 3.2 are satisfied. This again
establishes that the general model (41) (with N = 2 and normalized matrix k) may
be approximated by the averaged one (43).

3.4 Modelling Neurotransmitters

In our last section we discuss the results of [15], where a link between two recent
models of dynamics of synaptic depression was provided. This involves Feller—
Wentzell-type transmission conditions, as we explain in what follows.

In an attempt to understand phenomena behind synaptic depression, Aristizabal
and Glavinovi¢ introduced a simple ODE model of dynamics of levels of
neurotransmitters [2]. They adopted the following widely accepted, simplified but
sufficiently accurate description (see papers cited in [2]): neurotransmitters are
localized in three compartments, or pools: the large pool, where also their synthesis
takes place, the small intermediate pool, and the immediately available pool, from
which they are released during stimulus. Moreover, they assumed that the dynamics
of levels U;,i = 1,2, 3 of vesicles with neurotransmitters in the pools is analogous
to that of voltages across the capacitors in the electric circuit reproduced (with minor
changes) as our Fig. 9.

This results in the following system of ODEs for U;:

Ull U, 0
UZ/ =0|U, |+ 0 , (50)
’ 1
Uj U/ \mgE-Us)
where
L 1 1 0
RyC R Cy R Cy
0= _1 1 1 _1_
- R1Cy RyCy R C) RyCy
0 L 1
RyC3 Ry C3

For the electric circuit, E denotes the electromotive source, the constants C;s are
capacitors’ sizes, while R;s characterize the resistors. Biologically, £ represents

gy 7N S ETE s RECE S

—
Stimulus

Large pool Small pool Immediately available pool

Synthesis — Cs — (Y

Fig. 9 The ODE model of Aristizabal and Glavinovi¢
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synthesis and C;s are the capacities to store vesicles, but R;s do not have a clear
meaning. Merely the compounds %c, are interpreted as the pools’ replenishment
rates.

A more recent PDE model of Bielecki and Kalita [7] zooms in on vesicles with
neurotransmitters, and assumes that they move according to a diffusion process in
a three dimensional domain §2. As a result, in the linear version of the model, the
(unknown) concentration p of vesicles in the cytoplasm satisfies a Fokker-Planck-
type equation

P A8 p) 5D
t

where A is a second order, elliptic partial differential operator, 8 : 2 — R is the
rate of neurotransmitters’ production, and p is a balance concentration of vesicles.

We are looking for a connection between these models. To this end, first we note
that equations (50) and (51) are of quite a different nature: while (in the absence
of stimulus and production) the latter is conservative, the former is not. However,
the dual to the matrix Q in (50) is an intensity matrix (it has non-negative off-
diagonal entries, and the sums of its entries in each column are zero), and the
dual equation to (50) is conservative. This suggests that to find a link between
the two models, one must first pass from the description of dynamics of densities
(concentrations), to that of expected values, i.e. instead of considering the Fokker-
Planck-type equation (51) one should pass to the dual Kolmogorov backward
equation. Moreover, to find such a link, one needs to specify the way vesicles move
from one pool to another, i.e. to specify the transmission conditions [17], which
are missing in Bielecki and Kalita’s model. (In proving formula (52) below, instead
of introducing appropriate transmission conditions, Bielecki and Kalita use what
they call “technical conditions”, without showing that these technical conditions are
satisfied.) These transmission conditions, describing communication between pools,
are of crucial importance in the analysis.

In [15] we introduced a one-dimensional version of the Bielecki and Kalita
model, where vesicles perform a Brownian motion on three adjacent intervals
(corresponding to pools) with diffusion coefficients varying from pool to pool, and
where the mechanism of passing from one pool to another is specified by means of
transmission conditions. Our main result says that as the diffusion coefficients in the
model tend to infinity and the boundary and transmission conditions are scaled in
an appropriate way, the solutions to the related Cauchy problems converge to those
of the model of Aristizabal and Glavinovi¢. Roughly speaking, if diffusion in three
separate pools is large and communication between pools is slow, the ODE model
is a good approximation of the PDE model.

‘We note that to show a connection between the two models, Bielecki and Kalita
also divide £2 into three subregions §23, §2, and §2|, corresponding to the three pools.
They assume that the diffusion process the vesicles perform is a three-dimensional
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Brownian motion and the diffusion coefficients, say o, 02, 03 vary from region to
region, and suggest (see [7, Thm 2]) that the quantities

frz,- P

"~ volume£2;’ i=123 (52)
satisfy the ODE system (50) of Aristizabal and Glavinovi¢ with C; = %
However, this formula is at least doubtful: the proof of (52) given in [7] contains
a number of errors. Moreover, in the absence of stimulus and neurotransmitter’s
production, the total number of vesicles should remain constant. Hence, U; + U, +
U;s = const, provided volumes2; = 1,i = 1,2,3. However, system (50) is not
conservative, i.e. (U; + Uy + Us)’ # O unless all C;” are the same [no stimulus case
is obtained by letting Ry — oo, and no production results in removing the second
summand in (50)]. Hence, formula (52) cannot hold unless all o;” are the same.

In our model we imagine the three pools as three adjacent intervals [0, 73], [r3, 72]
and [r,, r1] of the real line, corresponding to the large, the small and the immediately
available pools, respectively. As in the model of Bielecki and Kalita, in each of those
intervals, vesicles perform Brownian motions with respective diffusion coefficients
03,07 and o;. The pools are separated by semi-permeable membranes located at
x = rz and x = r,. (We note that no such membranes exist physically; they are
merely imaginary. Alternatively, instead of membranes and their permeability we
may speak of intensities of passing from one pool to the other.) Therefore, it is
convenient to think of the actual state space £2 of the process performed by the
vesicles as the union of three intervals:

Q:=2U2,UQ :=[0,r;]U[r;,rs]U[r), il

(In order to keep our notations consistent with those of [2] and [7], the intervals are
numbered “from the right to the left”.) Note that r3 is now split into two points: r3
and r3+ , representing positions to the immediate left and to the immediate right from
the first membrane; a similar remark concerns ;. Vesicles in all pools may permeate
through the imaginary membrane(s) to the adjacent pool(s), and their ability to filter
from the ith into the jth pool is characterized by permeability coefficients k; > 0,
i,j =1,2,3,]i — j| = 1. The left end-point x = 0 is a reflecting boundary for
the process, and the right end-point x = r; is an elastic boundary with elasticity
coefficient k19 > 0. The case k19 > 0 characterizes the boundary during stimulus,
and k9 = 0 describes it in between stimuli (i.e., when there is no stimulus, x = ry
is a reflecting boundary). Hence, k1o characterizes vesicles’ ability to be released
from the terminal bouton.

To describe our model more formally, we note that £2 is a (disconnected) compact
space and the function ¢ defined on §2 by

o(x)=0;,, x€8;,i=12,73,
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Fig. 10 A typical member of A

@ f (@)

v

is continuous. A typical member of the Banach space
B=C(R2)

of complex continuous functions on §2 is depicted at Fig. 10. We note that the space
is isometrically isomorphic to the Cartesian product C(£2;) x C(§2;) x C(£23)
of the spaces of continuous functions on the three intervals. In other words, a
member of C(£2) may be identified with three continuous functions fi, f2, f3
being restrictions of f to the three intervals 21, £2,, £23, respectively; we have
I flle@) = maxi=i23 || fille)-

The first result in [15] says that the operator A in C(§2) defined as

Af =af” (53)

for twice continuously differentiable functions f on §2 satisfying the conditions:

1'0) =0, £1y) = knlfG) — £,
f1oH) = ksl f () — G f10) =kaulf () = f(3)].
f10H) = knlf() = fGD]. f'r) ==k f(r), (54)

generates a semigroup {€”*,7 > 0} in C(£2). The semigroup describes the dynamics
of expected values of neurotransmitters’ numbers in the three pools.

The results presented in Sect. 2.2 allow interpreting the boundary and transition
conditions (54) as follows. Turning, for example, to the third condition in (54),
we note that it has the form of the elastic barrier condition (33) with 0 replaced
by r3+ ,b =1,¢c = d = ky and p equal to the Dirac measure at r; . Hence,
it describes the process in which the vesicles in §2, bounce from the imaginary
membrane separating it from £2; to filter into the latter interval at a random time T
with distribution:

P(T>1)=e*" (>0
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(Stochastic analysis of the related snapping out Brownian motion may be found in
[38].) In particular, the larger k53 is, the shorter is the time needed for the vesicle to
filter through the imaginary membrane. Hence, k53 is truly a permeability coefficient
for passing from £2, to £23. On the other hand, as indicated previously, dividing
ka3 by k,, where (k,),>1 is a sequence of positive numbers tending to infinity, and
letting n — oo we obtain P(T > t) = 1,i.e. the time to filter through the membrane
is infinite and the boundary is reflecting. The interpretation of the other boundary
and transmission conditions in (54) is analogous.

The main point is to study the limit of the semigroups generated by the operators
Ay, n > 1 defined by (53) with o replaced by «,0 and all permeability coefficients
in (54) divided by «,. More specifically, it is proved in [15] that

lim ' f = e'CPf, t>0,feC(f) (55)

n—o0

where Q is given by

K=Ky K 0 |
Q= kél _kél - k§3 k§3 ’ kz{j =~ To. (56)
0 Ky =k

where |£2;| is the length of the i th interval, and the operator P given by
=2 [ o

is a projection on the subspace By of C(£2) of functions that are constant on each
of the three subintervals separately; the subspace may be identified with R?, and its
members may be identified with triples of real numbers.

Intuitively, as the diffusion coefficients increase, the transition probabilities
between points in each interval separately tend to 1. As a result, the points become
indistinguishable and may be lumped together. Points from different intervals may
not be lumped together since as n — oo the permeability coefficients ]% tend
to zero and in the limit the membranes become reflecting boundaries, sepé{rating
the intervals. However, because of the intimate relation between diffusion and
permeability coefficients, the three states of the limit process, i.e. the three intervals
contracted to three separate points, communicate as the states of a Markov chain
with intensity matrix Q (see Fig. 11).

Comparing intensity matrices of (50) and (56), we obtain the following relations
between parameters in the two models:

1 ok 1 okn 1 ooky
RoCy 21| RIC |2/ RiCy |25
1 02ko3 1 o3k3

= s = . 57
R,Cy  [§25]  RyCs |£23] G7
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Fig. 11 Approximating a Markov chain by diffusion processes

Fig. 12 Two pools

These relations agree with the intuition that the replenishment rate from the ith to
the jth pool is directly proportional to permeability of the imaginary membrane
separating them and to the speed of diffusion in the ith interval, and inversely
proportional to the length of this interval.

Perhaps this mechanism will become yet more clear if we consider the case
of two pools. For simplicity, we assume, as at our Fig.12, that two intervals
representing pools are of the same unit length, and consider first the operator Af =
1" defined for twice continuously differentiable functions in B = C|[0, 1] x C[1, 2]
(each pair of functions in B is identified with a single function on [0, 2], continuous
in this interval except perhaps at x = 1 where it has limits from the left and from
the right), satisfying boundary and transmission conditions

(0= f'2) =0,
f1a=) =a[f(d+) = f(1-)],
fa4) = BLfA+) = f-)],

where o and B play the role of permeability coefficients of the membrane located
at x = 1 (see Fig. 12). Now, if we replace Af = f” by A, f = nf” and divide
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the permeability coefficients by 7, the related semigroups e'4” will converge, as

n — 00, to e’¢ P where
1 2
(o] )
0 1

is a map from X to R? (identified with the subspace C X of functions that are
constant on each of the intervals) and

—a o
2=(55%)
B —B
is the intensity matrix of the simplest Markov chain.
But, on the other hand, the principle discovered here is more general than it
appears [12]. In fact, we may forget about adjacent intervals and consider diffusions

on graphs. More specifically, imagine a finite graph ¢ without loops, and a Markov
process on ¢ obeying the following informal rules.

* While on the ith edge, imagined as a C! curve in R3, the process behaves like a
one-dimensional Brownian motion with variance o; > 0.

e Graph’s vertices are semi-permeable membranes, allowing communication
between the edges; permeability coefficients p;;, describing the possibility to
filter through the membrane from the ith to the jth edge, depend on the edges.
In particular, pj; is in general different from p;;. At each vertice, the process
may also be killed and removed from the state-space.

Now, suppose the diffusion’s speed increases while membranes’ permeability
decreases (i.e. o; — oo and p;; — 0). As a result, points in each edge communicate
almost immediately and in the limit are lumped together, but the membranes
prevent lumping of points from different edges. It transpires, nevertheless, that the
assumption that the rate with which permeability coefficients tend to zero is the
same as the rate with which the diffusion coefficients tend to infinity, leads to
a limit process in which communication between lumped edges is possible. The
lumped edges form then the vertices in the so-called line graph of ¢ (see [18])
and communicate as the states of a Markov chain with jumps’ intensities directly
proportional to permeability coefficients p; and the diffusion coefficients o;, and
inversely proportional to the edges’ lengths (see Fig. 13). The assumption on the rate
is important: if diffusion coefficients tend to infinity slower than the permeability
coefficients tend to zero, there is no communication between the vertices in the
limit line graph, and in the opposite case all points of the original graph are lumped
together, and nothing interesting happens.

This procedure may also be reversed: given a finite-state Markov chain, we may
find a graph ¢ and construct a fast diffusion on ¢ approximating the chain. See [12]
for details.
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Fig. 13 From diffusion on ¢ to a Markov chain on the vertices of the line graph of ¢; edges
“shrink” to vertices, vertices “split” into edges
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Introduction to Complex Networks: Structure
and Dynamics

Ernesto Estrada

1 Introduction

1.1 Motivations

This chapter is written with graduate students in mind. During the very encour-
aging meeting at the African Institute for Mathematical Sciences (AIMS) for the
CIMPA-UNESCO-MESR-MINECO-South Africa Research School on “Evolution-
ary Equations with Applications in Natural Sciences” 1 noticed a great interest of
graduate and postgraduate students in the field of complex networks. This chapter
is then an elementary introduction to the field of complex networks, not only about
the dynamical processes taking place on them, as originally planned, but also about
the structural concepts needed to understand such dynamical processes. At the end
of this chapter I will provide some basic material for the further study of the topics
covered here, apart from the references cited in the main text. This is aimed to help
students to navigate the vast literature that has been generated in the last 15 years of
studying complex networks from an interdisciplinary point of view.

The study of complex networks has become a major topic of interdisciplinary
research in the twentyfirst century. Complex systems are ubiquitous in nature and
made-made systems, and because complex networks can be considered as the
skeleton of complex systems they appear in a wide range of scenarios ranging
from social and ecological to biological and technological systems. The concept
of “complexity” may well refer to a quality of the system or to a quantitative
characterisation of that system [40, 44]. As a quality of the system it refers to
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what makes the system complex. In this case complexity refers to the presence
of emergent properties in the system. That is, to the properties which emerge as
a consequence of the interactions of the parts in the system. In its second meaning,
complexity refers to the amount of information needed to specify the system.

In the so-called complex networks there are many properties that emerge as a
consequence of the global organisational structure of the network. For instance,
a phenomenon known as “small-worldness™ is characterised by the presence of
relatively small average path length (see further for definitions) and a relatively high
number of triangles in the network. While the first property appears in randomly
generated networks, the second “emerges” as a consequence of a characteristic
feature of many complex systems in which relations display a high level of
transitivity. This second property is not captured by a random generation of the
network.

By considering complexity in its quantitative edge we may attempt to charac-
terise complex networks by giving the minimum amount of information needed
to describe them. For the sake of comparison let us also consider a regular and
a random graph of the same size of the real-world network we want to describe.
For the case of a regular graph we only need to specify the number of nodes
and the degree of the nodes (recall that every node has the same degree). With
this information many non-isomorphic graphs can be constructed, but many of
their topological and combinatorial properties are determined by the information
provided. In the case of the random network we need to specify the number of
nodes and the probability for joining pairs of nodes. As we will see in a further
section, most of the structural properties of these networks are determined by this
information only. In contrast, to describe the structure of one of the networks
representing a real-world system we need an awful amount of information, such
as: number of nodes and links, degree distribution, degree-degree correlation,
diameter, clustering, presence of communities, patterns of communicability, and
other properties that we will study in this chapter. However, even in this case a
complete description of the system is still far away. Thus, the network representation
of these systems deserves the title of complex networks because:

1. there are properties that emerge as a consequence of the global topological
organisation of the system,

2. their topological structures cannot be trivially described like in the cases of
random or regular graphs.

Complex networks can be classified according to the nature of the interactions
among the entities forming the nodes of the network. Some examples of these
classes are:

* Physical linking: pairs of nodes are physically connected by a tangible link, such
as a cable, a road, a vein, etc. Examples are: Internet, urban street networks, road
networks, vascular networks, etc.
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» Physical interactions: links between pairs of nodes represents interactions
which are determined by a physical force. Examples are: protein residue net-
works, protein-protein interaction networks, etc.

* “Ethereal” connections: links between pairs of nodes are intangible, such
that information sent from one node is received at another irrespective of the
“physical” trajectory. Examples are: WWW, airports network.

* Geographic closeness: nodes represent regions of a surface and their connections
are determined by their geographic proximity. Examples are: countries in a map,
landscape networks, etc.

* Mass/energy exchange: links connecting pairs of nodes indicate that some
energy or mass has been transferred from one node to another. Examples are:
reaction networks, metabolic networks, food webs, trade networks, etc.

* Social connections: links represent any kind of social relationship between
nodes. Examples are: friendship, collaboration, etc.

* Conceptual linking: links indicate conceptual relationships between pairs of
nodes. Examples are: dictionaries, citation networks, etc.

1.2 General Concepts of Networks

Here we define a network as the triple G = (V, E, f), where V is a finite set
of nodes, E C V ® V = {e1,e2,--,en} is a set of links and f is a mapping
which associates some elements of E to a pair of elements of V, such as that if
vi € Vandv; € Vthen f : e, — [vi,vj] and f :e; — [vj,vi] [14,23]. A
weighted network is defined by replacing the set of links E by a set of link weights
W = {wi,wa,--- ,wp}, such that w; € 0. Then, a weighted network is defined by
G = (V, W, f). Two nodes u and v in a network are said to be adjacent if they are
joined by a link e = {u, v}. Nodes u and v are incident with the link e, and the link
e is incident with the nodes u and v. The node degree is the number of links which
are incident with a given node. In directed networks, those where each edge has an
arrow pointing from one node to another, the node u is adjacent to node v if there
is a directed link from u to v e = (u,v). A link from u to v is incident from u and
incident to v;u is incident to e and v is incident from e. The in-degree of a node is
the number of links incident to it and its out-degree is the number of links incident
from it. The graph S = (V’, E’) is called a subgraph of a network G = (V, E) if
andonlyif VCVand E' CE.

An important concept in the analysis of networks is that of walk. A
(directed) walk of length / is any sequence of (not necessarily different) nodes
Vi,V2,++ , v, V41 such that foreachi = 1,2,---,! there is link from v; to v; 4.
This walk is referred to as a walk from vy to v;41. A closed walk (CW) of length [
isa walk vi,va, -, v, v41 in which vy = vi. A walk of length / in which all the
nodes (and all the links) are distinct is called a path, and a closed walk in which all
the links and all the nodes (except the first and last) are distinct is a cycle. If there is
a path between each pair of nodes in a network, the network is said to be connected.
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Every connected subgraph is a connected component of the network. The analogous
concept for the directed network is that of strongly connected network. A directed
network is strongly connected if there is a path between each pair of nodes. The
strongly connected components of a directed network are its maximal strongly
connected subgraphs.

A common representation of the topology of a network G is through the
adjacency matrix. It is a square matrix A whose entries are defined by

_(1ifi,j€E

Ay = L.
0 otherwise

ey
A is symmetric for undirected networks and possibly un-symmetric for directed
ones.

Another important matrix representation of a network is through its Laplacian
matrix L, which is the discrete analogous of the Laplacian operator [32]. The entries
of this matrix are defined by

—1ifuv e E,
Ly,=1k, ifu=v, 2)
0 otherwise.

Let us designate by V the incidence matrix of the network, which is an n x m
matrix whose rows and columns represents the nodes and edges of the network,
respectively, such that

+1 ife € Eis incoming to node u,
Vie = { —1 ife € Eis outcoming from node u, 3)
0 otherwise.

Then,
L=vv" 4)
If we designate by K the diagonal matrix of node degrees in the network, the

Laplacian and adjacency matrices of a network are related as follows: L = K — A.
The spectrum of the adjacency matrix of a network can be written as

(A MA) - M)
SpA = (m(xl(A)) mOa(A)) - m(xn(A))) ’ ©)

where A;(A) > A,(A) > --- > A1,(A) are the distinct eigenvalues of A and
m(A1(A)), m(A2(A)), -+ ,m(A,(A)) are their multiplicity.
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In the case of the Laplacian matrix the spectrum can be written in a similar way:

_( m(@L) o e (L)
Sl = (m(lu(L)) m(ua(L)) - m(un(L)))' ©

The Laplacian matrix is positive semi-definite and the multiplicity of 0 as
an eigenvalue is equal to the number of connected components in the network.
Then, the second smallest eigenvalue of L, wy(L), is usually called the algebraic
connectivity of the network [19].

An important property for the study of complex networks is its degree distribu-
tion. Let p(k) = n(k)/n, where n(k) is the number of nodes having degree k in the
network of size n [2]. That is, p(k) represents the probability that a node selected
uniformly at random has degree k. The histogram of p(k) versus k represents the
degree distribution of the network. Determining the degree distribution of a network
is a complicated task. Among the difficulties usually found we can mention the fact
that sometimes the number of data points used to fit the distribution is too small and
sometimes the data are very noisy. For instance, in fitting power-law distributions,
the tail of the distribution, the part which corresponds to high-degrees, is usually
very noisy. There are two main approaches in use for reducing this noise effect in
the tail of probability distributions. One is the binning procedure, which consists in
building a histogram using bin sizes which increase exponentially with degree. The
other approach is to consider the cumulative distribution function (CDF) [11].

There are many local properties which are used to characterise the nodes and
links of complex networks. One of the most important ones is the so-called
clustering coefficient introduced by Watts and Strogatz in 1998 [47]. For a given
node i the clustering coefficient is the number of triangles connected to this node
|C5(i)| divided by the number of triples centred on it

2|G50)]
C=——"-, (N
ki(ki — 1)
where k; is the degree of the node. The average value of the clustering for all nodes
in a network C has been extensively used in the analysis of complex networks

C':lic,-. (8)

i=1

Another group of local measures for the nodes of a network are the centrality
measures [17,22,25,29]. These measures try to capture the notion of “importance”
of nodes in networks by quantifying the ability of a node to communicate directly
with other nodes, or its closeness to many other nodes or the number of pairs of
nodes which need a specific node as intermediary in their communications. The
simplest example of these measures is the degree of a node. A generalisation of this
concept can be seen through the use of the eigenvector associated with the largest
eigenvalue of the adjacency matrix of the network. This centrality, known as the
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eigenvector centrality, captures the influence not only of nearest neighbours but also
of more distant nodes in a network [8, 9]. It can be formally defined as

A

1

0(i) = (iAwl) . ©)

The closeness centrality measures how close a node is from the rest of the nodes
in the network and [22] is expressed mathematically as follows

n—1
CCu) = —, 10
=50 (10)
where the distance sum s () is
Sw= Y d.v). (11)
veV(G)

The betweenness centrality quantifies the importance of a node in the communi-
cation between other pairs of nodes in the network [22]. It measures the proportion
of information that passes through a given node in communications between other
pairs of nodes in the network and it is defined as:

BCU) = Y PR (12)
e )
where p(i, j) is the number of shortest paths from node i to node j, and p(i, k, j)
is the number of these shortest paths that pass through the node & in the network.

The subgraph centrality counts the number of closed walks starting and ending
at a given node, which are mathematically given by the diagonal entries of AK. A
penalisation is used for longer walks, such that they contribute less to the centrality
than the shortest walks [15-18]. It is defined as:

o0 A]
EE(i) = (Z F) = (") (13)

=0

Another characteristic feature of complex networks is the presence of commu-
nities of nodes which are more tightly connected among them than with the rest of
the nodes in the network. In general it is considered that a community is a subset of
nodes in a network for which the density of connections is significantly larger than
the density of connections between them and the rest of the nodes. The reader is
directed to the specialised literature to obtain information about the many methods
available for detecting communities in networks [20].

The quality of a partition of a network into several communities can be measured
by mean of a few indices. The most popular among these quality criteria is the so-
called modularity index. In a network consisting of ny partitions, Vi, Va,..., V.,
the modularity is the sum over all partitions of the difference between the fraction
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of links inside each partition and the expected fraction by considering a random
network with the same degree for each node [36]:

ne Z kj 2
o=Y | L | , (14)

where | E | is the number of links between nodes in the kth partition of the network.
Modularity is interpreted in the following way. If Q0 = 0, the number of intra-
cluster links is not bigger than the expected value for a random network. Otherwise,
0 = 1 means that there is a strong community structure in the network given by
the partition analysed.

2 Models of Networks

It is useful when studying complex networks to use random networks as models
to compare the properties we are studying. This allows us to understand whether
such property is the result of any natural evolutionary process or simply a randomly
appearing artefact of network generation. In a random network, a given set of nodes
are connected in a random way.

2.1 The Erdos-Rényi model

The simplest model of random network was introduced by Erdos and Rényi [13] in
which we start by considering n isolated nodes and with probability p > 0 a pair of
nodes is connected by an edge. Consequently, the network is determined only by the
number of nodes and edges and it can be written as G(n,m) or G(n, p). In Fig. 1
we illustrate some examples of Erdds-Rényi random graphs with the same number
of nodes and different linking probabilities.

Fig. 1 Illustration of the changes of an Erdds-Rényi random network with 20 nodes and
probabilities that increases from zero (left) to one (right)
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A few properties of Erdos-Rényi (ER) random networks are summarised below

[5,24,37,48]:

(i) The expected number of edges per node:

. nmn-—1
m = M (15)
2
(i) The expected node degree:
k=@un-1)p. (16)
(iii) The degrees follow a Poisson distribution of the form
—k [k
e "k
p (k) = R A7)
as illustrated in Fig. 2:
(iv) The average path length for large n:
- Inn—y 1
I(H + -, 18
(H) =~ o T2 (18)
where y ~ 0.577 is the Euler-Mascheroni constant.
0.14 e . .
012} [\ -
01f ]
0.08 : -
x 4
= | I:'.
0.06
/ \
Fig. 2 Tllustration of the I
degree distribution of an 0.04 | g 1
Erdos-Rényi (ER) random y
network with 1,000 nodes and sl fo |
4,000 links. The solid line is ¢ .
the expected distribution and !
the dots represents the values 0 . . . :
for the average of 100 0 5 10 135 20 25

realizations k
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(v) The average clustering coefficient:

C = p=24@0G). (19)

(vi) When increasing p, most nodes tends to be clustered in one giant component,
while the rest of nodes are isolated in very small components

(vii) The structure of Ggg(n, p) changes as a function of p = k/(n — 1) giving rise
to the following three stages:

(a) Subcritical k < 1, where all components are simple and very small. The
size of the largest componentis § = O(Inn).

(b) Critical k = 1, where the size of the largest componentis § = Qn?3).

(c) Supercritical k > 1, where the probability that (f —e)n < § < (f + &)n
is 1 whenn — ooe > 0 for, where f = f(k) is the positive solution of
the equation: e ¥/ = 1 — f. The rest of the components are very small,
with the second largest having size about In .

(viii) The largest eigenvalue of the adjacency matrix in an ER network grows

proportionally to 7 : lim, e (A1(A)/n) = p.

(ix) The second largest eigenvalue grows more slowly than A, : lim,—, 0 (A2(A)
/n®) = 0 forevery ¢ > 0.5.

(x) The smallest eigenvalue also grows with a similar relation to A,(A) :
limy, 00 (A1 (A)/n®) = O for every ¢ > 0.5.

(xi) The spectral density of an ER random network follows the Wigner’s
semicircle law, which is simply written as:

_ Va4—i2 —2<A/r<2,r=/np(1—p)
p(A)=4 2« . (20
0 otherwise.

2.2  Small-World Networks

Despite the great usability of ER random networks as null models for studying
complex networks it has been observed empirically that they do not reproduce
some important properties of real-world networks. These empirical evidences can
be traced back to the famous experiment carried out by Stanley Milgram in 1967
[31]. Milgram asked some randomly selected people in the U.S. cities of Omaha
(Nebraska) and Wichita (Kansas) to send a letter to a target person who lives in
Boston (Massachusetts) on the East Coast. The rules stipulated that the letter should
be sent to somebody the sender knows personally. Although the senders and the
target were separated by about 2,000km the results obtained by Milgram were
surprising because:

1. The average number of steps needed for the letters to arrive to its target was
around 6.
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2. There was a large group inbreeding, which resulted in acquaintances of one indi-
vidual feedback into his/her own circle, thus usually eliminating new contacts.

These results transcended to the popular culture as the “small-world” phe-
nomenon or the fact that every pair of people in the World are at “six degrees of
separation” only. Practically in every language and culture we have a phrase saying
that the World is small enough so that a randomly chose person has a connection
with some of our friends.

The Erdos-Rényi random network reproduces very well the observation concern-
ing the relatively small average path length, but it fails in reproducing the large group
inbreeding observed. That is, the number of triangles and the clustering coefficient
in the ER network are very small in comparison with those observed in real-world
systems. In 1998 Watts and Strogatz [47] proposed a model that reproduces the two
properties mentioned before in a simple way. Let n be the number of nodes and k be
an even number, the Watt-Strogatz model starts by using the following construction
(see Fig. 3):

1. Place all nodes in a circle;

2. Connect every node to its first k /2 clockwise nearest neighbours as well as to its
k /2 counter-clockwise nearest neighbours;

3. With probability p rewire some of the links in the circulant graph obtained
before.

The network constructed in the steps (i) and (ii) is a ring (a circulant graph), which
for k > 2 is full of triangles and consequently has a large clustering coefficient. The
average clustering coefficient for these networks is given by [4]

3k —2)

T ey

which means that C = 0.75 for very large values of k.

0 Rewiring probability p 1

Fig. 3 Schematic representation of the evolution of the rewiring process in the Watts-Strogatz
model
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Fig. 4 Representation of the variation in the average path length and clustering coefficient with
the change of the rewiring probability in the Watts-Strogatz model with 100 nodes and 5,250 links

As can be seen in Fig. 3 (left) the shortest path distance between any pair of nodes
which are opposite to each other in the network is relatively large. This distance is,
in fact, equal to [ ]. Then

(=D tk-1
- 2kn :

~

(22)

This relatively large average path length is far from that of the Milgram
experiment. In order to produce a model with small average path length and still
having relatively large clustering, Watts and Strogatz consider the step (iii) for
rewiring the links in that ring. This rewiring makes that the average path length
decreases very fast while the clustering coefficient still remains high. In Fig.4 we
illustrate what happens to the clustering and average path length as the rewiring
probability change from O to 1 in a network.

2.3 “Scale-Free” Networks

The availability of empirical data about real-world complex networks allowed to
determine some of their topological characteristics. It was observed in particular
that one of these characteristics deviate dramatically from what is expected from
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a random evolution of the system in the form of ER or WS models. This
characteristic is the observed degree distribution of real-world networks. It was
observed [2] that many real-world networks display some kind of fat-tailed degree
distribution [21], which in many cases followed power-law fits, in contrast with the
expected Poisson-like distributions of ER and WS networks. In 1999 Barab4si and
Albert [2] proposed a model to reproduce this important characteristic of real-world
complex networks.

In the Barabasi-Albert (BA) model a network is created by using the following
procedure. Start from a small number mg of nodes. At each step add a new node u to
the network and connect it to m < my of the existing nodes v € V' with probability

kuy

Pu = m (23)

We can assume that we start from a connected random network of the Erdos-Rényi
type with mg nodes, Ggr = (V, E). In this case the BA process can be understood
as a process in which small inhomogeneities in the degree distribution of the ER
network growths in time. Another option is the one developed by Bollobéds and
Riordan [7] in which it is first assumed that d = 1 and that the i th node is attached
to the jth one with probability:

kj

if j <
1+ X
pi=y 17 : (24)
| it =i
1+ X
j=0

Then, for d > 1 the network grows as if d = 1 until nd nodes have been created
and the size is reduced to n by contracting groups of d consecutive nodes into one.
The network is now specified by two parameters and we denote it by BA(n,d).
Multiple links and self-loops are created during this process and they can be simply
eliminated if we need a simple network.

A characteristic of BA networks is that the probability that a node has degree
k > d is given by:

2d(d — 1) -

Rt G+ >

pk) =

as illustrated in Fig. 5.

This model has been generalised to consider general power-law distributions
where the probability of finding a node with degree k decays as a negative power
of the degree: p(k) ~ k~7. This means that the probability of finding a high-
degree node is relatively small in comparison with the high probability of finding
low-degree nodes. These networks are usually referred to as “scale-free” networks.
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The term scaling describes the existence of a power-law relationship between the
probability and the node degree: p(k) = Ak™": multiplying the degree by a constant
factor ¢, only produces a proportionate scaling of the probability:

p(k,c) = A(ck)™ = Ac™ - p(k). (26)

Power-law relations are usually represented in a logarithmic scale, leading to
a straight line, In p (k) = —yInk + In A, where —y is the slope and In A the
intercept of the function. Scaling by a constant factor ¢ means that only the
intercept of the straight line changes but the slope is exactly the same as before:
Inp(k,c) =—ylnk — yAc.

In the case of BA networks, Bollobas [6] has proved that for fixed values d > 1,
the expected value for the clustering coefficient C is given by

éwd—llogzn’
8 n

27)

forn — oo, which is very different from the value C ~ n~°7° reported by Barabisi
and Albert [2] for d = 2.

On the other hand, the average path length has been estimated for the BA
networks to be as follows [7]:

Inn—In(d/2)—1—v
Inlnn +1n(d/2)

- 3
| = =, 28
+2 (28)
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where v is the Euler-Mascheroni constant. This means that for the same number
of nodes and average degree, BA networks have smaller average path length
than their ER analogues. Other alternative models for obtaining power-law degree
distributions with different exponents y can be found in the literature [12]. In
closing, using this preferential attachment algorithm we can generate random
networks which are different from those obtained by using the ER method in
many important aspects including their degree distributions, average clustering and
average path length.

3 Dynamical Processes on Networks

Due to the fact that complex networks represent the topological skeleton of complex
systems there are many dynamical processes that can take place on the nodes and
links of these networks. We concentrate here in those cases where the topology of
the network is static, i.e., the nodes and links do not change in time. Then, we study
processes such as the consensus and synchronisation among the nodes in a network,
the diffusion of epidemics through the links of a network and the propagation of
beliefs by means of replication and mutation processes.

3.1 Consensus

The consensus is a dynamical process in which pairs of connected nodes try to
reach agreement regarding a certain quantity of interest [39]. Then, eventually the
network as a whole collapses into a consensus state, which is the state in which the
differences of the quantity of interest vanish for all pairs of nodes in the system. This
process is of great importance in social and engineering sciences where it models
situations ranging from social consensus to spatial rendezvous and alignment of
autonomous robots [39].

Letn = |V| be the number of agents forming a network, the collective dynamics
of the group of agents is represented by the following equations for the continuous-
time case:

i ()= [u; () —w (H].i =1, .n (29)

j~i

U; (0) =2Zi,% € N
which in matrix form are written as

u(t) = —Lu(?), (30)
u (0) = uy, (31
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where ug is the original distribution which may represent opinions, positions in
space or other quantities with respect to which the agents should reach a consensus.
The reader surely already recognized that Eqgs. (30)—(31) are identical to the heat
equation,

du

— = hV?u, 32

o u (32)
where £ is a positive constant and V> = —L is the Laplace operator. In general this

equation is used to model the diffusion of “information” in a physical system, where
by information we can understand heat, a chemical substance or opinions in a social
network.

A consensus is reached if, for all ; (0) and all i, j=1,...,n, |u; (t) —u; (t)| -0
as t — 0. In other words, the consensus set A C "is the subspace span{1}, that is

A:{ueﬂ’i”|ui=uj,\7’i,j}. (33)

A necessary and sufficient condition for the consensus model to converge to
the consensus subspace from an arbitrary initial condition is that the network is
connected.

The discrete-time version of the consensus model has the form

L+ =uw@+e Y Aylu;0)—w@)] (34)

(i.j)EE

u (0) = uy, (35)

where w; (¢) is the value of a quantitative measure on node i and ¢ > 0 is the step-
size. It has been proved that the consensus is asymptotically reached in a connected
graph for all initial states if 0 < & < 1/kmyax, Where kyax is the maximum degree
of the graph. The discrete-time collective dynamics of the network can be written in
matrix form as [39] as

u(t+1) =Pu(r), (36)
u (0) = uy, 37

where P = I—¢L, and I is the n xn identity matrix. The matrix P is the Perron matrix
of the network with parameter 0 < & < 1/kmay. For any connected undirected graph
the matrix P is an irreducible, doubly stochastic matrix with all eigenvalues 1 ; in
the interval [—1, 1] and a trivial eigenvalue of 1. The reader can find the previously
mentioned concepts in any book on elementary linear algebra. The relation between
the Laplacian and Perron eigenvalues is given by: it; = 1 — €A ;.
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Fig. 6 Time evolution of 35
consensus dynamics in a
real-world social network
with random initial states for
the nodes

30 |
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In Fig. 6 we illustrate the consensus process in a real-world social network having
34 nodes and 78 edges.
The solution for the consensus dynamics problem is given by

u(t) = e Tuyg, (33)
where
u(r) = e (pfuo) g1 + e (3 u0) 2 + -+ €7 (g w0) o (39)
We remind the reader that
e = ¢! (UAUT) — gemrAyT (40)

=e M 9] +e 0]+ e g,0]

where

1 (1) @2 (1) -+ @a (1)
91 (2) 92(2) -+ 0 (2)

. (41)

@1 (n) @2 (n) -+ @n (n)
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and
#r 0 -0
0 pp -+ 0
A=]| . .. , (42)
0 0 - uy

suchthat 0 = p; < up <+ < Up.
It is know that in a connected undirected network p; = Oand pu; > 0,Vj # 1.
Thus

lTll()

n

u(t) = (¢ w) ¢ = 1 as t — 0. (43)

Hence u(¢t) — A as t — oo. In other words, there is a global consensus.

As ., is the smallest positive eigenvalue of the network Laplacian, it dictates the
slowest mode of convergence in the above equation. In other words, the consensus
model converges to the consensus set in an undirected connected network with a
rate of convergence that is dictated by ;.

As the states of the nodes evolve toward the consensus set, one has

dit(lTu(t)) =17 (-Lu (1)) = —u ()" L1 =0, (44)
Then

u() =) ui(0), (45)

is a constant of motion for the consensus dynamics. Furthermore, the state trajectory
generated by the consensus model converges to the projection of its initial state, in
the Euclidean norm, onto the consensus space, since

lTll() lTll()
——1= 1. 46
171 n (46)

argmin |ju — wy|| =
ueA

As can be seen in Fig. 7 the trajectory of the consensus model retains the centroid
of the node’s states as its constant of motion.
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Fig. 7 Illustration of the
trajectory of the consensus
model (adapted from [30])

Fig. 8 Illustration of the 3 -1
different Laplacian matrices L= [_1 2 ]
for a simple network with two !
leaders (nodes 5 and 6) and 1 -1 0 0
four followers (nodes 1-4) 2 3 -1 3 -1 0
Y=o s o
0o 0 -1 2
4 0 0
Lo 0 -1
6 5 Tol-1 0
-1

3.1.1 Consensus with Leaders

In many real-world scenarios a group of nodes in the network act as leaders that
drive the dynamics of the system. The set of nodes is then divided into leaders and
followers. The state of the leaders does not change during the consensus process and
the quantity of interest in the process for the followers converges to the convex hull
formed by the leaders. In this case the consensus dynamics can be written as

| _(LyLgffus|_[0 47
[1’1; } [ 00 ||lw " “7)
where the vector u and the Laplacian matrix have been split into their parts

corresponding to the leaders and followers. The Laplacian Ly corresponds to the
interaction between leaders and followers in the network (see Fig. 8). The dynamics
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of the followers can then be expressed as:
ur = —Lyuy — Lguy, 48)

We know that L is positive semi-definite and if the network is connected we have
that N(L) = span{1}. Now, since

T _[ar uy
wiLsus = [u] 0L, [ ; } (49)
and
[u§ o] ¢ N (L), (50)
we have that
[ O]Lf[“of] > 0,Yu, € R (51)

That is, if the network G is connected then L is positive definite, L > 0. This
means that L' exists and uy = —L7'Lyw is well defined. All of this implies
that given fixed leader opinions u;, the equilibrium point under the leader-follower
dynamics is

u; = —-L7 ' Lyw, (52)
which is globally asymptotically stable.

An example of a consensus with leaders-followers dynamics in a network is
illustrated in Fig. 9.

300
250 -
{.:ﬂ
2 200
L
5
Fig. 9 Illustration of a O 1504
consensus dynamics in a S
random network. Six nodes g 100 -
are selected randomly as =
leaders and the rest are 50 |
followers which are
represented as an hexagon. 0

Two quantities are designated 0
here as of interest for the

consensus, which are

designated as X- and Y-states X-States 10 Y-States
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3.1.2 Consensus in Directed Networks

Let us now consider the case of a weighted directed network, like the one illustrated
in Fig. 10.
In this case the equations governing the dynamical process can be written as

i (1) =0,

i (1) = war (ur (1) —uz (1)), (53)
s (1) = wa (u2 (1) — x3 (1)) + was (us (1) —uz (1))

g (1) = wap (uz (1) — us (1)) + waz (uz (1) —us (1)) -

In matrix form they are

0 0 0 0

i@y =| wrown 0 O ue. (54)
0 —wxnwn+wny —wy
0 —wa —wiz wa+wa

This equation is similar to the consensus dynamics model that we have consid-
ered before and can be written as [30]

u(t) = —L(D)u(z),u(0) = uy, (55)

2
o

W34

Fig. 10 TIllustration of a weighted directed network
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where
0 0 0 0
L(D) = Diag (A71) — A7 = [ w2t w2 0 0 . (56)
0 —wpwan+wiy  —wiy
0 —wip —wiz  wa+wsg
and
0 W21 0 0
0 0 wip wy
A= . 57
00 0 Wa3 ( )
00 W34 0

Let us now introduce a few definitions and results which will help to understand
when the system represented by a directed network converges to the consensus set,
i.e., when there is a global consensus in a directed network.

