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Preface 

Cluster analysis is a very practical subject. Some 30 years ago, biologists 
and social scientists began to look for systematic ways to find groups in 
their data. Because computers were becoming available, the resulting algo- 
rithms could actually be implemented. Nowadays clustering methods are 
applied in many domains, including artificial intelligence and pattern 
recognition, chemometrics, ecology, economics, the geosciences, marketing, 
medical research, political science, psychometrics, and many more. This has 
led to a lot of different methods, and articles on clustering have appeared 
not only in statistical journals but also in periodicals of all these domains. 
Clustering is known under a variety of names, such as numerical taxonomy 
and automatic data classification. 

Our purpose was to write an applied book for the general user. We 
wanted to make cluster analysis available to people who do not necessarily 
have a strong mathematical or statistical background. Rather than giving an 
extensive survey of clustering methods, leaving the user with a bewildering 
multitude of methods to choose from, we preferred to select a few methods 
that together can deal with most applications. This selection was based on a 
combination of methodological aims (mainly robustness, consistency, and 
general applicability) and our own experience in applying clustering to a 
variety of disciplines. 

The book grew out of several courses on cluster analysis that we taught 
in Brussels, Delft, and Fribourg. It was extensively tested as a textbook 
with students of mathematics, biology, economics, and political science. It 
is one of the few books on cluster analysis containing exercises. The first 
chapter introduces the main approaches to clustering and provides guidance 
to the choice between the available methods. It also discusses various types 
of data (including interval-scaled and binary variables, as well as similarity 
data) and explains how these can be transformed prior to the actual 
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clustering. The other six chapters each deal with a specific clustering 
method. These chapters all have the same structure. The first sections give a 
short description of the clustering method, explain how to use it, and 
discuss a set of examples. These are followed by two sections (marked with 
* because they may be skipped without loss of understanding) on the 
algorithm and its implementation, and on some related methods in the 
literature. The chapters are relatively independent (except for Chapter 3 
which builds on Chapter 2), allowing instructors to cover only one chapter 
in a statistics course. Another advantage is that researchers can pick out the 
method they need for their current application, without having to read 
other chapters. (To achieve this structure, some things had to be repeated in 
the text.) Occasionally, we handed a single chapter to someone working on 
a particular problem. 

Chapters 2, 3, and 4 are about partitioning methods, whereas Chapters 5, 
6, and 7 cover hierarchical techniques. Whenever possible, we constructed 
methods that cannot only analyze data consisting of measurements (ie., 
objects with variables) but also data consisting of dissimilarities between 
objects. (This excluded parametric approaches, such as those based on 
multivariate mixture distributions.) We also wanted the methods to be 
consistent for large data sets. All the selected methods are of the L, type, 
which means that they minimize s u m s  of dissimilarities (rather than sums of 
squared dissimilarities, as in the classical nonrobust methods). Some of the 
methods are new, such as the approach for partitioning large data sets and 
the L, method for fuzzy clustering. Also, the clusterings are accompanied 
by graphical displays (called silhouettes and banners) and corresponding 
quality coefficients, which help the user to select the number of clusters and 
to see whether the method has found groups that were actually present in 
the data. 

Current statistical software packages contain only a few clustering tech- 
niques and they are not the more modern methods. This forced us to write 
new programs, the use of which is described in the book. Their present 
version is for IBM-PC and compatible machines, but the source codes are 
very portable and have run on several types of mainframes without prob- 
lems. The programs (together with their sources and the data sets used in 
the book) are available on floppy disks by writing to the authors. The 
programs are also being integrated in the workstation package S-PLUS of 
Statistical Sciences, Inc., P.O. Box 55625, Seattle, WA 98145-1625. 

We are grateful to Frank Critchley, Jan de Leeuw, Gaetan Libert, Glenn 
Milligan, Frank Plastria, Marc Roubens, John Tukey, Bert van Zomeren, 
Howard Wainer, Michael Windham, and David Wishart for helpful sugges- 
tions and stimulating discussions on topics covered in this book and to 
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Etienne Trauwaert for contributing to Section 4 of Chapter 4. Valuable 
comments on the manuscript were given by Phil Hopke, Doug Martin, 
Marie-Paule Derde, and two reviewers. Annie De Schrijver was responsible 
for drawing several figures. Finally, we would like to thank our wives, 
Jacqueline and Lieve, for their patience and support. 
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C H A P T E R 1  

Introduction 

1 MOTIVATION 

Cluster analysis is the art of finding groups in data. To see what is meant by 
this, let us look at Figure 1. It is a plot of eight objects, on which two 
variables were measured. For instance, the weight of an object might be 
displayed on the horizontal axis and its height on the vertical one. Because 
this example contains only two variables, we can investigate it by merely 
looking at the plot. 

In this small data set there are clearly two distinct groups of objects, 
namely {TIN, TAL, KIM, ILA} and (LIE, JAC, PET, LEO}. Such groups 
are called clusters, and to discover them is the aim of cluster analysis. 
Basically, one wants to form groups in such a way that objects in the same 
group are similar to each other, whereas objects in different groups are as 
dissimilar as possible. 

The classification of similar objects into groups is an important human 
activity. In everyday life, this is part of the learning process: A child learns 
to distinguish between cats and dogs, between tables and chairs, between 
men and women, by means of continuously improving subconscious classi- 
fication schemes. (This explains why cluster analysis is often considered as a 
branch of pattern recognition and artificial intelligence.) Classification has 
always played an essential role in science. In the eighteenth century, 
Linnaeus and Sauvages provided extensive classifications of animals, plants, 
minerals, and diseases (for a recent survey, see Holman, 1985). In astron- 
omy, Hertzsprung and Russell classified stars in various categories on the 
basis of two variables: their light intensity and their surface temperature. In 
the social sciences, one frequently classifies people with regard to their 
behavior and preferences. In marketing, it is often attempted to identify 
market segments, that is, groups of customers with similar needs. Many 
more examples could be given in geography (clustering of regions), medicine 
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Figure 1 A plot of eight objects. 

(incidence of specific types of cancer), chemistry (classification of com- 
pounds), history (grouping of archeological findings), and so on. Moreover, 
cluster analysis can be used not only to identify a structure already present 
in the data, but also to impose a structure on a more or less homogeneous 
data set that has to be split up in a “fair” way, for instance when dividing a 
country into telephone areas. Note that cluster analysis is quite different 
from discriminant analysis in that it actually establishes the groups, whereas 
discriminant analysis assigns objects to groups that were defined in ad- 
vance. 

In the past, clusterings were usually performed in a subjective way, by 
relying on the perception and judgment of the researcher. In the example of 
Figure 1, we used the human eye-brain system which is very well suited 
(through millenia of evolution) for classification in up to three dimensions. 
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However, the need to classify cases in more than three dimensions and the 
upcoming objectivity standards of modern science have given rise to so- 
called automatic classification procedures. Over the last 30 years, a wealth 
of algorithms and computer programs has been developed for cluster 
analysis. The reasons for this variety of methods are probably twofold. To 
begin with, automatic classification is a very young scientific discipline in 
vigorous development, as can be seen from the thousands of articles 
scattered over many periodicals (mostly journals of statistics, biology, 
psychometrics, computer science, and marketing). Nowadays, automatic 
classification is establishing itself as an independent scientific discipline, as 
witnessed by a full-fledged periodical (the Journal 01 Classi$cation, first 
published in 1984) and the International Federation of Classification Soci- 
eties (founded in 1985). The second main reason for the diversity of 
algorithms is that there exists no general definition of a cluster, and in fact 
there are several kinds of them: spherical clusters, drawn-out clusters, linear 
clusters, and so on. Moreover, different applications make use of different 
data types, such as continuous variables, discrete variables, similarities, and 
dissimilarities. Therefore, one needs different clustering methods in order to 
adapt to the kind of application and the type of clusters sought. Cluster 
analysis has become known under a variety of names, such as numerical 
taxonomy, automatic classification, botryology (Good, 1977), and typologi- 
cal analysis (Chandon and Pinson, 1981). 

In this book, several algorithms are provided for transforming the data, 
for performing cluster analysis, and for displaying the results graphically. 
Section 2 of this introduction discusses the various types of data and what 
to do with them, and Section 3 gives a brief survey of the clustering 
methods contained in the book, with some guidelines as to which algorithm 
to choose. In particular the crucial distinction between partitioning and 
hierarchical methods is considered. In Section 4 a schematic overview is 
presented. In Section 5, it is explained how to use the program DAISY to 
transform your data. 

2 TYPES OF DATA AND HOW TO HANDLE THEM 

Our first objective is to study some types of data which typically occur and 
to investigate ways of processing the data to make them suitable for cluster 
analysis. 

Suppose there are n objects to be clustered, which may be persons, 
flowers, words, countries, or whatever. Clustering algorithms typically oper- 
ate on either of two input structures. The first represents the objects by 
means of p measurements or attributes, such as height, weight, sex, color, 
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and so on. These measurements can be arranged in an n-by-p matrix, where 
the rows correspond to the objects and the columns to the attributes. In 
Tucker's (1964) terminology such an objects-by-variables matrix is said to 
be wo-mode, since the row and column entities are different. The second 
structure is a collection of proximities that must be available for all pairs of 
objects. These proximities make up an n-by-n table, which is called a 
one-mode matrix because the row and column entities are the same set of 
objects. We shall consider two types of proximities, namely dissimilarities 
(which measure how far away two objects are from each other) and 
similarities (which measure how much they resemble each other). Let us 
now have a closer look at the types of data used in this book by considering 
them one by one. 

2.1 Interval-Scaled Variables 

In this situation the n objects are characterized by p continuous measure- 
ments. These values are positive or negative real numbers, such as height, 
weight, temperature, age, cost, ..., which follow a linear scale. For in- 
stance, the time interval between 1905 and 1915 was equal in length to that 
between 1967 and 1977. Also, it takes the same amount of energy to heat an 
object of -16.4"C to -12.4"C as to bring it from 352°C to 39.2"C. In 
general it is required that intervals keep the same importance throughout 
the scale. 

These measurements can be organized in an n-by-p matrix, where the 
rows correspond to the objects (or cases) and the columns correspond to the 
variables. When the fth measurement of the ith object is denoted by xi f  
(where i = 1,. . . , n and f = 1,. . . , p) this matrix looks like 

n objects 

P ... 

... 

variables 
X I /  * * -  

X i f  ... 

X n /  . * *  x.P ;I 
For instance, consider the following real data set. For eight people, the 
weight (in kilograms) and the height (in centimeters) is recorded in Table 1. 
In this situation, n = 8 and p = 2. One could have recorded many more 
variables, like age and blood pressure, but as there are only two variables in 
this example it is easy to make a scatterplot, which corresponds to Figure 1 
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Table 1 Weight and Height of Eight People, Expressed 
in Kilograms and Centimeters 

Weight Height 
Name (kg) (cm) 
Ilan 15 95 
Jacqueline 49 156 
Kim 13 95 
Lieve 45 160 
Leon 85 178 
Peter 66 176 
Talia 12 90 
Tina 10 78 

given earlier. Note that the units on the vertical axis are drawn to the same 
size as those on the horizontal axis, even though they represent different 
physical concepts. The plot contains two obvious clusters, which can in this 
case be interpreted easily: the one consists of small children and the other 
of adults. 

Note that other variables might have led to completely different cluster- 
ings. For instance, measuring the concentration of certain natural hormones 
might have yielded a clear-cut partition into three male and five female 
persons. By choosing still other variables, one might have found blood 
types, skin types, or many other classifications. 

Let us now consider the effect of changing measurement units. If weight 
and height of the subjects had been expressed in pounds and inches, the 
results would have looked quite different. A pound equals 0.4536 kg and an 
inch is 2.54 cm. Therefore, Table 2 contains larger numbers in the column 
of weights and smaller numbers in the column of heights. Figure 2, 
although plotting essentially the same data as Figure 1, looks much flatter. 
In this figure, the relative importance of the variable “weight” is much 
larger than in Figure 1. (Note that Kim is closer to Ilan than to Talia in 
Figure 1, but that she is closer to Talia than to Ilan in Figure 2.) As a 
consequence, the two clusters are not as nicely separated as in Figure 1 
because in this particular example the height of a person gives a better 
indication of adulthood than his or her weight. If height had been expressed 
in feet (1 f t  = 30.48 cm), the plot would become flatter still and the variable 
“weight” would be rather dominant. 

In some applications, changing the measurement units may even lead 
one to see a very different clustering structure. For example, the age (in 
years) and height (in centimeters) of four imaginary people are given in 
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Table 2 Weight and Height of the Same Eight People, 
But Now Expressed in Pounds and Inches 

Name (1b) (in.) 
Weight Height 

* 

- 
KIM 

’ TAL.QOILA 
’ TIN. 
’ - 

Ilan 
Jacqueline 
Kim 
Lieve 
Leon 
Peter 
Talia 
Tina 

33.1 
108.0 
28.7 
99.2 
187.4 
145.5 
26.5 
22.0 

37.4 
61.4 
37.4 
63.0 
70.0 
69.3 
35.4 
30.7 

Table 3 and plotted in Figure 3. It appears that {A, B )  and { C, 0) are 
two well-separated clusters. On the other hand, when height is expressed in 
feet one obtains Table 4 and Figure 4, where the obvious clusters are now 
{A, C} and { B, D}. This partition is completely different from the first 
because each subject has received another companion. (Figure 4 would have 
been flattened even more if age had been measured in days.) 

To avoid this dependence on the choice of measurement units, one has 
the option of standardizing the data. This converts the original measure- 
ments to unitless variables. First one calculates the mean value of variable 

HEIGHT (INCHES) t 
8 

& T  LEO 

Figure 2 Plot corresponding to Table 2. 
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Table 3 Age (in years) and Height (in centimeters) of Four People 

Age Height 
Person ( Y d  (cm) 

A 35 190 
B 40 190 
C 35 160 
D 40 160 

"O t 
0 .  

C D  - 
20 30 35 LO 50 

A G E  ( Y E A R S )  

L, . 
Figure 3 Plot of height (in centimeters) versus age for four people. 

Table 4 Age (in years) and Height (in feet) of the Same Four People 
~ 

Age Height 
Person (Yr) (ft) 

A 35 6.2 
B 40 6.2 
C 35 5.2 
D 40 5.2 
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Figure 4 Plot of height (in feet) versus age for the same four people. 

f, given by 

1 

n 
“/ = - (x , /  + X’/ + - * - + X U / )  

for each f = 1,. . . , p. Then one computes a measure of the dispersion or 
“spread” of this fth variable. Traditionally, people use the standard 
deviation 

for this purpose. However, this measure is affected very much by the 
presence of outlying values. For instance, suppose that one of the xi/ has 
been wrongly recorded, so that it is much too large. In this case std/ will be 
unduly inflated, because xi /  - mf is squared. Hartigan (1975, p. 299) notes 
that one needs a dispersion measure that is not too sensitive to outliers. 
Therefore, from now on we will use the mean absolute deviation 

where the contribution of each measurement xi/  is proportional to the 
absolute value \ x i /  - m/l. This measure is more robust (see, e.g., Hampel 
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et al., 1986) in the sense that one outlying observation will not have such a 
large influence on sf. (Note that there exist estimates that are much more 
robust, but we would like to avoid a digression into the field of robust 
statistics.) 

Let us assume that sf is nonzero (otherwise variable f is constant over 
all objects and must be removed). Then the standardized measurements are 
defined by 

and sometimes called z-scores. They are unitless because both the numera- 
tor and the denominator are expressed in the same units. By construction, 
the z i f  have mean value zero and their mean absolute deviation is equal to 
1. When applying standardization, one forgets about the original data (1) 
and uses the new data matrix 

variables 

objects 

. . .  

. . .  

... 

... 

... 

... 

in all subsequent computations. The advantage of using sf rather than std, 
in the denominator of (4) is that s/ will not be blown up so much in the 
case of an outlying x I / ,  and hence the corresponding zif  will still “stick 
out” so the ith object can be recognized as an outlier by the clustering 
algorithm, which will typically put it in a separate cluster. [This motivation 
differs from that of Milligan and Cooper (1988), who recommended the use 
of a nonrobust denominator.] 

The preceding description might convey the impression that standardiza- 
tion would be beneficial in all situations. However, it is merely an option 
that may or may not be useful in a given application. Sometimes the 
variables have an absolute meaning, and should not be standardized (for 
instance, it may happen that several variables are expressed in the same 
units, so they should not be divided by different s/). Often standardization 
dampens a clustering structure by reducing the large effects because the 
variables with a big contribution are divided by a large s f .  

For example, let us standardize the data of Table 3. The mean age equals 
m1 = 37.5 and the mean absolute deviation of the first variable works out 
to be s1 = (2.5 + 2.5 + 2.5 + 2.5)/4 = 2.5. Therefore, standardization 
converts age 40 to + 1 and age 35 to - 1. Analogously, m, = 175 cm and 
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Table 5 Standprdized Age and Height of the Same Four People 

Person Variable 1 Variable 2 

A - 1.0 1.0 
B 1.0 1.0 
C - 1.0 - 1.0 
D 1 .o - 1.0 

sz = (15 + 15 + 15 + 15}/4 = 15 cm, so 190 cm is standardized to + 1  
and 160 cm to - 1. The resulting data matrix, which is unitless, is given in 
Table 5 .  Note that the new averages are zero and that the mean deviations 
equal 1. Of course, standardizing Table 4 would yield exactly the same 
result, so Table 5 is the standardized version of both Tables 3 and 4. Even 
when the data are converted to very strange units (such as the proverbial 
fortnights and furlongs), standardization will always yield the same num- 
bers. However, plotting the values of Table 5 in Figure 5 does not give a 
very exciting result. Figure 5 looks like an intermediate between Figures 3 
and 4 and shows no clustering structure because the four points lie at the 
vertices of a square. One could say that there are four clusters, each 

HE IG H T ( S TANDAR DI 2 ED I 1 

- 1  0 1 

AGE (STANDARDIZED) 

Figure 5 Standardized height versus standardized age. 
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consisting of a single point, or that there is only one big cluster containing 
four points. 

From a philosophical point of view, standardization does not really solve 
the problem. Indeed, the choice of measurement units gives rise to relative 
weights of the variables. Expressing a variable in smaller units will lead to a 
larger range for that variable, which will then have a large effect on the 
resulting structure. On the other hand, by standardizing one attempts to 
give all variables an equal weight, in the hope of achieving objectivity. As 
such, it may be used by a practitioner who possesses no prior knowledge. 
However, it may well be that some variables are intrinsically more impor- 
tant than others in a particular application, and then the assignment of 
weights should be based on subject-matter knowledge (see, e.g., Abra- 
hamowicz, 1985). On the other hand, there have been attempts to devise 
clustering techniques that are independent of the scale of the variables 
(Friedman and Rubin, 1967). The proposal of Hardy and Rasson (1982) is 
to search for a partition that minimizes the total volume of the convex hulls 
of the clusters. In principle such a method is invariant with respect to linear 
transformations of the data, but unfortunately no algorithm exists for its 
implementation (except for an approximation that is restricted to two 
dimensions). Therefore, the dilemma of standardization appears unavoid- 
able at present and the programs described in this book leave the choice up 
to the user. 

Of course, the data offered to the program may already be the result of 
some transformation: Often people find it useful to replace some variable 
by its inverse or its square, which may be more meaningful in that 
particular context. However, we shall assume from now on that such 
transformations have been performed prior to the cluster analysis. 

The next step is to compute distances between the objects, in order to 
quantify their degree of dissimilarity. It is necessary to have a distance for 
each pair of objects i and j. The most popular choice is the Euclidean 
distance 

2 2 
d ( i ,  j )  = / ( x i l  - x j l )  + ( x i 2  - x j 2 )  + . . + (x,,, - x ~ , , ) ~  (6) 

(When the data are being standardized, one has to replace all x by z in this 
expression.) Formula (6) corresponds to the true geometrical distance 
between the points with coordinates ( x l l , .  .., x l p )  and ( x , ~  ,..., x,,,). To 
illustrate this, let us consider the special case with p = 2. Figure 6 shows 
two points with coordinates ( x i l ,  x 1 2 )  and (x,?, x , ~ ) .  It is clear that the 
actual distance between objects i and j is gwen by the length of the 
hypothenuse of the triangle, yielding expression (6) by virtue of Pythagoras’ 
theorem. For this reason, Gower (1971b) calls (6) the Pythagorean distance. 
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- 
first coordina t o 

Figure 6 Illustration of the Euclidean distance formula. 

Another well-known metric is the city block or Manhattan distance, 
defined by 

In Figure 6, this corresponds to the sum of the lengths of the other two 
sides of the triangle. The Manhattan distance was used in a cluster analysis 
context by Carmichael and Sneath (1969) and owes its peculiar name to the 
following reasoning. Suppose you live in a city where the streets are all 
north-south or east-west, and hence perpendicular to each other. Let 
Figure 6 be part of a street map of such a city, where the streets are 
portrayed as vertical and horizontal lines. Then the actual distance you 
would have to travel by car to get from location i to location j would total 
lxil - xjll + lxiz - xj+ corresponding to (7). This would be the shortest 
length among all possible paths from i to j. Only a bird could fly straight 
from point i to point j, thereby covering the Euclidean distance between 
these points. The use of the Manhattan distance is advised in those 
situations where for example a difference of 1 in the first variable,and of 3 
in the second variable is the same as a difference of 2 in the first variable 
and of 2 in the second. 
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Both the Euclidean metric (6) and the Manhattan metric (7) satisfy the 
following mathematical requirements of a distance function: 

(D1) d(i, j )  2 0 
(D2) d ( i ,  i) = 0 
(D3) d ( i ,  j )  = d ( j ,  i )  

(W d ( i ,  j )  s d( i ,  h )  + d ( h ,  j )  

for all objects i, j, and h. Condition (Dl )  merely states that distances are 
nonnegative numbers and (D2) says that the distance of an object to itself is 
zero. Axiom (D3) is the symmetry of the distance function. The triangle 
inequality (D4) looks a little bit more complicated, but is necessary to allow 
a geometrical interpretation. It says essentially that going directly from i to 
j is shorter than making a detour over object h. 

Note that d( i ,  j) = 0 does not necessarily imply that i = j, because it 
can very well happen that two different objects have the same measure- 
ments for the variables under study. However, the triangle inequality 
implies that i and j will then have the same distance to any other object h, 
because d( i ,  h )  I; d( i ,  j )  + d( j ,  h )  = d ( j ,  h )  and at the same time 
d( j, h )  I; d( j ,  i )  + d(i, h )  = d(i, h), which together imply that d( i ,  h )  = 

d ( j ,  h) .  
A generalization of both the Euclidean and the Manhattan metric is the 

Minkowski distance given by 

d ( i ,  j )  = ( ~ x , ~  - x,119 + ~ x , ~  - x,zlq + * - - + ~ x , ~  - x,p~4)1/9 

where q is any real number larger than or equal to 1. This is also called the 
L, metric, with the Euclidean ( q  = 2) and the Manhattan ( q  = 1) as special 
cases. Many other distance functions may be constructed (see, e.g., Bock, 
1974, Section 3; Hartigan, 1975, Chapter 2; Romesburg, 1984, Chapter 8). 
The clustering programs accompanying this book provide a choice between 
Euclidean and Manhattan distances. 

One sometimes computes weighted Euclidean distances like 

d ( i ,  j )  = JW1(X,I - X,llZ + wz(x,z - x,2IZ + - - + w p ( x * p  - xJ2 (8) 

where each variable receives a weight according to its perceived importance. 
For instance, giving a variable weight 2 is the same thing as using it twice. 
However, applying such weighted distances on the raw data is equivalent to 
first choosing other measurement units, corresponding to rescaling the 
coordinates by the factors 6,. . . , fi, and then computing ordinary 
distances. (Therefore, it was not necessary to provide weighted distances in 
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our programs.) This leads us back to the discussion on standardization. The 
essential question remains: Which weights should be assigned to the vari- 
ables? If one thinks the measurement units were not particularly well 
chosen and one wants to assign equal weights to the variables, it is 
preferable to standardize the data first and then to compute ordinary 
Euclidean distances (6). But if one wants to keep the data intact, because 
the measurement scales are believed to be meaningful, it is best not to 
standardize (and hence to use the weights inherent in the raw data). 
Furthermore, if one wants to impose certain weights on the variables, due to 
prior beliefs or background information, one can either change the mea- 
surement units or apply weighted distances like (8), which boils down to the 
same thing. 

In all this, it should be noted that a variable not containing any relevant 
information (say, the telephone number of each person) is worse than 
useless, because it will make the clustering less apparent. The Occurrence of 
several such “trash variables” will kill the whole clustering because they 
yield a lot of random terms in the distances, thereby hiding the useful 
information provided by the other variables. Therefore, such noninforma- 
tive variables must be given a zero weight in the analysis, which amounts to 
deleting them. A recent discussion of variable selection can be found in 
Fowlkes et al. (1988). In general, the selection of “good” variables is a 
nontrivial task and may involve quite some trial and error (in addition to 
subject-matter knowledge and common sense). In this respect, cluster 
analysis may be considered an exploratory technique. 

It often happens that not all measurements are actually available, so 
there are some “holes” in the data matrix (1). Such an absent measurement 
is called a missing uufue and it may have several causes. The value of the 
measurement may have been lost or it may not have been recorded at all by 
oversight or lack of time. Sometimes the information is simply not avail- 
able, as in the example of the birthdate of a foundling, or the patient may 
not remember whether he or she ever had the measles, or it may be 
impossible to measure the desired quantity due to the malfunctioning of 
some instrument. In certain instances the question does not apply (such as 
the color of hair of a bald person) or there may be more than one possible 
answer (when two experimenters obtain very different results). Because of 
all this, missing values are often encountered. 

How can we handle a data set with missing values? In the matrix (1) we 
indicate the absent measurements by means of some code (like the number 
999.99, if it did not already occur), that can then be recognized by the 
program. If there exists an object in the data set for which all measurements 
are missing, there is really no information on this object so it has to be 
deleted. Analogously, a variable consisting exclusively of missing values has 
to be removed too. 
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If the data are standardized, the mean value m, of the fth variable is 
calculated by making use of the present values only. The same goes for s,, 
so in the denominator of (2) and (3) we must replace n by the number of 
nonmissing values for that variable. The z-scores zi, can then be computed 
as in (4), but of course only when the corresponding xi, is not missing 
itself. 

In the computation of distances (based on either the xi, or the zi,) 
similar precautions must be taken. When calculating the distances d( i ,  j) 
given by (6) or (7), only those variables are considered in the sum for which 
the measurements for both objects are present; subsequently the sum is 
multiplied by p and divided by the actual number of terms (in the case of 
Euclidean distances this is done before taking the square root). Obviously, 
such a procedure only makes sense when the variables are thought of as 
having the same weight (for instance, this can be done after standardiza- 
tion). When computing these distances, one might come across a pair of 
objects that do not have any common measured variables, so their distance 
cannot be computed by means of the abovementioned approach. Several 
remedies are possible: One could remove either object or one could fill in 
some average distance value based on the rest of the data. A totally 
different approach consists of replacing all missing x i f  by the mean mf of 
that variable; then all distances can be computed. Applying any of these 
methods, one finally possesses a “full” set of distances. From this point on, 
many clustering algorithms can be applied, even though the original data 
set was not complete. 

In any case, we now have a collection of distances (whether based on raw 
or standardized data that contained missing values or not) that we want to 
store in a systematic way, This can be achieved by arranging them in an 
n-by-n matrix. For example, when computing Euclidean distances between 
the objects of Table 1 we obtain 

ILA 
JAC 
KIM 
LIE 
LEO 
PET 
TAL 

TIN 

ILA JAC KIM LIE LEO PET TAL 

0 69.8 2.0 71.6 108.6 95.7 5.8 

69.8 0 70.8 5.7 42.2 26.3 15.7 

2.0 70.8 0 72.5 109.9 96.8 5.1 

71.6 5.7 72.5 0 43.9 26.4 17.4 

108.6 42.2 109.9 43.9 0 19.1 114.3 

95.7 26.3 96.8 26.4 19.1 0 101.6 

5.8 75.7 5.1 77.4 114.3 101.6 0 

17.7 87.2 17.3 89.2 125.0 112.9 12.2 

TIN 

17.7 
87.2 
17.3 
89.2 

125.0 
112.9 

12.2 

0 

(9) 

The distance between object JAC and object LEO can be located at the 
intersection of the fifth row and the second column, yielding 42.2. The same 
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number can also be found at the intersection of the second row and the fifth 
column, because the distance between JAC and LEO is equal to the 
distance between LEO and JAC. This is the symmetry property (D3), which 
holds for any pair of objects [formula (6) gives the same result when i and j 
are interchanged]. Therefore, a distance matrix is always symmetric. More- 
over, note that the entries on the main diagonal are always zero, because the 
distance of an object to itself has to be zero. (The same remarks apply to 
the Manhattan or any other distance.) Therefore, it would suffice to write 
down only the lower triangular half of the distance matrix, which looks like 

JAC 
KIM 
LIE 
LEO 
PET 
TAL 
TIN 

ILA JAC KIM LIE LEO 
69.8 

71.6 5.7 72.5 

95.7 26.3 96.8 26.4 19.1 
5.8 75.7 5.1 77.4 114.3 
17.7 87.2 17.3 89.2 125.0 

2.0 70.8 

108.6 42.2 109.9 43.9 

PET TAL 

101.6 
112.9 12.2 

Note that in the latter form there are only seven rows and seven columns, 
because the upper row and the rightmost column of (9) were superfluous. 

When the data are represented as in (9) or (lo), the cluster structure we 
saw so easily in Figure 1 is rather hidden from visual inspection. Neverthe- 
less, the clustering methods discussed in Chapters 2, 4, 5, and 6 only make 
use of this information, without having to return to the original data matrix. 

2.2 Dissimilarities 

This leads us to our second input data structure, namely an n-by-n matrix 
like (9), often presented as in (10). The entries of such a matrix may be 
Euclidean or Manhattan distances. However, there are many other possibil- 
ities, so we no longer speak of distances but of dissimilarities (or dissimilar- 
ity coefficients). Basically, dissimilarities are nonnegative numbers d( i ,  j )  
that are small (close to zero) when i and j are “near” to each other and 
that become large when i and j are very different. We shall usually assume 
that dissimilarities are symmetric and that the dissimilarity of an object to 
itself is zero, but in general the triangle inequality does not hold. Indeed, it 
is often assumed that dissimilarities satisfy (Dl), (D2), and (D3) (see, e.g., 
Bock, 1974, p. 29, although none of these properties is really essential and 
there are clustering methods that do not require any of them. But the main 
difference with distances is that (D4) can no longer be relied on. 
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Table 6 Subjective Dissimilarities between 11 Sciences 

Astronomy 0.00 
Biology 7.86 0.00 
Chemistry 6.50 2.93 0.00 
Computer sci. 5.00 6.86 6.50 0.00 
Economics 8.00 8.14 8.21 4.79 0.00 
Geography 4.29 7.00 7.64 7.71 5.93 0.00 
History 8.07 8.14 8.71 8.57 5.86 3.86 0.00 
Mathematics 3.64 7.14 4.43 1.43 3.57 7.07 9.07 0.00 
Medicine 8.21 2.50 2.93 6.36 8.43 7.86 8.43 6.29 0.00 
Physics 2.71 5.21 4.57 4.21 8.36 7.29 8.64 2.21 5.07 0.00 
Psychology 9.36 5.57 7.29 7.21 6.86 8.29 7.64 8.71 3.79 8.64 0.00 

Dissimilarities can be obtained in several ways. Often they can be 
computed from variables that are binary, nominal, ordinal, interval, or a 
combination of these (a description of such variables and possible formulas 
will be given later in this chapter). Also, dissimilarities can be simple 
subjective ratings of how much certain objects differ from each other, from 
the point of view of one or more observers. This kind of data is typical in 
the social sciences and in marketing. 

Let us consider an example of this type. Fourteen postgraduate eco- 
nomics students (coming from different parts of the world) were asked to 
indicate the subjective dissimilarities between 11 scientific disciplines. All of 
them had to fill in a matrix like Table 6, where the dissimilarities had to be 
given as integer numbers on a scale from 0 (identical) to 10 (very different). 
The actual entries of Table 6 are the averages of the values given by the 
students. It appears that the smallest dissimilarity is perceived between 
mathematics and computer science, whereas the most remote fields were 
psychology and astronomy. 

Another example of the construction of dissimilarities is to record how 
often consonants are misunderstood, because when two consonants are 
often confused (like “s” and “2”) this indicates that their dissimilarity is 
small [see, e.g., Johnson’s (1967) analysis of the Miller and Nicely (1955) 
data], Such experiments lead to asymmetric matrices, because “t ” may be 
more often inadvertently taken for “s” than vice versa. However, in such 
situations one can easily symmetrize the data [for instance by averaging 
d ( i ,  j) with d ( j ,  i) for each pair of consonants]. 

If one wants to perform a cluster analysis on a set of variables that have 
been observed in some population, there are other measures of dissimilarity. 
For instance, one can compute the (parametric) Pearson product-moment 
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correlation 

between the variables f and g, or alternatively the (nonparametric) 
Spearman correlation. Both coefficients lie between - 1 and + 1 and do not 
depend on the choice of measurement units. The main difference between 
them is that the Pearson coefficient looks for a linear relation between the 
variables f and g, whereas the Spearman coefficient searches for a mono- 
tone relation. Both coefficients are provided by most statistical packages, 
like SPSS, BMDP, or SAS, so they can simply be taken from their routine 
output. Correlation coefficients are useful for clustering purposes because 
they measure the extent to which two variables are related. 

For instance, the Pearson correlation between the variables weight and 
height in Table 1 is 0.957. It is very high because there appears to be a 
positive relationship between these two variables: The larger somebody’s 
weight, the larger his or her height is likely to be, as can be seen from the 
upward trend in Figure 1. Table 7 also lists some other variables measured 
on the same eight people, namely their month and year of birth. We see no 
apparent relation between month of birth and weight: There is no obvious 
reason why someone born in November (of any year) would be likely to be 
heavier than someone born in February. Indeed, the correlation between 
month and weight is approximately zero (the actual value in this example is 
- 0.036). A third situation occurs when we correlate weight with the year of 
birth: The people with a large birth year will typically possess a smaller 
weight and vice versa. In such a situation the correlation coefficient be- 

Table 7 Data on Eight People. Weight is Expressed in Kilograms and Height 
in Centimeters. Also the Month and Year of Birth are provlded 

Name Weight Height Month Year 

Ilan 15 95 1 82 

Kim 13 95 11 81 
Lieve 45 160 7 56 
Leon 85 178 6 48 
Peter 66 176 6 56 
Talia 12 90 12 83 
Tina 10 78 1 84 

Jacqueline 49 156 5 55 
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Table 8 (a) Pearson Correlation Coefficients between the Four Variables 
in Table 7, (b) Corresponding Dissimilarities Obtained Through Formula (ll), 
and (c) Dissimilarities Computed by Means of (12) 

Quantity Weight Height Month Year 

(a) Correlations Weight 1.OOO 
Height 0.957 1 .Ooo 
Month -0.036 0.021 1 .Ooo 
Year -0.953 -0.985 0.013 1.OOO 

(b) Dissimilarities Weight O.OO0 
According to (1 1) Height 0.021 0.o00 

Month 0.518 0.489 0.OOO 
Year 0.977 0.992 0.493 0.OOO 

(c) Dissimilarities Weight O.Oo0 
According to (12) Height 0.043 O.OO0 

Month 0.964 0.979 0.OOO 
Year 0.047 0.015 0.987 0.o00 

comes strongly negative (in this example it is -0.953, which is close to - 1, 
because the relation is nearly linear). Continuing like this, we can fill up 
Table 8(a). 

Correlation coefficients, whether parametric or nonparametric, can be 
converted to dissimilarities d( f, g), for instance by setting 

With this formula, variables with a high positive correlation receive a 
dissimilarity coefficient close to zero, whereas variables with a strongly 
negative correlation will be considered very dissimilar. In other applications 
one might prefer to use 

in which case also variables with a strongly negative correlation will be 
assigned a small dissimilarity. Lance and Williams (1979) compared these 
formulas by means of real data, and concluded that (11) was unequivocally 
the best, whereas (12) still did relatively well. (A third possibility, given by 
d(f, g) = 1 - R ( f ,  g)*, turned out to be uniformly unsatisfactory.) Table 
8(b) contains the dissimilarities computed according to (ll), in which case 
weight and year are perceived to be very different. On the other hand, the 
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use of (12) yields Table 8(c) in which the variable year joins the cluster 
formed by weight and height. 

Many other ad hoc dissimilarities between variables can be thought of. 
For example, in a psychological application (Lecompte et al., 1986) we once 
had to cluster nominal variables, some of which possessed two classes and 
some three. The resulting contingency tables of pairs of variables led to 
chi-squared statistics that could not be compared directly because they 
possessed different degrees of freedom. However, the computed significance 
level (also called P-value) of these statistics could be used to construct a 
dissimilarity measure. The stronger the relationship between two variables, 
the smaller their P-value becomes. 

In many applications, the input data simply consist of a dissimilarity 
matrix, without any measurement values. Indeed, the dissimilarities may 
have been computed from attributes that were not published or even have 
been lost. It may also be that there never were any variables in the first 
place, because the dissimilarities were obtained in another way (from 
subjective assessments, confusion data, or whatever). For this reason it is 
useful to have clustering algorithms that can operate directly on a dissimi- 
larity matrix, without having to resort to any measurements. This is the case 
for the programs PAM, FANNY, AGNES, and DIANA, which will be 
briefly introduced in Section 3. 

2.3 Similarities 

Instead of using a dissimilarity coefficient d( i ,  j) to indicate how remote 
two objects i and j are, it is also possible to work with a similarity 
coeflcient s(i ,  j). The more objects i and j are alike (or close), the larger 
s ( i ,  j) becomes. Such a similarity s(i, j) typically takes on values between 
0 and 1, where 0 means that i and j are not similar at all and 1 reflects 
maximal similarity. Values in between 0 and 1 indicate various degrees of 
resemblance. Often it is assumed that the following conditions hold: 

for all objects i and j (see Bock, 1974). The numbers s(i, j) can be 
arranged in an n-by-n matrix like (9) or (lo), which is then called a 
similarity matrix. Both similarity and dissimilarity matrices are generally 
referred to as proximity matrices, or sometimes as resemblance matrices. 
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Similarities may arise in several ways. Like dissimilarities, they may be 
the results of subjective judgments. Also, there are formulas to compute 
similarities between objects characterized by attributes, even when these 
variables are of different types, as we shall see in Section 2.6 on mixed 
measurements. 

In order to define similarities between oariables, we can again resort to 
the Pearson or the Spearman correlation coefficient. However, neither 
correlation measure can be used directly as a similarity coefficient because 
they also take on negative values. Some transformation is in order to bring 
the coefficients into the zero-one range. There are essentially two ways to do 
this, depending on the meaning of the data and the purpose of the 
application. If variables with a strong negative correlation are considered to 
be very different because they are oriented in the opposite direction (like 
mileage and weight of a set of cars), then it is best to take something like 

which yields s ( f ,  g )  = 0 whenever R(f, g) = - 1. On the other hand, there 
are situations in which variables with a strong negative correlation should 
be grouped, because they measure essentially the same thing. (For instance, 
this happens if one wants to reduce the number of variables in a regression 
data set by selecting one variable from each cluster.) In that case it is better 
to use a formula like 

which yields s ( f ,  g )  = 1 when R ( f ,  g )  = -1. 
It must be noted that people have sometimes used correlation coefficients 

for assessing similarity between objects by simply interchanging the roles of 
objects and variables in the expression of R. This does not make much 
sense because it involves such operations as averaging the measurements (in 
different units) of the same object. The use of the correlation coefficient 
between objects was criticized by Eades (1965), Fleiss and Zubin (1969), 
and others, on several grounds. 

Suppose the data consist of a similarity matrix but one wants to apply a 
clustering algorithm designed for dissimilarities. Then it is necessary to 
transform the similarities into dissimilarities. The larger the similarity 
s ( i ,  j) between i and j, the smaller their dissimilarity d(i ,  j) should be. 
Therefore, we need a decreasing transformation, such as 

d ( i ,  j )  = 1 - s ( i ,  j )  (15) 
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One could also take the square root of 1 - s ( i ,  j), as advocated by Gower 
(1966) on the basis of a geometrical argument. This makes the differences 
between large similarities more important, but on the other hand makes it 
more difficult to obtain small dissimilarities. As a consequence, the resulting 
dissimilarity matrix might be rather homogeneous and less likely to yield 
clear-cut clusterings. 

When applying (15) to correlation coefficients, expression (13) leads to 
formula ( l l ) ,  which means that negatively correlated variables are consid- 
ered far apart. In the opposite case, (14) yields formula (12). 

In order to be able to process similarities and correlation coefficients, the 
program DAISY executes (ll), (12), and (15) as well as some other 
calculations. In Section 5 it will be explained how to use this program. 

2.4 Binary Variables 

Binary variables have only two possible outcomes (or states). For instance, 
when clustering people several binary variables may be used: male/female, 
smoker/nonsmoker, answered yes/no to a particular question, and so on. 
In the data matrix, such variables are often coded as zero or one. When 
variable f is binary, the objects i will have either xi, = 0 or x,, = 1. (It may 
be useful to allow a third code for missing values, e.g., to indicate that we 
do not know whether that particular person smokes or not.) Often 1 is 
taken to mean that a certain attribute is present (e.g., smoking), whereas 0 
indicates its absence. Sometimes people treat binary variables just as if they 
were interval-scaled, that is, by applying the usual formulas for Euclidean 
or Manhattan distance. Although this may sometimes lead to decent results, 
it is good to know that there exist approaches designed specifically for 
binary data. 

To begin with, there are special clustering algorithms for this situation, 
such as the monothetic analysis technique described in Chapter 7 and 
implemented in the program MONA. This algorithm operates directly on 
the binary data matrix, by dissecting the data according to a well-chosen 
variable. For instance, if the variable “smoking” were selected, the data 
would first be split into two clusters: the one consisting of smokers and the 
other of nonsmokers. 

Another possibility is to compute a dissimilarity matrix (or a similarity 
matrix) from binary data and then simply to apply one of the clustering 
algorithms that operates on such a matrix (such as the methods described in 
Chapters 2, 4, 5 ,  and 6). If all binary variables are thought of as having the 
same weight, one typically proceeds as follows. When computing a similar- 
ity s(i, j) or a dissimilarity d ( i ,  j) between two objects i and j, one draws 
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a 2-by-2 contingency table (or association table) such as 

object j 
1 0 

(16) 
object i 0 -1 

a + c  b + d  P 

Here, a is the number of variables that equal 1 for both objects. Analo- 
gously, b is the number of variables f for which x , ~  = 1 and x,, = 0, and 
so on. Obviously a + b + c + d = p ,  the total number of variables. (When 
missing values occur, one has to replace p by the number of variables that 
are available for both i and j. One could also compute weighted sums: If a 
variable is perceived to be very important, it may be given a higher weight 
than the other variables. In such a situation, p will be replaced by the sum 
of all the weights.) The values a ,  b, c, and d are then combined in a 
coefficient describing to what extent objects i and j agree with regard to 
the collection of binary variables. 

Table 9 provides an example of binary data. For 8 people, a total of 10 
binary variables were considered, such as male/female, blue eyes/brown 
eyes, round face/oval face, and so on. The attribute listed first is always the 
one coded as 1, for instance blue eyes = 1 and brown eyes = 0. When 
comparing Ilan with Talia, we make up a table like (16) which yields a = 1, 
b = 3, c = 1, and d = 5.  Note that interchanging Ilan and Talia would 
permute b and c (while leaving a and d unchanged), so a good similarity 
or dissimilarity coefficient must treat b and c in the same way in order to 
satisfy (D3) or (S3). 

At this point a crucial remark is in order. Following Gower (1971a, 
p. 858) and Bock (1974, Section 4) we can distinguish between two kinds of 
binary variables, depending on the particular application. 

The binary variable “sex” possesses the possible states “male” and 
“female.” Both are equally valuable and carry the same weight. There is no 
preference which outcome should be coded as 0 and which as 1. Such a 
variable is called symmetric. This is the first type of binary variable, which 
occurs very frequently. For symmetric variables, it is natural to work with 
inoarianr similarities, that is, the result must not change when some or all of 
the binary variables are coded differently. Therefore, a and d should play 
the same role. One looks for coefficients that only depend on the number of 
agreements ( a  + d)  and the number of disagreements ( b  + c )  between the 
objects i and j that are being compared. Table 10 gives the most common 
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Table 9 Binary Variables for Eight People 

rlan 
Jacqueline 
Kim 
Lieve 
Leon 
Peter 
Talia 
Tina 

1 0 1 1 0 0 1 0 0 0  
0 1 0 0 1 0 0 0 0 0  
0 0 1 0 0 0 1 0 0 1  
0 1 0 0 0 0 0 1 1 0  
1 1 0 0 1 1 0 1 1 0  
1 1 0 0 1 0 1  1 0 0  
0 0 0 1 0 1 0 0 0 0  
0 0 0 1 0 1 0 0 0 0  

Table 10 Some Invariant coefficients for Binary Data 

Name s ( i ,  j )  d( i ,  j )  

a + d  b + c  

a + b + c + d  
Simple matching coefficient 
(Zubin, 1938; Dumas, 1955; a + b + c + d  

Sokal and Michener, 1958; 
Sneath, 1962; Hill et al., 1965) 

a + d  2(b  + c )  

( a  + d )  + 2(b  + c )  ( a  + d )  + 2(b + c )  
Rogers and Tanimoto (1960) 

Sokal and Sneath (1963) 
(Duran and Ode11 1974) 

2( a + d )  b + c  

2(a + d )  + ( b  + c )  2(a  + d )  + ( b  + c )  
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invariant similarities s( i ,  j), together with the corresponding invariant 
dissimilarities d ( i ,  j) = 1 - s ( i ,  j ) .  

The most well known of these is the simple matching coefficient, which 
looks for the percentage of matches (i.e., agreements), or equivalently the 
percentage of mismatches (i.e., disagreements) between objects i and j. For 
the distance between Ilan and Talia it yields d ( i ,  j) = ( 3  + 1)/(1 + 3 + 
1 + 5) = 0.4. Sometimes it is also called M-coeficient or afinity index. If 
one treats binary variables as if they were interval-scaled and computes the 
Manhattan distance (without first standardizing the measurements), one 
obtains d ( i ,  j) = b + c which corresponds to the simple matching dissimi- 
larity except for a constant factor p .  In the same way, the Euclidean 
distance between objects i and j corresponds to the square root of the 
simple matching dissimilarity. Note that treating binary variables as if they 
were interval-scaled implies that they are assumed to be symmetric, because 
interchanging the codes 0 and 1 for some or all variables will still yield the 
same distance. 

The other coefficients in Table 10 are less often used. In the Rogers and 
Tanimoto (1960) formulas, the disagreements ( b  + c) carry twice the weight 
of the agreements ( a  + d ) .  On the other hand, Sokal and Sneath (1963) 
doubly weight the agreements. However, there is a simple monotone rela- 
tion between all three coefficients, because the Rogers-Tanimoto dis- 
similarity can be written as a monotone function of the simple matching 
dissimilarity : 

2 

1/((b + c ) / ( a  + b + c + d ) )  + 1 (17) = 
2(b + c) 

( a  + d )  + 2(b + c)  

and the same holds for the dissimilarity coefficient proposed by Sokal and 
Sneath: 

1 

2/((b + c ) / ( u  + b + c + d ) )  - 1 (18) - - b + c  

2(a  + d )  + ( b  + C) 

Therefore, it often makes little difference which of these three coefficients is 
used (especially if one applies a clustering algorithm that only depends on 
the ranks of the dissimilarities, such as the single linkage method discussed 
later). In this book, we prefer to work with the matching coefficient because 
it is simple and intuitive. In Section 5 we shall explain how to compute it by 
means of the program DAISY. 

The situation changes drastically if one works with asymmetric binary 
variables, for which the outcomes are not equally important. An example of 
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such a variable is the presence or absence of a relatively rare attribute, such 
as bloodtype AB negative. While it can be said that two people with AB 
negative have something in common, it is not so clear if the same can be 
said of two people who do not have it. In medicine, one may want to study 
the incidence of diseases, the presence of which are indicated by 1 and their 
absence by 0. For a typical sample of people, the data matrix would contain 
many zeroes, and most of the counts of the contingency tables like (16) 
would be in d. Applying one of the invariant coefficients of Table 10 would 
lead to the conclusion that most people are very similar. Bock (1974, 
Section 4) gives an illuminating example concerning the color of flowers: 
The binary variable red = l/not red = 0 is very asymmetric, as the state- 
ment “xi, = 1 and xi, = 1” implies that flowers i and j have the same 
color, whereas ‘‘xi, = 0 and xi, = 0” is much weaker and allows the flowers 
to have very different colors. 

When working with asymmetric binary variables, we need other proxim- 
ity coefficients. By convention, we shall always code the most important 
outcome (which is typically the rarest one) by 1, and the other by 0. Then 
the agreement of two 1s (called a positive match or a 1-1 match) will be 
considered more significant than the agreement of two 0s (called a negatiue 
match or a 0-0 match). Therefore, coefficients will be applied in which a ,  
the number of positive matches, carries more weight than d, the number of 
negative matches. Such coefficients are no longer invariant and the most 
common of them, listed in Table 11, do not even count d at all. 

The most famous noninvariant coefficient is due to Jaccard (1908) and 
looks like the simple matching coefficient except for leaving out d entirely. 
It has occasionally been called S-coeficient. The other formulas in Table 11 
assign double weight to a or to ( b  + c), and are monotonically related to 
the Jaccard coefficient in a manner analogous to (17) and (18). There are 
still other variants, some of which will be listed in Exercise 15. When 

Table 11 Some Noninvarinnt coefficients for Binary Data 

(I b + c  
Jaccard coefficient (1908) 
(Sneath, 1957; Hill et al., 1965) a + b + c  a + b - t c  

2 0  b + c  

2 u + b + c  2 a + b + c  
Dice (1945), Sorensen (1948) 

Sokal and Sneath (1963) 
(Duran and Odell, 1974) 

0 2(b  + c )  

a + 2 ( b + c )  CI + 2( b + c )  
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dealing with asymmetric binary variables, we prefer to use the Jaccard 
coefficient, which has also been implemented in the program DAISY. 