We start by introducing the concept of rooted out-branching subgraph [30]. A
rooted out-branching subgraph (ROS) is a directed subgraph such that

1. It does not contain a directed cycle and
2. It has a vertex v, (root) such that for every other vertex v there is a directed path
from v, to v.

An example of ROS is illustrated in Fig. 11 for a small directed network.
A directed network contains a ROS if and only if rank (L(D)) = n — 1. In that
case, the nullity of the Laplacian N(L(D)) is spanned by the all-ones vector. It is

Directed network with rooted node Rooted outbranching subgraph (ROS)

Fig. 11 Tllustration of a ROS for a directed network in which a node has been marked in red. The
ROS, represented in the left part of the figure, is constructed for the marked node. The figure has
been adapted from [30]
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known that for a directed network with n nodes the spectrum of L(D) lies in the
region:

{zeCl‘z—IQm

< ki) (58)

where lgm is the maximum (weighted) in-degree in D. That is, for every directed
network, the eigenvalues of L(D) have non-negative real parts. That is, the
eigenvalues of L(D) are contained in the GerS$gorin disk of radius 12,-,, centred at 12,-,,.

Let L(D) = PJ(A)P~! be the Jordan decomposition of L(D). When D contains
a ROS, the non-singular matrix P can be chosen such that

0 0 - 0
0J (u2)--- 0

Jay=10 0 - 0 | (59)
0 < 0 T ()

where p; (i =2,...,n) have positive real parts, and J (u;) is the Jordan block
associated with eigenvalue p;. Consequently,

10--0
tl_ifgoe_tJ(A): 00 . ---0 , (60)
0---00

= plqlT, where p; and qlT are, respectively, the first column of P and

and lim e~
—>00
the first row of P~1, that is, where p1q] = 1.
Then, finally we have that for a directed network D containing a ROS, the
state trajectory generated by the consensus dynamic model, initialized from uy,

satisfies tlim u(r) = (p1q7) uo, where p; and q], are, respectively, the right and
—00

left eigenvectors associated with the zero eigenvalue of L(D), normalized such that
pi1q] = 1. As a result, one has u (t) — A, i.e., there is a global consensus, for all
initial conditions if and only if D contains a rooted out-branching.

Two examples from real-world directed networks are illustrated in Figs. 12
and 13.
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state

.4 01¢
" U:
0 20 40 60 80 100 120
time
1n=30, Rank(L)=29 Global consensus reached

Fig. 12 Tllustration of the consensus dynamics in the directed network representing the food web
of Coechella Valley, consisting of 30 species and their directed trophic relations. The rank of the
Laplacian matrix is # — 1 and a global consensus is reached in the system
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time
n=33. Rank(L)=21 No global consensus

Fig. 13 Tllustration of the consensus dynamics in the directed network representing the food web
of Chesapeake Bay, consisting of 33 species and their directed trophic relations. The rank of the
Laplacian matrix is not n — 1 and a global consensus is not reached in the system

3.2 Synchronization in Networks

Synchronization is a phenomenon that appears very frequently in many natural and
man-made systems in which a collection of oscillators coupled to each other [1,10].
They include animal and social behaviour, neurons, cardiac pacemaker cells, among
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others. In this case the network G = (V, E) represents the couple oscillators, where
each node is an n-dimensional dynamical systems described by

n
%= fo)+eY LyH(Nx;, i=1....n, (61)
j=1
where x; = (x;1, Xj2, ..., Xiy) € N" is the state vector of the node i, ¢ is a constant

representing the coupling strength, f (-) : R" — N" is a smooth vector valued
function which defines the dynamics, H (-) : i" — 9" is a fixed output function
also known as outer coupling matrix,  is the time and L; are the elements of the
Laplacian matrix of the network (sometimes the negative of the Laplacian matrix is
taken here). The synchronised state of the network is achieved if

x1(t) =x0)=---=x,(t) = s(t), as t— oo. (62)

Now, we consider that each entry of the state vector of the network is perturbed
by a small perturbation &;, such that we can write x; = s + & (§ << ). In order to
analyse the stability of the synchronised manifold x; = x, = ... = x,,, we expand
the terms in (61) as

[ )= fs)+&f (s), (63)

H(xj)~H(s)+&H (s), (64)

where the primes refers to the derivatives respect to s. In this way, the evolution of
the perturbations is determined by:

E=f (& +c) [LiH (9)]E;. (65)
J

The eigenvectors of the Laplacian matrix are an appropriate set of linear
combinations of the perturbations and we can decouple the system of equations
for the perturbations by using such eigenvectors. Let ¢; be an eigenvector of the
Laplacian matrix of the network associated with the eigenvalue ;. Then

¢ =[f(s) +cwiH ()] ¢i. (66)

The solution of these decoupled equations can be obtained by considering that at
short times the variations of s are small enough. In this case we have

¢i (1) = ¢l exp{[f' () + cpi H' ()]t} (67)

where qb? is the initially imposed perturbation.
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Fig. 14 Schematic A(o)
representation of the typical
behaviour of the master
stability function

o, oy “@

We now consider the term in the exponential of (67), A; = f'(s) +cu; H'(s). If
f'(s) > cu;i H'(s), the perturbations will increase exponentially, while if f'(s) <
cu; H'(s) they will decrease exponentially. So, the behaviour of the perturbations
in time is controlled by the magnitude of w;. Then, the stability of the synchronised
state is determined by the master stability function:

A(e) = max [f/(s) +aH'(5)]. (68)

which corresponds to a large number of functions f and H is represented in Fig. 14.

As can be seen the necessary condition for stability of the synchronous state
is that cu; is between ajand oy, which is the region where A(a) < 0. Then, the
condition for synchronization is [3]:

0. =Ky 2 (69)

H2 o

That is, the synchronisability of a network is favoured by a small eigenratio O
which indeed depends only on the topology of the network. For instance, in the WS
model with rewiring probability p = 0, i.e., a circulant network of » nodes with
degree k = 2r,r >> 1, r << n, the largest and second smallest eigenvalues of the
Laplacian matrix are

uy ~ Q@r+1)(1+2/3n), (70)
pa ~27%r (r + 1) 2r + 1) / (3n%) (71)

such that the eigenratio is given by
M1 n?

0= D

(72)

This means that the synchronizability of this network is very bad as for a fixed r,
Q — ocoasn — oo.
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However, in the small-world regime the eigenratio is given by [33]

np+ /2p (1 — p)nlogn

: 73
np—/2p (1 —p)nlogn 7

0

(%

which means that Q — 1 as n — oo. Indeed, small-world networks are expected to
show excellent synchronisability according to their low values of the eigenratio.
The effect of the degree distribution can also be analysed by writing [35]

%= F (x) + :—ﬂ S LyH (x), (74)
i

where f is a parameter and k; is the degree of the corresponding node. Then the
coupling matrix can be written as

C =KL, (75)
which allow us to write
det (KL — AT) = det (K—ﬂ/ LK — /\I) , (76)
indicating that the coupling matrix is real and nonnegative.

Now, let us write

xi=F(x;)+ :—ﬁ kiH (x;) — ZH (x)) 77
i J~i
= F(x;) —crkil_ﬂ [I:Ii — H (x;)],

where

H; =" H(x;)/ki. (78)

j~i

Let us now consider that the network is random and that the system is close to
the synchronised state s. In this case, H; ~ H(s) and we can write

%= F () —ok! P [H (s) = H (x)]. (79)
which implies that the condition for synchronisability is

ar <ok <, Vi. (80)
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That is, as soon as one node has degree different from the others the network is more
difficult to synchronise. In other words, as soon as a network departs from regularity
it is more difficult to synchronise. In fact, the eigenratio in this case is given by

(te) it <1,
0= 81)
(’;m—in)l_ﬂ itg > 1.

max

Consequently, the minimum value of the eigenratio is obtained for § = 1.

3.2.1 The Kuramoto Model

In real-world situations it is frequent to find that the oscillators are not identical. The
Kuramoto model simulates this kind of situations [28]. For describing this model let
us consider n planar rotors with angular phase x; and natural frequency w; coupled
with strength K and evolving according to:

%=+ K sin(xi —x;). (82)

j~i

where > represents the sum over pairs of adjacent nodes. Using the incidence matrix
j~i
V (3) we can write (82) in matrix-vector form as follows

x=w+ KVsin(V'x). (83)

The level of synchronisation is quantified by the order parameter:

‘ 1< .
t i) — — lxj(t)‘ 84
re n;f (84)

It represents the collective motion of the group of planar oscillators in the complex
plane. If we represent each oscillator phase x; as a point moving around a unit circle
in the complex plane, then the radius measures the coherence and ¥/ (¢) is the average
phase of the rotors (see Fig. 15). The synchronisation is then observed when r(¢) is
non-zero for a group of oscillators and r(¢) — 1 indicates a collective movement of
all the oscillators with almost identical phases.

The Kuramoto model is frequently solved by considering a complete network of
oscillators, i.e., each pair of oscillators is connected, coupled with the same strength
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Fig. 15 Representation of
the Kuramoto model where
the phases correspond to
points moving around a unit
circle in the complex plane.
The blue circle represents the
centre of mass of these
points, which is defined by
the order parameter

Fig. 16 Mean-field results of %
the Kuramoto model

K K°

c

K = K°/n , with finite K°. Then, by multiplying both sides of the order parameter
by e~™ and taking imaginary parts we obtain [45]:

1 n
i — = — i C—x7). 85
rsin (Y — xp) p jgzlsm (x; —x1) (85)
So that
X1 = w; + K% sin (x; — ¥, (86)

in which the interaction term is given by a coupling with the mean phase ¥ and the
intensity is proportional to the coherence r.

The results can be graphically analysed by considering Fig. 16. It indicates the
existence of a critical point K., below which there is no synchronization, i.e., r = 0.
Above this critical point a finite fraction of the oscillators synchronise, and when
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n — oo and t — oo becomes (K°— Kc)ﬁ with K. depending on the natural
frequencies and § = 1/2. Thus, in general

0 K° < K.,

87
(K'—k.)’ k' > K. ®7)

r =

In small-world networks it has been empirically found that the order parameter
is scaled as

r(n, K) :n_ﬁ/”F[(K—KC)nl/”], (88)

whereF' is a scaling function and v describes the divergence of the typical
correlation size (K — K,)™”. These results indicate that in the Watts-Strogatz model
there is always a rewiring probability p for which a finite K. exists and the network
can be fully synchronised as illustrated in Fig. 17. It has been empirically found that
the values of B and v are fully compatible with those expected from the mean field
model.

In the case of oscillators with varying degree it has been found that the critical
coupling parameter scales as

K. = c%, (89)

where (-) indicates average and c¢ is a constant that depends on the distribution
of individual frequencies. Because the quantity (kz) / (k) indicates the level of
heterogeneity of the degree distribution of the network, it is then clear that if the
network has very large degree heterogeneity the synchronisation threshold goes to
zero as n — oo.

8
6
4F
2
ok
KC
Fig. 17 Relation of the i
critical coupling parameter
K, with the rewiring
probability p in the 0 0'2 OT 2 0' p OI 2 1

Watts-Strogatz model of
small-world networks p
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3.3 Epidemics on Networks

The study of epidemics in complex networks has become a major area of research
at the intersection of network theory and epidemiology. In general, these models
are extensions of the classical models used in epidemiology which consider the
influence of the topology of a network on the propagation of an epidemic [26]. The
simplest model assumes that an individual who is susceptible (S) to an infection
could become infected (I). In a second model the infected individual can also recover
(R) from infection. The first model is known as a SI model, while the second is
known as a SIR model. In a third model, known as SIS, an individual can be re-
infected, so that infections do not confer immunity on an infected individual. Finally,
a model known as SIRS allows for recovery and reinfection as an attempt to model
the temporal immunity conferred by certain infections. We describe here two of the
most frequently analysed epidemic models.

Let us start by considering a random uncorrelated network G = (V, E) with
degree distribution P (k), where a group of nodes S C V are considered susceptible
and they can be infected by direct contact with infected individuals. By uncorrelated
we mean that the probability that a node with degree k is connected to a node of
degree k' is independent of k. Let n; be the number of nodes with degree kin the
network, and Sy, I, Ry be the number of such nodes which are susceptible, infected
and recovered, respectively. Then, sy = ;j—", X = ’5—" and r; = f—,’: represent the
densities of susceptible, infected and recovered individuals with degree k in the
network, respectively. The global averages are then given by

s=Y sP(k). x=) xxPk). r=)Y rnPk). (90)
k k k

The evolution of these probabilities in time is governed by the following equations
that define the model:

Xg (1) = Bhsy (1) pr (1) — v (1) 1)
St (1) = —Pksi (1) pr (1) (92)
Fr (1) = vxi (1) , (93)

where f is the spreading rate of the pathogen, vis the probability that a node recovers
or dies, i.e., the recovery rate, and pi () is the density of infected neighbours of
nodes with degree k. The initial conditions for the model are: x4 (0) = 0, r, (0) =0
and s5x(0) = 1 — xx(0). This model is known as the SIR (susceptible-infected-
recovered) model, where there are three compartments as sketched in Fig. 18:
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Fig. 18 Diagrammatic representation of a SIR model

When the initial distribution of infected nodes is homogeneous and very small,
i.e.,xx (0) = x9 — 0, and s (0) ~ 1 the solution of the model is given by

sk (1) = e PRe®, (94)
= dr, 95
e (0) v/oxk(r) . (95)
where
1
¢ (t) = " ;(k— P (k)ri (2). (96)

The evolution of ¢ () in time is given by

) =1-()"—vp@)— (k)Y (k—1) P (k)sk (1), 97
k

which allows us to obtain the total epidemic prevalence roo = Y ;. P (k) ri (t — 00)
as

Foo = Zk P (k) (1= s (t > 00)). (98)

Using geometric arguments it can be shown that the prevalence of the infection
at an infinite time is larger than zero, i.e., roo > 0 if

BUY Y k(k—1) =, (99)
k
which defines the following epidemic threshold [34]
B (k)
—_= 100
v - (oo

Below this threshold the epidemic dies out, roo = 0, and above it there is a finite
prevalence roo > 0

The second model that we consider here is the SIS (susceptible-infected-
susceptible) model, in which the general flow chart of the infection can be
represented as in Fig. 19.
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Fig. 19 Diagrammatic
representation of a SI model (s}H—{1]

Fig. 20 Tllustration of the
total prevalence of disease in
both the SIR and SIS models -
in networks with disease dies e
homogeneous (WS) and -
heterogeneous (SF) degree X o
distributions

04

0.0 03 06

B/n

The SIS model can be written mathematically as follow
Xk (1) = Bk [1 — xi ()] prc (1) — vxie (1) (101)

where the term v represents here the rate at which individuals recover from infection
and become susceptible again.

The number of infected individuals at the infinite time limit can be obtained by
imposing the stationary condition X () = 0. Then,

_ Bkpk
Xk

= —. 102
M + Bk ok (102)

Following a similar procedure as for the SIR model, the epidemic threshold for
the SIS model is obtained as [43]

P = —, (103)

A schematic illustration of the phase diagram for both SIR and SIS models is
given in Fig.20. As can be seen for networks with heterogeneous degree distri-
butions, e.g., Scale Free(SF) networks, there is practically no epidemic threshold
because g is always larger than x for SIS or r for SIR. This contrasts with the
existence of an epidemic threshold for networks with more homogeneous degree
distributions like the ones generated with the Watts-Strogatz (WS) model.
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4 Replicator-Mutator Dynamics

We turn here our attention to the so-called replicator-mutator model, which
describes the dynamics of complex adaptive systems, such as in population genetics,
autocatalytic reaction networks and the evolution of languages [27, 38, 41, 42].
Let us consider a series V = {v{,vs,...,v,} of n agents such that each agent
plays one of the n behaviours or strategies available at b = {b;, b,,...,b,}. Let
X = {X1,X2,...,X,} be a vector such that 0 < x; < 1 is the fraction of individuals
using the 7 th behaviour. Furthermore, we assume that xT1 =1, where 1isann x 1
all-ones vector. Let us assume that if an individual change from behaviour b; to
behaviour b; she is rewarded with a payoff A; > 0. Therefore, we can consider
that two individuals v; and v; that can change from one behaviour to another are
connected to each other in such a way that the connection has a weight equal to
A > 0. The set of connections is £ € V' x V, such that we can define a graph
G = (V,E,W,¢), where W is the set of rewards, and ¢ : W — E is a surjective
mapping of the set of rewards onto the set of connections. The rewards between pairs
of individuals are then defined by the weighted adjacency matrix A of the graph. In
this case we consider that every node has a self-loop such that A; = 1,Vi € V.
The fitness f; of behaviour b; is usually assumed to have the following form

fi=Jfo+ Y Ayx;. (104)
j=1

where fj is the base fitness, here assumed to be zero. The fitness vector can then be
obtained as

f = Ax, (105)

and the average fitness of the population is defined to be
n
¢ =) fix; =x"Ax. (106)
j=1

Let us now introduce the probability g; that an individual having behaviour b;
ends up with behaviour b;. Thus, g; gives the reliability for an individual with
strategy b; to remain with it. Such probabilities can be represented through the row-
stochastic matrix Q such that

> gi=1. (107)
j=1
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The rate of change of the fraction of individuals using the ith behaviour with
respect to the time is modelled by the replicator-mutator equation

X = ijqu,'i—xi¢

j=1
=xi (figi—¢) + Y _ fixiqji (108)
J#i
i=1,2,...,n.

This is a generalization of the replicator dynamics widely studied in game theory
and population dynamics, where X; is assumed to be proportional to x; and to how
far the fitness of that individual exceeds the average fitness of the whole population:

Yi=xi(fi—9),i=12,...,n. (109)

In matrix form Eqs. (108) and (109) are expressed respectively as
x = QTFx — ¢x, (110)
x = Fx — ¢x, (111)

where F = diag (f). Then, it is obvious that (111) is the particular case in which
Q =1, where I is the corresponding identity matrix.

The entries of the matrix Q have been defined in different ways in the literature
[27,38,41,42] and the approach to be developed in the current work is compatible
with all of them. However, for its simplicity and mathematical elegance we will
follow here the approach developed by Olfati-Saber in [38], where the entries of Q
are defined as:

oy, P 112
D=Vt —wi). i = ], (112)
where j is the mutation rate and
Ajj
Wij = =) (113)
Zj Aij

such that the matrix W = [wy;] is the weighted adjacency matrix of the graph.
Let us define the following operator

I=I-K'A, (114)

where

K = diag (1"A) . (115)
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Then, the matrix Q can be obtained as

Q=I—u3
=1-wI+uWw (116)
= (1— I+ puK'A.
Let us say a few words about the operator J. It is known that in a Markov
process defined on a graph G = (V, E) with a suitable probability measure, the

semigroup transition function P (x,7,G),t € [0,00) evolves according to the
diffusion equation:

dP(x,1,G
% =3P (x.1,G), (117)

where
d
J=—{a(x)dx+ b (x)}, (118)
dx
and P(x,7,G) = exp(—t3) is a solution of (118). Therefore, I = I — K~'A is

the discrete Fokker-Planck operator defined for a Markov process on a graph [46].
Consequently, we can write (117) as

x = (I—pud)" Fx — ¢x, (119)
and the discrete-time version of it is written as
x(t+1) =x()+e[(I—puI")Fx(t) —x ()], (120)
where ¢ > 0 is the time-step of integration/discretization.
At a given time step of the dynamical evolution of the system, the number of

individuals in steady-state is accounted for by the diversity n, (x) of the system,
which has been defined as [38]

-1
ne (x) = (Zx,z) . (121)

An order parameter was also introduced in [38] as
p=> x;el, (122)
=1

where 0; = 2nj/n,j =1,...,nandi = v/—1.
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Using the diversity measure the following phases of evolution have been
identified on the basis of the values of the diversity at a very large time, i.e.,

t — oo [38]:

1. Behavioural flocking: n, = 1, which indicates that a single dominant behaviour

emerges.

2. Cohesion: 1 < n, << n, in which a few dominant behaviours emerge.

W

. Collapse: 1 << n, < n, where many dominant behaviours emerge.

4. Complete collapse: n, = n, where no dominant behaviour emerges.
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Fig. 21 Tllustration of the results obtained with the replicator-mutator model for an ER network
with 20 nodes and 40 links. The values of the mutation parameter are 0.001; 0.15; 0.5; 10. The
corresponding values of the diversity are 1.04; 2.5; 7.2; 20.0. The order parameters are 0.99; 0.51;

0.24; 0.05
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The four phases of the evolution of the replicator-mutator dynamic in a random
aph with Erdos-Rényi topology with 20 nodes and 40 links are illustrated
Fig.21. Notice that in the behavioural flocking phase, the order parameter is close
unity, while in the total collapse phase it goes close to zero.
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Kinetic Models in Natural Sciences

Jacek Banasiak

1 Introduction

1.1 Preliminaries

In our terminology, a kinetic type equation describes an evolution of a population
of objects, depending on attributes from a certain set §2, subject to a given set of
conservation laws. Equations of this type also are referred to as Master Equations.
One of the natural ways to describe such a population is by providing the density of
the objects with respect to the attributes and investigate how it changes in time. The
density, say u(x), is either the number of elements with an attribute x (if the number
of possible attributes is finite or countable), or a gives the quantity of elements with

attributes in a set A, according to the formula

/M(X)du,

A

if x is a continuous variable.
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In many cases we are interested in tracking the total number of elements of the
population which, for a given time z, is given by

> u(x.0), 2)

XESR

if £2 is countable, and by

/ u(x. 1)dx. 3)
2

if £2 is a continuum.

A kinetic equation for u usually is built in the following way. Let u(x, ) be the
density of individuals with respect to the attribute(s) x € §2 at a time ¢. Then we
balance, for any subset A C £2,

1. the loss of individuals with attributes in A due to changes of the attributes to the
ones outside A;

2. the gain of individuals who changed the attributes from outside A to the ones
in 4;

3. transport through A.

This results in the Master, or Kinetic, Equation of the process,
Oru(x,t) = [Kul(x,t) := [Tu](x,t) + [Au](x, t) + [Bu](x,1), 4

where A is the loss operator, B is the gain operator, while 7" describes the transport
phenomena. Equation (4) is supplemented with the initial state of the system

u(x,0) -1 (x), xes. 5)

Only in exceptional circumstances can the problem (4), (5) be solved. Usually we
have to prove the existence, uniqueness and other relevant properties of the solution
u without knowing its explicit form. There are various ways of doing this. We
shall follow the dynamical systems approach. Here, the evolution of the system
is described using a family of operators (G(¢));>0, parameterised by time, that map

o
an initial state u of the system to all subsequent states in the evolution; that is, the
solution is represented as

u(t) = G(t)u . (6)

The solutions of (4); that is, the states of the system, belong to some appropriate
state space which is chosen partly due to its relevance to the problem but also for the
mathematical convenience. By no means is this choice unique: it is a mathematical
intervention into the model.
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In the processes discussed in these lectures, an appropriately defined integral of
the density over the space of attributes is the total amount of individuals, or the total
mass of the system. Due to the conservation laws used to construct the equation, this
integral is constant, or changes in some pre-defined way.

From this point of view it is natural to consider such processes as evolutions of
densities in an appropriate L space; that is, in the space

L@ = du ||u||=/|u|du<+oo ,
2

where p is an appropriate measure relevant to the process. Such a space will be our
state space; that is, the state of the system will be described by a density with finite
integral over £2, which we often will be calling the total mass (irrespective of its
real interpretation).

However, we can try to control the process using some other gauge function.
For instance, if we were interested in controlling the maximal concentration of the
particles, a more proper choice would be to use the functional

sup |u(x)|
XER
as the gauge function.
This approach leads in a natural way to a class of abstract spaces called the
Banach spaces.

1.1.1 Interlude: Banach Spaces and Linear Operators

In what follows we shall restrict our attention to the state spaces which are Banach
spaces, though more general state spaces such metric or topological vector spaces
are also possible, see e.g. [36]. For an in-depth information on the topics discussed
here the reader is referred to [23,26,47]. To recall, a Banach space is a vector space
X, equipped with a finite gauge function | - ||, called norm, satisfying ||x|| = 0O if
and only if x = 0, ||ax|| = |«|||x]| for each scalar @ and ||x + y|| < |Ix|| + ||,
x,y € X and which is complete with respect to the convergence defined by the
norm (a space is complete if it contains limits of all its Cauchy sequences).

Example 1 We introduce a class of Banach spaces which will play crucial role in
the theory of differential equations which will be used throughout the lectures: the
Sobolev spaces.

In general considerations, when dealing with partial derivatives of functions,
often only the order of the derivative is important. In such cases, to shorten
calculations, we introduce the following notation. Let « = (oy,...,0,), @; €
No,i = 1,...,n, be a multi-index and denote || = a; + --- + «,. Then, for
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a given (locally integrable) function u, we denote any generalized (distributional)
derivative of u of order |«| by

olel
u=————u.
Ax{! - dxy"

The Sobolev spaces W"(£2) are defined as
W"(2) :={u e Li(£2); 0%u € L1(£2), |a| < m}.

In the same way, starting from the space L ,(§2) of functions integrable with a power
p € [1,00[, we can define Sobolev spaces W,"(£2), p € [1,00[. For p = oo the
corresponding space Lo (£2) is the space of functions which are bounded almost
everywhere on £2, and W (£2) is the space in which all generalized derivatives up
to the order m have this property as well.

An object intimately related with a Banach space is a linear operator. A (linear)
operator from X to Y is a linear function A : D(A) — Y, where D(A) is a linear
subspace of X, called the domain of A. We often use the notation (A4, D(A)) to
denote the operator A with domain D(A); if the domain is obvious, we simply write
A. By L(X,Y) we denote the space of all bounded operators between X and Y'; that
is, the operators for which

[All := sup [|Ax|| = sup [|Ax]| < +oo. @)
1

lxll< llxll=1

The space L£(X, X) is abbreviated as £(X). We further define the kernel (or the
null-space) of A by

Ker A = {x € D(A); Ax = 0}
and the range of A by
Ran A ={y € Y; Ax = y for some x € D(A)}

Furthermore, the graph of A is defined as the set {(x,y) € X xY; x € D(A),y =
Ax}. We say that the operator A4 is closed if its graph is a closed subspace of X x Y.
Equivalently, A is closed if and only if for any sequence (x,),en C D(A), if
lim x, = xin X and lim Ax, = yinY,then x € D(A) and y = Ax.
n—o0 n—o0
An operator A in X is closable if the closure of its graph is itself a graph of an
operator. In such a case the operator whose graph is G(A) is called the closure of A

and denoted by A.

Example 2 Consider the operator Af = f’ in C([0, 1]) and L,([0, 1]). Then, [13,
Example 2.3], A is unbounded in both spaces, closed in C([0, 1]) and not closed,
but closable, in L ([0, 1]).
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In this way, (4) can be written as the Cauchy problem for an ordinary differential
equation in an appropriate Banach space X: find R4+ > t — u(¢) € X such that

du=Ku, t>0,  u0)=ueX, (8)

where K : D(K) — X is a realization of the expression /C, defined on some subset
D(K) of the chosen state space X. It is clear that a minimum requirement for D(K)
is that [Cu](-) € X for u € D(K). It is important to remember that the expression
IC usually has multiple realizations and finding an appropriate one, such that with
(K, D(K)) the problem (8) is well posed (often called the generator of the process),
is a very difficult task.

We mention the so-called maximal realization of the expression /C, K .x defined
as the restriction of K to

D(Kpax) ={ue X; x — [Kul(x) € X}.

The generator may be, or may be not, equal to Kp,«. In the former case, typically (4)
is uniquely solvable in X .

1.2 The Models

Here we introduce the examples which will be discussed in the course.

1.2.1 Transport on Networks

Let us consider a network with some substance flowing along the edges and being
redistributed in the nodes. The process of the redistribution of the flow is the loss-
gain process governed by the Kirchoff’s law (flow-in = flow-out). Thus, though this
model does not exactly fit into the framework of (4), it is an example of a kinetic
process as defined above.

The network under consideration is represented by a simple directed graph
G = (V(G),E(G)) = ({vi,...,vu} {e1,...,en}) with n vertices vy,...,v, and
m edges (arcs), ey, ...,e,. We suppose that G is connected but not necessarily
strongly connected, see e.g. [21,28]. Each edge is normalized so as to be identified
with [0, 1], with the head at 0 and the tail at 1. The outgoing incidence matrix, @~ =
(¢i7)1<f<” 1<j<m» and the incoming incidence matrix, ot = (¢;)1<i<,, 1<j<m> of

this graph are defined, respectively as
. ej €
o = 1ifv; > + _ ) 1if Sy

i = . i = .
i 0 otherwise, v 0 otherwise.
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If the vertex v; has more than one outgoing edge, we place a non negative weight
w;; on the outgoing edge e; such that for this vertex v;,

Zwiizls

JEE;

where E; is defined by saying that j € E; if the edge e; is outgoing from v;.
Naturally, w; = 1 if E; = {j} and, to shorten notation, we adopt the convention
that wy = 1 for any j if E; = @. Then the weighted outgoing incidence matrix,
@, , is obtained from @~ by replacing each nonzero ¢, entry by w;;. If each vertex

has an outgoing edge, then @, is row stochastic, hence ¢~ (dﬁw_, )T = I, (where

the superscript 7 denotes the transpose). The (weighted) adjacency matrix A =
(aij)1<i,j<n of the graph is defined by taking a; = wy if there is e, such that

v; 5 v; and 0 otherwise; that is, A = &+ (®;)7. An important role is played by
the line graph Q of G. Torecall, Q = (V(Q), E(Q)) = (E(G), E(Q)), where

E(Q) = {uv; u,v € E(G), the head of u coincides with the tail of v}
= 1&j}1<)<k-
By B we denote the weighted adjacency matrix for the line graph; that is,
= (@) o . ©)

If there is an outgoing edge at each vertex then, from the definition of B, we see that
it is column stochastic. A vertex v will be called a source if it has no incoming edge
and a sink if there are no outgoing edges.

Example 1.1 Consider the following graph.

ef//ﬁ/\[er

For this graph, the matrices @, @ are given below.

1100000 0000000

0011000 1000000
¢~ =]0000100|, @*=|0101010 |,

0000010 0000001

0000001 0010100
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while the adjacency matrix is given by

00000
10000
11010
00001
01100

We are interested in a flow on a closed network G. Then the standard assumption
is that the flow satisfies the Kirchoff law at the vertices

m m
D picjup (L) =wy Y ¢Fciu;(0.0). t>0i€l....n,

=1 J=1

which, in this context, is the conservation of mass law: the total inflow of mass per
unit time equals the total outflow at each node (vertex) of the network.

Let u;(x,t) be the density of particles at position x and at time ¢ > 0 flowing
along edge e; for x € [0, 1]. The particles on e; are assumed to move with velocity
¢; > 0 which is constant for each j. We consider a generalization of Kirchoff’s
law by allowing for a decrease/amplification of the flow at the entrances and exits
of each vertex. Then the flow is described by

Ouj(x,t) =c;o.u;(x,t), xe€(,1), >0,
uj(-x70) = fj(‘xr:n)’ (10)
oy &iciu(1,1) = wy 3 it (yickur(0,1)),
k=1
where y; > 0 and § > 0 are the absorption/ampliﬁcation coefficients at,

respectlvely, the head and the tail of the edge e;. If y; = &; = 1 for all
j =1,---,m, then we recover the Kirchoff law at the vertices.

Remark 1 We observe that the boundary condition in (10) takes a special form if v;
is either a sink or a source. If it is a sink, then E; = @ and, by the convention above,

0= ¢ (ecxur(0.1)). >0, (11

and
¢y &jcjui(1,ty=0, t>0,j=1,....m, 12)

if it is a source. The last condition is nontrivial only if j € E; as then ¢;; #0.
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We consider (10) as an abstract Cauchy problem
u;, = Au, u(0) =f, (13)

in X = (L([0, 1]))"™, where A is the realization of the expression A = (¢ 0x)1<;<m
on the domain

D(A) = {u e (W} ([0, 1]))"; u satisfies the b. c. in (10)}. (14)

We denote C = diag(c;)i<j<m, K = diag(§;)i<j<m and G = diag(y;)i<j<m. It
can be proved, [18], that

D(A) = {u e (W/'(0,1]))"; u(l) = K~'C'BGCu(0)}. (15)

We note that a numerical analysis of a related problem for a nonlinear transport
equation is presented in [20].

1.2.2 Epidemiological Models with Age Structure

The gain and loss parts in this model are given by the SIRS system
S"'=—A(I)S + 61,
I'=A)S -+,
R =y, (16)

where S, I, R are, respectively, the number of susceptibles, infectives and recovered
(with immunity) and y, § are recovery rates with and without immunity. In other
words, the loss and gain operators of (4) are given by

S ADS S 81
AlT == 6S+n1);: Bl1]|=|Ams]. (17)
R 0 R I

For many diseases the rates of infection and recovery significantly vary with age.
Thus the vital dynamics of the population and the infection mechanism can interact
to produce a nontrivial dynamics. To model it, we assume that the total population in
the absence of disease can be modelled by the linear McKendrick model describing
the evolution in time of the density of the population with respect to age a € [0, w],
® < 00, denoted by n(a, t). The evolution is driven by the processes of death and
birth with vital rates i (a) and B(a), respectively. Due to the epidemics, we split the
population into susceptibles, infectives and recovered,

n(a,t) =s(a,t) +i(a,t)+r(a,t),
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so that the scalar McKendrick equation for n splits, according to (16), into the
system
ors(a,t) + dg8(a,t) + p(a)s(a, t) = —Aa,i(-, t))s(a,t) + 8(a)i(a,t),
di(a.1) + daila.t) + p(a)i(a,t) = Ala,i(-1))s(a.1) — (8(a) + y(a))i(a,1),
o;r(a,t) + ds7(a,t) + playr(a,t) = y(a)i(a,t), (18)
where now the rates are age specific, see [31]. The function A is the infection rate

(or the force of infection). In the so-called intercohort model, which will be analysed
later in these lectures, we use

Aa,i(1) = /K(a,a’)i(a’,t)da’, (19)
0

where K is a nonnegative bounded function which accounts for the age dependence
of the infections. For instance, for a typical childhood disease, K should be large
for small a, a’ and close to zero for large a or a’ (not necessarily 0, as usually adults
can contract it). System (18) is supplemented by the boundary conditions

5(0.1) = /ﬁ(a)(S(a,l)Jr(1—p)i(a,t)Jr(1—61)r(a,t))da,
0

i(0,t) = p/ﬂ(a)i(a,t)da, r(0,t) = q/ﬂ(a)r(a,t)da, 20)
0 0

where p,q € [0, 1] are the vertical transmission parameters of infectiveness and
immunity, respectively. Finally, we prescribe the initial conditions

5(a,0) =5 (@), i(a,0) =i (@), r(a,0)=r (). Q1)

1.2.3 Fragmentation—Coagulation Processes

The name may seem very specific, but such processes occur in a wide range of
applications, see [34]. Also, they possibly are the most rewarding kinetic processes
to study from the analytical point of view.

Fragmentation and coagulation may be discrete, when we assume that there
is a minimal size of interacting particles and all clusters are finite ensembles of
such fundamental building blocks, and continuous with the matter assumed to be
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a continuum. The first model is described in the lecture [34]; for the latter see
e.g. [35,36]. Here we only consider the continuous model. In the case of pure
fragmentation a standard modelling process leads to the following equation:

o0

du(x, 1) = —a(x)u(x, 1) + /a(y)b(XIy)u(y,l)dy, (22)

X

u is the density of particles of mass x, a is the fragmentation rate and b describes the
distribution of particle masses x spawned by the fragmentation of a particle of mass
y; that is, the expected number of particles of mass x resulting from fragmentation
of a particle of mass y. Further

o0

M(t) = /xu(x,t)dx (23)

0

is the total mass at time ¢. Local conservation principle requires

Yy
/ wb(x|y)dx = y. 24)
0

while the expected number of particles produced by a particle of mass y is given by
no(y) =[5 b(x|y)dx.

Fragmentation can be supplemented by growth/decay, transport or diffusion
processes, [11-13, 15], but we will not discuss them here.

If we combine the fragmentation process with coagulation, we will get

oo

du(x, 1) = —a(x)u(x,1) + /a(y)b(XIy)u(y,l)dy (25)

-
: / k(Gx— yoy)uCx — y. )y, )dy.

(e t) / k(oo y)uly. £)dy +
0 0

The coagulation kernel k(x, y) represents the likelihood of a particle of size x
attaching itself to a particle of size y and, for a moment, we assume that it is a
symmetric nonnegative positive function.

Since the fragmentation and coagulation processes just rearrange the mass among
the clusters, (23) implies that the natural space to analyse them is

o0
X1 =Li(Ry,xdx) = qu; |lul) = / |u(x)|xdx < +o00
0
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However, for the coagulation processes it is important to control also the number of
particles, or even some higher moments of the density. The best results are obtained
in the scale of spaces X ,,, m > 1, where

o0
X = Li®e (1420 = L o = [ 11+ 27y < oo
0

2 The Main Tool Box

2.1 Basic Positivity Concepts

The common feature of the introduced models is that the solution originating from
a nonnegative density should stay nonnegative; that is, the solution operator should
be a ‘positive’ operator. Since we are talking about general Banach spaces, we have
to define what we mean by a nonnegative element of a Banach space. Though
in all cases discussed here our Banach space is an L;(§2, ) space, where the
nonnegativity of a function f is understood as f(x) > 0 w-almost everywhere,
it is more convenient to work in a more abstract setting.

2.1.1 Defining Order

In a given vector space X an order can be introduced either geometrically, by
defining the so-called positive cone (in other words, what it means to be a positive
element of X), or through the axiomatic definition:

Definition 1 Let X be an arbitrary set. A partial order (or simply, an order)
on X is a binary relation, denoted here by ‘>’, which is reflexive, transitive, and
antisymmetric, that is,

(1) x > xforeach x € X;
(2) x>yandy > x imply x = y forany x, y € X;
(3) x> yandy > zimply x > zforany x, y,z € X.

The supremum of a set is its least upper bound and the infimum is the greatest lower
bound. The supremum and infimum of a set need not exist. For a two-point set {x, y}
we write x A y or inf{x, y} to denote its infimum and x Vv y or sup{x, y} to denote
supremum.

We say that X is a lattice if every pair of elements (and so every finite collection
of them) has both supremum and infimum.

From now on, unless stated otherwise, any vector space X is real.
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Definition 2 An ordered vector space is a vector space X equipped with partial
order which is compatible with its vector structure in the sense that

(4) x > yimpliesx +z>y + zforallx,y,z € X;
(5) x > y impliesax > oy forany x,y € X and o > 0.

The set X+ = {x € X; x > 0} is referred to as the positive cone of X.
If the ordered vector space X is also a lattice, then it is called a vector lattice or
a Riesz space.

For an element x in a Riesz space X we can define its positive and negative part,
and its absolute value, respectively, by
x4+ = sup{x,0}, x_ =sup{—x,0}, |x|=sup{x,—x},
which are called lattice operations. We have

X =Xy —Xx_, [x] = x4 + x_. (26)

The absolute value has a number of useful properties that are reminiscent of the
properties of the scalar absolute value.

As the next step, we investigate the relation between the lattice structure and the
norm, when X is both a normed and an ordered vector space.

Definition 3 A norm on a vector lattice X is called a lattice norm if
|x| < [y| implies x| <yl (27)

A Riesz space X complete under the lattice norm is called a Banach lattice.

Property (27) gives the important identity:

Il = lHxlll.  xeX. (28)

2.1.2 AM- and AL-Spaces

Two classes of Banach lattices playing here a significant role are AL- and AM-
spaces.

Definition 4 We say that a Banach lattice X is

(i) an AL-spaceif |x + y|| = ||x|| + ||y|| forall x,y € X+,
(i) an AM-space if ||x Vv y|| = max{|x||, ||y|]} forall x,y € X.
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Example 3 Standard examples of AM-spaces are offered by the spaces C(£2),
where £2 is either a bounded subset of R”, or in general, a compact topological
space. Also the space Loo(§2) is an AM-space. On the other hand, most known
examples of AL-spaces are the spaces L;(§2). These examples exhaust all (up to a
lattice isometry) cases of AM- and AL-spaces. However, particular representations
of these spaces can be very different.

2.2 Positive Operators

Definition 5 A linear operator A from a Banach lattice X into a Banach lattice Y
is called positive, denoted A > 0, if Ax > 0 for any x > 0.

An operator A is positive if and only if |[Ax] < A|x|. This follows easily from
—|x] < x < |x| so, if A4 is positive, then —A|x| < Ax < A|x|. Conversely, taking
x > 0, we obtain 0 < |Ax| < A|x| = Ax.

A frequently used property of positive operators is given in

Theorem 1 If A is an everywhere defined positive operator from a Banach lattice
to a normed Riesz space, then A is bounded.

Proof If A were not bounded, then we would have a sequence (x,),en satisfying

lx.| = 1 and ||Ax,| > n3, n € N. Because X is a Banach space, x :=
3% n2|x,] € X. Because 0 < |x,|/n* < x, we have co > [Ax| >
| A(|x,|/n%)|| = ||A(x,/n%)|| > n for all n, which is a contradiction. O

The norm of a positive operator can be evaluated by

Al = sup [[Ax]. (29)

x>0, [|lx]|<1

Indeed, since || A[| = supy < |AX[| > sup,~ <1 [[Ax], it is enough to prove the
opposite inequality. For each x with ||x|| < 1 we have |x| = x4 + x— > 0 with
Ix]l = |l|x|ll < L.On the other hand, A|x| > |Ax|, hence | A|x||| > |||Ax||| = ||Ax].
Thus sup<; [[Ax|| < sup,>¢ j<i |Ax[| and the statement is proved.