There have been some philosophical debates as to whether or not 
negative matches should be counted at all. From a mathematical point of 
view, the invariant coefficients are more elegant, whereas in some applica- 
tions it may be more appropriate to use a formula of Table 11. In our 
opinion there can be no single best coefficient because one should make the 
distinction between symmetric and asymmetric variables. Symmetric binary 
variables possess two equally important states, so for them the simple 
matching coefficient appears to be a logical choice. On the other hand, 
asymmetric binary variables are mostly concerned with the presence of a 
relatively rare attribute (coded l), the absence of which (coded 0) is 
uneventful. By abuse of the word binary, one might call them monary 
variables. In this situation 0-0 matches do not contribute much to the 
similarity between two individuals, so the Jaccard coefficient appears to give 
a reasonable description. Therefore, DAISY lets the user decide whether the 
binary variables are symmetric, in which case simple matching will be 
performed, or asymmetric, in which situation the Jaccard coefficient will be 
computed. 

To illustrate why it is important to make this distinction, let us return to 
the example of Table 9. Based on their interpretation, these binary variables 
appear to be symmetric. When the simple matching coefficient is used, we 
find 

d(JAC,LIE) = 0.3 d(ILA,PET) = 0.5 

On the other hand, applying the Jaccard coefficient (which would be rather 
inappropriate in this context) would yield 

~ ( J A C ,  LIE) = 0.750 ~ ( I L A ,  PET) = 0.714 

The main point is not that the actual values are different (which was to be 
expected), but that the results are not monotone: In the first situation we 
find that d(JAC, LIE) < d(ILA, PET), whereas in the second situation it 
turns out that d(JAC, LIE) > d(ILA, PET), which could lead to quite 
different clusterings. [Applying either of the remaining coefficients of Table 
10 would still yield d(JAC, LIE) < d(ILA, PET) because they have a mono- 
tone relation with the simple matching coefficient, while the measures of 
Table 11 all yield d(JAC, LIE) > d(ILA, PET) because they depend in a 
monotone way on the Jaccard coefficient.] 

When both symmetric and asymmetric binary variables occur in the 
same data set, one can apply the “mixed variables” approach described in 
Section 2.6. 
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2.5 Nominal, Ordinal, and Ratio Variables 

Apart from binary and interval-scaled variables, there exist at least three 
other types of data, which are less commonly used. We shall briefly describe 
these scales with some discussion as to how to treat them. 

CI. Nominal variables 
In the previous section we studied binary variables, which can only take on 
two states, typically coded as 1 and 0. This generalizes naturally to the 
concept of a nominal variable, which may take on more than two states. 
For instance, in Table 9 we had the binary variable blue eyes/brown eyes, 
which was appropriate for that collection of people. However, in larger 
populations one will need at least four states: blue eyesfirown eyes/green 
eyes/grey eyes. In general, we denote the number of states by M and code 
the outcomes as 1,2, ..., M in the data matrix (sometimes the codes 
0, 1, . . . , M - 1 are also used). For instance, we could choose 1 = blue eyes, 
2 = brown eyes, 3 = green eyes, and 4 = grey eyes. Note that these states 
are not ordered in any way: It is not because grey eyes are given a higher 
code number than brown eyes that they would in some sense be better. The 
code numbers are only used to facilitate data handling, but one could just 
as well code the different outcomes by letters or other symbols. Some 
examples of nominal variables are the nationality of people (for which A4 
may be very large) or their marital status (bachelor/married/divorced/ 
widowed). 

Sometimes nominal variables are converted to binary ones. By collapsing 
some states until only two remain, a binary variable results. For instance, 
one can group green eyes with brown eyes and grey with blue. However, 
this clearly amounts to a loss of information. Another strategy would be to 
recode the data to a larger number of (asymmetric) binary variables, for 
instance by creating a new binary variable for each of the M nominal 
states, and then to put it equal to 1 if the corresponding state occurs and to 
0 otherwise. After that, one could resort to one of the dissimilarity coeffi- 
cients of the previous subsection. 

By far the most common way of measuring the similarity or dissimilarity 
between some objects i and j that are characterized through nominal 
variables is to use the simple matching approach: 

U P - U  
s ( i ,  j )  = - and d ( i ,  j) = - 

P P 

(Sokal and Michener, 1958). Here, u is the number of matches, that is, the 
number of variables for which objects i and j happen to be in the same 
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state. As before, p is the total number of variables (or, in a situation with 
missing values, the number of variables that are available for both i and j). 
Therefore, simple matching has exactly the same meaning as in the preced- 
ing section. For instance, it is invariant with respect to different codings of 
the variables because this does not affect the number of matches. 

Again it is possible to give a higher weight to u, the number of 
agreements, or to p - u, the number of disagreements. Such variants were 
considered by Rogers and Tanimoto (1960) and Sokal and Sneath (1963), 
corresponding to the formulas in Table 10. It must also be noted that 
different variables may have different values of M. Therefore, Hyvarinen 
(1962) assigns more weight to matches in variables with a large number of 
states. Lingoes (1967) extends this by counting, for all variables, the 
frequency with which each state actually occurs and by giving a higher 
weight to matches corresponding to rare states. (This is reminiscent of the 
treatment of asymmetric binary variables.) Some other variants can be 
found in Bock (1974, Section 5). 

We personally prefer the simple matching approach (19) because of its 
intuitive appeal and widespread acceptance. Simple matching dissimilarities 
can be computed by means of the program DAISY. It is not necessary to 
know the number of states for each variable because the program will itself 
produce an inventory with the number of states and the number of missing 
values. Also, the codes entered may be arbitrary real numbers, so the 
variables do not have to be coded in a discrete way. The main purpose of 
DAISY is to deliver a dissimilarity matrix which can be used by some of 
the clustering algorithms described in the following chapters. 

b. Onihal Variubla 
A discrete ordinal variable looks like a nominal variable, only now the M 
states are ordered in a meaningful sequence. The codes 1,. . . , M are no 
longer arbitrary. The distance between two states becomes larger when their 
codes are further apart, so the states coded 1 and M differ most from each 
other. 

Ordinal variables are very useful for registering subjective assessments of 
qualities that cannot be measured objectively. For example, you may ask 
someone to convey his or her appreciation of some paintings in terms of 
the following categories: detest = l/dislike = 2/indifferent = 3/like = 
4/admire = 5. This person’s taste will then be modelled as an ordinal 
variable with M = 5 states. Another possibility is to rank 20 paintings in 
increasing order of appreciation, yielding an ordinal variable with states 
1,2,. . . ,20 and M = 20. (Note that in the latter example each state will 
occur exactly once, whereas in the first it may happen that some states 
occur very often and others not at all.) One may also obtain ordinal 
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variables from the discretization of interval-scaled quantities, by splitting 
up the continuous axis in a finite number of classes. Some examples are 
weight categories for boxers and tax brackets. 

Sometimes there does exist an underlying interval-scaled variable, but it 
has not been measured. For instance, one can construct a ranking of the 
hardness of stones by making scratches on one stone with another, without 
necessarily being able to measure their hardness in absolute terms. Or one 
can organize a race without needing a stopwatch, by merely registering who 
came in first, second,. . . , and so on, as in the ancient Olympics. 

Coniinuous ordinal variables are very similar. They occur when the 
measurements are continuous, but one is not certain whether they are in 
anything like a linear scale, so the only trustworthy information is in the 
ordering of the observations. Indeed, if a scale is transformed by an 
exponential, a logarithmic or another nonlinear monotone transformation, 
it loses its interval property: A difference of 3.2 on one end of the new scale 
may be much more important than a difference of 3.2 on the other end. 
Therefore, one replaces the observations by their ranks 1,. . . , M where M 
is the number of different values taken on by the continuous variable. (Of 
course, two equal measurements receive the same rank.) This is also very 
useful when the original data were roughly on an interval scale, but 
contained some gross errors. By switching to the ranks, such errors will 
have a much smaller influence on the result. It is as if we do have the 
running times of the race, but we are only interested in the ranking because 
we consider the exact time intervals irrelevant (imagine the last runner, 
seeing he is going to lose anyway and just walking the final part). Also, 
maybe we do not know whether the “right” variable should be the total 
running time or the average speed, which is on the inverse scale. In such 
situations, it is often useful to reduce the data to the essentials by convert- 
ing them to ranks. 

Whatever its origin, we are left with a variable with ordered states 
1,2, ..., M. It would be a waste of information to treat it as if it were 
nominal, because the further two states are apart, the larger the resulting 
dissimilarity should become. Therefore, most authors advise treating the 
ranks as interval-scaled and applying the usual formulas for obtaining 
dissimilarities (like the Euclidean or Manhattan distance). As it may 
happen that the ordinal variables under study possess different values of M, 
it is useful to convert all variables to the 0-1 range in order to achieve equal 
weighting of the variables. This can be done by replacing the rank ri, of the 
ith object in the fth variable by 

ri, - 1 
zi, = - M,- 1 



TYPES OF DATA AND HOW TO HANDLE THEM 31 

where M, is the highest rank for variable f. In this way, all zi, will lie 
between 0 and 1. 

The program DAISY can be applied to a data set with ordinal variables, 
whether discrete or continuous. It will first convert each variable f to ranks 
1,2,. . . , M, in such a way that equal ,measurements lead to equal ranks and 
that each rank occurs at least once. Then it will replace all ranks by zi, as in 
(20). The final dissimilarity between objects i and j is then taken to be the 
Manhattan distance (7) divided by the number of variables that are non- 
missing for both objects. 

Note that when the oariables are to be clustered one can compute a full 
set of nonparametric correlations between them (say, Spearman coefficients) 
by means of any standard statistical package and then apply DAISY to 
transform these into a dissimilarity matrix by means of (11) or (12). 

c. Ratio Scale Vakbles 
We have seen that interval-scaled variables are positive or negative numbers 
on some kind of linear scale, for instance, the interval between 41OC and 
51°C is equally important as the interval between - 28OC and - 18°C. By 
contrast, ratio-scaled variables are always positive measurements, for which 
the distinction between 2 and 20 has the same meaning as the distinction 
between 20 and 200. Typical examples are the concentration of a chemical 
substance in a certain solvent or the radiation intensity of some radioactive 
isotope. Often such ratio-scaled quantities follow exponential laws in time. 
For instance, the total amount of microorganisms that evolve in a time r (in 
a closed system with abundant nourishment) is approximately given by 

Ae " 

where A and B are positive constants. Formula (21) is usually referred to as 
exponential growth and has been a reasonable model for the world popula- 
tion over certain time periods. Similarly, the concentration of some alien 
substances in human blood or the radiation intensity of an isotope can be 
modelled by an exponential decay formula 

Ae- '' 

In both (21) and (22), equal time intervals will lead to equal ratios of the 
quantities described, for instance, each year the radioactivity will decrease 
by the same percentage when compared to the level of the previous year. 

When clustering objects that are characterized by ratio scale variables, 
one has at least three options. The first is to simply treat them as if they 
were on an interval scale. This is often done by people who only distinguish 
between qualitative and quantitative variables, without considering the fine 
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distinction between interval and ratio scales. In general, we would not 
recommend this because the scale might become distorted. A second 
approach, which is very common in chemistry, is to begin with a logarithmic 
transformation of the ratio scale variables xi,, at least when they are all 
nonzero, that is, one computes 

and treats these yi, as interval-scaled. This is quite a sensible procedure, 
especially in situations where (21) or (22) apply. A third approach is to treat 
the xi, as continuous ordinal data and switch to their ranks. This could also 
be done after the logarithmic transformation (23) and would then yield 
exactly the same result. The ranks are then treated as interval-scaled data, 
in the way already described. This third approach is especially suitable 
when there are doubts whether the original data are interval or ratio scaled, 
or in case of uncertainty about the quality of the measurements. By only 
making use of the ordinal information, the distinction between interval and 
ratio disappears. Dissimilarities between objects (according to all three 
approaches) can be computed by means of the program DAISY, the use of 
which will be explained in Section 5.  

2.6 Mixed Variables 

In this section we have seen six types of variables: 

symmetric binary 
asymmetric binary 
nominal 
ordinal 
interval 
ratio 

and we have discussed methods of dealing with data sets of one of these 
types. However, in practical applications it can easily happen that several 
kinds of variables occur in the same data set. For example, we could 
combine the interval variables of Table 7 with the binary variables of Table 
9 because they pertain to the same individuals. A larger example is Table 
12, listing certain characteristics of garden flowers. In the first column it is 
indicated whether the plant winters, that is, whether it may be left in the 
garden when it freezes. The second column shows whether the flower may 
stand in the shadow; those for which this is not so should be planted where 
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Table 12 Characteristics of Some Garden Flowers 

1. Begonia (Bertinii bolioiensis) 0 1 1 4 3 1 5  
2. Broom (Cytisur praecox) 1 0 0 2 1 3  
3. Camellia (Japonica) 0 1 0 3 3 1  

6. Fuchsia (Marinka) 0 1 0 4 3 1 2  

8. Gladiolus (Flowersong) 0 0 1 2 2 7  
9. Heather (Erica carnea) 1 1 0 3 1 4  

12. Lily (Lilium regale) 1 1 1 1 2 9  

14. Peony (Paeonia lactipora) 1 1 1 4 2 1 1  
15. Pink Carnation (Dianthus) 1 0 0 3 2 1 0  

18. Tulip (Tulba sylvestris) 0 0 1 2 1 5  

4. Dahlia (Tartini) 0 0 1 4  2 16 
5. Forget-me-not (Myosotissyloatica) 0 1 0 5 2 2 

7. Geranium (Rubin) 0 0 0 4 3 1 3  

10. Hydrangea (Hortensis) 1 1 0 5 2 1 4  
11. Iris (Versicolor) 1 1 1 5 3 8  

13. Lily -of-the-valley (Convallaria) 1 1 0 1 2 6  

16. Red Rose (Rosa rugosa) 
17. Scotch Rose (Rosa pimpinella) 

1 0 0 4 2 1 8  
1 0 0 2 2 1 7  

25 
150 
150 
125 
20 
50 
40 
100 
25 
100 
45 
90 
20 
80 
40 
200 
150 
25 

15 
50 
50 
50 
15 
40 
20 
15 
15 
60 
10 
25 
10 
30 
20 
60 
60 
10 

they are exposed to direct sunlight. These columns are symmetric binary 
variables, with equally important states. The third binary variable is coded 
1 for tuberous plants and 0 for plants without tubers. This variable is 
asymmetric because two plants with tubers have at least something in 
common, whereas plants without tubers may grow in completely different 
ways. The next column describes the color of the flowers. This variable is 
nominal, with m = 5 states occurring in these data (white = 1, yellow = 2, 
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pink = 3, red = 4, and blue = 5). The fifth column says whether the plant 
thrives best in dry (l), normal (2), or humid (3) soil. This is an ordinal 
variable, the states being ranked according to increasing moisture. The sixth 
column is someone’s preference ranking, going from 1 to 18. The code 18 
next to the red rose indicates that this flower is best liked, whereas the code 
1 is assigned to the plant least liked. This ordinal variable possesses many 
states, but each state occurs only once. The last columns list the height of 
the plants and the distances that should be left between them, both 
expressed in centimeters. Therefore, this data set contains only two 
interval-scaled variables out of a total of eight attributes. 

Data with mixed variables can be treated in several ways. To begin with, 
it is possible not to mix these types at all but to perform a separate cluster 
analysis for each kind of variable. When the conclusions of these analyses 
more or less agree, all is well. However, when different results are obtained, 
it may be difficult to reconcile them. 

Therefore, it is more practical to process the data together and then to 
perform a single cluster analysis. For instance, one can treat all variables as 
if they were interval-scaled. This is quite appropriate for symmetric binary 
variables, for the ranks originating from ordinal variables, and for the 
logarithms of ratio variables. However, for nominal variables with more 
than two states this does not make much sense because some codes may be 
further apart than others without reflecting an intrinsic “remoteness” of the 
corresponding states. Also, asymmetric binary variables would be treated 
symmetrically. 

The opposite approach is to reduce everything to binary variables. How 
to do this for nominal variables was already discussed. It is also easy to 
obtain a binary variable from interval-scaled measurements yi, by cutting 
the measurement axis in two, that is, by applying a rule like 

if yi, < a,, then put xi /  = 0 

if yi, 2 a,, then put xi, = 1 

where the threshold u, may be chosen by means of subject-matter informa- 
tion or simply by selecting a value in the center of the data. (It may even be 
that the yi, form two clear clusters in one dimension, in which case a, may 
be chosen between them.) The same rule can be applied to ordinal and ratio 
variables. However, by converting the whole data set to binary attributes 
one may lose quite a bit of information, which is often considered a 
disadvantage. 

In our opinion, the most convenient approach is to combine the different 
variables into a single proximity matrix, as was proposed by Ducker et al. 
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(1965), Rubin (1967), and Colless (1967). The definition of Gower (1971a) 
takes care of interval, nominal, and binary data. We shall describe a slight 
generalization of this method, also covering ordinal and ratio variables. 
Actually, Gower's original definition was a similarity coefficient between 0 
and 1, but we shall transform it to a dissimilarity by means of (15). 
Conversely, one can always return to similarities by computing s( i ,  j) = 

1 - d( i ,  j) at the end. 
Suppose the data set contains p variables of mixed nature:Then the 

dissimilarity d ( i ,  j) between objects i and j is defined as 

The indicator 6;:) is put equal to 1 when both measurements x,/ and xJf 
for the f th  variable are nonmissing, and it is put equal to 0 otherwise. 
Moreover, a,'!) is also put equal to 0 when variable f is an asymmetric 
binary attribute and objects i and j constitute a 0-0 match. Expression (24) 
cannot be computed when all a:/) are zero, in which case d(i ,  j) must be 
assigned a conventional value or object i or j must be removed. 

The number d!/)  is the contribution of the f th variable to the dissimilar- 
ity between i and j. We may assume that both x,! and xJ/ are nonmissing: 
otherwise d!!) does not have to be computed. If variable f is either binary 
or nominal, then d!!) is defined as 

d$) = 1 if xi /  # xi/ 

= 0 if xi /  = xi/ 

If all variables are nominal, expression (24) becomes the number of matches 
over the total number of available pairs, so it coincides with the simple 
matching coefficient (19). The same holds for symmetric binary variables, 
for which the simple matching coefficient of Table 10 is recovered. When 
the data consist of asymmetric binary variables, we obtain the Jaccard 
coefficient of Table 11 because the 0-0 matches are not counted (because 
their a//) equals zero). 

If variable f is interual-scaled, then d:!) is given by 
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where R, is the range of variable f, defined as 

where h runs over all nonmissing objects for variable f. Therefore, (26) is 
always a number between 0 and 1. Ordinal variables are first replaced by 
their ranks, after which (26) is applied. Ratio variables may be treated as 
interval variables: They can be converted to ranks or a logarithmic transfor- 
mation may be carried out. In either case, (26) is applied to the result. 

When all variables are interval-scaled, Gower’s formula (24) becomes the 
Manhattan distance, assuming that the variables were first divided by their 
range [note that this standardization is quite different from (4)]. When all 
variables are ordinal, (24) yields the same result as the method described in 
Section 2.5. The same is true for ratio variables. 

We conclude that the combined method (24) generalizes the dissimilari- 
ties of the homogeneous data discussed earlier. The computations can be 
performed with the program DAISY, as described in Section 5. For 
instance, it easily deals with Table 12. The same program is used for data 
with variables of a single type and for processing similarities and correla- 
tion coefficients. In all cases, it delivers a dissimilarity matrix that can be 
used to run four of the clustering programs of this book. Figure 15 of 
Section 4 contains a survey of the function of DAISY, among other 
information. 

Note that we followed Gower in restricting d / / )  to the 0-1 range, so each 
variable yields a contribution between 0 and 1 to the average dissimilarity 
(24). [As a consequence, the resulting dissimilarity d( i ,  j )  also lies between 
0 and 1, and can be turned back into Gower’s original formula by 
computing s ( i ,  J )  = 1 - d ( i ,  j ) . ]  Why restrict ourselves to this range? 
Suppose we were to allow contributions with very different ranges, as done 
by Romesburg (1984) in his combined resemblance matrix approach. Then 
some interesting anomalies are possible. Take an example with a few 
asymmetric binary variables and many interval variables, the latter yielding 
contributions d / / )  around 3 or 4. Consider an asymmetric binary variable 
with xi, = 0 and xj, = 1, which yields a contribution ti/{) of 1. Now 
change xi/ to 0, so we obtain a 0-0 match and the term d / / )  vanishes both 
in the numerator and the denominator. This yields a larger dissimilarity 
d(i ,  j )  than before. This effect is, of course, opposite to what was expected. 
It appears necessary to have equal ranges if one wants to be able to delete 
certain contributions, or else the effects of such deletions may be unwar- 
ranted. 
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As a final remark, it must be noted that it is even possible to cluster 
objects that are characterized by a combination of measurements and 
proximities. For instance, suppose we have a similarity matrix, a dissimilar- 
ity matrix, and a mixed collection of attributes, all pertaining to the same n 
objects. Then DAISY can convert the similarity matrix into a dissimilarity 
matrix as in (15), and compute another dissimilarity matrix from the 
attributes according to (24). The three resulting dissimilarity matrices can 
then be combined into a single one by means of 

where wl,  w,, and w, are some positive weights that may be chosen in a 
subjective way. 

This section was devoted to clustering objects that are characterized by 
attributes of mixed types. In some situations, however, one might want to 
cluster the variables themselves. This was discussed by Lance and Williams 
(1979), who compute dissimilarities between variables of mixed types. 

3 WHICH CLUSTERING ALGORITHM TO CHOOSE 

Let us give an overview of the clustering methods implemented in this 
book, together with their most important characteristics and some hints 
toward typical applications. The choice of a clustering algorithm depends 
both on the type of data available and on the particular purpose. Some- 
times several algorithms are applicable, and a priori arguments may not 
suffice to narrow down the choice to a single method. In such a situation it 
is probably a good idea to run more than one program and to carefully 
analyze and compare the resulting classifications, making use of their 
graphical displays. The interpretation of these results must then be based 
on insight into the meaning of the original data, together with some 
experience with the algorithms used. It is permissible to try several algo- 
rithms on the same data, because cluster analysis is mostly used as a 
descriptive or exploratory tool, in contrast with statistical tests which are 
carried out for inferential or confirmatory purposes. That is, we do not wish 
to prove (or disprove) a preconceived hypothesis; we just want to see what 
the data are trying to tell us. 

Of course there exist very many clustering algorithms in the literature, 
and it would be infeasible to try to review all of them. Bock (1974) 
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undertook the monumental task of compiling an overall survey, which 
accurately reflects the state of the art in the early seventies, but the field has 
expanded very much since that time. Our own approach has been to select 
(and partly construct) six clustering methods, which together are believed to 
cover a majority of applications. This selection (which is subjective and 
necessarily debatable) has been based on a combination of some theoretical 
considerations (such as an attempt to achieve as much logical consistency 
and robustness as possible) and our own experience in applying clustering 
to a variety of disciplines. To each of these six algorithms we have 
dedicated one chapter which develops its background and describes how to 
run the corresponding computer program, illustrated with some examples. 

3.1 Partitioning Methods 
In this book we consider two kinds of clustering algorithms, namely 
partitioning and hierarchical methods. In the classification literature, the 
vast majority of algorithms is of either type. Therefore we have decided to 
provide three partitioning and three hierarchical programs. 

A partitioning method constructs k clusters. That is, it classifies the data 
into k groups, which together satisfy the requirements of a partition: 

Each group must contain at least one object. 
Each object must belong to exactly one group. 

These conditions imply that there are at most as many groups as there are 
objects: 

ksn 

The second condition says that two different clusters cannot have any 
objects in common and that the k groups together add up to the full data 
set. Figure 7 shows an example of a partition of 20 points into three 
clusters. 

It is important to note that k is given by the user. Indeed, the algorithm 
will construct a partition with as many clusters as desired. Of course, not all 
values of k lead to "natural" clusterings, so it is advisable to run the 
algorithm several times with different values of k and to select that k for 
which certain characteristics or graphics look best, or to retain the cluster- 
ing that appears to give rise to the most meaningful interpretation. It is also 
possible to have this decision made in an automatic way, that is, to let the 
computer try out all (or many) possible values of k and to choose the one 
which is best relative to some numerical criterion. 
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Figure 7 A partition with n = 20 and k = 3. 

Partitioning methods are applied if one wants to classify the objects into 
k clusters, where k is fixed (although it may have been selected by the 
computer). Some examples are: 

You have data on 100 bacteria. Do they form groups? 
People give you subjective assessments on 12 countries. Does cluster 

Performance criteria have been measured for 800 companies. Can groups 
analysis provide recognizable groups of states? 

of companies be found that perform in a similar way? 

In general, the algorithm tries to find a “good” partition in the sense that 
objects of the same cluster should be close or related to each other, whereas 
objects of different clusters should be far apart or very different. The aim is 
usually to uncover a structure that is already present in the data, but 
sometimes the algorithm is used to impose a new structure, for example 
when partitioning a country into telephone areas. 
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Figure 8 Illustration of partitioning around medoids for the example of Figure 7. 

Partiiwning Around Medoi& (Chapter 2) 
The program PAM clusters objects that are measured on p interval-scaled 
variables, and it can also be applied when the input data is a dissimilarity 
matrix (possibly set up by the program DAISY). 

The idea of this partitioning algorithm is the following. In order to 
obtain k clusters, the method selects k objects (which are called represents- 
tioe objects) in the data set. The corresponding clusters are then found by 
assigning each remaining object to the nearest representative object. An 
example of such an allocation is shown in Figure 8 for objects characterized 
by two interval-scaled measurements (that is, p = 2). Of course, not every 
selection of k representative objects gives rise to a “good” clustering. The 
clue is that the representative objects must be chosen so that they are (in a 
certain sense) centrally located in the clusters they define. To be exact, the 
average distance (or average dissimilarity) of the representative object to all 
the other objects of the same cluster is being minimized. For this reason, 
such an optimal representative object we call the medoid of its cluster, and 
the method of partitioning around medoids we call the k-medoid technique. 

Figure 8 also provides another way of looking at this method. Suppose 
the objects are really cities and it is desired to build three household 
appliance factories. To reduce transportation costs, the factories should be 
constructed in centrally located cities, so that the average distance to the 
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consumers is minimized. Stated in this form, we recognize a problem of 
industrial location that belongs to operations research. 

On the other hand, people already familiar with cluster analysis will note 
a resemblance with the well-known k-means algorithm, which attempts to 
minimize the average squared distance, yielding so-called centroids. We 
have decided in favor of the k-medoid method because it is more robust 
with respect to outliers and because this method does not only deal with 
interval-scaled measurements but also with general dissimilarity coefficients, 

By construction, the k-medoid method tries to find “spherical” clusters, 
that is, clusters that are roughly ball-shaped (as in Figure 8). It is therefore 
not suited to discover drawn-out clusters. The program PAM is especially 
recommended if one is also interested in the representative objects them- 
selves, which may be very useful for data reduction or characterization 
purposes. The program also allows a more detailed analysis of the partition 
by providing clustering characteristics and a graphical display (a so-called 
silhouette plot), and an appropriate choice of k can be made on the basis of 
a validity index it computes. 

Clustering Large Applications (Chapter 3) 
The program CLARA was developed for the express purpose of analyzing 
large data sets. Its clustering objective is the same as in the program PAM: 
It also tries to find k representative objects that are centrally located in the 
cluster they define. But in PAM the collection of all pairwise distances 
between objects is stored in central memory, thereby consuming O(n2) 
memory space. This means that PAM cannot be used for large n (a typical 
upper bound is n = 100, but this depends on the central memory size). 
Therefore, CLARA no longer stores all dissimilarities, but only the actual 
measurements. This is paid for by the loss of some other features, the most 
important of which is that CLARA does not accept the input of a 
dissimilarity matrix (which would be too big anyway). 

The program CLARA proceeds as follows. By means of a random 
number generator, a sample of objects is drawn from the data and clustered 
in the same way as in PAM. Then each object of the entire data set is 
assigned to the nearest medoid of the sample, as illustrated in Figure 9. This 
whole procedure is repeated several times and the solution with the best 
overall objective function is retained. In this way, the computation time 
also remains feasible. 

As we are still in the k-medoid framework, CLARA shares the robust- 
ness of PAM, and it is also intended for spherical clusters. Also the 
majority of clustering characteristics and other tools are still available, 
albeit in approximate form. 
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Figure 9 Illustration of the technique used in the program CLARA. The objects of the 
sample are indicated by small squares. 

Fuzw A d y s h  (Chapter 4) 
The program FANNY can be applied to the same data sets as the program 
PAM, but its algorithm is of a different nature. Indeed, it employs the 
“fuzziness” principle, which means that FANNY is able to avoid “hard” 
decisions. Instead of saying “object a belongs to cluster 1,” FANNY can 
say that “object a belongs for 90% to cluster 1, for 5% to cluster 2, and for 
5% to cluster 3,” meaning that a is probably to be assigned to cluster 1 but 
that there is still a glimpse of doubt in favor of clusters 2 and 3. 

In Figure 10 we see some points that can be classified with a strong 
degree of certainty, as well as a few intermediate objects for which it is not 
clear to which cluster they should be assigned. In fuzzy analysis, these 
different situations can be described by means of so-called membership 
coeflcienrs as found in Table 13. They reflect that a belongs mostly to 
cluster 1, that b belongs mostly to cluster 2, and that c belongs mostly to 
cluster 3. Note that the sum of the membership coefficients in each row 
equals 1. Object d is interesting because it is about halfway in between 
clusters 2 and 3, yielding a 45% membership in both. At the same time its 
membership coefficient in cluster 1 is only lo%, because it lies much further 
away from that cluster. The situation of object e is even more ambiguous, 
because it lies about equally far away from all three clusters, yielding 
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Figure 10 Example with intermediate points, to be classified in a fuzzy way. 

membership coefficients of approximately 33%. The ability to describe such 
ambiguous situations is an important advantage of the fuzzy approach. 
Indeed, a “hard” clustering algorithm would have to assign object e to one 
of the clusters, leading to a distorted result. 

The actual algorithm to calculate the membership coefficients is very 
different from other clustering methods and does not involve any represen- 

Table 13 Membership Coefflcients Corresponding to Figure 10 

Membership Coefficients 

Object Cluster 1 Cluster 2 Cluster 3 

a 0.90 0.05 0.05 
b 0.05 0.90 0.05 
C 0.10 0.10 0.80 
d 0.10 0.45 0.45 
e 0.33 0.33 0.34 
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tative objects. Unfortunately, the computations are rather complex and 
therefore neither transparent nor intuitive. 

Another disadvantage is the massive output, because fuzzy analysis 
provides an entire n-by-k matrix of membership coefficients, that may be 
very hard to interpret because of its mere size. In the end one often resorts 
to the corresponding “hard” clustering, obtained by assigning each object 
to the cluster in which it has the largest membership coefficient. For this 
hard partition, FANNY yields the same kind of graphical display as does 
PAM, so it is possible to compare both outputs. 

3.2 Hierarchical Methods 

Hierarchical algorithms do not construct a single partition with k clusters, 
but they deal with all values of k in the same run. That is, the partition 
with k = 1 (all objects are together in the same cluster) is part of the 
output, and also the situation with k = n (each object forms a separate 
cluster with only a single element). In between, all values of k = 2,3,. . . , 
n - 1 are covered in a kind of gradual transition: The only difference 
between k = r and k = r + 1 is that one of the r clusters splits up in order 
to obtain r + 1 clusters (or, to put it differently, two of the r + 1 clusters 
combine to yield r clusters). 

There are two kinds of hierarchical techniques: the agglomerative and 
the divisive. They construct their hierarchy in the opposite direction, 
possibly yielding quite different results. Figure 11 shows what happens with 
a data set with n = 5 objects. Agglomerutiue methods (indicated by the 
upper arrow, pointing to the right) start when all objects are apart (that is, 
at step 0 we have n clusters). Then in each step two clusters are merged, 
until only one is left. On the other hand, diuisiue methods start when all 
objects are together (that is, at step 0 there is one cluster) and in each 
following step a cluster is split up, until there are n of them. In this example 
the agglomerative and divisive hierarchies coincide, but usually they are 
different. 

One might think that now partitioning methods are obsolete, as we 
obtain all values of k in a single run. However, this is not true because a 
clustering formed “along the way” is not necessarily very good. Indeed, a 
partitioning method tries to select the best clustering with k groups, which 
is not the goal of a hierarchical method. A hierarchical method suffers from 
the defect that it can never repair what was done in previous steps. Indeed, 
once an agglomerative algorithm has joined two objects, they cannot be 
separated any more. Also, whatever a divisive algorithm has split up cannot 
be reunited. This rigidity of hierarchical methods is both the key to their 
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Figure I I Distinction between agglomerative and divisive techniques. 

success (because it leads to small computation times) and their main 
disadvantage (the inability to correct erroneous decisions). 

On the other hand, hierarchical techniques do not really compete with 
partitioning methods because they do not pursue the same goal, as they try 
to describe the data in a totally different way. The structure in Figure 11 
resembles an evolutionary tree, and indeed hierarchical methods have been 
found very useful in biological applications, for the classification of animals 
and plants (see Figure 12). Biologists have been most instrumental in the 
development of hierarchical methods, particularly in the framework of 
numerical taxonomy. 

Aggfomemtiue Nesting (Chapter 5) 
The program AGNES accepts exactly the same data as PAM and FANNY. 
In fact, the interactive input dialogue is almost identical, except of course 
that k, the number of clusters, is no longer asked for. The program is 
agglomerative, so it executes a complete sequence of fusions as in Figure 11. 
In the first step, the two closest objects (that is, with smallest interobject 
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Figure 13 Representation of some defi- 
nitions of intercluster dissimilarity: 
(a) Group average. (b) Nearest neighbor. 
(c) Furthest neighbor. 

dissimilarity) are joined, leaving us with n - 1 clusters, one of which 
contains two objects whereas the others still have only a single member. 

In all succeeding steps, the two closest clusters are merged. However, this 
calls for a definition of the dissimilarity between clusters (based on the 
dissimilarities between their objects). There exist many agglomerative algo- 
rithms, which only differ in their definition of between-cluster dissimilarity. 
We have selected the unweighted pair-group average method (UPGMA) to 
be incorporated in AGNES (this decision was made on several grounds, 
which will be explained in Chapter 5) .  In this method, the dissimilarity 
between clusters R and Q is taken to be the auerage of all dissimilarities 
d ( i ,  j), where i is any object of R and j is any object of Q. In Figure 13a, 
d( R, Q) can be thought of as the average length of all lines between objects 
of R and objects of Q. 

Figure 13 also displays two other well-known agglomerative methods. 
The nearest neighbor rule (also called single linkage) defines d( R ,  Q) as the 
smallest dissimilarity between an object of R and an object of Q. On the 
other hand, the furthest neighbor rule (also called complete linkage) uses 
the largest dissimilarity between an object of R and an object of Q. 

These three agglomerative methods are useful in different types of 
applications. The group average technique is aimed at finding roughly 
ball-shaped clusters as in Figure 14a. Being relatively robust, this method 
can even deal with rather potato-shaped clusters. 

The nearest neighbor rule is not always appropriate in such situations: 
Whenever both clusters come too close to each other, even when this 
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a )  0 

Figure 14 Some types of clusters: (a) Ball-shaped. (b) Elongated. (c) Compact but not well 
separated. 

happens at just one point, the clusters immediately stick together (and 
remember, they cannot be separated in later steps). This is called the 
chaining efect because many objects may be chained together resulting in a 
drawn-out cluster, some members of which are very far from each other. On 
the other hand, this property can be turned to advantage in applications 
where one really wants to find such elongated clusters, as in Figure 14b. 

The furthest neighbor rule possesses the opposite property: It tends to 
produce very compact clusters, which means that they have a small diame- 
ter. In other words, every member of such a cluster must be close to every 
other member of the same cluster and outlying points will not be incorpo- 
rated. The resulting clusters are not necessarily well separated, because 
clusters will not be joined when they contain at least one pair of too distant 
points. (That is, they will only be merged in a much later stage of the 
amalgamation.) Therefore, furthest neighbor clustering is suitable for con- 
figurations like Figure 14c. 
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Divisive Anahsis (Chapter 6) 
The program DIANA analyzes the same data as AGNES and its interactive 
input is identical. To the user, the programs AGNES and DIANA appear 
to be twins because they can be run in the same way and they yield very 
similar output, except of course that they construct their hierarchies in the 
opposite direction. 

The divisive approach offers a distinct advantage in that most users are 
interested in the main structure of their data, consisting of a few large 
clusters, rather than in a detailed description of the individual points. 
Agglomerative nesting starts with the details and then works its way up to 
large clusters, which may however be affected by unfortunate decisions in 
the first steps. On the other hand, divisive analysis starts with the main 
chunks. In the first step it splits the data into two parts and then goes on by 
dividing them further into smaller parts. Because the large clusters are 
determined first, they are less likely to suffer from earlier steps. (Moreover, 
one might even halt the algorithm at a stage where one is no longer 
interested in further splitting.) 

On the other hand, divisive analysis poses some computational problems, 
at least in principle. Indeed, if the first step of the algorithm involved 
consideration of all possible divisions of the data into two subsets, it would 
be infeasible due to the large number of combinations. Because of this, the 
authors of most books and software packages have restricted their attention 
to the agglomerative hierarchical techniques. Therefore, divisive clustering 
algorithms are not generally available and rarely have been applied. How- 
ever, there does exist a divisive method due to MacNaughton-Smith et al. 
(1964) that provides good results within very reasonable amounts of compu- 
tation time. By implementing this technique in DIANA, we hope to make 
divisive clustering more accessible. 

DIANA is suitable for approximately ball-shaped clusters, as is the 
group average method implemented in AGNES. Therefore, it is often useful 
to compare the output of AGNES with that of DIANA applied to the same 
data. Such comparison has been made easy because the results of both 
algorithms are displayed in a similar way (in a so-called banner). 

Monothetic Analysis (Chapter 7) 
The program MONA differs from the other algorithms in that it is intended 
for data consisting exclusively of binary variables. Each of these variables 
has only two states: 1 if a certain attribute is present and 0 if it is absent. (If 
variables of other types also occur, one should apply the program DAISY 
to compute dissimilarities as described in Section 5 and then run either 
PAM, FANNY, AGNES, or DIANA.) 
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The MONA algorithm is divisive and takes full advantage of the binary 
aspect. Indeed, at each step one of the variables is used to split the data, by 
separating the objects for which that variable takes on the value 1 from the 
objects for which it is 0. In order to decide which variable to use, one first 
computes a measure of the association between variables (for this reason, 
the algorithm is often called “association analysis”) and then selects the 
variable that is most representative in the sense that it is most strongly 
associated with the other variables. 

In Table 9 above, we have eight people on which 10 binary attributes are 
available. In the first step of the algorithm, the variable “married” is found 
to be the most representative, and hence the data are split up into the 
clusters (Ilan, Kim, Talia, Tina} and {Jacqueline, Leon, Lieve, Peter} 
because the people in the second group are married whereas those in the 
first are not. In the next step, each cluster is divided in the same way by 
means of one of the remaining variables. This illustrates a nice feature of 
the method: Not only do we obtain clusters, but we also know which 
variables were responsible for them. 

Note that the clustering steps are based on one variable at a time. 
Therefore, this algorithm is said to be monothetic, whereas the other 
methods in this book use all variables simultaneously and hence are called 
polythetic. For instance, we can cluster the same data in a polythetic way, 
by first applying DAISY and then using the resulting dissimilarities as 
input for DIANA, yielding another divisive hierarchy. (Note that in DAISY 
we may even make a distinction between symmetric and asymmetric binary 
variables, whereas MONA does not distinguish between them.) Polythetic 
methods try to identify a multivariate structure in the p-dimensional space 
spanned by all variables, which may not show up in a monothetic analysis 
because it only treats the projections on the coordinate axes in a one- 
dimensional way. A monothetic analysis is therefore quite primitive, but on 
the other hand its simplicity also offers some advantages: The results are 
easily interpreted (because we know which variables caused the splits) and 
the algorithm is fast and able to deal with large data sets. 

4 A SCHEMATIC OVERVIEW OF OUR PROGRAMS 

To summarize what has been said in the previous sections, we look at a 
kind of flowchart. Figure 15 presents a schematic overview of the programs 
and the relations between them. 

The second column lists the types of data discussed in Section 2. If you 
want to cluster objects that are characterized by some interval-scaled 
variables, you may apply PAM, FANNY, AGNES, and DIANA directly 
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(or CLARA if your data set is very large). Moreover, you can also run 
PAM, FANNY, AGNES, and DIANA if you have a collection of pairwise 
dissimilarity coefficients between the objects. Should you have any of the 
other data types (that is, similarity coefficients, or correlations between 
variables, or objects characterized by attributes that are nominal, ordinal, 
ratio, binary, or even mixed) then DAISY will convert them to dissimilari- 
ties too. The purpose of this transformation is to enable you to apply the 
same four clustering programs. 

When your data consists of interval-scaled measurements (the top entry 
in the second column), then you have the choice between two possibilities: 
If you want to cluster the objects, then you may directly apply one of the 
clustering algorithms (following the arrows to the right), but you may also 
cluster the uariables by first computing correlation coefficients by means of 
DAISY (taking the arrow to the left) in order to convert them to dissimilar- 
ities, after which a clustering program can be run. 

There is also a choice when you have objects with a collection of binary 
attributes. You may process them with DAISY (as indicated by the arrow 
to the left), but they may also be clustered directly by means of MONA, as 
described in Chapter 7. (Note that also variables of other types may be 
treated as binary attributes if one is willing to sacrifice a certain amount of 
information by grouping measurements.) 

In the right half of Figure 15, the separation between hierarchical and 
partitioning methods is indicated. The programs AGNES, DIANA, and 
MONA are hierarchical and their results are displayed by means of ban- 
ners. The programs CLARA, PAM, and FANNY are of the partitioning 
type and they use silhouettes for their graphical output. It is also possible to 
visualize a partition by constructing a faithful two-dimensional representa- 
tion of the entities to be clustered (making use of multidimensional scaling) 
on which the clusters are portrayed as circles or ellipses. For this purpose, 
one may use the program CLUSPLOT described in Section 4 of the 
Appendix. 

5 COMPUTING DISSIMILARITIES WITH THE PROGRAM DAISY 

As already mentioned in the previous sections, it is useful to have a data 
handling program to prepare for the actual cluster analysis. This program 
has been called DAISY because its main function is to compute DISsimj- 
lAritY coefficients. Like the other programs used in this book, it is written 
in Fortran for the IBM PC (including XT and AT) and compatible 
microcomputers. 
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The program is entirely interactive. One only has to insert the floppy 
disk (which contains the file DAISY.EXE) in drive A and type 

A:DAISY 

(of course, the program may also be put in drive B or on a hard disk C). 
The user must then press the enter key (= carriage return), after which the 
computer loads the program and starts its execution. Next, questions 
appear on the screen, the answers to which have to be keyed in. This 
interactive dialogue is quite self-explanatory, so a manual is not really 
needed. Whenever the user types an “ impossible” answer (like choosing 
option 5 when only four are available), DAISY will explain why this is 
unacceptable and simply ask the question again. (Some details on these 
messages can be found in the Appendix, because they are common to most 
of our programs.) 

The data set itself can also be keyed in by the user or it may be read 
from a file that is already on a floppy or on a hard disk. If the data are 
entered with the keyboard, there is an option for storing them in a file, so 
that they may be reused in later runs. The output can be sent to the screen 
or to the printer or written in a file that is put on a floppy or on the hard 
disk. 

DAISY starts by listing its four main options, as can be seen in the 
upper part of Figure 16. The first option is to compute dissimilarities 
between objects, according to formulas (24) to (27) in Section 2.6. The 
objects may be characterized by attributes that can be symmetric binary, 
asymmetric binary, nominal, ordinal, interval, ratio, or any combination of 
these. The flower data in Table 12 provide an example of such “mixed” 
measurements, because there are three binary, one nominal, two ordinal, 
and two interval variables. Figure 16 shows an entire interactive session, 
illustrating how DAISY may be applied to this example. For clarity, the 
answers typed by the user are underlined. 

Note that DAISY allows to choose variables, so that one does not have 
to use all of them. This is often useful, because many applications include 
irrelevant variables or some variables may be related to others (in which 
case they may not provide any additional information). Sometimes the user 
has enough subject-matter knowledge to decide which variable to use or 
may only be interested in one particular aspect (say, the data contain both 
economic and demographic variables, but one wishes to obtain a clustering 
based on the economic quantities only). Therefore, choosing variables is 
possible in all our programs. To illustrate this facility, we only use six out of 
eight variables in Figure 16. That is, the whole data set is keyed in, but the 
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................................. . * 
* COMPUTING DISSIMILARITIES : 
* ................................. 

This program has four Options : 
1 .  Your data consists of a rectangular matrix of objects 

2 .  Your data consists of a rectangular matrix of 

by variables, in which the variables may be of different 
types. You wish to cluster the objects. (Please type 1 )  

objects by variables, but 811 variables are interval or ratio. 
You wish to calculate the Pearson correlation coefficients 
for clusterins the variables. (Please type 2 )  

coefficients between variables (either parametric 
or nonparaaetric). Your input data consist of a lower 
triangular matrlx of pairwise correlations. You wish 
to calculate dissimilarities between the variables. (Please type 3) 

similarities between objects (with values between 0 and 1 ) .  
which you would like to convert to dissimilarities. (Please type 4 )  

3. Maybe you already have correlation 

4. Your data consists of a lower triangular matrix of 

Please enter your choice : I 

THE PRESENT VERSION OF THE PROGRAM CAN HANDLE UP TO 100 OBJECTS. 
(IF MORE ARE TO BE CONSIDERED, THE ARRAYS INSIDE THE PROGRAM MUST BE ADAPTED) 

HOW MANY OBJECTS DOES YOUR DATA SET CONTAIN ? 

PLEASE GIVE A NUMBER BETWEEN 3 AND 100 : JB 

THE PRESENT VERSION OF THE PROGRAM ALLOWS TO ENTER UP TO 80 VARIABLES. 
OF WHICH AT MOST 50 CAN BE USED IN THE ACTUAL COMPUTATIONS. 
(IF MORE ARE NEEDED, THE ARRAYS INSIDE THE PROGRAM MUST BE ADAPTED) 

WHAT IS THE TOTAL NUMBER OF VARIABLES IN YOUR DATA SET ? 

PLEASE GIVE A NUMBER BETWEEN 1 AND 80 : B 
HOW MANY VARIABLES DO YOU WANT TO USE IN THE ANALYSIS 7 

____________________--------- -_-----_---_----  

________________________________________---_-_----_----- 

....................................................... 
(AT MOST B ) : 6 

This option can handle variables of the following types : 
SYMMETRIC BINARY (please type S) 
ASYMMETRIC BINARY (please type A) 
NOMINAL (please type N) 
ORDINAL (please type 0) 
INTERVAL (please type I) 
RATIO to be treated as ORDINAL (please type 0) 
RATIO to be treated as INTERVAL (please type I) 
RATIO to be logarithmically transformed (please type TI 

CAREFUL : A VARIABLE FOR WHICH A LOGARITHMIC 
TRANSFORMATION IS REQUESTED MAY ONLY 
CONTAIN POSITIVE NON-ZERO VALUES 

Fw 16 Interactive session of DAISY with the data of Table 12. 
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PLEASE ENTER A TITLE FOR THE OUTPUT (AT MOST 60 CHARACTERS) 

E_h.a_rsrfQ~l_s$ir@_~€-g~i~~~-€.&~~~~g 

DO YOU WANT TO READ THE DATA IN FREE FORMAT ? 

THIS MEANS THAT YOU ONLY HAVE TO INSERT BLANK(S) BETWEEN NUMBERS. 
(NOTE: WE ADVISE USERS WITHOUT KNOWLEDGE OF FORTRAN FORMATS TO ANSWER YES.) 
MAKE YOUR CHOICE (YES/NO) : ycg 

PLEASE GIVE THE NAME OF THE FILE CONTAINING THE DATA (e.g.TYPE A:EXAMPLE.DAT) 
OR TYPE KEY IF YOU PREFER TO ENTER THE DATA BY KEYBOARD. 
WHAT DO YOU CHOOSE ? k ~ y  

DO YOU WANT TO SAVE YOUR DATA ON A FILE ? 
PLEASE ANSWER YES OR NO : yss 

ON WHICH FILE DO YOU WANT TO SAVE YOUR DATA ? 
(WARNING : IF THERE ALREADY EXISTS A FILE WITH THE SAME NAME 

THEN THE OLD FILE WILL BE OVERWRITTEN.) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

TYPE e.g. B:SAVE.DAT . . . . . . . . . . . . . . . . . . . . .  : r;flQHeE-Q*f 

OUTPUT SECTION 

A. On which file do you want to output the dissinllarity matrix 7 
... *.......... 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
(WARNING : IF THERE ALREADY EXISTS A FILE WITH THE SAME NAME 

THEN THE OLD FILE WILL BE OVERWRITTEN.1 
TYPE e.g. 8:EXAMPLE.DIS . . . . . . . . . . . . . . . . . .  : &f.&~yei,Qi# 

8. Where do you want the rest of the output ? 

TYPE CON IF YOU WANT IT ON THE SCREEN 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

OR TYPE PRN IF YOU WANT IT ON THE PRINTER 
OR TYPE THE NAME OF A FILE (e.g. B:EXAMPLE.OUT) 
(WARNING : IF THERE ALREADY EXISTS A FILE WITH THE SAME NAME 

THEN THE OLD FILE WILL BE OVERWRITTEN.) 
WHAT DO YOU CHOOSE 7 . . . . . . . . . . . . . . . . . . . . . .  : _a;flQgsy,Qg_t 

For the binary variables only the values 0 and 1 are alloued ; 
all other values wlll be treated a8 rnisslng measurements. 
CAN MISSING DATA OCCUR FOR THE OTHER VARIABLES ? 
PLEASE ANSWER YES OR NO : ye3 

IS THERE A UNIQUE VALUE WHICH IS TO BE INTERPRETED 
AS A MISSING MEASUREMENT VALUE FOR ANY VARIABLE ? 
PLEASE ANSWER YES OR NO : y$s 

PLEASE ENTER THIS VALUE NOW : 9_9_9,99_9_ 

DATA SPECIFICATIONS AND CHOSEN OPTIONS ____________________-- - - - - - - - - - - - - - - - -  
TITLE : Characteristics of garden flowers 
THERE ARE 18 OBJECTS 
INPUT OF A MATRIX OF MEASUREMENTS FOR THE CALCULATION 
OF DISSIMILARITIES BETWEEN OBJECTS 

THERE ARE 8 VARIABLES IN THE DATA SET, 

MISSING VALUES CAN OCCUR 
THE UNIQUE VALUE WHICH REPRESENTS MISSING MEASUREMENTS IS : 

THE MEASUREMENTS WILL BE READ IN FREE FORMAT 
THE DATA WILL BE READ FROM THE KEYBOARD 
THE DATA WILL BE SAVED ON FILE : a:flower.dat 
THE DISSIMILARITIES WILL BE WRITTEN ON : a:flower.dis 

AND 6 OF THEM WILL BE USED IN THE ANALYSIS 

999.9990000 

THE OTHER OUTPUT WILL BE WRITTEN ON : a:flower.out 

ARE ALL THESE PARAMETERS OK ? YES OR NO : ygS 

Figure 16 (Continued) 
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PLEASE ENTER YOUR DATA FOR EACH OBJECT 

THE 8 MEASUREUENTS FOR OBJECT 1 : 

Q-C-1-4-?-15-19-1 

1-Q-P-2-$-3-l59-59 

Q-LQ-L2-1-1SQ-5Q 

THE 8 MEASUREMENTS FOR OBJECT 2 : 

THE 8 MEASUREMENTS FOR OBJECT 3 : 

THE 8 MEASUREMENTS FOR OBJECT 17 : 

A-P-Q-2-2-12-1SQ-hQ 

Q-Q-1-2-L-8-25-LQ 
THE 8 MEASUREMENTS FOR OBJECT 18 : 

THE DATA WILL BE SAVED ON FILE : a:flower.dat 

Thin run has been successfully completed 

The dissimilarity matrix is on file : a:flouer.dis 

The remaining output is on file : 4:flowsr.out 

Figure 16 (Conrinued) 

distances are computed by means of formula (24) with only the six variables 
specified. However, note that all eight variables are being saved on the new 
file flower.dat to enable the user to run the analysis again with another 
combination of variables. (The user can then simply use flower.dat as input 
file for DAISY, without having to key in these numbers again.) 