As a consequence, we note that

0<A<B = |A]| <|B]. (30)

Moreover, it is worthwhile to emphasize that if A > 0 and there exists K such that
|Ax|| < K||x]|| for x > 0, then this inequality holds for any x € X. Indeed, by (29),
we have ||4]|| < K and using the definition of the operator norm, we obtain the
desired statement.
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2.3 Relation Between Order and Norm

There is a useful relation between the order, norm (absolute value) and the
convergence of sequences if we are in R—any monotonic sequence which is
bounded (in absolute value), converges. One would like to have a similar result
in Banach lattices. It turns out to be not so easy.

Existence of an order in some set X allows us to introduce in a natural way the
notion of (order) convergence. Proper definitions of order convergence require nets
of elements but we do not need to go to such details.

For a non-increasing sequence (x,),eny We write x,, | x if inf{x,; n € N} = x.
For a non-decreasing sequence (x,),en the symbol x, 1 x have an analogous
meaning. Then we say that an arbitrary sequence (X, ),en is order convergent to x if
it can be sandwiched between two monotonic sequences converging to x. We write

this as x,, s x. One of the basic results is:
Proposition 1 Let X be a normed lattice. Then:

(1) The positive cone X + is closed.
(2) If (xp)nen is nondecreasing and lim,_, oo X, = X in the norm of X, then

x = sup{x,; n € N}.
Analogous statement holds for nonincreasing sequences.

In general, the converse of Proposition 1(2) is false; that is, we may have
X, 1 x but (x,)pen does not converge in norm. Indeed, consider x, =
(1,1,1...,1,0,0,...) € I, where 1 occupies only the n first positions. Clearly,
sup,en X =x:=(1,1,...,1,...) but |x, —X||ec = L.

However, such a converse holds in a special class of Banach lattices, called
Banach lattices with order continuous norm. There we have, in particular, that
0 < x,7 x and x, < x for all » € N if and only if (x,),en is a Cauchy sequence,
[1, Theorem 12.9].

All Banach lattices L ,(£2) with 1 < p < oo have order continuous norms. On
the other hand, neither Lo, (£2) nor C(£2) (if £2 does not consist of isolated points)
has order continuous norm.

The requirement that (x,),eny must be order dominated often is too restrictive.
The spaces we are mostly concerned belong to a class which have a stronger
property.

Definition 6 We say that a Banach lattice X is a KB-space (Kantorovi¢—Banach
space) if every increasing norm bounded sequence of elements of X4 converges in
norm in X.

We observe that if x,1 x, then ||x, || < ||x]| for all » € N and thus any KB-space has
order continuous norm. Hence, spaces which do not have order continuous norm
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cannot be KB-spaces. This rules out the spaces of continuous functions, /o, and
Lo (£2), from being KB-spaces.

Any reflexive Banach space is a KB-space, [13, Theorem 2.82]. That AL-spaces
(so, in particular, all L; spaces) are also KB-spaces follows from the following
simple argument.

Theorem 2 Any AL-space is a KB-space.
Proof If (x,)nen is an increasing and norm bounded sequence, then for 0 < x, <
Xm, We have
”xm” = ”xm - xn” + ”xn“
as x,; — X, > 0 so that
[1Xm = Xull = o6 | = [lxn || = [xmll = [[xal] -

Because, by assumption, (||x,||),en is monotonic and bounded, and hence conver-
gent, we see that (x,),en is a Cauchy sequence and thus converges. O

2.3.1 Series of Positive Elements in Banach Lattices

We note the following two results which are series counterparts of the dominated
and monotone convergence theorems in Banach lattices.

Theorem 3 ([14]) Let (x4 ())nen be family of nonnegative sequences in a Banach
lattice X, parameterized by a parametert € T C R, andletty € T.

(i) If for eachn € N the functiont — x,(t) is non-decreasing and li/m Xn(t) = X,
t,/"ty

in norm, then
o0 o0
lim Y x,(0) =) xa, (3D

o0
irrespective of whether the right hand side exists in X or | Y. x,|| :=
n=0

N

sup{|| X xull; N € N} = oo. In the latter case the equality should be
n=0

understood as the norms of both sides being infinite.

(ii) If lim x,(¢t) = x, in norm for each n € N and there exists (a,)nen such that
—>t

o0
X, (t) < ay foranyt € T,n € Nwith Y |la,| < oo, then (31) holds as well.
n=0
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Remark 2 Note that if X is a KB-space, then lim, ,, > oo x,(t) € X implies
convergence of Z;io Xx,. In fact, since x, > 0 (by closedness of the positive
cone), N — Zflvzo x, is non-decreasing, and hence either Y o x, € X, or
| > ong xull = oo and, in the latter case, ||limy 7, Y e x4 (1) | = oo.

2.4 Complexification

Due to the construction, solutions to all our models must be real. Thus, our problems
should be posed in real Banach spaces. However, to take full advantage of the tools
of functional analysis, such as the spectral theory, it is worthwhile to extend our
spaces to include also complex valued functions, so that they become complex
Banach spaces. While the algebraic and metric structure of Banach spaces can be
easily extended to the complex setting, the extension of the order structure must be
done with more care. This is done by the procedure called complexification.

Definition 7 Let X be a real vector lattice. The complexification X¢ of X is the set
of pairs (x, y) € X x X where, following the scalar convention, we write (x, y) =
x + iy. Vector operations are defined as in scalar case while the partial order is
defined by

X0 +iyy <x1 +1iy; ifandonlyif xp<x; and y, = y;. (32)

Remark 3 Note that from the definition it follows that x > 0 in X¢ is equivalent to
x € X and x > 0in X. In particular, X¢ with partial order (32) is not a lattice.

Example 4 Any positive linear operator A on X¢ is a real operator; that is, 4 :
X — X.Infact, let X > x = x4 — x_. By definition, Ax; > 0 and Ax_ > 0 so
Ax4,Ax_ € X and thus Ax = Ax; — Ax_ € X.

Itis a more complicated task to introduce a norm on X ¢ because standard product
norms, in general, fail to preserve the homogeneity of the norm, see [13, Example
2.88].

Since X¢ is not a lattice, we cannot define the modulus of z = x + iy € X¢ ina
usual way. However, following an equivalent definition of the modulus in the scalar
case, for x 4+ iy € X¢ we define

|x +iy| = sup {xcosf + ysin6}.
0€[0,27]

It can be proved that this element exists.
Such a defined modulus has all standard properties of the scalar complex
modulus. Thus, one can define a norm on the complexification X¢ by
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lzlle = llx +iylle = llx + iyl (33)

Properties (a)—(c) and |x| < |z|, |y| < |z| imply that | - || is anorm on X¢, which is
equivalent to the Euclidean norm on X x X, denoted by | - ||¢. As the norm || - || is a
lattice norm on X, we have ||z < ||lz2]|c, whenever |z;| < |z2|, and || - || becomes
a lattice norm on X¢.

Definition 8 A complex Banach lattice is an ordered complex Banach space
Xc that arises as the complexification of a real Banach lattice X, according to
Definition 7, equipped with the norm (33).

Remember: a complex Banach lattice is not a Banach lattice!
Any linear operator A on X can be extended to X¢ according to

Ac(x + iy) = Ax + iAy.

We observe that if A is a positive operator between real Banach lattices X and Y
then, for z = x + iy € X¢, we have

(Ax)cos 0 + (Ay)sin@ = A(xcosf + ysinf) < Alz|,
therefore |Acz| < A|z|. Hence for positive operators
[Aclle = Al (34)

There are, however, examples where || A|| < || Ac||c-

Note that the standard L ,(£2) and C(§2) norms are of the type (33). These spaces
have a nice property of preserving the operator norm even for operators which are
not necessarily positive, see [13, p. 63].

Remark 4 If for a linear operator A, we prove that it generates a semigroup of say,
contractions, in X, then this semigroup will be also a semigroup of contractions on
Xc, hence, in particular, A is a dissipative operator in the complex setting. Due to
this observation we confine ourselves to real operators in real spaces.

2.5 First Semigroups

As mentioned before, we are concerned with methods of finding solutions of the
Cauchy problem:

Definition 9 Given a complex or real Banach space and a linear operator .4 with
domain D(A) and range RanA contained in X, and also given an element ne X ,
find a function u(¢) = u(t, I?t) such that



150 J. Banasiak

1. u(t) is continuous on [0, co[ and continuously differentiable on ]0, oo[ in the
norm of X,
2. foreacht > 0, u(t) € D(A) and

deu(t) = Au(t), t >0, (35)

lim u(t) = uo (36)
t—>0t

in the norm of X.

A function satisfying all conditions above is called the classical solution
of (35), (36). If u(t) € D(A) (and thus u € C'([0, oo[, X)), then such a function is
called a strict solution to (35), (36).

To shorten notation, we denote by C k (1, X) a space of functions which, foreach ¢ €
I C Rsatisfy u(¢) € X and are continuously differentiable k times in ¢ with respect
to the norm of X. Thus, e.g. a classical solution u satisfies u € C([0, co[, X) N
C'(]0, oo, X).

2.5.1 Definitions and Basic Properties

If the solution to (35), (36) is unique, then we can introduce a family of operators
(G(t)):>0 such that u(t, up) = G(¢)up. Ideally, G(¢) should be defined on the whole
space for each ¢ > 0, and the function ¢ — G(#)u should be continuous for each
uy € X, leading to well-posedness of (35), (36). Moreover, uniqueness and linearity
of A imply that G(¢) are linear operators. A fine-tuning of these requirements leads
to the following definition.

Definition 10 A family (G(¢));>o of bounded linear operators on X is called a
Cy-semigroup, or a strongly continuous semigroup, if

@ G0) =1,
(i) G(t +5) = G(t)G(s) forall t,s > 0;
(i) lim,_ y+ G(t)x = x forany x € X.

A linear operator A is called the (infinitesimal) generator of (G(¢));>0 if
(37)

with D(A) defined as the set of all x € X for which this limit exists. Typically the
semigroup generated by A is denoted by (G 4(¢)):>o-
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If (G(¢)):>0 is a Cp-semigroup, then the local boundedness and (ii) lead to the
existence of constants M > 0 and w such that forall > 0

1G@)|lx < Me” (38)

(see, e.g., [41, p. 4]). We say that A € G(M,w) if it generates (G(¢)):>0
satisfying (38). The type of (G(¢));>0 is defined as

wo(G) = inf{w; there is M such that (38) holds}. (39)

Let (G4(t))i>0 be the semigroup generated by A. The following properties of
(G4(t)):>0 are frequently used, [41, Theorem 2.4].
(a) Forx e X

t+h
.1
}111_13) 7 / G4(s)xds = G4(t)x. (40)

t

(b) Forx € X, [, Ga(s)xds € D(A) and

t

A / G4(s)xds = G4(t)x — x. 41
0

(¢c) Forx € D(A), G4(t)x € D(A) and
%GA(Z)X =AG4(t)x = G4(t)Ax. 42)

(d) Forx € D(A),

t t

Gs(t)x —Ga(s)x = /GA(t)Axdr = /AGA(r)xdr. (43)

s N

From (42) and condition (iii) of Definition 10 we see that if A is the generator of

(G4()):>0, then for ne D(A) the functiont — G4 (t)ti is a classical solution of the
following Cauchy problem,

dqu(t) = Au()), >0, (44)
lim u(t) = u . (45)

t—0t
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We note that ideally the generator A should coincide with 4 but in reality very often
it is not so. However, for most of this chapter we are concerned with solvability
of (44), (45); that is, with the case when A of (35) is the generator of a semigroup.

We noted above that for e D(A) the function u(t) = Gy (t)ti is a classical

solution to (44), (45). For ne X \ D(A), however, the function u(t) = G4 (Z)I?l is
continuous but, in general, not differentiable, nor D(A)-valued, and, therefore, not a
classical solution. Nevertheless, from (41), it follows that v(¢) = f(; u(s)ds € D(A)
and therefore it is a strict solution of the integrated version of (44), (45):

8fv:Av+Z, t>0
v(0) = 0, (46)

or equivalently,

t
u(t)y = A / u(s)ds+ i . (47)
0

We say that a function u satisfying (46) (or, equivalently, (47)) is a mild solution or
integral solution of (44), (45). It can be proved that ¢ — G(t)u, ue D(A), is the
only solution of (44), (45) taking values in D(A). Similarly, for ne X , the function

t — G(l‘)l?l is the only mild solution to (44), (45).

Thus, if we have a semigroup, we can identify the Cauchy problem of which it
is a solution. Usually, however, we are interested in the reverse question; that is,
in finding the semigroup for a given equation. The answer is given by the Hille—
Yoshida theorem (or, more properly, the Feller-Miyadera—Hille—Phillips—Yosida
theorem). Before, however, we need to recall some terminology related to the
spectrum of an operator.

2.5.2 Interlude: The Spectrum of an Operator

Let us recall that the resolvent set of A is defined by
p(A)={LeC; A — A e LX)}

and, for A € p(A), we define the resolvent of A by

R(A,A) = (AT — AL



Kinetic Models in Natural Sciences 153

The complement of p(A4) in C is called the spectrum of A and denoted by o(A4).
In general, it is possible that either p(A) or 0 (A) is empty. The spectrum is usually
subdivided into several subsets.

* Point spectrum 0,(A) is the set of A € o(A) for which the operator A/ — A is
not one-to-one. In other words, o, (A) is the set of all eigenvalues of A.

* Residual spectrum o, (A) is the set of A € g(A) for which A/ — A is one-to-one
and Ran (A/ — A) is not dense in X.

* Continuous spectrum o.(A) is the set of A € o(A) for which the operator A/ — A
is one-to-one and its range is dense in, but not equal to, X

The resolvent of any operator A satisfies the resolvent identity
R(A,A) = R(u, A) = (n = MR, AR(, A), A, p € p(A). (48)

For any bounded operator the spectrum is a compact subset of C so that p(A4) # 0.
If A is bounded, then the limit

r(4) = lim /|| A" (49)
n—o0
exists and is called the spectral radius. Clearly, r (A) < || A||. Equivalently,

r(A) = sup [A]. (50)
A€o (A)

To show that A € C belongs to the spectrum we often use the following result.

Theorem 4 Let A be a closed operator. If A € p(A), then dist(A,0(A)) =
1/r(R(A, A)) = 1/||R(A, A)|. In particular, if Ay — A, A, € p(A), then A € 0(A)
if and only if {| R(A,, A)||}nen is unbounded.

For an unbounded operator A the role of the spectral radius often is played by
the spectral bound s(A) defined as

s(A) = sup{MA; L € o(A4)}. (51)

2.5.3 Hille-Yosida Theorem

Theorem 5 A € G(M, w) if and only if

(a) A is closed and densely defined,
(b) there exist M > 0, w € R such that (w,00) C p(A) and foralln > 1,1 > w,

AT —A)™| <

M
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If A is the generator of (G 4(¢)):>0, then

o

R(A, A)x = / e MG 4(t)xdt, KA > o, (53)
0

is valid for all x € X.

A widely used approximation formula, which can also be used in the generation
proof, is the operator version of the well-known scalar formula. Precisely, [41,
Theorem 1.8.3], if A is the generator of a Cyp-semigroup (G 4(¢));>0, then for any
xeX,

Ga(t)x = nli)ngo(l — %A)_n x = lim (;R (E,A))nx (54)

and the limit is uniform in ¢ on bounded intervals.

2.5.4 Dissipative Operators and Contractive Semigroups

Let X be a Banach space (real or complex) and X™* be its dual. From the Hahn—
Banach theorem, for every u € X there exists u* € X™* satisfying <u™*,u>=
lu||> = ||lu*||>. Therefore the duality set

Tu) = {u* € X*; <u*,u>= ||ul|* = ||u*|*} (55)

is nonempty forevery u € X.
Definition 11 We say that an operator (A, D(A)) is dissipative if for every u €
D(A) there is u* € J (u) such that

R <u®, Ax> < 0. (56)

If X is a real space, then the real part in the above definition can be dropped. An
important equivalent characterisation of dissipative operators, [41, Theorem 1.4.2],
is that A is dissipative if and only if forall A > 0 and u € D(A),

AL — A)ull = Allu]. (57
Combination of the Hille—Yosida theorem with the above property gives a genera-

tion theorem for dissipative operators, known as the Lumer—Phillips theorem ([41,
Theorem 1.4.3] or [27, Theorem I1.3.15]).



Kinetic Models in Natural Sciences 155

Theorem 6 For a densely defined dissipative operator (A, D(A)) on a Banach
space X, the following statements are equivalent.

(a) The closure A generates a semigroup of contractions.

(b) Ran(Al — A) = X for some (and hence all) . > 0.
If either condition is satisfied, then A satisfies (56) for any u* € J (u).

We observe that a densely defined dissipative operator is closable, [41, Theorem
1.4.5], so that the statement in item (a) makes sense. In other words, to prove that
(the closure of) a dissipative operators generates a semigroup, we only need to show
that the equation

Au—Au= f (58)

is solvable for f from a dense subset of X for some A > 0. We do not need to prove
that the solution to (58) defines a resolvent satisfying (52).

In particular, if we know that A is closed, then the density of Ran(Al — A) is
sufficient for A to be a generator. On the other hand, if we do not know a priori that
A is closed, then Ran(A/ — A) = X yields A being closed and consequently that it
is a generator.

Example 5 Let us have a look at the classical problem which often is incorrectly
solved. Consider

Au = —du, x €(0,1),

on D(A) = {u € W/'(I); u(0) = 0}, where I =]0, 1[. The state space is real
X = L,(I).Foragiven u € X, we have

T(w) = % lullsignu(x)  if u(x) # 0,
@ € [=lull, [lu]l] if u(x) = 0.
Note that 7 is a multivalued function. Further, [23], any element of W11 (I) can be
represented by an absolutely continuous function on /.
Now, for v € J(u) we have

1
<—0yu,v> = —||u||/8xu(x)signu(x)dx
0

lu / D) — / Do)

{xel; u(x)>0} {xel; u(x)<0}



156 J. Banasiak

Since u is continuous, both sets /4 = {x € [; u(x) > 0} and I_ := {x €
I; u(x) < 0} are open. Then, see [2, p. 42],

I+ = Jlof. Bl

where Jot, B[ are non overlapping open intervals. Then

_ £ ooty Ju(l)ifl e Iy,
/axu(X)dx - Xn:(u(ﬂ" ) = { 0 if1¢ I,
Iy

as 1 only can be the right end of the component intervals and we used u(0) = 0.
Now, if 1 € Iy, thenu(1) > 0,if 1 € I_, then u(l) < 0,and if 1 ¢ I U I_, then
u(1) = 0. In any case,

<—0,u,v><0
and the operator (A, D(A)) is dissipative. Clearly, the solution of

Au+ o u = f, u(0) =0,
X
is given by u(x) = e™** [ e** f(s)ds and, for A > 0,
0

1 X

||u||s[e—“ /e“lf(s)lds dx < |1 f].

0 0

which gives solvability of (58) in X. We note that, of course, with a more
careful integration we would be able to obtain the Hille—Yosida estimate (52). This
additional work is, however, not necessary for dissipative operators.

2.5.5 Analytic Semigroups

In the previous paragraph we noted that if a closed operator is dissipative, then we
can prove that it generates a semigroup, provided (58) is solvable. It turns out that
the solvability of (58) can be used to prove that A generates a semigroup without
assuming that it is dissipative but then we must consider complex A. Note that the
considerations below are valid for an arbitrary Banach space.

Hence, let the inverse (A/ — A)~! exists in the sector

7
Szy5:={1 €C; JargA| < 3 + 8} U {0}, (59)
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for some 0 < § < 7, and let there exist C such that for every 0 # A € Sz the

following estimate holds:

C
IR, A = o (60)

Then A is the generator of a uniformly bounded semigroup (G 4(?));>o (the constant
M in (38) not necessarily equals C) and (G 4(¢));>0 is given by

Gu(t) = %/e“R(A,A)dA, (61)
r

where I" is an unbounded smooth curve in Sz 5. The reason why (G(t)):>0 is
called analytic is that it extends to an analytic function on S;.

The estimate (60) is sometimes awkward to prove as it requires the knowledge
of the resolvent in the whole sector. The result given in [27, Theorem II 4.6] allows
to restrict the estimates to a positive half plane.

Theorem 7 An operator (A, D(A)) on a Banach space X generates a bounded
analytic semigroup (G 4(2)).es; in a sector Xs if and only if A generates a bounded
strongly continuous semigroup (G 4(t)):;>0 and there exists a constant C > 0 such
that

C
IR(r +is, A)|| = m (62)

forallr > 0and0 # s € R.

This result can be generalized to arbitrary analytic semigroups: (4, D(A)) generates
an analytic semigroup (G 4(z)).es; if and only if A generates a strongly continuous
semigroup (G 4(¢)),>0 and there exist constants C > 0, w > 0 such that

C
IR(r +is, A)|| = m (63)

forallr > wand 0 # s € R.
If A is the generator of an analytic semigroup (G 4(¢));>0, then t — G 4(¢) has

derivatives of arbitrary order on ]0, co[. This shows that 1 — G4 (t);; solves the
Cauchy problem (36) for arbitrary e X. Thisis a significant improvement upon
the case of Cy-semigroup, for which e D(A) was required.
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Fractional Powers of Generators and Interpolation Spaces

If A generates an analytic semigroup, then (61) can be regarded as the extension of
the definition of e via the so-called Dunford integral type functional calculus, [41].
In a similar way we can define f(A) where f is any scalar function which is analytic
in an open neighbourhood of the spectrum of A and such that the integral (61) is
convergent.

One of the most important choices of f is

f) = (=) =€,

where A% is real for A > 0 and has a cut along the positive real axis. This gives rise
to bounded operators (—A)™® and, by inversion, to unbounded operators (—A4)“.
We denote by D((—A)*) the domain of (—A)“. It follows that

D(A) Cc D((—A)*) C X

if 0 < o < 1. For example, if A = A on the maximal domain in L,(R"), then
D(A) = W2(R") and D((—A)*) = W,/*(R"), see [37,38].

We note an important property of fractional powers of generators and of the
corresponding analytic semigroups, which will used in the sequel. If (G4(?));>0 is
an analytic semigroup, then for every ¢t > 0 and & > 0 the operator (—A)*G 4(¢)(=
G 4(t)(—A)%) is bounded and

1% (=A)* G4l = My (64)

for some constant M.

Example 6 Let us consider briefly the classical example of the Dirichlet problem
for the heat equation in X = L,(R"):

o;u = Au,
u(0,x) = ue X. (65)

If we define A = A on the domain D(A) = {u € W,'(R"); Au € X} then, using
the integration by parts for Sobolev space functions, we obtain

/(Au — Aw)udx = A / uudx + / VuVudx =: a(u, u)
R R R
and it is easy to see that for u € W21 (R™)

2

a(uv I/l) 2 a”“”WZI(R”)’
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for « = min{A, 1} so that A is coercive. This, on the one hand gives the
solvability of

Au—Au= f

by the Lax—Milgram lemma; that is, the existence of (Al — A)~!, and on the other

hand, by dropping the term ||14||€V1 @y We obtain the Hille—Yosida estimate
2

I =7 fllx <27 flx, A >0.

Since A is closed and D(A) is dense in X, A generates a semigroup of contractions
(Ga(t))i=0 on X = Ly(R").

With some more work, see e.g. [42, Chapter 4], one can show that the resolvent
satisfies also the estimate (60) yielding the analyticity of (G 4(¢));>0. Hence, the

problem (65) is solvable for any initial value ne L, (R") and the solution G 4 (t)ti is
infinitely many times differentiable for > 0 and such that forz > 0

Ga(tyue (| D(A") € [\ W"(£2) € C®(82).

n>0 n>0

The last property expresses the smoothing property of the heat semigroup—for any
initial value the solution becomes instantly infinitely smooth.
Furthermore, D((—A)*) = WZZU‘ (R™) fora > 0, see e.g. [37,38].

The spaces D((—A)%*) form an important class of intermediate spaces between
D(A) and X. However, in some situations they are not sufficient as they are not
a priori independent of the form of A. To remove this drawback, first we observe
that (64) can be written as

l1'~*AG 4(1)x|| € Lso(]0, 1],

whenever x € D((—A)%). Taking this formula as the starting point, let (4, D(A))
be the generator of an analytic semigroup (G 4(¢));>0 on a Banach space X. Then
we construct a family of intermediate spaces, D 4(c,7), 0 <o < 1,1 <r < ooin
the following way:

Da(a,r):={xeX 1t > v(t):= |t'"V"AG4(t)x|x € L,(I)}, (66)
Il pser) = Ixlx + VO, 1), (67)
where I := (0, 1); see [38, p. 45]. It turns out that these spaces can be identified with

real interpolation spaces between X and D(A) and one can use a rich theory of the
latter. In particular, by [38, Corollary 2.2.3], these spaces do not depend explicitly



160 J. Banasiak

on A, but only on D(A) and its graph norm. This is in contrast to the property of
D((—A)*) mentioned above, where we only have

Dy(a,1) C D((—A)*) C D4(a, 00) (68)

so in general D((—A)%) may depend on the particular form of A.
Which makes the spaces D 4(«,r) as useful as D((—A)%) in dealing with the
semigroup generated by A is the fact that

1 1/r
[R(A. A)x|py@n= IRA, A)x| eyt /IISI_a_l/"AGA(S)R(/\,A)XIl';}
0

1 1/r
— IR A)xl o) + / IRG A) (s AG 4(5)) Iy ds
0

1 1/r
< IRG Dlleon | Ixlx + / 1117 AG 4 (5)) [y dis
0

= IRA, Dllcaolxlpar-

This leads to the following observation.

Proposition 2 Let A,, be the part of A in Dy(a,r). Then p(Ay,) D p(A),
[ROA, Ae)lcps@ry = IRA, Dlex) for A € p(A). Consequently, Ay,

generates an analytic semigroup in D 4(a, r).

2.5.6 Nonhomogeneous Problems

Let us consider the problem of finding the solution to the Cauchy problem:

du=Au+ f(t), 0<t<T,
u(0) = u, (69)

where 0 < T < o0, A is the generator of a semigroup and f : (0,7) — X is a
known function.

If we are interested in classical solutions, then clearly f must be continuous.
However, this condition proves to be insufficient. Thus we generalise the concept
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of the mild solution introduced in (47). We observe that if u is a classical solution
of (69), then it must be given by

t

u(t) = Gty + / G(t — s) f(s)ds (70)

0

(see, e.g., [41, Corollary 4.2.2]). The integral is well defined even if f €

Ly([0,T], X) and e X. We call u defined by (70) the mild solution of (69). For an
integrable f such a u is continuous but not necessarily differentiable, and therefore
it may be not a solution to (69).

We have the following theorem giving sufficient conditions for a mild solution to
be a classical solution (see, e.g., [41, Corollaries 4.2.5 and 4.2.6]).

Theorem 8 Let A be the generator of a Cy-semigroup (G 4(t));>0 and x € D(A).
Then (70) is a classical solution of (69) if either

(i) feCY[0,T],X),or
(ii) f € C(0,T],X) N Ly([0,T], D(A)).

The assumptions of this theorem are often too restrictive for applications. On the
other hand, it is not clear exactly what the mild solutions solve. A number of weak
formulations of (69) have been proposed (see e.g. [29, pp. 88—89] or [9]), all of them
having (70) as their solutions. We present here a result from [27, p. 451] which is
particularly suitable for applications.

Proposition 3 A function u € C(R4, X) is a mild solution to (69) with [ €
L1 (R4, X) in the sense of (70) if and only iffotu(s)ds € D(A) and

t t

u(t) =i +A / u(s)ds + / f(s)ds, t>0. (71)
0

0

If the semigroup (G 4(¢)):>0 generated by A is analytic, then the requirements
imposed on f can be substantially weakened. We have then the following counter-
part of Theorem 8.

Theorem 9 Let A be the generator of an analytic semigroup (G 4(t)):>o0, ne X
and f € L1([0,T], X). Then (70) is the classical solution of (69) if either

(i) f islocally Holder continuous on 10, T, or
(ii) there exists & > 0 such that f € C(]0,T], X) N L,([0, T], D((—A)*)) and
t = |(=A)* f(t)|lx is bounded over compact subsets of |0, T.

Part (ii) of this theorem has been proved in [10].
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An important refinement of this result, which becomes very useful in nonlinear
problems is that, actually, the solution has a better regularity. In fact, under
assumption (i), we additionally have

we Coi (0, T D((—=A))), 0<r<l. (72)

By (68), the statement of the above theorem holds if the domains of the fractional
powers are replaced by appropriate intermediate spaces D(«, 1).

2.5.7 Positive Semigroups

Definition 12 Let X be a Banach lattice. We say that the semigroup (G(¢));>0 on
X is positive if for any x € X4 and ¢ > 0,

G(t)x > 0.

We say that an operator (A, D(A)) is resolvent positive if there is @ such that
(w,00) C p(A) and R(A, A) > O forall A > w.

Remark 5 In this section, because we address several problems related to spectral
theory, we need complex Banach lattices. Let us recall, Definitions 7 and 8, that
a complex Banach lattice is always a complexification X¢ of an underlying real
Banach lattice X . In particular, x > O in X¢ ifandonly if x € X and x > Oin X.

It is easy to see that a strongly continuous semigroup is positive if and only
if its generator is resolvent positive. In fact, the positivity of the resolvent for
A > w follows from (53) and the closedness of the positive cone; see Proposition 1.
Conversely, the latter, together with the exponential formula (54), shows that
resolvent positive operators generate positive semigroups.

Positivity of a semigroup allows for strengthening of several results pertaining to
the spectrum of its generator.

Theorem 10 ([43]) Let (G4(t)):>0 be a positive semigroup on a Banach lattice,
with the generator A. Then

R(A, A)x = / ™M G 4 (t)xdt (73)
0
forall A € C with RA > s(A). Furthermore,

(i) Either s(A) = —oo ors(A) € a(A);
(ii) Fora given A € p(A), we have R(A, A) > 0 if and only if A > s(A);
(iii) Forall NA > s(A) and x € X, we have |R(A, A)x| < R(RA, A)|x|.
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We conclude this section by briefly describing an approach of [3] which leads to
several interesting results for resolvent positive operators. To fix attention, assume
for the time being that @ < 0 (thus, in particular, A is invertible and —A7! =
R(0, A)) and A > 0. The resolvent identity

A= AT AR - AT (=AY,
can be extended by induction to
— A" =R, A) + ARA, A)? 4+ -+ A"R(A, A)"(—A7Y). (74)
Now, because all terms above are nonnegative, we obtain

sup {A"[|(A = A) " (AT )x} = M < +oo.

neN,A>w

This is ‘almost’ the Hille—Yosida estimate and allows us to prove that the Cauchy

problem (44), (45) has a mild Lipschitz continuous solution for e D(A?). If, in
addition, A is densely defined, then this mild solution is differentiable, and thus it is
a strict solution (see, e.g., [4] and [6, pp. 191-200]). These results are obtained by
means of the integrated, or regularised, semigroups, which are beyond the scope of
this lecture and thus we do not enter into details of this very rich field. We mention,
however, an interesting consequence of (74) for the semigroup generation, which
has already found several applications and which we use later.

Theorem 11 ([4, 22]) Let A be a densely defined resolvent positive operator. If
there exist Ay > s(A), c > 0 such that for all x > 0,

[R(Ao. A)x|[x = cllx]lx. (75)

then A generates a positive semigroup (G 4(t))i>o on X.
Proof Let us take s(A) < w < Ap and set B = A — wl so that s(B) < 0. Because
R(0, B) = R(w, A) = R(A, A), it follows from (75) and (30) that
RO, B)x|x = [IR(A0, A)x|x = cllx]x
for x > 0. Using (74) for B and x = A"R(A, B)"g, g > 0, we obtain, by (75),

IA"R(A, B)'gllx < cT'[[R(O, B)A"R(A, B)"gl| < M|g|x,
for A > 0. Again, by (30), we can extend the above estimate onto X proving the
Hille—Yosida estimate. Because B is densely defined, it generates a bounded positive
semigroup and thus |G 4(?)]| < Me®". ]
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2.6 Perturbation Techniques

Verifying conditions of the Hille-Yosida, or even of the Lumer—Phillips, theorems
for a concrete problem is quite often a formidable task. On the other hand, in
many cases the operator appearing in the evolution equation at hand is built as
a combination of much simpler operators that are relatively easy to analyse. The
question now is to what extent the properties of these simpler operators are inherited
by the full equation. More precisely, we are interested in the problem:

Problem P. Let (A, D(A)) be a generator of a Cy-semigroup on a Banach space X and
(B, D(B)) be another operator in X. Under what conditions does A + B, or an extension
K of A + B, generates a Cy-semigroup on X ?

We note that the situation when K = A + B is quite rare. Usually at best we
can show that there is an extension of A + B (another realization of L = A + B)
which is the generator. The reason for this is that, unless B is in some sense strictly
subordinated to A, adding B to A may significantly alter some vital properties of 4.
The identification of K in such cases usually is a formidable task.

A Spectral Criterion

Usually the first step in establishing whether A + B, or some of its extensions,
generates a semigroup is to find if A/ — (4 + B) (or its extension) is invertible for
all sufficiently large A.

In all cases discussed here we have the generator (A4, D(A)) of a semigroup and
a perturbing operator (B, D(B)) with D(A) € D(B).

We note that B is A-bounded; that is, for some a, b > 0 we have

IBx|| < allAx|| + bllx[l.  x € D(A), (76)

if and only if BR(A, A) € L(X) for A € p(A).

In what follows we denote by K an extension of A + B. We now present an
elegant result relating the invertibility properties of A/ — K to the properties of 1 as
an element of the spectrum of BR(A, A), first derived in [30].

Theorem 12 Assume that A = p(A) N p(K) # @.

(a) 1 ¢ 0,(BR(A, A)) forany A € A;

(b) 1 € p(BR(A, A)) for some/all A € A if and only if D(K) = D(A) and K =
A+ B;

(c) 1 € a.(BR(A, A)) for some/all A € A if and only if D(A) D(K) and K =
A+ B;

(d) 1 €o0,(BR(A, A)) for some/all A € Aifandonlyif K 2 A + B.
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Corollary 1 Under the assumptions of Theorem 12, K = A + B if one of the
following criteria is satisfied: for some A € p(A) either

(i) BR(A, A) is compact (o, if X = L,(82,dw), weakly compact), or
(ii) the spectral radius r (BR(A, A)) < 1.

Proof 1f (ii) holds, then obviously I —BR(A, A) is invertible by the Neumann series
theorem:

(I —BR(A, A)™" = (BR(A. A))". (77)

n=0

giving the thesis by Theorem 12(b). Additionally, we obtain

R A+ B) = R(A, A)(I = BR(A, A))™' = R(L, A) Y (BR(A, A))". (78)
n=0

If (i) holds, then either BR(A, A) is compact or, in L setting, (BR(A, A))? is
compact, [26, p. 510], and therefore, if I — BR(A, A) is not invertible, then 1 must
be an eigenvalue, which is impossible by Theorem 12(a). O

If we write the resolvent equation
AM—-(A+B)x=y, yelkX, (79)
in the (formally) equivalent form
x—R(A,A)Bx = R(A, A)y, (80)

then we see that we can hope to recover x provided the Neumann series

R(V)y :=> (R(A.A)B)"R(A, A)y = > R(A. A)(BR(X. A))"y. (81)

n=0 n=0

is convergent. Clearly, if (77) converges, then we can factor out R(A, A) from the
series above getting again (78). However, R(A, A) inside acts as a regularising factor
and (81) converges under weaker assumptions than (77) and this fact is frequently
used to construct the resolvent of an extension of A 4+ B (see e.g. Theorem 16 and,
in general, results of Sect. 2.6.1).

The most often used perturbation theorem is the Bounded Perturbation Theorem,
see e.g. [27, Theorem III.1.3]

Theorem 13 Let (A, D(A)) € G(M, w) for some w € R,M > 1. If B € L(X),
then (K, D(K)) = (A+ B,D(A)) e G(M,w + M ||B]).
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In many cases the Bounded Perturbation Theorem gives insufficient information.
Then it can be combined with the Trotter product formula, [27,41]. Assume K|
is of type (1,wp), ® € R, and K is of type (1, w)). If (K, D(Kp) N D(Ky)) =
(Ko + K3, D(Kp) N D(K)) generates a semigroup, then

Gk()x = lim (G, (t/mGr, (t/m)' x, x € X, (82)

uniformly in # on compact intervals and K is of type (1,w) with ® = wy + w;.
Moreover, if both semigroups (Gk,(?));>0 and (Gk,(¢));>0 are positive, then
(Gk(2)):>0 is positive.

The assumption of boundedness of B, however, is often too restrictive. Another
frequently used result uses special structure of dissipative operators.

Theorem 14 Let A and B be linear operators in X with D(A) € D(B) and A+1tB
is dissipative for all0 <t < 1. If

[Bx|| < allAx| + blx. (83)

for all x € D(A) with 0 < a < 1 and for some ty € [0,1] the operator
(A 4 toB, D(A)) generates a semigroup (of contractions), then A + tB generates a
semigroup of contractions for everyt € [0, 1].

2.6.1 Positive Perturbations of Positive Semigroups

Perturbation results can be significantly strengthened in the framework of positive
semigroups. This approach goes back to the work of Kato [33]. His results were
extended in [13,44] and recently, in a more abstract setting, in [8,39]. The presented
results are based on the exposition of [13] which is sufficient for our purposes.

We have seen in (77) that the condition ¥ (BR(A, A)) < 1 implies invertibility of
Al —(A+ B). It turns out that this condition is equivalent to invertibility for positive
perturbations of resolvent positive operators.

Theorem 15 ([45]) Assume that X is a Banach lattice. Let A be a resolvent positive
operator in X and A > s(A). Let B : D(A) — X be a positive operator. Then the
following are equivalent,

(a) r(BAAI =A™ < 1;

(b) A€ p(A+ B)and (Al —(A+ B))™' > 0.

If either condition is satisfied, then

M —-—A-B) "=l -A)7! Z(B(/\I —A-B)Y)Y'>@AI-4)"" (84
n=0



Kinetic Models in Natural Sciences 167

Kato—Voigt Type Results

Here we consider only X = L;(£2, ). Let (G(¢)):>0 be a strongly continuous
semigroup on X. We say that (G(t));>0 is a substochastic semigroup if for any
t>0and f >0,G(t)f = 0and |G@) f| < || fI, and a stochastic semigroup if
additionally |G(¢) f|| = || f|| for f € X+.

Theorem 16 Let X = L,(52) and let the operators A and B satisfy

1. (A, D(A)) generates a substochastic semigroup (G 4(t))¢>o0;
2. D(B) D D(A) and Bu > 0 foru € D(B)4;
3. forallu e D(A)4

/(Au + Bu)du < 0. (85)
2

Then there is an extension (K, D(K)) of (A+ B, D(A)) generating a Cy-semigroup
of contractions, say, (Gg(t)):>o0. The generator K satisfies

R(A, K)u = f R(A, A)(BR(A, A)Ku, A >0. (86)
k=0

Proof First, assumption (85) gives us dissipativity on the positive cone. Next, let
ustake u = R(A, A)x = (Al — A)~'x for x € X, so that u € D(A),. Because
R(A, A) is a surjection from X onto D(A), by

(A+ B)u=(A+ B)R(A,A)x = —x + BR(A, A)x + AR(A, A)x,
we have

—/xd,u—}—/BR()L,A)xd,u—}—)L/R(/\,A)xdu50. (87)
2 2 2

Rewriting the above in terms of the norms, we obtain
AIR(A, A)x|| + [BR(A, Ax|| =[xl =0, x e Xy, (88)

from which ||BR(A, A)|| < 1.

We define operators K,, 0 <r < 1by K, = A+ rB, D(K,) = D(A). We see
that the spectral radius of rBR(A, A) does not exceed r < 1, the resolvent (A1 —
(A + rB))™! exists and is given by

R(A.K,) := (AT — (A+rB)™" = R(A. A) Y r" (BR(A. A))". (89)

n=0
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where the series converges absolutely and each term is positive. Hence,
IR, Kyl < A7yl (90)

for all y € X. Therefore, by the Lumer—Phillips theorem, for each 0 < r < 1,
(Kr, D(A)) generates a contraction semigroup which we denote (G, (¢));>0. Since
(R(A, Kr)X)o<r<1 is increasing as r 1 1 for each x € X4, {||R(A, K;)x|[}o<r<1 18
bounded and X = L(2) is a KB-space, there is an element y, € Xy such that

ﬁlil‘{li RA,K/)x = yy«

in X. By the Banach—Steinhaus theorem we obtain the existence of a bounded
positive operator on X, denoted by R(A), such that R(A)x = y, .. We use the
Trotter—Kato theorem to obtain that R(A) is defined for all A > 0 and it is the
resolvent of a densely defined closed operator K which generates a semigroup of
contractions (G (t));>o0. Moreover, for any x € X,

linll_ G.(t)x = Gg(t)x, o1

and the limit is uniform in # on bounded intervals and, provided x > 0, monotone
as r 1 1. By the monotone convergence theorem, Theorem 3,

R(A.K)x =Y R(A.A)BRA A))x, xeX 92)
k=0
and R(A, K)(AI — (A + B))x = x which shows that K 2 A + B. O

The identification of K is a much more difficult task. We note that (85) can be
written as

/ (Au+ Bu)dp = —c(u) <0, (93)
2

where ¢ is a positive functional on D(A). We assume that ¢ has a monotone
convergence property: if c¢(u,) — ¢, for u, 1 u, then ¢, = c(u) (for instance,
it is an integral functional). We note that a more general version of this assumption
is considered in [8,39]. The following theorem is fundamental for characterizing the
generator of the semigroup.

Theorem 17 For any fixed A > 0, there is 0 < B, € X* with |||l < 1 such that
forany f € X4,

MR, K) fll = ILfll= <Ba. f> —c (R(A, K) f) (94)

and c extends to a nonnegative continuous linear functional on D(K).
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It turns out that

(BR(A, A)*Br = Ba. (95)

and hence, if By # 0, theno,(BR(A, A))* # 9. This implies that 0. (BR(A, A)) # 0
and, by Theorem 12(d), K # A + B.

Another result, though not as elegant, is often more useful. It is based on the
observation that the following are equivalent:

() K=T + B.
(b) [ Kudu>—c(u), ue D(K)4.
o

Though the implication (b) = (a) seems to be useless as it requires the knowledge of
K which is what we are looking for, we note that if we can prove it for an extension
of K (for instance K,.x), then it will be valid for K. Hence

Theorem 18 ([7]) If there exists an extension K such that |, o Kudp > —c(u) for
allu € D(K)4, then K = A + B.

Arendt—Rhandi Theorem

Theorem 19 ([5]) Assume that X is a Banach lattice, (A, D(A)) is a resolvent
positive operator which generates an analytic semigroup and (B, D(A)) is a
positive operator. If (Aol — (A + B), D(A)) has a nonnegative inverse for some A
larger than the spectral bound s(A) of A, then (A + B, D(A)) generates a positive
analytic semigroup.

Proof The proof is an application of Theorem 15. Under assumptions of this
theorem, we obtain that r (BR(4¢, A)) < 1. In particular, the series Z (BR(Ag, A))"
converges in the uniform operator topology. Next, by Theorem 10 R(/X A) > 0if
and only if p(4) > A > s(A). Thus, using the resolvent identity we have

R(A, A) = R(Ao, A) — (A — X)) R(Ao, A)R(A, A) = R(Ao, A)

whenever A > A¢. Since BR(A, A) is boundedin X, see Theorem 1, B : D(A) — X
is bounded in the graph norm of D(A). Let us now take A € C with A > A,
R>u > Apand f € D(A). Then uR(n, A)R(A, A)f — R(A,A)f aspyu — o0
in the graph norm of D(A), see e.g., [41, Lemmas 1.3.2 and 1.3.3] and we have, for
S € D(A),

IBR(A, A) f| = lim |uBR(n, A)R(A, A)| = lim uBR(p, A)R(RA, A)| f]
J—>00 p—>00

= BR(i, A)R(RA, A)| f],
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where we used |R(A, A) f| < R(RA, A)| f] for KA > s(A), see Theorem 10. Thus,
by density,

IBR(A, A) f| = BR(RA, A)| f] (96)
for all f € X and therefore
r(BR(A, A)) < r(BR(Ap, A)) < 1

o0

forany A € C with RA > A¢. In particular, > (BR(A, A))" converges to a bounded
n=0

linear operator with

> (BR(Ao. A))"| £ |

n=0

Y (BR(, A)" f

n=0

=

= M|l f1I.

uniformly for A € C with RA > A¢. This, in particular, shows that A + B generates
a Cp-semigroup. Indeed, from (84) and the above estimate we see that

IR(A, A+ B) [l = My, IR(A, DIl

for A > Ao, so the claim follows since A satisfies the Hille-Yosida estimates (52)
there.

Next we consider the analyticity issue. Using Theorem 7, for the operator A,
there are w4 and M 4 such that

M
IR(r +is, A)|| < |Tf

for r > w4. Taking now w > max{\Ag, w4} we have, by (84),

o0 o0
M

IR(r +is. A+ B)f|| = |[R(A. A) Y (BR(L. A)" f| < |Tf > (BR(, A))”fH

n=0 n=0

MM
< =7l fex
Is|

for all r > w. Therefore (A + B, D(A)) generates an analytic semigroup. O

2.7 Semi-Linear Problems

Let us introduce now the simplest nonlinearity and consider the semilinear abstract
Cauchy problem
du=Au+ f(t,u), t>0,

u(0) = 1, 97)
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where A is a generator of a Cy-semigroup (G4(t));>oand f : [0,T]x X — X isa
known function. Since a priori we know no properties of the solution u (which may
even fail to exist), it is plausible to start from a weaker formulation of the problem,
i.e. from the integral equation:

1

u(t) = Ga(t) u + / Ga(t — $) f (s, u(s))ds. (98)

0

This form is typical for fixed point techniques. Here, depending on the properties
of (G4(t))i>0 and f, we can use two main fixed point theorems: the Banach
contraction principle and Schauder’s theorem.

We shall focus on the Banach contraction principle which leads to Theorem 20
below. It requires a relatively strong regularity from f.

We say that f : [0, 7] x X — X is locally Lipschitz continuous in u, uniformly
in ¢ on bounded intervals, if for all #’ € [0, T'[ and ¢ > 0 there exists L(c,?’) such
that for all # € [0,¢'] and ||u]|, ||v|| < ¢ we have

I/t ) — fEv)x < Lie,t)|lu—vlx.

Theorem 20 Ler f : [0,00[xX — X be continuous in t € [0,o00[ and locally
Lipschitz continuous in u, uniformly in t, on bounded intervals. If A is the generator

of a Cy-semigroup (G 4(t)):>0 on X, then for any e X there exists tmax > 0 such
that the problem (98) has a unique mild solution u on [0, t,..[. Moreover, if ta <
~+o00, then tlim lu(®)||x = oo.

—>00

The proof is done by Picard iterations, as in the scalar case. Also, similarly to the
scalar case, a sufficient condition for the existence of a global mild solution is that
f be uniformly Lipschitz continuous on X. Uniform Lipschitz continuity yields at
most linear growth in ||x|| of || (¢, x)||. In fact, even for f(u) = u*> and A = 0, the
blow-up occurs in finite time.

There are two standard sufficient conditions ensuring that the mild solution,
described in Theorem 20, is a strict solution. Both follow from the corresponding
results for nonhomogeneous problems. They are either that f : [0,00[xX —
X is continuously differentiable with respect to both variables, or that f
[0, 00[xD(A) — D(A) is continuous. Certainly, in both cases to ensure that the

solution is strict we must assume that ive D(A).

As in the subsection on nonhomogeneous problems, a substantial relaxation of
requirements can be achieved if A generates an analytic semigroup. A crucial role
is played by the domains of fractional powers of generators. Let us denote X, =
D((—A)*) with the usual graph norm. We have
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Theorem 21 Let U C R x Xy, a € R, be an open set and [ : U — X is such that
forany (t,x) € U there exist (t,x) € V C U,L > 0and 0 < 0 < 1 such that

I f(t1,x1) = f(t2, x2) || < Lt = 62|° + |31 = x2llx,). (4, x:) € Vi = 1,2,

and let an invertible A, satisfying 0 € p(A) be the generator of a bounded analytic

semigroup. If (0, I?t) € U, then there is t = t_(l?t) such that (97) has a unique
local classical solution u € C([0,7[, X) N C'(]0,%[, X). Moreover, the solution
continuously depends on the initial data and is not global in time if it either reaches
the boundary of U or its X, norm blows up in finite time.

In fact, we have a better regularity result. If the constants 6 and L are uniform
in U, then u € C'*(]0,7[, X); that is, d,u is Holder continuous on ]0, /[ with
v =min{f, B} with0 < f <1 —a.

We formulated the above theorem in the form usually found in the literature on
dynamical systems. However, as was pointed out earlier, using X, = D((—A)%)
often is inconvenient as it may depend on the particular form of A4.

However, in [38, Chapter 7] we can find a parallel theory in which X, can be any
interpolation space discussed in the section on analytic semigroups. In particular,
under the assumptions of Theorem 21, the solution u is a strict solution; that is
u € C(0, tmax], D(A)) N C([0, tmax[, X), provided ue D(A) and Au + £(0, ).
The last condition follows from the fact that 9, u, if it exists, is a mild solution of the
equation:

t

,u(t) = GA(t) A + £(0, 1)) + / AG4(t — )¢ (s)ds (99)
0
where ¢(s) = f(s,u(s)) is Holder continuous by the regularization property

mentioned above. Then continuity of d,u follows from Theorem 9.

3 Transport on Graphs

Let us recall that we consider the system of equations

Quj(x, 1) =c;jowuj(x,t), x€(0,1), t>0,
4y(x.0) = Ji), (100)
gy jciui(l,t) = wy ];1 oiF (yrcrur (0,1)),

the outgoing and incoming incidence matrices, while y; > 0 and §; > 0 are the
absorption/amplification coefficients at, respectively, the head and the tail of the
edgee;.
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Theorem 22 ([18]) The following conditions are equivalent:

1. (A, D(A)) generates a Cy-semigroup;
2. Eachvertex of G has an outgoing edge.

Proof 1. = 2. Assume that there is a semigroup (74(?));>0 generated by A and
consider a classical solution u(¢) = T4(¢)f with f € D(A). Suppose that a vertex,
say, v; has no outgoing edge. Then, by (11),

0= Z¢>J<L)’k6’kuk(0,t), t>0.
k=1

In particular, uy (x,1) = fi(x 4+ cxt) for 0 < x + cxt < 1so ux(0,¢) = f(ckt) for

Oftfi.Thus

m
0= Z(l&i—/tykckfk(ckt), 0<t<c':=min{c;'}.
k=1

Let (f"),en, £ € D(A), approximate 1 = (1, 1,...,1) in X. Then

—1
m c ek
1
0= Moy = U @Misinlx = Yo [ 1= 7@z
k=1%o

=1 %

m 1
<> [ - @i o
0

as r — oo. Since X-convergence implies convergence almost everywhere of a
m

subsequence, we have 0 = ) q&;; ykcr almost everywhere on (0,c™'), and thus
k=1
everywhere. Since, however, the graph is connected and we assumed that there is no

outgoing edge at v;, there must be an incoming edge and thus at least one term of
the sum is positive while all other terms are nonnegative. Thus, if there is a vertex
with no outgoing edge, then the set of initial conditions satisfying the boundary
conditions is not dense in X and thus (A4, D(A)) cannot generate a Cy-semigroup.

1. = 2. It can be proved that, under assumption 2., the boundary conditions can
be incorporated into the domain of the operator in the following compact form:

D(4) = {ue (W'(0,1]))": u(l) = K~'C'BGCu(0)}. (101)
where B is the adjacency matrix defined in (9). Clearly, (C5°((0, 1)))" C D(A) and
hence D(A) is dense in X . Let us consider the resolvent equation for A. We have to

solve

Auj—cjf)xuj:fj, j:l,...,m, XE(O,l),
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with u € D(A). Integrating, we find the general solution

1
AV iX—S
cjuj(x):cjeff“vj—}-/eff( )fj(s)ds, (102)

X

A
where v = (v1,...,vy,) is an arbitrary vector. Let E,(s) = diag (e € S)
l=j=m

Then (102) takes the form

1
Cu(x) = CEj(x)v + /IEA (x — s)f(s)ds.

X

To determine v so that u € D(A), we use the boundary conditions. At x = 1 and at
x = 0 we obtain, respectively

1
Cu(1) = CE,(1)v, Cu(0) =Cv + /EA(—s)f(s)ds
0

so that

1
KCE; (1)v = KCu(l) = BGCu(0) = BG | Cv + / E; (=s)Ex (—s)f(s)ds | ,
0

which can be written as
1
(I —E;(-)C'K™'BGC)v = E; (-1)C'K™'BG / Ey (—s)f(s)ds.
0

Since the norm of E; (—1) can be made as small as one wishes by taking large A,
we see that v is uniquely defined by the Neumann series provided A is sufficiently
large and hence the resolvent of A exists. We need to find an estimate for it. First we
observe that the Neumann series expansion ensures that A is a resolvent positive
operator and hence the norm estimates can be obtained using only nonnegative
entries. Next, we recall that B is column stochastic; that is, each column sums to
1. Adding together the rows in

1
KCE; (1)v = BGCv + BG / Ej (—)E(s)ds.
0
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we obtain

m A m m 1 A

s ;s
Z’chje” vj = Z)/jcjvj +Z)/j/e 7" fj(s)ds.
ji=1 ji=1 =1 9

By (102), we can evaluate, for j € {1,...,m},

1 1 1 1
Y 1 LY N
/uj(x)dxzvj/ —i——//e‘ “7 £ (s)dsdx
Cj
0 0 0

1
:%( )+ /(l—e ‘!)f](s)ds
0

so that, renorming X with the norm |jul|z = Z'};l EillujllL, o1, we have

‘»

) —

s =3, / uj (x)d (103)

j=1

- %Zéjv]'cj (e‘é - 1) + % 2.6 / (1 _e_fjs) S
j=1 '

m ]
Zc]v]()/, £§)+ — 7 Z /‘%Sfj(S)ds+%Z§j/fj(s)ds.
Jj=1 0

Jj=1 0
We consider three cases (the first one being similar to [25, Proposition 3.3]).

(a) y; <& for j = 1,...,m. Let us consider the iterates in the Neumann series
for v, (E; (—1)C™'K~'BGC)". Using the fact that C, G and K are diagonal so
that they commute, we find

E,(—-1)C'K'BGC < (CK)™'E; (—1)B(CK).

Since B is (column) stochastic, 7 (E; (—1)C'K™'BGC) < 1 for any A > 0.
Hence R(A, A) is defined and positive for any A > 0. Under the assumption of
this item, by dropping two first terms in the second line, (103) gives

1
1 ¢ 1
iz =3 36 [ fods = Slflz. 20
j=1 0

Since D(A) is dense in X, (A, D(A)) generates a positive semigroup of
contractions in (X, || - || z)-
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(b) y; = & forj =1,...,m.Then (103)implies that for some A > Oandc = 1/A
we have

IR, Az = c||fll=

and, by density of D(A), the application of the Arendt—Batty—Robinson
theorem, Theorem 11, gives the existence of a positive semigroup generated
by Ain (X, | - ||z)- Since, however, the norm || - || 5 and the standard norm || - ||
are equivalent, we see that A generates a positive semigroup in X .

() yj<é&iforjeliandy; > & forj € ,,where {1 N, =QPand [, U, =
{1,...,m}.LetL = diag(/;) where [; = §; for j € Iy and[; = y; for j € L.
Then

Ey(—1)C'"K™'BGC < (CK)™'E;(—1)B(CL).
Thus, denoting by Ay, the operator given by the expression A restricted to
D(4) = {u e (W([0, 1)))"; u(1) = K~'C™'BLCu(0)},

we see that

0 < R(A,4) < R(A, AL) (104)
for any A for which R(A, Ay) exists. But, by item (b), Ay, generates a positive
semigroup and thus satisfies the Hille—Yosida estimates. Since clearly (104)
yields R¥(A,A) < R*(A, Ap) for any k € N, for some @ > 0 and M > 1
we have

IR“ A, Al < IR, A = MA =)™, A>w

and hence we obtain the generation of a semigroup by A.

4 Epidemiology

This chapter is based on [19,40]. To simplify the exposition we replace the SIRS
model given by (18) with the SIS model describing the evolution of epidemics which
does not convey any immunity. Setting y = 0 in the system (18) and thus discarding
the ‘recovered’ class, we have

drs(a,t) + dgs(a, t) = —u(a)s(a,t) — A(a,i(-,t))s(a,t) + 8(a)i(a,t),
diia,t) + d4i(a,t) = —pla)i(a,t) + Aa,i(-,t))s(a, t) —8(a)i(a,t),
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50.1) = /0 Bla) {s(a.1) + (1 - )i(a. 1)} da,

i(0.1) = qfowma)i(a,z)da,

s(a,0) = so(a) = ¢*(a),
i(a,0) = iy(a) = ¢'(a), (105)

for0 <t <T <400,0<a <w < +4o0.

The force of infection is defined by (19); the concrete assumptions will be
introduced when needed. In both cases we deal with a semilinear problem; that
is, with a nonlinear (algebraic) perturbation of a linear problem. As in Sect. 2.7, the
decisive role is played by the semigroup generated by the linear part of the problem.

Problems like (105) have been relatively well-researched, including the cases
where u and B are nonlinear functions depending on the total population, see
[24,46] and reference therein. Our model most resembles that discussed in [46],
the main difference being that in op. cit. the maximum age  is infinite which
makes it plausible to assume that p is bounded. However, a biologically realistic
assumption is that w < 4-0co which, however, necessitates building into the model a
mechanism ensuring that no individual can live beyond w. It follows, e.g. [31], that
the probability of survival of an individual till age a is given by

I(a) = e~ Jo nds

Thus I1(w) = 0 which requires

/w w(s)ds = +oo. (106)
0

Hence, u cannot be bounded as a — ™. This is in contrast with the case
w = +o00, where commonly it is assumed that x is a bounded function on R, and
introduces another unbounded operator in the problem. We note that this difficulty
was circumvented by Inaba in [32] by introducing the maximum reproduction age
a; < o and ignoring the evolution of the post-reproductive part of the population.
Also, in papers such as [24], though @ < +o0, the assumption that the population is
constant removes the death coefficient from the equation. The analysis of the model
without any simplification in the scalar and linear case was done in [31] by reducing
it to an integral equation along characteristics. It can be proved that the solution of
such a problem is given by a strongly continuous semigroup. Here we shall prove
this directly by refining the argument of [32].
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4.1 Notation and Assumptions

We will work in the space X = L; ([0, »], R?) with norm ||(p1. p2)[Ix = lIp1ll +
| p2 ||, where the norm |-| refers to the norm in L; ([0, ®]); the relevant norm in R?
will be denoted by | - |. We also introduce necessary assumptions (cf. [31]) on the
coefficients of (105) where, in what follows, for any measurable function ¢ on [0, @]
we shall use the notation

¢ =esssup ¢(a), ¢ = esseif(l)f ]¢(a). (107)

a€l0,w]
(H1) 0 < € Lo oc([0, )), satisfying (106), with p > 0;
(H2) 0 < B € Leo([0, ]);

(H3) 0 <8 € Loo([0,w]);
(H4) 0 < K € L=([0, »]?).

Let W}([0,w],R?) be the Sobolev space of vector valued functions. Further,

we define S = diag{—0d,,—0d,} on D(S) = WI([0,0].R?), My(a) =
diag {—p(a), —p(a)} on DM,) = {p € X : up € X},
_ (0 é@)).
M;(a) = (0 —8(a)) : (108)

M; € L(X). Further, for a fixed ¢ € [0, 1],

_ (B@ (1 -
B(“)_(O qB(a) ) (109

with
Bo = / B(@)g(a) da:
0

the operator B is bounded. Moreover, we introduce the linear operator A, defined
on the domain

D (A,) = {¢ € D(S) N D(M,); ¢(0) = Bo} (110)
by

A, =S+M,. (111)
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Let Q be the linear operator defined on the domain D(Q) = D(A,) by Q =
A, + M. Using this notation, we see that (105) can be rewritten in the following
compact form

du=A,u+ Msu + F(u),
0,1r) = B ,t)da,
u(0,1) /0 (a)u(a,t)da
u(a,0) = uo(a) = ¢(a), (112)

where u = (5,i)7 and §F is a nonlinear function defined by

_ —A(',i)S
Bl = ( A(-,i)s)

with A defined by (19).

4.2 The Linear Part

To prove that (105) is well-posed in X, first we consider the linear operator Q on
D(Q) = D(A,).

Theorem 23 The linear operator Q generates a strongly continuous positive
semigroup (Tg(t)),>q in X.

To carry out the proof of Theorem 23, it is sufficient to prove the generation
result for A, and use Theorem 13 (the Bounded Perturbation Theorem) to prove
the generation for Q; then we use some other tools to show the positivity of the
combined semigroup. In this setting, first we have

Theorem 24 The linear operator A, generates a strongly continuous positive
semigroup (ﬂﬂ (t)) in X such that

>0

1T, )l cx) < eP2. (113)
We prove this theorem in a sequence of lemmas in which we construct and estimate
the resolvent of A,. We begin with introducing the survival rate matrix L(a), which

represents the survival rate function in a multi-state population. L(a) is a solution
of the matrix differential equation:

Lo = m@L@. 1o=1 (114)
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where I denotes the 2 x 2 identity matrix. The solution of (114) is a diagonal matrix
given by

L(a) = e~ Jo rdry, (115)

From the above formula, we see that L(a) is invertible for all a € [0, w); its inverse
is denoted L™!(a). The inverse satisfies

dL™1
da

(@) = M, (@)L (@), L7'(0)=L (116)
Hence, we can define the fundamental matrix L(a, b) by
L(a,b) = L(a)L™' ().
Lemma 1 IfA > B — p, then (\L—A,)™ is given by
¢ = (M- AM)_I 14
= ¢ L(a) (I—/Owe_l"B(cr)L(a) da) _I/OaiS(a) an“"_“)L(a, o)¥(o)doda
+ e L(a) /0 "L (o) (0) do, (117)

Proof Let A > B — pand ¥ € X. A function ¢ € D(Ay) if and only if

d
Ap(a) + %q)(a) —M,(a)p(a) = ¥(a),
0(0) = /0 B@)g(@)da,  pp <X 118)

By Duhamel’s formula, the first equation of (118) gives
@(a) = e *L(a)p(0) + / e MIL(a, s)¥ (s) ds,
0

= e_)‘“—féz M(r)dr(o(o) 4 / e—)»(u—b‘)—ff u(r) drw(s) ds, (119)
0

for some unspecified as yet initial condition ¢(0). For a fixed ¢(0), we denote by
Re)(A)¥ the operator ¥ (s) — ¢ defined above; it is easy to see that

AL =S =M Ry0)(M¥ =¥, (120)
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for a.a. a € [0,w). The unknown ¢(0) can be determined from the boundary
condition (118) by substituting (119); we get

0(0) = / ¢4 HOI(4)(0) da
0

+/w e—hali nrdrg ) (/“ A B g () ds) da
0 0

Since

<1 (121

w
/ e—la—fou u(r)drB(a) da
0

_re B
< 13/ e—()»+&)a da < -
0 +THr

forA > B —p. I— [ e~ =y 1 4rB(q) da is invertible with the inverse satisfying

-1
(I B /w e_ls—f(‘)" M(r)drB(s) dS)
0

A4
< —. (122)
A—(B—p

Hence

13} -1
¢(0) = (I —/ e~*a=lo M(r)drB(a) da)
0

/w P WL Yo (/a Ml O dry () ds) da
0 0

and we can substitute that ¢ (0) in the operator R () (4) to define
RN Y (a)
® -1 jrow
_ e—la—f(;z w(r)dr (I _ / e—/\s—f(f /L(r)drB(s) dS) / e—la—f(;z /L(r)drB(a)
0 0

a s 3 a . ¢ S -
X / Mt wrdry (s) ds da + el W)dr/ Mt HODY (s) ds.
o 0

The above calculations show that A — A, is one-to-one for A > f — . Routine
calculations show that

IR [y = ||'/f||x (123)

—(ﬁ

Thus R(A) is a bounded operator in X.
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Further, by lengthy calculations we also can show that

¢ < L
| @R @) da < (1 + (F—w) ¥ x-

Hence R(A)X C D(M,,). Further, since for any ¢ € X, ¢ = R(A)y satisfies

d
ARMY + - RA)Y ~M,RAN)Y =¥

almost everywhere, we have
d
o RADY =¥ —ARMY + MR,

where, by the above estimates, all terms on the right hand side are in X. Hence
RA)Y € W} ([0, w]. R?) and, consequently, R(A)¥ € D(A,).

Since the boundary condition holds, using the results above we see that the
operator R(A), given by (A — A, )R(A)¢¥ = ¢, is such that maps R(1) : X —
D(A,). Then R(A) is aright-inverse of the operator A1 — A,,.

Summarizing, R(A) is the right inverse of (A/ — A,, D(A,)). To prove that
it is also a left inverse, we repeat the standard argument. Assume that for some
¢ € D(A,) we have

RAAL —A)e =0 # ¢.
Since R(A) : X — D(A,), we can write
(AL =A@ = M —A)RMAL —A)g = (I —A)

since R(A) is a right inverse of A/ — A,. But we proved that the linear operator
(Al —A,) is one-to-one for A > B — i, ¢ = ¢ and hence R(4) = (AI — AL
0

Lemma2 D(A); = X;.

Proof A proof of this result (with some gaps) is provided in [32, p.60]. A more
comprehensive proof can be found in [46]. We present a simpler proof which,
moreover, allows for an approximation of f € X, by elements of D(A,)+.

Fix f € X4. First we note that for any given € there is 0 < ¢ € C{°((0, w),R?)
such that || f — ¢|x < €. Clearly, ¢ € D(M,,) but typically

0(0) # /0 B(@)¢(a) da.
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Take a function 0 < n € C5°([0,w)) with n(0) = 1 and let n.(a) = n(a/e).
Further, let ¢ = (o1, @) be a vector and consider

¥ =9+ neo.

Clearly, ¥ € W/'([0,0],R*) N D(M,). As far as the boundary condition is
concerned we have, by the properties of the involved functions,

e ) p@n@ (1 - p@n @),
"“/o Bl@)g(a)da + / ( 4B(a)n.(@) )d o 0

0

Now, since
0= /,B(a)ne(a)da = / B(es)n(s)ds < ep,
0 0

the matrix /{—norm satisfies

/(ﬁ(a)ne(a) ¢ —Q)ﬁ(a)ne(a)) ’ <ef
0 ap(a)ne(a) -

L(R?)

Thus, (124) is solvable for sufficiently small €. Further, by the positivity of the above
matrix and the properties of the Neumann series expansion, ¢ is nonnegative and

ol < | [ B da (1 —ef) < C

for some constant C, which is independent of € for sufficiently small € (the norm of
ll@ll, which depends on €, can be bounded by e.g. || f || + 1 for € < 1). Hence we
have

If =¥lx < ILf —elx + lallnl = (1 + C)e.

Proof of Theorem 24 Since the inverse of a bounded operator is closed, we see
that A/ — A,, and hence A,, are closed. Thus the above lemmas with the
estimate (123) show that A, satisfies the assumptions of the Hille—Yosida theory.
Hence, it generates a semigroup satisfying (113). Since the resolvent is positive, the
semigroup is positive as well. O
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Proof of Theorem 23 Since Ms € L (X), with [Ms(a) ;, < 28, Theorem 13
(the Bounded Perturbation Theorem) is applicable and states that the linear operator
(Q, D(A)) generates a strongly continuous semigroup denoted by (’TQ (t))
Using the estimate (113) we have:

t>0"

Tl zx) < e (Pru+2),
Using the structure of Ms we can improve this estimate and also show that the

semigroup (7T g(t)):>0 is positive. Since the variable a plays in M the role of a
parameter, we find

T () = ((1) 1 ;f,;ii‘“’ )
and so
||7-M5(t)||£(x) =1
Also, (T m;(1))r>0 is positive. Hence, by (82), we obtain

1Tl px) <P (125)

and (T o(?)):>0 is positive. O

Remark 6 The estimates (113) and (125) are not optimal. In fact, for the scalar
problem

on(a,t) = —ogn(a,t) — u(a)n(a,t), t>0,a€ 0,w)
n(0,t) = | B(a)n(a,t)da,
/

n(a,0) = n (a), (126)

it can be proved, [31], that there is a unique dominant eigenvalue A* of the problem,
which is the solution of the renewal equation

[ n(s)ds

| = / Baye 0" g, (127)
0

such that

In@)| < Me*" (128)
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for some constant M. This eigenvalue is, respectively, positive, zero or negative if
and only if the basic reproduction number

[ w(s)ds

R =/,3(a)e_0 da (129)
0

is bigger, equal, or smaller, than 1.

Consider now an initial condition (g, zo ) € D(A,). Since the semigroup
(T o(2)):>0 is positive, the strict solution (s, ) of the linear part of (105) is nonneg-
ative and the total population 0 < s(a,t) + i(a,t) = n(a,t) satisfies (126). Using
nonnegativity, we find s(a,t) < n(a,t) andi(a,t) < n(a,t) and consequently

1T o5, 1)llx < Me™ || (5.i)Ix

for (§ , lo ) € D(A,)+. However, by Lemma 2, the above estimate can be extended to
X and, by (29), to X.

Note that the crucial role in the above argument is played by the fact that (s, i)
satisfies the differential equation (105)—if it was only a mild solution, it would be
difficult to directly prove that the sum s 4 i is the mild solution to (126).

4.3 The Nonlinear Problem

In the case of intercohort transmission, discussed in these lectures, individuals of
any age can infect individuals of any age, though with possibly different intensity.
Then

Ala,i) = /w K(a.a)i(a')dd (130)
0

where K (a, a’) is a nonnegative bounded function on [0, ] X [0, ] which accounts
for the age-specific probability of becoming infected through contact with infectives
of a particular age.

Since the nonlinear term § is quadratic, standard calculations, see [41], give

Proposition 4 § is continuously Fréchet differentiable with respect to ¢ € X and
for any ¢ = (qb“',qbi), v = (1//“', W’) € X the Fréchet derivative at ¢, §¢, is
defined by
~¥’(a) [ K (a.a")¢' (a') da’ = ¢’ (a) [ K (a.a") ¥’ (a') dd’
0 0
(8o¥) @ =
V' (a) [ K (a.a’)¢' (a') dd' + ¢’ (a) [ K (a.a")y' (a') dd’
0 0
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Hence we can apply Theorem 20 to claim that for each u= (:v) , lo ) € X, there is a
t(lol) such that the problem (112) has a unique mild solution on [0, t(lol) [t —u(t);

o
this solution is strict if ue D(A,,).
We recall that the proof consists in showing that the Picard iterates

o
U =u

u,(t) = TQ(l)lol + /'TQ(I —8)F(u,—1(s))ds (131)
0

converge in C([O,t(lol)[, B(fl,p)) where B(lol, p) ={ueX [u- u lx < p} for
some constant p. Since the nonlinearity is quadratic, it is not globally Lipschitz
continuous and thus the question whether this solution can be extended to [0, co[
requires employing positivity techniques.

Since § is not positive on X, we cannot claim that the constructed local solution
is nonnegative, as the iterates defined by (131) need not be positive even if we start

with lol > 0. Hence, we re-write (112) in the equivalent form

du
du_ EQ_KI)H (kI +3) (u), >0, (132)
u(0) = u,

for some k € R4 to be determined. Denote Q, = Q — «/; then (T g, (t))i>0 =
(e T g)i>0 and hence (T g (t)):>0 is positive. It is also easy to see that the
following result holds.

Lemma 3 For any p there exists k such that (KI + 3) XEN B(lol, p)) C X5

Then the Picard iterates corresponding to (132),
t
u(t) = e T (Hu + / eIt —s) (k] + F)(u(s))ds, 0=t <t(u),
0

are nonnegative and we can repeat the standard estimates to arrive at

Theorem 25 Assume that ue X4+ and let u : |0, t(lol) [— X be the unique mild
solution of (112). Then this solution is nonnegative on the maximal interval of its
existence. Moreover, the solutions continuously depend on the initial conditions on
every compact subinterval of their joint interval of existence.
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4.4 Global Existence

Since quadratic nonlinearities do not satisfy the uniform Lipschitz condition, we
cannot immediately claim that the solutions to (112) are global in time. In fact,
it is well known that, even for ordinary differential equations, the solution with
a quadratic nonlinearity can blow up in a finite time. Here, we use positivity to
show that positive solutions exist globally in time. For this, we have to show that
t— ||u(t) ||X does not blow up in finite time. We state the following result:

Theorem 26 For any ue D(A,) N Xy, the problem (112) has a unique strict
positive solution u(t) defined on the whole time interval [0, ool.

Proof The proof uses the ideas of Remark 6. Under the adopted assumptions, we
have a positive strict solution u(t) = (s(t), i(t)) to (105) in L ([0, ], R?) defined
on its maximum interval of existence [0, f,,.,[. But then

||u(t)||X = /0 (s(a,t) +i(a,t)) da = /0 u(a,t)da, t €0, tuul,

where u(a, t) is the solution to the McKendrick equation (126). But then, as long as
0<t<t(u),

o
u

[u]x = e u .
Hence |u(z)|| does not blow up in finite time and the solution is global. O

Corollary 2 For any ue X, the problem (112) has a unique mild positive solution
u(t) defined on the whole time interval [0, col.

The proof follows from the fact that D(A )4 is dense in X and the continuous
dependence on initial conditions.

5 Coagulation-Fragmentation Equation

Recall that we deal with the equation

doux.1) = —a(yu(x.1) + / a(bGly)uy. 1)dy (133)
(e t) / ket 0dy + 5 / k(x = yoy)uCx — y. )y, £)dy,
0 0
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where x € R := (0, 00) is the size of the particles/clusters. Here u is the density of
particles of mass/size x, a is the fragmentation rate and b describes the distribution
of masses x of particles spawned by a particle of mass y.

The fragmentation rate a is assumed to satisfy

0 <ac LOO,ZUC([Ov OOD, (134)

that is, we allow a to be unbounded as x — oo. Further, » > 0 is a measurable
function satisfying b(x|y) = 0 for x > y and (24).

The expected number of particles resulting from a fragmentation of a size y
parent, denoted by n¢(y), is assumed to satisfy

no(y) < 400 (135)

for any fixed y € Ry. Further, we assume that there are j € (0, 00), ! € [0, c0) and
ap, by € R4 such that for any x € Ry

a(x) <ao(1+x7),  no(x) < bo(1 + x"). (136)

The coagulation kernel k(x, y) represents the likelihood of a particle of size x
attaching itself to a particle of size y. We assume that it is a measurable symmetric
function such that for some K > 0and0 <8 <a < 1

0<k(x,y) <K(14+a(x)*A+a(y)? + 1 +ax)?A+a(y)*). 137

This will suffice to show local in time solvability of (133), whereas to show that the
solutions are global in time we need to strengthen (137) to

0<k(x.y) = K((1+a(x)*+ 1A +a()) (138)

forsome 0 < a < 1.

In fragmentation and coagulation problems, two spaces are most often used due
to their physical relevance. In the space L;(R4,xdx) the norm of a nonnegative
element u, given by fooo u(x)xdx, represents the total mass of the system, whereas
the norm of a nonnegative element « in the space L (R4, dx), fooo u(x)dx, gives the
total number of particles in the system.

We use the scale of spaces with finite higher moments

X, = Li[Ry,dx) N Li(Ry, x"dx) = Li(Ry, (1 + x™)dx), (139)

where m € M := [1,00). We extend this definition to Xy = L;(R+). We note
that, due to the continuous injection X,, — X, m > 1, any solution in X, is also
a solution in the basic space Xj.

Thus, we denote by || - ||, the natural norm in X, defined in (139). To shorten
notation, we define

W (x) == 14 x™.
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5.1 Analyticity of the Fragmentation Operator

To formulate the main results, we have to introduce more specific assumptions and
notation. First we define

Yy
() 1= / b(x]y)x"dx
0

for any m € M := {0} UM and y € R;. Further, let

No(y) :=no(y)—1 and Ny(y) =" —nu(y), m=>1.

It follows that

No(y) =no(y)—1>0

and
y y
Nu(y) = " / b(x[y)a"dx = 3"y / b(xly)wdr =0 (140)
0 0

form > 1 with Ny = 0.
Next, form € M, let (A,,u)(x) := a(x)u(x) on D(A,) ={u e X, : au € X}
and let By, be the restriction to D(A,,) of the integral expression

[e,]

[Bul(x) = / a ()b (x| y)u(y)dy.

X

Theorem 27 ([12]) Let a, b satisfy (24), (135) and (136), and let m be such that
m=>j+lifj+l>landm>1ifj+1<1.

(a) The closure (F,,, D(Fy,)) = (A, + Bu, D(An)) generates a positive quasi-
contractive semigroup, say (Sf, (t))i>o0, of the type at most 4aopby on Xp.
Furthermore, ifu € D(F,,)+, then

Ny (x)a(x)u(x) € Xo, m € M. (141)
(b) If, moreover, for some m there is ¢, > 0 such that

Ny
Jim nf )

X—>00 xm

= Cp, (142)

then F,, = —Ay + By and (SF, (t))i>0 is an analytic semigroup on Xy,
(c) If (142) holds for some my, then it holds for all m > my,.

We note that (142) cannot hold form = 1 as N; = 0.
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Proof We shall fix m satisfyingm > j +1if j +/ > 1 and m > 1 otherwise;
see (136). First we show that B,,, := B|p(4,,) is well defined. Next, direct integration
gives foru € D(A,,)

/ (=Am + Bp)u(xX)wp (x)dx = —¢y (u) := / (No(x) = Ny (x))a(x)u(x)dx.
0 0

(143)

If the term Ny(x) > 0 were not present, then (143) would allow a direct application
of the substochastic semigroup theory. In the present case we note that for u €
D(A,,)+ we have, by (140),

() < / No(y)a(n)u(y)dy < 4aoko / U)W () = il
0 0

Then we have ¢, (1) 1= ¢m(u) + N Joyo u(xX)wy(x)dx > 0for 0 < u € D(Ap)+
and the operator (A,,, D(A,)) := (A, + n1, D(A,,)) satisfies

/ (= A + Bp)u(xX)wy (X)dx = —p (1)
0

= —'7/00 u(X)wp (x)dx + /(No(x) — Ny (x))a(x)u(x)dx < 0.
0 0

Hence an extension F,, of —A,, + B, generates a substochastic semigroup
(Sg,(1)):i>0 and thus there is an extension Fy, of (—Au + By, D(An)), given by
(Fp, D(F,)) = (F+nl, D(Fy)), generating a positive semigroup (Sr,, (¢));>0 =
(e"Sg, (t))i>0 on Xy

Furthermore, ¢,, extends to D(F,,) by monotone limits of elements of D(A,,).
Thus, let u € D(F,;)+ with D(A,,) > u, /" u. Then, since

/No(x)a(x)u(x)dx < 00, /u(x)wm(x)dx < 00,
0 0

by (136), m > j + [ and D(F,) C X,,, and the fact that ¢,,(u,) tends to a finite
limit, we have

nli)ngo/Nm(x)a(x)un(x)dx = /Nm(x)a(x)u(x)dx < 4o00.
0 0
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To prove part (b), we begin by observing that inequality (140) implies that 0 <
Ny (x) < x™. This, together with (142), yields ¢,,x™ /2 < N, (x) < x™ for large
x which, by (141), establishes that if u € D(F,,), then au € X,, or, in other words,
that D(F,;) C D(A,,). Since (F,,, D(F,,)) is an extension of (—A,, + B,,, D(An)),
we see that D(F,,) = D(An).

It is clear that the semigroup generated by —A,, is bounded. Furthermore, if
A =r +isthen |A + a(x)|> > s? and therefore, for all r > 0

LF@IA + 2™ < Ellllfllm-

[R(r +is,—Am) f llm =
[

r+is 4+ a(x)

The analyticity of the fragmentation semigroup then follows from the Arendt—
Rhandi theorem, Theorem 19. O

Example 7 One of the forms of b(x|y) most often used in applications is

X

b(x|y) = %h (;) (144)

which is referred to as the homogeneous fragmentation kernel. In this case the
distribution of the daughter particles does not depend directly on their relative sizes
but on their ratio. In this case

X

y 1
1
nm(y) = —/h (—) x"dx = ym/h(z)zmdz =:h,y™.
y J y 4

Since

y 1
1
Y =m) = ;/h G) xdx = y/h(z)zdz — huy,
0 0

we have hy = 1 so that h,, < 1 forany m > 1 and N,(y) = y"(1 — hy).
Hence, (142) holds.

On the other hand, fragmentation processes in which daughter particles accumu-
late close both to 0 and to the parent’s size may not satisfy (142), [17].
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5.2 Existence of Solutions to the Fragmentation—Coagulation
Problem

Next, we introduce a nonlinear operator C,, in X, defined for u from a suitable
subset of X, by the formula

o0 1 X
(Cu(x) = =ux) [ ke iy + 5 [ kG = v yute = yyut)ay
0 0

so that the initial value problem for (133) can be written as an abstract semilinear
Cauchy problem in X,,,,

dt = —Apit + Byt + Cott,  u(0) =1t . (145)

To formulate the main theorems we have to introduce a new class of spaces which, as
we shall see later, is related to intermediate spaces associated with the fragmentation
operator F, and its fractional powers. We set

X5 :={uexm; /oo|u(x)|<w+a<x)>“<1+x’")dx<oo : (146)
0

where o is a sufficiently large constant. Then we have

Theorem 28 ([17]) Assume that a, b, k satisfy (24), (135), (136), (137)and (142)

for some mgy > 1, and let m > max{j + [, mo} hold. Then, for each e X,;a) , there
is T > 0 such that the initial value problem (145) has a unique nonnegative classical
solution u € C([0,7], X,) N C1((0, 1), X,n) N C((0, 7), D(An)). Furthermore,
there is a measurable representation of u which is absolutely continuousint € (0, 1)
Sfor any x € Ry and which satisfies (133) almost everywhere on Ry x (0, 7).

Finally, for the global in time solvability we need to restrict the growth rate of k.
Namely, we have

Theorem 29 ([17]) Let the assumptions of Theorem 28 hold with 8 = 0, that is, let
k satisfy (138). Furthermore, let the constant j from assumption (136) be such that
oj < 1. Then any local solution of Theorem 28 is global in time.