After stating that the program run has been successfully completed, 
DAISY also reminds us that we asked to put the dissimilarity matrix of the 
18 objects on file flower.dis. To look at this dissimilarity matrix, we key in 
the command 

TYPE A:FLoWER.DE 

and obtain Figure 17, which is of the same form as (10) in Section 2.1. The 
file flower.dis can be used as input for the programs PAM, FANNY, 
AGNES, and DIANA. 

The other output file (named flower.out in this example) is given in 
Figure 18. It gathers the data specifications and chosen options, including a 
list of the variables used, with their position and type. When missing values 
have been announced, it provides the number of absent measurements for 
each variable. (In this example none actually occurred.) Sometimes there 
are so many missing values that certain computations can no longer be 
carried out, in which case the output file contains messages about this. 
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Figure 17 Dissimilarity matrix produced by DAISY 

Therefore, the output file should always be looked at. Finally, an inventory 
is produced, in which for each nominal variable the number of (nonmissing) 
values is recorded. For each ordinal variable, the different values are ranked 
from smallest to largest, so the number of different values is also equal to 
the reported maximal rank. 

Option 1, although primarily intended for mixed variables, can also be 
used if all variables are actually of the same type. For instance, one could 
process Table 9, which consists exclusively of symmetric binary variables, 
yielding the simple matching dissimilarity described in Section 2.4 (Exercise 
20a). If we treat these data as nominal, we find the same result because 
symmetric binary attributes are also nominal variables with two states 
(Exercise 20b). If we were to consider the variables as asymmetric binary 
(1 = presence, 0 = absence), we would obtain the Jaccard dissimilarity 
(Exercise 20c). In the same vein we might apply DAISY to ordinal data 
sets, which are then processed as described in Section 2.5. We could also 
execute the program on the combination of Tables 7 and 9, because for 
each person we possess four interval-scaled measurements and 10 binary 
attributes (Exercise 21a). 

DAISY'S second option computes Pearson correlations between vari- 
ables and then transforms these to dissimilarities according to formula (1 1) 
or (12) of Section 2.2. Figure 19 gives an example of the interactive input, 
starting from the line where option 2 is chosen (the earlier lines were, of 
course, as in Figure 16). In this example the correlations between the four 
variables of Table 7 are computed. It  is assumed that these data already 
exist on a file named families.dat, which consists of eight lines, each 
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TITLE : Characteristics of rarden flowern 

DATA SPECIFICATIONS AND CHOSEN OPTIONS ...................................... 
THERE ARE 18 OBJECTS 
INPUT OF A MATRIX OF MEASUREMENTS FOR THE CALCULATION 
OF DISSIMILARITIES BETWEEN OBJECTS 

THERE ARE 8 VARIABLES IN THE DATA SET. 
AND 6 OF THEM WILL BU USED IN 
THE LABELS 06 THESE VARIABLES ARE 

shadow (POSITION : 
tuberous (POSITION : 
color (POSITION : 
soi 1 (POSITION : 
preference (POSITION : 
height (POSIT ION : 

MISSING VALUES CAN OCCUR 
THE UNIQUE VALUE WHICH REPRESENTS 

THE ANALYSIS 

2, TYPE : S) 
3. TYPE : A) 
4 .  TYPE : N) 
5 .  TYPE : 0) 
6, TYPE : 0) 
7, TYPE : I1 

MISSING MEASUREMENTS IS : 
999.9990000 

THE MEASUREMENTS WILL BE READ IN FREE FORMAT 

THE DATA WILL BE SAVED ON FILE : a:flower.dat 

ANALYSIS OF MISSING DATA 

VARIABLE shadow HAS NO MISSING VALUES 
VARIABLE tuberous HAS NO MISSING VALUES 
VARIABLE color HAS NO MISSING VALUES 
VARIABLE Soil HAS NO MISSING VALUES 
VARIABLE preference HAS NO MISSING VALUES 
VARIABLE height HAS NO MISSING VALUES 

........................ 

THE TOTAL NUMBER OF MISSING VALUES IS 0 

SUMMARY OF THE VARIABLES 

Variable shadow la symmetric binary. 
Variable tuberous is asymmetric binary. 
Variable color is nominal. It takes 5 different values. 
Variable soil la ordinal. Its maximal rank is 3. 
Variable preference is ordinal. Its maximal rank is 18. 
Variable heiiht is interval. 

........................ 

The dissimilarity matrix is on file : a:flower.dio 

The remaining output in on file : a:flower.out 

Figure 18 Output file produced by DAISY. 
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Please enter your choice : 2 

The correlations can be converted to dissimilarities in two ways : 

1 .  d = ( l - r ) / Z  (Please type 1 )  

With this formula, variables with a high positive correlation receive 
a dissimilarity close to zero, whereas variables with a strongly negative 
correlation will be considered very dissimilar. 
In other applications one might prefer to use : 

2. d = 1 - absolute value of r (Please type 2) 

in which case also variables with a strongly negative correlation 
will be assigned a small dissimilarity. 

Please enter your choice : 1. 

THE PRESENT VERSION OF THE PROGRAM CAN HANDLE UP TO I00 OBJECTS. 
(IF MORE ARE TO BE CONSIDERED, THE ARRAYS INSIDE THE PROGRAM MUST BE ADAPTED) 

HOW MANY OBJECTS DOES YOUR DATA SET CONTAIN ? 

PLEASE GIVE A NUMBER BETWEEN 3 AND 100 : _S 

THE PRESENT VERSION OF THE PROGRAM ALLOWS TO ENTER UP TO 80 VARIABLES, 
OF WHICH AT MOST 50 CAN BE USED IN THE ACTUAL COMPUTATIONS. 
(IF MORE ARE NEEDED, THE ARRAYS INSIDE THE PROGRAM MUST BE ADAPTED) 

WHAT IS THE TOTAL NUMBER OF VARIABLES IN YOUR DATA SET ? 

PLEASE GIVE A NUMBER BETWEEN 1 AND 80 : 

HOW MANY VARIABLES DO YOU WANT TO USE IN THE ANALYSIS ? 

____- -_____- -____- -___c_________________- - - - -  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
(AT MOST 4 ) : 4 

This option can handle variables of the following types : 
INTERVAL (please type I )  
RATIO to be treated as INTERVAL (please type I )  
RATIO to be logarithmicelly transformed (please type T) 

CAREFUL : A VARIABLE FOR WHICH A LOGARITHMIC 
TRANSFORMATION IS REQUESTED MAY ONLY 
CONTAIN POSITIVE NON-ZERO VALUES 

VARIABLES TO BE USED LABEL (AT MOST 10 CHARACTERS) TYPE 
- - - - - - _ - - - - - - - - - - 1 b 1 1 - - - - - - - ~ 1 - i 1 1 - ~ ~ ~ ~ ~ - _ - - - - - - - _ - - - - - - - - - - - ~ - - -  
NUMBER : L !elah5 L 
NUMBER ; 1 beLrht_ L 
NUMBER : 3 !oGh i 
NUMBER : I- Y B M  i 
PLEASE ENTER A TITLE FOR THE OUTPUT (AT MOST 60 CHARACTERS) 
________________________________________-- - - - - - - - - - - - - - - - - -  
ELehr_ee_o_ele_-and__fou-r_rntiable_r 

DO YOU WANT TO READ THE DATA IN FREE FORMAT ? 

THIS MEANS THAT YOU ONLY HAVE TO INSERT BLANK(S) BETWEEN NUMBERS. 
(NOTE: WE ADVISE USERS WITHOUT KNOWLEDGE OF FORTRAN FORMATS TO ANSWER YES.) 
MAKE YOUR CHOICE (YES/NO) : ye_@ 

PLEASE GIVE THE NAME OF THE FILE CONTAINING THE DATA (e.g. TYPE A:EXAMPLE.DAT) 
OR TYPE KEY IF YOU PREFER TO ENTER THE DATA BY KEYBOARD. 
WHAT Do YOU CHOOSE ? _ a l f g a l l & g A d g &  

________________________________________----- 

Figure 19 Interactive session for the computation of Pearson correlations and corresponding 
dissimilarities, for the variables of Table 7. 
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OUTPUT SECTION 

A. On which file do you want to output the dissimilarity matrix 7 

(WARNING : IF THERE ALREADY EXISTS A FILE WITH THE SAME NAME 
THEN THE OLD FILE WILL BE OVERWRITTEN.) 

* 1 . * * * 8 * . 8 * 1 ~ 9  

____________________-__-_--_-_-- - -_____-- -__-__-- - -___-_-_-- -_  

TYPE e.g. B:EXAMPLE.DIS . . . . . . . . . . . . . . . . . .  : ni faMl l l ea9h  
B. Where do you want the rest of the output 7 

TYPE CON IF YOU WANT IT ON THE SCREEN 
____________________----_-_--___-------_--  

OR TYPE PRN IF YOU WANT IT ON THE PRINTER 
OR TYPE THE NAME OF A FILE (e.g. B:EXAMPLE.OUT) 
(WARNING : IF THERE ALREADY EXISTS A FILE WITH THE SAME NAHE 

THEN THE OLD FILE WILL BE OVERWRITTEN.) 
WHAT DO YOU CHOOSE 7 ...................... : SQQ 

CAN MISSINO DATA OCCUR IN THE MEASUREMENTS 7 
PLEASE ANSWER YES OR NO : Dp 

DATA SPECIFICATIONS AND CHOSEN OPTIONS ________________-___---_-----_-------- 
TITLE : Eight people and four variables 
THERE ARE 8 OBJECTS 
INPUT OF A MATRIX OF INTERVAL OR RATIO MEASUREMENTS, 

FOR THE CALCULATION OF DISSIMILARITIES BETWEEN VARIABLES 

THE CORRELATIONS ARE CONVERTED TO DISSIMILARITIES BY THE FORMULA : 
d =  ( 1 - r  1 / 2  

THERE ARE 4 VARIABLES IN THE DATA SET, 
AND 4 OF THEM WILL BE USED IN THE ANALYSIS 

THERE ARE NO MISSING VALUES 
THE MEASUREMENTS WILL BE READ IN FREE FORMAT 
YOUR DATA RESIDE ON FILE : 4:families.dat 

THE DISSIMILARITIES WILL BE WRITTEN ON : a:fanilies.dis 
THE OTHER OUTPUT WILL BE WRITTEN ON : CON 

ARE ALL THESE PARAMETERS OK 7 YES OR NO : ySR 

CORRELATION MATRIX 
**.**..*.*1.***11. 

,957 - ,036 ,021 
-.953 -.985 .013 

SUMMARY OF THE VARIABLES 

Variable weight is interval. 
Variable heiiht is interval. 
Varlable month is interval. 
Variable year is interval. 

_ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _  

This run has been successfully completed 

The dissimilarity matrix is on file : a:families.dis 

Figure 19 (Continued) 
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containing the four measurements of the corresponding person. This time 
the user decides to put the output on the screen, so it is just the bottom part 
of Figure 19. 

The program prints the lower triangular half of the correlation matrix, 
corresponding to the values in Table 8(a) of Section 2.2. The final dissimi- 
larity matrix (which is being stored on a file families.dis in this example) is 
identical to Table 8(b) because the user has chosen the transformation 
d ( f ,  g) = (1 - R(f, g))/2. Based on this dissimilarity matrix, one can 
then perform a cluster analysis on the four variables. 

Option 2 can also be used for another purpose. Indeed, suppose you 
have a data set consisting of interval-scaled measurements and you want to 

Please enter your choice : 2 

The correlations can be converted to dissimilarities in two ways : 

1. d = ( l - r ) / 2  (Please type 1 )  

With thls formula, variables with a high positive correlation receive 
a dissimilarity close to zero, whereas variables with a strongly negative 
correlation will be considered very dissimilar. 
In other applications one night prefer to use : 

2. d = 1 - absolute value of r (Please type 2 )  

in which case also variables with a strongly negative correlation 
will be assigned a small dissimllarity. 

Please enter your choice : 2 

THE PRESENT VERSION OF THE PROGRAM CAN HANDLE UP TO SO VARIABLES. 
(IF MORE ARE TO BE CONSIDERED, THE ARRAYS INSIDE THE PRWRAM MUST BE ADAPTED) 

HOW MANY VARIABLES DOES YOUR DATA SET CONTAIN ? 

PLEASE GIVE A NUMBER BETWEEN 3 AND SO : -4 

PLEASE ENTER A TITLE FOR THE OUTPUT (AT MOST 60 CHARACTERS) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
E o ~ E e L r t h 9 a s _ _ b ~ _ t r l ~ - € Q ~ E - ~ ~ ~ ~ ~ b ~ ~ ~  
DO YOU WANT TO READ THE DATA IN FREE FORMAT ? 

THIS MEANS THAT YOU ONLY HAVE TO INSERT BLANK(S) BETWEEN NUMBERS. 
(NOTE: WE ADVISE USERS WITHOUT KNOWLEDGE OF FORTRAN FORMATS TO ANSWER YES.) 
MAKE YOUR CHOICE (YES/NO) : yea 

PLEASE GIVE THE NAME OF THE FILE CONTAINING THE DATA (e.g. TYPE A:EXAMPLE.DAT) 
OR TYPE KEY IF YOU PREFER TO ENTER THE DATA BY KEYBOARD. 
WHAT DO YOU CHOOSE ? &y 

W YOU WANT TO SAVE YOUR DATA ON A FILE ? 
PLEASE ANSWER YES OR NO : yes 

ON WHICH FILE DO YOU WANT TO SAVE YOUR DATA ? 
(WARNING : IF THERE ALREADY EXISTS A FILE WITH THE SAME NAME 

THEN THE OLD FILE WILL BE OVERWRITTEN.) 
TYPE e.g. B:SAVE.DAT . . . . . . . . . . . . . . . . . . . . .  : g?iy3E1&&QI 

___________________---_--_-------- - - - - - - - - - - -  

Figure u) Interactive session in which a correlation matrix is transformed into a dissimilarity 
matrix, as in Table 8(c). 
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cluster the objects by means of PAM, FANNY, AGNES, or DIANA, which 
allow you to specify a subset of variables for the actual computations. In 
such a situation it is quite useful to run DAISY’S second option because it 
will give you the correlations between the variables, which may help you to 
decide which variables to delete: When two variables are strongly corre- 
lated, it makes sense to remove either of them. 

OUTPUT SECTION 

A. 

(WARNINO : IF THERE ALREADY EXISTS A FILE WITH THE SAME NAME 
THEN THE OLD FILE WILL BE OVERWRITTEN.) 

........ 8:EXAMPLE.DIS . . . . . . . . . . . . . . . . . . .  piYaxAakA411a 

B. Where do YOU want the rest of the output ? 

TYPE CON IF YOU WANT IT ON THE SCREEN 
TYPE PRN IF YOU WANT IT ON THE PRINTER 
TYPE THE NAME OF A FILE (e.#. B:EXAMPLE.OUT) 

.............. 
On which file do you want to output the dlssimllsrity matrix .............................................................. 

-_--_-_---__________-_-------------------- 

(WARNINO : IF THERE ALREADY EXISTS A FILE WITH THE SAME NAME 
THEN THE OLD FILE WILL BE OVERWRITTEN.) .... DO ... CHOOSE ? ....................... piXarlRbAQU% 

DATA SPECIFICATIONS AND CHOSEN OPTIONS ____________________---_-----_--------  
TITLE : Correlatlons between four variables 
THERE ARE 4 VARIABLES 
INPUT OF CORRELATION COEFFICIENTS BETWEEN VARIABLES 

THE CORRELATIONS ARE CONVERTED TO DISSIMILARITIES BY THE FORMULA : 

THE CORRELATIONS WILL BE READ IN FREE FORMAT 
THE DATA WILL BE READ FROM THE KEYBOARD 
THE DATA WILL BE SAVED ON FILE : a:variab.cor 
THE DISSIMILARITIES WILL BE WRITTEN ON : a:variab.dla 
THE OTHER OUTPUT WILL BE WRITTEN ON : a:variab.out 

ARK ALL THESE PARAMETERS OK ? YES OR NO : y Q I  

FOR VARIABLE J ,  ENTER CORRELATIONS WITH VARIABLES 1 , 2 ,  . . .  ,(J-l) 

d - 1 - absolute value of r 

(CAREFUL : THE CORRELATIONS MUST BE BETWEEN -1 AND t 1 )  

CORRELATION BETWEEN VARIABLES 
9,952 

2 AND 1 :  

THE 2 CORRELATIONS WITH VARIABLE 3 : 

zLQ3LQ;QZL 

THE 3 CORRELATIONS WITH VARIABLE 4 : 

~Q,P9XrQLSBLQ,QL9 

THE DATA WILL BE SAVED ON FILE : a:variab.cor 

This run has been successfully completed 

The dissimilarity matrix is on file : a:variab.dls 

The remaining output is on file : a:variab.out 

Figwe 20 (Continued) 
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The third option is based on the same formulas (11) and (12), but 
assumes that the user already has a full collection of correlation coefficients, 
possibly taken from the output of a standard statistical package. These 
correlations may be either parametric (Pearson’s product-moment correla- 
tion) or nonparametric (Spearman’s rank correlation). DAISY verifies 
whether these quantities lie between - 1 and 1 and then converts them into 
dissimilarities, by means of which the variables may be clustered. Figure 20 
shows a typical run, where the user enters the correlations between the four 
variables of Table 7 (which already appeared in Figure 19). The resulting 
dissimilarity matrix is identical to Table 8(c), because now formula (12) has 
been chosen. 

Option 4 operates in an analogous way, except that now a (lower 
triangular) matrix of similarities between objects is converted into a matrix 
of dissimilarities. One may again choose between two formulas, namely 
d ( i ,  j) = 1 - s ( i ,  j) as in (15), and d ( i ,  j) = (1 - s ( i ,  j ) ) l / ’  as proposed 
by Gower (1966). During input, DAISY checks whether all entered similari- 
ties really lie between 0 and 1. The whole interactive session looks Like that 
of option 3 in Figure 20. 

EXERCISES AND PROBLEMS 

Sections 1 and 2 

1. Plot the data of Table 1 again with weight expressed in pounds (1 
lb = 0.4536 kg) and height expressed in feet (1 f t  = 30.48 cm). Com- 
pare the result with Figures 1 and 2. 

2. For a data set with 10 objects and an interval-scaled variable f we have 
the following measurements x,!: 

1,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,55  

containing one outlying value. 
(a) Compute the standard deviation std/ and the mean deviation s/ of 

(b) Compute the corresponding z-scores (4) with S~ and std/, respec- 
this variable. Which is more affected by the outlier? 

tively. In which case does the outlier stick out most? 

3. Suppose that we have a fixed set of n - 1 measurement values of 
variable f and an n th measurement that is an outlier equal to x .  Prove 
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that 
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stdf 6 n 6 
lim - - 

x + w  sf 2 n - 1  2 
--- z-  

showing that stdf is more affected by the outlier than s,. 

4. Show that the z-scores (4) always have mean zero and mean deviation 
equal to 1. 

5. Standardize the variables of Table 4 and compare the result with 
Table 5.  

6. Compute the Euclidean and Manhattan distances between the objects 
A, B, C, and D in Table 3. 

7. Show that the Euclidean and Manhattan distances do not always result 
in the same ordering of the distances between pairs of objects. That is, 
there can be objects A, B, C, and D such that d(A ,  B) < d(C, D) for 
the Euclidean distance whereas d ( A ,  B) > d(C, D) for the Manhattan 
distance. 

8. Supposing that we have n objects, how many numbers are contained in 
a matrix of the type (9)? In (lo)? 

9. Construct a subjective dissimilarity matrix as in Table 6, but for 
another set of objects such as wines, colors, pets,. . . . Keep these data 
for clustering, using one of the methods described in Chapters 2, 4, 5, 
or 6. 

10. Draw the graphs of the functions given by Eqs. (11) and (12) as well as 
of the function 

Observe that for this last function a small change of R ( f ,  g) in the 
region near R ( f ,  g) = 0 results in a much smaller change in d(f, g) 
than for the function of (12). 

11. Formula (17) writes the Rogers-Tanimoto dissimilarity r as a function 
of the simple niatching coefficient m. Check that the function f given 
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by r = f ( m )  is monotone and plot its graph. Do the same for s = g ( m )  
where s is the invariant dissimilarity of Sokal and Sneath [formula 
(18)]. Is there also a monotone relation between r and s? 

12. Write the noninvariant dissimilarity coefficients of Dice and of Sokal 
and Sneath (both listed in Table 11) as monotone functions of the 
Jaccard dissimilarity. 

13. Is it possible to write the Jaccard dissimilarity as a monotone function 
of the simple matching dissimilarity? 

14. Check that the dissimilarities in Tables 10 and 11 satisfy (Dl), (D2), 
and (D3), and that the similarities satisfy (Sl), (S2), and (S3). 

15. Bock (1974) and Romesburg (1984) consider several coefficients that 
were not given in Tables 10 and 11: 

s ( i ,  j )  = [(u + d )  - ( 6  + c ) ] / [ u  + 6 + c + d ]  

s ( i ,  j )  = [ad  - b c ] / [ u d  + bc] (Yule) 

s ( i ,  j) = [u + d ] / [ ( 6  + c )  + 2 ( u  + d ) ]  

s ( i ,  j )  = d / [ b  + c ]  

s ( i ,  j )  = u/[u + 6 + c + d ]  

(Hamman) 

(Kulczynski) 

(Russell-Rao) 

(a) Check which of these five coefficients are invariant. 
(b) None of these coefficients are similarities in the sense of conditions 

(Sl) to (S3). Which of these conditions are violated? 

16. The logarithmic transformation used for ratio-scaled variables cannot 
be carried out when a measurement equals zero. Suggest a solution to 
this problem based on the precision of the measurements (suppose that 
all measurements are nonnegative). 

17. Consider the binary data set of Table 9. Calculate the dissimilarities 
d(JAC, LIE) and d(ILA, PET) using the mixed variables approach, 
assuming that the first six variables are symmetric and the last four 
variables are asymmetric. 
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Section 3 

18. Consider Figure 11, which shows the result of applying a hierarchical 
clustering algorithm to a set of five objects. From this figure construct 
partitionings of the data set into 1, 2, 3, 4, and 5 clusters. 

Section 4 

19. Which clustering algorithms of this book are applicable to the data sets 
in Tables 6, 7, 9, and 12? 

Section 5 

20. Apply the program DAISY to the data of Table 9, by 
(a) treating the variables as symmetric binary, 
(b) treating the variables as nominal, 
(c) treating the variables as asymmetric binary. 
Which dissimilarity coefficients do we obtain? Why are the results of (a) 
identical to those of (b)? Explain how you would use this fact when 
faced with a data set consisting of symmetric binary variables, with 
states not coded as 0 and 1. 

21. (a) Combine the data from Tables 7 and 9 and construct a dissimilarity 
matrix using the program DAISY. Consider all binary variables to 
be symmetric. 

(b) Repeat this exercise after combining the two variables month and 
year into the variable birth using the formula 

birth = year -!- month/l2 

22. Table 14 contains data concerning 12 countries. The variables (reg- 
istered in 1983) are gross national product in dollars per inhabitant ( x ) ,  
average calorie intake per day ( y), and average life expectancy at birth 
(2 ) .  

(a) Use the program DAISY to calculate the correlation coefficients 

@) Use DAISY to construct a dissimilarity matrix between the twelve 
and dissimilarities between the variables. 

countries. 
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Table 14 Three Variables on 12 Countries 

Country X Y z 

Belgium 
Brazil 
China 
Cuba 
France 
Egypt 
India 
Israel 
USA 
USSR 
Yugoslavia 
Zaire 

12,180 
2,050 

290 
Missing 
11,730 

Missing 
240 

4,500 
11,360 

Missing 
Missing 

220 

3,800 
2,498 

Missing 
2,672 
3,412 
2,716 
1,996 
3,145 
3,537 
3,443 
3,510 

Missing 

71.0 
59.3 
62.6 
64.3 
73.8 
52.7 
45.6 
73.2 
76.5 
69.0 
67.8 
43.5 

(c) Combine this dissimilarity matrix with that of Table S in Chapter 2, 
as described at the end of Section 2.6. 

(a) Making use of subsequent chapters, the latter matrix can be used as 
input for the programs PAM, FANNY, AGNES, and DIANA, to 
cluster the countries. 



C H A P T E R 2  

Partitioning Around Medoids 
(Program PAM) 

1 SHORT DESCRIPTION OF THE METHOD 

When partitioning a set of objects into k clusters the main objective is to 
find clusters, the objects of which show a high degree of similarity, while 
objects belonging to different clusters are as dissimilar as possible. Of 
course, many methods exist that try to achieve this aim. The algorithm used 
in the program PAM is based on the search for k representative objects 
among the objects of the data set. As evoked by their name, these objects 
should represent various aspects of the structure of the data. In the cluster 
analysis literature such representative objects are often called centrotypes. 
In the PAM algorithm the representative objects are the so-called rnedoicis 
of the clusters (Kaufman and Rousseeuw, 1987). After finding a set of k 
representative objects, the k clusters are constructed by assigning each 
object of the data set to the nearest representative object. 

To illustrate the algorithm used in PAM (a detailed description is given 
in Section 4) let us consider the data set represented in Figure 1. This data 
set contains 10 objects (n = 10) each characterized by two variables ( p = 2), 
called x and y. The x and y values are given in Table 1. 

Suppose the data set must be divided into two subsets or clusters 
(k = 2). In the algorithm one first considers possible choices of two 
representative objects and then constructs the clusters around these repre- 
sentative objects. As an example, suppose objects 1 and 5 are the selected 
representative objects. In Table 2 the dissimilarities from each of the 
objects to the two selected objects are given, as well as the smallest of these 
two dissimilarities and the corresponding representative object. (In this 
example we have simply used Euclidean distances between the points on 
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Figure I Two-dimcnsional example with 10 objects. 

Table 1 

Number x Coordinate y Coordinate 

Coordinates of the Objects of the Example of Figure 1 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1 .o 
5.0 
5.0 
5.0 

10.0 
25.0 
25.0 
25.0 
25.0 
29.0 

4.0 
1 .o 
2.0 
4.0 
4.0 
4.0 
6 .O 
7.0 
8.0 
7.0 

the plot.) The average dissimilarity is 9.37. This value measures the tight- 
ness of the clusters and therefore the quality of the clustering. 

In Table 3 the assignment is carried out for the case objects 4 and 8 are 
selected as representative objects. The clusterings associated with these two 
pairs of representative objects are shown in Figure 2. 

The average dissimilarity for the case objects 4 and 8 are selected is 2.30, 
which is considerably less than the value of 9.37, found when 1 and 5 were 
the representative objects. In Section 4 an algorithm will be described, 
which for a given k makes it possible to select k representative objects 
which yield a very low average dissimilarity, and therefore a “good” 
partition. The clustering found with this algorithm is the same one as in 
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Table 2 Assignment of Objects to Two Representative Objects 

Closest 
Object Dissimilarity Dissimilarity Minimal Representative 
Number from Object 1 from Object 5 Dissimilarity Object 

~ ~~ ~ 

1 0.00 9.00 0.00 1 
2 5.00 5.83 5.00 1 
3 4.47 5.39 4.47 1 
4 4.00 5.00 4.00 1 
5 9.00 0.00 0.00 5 
6 24.00 15.00 15.00 5 
7 24.08 15.13 15.13 5 
8 24.19 15.30 15.30 5 
9 24.33 15.52 15.52 5 
10 28.16 19.24 19.24 5 

Average 9.37 

Table 3 Assignment of Objects to Two Other Representative Objects 

Closest 
Object Dissimilarity Dissimilarity Minimal Representative 
Number from Object 4 from Object 8 Dissimilarity Object 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

4.00 
3.00 
2.00 
0.00 
5.00 
20.00 
20.10 
20.22 
20.40 
24.19 

24.19 
20.88 
20.62 
20.22 
15.30 
3 .00 
1.00 
0.00 
1.00 
4.00 

A 

4.00 
3.00 
2.00 
0.00 
5.00 
3.00 
1.00 
0.00 
1 .00 
4.00 

rverage 2.30 

4 
4 
4 
4 
4 
8 
a 
8 
8 
8 

Table 3, but the two representative objects are 3 and 8 and in this way the 
average dissimilarity is 2.19. 

There are basically two ways of entering the data in PAM. The most 
common way is by means of a matrix of measurement values. The rows of 
this matrix represent the objects and the columns correspond to variables, 
which must be on an interval scale, An example of such data is given in 
Table 1. 



SHORT DESCRIPTION OF THE METHOD 

Y 

71 

10 

a -  
6 ,  

2 

’ 

L@ 

10 1 

- 
1 2 3 4 5  10 15 2 0  25 X 

Figure 2 Clusterings corresponding to the selections described in Tables 2 and 3. 

Alternatively the program can be used by entering a matrix of dissimilar- 
ities between objects. Such dissimilarities can be obtained in several ways. 
Often they are computed from variables that are not necessarily on an 
interval scale but which may also be binary, ordinal, or nominal. (This can 
be done by using the program DAISY of Chapter 1.) It also happens that 
dissimilarities are given directly, without resorting to any measurement 
values. 

In many clustering problems one is particularly interested in a character- 
ization of the clusters by means of typical or representative objects. These 
are objects that represent the various structural aspects of the set of objects 
being investigated. There can be many reasons for searching for representa- 
tive objects. Not only can these objects provide a characterization of the 
clusters, but they can often be used for further work or research, especially 
when it is more economical or convenient to use a small set of k objects 
instead of the large set one started off with. In the method used in the 
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program PAM the representative object of a cluster is its medoid, which we 
define as that object of the cluster for which the average dissimilarity to all 
the objects of the cluster is minimal. (In fact, the name PAM comes from 
Partitioning Around Medoids.) As the objective is to find k such objects, 
we call this the k-medoid method (in the literature one also encounters the 
name k-median which to us seems less appropriate, as confusion can arise 
with the classical notion of median). 

Another typical aspect of PAM is that it provides a large number of 
statistics by which a thorough investigation of the clustering results is made 
possible. Particularly worth mentioning. are the medoids of the clusters 
(with their coordinates), the diameters and separations of the clusters, and 
also a graphical representation of the clusters by means of so-called 
silhouettes. 

2 HOW TO USE THE PROGRAM PAM 

The k-medoid method can be applied by using the program PAM. This 
program was written in Fortran and runs on an IBM PC, XT, AT, or 
compatible computer with at least 256K of internal storage. In Section 4 
some details of the program are described and the Appendix discusses the 
implementation of the program. 

The program PAM is operated entirely interactively. The data specifica- 
tions and options must be entered by keyboard. The data set (consisting of 
the measurements or the dissimilarities) can be input by the keyboard or 
from a file located on a floppy or hard disk. If they are input from the 
keyboard, there is an option for saving them in a file. The output can be 
sent either to the screen, to the printer, or to a file which is then written on 
floppy or hard disk. In Section 2.1 we will describe how the program is 
operated. In Section 2.2 the output of the clustering results will be detailed. 
The case of missing measurement values, which is not of interest to all 
readers, is discussed in Section 2.3. 

2.1 Interactive Use and Input 

In order to run the program the first thing to do is to insert the diskette 
containing the file PAM.EXE. To load and run the program the user only 
has to type A:PAM in case the diskette is in drive A. The user must then 
press the key ENTER. (The carriage return or ENTER key, which instructs 
the computer to read the information, must follow each answer or input of 
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data. It will not be mentioned hereafter.) The program then generates the 
following screen: 

PARTITIONING AROUND MEDOIDS 

DO YOU WANT TO ENTER MEASUREMENTS ? (PLEASE ANSWER M> 
OR DO YOU PREFER TO GIVE DISSIMILARITIES ? 
(THEN ANSWER D) : - m 

Note that the user-supplied information (answers or data) is underlined. 
The user now must select one of the two types of data to be used for the 

clustering algorithm. If he chooses measurements, the program will itself 
compute the dissimilarities before performing the clustering. This results in 
several additional options concerning the treatment of the measurements. 
We will suppose measurements were chosen in order to illustrate these 
options. 

After the choice of input data type has been made, the following message 
appears: 

THE PRESENT VERSION OF THE PROGRAM CAN HANDLE UP TO 100 
OBJECTS. 

GRAM MUST BE ADAPTED) 
HOW MANY OBJECTS ARE TO BE CLUSTERED ? 

PLEASE GIVE A NUMBER BETWEEN 3 AND 100 : - 10 

(IF MORE ARE TO BE CLUSTERED, THE ARRAYS INSIDE THE PRO- 

____________________- - - - - -_ - - - -__- - -  

The user then enters the number of cases in his data set. Note that there 
are limits on the size of the data set that can be handled. (These are due to 
the central memory limitation of the computer.) Also note that if an answer 
of less than 3 or more than 100 is given, the program reiterates the question. 
The next message concerns the number of clusters: 

CLUSTERINGS WILL BE CARRIED OUT IN K1 TO K2 CLUSTERS. 
PLEASE ENTER K1 : 2 
PLEASE ENTER K2 : ? - 

If the values K1 and K2 are not satisfactory, special messages are given 
and they have to be entered again. 

Subsequently, if input of measurements was chosen (see the first ques- 
tion), specific information related to the measurements must be entered. 
The questions and prompts are now discussed. (Note that these do not 
appear if  input of dissimilarities was chosen.) The user first specifies the 
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total number of variables in his data set: 

THE PRESENT VERSION OF THE PROGRAM ALLOWS TO ENTER UP TO 
80 VARIABLES, OF WHICH AT MOST 20 CAN BE USED IN THE ACTUAL 
COMPUTATIONS. 
(IF MORE ARE NEEDED, THE ARRAYS INSIDE THE PROGRAM MUST BE 
ADAPTED.) 
WHAT IS THE TOTAL NUMBER OF VARIABLES IN YOUR DATA SET ? 

PLEASE GIVE A NUMBER BETWEEN 1 AND 80 : 2 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

As with the number of objects there are also limits on the number of 
variables. If a number is entered outside the range, a message appears and 
the question is restated. 

In order to make it possible to cluster the same set of objects using 
different sets of variables, the program allows the choice of a subset of 
variables to be used for the clustering. The choice of variables must be 
made by the user: 

Note that in the text this quantity is denoted by p. When the number of 
selected variables equals the total number of variables in the data set, a 
table is given in which each variable is to be identified by a label of at most 
10 characters. On the other hand, when not all variables are uesd, the 
position of the selected variables must also be given. For our example, the 
following appears on screen: 

VARIABLE TO BE USED: POSITION LABEL (AT MOST 10 

1 1 1 1  ---111L111111--------- 
CHARACTERS) 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

NUMBER 1 : 2 - x-coordina 
NUMBER 2 : - 3 y-coordina 

For each variable the position in the measurement matrix (column 
number) and its label must be entered on the same line. Note that after the 
position has been entered, blanks must be used to reach the area reserved 
for the label. 
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Also in this table checks on the input are carried out. For example, it is 
not allowed to enter the same variable twice. Finally, the user has the 
option of standardizing the measurements and a choice is given between 
two dissimilarity measures. 

DO YOU WANT THE MEASUREMENTS TO BE STANDARDIZED (PLEASE 
ANSWER YES) OR NOT? (THEN ANSWER NO) . . . . . . . . . . . . . . . . . . . . ao - 

If this option is selected, the data are standardized as follows. First the 
mean (mf)  and the mean absolute deviation (sf) of the f th  variable are 
calculated: 

1 

n mf = - ( x , , +  x Z f  + + x n f )  

Then, each measurement xl ,  is replaced by the standardized value ti/ 

defined as 

which is often called a z-score. The advantages and disadvantages of such 
standardization were discussed in Section 2 of Chapter 1. 

DO YOU WANT TO USE EUCLIDEAN DISTANCE ? (PLEASE ANSWER E) 
OR DO YOU PREFER MANHATTAN DISTANCE ? (THEN ANSWER M) . . < 

Let us recollect that the Euclidean distance between two objects i and j is 
given by 

while their Manhattan distance corresponds to 

(For the interpretation of these formulas see Section 2 of Chapter 1.) If a 
standardization is carried out, the x i /  are replaced by zif in the last two 
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expressions. The answers to the following questions control the output of 
the program. 

PLEASE ENTER A TITLE FOR THE OUTPUT (AT MOST 60 CHARACTERS) 

Data of Table 1 
________-______-____-----------_---------------------- 

DO YOU WANT LARGE OUTPUT ? (PLEASE ANSWER YES) 
OR IS SMALL OUTPUT SUFFICIENT ? (THEN ANSWER NO) 

. . . . . . . . .  (IN THE LATTER CASE NO DISSIMILARITIES ARE GIVEN) be 
DO YOU WANT GRAPHICAL OUTPUT (SILHOUETTES) ? PLEASE AN- 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  SWER YES OR NO A!!!!? 

DO YOU WANT TO ENTER LABELS OF OBJECTS ? PLEASE ANSWER YES 
ORNO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  IY) - 

If labels of objects are to be entered this is made possible by the 
following screen: 

EACH LABEL MAY CONSIST OF AT MOST 3 CHARACTERS 
OBJECT LABEL 
_-__-__--_---- L L L  

AAA NUMBER 1 : 
BBB NUMBER 2 : 
ccc NUMBER 3 : 

NUMBER 4 : DDD 
EEE NUMBER 5 : 

- 
- 
- 
- 
- 

If the labels are not provided by the user, they are constructed by the 
program as three-digit integers such as 001,002,. .. in which the leading 
zeroes are maintained. The following questions concern the input of the 
data. 

DO YOU WANT TO READ THE DATA IN FREE FORMAT ? 
THIS MEANS THAT YOU ONLY HAVE TO INSERT BLANK(S) BETWEEN 
NUMBERS. 
(NOTE : WE ADVISE USERS WITHOUT KNOWLEDGE OF FORTRAN 
FORMATS TO ANSWER YES.) 
MAKE YOUR CHOICE (YES / NO) : - IY) 

YOUR DESIRED FORTRAN FORMAT IS : 
(BETWEEN BRACKETS AND AT MOST 60 CHARACTERS, e.g. (2F3.0,Fl.O)) 
(5F5.1) 
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This format is chosen by the user to input the measurements or dissimi- 
larities. It must be entered between brackets. (For the actual data only 
Fortran F formats and E formats are allowed because the dissimilarities 
are processed as real numbers. For ease of use X and / are also allowed. 
Details about formats are described in the Appendix.) 

Subsequently, information must be provided concerning the status of 
input and output. Several options make it possible to use the keyboard, 
screen, printer, and files on disk. 

PLEASE GIVE THE NAME OF THE FILE CONTAINING THE DATA (e.g. 
TYPE A:EXAMPLE.DAT) 
OR TYPE KEY IF YOU PREFER TO ENTER THE DATA BY KEYBOARD. 
WHAT DO YOU CHOOSE ? $ 

If the data are to be entered by keyboard, there is an option for saving them 
on a file. 

DO YOU WANT TO SAVE YOUR DATA ON A FILE ? 
PLEASE ANSWER YES OR NO: @ 

ON WHICH FILE DO YOU WANT TO SAVE YOUR DATA ? 
(WARNING : IF THERE ALREADY EXISTS A FILE WITH THE SAME 

TYPE e.g. B:SAVE.DAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  e;&t& 

NAME THEN THE OLD FILE WILL BE OVERWRITTEN.) 

The output can be directed toward the screen, a printer, or a file: 

WHERE DO YOU WANT YOUR OUTPUT ? 
______________________- - - - - -__ - -  

TYPE CON IF YOU WANT IT ON THE SCREEN 
OR TYPE PRN IF YOU WANT IT ON THE PRINTER 
OR TYPE THE NAME OF A FILE (e.g. B:EXAMPLE.OUT) 
(WARNING ; IF THERE ALREADY EXISTS A FILE WITH THE SAME 

WHAT DO YOU CHOOSE 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  c : b d t . ~  
NAME THEN THE OLD FILE WILL BE OVERWRITTEN.) 

When measurements are to be entered, PAM makes provision for the 
occurrence of missing values in the data. 

CAN MISSING DATA OCCUR IN THE MEASUREMENTS ? 
PLEASE ANSWER YES OR NO : - mo 

An affirmative answer to this question results in sevcral prompts which, as 
they are not of interest to all users, will be discussed in Section 2.3. 
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Finally, the data specifications and chosen options are displayed: 

DATA SPECIFICATIONS AND CHOSEN OPTIONS 

TITLE : Data of Table 1 
THERE ARE 10 OBJECTS 
LABELS OF OBJECTS ARE NOT READ 
INPUT OF MEASUREMENTS 
LARGE OUTPUT IS WANTED 
GRAPHICAL OUTPUT IS WANTED (SILHOUETTES) 
CLUSTJZRINGS ARE CARRIED OUT IN 2 TO 2 CLUSTERS 

___________________--_-------_-------  

THERE ARE 5 VARIABLES IN THE DATA SET, 
AND 2 OF THEM WILL BE USED IN THIS ANALYSIS 

THE MEASUREMENTS WILL NOT BE STANDARDIZED 
EUCLIDEAN DISTANCE WILL BE USED 
THERE ARE NO MISSING VALUES 
THE INPUT FORMAT FOR THE MEASUREMENTS IS 
(5F5.1) 
THE DATA WILL BE READ FROM THE KEYBOARD 
THE DATA WILL BE SAVED ON FILE : C:TEST.DAT 
YOUR OUTPUT WILL BE WRITTEN ON : C:TEST.RES 

ARE ALL THESE SPECIFICATIONS OK ? YES OR NO : 

If the user answers no to this question, the program returns to the first line 
(concerning the choice of measurements or dissimilarities). Otherwise it 
proceeds with the input of the actual data. 

Let us first consider the situation of input of measurements. For the 
example of Table 1, if the data are entered in the preceding format, (5F5.1), 
the following screen will appear: 

PLEASE ENTER YOUR DATA FOR EACH OBJECT 

THE 5 MEASUREMENTS FOR OBJECT 001 : 

THE 5 MEASUREMENTS FOR OBJECT 002 : 

THE 5 MEASUREMENTS FOR OBJECT 003 : 

THE 5 MEASUREMENTS FOR OBJECT 004 : 

1.0 1.0 4.0 24.0 0.6 

2.0 5.0 1.0 26.5 -0.3 

3.0 5.0 2.0 27.0 0.4 

4.0 5.0 4.0 23.5 0.2 
THE 5 MEASUREMENTS FOR OBJECT 005 : 
5.0 10.0 4.0 24.5 -0.6 
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THE 5 MEASUREMENTS FOR OBJECT 006 : 

THE 5 MEASUREMENTS FOR OBJECT 007 : 

THE 5 MEASUREMENTS FOR OBJECT 008 : 

THE 5 MEASUREMENTS FOR OBJECT 009 : 

THE 5 MEASUREMENTS FOR OBJECT 010 : 

6.0 25.0 4.0 25.5 0.1 

7.0 25.0 6.0 26.0 0.3 

8.0 25.0 7.0 23.5 -0.2 

9.0 25.0 8.0 22.0 0.0 

10.0 29.0 7.0 24.5 -0.3 

Note that the first variable happens to be the number of the observation 
and that only the second and third variables are to be used in this particular 
analysis. 

Let us now assume that the data consist of a set of dissimilarities. These 
are usually listed as in the matrix 

a b c d e  
- 0  2 6 10 9 

2 0 5  9 8  
6 5 0  4 5  

1 0 9 4  0 3  
9 8 5  3 0  

(4) 

For example, the dissimilarity between objects a and d equals 10. 
Observe that the matrix has nonnegative entries, zeroes on the diagonal, 
and is symmetric. Therefore, only the lower triangular part of the n-by-n 
matrix of dissimilarities is entered, 

Be careful to delete the upper triangular part of the matrix, and also the 
diagonal, because otherwise wrong values might be read (especially if more 
than one line is used per object). We chose to read the lower triangular 
matrix instead of the upper one, because this makes it very easy to add 
objects to the data set by simply adding lines at the end of the data file. 

When entering the dissimilarities by keyboard, the following screen 
appears: 

FOR OBJECT J, ENTER THE DISSIMILARITIES TO OBJECTS 
1,2,. . . , (J - 1) 

DISSIMILARITY BETWEEN OBJECTS BBB AND AAA : 

THE 2 DISSIMILARITIES FOR OBJECT CCC : 
2 .o 

6.0 5.0 

- 
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THE 3 DISSIMILARITIES FOR OBJECT DDD : 

THE 4 DISSIMILARITIES FOR OBJECT EEE : 
10.0 9.0 4.0 

9.0 8.0 5.0 3.0 

Conversely, the dissimilarities may also be read from a file which should 
then be organized as 

2 .o 
6.0 5.0 

9.0 8.0 5.0 3.0 

In some applications, similarities are given instead of dissimilarities. 
These cannot‘be used as input to the program but must first be converted to 
dissimilarities; this can, for example, be done by means of the program 
DAISY described in Chapter 1. 

It is important to note that the input file requirements of PAM are 
completely identical to those of FANNY (Chapter 4), AGNES (Chapter 5) ,  
and DIANA (Chapter 6). This means that any input file constructed for 
either program will also run on the others. Also, the interactive dialogue is 
extremely similar for all four programs. 

10.0 9.0 4.0 

2.2 output 

In this section the output generated by PAM is described. Where necessary 
it is illustrated with the output of some test data. The output discussed in 
this section is obtained from a standard usage of the program, without 
missing values. (An example with missing values is given in Section 2.3. 
Outputs associated with special situations and error messages are discussed 
in the Appendix.) 

The output of PAM is divided into five parts, two of which are not 
always obtained (parts c and e): 

a. Identifiation of the lhgmm and the Data Set 
The phrase “PARTITIONING AROUND MEDOIDS” shows that the 
program PAM was used to obtain this output. The name of the data set is 
then printed as it was provided by the user. 

b. Data Specifications and Chosen Options 
Number of objects 
Options concerning input and output: 

reading labels or not 
input of dissimilarities or measurements 
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large or small output 
graphical output or not 
smallest and largest number of clusters 

number of variables in the data set 
which variables to be used in the analysis 
standardization or not 
the selected dissimilarity measure 
the absence or presence of missing values 

If measurement values are entered: 

The input format for measurements or dissimilarities. 
Options for input and output (choice between keyboard and file for 

input and between screen, printer, and file for output). 

c. Dissimilarities and Standardized Measurements 
In case of dissimilarity input and if large output was asked for, the 
dissimilarities between objects are given before the clustering results. 

In case of input of measurement values which are to be standardized, the 
average and mean absolute deviation of each variable are printed. In case of 
large output this is followed by the transformed measurements and the 
dissimilarities. If the measurements are not standardized and large output 
was requested, only the dissimilarities are listed. 

In Figure 3, parts a, b, and c of the output are given for the data of 
Table 1. 

d Numerical Output Concerning Each Clustering 

The number of clusters (number of representative objects). 
The average dissimilarity for the solution found in the first part of the 

The average dissimilarity for the solution found in the second part of the 
algorithm (called BUILD). 

algorithm (called SWAP). 

(These two values are defined as the average dissimilarity between each 
object and its most similar representative object; details are discussed in 
Section 4.1.) 