5.2.1 Interlude: Intermediate Spaces Associated with F,,

From now one, we shall assume that b(x|y) is such that (142) is satisfied. Define,
for a fixed constant w > 4agby,

Foo =Fy—owl, A,,:=An+ ol,
D(F,,) = D(F,) = D(An) = D(Anw), (147)
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The operators (F, ., D(A,)) and (—An e, D(A,)) generate analytic semi-
groups (S, ,(1)i=0 = (e7“'SE,(t))>0 and, respectively, (S—_4, ,())i=0 =
(e7'S_4,,(1)):>0 on X,,. Since each operator is invertible, the norms ||u|/; 4 =
|Amoitllm and |ullmr = |Fnotllm, v € D(An) are equivalent to each other
and also to the corresponding graph norms on D(A,,). Then we have (up to the
equivalence of the respective norms)

DFm.(u ((X, r) = D_Am.(u (C(, r)' (148)

We find it most convenient to use D_4,, , (c, 1) which equals the real interpolation
space (X, D(Am.o))q.1- 1t follows that

(X, D(Amw))ar = X3 = qu € X /IM(X)I(CU +a(x)*(1 +x")dx < oop
0

which hereafter we equip with the norm
o0
Il = [ ol + )+ 5 ax. (149)
0

In other words, there is a constant ¢; > 1 such that
e Ml < Nullpg,, @y < cillul®. Yue Dg,,(@1). (150)

Proof of Theorem 28 Here we assume that a and b satisfy the assumptions of
Theorem 27(b) so that, in particular, (142) holds for some m > j 4+ orm > 1
if j + 1 < 1. Furthermore, the coagulation kernel is such that (137) is satisfied. We
fix o > max{4apbo, 1} and denote a% (x) := (w + a(x))*. Similarly to (132), we
consider the following modified version of (133)

o

du(x,1) = —(au(x) + yag(x))u(x.1) + /a(y)b(XIy)M(y,f)dy

X

(yal (x) + @ulx. 1) — ulx. 1) / k(e y)u(y. 1)dy
0

1 X
+ / k(x— yo y)ulx — . Ou(y.1)dy, (151)
0

where y is a constant to be determined and « is the index appearing in (137).
Then, see [41, Corollary 3.2.4], (F,, D(F})) := (Fnw—VAS,, D(A,)) generates an
analytic semigroup, say (Spy (£))1>0, on X Since (SE,,, (£))r=0 and (S—y4¢ (£))r>0
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are positive and contractive, we can use the Trotter product formula to deduce that
(SF,(2))i>0 is also a positive contraction on X,,. Furthermore, since S—,4a (£) < /
fort > 0, using again the Trotter formula

Sk, (D)u < Sg,,,(Ou, ue Xy 4. (152)

and thus, for u € X,(na)
1S5, Oullyy < cfllull;y. (153)

Next consider the set
U={ue Xt |lu]@ <1+b}, (154)

for some arbitrary fixed b > 0 and set
y =2K(b +1). (155)

Then on U we obtain

(Cu)(x) = —u(x) / ke y)u(y)dy + (r(@%(x) + w)u(x)
0

5 [ RG= vt = yutay = o
0

Similarly, on U we have |Cyu||,, < Ki1(Uf), as well as
|45, + @Du = (A, + 0Dl < (@ + y)llu =]
and

|Cyuu — Cyvlm < Ka(U)|Ju— ||, (156)

for some constants K (1), K»(U). Hence, for it € X,if‘)+ satisfying || u |5 < c2b,
for b of (154) and ¢ from (153), there is t = ‘L'(I?t) such that the mapping

t

(Tu)(t) = Sk, (1) u + / Sk, (t — 5)Cyu(s)ds
0
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isacontractionon Y = C([0, 7], ), with U/ defined by (154) and the metric induced
by the norm |u(t)|ly := sup ||u(t)||(a) .Therefore, for any e Xm 'y there is a

0<t<t

unique mild solution u to (145) in X, (@) + which, moreover, satisfies
ue CY(0,7), X,n) N C((0,7), D(An)).

O

Proof of Theorem 29 The local solution, constructed in the previous section, can

be extended in a usual way to the maximal forward interval of existence I, =

[0, rmax(u)) We also denote 10 = (0, ‘L'max(l?t)) Thus, to show that u is globally

defined, we need to show that ||u(?) ||,(,‘f) is a priori bounded uniformly in time.
Let us denote by M, the r-th moment of u,

max

o0
M, (u) := /x"u(x)dx.
0
Then, for some constant L,
lullyy” = L / () (1 + X" dx = L(Mo(u) + My ja(u)). (157)

Though for a given m, Theorem 28 does not ensure the differentiability of My 1o,
it is valid in the scale of spaces X, with r > m provided, of course, e X @,

Since the embedding X ,@ X ,Sf" is continuous for r > m, the solutions emanating
from the same initial value tie X,@ Cc X ,(,,a) in each space, by construction, must

coincide. Hence, let ne X C Xm+ju C X,i,a) so that

m+ jo

1 € ClLyax. X1 1o

) N C ( max’ m+]0¢) N C( max? D(Am+ja)),

with possibly different, but still nonzero length of the interval [,,,. This, in
particular, yields differentiability of |lu(-)|lo = Mo(u(-)) and, consequently, of
M+ jo(u()). To get the moment estimates we use the inequality, [16],

(x+y) —x" =y =@ =Dy +yx) =Gy +yx), (158)

forr > 1,x,y € R4. Then

o0
/xr(Cu)(x)dx =G, KLo(My 4 jo—1 My + M, 1Mo +2M,1M;). (159)
0
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For the particular cases r = 0 and r = 1 we obtain

o0

/(Cu)(x)dx = —% / k(x, y)u(x,t)u(y, t)dxdy <0,
0 0

o

/x(Cu)(x)dx =0.

0

Hence, using the estimates for the linear part, we obtain on y?m

My, < 4aobo(My + M,,),

M, =0, (160)
Myt jor < Gy joKLo(Myt2ja—1 My + Myt jo—1 (M1 jo + 2My)).

We see thatif 1 < r < r/, then
M, < M, + M, (161)

as x" < x on [0,1] and x" < x” on [1,00). Thus, we see that in order for the
moment system (160) to be closed, we must assume that jo < 1. This allows us to
re-write (160) as

Mo, < 4aobo(2Moy + M+ jo), (162)
Mt jar < Gt joKLoe (Mt jo + Mi)My + (M jo + M1)(M> + 3My)),

where M, is constant and where we used jo < 1. To find the behaviour of M5,
again we use (143) and (159), with an obvious simplification of (158), to get the
estimate for M, as

Ms, < 4KLy (M4 oM, + M?) < 4KLy(MyM, + 2M}).

Hence, M, is bounded on its interval of existence. Then, from the second inequality
in (162), we see that M, , satisfies a linear inequality with bounded coefficients
and thus it also is bounded on 70 . This in turn yields the boundedness of M.
Hence, ||u(-)[|\ is bounded and thus u exists globally.

To ascertain global existence of solutions emanating from any initial datum ne
X ,(na) we observe that since X ,;02_ ja is dense in X, ,(na) , finite blow-up of such a solution
would contradict the theorem on continuous dependence of solutions on the initial
data. O
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Weak Compactness Techniques and Coagulation
Equations

Philippe Laurencot

1 Introduction

Coagulation is one of the driving mechanisms for cluster growth, by which clusters
(or particles) increase their sizes by successive mergers. Polymer and colloidal
chemistry, aerosol science, raindrops and soot formation, astrophysics (formation of
planets and galaxies), hematology, and animal herding are among the fields where
coagulation phenomena play an important role, see [18, 33,37, 75] for instance.
This variety of applications has generated a long lasting interest in the modeling
of coagulation processes. One of the first contributions in that direction is due to
the Polish physicist Smoluchowski who derived a model for the evolution of a
population of colloidal particles increasing their sizes by binary coagulation while
moving according to independent Brownian motion [78, 79]. Neglecting spatial
variations he came up with the discrete Smoluchowski coagulation equations

df > ,

jz—;K(l,/)ﬁf,, 1>0, )

df< 11‘—1 0o

=5 2 KU =D i [ =Y KG DS Sy s 122,020, @)
j=1 J=l1

Here the sizes of the particles are assumed to be multiples of a minimal size
normalized to one and the coagulation kernel K (i, j) accounts for the rate at which
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a particle of size i and a particle of size j encounter and merge into a single particle
of size i + j. In the derivation performed in [78,79] K is computed to be

1 1
e (4 1/3 1/3
Ksm(st) T ('x +y )(x1/3 +y1/3) (3)
and then reduced to Ko(x, y) := 2 to allow for explicit computations of solutions

to (1)—(2).

The function f;, i > 1, denotes the size distribution function of particles of size
i > lattime ¢ > 0 and the meaning of the reaction terms in (1)—(2) is the following:
the second term on the right-hand side of (2) describes the depletion of particles of
size i by coalescence with other particles of arbitrary size while the first term on the
right-hand side of (2) accounts for the gain of particles of size i due to the merging
of a particle of size j € {1,---,i — 1} and a particle of size i — j. Note that the
assumption of a minimal size entails that there is no formation of particles of size
1 by coagulation. Schematically, if P, stands for a generic particle of size x, the
coagulation events taken into account in the previous model are:

P.+P,— Py, . “4)

The formation of particles of size i corresponds to the choice (x,y) = (j,i — j)
in (4)withi > 2and 1 < j < i — 1 and the disappearance of particles of size i
to(x,y) = (i,j)in (4) withi > 1 and j > 1. A salient feature of the elementary
coagulation reaction (4) is that no matter is lost and we shall come back to this point
later on.

Smoluchowski’s coagulation equation was later on extended to a continuous size
variable x € (0, o0) and reads [64]

1 X
hfx) =5 /0 K(vx—y) ft.9) f(tx— y) dy

—/0 K(x,y) f(t.x) f(t.y)dy, (t.x) € (0,00) x(0,00). (5)

In contrast to (1)-(2) which is a system of countably many ordinary differential
equations, Eq. (5) is a nonlinear and nonlocal integral equation but the two terms
of the right-hand side of (5) have the same physical meaning as in (1)—(2). The
coagulation kernel K (x, y) still describes the likelihood that a particle of mass x > 0
and a particle of mass y > 0 merge into a single particle of mass x + y according
to (4). Besides Smoluchowski’s coagulation kernel (3) [78, 79] and the constant
coagulation kernel Ko(x,y) = 2, other coagulation kernels have been derived in
the literature such as K(x,y) = (ax + b)(ay + b),a > 0,b > 0[84], K(x,y) =
(x13 + y1/3)3, K(x,y) = (x!3 + y1/3)2 |x!/3 — y173|, and K(x,y) = x*yf +
xP y*, a <1, 8 <1, the latter being rather a model case which includes the constant
coagulation kernel Ky (@« = B = 0), the additive one K;(x,y) := x + y (@ = 0,
B = 1), and the multiplicative one K,(x,y) := xy (@ = f = 1). Observe that
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this short list of coagulation kernels already reveals a wide variety of behaviours for
large values or small values of (x, y) (bounded or unbounded) and on the diagonal
x =y (positive or vanishing).

A central issue is which predictions on the coagulation dynamics can be made
from the analysis of Smoluchowski’s coagulation equation (5) and to what extent
these predictions depend upon the properties of the coagulation kernel K. It was
uncovered several years ago that the evolution of (5) could lead to two different
dynamics according to the properties of K and is closely related to the conservation
of matter already alluded to. More precisely, recall that there is neither loss nor gain
of matter during the elementary coagulation reaction (4) and this is expected to be
true as well during the time evolution of (5). In terms of f, the total mass of the
particles distribution at time ¢ > 0 is

o0
M) = [ f ) dx
0
and mass conservation reads

Mi(f(0) = Mi(f(0)). 1=0, (6)

provided M,(f(0))is finite. To check whether (6) is true or not, we first argue
formally and observe that, if ¢ is an arbitrary function, multiplying (5) by ¥ (x)
and integrating with respect to x € (0,00) give, after exchanging the order of
integration,

d o0
E/o P(x) f(t, x) dx

- %/ / [P (x + y) = D (x) = B ] K(x, ») f(t. %) £(¢,y) dydx.  (7)
0 0

Clearly, the choice #(x) = x leads to a vanishing right-hand side of (7) and
provides the expected conservation of mass. However, one has to keep in mind
that the previous computation is only formal as it uses Fubini’s theorem without
justification. That some care is indeed needed stems from [52] where it is shown
that (6) breaks down in finite time for the multiplicative kernel K,(x,y) = xy
for all non-trivial solutions. An immediate consequence of this result is that the
mass-conserving solution constructed on a finite time interval in [57, 58] cannot be
extended forever. Soon after the publication of [52] a particular solution to (1)—(2)
was constructed for K(i, j) = ()%, « € (1/2,1) which fails to satisfy (6) for
all times [50]. At the same time, it was established in [53, 90] that the condition
K(i,j) < k(i + j) was sufficient for (1)-(2) to have global mass-conserving
solutions, that is, solutions satisfying (6). Thanks to these results, a distinction was
made between the so-called non-gelling kernels for which all solutions to (1)-(2)
and (5) satisfy (6) and gelling kernels for which (6) is infringed in finite time for all
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non-trivial solutions. The conjecture stated in the beginning of the 1980s is that a
coagulation kernel satisfying

K(x.y) =k@+x+y), (x.y)€(0,00) x(0,00), ®)

is non-gelling while a coagulation kernel satisfying
1
K(an’)EK(x)’)aa Ol>§, (an’)e(O’OO)X(OaOO)a (9)

is gelling [24, 38, 53]. Following the contributions [53, 90] the conjecture for
non-gelling coagulation kernels (8) is completely solved in [4] for the discrete
coagulation equations (1)—(2), an alternative proof being given in [45]. It took
longer for this conjecture to be solved for the continuous coagulation equation (5),
starting from the pioneering works [1,61] for bounded kernels and continuing with
[20,46, 81, 83]. Of particular importance is the contribution by Stewart [81] where
weak L'-compactness techniques were used for the first time and turned out to
be a very efficient tool which was extensively used in subsequent works. As for
the conjecture for gelling kernels (9), it was solved rather recently in [26, 39].
An intermediate step is the existence of solutions to (1)—-(2) and (5) with non-
increasing finite mass, that is, satisfying M (f(¢)) < M;(f(0)) fort > 0, see
[23,44,46,52,70,80] and the references therein.

The purpose of these notes is twofold: on the one hand, we collect in Sect.2
several results on the weak compactness in L'-spaces which are scattered through-
out the literature and which have proved useful in the analysis of (5). We recall
in particular the celebrated Dunford—Pettis theorem (Sect. 2.2) which characterizes
weakly compact sequences in L' with the help of the notion of uniform integrability
(Sect.2.3). Several equivalent forms of the latter are given, including a refined
version of the de la Vallée Poussin theorem [14, 16,49] (Sect. 2.4). We also point
out consequences of the combination of almost everywhere convergence and weak
convergence (Sect. 2.5). On the other hand, we show in Sect. 3 how the results stated
in Sect.2 apply to Smoluchowski’s coagulation equation (5) and provide several
existence results including that of mass-conserving solutions (Sect.3.2). For the
sake of completeness, we supplement the existence results with the occurrence of
gelation in finite time for gelling kernels [26] (Sect. 3.3) and with uniqueness results
(Sect. 3.4). For further information on coagulation equations and related problems
we refer to the books [9, 19] and the survey articles [2,48,51, 89].

We conclude the introduction with a few words on related interesting issues: we
focus in these notes on the deterministic approach to the modeling of coagulation
and leave aside the stochastic approach which has been initiated in [54,55,78,79]
and further developed in [2,8,9, 15,22,23,29,39,40, 70] and the references therein.

Another important line of research is the dynamics predicted by Smoluchowski’s
coagulation equation (5) for large times for homogeneous non-gelling kernels (8)
and at the gelation time for homogeneous gelling kernels (9). In both cases the
expected behaviour is of self-similar form (except for some particular kernels with
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homogeneity 1) but the time and mass scales are only well identified for non-gelling
kernels and for the multiplicative kernel K,(x,y) = xy, see the survey articles
[51, 65, 86] and the references therein. Existence of mass-conserving self-similar
solutions for a large class of non-gelling kernels have been constructed recently [28,
30] and their properties studied in [11,25,31, 60, 66]. Still for non-gelling kernels,
the existence of other self-similar solutions (with a different scaling and possibly
infinite mass) is uncovered in [8] for the additive kernel K;(x,y) = x + y and
in [62] for the constant kernel Ky(x,y) = 2, both results relying on the use of
the Laplace transform which maps (5) either to Burgers’ equation or to an ordinary
differential equation. Since the use of the Laplace transform has not proved useful
for other coagulation kernels, a much more involved argument is needed to cope
with a more general class of kernels [67, 68].

Finally, coagulation is often associated with the reverse process of fragmen-
tation and there are several results available for coagulation-fragmentation equa-
tions, including existence, uniqueness, mass conservation, and gelation. Actually,
the approach described below in Sect.3 works equally well for coagulation-
fragmentation equations under suitable assumptions on the fragmentation rates.
Besides the survey articles [19,48, 89], we refer for instance to [4, 12,39,40,45, 80]
for the discrete coagulation-fragmentation equations and to [1,5,6,20,23,26,27,34—
36,43,44,46,56,61,81,82] for the continuous coagulation-fragmentation equations.

2 Weak Compactness in L!

Let (£2, %, ) be a o-finite measure space. For p € [1,00], L?(£2) is the usual
Lebesgue space and we denote its norm by || - ||,. If p € (1, 00), the reflexivity
of the space L?(§2) warrants that any bounded sequence in L”(£2) has a weakly
convergent subsequence. In the same vein, any bounded sequence in L°°(£2) has
a weakly-x convergent subsequence by a consequence of the Banach—Alaoglu
theorem [10, Corollary 3.30] since L°°($2) is the dual of the separable space L'(£2).
A peculiarity of L'(£2) is that a similar property is not true as a consequence of
the following result [91, Appendix to Chap. V, Sect. 4], the space L'(£2) being not
reflexive.

Theorem 1 (Eberlein-Smulian) Ler E be a Banach space such that every
bounded sequence has a subsequence converging in the o (E, E')-topology. Then E
is reflexive.

2.1 Failure of Weak Compactness in L!

In a simpler way, a bounded sequence in L'(£2) need not be weakly sequentially
compact in L'(£2) as the following examples show:
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Concentration Consider f € C®(R") such that f > 0, supp f C B(0,1) :=
{x e RN : |x| < 1}, and | f|l1 = 1.Forn > 1and x € R", we define
f,(x) = n" f(nx) and note that

Ifally =11/l =1. (10)

Thus (f;)u>1 is bounded in L'(R"). Next, the function f being compactly
supported, we have

lim f,(x) =0 for x #0.
n—o0

The only possible weak limit of (f;),>1 in L'(R") would then be zero which
contradicts (10). Consequently, ( f,),>1 has no cluster point in the weak topology
of LY(RY). In fact, (f,),>1 converges narrowly towards a bounded measure, the
Dirac mass, that is,

lim fo(X) ¥ (x) dx = ¥(0) forall v € BC(RY),
n—00 RN

where BC(R") denotes the space of bounded and continuous functions on R".
The sequence ( f;),>1 is not weakly sequentially compact in L!(R") because it
concentrates in the neighbourhood of x = 0. Indeed, for r > 0, we have

/ f,,(x)dx:/ f(x)dx — 1,
{Ix|=r} {Ix|<nr} n—0o0

and

/ fn(x)dx=/ f(x)dx — 0.
{lx|=r} {Ix|=nr} n—00

Vanishing Forn > 1 and x € R, we set f,(x) = exp (—|x — n|). Then

[ fulli = 2, (11)
and (f,)n>1 is bounded in L'(R). Next,

lim f,(x) =0 forall x e R,
n—o0

and we argue as in the previous example to conclude that ( f;,),>1 has no cluster
point for the weak topology of L!(IR). In that case, the sequence ( f;),>1 “escapes
at infinity” in the sense that, for every r > 0,

oo

P
lim fu(x)dx=2 and lim / fu(x)dx=0.
n—oo J, n—>oo |
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The above two examples show that the mere boundedness of a sequence in
L'(£2) does not guarantee at all its weak sequential compactness and additional
information is thus required for the latter to be true. It actually turns out that, roughly
speaking, the only phenomena that prevent a bounded sequence in L'(£2) from
being weakly sequentially compact in L'(§2) are the concentration and vanishing
phenomena described in the above examples. More precisely, a necessary and
sufficient condition for the weak sequential compactness in L!(£2) of a bounded
sequence in L'(£2) is given by the Dunford—Pettis theorem which is recalled below.

2.2 The Dunford-Pettis Theorem

We first introduce the modulus of uniform integrability of a bounded subset .% of
L'(£2) which somehow measures how elements of .% concentrate on sets of small
measures.

Definition 2 Let .# be a bounded subset of L!(£2). For ¢ > 0, we set

n{ﬁ,s}::sup%/lfld,u:feﬁ,Ae%’,,u(A)fe , (12)
A

and we define the modulus of uniform integrability n{.#} of .# by
WF} = im n{F, e} = inf n{.7, ¢} . (13)
=0 >0
With this definition, we can state the Dunford—Pettis theorem, see [7, Part 2,

Chap. VI, Sect. 2], [16, pp. 33—44], and [21, IV.8] for instance.

Theorem 3 Let .7 be a subset of L'($2). The following two statements are
equivalent:

(a) F is relatively weakly sequentially compact in L'($2).
(b) F is a bounded subset of L'($2) satisfying the following two properties:

w7} =0, (14)

and, for every € > 0, there is §2, € P such that ($2;) < oo and

sup[ fldp <. (15)
feF J 2\

As already mentioned, the two conditions required in Theorem 3b to guarantee
the weak sequential compactness of .% in L!(§2) exclude the concentration and
vanishing phenomena: indeed, the condition (14) implies that no concentration can
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take place while (15) prevents the escape to infinity which arises in the vanishing
phenomenon.

Remark 4 The condition (15) is automatically fulfilled as soon as ;£ (£2) < oo (with
2, = §2 for each ¢ > 0).

Thanks to the Dunford—Pettis theorem, the weak sequential compactness of a
subset of L'(£2) can be checked by investigating the behaviour of its elements
on measurable subsets of §2. However, the characteristic functions of these sets
being not differentiable, applying the Dunford—Pettis theorem in the field of partial
differential equations might be not so easy. Indeed, as (partial) derivatives are
involved, test functions are usually required to be at least weakly differentiable (or
in a Sobolev space) which obviously excludes characteristic functions. Fortunately,
an alternative formulation of the condition n{.#} = 0 is available and turns out to
be more convenient to use in this field.

2.3 Uniform Integrability in L'

Definition 5 A subset .% of L'(£2) is said to be uniformly integrable if .% is a
bounded subset of L!(£2) such that

lim sup / |fldu=0. (16)
{If|=c}

€200 e

Before relating the uniform integrability property with the weak sequential
compactness in L'(£2), let us give some simple examples of uniformly integrable
subsets:

o If .7 is a bounded subset of L?(§2) for some p € (1, 00), then .# is uniformly
integrable as

1 1
sp [ ifldns s [ AP drs o st
fez J{lflzc} ¢ fez J{flzc} ¢ fez

o If fo € L'(R2), theset F :={f € L'(£2) : | f| <|fo| wn—a.e.}isuniformly
integrable.

 If .7 is a uniformly integrable subset of L'(£2), then so is the set .#* defined by
F*={f|: feF}

+ If.# and ¢ are uniformly integrable subsets of L'(£2), then so is the set .# + ¢
definedby  + 9 :={f +g : (f.g) € F x¥}.

We next state the connection between the Dunford—Pettis theorem and the
uniform integrability property.
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Proposition 6 Let .7 be a subset of L'(2). The following two statements are
equivalent:

(i) F is uniformly integrable.
(ii) F is a bounded subset of L' (2) such that n{.#} = 0.

In other words, the uniform integrability property prevents the concentration on
sets of arbitrary small measure. Proposition 6 is a straightforward consequence of
the following result [77].

Lemma 7 Let .7 be a bounded subset of L' (§2). Then

HF) = lim sup / f] . (a7
{lf1=c}

=0 reg

Proof We put

N, := lim sup/ | f|ldu = inf sup/ | fldu.
70 rez Hiflzc 20 rez Jflzc}

We first establish that n{.#} < n,. To this end, consider ¢ > 0, A € £4, g € .7,
and ¢ € (0,00). If u(A) < &, we have

/Igldu / Igldu+/ gl dpe
A AN{|gl<c} {AN|g|=c}

¢ 1u(A) +/ lg] dpe
{lgl=c}

IA

§cs+sup/ | fldw,
feF Jiflzc}

whence

n{F,e} <ce+ sup / | flduw.
fez J{If|=c}

Passing to the limit as ¢ — 0 leads us to

T} < sup/ \f| du
fezF J{|fl=c}

for all ¢ € (0, 00). Letting ¢ — oo readily gives the inequality n{.#} < 1,.
We now prove the converse inequality. For that purpose, we put

A= sup{[f]i} < oo,
feF
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and observe that

o>

px e 2, [f(x)]zc}) <

forall f € .# and ¢ > 0. Consequently,

A
sup p(fx e 2, [f(x)|>c}) < —,
fez C

from which we deduce that

A
isup/ Ifldufn%ﬁ—}-
fez J{fl=c} 4

Since the right-hand side of the previous inequality converges towards n{.%} as
¢ — oo, we conclude that 7, < n{.%} and complete the proof of the lemma. O

Owing to Proposition 6, the property n{.% } = 0 can now be checked by studying
the sets where the elements of .% reach large values. This turns out to be more
suitable in the field of partial differential equations as one can use the functions
r — (r —c)+ := max {0, r — c}. For instance, if £2 is an open set of RY and u
is a function in the Sobolev space W7 (£2) for some p € [, o0, then (u — ¢)+
has the same regularity with V(u — ¢)4+ = sign((# — ¢)+)Vu. This allows one in
particular to use (u — ¢)+ as a test function in the weak formulation of nonlinear
second order elliptic and parabolic equations and thereby obtain useful estimates. A
broader choice of functions is actually possible as we will see in the next theorem.

2.4 The de la Vallée Poussin Theorem

Theorem 8 Let .7 be a subset of L'($2). The following two statements are
equivalent:

(i) F is uniformly integrable.

(ii) .F is a bounded subset of L'(S2) and there exists a convex function & €
C°°([0, 00)) such that ®(0) = &'(0) = 0, @’ is a concave function,

D'(r)>0 if r>0, (18)
@

im 29— fim #/(r) = oo, (19)

r—00 r r—>o00

and

sup [ 017D diu <0, (20)
rez e
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When % is a sequence of integrable functions ( f,,),>1, Theorem 8 is established
by de la Vallée Poussin [14, pp. 451-452] (without the concavity of @ and the
regularity of @) and is stated as follows: a sequence (f,),>1 is uniformly integrable
(in the sense that the subset { f, : n > 1} of L'(£2) is uniformly integrable) if and
only if there is a non-decreasing function ¢ : [0, 00) — [0, 00) such that ¢(r) — oo
as r — oo and

Sup/9<p(|fn|) ol dia < oo

n>1

This result clearly implies Theorem 8. Indeed, if @ denotes the primitive of ¢
satisfying @(0) = 0, the function @ is clearly convex and the convexity inequality
@(r) < r ¢(r) ensures that (D(| f;,|))u>1 is bounded in L'(£2). When u(£2) < oo,
a proof of Theorem 8 may also be found in [16] and [72, Theorem 1.1.2] but the first
derivative of @ is not necessarily concave. As we shall see in the examples below,
the possibility of choosing @’ concave turns out to be helpful. The version of the
de la Vallée Poussin theorem stated in Theorem 8 is actually established in [49].
The proof given below is slightly different from those given in the above mentioned
references and relies on the following lemma:

Lemma 9 Let ® € C'([0, 00)) be a non-negative and convex function with ®(0) =
@'(0) = 0 and consider a non-decreasing sequence of integers (ny)x>o such that
no=1,n >2 andn, — oo ask — oo. Given f € L'(£2) and k > 1, we have
the following inequality:

/ o(1f1) dpn < (1) / \f] e
{Ifl<nk} Q2

{fl=n;}

k—1
A2 (@0 -0)) [ iflde @D
j=0

Proof As @ is convex with @'(0) = 0, @’ is non-negative and non-decreasing and
&(r) <r®'(r), rel0,00).

Fix k > 1. We infer from the properties of @ that

/ (| f]) dps s/ & (Lf) /] dps
{Ifl<ni} {Ifl<ni}

k—1
- @' du + o' d
/{Osw} () 1] dp ;/{ ()11 dp

nj<|fl<njy1}
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IA

k—1
&'(1) Fldp+ 3 @' n40) /{ |/l dp
=0

{o=|f1<1} nj=<|fl<nj1}

k—1
@'(1 dun + @' (n; d
(1) \f] e ;0 (1) /{m \f] du

{o=|f]<1} zn;}

k
_ @’ . d
; (n,)/{ f 1 du

|f1=n;}

IA

(1) /Q /1 dps

k—1

+ 3 (@1 40) — D)) /{lf 1.

—0

~

whence (21). O

The inequality (21) gives some clue towards the construction of a function @
fulfilling the requirements of Theorem 8. Indeed, it clearly follows from (21) that,
in order to estimate the norm of @(f') in L!(§2) uniformly with respect to f € .%,
it is sufficient to show that one can find a function @ and a sequence (7 )r>0 such
that the sum in the right-hand side of (21) is bounded independently of f € .# and
k > 1. Observing that this sum is bounded from above by the series

Z (@' (nj+1) — @' (ny)) X, (22)

)
Jj=0

with

Y= sw [ ifldu. =0,
feF I fl1zn;}
and that X; — 0 as j — oo by (16), the proof of Theorem 8 amounts to showing

that one can find @ and (ny )r>0 such that the series (22) converges.

Proof of Theorem 8 (1) = (ii). Consider two sequences of positive real numbers
(am)m>0 and (B)m>o satistying

o0 o0
Z o, = oo and Z Uy B < 00. (23)
m=0

m=0
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It then follows from (16) that there exists a non-decreasing sequence of integers
(Ny)m = 0such that Ng = 1, N; > 2 and

Nm+1>(1+ “’")Nm, m>1.. (24)
Opm—1

sup/ fldp < B m= 1. (25)

re N fi=nn

Let us now construct the function @ and first look for a C'-smooth function
which is piecewise quadratic on each interval [N, N,,+1]. More precisely, we
assume that, for eachm > 0,

D'(r)=Anr + By, 1 €[Nn Npsi],

the real numbers A,, and B, being yet to be determined. In order that such a function
@ fulfills the requirements of Theorem 8, A,, and B,, should enjoy the following
properties:

(c1) (Am)msois a non-increasing sequence of positive real numbers, which implies
the convexity of @ and the concavity of @’,

(€2) Au+1 Nu+1+ Bu+1 = A Nyt1 + By, m > 0, which ensures the continuity
of @',

(c3) A, N, + B,, = o0 as m — 00, so that (19) is satisfied,

(c4) the series Y Ay (Nm+1 — Nm) Bm converges, which, together with (25),
ensures that the right-hand side of (21) is bounded uniformly with respect to
feZ.

Let us now prove that the previously constructed sequence (N,,),>0 allows us to
find (A4,,, B,;,) complying with the four constraints (c1)—(c4). According to (23) and
(c4), a natural choice for A4,, is

Om

Ap ' = ——
" Nm+1 _Nm

, m=>0.

The positivity of (o) and (24) then ensure that the sequence (A4, )0 satisfies (c1).
Next, (c2) also reads

Ams1 N1+ Bg1 = Ay Ny + By + o,

from which we deduce that

m—1
AmNm—i-Bm:ZOéi-i-AoNo-i-Bo.
i=0
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The above identity allows us to determine the sequence (B, )m>0 by

m—1
By:=0 and Bm::Zai—i—AoNo—AmNm, m>1,
i=0

and (c3) is a straightforward consequence of (23).
We are now in a position to complete the definition of @. We set

oo

mr for rG[O,Nl),
@/(I’) =5 Um (r m)
i+ —— fi € [Nums Nim
Nm+l + Za or r €| +1)»
m>1,
and
D(r) = / d'(s)ds, re[0,00).
0
Clearly ®(0) = &’(0) = 0 and, form > 1,
m—1 o
/ o .
im @' (r) = &'(Ny) = Z(;oz, A (26)

Consequently, ® € C([0,00)) and thus @ € C'([0,00)). Moreover, @’ is
differentiable in (0, N;) and in each open interval (N,,, Ny, +1) with

ﬁ for r € (0, Ny),
” _
qj (r) - Oy
ﬁ for r € (Nm,Nm+1), m = 1,
m+1 = {¥m

and (24) ensures that @” is non-negative and non-increasing, whence the convexity
of @ and the concavity of @’. We then deduce from the monotonicity of @', (23),
and (26) that @’ fulfills (18) and

lim ®'(r) =

r—00

The property (19) then follows by the L’Hospital rule.
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We finally infer from (21), (25), and (26) that, for f € .% and m > 1, we have

m—1
(0] d d'(1 d P B
/{fw (D) dp < ()/Qm u+;% 8,

o0
<o) sup/ gldu+> o) B,
gEF IR =0

and the right-hand side of the above inequality is finite by (23) and the boundedness
of Z in L'(£2). We let m — oo in the above inequality and conclude that
{D(f]) : f € F})isboundedin L'(£2).

We next modify the function @ constructed above in order to improve its
regularity. To this end, we define ®; € C!(R) by

2
®(r) = &(r) for r>0 and @ (r) = @"(0) % for r<0.

As @{(r) < 0 = @{(0) for r < 0, ¢{ is non-decreasing so that @; is convex.
Similarly, @{'(r) = @”(0) for r < 0, which guarantees that @{ is non-increasing
and thus the concavity of &;.

Consider next ¢+ € C§°(RR) such that

9>0, supp?d = (=1,1), /ﬂ(r)drzl.
R

We define a function ¥ by
U(r):= @ *®P)(r)— (O *xP)0)— (I «D)O0)r, reR.

Clearly, ¥ € C%(R) satisfies ¥(0) = ¥’/(0) = 0. Next, thanks to the non-
negativity of 9, the convexity of @; and the concavity of ®| imply the convexity
of ¥ and the concavity of ¥’. Moreover, we have ¥/(r) > 0 for r > 0. Indeed,
assume for contradiction that ¥/ (ry) = 0 for some ry > 0. Then

0=V(r) = /Rz?(s) (@{(ro — ) — @{(—s)) ds,

from which we infer that 9(s) (@] (ro —s) — @{(—s)) = 0 for s € R by the non-
negativity of ¢ and the monotonicity of @;. Taking s = 0, we conclude that 0 =
®{(ro) = @'(ro), and a contradiction. Consequently, ¥ fulfills (18).
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We next check that ¥ is superlinear at infinity. To this end, we consider r > 2
and deduce from the monotonicity of @{ and (19) that

1
v'(r) = /_1 O (s) @(r —s) ds — (9 * ®])(0)

v

1
&i(r—1) /_1 B (s) ds — (& * @7)(0)

@' (r—1) — (¥ * ®))(0) =200

%

and we use again the L’Hospital rule to conclude that ¥ fulfills (19).
Let us finally show that there is a constant C > 0 such that

Uir)y<C((r+or), r=0. 27

Indeed, either r > 1 and r —s > O forall s € (—1,1) or r € [0, 1]. In the former
case, as @; is non-decreasing in [0, co) and non-negative in R, we have

1 1
U(r) < /_1 U(s) D1(r+1)ds—r /_1 B (s) @|(—s) ds

<®(r+1)+ sup {|P]|} r.
[—11]

On the other hand, the concavity of @’, the convexity of @, and the property ®(0) =
@'(0) = 0 entail that

" s "oy
o} 1)) ds > — d
/0 (r+1(r+ )) s_/0r+1 (r+1ds

r? , P(r+1)

o(r)

Combining the previous two estimates gives (27) for r > 1. When r € [0, 1], the
convexity of @; and the concavity of @{ ensure that

1 1
U(r) < /—1 O(s) (r—s) P{(r—s)ds—r /_1 B (s) P{(—s) ds
1
<r / 9(s) (@{(r —s) — P{(—s)) ds
-1
1
<r / H(s) r & (—s)ds <r &"(0),
-1

whence (27).
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Now, since . and {®(| f|) : f € .F} are two bounded subsets of L!(£2), the
boundedness of {¥(| f|) : f €.Z} in L'(£) readily follows from (27), which
completes the proof of (i) = (ii) in Theorem 8.

(i) = (i). Let ¢ € (0, 00). Owing to the convexity of @, the function r
@(r)/r is non-decreasing and

/1
du = @ d
90 f 1= 0 20D

C
oo /Q o(|f]) du.

IA

It then follows from (19) that

lim sup/ | fldu =0,
{1f1=c}

=00 reg

whence (16). ]

Remark 10 Notice that the sequences (o, ) and (8,,) used in the proof of Theorem 8
can be a priori chosen arbitrarily provided they fulfill the condition (23). In
particular, with the choice «,, = 1, the above construction of the function @ is
similar to that performed in [49].

For further use, we introduce the following notation:

Definition 11 We define 6y p as the set of convex functions @ € C*°([0, c0)) with
@(0) = @’(0) = 0 and such that @’ is a concave function satisfying (18). The set
%vp.co denotes the subset of functions in €y p satisfying the additional property (19).

A first consequence of Theorem 8 is that every function in L'(£2) enjoys an
additional integrability property in the following sense.

Corollary 12 Let f € L'(82). Then there is a function ® € Gypoo such that
o(|f1) € L'(2).

Proof Clearly % = { f} fulfills the assertion (i) of Theorem 8. O
Remark 13 1f 1(§2) < oo, we have

U LP(2) c L'(R2).

p>1

but this inclusion cannot be improved to an equality in general. For instance, the
function f : x —> x~!' (Inx)2 belongs to L'(0,1/2) but f ¢ L?(0,1/2) as soon
as p > 1. A consequence of Corollary 12 is that L'(£2) is the union of the Orlicz
spaces L, see [72] for instance.
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Let us mention here that Corollary 12 is also established in [42, pp. 60-61],
[63, Proposition Al] and [73], still without the requirement that @ has a concave
first derivative. However, the convex function @ constructed in [63, Proposition A1]
and [73] enjoys the properties (28) and (31) stated below, respectively. In fact, it
follows clearly from the proof of Theorem 8 that there is some freedom in the
construction of the function @ and this fact has allowed some authors to endow
it with additional properties according to their purpose. In particular, the concavity
of @’ is useful to establish the existence of weak solutions to reaction-diffusion
systems [71], while the property (28) is used to study the spatially homogeneous
Boltzmann equation [63] and the property (31) to show the existence of solutions
to the spatially inhomogeneous BGK equation [73]. The possibility of choosing &’
concave is also useful in the proof of the existence of solutions to the continuous
coagulation-fragmentation equation as we shall see in Sect. 3. We now check that
all these properties are actually a consequence of the concavity of @’.

Proposition 14 Consider @ € yp. Then

s 2O concave in (0.00) | (28)

O(r) <r@'(r) <20(r), (29)

s @'(r) < @(r) + &(s), (30)

®(Ar) < max {1,A%} &(r), 31)

(r+s) (@(r+5)—®(r) —P(s)) <2 (r P(s) +5 2(r)) , (32)

forr >0,5s >0,and A > 0.

Proof The inequalities (29)—(32) being obviously true when r = 0 or s = 0, we
consider r > 0,5 > 0,and ¢ € [0, 1]. Thanks to the concavity of @’, we have

_ 1
i = [ o+ a-noya:
0

tr + (1 —1)s
1
z/ (t @' (zr) + (1 —1) ®'(z9)) dz
0
>t 20 + (-1 @
r s

whence (28).
Next, the convexity of @ ensures that

D0)— D) > —r D' (r), r>0,
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from which the first inequality in (29) follows. Similarly, we deduce from (28) that,
forr > 0, we have

?'(0) — @ <-r (qyr(r) - qi@)
O(r) _ g o(r)
- = =@+ —

rd'(r) <2o(r),

which completes the proof of (29).
Combining the convexity of @ with (29) gives

sO'(r)=(s—r)D'(r) + r®'(r) < D(s) — D(r) + 2@(r)
forr > 0 and s > 0, hence (30).

Consider now r > 0 and A € [0, 1]. We infer from the monotonicity (18) of @
that

@(Ar) < &(r) < max {1,1%} &(r).

Next, for r > 0, s € [0,r], and A > 1, it follows from the concavity and non-
negativity of @’ that

N /% _l >q§/(ks)
w0 (24 (1-1)0) 2 209

We integrate this inequality with respect to s over (0, r) to obtain

o) = 25

and complete the proof of (31).
Finally, let r > 0, s > 0, p € [0,r], and o € [0, s]. We infer from the concavity
of @’ that
?'(p+0)—P'(p) =0 @"(p+0) and @' (p+0) —P'(0) = p @"(p+0),
whence
(p+0)P"(p+0)+2P'(p+0)<4d'(p+0)—P'(p)—P'(0). (33)

We use once more the concavity of @’ to obtain

') >d"(r +0), T>0.
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Integrating this inequality with respect to T over (0, p) we conclude that
D' (p+0)<P(p)+ P'(0). (34)
since @’(0) = 0. It next follows from (33) and (34) that

(p+0)@"(p+0)+2d (p+0) <3(P'(p) + P (0)) .

(r+s)@(r+s)—r®d@)—s D(s)
:/Or/()s{(p+cr) ?"(p+0)+22 (p+0)} dodp,

the previous inequality gives the upper bound

(r+s5)@r+s)—rd@r)—sd(s) <3 /r /S (@'(p) + @'(0)) dodp
0o Jo
=3(62(r)+r d(s)) ,
which we combine with

r+s)@Fr+s)—0d(r)—P6)=F+s)Pr+s)—r dF)—s D(s)
—s @(r)—r d(s),

to obtain (32). O

Remark 15 The property (31) implies that @ enjoys the so-called A,-condition,
namely, there exists £ > 1 such that @(2r) < £ @&(r) for r > 0. It also follows
from (29) that @ grows at most quadratically at infinity.

2.5 Weak Convergence in L' and a.e. Convergence

There are several connections between weak convergence in L' and almost
everywhere convergence. The combination of both is actually equivalent to the
strong convergence in L'(£2) according to Vitali’s convergence theorem, see [21,
Theorem II1.3.6] for instance.

Theorem 16 (Vitali) Consider a sequence (f,)u>1 in L'(82) and a function f €
L'(2) such that (f,)n>1 converges ji-a.e. towards f . The following two statements
are equivalent:

(i) (f)n=1 converges (strongly) towards f in L'(£2).
(ii) The set {f, : n > 1} is bounded in L'(2) and fulfills the conditions (14)
and (15).
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In other words, the weak convergence in L!(£2) coupled with the j-almost
everywhere convergence imply the convergence in L' (£2).

Proof As the proof that (i) = (ii) is obvious, we turn to the proof of the converse
and fix ¢ > 0. On the one hand, we deduce from (15) and the integrability of f that
there exist £2, € % with u(£2,) < oo such that

wg/ Ul + 1/ du <.
2\ 82,

n>1

On the other hand, since f € L'(£2) and (f;),>1 is bounded in L'(£2), we have

1
/ |ﬁ—fwus§(wm+mmwmmg for R >0.
{fa—f1=R} m>1
Then,

Ifn =Sl = /Q\Q (1fal + 1D dM+/Q | fo = S 1Y fy—pizety A

[ U= Py i

<e (1 + 11/l + suq{llfmlll}) +/Q |fo = F1 X = pie—ry dit

Since £2, has a finite measure, we now infer from the almost everywhere conver-
gence of (f,),>1 and the Lebesgue dominated convergence theorem that the last
term of the right-hand side of the above inequality converges to zero as n — oo.
Consequently,

n—00

limsup || fo — fl1 < & (1 + 11+ su>pl{||fm||1}) -

Letting ¢ — 0 completes the proof. O

Remark 17 The p-a.e. convergence of (f,),>1 in Theorem 16 can be replaced by
the convergence in measure.

Another useful consequence is the following result which is implicitly used in
[17,81], for instance, see also [47, Lemma A.2]. It allows one to identify the limit
of the product of a weakly convergent sequence in L' with a bounded sequence
which has an almost everywhere limit.
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Proposition 18 Let ( f,),>1 be a sequence of measurable functions in L'($2) and
(gn)n>1 be a sequence of measurable functions in L*°(82). Assume further that there

are f € LY(2) and g € L>®(82) such that

fu— f in L'(2), (35)
lgn()| =M and  lim g,(x) = g(x) p—ae. (36)

Then
Jim | 1ful1gn —gldp =0 and fug, —fg in LY(£2). 37)

The proof of Proposition 18 combines the Dunford—Pettis theorem (Theorem 3)
with Egorov’s theorem which we recall now, see [74, p. 73] for instance.

Theorem 19 (Egorov) Assume that 1(2) < oo and consider a sequence (hy)n>1
of measurable functions in §2 such that h, — h u—a.e. for some measurable
function h. Then, for any § > 0, there is a measurable subset As € % such that

w(As) <86 and lim sup |h,(x)—h(x)|=0.
n_)ooXEQ\Ag

Proof of Proposition 18 Let ¢ € (0,1). On the one hand, the Dunford—Pettis
theorem and (35) ensure that there exist § > 0 and £2, C £2 such that ©(£2,) < oo,

& &
du < —, d 0 < —.
wp [ Ufildis g and w8 = 4y

On the other hand, since ©(£2,) < oo, we deduce from Egorov’s theorem and (36)
that there is &, C 2, such that

/‘L(‘Qa \ ﬁa) =< 8 and lim sup I(gn _g)(x)l =0.
n—>00 Lep.
Then
/|fn||gn—g|duszM/ IfnldM+2M/ \fol dpt
2 2\82, 2:\0;

+[ ol len — gl du
O

=&+ sup | fmllt sup [(gn — &) (x)].
m>

XE€EO,
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Consequently,

hmsup/ il lgn — gl dp <o
2

n—o0

and ( f,,(g, — g))u>1 converges strongly towards zero in L!(§2). Since g € L™ (),
the second statement in Proposition 18 readily follows from the first one and (35).
O

Remark 20 Proposition 18 is somehow an extension of the following classical
result: Let p € (1,00). If f, — f in L?(2) and g, —> g in L?/(?~D(§2), then
Jagn = fgin L'(£2).

The final result of this section is a generalization of Proposition 18 and
Remark 20.

Proposition 21 Ler v € C([0,00) be a non-negative convex function satisfying
Yw(0) = 0and y(r) > Cor for r > 1 and some Cy > 0, and denote its convex
conjugate function by ¥*. Assume that (1(§2) < oo and consider two sequences
(fi)n>1 and (g,)n>1 of real-valued integrable functions in §2 enjoying the following
properties: there are f and g in L'(82) such that

1. f, — fin L"(2) and

C = sup/QW(Ifnl) du < oo,

n>1

2. gn —> g n—a.e. in 82,
3. for each ¢ € (0,1], the family 9. = {Y¥*(|gn|/e) : n > 1} is uniformly
integrable in L'(£2).

Then
fugn = fg in L'(2).

Proof We first recall that, given & € (0, 1], the uniform integrability of &, in L'(£2)
ensures that

Cy(e) := sup/ Y (@) du < 0o, (38)
n>1JQ &
and

the modulus of uniform integrability n being defined in Definition 2. We next
observe that, thanks to Young’s inequality

rs < Y(r) + ¥ (s) , (r,5) €[0,00)%, (40)
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which ensures, together with (38) (with ¢ = 1), that

/IfngnIdMS/ WALD + ™ (gaD) du < G+ Ca(1) .
2 2

Consequently, (f,g:)n>1 is a bounded sequence in L'(£2). Furthermore, the
convexity of ¥, the weak convergence of ( f,,),>1, and a weak lower semicontinuity
argument entail that

v(IfD) € LY(2) with /Q V(S du <, @1)

while the p-almost everywhere convergence of (g,),>1 along with (38) and the
Fatou lemma ensure that, for each ¢ € (0, 1] and § > 0,

[ v ('%) dji < Cyfe) and n{ {w* (%)}5} <n@.5 . @)

In particular, fg € L'(§2) as a consequence of (40)—(42).
We now fix ¢ € (0,1] and § € (0, 1). On the one hand, since u(£2) < oo, we
infer from Egorov’s theorem that there is a measurable subset As of §2 such that

w(As) <8 and lim sup |g,(x)—g(x)|=0. (43)
00 e\ Az

On the other hand, since g € L! (£2), there exists ks > 1 such that
pix €2 [gx)| =ks}) <4, (44)

and we define gs := g 1(—k;.x;5)(8)-
Now, for § € L*°(£2), we define

I(n) = /Q (fogn — f9)E di.

which we estimate as follows:

[1(n)| =

/(fn gk du‘ + '/ Flgn — 9 du‘
2 2

=

/ (fu— f)est du‘ 4 / (fal + 1/ Dl — sll€] dps
2 2

nll&n — d anra du .
+ [ nllen = glil ot [ 1l + lsDig] dn
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It first follows from Young’s inequality (40) and the convexity of i that

1(n,8) 2=/Q(|fn|+Ifl)lg—gsllé“la’u5/Q (Ifal + 17 DIgllgl dpe

N{lgl=ks}

Il | [w(e|fn|) el f ) + 29 ('g')} du
2n{lgl=ks}

e
<I€lloo [e/ WALD + v (FD) du + 2/ v (@) du} |
2 20{|g|=ks} &
We then infer from (41), (42), and (44) that
11(1.8) < 2[€ o0 (£C1 + 1(%..8)) . 45)

Next,

I(n,8) = / | fullgn — glIEl di < [[§lloo sup {lgn — &1} sup Il fnll1} -
2\ As 2\ A5 m>1
(46)

We finally infer from (40), (42), (43), and the convexity of i that

I3(n,8) :Z/A | ful(Ignl + 1gDIEl dpe

snsnw/A [2w(s|fn|)+¢* (@)w* (%)} »

<[]l [s / V(fol) du + n{%ﬁ}}
2
<200 (:C1 + 1.8} - @)

Combining (45)-(47) we end up with

[I(n)] <

/ (fn = f)gsé dﬂ‘ + l€lloo sup {lgn — g} sup {[lfll1}
Q 2\As m>1

+ 4§l (eCr + n{. 63) . (48)

Now, we first let n — oo in the above inequality and use the weak convergence

of (fu)n>1in L'(£2), the boundedness of g5, and the uniform convergence (43) to
obtain

lim sup
n—>oo

/Q (fogn — f9)E di| < 4Elloo (£C1 + (%0 5}) .
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We next use the uniform integrability (39) to pass to the limit as § — 0 in the above
estimate and find

timsup| [ (g0 = f0)¢ diu| < 4eCil€]
n—o0 2
We finally let ¢ — 0 to complete the proof. O

3 Smoluchowski’s Coagulation Equation

We now turn to Smoluchowski’s coagulation equation
1 X
s =5 [ Kox=9) 1) fax =y dy

o0
—/ K(x.y) f(t,x) f(t.y)dy. (t,x) € (0,00) x (0,00), (49)
0
£0,x) = f"(x), x¢€(0,00), (50)
and collect and derive several properties of its solutions in the next sections. As
outlined in the introduction, some of these properties depend heavily on the growth
of the coagulation kernel K which is a non-negative and symmetric function. For

further use, we introduce the following notation: For i € R, the space of integrable
functions with a finite moment of order u is denoted by

L1(0, o) :={geL1<o,oo) el :=[0 (1 + x")g(x)] dx < oo .
(&2))

and we define
o0
M,(g) = / xtg(x)dx, ge L}L(O, 00) .
0

Note that L{(0, 00) = L'(0,00) and ||-[1.0 = |||l1. Next, for a measurable function
g and x > 0, we set

1 X
0:(@)0) = 5 [ K(vox =) g0) gt =) dy

L(g)(x) :=/0 K(x,y)g(y)dy, 02(g)(x) := g(x)L(g(x)) ,

whenever it makes sense.
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3.1 Existence: Bounded Kernels

The first step towards the existence of solutions to (49)—(50) is to handle the case of
bounded coagulation kernels.

Proposition 22 [f there is ky > 0 such that
0= K(x,y) =K(y.x) =ko, (x,y)€(0,00)x(0,00), (52)
and
fine L'0,00), f™>0 ae. in (0,00), (53)

then there is a unique global solution f € C'([0, 00); L'(0, 00)) to (49)—(50) such
that

f(t,x) >0 forae x € (0,00) and ||f(t)||1§||fm||1, t>0. 54)
Furthermore, if f™ € L}(0, 00), then
f(t) € Lj(0,00) and Mi(f(t)) = Mi(f™), =0, (55)

Proof  Step 1 We first consider an initial condition f™ satisfying (53) and
prove the first statement of Proposition 22. We note that Q| and Q, are locally
Lipschitz continuous from L' (0, co) to L' (0, oo) with

19i(f) = Qi@ = ko (IF I + NIl Nf —glly

for (f.g) € L'(0,00) x L'(0,00) and i = 1,2. Then, denoting the positive
part of a real number r by r4 := max{r,0}, the map f — Qi(f)+ is
also locally Lipschitz continuous from L!(0,00) to L'(0,00) and it follows
from classical results on the well-posedness of differential equations in Banach
spaces (see [3, Theorem 7.6] for instance) that there is a unique solution
f € CY([0,T); L'(0, 00)) defined on the maximal time interval [0, 7;,) to the
differential equation

d
T —oni-oun. ret). (56)

with initial condition f(0) = f™. Since the positive part is a Lipschitz
continuous function and f € C'([0, T},); L'(0, 00)), the chain rule gives

0 (=f)+ = —sign+(—f) 0 f .
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where sign, (r) = 1 forr > 0 and sign, (r) = 0 for r < 0. We then infer
from (56) that

0 (= f)+ = —signy (= f) Q1(f)+ +signy (—f) Qa2(f) = (= 1)+ L(f)

and thus

d o0
1D+ = /0 =)+ L) = ol FIN=S)+1 -

Since (— )+ (0) = (= f™"); = 0, we readily deduce that (— ) (¢) = 0 for all
t € [0, Tn), thatis, f(t) > 0 a.e. in (0, 00). Consequently, Q1(f)+ = Q:1(f)
and it follows from (56) that f is a solution to (49)—(50) defined for ¢ € [0, T;,).
To show that 7,, = oo, it suffices to notice that, thanks to the just established
non-negativity of f, Fubini’s theorem gives

d o0
GO = [ 1010 = 0w 0] s

1 o0 o0
_ _5/0 /0 K(x. ) f(t.x) f(t. y) dydx < 0,

for ¢ € [0, T,,), which prevents the blowup in finite time of the L'-norm of f
and thereby guarantees that 7,,, = oo.

Step 2 A straightforward consequence of Fubini’s theorem is the following
identity for any ¢ € L°°(0, 00):

d o0 1 o0 OO~
¢ /0 B () (2 %) dx = © /0 /0 B (x ) K(x.y) £(0.2) £t y) dyd

2
(57)
where
D, y) =0 (x 4+ ) —0(x) = 3(»), (x,) €(0,00)x (0,00).  (58)

As a consequence of (57) (with ¢+ = 1), we recover the already observed
monotonicity of ¢ + My(f(¢)) and complete the proof of (54).

Step 3 We now turn to an initial condition f™ having a finite first moment and
aim at proving (55). Formally, (55) follows from (57) with the choice H(x) =x
since ¥ = 0 in that case. However, id : x — x does not belong to L°°(0, co)
and an approximation argument is required to justify (55). More precisely, given
A > 0, define ¥4(x) := min{x, A} for x > 0. The corresponding function 9 4
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given by (58) satisfies

0 if 0<x+y=<Ad,

A—x—y if 0<max{x,y}<A<x+y,
—min{x, y} if 0 <min{x,y} <A <max{x,y}<x+y,
—A if A <min{x, y}.

'&A(-xs y) =

(59)
In particular 0 4 < 0 and it follows from (57) that
o o X X
/ Va(x) f(t,x) dx < / Va(x) f"(x)dx < My(f"™), t>0.
0 0
Since ¥4 — id as A — oo, the Fatou lemma entails that

Mi(f(t)) < Mi(f™), t>0, (60)

and thus that f(¢) € L{(0,00) forall # > 0. To prove the conservation of matter,
we use again (57) with ¢ = ¥4 and find

/0 94 £(t.x) dx — /0 94(x) £ (x) dx
t
- —/ (I (s, A) + I(s, A) + I3(s, A)) dx 61)
0
with
1 A A
Iis. A) =5 /0 [y = DK S50 S 6. 9) dyd,
A o0
L(s. A) = /0 /A K (x, y) f(s. ) f(5. v) dydx,
A o0 o0
s A) =5 / / K(x.y) f(s. %)/ (5. y) dyd.
A A
On the one hand, it readily follows from (52) and (60) that

L(s. A) + I1(s. ) < %Ml(f(s))2 < %‘)Ml(ff”)z. (62)

On the other hand, by (52),

IA

A A
0= Ii(s, 4) < 2 /0 /A 5.0 (5. 7) dyd

= %/0 /0 Lo.0)(X) (400 (X + y)y [ (s, %) f(s,y) dydx.
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Owing to (54) and (60), the Lebesgue dominated convergence theorem guaran-
tees that

t
lim [ I(s,A)ds=0. (63)
0

A—o00

Thanks to (62) and (63) we may pass to the limit as A — oo in (61) and conclude
that M (f(t)) = M;(f™) fort > 0. This completes the proof.
O

Remark 23 Another formal consequence of (57) is that, whenever it makes sense,
t = M,(f(¢)) is non-increasing for 4 € (—oo, 1) and non-decreasing for u €
(1, 00). Similarly,

o0
t / (e** —1) f(¢,x) dx is non-decreasing for « > 0.
0

3.2 Existence: Unbounded Kernels

As already mentioned, most of the coagulation rates encountered in the literature
are unbounded and grow without bound as (x, y) — oo or as (x,y) — (0,0). In
that case, there does not seem to be a functional framework in which Q| and Q»
are locally Lipschitz continuous and implementing a fixed point procedure does not
seem to be straightforward. A different approach is then required and we turn to a
compactness method which can be summarized as follows:

1. Build a sequence of approximations of the original problem which depends on
a parameter n > 1, for which the existence of a solution is simple to show, and
which converges in some sense to the original problem as n — oo.

2. Derive estimates which are independent of # > 1 and guarantee the compactness
with respect to the size variable x and the time variable ¢ of the sequence of
solutions to the approximations.

3. Show convergence as n — o0.

To be more precise, let K be a non-negative and symmetric locally bounded
function and consider an initial condition

f™eLl(0,00), f">0 ae.in (0,00). (64)

Given an integer n > 1, a natural approximation is to truncate the coagulation kernel
K and define

K, (x,y) :=min{K(x,y),n}, (x,y) € (0,00)x(0,00). (65)

Clearly, K, is a non-negative, bounded, and symmetric function and we infer
from (64) and Proposition 22 that the initial-value problem (49)-(50) with K,
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instead of K has a unique non-negative solution f, € C'([0, 00); L' (0, 00)) which
satisfies

Mo(f, (1)) < Mo(f™) and M (f,(2)) = Mi(f™), t>0. (66)

The compactness properties provided by the previous estimates are rather weak and
the next step is to identify an appropriate topology for the compactness approach to
work. A key observation in that direction is that, though being nonlinear, Eq. (49)
is a nonlocal quadratic equation, in the sense that it does not involve nonlinearities
of the form f(z, x)? but of the form f(z, x) f(t, y) with x # y. While the former
requires convergence in a strong topology to pass to the limit, the latter complies
well with weak topologies. As first noticed in [81] the weak topology of L' turns
out to be a particularly well-suited framework to prove the existence of solutions
to (49)—(50) for several classes of unbounded coagulation kernels. In the remainder
of this section, we will show how to use the tools described in Sect. 2 to achieve this
goal.

3.2.1 Sublinear Kernels

We first consider the case of locally bounded coagulation kernels with a sublinear
growth at infinity. More precisely, we assume that there is ¥ > 0 such that

0 < K(x,y) =K. x)<«(l+x)(1+y), (x,y)€(0,00)x(0,00), (67)
K(x,y)

wr(y) == sup —— — 0. (68)
x€(0,R) y y—>oo

The following existence result is then available, see [46,52,70, 80].

Theorem 24 Assume that the coagulation kernel K satisfies (67)—(68) and con-
sider an initial condition ™ satisfying (64). There is a non-negative function

£ € C([0.00); L'(0, 00)) N L™(0, 00; L}(0, 50))

such that
/0 F(x) (f(t.x) = f"(x)) dx
1 [t [ [
25/0/0 /0 (x, y)K(x,y) f(s,x) f (s, y) dydxds (69)

forallt > 0and ¥ € L*°(0, 0c0) (with 9 given by (58)) and

Mo(f(t)) < Mo(f™) and Mi(f(t)) < Mi(f™), t>0. (70)
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On the one hand, Theorem 24 excludes the two important (and borderline) cases
Ki(x,y) = x + y and K»(x,y) = xy which will be handled in Sect.3.2.2 and
Sect. 3.2.3, respectively. On the other hand, owing to the possible occurrence of the
gelation phenomenon already mentioned in the introduction, it is not possible to
improve the second inequality in (70) to an equality in general.

We now turn to the proof of Theorem 24: for n > 1 define K, by (65) and
let f, € C'([0,00); L'(0,00)) be the non-negative solution to (49)-(50) with K,
instead of K which satisfies (66). To prove the weak compactness in L'(0, o) of
(f2(#))n>1 foreacht > 0, we aim at using the Dunford—Pettis theorem (Theorem 3).
To this end, we shall study the behaviour of ( f,,(¢)),>1 on sets with small measure
and for large values of x. Owing to (68), we shall see below that the boundedness
of (M (f,(t)))n>1 guaranteed by (66) is sufficient to control the behaviour for large
x. We are left with the behaviour on sets with small measure which we analyze in
the next lemma.

Lemma 25 Let ¥ € Gyp be such that W(f™) € LY(0,00), the set €yp being
defined in Definition 11. For each R > 0, there is C1(R) > 0 depending only on K,
f™ and R such that

R R )
/llf(f,,(t,x))dxf(/ W(f’”(x))dx)eC‘(R)’, t>0, n>1. (7
0 0

Proof Fix R > 0. Since ¥’, K,,, and f, are non-negative functions and K, < K,
we infer from (49) and Fubini’s theorem that

d R
< /0 W, (1. x)) dx
1 (R > ,
55/0 /0 K= 3oy fultox — ) fultey) dy W' (fo(0.2)) dx
R R
5/ / K(x = yoy) fultox — ) W' (ot x)) dx fult,y) dy
0 Jy
Since ¥ € Gyp we deduce from (30), (66), and (67) that
d R R R
[ vt < /0 /y K(x =y )W (fu(tox — y)) dx fo(t.y) dy
R R
+/0 /y K(x — yo )W (folt.)) dx (1. y) dy
R
<2c(1 + R Mo(f,) / (1. x) dx
0

) R
<21+ R Mo(f™) /0 (1. x)) dx.
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Setting C1(R) := 2k (1 4+ R)?> My(f™) we obtain (71) after integration with respect
to time. O

The next step towards the proof of Theorem 24 is the time equicontinuity of the
sequence (f,)»>1 which we prove now.

Lemma 26 There is C; > 0 depending only on K and f™ such that
[ /o) = fu@Iy = Co(t —s), O0<s=<r, n=1. (72)

Proof Fix R > 0. We infer from (49), Fubini’s theorem, (66), and (67) that
1 o0 o0
sl <3 [ [ KO =0 £ dsiy
Yy

o0 o0
+ /0 /0 K(r.y) fu(t. ) fu(t. y) dyds
3K o0 o0

< /0 /0 (U )1+ ) fo(t.3) fot. ) dydx

3k 3, in
=S ILON, = Ci= 1"

from which (72) readily follows. O
We are now in a position to complete the proof of Theorem 24.

Proof of Theorem 24 We first recall that, owing to the de la Vallée Poussin theorem
(in the form stated in Corollary 12), the integrability of f™ ensures that there is
@ € 6yp.o such that

/OOO &(f"(x)) dx < 0. (73)

We then combine Lemma 25 (with ¥ = @) and (73) to conclude that, for each
t>0,n>1,and R > 0,

R
/0 O, (1. x)) dx < [®(F")] 11" (74)

where C;(R) only depends on K, £, and R.

Step 1: Weak Compactness. According to a variant of the Arzela—Ascoli
theorem (see [88, Theorem 1.3.2] for instance), the sequence ( f,,),>1 is relatively
sequentially compact in C([0, T']; w — L' (0, 00)) for every T > 0 if it enjoys the
following two properties:

The sequence ( f;(t)),> is weakly compact in L' (0, o) for each ¢ > 0,
(75)
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and:

The sequence ( f;),>1 is weakly equicontinuous in L' (0, 0o) at every ¢ > 0,
(76)

see [88, Definition 1.3.1]. Recall that the space C ([0, c0);w — L'(0, 00)) is the
space of functions 4 which are continuous in time with respect to the weak
topology of L'(0, c0), that is,

t > /oo 9 ()h(t, x) dx € C([0,00)) forall ® € L*(0,00).
0

We first prove (75). To this end, we recall that we have already established (74)
and note that (66) entails that
[oe] 1 o] M in
/ fn(t,x)dxf—/ xf,,(z,x)dxgﬁ. (77)
R R Jr R

Since @ € Cyp o0, the properties (74) and (77) imply that the sequence ( f,,(¢))n>1
is uniformly integrable in LI(O, o0) for each ¢ > 0 while (77) ensures that the
condition (15) of the Dunford—Pettis theorem (Theorem 3) is satisfied. We are
thus in a position to apply the Dunford—Pettis theorem to obtain (75).

Let us now turn to (76) and notice that Lemma 26 entails that (f,),>1 is
equicontinuous for the strong topology of L'(0,00) at every ¢t > 0 and thus
also weakly equicontinuous in L!(0, c0) at every ¢ > 0, which completes the
proof of (76).

We have thereby established that the sequence ( f,),>1 is relatively sequentially
compact in C([0, T]:w — L'(0, 00)) for every T > 0 and a diagonal process
ensures that there are a subsequence of (f,),>1 (not relabeled) and f €
C([0, 00); w — L'(0, 00)) such that

fo— f in C([0,T];w—L'(0,00)) forall T >0. (78)

Since f, is non-negative and satisfies (66) for each n > 1, we readily deduce
from the convergence (78) that f(¢) is non-negative and satisfies (70).

Step 2: Convergence. We now check that the function f constructed in the
previous step solves (49)—(50) in an appropriate sense. To this end, let us first
consider ¢ > 0 and a function ¢ € L°°(0, co) with compact support included in
(0, Ry) for some Ry > 0. By (57),

/0 DO (fol0.3) = (1) de = 5 (1a0) + Lo @) + T3 (0) . (79)
with

t Ry R0~
Iin(t) = /0 /0 /0 B (v, y) K (x ) fo (52 ) fos. ) dydivds
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t Ry oo
Lnt) = /0 /0 B0 K ) 6.0 £ 0, s,

Ln(t) = /0 /R 0 /0 5 (v ) K (x. ) i (5.3) £y (5. ) dydxds.

Let us first identify the limit of 7 ,(¢). Since (K,),>1 is a bounded sequence of
L*°((0, Ry) x (0, Ry)) by (67) and converges a.e. towards K in (0, Rg) X (0, Ry),
we infer from Proposition 18 and the convergence (78) that

t pRo pRo _
lim 7,,(1) = / / B, y)K(x. ) f(s.x) f(s.y) dyduds.  (80)
n—>oo 0 0 0
Next, 9 (x, y) = —(x) for (x, y) € (0, Ro) x (Ro, 00) and

t Ry [o¢]
Ln(t) = — /0 /0 0K, (5901050 £, 9) dys.

For R > Ry, we split I, ,(¢) into two parts
Iz,n(t) = I21,n(t’ R) + 122,n(ta R) (81)

with
t Ry R
Lotn(t, R) = — / / B () Ko (x. ) fols. ) fis. ) dydds
0 0 Ro

t Ro o0
Lo (1, R 1= — /0 /0 /R B () Ko (x. ) fi (5. %) fo 5. ) dydds .

On the one hand we argue as for /; ,(¢) to conclude that

t Ro R
Jim LR == [ [ [ oK) 6.0 £65.3) dvaas.

(82)
On the other hand, using (66) and (68), we find
t Ro o0
AR /0 /0 /R Ry ()3 fa (5 %) £ (5, ) dydxds
t
Sllﬂlloo/ Mo(fu(s))Mi1(fu(s)) ds sup {wgr,(y)}
0 YE(R,00)
<tl|H oo Mo(f™Mi(f™)  sup {wr,(y)} —> 0. (83)
yE(R,OO) R—o0
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Similarly, owing to (68) and (70) (recall that (70) has been established at the end
of Step 1),

t pRy poo
/0/0 /R 9 (x)K(x,y) f(s.x) f (s, y) dydxds

< tllooMo(fMIMI(f™) sup {wr,(»)} — 0. (84)
Y€(R,00) oo

Combining (80)—(84) and letting first » — oo and then R — oo, we end up with
t Ro oo
tim 1,0 = [ [ [T 5K 6.0 £ 513 dvinds. 55)
n—>00 0o Jo )

Finally, l?/‘(x,y) = —1(y) for (x,y) € (Ry,00) x (0, Ry) and f}(x,y) = 0if
(x,¥) € (Ro, 00) x (R, 00) so that

t o) Ro
Lin(t) = — /0 /R [ 00K ) 1620 £ 0.9) s,

and we argue as for /5, (¢) to obtain

lim 1,(1) = /0 /R /0 B (x.»)K(x.y) f(5. %) f(s. y) dydeds.  (86)

Using once more the convergence (78), we may use (80), (85), and (86) to pass
to the limit as # — oo in (79) and conclude that f satisfies (69) for all functions
¥ € L%°(0,00) with compact support. Thanks to (67) and (70), a classical
density argument allows us to extend the validity of (69) to arbitrary functions
¥ € L°°(0, 00).

Step 3: Strong Continuity. We now argue as in the proof of Lemma 26 to
strengthen the time continuity of f. More precisely, let ¢+ > 0, s € [0,¢], and
¥ € L°°(0, 00). We infer from (67), (69), and (70) that

’ /0 (f(t %) — f(s. )P (x) dx

3 t e} oo
=30l [ [ [0+ 0100 o) dvdo

IA

3k !
S0l [ 1S @I, do

IA

3k in
S0 lloo £, 12 = s1.



Weak Compactness Techniques and Coagulation Equations 235

|

Therefore,

1f@ — f&)h = sup { 1 ‘ /0 (f(t.x) = f(5. )9 (x) d

per>o(0.00) [ 17l

3, inn2
f?”fm“l,l It —sl,

which completes the proof of Theorem 24.

3.2.2 Linearly Growing Kernels

We next turn to coagulation kernels growing at most linearly at infinity, that is, we
assume that there is k; > 0 such that

0= K. y)=Ky.x)=x1i2+x+y). (x.y)€(0,00)x(0,00). (87)

Observe that coagulation kernels satisfying (87) also satisfy (67) but need not
satisfy (68).

For this class of coagulation kernels, we establish the existence of mass-
conserving solutions to (49)—(50) [4,20, 46,81, 83].

Theorem 27 Assume that the coagulation kernel K satisfies (87) and consider an
initial condition ™ satisfying (64). There is a non-negative function

f € C([0,00); L'(0,00)) N L*(0, 00; L}(0, 00))
satisfying (69) and
Mo(f(1)) < Mo(f™) and Mi(f(1)) = Mi(f™), 1>0. (88)

The main difference between the outcomes of Theorem 24 and Theorem 27 is
the conservation of mass M (f(t)) = M(f™) for all ¢ > 0 for coagulation kernels
satisfying (87).

Since the growth assumption (87) is more restrictive than (67), it is clear that
the proof of Theorem 27 has some common features with that of Theorem 24. In
particular, both Lemma 25 and 26 are valid in that case as well. The main difference
lies actually in the control of the behaviour of f, (¢, x) for large values of x which is
provided by the boundedness of M ( f,(¢)) in (66). This turns out to be not sufficient
for coagulation kernels satisfying (87) and we first show that this assumption is
particularly well-suited to control higher moments.
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Lemma 28 Let v € Gyp be such that x — (1 + x) f"(x) € L' (0, 00). There is
a positive constant C3 > 0 depending only on K and f™ such that, for t > 0 and
n>1,

o0 o0
/ Y (14 x) fu (1, x) dx < (/ Y (14 x) f"(x) dx) e, (89)
0 0
the function f, being still the solution to (49)—(50) with K, instead of K, the
coagulation kernel K, being defined by (65).

Proof Fix A > 0 and define ¥4(x) := min{y/(1 + x), ¥ (1 + A)} = ¢v(1 +
min{x, A}) for x > 0. Then ¥4 € L*°(0, co) and it follows from (57) that

1

d o0 o0 OO~
‘ /0 Va0 ) de = 3 /0 /0 FaCro ) Ko (o) fult ) (0 ) dyd.

Owing to the monotonicity and non-negativity of v, we note that
Valx.y) =y +x+y) =y +x) -y +)
<Y2+x+y)—y(d+x)
(1 +y) if ye(0,A—x) and x €(0,A4),
Valx.y) =y +4) -y +x)—y(1+y)
SYR+x+y)-vd+x)
(1 +y) if ye(A—x,4) and x € (0,4),
Ya.y) = =y (1L +x) 0 if (x.) € (0.4) x (4,00),
Va(x.y) ==y +y) 0 if (x.y) € (4.00) x (0. 4).
Yalx,y) ==y (1 +4) <0 if (x,y) € (4,00) x (4,00).

Consequently,
d o0
G s a
dt J,

1 A A
=3[ [ wesren-vasn
2Jo Jo
=Y (1 +y)) Ku(x,y) fult, x) fu(t, y) dydx,
and we infer from (32) and (87) that

W2+x+y)—vd+x)—¥(1+y)) Kil(x.y)
sa@W2+x+y)—vl+x) -y +y)2+x+y)
=2a((A+x)yA+y)+ A+ )y +x)) .



Weak Compactness Techniques and Coagulation Equations 237

Combining the above two estimates leads us to

*° A
%/0 Va(x) fult, x) dx < 2k || fu ()11 /0 (1 4 x) £, (2, x) dx.

Using (66), we end up with

= /0 Va0 folt, ) dx < 21| /0 a0 (0. x) di.

and (89) follows by integration with C3 := 2« || f™ |1 1. O

Proof of Theorem 27 As in the proof of Theorem 24, the de la Vallée Poussin
theorem (Theorem 8) ensures the existence of a function @ € %yp oo such that
@(f") € L'(0,00). Moreover, observing that the property £ € L'(0,00; (1 +
X) dx) also reads x — 1+ x € L'(0,00; f(x) dx), we use once more the de
la Vallée Poussin theorem (now with ;1 = f™dx) to obtain a function ¢ € €yp.co
such that x — ¢(1 + x) belongs to L'(0, 00; f™(x) dx). Summarizing we have
established that there are two functions @ and ¢ in €y p oo such that

/0 T[O((0) + o1+ x)£7()] d < o (90)

We now infer from (90), Lemma 25 (with ¥ = @) and Lemma 28 (with ¢y = @)
that, foreacht > 0,n > 1,and R > 0,

R
/0 O, (1, x)) dx < [D(F")] 1O P 1)
/ o+ %) £yt %) dx < ( / o 40 f7(x) dx) S (@)
0 0

where C;(R) only depends on K, f, and R and C; on K and ™.

Step 1: Weak Compactness. We argue as in the first step of the proof of
Theorem 24 with the help of (66) and (91) to conclude that there are a
subsequence of (fy)s>1 (not relabeled) and a non-negative function f €
C([0, 00); w — L'(0, 00)) such that

fo— f in C([0,T];w—L'(0,00)) forall T >0. 93)

Step 2: Convergence. We keep the notation used in the proof of Theorem 24
and notice that (80) and (82) are still valid. A different treatment is required for
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I, (t, R): thanks to (66), (87), (90), (92), and the monotonicity of r — ¢(r)/r,
we obtain

t Ry o0
Lot R) <6119 e /0 /0 /R @4 x4 ) o5 x) fu(s. ) dydxds

t Ro o0
<2111 o0 /0 /0 /R (14 )1+ 9) fo(5. ) fu (5. ) dydds

2K1R ! o0
<10l [ LA [0+, dyds
2K1R i [ele] . eC3t
2l ([ o1+ )

and the right-hand side of the above inequality converges to zero as R — oo
since ¢ € Yypoo. Arguing in a similar way to handle /5,(t), we complete
the proof of (69) as in the proof of Theorem 24. Finally, the mass conservation
Mi(f(t)) = M;(f™) for each t > 0 follows by passing to the limit as n — oo
in the equality M, ( f,(t)) = M,(f™) from (66) with the help of (90), (92), (93),
and the property ¢ € 6yp oo to control the behaviour for large values of x.

O

3.2.3 Product Kernels

The last class of kernels we consider allows us to get rid of any growth condition
on K provided it has a specific form. More precisely, we assume that there is a
non-negative continuous function r € C([0, co)) such that r(x) > 0 for x > 0 and

K(x,y) =r(x)r(y), (x,y) € (0,00) x(0,00) . 94)

The celebrated multiplicative kernel K»(x, y) = xy fits into this framework with
r(x) = x for x > 0. Observe that no growth condition is required on r.
For this class of kernels, the existence result is similar to Theorem 24 and reads:

Theorem 29 Assume that the coagulation kernel K satisfies (94) and consider an
initial condition f™ satisfying (64). There is a non-negative function

f € C([0,00); L'(0,00)) N L>®(0, 00; L{(0, 0))
satisfying (69) and

Mo(f(t)) < Mo(f™) and Mi(f(t)) < Mi(f™), t>0. (95)
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To prove Theorem 209, it turns out that it is easier to work with the following
truncated version of K which differs from (65). Given an integer n > 1 and x > 0,
we define r, (x) := min{r(x),n} and

K,,(X,y) = rn(x)r,,(y), (X,y)E(0,00)X(0,00). (96)

Clearly, K, is a non-negative, bounded, and symmetric function and we infer
from (64) and Proposition 22 that the initial-value problem (49)—(50) with K,
instead of K has a unique non-negative solution g, € C'([0, 00); L' (0, 00)) which
satisfies

Mo(g(1)) < Mo(f™) and M(g,(1)) = Mi(f™), 1>0. o7)

Without a control on the growth of K, the estimate (97) on | g,(¢)|1.1 is not
sufficient to control the behaviour of g, (¢, x) for large values of x. As we shall
see now, it is the specific form (94) of K which provides this control.

Lemma 30 Fort >0, A >0, andn > 1,
t 00 2 )
/ (/ ra(x)gn (s, x) dx) ds <2My(f"), (98)
0 0

t oo 2 2M1(fi")
/0 (/A 1 (x)gn (s, x) dx) ds ST . (99)

Proof On the one hand, the bound (98) readily follows from (57) (with & = 1), (96),
and the non-negativity of g,. On the other hand, let A > 0 and define ¥ 4(x) :=
min{x, A} for x > 0 as in the proof of Proposition 22. Owing to (59), we deduce
from (57) and the non-negativity of g, that

t o0 o0 - 2 o0 .
[ [ ] &atensngon s <5 [ 0407700 s
0 Ja Ja A Jo
2
- A
Combining (96) and the above inequality gives (99). O

We next derive the counterpart of the equicontinuity property established in
Lemma 26.

Lemma 31 There is a modulus of continuity w (that is, a function o : (0, 00) —
[0, 00) satisfying w(z) — 0 as z — 0) such that

lgn(®) —gn()h Sw(t—s), 0<s=<t, n>1. (100)
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Proof For R > 0 we introduce

m(R) := sup { rx) } )

xeo.r) 1 +x

which is well-defined according to the continuity of r. We infer from (49) and
Fubini’s theorem that

R
/0 |gn (. X) — gn(s,x)| dx
t R R .
< / /0 / K,(y,x —y)gn(o,x — y)gn(0,y) dxdydo
s y
t pR poo
+/ /0 /0 K, (x,y)g,(0,x)g, (0, y) dydxdo
t R R—y
- / /O /0 'n(X)70(y)8n (0, X)gn (0, y) dxdydo
{ AR 00
+/ /0 /0 rn(x)rn(y)gn(a, x)g,, (a’ y) dydxda

t pR poo
=2 / / / n(X)rn (y)gn (0, x)gn (0, y) dydxdo .
s JO 0
We next use (97), Holder’s inequality, and (98) to obtain
R
/ |gn(t, x) — gn(s,x)| dx
0

<2 / m(R) g (@)ll1s /0 r()gn(0,y) dydo

' 0 2 1/2
<2m(R)|| "1Vt —s [/ (/0 rn(¥)gn(0,y) dy) do}
in 3/2
< I/ ™a)"  mR)VE—s .
Combining (97) and the above inequality leads us to
R e’}
(1) — gl < /0 1900, 3) — gu(s.3)] dx + /R (€n(t. ) + g (5. x)) dx

< @I ") mRNT s + My (7).
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hence

(101)

R —
l0(6) — o)l = €yt RIS

for some positive constant C; depending only on f".

Now, R — Rm(R) is a non-decreasing and continuous function such that
Rm(R) - 0as R — 0, Rm(R) > 0 for R > 0, and Rm(R) — o0 as R — oo.
Introducing its generalized inverse

Q(z):=inf{R>0: Rm(R)>z}, z>0,
the function Q is also non-decreasing with
00)=0, Q(z)>0 for z>0, and Q(z) > 00 as z— 00.

Setting

1 3 1
— = -1, >0,
aomie(z)
and choosing R = 1/w(+/t —s) in (101) we end up with
g0 (1) — gn ()1 < 2Cs00(V1 —5) .

The properties of Q ensure that 2C4w( /%) is a modulus of continuity and the proof
of Lemma 31 is complete. O

Proof of Theorem 29 The proof proceeds along the same lines as that of Theo-
rem 24, the control on the behaviour for large x and the time equicontinuity being
provided by Lemmas 30 and 31 instead of (66) and Lemma 26. Note that Lemma 25
is still valid owing to the local boundedness of r. O

Remark 32 As in [44], it is possible to extend Theorem 29 to perturbations of
product kernels of the form K(x,y) = r(x)r(y) + K(x,y) provided 0 <
K(x,y) <kir(x)r(y) forx >0, y > 0, and some x; > 0.

Another peculiar extension of Theorem 29 is the possibility of constructing
mass-conserving solutions for coagulation kernels of the form (94) satisfying
r(x)//x — oo as x — oo.

Proposition 33 Assume that the coagulation kernel K satisfies (94) and that r €
C([0, 00)) N C'((0, 00)) is a concave and positive function such that

/mizoo. (102)
1

r(x)?
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Consider an initial condition f™ satisfying (64) together with f™ € L}(0, c0).
Then there exists a solution f to (49)~(50) such that My(f(t)) = M;(f™) for each
t>0.

The function r(x) = +/2 + x (In (2 + x))* satisfies the assumptions of Proposi-
tion 33 for o € (0, 1/2].

Proof of Proposition 33 We keep the notations of the proof of Theorem 29, the
existence part of Proposition 33 being a consequence of it. To show that the solution
f constructed in the proof of Theorem 29 is mass-conserving, we check that (102)
allows us to control the time evolution of the second moment M, ( f(¢)) for all times
t > 0. Indeed, for n > 1, we deduce from (57) that

2

d o0
Mg (1)) = (/0 Tn(X) X gn(Z, X) dX)

Since r is concave, so is 1, and Jensen’s inequality and (97) ensure that

d e [ (MO T
e = wnrnp [ (PREED) ]

Now, the assumption (102) guarantees that the ordinary differential equation

ay s Y 2
a = MU [’(Mmm)} =0

has a global solution Y € C!(]0, o)) satisfying Y (0) = M,(f™) which is locally
bounded. The comparison principle then implies that M»(g,(¢)) < Y(¢) for all
t > 0 and n > 1. We next use the convergence of (g,),>1 towards f to conclude
that M,(f(¢)) < Y(¢) for all + > 0. We finally combine this information with (97)
to show that M ( f(¢)) = M;(f™) fort > 0 and complete the proof. O

3.3 Gelation

In Sect.3.2.2 we have shown the existence of mass-conserving solutions to (49)—
(50) for coagulation kernels satisfying the growth condition (87). As already
mentioned this property fails to be true in general for coagulation kernels which
grows sufficiently fast for large x and y, a fact which has been known/conjectured
since the early 1980s [24,38,53,92] but only proved recently in [26,39]. In fact, the
occurrence of gelation was first shown for the multiplicative kernel K,(x, y) = xy
by an elementary argument [52] and conjectured to take place for coagulation
kernels K satisfying K(x,y) > K, (xy)*/? for some A € (1,2] and «,, > 0
[24,38,53,92]. This conjecture was supported by a few explicit solutions constructed
in [13,50, 85]. A first breakthrough was made in [39] where a stochastic approach
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is used to show that, for a dense set of initial data, there exists at least one gelling
solution to the discrete coagulation equations. A definitive and positive answer is
provided in [26] where the occurrence of gelation in finite time is proved for all
weak solutions starting from an arbitrary initial condition f™ satisfying (64) and

fin ¢ 0.

More precisely, let K be a non-negative and symmetric function such that
K(x,y)zr(x)r(y), (x.y) € (0,00) x(0,00), (103)

for some non-negative function r. Consider an initial condition f™, f #£ 0,
satisfying (64) and let

f € C([0,00); L'(0,00)) N L*®(0,00; L{(0,00)), f >0,
be a solution to (49)—(50) satisfying (69) and (70) (such a solution exists for a large

class of coagulation kernels, see Theorems 24 and 29).

Theorem 34 ([26]) If there are A € (1,2] and k,, > 0 such that r(x) = kux*/?,
x > 0, then gelation occurs in finite time, that is, there is Tye; € [0, 00) such that

Mi(f(t)) < My(f™) for t> Teu .