For each cluster the following information is printed: 
its medoid (with the label) 
its number of objects (size) 



82 PARTITIONING AROUND MEDOIDS (PROGRAM PAM) 

..........*..* ".........I......I. * * 
' PARTITIONING AROUND HEDOIDS : 
. * . . . * * . . . * . * . . . . . * . * ~ * . 8 * 8 * * 8 *  ~1 

TITLE : Data of Table 1 
DATA SPECIFICATIONS AND CHOSEN OPTIONS ________________---_--_-------- - - - - - - -  
THERE ARE 10 OBJECTS 
LABELS OF OBJECTS ARE NOT READ 
INPUT OF MEASUREMENTS 
LARGE OUTPUT IS WANTED 
QRAPHICAL OUTPUT IS WANTED (SILHOUETTES) 
CLUSTERINCS ARE CARRIED OUT IN 2 TO 
THERE ARE 5 VARIABLES IN THE DATA SET 
THE LABELS OF THESE VARIABLES ARE : 

x-coordina POSITION : 

AND 2 OF THEM WILL BE USED IN THE ANALYSIS 
-coor ina  POSITION : 

THE MEAS~REMEN?~ WILL NOT BE 
EUCLIDEAN DISTANCE WILL BE USED 
THERE ARE NO MISSING VALUES 
THE INPUT FORMAT FOR THE MEASUREMENTS IS 
(5F5.1) 
THE DATA WILL BE SAVED ON FILE : C:TEST.DAT 

001 
002 5 .00  
003 4 .47  1 .00  

4 . 0 0  3 . 0 0  2 . 0 0  
9.00 5 . 8 3  5 . 3 9  5 . 0 0  ''' 006 2 4 . 0 0  2 0 . 2 2  2 0 . 1 0  2 0 . 0 0  1 5 . 0 0  

007 2 4 . 0 8  20.62 20 .40  20 .10  15 .13  2 . 0 0  
008 24 .19  20 .88  2 0 . 6 2  2 0 . 2 2  15 .30  3 . 0 0  1.00 
009 24 .33  21 .19  2 0 . 8 8  20.40 1 5 . 5 2  4 . 0 0  2 . 0 0  1 . 0 0  
010 28 .16  24 .74  2 4 . 5 2  24 .19  19 .24  5 . 0 0  4 . 1 2  4 . 0 0  

4 .12  

Figure 3 PAM output, parts a, b, and c. 

the labels of its members (if no labels were read in the input, 
numbers are generated by the program) 
the coordinates of the medoid: This only occurs when there are 
measurements (when standardization is requested, only standard- 
ized coordinates are given) 

The clustering vector: The j t h  element of this vector is the number of 
the cluster to which object j belongs (the clusters are numbered in 
such a way that when reading the clustering vector from left to right, 
cluster 1 is encountered before cluster 2, cluster 2 before cluster 3, and 
so on; therefore cluster 1 is defined as the cluster containing the first 
object). 

whether a cluster is a singleton 
whether a cluster is isolated: Two types of isolated clusters are 
considered in the program, L-clusters and L*-clusters. They have 

The clustering characteristics: 
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the following definitions (see Gordon, 1981): 
C is an L-cluster if for each object i belonging to C: 

maxd(i, j) < mindti, h )  
j e C  hQC 

C is an L*-cluster if: 

max d ( i ,  j) < I c C ,  min h B C  d ( l ,  h )  ( 5 )  
i ,  j e C  

It is clear that L*-clusters are also L-clusters. It should be observed 
that the property of being isolated depends both on the internal 
structure of a cluster and its position relative to other clusters. 
When dividing the data into two clusters, it can happen that one is 
isolated and the other is not. 
the diameter and separation of each cluster: the left-hand side of 
Eq. (5) is called the diameter of cluster C and the right-hand side its 
separation. 
in each cluster, the average dissimilarity of the objects to the medoid 
and the maximum dissimilarity of any object to the medoid. 

As an illustration, the numerical output of the example of Section 1 
concerning the clustering into two clusters (k  = 2) is given in Figure 4. 

e. Graphical Output Concerning Each Clustering 
If this was requested in the interactive part of the program, a graphical 
representation of each clustering is provided (except for the boundary cases 
k = 1 and k = n )  displaying the silhouettes introduced by Rousseeuw 
(1987). Each cluster is represented by one silhouette, showing which objects 
lie well within the cluster and which objects merely hold an intermediate 
position. The entire clustering is displayed by plotting all silhouettes into a 
single diagram, allowing the user to compare the quality of the clusters. 
Such silhouettes are especially useful when the dissimilarities are on a ratio 
scale (as in the case of Euclidean distances) and when one is seeking 
compact and widely separated clusters. 

Silhouettes are constructed in the following way: For each object i the 
value s ( i )  is defined and then these numbers are combined into a plot. Take 
any object i of the data set. In order to define s ( i ) ,  first denote by A the 
cluster to which it has been assigned and then calculate 

a ( i )  = average dissimilarity of i to all other objects of A 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
' NUMBER OF REPRESENTATIVE OBJECTS 2 : 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

* 

RESULT OF BUILD 
AVERAOE DISSIMILARITY = 3.422 

2.186 
FINAL RESULTS 
AVERAOE DISSIMILARITY 
CLUSTERS 
NUMBER MEDOID SIZE OBJECTS 

1 003 5 001 002 003 004 005 

2 008 5 006 007 008 009 010 

F%??!9??56.?!.r?f??'!?s 
003 5.00 2.00 
008 25.00 7 . 0 0  

FF;YITf?!Y? *YfF??? 

FF;YITf?f9S*F~???FTS?fsffFs 

1 1 1 1 1 2 2 2 2 2  

9.00 AND SEPARATION = 15.00 CLUSTER 1 IS ISOLATfD, 
WITH DIAMETER 
THEREFORE IT IS AN La-CLUSTER. 

CLUSTER UITH DIAMETER Is ISoLATfD' 5.00 AND SEPARATION I 15.00 
THEREFORE IT IS AN L*-CLUSTER. 

THE NUMBER OF ISOLATED CLUSTERS = 2 

DIAMETER OF EACH CLUSTER 
9.00 5.00 

SEPARATION OF EACH CLUSTER 
15.00 15.00 

AVERAGE DISSIMILARITY TO EACH MEDOID 
2.57 1.80 

MAXIMUM DISSIMILARITY TO EACH MEDOID 
5.39 4.00 

Figure 4 Numerical output for the clustering into two clusters of the example of Table 1. 

This can only be done when A contains other objects apart from i ,  so at 
this point we assume that A is not a singleton. 

Now consider any cluster C different from A and define 

d ( i ,  C) = average dissimilarity of i to all objects of C 

After computing d ( i ,  C) for all clusters C # A, we select the smallest of 
those: 

b ( i )  = mind(i,C) 
Cr.4 

The cluster B for which this minimum is attained [that is, d( i ,  B) = b( i ) ]  is 
called the neighbor of object i. This is like the second-best choice for object 



HOW TO USE THE PROGRAM PAM 85 

i :  If cluster A is discarded, cluster B is closest to i. Therefore, it is very 
useful to know the neighbor of each object in the data set. Note that the 
construction of b ( i )  depends on the availability of clusters differing from 
A, which explains why silhouettes are not defined for k = 1. 

The number s ( i )  is obtained by combining a ( i )  and b ( i )  as follows: 

= o  if a ( i )  = b ( i )  

It is possible to write this in one formula: 

When cluster A contains only a single object, it is unclear how a ( i )  
should be defined and then we simply set s ( i )  = 0. This choice is of course 
arbitrary, but a value of zero appears to be most neutral. Indeed, from the 
preceding definition we easily see that 

-1 2 s ( i )  I 1 

for each object i. 
Note that s ( i )  remains invariant when all the original dissimilarities are 

multiplied by a positive constant, but that an additive constant is not 
allowed. This explains why we explicitly assume that the dissimilarities are 
on a ratio scale, which means that a dissimilarity of 6 may be considered 
twice as large as a dissimilarity of 3. For instance, Euclidean distances are 
on a ratio scale. 

To strengthen our intuition about the meaning of s ( i ) ,  let us look at a 
few extreme situations. When s ( i )  is at its largest (that is, close to l), this 
implies that the “within” dissimilarity a(i) is much smaller than the 
smallest “between” dissimilarity b( i ) .  Therefore, we can say that i is “well 
classified”, as there appears to be little doubt that i has been assigned to an 
appropriate cluster: The second-best choice ( E )  is not nearly as close as the 
actual choice ( A ) .  

A different situation occurs when s ( i )  is about zero. Then a ( i )  and b ( i )  
are approximately equal and hence it is not clear at all whether i should 



86 PARTITIONING AROUND MEDOIDS (PROGRAM PAM) 

have been assigned to A or to B. Object i lies equally far away from both, 
so it can be considered as an “intermediate” case. 

The worst situation takes place when s ( i )  is close to -1. Then a ( i )  is 
much larger than b(i) ,  so i lies on the average much closer to B than to A. 
Therefore it would have seemed much more natural to assign object i to 
cluster B, so we can almost conclude that object i has been “misclassified”. 

To conclude, s ( i )  measures how well object i matches the clustering at 
hand (that is, how well it has been classified). In the special case where 
there are only two clusters (k  = 2), we note that moving object i from one 
cluster to the other will convert s ( i )  to -s(i). 

Having computed the quantities s ( i )  from the dissimilarities, we can 
now construct the graphical display. The silhouette of cluster A is a plot of 
the s(i), ranked in decreasing order, for all objects i in A. On a line printer, 
we represent s ( i )  by a row of asterisks, the length of which is proportional 
to s ( i ) .  Therefore, the silhouette shows which objects lie well within their 
cluster and which ones are merely somewhere in between clusters. A wide 
silhouette indicates large s ( i )  values and hence a pronounced cluster. The 
other dimension of a silhouette is its height, which simply equals the 
number of objects in A. 

In order to obtain an overview, the silhouettes of the different clusters 
are printed below each other. In this way the entire clustering can be 
displayed by means of a single plot, which enables us to distinguish 
clear-cut clusters from weak ones. Above and below the plot there are scales 
going from 0.00 to 1.00 with steps of size 0.04 (to be read vertically). In the 
output of PAM, the following information is given for each object i :  

The number of the cluster to which it belongs (under the header CLU). 
The number of the neighboring cluster (under NEIG). 
The value s ( i ) .  
The three-character label of object i. 
A line, the length of which is proportional to s ( i )  (if this value is 

positive). 

Also the following summary values are added: 

The average of the s ( i )  for all objects i in a cluster, which is called the 

The average of the s ( i )  for i = 1,2,. . . , n which is called the auerage 
auerage silhouette width of that cluster. 

silhouette width for the entire data set. 

This last number, which we will denote by i(k),  can be used for the 
selection of a “best” value of k, by choosing that k for which i ( k )  is as 
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CLU NEIG S(1) 

1 2 .85 
1 2 .83 
1 2 .83 
1 2 .77 
1 2 .61 

2 1 .89 
2 1 .89 
2 1 .86 
2 1 .82 
2 1 .82 

CLUSTER 
CLUSTER 

***.*********.*.* * 8 

* SILHOUETTES 
********.*..**... 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  

0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0  
O O a i i i i i 3 ~ i i i s ~ 6 6 6 i i 8 8 a g g ~  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  

0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0  
o o o i i i i i 3 3 i i i s ~ 6 ~ ~ i i ~ ~ a ~ Q o  

1 HAS AVERAGE SILHOUETTE WIDTH .78 
2 HAS AVERAGE SILHOUETTE WIDTH .86 

FOR THE ENTIRE DATA SET, THE AVERAGE SILHOUETTE WIDTH IS .82 

Figure 5 Graphical output for the clustering into two clusters of the data in Table 1. 

high as possible. The choice of k is one of the most difficult problems of 
cluster analysis, for which no unique solution exists; for a recent survey of 
alternative criteria see Milligan and Cooper (1985). 

The silhouettes for k = 2 of the example of Figure 1 are given in Figure 
5.  Both clusters appear to be quite pronounced because their silhouettes are 
relatively wide. We see that the average silhouette width for the entire data 
set is S ( k )  = 0.82 when k = 2. After computing S ( k )  for all possible k we 
find that this value 0.82 is the highest, so we conclude that k = 2 is an 
appropriate number of clusters for this data set. It is possible to repeat this 
in all applications by computing what we call the silhouette coeflcient: 

where the maximum is taken over all k for which the silhouettes can be 
constructed, which means k = 2,3, .  . . , n - 1. On the one hand, this gives 
us a selected value of k. On the other, the SC is a useful measure of the 
amount of clustering structure that has been discovered by the classification 
algorithm. The silhouette coefficient is a dimensionless quantity which is at 
most equal to 1 and which does not change when all the original dissimilari- 
ties are multiplied by a constant factor. Experience with the SC has led us 
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Table 4 Subjective Interpretation of the Silhouette Coefficient (SC), 
Defined as the Maximal Average Silhouette Width for the Entire Data Set 

sc Proposed Interpretation 

0.71- 1 .OO 
0.51-0.70 
0.26-0.50 

A strong structure has been found 
A reasonable structure has been found 
The structure is weak and could be 
artificial; please try additional methods 
on this data set 
No substantial structure has been found s 0.25 

to a rather subjective interpretation, which is summarized in Table 4. 
Indeed, an SC close to 1 points to a very clear structure and a low SC 
indicates that one might better apply an alternative method of data analy- 
sis. 

Because the silhouettes and the SC are not restricted to a particular 
partitioning algorithm, Table 4 will also be used in Chapters 3 and 4. 
Readers wanting to gather some more experience with silhouettes in order 
to obtain a better feeling for their interpretation are referred to the 
examples in Section 3 of this chapter. 

2.3 Missing Values 

In PAM provision is made for the case that there are missing values in the 
input of measurements. As this situation does not interest all users and as it 
has a strong impact on both input and output, it is treated in a special 
subsection. 

If the user answers yes to the question concerning the occurrence of 
missing data the following questions must be answered: 

IS THERE A UNIQUE VALUE WHICH IS TO BE INTERPRETED 
AS A MISSING MEASUREMENT VALUE FOR ANY VARIABLE ? 
PLEASE ANSWER YES OR NO : - HO 

If missing values can occur but there is no single code representing a 
missing measurement, the following questions are asked: 

SHOULD MISSING VALUES BE FORESEEN FOR THE VARIABLE 
TEMPERATUR ? PLEASE ANSWER YES OR NO : “0 
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SHOULD MISSING VALUES BE FORESEEN FOR THE VARIABLE 
WEIGHT ? PLEASE ANSWER YES OR NO : 

PRETED AS THE MISSING VALUE CODE : - 9.999 
ENTER THE VALUE OF THE VARIABLE WHICH HAS TO BE INTER- 

SHOULD MISSING VALUES BE FORESEEN FOR THE VARIABLE 
HEIGHT ? PLEASE ANSWER YES OR NO : 

PRETED AS THE MISSING VALUE CODE : - 99.99 
ENTER THE VALUE OF THE VARIABLE WHICH HAS TO BE INTER- 

This means that missing values are only foreseen for the second and third 
variables. The actual measurements are introduced in the following dia- 
logue: 

THE 3 MEASUREMENTS FOR OBJECT 001 : 
12.3 8.328 38.76 
THE 3 MEASUREMENTS FOR OBJECT 002 : 
-5 .4  9.999 18.12 
THE 3 MEASUREMENTS FOR OBJECT 003 : 
10.7 9.999 41.71 
THE 3 MEASUREMENTS FOR OBJECT 004 : 
-4.6 2.981 20.83 
THE 3 MEASUREMENTS FOR OBJECT 0 0 5  : 

THE 3 MEASUREMENTS FOR OBJECT 006 : 
11.0 7.826 40.54 

-4.8 3.156 99.99 

The following adaptations have been incorporated into the program to 
take missing data into account. If the data are standardized, the average m 
and mean absolute deviation s, are calculated using only present values. 
When calculating the distances d( i, j), only those variables are considered 
in the sum for which the measurements for both objects are present. 
Subsequently the sum of terms is multiplied by p and divided by the 
number of such variables (in the case of Euclidean distances this is done 
before taking the square root). If the measurements are standardized, the 
transformed values corresponding to missing data are given the value 99.99. 

Another consequence of missing values is that in the output of the 
program, right after the data specifications, the number of missing values 
for each variable and their total number are listed. In Figure 6 the output is 
given corresponding to these data. 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  * 
* PARTITIONINQ AROUND MEWIDS : 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

TITLE : DATA WITH MISSINO VALUES 
DATA SPECIFICATIONS AND CHOSEN OPTIONS -... ______---_---_--__-___--------_------- 
TH RE ARE 6 OBJECTS 

LAROE OUTPUT IS WANTED 
ORAPHICAL OUTPUT IS W NTED (SILHOUETTES) 

LABELS OF OBJECTS AR NOT READ 
INPUT OF MEASWEMENT~S 

CLU~TERINQS ARE CARRIPD OUT IN 2 TO 
THERE ARE 3 VARI BLES I HE DATA SET 
THE LABELS OF THESE VARIABLES ARE : 
AND 3 OF THEM WPLL BE USID IN THE ANALYSIS 

MISSINO VALUES CAN OCCUR 
THE MEASUREMENTS WILL BE READ IN FREE FORMAT 
THE DATA WILL BE SAVED ON FILE : b:miss.dat 
VARIABLE WEIGHT CONTAINS 2 MISSINQ VALUES 
VARIABLE HEIQHT CONTAINS 1 MISSINQ VALVES 
THE TOTAL NUMBER OF MISSINO VALUES IS 3 

VARIABLE TEMPERATUR HAS AVERAOE 3.200 MEAN DEVIATION 8.133 
VARIABLE WEIQHT HAS AVERAQE 5.573 MEAN DEVIATION 2.504 
VARIABLE HEIQHT HAS AVERAQE 31.992 MEAN DEVIATION 10.014 

STANDARDIZED MEASUREMENTS ......................... 
( 99.99 DENOTES A MISSINQ VALUE) 

1.12 1.10 .68 
-1.06 99.99 -1.39 

001 
002 
003 .92 99.99 .97 
004 -.96 -1.03 -1 .11  
005 -.98 - .97  99.99 
006 .96 .90 .e5 

DISSIMILARITY MATRIX 

00 1 
002 6 .36  

.74 6.50 
6 .00  .55 5.95 

003 
004 

6.25 005 
006 .54 6.38 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

* 
' NUMBER OF REPRESENTATIVE OBJECTS 2 : .....*** ~ . * * ~ a t * * t * ~ ~ . . t t . . . l . . ~ . . ~ . . . . t s $ * ~ * a  

___________---___---  

.22 5.72 .14 
.a3 5.82 5.71 

RESULT OF BUILD 
AVERAQE DISSIMILARITY = .189 

,109 
FINAL RESULTS 
AVERAOE DISSIMILARITY = 

CLUSTERS 
NUMBER MEDOID SIZE OBJECTS 

1 006 3 001 003 006 

2 005 3 002 004 005 

Flgure 6 Output from the missing data example. 
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wI THID:%A%AT!D* 74 AND SEPARATION = 5.71 THEREFORE IT IS AN L'-CLUSTER. 
CLUSTER 

CLUSTER 2 IS ISOLATfD. 
WITH DIAMETER .55 AND SEPARATION = 5.71 THEREFORE IT IS AN L*-CLUSTER. 

THE NUMBER OF ISOLATED CLUSTERS = 2 

DIAMETER OF EACH CLUSTER 
.74 .55 

SEPARATION OF EACH CLUSTER 
5.71 5.71 

AVERAGE DISSIMILARITY TO EACH MEDOID 
.26 .12 

MAXIMUM DISSIMILARITY TO EACH MEDOID 
. 5 4  .22 ................. 

* SILHOUETTES ; ................. 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
O o o i i i i i ~ ~ i i i s s b b b i i a a a ~ ~ o  
0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
o o o i i i i i 3 ~ i i i s S t i 6 k i i e e e g g o  
0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0  

CLUSTER I HAS AVERAGE SILHOUETTE WIDTH .92 
CLUSTER 2 HAS AVERAGE SILHOUETTE WIDTH .95 
FOR THE ENTIRE DATA SET, THE AVERAGE SILHOUETTE WIDTH IS .93 

The output I8 on file : b:miss.res 

Figure 6 (Continued) 
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3 EXAMPLES 

In the previous sections, the algorithm was illustrated with an example 
consisting of two-dimensional measurements. In this section we start with 
an example in which the basic data consist of a dissimilarity matrix. (The 
same example will be used in Chapters 4, 5 ,  and 6.) 

The data were obtained by distributing a questionnaire in a political 
science class, asking the students to provide subjective dissimilarity coeffi- 
cients between 12 countries, This is similar to an experiment of Wish 
(1970), with the students’ own country (Belgium) included. The countries 
selected were (in alphabetical order) Belgium, Brazil, China, Cuba, Egypt, 
France, India, Israel, USA, USSR, Yugoslavia, and Zaire. The final dissimi- 
larity coefficients were obtained by taking the averages of the coefficients 
given by the students. 

In Table 5 the data are listed and Figure 7 contains the first part of the 
output, including the dissimilarity matrix because the option of large output 
is selected. 

Figure 7 also contains the clustering into a single cluster (selection of one 
representative object). An interesting feature is that Belgium is found as 
medoid for the entire data set. A possible explanation is that the Belgian 
students tend to perceive smaller differences between their own country and 
each of the others, than among foreign countries. Further results given are 

Table 5 Dissimilarities between 12 CoUnMes, Obtained by Averaging 
the Results of a Survey ~ l o l l p  Political Science Students 

Country Dissimilarities to Other Countries 
BEL BRA CHI CUB EGY FRA IND ISR USA USS YUG 

~~ 

BRA 5.58 
CHI 7.00 6.50 

CUB @ 7.00 3.83 

EGY 4.83 5.08 @ 5.83 

FRA 2.17 5.75 6.67 6.92 4.92 
IND 6.42 5.00 5.58 6.00 4.67 6.42 
ISR 3.42 5.50 6.42 6.42 5.00 3.92 6.17 
USA 2.50 4.92 6.25 7.33 4.50 2.25 6.33 2.75 
uss 6.08 6.67 4.25 2.67 6.00 6.17 6.17 6.92 6.17 
YUG 5.25 6.83 4.50 3.75 5.75 5.42 6.08 5.83 6.67 3.67 
ZAI 4.75 3.00 6.08 6.67 5.00 5.58 4.83 6.17 5.67 6.50 6.92 
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................................. 
I * 

PARTITIONING AROUND MEWIDS ; ................................. 
TITLE : Dissimilarities between 12 countries 
DATA SPECIFICATIONS AND CHOSEN OPTIONS __________-_________-- -_- -_-_-- - - - - - - -  
THERE ARE 12 OBJECTS 
LABELS OF OBJECTS ARE READ 
INPUT OF DISSIMILARITIES 
LARGE OUTPUT IS WANTED 
GRAPHICAL OUTPUT IS WANTED (SILHOUETTES) 
CLUSTERINGS ARE CARRIED OUT IN 1 TO 3 CLUSTERS 
THE DISSIMILARITIES WILL BE READ IN FREE FORMAT 

YOUR DATA RESIDE ON FILE : COUNTRY.DAT 

DISSIMILARITY MATRIX . . . . . . . . . . . . . . . . . . . .  
BEL 
BRA 5 . 5 8  
CHI 7 . 0 0  6 . 5 0  
CUB 7 . 0 8  7 . 0 0  3 . 8 3  
EGY 4 . 8 3  5 . 0 8  8 . 1 7  5 . 8 3  
FRA 2 . 1 7  5 . 7 5  6 . 6 7  6 . 9 2  4 . 9 2  
IND 6 . 4 2  5 . 0 0  5 . 5 8  6 . 0 0  4 .67  6 . 4 2  
ISR 3 . 4 2  5 . 5 0  6 . 4 2  6 . 4 2  5 . 0 0  3 . 9 2  6 . 1 7  
USA 2 . 5 0  4 . 9 2  6 . 2 5  7 . 3 3  4 . 5 0  2 . 2 5  6 . 3 3  2 . 7 5  uss 6 . 0 8  6 . 6 7  4 . 2 5  2 . 6 7  6 . 0 0  6 . 1 7  6 . 1 7  6 . 9 2  

Y UC 5 . 2 5  6 . 8 3  4 . 5 0  3 . 7 5  5 . 7 5  5 .42  6 . 0 8  5 . 8 3  

ZAI 4 .75  3 . 0 0  6 . 0 8  6 . 6 7  5 . 0 0  5 . 5 8  4 . 8 3  6 . 1 7  

6 . 1 7  

6 . 6 7  3 . 6 7  

5 . 6 7  6 . 5 0  6 . 9 2  .............................................. * * 
NUMBER OF REPRESENTATIVE OBJECTS 1 ; .............................................. 

FINAL RESULTS 
AVERAGE DISSIMILARITY = 4 .590  

CLUSTERS 
NUMBER MEDOID SIZE OBJECTS 

1 BEL 12 EEL BRA CHI CUB ECY FRA IND ISR USA USS 
YUC ZAI 

DIAMETER OF EACH CLUSTER 

AVERAGE DISSIMILARITY TO EACH MEDOID 

MAXIMUM DISSIMILARITY TO EACH MEDOID 

8 . 1 7  

4 . 5 9  

7 . 0 8  

Figure 7 First part of the output for the 12 countries example, including the clustering for 
k = 1. 

the diameter of the cluster and the average and maximum dissimilarity to 
the medoid. The respective values of these cluster characteristics are 8.17, 
4.59, and 7.08. Two of these values (diameter and maximum dissimilarity) 
can be found in Table 5 in which they have been circled. As mentioned in 
Section 2, silhouettes do not exist in the situation of a single cluster. 

In Figure 8 the output is given for k = 3. The clustering obtained 
corresponds rather well to three groups of countries: Western, developing 
and Communist. I t  is remarkable that cluster 3, consisting of Cuba, China, 
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USSR, and Yugoslavia, is the only isolated cluster. These countries are 
perceived as being very similar (within the limited set of countries we 
considered). It is also interesting to note that the other values given 
(diameter and separation, average dissimilarity, and maximum dissimilar- 
ity) are very close to each other for the three clusters. 

Figure 8 also contains the silhouettes of these clusters. The first silhou- 
ette is higher than the others because the first cluster contains more objects 
than the remaining two. Our first impression is that the silhouettes are not 
very wide, which indicates that the clustering structure is no better than 
reasonable. In the first cluster, USA possesses the largest s ( i ) ,  which means 
that it was classified with the least amount of doubt. On the other hand, 
Egypt only attains s(i) = 0.02, which means that it lies on the boundary of 
the first cluster. Because its neighbor is cluster 2, this means that it has 
approximately the same dissimilarity to clusters 1 and 2 [moving Egypt to 
cluster 2 would yield s(i) = -0.021. The second cluster contains the 
remaining developing countries and possesses a rather narrow silhouette, 

RESULT OF BUILD 

FINAL RESULTS 

AVERAGE DISSIMILARITY = 2,583 

AVERAGE DISSIMILARITY = 2.507 
CLUSTERS 
NUMBER MEDOID SIZE OBJECTS 

1 USA 5 BEL EGY FRA ISR USA 
2 ZAI 3 BRA IND ZAI 
3 CUB 4 CHI CUB USS YUG 

F4Y?T!?iE* YFFT?? 

F';%IC?!YP .F!??%?S?!3TW 

1 2 3 3 1 1 2 1 1 3 3 2  

5.25 
CLUSTER WITH DIAMETER Is lSoLAT!D' - 

4.50 AND SEPARATION 5 

THEREFORE IT IS AN L*-CLUSTER. 
THE NUMBER OF ISOLATED CLUSTERS = 1 

DIAMETER OF EACH CLUSTER 

SEPARATION OF EACH CLUSTER 

AVERAGE DISSIMILARITY TO EACH MEDOID 

MAXIMUM DISSIMILARITY TO EACH MEDOID 

5.00 5 . 0 0  4.50 

4 . 6 7  4.67 5.25 

2 . 4 0  2.61 2.56 

4.50 4 . 8 3  3.83 

Figure 8 Output of the 12 countries example for k = 3. 
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o o o i i i i i ~ ~ i i i ~ s 6 6 6 i i a a a Q Q o  
0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0  

CLUSTER 1 HAS AVERAGE SILHOUETTE WIDTH .34 
CLUSTER 2 HAS AVERAGE SILHOUETTE WIDTH .24 
CLUSTER 3 HAS AVERAGE SILHOUETTE WIDTH .38 

FOR THE ENTIRE DATA SET, THE AVERAGE SILHOUETTE WIDTH IS .33 

The o u t p u t  is on file : COUNTRY.RES 

Figure 8 (Continued) 

which means that cluster 2 is not very clearly separated from the other 
clusters. It appears that Zaire and Brazil are more inclined toward the 
Western countries because their neighbor is cluster 1, whereas India [which 
has a smaller value of s(i)] seems to be closer to cluster 3. In the third 
cluster there is also a lack of unanimity: USSR and Yugoslavia seem to 
have more resemblance to the Western countries, whereas Cuba and China 
appear to be closer to the developing ones. 

Note that silhouettes only depend on the actual partition of the objects 
and not on the clustering algorithm that was used to obtain it. As a 
consequence, silhouettes could be used to improve the results of cluster 
analysis [for instance, by moving an object with negative s ( i )  to its 
neighbor] or to compare the output of different clustering algorithms 
applied to the same data. 

However, we think that the main usefulness of silhouettes lies in the 
interpretation and validation of cluster analysis results. Often silhouettes 
can prevent us from drawing the wrong conclusions. For instance, suppose 
the data set consists of some dense clusters that are far away from each 
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other, but that we have set k too low. In this case, most clustering 
algorithms will combine some natural clusters in order to reduce the total 
number of groups to the specified value of k. Fortunately, the silhouette 
plot will often expose such artificial fusions. Indeed, joining different 
clusters will lead to large “within” dissimilarities and hence a large a( i ) ,  
resulting in small s ( i )  values for the objects in such a conglomerate and 
yielding a narrow silhouette. 

On the other hand, suppose that we have set k too high. Then some 
natural clusters have to be divided in an artificial way in order to conform 
to the specified number of groups. However, these artificial fragments will 
typically also show up through their narrow silhouettes. Indeed, the objects 
in such a fragment are on the average very close to the remaining part(s) of 
their natural cluster, and hence the “between” dissimilarities b ( i )  will 
become very small, which also results in small s ( i )  values. 

This heuristic reasoning implies that the silhouettes should look best for 
a “natural” value of k.  Therefore, we want the silhouettes to be as wide (or 
as dark) as possible. For each cluster, we have defined the average silhouette 
width as the average of the s(i) for all objects i belonging to that cluster. 
This allows us to distinguish clear-cut from weak clusters in the same plot: 
Clusters with a larger average silhouette width are more pronounced. In 
Figure 8, we see that the average silhouette width of the second cluster is 
only 0.24, whereas the first and third clusters attain higher values. 

We can also consider the overall average silhouette width for the entire 
plot, which is simply the average of the s ( i )  for all objects i in the whole 
data set. In Figure 8 this yields 0.33. In general, each value of k will yield 
another overall average silhouette width I(k). One way to choose k 
appropriately is to select that value of k for which S(k)  is as large as 
possible. For the 12 countries data, it turns out that the best choice in this 
respect is k = 3, hence the so-called silhouette coefficient (SC) equals 0.33. 
According to Table 4, this is interpreted as a weak structure, but indeed the 
features of this grouping will be confirmed when applying the clustering 
algorithms of Chapters 4, 5, and 6. 

Let us now look at some rather extreme examples to obtain a better 
feeling for the meaning of silhouettes. First suppose we have eight objqts 
that are divided over some very tight clusters, far away from each other. 
For instance, assume that five objects coincide with one geometrical point 
and the remaining three coincide with another geometrical point at a large 
distance from the first. This is an extremely sharp clustering structure, 
which should be recovered by any reasonable clustering algorithm when 
k = 2. The resulting silhouette plot in Figure 9 is as wide and as dark as 
possible. All s ( i )  equal 1.00, so the overall average silhouette width attains 
its maximal value 1.00 (therefore, k = 2 is the best choice and the SC of 
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CLUSTER 
CLUSTER 

1 HAS AVERAGE SILHOUETTE WIDTH 
2 HAS AVERAGE SILHOUETTE WIDTH 

1.00 
1 .oo  

FOR THE ENTIRE DATA SET, THE AVERAGE SILHOUETTE WIDTH IS 1.00 

Figure 9 Silhouettes of an example in which eight objects are divided over two very tight 
clusters. for k = 2. 

Table 4 equals 1.00). In general, a very large overall average silhouette 
width can be taken to mean that the algorithm has discovered a very strong 
clustering structure. 

However, one must be careful with the interpretation of the last state- 
ment. For instance, a situation where the data set contains one far outlier is 
also an example of a strong clustering structure. Indeed, when the outlier is 
far enough, the other data look like a tight cluster by comparison. We may 
expect our clustering algorithm to provide the following picture for k = 2: 
one cluster containing just the outlier and the other cluster consisting of the 
bulk of the data. For instance, suppose seven objects have zero dissimilari- 
ties to each other and all have large dissimilarities to the eighth object, 
which is an outlier. The resulting silhouette plot is given in Figure 10, 
clearly separating object 8 from the rest. Because cluster 2 contains only a 
single object, its s ( i )  was put equal to 0 by convention:In order to mark 
such singleton clusters in a more distinctive way, John Tukey (personal 
communication) suggested printing the number 1 in the rightmost column 
of the plot. The overall average silhouette width equals 0.88, which is very 
high (in general, one obtains 1 - l/n where n is the total number of 
objects). Therefore, one should never merely accept a high overall average 
silhouette width at its face value, but also look at the graphical output itself 
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Figure 10 Silhouettes of a data set containing a distant outlier, for k = 2. 

to find out what caused the large value. Depending on the subject matter 
and the task at hand, one might want to put the outlier aside for further 
investigation and run the clustering algorithm again on the remaining data. 

When the clustering algorithm does not succeed in finding any "natural" 
clustering, the overall average silhouette width tends to become very low. 
An extreme case is when all dissimilarities between pairs of objects equal 
the same positive constant, so all off-diagonal entries of the dissimilarity 
matrix are identical. (In the case of Euclidean distances, this happens with 
the n vertices of a regular simplex in n - 1 dimensions.) In such a situation 
no clustering is more natural than any other, so there is a total absence of 
clustering structure. Whatever the value of k and whatever clustering 
algorithm is used, all s( i )  will be 0 [as well as the overall average silhouette 
width S(k)  and the silhouette coefficient SC] and the silhouette plot (see 
Figure 11) stays completely empty. In actual applications one sometimes 
does encounter cases where even the largest value of S(k)  is very small, 
pointing to a lack of clustering structure. 

Figure 12 shows a plot of the well-known Ruspini data (1970). This data 
set consists of 75 points and was originally used by Ruspini in order to 
illustrate fuzzy clustering techniques. The actual coordinates, given in Table 
6, were communicated to us by G. Libert. The points make up four groups, 
A, B, C, and D, as indicated in the plot. Because this example is two- 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  

o o o i i i i i ~ ~ i i i S s G ~ ~ i i a e a Q ~ o  
0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0  
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Figure I 1  Silhouettes of a data set without any clustering structure, for k = 2. 

20 J , , , ,o, I , 

0 
0 

0 20 LO 60 80 100 1; I 

Figure 12 Plot of the two-dimensional data set of Ruspini. The loops are merely drawn to 
indicate four groups of points. 



100 PARTITIONING AROUND MEDOIDS (PROGRAM PAM) 

Table 6 Coordinates of the Ruspini Data 

X Y 

4 
5 

10 
9 

13 
13 
12 
15 
18 
19 
22 
27 
28 
24 
27 
28 
30 
31 
32 
36 
28 
32 
35 
33 
38 

53 
63 
59 
77 
49 
69 
88 
75 
61 
65 
74 
72 
76 
58 
55 
60 
52 
60 
61 
72 

147 
149 
153 
154 
151 

X Y 

41 
38 
38 
32 
34 
44 
44 
44 
46 
47 
49 
50 
53 
52 
55 
54 
60 
63 
86 
85 
85 
78 
74 
97 
98 

150 
145 
143 
143 
141 
156 
149 
143 
142 
149 
152 
142 
144 
152 
155 
124 
136 
139 
132 
115 
96 
94 
96 

122 
116 

X Y 

98 
99 
99 

101 
108 
110 
108 
111 
115 
117 
70 
77 
83 
61 
69 
78 
66 
58 
64 
69 
66 
61 
76 
72 
64 

124 
119 
128 
115 
111 
111 
116 
126 
117 
115 

4 
12 
21 
15 
15 
16 
18 
13 
20 
21 
23 
25 
27 
31 
30 

dimensional, we can now compare the silhouettes to the structure that we 
perceive by the naked eye. Figure 13 contains the silhouette plots of the 
k-medoid partitions with k = 2,. . . , 6  (making use of Euclidean distance). 

In the case of k = 2, one cluster is formed as the union of A with D, 
whereas the second combines B and C. As we saw before, artificial fusions 
are penalized by narrow silhouettes. For k = 3 we see that clusters B and C 
are found, but A and D still stick together. The corresponding silhouette 
plot shows clearly that both B and C are more pronounced than the union 
of A with D. For k = 4 the “right” solution is found, which leads to four 
silhouettes of about the same good quality. When k = 5 is imposed, the 
algorithm splits C into two parts. The second part contains the three lowest 
points of C (as viewed in Figure 12), that is, the three points of C with 
smallest y coordinates. This trio has a rather prominent silhouette and 
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Figure 13 Silhouette plots of the Ruspini data, for k ranging from 2 to 6. 
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indeed some people consider it as a genuine cluster (see Delattre and 
Hansen, 1980). However, the silhouette of the major part of C becomes 
somewhat less wide because this cluster is not so well separated from the 
three-point one [indeed, one object has an s( i )  value of about zero because 
it lies rather close to the three-point cluster and therefore holds an interme- 
diate position]. The last case (k = 6) leads to a more dramatic effect: 
Cluster A is being split up in an artificial way and consequently both parts 
obtain narrow silhouettes. For k = 7,. . . ,74 the results are still worse. 

In conclusion, the silhouette plots tell us that a partition into k = 4 
clusters is probably most natural. Indeed, the overall average silhouette 
width S(k)  is largest for this value (even if one tries all values of k ranging 
from 2 to 74). The second best S(k) is attained for k = 5 and the silhouette 
plot shows us the advantages and disadvantages of the corresponding 
clustering. 

*4 MORE ON THE ALGORITHM A N D  THE PROGRAM 

4.1 Description of the Algorithm 

In the description of the k-medoid method given in Section 1, we minimize 
the uueruge dissimilarity of objects to their closest representative object. 
However, in the program itself we prefer to minimize the sum of these 
dissimilarities, which is mathematically equivalent but gives rise to more 
accurate calculations. Therefore, from now on we shall only talk about the 
minimization of this sum. 

The algorithm we are using in PAM consists of two.phases. In a first 
phase, called BUILD, an initial clustering is obtained by the successive 
selection of representative objects until k objects have been found. The first 
object is the one for which the sum of the dissimilarities to all other objects 
is as small as possible. This object is the most centrally located in the set of 
objects. Subsequently, at each step another object is selected. This object is 
the one which decreases the objective function as much as possible. To find 
this object, the following steps are carried out: 

1. Consider an object i which has not yet been selected. 
2. Consider a nonselected object j and calculate the difference between 

its dissimilarity D, with the most similar previously selected object, 
and its dissimilarity d( j ,  i) with object i. 

3. If this difference is positive, object j will contribute to the decision to 
select object i. Therefore we calculate 

Cji = max(Dj - d ( j ,  i ) , O )  
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4. Calculate the total gain obtained by selecting object i: 

C Cji 
i 

5. Choose the not yet selected object i which 

maximizes C cIi 
j 

i 

This process is continued until k objects have been found. In the second 
phase of the algorithm (called SWAP), it is attempted to improve the set of 
representative objects and therefore also to improve the clustering yielded 
by this set. This is done by considering all pairs of objects (i, h )  for which 
object i has been selected and object h has not. It is determined what effect is 
obtained on the value of the clustering when a swap is carried out, i.e., 
when object i is no longer selected as a representative object but object h 
is. Here we should recall that in this subsection, the value of a clustering 
determined by k representative objects is defined as the sum of dissimilari- 
ties between each object and the most similar representative object. 

To calculate the effect of a swap between i and h on the value of the 
clustering, the following calculations are carried out (steps 1 and 2): 

1. Consider a nonselected object j and calculate its contribution c,ih to 
the swap: 
a. If j is more distant from both i and h than from one of the other 

representative objects, Cjih is zero. 
b. If j is not further from i than from any other selected representa- 

tive object ( d ( j ,  i )  = Dj),  two situations must be considered: 
bl. j is closer to h than to the second closest representative object 

d ( j , h )  < Ej 

where Ej is the dissimilarity between j and the second most 
similar representative object. In this case the contribution of 
object j to the swap between objects i and h is 

Cjih = d(  j ,  h )  - d (  j ,  i )  

b2. j is at least as distant from h than from the second closest 
representative object 

d ( j ,  h )  2 Ej 
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In this case the contribution of object j to the swap is 

It should be observed that in situation b l  the contribution q ! h  can 
be either positive or negative depending on the relative position of 
objects j, h, and i. Only if object j is closer to i than to h is the 
contribution positive, which indicates that the swap is not favor- 
able from the point of view of object j .  On the other hand, in 
situation b2 the contribution is always positive because it cannot 
be advantageous to replace i -by an object h further away from j 
than from the second closest representative object. 

c. j is more distant from object i than from at least one of the other 
representative objects but closer to h than to any representative 
object. In this case the contribution of j to the swap is 

qih = d ( j ,  h )  - Dj 

2. Calculate the total result of a swap by adding the contributions c , jh:  

In the next steps it is decided whether to carry out a swap. 

3. Select the pair (i, h)  which 

minimizes q,, 
i .  h 

4. If the minimum is negative, the swap is carried out and the 
algorithm returns to step 1. If the minimum T . h  is positive or 0, the 
value of the objective cannot be decreased by carrying out a swap and 
the algorithm stops. 

Note that as all potential swaps are considered, the results of the algorithm 
do not depend on the order of the objects in the input file (except in case 
some of the distances between objects are tied). 

4.2 Structure of the Program 

The program PAM is written in Fortran and consists of approximately 1100 
statement lines. Details about portability are given in the Appendix. 
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The program consists of a main unit, one function, and eight subrou- 
tines. In this section the purpose of each of these units is outlined. 

The MAIN unit consists of the following parts: 
dimensions of the arrays 
setting the maximum values of the number of objects, the total 
number of variables, and the number of variables which can be used 
in a single analysis 
defining the unit for data input (called LUA) and the two units for 
output (LUB for the output of results and LUC for storing data 
entered by keyboard); in the present version they are given the 
values 1, 2, and 3 
call of the subroutine ENTR, which contains the interactive part of 
the program 
examination of objects and variables for missing values 
calls of the subroutines STAND (standardization) and DYSTA 
(computation of dissimilarities); these subroutines are associated 
with the input of measurements. After their input or calculation, the 
dissimilarities are stored in an array called DYS. In order to save 
memory space only the lower triangular part of the dissimilarity 
matrix is stored (an example is given in Figure 14). We chose the 
lower half matrix because this makes it possible to add new objects 
by simply adding some lines to the input file. 
parts a, b, and c of the output (see Section 2.2) 
a DO loop (DO 140 KK = KBEG,KEND) in which the subroutines 
BSWAP, CSTAT, and DARK are called; KK is the variable in 
which the number of clusters is stored (the subroutine DARK is 
called if graphical output was requested by the user, except if KK 
equals one or n )  

0 

9 0  

1 4 0  

3 2 7 0  array DYS 

. .  . 
Fipre 14 Illustration of the way dissimilarities are stored in a one-dimensional array. The 
first entry of the array is always 0 tor convenience. 
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Subroutine ENTR: This subroutine controls the interactive use of the 
program and the input and output of data. It consists of the following 
parts: 

input of data specifications and chosen options 
if required by the user, input of labels of objects and information 
concerning missing values 
output of special messages 
output of a table with a recapitulation of data specifications and 

input of dissimilarities or measurement values 
Subroutine QYN: Allows input of the answer to a yes-no question 

concerning options of the program (only the first letter of the answer 
is read and both upper and lowercase answers are allowid). 

Function MEET: When a dissimilarity between objects L and J is 
needed, function MEET(L, J) gives the index of DYS where this 
dissimilarity is stored: 

chosen options 

d ( ~ ,  J )  = DYS(MEET(L, J ) )  

Subroutine NWLAB: This subroutine, which is accessed from the sub- 
routine ENTR, is only called if no labels are provided. In it labels of 
objects are constructed: 

001 002 003 - * *  

They are stored in an integer matrix LAB(& J) ( L  = 1,2,3 and 
J = 1,2,. . . , n) using the characters O,l, 2,. . . ,9  stored in a character 
type variable (NUM). 

Subroutine STAND: In this subroutine, which is only called if standard- 
ization is requested, new standardized measurements are computed. 

Subroutine DYSTA: Computes Euclidean or Manhattan distances (these 
are the dissimilarities that will be used in the clustering). 

Subroutine BSWAP: Performs the clustering. It consists of two parts in 
which the BUILD and SWAP techniques are used. 

Subroutine CSTAT: Gives the numerical output concerning each parti- 
tion (except for the average dissimilarities, which are already com- 
puted in the subroutine BSWAP). 

Subroutine DARK: Gives the graphical output for each partition. 

Let us now investigate how the program can be adapted to special 
situations. Right after the dimension statements, four variables (MAXNN, 
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MAXTT, MAXPP, and MAXHH) are given values, which make it possible 
to use the program for clustering data sets of different sizes. MAX" and 
MAXTT are the maximum numbers of objects and variables in the data set, 
whereas MAXPP is the maximum number of variables that are actually 
used in the computations. These values can be freely chosen by the user 
taking into account their effect on the storage requirements of the program. 
For example when clustering 50 objects measured on 10 variables 
(MAXNN = 50, MAXTT = 10, MAXPP = 10) the EXE file occupies 
108,644 bytes, whereas for 100 objects and 20 variables (MAXNN = 100, 
MAXTT = 20, MAXPP = 20) 136,308 bytes are necessary. Often trial and 
error seems to be the easiest way of determining the maximum size of 
problems which can be solved on a particular computer. 

The fourth variable defined after the dimensions is MAXHH, which 
gives the size of the array DYS and must be set equal to 

The four variables MAXNN, MAXTT, MAXPP, and MAXHH are used 
as dimensions of arrays (vectors and matrices) in the subroutines. In the 
main program the dimensions of the arrays in the first five dimension 
statements must be set equal to the values of these four parameters. In 
Section 2 the following values were used: 

MAXNN(MAXNN - 1)/2 + 1. 

MAX" = 100 
MAXTT = 80 
MAXPP = 20 

MAXHH = 4951 

If the program is used with input of dissimilarities, it is recommended to 
give a value of at least 1 to MAXTT and MAXPP. 

Another important aspect of using the program on different computers is 
the time necessary to solve given problems. As an indication of the speed of 
the program, the times (in minutes) on an IBM/XT with an 8087 accelera- 

Table 7 Computation Times (in minutes) on an IBM-XT with 8087 Accelerator 
for a Set of Randomly Generated Problems of Increasing Sues 

Objects Variables Clusters Time 

20 2 5 0.30 
40 2 5 1.17 
60 2 5 1.87 
80 2 5 3.20 

100 2 5 6.17 
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tor for a set of randomly generated problems of increasing sizes are given in 
Table 7. 

Specific information concerning compilation of the program is given in 
the Appendix. 

*5 RELATED METHODS AND REFERENCES 

5.1 The k-Medoid Method and Optimal Plant Location 

When constructing partitions with a fixed number k of clusters, it is often 
assumed that there exists a function which measures the quality of different 
clusterings of the same data set. This is also the case for the clustering 
method used in the program PAM. This method is based on a location 
model (the k-median model) with the following general formulation: Given 
a finite number of users, whose demands for a given service are known and 
must be satisfied, and given a finite set of possible locations among which k 
must be chosen for the location of service centers, select the locations in 
such a way as to minimize the total distance (or equivalently the average 
distance) travelled by the users. In the formulation used in clustering, the 
sets of users and of possible locations coincide and both correspond to the 
set of objects to be clustered. The location of a center is interpreted as 
the selection of an object as a representative object (or centrotype, median, 
or medoid) of a cluster. The distance travelled by a user corresponds to the 
dissimilarity between an object and the representative object of the cluster 
to which it  belongs. The idea to use this model for cluster analysis was 
introduced by Vinod (1969) and later also discussed by Rao (1971), Church 
(1978), and Mulvey and Cowder (1979). 

In the mathematical formulation of the k-medoid model the following 
notations are used: 

The set of objects is denoted by X 

X = { X I ,  ~ 2 ,  * * * 3 x " }  

The dissimilarity between objects xi  and x j  (also called objects i and j) 
is denoted by d( i ,  j ) .  

A solution of the model is determined by two types of decisions: 

The selection of objects as representative objects in clusters: yi is defined 
as a 0-1 variable, equal to 1 if and only if object i ( i  = 1 , 2,. . . , n) is 
selected as a representative object. 
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The assignment of each object j to one of the selected representative 
objects: t i j  is a 0-1 variable, equal to 1 if and only if object j is 
assigned to the cluster of which i is the representative object (and also 
the medoid). 

The corresponding optimization model, which was first proposed by Vinod 
(1969), can then be written as: 

n n  

minimize c d ( i ,  j ) t I J  (8) 

p , , = 1 ,  j = 1 , 2  ,..., n (9) 

' I J  ' Yl ,  i , j = 1 , 2  ,..., n (10) 

c y ,  = k,  k = number of clusters (11) 

Y , , ~ , ~ E  ( % I } ,  i , j =  1 , 2 , . . . , n  (12) 

1 - 1  1 '1  

subject to 
n 

1 - 1  

n 

1-1 

Constraints (9) express that each object j must be assigned to a single 
representative object. They imply [together with constraints (12)] that for a 
given j, one of the z is equal to 1 and all others are 0. Constraints (10) 
ensure that an object y can only be assigned to an object i if this last object 
has been selected as a representative object. Indeed, if this is not the case, 
then y, is 0 and the constraint [together with constraints (12)] implies that 
all t,, are 0. If i is a representative object, then all the t,, (for this i )  can be 
either 0 or 1. Equation (11) expresses that exactly k objects are to be chosen 
as representative objects. As the clusters are formed by assigning each 
object to the most similar representative object, there will be exactly k 
nonempty clusters. (In case of ties the object is assigned to the representa- 
tive object which was entered first.) Equation (9) implies that the dissimilar- 
ity between an object j and its representative object is given by 

n 

C j b , ,  
1-1 

As all objects must be assigned, the total dissimilarity is given by 
n n  c c d ( i ,  j>'lJ 

j = 1  i - 1  

which is the function to be minimized in the model. 
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The algorithm discussed in Section 4 yields a good but not necessarily 
optimal solution to model (8) to (12). A branch and bound method which 
always yields an optimal solution was discussed in Massart et al. (1983). 
Unfortunately this approach is only computationally feasible for relatively 
small problems with up to 50 or 60 objects. Another method was used by 
Klastorin (1985) in a comparison of several clustering algorithms. It is 
based on an algorithm proposed by Erlenkotter (1978) for the simple plant 
location problem. 

Usually one does not know the number of clusters present in a data set. 
Because most partitioning methods provide a fixed number k of clusters, 
one must apply them for several values of k in order to find the most 
meaningful clustering. A possible way of selecting a value of k is by means 
of the silhouette coefficient (see Section 2). Another way is to search for sets 
of objects that persistently stay together in the clusterings obtained for 
several values of k. This approach has been investigated by Massart et al. 
(1983) and Plastria (1986). Another method, based on the bootstrap tech- 
nique, was proposed by Moreau and Jain (1987). For one-dimensional 
observations, Muller and Sawitzki (1987) chose k by estimating the number 
of modes. 