The cornerstone of the proof of Theorem 34 is the following estimate.

Proposition 35 ([26]) Let £ : [0,00) —> [0,00) be a non-decreasing differen-
tiable function satisfying £(0) = 0 and

I = /oo E(A) A7V dA < o0 (104)
0

Then, fort > 0,

t o) 2
/ ( / r(x)€(x) f(s.x) dx) ds <217 My(f™). (105)
0 0

Let us mention at this point that, besides paving the way to a proof of the
occurrence of gelation in finite time, other important consequences can be drawn
from Proposition 35 due to the possibility of choosing different functions &. These
consequences include temporal decay estimates for large times as well as more
precise information on f across the gelation time [26].

Before proving Proposition 35, let us sketch how to use it to establish The-
orem 34. Since r(x) = kmx*2, a close look at (105) indicates that the choice
£(x) = x@M/2 gives

! ! e 2 2 in
/ Mi(f () ds:/ (/ XM E(xX) f(s, x) dx) ds < 2 Mi(™)
0 0o \Jo

2
Kin
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forall # > 0. Consequently, ¢ — M, ( f(t)) belongs to L?(0, oo) and thus M, ( f(t))
cannot remain constant throughout time evolution. However this choice of £ does
not satisfy (104) as

00 1
/ £'(4) A7Y? dA < oo but / E'(A) A7V dA = 0.
1 0

We shall see below that a suitable choice is £(x) = (x — l)g—x) 2,

Proof of Proposition 35 Fix A > 0 and take 9 4(x) = min{x, A}, x > 0, in (69).
Recalling (59), we deduce from the non-negativity of f that

t o0 o0 2 o0 in
/0 /A /A K(x,9) £ 5. ) 5. ) dyleds < = /0 B4(x) f(x) dx

_2M(f)
==

Using (103) we end up with

e A"
/0 (/A r(x) f(s, x) dx) ds < — (106)

We then infer from (106), Fubini’s theorem, and Cauchy—Schwarz’ inequality that

[ ([ rwee s dx)z s
_ /Ot (/Ooo /Oxr(x)é’(A) £(s5, %) dAdx)2 ds
_ /0, (/OOO £(4) /Aoor(x)f(s,x) ddi)Z ds

t 00 00 2
<I /0 /0 £(A)VA ( /A r(x) f(s, x) dx) dAds
*§'(A)
VA
hence (105). O

Proof of Theorem 34 1t first follows from (69) with ¥ = 1, (103), the choice of r,
and the non-negativity of f that

/t (/ooxk/zf(s,x) dx)2 ds < ZMO—(fm),
0 0 K

dA,

< 2M1(fm)1$/0
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which implies, since x < 2C=%/2x4/2 for x € (0, 2),

2

/Ot (/Ozxf(s,x)dx) dsf%. (107)

m

We next take £(A4) = (A — 1):3—1)/ 2 A>0,in Proposition 35 and note that
2—X4 [
I === / (A=1D)"2472dA < 00
1

as A > 1. Since x — 1 > x/2 for x > 2, we infer from (105) that

t (9] 2 t () 2
22%/ (/ xf(s,x) dx) ds < / (/ xM? (x — 1)(4%_1)/2 f(s,x) dx) ds
0o \Jz2 0o \Jo

202 My(f7)
<" "

P (108)
Combining (107) and (108) implies that ¢ > M;(f(t)) belongs to L?(0,c0)

and thus M;(f(¢)) cannot remain constant throughout time evolution. Since
M, (f(t)) < Mi(f™) forall t > 0 by (70), we conclude that Ty < oo. ]

Using the same approach, we can actually extend Theorem 34 to a slightly wider
setting encompassing the power functions.

Proposition 36 Assume thatr € C([0, 00))NC((0, 0)) is a concave and positive
function which satisfies also

© dx . r(x) . X

as well as r(x) > 8x for x € (0, 1) for some § > 0. Then Ty < 0.

A typical example of function r satisfying all the assumptions of Proposition 36
is a positive and concave function behaving as /x (In x)H'“ for large x for some
a>0.

Proof The proof is similar to that of Theorem 34, the main difference being the
choice of the function £ in the use of Proposition 35. As r is concave and positive,
the function x — x/r(x) is non-decreasing and we set

X 1
5<X>‘:(m‘m)+’ x>0
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Then £ is a positive and non-decreasing differentiable function with £(0) = 0.
Moreover, (109) guarantees that

A A=co | proo Yy
Ip =|——A"'2 -/ — A7 44
g LM) Lﬂ 3 @

B 1+1/°° aa
ST T2 ), rayar =

We are therefore in a position to apply Proposition 35. Since there is x, > 1 such
that x/r(x) > 2/r(1) for x > x, by (109), we deduce from (105) that

t o) 2
/(/ x f(s.x) dx) ds < 8IZ M (f™). (110)
0 Xy

We finally infer from (69) with ¢ = 1, (103), and the non-negativity of f that

t (o] 2
/0 (/0 r(x) f(s,x) dx) ds < 2My(f™),

and the assumptions on r ensure that there is §, € (0, §) such that §,x < r(x) for
x € (0, x,). Consequently,

e > M)
/0(/0 xf(s,x)dx) ds_T.

Combining this estimate with (110) allows us to conclude that t +— M,(f(z)) €
L?(0, 00) and complete the proof. O

3.4 Uniqueness

The uniqueness issue has been investigated by several authors but the results
obtained so far are restricted to mass-conserving solutions, an exception being the
multiplicative kernel K»(x, y) = xy. Actually two approaches have been developed
to establish the uniqueness of solutions to (49)—(50): a direct one which consists
in taking two solutions and estimating a weighted L'-norm of their difference and
another one based on a kind of Wasserstein distance. To be more specific, since the
pioneering works [59, 61], uniqueness has been proved in [4, 20, 34,40, 45, 70, 82]
by the former approach and is summarized in the next result.

Proposition 37 Assume that there is a non-negative subadditive function ¢ (that is,
o(x +y) <o)+ o), x>0,y >0), such that

K(x,y) =e(x)e(y), x>0,y>0.
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Let T > 0and f™ € L' (0, 00; p(x) dx), £ > 0. There is at most one solution
f € C(0.T]; L'(0, 00; ¢(x)dx)) N L' (0, T5 L' (0, 00; ¢(x)*dx))

to (49)—(50).

Let us point out two immediate consequences of Proposition 37. First, if
@(x) < x!/2, Proposition 37 implies the uniqueness of the solution constructed
in Theorem 27 since it belongs to L>(0, co; L1 (0, 00)). Next, if ¢(x) = x, it gives
the uniqueness of solutions to (49)—(50) as long as M»( f) € L'(0, T'). While this is
only true up to a finite time 7" in the general framework considered in Theorem 24,
it follows from Theorem 27 and Lemma 28 (with ¥ (x) = x?) that, if £ belongs
to L;(O, o0) and satisfies (64), then the solution f to (49)-(50) constructed in
Theorem 27 is such that t — M,(f(¢t)) € L*°(0,T) for any T > 0. According
to Proposition 37, this solution is unique.

Proof of Proposition 37 Let f and f, be two solutions to (49)-(50) enjoying the
properties listed in Proposition 37. We infer from (49) that

1A= e ax

=3 /0 /0 K (i + B )i — £ 0O x. v) dydx
with o := sign(f; — f2) and

O x.y) == [(po)(t. x + y) = (90o)(t. x) = (po)(t. y)] .

Observing that

(fi = )., x, y) = [(fi = L) X)|o(t. )OO, x, y)
= [(fi = L)) [(po)(t, x + y)a(t, x) — p(x)a(t, x)* = (o) (t, y)o (1, x)]
= (i = @) e +y) —e(x) + ()]
=2eWI(Nh = )X,

we further obtain

d

@ ), 1= DEDle) dx

< /0 /0 K(x, y)(fi + L)@ 0 = ) %) |e(y) dydx
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5/0 /0 P (1)’ (fi + L) i = fo)(,x)] dydx

- /0 0O (fi + )t y) dy /0 oI — ). d.

and the conclusion follows by Gronwall’s inequality. O

The second approach stems from the study of the well-posedness of (49)—(50)
for the constant kernel Ky(x, y) = 2, the additive kernel K;(x, y) = x + y, and
the multiplicative kernel K,(x, y) = xy performed in [62]. Roughly speaking, there
is a uniqueness result for the kernel K; in the weighted space L' (0, o0; X! dx),i =
0, 1, 2. It is worth pointing out that the homogeneity of the weight matches that of the
coagulation kernel. Though the main tool used in [62] is the Laplace transform, an
alternative argument involving a weighted Wasserstein distance has been developed
in [32] to extend this uniqueness result to a wider class of homogeneous kernels
with arbitrary homogeneity. For simplicity, we restrict ourselves to the coagulation
kernel

K(x,y) =xyP +xPy*, x>0,y>0, (111)

and assume that its homogeneity A := « + B lies in (0, 1]. We refer to [32] for more
general assumptions on K and f" and homogeneities in (—oo, 0) orin (1, 2).

Proposition 38 Let T > 0 and f™ € L}(0,00), f™ > 0. There is at most one
solution f € C([0,T);w— Li(O, 0)) to (49)—(50) (recall that the space Li (0, 00)
is defined in (51)).

Proof Let fi and f, be two solutions to (49)-(50) enjoying the properties listed in
Proposition 38. For i = 1,2, we introduce the cumulative distribution function F;
of f; given by

o0
Fi(t,x)::/ fit,y)dy, t>0,x>0,
X

andset £ := F; — F, and

X

R(t,x) := / 2! sign(Fj — F»)(t,z)dz, t>0,x>0.
0
We infer from (49) after some computations (see [32, Proposition 3.3]) that
o0 1
WE@ 0| dy < 5 (A1) + A1) (112)

dt Jo

where

A1) = /0 /0 Ko [+ 9 =7 + A 0IE. )] dyd
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and

a0= [ [T KGR+ L) drds.
R(t,x,y) :=R(t,x +y) — R(t.x) — R(t,y) .
On the one hand, since A < 1,
Kx,y)[(x + 7' =x*1 <0, x>0,y>0,
so that
A1) 0. (113)

On the other hand, it follows from the definition of R and the subadditivity of
x > x* that

- x+y min{x,y}
|R(t,x,y)| = / { }z*‘l sign(E)(t,z) dz +/0 2 sign(E)(1,z) dz
max{x,y
1
51 [(x + y)* — max{x, y}* + min{x, y}*]
2
<5 mi {x. 01t

We deduce from the previous inequality and (111) that there is Cs > 0 depending
only on & and 8 such that

0. K(x. ») [R(t,x,y)| < Cs x* 7yt

Consequently,

A2(0) = Cs Mu((f + A)@) /O PE( )] d (114)

Collecting (112)—(114) we end up with

p ow““'EW' @< M+ R0) [ B0 dr

and the conclusion follows by integration. O

Even though there is a version of Proposition 38 when K is given by (111)
with A € (1,2] (and is thus a gelling kernel), the requirement f € C([0,T);w —
Li(O, 00)) is only true for T < Tg.; and thus provides no clue about uniqueness
past the gelation time.
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The only result we are aware of which deals with the uniqueness of solu-
tions exhibiting a gelation transition is available for the multiplicative kernel
K>(x, y) =xy. In that particular case, using the Laplace transform, it is possible
to characterize M;(f(¢)) for all times, prior and past the gelation time, and this
information allows one to prove uniqueness [19,41, 69,76, 87].
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Stochastic Operators and Semigroups
and Their Applications in Physics and Biology

Ryszard Rudnicki

1 Introduction

Stochastic operators are positive linear operators defined on the space of integrable
functions preserving the set of densities. They appear in ergodic theory of dynamical
systems and iterated function systems. They also describe the evolution of Markov
chains. The interested reader can find results concerning probabilistic and functional
properties of stochastic operators in monographs [34, 74]. The book of Lasota and
Mackey [55] is an excellent survey of many results concerning of their applications
in ergodic theory. Applications of stochastic operators to statistical mechanics are
presented in [65]. Stochastic semigroups are continuous semigroups of stochastic
operators and they have been intensively studied because they play a special role in
applications. They are generated by partial differential equations of different types
and describe the behaviour of the distributions of Markov processes like diffusion
processes, piecewise deterministic processes and hybrid stochastic processes. In
this chapter we present many examples of stochastic operators and semigroups: the
Frobenius—Perron operator, diffusion semigroups, flow semigroups with jumps and
switching and semigroups related to hybrid systems. Then we present some results
concerning their long-time behaviour: asymptotic stability, sweeping, completely
mixing and convergence to self-similar solutions. The results concerning stochastic
operators are applied to study ergodicity, mixing and exactness of dynamical
systems and to integral operators appearing in the theory of cell cycle. The general
results concerning stochastic semigroups are applied to diffusion processes, jump
processes and biological models described by piecewise deterministic stochastic
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processes: birth-death processes, the evolution of the genome, gene expression and
physiologically structured models.

The organization of the chapter is as follows. Section 2 introduces stochas-
tic operators and semigroups and results concerning generators of stochastic
semigroups. We also present methods of constructing stochastic semigroups by per-
turbation theorems. All theoretical results are illustrated by examples of stochastic
operators and semigroups. We show the utility of the Frobenius—Perron operator to
study ergodic properties of dynamical systems. We present here stochastic operators
related to iterated function systems and probability transition functions. We study
in detail stochastic semigroups in the space /! corresponding to continuous time
Markov chains. We introduce semigroups related to non-degenerate and degenerate
diffusion processes and deterministic flows. As an illustration of perturbation theory
we present semigroups related to piecewise deterministic Markov processes such as
a pure jump process, flow with jumps and dynamics governed by a number of flows
with switching. Another examples are stochastic hybrid systems: randomly flashing
and multi-state diffusion. We also present some elementary nonlinear stochastic
operators and semigroups.

In Sect.3 we study the long-time behaviour of stochastic operators and semi-
groups. We start with the concept of asymptotic stability and illustrate it by showing
that the tent and a logistic map are exact (have very strong ergodic property).
Then we present the lower function theorem of Lasota—Yorke and its application
to stochastic matrices. Our main results concern long-time behaviour of partially
integral semigroups. We introduce the notion of sweeping and present some result
which leads to the Foguel alternative, i.e. we find conditions when a partially
integral semigroup is asymptotic stability or sweeping. We start with the definition
of a partially integral semigroup. In particular we give sufficient and necessary
conditions for asymptotic stability and sweeping of stochastic semigroups on the
space /!. We present also some auxiliary results which can be useful in studying
of piecewise deterministic Markov processes. Then we introduce the notion of the
Hasminskii function. This notion is very useful in proofs of asymptotic stability of
stochastic semigroups if we known that they fulfill the Foguel alternative. We also
consider other long-time properties of stochastic semigroups as completely mixing
property, sectorial limits, convergence after rescaling and self-similar solutions and
illustrate them by applications to diffusion and jump processes.

Section 4 contains applications of general results to specific models. We present
applications which come from population dynamics: cell cycle model, birth-death
processes and structured-population models and from genetics: paralog families
and gene expression. We also present some physical applications as the Ehrenfest
model, diffusion and jump processes. The last part of this section is devoted
to nonlinear stochastic operators and semigroups. Nonlinear stochastic operators
and semigroups appear in models which contains binary operations. We present a
stochastic operator which describes the relation between frequencies of genotypes
in the parent and offspring generations. We also present some stochastic semigroups
related to coagulation-fragmentation processes and to the Boltzmann kinetic theory
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of gases. It is interesting that similar semigroups can model aggregation processes
in phytoplankton populations and phenotype-structured populations.

2 Stochastic Operators and Semigroups

In this section we give definitions and examples of stochastic operators and
semigroups.

2.1 Definitions

Let the triple (X, X', m) be a o-finite measure space. Denote by D the subset of the
space L' = L'(X, X, m) which contains all densities

D={felL': fz0 |f]=1}

A linear operator P: L' — L' is called a stochastic (or Markov) operator if
P(D) C D. If a linear operator P: L' — L' is positive and if |Pf|| < | f]
for f € L' then P is called substochastic. In particular, each stochastic operator is
substochastic. We can also consider nonlinear stochastic operators and define them
as continuous operators P: D — D.

One can define a stochastic operator by means of a transition probability
function. We recall that &?(x, A) is a transition probability function on (X, X) if
P (x,-) is a probability measure on (X, X') and Z(:, A) is a measurable function.
Assume that & has the following property

m(Ad) =0= H(x,A) =0form-ae.xand A € X. (1)

Then for every f € D the measure

j(A) = / F() P (x, A) m(d)

is absolutely continuous with respect to the measure m. This fact is a simple
consequence of the Radon—Nikodym theorem, which says that the measure v is
absolutely continuous with respect to the measure m iff the following implication
m(A) = 0 = v(A) = 0 holds for all sets A € X. Now, the formula Pf = du/dm
defines a stochastic operator P : L' — L' Moreover, if P*:L® — L* is
the adjoint operator of P then P*g(x) = [ g(y) Z(x,dy). There are stochastic
operators which are not given by transition probability functions [30]. Butif X is a
Polish space (i.e. a complete separable metric space), ¥ = Z(X) is the o-algebra of
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Borel subsets of X, and m is a probability Borel measure on X, then every stochastic
operator on L'(X, X, m) is given by a transition probability function [40].

Before giving the definition of a stochastic semigroup we recall the definition of
Cyp-semigroups of operators in a Banach space and their elementary properties. Let
(E, ||l) be a Banach space and let { P () };>0 be a family of linear bounded operators
on E. The family {P(¢)};>0 is called a Cy-semigroup or strongly continuous
semigroup if it satisfies the following conditions:

(@ P0)=1I,ie, PO)f =Ff,
(b) P(t+s)= P()P(s) for s,t>0,
(¢) foreach f € E the functiont — P(¢) f is continuous.

Let ®(A) be the set of such f € E, that there exists the limit

. POSf-f
A i

2

Then the set ®(A) is a linear subspace dense in E, and A is a linear operator
from ®(A) to E. The operator A is called the infinitesimal generator (briefly the
generator) of the semigroup { P (¢) };>0. We also say that the operator A: ©(A) — E
generates the semigroup { P (¢)}>o0.

The notions of a Cp-semigroup and its generator is strictly connected with
differential equations in the Banach space E. Let {P(¢)};>0 be Cy semigroup on
E and A : ®(A) — E its generator. Then for every f; € ©(A) the function
f:[0,00) — E defined by the formula f(z) = P(¢) fy is differentiable (in the
sense of Fréchet) for > 0 and satisfies the equation

f'(t) = Af(¢t), with initial condition £(0) = fp. 3)

Equation of the form (3) is called an evolution equation. We will say that
equation (3) generates semigroup { P(t)}:>o.

If E = LY(X,X,m) and {P(t)};>0 is a Co-semigroup of stochastic (sub-
stochastic) operators on E then {P(¢)};>0 is called, respectively, a stochastic
(substochastic) semigroup. We can also define a nonlinear stochastic semigroup. A
family { P(¢)},;>0 of nonlinear stochastic operators is called a nonlinear stochastic
semigroup if it satisfies conditions (a), (b), and the map (z, f) +— P(t)f is
continuous. We recall that in the definition of a nonlinear stochastic operator P
we only require that it is defined on the set of densities.

Now we give some examples of stochastic operators and semigroups.

2.2 Frobenius—Perron Operator

Stochastic operators were introduced to study properties of dynamical systems.
A dynamical system is a measurable transformation S: X — X, where (X, X))
is a measurable space. We are interested in the behaviour of trajectories
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{x,S(x),S%(x),...} of points x € X. If the system is chaotic, then it is very
difficult to describe the behaviour of a single trajectory. Instead of this we can study
stochastic properties of this system. That is, we choose a probability measure p on
(X, X) and observe the evolution of this measure under the action of the system.
For example, if we start with the probability measure concentrated at point X, i.e.
the Dirac measure §,, then under the action of the system we obtain the measure
8s(x)- In general, if a measure p describes the distribution of points in the phase
space X, then the measure v given by the formula v(4) = wu(S~!(A4)) describes the
distribution of points after the action of the transformation S. In typical spaces we
have some standard measure m, e.g., the Lebesgue on the space R or the counting
measure on a countable space. Then we can only consider initial measures . which
are absolutely continuous with respect to m, i.e., there exists a density f such that
w(A) = [, f(x)m(dx), for A € X.1If the measure v is also absolutely continuous
with respect to m, and g = dv/dm, then we define an operator Ps by Ps f = g.
This operator corresponds to the transition probability function &?(x, A) on (X, X)
given by

1, if S(x) € 4,

P(x. A) =
G 4) 0, if S(x) ¢ A.

“)

The operator Py is correctly defined if the transition probability function & (x, A)
satisfies condition (1). Now condition (1) takes the form

m(A) =0= m(S"'(4)) =0ford e ¥ (5)

and the transformation S which satisfies (5) is called non-singular. This operator
can be extended to a bounded linear operator Ps: L' — L' and Py is a stochastic
operator. The operator is called the Frobenius—Perron operator or the transfer
operator or the Ruelle operator.

Now we give a formal definition of the Frobenius—Perron operator. Let (X, X', m)
be a o-finite measure space and let S be a measurable nonsingular transformation
of X. An operator Pg: L' — L' which satisfies the following condition

/ Ps f(x) m(dx) = / f(x)m(dx) forAe X and f € L' (6)
A S—1(4)

is called the Frobenius—Perron operator for the transformation S. The adjoint of the
Frobenius—Perron operator P*: L — L% is given by P*g(x) = g(S(y)) and is
called the Koopman operator or the composition operator.

Observe that there are measurable transformations which do not satisfy (5). For
example, if m is a Lebesgue measure on X = R” and S(x) = a forall x € X,
then S7!(4) = X if A = {a} and (5) does not hold. It means that the Frobenius—
Perron operator may not exist even for smooth transformations. It is not easy to
check condition (5) and to find the Frobenius—Perron operator for an arbitrary
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transformation. We consider only piecewise smooth transformations of subsets of
R?. Let X be a subset of R? with nonempty interior and with the boundary of zero
Lebesgue measure. Let S: X — X be a measurable transformation. We assume
that there exists pairwise disjoint open subsets Uj,. .. ,U, of X having the following
properties:

(a) thesets Xo = X \ U/, U and S(Xo) have zero Lebesgue measure,
(b) maps S; = S v are diffeomorphisms from U; onto S(U;), i.e., S; are C'! and

invertible transformations and det S !(x) # 0 at each point x € U;.
Then transformations ¢; = S;! are also diffeomorphisms from S(U;) onto U;.
Then the Frobenius—Perron operator Pg exists and is given by the formula

P f(x) = ) f(i(x)| detg](x)], (M

i€l

where I, = {i:¢;(x) € U;}. Indeed,

n

/SI(A) fo)de = Xn: /Sl(A)m Ui fydv= Z/

i=1 i=17ei4

: f(x)dx

= Z /A S (i (x))] det ! (x)| dx

i=1 mS(Ui)
= /A 3 flgi(x))] det ) (x)| dx = /A Ps f(x) dx.

i€l

Example 1 Let S:[0, 1] — [0, 1] be the transformation given by

SG) = {Zx, for x € [0,1/2], ®)
2—2x, forx e (1/2,1].

The transformation S is called the tent map. We have U; = (0,1/2), U, = (1/2,1)
and the maps ¢;: (0, 1) — (0, 1) are given by ¢;(x) = %x igp(x)=1-— %x. Thus
the Frobenius—Perron operator Py is of the form

Psf(x) = 5 f(3) + 5. f(1 = 3x). ©)

Frobenius—Perron operators can be successfully used to study ergodic properties
of transformations [55]. Before formulating results concerning this subject we
recall some definitions. Let S: X — X be a measurable transformation of some
measurable space (X, X). A measure y defined on o-algebra X is called invariant
with respect to the transformation S if u(S™'(4)) = wu(A) for every set A € X.
An invariant measure p is called ergodic if w(A) = 0 or w(X \ A) = 0 for
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any measurable set A such that A = S~!(A). Ergodic transformations have many
interesting properties. One of them is the following seminal theorem.

Theorem 1 (Birkhoff Ergodic Theorem) Let S: X — X be a measurable
transformation of (X, X, i) and  be a probability ergodic measure invariant with
respect to S. Then for every f € L'(X, X, 1)

T—1
dim %;) F(S"(x)) = /X F(x) uldx)  for pu-a.e. x. (10)

If f = 14 then the formula has an interesting interpretation. It takes the form

#in (0. T— 13 S"(x)e A}
T—>moo T o

w(A) for u-a.e. x. (1rn)

where #E is the number of elements of £. Formula (11) means that the average time
spent in a measurable set A by the trajectory {x, S(x), S?(x),...} of almost every
point x equals the measure of this set.

A stronger property than ergodicity is mixing. Let (X, X, i, S) be a dynamical
system with an invariant probability measure p. This system is called mixing if

ll)ngo w(ANS™(B)) = u(A)yu(B) forall A,B € X. (12)

If P = pand P(B) > 0 then condition (12) can be written in the following way
lim P(S"(x) € Alx € B) = u(A) forall 4 € ¥,
n—o0

which means that the trajectory of almost all points enters a set A with asymptotic
probability u(A). The stronger property than mixing is exactness. A system
(X, 2, n,S) with a double measurable transformation S, i.e. S(A) € X and
S~1(A) € X forall A € ¥, and an invariant probability measure y is called exact if
for every set A € ¥ with (A) > 0 we have lim, o0 (£(S”(A4)) = 1. Observe that
a mixing dynamical system (X, X, u, S) with the double measurable and invertible
transformation S is not exact because

1(S"(A)) = n(S7"(S"(4))) = u(A).

For example, if X = [0, 1%, ¥ = B(X), m is the Lebesgue measure, and S: X —
X is the baker transformation given by

@x.1y), for x € [0, 3], y € [0, 1],

Sx.y) =
@2x—1,3y+1), forxe .1,y €[0.1],

13)

then the system is mixing but not exact.
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Table 1 The relations

. . H S+
between ergodic properties of Invari P —
the dynamical system nvariant | Ps fu = fi
(X, X, i, S) and the Ergodic | fi is a unique fixed point of Pg in D
Frobenius—Perron operator Mixing | w-lim, oo P§ f = fx« forevery f € D
Py Exact lim, oo Py f = fx forevery f € D

Now let (X, ¥, m) be a o-finite measure space, S be a measurable nonsingular
transformation of X, and Ps: L' — L' be the Frobenius—Perron operator. Let  be
a given probability measure absolutely continuous with respect to m and let fi be
the density of . Then the measure w is invariant with respect to S iff Pg fi = fi;
W is ergodic iff fi is a unique fixed point of Py in the set of densities; p is mixing
iff for every f € D the density fi is the weak limit of P f asn — oo; p is
exactiff lim, o0 Pg f = fi forevery f € D.By the weak limit lim, o Pg f we
understand a function 4 € L' such that for every g € L™ we have

/ P F(x)g(x) m(dx) = / h(x)g () m(d)
X X

and we denote it by w-lim, . P§ f. We collect the relations between ergodic
properties of a dynamical system and the behavior of the Frobenius—Perron operator
in Table 1.

2.3 Iterated Function System

In many applications, especially, in construction of fractals and in the methods of
image compression, we use iterated function systems. An iterated function system
on a complete metric space (X, p) is a sequence of maps S, ..., S,, where S;: X —
X, fori = 1,...,n. Having this system we can define a transformation on some
space H(X) of subsets of X or on the set of probability measures on some o-algebra
of subsets of X [12,42,58]. In the first case we usually assume that maps S; are
contractions, H (X)) consists of all compact subsets of X and the map F: H(X) —
H(X) is given by

F(A) =S (A)U---US,(A).
If we introduce the Hausdorff metric on H(X) given by

h(A, B) = max p(x, B) + max p(x, A),
X€A X€EB

where p(x, A) = min{p(x, y) : y € A}, then (H(X), k) is a complete metric space
and the map F' is a contraction. From the Banach contraction principle it follows
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that there exists a unique compact subset A, of X such that F(Ax) = A and we
have limy _soo F¥(A) = A, for each compact set A. In construction of fractals we
usually assume that X = R? and S; are contractive similarity transformations, and
from the formula F(Ax) = Ax it follows that the limit set A, is made up of the
union of several smaller copies of itself, i.e., of the sets S; (Ax). It is why the set A«
has a self-similar fractal nature.

Since it is rather difficult, to iterate sets and go to the limit set, in practice,
we construct fractals in a different way. Let p;(x),..., p,(x) be non-negative
continuous functions defined on X such that p;(x)+---+ p,(x) = 1 forall x € X.
We consider the following process. Take a point xo. We choose a transformation S;
with probability p; (x¢) and we go to the point x; = S;(xo). The point x; describes
the new state of the iterated function system. We repeat the procedure but now with
the initial point x;, etc. In this way we obtain a random sequence of points (x;).
Precisely, for any initial point xo € X we can find a Markov process £,°, n € N, on
X such that §;° = x, and with the transition probability function

P(x.B)= Y pi(x), where B € B(X)and I5(x) = {i: Si(x) € B}.

ielp(x)

Under suitable assumptions on functions p;, for every initial point xo € X the limit
set of almost every sample path §°(w), n € N, is A.. We recall that the limit set
of a sequence is the set of all its accumulation points. Observe that if we start from
the point a, i.e., the initial state is described by the Dirac measure §,, then the new
state of the system is described by the probability measure Y :_, p;(a)8s, (). If the
initial state is random and described by a probability measure p then the next state
is given by the probability measure

Pu(A) = () ) (14)
u(d) ;meMM”

In this way we obtain a stochastic operator on probability measures. Under suitable
assumptions on functions p; (see e.g. [58]), the sequence of measures P*p is
weakly convergent to a probability measure p« as k — oo and the set Ay is the
topological support of fis.

Though, in the theory of fractals it is more convenient to consider stochastic oper-
ators on measures, we can also study stochastic operators on densities corresponding

to iterated function systems. Now, we assume that Sj,..., S, are non-singular
transformations of the space (X, X, m). Let Py,..., P, be the Frobenius—Perron
operators corresponding to the transformations S, ..., S,. If the measure p is

absolutely continuous with respect to m and f = du/dm, then from (14) it follows

mwzgﬁwmwvmmmzzﬁamﬂmmm,

i=1



264 R. Rudnicki

which means that the measure P has the density Y :_, P;(p; f). Thus, the
evolution of densities is described by the stochastic operator

Pf=>"P(pi f).

i=1

2.4 Integral Stochastic Operators

Let (X, X', m) be a o-finite measure space. If k: X x X — [0, co0) is a measurable
function such that

/ k(x,y)m(dx) =1
b

for almost all y € X, then

Pf(x) = /X k(x.y) £ () m(dy) (15)

is a stochastic operator. The function k is called the kernel of the operator P and P
is called an integral or kernel operator.

In finite or countable spaces all stochastic operators are integral. We consider, for
example, the space (N, X, m), where N = {0,1,...}, ¥ = 2N is the o-algebra of
all subsets of N and m is the counting measure, i.e., m(A) is the number of elements
of A. Any function f:N — R is represented as a sequence x = (x;);en. Thus, the
integral in this space is given by

/ x; m(di) = ix,-
N i=0

and a sequence x = (X;);eN is integrable iff
o0
Z |)C,'| < 0. (16)
i=0

We use the notation /' = L'(N, X, m). The elements of /! are real valued sequences
x = (x;)ien satisfying (16) and the norm is given by ||x|| = > o, |x;|. Let us
observe that an arbitrary stochastic operator P:/! — [' is an integral operator.
Indeed, for each i the function x — (Px); is a continuous linear functional from /'
to R. Thus, for each i € N there is a sequence (p;) jen € [*° such that

o0
(Px); =Y pyx; = /szjixj m(dj).
=0
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Moreover, the operator P is represented by a stochastic matrix [pyj], i.e., a matrix
with nonnegative entries p; with each column summing to one: Y i, p; = 1 for
each j € N.

Many biological and physical processes can be modelled by means of stochastic
integral operators. Some important examples are obtained by some random per-
turbation of dynamical systems. Let S be a (deterministic) dynamical system on
a metric space X and assume that this system is perturbed by an external source
of noise. The noise can be, for example, additive, i.e., x,+1 = S(x,) + &, or
multiplicative, i.e., x,4+1 = S(x,)&,. Such systems are generally of the form

Xn+1 = S(xmég-n)’ (17)

where (£,)92, is a sequence of independent random variables (or elements) with
the same distribution and the initial value of the system X, is independent of the
sequence (£,)72,. Studying systems of the form (17) we are often interested in the
behaviour of the sequence of the measures (1) defined by

Un(A) = Prob (x, € A), (18)

where A € X, and ¥ is the o-algebra of Borel subset of X. The evolution of these
measures can be described by a stochastic operator P on the space of probability
Borel measures given by p,+1 = Pu,. Let m be a given Borel measure on the phase
space X. Assume that for almost all y the distribution v, of the random variable
S(y,&,) is absolutely continuous with respect to m. Let k(x, y) be the density of v,
and the operator P be given by (15). Then P is a stochastic integral operator. If the
measure (i is absolutely continuous with respect to m and has the density f, then
the measures (1, are also absolutely continuous with respect to m and has the density
P" f. 1t means that the operator P describes the evolution of the system (17).

2.5 Continuous Time Markov Chain

Now we give some examples of stochastic semigroups. The simplest example are
stochastic semigroups on finite spaces. Such semigroups appears in the theory of
continuous time Markov chains.

Now, we consider a measure space (X, X, m) with X = {1,2,...,n}, ¥ = 2X
and the measure m given by

m(A) =Y pi. (19)

ieA
where (py, ..., py) is a sequence with positive terms p;. In this space the function
f:X — Ris represented as a sequence y = (y1, ..., y»), the integral of y over X

is given by Y_"_, y; pi. Thus, the space L'(X) is isomorphic to the space R” with
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the norm || y|| = |y1|p1 + -+ + |yu|pn. Now we construct a stochastic semigroup
which corresponds to the system of linear differential equations

n
Y =Y agy;(0), dla i=1,...n. (20)
j=1

We assume that the coefficients a;; have the following properties

(i) a; > 0fori # j,
() Yr_, piay=0forj=1,...,n.

Let y = (y1,...,yn) and let P(t)y = y(t) for t > 0, where y(t) =
(y1(2), ..., yu(2)) is the solution of (20) with the initial condition y(0) = y. We
show that { P () },>0 is a stochastic semigroup. First, we check that if y is a sequence
with nonnegative terms, then y(¢) is a sequence with nonnegative terms for t > 0.
In order to do it we define A = —min{a; : i = 1,...,n}, by = a; fori # j and
bii = ajj+A.Thenb; > Oforalli, j. Let B = [b;]. Then the function y(¢) satisfies
equation

y'(1) = =Ay(1) + By(1). (1)

The solution of this equation can be written in the form

y(t) = e HMePly, (22)
where
ok pk
t“B
Br — o (23)
k=0 ’

Since the matrix B has nonnegative entrances, also the matrix e5 has nonnegative
entrances. From formula (22) it follows immediately that y(¢z) is a nonnegative
sequence for 7 > 0. We check that ) /_, p; ; () does not depend on ¢:

%(Zpiyi(t)) =Y piagyj) =Y (Zp,-ai,-)yj(t) = 0.

i=1 i=1j=1 j=1Vi=1

Thus, we have shown that if y € D, then y(¢) € D, therefore, P(¢)(D) C D for
t > 0. Since (20) is a homogeneous linear system of differential equations, P ()
is a linear operator. Hence P(¢) is a stochastic operator for ¢+ > 0. Now we check
conditions (a), (b), (c) of the definition of a stochastic semigroup. Condition (a) is
obvious because P(0)y = y(0) = y. Condition (b) is due to the fact that (20) is an
autonomous system (its right-hand side does not depend on ¢). Condition (c) is a
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simple consequence of the continuity of solutions. Thus, { P(?)},>0 is a stochastic
semigroup.

In a special case when m is a counting measure, i.e., p; = -+ = p, = 1,
equation (20) generates a stochastic semigroup iff

(i) a; > 0fori # j,
(i) Yi_ya;=0forj=1,...,n.

2.6 Uniformly Continuous Stochastic Semigroups

The generator of the semigroup defined in 2.5 is a bounded operator A and it is of
the form A = —AI + B, where B is a positive and bounded operator. Generally, if
the generator A of a Cyp-semigroup { P(¢)},;>0 in a Banach space E is bounded then
the semigroup { P (¢)};>0 is uniformly continuous, i.e.,

lim || P(t) — P (1) = O for 1 > 0. (24)
—>ty

This result is a simple consequence of the formula

00k gk
P == A 25)
k!

k=0
It is also a well known fact that the generator of a uniformly continuous semigroup
is a bounded operator and that a bounded operator A is a generator of a positive
semigroup on a Banach lattice iff A+ | A||/ > 0 (see e.g. Theorem 1.11, p. 255 [3]).
In particular, if the operator A4 is a generator of a uniformly continuous stochastic
semigroup { P(¢)};>o then there exist a bounded and positive operator B and 1 > 0
such that A = —AI + B. On the other hand, since P(t) = I + tA + o(t) and P(¢)
preserves the integral we obtain

/ Af(x)m(dx) =0 for f € L. (26)
X

Thus [y Bf(x)m(dx) = A for f € D. Assume that A # 0 and let P = B/A.
Then A = —AI + AP, where P is a stochastic operator. Therefore, a generator of a
uniformly bounded stochastic semigroup { P()},>¢ is of the form A = —AI + AP.
Letug € L' and u(t) = P(t)uop. Then u(t) satisfies the evolution equation

W' (t) = —Au(t) + APu(r). 27
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For every uy € L' equation (27) has the solution of the form
o0 —
(At)ke At .
u(t) = kz g Pl (28)
=0

Since u(t) is an element of L' we often use notation u(¢, x) = u(¢)(x) and write
equation (26) as the partial differential equation

au§£ ) (e x) + APu(t, ). 2

2.7 Generators of Substochastic and Stochastic Semigroups

As we have observed in 2.6, a bounded linear operator A: L' — L' is a generator
of a stochastic semigroup iff

A+4+AI >0 forsome A >0 and / Af(x)m(dx) =0 forall f € L'. (30)
X

Generally, if an operator A: 2(A) — L', 2(A) C L', is a generator of a
stochastic semigroup then [}, Af(x) m(dx) = 0 for f € 2(A). If a linear operator
A: 2(A) — L' is unbounded and [y Af (x) m(dx) = 0 then condition A + A1 >0
does not hold for any A > 0 and the question whether this operator is a generator
of a stochastic semigroup is highly non-trivial. We only recall here some needful
results. The interested reader is referred to [6, 8,82, 112].

Usually, in applications, we have an operator of the form A + B and we know
that A is a generator of a stochastic or substochastic semigroup and B is another
linear operator and we want to check whether A + B also generates a stochastic or
substochastic semigroup. One of the answer on this questions the following Kato—
Voigt—Banasiak theorem.

Theorem 2 Assume that (A, Z(A)) is the generator of a substochastic semigroup
on L' and B: 9(A) — L' is a positive operator such that

/E (AF() + BF () m(dx) <0 for £ € D(A), f = 0. 31)

Then for each r € (0,1) the operator (A + rB, 2(A)) is the generator of a
substochastic semigroup {P,(t)};>0 on L' and the family of operators {P(t)};>o
defined by

Pit)f = lim. P.(t)f. felL' t>0,
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is a substochastic semigroup on L' with generator (C, 2(C)) being an extension

of the operator (A + B, Z(A)):
P2(A) € 2(C) and Cf =Af +Bf for f € Z(A).

The semigroup { P(t)}:>0 is a minimal semigroup related to A+ B, i.e., if {T (t)}:>0
is another positive semigroup generated by an extension of (A + B, 2(A)) then

T(t)f > P(t)f forall f € 9(A), f > 0.

The problem when the minimal substochastic semigroup defined in Theorem 2
is stochastic was studied in [7, 8, 108, 109]. In particular we have the following
characterization.

Theorem 3 Assume that (A, 2(A)) is the generator of a substochastic semigroup
on L' and B: 2(A) — L' is a positive operator such that

/(Af(x) + Bf(x))m(dx) =0 for f e 2(A), f=>0. (32)
E

Let A > 0 and R(A,A) = (Al — A)~"' . Then the following conditions are
equivalent:

1. The minimal semigroup {P(t)},>0 related to A + B is stochastic.

2. The generator of { P(t)};>0 is the closure of (A + B, Z(A)).

3. If for some f € L*®, f > 0, we have (BR(A, A))* f = f then f = 0, where
(BR(A, A))* denotes the adjoint of BR(A, A).

If A is a generator of a stochastic semigroup {S(¢)};>0 and B: L' — L!is a
bounded operator such that |’ y Bf(x)dx = Ofor f € L', then from condition (2) of
Theorem 3 it follows that A 4+ B is a generator of a stochastic semigroup { P (¢)}>o0.
The semigroup { P(¢)};>0 can be given by the Dyson—Phillips expansion

P@)f =) S0/,
n=0

where
So@) f =S f, Su+1(0)f :/0 Su(t —s5)BS(s) f ds, n=0.

A special role in applications is played by generators of the form A+AK—A1, where
A is a generator of a stochastic semigroup {S(¢)},>0, K is a stochastic operator and
A > 0. The semigroup { P(¢)},;>0 generated by A + AK — Al is of the form

P@)f =e ™) XS, f. (33)

n=0
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where

So@) f =8O f Sani()f :/0 Su(t —$)KS(s) fds, n =0. (34)

2.8 Stochastic Semigroups on !

Now we study stochastic semigroups on the space /' = L'(N, 2, m), where m is
the counting measure, and the elements of 1" are real valued sequences X = (X;);eN
such that Y 72 |x;| < oco. Any linear operator (bounded or unbounded) is given
by an infinite dimensional matrix Q = [g;], i.e., (Qx); = Z?‘;O qix; for j € N.
The question is what are necessary and sufficient conditions for the matrix Q to be
a generator of a stochastic semigroup? One can expect that Q0 = [g;;] should be a
Kolmogorov matrix, i.e., its entries have the following properties

(@) g; = 0fori # j,
(i) Y%, g5 =0forj =0,1,2,....