5.2 Other Methods Based on the Selection of Representative Objects 

The objective of the k-medoid method is to minimize the sum of dissimilar- 
ities between the objects and their representative objects. This objective is 
suitable if a total value is liable to give a correct description of the structure 
being investigated. 

One of the possible alternative aims is to try to minimize the largest 
distance from any object to the representative object of its cluster. The 
maximum dissimilarity between an object and its representative object is 
given by 

n 

max C d ( i ,  j ) z i ,  
j-1, .... n ill 

and the model of minimizing the maximum dissimilarity 

n 

minimize max C d ( i ,  j ) z i ,  
j - 1 ,  ..., n i - l  

can be written as 

subject to constraints (9) to (12). This is called the k-center model and, like 
the k-medoid model, it finds its equivalent in location theory and also in 
graph theory. Algorithms for the k-center model have been proposed by 
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Hakimi (1965). A characteristic of the clusterings obtained with the k-center 
model is that they are on average looser, but on the other hand they will 
never contain very loose clusters. 

Another model using representative objects is the couering model. In this 
model the number of clusters is not fixed, but each object must be within 
a given distance D of its representative object. The objective is to mini- 
mize the number of representative objects necessary to achieve this aim. As 
in the k-medoid method, once the representative objects have been selected 
the clustering is obtained by assigning each object to its most similar 
selected representative object. The model can be stated as 

n 

minimize C y ,  
i - 1  

(14) 

subject to 
n 

C z 1 , = 1 ,  j = 1 , 2  ,..., n (15) 

z l j s y , ,  i ,  j = 1 , 2  ,..., n (16) 

x d ( i , j ) z l , s D ,  j = 1 , 2  ,..., n (17) 

Y ~ , Z , , E  {0,1} ,  i , j = 1 , 2 , . . . , n  (18) 

/ - 1  

)I 

1 - 1  

Constraints (17) express that each object j must lie within a maximum 
dissimilarity D of its representative object. 

There are two reasons why the k-medoid, k-center, and covering models 
have been formulated as 0-1 linear programs such as (8) to (12) and (14) to 
(18). The first is that such a formulation can lead to their optimal solution 
using methods such as branch and bound. Unfortunately, this approach is 
only feasible for small problems. Another reason is that such a formulation 
makes it possible to quite easily impose a particular structure on the 
clustering being sought. For example, adding a simple constraint can limit 
the number of objects in the clusters or can prevent some of the objects 
from being selected as representative objects. Integer programming tech- 
niques can then be used to find optimal or good solutions. For a survey of 
integer programming see, for example, Garfinkel and Nemhauser (1972). 

5.3 Methods Based on the Construction of Central Points 

In the methods considered in the previous section each cluster is character- 
ized by a centrally located object called the representative object. In case 
the objects are defined by measurement values, there exists an alternative 
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way of characterizing a cluster, namely by its centroid. This approach has 
been used extensively in the literature as a basis for clustering algorithms. 

The centroid of a cluster u is defined as a point in p-dimensional-space 
found by averaging the measurement values along each dimension (varia- 
ble). For instance, its fth coordinate is 

1 

where C, represents the set of indices of cluster u (which contains nu 
objects). Therefore, the centroid of cluster u is given by 

We note two important facts: The centroid does not have to be one of the 
objects in the original data set, and it is not defined when the data are 
dissimilarities not based on interval-scaled measurement values. 

A possible measure for the tightness of a cluster is the error s u m  of 
squares, defined as the sum of squares of (Euclidean) distances between the 
objects of a cluster and its centroid: 

P 

ESS(C,) = c c (x i , -  q.>)* (19) 
i cC,  /-1 

The error sum of squares of the whole clustering is 

k 
ESS = c ESS(C,) 

0-1 

Therefore a possible approach to the clustering problem is to look for a 
partition into k nonempty subsets that minimize the error sum of squares. 
Methods that try to achieve this aim are called oariance minimization 
techniques. (Observe that a similar objective could be attained in a variant 
of the k-medoid method, by entering the squares of the dissimilarities as 
input to PAM.) 

Many variance minimization techniques have been proposed, but we will 
limit ourselves to two widely used ones. Let us start with a relatively simple 
method suggested by Forgy (1965). This method consists of the following 
steps: 

1. An initial partition of the objects into k nonempty subsets is ran- 
domly generated. Then go to step 2. The method can also start with a 
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set of central points, called seed points, in which case one proceeds 
with step 3. 

2. Compute seed points as the centroids of the clusters of the current 
partition. 

3. Assign each object to the cluster with the nearest seed point. The seed 
points remain fixed for an entire pass through the set of objects. If 
this is the first pass through the objects, go to step 2. In subsequent 
passes the clustering is compared to the previous clustering and if no 
change in the assignment of objects has occurred, stop. If there has 
been a change, go to step 2. 

An efficient program for the method can ensure that an object is only 
moved if it is strictly closer to a different seed point and therefore the error 
sum of squares must decrease. As the number of possible different cluster- 
ings is finite, this ensures that the method converges. However, it cannot be 
foreseen how many repetitions of steps 2 and 3 will be required to reach a 
(locally) optimal solution. According to Anderberg (1973), five to ten 
iterations (passes through steps 2 and 3) are sufficient in most practical 
situations. A shortcoming of this method, and of many other variance 
minimization techniques, is that during step 3 it is possible that all objects 
of a cluster are assigned to other clusters, and at the same time no other 
objects are assigned to the centroid of this cluster. In this way the algorithm 
sometimes ends up with less than k clusters. (Note that this problem 
cannot occur for the k-medoid method.) 

In a variant of this method, proposed by Jancey (1966), the new seed 
points of the clusters are found (in step 2) by reflection of the old seed 
points with respect to the centroids. In this way the steps taken (by the 
seed points) are amplified and a locally optimal solution is usually found in 
fewer iterations. 

The k-means method of MacQueen (1967) is probably the most widely 
applied nonhierarchical clustering technique. It is very similar to Forgy's 
method, the only difference being that each time an object changes clusters 
the centroids of both its old and new cluster are recalculated. This can be 
done quite easily using an update equation for the centroid coordinates. If 
object i is moved from cluster u to cluster w, the coordinates of the new 
centroids are given by 

1 
qu') = ---&n"Y/(U) - X i / )  



114 

and 

PARTITIONING AROUND MEDOIDS (PROGRAM PAM) 

where u’ and w‘ represent the new clusters. 
As in Forgy’s method, an object is only moved if it is nearer to the new 

centroid. Therefore the sum of squares of distances to the centroids must 
decrease. Furthermore, in general, the centroids of the newly formed 
clusters will not coincide with the old ones. As the centroid is the point 
which minimizes the sum of squares of distances, the total sum of squares 
will decrease by an even larger quantity. An interesting feature of Mac- 
Queen’s method is that the number of clusters cannot change. The reason 
for this is that if only two objects are left in a cluster and one of these is 
removed, the centroid of the new cluster (which is now a singleton) 
coincides with its object. This object then cannot be assigned to a different 
cluster. Finally, a drawback of this method (as well as those of Forgy and 
Jancey) is that the results (sometimes strongly) depend on the order of the 
objects in the input file, unlike the algorithm in PAM. 

Many more variance minimization algorithms have been published, such 
as the method of Friedman and Rubin (1967) which has frequently been 
applied. However, it is not our aim to give a complete enumeration of these 
algorithms. 

One of the problems with variance minimization methods is the effect of 
outliers on the value of the function to be minimized (formula 20). This has 
been our principal motivation for selecting the k-medoid method for PAM. 
Another reason was the possibility of obtaining representative objects in the 
clusters, which is very appealing and useful in a wide range of applications. 
It should be added that a method was proposed by Cooper (1963) which 
makes use of the criterion of the k-medoid method [Eq. (8)], but in which 
the representative objects are replaced by general p-dimensional points. 
This method and related ones are discussed by Massart and Kaufman 
(1983) and by Spath (1980). In another variant, proposed by Diday (1971, 
1974), more general central regions of clusters are considered, which can 
consist of one or more objects or p-dimensional points; they are the 
so-called kernels. 

To conclude the discussion of variance minimization, we will consider a 
method that combines the search for a tight clustering (with small error sum 
of squares) with the determination of an “optimal” number of clusters. 
Almost none of the partitioning methods tackles the problem of finding an 
adequate (natural) number of clusters. Ball and Hall (1965) proposed a 
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method called ISODATA the main features of which are: 

The method starts with a clustering into a given number k of clusters, 
according to the method of Forgy. 

In a second step, outliers and very small clusters are eliminated; they are 
disregarded for the remainder of the method. 

Then perform either a lumping (fusion) or splitting of one of the clusters. 
This is done according to the following rules: 

perform a lumping if the current number of clusters is more than 2k 
perform a splitting if the current number of clusters is less than k / 2  
otherwise alternate between lumping and splitting 
stop if the same clustering is obtained twice. 

Return to the first step with the newly obtained number of clusters 
(which replaces k ), unless the user-specified maximum number of 
iterations is reached. 

During lumping, clusters are merged with centroids nearer to each other 
than the lumping threshold, while during splitting clusters are divided if the 
average sum of squares of dissimilarities is greater than the splitting 
threshold. If no clusters meet the desired criteria, the algorithm returns to 
the first step. ISODATA requires a considerable amount of input from the 
user, which implies that the user already has some knowledge of the 
structure of the data set. According to Anderberg (1973), who discusses 
several versions of ISODATA and gives many references, the method is too 
elaborate to be used without periodic human intervention. 

The methods of Ball and Hall (1965), Forgy (1965), Jancey (1966), and 
MacQueen (1967) are among the numerous methods implemented in the 
CLUSTAN package (Wishart, 1978). 

The literature also contains some interesting special cases of variance 
minimization. Several algorithms have been proposed for the one-dimen- 
sional case in which a much smaller number of partitions has to be 
considered. The number of partitions that must be considered when parti- 
tioning a set of objects is a type 2 Stirling number. For n objects and k 
clusters it is of the order of k " / k ! ,  for example, 50 objects can be clustered 
into five clusters in approximately 7.4 X different ways. A complete 
enumeration of all partitions is clearly impossible except for very small 
clustering problems. Fisher (1958) has shown that for one-dimensional data 
the optimal clusters for the error sum of squares criterion must be contigu- 
ous; this of course reduces drastically the number of partitions to be 
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considered. Fisher proposed an algorithm for this case. He also extended 
the method to multidimensional data for which there exists a known 
complete ordering of the objects. This method is especially useful for the 
analysis of time series. Work along the same lines can be found in the paper 
by Vinod (1969). Another interesting special case is the clustering into two 
subsets (k = 2), which can serve as a basis for a divisive hierarchical 
method (see Chapter 6). An extensive discussion of these situations as well 
as many other nonhierarchical methods can be found in Bock (1974). 

5.4 Some Other Nonhierarchical Methods 

In two or three dimensions, an observer can distinguish clusters mainly on 
the basis of an impression of the density of objects in different areas. In 
particular, a cluster is often defined as a region in which the density of 
objects is locally higher than in other regions. Many clustering algorithms 
have been proposed which use the density of objects to construct clusters. 
Two general approaches have been used for a definition of this concept. In 
a first type of method, the density near an object is defined as the number 
of objects within a sphere (around this object) with a fixed radius R. 
Sometimes the objects are weighted by their dissimilarity to the central 
object being considered. In another approach, the density is defined as the 
inverse of the dissimilarity to the Tth nearest object or the inverse of the 
average dissimilarity to the T nearest objects. In both approaches there is 
an arbitrary element. In the first it is the radius R of the sphere and in the 
second it is the number T of objects considered. A too large value of R or 
of T will lead to a too small number of clusters. The most frequently 
applied density seeking method is Wishart’s mode analysis (Wishart, 1969a) 
which attempts to isolate and remove outliers and to detect dense regions of 
space in which clusters of objects can be found. Based on this approach 
Wishart proposes two algorithms, one hierarchical and the other nonhierar- 
chical. Another approach, used by Wolfe (1970) and Coomans and Massart 
(1981), is based on the search for k multivariate distributions and the 
determination of the most probable population for each object. An exten- 
sive discussion of density seeking methods can be found in the book by 
Chandon and Pinson (1981). 

The vast majority of clustering methods are designed to classify a set of 
objects characterized by measurements of one or more variables. The same 
methods can be used to cluster a set of uuriabfes using their values on a 
given set of objects. In this situation one uses other types of dissimilarity 
measures, such as those based on correlation coefficients, but once the 
dissimilarities have been calculated the same algorithms can be used. 
However, the separate classification of objects (or variables) is sometimes 
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inadequate for finding relationships that can exist between groups of 
objects and groups of variables. For example, it is quite probable that the 
clustering of the objects would be different for different subsets of vari- 
ables; this picture might become blurred if all variables are considered 
together. In order to discover relationships between subsets of objects and 
subsets of variables, methods are required that cluster objects and variables 
simultaneously. These are called two-way or block clustering methods. 
Hartigan (1972, 1975) and Good (1965) have proposed hierarchical meth- 
ods for block clustering, while Kaufman and Plastria (1981) have intro- 
duced a partitioning algorithm. The subject of block clustering is discussed 
in some detail by Chandon and Pinson (1981). 

5.5 Why Did We Choose the k-Medoid Method? 

As mentioned in Section 5.3, the objective chosen in the k-medoid method 
is appealing because it is more robust than the error sum of squares 
employed in most methods. (The maximal dissimilarity used in the k-center 
method is even less robust.) Furthermore it allows a good characterization 
of all clusters that are not too elongated and makes it possible to isolate 
outliers in most situations. 

As will be seen in later chapters, one of the themes of this book is the 
preference given to methods based on average dissimilarities instead of 
sums of squares of dissimilarities. Indeed, the k-medoid method minimizes 
the average dissimilarity of the objects to the representative objects they are 
assigned to. Our preference for average distances is also apparent in the 
choice of standardization of the variables, in which the mean absolute 
deviation is used and not the more classical standard deviation (see Section 
2 of Chapter 1). In many branches of univariate and multivariate statistics 
it has been known for a long time that methods based on the minimization 
of sums (or averages) of dissimilarities or absolute residuals (the so-called 
L, methods) are much more robust than methods based on sums of squares 
(which are called L, methods). The computational simplicity of many of 
the latter methods does not make up for the fact that they are extremely 
sensitive to the effect of one or more outliers. [The effect of error perturba- 
tion on clustering algorithms was already examined by Milligan (1980), but 
his study did not contain the k-medoid method.] 

Also note that the clustering found by PAM does not depend on the 
order in which the objects are presented (except when equivalent solutions 
exist, which very rarely occurs in practice). This is not the case for many 
other algorithms described in this section. Also, if we ask for k clusters we 
do obtain exactly k clusters, and not less. 
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(b) 

Fipre 15 Shaded dissimilarity matrix of 27 objects: (a) In random order. (b) Ranked 
according to clusters (from Sokal, 1966). 
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The L ,  method described here is invariant with respect to translations 
and orthogonal transformations of the data points, but not with respect to 
affine transformations which change the interobject distances. However, we 
wanted to construct a method able to deal with general dissimilarity data, 
to which the notion of affine invariance does not apply. In fact, the affine 
invariant clustering methods in the literature make use of geometric notions 
(like centroids or tolerance ellipsoids) which do not exist for dissimilarity 
data. On the other hand, the medoids always exist, even when the data are 
only a collection of dissimilarities (see also Kaufman and Rousseeuw, 
1987). 

5.6 Graphical Displays 

Whereas for hierarchical clustering (Chapters 5, 6, and 7) various versions 
of the dendrogram have been proposed and widely used to represent 
clustering results in a graphical way, for nonhierarchical methods relatively 
little has been done in the way of graphics. The main reason is that the 
tree-like structure yielded by hierarchical algorithms is suitable for an 
appealing graphical representation. 

To display a partition, one of the approaches consists of a graphical 
representation of the matrix of dissimilarities between objects. The general 
idea consists of two phases. In the first phase the dissimilarities are replaced 
by symbols that give an impression of their magnitude. For example, black 
squares might represent small dissimilarities, white squares large dissimilari- 
ties, and shades of grey intermediate values. In a second phase, permuta- 
tions of the objects are carried out (which change the rows and columns of 
the matrix) in such a way that the smallest dissimilarities are found close to 
the diagonal. Sokal (1966, p. 110) gave an interesting example, which is 
reproduced in Figure 15. A display like this can be generated automatically 
and drawn with a line printer. Recently, Gale, Halperin, and Costanzo 
(1984) proposed a more refined version based on so-called unclassed 
cloropleth mapping. 

Wainer (1983) gives a survey of methods for displaying multivariate 
data, in which each object is represented by an icon (such as a polygon), 
made up of parts that vary in size or shape with the measured attributes. 
Also some techniques are mentioned for allowing tables to communicate 
the data structure in a more efficient way, such as rounding, reordering, and 
blocking. Applying the latter to the dissimilarities between 12 countries (of 
Table 5) yields Figure 16, given to us by Howard Wainer (personal 
communication). 

Another approach is to represent a partition using a diagram in which 
the groups are displayed as circles. Lines between the groups denote their 
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Figure 16 Dissimilarities between 12 countries, with reordered objects and rounded entries, 
blocked according to clustering structure. 

global dissimilarity. In one of these techniques, proposed by Carmichael 
and Sneath (1969) and called the method of taxometric maps, the diameter 
of a circle representing a cluster is proportional to the diameter of the 
cluster. Clusters with only one object are represented by points. It is 
attempted to place the clusters in the map in such a way that the distances 
between them are proportional to their actual distance (as defined by the 
clustering algorithm). For the pairs of clusters for which this is possible, a 
straight full line is drawn. When the distance on the map exceeds the actual 
distance, the straight line is divided into a full part of correct length and 
dashes for the remainder, and when it is too small a V-shaped line of 
correct length is drawn. An example is given in Figure 17. Taxometric maps 
are complementary to silhouettes because they depict the relationship 
between clusters but not the behavior of the individual objects within those 
clusters. 

With the silhouettes defined by Rousseeuw (1987) it is possible to obtain 
more information on the objects themselves. The height of the silhouette of 
a cluster is proportional to the number of objects, while its width gives a 
picture of its tightness with respect to the other clusters. Furthermore, 

Figure 17 An example of a taxometric map. 
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information is immediately perceived concerning the individual objects. For 
example, a small (or even negative) value s ( i )  denotes an object located at 
the outskirt of the cluster, whereas a value close to 1 shows the object to be 
centrally located. [In this way the s ( i )  value can be compared with a 
correlation coefficient.] By looking at the neighbors one can find the objects 
located between two clusters. Additional information is given by the 
average silhouette width S(k)  over the whole data set. This value can be 
used as a criterion to select the optimal number of clusters, but is by no 
means the only combination of s ( i )  that could be computed for this 
puqose: One might also use transformations, medians, and so on. Like 
most validity coefficients, S could be used as an objective function for the 
clustering itself (that is, one might want to find a clustering that maximizes 
5). Another idea would be to define s ( i )  simply by 1 - a( i ) /b ( i ) ,  so s ( i )  
could become much smaller than - 1, thereby penalizing misclassified 
points to a larger extent. Several other variants of the definition of s ( i )  are 
possible. For instance, one could replace a ( i )  and b ( i )  of Eq. (6) by 
medians of dissimilarities (instead of average dissimilarities) in order to 
obtain more robustness. Also, when the clustering method is based on the 
selection of representative objects or the construction of central points, one 
could use the dissimilarities to these privileged entities in order to avoid the 
(lengthy) computation of average dissimilarities. However, we prefer the 
present definition because it only depends on the partition itself and not on 
the method used to construct it. 

Silhouettes might be displayed in different ways, for instance, by using 
more sophisticated plotting devices instead of a line printer. One could also 
plot the negative s ( i )  [we have not done so in PAM because very negative 
s ( i )  rarely occur, and we wanted to use the width of the plot to its fullest 
advantage]. 

Recently, Edmonsten (1986) proposed a graphical display that is very 
similar to the silhouette plot. It is called a clustergram and also contains a 
separate panel for each cluster. Each object is again represented by one 
printed line, in which two quantities are combined: the object’s distance to 
the nearest object of another cluster (which is a kind of “neighbor”) and the 
distance to the object’s own cluster centroid. 

The distance graph was proposed and used by Chen, Gnanadesikan, and 
Kettenring (1974) with further applications and developments by Cohen 
et al. (1977), Gnanadesikan, Kettenring, and Landwehr (1977, 1982), and 
Chambers and Kleiner (1982). For each cluster centroid, they plot the 
distances of every entity from that centroid (the symbol plotted is the 
cluster to which the entity was assigned). Figure 18 is an example of a 
distance graph. Although such a display gives an indication of the internal 
cohesiveness of a cluster, it does not allow the study of individual objects 
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Figure 18 A distance graph of eight clusters (from Cohen et al., 1977). The centroids are 
listed on the horizontal axis. Distances of objects to these centroids are given on the vertical 
axis. The plotting symbol ( A  to H )  identifies the cluster to which the object belongs. 

because they remain anonymous in each list. Other variants display the 
(average) distances between the whole clusters, without further regard to 
the objects themselves. For a recent sociological application, see Andes 
(1985). 

Another development is the introduction of cluster validity projiles 
(Bailey and Dubes, 1982). Although their name might suggest otherwise, the 
silhouettes proposed in this book are not related to these profiles. The latter 
displays are based exclusively on the ranks of the n(n - 1)/2 entries of the 
triangular dissimilarity matrix. They originate from a method to investigate 
the validity of a certain clustering by means of formal testing against some 
null hypothesis. The adopted null hypothesis is due to random graph theory 
and states that the matrix of ranks of dissimilarities is chosen randomly 
from a uniform distribution on all [n(n - 1)/2]! possible rank matrices, 
supposing that there are no ties. A probability profile for a cluster shows, 
for each rank, the probability that an index of clustering is at least as good 
as the observed index (under the null hypothesis already specified). The 
resulting plots are drawn in function of dissimilarity ranks, whereas silhou- 
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ettes are drawn in function of the objects of the cluster. Profiles differ from 
silhouettes in an essential way because they are used with ordinal dissimi- 
larities whereas silhouettes are constructed from dissimilarities on a ratio 
scale. Also their roots are different: Profiles are based on hypothesis testing 
in a mathematical framework, whereas silhouettes are developed as data 
analytical tools which are useful mainly because of their simplicity and 
intuitive appeal. 

Finally Dunn and Landwehr (1976,1980) proposed graphical representa- 
tions for the changes in cluster characteristics when two clusterings are 
carried out on the same data set (for example, at two different time periods 
or with two sets of variables). Another problem discussed by these authors 
is the representation of relationships between clusters and one or several 
exogeneous variables (that is, variables not employed in the clustering). 

The topic of graphical representation of clustering results has so far 
received too little attention in the literature. Some books on clustering do 
not even mention the subject. The most comprehensive discussion can be 
found in a book by Everitt (1978) on graphical techniques for multivariate 
data. Some general methods for the graphical representation of multivariate 
data, like Andrews’ plots (1972), biplots (Gabriel, 1971), Chernoff s faces 
(1973), and Wegman’s parallel coordinates (1985), frequently allow identi- 
fication of clusters. Our own program CLUSPLOT, displaying the size, 
shape, and relative positions of the clusters, is briefly discussed in Section 4 
of the Appendix. 

EXERCISES AND PROBLEMS 

1. Edwards and Cavalli-Sforza (1965) considered the following dissimilar- 
ity matrix between six families of bacteria: 

A 
B 
C 
D 
E 
F 

A B C D E F  
0 
5 0  

11 10 0 
1 1 6 6 0  
14 13 17 1 3  0 
14 15 21 15 6 0 

Partition these data into two clusters with PAM and check that both 
are ,!,*-clusters. What is the “best” number of clusters according to the 
silhouettes? (Try all values of k.) 
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2. Show that for one-dimensional data the choice of a distance function 
(Euclidean or Manhattan) and of the standardization option has no 
effect on the clustering found by PAM. 

3. Show that if a k-medoid clustering contains a doubleton (a cluster 
consisting of two objects), either object can be chosen as the medoid of 
that cluster. 

4. The k-medoid method allocates objects to the nearest medoid. Give a 
geometrical interpretation of this fact when the data are two-dimen- 
sional and k = 2, by drawing the line which forms the boundary 
between the regions determined by both medoids. Do the same for 
two-dimensional data when k = 3. 

5. Consider the countries data of Table 5. Multiply all dissimilarities by a 
constant factor (e.g., 5).  Then use the program PAM to partition the 
countries into three clusters and compare the results with those de- 
scribed in Section 3. Repeat the exercise after adding a constant (e.g., 
10) to each of the original dissimilarities. 

6. Consider the following data set consisting of 28 two-dimensional points: 

(091) (092) (0,3) (190) (L1) (192) (193) 
(L4) (13) (199) (291) (2,2) (234) (237) 
(2,9) (3,3) (395) (397) (33) (4,4) (496) 
(4,7) (594) ( 5 9 5 )  (596) (63) (694) (63) 

(a) Make a plot of these points. 
(b) Cluster this data set into two clusters by means of PAM, with the 

options “no standardization” and “Euclidean distance.” 
(c) Repeat the clustering using only the first variable and then using 

only the second variable. Show that both variables are necessary to 
retrieve the cluster structure. 

7. Cluster the squares of the integers between 0 and 50 (i.e., 0, 1,4,9, 
16,25,. . . ,2500) into 2 to 10 clusters by means of PAM. 

8. Consider the dissimilarity matrix (4) in Section 2. 
(a) Cluster these data by means of PAM for k = 2. 
(b) If you have access to a program for multidimensional scaling 

(MDS), construct a two-dimensional representation of the five 
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objects characterized by (4). Indicate the clustering obtained by 
PAM on this plot and compare with the information obtained from 
the silhouettes. 

9. Consider the artificial data set of Figure 1 of Chapter 4 (the actual data 
are listed in Section 2.1 of that chapter). Cluster these objects with 
PAM for k = 3, using the options “no standardization” and “Euclidean 
distance.” What happens with the intermediate objects 6 and 13? 

10. Atypical objects usually become singleton clusters. If too few clusters 
are requested, these objects are (wrongly) grouped with some other 
objects. A particular type of atypical object are the so-called bridges. 
These are objects located in between two or more clusters. Suppose too 
few clusters have been requested and a bridging object i has been 
assigned to one of the clusters. Can this be recognized from the values 
of a ( i )  and b ( i )  used to construct the silhouette for this object? 

11. Show that for a one-dimensional data set the k-medoid clustering 
consists of contiguous clusters. 

12. Show that when two clusters are required, the algorithm used in the 
program PAM always yields the exact minimum of the objective 
function. 

13. (Research.) Construct a k-medoid algorithm for the special case of 
one-dimensional data, making use of the fact that all clusters must be 
contiguous. It is advisable to begin by sorting the observations in 
increasing order, because this allows one to exclude many possible 
clusters. Another simplification in one dimension is that there is no 
longer a need to store all distances between objects in central memory 
because the distances can easily be computed along the way. The 
program will therefore need little storage space. 



C H A P T E R 3  

Clustering Large Applications 
(Program CLARA) 

1 SHORT DESCRIPTION OF THE METHOD 

The k-medoid partitioning method described in the previous chapter yields 
very satisfactory results in many situations. However, as can be gathered 
from the time and memory requirements discussed in Section 4 of that 
chapter, the program PAM is not practical for clustering large data sets. 
For this reason a method was constructed especially adapted to large 
applications (Kaufman and Rousseeuw, 1986). This method, which is also 
based on the k-medoid approach, has been implemented in the program 
CLARA (abbreviated from Clustering LARge Applications) that is the 
subject of this chapter. 

The clustering of a set of objects with CLARA is carried out in two 
steps. First a sample is drawn from the set of objects and clustered into k 
subsets using the k-medoid method, which also gives k representative 
objects (this is done with the same algorithm as in PAM). Then, each object 
not belonging to the sample is assigned to the nearest of the k representa- 
tive objects. This yields a clustering of the entire data set. A measure of the 
quality of this clustering is obtained by computing the average distance 
between each object of the data set and its representative object. After five 
samples have been drawn and clustered, the one is selected for which the 
lowest average distance was obtained. 

The resulting clustering of the entire data set is then analyzed further. 
For each cluster, CLARA gives its size and its medoid and prints a 
complete list of its objects. Also a graphical representation of the clustering 
is provided, by means of the silhouettes that have been described in Section 
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2 of the previous chapter. (This is done for the selected sample, because a 
silhouette plot of the entire data set would become too large to be useful 
and also consume too much computational effort.) 

It turns out that CLARA can deal with much larger data sets than can 
PAM: On an IBM/XT with 8087 coprocessor, we could easily cluster 2000 
to 3000 objects. 

2 HOW TO USE THE PROGRAM CLARA 

The method briefly described in Section 1 can be applied by using the 
program CLARA, which is operated in much the same way as the program 
PAM of the previous chapter. The internal structure of CLARA can be 
found in Section 4 below. Details about the compilation and the implemen- 
tation are given in the Appendix. The use of the program is quite simple: 
After evoking the file CLARA.EXE the selected options are entered interac- 
tively by the user. The data set is input by reading a file from a disk. The 
output of the program can be directed to the screen, to a printer, or to a 
disk. In the next subsection we will show a typical interactive session. 
Because the program is very similar to PAM, only those questions and 
options different from that program will be discussed in detail. In Section 
2.2 we will look at the interpretation of the output. The treatment of 
missing values is explained in Section 2.3. 

2.1 Interactive Use and Input 

Starting up the program yields the following screen: 

CLUSTERING LARGE APPLICATIONS 
~ ~~~ 

THE PRESENT VERSION OF CLARA CAN HANDLE DATA SETS WITH AT 
LEAST 100 OBJECTS, AND AT MOST 3500 (IF FEWER THAN 100 OBJECTS 
ARE TO BE CLUSTERED PLEASE USE THE PROGRAM PAM) 

HOW MANY OBJECTS ARE TO BE CLUSTERED ? 

PLEASE GIVE A NUMBER OF AT LEAST 100, AND AT MOST 3500 : - 1000 

__________________-_-_-____- - -_ - - - - -  

It should be noted here that CLARA stores the measurements in a single 
array of 3500 elements. This makes it possible to be flexible concerning the 
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size of the problems that the program can deal with. Only the total number 
of measurements must be taken into account. For example, one can solve 
problems with 100 objects and 35 variables and also problems with 3500 
objects and a single variable. 

CLARA CAN HANDLE UP TO 30 CLUSTERS. 
HOW MANY CLUSTERS ARE WANTED ? 

PLEASE ENTER A NUMBER BETWEEN 1 AND 30 : 2 
___________-__-_____--------- - - - -  

In CLARA only a fixed number of clusters may be requested. If several 
clusterings are wanted, repeated runs must be carried out. 

IN THE PRESENT VERSION OF THE PROGRAM UP TO 150 VARIABLES 
CAN BE ENTERED. 
(IF MORE ARE NEEDED, THE ARRAYS INSIDE THE PROGRAM 
MUST BE ADAPTED) 

WHAT IS THE TOTAL NUMBER OF VARIABLES IN YOUR DATA SET ? 

PLEASE GIVE A NUMBER BETWEEN 1 AND 150 : - 8 

____________________--------------------------------- 

CLARA only allows input of measurements and not of a dissimilarity 
matrix. Indeed, one of the problems of clustering large data sets is the size 
of the dissimilarity matrix. It was therefore decided not to reserve a large 
memory array for the dissimilarities. (The only dissimilarity matrix used in 
the program is the one between the elements of each sample, which is much 
smaller than the matrix for the entire data set.) Also note that the measure- 
ments are always read from a file, as the data sets are too large to enter 
them with the keyboard during an interactive session. 

HOW MANY VARIABLES DO YOU WANT TO USE IN THE ANALYSIS ? 

(NOTE THAT THE NUMBER OF VARIABLES MAY NOT EXCEED 3 
BECAUSE THE PROGRAM CAN STORE AT MOST 3500 MEASUREMENTS) 

PLEASE ENTER A NUMBER BETWEEN 1 AND 3 : - 3 

VARIABLE TO BE USED: POSITION LABEL (AT MOST 10 

J. . 1 . 1 3 . - - - - -  .11 J. J. J.1 I A J. A,-------- 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

CHARACTERS) 

varl 1 
var2 2 

3 var3 

-_____-___-_--------------- 
- NUMBER 1 : - 

NUMBER 2 : - - 
- NUMBER 3 : - 
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DO YOU WANT THE MEASUREMENTS TO BE STANDARDIZED ? (PLEASE 

.J!E ANSWER YES) OR NOT ? (THEN ANSWER NO) . . . . . . . . . . . . . . . . . . .  

DO YOU WANT TO USE EUCLIDEAN DISTANCE ? 
(PLEASE ANSWER E) 
OR DO YOU PREFER MANHATTAN DISTANCE ? 
(THEN ANSWER M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .e 

PLEASE ENTER A TITLE FOR THE OUTPUT (AT MOST 60 
CHARACTERS) 

DATA SET WITH lo00 OBJECTS AND 8 VARIABLES 

HOW MUCH OUTPUT DO YOU WANT ? 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ - - - - - - _ _ - _ _ _ _ - - - _ _  

SMALL OUTPUT (PLEASE ANSWER 0) 
MEDIUM SIZED OUTPUT 

OR LARGE OUTPUT 

(PLEASE ANSWER 1) : 

(PLEASE ANSWER 2 )  : 
INCLUDES DETAILS ON CLUSTERING 

ALSO INCLUDES DETAILS ON THE DATA . . . . . . . . . . . . . . . . . . . . . . .  .0  - 

DO YOU WANT GRAPHICAL OUTPUT (SILHOUETTES) ? PLEASE AN- 
SWER YES OR NO : p 

DO YOU WANT TO READ THE DATA IN FREE FORMAT ? 

THIS MEANS THAT YOU ONLY HAVE TO INSERT BLANK@) BETWEEN 
NUMBERS. 
(NOTE: WE ADVISE USERS WITHOUT KNOWLEDGE OF FORTRAN 
FORMATS TO ANSWER YES.) 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  MAKE YOUR CHOICE (YES/NO) .d!F 

PLEASE GIVE THE NAME OF THE FILE CONTAINING THE DATA (e.g. 
TYPE A:TEST.DAT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  B:EXlOOO.DAT 

WHERE DO YOU WANT YOUR OUTPUT ? 
_______-____-__- -___- -_- - - - - -__-  

TYPE CON IF YOU WANT IT ON THE SCREEN 
OR TYPE PRN IF YOU WANT IT ON THE PRINTER 
OR TYPE THE NAME OF A FILE (e.g. B:EXAMPLE.OUT) 
(WARNING : IF THERE ALREADY EXISTS A FILE WITH THE SAME 

WHAT DO YOU CHOOSE? . . . . . . . . . . . . . . . . . . . . . . . . . .  .B:EXlOOO.RES 
NAME THEN THE OLD FILE WILL BE OVERWRITTEN.) 

CAN MISSING DATA OCCUR IN THE MEASUREMENTS ? 
PLEASE ANSWER YES OR NO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .40 - 
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The situation of missing data is discussed in Section 2.3. It implies 
further input with detailed information concerning missing value codes and 
also adapted formulas for the computation of standardized measurements 
and distances. 

DATA SPECIFICATIONS AND CHOSEN OPTIONS 

TITLE : DATA SET WITH lo00 OBJECTS AND 8 VARIABLES 
THERE ARE loo0 OBJECTS 
THE OBJECTS WILL BE CLUSTERED INTO 2 CLUSTERS 
SMALL OUTPUT IS WANTED 
GRAPHICAL OUTPUT IS WANTED (SILHOUETTES) 

THERE ARE 8 VARIABLES IN THE DATA SET, 

THE MEASUREMENTS WILL BE STANDARDIZED 
EUCLIDEAN DISTANCE WILL BE USED 
THERE ARE NO MISSING VALUES 
THE MEASUREMENTS WILL BE READ IN FREE FORMAT 
YOUR DATA RESIDE ON FILE : B:EX1000.DAT 

YOUR OUTPUT WILL BE WRITTEN ON : B:EX1000.RES 

ARE ALL THESE SPECIFICATIONS OK ? YES OR NO : 

__________________-___---__----__----  

AND 3 OF THEM WILL BE USED IN THE ANALYSIS 

It should be noted here that the input for CLARA is almost identical to 
that of PAM (and also FANNY, AGNES, and DIANA). The differences 
are that in CLARA there are no labels of objects, only measurement input 
is allowed, and only a fixed number of clusters may be requested. Also note 
that if a data set of measurements is used for PAM and objects are added 
so that PAM cannot be used any more (because of either memory or 
computation time problems), the same input file is suitable for CLARA. 

2.2 output 

The output generated by CLARA is divided into the following parts: 

a Identi/ication of the Pmgmm and Selected Options 
The output starts with the identification “CLUSTERING LARGE APPLI- 
CATIONS‘‘ and a list of options that were chosen by the user. 

A Standardized Measurements 
If the measurements are standardized and large output is requested, the 
transformed measurement values are outputted. They are then accompanied 
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................................... 
CLUSTERING LARGE APPLICATIONS : * 

, *  ................................... 
DATA SPECIFICATIONS AND CHOSEN OPTIONS _____________________-- - - - -_- - - - - - - - - -  
TITLE f DATA SET WITH 1000 OBJECTS AND 0 VARIABLES 
THE OBJECTS WILL BE CLUSTERED INTO 2 CLUSTERS 
SMALL OUTPUT IS WANTED 
GRAPHICAL OUTPUT IS WANTED (SILHOUETTES) 

THERE ARE 1000 OBJECTS 

THERE ARE 8 VARIABLES IN THE DATA SET 
These varlablas are : 

varl (POSITION : 
var2 
var3 

THE MEASUREMENTS WILL 
EUCLIDEAN DISTANCE WILL BE USED 
THERE ARE NO MISSING VALUES 
THE MEASUREMENTS WILL BE READ IN FREE FORMAT 

AND 3 OF THEM WILL BE USED IN THE ANALYSIS 

YOUR DATA RESIDE ON FILE : b:exlOOO.dat 
VARIABLE Var1 HAS AVERAGE 5.287 MEAN DEVIATION 4 .977  

4 . 9 9 7  
4.978 

5.326 MEAN DEVIATION VARIABLE var2 HAS AVERAQE 
VARIABLE var3 HAS AVERAQE 5 .357  MEAN DEVIATION 

Figure 1 CLARA output, parts a and b. 

by the mean value and mean deviation of each variable, given by (2) and (3) 
of Chapter 1. Note that we chose to compute the mean value and mean 
deviation instead of more robust summary values (such as the median and 
the median deviation) because the former each need only a single pass 
through the objects and no additional arrays are required. This is particu- 
larly important for CLARA, in which the total computation time and 
storage are merely linear in the number of measurements. An example of 
parts a and b of the output is given in Figure 1. 

c. Output Concerning Each Sample 
This part of the output contains: 

A list of objects in the sample (the number of objects in each sample is 

The average distance obtained from BUILD (this is merely an initial 

The average distance obtained from SWAP (called the final result for 

40 f 2k, where k is the number of clusters). 

result of our k-medoid algorithm). 

this sample). 

These values are the average distances between each object of the sample 
and its most similar representative object. 
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RANDOM SAMPLE = 
5 25 93 161 189 191 208 225 242 308 

331 342 360 382 390 400 421 432 437 444 
463 506 528 547 613 641 747 760 777 785 
795 801 803 840 865 877 881 884 891 948 
954 955 976 992 

RESULT OF BUILD FOR THIS SAMPLE 

FINAL RESULT FOR THI? SAMPLE 

RESULTS FOR THE ENTI!E DATA SET 

CLUSTER SIZE MEDOID COORDINATES OF MEDOID (STANDARDIZED MEASUREMENTS) 

AVERAGE DISTANCE .341 

,317 AVERAGE DISTANCE - 
TOTAL DISTANCE 328.923 
AVERAGE DISTANCE .329 

1 530 840 .92  .89 .98 

2 470 161 - 1 . 1 4  -1 .14  -1 .04  

AVERAGE DISTANCE TO EACH MEDOID 

MAXIMUM DISTANCE TO EACH MEDOID 

MAXIMUM DISTANCE TO A MEDOID DIVIDED BY MINIMUM 
DISTANCE OF THE MEDOID TO ANOTHER MEDOID 

.325 .333 

.664 .785 

.188 ,223 

Figure 2 CLARA output, part c (concerning one of the samples). 

The total and average distance for the entire data set. 
For each cluster the following information is given: 

its number of objects (size) in the entire data set 
its medoid 
the coordinates of the medoid (when standardization was requested, 
the standardized coordinates are given) 

The following clustering characteristics of each cluster: 
the average distance to the medoid 
the maximum distance to the medoid 
the maximum distance to the medoid, divided by the minimum 
distance of the medoid to another medoid: This value gives an idea 
of the isolation of the cluster. 

An example of the output concerning one sample is given in Figure 2. 

The list of objects in the selected sample, and the average distance for 
the entire data set are given. 
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The clustering vector (for the entire data set): The j t h  element of this 
array is the number of the cluster to which object j belongs (the 
clusters are numbered in such a way that when reading the vector 
from left to right, the clusters are encountered in ascending order). 

If medium sized or large output is requested, a list of objects of each 
cluster is given (all objects of the data set are included). 

The clustering characteristics of the final partition of the entire data set. 

For an example of part d of the output, see Figure 3. 

SAMPLE NUMEER 5 WAS SELECTED, WITH OBJECTS = 
5 25 93 161 189 191 208 225 242 308 

331 342 360 382 390 400 421 432 437 444 
463 506 528 547 613 641 747 760 777 785 
795 801 803 840 865 877 881 884 891 948 
954 955 976 992 

AVERAGE DISTANCE FOR THE ENTIRE DATA SET = ,329 

AVERAGE DISTANCE TO EACH MEDOID 
,325 ,333 

MAXIMUM DISTANCE TO EACH MEDOID 
,664 ,785 

MAXIMUM DISTANCE TO A MEDOID DIVIDED BY MINIMUM 
DISTANCE OF THE MEDOID TO ANOTHER MEDOID 

.lea ,223 

Figure 3 CLARA output, part d (final results). 
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e. Gmphical Ouiput Concerning ihe Selecied Sampb 
If the option of graphical output was chosen, a graphical representation of 
the selected sample is provided by means of the silhouettes that are also 
used in PAM (see Section 2.2 of Chapter 2). Only if k = 1 is no graphical 
representation given because in this case the silhouettes are not defined. An 
example of silhouettes for k = 2 is given in Figure 5 of Chapter 2. The 
silhouettes given by CLARA are similar to those of PAM. The only 
difference is that in CLARA only the objects of the selected sample are 
included, while in PAM all the objects of the data set were considered. An 
example for CLARA is shown in Figure 4 below. 

2.3 Missing Values 

In CLARA, provision is made for the case that there are missing measure- 
ment values. If the user says that there are missing data, the following 
additional question is asked: 

IS THERE A UNIQUE VALUE WHICH IS TO BE INTERPRETED 
AS A MISSING MEASUREMENT VALUE FOR ANY VARIABLE 7 
PLEASE ANSWER YES OR NO : 1 

If this question is answered with a yes, the unique value must then be 
entered and the interactive dialogue is terminated. Otherwise, each of the 
variables is considered in turn, as in the lines: 

SHOULD MISSING VALUES BE FORESEEN FOR THE VARIABLE AAA ? 
PLEASE ANSWER YES OR NO : - no 

SHOULD MISSING VALUES BE FORESEEN FOR THE VARIABLE BBB 1 
PLEASE ANSWER YES OR NO : 
ENTER THE VALUE OF THIS VARIABLE WHICH HAS TO BE INTER- 
PRETED AS THE MISSING VALUE CODE : - - 1 

' The provision of missing data has an effect on several computations 
carried out in CLARA. If the data are standardized, the averages mf and 
mean deviations sf are calculated using only present values. When calculat- 
ing the distance between two objects, only those variables are considered in 
the sum for which the measurements for both objects are available; subse- 
quently the sum of terms is multiplied by p and divided by the number of 
such variables (in the case of Euclidean distance, the multiplication and 
division are carried out before taking the square root). 

In the output of CLARA, the provision for missing values yields the 
number of missing values for each variable and the total number of missing 
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................................... 
' CLUSTERING LARGE APPLICATIONS : ................................... 

TITLE : Randomly generated data set 
DATA SPECIFICATIONS AND CHOSEN OPTIONS ______________-_______________________  
THERE ARE 200 OBJECTS 
THE OBJECTS WILL BE CLUSTERED INTO 3 CLUSTERS 
MEDIUM SIZED OUTPUT IS WANTED 
GRAPHICAL OUTPUT IS WANTED (SILHOUETTES) 

YOUR DATA RESIDE ON FILE : b:exZOO.ran 

.............................................. 
I * 
' NUMBER OF REPRESENTATIVE OBJECTS 3 : .............................................. 
5 SAMPLES OF 46 OBJECTS WILL NOW BE DRAWN. 

RANDOM SAMPLE = 
3 4 8 12 14 19 23 27 33 41 

43 44 53 55 56 58 62 63 70 79 
87 107 115 120 121 129 130 135 138 139 
145 149 153 154 159 165 167 171 173 174 
176 179 181 183 185 199 

RESULT OF BUILD FOR THIS SAMPLE 

FINAL RESULT FOR THIS SAMPLE 

RESULTS FOR THE ENTIRE DATA SET 

AVERACE DISTANCE = 2.347 

AVERAGE DISTANCE = 2.252 

TOTAL DISTANCE = 367.925 
AVERAGE DISTANCE = 1.840 

CLUSTER SIZE MEDOID COORDINATES OF MEDOID 

1 120 23 -1.02 10.11 
2 60 135 20.13 12.42 

3 20 181 10.60 20.27 

AVERAGE DISTANCE TO EACH MEDOID 

MAXIMUM DISTANCE TO EACH MEDOID 

MAXIMUM DISTANCE TO A MEDOID DIVIDED BY MINIMUM 
DISTANCE OF THE MEDOID TO ANOTHER MEDOID 

2.363 ,920 1.456 

6.563 1.792 2.645 

. 425 ,145 ,214 

RANDOM SAMPLE E 

2 4 7 12 13 19 23 26 27 30 
37 42 44 58 62 63 65 67 87 95 

179 181 182 184 187 191 

RESULT OF BUILD FOR THIS SAMPLE 

Figure 4 Example with 200 objects: Clustering into three clusters using the program CLARA. 
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AVERAQE DISTANCE = 1.981 

FINAL RESUL FOR HIS SAMPLE 
AVERAGE DLTANCH 

RESULTS FOR THE ENTI!E DATA SEz3,073 
1.715 

TOTAL DISTANCE 
AVERAQE DISTANCE = 

CLUSTER SIZE MEWID COORDINATES OF MEDOID 
1 120 42 .01 9.89 

2 60 135 20.13 12.42 

3 20 187 9.88 19.66 

AVBRAQB DISTANCE TO EACH M E W I D  
2.234 ,920 .986 

MAXIMUM DISTANCE TO EACH MEDOID2,g63 
5.518 1.792 

MAXIMUM DISTANCE TO A MEDOID DIVIDED BY MINIMUM 
DISTANCE OF THE MEDOID TO ANOTHER M E W I D  

,397 ,143 ,228 

7 9 12 13 1 4  
35 42 68 69 71 73 
100 101 104 106 107 109 
128 135 138 140 145 148 
170 173 179 182 186 187 

RANDOM SAMPLE = 
2 

RESULT OF BUILD FOR THIS SAMPLE 
AVERAQE DISTANCE 2.067 

FINAL RESULT FOR THIE SAMPLE AVERAQE DISTANCE 1.599 

RESULTS FOR THE ENTIfE DATA Sfz4.655 
1.773 

TOTAL DISTANCE 
AVERAQE DISTANCE = 

CLUSTER SIZE MEOOID COORDINATES OF MEDOID 
1 120 42 .Ol 9.89 

2 60 138 19.71 11.34 

3 20 182 9.25 19.87 

AVERAQE DISTANCE TO EACH MEDOID 
2.234 1.112 .990 

2.557 
MAXIMUM DISTANCE TO EACH MEDOID 

5.518 2.284 
MAXIMUM DISTANCE TO A MEDOID DIVIDED BY MINIMUM 
DISTANCE OF THE MEDOID TO ANOTHER MEDOID 

,406 .169 ,189 

RANDOM SAMPLE = 
1 3 5 18 19 21 

44 45 49 64 67 72 

186 187 190 191 196 199 
:820 2.2 E?i i f :  % ::: 

RESULT OF BUILD FOR :HIS SAMPLE 

FINAL RESULT FOR THIE SAMPLE 
AVERAQE DISTANCE 2.373 

AVERAQE DISTANCE 1.520 

RESULTS FOR THE ENTIRE DATA SET 
TOTAL DISTANCE : 346.295 
AVERAQE DISTANCE 1.731 

CLUSTER SIZE MEDOID COORDINATES OF MEDOID 
1 120 100 - .04 9.31 

2 60 127 20.07 12.16 

3 20 187 9.88 19.66 

Figure 4 (Continued) 
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88 
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88 
119 
167 

39 
89 
148 
175 

34 
91 
120 
169 

42 
93 
150 
177 
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AVERAGE DISTANCE TO EACH MEDOID 

MAXIMUM DISTANCE TO EACH MEDOID 

MAXIMUM DISTANCE TO A MEDOID DIVIDED BY MINIMUM 
DISTANCE OF THE MEDOID TO ANOTHER MEWID 

2.295 .852 ,986 

5.565 1.705 2.863 

,388 ,135 ,226 

RANDOM SAMPLE = 
5 17 30 31 33 35 38 39 42 45 

46 51 53 62 68 69 74 77 80 82 
85 87 88 93 102 103 104 106 110 117 
122 128 135 147 151 157 161 172 176 177 
178 182 184 186 187 194 

RESULT OF BUILD FOR THIS SAMPLE 

FINAL RESULT FOR THIS SAMPLE 

RESULTS FOR THE ENTIRE DATA SET 

AVERAGE DISTANCE = 2.151 

AVERAGE DISTANCE = 1.609 

TOTAL DISTANCE = 343.156 
AVERAGE DISTANCE = 1.716 

CLUSTER SIZE MEDOID COORDINATES OF MEDOID 
1 120 42 .Ol 9.89 
2 60 135 20.13 12.42 

3 20 182 9.25 19.87 

AVERAGE DISTANCE TO EACH MEDOID 

MAXIMUM DISTANCE TO EACH MEDOID 

MAXIMUM DISTANCE TO A MEDOID DIVIDED BY MINIMUM 
DISTANCE OF THE MEDOID TO ANOTHER MEDOID 

2.234 ,920 990 

5.518 1 ,792 2.557 

,406 ,136 .194 

SAMPLE NUMBER 2 WAS SELECTED, WITH OBJECTS = 
2 7 12 13 19 23 26 27 30 
37 42 44 58 62 63 65 67 87 95 
96 97 108 112 122 123 124 130 134 135 
136 140 145 151 154 161 170 173 175 178 
179 181 182 184 187 191 

AVERAGE DISTANCE FOR THE ENTIRE DATA SET = 1.715 

F4Yw?!FP .YfFT?? 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2  
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  
2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3  

CLUSTER SIZE MEDOID OBJECTS 
1 120 42 

1 2  3 4 5 6 7 8 9 1 0  
1 1  12 13 14 15 16 17 18 19 20 
21 22 23 24 25 26 27 28 29 30 
31 32 33 34 35 36 37 38 39 40 
41 42 43 44 45 46 47 48 49 50 
51 52 53 54 55 56 57 58 59 60 
61 62 63 64 65 66 67 68 69 70 
71 72 73 74 75 76 77 Zfl Z9,  8,: 
81 82 83 84 85 86 A 7  

Figure 4 (Continued) 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  

o o o i i  a a i j 3 i i i S i 6 ' 6 6 i i a a B Q g o  
0 4 8 2 6 0 4 8 2 6 0 4 6 2 6 0 4 8 2 6 0 4 8 2 6 0  

CLUSTER 1 HAS AVERAGE SILHOUETTE WIDTH .79 
CLUSTER 2 HAS AVERAGE SILHOUETTE WIDTH .90 
CLUSTER 3 HAS AVERAGE SILHOUETTE WIDTH .89 

FOR THE SELECTED SAMPLE, THE AVERAGE SILHOUETTE WIDTH IS .84 

Your output is written on file : a:exZOO.res 

Figure 4 (Continued) 

values. If the measurements are standardized, the transformed values corre- 
sponding to missing data are given the value 99.99. 

3 ANEXAMPLE 

To illustrate CLARA, a set of 200 objects with two variables was randomly 
generated. Three groups of objects were constructed. In each group, the 
points were generated according to a spherical bivariate normal distribution 
with given mean vector p = (p,, p y )  and standard deviation u for both x 
and y: 

p = 10 u =  1.7 group 1 : 120 objects p, = 0 

group 2: 60 objects p,  = 20 py = 12 u = 0.7  
20objects p, = 10 p = 20 u = 1.0 group 3:  

Y 

Y 

Table 1 contains the generated data used as input for the program (the 
actual input file consisted of 200 lines, one for each object). 

In order to test CLARA, the 200 objects were clustered into 2 ,3 ,4 , .  . . ,10 
clusters. Clearly, by the way the data were generated the best results should 
be obtained for k = 3. These results are presented in Figure 4. 

A careful analysis of the output for k = 3 reveals many things about the 
structure of the data. The most important of these results, which can be 
used as guidelines for interpreting the output of CLARA, are the following: 

All five samples yield the same (correct) clustering. This is of course 
expected for such a clear-cut situation. However, the medoids are not 
all the same and therefore the average distances for the entire data set 
are slightly different. The respective values for the five samples are 
1.840, 1.715, 1.773, 1.731, and 1.716, which shows the usefulness of 
trying several samples. 
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Table 1 Example with Mo Generated Objects 

Xi  Yi 

- 0.44 
1.52 

- 1.85 
1.98 

- 1.43 
2.67 
0.80 

-0.81 
1.62 
2.68 
1.20 
0.90 
2.67 
0.27 

- 1.10 
0.87 
2.34 

- 3.62 
- 2.49 
0.37 

- 0.48 
- 1.39 
- 1.02 
0.60 

- 1.82 
2.34 

- 2.45 
- 1.22 
- 0.89 
- 1.88 
0.79 

- 2.18 
2.71 

- 1.37 
- 0.20 
- 3.60 
- 1.39 
1.74 
0.64 
0.88 

- 1.33 
0.01 

8.76 
8.76 
9.34 
11.04 
12.13 
6.25 
8.35 
1.05 
8.52 
1.47 
7.74 
8.48 
2.68 
12.31 
9.39 
10.16 
10.69 
9.37 
12.75 
8.03 
8.48 
9.28 
10.11 
8.31 
10.32 
10.70 
9.49 
9.98 
10.07 
11.37 
11.35 
10.58 
10.91 
8.66 
11.03 
12.97 
6.79 
9.69 
8.21 
12.39 
10.50 
9.89 

Xi Yi 

2.21 
- 0.73 
0.02 

- 1.70 
0.50 
0.65 

-0.18 
- 2.64 
- 2.14 
0.18 
0.79 

- 0.72 
1.34 
3.14 
0.44 

- 3.49 
- 1.43 
1.35 

- 1.53 
1.36 

- 0.20 
2.56 

- 0.16 
0.40 

- 0.60 
3.19 

- 1.94 
- 0.04 
- 0.41 
- 0.42 
- 0.18 

- 2.52 
2.28 

1.78 
0.82 

- 1.95 
- 0.86 
1.19 

- 2.88 
1.04 

- 2.90 
5.52 

11.36 
11.23 
12.75 
9.29 
4.67 
9.20 
10.80 
10.38 
11.85 
10.14 
12.39 
8.62 
11.83 
10.02 
11.17 
5.90 
9.57 
11.25 
12.43 
8.97 
11.38 
9.33 
12.39 
9.58 
5.28 
11.96 
9.52 
9.85 
8.95 
8.04 
9.04 
9.89 
9.30 
8.68 
11.07 
12.57 
8.89 
9.69 
9.86 
11.21 
12.02 
9.59 

X i  Yi 

- 1.74 
- 1.80 
0.81 

- 0.39 
1.67 

- 2.05 
- 1.23 
- 1.46 
-0.37 
- 0.84 
- 0.92 
2.45 
2.09 
1.92 
3.12 

- 0.22 
- 1.34 
0.33 

- 2.09 
- 0.51 
20.00 
19.84 
21.49 
19.96 
19.99 
21.12 
20.07 
19.41 
20.24 
19.67 
18.81 
19.84 
20.10 
20.70 
20.13 
18.68 
20.30 
19.71 
20.50 
21.04 
20.00 
19.38 

11.95 
9.55 
8.13 
8.03 
12.55 
8.50 
10.94 
11.76 
8.88 
14.04 
9.02 
9.64 
6.91 
7.66 
13.81 
12.29 
10.62 
10.39 
8.62 
11.74 
11.73 
12.99 
11.25 
11.98 
11.99 
11.83 
12.16 
11.44 
10.96 
13.21 
11.94 
11.76 
11.93 
12.17 
12.42 
11.56 
11.65 
11.34 
11.88 
11.51 
11.66 
12.68 

Yi xi 

20.87 
19.96 
18.97 
20.27 
19.80 
20.61 
19.30 
18.38 
20.91 
20.21 
20.82 
20.58 
20.44 
20.11 
19.65 
20.55 
19.56 
20.22 
19.56 
19.41 
20.82 
19.76 
19.11 
19.59 
20.58 
20.83 
19.47 
20.30 
20.40 
20.74 
10.60 
9.25 
10.30 
7. % 
10.92 
9.10 
9.88 
8.48 
8.73 
9.12 
10.22 
9.19 

12.96 
12.68 
13.11 
11.82 
11.92 
12.41 
11.82 
12.38 
11.58 
11.91 
12.60 
11.94 
11.67 
11.40 
13.62 
11.93 
13.01 
10.65 
10.93 
12.66 
12.16 
12.56 
12.48 
13.35 
12.21 
11.77 
11.88 
13.16 
13.36 
12.10 
20.27 
19.87 
19.19 
20.19 
21.23 
19.94 
19.66 
19.69 
20.33 
22.42 
19.42 
18.98 



AN EXAMPLE 

Table 1 Example with 200 Generated Objects 
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X i  Yl I x, YI I xi Yl I X I  Yl 

6.64 I 19.81 11.74 I 11.04 18.50 
19.25 12.81 9.53 18.82 

- 1.89 
- 0.93 

1.97 9.78 
- 3.05 7.28 
- 0.04 5.70 

2.53 8.88 
- 1.66 8.04 
-0.58 12.36 

0.58 9.74 
-0.03 10.62 
-0.52 11.10 

1.98 9.76 
- 1.27 9.17 
- 0.04 9.31 

20.45 10.95 
19.24 11.77 
19.36 12.42 
18.55 11.65 
19.21 12.86 
19.89 11.29 

10.26 19.57 
10.03 19.52 
9.51 20.19 
8.92 19.75 
9.64 19.27 
9.33 19.86 

Concerning the selected sample, one observes that: 
the final result for the sample is considerably better than the result 
of BUILD (1.441 instead of 1.981) . the average and maximum distances are much larger for the first 
cluster than for the two others: This is to be expected because the 
first cluster has a larger standard deviation 
the maximum distance to the medoid divided by the minimum 
distance of the medoid to another medoid is also much larger in the 
first cluster, but still less than 0.5, which indicates a tight cluster (the 
values for the other two clusters are 0.143 and 0.228, indicating very 
tight clusters). 

The silhouettes of the three clusters all have high average widths (0.79, 
0.90, and 0.89): A glance at the three silhouettes shows a very good 
clustering. Looking at the individual values one observes that even in 
the most loose cluster (number l), the lowest value is as high as 0.58 
(for object 13), followed by 0.71 (for object 19). One also sees that 
clusters 1 and 2 are positioned more or less on both sides of cluster 3, 
because all of their objects have cluster 3 as neighbor, while the 
objects of cluster 3 have as neighbors clusters 1 and 2; however, as 
seen in the plot of Figure 5 this interpretation is only partially 
accurate. 

From the silhouettes obtained for k = 4, shown in Figure 6, one can see 
that there are two quite weak clusters (1 and 2) and two very tight ones (3 
and 4). This is also quite clear when looking at the average silhouette 
widths. 

The clustering vector given in Figure 6 shows that the 120 objects from 
the first group (objects 1 to 120) have been artificially divided into the 
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clusters 1 and 2, while the other two generated groups have been left intact. 
Another way of obtaining this picture is from the ratio of the maximum 
distance to the medoid and the minimum distance of the medoid to another 
medoid. For clusters 1 and 2 the values 1.611 and 1.792 are obtained, while 
for clusters 3 and 4 the values are 0.137 and 0.245. 

Finally, Table 2 contains the average silhouette width and optimal 
average distance for the entire data set, for clusterings with k ranging from 
2 to 10. This table indicates the usefulness of the average silhouette width 
for selecting a "good" number of clusters (see also Section 2.2 of Chapter 
2). This selection is based on the maximum average silhouette width, which 
is called the silhouette coeflcient [see formula (7) of Chapter 21. In the 
example, the value of the silhouette coefficient is 0.84. Looking at Table 4 of 
Chapter 2, this corresponds to a strong clustering structure. Additional 
information is obtained when comparing the silhouette coefficient with the 
second largest average silhouette width: The larger their difference, the 
more we are convinced that the selected value of k is distinctly better than 
competing values. 

3 

Figure 5 Example with 200 objects: Plot of the points of Table 1. 
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CLU 
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2 1 1  
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3 3 3  
3 3 3  

1 1 2 1 2 1 1 2 2 1 2 2 1 2 1 1 1 1  
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  

0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0  
o o o i i i i i 3 3 i i i s s ~ ~ k i i ~ a a g ~ o  

CLUSTER 1 HAS AVERAGE SILHOUETTE WIDTH 52 
CLUSTER 2 HAS AVERAGE SILHOUETTE WIDTH .13 
CLUSTER 3 HAS AVERAOE SILHOUETTE WIDTH .91 
CLUSTER 4 HAS AVERAGE SILHOUETTE WIDTH .88 

FOR THE SELECTED SAMPLE, THE AVERAGE SILHOUETTE WIDTH IS .62 

Figure 6 Example with 200 objects: Clustering vector and silhouettes for k = 4 
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Table 2 Example with 200 Objects Average Silhouette Width and Average 
Distance for the Entire Data Set, for Values of k between 2 and 10 

Average Silhouette Width Average Distance 
k for the Selected Sample for the Entire Data Set 

2 0.79 2.879 
0.84 1.715 3 

4 0.62 1.41 7 
5 0.55 1.240 
6 0.61 1.162 
7 0.58 1.065 
8 0.44 1.023 
9 0.43 0.971 
10 0.45 0.879 

- 

*4 MORE ON THE ALGORITHM AND THE PROCRAM 

4.1 Description of the Algorithm 

In the algorithm used in PAM, k objects (the medoids) are selected as 
being representative or centrally located, and the k clusters are constructed 
around these objects. The main computational effort made in the algorithm 
of PAM is a search among a large number of subsets of k objects, for a 
subset yielding a satisfactory, locally optimal clustering (there are C," such 
subsets, but the algorithm only examines some of these). With increasing 
values of n the number of subsets increases dramatically: For fixed k the 
rate of increase is of the order of the kth power of n. As a consequence, it 
is clear that the exact k-medoid method is only feasible for relatively small 
(to medium-sized) numbers of objects because the computation time be- 
comes enormous otherwise. Another factor with the same effect is the 
storage requirement. As discussed in Section 4 of Chapter 2, the number of 
memory locations used in PAM is mainly dependent on the number of 
objects, of which it is a quadratic function. 

CLARA carries out the actual clustering in conjunction with the search 
for a set of representative objects or centtotypes, which should represent the 
different aspects of the structure of the data set. The method used in 
CLARA, which was first described by Kaufman and Rousseeuw (1986), is 
based on the selection of five (or more) random samples of objects. The 
random number generator used in the program was constructed by us in 
order to make it machine independent. (It should run on most computers 
because the largest integer used in it is less than 230.) The period of the 
generator is 216, which is good enough for ow purposes. 
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The size of the samples depends on the number of clusters. For a 
clustering into k clusters, the size of the samples is given by 40 + 2 k .  
Because the number of clusters must lie between 1 and 30, the samples 
contain between 42 and 100 objects. Using a function of the number of 
clusters for the sample size is motivated by the objective of having a 
reasonable probability of finding objects from all the “existing” clusters in 
at least one of the generated samples. 

For the construction of the first sample, objects are selected by the 
random number generator and ordered by increasing index. Each time an 
object is drawn, it is checked against already drawn objects. If it has not yet 
been selected, it is inserted at the correct position in the array. 

If the sample size is only slightly smaller than the number of objects, it 
would often happen that the same object is drawn several times. For this 
reason, the random number generator is used to select the objects not 
belonging to the sample, whenever the number of objects is smaller than 
twice the sample size. 

The construction of further samples is initiated by considering the 
medoids that have been found in previous samples. At each step of the 
algorithm, the current best set of medoids is stored in an array. (This best 
set is the one for which the average distance for the entire data set is the 
smallest found so far.) A new sample is constructed by adding objects to 
this best set, in the same way that objects were accumulated in the first 
sample. 

After a sample of objects has been drawn, it is partitioned into k clusters 
using the same algorithm as in the program PAM. This algorithm consists 
of two parts, called BUILD and SWAP. In BUILD successive representa- 
tive objects are selected, with the purpose of obtaining the smallest possible 
average distance between the objects (of the sample) and their most similar 
representative object. In SWAP it is attempted to decrease the average 
distance by replacing representative objects (more details on BUILD and 
SWAP are given in Section 4.1 of Chapter 2). 

Once k representative objects have been selected, each object of the 
entire data set (and not only the sample) is assigned to the nearest 
representative object. The average distance obtained for the assignment is 
used as a measure of the quality of the clustering. After this calculation has 
been done for all five samples, the sample is withheld for which the average 
distance is as small as possible. 

A further analysis is then carried out on the final partition. The list of 
objects of each cluster is given, together with the medoid and size of that 
cluster (in the entire data set). The program then lists, for each cluster, the 
average and maximum distance to its medoid. Also, the maximum distance 
is divided by the minimum distance of the medoid to another medoid. This 
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value gives information on the tightness of the cluster. A small value (for 
example 0.2) indicates a very tight cluster, while a value exceeding 1 
suggests a weak cluster. Finally, a graphical representation of the clustering 
is given by means of the silhouette plot, as described in Section 2.2 of 
Chapter 2. This is only done for the selected sample because the silhouettes 
of the entire data set would become very large and consume a lot of 
computation time. 

4.2 Structure of the Program 
CLARA contains about 1425 statement lines. The program consists of a 
main unit, one function, and nine subroutines. 

me Main P m g m  Unit 
This consists of the following parts: 

Dimensions of the arrays. 
Setting the maximum value of n x p: This maximum value, called 

MAXXX in the program, is set equal to 3500. CLARA stores the 
measurement values in a one-dimensional array called X. The objects 
are stored as they are read and, as shown in Figure 7a, the p 
measurements for each object are stored contiguously. This approach 
uses the storage space much more efficiently than in the case of a 
two-dimensional array with bounds on both n and p. 

a 

b 

3 6 
2 1 
0 8 

7 3 
. . . . . . .  array X 

Figure 7 Storage of (a) measurement values and (b) distances in CLARA. 
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Setting the maximum number of variables in the data set to 150 (in the 
program this maximum number is denoted by MAXTT). 

Defining the units for input of the data set (called LUA) and for output 
(LUB). These units are given the values 1 and 2, but these values may 
be changed according to the hardware configuration. 

Setting NRAN, the number of samples to be drawn, equal to 5 (the user 
can change this line if more samples are wanted). 

A call to the subroutine ENTR in which the options and parameters are 
entered and displayed and the data set is inputted. 

Calculation of the number of objects of the samples. 
Section in which missing measurements are examined. 
If requested by the user, a call to the subroutine STAND (in which the 

Output of the standardized measurements (providing large output was 

Output of the number of clusters and samples. 
Do loop over the samples to be drawn (DO 400): 

data are standardized). 

requested). 

drawing a sample or its complement: Calls to the subroutine 
RANDM. For all samples except the first, the currently best set of 
medoids is used to initiate the sample 
output of the objects of the sample 
calculation of the within-sample distances (subroutine DYSTA): If 
it was not possible to calculate all distances (due to missing values), 
a message is given and the next sample is drawn. 
calculation of the maximum distance S (this value is used for 
initialization purposes in the algorithm). 
carrying out the algorithm: subroutine BSWAP 
output of the average distance AZ 
assignment of the objects and calculation of ZB, the total distance 

if ZB is better (lower) than all previous values: 
a. replace the best value found so far by ZB 
b. store the sample number 
c. store the objects of the sample 
d. store the representative objects (medoids) 
e. store the maximum distance 

for the entire data set (subroutine SELEC) 
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Test if for at least one sample it was possible to calculate all distances. If 

For the selected sample: 
not, the program stops. 

print the sample number and the average distance 
recalculate the distances in the sample 
carry out the subroutine RESUL: construction of the clustering 

graphical output showing the selected sample, in the subroutine 
vector and (except for small output) a list of clusters 

BLACK (only if this option was chosen). 
A summary of the main unit is shown in Figure 8. 

Subroutine ENTR 
This subroutine contains the interactive part of the program, in which the 
selected options are entered. 

Submutine QYN 
Many of the questions asked in the subroutine ENTR have two possible 
answers: yes and no. In the subroutine QYN various equivalent answers to 
these questions are treated. For example the answers yes, Yes, y, and Y are 
considered equivalent. 

Subroutine STAND 
In this subroutine standardized measurements are computed. Before the 
actual standardization, the average and mean deviation of each variable are 
calculated and printed. 

Subroutine D YSTA 
Computes Euclidean or Manhattan distances between all objects of a 
sample (these distances will be used in the k-medoid algorithm). The 
distances are stored in an array called DYS. To save memory space, only 
the lower triangular part of the distance matrix is stored (an example is 
shown in Figure 7b). Also to save memory space, the same array is used 
again to store the distances for the next sample. Because the distances 
between objects of the optimal sample are needed for the silhouettes, these 
must be computed again when it has been determined which sample is the 
optimal one. 
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i 

Call to subroutine ENTR for entering options and data 

- drawing a sample (subroutine RANDM) 

.- listing the objects of the sample 

- calculation of within-sample distances (sub. DYSTA) 

- performing the algorithm on the sample (sub.  BSWAP) 

- assignment of objects of entire data set (sub. SELEC) 

For the best sample so far are stored : 

- the total value for the entire data set 

- the objects of the sample 

- the k representative objects 

t 
For the best sample : 

- recalculation of the distances (subroutine DYSTA) 

- construction of the clustering vector and a list of 

clusters if requested (subroutine RESUL) 

- if requested, graphical output (subroutine BLACK) 

Figure 8 Description of the main unit of CLARA. 
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Function MEET 
When the distance between two objects L and J is needed, the function 
MEET(L, J)  gives the index of the array DYS where this distance is 
stored: 

d ( ~ ,  J )  = DYS(MEET(L, J)). 

Subroutine RANDM 
Generates a pseudorandom number RAN in the interval ]0,1[ each time it 
is called. The integer variable NRUN (equal to 216.RAN) is used as initial 
value. It is set equal to 0 in the main program, before the first call of the 
subroutine RANDM. Although NRUN is not changed in the main pro- 
gram, it is necessary as one of the arguments of the subroutine to ensure 
that a new pseudorandom number is generated at each call. If the program 
is run more than once on the same data set (with the same number of 
clusters), the same objects are selected in the samples. 

Subroutine BS WA P 
Performs the clustering. It consists of two parts in which the BUILD and 
SWAP techniques are used. 

Subroutine SELEC 
Consists of the following parts: 

Assignment of the objects of the entire data set to their clusters. An 
object is assigned to a cluster if its distance to that representative 
object is smaller than to all other representative objects (in case of 
ties, the smallest numbered cluster is taken). In the situation of 
missing values, if an object is encountered for which it is not possible 
to calculate the distance to any representative object of the sample, 
the program stops (after giving a message). 

During the process of assigning objects, the following statistics are 
calculated by updating mechanisms: 

average distance to each medoid 
maximum distance to each medoid 
number of objects in each cluster 

Permutation of the vectors containing the clustering statistics: The 
numbering of the clusters in the output is the same as in the clustering 
vector. The permutation is carried out using an array called NEW in 
which the new numbering of clusters is stored. 

Output of total and average distance for the entire data set. 
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Output for each cluster: 
size (number of objects) 
medoid 
coordinates of the medoid (if standardization was requested, only 

average distance to the medoid 
maximum distance to the medoid 

If there is more than one cluster: Computation of the maximum distance 
to a medoid divided by the minimum distance of the medoid to 
another medoid (if the minimum distance is zero, a message is 
printed). 

Subroutine R ES UL 
The purpose of this subroutine is to provide a description of the clustering 
obtained from the optimal sample. It starts with the determination of the 
clustering vector. In order to save memory space, the number of the cluster 
to which an object belongs is stored in place of the first measurement value 
for this object, in the array X. This is done for all objects except the 
representative ones (the information lost in this way is not important, 
because once a nonrepresentative object has been assigned, its coordinates 
are no longer needed in the program). The clustering vector is then 
outputted, 30 elements per line (these 30 elements are stored in the array 
LYNE). 

If at least medium-sized output was requested, another representation is 
given of the final clustering. In this case a list of clusters is provided, with, 
for each cluster: 

The number of objects (size). 
The medoid. 
A list of its objects, in ascending order. 

the standardized coordinates are given) 

Subroutine BLA CK 
This subroutine constructs the graphical output for the selected sample. It 
produces the silhouettes of the clusters, in the same way as in PAM. 

4.3 Limitations and Special Messages 

CLARA was intended for clustering large sets of objects. For this reason it 
was necessary to build a number of limitations and restrictions into the 
program. The first such restriction is that the program only admits input of 
measurement values and not of dissimilarity coefficients. Indeed, a major 
problem of clustering large data sets is the required memory, because in 
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many situations it is impossible to store the n(n - 1)/2 dissimilarities 
between n objects. Two restrictions that are consequences of the sampling 
method concern the minimum number of objects and the maximum number 
of clusters, Because it appeared that a reasonable maximum size of the 
sample is 100 objects (for reasons of both processing time and memory 
requirements), it was decided that the program should only be used with 
sets of at least 100 objects. In order to have a reasonable probability of 
drawing objects from the different groups, the number of clusters is limited 
to 30. The program only performs one clustering at a time because the data 
array is reused at the end, and therefore only a single value of k may be 
specified (as opposed to PAM and FANNY, in which all clusterings 
between minimum and maximum values of k are carried out in the same 
run). To save storage space, CLARA is the only clustering program in this 
book that does not allow the input of object labels. Another feature 
designed to limit the memory requirements is the method for storing the 
measurement values. Instead of a two-dimensional array (as in the other 
programs), a one-dimensional vector is used. This feature imposes a maxi- 
mum total number of measurements instead of maxima on both the 
numbers of objects and variables. In the program, this maximum number is 
set equal to 3500. This makes it possible to consider either 3500 objects 
characterized by a single variable or, say, 100 objects defined on 35 
variables. 

As in the other clustering programs of this book, not all variables in the 
data set must be used in the clustering. The limitation on the total number 
of measurements, that was discussed in the previous paragraph, only 
concerns the measurements for the variables actually used. However, the 
total number of variables is also limited (to 150). 

If missing values have been foreseen, the objects and the variables are 
examined for missing values. If an object or variable is encountered for 
which all values are missing it is printed, and after all objects and variables 
have been examined the program stops. (Actually, all objects are examined, 
but only those variables for which missing values have been foreseen.) If an 
object causes the program to stop, it should be removed by changing the 
input file. In order to delete a variable, a simple remedy is to no longer list 
it in the interactive input session. 

During the standardization (subroutine STAND) the mean deviation of 
each variable is calculated. A special message is given for each variable with 
zero mean deviation. If there are any such variables, the program stops 
after all variables have been examined. Also here, the problem can be 
solved by removing such variables. 

The subroutine DYSTA calculates the distances between all objects in 
the sample. During its execution all pairs of objects that do not have 
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common measurements (because there are too many missing data) are 
printed. If there are any such pairs, the sample is disregarded and the next 
sample is drawn. If such pairs of objects occur in all five samples, the 
program stops. 

In the subroutine SELEC each object is assigned to one of the represen- 
tative objects in the sample. If there is an object that does not have 
common measurements with any representative object (and therefore can- 
not be assigned), it is printed and the program stops. 

4.4 Modifications and Extensions of CLARA 

In order to cluster a data set on a particular computer system, one may 
have to adapt CLARA slightly. We shall consider some regularly encoun- 
tered situations and discuss the possible solutions. 

A first requirement for implementing the program concerns the availabil- 
ity of sufficient storage. The major part of the storage is taken by the vector 
X containing the measurement values. The default size of the vector is 3500. 
This value is stored in the variable MAXXX. If more than 3500 measure- 
ments are to be processed, the value of MAXXX must be increased (this 
can be done by adapting the corresponding statement located right after the 
dimension statements); also the dimension of the array X in the main 
program unit must be increased. (In the subroutines no changes have to be 
made because the variable MAXXX is passed on automatically.) 

As an indication of the speed of the program, Table 3 gives the times (in 
minutes) on an IBM/XT with an 8087 coprocessor, for solving a set of 
randomly generated problems. The first data set (with 200 objects) is the 
one used in Section 3. All the runs were without standardization, using 
Euclidean distances and including large output and silhouettes. 

A limitation of the program, which one sometimes wishes to avoid, is 
that at most 30 clusters can be determined. Indeed, in many large data sets 
there are outliers that should first be removed before looking for the actual 
clusters, and even if this is not the case there may be more than 30 groups. 

Table 3 Computation Times (in minutes) on an IBM / XT with 8087 Coprocessor 
for a Set of Randomly Generated Problems of Increasing Sizes 

Number of Objects (Two-Dimensional) 

k 200 400 600 800 1000 

2 2.30 2.92 3.52 4.12 4.70 
5 5.67 7.47 6.92 8.20 9.11 

10 13.75 17.52 17.88 21.65 21.98 
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A possible solution to this problem is to first cluster into 30 clusters and 
then to eliminate outliers or small clusters before running the program 
again on a reduced data set. Alternatively, the program could be adapted to 
accommodate more than 30 clusters. In this case the following changes 
must be made: 

In the main program unit, the dimensions of the arrays NR and NRX 

In the subroutine ENTR, the test limiting the number of clusters 

In the subroutine SELEC: 

must be increased. 

(statement 170 and format 9040) must be adapted. 

0 the dimensions of the arrays NEW, NR, NRNEW, NS, NSNEW, 
NP, NPNEW, RADUS, RDNEW, TTD, 'ITNEW, and RATT must 
be increased 
the formats 9040, 9050, and 9060 should be adapted 

increased. 
In the subroutine RESUL, the dimension of the array NRX must be 

Here it should be noted that each sample contains 40 + 2k objects. The 
data set must contain at least as many objects. This should be taken into 
account when more than 30 clusters are wanted. 

The probability of finding a large number of small samples is related to 
the sampling technique used in the program. For example, when clustering 
a set of lo00 objects, the probability of drawing at least one object from a 
cluster of 10 objects, in at least one of five samples of 50 objects, is 0.91. 
For a cluster of five objects this probability is reduced to 0.69 and for a 
singleton it is only 0.21. For larger data sets these probabilities are smaller. 
Therefore, it was made easy to increase the number of samples. This is done 
by changing the variable NRAN (the statement to be modified is located at 
the beginning of the program). No other changes must be made. 

One might think of some other extensions to CLARA, such as: 

Keeping track of the objective values encountered during execution, and 
maybe plotting them in a histogram to see if the selected value was 
much better than its competitors. 

For each object, computing its minimal distance to any other object of 
the entire data set, as done by Kaufman et al. (1985) to identify 
outliers in a large data set. 

Partitioning extreme& large data sets by breaking them up into contigu- 
ous parts that are stored on an external device. Note that this 
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extension of CLARA is easy to make because the array X is not 
accessed very often during execution, and even then only sequentially. 
This modification was proposed by Bert van Zomeren (personal 
remark) and could be called CELIA (for Clustering Extremely Large 
Industrial Applications). Millions of objects can be clustered in this 
way. 

*5 RELATED METHODS AND REFERENCES 

Few authors of clustering algorithms have paid much attention to the 
specific problems encountered when clustering large data sets. The reason 
for this might be that these problems mainly concern the implementation of 
the methods, which depends on the computer hardware and software being 
used. 

A first obstacle to solving problems with large sets of objects concerns 
the necessity to store and frequently retrieve the n(n - 1)/2 dissimilarities 
between objects. Some authors have suggested either using an external 
storage device for this purpose or calculating the dissimilarities each time 
they are needed. Both methods usually result in considerable increases in 
computation time. This leads us to the second obstacle to solving large 
problems, namely, the substantial number of calculations necessary for the 
algorithms, particularly those of the partitioning type. In two subsections, 
devoted to partitioning and hierarchical methods, we will discuss the 
contributions of several authors to the challenge of clustering large data 
sets. In a final subsection, the implementation of CLARA on a parallel 
computer will be addressed. 

5.1 Partitioning Methods for Large Data Sets 

Steinhausen and Langer (1977) have made a suggestion for solving prob- 
lems with large sets of objects, using any partitioning algorithm of the 
improvement type (such as most methods used for variance minimization; 
see Section 5.3 of Chapter 2). This suggestion consists of the following 
general steps: 

1. Draw a sample from the set of objects and cluster the objects of the 

2. Assign the objects not belonging to the sample to the nearest of the 

3. Use the inflated clusters as the starting point of an iterative proce- 

sample. 

clusters found during step 1. 

dure. 
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The main difference between this suggestion and the method used in 
CLARA is that they only draw one sample whereas CLARA draws several 
of them. Also, most iterative procedures that can be used in step 3 are of 
order n2,  while the whole algorithm in CLARA is of order n. Finally, 
CLARA is more robust than most iterative procedures, as it is based on the 
minimization of a sum of distances instead of a sum of squares of distances. 

Apart from this suggestion of Steinhausen and Langer, partitioning 
algorithms for clustering large sets of objects have been proposed by 
Hartigan (1975) and Diday (1971, 1975). The first proposal of Hartigan 
(1975) is a very simple single pass sequential algorithm, in which the objects 
are considered one by one and it is attempted to assign them to one of the 
previously generated clusters. If the distances of an object to all existing 
clusters exceed a known threshold value, a new cluster is initiated. [Deichsel 
(1980) gave a method of determining a threshold value for which the 
expected number of clusters is a given value k.] This single pass sequential 
algorithm involves very few calculations and is therefore well adapted to 
large sets of objects. However, it suffers from several shortcomings: 

The results are strongly dependent on the order of the objects in the 

One is not sure of finding exactly k clusters. 
The first clusters are usually much larger than the later ones since they 

An inherent clustering philosophy (like optimization of a goal function) 

input file. 

get first chance at each object as it is allocated. 

appears to be lacking, making it difficult to interpret the results. 

Hartigan (1975) also proposed a more refined approach for solving large 
clustering problems. The set of objects is first clustered into about 100 
clusters using a single pass sequential algorithm (here a guess must be made 
of the threshold value which will lead to 100 clusters). The centroids of the 
obtained clusters are determined and they themselves are clustered using 
the k-means algorithm (in this algorithm the centroids are given weights 
equal to the numbers of objects in the corresponding clusters produced by 
the sequential algorithm). The clusters of centroids are. then used to obtain 
a partition of the entire data set into k clusters. This method suffers, 
however, from similar problems as the original single pass algorithm. 

Diday (1975) proposed a family of so-called sequential dynamic kernel 
algorithms, which are closely related to his original dynamic kernel method 
(Diday, 1971). The latter is based on two functions: 

A function g allowing the representation of a cluster of objects (using 
the kernel of the cluster, that can be either a set of points or a subset 
of objects): Usually the function g associates a value to the cluster. 
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A function f which makes it possible to use the representation given by 
g for the purpose of determining a new clustering. 

The dynamic kernel method uses f and g alternatively until an equilibrium 
is reached (the method of Forgy discussed in Section 5.3 of Chapter 2 is a 
special case, because steps 2 and 3 of that method correspond to the use of 
some functions g and f). Starting with an initial set of kernels, each object 
of the data set is assigned to the “nearest” kernel, defining a first partition, 
that is used to yield a new set of kernels. This process is repeated until a 
stable clustering is obtained. 

The sequential version of this method is based on the same principle but 
does not require storing all the data, while the computation times are not 
much longer. One starts with a first partition of the set of objects, together 
with a set of kernels. One then considers one cluster of the current partition 
and assigns each of its objects to the nearest kernel. When all objects of the 
cluster have been assigned, a new set of kernels is determined. This is done 
in the same way as in the original dynamic kernel method. The next cluster 
is then considered and again each of its objects is assigned to the nearest 
kernel. This process is continued until a complete pass through the clusters 
does not lead to a new assignment of any object. In a sense the method is 
intermediate between the method of Forgy (in which new seed points are 
determined when all objects are assigned) and the k-means method (in 
which each assignment of an object can lead to new seed points). The 
contribution of Diday is interesting because it generalizes a whole collection 
of clustering methods. Indeed, the kernels can be centroids, medoids, or 
even a whole set of points or objects. 

5.2 Hierarchical Methods for Large Data Sets 

(This subsection can be read most profitably after reading Chapter 5 . )  In 
the area of hierarchical cluster analysis, the techniques proposed for solving 
large problems can roughly be divided into two groups. The first group is 
concerned with the adaptation of existing algorithms in order to reduce 
either the storage or the number of calculations. A second group consists of 
new methods that have been specifically designed for clustering large data 
sets, although they are often based on concepts used in classical methods. 

In the first group of techniques, most work has been done on variants of 
the single linkage algorithm that involve fewer calculations but yield the 
same results. We will not discuss these methods here because they are 
essentially identical with single linkage and suffer from the same problems. 
Methods of this type are given by Johnson (1967), Gower and Ross (1969), 
Sibson (1973), Jarvis and Patrick (1973), Hartigan (1 979 ,  Bentley and 
Friedman (1978), and Rohlf (1978). Another technique of the same group, 
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similar to single linkage but with a new approach and interesting novelties 
for computer implementation, was proposed by Hansen and Lehert (1980). 
Their method, called clustering by connected components, consists of linking 
all objects i and j for which d(i ,  j) 5 e, where e is some threshold and d 
is the Minkowski distance, of which the Euclidean and Manhattan dis- 
tances are special cases (see Section 2.1 of Chapter 1). The basic idea is that 
there can be no direct link between i and j as soon as Ixi, - xj,l > e for 
any variable f, so that the actual distance d(i, j) does not have to be 
computed for most pairs ( i ,  j). This makes the algorithm very fast, but 
the disadvantages of single linkage remain, such as the chaining effect, the 
lack of robustness, and the asymptotic inconsistency (see Section 5.2 of 
Chapter 5). 

Bruynooghe (1 978) proposed several agglomerative hierarchical algo- 
rithms adapted to large data sets. These methods all make use of threshold 
values as well as the concept of contracting aggregation strategy. He denotes 
by d(Q,  R) the dissimilarity between two clusters Q and R belonging to a 
partition 9 (this dissimilarity of course depends on the clustering strategy 
being used). For a threshold e the neighborhood of a class Q is then defined 
as 

N(Q, e) = { R; R E 9, d ( Q ,  R) s e, R + Q} 
If N(Q U R, e) c ( N ( Q ,  e) U N ( R ,  e)) providing d(Q,  R) I, e, the cluster- 
ing method is called a contracting aggregation strategy. Bruynooghe showed 
that several agglomerative hierarchical methods, including single and com- 
plete linkage, are contracting aggregation strategies, and he uses this 
concept to increase the speed of such methods. He does not provide 
programs for his methods but states that for up to 1000 objects the 
computation time is approximately linear in the number of objects, while 
beyond that number it is quadratic. 

In the second group of techniques, those specifically designed for cluster- 
ing large data sets, Zupan (1982) proposed a method that proceeds by the 
construction of a binary tree using an update procedure. The most signifi- 
cant aspect of the procedure is that objects are inserted into the tree one at 
a time, and it can therefore be used effectively for classifying new objects 
once a first set of objects has been clustered. The way the hierarchical tree is 
built is neither agglomerative nor divisive. The method starts with the 
construction of a tree representing two objects (the first two objects in the 
data set). Such a tree is depicted in Figure 9. 

Subsequently, objects are added to the tree one at a time until all objects 
have been incorporated. An object enters an existing tree by its root. The 
distance between the new object and each of the two descendants of the 
root is calculated and so is the distance between these two descendants. For 
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a 

b 

Figure 10 Adding an object to a tree in Zupan’s method: (a) The object cannot be assigned to 
either descendant and forms a singleton. (b) The object is assigned to one of the two 
descendants. 
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these calculations, clusters are represented by their centroids and Euclidean 
distances are used. If the new object is further away from both descendants 
than the distance between these descendants, the new object forms a 
singleton in the tree. This situation is shown in Figure 10a. If this is not the 
case, the object is assigned to the closest of the two descendants, as in 
Figure lob. The process is repeated with the descendants of the vertex 
(cluster) to which the new object has been assigned. This continues until the 
new object itself forms a vertex in the tree. For the example of Figure 10b 
the cluster {1,3) is separated into clusters (1) and (3). 

In a book devoted to his method, Zupan (1982) gives a Fortran program 
and discusses a chemical application with 500 objects and 150 variables. 
The only computation times reported are on a relatively slow PDP 11/34 
computer on which it took 40 hours to generate the entire tree. An analysis 
of the method shows that it suffers from several problems. The most 
important is that the method only yields a binary tree and gives no 
information on the strength or cohesion of the clusters (the level of the 
clusters). Another is that the results strongly depend on the order of the 
objects in the input file. Furthermore, the distance to the centroid of a 
cluster lacks robustness, although the method can easily be adapted to 
another measure. Finally, an advantage that the method shares with the 
algorithm used in CLARA is that it is easy to add objects to a previously 
obtained clustering without restarting the entire procedure. 

Another hierarchical algorithm intended for large data sets was proposed 
by Openshaw (1980). Because this method is a monothetic divisive one, we 
postpone its discussion to Chapter 7. 

5.3 Implementing CLARA on a Parallel Computer 

The method used in CLARA was devised to tackle large clustering prob- 
lems efficiently, even on quite small computer systems. However, when one 
is confronted with uery large problems, with for example tens of thousands 
of objects, running CLARA on a small or medium-sized system can 
consume considerable computation time. 

During the last few years there have been far-reaching innovations in the 
computing architecture available for solving scientific problems. The intro- 
duction of parallel systems has offered new software possibilities well 
adapted to the solution of many of these. The approach used in CLARA 
lends itself well to parallel processing. Each of the processors can be 
working independently on a sample, thereby taking maximum advantage of 
the parallelism. Communication between the processors, which is often a 
bottleneck in parallel systems, can be reduced to a minimum. 
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Figure 11 Structure of the lCAP 1 system. 

In March 1987, an experiment was carried out (together with Phil Hopke 
of the University of Illinois at Champaign) to investigate the feasibility of 
using a parallel system for cluster analysis. The machine used was the lCAP 
1 system at the IBM Research Center in Kingston, NY. This system 
consists of a central host processor connected by channels to 10 array 
processors, also called slaves. The host processor is an IBM 3081 and the 
slaves are Floating Point Systems FPS-164 array processors, connected as in 
Figure 11. Both the host and slave processors have bulk memory attached. 
There is also shared memory available, but it was not used in our experi- 
ment. 

Software running on the lCAP usually consists of a master Fortran 
program running on the host processor, that calls Fortran subroutines to 
run on the slaves. In our experiment, all the subroutines were grouped into 
a slave program that could be made to run on some or all of the slaves. 

The parallelism is controlled by a specific set of instructions that 
determine which routines must be executed on each slave and when this is 
done. A precompiler is used (on the host computer) to generate the source 
code for master and slave programs. More information on the lCAP system 
is given by Clementi and Logan (1985). The precompiler is discussed in 
detail by Chin et al. (1985). 

When experimenting with the parallelization of CLARA, two strategies 
were implemented and compared. In a first approach, each slave processor 
is given a sample and the host processor waits until all samples have been 
analyzed. After clustering its sample, the slave also assigns each object in 
the entire data set to the nearest representative object found in the sample, 
and calculates the objective value. The representative objects and the 
objective value are then sent back to the host processor. When it has 
received this information from each slave, the host determines the best set 
of medoids and constructs a new set of samples around this best set. This 
strstegy is easy to implement and allows a large number of samples to be 
analyzed. However, with this strategy there are often idle slave processors, 
waiting for samples to be completed on other slaves. The reason for this is 
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the substantial variation in time necessary to solve different samples, that is 
due to the SWAP algorithm used in CLARA (for a description of this 
algorithm see Section 4.1 of Chapter 2). 

In a second approach, when the host processor receives a set of medoids 
and a total value from a slave, it immediately compares it with the best set 
found so far and updates this best set when necessary. A new sample is then 
constructed (around the currently best set) and sent back to the idle slave 
processor. In this way, there is a very short waiting time for the slave. It 
turns out that this second approach makes better use of the parallel system. 
Other aspects and strategies may be found in Kaufman et al. (1988). The 
same paper also discusses a parallel implementation of least median of 
squares regression (see Rousseeuw, 1984). 

EXERCISES AND PROBLEMS 

1. Consider the data set of Table 1. Cluster the objects into two, three, four, 
and five clusters with CLARA, but using the option of standardizing the 
data first. Compare the results with those of Section 3. 

2. Cluster the data set of Table 1 by means of the program CLARA into 
two, three, and four clusters using only variable 1 and then using only 
variable 2. Choose the same options as in Section 3 (no standardization 
and Euclidean distance). Compare these two clusterings with each other 
and with the results in Section 3. Note in particular the relation between 
the quality of a clustering and the variability between the results for the 
five samples. 

3. Consider a set of 500 objects from which random samples of 50 objects 
are drawn, with replacement. 
(a) Suppose five samples are drawn. Calculate the probability that at 

least one of these samples contains a given object. 
@) Calculate the minimum number of samples necessary to have a 90% 

probability for at least one of these to include the given object. 

4. A single atypical object, disconnected from the other data, can be 
considered an outlier. (If at least two such points lie close together, 
perhaps they should be called a cluster.) One way to identify an outlier is 
to have it show up as a singleton cluster. However, this is not so easy 
with CLARA because the probability that the object belongs to one of 
the selected samples is rather low, as seen in the preceding exercise. Also, 
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the number of clusters is limited in CLARA. Therefore, it would be 
useful to identify outliers first and then perhaps correct or delete them 
before running the CLARA algorithm. This could be done by computing 

min d ( i ,  j) 
j+i 

for each object i in the data set and listing these values in decreasing 
order. Indeed, an outlier (in the sense described above) should have an 
unusually large value. Write a small program (or CLARA subroutine) to 
plot these values. 



C H A P T E R 4  

Fuzzy Analysis ( Program FANNY) 

1 THE PURPOSE OF FUZZY CLUSTERING 

Fuzzy clustering is a generalization of partitioning. In a partition, each 
object of the data set is assigned to one and only one cluster. Therefore, 
partitioning methods (such as those of Chapters 2 and 3) are sometimes 
said to produce a hard clustering, because they make a clear-cut decision 
for each object. On the other hand, a fuzzy clustering method allows for 
some ambiguity in the data, which often occurs. 

Let us consider Figure 1, which contains 22 objects characterized by two 
interval-scaled variables. Our eye immediately sees three main clusters, as 
well as two intermediate points. Suppose that we run a partitioning method 
and ask for three clusters. In that case, the program would have to make a 
rather arbitrary choice whether to add object 6 to the cluster (1,2,3,4,5} 
or to (7,8,9,10,11,12}, because this object lies at approximately the same 
distance from both. Also, it would be very difficult to decide where to put 
object 13, which lies between the three main groups. 

A fuzzy clustering technique is much better equipped to describe such 
situations because each object is “spread out” over the various clusters. For 
instance, a fuzzy clustering method is able to say that object 1 belongs for 
the most part to the first cluster, whereas object 13 should be divided 
almost equally between all three clusters. This degree of belonging is 
quantified by means of membership coeflcients that range from 0 to 1. 
When we apply a fuzzy clustering method to the data of Figure 1, we obtain 
a list of membership coefficients as in Table 1. 

Table 1 contains 66 membership coefficients. Looking at the first row, we 
see that object 1 belongs for 878 to cluster 1, for 6% to cluster 2, and for 
7% to cluster 3. Note that the sum of the membership coefficients in each 
row equals 1 (or 100%). Also objects 2, 3,4, and 5 belong mainly to the first 
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Figure 1 Data set with two intermediate objects. 

cluster. Object 6 is an intermediate case, because it has substantial member- 
ships (42% and 35%) in clusters 1 and 2, and a lower membership (23%) in 
cluster 3. This means that object 6 does not really belong to either cluster, 
but that it is still closer to clusters 1 and 2 than to cluster 3. One might say 
that object 6 forms a bridge between clusters 1 and 2. 

The next objects (numbers 7 to 12) are quite strongly associated with 
cluster 2, whereas objects 14 to 22 have their largest memberships in cluster 
3. Object 13 is hardest to classify, because it holds an intermediate position 
between clusters 1, 2, and 3. The fuzzy clustering does reflect this because 
the memberships of object 13 in the three clusters are nearly equal, showing 
no definite preference for any of them. 

The main advantage of fuzzy clustering over hard clustering is that it 
yields much more detailed information on the structure of the data. On the 
other hand, this could also be considered a disadvantage, because 
the amount of output grows very fast with the number of objects and the 
number of clusters, so it may become too much to digest. Some other 
disadvantages are the absence of representative objects and the fact that 
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Table 1 A Fuzzy Clustering of the Data in Figure 1 

Membership 

Object Cluster i ~ Cluster 2 Cluster 3 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

0.87 
0.88 
0.93 
0.86 
0.87 
0.42 
0.08 
0.06 
0.06 
0.06 
0.06 
0.07 
0.36 
0.12 
0.08 
0.10 
0.08 
0.04 
0.07 
0.10 
0.07 
0.09 

0.06 
0.05 
0.03 
0.06 
0.06 
0.35 
0.82 
0.87 
0.86 
0.87 
0.86 
0.84 
0.27 
0.08 
0.07 
0.10 
0.06 
0.04 
0.07 
0.08 
0.06 
0.09 

0.07 
0.07 
0.04 
0.08 
0.07 
0.23 
0.10 
0.07 
0.08 
0.07 
0.08 
0.09 
0.37 
0.80 
0.85 
0.80 
0.86 
0.92 
0.86 
0.82 
0.87 
0.82 

fuzzy clustering algorithms are usually quite complicated and take consider- 
able computation time. Nevertheless, we think that the fuzziness principle is 
very appealing because it allows a description of some of tbe uncertainties 
that often go with real data. Moreover, in Section 5.4 we will see that the 
list of memberships can itself be displayed graphically. 

2 HOW TO USE THE PROGRAM FANNY 

In order to perform fuzzy cluster analyses, we wrote the program FANNY 
which runs in an IBM-PC environment. The program handles data sets that 
either consist of interval-scaled measurements or of dissimilarities. As in the 
program PAM of Chapter 2, the actual algorithm only needs a collection of 
dissimilarities and does not depend on any measurements. When the data 
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do consist of measurements, FANNY starts by computing the interobject 
distances and then uses these to construct the fuzzy clustering from. 

2.1 Interactive Use and Input 

The program FANNY accepts the same data sets as does PAM and it is 
operated in a similar way. To run FANNY, it suffices to type 

A :FANNY 

which yields the following dialogue: 

I FUZZY ANALYSIS I 
DO YOU WANT TO ENTER MEASUREMENTS ? 
(PLEASE ANSWER M) 
OR DO YOU PREFER TO GIVE DISSIMILARITIES ? 
(THEN ANSWER D) : m - 

THE PRESENT VERSION OF THE PROGRAM CAN HANDLE UP TO 100 
OBJECTS. 
(IF MORE ARE TO BE CLUSTERED, THE ARRAYS IN THE PROGRAM 
MUST BE ADAPTED) 

HOW MANY OBJECTS ARE TO BE CLUSTERED ? 