Indeed, if Q is a Kolmogorov matrix and the operator Q: /! — [! is bounded, then
Q is a generator of a stochastic semigroup {P(¢)},>o given by P(¢) = e. The
matrix Q defines a bounded operator on /! if there exists a constant ¢ such that for
each j we have Y 72 |¢;| < c. If Q is a Kolmogorov matrix then the boundedness
of Q is equivalent to

sup |g;;| < oo. (35)
jEN

The problem when the unbounded operator given by a Kolmogorov matrix Q is
is a generator of a stochastic semigroup is more complex and can be solved by using
Theorems 2 and 3. In order to do it we need an auxiliary notion. A matrix Q = [g;]
is called a sub-Kolmogorov matrix if it satisfies condition (i) and the condition

(i) Y %2pa; <0forj =0,1,2,....

Corollary 1 Let Q be a sub-Kolmogorov matrix. Then there is the minimal
substochastic semigroup { P (t)}:>o related to Q.

Proof Let

Z0(Q) = {x €1': Y |gllx;| < oo}, (36)

=0

The set Zy(Q) is dense in the space /! and the matrix Q defines a linear operator
on Z,(Q) with values in /'. Let A4 be the diagonal part of Q, i.e., A = [ay], a; =
gj and a; = 0 fori # j, and let B = [b;] be the off-diagonal part of Q, i.e.,
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B = Q — A. The operator A with domain Z(4) = Z,(Q) is the generator of a

substochastic semigroup {Py(t)};>0 on [! given by (Py(t)x); = x;e %! fori €
N. The operator B: Z(A) — ! is positive. By Theorem 2, there is the minimal
substochastic semigroup { P(¢)};>¢ related to Q. O

Now observe that in our case condition (3) of Theorem 3 can be written as
B*x = (Al — A)*x or equivalently, Q*x = Ax, where the symbol C* denotes
the transpose of the matrix C. If Q is a Kolmogorov matrix, condition (32) holds
and from Theorem 3 we obtain the following Kato result [46].

Theorem 4 Let Q be a Kolmogorov matrix and let A > 0 be a positive constant.
We denote Q* = (q;';)i,j>1, where q; = q;; for i, j = 1 The minimal semigroup
related to Q is a stochastic semigroup on 1! iff the equation Q*x = Ax has no
nonzero solution x € [*° and x > 0.

If the minimal semigroup {P(¢)};>o related to a Kolmogorov matrix A4 is a
stochastic semigroup then the matrix A is called non-explosive.

2.9 Continuity Equation

Now, we move on to semigroups related to partial differential equations. We start
with the continuity equation called also the transport equation and the Liouville
equation.

Consider a moving particle in an open set G C R?. We assume that if a particle
is at point x then its velocity is b(x). It means that if x(¢) is its position at time ¢
then the function x (¢) satisfies the following equation

X' (1) = b(x(1)). 37)

We also assume that the particle does not leave the set G. We choose the initial
position x of the particle randomly with a density distribution function ug. If u(z, x)
is the density of distribution of x (¢) then u satisfies the following equation

% = —div(b(x)u(t, x)), (38)
where
49
div(b(x)u(t,x)) =) 5 (bi(u(t, x)). (39)

i=1
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Indeed, given a domain D C G with the smooth boundary S, consider the fluxes
into the set D in the time interval of the length Az:

I1(At) =/ u(t+At,x)dx—/ u(t,x)dx. (40)
D D

Since the fluxes are through the surface S and since the speed at which particles
cross the surface is —n(x) - b(x), where n(x) is the outward-pointing unit normal
vector to S, we have

I1(At) = —At /(n(x) -b(x)u(t,x))do(x) + o(At). 41)
s

According to the Gauss—Ostrogradski theorem we have

/(n(x) -b(xX)u(t,x))do(x) = / div(b(x)u(t, x)) dx. (42)
s D

Equations (40), (41) and (42) imply (38). Equation (38) generates a stochastic
semigroup given by P (t)uo(x) = u(t, x).

The semigroup { P (¢)},>0 can be given explicitly. Namely, for each x € G we
denote by m,x the solution x(¢) of (37) with the initial condition x(0) = Xx. Let
us fix ¢+ > 0 and define a transformation S: G — G by S(x) = m;x. Then S is a
nonsingular and invertible transformation and according to (7) the Frobenius—Perron
operator corresponding to the map S is given by

f(r—;x) det [%n_[x], if x € 1;(G),
0, if x ¢ m,(G).

P(@) f(x) = Ps f(x) =

The adjoint semigroup {P*(¢)};>0 of Koopman operators P*(¢): L®° — L
is given by P*(t) f(x) = f(mx). This semigroup {P*(¢)};>0 is not strongly
continuous but if we choose f sufficiently smooth then the function u(t,x) =
P*(¢) f(x) satisfies the following equation

du(t,x) - ' du(t, x)
5 —;b,(x) P (43)

2.10 Diffusion Semigroup

Semigroups generated by continuity equations are special subclass of stochastic
semigroups related to diffusion processes. Consider the /76 equation of the form

dX; = o(X,)dW, + b(X,)dr, (44)
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where W; is a m-dimensional Brownian motion, o(x) = [cr; (x)] is a d x m matrix

and b(x) is a vector in R? for every x € RY. We assume that foralli = 1,...,d,

j = 1,...,m the functions b;, cr; are sufficiently smooth and have bounded

derivatives of all orders, and the function 0;- are also bounded. The process X;,
t > 0 is called diffusion process. Recall that the Stratonovitch equivalent equation
is of the form

dX, = o(X,) 0 dW, + 0o(X,) dt, (45)

where 0} = b; — % S, Z’j:l o} % Assume that X; is a solution of (44) or (45)
such that the distribution of X is absolutely continuous and has the density v(x).
Then X, has also the density u(¢, x) and u satisfies the Fokker—Planck equation (also
called the Kolmogorov forward equation)

d d

du 9% (az(x)u) a(b; (x)u)
— = — , 46
ot ’,]z=:1 axiaxj ; 0x; (46)
where a;(x) = %Z;"zl oli(x)(f]f (x). Equation (46) can be written in another
equivalent form
P Ry du L 3(0i (x)u)
—=Y — i)— | =y — 47
o1 ; ox; ;af(x)ax,» ; ax; “n

Note that the d x d-matrix a = [a;j] is symmetric and nonnegative definite, i.e.
a; = aj and

d

Z aij(x))kikj >0 (48)

ij=1

for every A € R? and x € R?, so we only assume weak ellipticity of the operator
on the right hand side of equation (46). Let us consider the operator

d d

Af = Z az(aij(x)u) _ Z a(b; (X)u) 49)

8x,~ 8xj 8x,~

ij=1 i=1
ontheset E = {f € L'(RY) N CZ(R?): Af € L'(R?)}, where C?(R“) denotes the
set of all twice differentiable bounded functions whose derivatives of order < 2 are
continuous and bounded. If v € C bz (R?) then equation (46) has in any time interval
[0, T'] a unique classical solution u which satisfies the initial condition u(0, x) =
v(x) and this solution and its spatial derivatives up to order 2 are uniformly bounded
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on [0, T'] x R4 (see [36, 104]). But if the initial function has a compact support, i.e.
v € C2(RY), then the solution u(x, ) of (46) and its spatial derivatives converge
exponentially to 0 as ||x|| — oo. From the Gauss—Ostrogradski theorem it follows
that the integral [ u(z, x) dx is constant. Let P (t)v(x) = u(z, x) forv € CX(RY) and
t > 0. Since the operator P(t) is a contraction on C2(R¢) it can be extended to a
contraction on L' (R?). Thus the operators { P(¢)};>o form a stochastic semigroup.
We have P(1)(C2(R?)) C CZ(RY) for t > 0. According to Proposition 1.3.3 of
[33] the closure of the operator A generates the semigroup { P (¢)},>0. The adjoint
operators { P*(¢)},;>o form a semigroup on L>(R¢) given by the formula

P0se) = [ 0Py forg e LR,

where (¢, x, A) is the transition probability function for the diffusion process X;,
ie. Z(t,x,A) = Prob (X, € A) and X, is a solution of equation (45) with the initial
condition Xy = x. If g is C?-function, then the function u(t,x) = P*(t) f(x)
satisfies the Kolmogorov backward equation

d

d
5 = Z aj(x) 57— +Z (x)— (50)

L]=
If we assume that the functions a;; satisfy the uniform elliptic condition

d
3 ag(x)nid; = ala (51)

ij=1

for some @ > 0 and every A € R? and x € R? then the stochastic semigroup
generated by the Fokker—Planck equation (46) is an integral semigroup. That is

P() fx) = /R g )y, (>0

and the kernel ¢ is continuous and positive.

Now we consider degenerate diffusion processes, where instead of (51) we
only assume (48). The fundamental theorem on the existence of smooth densities
of the transition probability function for degenerate diffusion processes is due to
Hormander. In a series of papers [67,68] Malliavin has developed techniques, called
Malliavin calculus, to give probabilistic proof of this fact. Now we recall some
results from this theory. Let a(x) and b(x) be two vector fields on R?. The Lie
bracket [a, b] is a vector field given by

d

0
00 = 3 (3200~ gl o).

k=1
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We assume Hormander’s condition as in [73]

(H) Forevery x € R? vectors

01(x), ..., om(X), [071,0;](X)o<i,j<m, [01, [0}, 0k]](Xo<i,jk<m, - - -

span the space RY. Here 01 (x),...,0,(x) are column vectors of the diffusion
matrix o(x) and op(x) is the drift vector which occur in the Stratonovitch
equation (45).

Note that the vector oy appears only through brackets.

Theorem 5 (Hormander) Under hypothesis (H) the transition probability func-
tion P(t, x, A) has a density k(t,y, x) and k € C*®((0,00) x R? x RY).

There is one important difference between a non-degenerate diffusion and a
degenerate diffusion which satisfies condition (H), namely, the kernel k is strictly
positive if diffusion is non-degenerate, but in the degenerate case the kernel k can
vanish on some subsets. We check where the kernel k is positive using a method
based on support theorems [1, 16, 105]. Let U(xo, T') be the set of all points y for
which we can find a ¢ € L*([0, T];R™) such that there exists a solution of the
equation

xp(0) = x0 + /0 (0:(x () (5) + 00 (xy (5))) ds 52)

satisfying the condition x4(7) = y. From the support theorem for diffusion
processes it follows that the topological support of the measure P (T, xo, -) coincides
with closure in R? of the set U(xo, T). Let Dy, 4 be the Frechét derivative of the
function & + x444(T) from L*([0, T];R™) to R¢. By U (xo, T) we denote all
points y such that x4(7") = y and the derivative D, 4 has rank d. Then

U(xo,T) ={y :k(T,y.x0) >0} and clU(xo,T) =clU(xo,T).

where cl = closure. The derivative D,, 4 can be found by means of the perturbation
method for ordinary differential equations. Let

d " do;
A0 = Z200p0) + Y T 0) 1) (53)
i=l

and let Q(¢,1y), for T >t > ty > 0, be a matrix function such that Q (¢, 7)) = 1

and % = A(t)Q(t,ty). Then

T
Dy oh :/0 O(T,5)0(xg(s5))h(s) ds. (54)
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Remark 1 In many applications diffusion processes are defined on some subset G
of R¥. In this case we should know the description of the process X; when it hits
(or approaches) the boundary dG of G. The simples situation is if the process X,
starting from any point G does not hit the boundary. Then such a boundary is called
a natural boundary and then the theory of such a diffusion is the same as in the
case G = R? i.e., this diffusion is related to some stochastic semigroup and the
both Kolmogorov equations can be considered without boundary conditions. If we
consider a diffusion process which hits the boundary dG then, in order to still have a
stochastic semigroup, we should assume that after hitting the boundary it returns to
G. In this case we usually assume that the process is reflected at the boundary dG.
Then the Kolmogorov backward equation should be considered with the boundary
condition

du(t, x)
an(x)

=0 for x € 0G,

where n(x) is the normal vector to the boundary at x € dG. It means that if A* is

ad
the adjoint operator of A and if g € 2(A*) then 8_g = 0 on dG. Now from the
n
formula

/ AN @) g(x) dr = / F()(A*9)(x) dx
G G

one can find the proper boundary condition for the Fokker—Planck equation.

Remark 2 In some applications, especially in population dynamics, the drift vector
b(x) does not have a globally bounded partial derivatives. The situation is similar to
that in ordinary differential equations, namely, we are only able to prove the local
existence of solutions of (44) in general case and, consequently, we cannot define
a stochastic semigroup. But in some cases, for example in the stochastic version of
the logistic equation

dX, = (aX, — BX?)dt + yX,dW,, «a,B,y >0, (55)

the derivatives of h(x) = ax — Bx? are unbounded, but, using some comparison
theorems, we are able to check the global existence of its solutions (precisely, if
Xo > 0). Hence there exists a stochastic semigroup defined on Ll(O, 00) related
to (55).

2.11 Piecewise Deterministic Markov Process

Now, we consider stochastic semigroups related to piecewise deterministic Markov
processes. According to a non formal definition by Davis [28], the class of piecewise
deterministic Markov processes (PDMPs) is a general family of stochastic models
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covering virtually all non-diffusion applications. A more formal definition is the
following: a continuous time Markov process X (¢), t > 0, is a PDMP if there is an
increasing sequence of random times (#,), called jumps, such that sample paths of
X(¢) are defined in a deterministic way in each interval (¢,, #,+1). We consider two
types of behavior of the process at jump times: the process can jump to a new point
or can change the dynamics which defines its trajectories.

We start with a continuous time version of the iterated function system. We have
asetof flows 7/, i € I = {1,...,k}. Each flow 7/ is defined as the solution of a
system of differential equations x’ = b’(x) on G C R (see 2.9). The state of the
system is a pair (x,i) € G x [. If the system is at state (x,7) then x can change
according to the flow 7/ and after time ¢ reaches the state (7! (x), i) or jump to the
state (x, j) with a bounded and continuous intensity ¢;(x). The pair (x(¢),i(t))
constitutes a Markov process X(¢) on G x I. Let {S’(¢)},>0 be the stochastic
semigroup related to 7/, i.e., the semigroup of Frobenius-Perron operators and let
the operator A; be its generator. We assume that the random variable X (0) has an
absolutely continuous distribution, then so are X (¢) for ¢ > 0. Define the functions
u;, i € I, by the formula

Prob(x(t) € E, i(t) =i) = /Eui(t,y)dy.

and let u = (uy, ..., ux) be a vertical vector and Au = (Auy, ..., Agui) is also a
vertical vector. Let gj;(x) = — Zi;ﬁ ; 4ij(x) and denote by Q(x) the matrix [g;(x)].
Then the vector u satisfies the following equation

9
a_? — Ou + Au, (56)

Let (G x I) be the o-algebra of Borel subsets of G x I and let m be the product
measure on Z(G x I) given by m(B x {i}) = wu(B) for each B € #(G) and
1 <i <k, where u is the Lebesgue measure on G. The operator A generates a
stochastic semigroup {S(¢)},>0 on the space L'(G x I, Z(G x I), m) given by the
formula

SO f = (SO f.....S5 O f),
where f;(x) = f(x,i)forx € G,1 <i < k. Since

k k k
oram=3" [(@nma=3 [ (;qg(x)ﬁ(x)) dx

Gx1 i=1 i=1

i=1

k k
_ ;/G (X a5(0) £ dx =0
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the operator A + Q is a generator of stochastic semigroup {P(¢)};>0. If we put
A = sup max{—q;(x),...,—qu(x)} and K = A~'Q + I. Then K is a stochastic

x€G

operator and Q = —AI + AK. Thus the semigroup { P(¢)};>0 can be given by (33)
and (34).

2.12 Flow with Jumps

Now we consider the second type of piecewise deterministic Markov processes a
flow with jumps. A particle x moves on an open set G C R¢ with velocity b(x)
(see 2.9) and with a measurable and bounded intensity A(x) it jumps to a point y.
The location of y is described by a transition function &(x, A), i.e., Z(x, A) is
the probability that y € A. We assume that & satisfies (1), therefore, there is a
stochastic operator P: L'(G) — L'(G) such that

/ F)P(x, A)dx = / Pf(x)dx for f € L'(G)and A € B(G).  (57)
G A

Let x(¢) be the location of a particle at time 7. We also assume that the particle does
not leave the set G. We choose the initial position x of the particle randomly with a
density distribution ug. If u(z, x) is the density of distribution of x () then u satisfies
the following equation

augt %)~ div(b(out. %)) — 2ult. ) + Pt ). %)

The proof of (58) is almost the same as the formula (38) we should only add to the
right-hand side of (41) the term

/ A(x) f(x) P(x, D)dx At —/ A(x) £(x) dx At + o(A1)
G D

and apply the formula (57). Since Bf = —Af + P(Af) is a bounded operator on
L'(G) and fG Bf(x)dx = 0 for f € L'(G), equation (58) generates a stochastic
semigroup on L'(G).

Equations of type (58) appear in such diverse areas as the theory of jump pro-
cesses [86, 107], in astrophysics—where describes the fluctuations in the brightness
of the Milky-Way [25] and in population dynamics. An example of application to
population dynamics is presented in 4.8.
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2.13 Stochastic Hybrid Systems

Stochastic hybrid systems (SHSs) is a general class of stochastic processes which
includes continuous and discrete, deterministic and stochastic flows. Such systems
have appeared as stochastic versions of deterministic hybrid systems—systems
described by differential equations and jumps. Piecewise deterministic Markov
processes and Markov process with diffusion belong to SHSs. One can find a
definition of stochastic hybrid systems and many examples of their applications in
[19,24,115]. We only present here two examples stochastic semigroups related to
SHSs which can be obtained in the same way as those in 2.11 and in 2.12 but we
need to replace deterministic flows by diffusion flows.

Example 2 The first example is a randomly flashing diffusion. Let us consider the
stochastic equation

dX, = (Yi0(Xy)) dW, + b(X,) dt, (59)

where W;, t > 0 is a Wiener process, Y; is a homogeneous Markov process with
values 0, 1 independent of W, and X,. We assume that the process Y; jumps from 0
to 1 with intensity go and from 1 to 0 with intensity ¢;. Equation (59) describes the
process which randomly jumps between stochastic and deterministic states. Such
processes appear in transport phenomena in sponge—type structures [5, 18,64]. The
pair (X;,Y;) is a Markov process on R x {0, 1}). Let Apv(x) = —(b(x)v(x))/,

Av(x) = (2 (x)v(x)) = (b(x)v(x)) and

_|fo _ | Aofo | —qofo+ a1 fi
f_lifl:|’ Af_I:Alfl:|’ Qf_|:610f0—611f1:|’

where we identify the function f:R x {0, 1} — R with a vertical vector ( f1, f>) by
fi(x) = f(x,1). Since A is a generator of a stochastic semigroup on L' (R x {0, 1}),
Q is a bounded operator on L'(R x {0, 1}), and the integral of Qf is zero, A + Q
also generates a stochastic semigroup on L!(R x {0, 1}).

Generally, if we replace in 2.11 the generators A; of flows by the generators of
the Fokker—Planck equations of the form (49), we introduce a stochastic semigroup
[90] related to a multi-state diffusion on RY.

Example 3 We can also replace the generator A of a continuity equation by the
generator of the Fokker—Planck equation in 2.12. In this way we introduce a
stochastic semigroup on R? related to diffusion with jumps.
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2.14 Nonlinear Stochastic Operators

We recall that if D C L'(X, X, m) is the set of densities, then a nonlinear stochastic
operator is any continuous operator P: D — D. A large class of nonlinear
stochastic operators can be obtained in the following way. Fix a positive integer
r and consider a measurable function g: X" ™! — [0, 0o) such that

/ q(x,y1,...,y,)m(dx) =1 forae.y = 1,..., ). (60)
X

Then we can define r-linear positive and continuous operator Q: (L')" — L' by

Q(ﬁ,...,m(x)=/X.../Xﬁ(yl)...fr<y,~)q(x,y1,...,yr)m(dyl)...m(dy,).
©1)

If fi,..., fy € D then Q(fi,..., fr) € D. This implies that the operator

P(f)=0(f.... /). [feD, (62)

is a nonlinear stochastic operator. The operator P is Lipschitz continuous:

I1P(f) =PI =rlf—gl forfgeD.

Indeed, let
Pih=P(f,....f. h g ....8)(x)
~———— ——
r—i i—1
fori = 1,...,r. Then P; are (linear) stochastic operators on L' (X, X, m) and

1Pf = Pel =11 ) (Pr—i f = Prig)l < Y I1P—i(f = <7 ILf —2l-

i=1 i=1

If Py,..., P, are nonlinear stochastic operators on D C Ll(X ,2,m) and
ci, ...,y are nonnegative constants such that ¢; + --- 4 ¢, = 1 then the operator

P=cPi+--+c, Py

is also a nonlinear stochastic operator.
A special role in applications play stochastic operators acting on /! and 1(11 spaces
and given by bilinear operators. Such operators are of the form

P(x)y = Z Z af»{j XiXj,

ieX jex
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for all k € X, where X = Nif Pactson D C ['and X = {1,...,d} in the
second case. We assume that the cubic matrix [afy‘.] has nonnegative entries afj and

ak = 1foralli,j € X.
ij J
kex

2.15 Nonlinear Stochastic Semigroups

We recall that a family {P(¢)},>0 of nonlinear stochastic operators is called a
nonlinear stochastic semigroup if P(0) = I, P(t + ) = P(¢t)P(s) fors, t > 0,
and the map (¢, /) — P(¢)f is continuous. Now, we present a general method of
constructing nonlinear stochastic semigroups. Let {S(¢)};>0 be a (linear) stochastic
semigroup on the space L' (X, X, m) and let A be its generator with domain D (A).
Let P be a nonlinear stochastic operator on the set of densities D C Ll(X , X, m)
and assume that P satisfies the global Lipschitz condition, i.e., | P(f) — P(g)|| <
L|f —g| forall f,g € D and some L > 0. Let A > 0. Consider the following
evolution equation

u' (1) = Au(t) — Au(t) + APu(t), u(0) = uo, (63)

where ug € D. By asolution of (63) we understand a mild solution, i.e., a continuous
function u: [0, 00) — D such that

u(t) = T(t)uo + /Ot AT(t —$)P(u(s))ds fort > 0, (64)

where the semigroup {7'(¢)};>¢ is given by T(1) = e * S(t). The existence and
uniqueness of solutions of equation (64) is a simple consequence of the method of
variation of parameters (see e.g. [76]).

A special role in application plays equation (63) with A = 0. A linear change of
time ¢ leads to the case with A = 1, thus, we can consider the equation

W' (t) +ut) = Pu(t), u(0)=ug€ D, (65)

which has a strong solution u: [0, c0) — D given by
o0
ut) =e' Z(l —e N 'uy,
n=0

where the sequence (u,), n € N is defined by the recurrent formulae

n—1

1
U, = — Z O(ug,uyp—1—x) forn >1.
=
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3 Asymptotic Properties of Stochastic Operators
and Semigroups

Now we introduce some notions which characterize the behaviour of iterates of
stochastic operators P, n = 0,1,2,..., when n — oo and stochastic semigroups
{P(t)}>0 when t — oo. Since the iterates of stochastic operators also form a
(discrete time) semigroup we use notation P(¢) = P’ for their powers and we
formulate most of definitions and results for both types of semigroups without
distinguishing them.

3.1 Asymptotic Stability

Consider a stochastic semigroup {P(¢)};>0. A density fi is called invariant if
P()f« = f« for each t > 0. The stochastic semigroup {P(¢)};>o is called
asymptotically stable if there is an invariant density f. such that

tlim |P@)f — f«ll =0 for f eD.
—>00

If the semigroup { P(¢)},>0 is generated by some evolution equation u’(¢) = Au(t)
then the asymptotic stability of { P(¢)};>o means that the stationary solution u(t) =
[« is asymptotically stable in the sense of Lapunov and this stability is global on the
set D.

Remark 3 Let {P(t)},>0 be a continuous time stochastic semigroup and P = P(t))
for some 7o > 0. Then the semigroup {P(¢)};>0 is asymptotically stable iff the
discrete semigroup { P" },en is asymptotically stable. The proof of this fact goes as
follows. Assume that the discrete semigroup { P"},en is asymptotically stable. For
f e€Dande > 0wefindé > Osuchthat |P(2)f — P(s)f| <eif [t —s| <. Let
k > tp/8 be an integer and let f; = P(ito/k) f fori = 1,..., k. Then there exists
no € N such that | P" f; — f«|| < e forn > ng and fori = 1,..., k. Therefore,
|P(@)f — f«ll <2¢efort > noto.

Example 4 Let Pg be the Frobenius—Perron operator related to the tent map defined
in Example 1, i.e., Py is given by

P f(x) = L f(hx) + 101 = L),

We check that the semigroup determined by Ps is asymptotically stable, which is
equivalent to exactness of the tent map. The function fx = 1o is an invariant
density. Since any Frobenius—Perron operator is a contraction it is sufficient to check
that lim, .o, P" f = fx for f from a dense subset Dy of D. We assume that D,



Stochastic Operators and Semigroups and Their Applications in Physics and Biology 283

is a set of densities which are Lipschitz continuous. Let f € Dy and let L be the
Lipschitz constant for f. Then

|Pf(x) = P3| < 51f(3) = FDI+ 31 f(1=5%) + f(1 = 39)| < 5lx = yl.

Thus L/2 is the Lipschitz constant for Pf and by induction we conclude that L /2’
is the Lipschitz constant for P’ . Hence, the sequence P’ f* converges uniformly to
a constant function. Since (P’ f) are densities, (P’ f) converges to f uniformly,
which implies the convergence in L'.

Example 5 The second example is the logistic map S(x) = 4x(1 — x) on [0, 1].
Denote by T the tent map and let @(x) = 1 — 1 cos(mx). We check that S o @ =
@ o T. Indeed

S(P(x)) = 4(3 — $ cos(mx)) (3 + § cos(rx)) = 1 — cos*(mx),
D(T(x)) = % - %cos(nT(x)) = % - %COS(27{)C) = % - %(2 cos?(x) — 1)
=1 —cos’(mx).
Since S 0 @ = @ o T we have Ps Py = Pg Pr. Which gives Ps = Pg Py Pp—1

and, by induction, P{ = P¢ P} Py—1.Let f € D. Then Pp—1 f € D and from the
previous example lim, .o Pj} Pp—1 f = ljp,17. Therefore

lim PLf = Polpn = lon(@~' )@ 7'(x) = (@7 ()"

1
Since @' (x) = L arccos(l — 2x) we have (&' (x))) = ————. It means
i m/x(1—x)
that the logistic map S(x) = 4x(1 — x) on [0, 1] is exact and has the invariant
density

1

Jol) = w/x(1 —x)'

3.2 Lower Function Theorem

Now we present a very useful result concerning asymptotic stability called the lower
function theorem of Lasota and Yorke. A functions € L', i > 0and h # 0is called
a lower function for a stochastic semigroup { P (¢)};>o if

tl_l)lgo (P@)f —h)"|| =0 forevery f € D. (66)



284 R. Rudnicki

Here we use the notation f~(x) = 0if f(x) > 0and f~(x) = —f(x) if f(x) < 0.
The condition (66) can be written equivalently as: there are functions £(¢) € L! such
that lim;, ||€(?)|| = 0 and P(¢) f > h — e(¢). Observe that if the semigroup is
asymptotically stable then its invariant density fi is a lower function for it. Lasota
and Yorke [57] proved the following converse result.

Theorem 6 Let {P(t)}:>0 be a stochastic semigroup. If there exists a lower func-
tion h for a stochastic semigroup {P(t)};>0 then this semigroup is asymptotically
stable.

Now, we present an application of this result.

Example 6 Let X = {1,...,d}, ¥ = 2%, and m be the counting measure on
X . Then we use the notation ZC} = L'(X, X, m). Let P: ZC} — ZC} be a stochastic
operator, i.e., the operator P is represented by a stochastic matrix P:RY — R?
such that p; > O foreach i, j € X and Zl‘-l:l pij = lforeach j € X. A sequence
(x1,...,xg4) is a density if it has nonnegative elements and x| + --- + x; = 1. We
show that if for some r > 1 the matrix P" has all positive entries, the operator P
is asymptotically stable, i.e., there exists a density & = (7, ..., ) with positive
elements m; such that lim, .., P"x = m for every density x. In order to prove this
claim we observe that the entries of the matrix P" are greater or equals some ¢ > 0,
which implies that P"x > [c,...,c] for any density x. Therefore, for n > r and
x € D we have

P'x> P (P""x)>][c,...,c]

because P"~"x is also a density. Thus, [c, ..., c] is a lower function and Theorem 6
completes the proof.

Remark 4 The result presented in Example 6 is a special case of the Perron—
Frobenius theorem for non-negative matrices [71]. In particular, by spectral argu-
ments, one can prove that the sequence { P"x} converges exponentially to . We
can also replace the assumption on positivity of the matrix P" by a weaker one that
P is irreducible, but in this case we can only prove asymptotic periodicity of the
sequence { P"x}.

The second application of the lower function theorem is given in 4.5.

3.3 Partially Integral Semigroups

Now and in 3.4 we present our main results concerning long-time behaviour of
stochastic and substochastic semigroups. The proofs of these results are based on
the theory of Harris operators [34,44] and we do not give their here. We start with
the definition of a partially integral semigroup.
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A substochastic semigroup { P(¢)};>o is called partially integral if there exists a
measurable function k: (0, 00) x X x X — [0, 00), called a kernel, such that

P() f(x) > /X k(e x, ) f () m(dy)

for every density f and

/ /k(l,x,y)m(dy)m(dx) >0
xJx

for some ¢ > 0.

Theorem 7 ([90]) Let {P(t)};>0 be a partially integral stochastic semigroup.
Assume that the semigroup {P(t)};>0 has an invariant density fi. Moreover, we
assume that the semigroup {P(t)};>0 has no other periodic points in the set of
densities, i.e., if P(t)f = f forsome f € D andt > 0, then [ = fx. If fxx >0
a.e. then the semigroup { P(t)},>¢ is asymptotically stable.

For any f € L'(X) the support of f is defined up to a set of measure zero by
the formula

supp f = {x € X : f(x) # 0}.

We say that a stochastic semigroup {P(¢)};>0 spreads supports if for every set
A € X and for every f € D we have

lim m(supp P(z) f N A) = m(A)
—>00
and overlaps supports, if for every f, g € D there exists t > 0 such that

m(supp P(t) f Nsupp P(t)g) > 0.

Now we formulate corollaries which are often used in applications.

Corollary 2 ([90]) A partially integral stochastic semigroup which spreads sup-
ports and has an invariant density is asymptotically stable.

Corollary 3 ([90]) A partially integral stochastic semigroup which overlaps sup-
ports and has an invariant density fy > 0 a.e. is asymptotically stable.

Remark 5 The above corollaries generalize some earlier results [19, 66, 85, 89]
for integral stochastic semigroups. Another proof of Corollary 3 is given in [11].
Corollary 2 remains true also for the Frobenius—Perron operators. Precisely, let S
be a double-measurable transformation of a probability measure space (X, X, m).
If S preserves the measure m and the iterates of the Frobenius—Perron operator Pg
spread supports, then the semigroup of iterates of Pg is asymptotically stable [90]. It
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is interesting that if we assume only that a stochastic operator (or semigroup) P has
an invariant density f. and spreads supports, then P is weakly asymptotically stable
(mixing). It means that for every f € D the sequence P" f converges weakly to fi.
One can expect that we can drop in Corollary 2 the assumption that the semigroup is
partially integral, but its is no longer true. Indeed, in [92] we construct a stochastic
operator P: L'[0,1] — L'[0, 1] which spreads supports and P1 = 1 but it is not
asymptotically stable.

If {P(t)}:>0 is a continuous time stochastic semigroup then we can strengthen
considerably Theorem 7 and formulate the main result of this part.

Theorem 8 ([81]) Let { P(t)}:>0 be a continuous time partially integral stochastic
semigroup. Assume that the semigroup { P(t)},>0 has a unique invariant density fx.
If f« > 0 a.e., then the semigroup { P(t)};>0 is asymptotically stable.

Remark 6 The assumption that the invariant density is unique can be replaced by an
equivalent one: that does not exist a set £ € X such that m(E) > 0,m(X \ E) > 0
and P(¢)E = E forall ¢t > 0. Here P(¢) is the operator acting on the o-algebra ¥
defined by: if f > 0, suppf = A and supp Pf = B then PA = B.

Remark 7 Theorem 8 is not longer true if we replace a continuous time semigroup
by a discrete time semigroup (i.e., the iterates of a stochastic operator). Indeed, the
stochastic operator P on the space [; given by P(xy,x2) = (x2,x1) is an integral
operator and it has a unique density (%, %) but it is not asymptotically stable.

3.4 Sweeping and Foguel Alternative

The second important notion which describes the long-time behaviour of stochastic
semigroups is sweeping. The notion of sweeping was introduced by Komorowski
and Tyrcha [49] and it is also known as zero type property. A stochastic semigroup
{P(t)}:>0 is called sweeping with respect to a set B € X if forevery f € D

lim / P(t) f(x)m(dx) = 0.
—>00 B

It is clear that if a stochastic semigroup is sweeping then it cannot be asymptotically
stable. Our main aim in this part is to find such conditions on a semigroup to have
alternative between asymptotic stability and sweeping.

The crucial role in results concerning sweeping plays the following condition:

(KT) There exists a measurable function fi such that: 0 < fx < oo a.e.,
P()f« < fifort =0, fx ¢ L' and [, fudm < oo for some set A € ¥
with m(A) > 0.
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Theorem 9 ([49]) Let { P(2)}:>0 be an integral stochastic semigroup which has no
invariant density. Assume that the semigroup {P(t)};>0 and a set A € X satisfy
condition (KT). Then the semigroup { P(t)};>0 is sweeping with respect to A.

In paper [90] it was shown that Theorem 9 holds for a wider class of operators than
integral ones. In particular, the following result was proved (see [90] Corollary 4
and Remark 6).

Theorem 10 Ler {P(t)}>0 be a stochastic semigroup which overlaps supports.
Assume that the semigroup { P(t)};>0 and a set A € X satisfy condition (KT). Then
the semigroup { P (t)}:>0 is sweeping with respect to A.

The main difficulty in applying Theorems 9 and 10 is to prove that a stochastic
semigroup satisfies condition (KT). Now we formulate a criterion for sweeping
which will be useful in applications.

Theorem 11 ([90]) Let X be a metric space and ¥ = HB(X) be the c—algebra
of Borel subsets of X. We assume that a partially integral stochastic semigroup
{P(t)}i>0 with the kernel k has the following properties:

(a) forevery f € D we have fooo P(t)fdt>0a.e,
(b) for every yo € X there exist ¢ > 0, t > 0, and a measurable function n > 0
such that [ ndm > 0 and

k(. x,y) =z n(x)

forx € X and y € B(yo,¢), where B(yy, €) is the open ball with center yo and
radius . If the semigroup {P(t)};>0 has no invariant density then it is sweeping
with respect to compact sets.

Remark 8 If {P(t)};>0 is a discrete time semigroup then condition (a) is of the
form: for every f € D wehave Y .o P" f > O a.e.

From Theorem 8 and Theorem 11 it follows

Corollary 4 Let {P(t)};>0 be a continuous time partially integral stochastic
semigroup on L' (X, B(X), m), where X is a metric space. Assume that conditions
(a) and (b) of Theorem 11 hold. Then the semigroup {P(t)};>¢ is asymptotically
stable if it has an invariant density and it is sweeping with respect to compact sets
if it has no invariant density. In particular, if X is compact then the semigroup
{P(t)}:>0 is asymptotically stable.

The property that a stochastic semigroup {P(¢)};>o is asymptotically stable or
sweeping from a sufficiently large family of sets is called the Foguel alternative [55].
We use the notion of the Foguel alternative in a narrow sense, when the sweeping is
from all compact sets.

From Theorems 7 and 11 it follows
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Corollary 5 The Foguel alternative holds for a partially integral stochastic
semigroup {P(t)};=0 on L'(X, B(X),m) with a continuous and positive kernel
k(t,x,y) fort > 0.

Now we present a result concerning long-time behaviour of stochastic semi-
groups given in [78] which generalizes Theorems 8 and 11.

Theorem 12 Let X be a metric space and and ¥ = PB(X). Let {P(t)}i>0 be a
continuous time partially integral substochastic semigroup on L'(X) with kernel k
and which has a unique invariant density fy. Let S = supp f«. We assume that for
some ty > 0

/ /k(to,x,y)m(dx)m(dy) > 0.
sJs

Moreover, we assume that for some t; > 0

(a) there is no nonempty measurable set B € X \ S such that P*(t)1 > 13,
(b) forevery yo € X \ S there exist ¢ > 0 and a measurable function n > 0 such
that IX\S ndm > 0 and

k(t,x,y) = n(x) (67)

forx € X and y € B(yy, ¢).
Then for every f € D there exists a constant ¢ (f) such that

lim 15 P(t) f = c(f) f«
=00
and for every compact set F € X and f € D we have

lim P(t) f(x)m(dx) = 0.
=0 JFNx\S

Remark 9 If we drop in Theorem 11 condition (b) then it is not longer true. Indeed,
there is an integral stochastic operator with a strictly positive kernel which has no
invariant density but it is not sweeping from compact sets (see [90], Remark 7).
The notion of sweeping operators is similar to the notion of dissipative operators. A
stochastic operator is called dissipative if Y .-, P" f(x) < oo a.e. for adensity with
f > 0 a.e. This definition is independent of the choice of f. There are dissipative
stochastic operators which are no sweeping (see [49] Example 1). It is interesting
that a stochastic operator on L' (IR) can be sweeping from compact sets but can be
no sweeping from sets of finite Lebesgue measure (see [90], Remark 3).

From our general results concerning the Foguel alternative it is easy to prove the
following well-known results on continuous time irreducible Markov chains (see
[82] for the proof in the case .
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Theorem 13 Let {P(t)};>0 be a stochastic semigroup on I; generated by the
equation

x'(t) = Ox(t).

Let us assume that the entries of the matrix Q satisfy the following condition
(T)forall 1 <i,j < d there exists a sequence of integers ig, i1, ..., i, such that
io=Jj, i, =1iand

Qivi—y + - Girir9irio > 0. (68)

Then the semigroup {P(t)};>0 is asymptotically stable, i.e., there exists a density
= (m,...,7q) with positive elements 7t; such that lim,_,(P(t)x); = n; for
every density x and 1 <i <d.

Proof We apply Corollary 4. Since X = {1,...,d} is a discrete space, the
semigroup { P (¢)};>o is integral with a continuous kernel k and the kernel k satisfies
condition (b). From (T) it follows that condition (a) holds. Since the spaces X is
compact, the semigroup {P(¢)};>0 cannot be sweeping from compact sets, and,
consequently, it is asymptotically stable. O

Remark 10 By spectral arguments one can prove a stronger version of Theorem 13
with exponential convergence of P(¢)x to 7 ast — oo.

Theorem 14 Let {P(t)};>0 be a stochastic semigroup on I' generated by the

equation

x'(t) = Ox(t).

Let us assume that the entries of the matrix Q satisfy the following condition
(T) for alli, j € N there exists a sequence of nonnegative integers ig, i1, ..., I,
such thatiy = j, i, =i and

Qivi—y + - GirinGirio > 0. (69)

Then the semigroup { P(t)};>0 satisfies the Foguel alternative:

(a) if the semigroup {P(t)};>0 has an invariant density, then it is asymptotically
stable,

(b) if the semigroup {P(t)};>0 has no invariant density, then for every x € I and
i € Nwe have

lim (P(1)x); = 0. (70)

Now we return to a piecewise deterministic Markov process considered in 2.11.
The main problem with application of the Foguel alternative is to check that the



290 R. Rudnicki

stochastic semigroup related to this process is partially integral and its kernel
satisfies condition (b). Now we discuss this subject. As in 2.11 we assume that
the system is governed by k flows 7/ and each flow 7/ is defined as the solution
of a system of differential equations x’ = b’(x) on G C R“. We also assume
that all transition intensities g;(x) are continuous and positive functions. Denote
by {P(t)}:;>0 the semigroup corresponding to this system. Let (iy,...,is+1) be a
sequence of integers from the set / = {1,...,k}. For x € X and ¢ > 0 we define
the function ¥, onthe set A, = {t = (71,...,74):t > 0,71 +---+ 174 <t} by

id+1

You(tth. o) = w58 gy © Jrij 0-:-:0 715 o n;i (x).

Assume that for some yy € X, tp > 0 and Ve Ay, we have
d 0
det [M} #£0. (71)
T

Then, according to [81], there exists a continuous function k: G x G — [0, c0) and
apoint xo € G such that k(xo, yo) > 0 and

P(10) f(x) = /Gk(x,y)f(y)dy for f € D.

Remark 11 Condition (71) can be formulated using Lie brackets (see for their
definition page 274). Assume that g;;(yo) > Oforall 1 < i, j < k. If vectors

b2 (y0) = b (o). . ... D* (yo) — B (o). [6' . b 1(yo)1<i j <k B, 167 b TN (v0)1<i ji<ks - - -

span the space R? then (71) holds (see , e.g., [13] Theorem 4).

3.5 Hasminskii Function

An advantage of the formulation of Corollary 4 in the form of an alternative is
that in order to show asymptotic stability we do not need to prove the existence
of an invariant density. It is enough to check that the semigroup is not sweeping
with respect to compact sets then, automatically, the semigroup {P(?)};>0 is
asymptotically stable. We can eliminate the sweeping by means some method
similar to that of Lyapunov function called Hasminskii function.



Stochastic Operators and Semigroups and Their Applications in Physics and Biology 291

Consider a continuous time stochastic semigroup {P(¢)};>0 and let A be its
generator. Let Z = (I — A)~!. A measurable function V : X — [0, c0) is called
a Hasminskii function for the semigroup { P(¢)},>0 and a set Z € X if there exist
M > 0 and ¢ > 0 such that

/ V(X)Z f(x)dm(x) < / (V(x) — &) f(x)dm(x) + / MZ f(x)dm(x).
X X z 72)

Theorem 15 ([79]) Let {P(¢)} be a stochastic semigroup generated by the
equation

du

— = Au.

at
Assume that there exists a Hasminskii function for this semi