PLEASE GIVE A NUMBER BETWEEN 3 AND 100 : - 22 

CLUSTERINGS WILL BE CARRIED OUT IN K1 TO K2 CLUSTERS. 
K1 SHOULD BE AT LEAST 2, AND K2 AT MOST 10. 

_____________-_____-- - - - - - - - - - - - - - - - -  

PLEASE ENTER K1 : 3 
PLEASE ENTER K2 : 5 - 

FANNY yields fuzzy clusterings with k clusters, for all values of k between 
K1 and K2. Note that it is not allowed to ask for 1 cluster, which would be 
meaningless because all membership coefficients would equal 100%. Also, 
the maximal number of clusters has to be less than n/2, where n is the 
number of objects. There are numerical reasons for this restriction (having 
to do with the initialization of the algorithm) but it is also clear that large 
values of k would lead to a very extensive table of membership coefficients 
that would be hard to interpret. 
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The rest of the interactive input is identical to that of PAM: 

THE PRESENT VERSION OF THE PROGRAM ALLOWS TO ENTER UP TO 
80 VARIABLES, OF WHICH AT MOST 20 CAN BE USED IN THE ACTUAL 
COMPUTATIONS. 
(IF MORE ARE NEEDED, THE ARRAYS INSIDE THE PROGRAM MUST BE 
ADAPTED) 

WHAT IS THE TOTAL NUMBER OF VARIABLES IN YOUR DATA SET ? 

PLEASE GIVE A NUMBER BETWEEN 1 AND 80 : 2 

HOW MANY VARIABLES DO YOU WANT TO USE IN THE ANALYSIS ? 

(AT MOST 2) : - 2 

VARIABLE TO BE USED LABEL (AT MOST 10 CHARACTERS) 
~ ~ ~ ~ ~ ~ ~ - - ~ _ ~ - - - - 1 1 1 1 - - - - - 1 1 . 1 1 . 1 1 1 1 1 . 1  ----_-__-_-_---_- 

______---_____----__---------_----------------------- 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

NUMBER : 
NUMBER : 

1 x-coordina 
2 y-coordina 

DO YOU WANT THE MEASUREMENTS TO BE STANDARDIZED ? (PLEASE 
ANSWER YES) 
OR NOT ? (THEN ANSWER NO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .+I 

DO YOU WANT TO USE EUCLIDEAN DISTANCE ? (PLEASE ANSWER E) 
OR DO YOU PREFER MANHATTAN DISTANCE ? 

- 

(THEN ANSWER M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .d 

PLEASE ENTER A TITLE FOR THE OUTPUT (AT MOST 60 CHARACTERS) 

Artificial data set with 22 points 

DO YOU WANT LARGE OUTPUT ? (PLEASE ANSWER YES) 
OR IS SMALL OUTPUT SUFFICIENT ? (THEN ANSWER NO) 
(IN THE LAlTER CASE NO DISSIMILARITIES ARE GIVEN) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . .  .+I - 

DO YOU WANT GRAPHICAL OUTPUT (SILHOUETTES) ? PLEASE AN- 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  SWERYESORNO .Y 

DO YOU WANT TO ENTER LABELS OF OBJECTS ? PLEASE ANSWER YES 
ORNO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  n - 

DO YOU WANT TO READ THE DATA IN FREE FORMAT ? 

THIS MEANS THAT YOU ONLY HAVE TO INSERT BLANK(S) BETWEEN 
NUMBERS. 

_______________---__------------------------ 
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(NOTE: WE ADVISE USERS WITHOUT KNOWLEDGE OF FORTRAN FOR- 
MATS TO ANSWER YES.) 
MAKE YOUR CHOICE (YES/NO) : y 

PLEASE TYPE THE NAME OF THE FILE CONTAINING THE DATA (e.g. 
A:EXAMPLE.DAT) 
OR TYPE KEY IF YOU PREFER TO ENTER THE DATA BY KEYBOARD. 
WHAT DO YOU CHOOSE ? a:22.dat 

WHERE DO YOU WANT YOUR OUTPUT ? 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

TYPE CON IF YOU WANT IT ON THE SCREEN 
OR TYPE PRN IF YOU WANT IT ON THE PRINTER 
OR TYPE THE NAME OF A FILE (e.g. B:EXAMPLE.OUT) 
(WARNING : IF THERE ALREADY EXISTS A FILE WITH THE SAME 
NAME THEN THE OLD FILE WILL BE OVERWRITTEN.) 
WHAT DO YOU CHOOSE 1 . . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . a:22.fan 

CAN MISSING DATA OCCUR IN THE MEASUREMENTS ? 
PLEASE ANSWER YES OR NO : - n 

When there are missing measurements, these are treated in the same way as 
in PAM: The program tries to compute a complete dissimilarity matrix and 
then performs the actual clustering algorithm on the latter. 

At the end of the interactive session, a summary of the data specifica- 
tions and options appears on the screen: 

DATA SPECIFICATIONS AND CHOSEN OPTIONS 

TITLE : Artificial data set with 22 points 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

THERE ARE 22 OBJECTS 
LABELS OF OBJECTS ARE NOT READ 
INPUT OF MEASUREMENTS 
SMALL OUTPUT 
GRAPHICAL OUTPUT IS WANTED (SILHOUETTES) 
CLUSTERINGS ARE CARRIED OUT IN 3 TO 3 CLUSTERS 

THERE ARE 2 VARIABLES IN THE DATA SET, 
AND 2 OF THEM WILL BE USED IN THE ANALYSIS 

THE MEASUREMENTS WILL NOT BE STANDARDIZED 
EUCLIDEAN DISTANCE WILL BE USED 
THERE ARE NO MISSING VALUES 
THE MEASUREMENTS WILL BE READ IN FREE FORMAT 
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YOUR DATA RESIDE ON FILE : a:22.dat 
YOUR OUTPUT WILL BE WRITTEN ON : a:22.fan 

ARE ALL THESE SPECIFICATIONS OK 1 YES OR NO : g 

In the present run, the data are read from a file called 22.dat, which looks 
like 

1 9  
2 10 
2 9  
2 8  
3 9  
7 14 

12 9 
13 10 
13 8 
14 10 
14 8 
15 9 
7 7  
6 3  
7 3  
8 3  
6 2  
7 2  
8 2  
6 1  
7 1  
8 1  

These are the data of Figure 1. As soon as the program run is completed, a 
message appears on the screen and the output can be found in the file 
22.fan. 

2.2 output 

The output file of the preceding example is displayed in Figure 2. The first 
part gives some general information on the type of data and the chosen 
options, exactly as in PAM. Then the results for k = 3 are given, under the 
heading NUMBER OF CLUSTERS 3. Note that FANNY does not use 
any representative objects. Instead, the algorithm attempts to minimize the 
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objective function 

c : , , ~ * u , z ~ , z ,  d ( i ,  j )  

2 q -  I U , U  
2 c 

o = l  

where u,, stands for the membership of object i in cluster u. At first sight 
this expression looks rather formidable, but we may note a few things. 
To begin with, i t  contains nothing but the dissimilarities d ( i ,  j) and 
the membership coefficients that we are trying to find. This explains 
why interval-scaled measurements are not required. Second, the sum in the 
numerator ranges over all pairs of objects ( i ,  j }  (instead of making the 
sum of the distances of the objects to some cluster center, which does not 
exist here). Each pair ( i ,  j }  is encountered twice because ( j, i }  also occurs, 
which is why the sum is divided by 2. The outer sum is over all clusters u,  
so the objective function that we are trying to minimize is really a kind of 
total dispersion. More on this may be found in Sections 4 and 5,  but for 
now it is enough to know that the algorithm is iterative and that it stops 
when the objective function converges. In Figure 2 we see that the algo- 
rithm needed five iteration steps and that the final value of the objective 
function is 16.0742. 

Next, the actual memberships are printed. In this example there are three 
columns (because k = 3). Each object is identified by a three-character 
label (here the computer has generated the default labels 001,. . . ,022, but 
the user may enter other labels when appropriate). The membership coef- 
ficients of this example were already listed in Table 1 and discussed in 
Section 1. 

Some fuzzy clusterings are more fuzzy than others. When each object has 
equal memberships in all clusters (hence they are all l/k), we have 
complete fuzziness. On the other hand, when each object has a membership 
of 1 in some cluster (and hence a zero membership in all other clusters), the 
clustering is entirely hard (i.e., it is a partition). To measure how hard a 
fuzzy clustering is, we compute Dunn 's partition coeficient (1976) given by 

i - 1  u - 1  

For a completely fuzzy clustering (all uiu = l /k)  this takes on its minimal 
value l / k ,  whereas a partition (all uiu = 0 or 1) yields the maximal value 
Fk = 1. The normalized uersion given by 

Fk - ( l / k )  kFk - 1 
=--- FL = 

1 - ( l /k )  k -  1 
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TITLE : f i  i 

FUZZY ANALYSIS (PROGRAM FANNY) 

..*.... t . . . . . ." . ." . . .  
* * 
* FUZZY ANALYSIS ....... t . . t t . . * . t . * t *  

1 data set with 22 point8 
DATA SPECIFICATIONS AND CHOSEN OPTIONS ____________________-_ - - - - - - - -_ - -_ - -_ -  
THERE ARE 22 OBJECTS 
LABELS OF OBJECTS ARE NOT READ 
INPUT OF MEASUREMENTS 
SMALL OUTPUT 
GRAPHICAL OUTPUT IS WANTED (SILHOUETTES) 
CLUSTERINOS ARE CARRIED OUT IN 3 TO 3 CLUSTERS 

YOUR DATA RESIDE ON FILE : a:22.dat 

ITERATION OBJECTIVE FUNCTION 
1 
2 
3 
4 
5 

16.8363 
16.0871 
16.0744 
16.0742 
16.0742 

.a677 

.8 785 
,9362 
,8606 
.a741 
,4205 
.0849 
,0618 
.0629 
.0596 
,0606 
.0734 
.3553 
.1156 
,0787 
.0972 
.0794 
,0424 
,0687 
.0982 
,0696 
.0873 

.0564 
,0551 
.0274 
.0562 
. 0 5 4 9  
.3545 
.8188 
.a718 
,8564 
.a745 
,8614 
,8386 
.2713 
,0853 
.0689 
,1017 
.0617 
.0380 
.0714 
,0796 
.0636 
,0902 

PARTITION COEFFICIENT OF DUNN .71 
ITS NORMALIZED VERSION .57 

FS.?C8$?. roe?. FkYI?fP!E 
CLUSTER NUMBER SIZE OBJECTS 

1 6 001 002 003 004 005 006 

2 6 007 008 009 010 011 012 

3 10 013 014 015 016 017 018 019 020 021 022 

Figure 2 FANNY output for the example of Figure 1. 
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1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3  
3 3  ................. * * 

' SILHOUETTES ; ................. 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  

o o o i i i i i ~ ~ i i i s 5 6 ~ 6 i i a a a g Q o  
0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0  

CLU 
1 
1 
1 
1 
1 
1 

2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

NEIC 
3 
3 
3 
3 
3 
2 

3 
3 
3 
3 
3 
3 

I 
1 
2 
1 
1 
2 
1 
2 
1 
1 

S(I) 
.73 
.73 
.70 
.68 
.64 
.14 

.83 

.82 

. 80  

. 8 0  

.79 

. 75  

.82  

. 8 0  

.78 

.78 

.78 

.76 

.76 

.74 

.73 

.I1 

CLUSTER 
CLUSTER 
CLUSTER 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ........................................ + 
~~2+.11.**'*'...*'...................... + ...................................... + ...................................... + .................................... + 

............................................. + ............................................ + ............................................ + ............................................ + ........................................... + ......................................... + ............................................. + ........................................... + ........................................... + ........................................... + 
~~7+..'...*...1....*....'.."...........~~* + .......................................... + 
~2~+..*1*.1'.....*.'*.**.**~~*~***1**~**1~ + ........................................ + 
013+* * * * * + 

+ + 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

+ + 

006+SI*IS.l + 
+ + 

+ + 

016+S*l11.LS~......~...'......'....'....~ + 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
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The o u t p u t  is on file : a:22.fen 

Figure 2 (Continued) 

always varies from 0 to 1, whatever value of k was chosen. In Figure 2, we 
see that Fk = 0.71 and Fk) = 0.57, which lie somewhere between the ex- 
tremes. 

We are also interested in the partition that is closest to our fuzzy 
clustering, especially when the output contains many membership coeffi- 
cients. This closest hard clustering is obtained by assigning each object to 
the cluster in which it has the largest membership. In our example, objects 
1,. .. , 5  are clearly to be assigned to cluster I, objects 7,. .. ,12 to cluster 2, 
and objects 14,. .. ,22 to cluster 3. However, the intermediate objects also 
have to be assigned. Object 6 is put in cluster 1 because its membership in 
that cluster (0.42) is somewhat larger than that in the second cluster (0.35). 
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The assignment of object 13 is even more doubtful because its membership 
in the third cluster (0.37) is but slightly larger than its other memberships 
(0.36 and 0.27). We may conclude that the closest hard clustering does 
simplify the situation, but that for some objects quite a bit of information 
may be lost. (Another option, not implemented in FANNY, would be to 
delete the most fuzzy observations before constructing the hard clustering.) 

In the output, the closest hard clustering is listed in the same way as the 
partitions obtained from PAM and CLARA. Each cluster is identified by its 
number, followed by its size and the labels of its objects. Also the clustering 
vector is printed, in which the different clusters are again encountered in 
ascending order, so the user may easily compare the results with the 
clusterings obtained from the other programs. (In fact, FANNY first 
numbers the hard clusters like this before printing the fuzzy clustering, 
where the clusters are ranked in the same way.) 

The last part of the output is the silhouette plot of the hard clustering. In 
Section 2.2 of Chapter 2 we saw that the silhouettes can be computed for 
any partition, regardless of the clustering algorithm used (no representative 
objects are needed). The silhouette plot is constructed from the interobject 
dissimilarities only. In Figure 2 we see that the first cluster contains five 
objects with large s ( i )  values, whereas for object 6 we find s(i) = 0.14, 
which is very low, indicating that this object is not “well-clustered”. In the 
second column (NEIG) we see that the neighbor of object 6 is cluster 2, so 
object 6 is intermediate between its own cluster and cluster 2. The second 
cluster is very pronounced because all of its s ( i )  values are quite large. In 
the third cluster we see that nine objects are well inside their cluster, 
whereas object 13 has a very low s(i) of 0.11. [Note that object 13 is listed 
at the bottom because the s(i) are ranked in decreasing order in each 
cluster.] 

Below the plot some summary values are given. For each cluster the 
average silhouette width is listed [this is just the average of its s(i) values]. 
They show that cluster 2 is more pronounced than clusters 1 and 3, both of 
which are stuck with an outlier. Finally, the average s(i) of the entire data 
set is listed. The latter value corresponds to the blackness of the plot and 
assesses the overall quality of the partition. The present value (0.70) is quite 
high. It is also better than the average silhouette width for other values of 
k: If we run FANNY again for k = 2 we find 0.54 and for k = 4,. . . , 10 we 
obtain still lower values. This leads us to assume that k = 3 is a fair choice 
for these data. The best average s ( i )  is called the silhouette coeflcient (SC). 
If we compare SC = 0.70 to Table 4 of Chapter 2, we may conclude that a 
reasonable clustering structure has been found. 

If we run PAM on the same data for k = 3, we happen to find the same 
hard clustering and hence the same silhouette plot. Also for k = 2 they turn 
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out to coincide, whereas for k = 4, 5, and 6, PAM and FANNY give 
different results (some better, some worse). It  is often instructive to run 
both programs on the same data sets and to compare the outputs (prefer- 
ably across different values of k). 

3 EXAMPLES 

Our first example is a collection of subjective dissimilarities between 12 
countries, listed in Table 5 of Chapter 2. FANNY can be applied to these 
data in exactly the same way as PAM, except that it is no longer allowed to 
put k = 1. Figure 3 shows the output for k = 3, for which the algorithm 
needed 16 iteration steps. The fuzzy clustering does not immediately appeal 
to the intuition, partly because it still lists the countries in their original 
(alphabetical) order. None of the membership coefficients is very large, so 
there is a considerable amount of fuzziness, as is also reflected by the 
normalized partition coefficient which equals 0.11. The closest hard cluster- 
ing is easier to interpret because the cluster { BEL, FRA, ISR, USA} 
contains the Western countries, (BRA, EGY, IND, ZAI} consists of the 
developing countries, and {CHI, CUB, USS, YUG) contains the Commu- 
nist countries of this study. In each cluster, the countries are still listed 
alphabetically. Note that this hard clustering slightly differs from the 
partition found by PAM (Figure 8 of Chapter 2) in which EGY was added 
to the first cluster. Also the silhouettes are not quite the same, because in 
the FANNY output EGY now obtains s ( i )  = -0.02. Without EGY, the 
first cluster gets smaller within distances, and so USA, FRA, BEL, and ISR 
now obtain better s ( i )  values than in the PAM output. The average 
silhouette width in the FANNY plot becomes 0.34, a little higher than the 
0.33 value yielded by PAM. In either case, the structure is relatively weak. 

In the silhouette plot, the countries are no longer listed in their original 
order but ranked according to their s(i). This makes it easy to see that USA 
is the “best clustered” object in cluster 1, that ZAI ranks highest in cluster 
2, and that CUB ranks highest in cluster 3. This is similar to the original 
fuzzy clustering, because USA had the highest membership (0.63) in cluster 
1, ZAI had the highest membership (0.53) in cluster 2, and CUB had the 
highest membership (0.64) in cluster 3. In the silhouette plot we see that the 
“worst clustered’’ object is EGY, for which s ( i )  is -0.02. Looking at the 
fuzzy clustering, we note that EGY was about evenly distributed over 
clusters 1 and 2, with memberships of 0.33 and 0.42. 

Let us now try FANNY on the same extreme examples that we consid- 
ered in Section 3 of Chapter 2. The first data set contains five objects 
coinciding with one geometrical point and three objects coinciding with 
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The output is on file : a:country.fan 

Figure 3 Output of FANNY for the 12 countries data, for k = 3. 
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another. Running FANNY with k = 2 yields Figure 4, in which only a 
single iteration step was necessary to reduce the objective function to 0. The 
fuzzy clustering is already quite hard, because the objects 1,. . . , 5  have a 
membership of approximately 1 in the first cluster and the objects 6, 7, and 
8 have a membership of 1 in the second. Therefore Dunn’s partition 
coefficient becomes 1.00, as well as its normalized version. The closest hard 
clustering is what i t  should be and the silhouette plot is the, same as that of 
PAM. The average silhouette width attains its maximal value 1.00, so k = 2 
is selected. 

The second data set contains seven objects with zero dissimilarities to 
each other and one object which is far away from all of them. This kind of 
situation occurs when there is a far outlier, which makes all other dissimi- 
larities look small by comparison. FANNY yields Figure 5 ,  with again only 
a single iteration. The membership coefficients are already hard and they 
put only object 8 in the second cluster. Dunn’s partition coefficient reaches 
1.00, as does the normalized version. The clustering vector and silhouette 
plot correspond to those of PAM, so the overall average silhouette width is 
again 1 - = 0.88. 

In the third data set all dissimilarities between objects are equal, so there 
is no clustering structure at all. FANNY gives an adequate description of 
this by putting all memberships equal to $ (up to numerical accuracy). This 
is exactly the situation in which Dunn’s partition coefficient takes on its 
minimal value l/k = i, so its normalized version becomes 0. The output in 
Figure 6 also contains the closest hard clustering, which is rather arbitrary 
because no object shows a definite preference for either cluster. Although 
this hard clustering differs from the one found by PAM, the silhouette plot 
is again empty because all s ( i )  remain 0. Therefore, the average silhouette 
width becomes 0, telling the user that no real clusters have been found. 

In one of the first papers on fuzzy clustering, Ruspini (1970) used the 
data listed in Table 6 of Chapter 2. Their scatterplot (Figure 12 of Chapter 
2) clearly contains four groups of points when viewed with the human eye. 
Group A equals (1,. . . ,20), whereas B = (21,. . . ,43), C = (44,. . . ,60), 
and D = (61,. . . ,75). If we apply FANNY with k = 2, we obtain the 
clusters A U D and B U C that were also found by PAM, so the average 
silhouette width i ( k )  again equals 0.58. Figure 7 shows the silhouette plots 
produced by FANNY for k = 2,. . . ,6. For k = 3 we find A,  B U C, and 
D, whereas PAM yielded A U D, B, and C. For k = 4 FANNY yields the 
expected clustering into A, B, C, and D. The corresponding average 
silhouette width S ( k )  = 0.74 is the highest across all values of k, so k = 4 
is a reasonable choice. Also for k = 5 and k = 6 FANNY yields hard 
clusterings that differ from those of PAM: For k = 5 the cluster B is split 
in two, whereas for k = 6 the cluster A is bisected. Although FANNY and 
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Figure 4 FANNY output for a data set with two tight clusters. 
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Figure 5 FANNY output for a data sct with an extreme outlier. 
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Figure 6 FANNY output for a data set without clusters 
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Figure 7 Silhouette plots obtained by running FANNY on the Ruspini data, for k ranging 
from 2 to 6. 
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PAM operate quite differently, they both select the natural clustering with 
k = 4 on the basis of the i(k). 

*4 MORE ON THE ALGORITHM AND THE PROGRAM 

4.1 Description of the Algorithm 

The fuzzy clustering technique used in this program aims at the miNmiza- 
tion of the objective function 

u - 1  

in which the d( i ,  j) represent the given distances (or dissimilarities) be- 
tween objects i and j, whereas uiu is the unknown membership of object i 
to cluster u. Note that each term appears two times in the multiple sum. 
The factor 2 in the denominator compensates for this duplicity, while 
assuring the coherence with other algorithms (see Section 5.1). The mem- 
bership functions are subject to the constraints 

u , , > O  f o r i = l ,  ..., n; U - 1 ,  ..., k (2) 
C u i u = l  f o r i = I ,  ..., n 

0 

(3) 

expressing that memberships cannot be negative and that each object has a 
constant total membership, distributed over the different clusters; by con- 
vention this total membership is normalized to 1. 

The remainder of this section is a technical description of the numerical 
algorithm used to minimize (1). Readers wishing to skip this material may 
continue directly with Section 5. 

A characterization of the local optima of (1) can be found from the 
Lagrange equation 

in which the yj and the J l ju  are known as Lagrange multipliers. Its 
derivatives with respect to the membership variables are 
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Taking into account the objective function and the constraints ( 2 )  and (3) 
of the original minimization problem, we can write down the corresponding 
Kuhn and Tucker conditions: 

The relations (7) and ( 5 )  can be combined into 

a i u u i u  - Yi - # i v  = 0 

in which 
(9) 

The function a,, can be either positive, zero, or negative. Considering first 
the nonzero cases, one can divide all terms of Eq. (9) by aiu and upon 
summation for all values of u, taking into account Eq. (9, one finds 

1 - x u (  l c / i u / a i u )  

E u ( ' / a i u )  

y .  = 

Replacing this term in (9), one gets 

Considering the conditions (6),  the relations (11) can take one of two forms 
for each object i :  

1. +,,, = 0 for u = 1, ..., k so that 

Taking into account constraint (2), this set of solutions is only 
possible for each object i if 
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If this condition is not fulfilled, the preceding solution is not valid 
and we have to consider the alternative form: 

2. qi,, > 0 for at least some u. According to (8) and (11) this solution 
implies that 

for at least some u. Because Eq. (3) must also be satisfied, it is clear 
that this solution is not valid for all u of one object i. Hence let us 
define the partition: 

If one can exclude the case where l / u i u  = 0, solution (14) implies 

In Eq. (16) the right-hand term is independent of u; hence all + i u  are 
identical for all u E V - (but may differ for different i). Solution 
(16) can hence be written: 

1 +. = - for u E V - 
C w  E "+ ( W i w )  

I U  

As for u E V + , (11) becomes 

Introducing (17) in (18) provides, after some transformation, 

which is analogous to (12). 
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Equations (15), (17), and (19) are, according to Kuhn and Tucker, 
necessary conditions for a local minimum, but in general they are not 
sufficient conditions. Actually it can be seen that these equations also 
describe local maxima and saddle points. 

In fact, the local minima will be reached for 

uiu = 0 for u E V - 
and 

where 

and 

As for the degenerate case where l / a r u  = 0, it can be seen from (10) that 
it corresponds to X,u:,, = 0, meaning that some cluster u has no member- 
ship at all: Again it can be shown that this solution is not a minimum. 

The fact that (13) is not always satisfied implies that ai, can be either 
positive or negative. Therefore one must also consider the possibility that 
a,,, be zero, which invalidates expression (11). However, this particular case 
can be solved by regarding it as the limiting solution for aiy  being any 
positive or negative small value, and it can be seen that both limits render 

The system of Eqs. (20) and (21) does not provide a straightforward 
analytical solution to the problem of minimizing the objective function (l), 
because the right-hand term of (21) still contains all the unknowns. How- 
ever, it does provide a way to find the solutions iteratively. Indeed, having 
some initial values for all uiu, one can compute all ai ,  according to (10) and 
calculate new u,,, from (20) and (21), and so on. Hence the iterative 
algorithm can take the following form: 

uiu = 1. 

A1 Initialize the membership functions as 

'uiU for all i = 1,. . . , n and all u = 1,. . . , k 
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taking into account constraints (2) and (3). Calculate the objective 
function OC by (1). (Note that the left superscripts stand for the 
number of the iteration step.) 

A2.1 Compute for each u = 1,. . . , k 
A2 Compute for each i = 1,. . . , n the following quantities: 

A2.2 Compute for each u = 1, .  . . , k: 

A2.2.1 if A, s 0 * V -  = V -  U{u}  
A2.2.2ifAU>O* V +  = V +  U { u }  

A2.3 Put for all u E V - 

m + l  uiu = 0 

A2.4 Compute for all u E V + 

A2.5 Put V - = V + = 0 and restart from A2.1 with the next i. 

(mC/m+lC - 1) < E,  then go to A2; otherwise stop. 
A3 Calculate the new objective function value ,+% by (1). If 

The rather cumbersome calculations of A2.1 can be simplified by keeping 
track of intermediate results and by limiting the computations to the 
updating of the partial sums at each step. 

The preceding algorithm has always shown good convergence per- 
formance. However, if ever some convergence problems might arise, it is 
still possible to improve on the iteration steps by applying some ade- 
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quate converging method, such as the steepest descent method, the 
Newton-Raphson method, or a similar technique. 

Any fuzzy solution found by the preceding algorithm satisfies the general 
constraints (2) and (3). The corresponding constraints for a hard solution, 
obtained by replacing the u,,, by wiu, would require (2) and (3) to be 
changed into 

w i u = O o r l  f o r i = l ,  ..., n a n d o = l ,  ..., k 

C w , ,  = 1 for i = 1,. . . , n 
0 

In a fuzzy clustering the membership coefficients of each object can all be 
strictly positive, provided their sum over all clusters is 1. On the contrary, in 
a hard cluster solution each object must have one and only one nonzero 
membership coefficient, which necessarily takes the value 1. 

The hard clustering solutions are hence limiting cases of fuzzy ones. How 
far of€ a fuzzy solution is from a hard clustering can be evaluated by 
Dunn's partition coefficient (1976), which is defined as the sum of squares 
of all the membership coefficients, divided by the number of objects, i.e., 

in which U is the matrix of all memberships: 

k 1 ... 

It can be seen that for a partition (u iu  restricted to 0s and - 3 )  Fk(U)  gets 
the maximum value of 1, whereas it takes on the minimum value of l /k 
when all uiu = l/k. This coefficient can thus be normalized to vary from 1 
(hard clusters) to 0 (entirely fuzzy), independently of the number of 
clusters, by the following transformation: 

This normalized coefficient has sometimes been called " nonfuzziness index" 
(Roubens, 1982). 
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It is often interesting to translate a fuzzy clustering allocation to a hard 
one. By definition, the closest hard clustering corresponding to a fuzzy one is 
given by putting wiq = 1 for the cluster q with largest uiu. In case of ties an 
(arbitrary) choice is made. 

This transformation can be used to compare fuzzy solutions to hard ones 
and for the evaluation of the fuzziness of solutions (see Section 5.3). It 
should however be appreciated that the fact that no optimal fuzzy cluster 
remains empty does not preclude the preceding fuzzy-to-hard transforma- 
tion to produce less than k hard clusters. This Occurrence has actually been 
observed in some special cases. 

4.2 Structure of the Program 

The structure of the program FANNY is very similar to that of the former 
programs; the main difference is the actual clustering subroutine, which in 
the present case is called FUZZY. This subroutine constructs an initial 
allocation of the objects to the k clusters and it performs the iterations until 
convergence is reached. It calculates and prints Dunn's partition coefficient 
(24) as well as its normalized version (25). 

The numerical output subroutine is CADDY, which gives both the fuzzy 
clustering output and the closest hard clustering. It first renumbers the 
clusters as in the other programs. 

The optional graphical output is made by the subroutine FYGUR, which 
yields the silhouettes (see Chapter 2) that are based on the closest hard 
clustering. 

All these subroutines are called from the main program, which is 
otherwise identical to that of the other programs except for a slightly 
different way of storing the dissimilarities in a one-dimensional array. 

Table 2 lists some computation times on an IBM/XT with an 8087 
accelerator. The same computer and the same data were used as in Table 7 
of Chapter 2. It seems that the extra information provided by FANNY (as 

Table 2 Computation Times (in minutes) on an IBM / XT with 8087 Accelerator, 
for Some Randomly Generated Data 
Objects Variables Clusters Time 

20 2 5 1.35 
40 2 5 6.88 
60 2 5 11.95 
80 2 5 34.51 

100 2 5 27.30 
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compared to the hard clustering yielded by PAM) is obtained at the 
expense of a substantial increase of computation time. Note that the 
computation time for 100 objects is less than that for 80 objects, because 
FANNY needed only 14 iteration steps in the experiment with 100 objects, 
whereas 29 iterations were necessary to cluster the smaller data set with 80 
objects. In general, the computation time of FANNY is hard to predict 
because the number of iteration steps depends on the actual data. 

*5 RELATED METHODS AND REFERENCES 

5.1 Fuzzy k-Means and the MND2 Method 

One of the first fuzzy clustering techniques was the well known fuzzy 
k-means method proposed by Dunn (1974) and Bezdek (1974). This method 
is based on the minimization of the objective function 

in which m,, is the center of the cluster u, calculated for each variable f by 

and the norm Ilx, - mull is the Euclidean distance between an object x i  and 
the center of cluster u. Part of the popularity of this approach certainly 
rests on the fact that it generalizes the classical k-means approach of hard 
clustering (described in Section 5.3 of Chapter 2). 

Implicit in the fuzzy k-means approach is the assumption that the 
different objects are given by means of coordinates in a p-dimensional 
space. This is a restrictive condition in comparison with FANNY, for which 
no such representation of the objects is needed, because only the distances 
or dissimilarities between objects are required. 

Note that, when the data do consist of measurements, it is possible to 
make a direct comparison between the two methods. In order to do so it is 
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sufficient to replace mu in (26) by its value from (27). Hence 

The last expression is exactly the objective function of FANNY, apart from 
the fact that the distances are squared, which is a variant of the current L, 
form of our program. This demonstrates the possible equivalence between 
FANNY and fuzzy k-means, for objects described by a set of measure- 
ments. (It would suffice to enter a dissimilarity matrix consisting of squared 
Euclidean distances into FANNY, without changing the program.) 

The equivalence of the two techniques not only concerns their objective 
functions: The algorithms can be so constructed that each iteration pro- 
duces the same result with both programs. The only difference is that within 
each iteration cycle FANNY performs a loop over all pairs of objects, 
whereas fuzzy k-means loops for each object over the measurement vari- 
ables. Because the number of objects is usually larger than twice the 
number of variables, the FANNY algorithm will be somewhat slower than 
fuzzy k-means, but with the computation speed of modern computers this 
should only be a minor drawback. 

Another program that shows some resemblance to FANNY is the 
MND2 algorithm of Roubens (1978), with the objective function 

Although (29) looks similar to the FANNY objective (l), it is their 
difference that is most important and that explains why FANNY was 
preferred to MNDZ. The importance of this difference, the denominator 
CjujU,  can best be explained by reference to a hard clustering: In that case, 
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with all uju either 0 or 1, this denominator is equal to the number of objects 
in each cluster. Hence FANNY minimizes a fuzzy equivalent of a sum of 
error functions for each cluster, whereas MND2 does the same with a sum 
of products of the number of objects times the error functions. It can be 
shown that the MND2 minimization tends to bias the result toward clusters 
of more equal number of objects and error functions than does FANNY. 
This systematic bias is the main reason for preferring FANNY to MND2. 

5.2 Why Did We Choose FANNY? 
As seen above, the exponent of the distance term in the objective function 
can be 1 or 2. Putting the distance exponent equal to 2 corresponds to fuzzy 
k-means, so the latter is an L, method. (Already the classical k-means 
approach was of the least squares type because its objective was to 
minimize an error sum of squares.) Putting the exponent of the distance 
equal to 1 yields FANNY, which is therefore a fuzzy L, method. It was 
shown by Trauwaert (1987) that our fuzzy L ,  method has some definite 
advantages over fuzzy L,: a lower sensitivity to outliers or otherwise 
erroneous data and a better recognition of nonspherical clusters. 

Not only the exponents of the distances can vary, but also those of the 
membership functions uiu and uju. This possibility was already imple- 
mented by Bezdek (1974) in fuzzy k-means and by Libert and Roubens 
(1982) in MNDR. The same potential exists of course for FANNY; 
attention must, however, be paid to the fact that the described algorithm 
needs membership exponents strictly larger than 1 in order to converge 
properly. This is also the case for the other two algorithms. Recent 
convergence results for fuzzy k-means with a general membership exponent 
are given by Hathaway and Bezdek (1988). 

Changing the exponent of the memberships in FANNY has some 
influence on the allocation of the objects in the clustering, although it is not 
easy to describe this effect. What is certain is that decreasing the exponent 
will yield higher values of the largest membership functions, i.e., the clusters 
will appear less fuzzy. However, because the aim of fuzzy clustering is to 
use the particular features of fuzziness, one should not go too far in that 
direction. Moreover, exponent values near 1 cause the algorithm to con- 
verge more slowly. Therefore, exponents equal to 2 seem to be a reasonable 
choice, as is confirmed by actual clustering analyses. 

5.3 Measuring the Amount of Fuzziness 

It has been seen in Section 4.1 how a fuzzy clustering solution can be 
transformed into a hard one, allowing the results to be compared to 
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partitions obtained by hard clustering methods, such as the technique 
described in Chapter 2. 

However, by this transformation, a lot of information contained in the 
membership functions gets lost. This fuzzy information could be of value in 
all sorts of comparisons between fuzzy solutions, such as: 

Comparison between different fuzzy algorithms. 
Comparison between solutions for various numbers of clusters. 
Comparisons between: 

membership function exponents 
0 distance function exponents 
0 varying positions of one or a few objects 
0 varying choices of distances 
and so on. 

Although the effect of some of these variations could show up in the 
hard clusterings, this representation is not as sensitive as the fuzzy one. In 
the latter case, with membership values for each object and each cluster, the 
problem is rather to summarize the situation. For this purpose, different 
coefficients have been proposed by various authors. One of these Coeffi- 
cients was already defined in Section 4.1. However, considering the k X n 
elements of matrix U, the reduction to only one value [F'(U)] is probably 
too drastic a condensation to be able to express the most important 
features. 

Taking into account a second function of U, defined as 

one obtains a wider basis for the evaluation of a fuzzy clustering. In this 
definition, W is the closest hard representation of the fuzzy U, as derived in 
Section 4.1. Hence Dk(U)  represents the average squared error of a fuzzy 
clustering with respect to the closest hard clustering. It can be shown to 
vary between 0 (hard clustering) and 1 - (l/k) (completely fuzzy). 

Normalizing this function (in the same way as Dunn's partition coeffi- 
cient), we obtain 

It is possible to represent each fuzzy clustering as a point in the (D;,  Fk) 
system shown in Figure 8 (Trauwaert, 1988). These points have to stay 
inside a certain region. The points on the lower boundary correspond to a 
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Clear two-clusters allocation 
but with increased mutual 
interactions 

- 

0 
1 .o 

DAU, 

Figure 8 Representation of some fuzzy clusterings (with n - 10 and k = 2) in a partition 
coefficient diagram. 



194 FUZZY ANALYSIS (PROGRAM FANNY) 

membership matrix of the form 

1 ... k - 1  k 

u = :  - ... - ' I-'] w i t h O s p s ( k - l ) / k  
n 1 [ k f l  k - 1  

where each object is primarily attributed to one of the clusters, with a 
membership (1 - /3), and for all other clusters it has a lower membership of 
@/(k - 1). Points on the upper boundary correspond to a membership 
matrix of the form 

1 
u = :  

n 

k ......... 1 

1 1  1 -- ... - 0 ... 0 

u 
r - 
u u  0 

(33) 

indicating that each object is uniformly distributed over some clusters and 
not at all present in the others. 

In terms of the quality of the clustering, a point at or near the upper 
boundary indicates that, apart from the well-defined clusters, some objects 
are bridges or outliers to a number of clusters. On the other hand, a point at 
or near the lower boundary means that all objects show a definite prefer- 
ence for one cluster, with however some constant membership to all other 
clusters. It is as if some background noise is added to an otherwise fairly 
well-defined clustering. This background noise could be due to the algo- 
rithm itself. 

Moreover, a point near the upper left edge of the diagram corresponds to 
a fairly hard clustering, whereas on the lower right edge the clusters are 
completely fuzzy. 

From this two-dimensional representation one gets a much better image 
of a fuzzy clustering than from F'(U) alone. It appears clearly from this 
diagram that the higher values of F'(U) do not necessarily indicate a better 
classification. 

A variant of the rionfuzziness index (25) was provided by Libert and 
Roubens (1982). It is defined as 
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in which q is the cluster for which uiu is maximal. 

5.4 A Graphical Display of Fuzzy Memberships 

The primary output of FANNY is a list of membership coefficients, which 
may contain many numbers and therefore becomes difficult to visualize. To 
summarize this mass of information, Rousseeuw et al. (1989) proposed 
computing the principal components of the membership coefficients. One 
merely applies a standard principal components program (as available in 
SPSS, BMDP, SAS, etc.) to the memberships, in the same way that it is 
usually applied to measurements. The number of nondegenerate principal 
components is the number of fuzzy clusters minus 1 (because the sum of 
memberships is a constant, for each object). For instance, applying FANNY 
with k = 3 to the 12 countries data yielded the fuzzy memberships in 
Figure 3. Because there are three fuzzy clusters, we obtain two principal 
components, the scores of which are plotted in Figure 9. The vertical 
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component can be interpreted as the countries’ political orientation, whereas 
the horizontal component seems to correspond to the degree of industrial- 
ization. In this plot we clearly see the three clusters (consisting of Capitalist, 
developing, and Communist countries) as well as the fact that Egypt holds 
an intermediate position. 

Because this method is based on the memberships only, the original data 
need not consist of measurements (indeed, the 12 countries example was 
based on dissimilarities). The idea to compute the principal components of 
the memberships did not appear to be in the literature yet. 

Let us now look at some special cases. When there are only two fuzzy 
clusters, only one nondegenerate component will be left. It is then sufficient 
to plot the membership uil of each object in the first cluster, because its 
membership in the second cluster can then be read from right to left as 

When there are three fuzzy clusters, each object has memberships 
( uil, uiz, ui3). The possible combinations fill an equilateral triangle in three- 
dimensional space. Principal components recover this triangle (as in Figure 
9)’ but one can also plot the memberships directly by means of barycentric 
coordinates (also called trilinear coordinates). For instance, one could plot 

u,z = 1 - Uil .  

I ( I I I I I -  - 
- 
- 
- 
- 
- 

0 .  - 
- 0 

0 .  *+ 0 
*o& - 
- 
- 

l l l I l I I I I  

Figure 10 First two principal components of memberships of the Ruspini data in four fuzzy 
clusters. 
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ui3fi/2 versus uiz + ui3 /2  for each object, thereby using an equilateral 
triangle with vertices (O ,O) ,  (1,0), and (1/2, &/2). 

When there are more than three fuzzy clusters, there will be more than 
two principal components. We then follow the customary practice of 
displaying the two components with largest eigenvalues, thereby “explain- 
ing” the largest portion of the variability. An example is given in Figure 10, 
displaying the two main components of the memberships of the Ruspini 
data in four fuzzy clusters (as given by FANNY). Sometimes one will want 
to make a three-dimensional plot or perhaps draw several plots in which 
each component is plotted versus every other component. 

The plot can also be refined by adding “ideal” objects, corresponding to 
the clusters themselves. Indeed, each cluster can be represented by an object 
with membership 1 to that cluster and zero membership to all others. By 
transforming these “membership coordinates” in the same way as the 
actual objects, the plot will be enriched by as many additional points as 
there are clusters. In this way the final plot contains both objects and 
clusters (in the same way that correspondence analysis yields plots contain- 
ing both objects and variables). 

EXERCISES AND PROBLEMS 

1. Carefully examine the membership coefficients shown in Table 1, in 
particular the differences between memberships of objects belonging to 
the same cluster. Explain these differences by the positions of the 
objects in Figure 1. 

2. Run the program FANNY on the data set of Figure 1. Use the same 
options as in Section 2.1 but with the number of clusters varying 
between 2 and 5.  Then select a value of k with the silhouettes. 

3. Apply FANNY to the sciences data in Table 6 of Chapter 2. Check 
that Dunn’s normalized partition coefficient and the silhouettes yield 
different choices of k. 

4. Apply FANNY to the data in Table 1 of Chapter 2, for k = 2. Which 
object is most fuzzy? 

5. Apply FANNY with k = 2 to the dissimilarity matrix in Figure 12 of 
Chapter 5 ,  concerning nine diseases. What do you think of the cluster- 
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ing quality of these data based on (a) the memberships, (b) Dunn’s 
normalized partition coefficient, and (c) the average silhouette width? 

6. A possible nonfuzziness index is the average difference between the 
largest and the second largest membership for each object. (Observe 
that this index can take all values between 0 and 1.) Calculate this 
index for the clusterings in Exercises 4 and 5. 

7. Consider the bacteria data in Exercise 1 of Chapter 2. Cluster these 
data into 2 and 3 clusters using the program FANNY and compare the 
results with those obtained from the program PAM. 

8. Show that the exact minimum of the objective function (1) is a 
decreasing function of the number of clusters. 

9. Compute the fuzzy k-means clustering (with k = 3) of the data of 
Figure 1 by entering the matrix of squared Euclidean distances as input 
to FANNY. Compare the result with Table 1. 

10. Consider the dissimilarities between 12 countries listed in Table 5 of 
Chapter 2. Calculate the coefficients Dk(U)  and D;(U)  for the FANNY 
clustering with k = 3 and draw a plot in which this fuzzy clustering is 
represented by the point ( D i ,  F;). 

11. Compute both principal components of the memberships in Table 1 
(this can be done by means of any standard software package). Com- 
pare the resulting bivariate plot with the original data in Figure 1. 



C H A P T E R 5  

Agglomerative Nesting 
(Program AGNES) 

In the preceding chapters we have seen methods for partitioning a data set 
with n objects into a fixed number k of clusters. Whatever the data set is 
like, these methods will come up with k clusters, some of which might not 
be natural. By varying the number k and studying the resulting clustering 
characteristics and graphical representations, one can then often decide on 
a “most suitable” value of k. 

In the present chapter, as well as in the two subsequent ones, a com- 
pletely different approach is adopted. The user does not specify a value of 
k, but instead the algorithm constructs a tree-like hierarchy which implicitly 
contains all values of k. On the one end of this hierarchy, there are n 
clusters each containing a single object, and on the other end there is only 
one cluster containing all n objects. There are basically two types of 
hierarchical methods. The agglomerative rnethodr, treated in this chapter, 
start with n clusters and proceed by successive fusions until a single cluster 
is obtained containing all the objects. On the other hand, the divisive 
merhods of Chapters 6 and 7 proceed by splitting the data set into smaller 
and smaller clusters until each object belongs to a separate cluster. 

1 SHORT DESCRIPTION OF THE METHOD 

The algorithm described in this chapter can be used on exactly the same 
data sets as those of Chapters 2, 4, and 6. That is, one has n cases 
(sometimes called objects, entities, or individuals) for which either p inter- 
val-scaled variables are given, or for which one has a complete set of 
dissimilarities between objects. For instance, the interval-scaled variables 
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may be measurements of objective quantities such as height, length, weight, 
etc. Dissimilarity coefficients between objects may be obtained from the 
computation of distances, such as the Euclidean distance 

or the Manhattan distance 

between the objects with measurements xi l ,  x i 2 , .  . . , x i p  and x j l ,  x , ~ ,  
. . . , xi,,. Dissimilarity coefficients can also arise from a more complicated 
computation based on variables of different types (binary, nominal, ordinal, 
interval) by means of the program DAISY of Chapter 1. Sometimes people 
use similarities s( i ,  J )  taking values between 0 and 1, but in this book it is 
always assumed that the user starts by transforming them into dissimilari- 
ties. In cases where one wants to perform cluster analysis on a set of 
variables which have been observed on some population, one can use the 
(parametric or nonparametric) correlation coefficient R( f, g) of two vari- 
ables for determining a dissimilarity coefficient d(f, g) between them. 
These transformations are all discussed in Chapter 1 and can be performed 
by means of the program DAISY. 

When the objects to be clustered are characterized by only two variables, 
as in the case of Table 1, it is possible to make a plot of the data as in 
Figure 1. Because the data set can be represented in two dimensions, we can 
discover its structure visually. In this data set there are clearly two rather 
isolated clusters of objects, and we expect any reasonable clustering method 
to recover this fact. 

Table 1 A Data Set Consisting of Seven Objects 
for Which Two Variables Were Measured 

Object Variable 1 Variable 2 

1 2.00 2.00 
2 5.50 4.00 
3 5.00 5.00 
4 1.50 2.50 
5 1 .00 1 .00 
6 7.00 5.00 
7 5.75 6.50 
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0.0 4.0 4.2 0.7 1.4 5.8 5.9 
4.0 0.0 1.1 4.3 5.4 1.8 2.5 
4.2 1.1 0.0 4.3 5.7 2.0 1.7 
0.7 4.3 4.3 0.0 1.6 6.0 5.8 
1.4 5.4 5.7 1.6 0.0 7.2 7.3 
5.8 1.8 2.0 6.0 7.2 0.0 2.0 
5.9 2.5 1.7 5.8 7.3 2.0 0.0 - 

0 4  

0 1  

5. 

0 

2 

e 6  

1 

0 1 2 3 4 5 6 7 8 

Figure 1 Plot of the data of Table 1. 

It is possible to compute a dissimilarity matrix from these data, for 
instance by calculating Euclidean distances between objects [Eq. (l)]. This 
yields 

(3) 

The dissimilarity between object 6 and object 2 can be found at the 
intersection of row 6 and column 2 of the matrix, yielding 1.8. [Note that 
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the matrix (3) is symmetric and its diagonal elements are 0, so it would 
suffice to give only the lower triangular half.] When the data are represented 
in this form, the structure we saw so easily in Figure 1 is rather hidden from 
visual inspection. 

However, we would like to have a clustering method that only makes use 
of the information contained in such a dissimilarity matrix. Indeed, it can 
happen that the data simply consist of a dissimilarity matrix that has been 
given to us, without any measurement values (perhaps the dissimilarities 
have been computed from some unknown number of variables, or there 
have never been any variables and the dissimilarities were obtained in some 
other way, for example as subjective assessments). For instance, suppose we 
have been given the dissimilarity matrix 

a b C d e 
0.0 2.0 6.0 10.0 9.0 
2.0 0.0 5.0 9.0 8.0 
6.0 5 .O 0.0 4.0 5.0 
10.0 9.0 4.0 0.0 3.0 
9.0 8.0 5 .O 3.0 0.0 

(4) 

It is often difficult to spot a structure in a data set by merely looking at its 
dissimilarity matrix. Even in this extremely small example, some kind of 
clustering algorithm would be useful. 

In this chapter we shall apply a method that proceeds by a series of 
successive fusions of the objects and which we therefore refer to as 
agglomerative nesting. In the beginning (at step 0) all objects are apart, so 
we could say that each object forms a small cluster by itself. At the first 
step, the two “closest” or “most similar” objects are joined to form a 
cluster of two objects (while all other objects remain apart). What we have 
to do is to find the smallest entry of the dissimilarity matrix and join the 
corresponding objects (when there are several pairs of objects with minimal 
dissimilarity, we pick one at random). In matrix (4) the smallest dissimilar- 
ity (not on the diagonal) is 2.0, so objects a and b will be joined to form 
cluster { a ,  b } .  

The first step leaves us with four clusters: { u, b } ,  { c } ,  { d }, { e } .  In the 
second step (and in all subsequent steps) we will want to merge the two 
closest clusters. But in order to select these, we must first say what we mean 
by the dissimilarity between two clusters, because so far we have only used 
dissimilarities between objects. This is the crucial point, because there are 
many agglomerative algorithms (see Section 5.1) which only differ from 
each other in this respect. For several reasons, which will be discussed in 
Section 5 ,  we have decided to use the group average method of Sokal and 
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Michener (1958), which is sometimes called “ unweighted pair-group aver- 
age method” and abbreviated as “UPGMA”. Its definition is very simple. 
Take two clusters R and Q, and let IR1 and IQI denote their number of 
objects. Then the dissimilarity d ( R ,  Q) between the clusters R and Q is 
defined as the average of all dissimilarities d ( i ,  j ) ,  where i is any object of 
R and j is any object of Q. More formally, 

[Actually, Sokal and Michener only used Eq. ( 5 )  when one of the clusters 
consisted of a single object. The present version of the definition is due to 
Lance and Williams (1966b).] As a special case of (5 ) ,  the dissimilarity 
between the clusters ( a }  and ( b }  containing only a single object simply 
equals d(  a, b). In Figure 2, we give an impression of how the group average 
rule ( 5 )  works for general clusters. 

In our example, 

d ( ( a , b } , ( c } )  = $ [ d ( a , c )  + d ( b , c ) ]  = 5.5 

d ( ( a , b } , { d ) )  = i [ d ( a , d )  + d ( b , d ) ]  = 9 . 5  

d ( ( a , b } , ( e } ) =  t [ d ( a , e )  + d ( b , e ) ]  =8.5 

This means we can now construct a new dissimilarity matrix that gives all 
dissimilarities between the four clusters { a ,  b}, { c } ,  { d}, and { e} .  [As we 
are only interested in the off-diagonal entries, we simply put the diagonal 
entries equal to 0, although ( 5 )  would not always yield d ( R ,  R )  = 0.1 We 

Q 

Figure 2 The straight lines indicate the dissimilarities between the objects of the cluster R 
and the objects of the cluster Q. The group average dissimilarity d(  R ,  Q) is defined as the 
average of all thcsc dissimilarities. 
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Of course, the dissimilarities between the clusters { c } ,  { d }, and { e } have 
remained unchanged. 

In this new matrix (6) the smallest off-diagonal entry is 3.0, which means 
that in the second step {d} and { e }  will be merged to form the cluster 
{ d, e } .  We now need the dissimilarities of { d, e }  to the other clusters. 
Using the group average rule, 

d ( { d , e } , { c } )  = $ [ d ( d , c )  + d ( e , c ) ]  =4.5 

d ( { d , e } , ( u , b } ) = ~ [ d ( d , u )  + d ( d , b )  + d ( e , a )  + d ( e , b ) ]  =9.0 

This yields the following dissimilarity matrix between the clusters { a ,  b } ,  
{ c } ,  and {d, e}: 

The smallest off-diagonal entry of the matrix (7) is 4.5, so the clusters 
{ c }  and { d, e )  will be merged in step 3. Using formula (9, 

d (  { c ,  d ,  e } ,  { a ,  b } )  

= + [ d ( c ,  u )  + d ( c ,  6 )  + d ( d ,  u )  + d ( d ,  b )  + d ( e ,  u )  + d ( e ,  b ) ]  

= a 7.83 

Therefore, the final dissimilarity matrix between the two remaining clusters 
becomes 

{ a , b }  { C , d , e }  

0.00 7.83 1 
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Figure 3 Fusions obtaincd when clustering the data of matrix (4) with the group average 
algorithm. 

The fourth step simply consists of joining these last two clusters into one 
single cluster {a, b, c, d, e }  containing all objects. 

We have now seen the agglomerative approach in action. In order to 
visualize this series of fusions, we need some kind of schematic summary as 
in Figure 3. The numbering of the steps (on the horizontal axis) shows the 
direction of time. Clearly, objects a and b join in the first step, objects d 
and e in the second step, etc. 

Figure 3 displays the order in which the objects come together, but does 
not give any idea of the relative magnitude of the dissimilarities involved. 
For instance, Figure 3 would remain unaltered if the dissimilarity between 
objects a and b had been only 0.1 instead of 2.0. 

At this point it is worthwhile to note a property of the group average 
method: The dissimilarity between merging clusters is monotone. By this 
we mean the following. In the example we are looking at, the first fusion 
(that of {a}  with { b } )  joins clusters with dissimilarity 2.0, the second joins 
clusters with dissimilarity 3.0, the third with dissimilarity 4.5, and the 
fourth with dissimilarity 7.83. The numbers 2.0, 3.0, 4.5, and 7.83 form a 
nondecreasing sequence, and it will be seen in Section 4.1 that this is 
generally true. This property makes it possible to replace Figure 3 by 
another diagram which still shows the order in which the clusters are 
merged, but which gives more information. Indeed, Figure 4 actually 
displays the critical dissimilarities (which we call leoels) on the horizontal 
axis. 

Two important points should be noted here. First, everything we have 
said about the construction of the group average hierarchy and its graphical 
representation only makes use of the dissimilarity matrix, and not of any 
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0.0 2.0 3.0 4.5 7.83 d 

Figure 4 Display showing the same hierarchy as in Figure 3, but also containing the level of 
each fusion. 

measurements. Second, making diagrams like Figure 3 or 4 is not as easy as 
it looks, because the algorithm often has to change the order of the objects 
to avoid crossing lines. This could even be done in different ways, as noted 
by Gower (1968, Section 7), Gruvaeus and Wainer (1972), Kraus et al. 
(1980), and Critchley and Heiser (1988). At any rate, it is the task of the 
clustering program to sort the objects into their appropriate sequence. 

Figure 4 is very appealing, but becomes cumbersome when the number 
of objects increases to, say, 50. Another disadvantage is that this kind of 
display can only be produced automatically by means of good plotting 
equipment. At the present time, computer graphics are far from standard- 
ized, so we prefer portable programs that only use an ordinary line printer 
(which is usually available). 

Therefore, we decided to use another kind of graphical representation, 
which is called a banner (Rousseeuw, 1986). Its name stems from the fact 
that for many examples it looks like a waving flag. This display is a variant 
of the icicle plot of Kruskal and Landwehr (1983). (The connections with 
the latter method will be treated in Section 5.3, together with other displays 
such as dendrograms.) The banner of Figure 5 contains exactly the same 
information as Figure 4. 

A banner consists of stars and stripes. The stars indicate linking of 
objects and the stripes are repetitions of the labels of these objects. In the 
case of agglomerative clustering, the (vertical) flagstaff can be imagined on 
the right, whereas in the case of divisive clustering (Chapters 6 and 7) the 
flagstaff is on the left. A banner is always read from left to right, just like 
Figures 3 and 4. 

Let us look at Figure 5. The white space in the left part indicates the 
original stage where all the objects are separate entities. Then, at the level 
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Figure 5 A banner containing the same information as Figure 4. 

2.0, we see the beginning of a strip containing three lines. The first of these 
lines reads AAA + AAA + - which is simply a repetition of the three- 
character label AAA standing for object a, separated by the symbol +. 
(Any three-character label could be inserted; when no natural label is 
available, one can always take the number of the object, writing 038 for 
object number 38.) The label BBB on the third line denotes object b. The 
second line is a row of stars * * * * * indicating that the two objects in 
question are joined, starting from level 2.0. Because we are working with an 
agglomerative method, objects that have once come together will always 
stay together. The next event is the linking of objects d (with label DDD) 
and e (with label EEE)  at the level 3.0. At the level 4.5, we see that object 
c joins this cluster. Finally, at the extreme right, we see that the clusters 
{ a ,  b }  and { c, d, e }  are merged at the level 7.83. If we were to move 
further to the right, nothing would change any more, because the five 
objects stay together. Therefore, the banner is not drawn any further, but 
stops at the highest clustering level 7.83 (at the flagstaff). 

A word of caution is necessary here. The white space at the left of the 
banner seems to conceal the objects ( a } ,  { b}, { c} ,  { d }, and { e},  which 
are separated from each other prior to level 2.0. It would have been possible 
to draw the lines containing the labels (like AAA + AAA + - ) starting 
from the left margin, keeping the stars where they are now. This would 
seem more logical, the absence of stars indicating the fact that the objects 
are not yet linked. However, it turns out that our eye can see the pattern 
much more easily when the unlinked labels are deleted, especially when the 
data set contains many objects. 

The banner allows us to investigate easily the structure of the data set at 
a given level. Suppose we want to know what the situation looks like at the 
level 6.0: By this we mean the result of the interrupted agglomerative 
procedure where all mergers have been executed for which the clusters to be 
merged were at most 6.0 apart. To find this out, we draw a vertical line at 
the level 6.0 and note immediately that there are two clusters { u, h 1 and 
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{ c, d, e} .  It is easy to see this because the object labels are actually in the 
display. In order to find the clustering into three groups, we can make a cut 
at the level 4.0. This yields the clusters { a ,  b )  and {d, e }  and the singleton 
{ c } ,  the label of the latter being suppressed in the banner because object c 
is still unlinked at this stage. 

In order to extract a partitioning from a hierarchy, we have to choose an 
appropriate level. For this purpose, Mojena (1977) considers stopping rules 
which select a suitable number of clusters based on the distribution of a 
clustering criterion. 

2 HOW TO USE THE PROGRAM AGNES 

The group average clustering algorithm can be applied by using the pro- 
gram AGNES (this name is abbreviated from AGglomerative NESting), 
which runs on IBM-PC and compatible microcomputers. Because the 
program AGNES has several parts in common with the program DIANA 
discussed in the next chapter, we decided to combine them into a larger 
program, called TWINS, in order to save space on floppy disk. This 
program accepts the same data types as do PAM (Chapter 2) and FANNY 
(Chapter 4), and the input dialogue is nearly identical. Therefore, it is very 
easy to run PAM, FANNY, AGNES, and DIANA on the same data and 
then to compare the results. 

2.1 Interactive Use and Input 

In order to run AGNES we merely have to put the floppy with the file 
TWINS.EXE in drive A and type 

A:TWINS 

The program then responds with the following screen: 

HIERARCHICAL CLUSTERING 

DO YOU WANT AGGLOMERATIVE NESTING (AGNES) 
OR DIVISIVE ANALYSIS (DIANA) 7 
PLEASE ENTER YOUR CHOICE (A OR D) : - A 
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If we choose agglomerative nesting, we obtain 

AGGLOMERATIVE NESTING 

DO YOU WANT TO ENTER MEASUREMENTS ? (PLEASE ANSWER M) 
OR DO YOU PREFER TO GIVE DISSIMILARITIES ? (THEN ANSWER D) : - M 

and the remainder of the interactive dialogue is the same as in the programs 
PAM or FANNY, except that the number of clusters is no longer asked for. 
Also the treatment of missing values is identical. 

2.2 output 

The first three parts of the output correspond to the parts a, b, and c of the 
output of PAM, as they were described in Section 2.2 of Chapter 2: 

Identification of the program and the data set. 
Data specifications and chosen options. 
Dissimilarities and standardized measurements. 

If we run AGNES on the dissimilarity data (4) we obtain Figure 6, in which 
these three parts are immediately recognized. However, the cluster results 
and the banner are new. 

Cluster Results 
This part of the output contains two sequences of numbers: the final 
ordering of the n objects and the dissimilarities between clusters. To 
understand the importance of these numbers, let us look back to Figure 4. 
On the left, there is a vertical ordering of the objects: a, b, c, d, e. When 
the objects are listed in this order, the diagram can be drawn without 
crossing lines. (In this particular example, the final ordering happens to 
coincide with the original ordering of the objects, but this is rarely the case.) 
On the horizontal axis of Figure 4, the dissimilarities between joining 
clusters are plotted. Looking at Figure 4 from top to bottom, we encounter 
the dissimilarities 2.0 (between { a }  and { b)), 7.83 (between { a ,  6 )  and 
{ c,d,  e}), 4.5 (between { c }  and { d, e}), and 3.0 (between ( d }  and { e}). 
Therefore, these numbers 2.0, 7.83, 4.5, and 3.0 are listed in the same order 
in Figure 6. (Note that the number of dissimilarities recorded is one less 
than the number of objects n, because there are n - 1 fusions.) 
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. . . . . . . . . . . . . . . . . . . . . . . . . . .  * * 
* AGGLOMERATIVE NESTING : 
***. S * . * * $ * * I * * * * 8 * I . . . L . I .  

TITLE : Dissimilarity matrix of display (4) 
DATA SPECIFICATIONS AND CHOSEN OPTIONS --_____________----_------------------ 
THER ARE 5 OBJECTS 
INPUT OF DISSIMILARITIES 

THE DISSIMILARITIES WILL BE READ IN FREE FORMAT 

L ~ S  OF OBJECTS ARE READ 

~ ~ ~ ~ ~ I ~ X ' L ' ~ ~ : E T ~ ~ T ' ~ ~ ~ ~ ~ ~ E ~  (BANNER ) 

YOUR DATA RESIDE ON FILE : a:mxmple.dat 

DISSIMILARITY MATRIX -________----------- 
2 .00  
6 . 0 0  5 .00  

9.00 8 . 0 0  5 . 0 0  3 . 0 0  

AAA 
888 
DDD 
EEE 
ccc 10.00 9.00 4 . 0 0  

THE FINAL ORDERINQ OF THE OBJECTS IS 
1 2 3 

THE DISSIMILARITIES BETWEEN CLUSTERS ARE 
2 . 0 0 0  7 . 8 3 3  4 .500  

4 5 

3.000 

...a. *..**** . * 
* BANNER 
****.***..** 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
o o o i i i i i l 3 i i i s s 6 6 b i i a a e 3 g o  
0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

IFF:$% :FFF :FFF :FFF :FFF :FFF:FFF :FFF 
???t???:???:??S:???:???:???:???~???:??S:???:??%?? 

BBBtBBBtBBBtBBB+BBBtBBB+BBBtBBBtBBBtBBBtBBBtBBBtBBBtBBBt??? 

EEEtEEE+EEEtEEEtEEEtEEEtEEEtEEEtEEEtEEE+EEEtEEEtEE 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  

0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0  
o o o i i i i i ~ ~ i i i S s k k k i i ~ a a g g o  

THE ACTUAL HIGHEST LEVEL IS 7.8333330000 

THE AGGLOMERATIVE COEFFICIENT OF THIS DATA SET IS .63 

THE OUTPUT IS WRITTEN ON FILE : a:example.agn 

Figure 6 Output obtained by running AGNES on the data of matrix (4). 
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On the other hand, we claim that these two sequences of numbers are 
sufficient to reconstruct Figure 4 or any equivalent display, such as the 
banner or one of the diagrams discussed in Section 5.3 (dendrogram, icicle 
plot,. . .). Indeed, consider the two rows 

1 2  3 4 5  

2.0 7.83 4.5 3.0 

The upper numbers give us the order in which to list the objects. In the 
lower sequence we start by looking up the smallest value, 2.0, which is 
directly under the numbers 1 and 2. This means that the objects with 
numbers 1 and 2 will be joined first, at the level 2.0. The second smallest 
value is 3.0, under the entries 4 and 5, so the objects 4 and 5 will be joined 
next. The third value is 4.5 under 3 and 4, but at this point we have to 
recollect that 4 was already joined with 5, so this means a merger of (3) 
with {4,5). The largest value is 7.83 under 2 and 3, meaning that (1 ,2)  and 
(3,4,5) join in the last step. We conclude that the entire hierarchy can be 
described by these two sequences of length n and n - 1. 

Banner 
Finally, the results of the calculations are summarized in a banner. (The 
banner in Figure 6 was already shown and explained in Figure 5.) For 
practical reasons, there are fixed scales above and below the banner, going 
from 0.00 to 1.00 with steps of size 0.04. Here, 0.00 indicates a dissimilarity 
of 0, and 1.00 stands for the largest dissimilarity encountered, that is, the 
dissimilarity between the two clusters merged in the last step. This actual 
highest level (which equals 7.83 in the present example) is listed below the 
banner. The approximate level for a merger can easily be estimated as 
follows: Just look above or below the beginning of the string of * * * * * , 
read off the scale at that point, and multiply with the actual highest level. 
For instance, ( d } and ( e ) meet at about 0.37 on the scale, so the real level 
is approximately 0.37 X 7.83 P 2.90 (indeed, the true value is 3.0). 

The overall width of the banner is very important because it gives an 
idea of the amount of structure that has been found by the algorithm. 
Indeed, when the data possess a clear cluster structure, the between-cluster 
dissimilarities (and hence the highest level) will become much larger than 
the within-cluster dissimilarities, and as a consequence the black lines in the 
banner become longer. For each object i, we look at the line containing its 
label and measure its length I(i) on the 0-1 scale above or below the 
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banner. The agglomerative coeficient (AC) of the data set is then defined as 

1 ”  

n i - 1  
AC = - l ( i )  (9) 

The AC is a dimensionless quantity between 0 and 1, because all the I (  i) lie 
between 0 and 1. It is simply the average width of the banner (or, if you 
will, the fraction of “blackness” in the plot) and it does not change when all 
the original dissimilarities are multiplied by a constant factor. (This means 
that we are assuming that the dissimilarities are on a ratio scale.) In Figure 
6, AC = 0.63, which points to a reasonable structure. 

In order to obtain some intuition about the meaning of the agglomera- 
tive coefficient, the reader is advised to look at the examples in Section 3. 
Generally speaking, the AC describes the strength of the clustering struc- 
ture that has been obtained by group average linkage. However, the AC 
tends to become larger when n increases, so it should not be used to 
compare data sets of very different sizes. For the divisive method of 
Chapter 6 there exists a similar divisive coeflcient (DC) that typically takes 
on slightly larger values when applied to the same data sets. The AC can 
also be compared to the silhouette coefficient (SC) of Chapters 2, 3, and 4. 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 
* AGGLOMERATIVE NESTING ; 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  

TITLE : Data set of Table 1 

DATA SPECIFICATIONS AND CHOSEN OPTIONS ...................................... 
THERE ARE 7 OBJECTS 
LABELS OF OBJECTS ARE NOT READ 
INPUT OF MEASUREMENTS 
LARQE OUTPUT IS WANTED 
GRAPHICAL OUTPUT IS WANTED (BANNER) 
THERE ARE 2 VARIABLES IN THE DATA SET 
THE LABELS OF THESE VARIABLES ARE : 
AND 2 OF THEM WILL BE USED IN THE ANALYSIS 

X 

THE MEAS~REMENTS WILL NOT BE STANDARDIZED 
EUCLIDEAN DISTANCE IS USED 
THERE ARE NO MISSING VALUES 
THE MEASUREMENTS WILL BE READ IN FREE FORMAT 
YOUR DATA RESIDE ON FILE : a:seven.dat 

00 

005 5 . 4 1  5 . 6 6  1.58 
006 5.83 1.80 2 . 0 0  6 . 0 4  7.21  
007 5.86  2 .51  1.68 5.84 7 .27  1.95 

Figure 7 Output obtained by running AGNES on the data of Table 1. 
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When the AC, DC, or SC are very small, the corresponding method has not 
found a natural structure, which can be expressed by saying that no clusters 
have been found, or rather that the data consists of one big cluster. On the 
other hand, a value of the AC, DC, or SC close to 1 means that a very clear 
clustering structure has been identified. We must stress that this does not 
necessarily mean that the “right” clustering has been found: For instance, 
the AC, DC, and SC all become very large when one bad outlier is added to 
any data set. However, the graphical display will clearly expose the outlier 
and thereby pinpoint the cause. The use of a quality coefficient like the AC 
(or, say, the coefficient of determination in regression analysis) must always 
be accompanied by a look at the graphical output (the banner) and an 
analysis of the structure that has been obtained. 

CLUSTER RESULTS - - -__-__-------  

THE FINAL ORDERING OF THE OBJECTS IS 
1 4 5 
6 7 

THE DISSIMILARITIES BETWEEN CLUSTERS ARE 
,707 1.498 5.496 

2.047 

2 

1.118 

3 

1 .901  

*.*.**.*..*. 
’ BANNER .*.**......* 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  

0 4 8 2 6 0 4 8 2 6 0 1 8 2 6 0 4 8 2 6 0 4 8 2 6 0  
o o o i i i i i ~ j i i i ~ 5 6 6 6 i i a ~ a g g o  

007*007+007+007+007+007+007+007+007+007+007+007+007 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  

0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0  
o o o i i i i i ~ ~ i i i S s ~ 6 ~ i i ~ a ~ ~ ~ o  

THE ACTUAL HIGHEST LEVEL IS 5.4964090000 

THE AGGLOMERATIVE COEFFICIENT OF THIS DATA SET IS .76 

THE OUTPUT IS WRITTEN ON FILE : a:seven.agn 

Figure 7 (Continued) 
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Let us now consider another example. Figure 7 contains the output for 
the data of Table 1. We now also have the specifications concerning 
measurements (there are two variables, the measurements will not be 
standardized, Euclidean distance is used, there are no missing values). 
Labels of objects have not been read, so that the program has produced the 
labels 001,002,. . . ,007, which are printed at the left of the dissimilarity 
matrix. The final ordering of the objects is now 1,4,5,2,3,6,7: This is how 
the object labels are ranked in the banner (looking from top to bottom). 
The smallest entry in the dissimilarity matrix is 0.707, indicating that 
objects 004 and 001 will be joined first. Indeed, the banner string of 
* * * * * extending furthest to the left corresponds to this couple. The 
second match is of 002 with 003, at the level 1.118, which can also easily be 
detected in the dissimilarity matrix. The other numbers in the “dissimilari- 
ties between clusters” list are the result of applying the group average rule 
(9, and can also be traced back in the banner. The agglomerative coeffi- 
cient of this data set is 0.76, indicating a more pronounced clustering 
structure than in Figure 6. Indeed, the banner consists of two solid strips 
which are relatively long, thereby conveying an impression of two tight 
clusters that are clearly separated from each other, as was to be expected 
from Figure 1. 

3 EXAMPLES 

In our first example we analyze the 12 countries data given in Table 5 of 
Chapter 2, which were already clustered by means of the program PAM in 
Section 3 of Chapter 2, and with the program FANNY in Section 3 of 
Chapter 4. 

Figure 8 contains the output obtained by running AGNES on these data. 
The first half of the output is almost identical to Figure 7 of Chapter 2, 
except for the heading “agglomerative nesting” and the fact that the line 
“clusterings are carried out in 1 to 3 clusters” has disappeared. Indeed, the 
agglomerative nesting algorithm computes a complete hierarchy, from n 
clusters to 1 cluster, so it does not need a prespecified number of clusters. 
The lower triangular half of the dissimilarity matrix is reproduced in the 
output because the large output option was selected. 

The second half of the output contains the final ordering of the objects, 
which have been considerably reshuffled (only the first object has remained 
where it was, but this is always true for AGNES and DIANA). Then the 
critical dissimilarities are listed, the smallest of which is 2.17 between 
Belgium and France. Indeed, 2.17 is also the smallest off-diagonal element 
of the original dissimilarity matrix (it is the first entry of the fifth line). The 
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TITLE : Subjective dissimilarities between 12 countries 

YOUR DATA RESIDE ON FILE : a:country.dat 

5 . 5 8  
BEL 
BRA 
CHI 7 . 0 0  6.50 
CUB 7 . 0 0  3.83 

5 . 0 8  8 . 1 7  5 . 8 3  fg; @ 5 . 7 5  6 . 6 7  6 . 9 2  
IND 5 . 0 0  5 . 5 8  6 . 0 0  

2 . 5 0  4 . 9 2  
ISR 3 . 4 2  5 . 5 0  
USA uss 6 . 0 8  6 . 6 7  

6 . 1 7  

6 . 6 7  
Y UG 

5 . 6 7  

$@ $1:; 6.17 

4 . 5 0  3 . 7 5  5 . 7 5  5 . 4 2  6 . 0 8  5 . 8 3  

ZAI 5 ' 2 5  4 . 7 5  & 2::; 6 . 6 7  5 . 0 0  5 . 5 8  4 . 8 3  6.17 

Figure 8 Output of AGNES for the 12 countries data. 

critical dissimilarities of the other three couples, Brazil-Zaire (3.00), 
Egypt-India (4.67), and Cuba-USSR (2.67) can also easily be detected in 
the original dissimilarity matrix. The other dissimilarities between clusters 
have been computed by means of the group average rule. 

The banner looks remarkably similar to a mirror image of the silhouettes 
for k = 3 obtained from PAM (Figure 8 of Chapter 2) or from FANNY 
(Figure 3 of Chapter 4). We can again easily distinguish three groups of 
four countries: Western, developing, and Communist. The first and third 
clusters appear to be quite pronounced because their banner sections are 
the widest and have only a single top, whereas the developing countries 
cluster grows from two different poles: the Brazil-Zaire link and the 
Egypt-India link, the latter being formed in a relatively late stage of the 
process. These results visualize the combined subjective views of the stu- 
dents, summarizing some 66 dissimilarity coefficients. 

Our overall impression of the banner is that it is merely of medium 
width, meaning that the clustering structure is not very strong, and indeed 
the agglomerative coefficient equals 0.50. (This confirms the medium silhou- 
ette coefficient of PAM and FANNY.) On the other hand, some clustering 
structure is definitely present, also because many features are confirmed by 
the application of PAM, FANNY, and DIANA. 
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CLUSTER RESULTS 

THE FINAL ORDERING OF THE OBJECTS IS 
1 

12 
10 

6 
5 

11 

9 
7 

THE DISSIMILARITIES BETWEEN CLUSTERS ARE 
2 .170  
4 .977  
3 .710  

2 . 3 7 5  
4 .670  

3 . 3 6 3  
6 . 4 1 7  

8 
3 21 

5 . 5 3 2  
4 . 1 9 3  

3 . 0 0 0  
2 . 6 7 0  

t*.**..*..t* 
I t 

* BANNER : 
t...*....**~ 

YUG+YUG t YUG+YUG t YUG t YUGt YUGt YUGt YUG 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
o o o i i i i i j ~ i i i j s 6 6 6 i i a a a Q Q o  
0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0  

THE ACTUAL HIGHEST LEVEL IS 6.4171880000 

THE AGGLOMERATIVE COEFFICIENT OF THIS DATA SET IS .50 

THE OUTPUT IS WRITTEN ON FILE : a:country.agn 

Figure 8 (Confinwd) 

Why would the agglomerative coefficient indicate anything? The white 
part of the banner begins from the left, at zero dissimilarity, and ends when 
the objects get linked, the plotted line of * * * * * starting at the corre- 
sponding dissimilarity. The dark part of the banner ends at the right (the 
flagstaff), at the highest level where all objects come together. The width of 
the banner for any given object, measured as the length of its label line 
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X Y Z  + XYZ + X Y Z  + 3 . . with respect to the 0-1 scale above and below 
the banner, therefore equals the fraction of the total evolution where this 
object was linked to another object. The width of the white part equals the 
level of first linking divided by the final level, so it corresponds to the 
bachelor part of the object’s life span. (Because of this formulation, the AC 
does not depend on the ordering of the objects and may be defined 
independently of the banner itself.) 

When the banner is narrow, and therefore the agglomerative coefficient 
given by Eq. (9) is low, this means that most objects remain unlinked for a 
relatively long time and that therefore the data set does not contain very 
natural clusters which would have been formed sooner. Of course, this is 
merely a heuristic reasoning. However, let us look at some extreme cases. 
On the one hand, suppose we have eight objects for which the off-diagonal 
entries of the dissimilarity matrix are all equal to the same positive 
constant, say 3.6. (In the case of Euclidean distances, this can happen when 
you have at least seven variables: In general one can take the n vertices of a 
regular simplex in n - 1 dimensions.) In this case, the objects stay apart 
until the very end, when they all join at the level 3.6. The resulting banner is 
displayed in Figure 9 and shows that there is indeed no clustering structure 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  

o o o i i i i i j j i i i ~ 5 6 6 b i i a a ~ 9 9 o  
0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0  

?? i 
??? 
??! 
934 
39: 
$08 
??? 
008 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  

o o o i i i i i j j i i i i 5 6 6 6 i i a a a 9 g o  
0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0  

THE ACTUAL HIGHEST LEVEL IS 3.6000000000 

THE AGGLOMERATIVE COEFFICIENT OF THIS DATA SET IS .OO 

Fisure 9 Agglomerative banner constructed from eight objects, with the same dissimilarity 
between any two objects. 
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Figure 10 Agglomerative banner constructed from eight objects that make up two very tight 
clusters. 

in the data: No linking is more natural than any other.The agglomerative 
coefficient equals 0.00, as well as the divisive coefficient of Chapter 6. [Note 
that the silhouettes also have zero width in this case, for any clustering 
partition, so the silhouette coefficient (SC) of Chapters 2 and 4 also equals 
0.00 for this data set.] 

On the other hand, suppose that the objects are divided into some very 
tight clusters that are far away from each other. For instance, assume that 
five objects coincide with one geometrical point and the other three coin- 
cide with another geometrical point at a distance of, say, 3.6. This is an 
extremely sharp clustering structure, and the resulting banner of Figure 10 
is as wide as possible. Therefore, the AC attains its maximal value of 1.00, 
and the same holds for the divisive coefficient of Chapter 6. (The silhouettes 
for k = 2 look exactly like the banner, and therefore the silhouette coeffi- 
cient also attains its maximal value 1.00.) 

Another extreme example is a tight cluster plus one outlier. For instance, 
suppose seven objects have dissimilarities of nearly 0 to each other and all 
have large dissimilarities (say, 3.6) to the eighth object, which is an outlier. 
The resulting banner then looks like Figure 11, clearly separating object 8 
from the rest. The agglomerative coefficient equals 1 - = 0.875, which is 
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............ . 
* BANNER : ............ 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
o o o i i i i i j 3 i i i s s 6 6 6 i i a a a g g o  
0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0  

??!;??!:??!;??f:??!:?? !:?? t :??!:?? !:??!:??!;?? i;?? !;??! :?? ! :??! :??! :?? ! :?? !:?? 
???;???:??P:??P:??ft??~:??~:???;??~:???;??~:??~:??~;??~:??~:??~:???;???;???:?? 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
??4:??4:??4:??4;??4;??4:??4;??4~??4:??4;??4;??4;??4:??4:??~;??4:??~:??4:??4:?? 
??5;??5:??5:??5:??~;??5~??5;??5:??5:??5~??5;??5;??5;??~;??5;??5:??~:??~;??5;?? 
??I:??B:??I:??B:??P:??B;??I;??I;??B:??~;??~;??B:??B;??I:??B:??B:??B;??I:??B:?? 

ooa 
007+007+007+007+007+007~007+007~007+007+007+007+007+007+007~007+007+007+007~~~ 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  

0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0  
o o o i i i i i ~ ~ i i i 5 5 6 6 6 i i 8 8 6 Q d d  

THE ACTUAL HIGHEST LEVEL IS 3.6000000000 

THE AGGLOMERATIVE COEFFICIENT OF THIS DATA SET IS .88 

Figure 11 Agglomerative banner constructed from eight objects, one of which is a distant 
outlier. 

very high. The same value is obtained for the divisive coefficient and the 
silhouette coefficient (which is attained at k = 2). In general, when a distant 
outlier is present in any data set, all three coefficients will tend to 1 - l / n  
(where n is the sample size) because a distant outlier will make the 
remaining data look like a tight cluster. Therefore, one should never merely 
accept a high value of either coefficient, but look at the graphical output to 
find out what caused it. (Such an outlier usually deserves further investiga- 
tion, and sometimes its origin can be traced back. In many applications, 
one may delete the outlier and cluster the remaining data again.) 

In Figures 10 and 11, the “good” clusters correspond to a long strip of 
the banner and only have a very short link to each other near the flagstaff. 
When there are more than two natural clusters, usually not all clusters are 
at the same dissimilarity from each other, so they have links of varying 
length. For instance, in Figure 8 the developing countries have a larger link 
with (are closer to) the Western countries than to the Communist ones. The 
banner strips corresponding to the three clusters are also shorter, meaning 
that the clusters are less tight. In Figures 9, 10, and 11, the banner parts 
have very flat left ends because the dissimilarities within each cluster are 
very homogeneous. On the other hand, in Figure 8 the left ends are quite 
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Figure 12 Agglomerative clustering of nine diseases. 
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ragged because the dissimilarities within a cluster are far from constant (for 
instance, the dissimilarity between USSR and China is 4.25, but between 
USSR and Cuba it is only 2.67). 

Let us now look at some real data with a very bad clustering quality, 
which were provided by Nini Vrijens of the State University of Antwerp. 
The Occurrence of nine diseases in the female population of 43 Belgian 
communities was recorded over several years. Figure 12 shows the corre- 
sponding dissimilarity matrix and the group average linkage results. The 
banner is very narrow because there are no clear links, as all dissimilarities 
between objects are of the same order of magnitude. The agglomerative 
coefficient is only 0.25. The situation resembles that of Figure 9. In 
conclusion, we cannot say that we have found any groups in this particular 
data set. 

*4 MORE ON THE ALGORITHM AND THE PROGRAM 

4.1 Description of the Algorithm 

In Section 1 we saw the definition of the group average linkage method of 
Sokal and Michener (1958), and the algorithm was illustrated step by step 
on the data of matrix (4). After each fusion a new dissimilarity matrix was 
obtained by applying the group average rule ( 5 )  to the newly formed 
clusters, leading to matrices (6), (7), and (8). However, we shall see that 
these computations can be performed in a more efficient way. Whereas in 
the description of Section 1 one always has to return to the original 
dissimilarity matrix (4), it is also possible to apply an update mechanism in 
order to drastically reduce the number of calculations. 

Indeed, assume we have at one step joined the clusters A and B to form 
a new cluster R. In the next step we will need the dissimilarity d( R, Q) of 
R to any other cluster Q. By formula (9, 

1 
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Hence 

Note that the dissimilarities d(A,  Q) and d(B,  Q) are available from the 
matrix of the previous step and that the dissimilarities not involving R 
remain unaltered. Therefore, it is no longer necessary to go back to matrix 
(4); indeed matrix (6) is sufficient to compute matrix (7) and matrix (7) is 
sufficient to obtain matrix (8). For instance, in order to construct matrix (8) 
it suffices to apply formula (10) as follows: 

d ( {  c ,  d ,  e } ,  { a ,  b } )  = $ d ( { c } ,  { a ,  b } )  + : d ( { d ,  e } ,  { 0 ,  b } )  
= + 2e;P = "t;' z 7.83 

in which we only need the entries of matrix (7). From the point of view of 
the computer, this means that only one dissimilarity matrix must be stored 
at any given time, and it is possible to devise the program in such a way 
that the same memory spaces are being used again in all steps (by 
overwriting the altered values over the old ones). But the main advantage of 
the update formula (10) lies in its simplicity, because only two dissimilari- 
ties (between A and Q and between B and Q) must be looked up, instead 
of all dissimilarities between objects of A and objects of Q (there are 
IRI IQl such dissimilarities, a number which may become very large for 
increasing cluster sizes). Therefore, formula (10) reduces the computation 
time. 

We can also use the update formula (10) for showing that the critical 
dissimilarities form a monotone sequence, a fact we already used in Section 
1 to represent the hierarchy in Figures 4 and 5. Indeed, suppose we have 
merged clusters A and B in the previous step, which means that d ( A ,  B) 
was the smallest off-diagonal entry of the dissimilarity matrix at that stage. 
Let us denote this critical dissimilarity by d, from which it follows that all 
off-diagonal entries of that dissimilarity matrix were larger than or equal to 
d. After the merger of A and B into some new cluster called R, we have to 
construct the new dissimilarity matrix. All dissimilarities not involving R 
remain unaltered and hence are at least equal to d. The dissimilarities that 
do involve R can be computed according to (lo), and for these it holds that 
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Hence they are also at least d.  Therefore, all off-diagonal entries of the new 
dissimilarity matrix are at least as large as d. The critical dissimilarity of the 
next merger equals the smallest off-diagonal entry of this matrix, so it 
cannot be smaller than d. Applying this reasoning to the consecutive steps 
of the amalgamation process, it follows that the critical dissimilarity is 
monotone. 

4.2 Structure of the Program 

The program TWINS consists of: 

a main unit 
subroutine ENTR 
subroutine QYN 
function MEET 
subroutine NWLAB 
subroutine STAND 
subroutine DYSTA 
subroutine AVERL 
subroutine BANAG 
subroutine SPLYT 
subroutine SUPCL 
subroutine BANDY 

The main unit is similar to that of program PAM, so we refer to Section 4.2 
of Chapter 2 for its description, as well as for ENTR, QYN, MEET, 
NWLAB, STAND, and DYSTA. 

At the end of the main unit, subroutine AVERL is called which actually 
performs the AVERage Linkage. This subroutine operates on four arrays, 
the first of which is DYS which in the beginning contains the n(n - 1)/2 
entries of the dissimilarity matrix (as in Figure 14 of Chapter 2). In later 
stages of the computation, new dissimilarities are obtained from the group 
average recipe (10). These dissimilarities between clusters then replace some 
of the original numbers in DYS. To keep track of things, at each step the 
number of objects of every cluster is counted and stored in the array 
KWAN. The third and fourth arrays are NER, which contains the ordering 
of the objects, and BAN, in which the dissimilarities between merging 
clusters are stored. The final contents of NER and BAN are printed under 
the heading “cluster results” (see Section 2.2). During the computation, 
NER is continuously adapted to the merging process. This is done in such a 
way as to change the original ordering of the objects as little as possible; as 
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Table 2 Computation Times (in minutes) on an IBM-XT with 
8087 &processor, for a Set of Randomly Generated Problems 
of Increasing Sizes Clustered Uslng the Program AGNES 

Objects Variables Time 

20 2 0.15 
40 2 0.35 
60 2 0.85 
80 2 1.75 
100 2 3.50 

a consequence, object 1 will always remain the first object in the list. (The 
same goal was pursued in DIANA and a very similar approach was 
adopted for the numbering of the clusters in PAM and FANNY, making it 
easier to compare the results of these four programs on the same data set.) 
At each step, the changes in NER also induce permutations in BAN. 
Finally, the two arrays BAN and NER are used by subroutine BANAG to 
produce the banner of the agglomerative hierarchy. 

The last three subroutines (SPLYT, SUPCL, and BANDY) are not used 
at all in the case of agglomerative nesting, but they are needed for the 
divisive method described in the next chapter. 

As an indication of the speed of agglomerative nesting, Table 2 lists 
some computation times for data sets of different sizes. The same computer 
and the same data sets were used as for Table 7 of Chapter 2. The times in 
the latter table were about twice as large, and they were needed for five 
clusters, whereas Table 2 gives the times necessary for obtaining a complete 
hierarchy. This means that agglomerative nesting is really much faster than 
partitioning into a fixed number k of clusters. [A particularly fast agglomer- 
ative program was constructed by van Zomeren (1985).] On the other hand, 
agglomerative procedures suffer from the defect that a “wrong” fusion can 
never be repaired in subsequent steps, whereas for a fixed number of 
clusters a program like PAM will try to find a near-optimal solution. The 
choice between a hierarchical and a nonhierarchical method depends mainly 
on the purpose of the investigation: For instance, in biological applications 
one usually wants a hierarchical classification. 

*5 RELATED METHODS AND RJZFERENCES 

5.1 Other Agglomerative Clustering Methods 

In the last decades, a large number of agglomerative techniques have been 
used. We will give a survey of the most popular ones and say something 
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about their properties. Other aspects can be found in Anderberg (1973), 
Bock (1974), Gordon (1981), Hartigan (1975), and Spath (1980). 

a Single Linkage 
The single linkage algorithm, which is the oldest and simplest agglomerative 
method, was introduced by Florek et al. (1951) and Sneath (1957b). It 
works exactly as the algorithm we described in Section 1, only the dissimi- 
larity between two clusters is not defined by formula ( 5 )  but by 

d ( R , Q )  = min d ( i ,  j) 
I E R  
J E Q  

This corresponds to a commonly used definition in pure mathematics, 
where the distance between two sets is often taken to be the minimum (or, 
more generally, the infimum) of all pairwise distances. In this book all 
clusters are of course finite, so (12) corresponds to finding a pair of points, 
one in R and one in Q, with the smallest possible dissimilarity. Therefore, 
single linkage is also often called the nearest neighbor method. As in the 
group average method, the single linkage dissimilarity also can be computed 
by means of an updating formula. When clusters A and B have joined to 
form a new cluster R ,  all dissimilarities between R and other clusters Q can 
be obtained from 

The updating algorithm using the first equation was already applied by 
Johnson (1967). The second equation looks slightly artificial, but is used to 
fit (13) into a more general framework of equations we shall describe later 
on at the end of this subsection. The program AGNES could be turned into 
a single linkage program by replacing the seven consecutive lines 

TA = KWAN(LA) 
TB = KWAN(LB) 
FA = TA / (TA + TB) 
FB 5 TB / (TA + TB) 
NAQ - MEET(LA, LQ) 
NBQ - MEET(LB,LQ) 
DYS(NAQ) = FA*DYS(NAQ) + FP*DYS(NBQ) 

of subroutine AVERL by the following ones: 

NAQ - MEET(LA, LQ) 
NBQ - MEET(LB, LQ) 



226 AGGLOMERATIVE NESTING (PROGRAM AGNES) 

DNEW = DYS(NAQ) 
IF( DY S(NBQ) , LT.DNEW)DNEW = DY S(NBQ) 
DYS(NAQ) - DNEW 

Similar small modifications could be made to implement the other methods 
discussed in this section. For the understanding of these program parts, 
note that TA = IAJ, TB = IBI, FA = lAl/lR[, FB = l B ~ / ~ R l ,  and 
DYS(NBQ) = d( By Q). The expression DYS(NAQ) first stands for d ( A ,  Q), 
but in the end its meaning changes to d(R ,  Q), as the array DYS is being 
overwritten to save memory space. More efficient algorithms, based on 
minimum spanning trees, are discussed by Gower and Ross (1969). 

When the original dissimilarities between objects are transformed by a 
strictly monotone function (such as a square root), the single linkage 
hierarchy remains the same (Johnson, 1967; Sibson, 1972). However, the 
levels of the fusions will be transformed accordingly, so the banner (and the 
agglomerative coefficient) may change a lot. 

Formula (12) already shows the main weakness of the single link 
algorithm. When two clusters, however large and clearly distinct, come 
close to each other at even a single point, the method will not be able to 
keep them apart. In other words, a single link between two clusters is 
sufficient to connect them. This leads to the notorious chaining efect, by 
which poorly separated clusters are chained together. The resulting clusters 
can be drawn out or even linear, instead of the usual ball-shaped ones. Of 
course, in certain fields drawn out clusters do occur, in which case single 
linkage may prove useful. But on the whole, we do not recommend this 
method. Baker (1974) shows that single linkage suffers from a lack of 
robustness. Also many other authors reject single linkage on the basis of 
empirical studies (Milligan and Isaac, 1980). Wishart (1969a) considered a 
variant that tries to eliminate the objects in sparsely populated regions 
before applying single linkage, in order to inhibit chain building. Jardine 
(1969) and van Rijsbergen (1970) propose searching the result of single 
linkage for L- and L*-clusters (for a definition of L and L*, see Section 2.2 
in Chapter 2). 

b, Complete Linkage 
The complete linkage algorithm is exactly the opposite of single linkage (one 
might even say it falls into the other extreme). The dissimilarity between 
two clusters is now defined as the largest dissimilarity between an object of 
the one cluster and an object of the other. For this reason, complete linkage 
is often referred to as the furthesz neighbor method. Formally, 

d ( R ,  Q )  = max d ( i ,  i) (14) 
i,€ R 
J E Q  
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This method was described by McQuitty (1960), Sokal and Sneath (1963) 
and Macnaughton-Smith (1965). The updating equation now becomes 

Like single linkage, complete linkage also yields an invariant hierarchy 
under strictly monotone transformations of the original dissimilarities (but 
again, the banner may change). Whenever the algorithm joins clusters A 
and B to form a new cluster R, the dissimilarity between A and B equals 
the diameter of R [this can easily be shown by induction, as in Theorem 
39.3 of Bock (1974)]. 

In order to run complete linkage on the computer, we merely have to 
replace the above seven lines of subroutine AVERL by 

NAQ = MEET(LA, LQ) 
NBQ = MEET(LB, LQ) 
DNEW = DYS(NAQ) 
IF(DNEW.LT.DYS(NBQ))DNEW = DYS(NBQ) 
DYS(NAQ) = DNEW 

Defay (1977) and Hansen and Delattre (1978) have constructed some 
efficient algorithms for complete linkage. 

Whereas single linkage usually leads to too few clusters which are drawn 
out, often complete linkage yields the opposite effect: many clusters with 
small within-cluster dissimilarities. Indeed, a couple of clusters containing 
at least one remote pair of objects will only be joined at a late stage. As a 
consequence, relatively similar objects will often stay in different clusters 
for a long time (dissection effect), hence complete linkage is sometimes said 
to be space dilating. On the other hand, single linkage will often bring 
rather dissimilar objects into the same cluster due to the chaining effect, 
and is therefore said to be space contracting. The necessity to compromise 
between these two extremes has lead to group average linkage and other 
methods discussed in this section, which are space conseruing. 

c. Centmid Method 
The centroid method (Sokal and Michener, 1958; Lance and Williams, 
1966a, b; Gower, 1967) is intended for data consisting of interval-scaled 
measurements (in principle without missing values). We denote by x,,  the 
f t h  measurement of the ith object x , ,  where i ranges from 1 to n and f 
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ranges from 1 to p. The centroid of a cluster R is then the point 

= (W), x ' , (R) , .  . . , q R ) )  

having for its f th  coordinate 
1 

x',(R) = xif 
I R I  i e R  

for f = 1,. . . , p. When all the points making up cluster R have the same 
physical mass, the centroid x'( R) is simply the center of gravity of R. In 
what follows, we shall use the fact that the squared Euclidean distance 
between two objects is also the squared norm of their difference: 

d 2 ( u ,  0 )  = Jlu - 0112 = (24 - 0 )  . ( u  - 0 )  

= u * u - u * u - u * u + u * u = I l ~ l l ~  + J ( ~ 1 1 ~  - 2~ * u (17) 

where denotes the dot product of vectors 

u * 0 = (111,  u 2 , .  . . , u p )  * (01, 0 2 , .  . . , up)  
= UIUl + u2u2 + - ' + upup 

When merging clusters A and B to form cluster R, the centroid of R can 
be written as a function of those of A and B: 

where IRI = IAl + (BI. The following identity will be useful further on: 

I 4  llx'(A) - Z ( R )  11, + PI llW) - Z ( N  112 
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In the centroid method (also called centroid linkage or centroid sorting), the 
dissimilarity between two clusters is defined as the Euclidean distance 
between their centroids : 

The update equation is more complicated: 

Note that this equation contains squares, so the final value of d ( R ,  Q) is 
the square root of the right-hand side of (21). By means of identity (19) it is 
possible to prove this update equation, starting with the right-hand side: 
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The centroid algorithm can be implemented by using the following lines: 

TA = KWAN(LA) 
TB = KWAN(LB) 
FA = TA/(TA + TB) 
FB - TB/(TA + TB) 
FC-  -FA+FB 
NAQ = MEET(LA,LQ) 
NBQ = MEET(LB,LQ) 
NAB - MEET(LA,LB) 
D = FA+DYWAQ)*DYS(NAQ) + FB+DYS(NBQ)*DYS(NBQ) 
D = D + FC+DYS(NAB)*DYS(NAB) 
DYS(NAQ) = SQRT(D) 

instead of the original seven lines in subroutine AVERL. 
Although this algorithm is intended for Euclidean distances, it is of 

course possible to apply the update equation (21) to any kind of dissimilar- 
ity measures, with or without the squares. However, this may lead to 
strange results which lack interpretation (Anderberg, 1973; Steinhausen and 
Langer, 1977) and is therefore not recommended. This restricts the centroid 
method to measurement data. Another problem lies in the fact that the 
dissimilarities are no longer monotone, even when Euclidean distances are 
used. That is, it may happen that the dissimilarity of a given fusion is 
strictly smaller than that of a previous fusion, making it very difficult to 
represent the results in a meaningful way (see Anderberg, 1973, Section 
6.2.5). For instance, the banner can no longer be used. 

d Wad’s Method 
Like centroid linkage, the method of Ward (1963) is intended for interval- 
scaled measurements and makes use of Euclidean distances. The dissimilar- 
ity between two clusters is again based on the Euclidean distance between 
their centroids, but now multiplied by a factor: 

The actual value of d ( R ,  Q) is the square root of (22). The factor 2 in (22) 
is necessary to retain the original Euclidean distance between objects, when 
both clusters consist of a single object. Definition (22) does not appeal to 
the intuition at first, but is the result of a statistical reasoning based on the 
idea of least squares, like the variance minimization techniques discussed in 
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Section 5.3 of Chapter 2. The error sum of squares of a cluster C is defined 
as the sum of squared Euclidean distances between the objects of the cluster 
and its centroid: 

ESS(C) = ( / x i  - X(C) / I 2  
I E C  

and is used as a measure of the tightness of a cluster. 
At each level of the hierarchy we consider the total ESS, which is the 

sum of all ESS(C) over all clusters C at this level. With the fusion of two 
clusters A and B to form a new cluster R at the next level, their ESS can 
only increase (or remain the same in very rare cases). As the ESS of all 
other clusters remain unchanged, the increment in total ESS is 

Making use of llul12 - llul12 = ( u  + u )  - ( u  - u )  this becomes 

C ( X i  - i ( R )  + x i  - X ( A ) )  * ( X ( A )  - X ( R ) )  
= I&* 1 

+ [  C ( X i  - x ( R )  + x i  - X ( B ) )  * ( X ( B )  - X ( R ) )  
/ € B  1 

Using the fact that C i G A x i  = I A J X ( A )  and identity (19) this yields 

= J A l ( X ( A )  - x ( R )  + X ( A )  - ? ( A ) )  - ( Z ( A )  - F(R) )  

= I4 IlW) - W) 112 + IBlll W) - W) 1 1 2  
+ ( B l ( X ( B )  - X ( R )  + X ( B )  - X ( B ) )  * ( X ( B )  - X ( R ) )  
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Making use of formula (22), we finally conclude that 

AESS = i d Z ( A ,  B )  (24) 

Ward (1963) originally constructed an algorithm by requiring that AESS be 
as small as possible at each step. The idea to introduce the dissimilarity 
measure (22) in order to establish (24) is due to Wishart (1969b). Because of 
this last result, Ward’s method simply amounts to merging those clusters A 
and B between which the dissimilarity d(A, B) is minimal. Therefore, 
Ward’s algorithm can be carried out in exactly the same way as the 
previously discussed ones. In the computation, we can use the update 
equation 

d Z ( R ,  Q )  = 

- lQl d 2 ( A ,  B )  
IRI + IQI 

To prove it, use formula (18) to write the left-hand side of (25) as 

21R’  lQl llX( R )  - i (Q) 11’ 
IRI + IQI 

Z 

-W) + --*(@) IBI - - X(Q)I/ 
lR1 

- - 2‘R‘ lQl (I IAI (X( A )  - Z( Q ) )  + (X( B )  - X ( Q ) )  (1 2 I4 

- - 

IRI + IQI PI 

PI + lQl lRIZ 
- - 2 1 4  lQl ( - I I i ( A )  14’ - X(Q)II” + jj$b(B) lBIZ - - x(Q)I? 

+2--(Z(A) I 4  PI - Z(Q)) * ( Z ( B )  - Z(Q))} 
IRI IRI 

and transform the last term using 2u - u = llullz + llullz - Ilu - u1Iz, 
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obtaining 

Both factors (IAI + 1Bl)/lRI vanish and we find the right-hand side of 
formula (25). 

By means of this update equation, we can easily adapt program AGNES 
to Ward’s method using the lines 

TA - KWAN(LA) 
TB - KWAN(LB) 
TQ = KWAN(LQ) 
FA = (TA + TQ)/(TA + TB + TQ) 
FB = (TB + TQ)/(TA + TB + TQ) 

NAQ = MEET(LA, LQ) 
NBQ - MEET(LB, LQ) 
NAB = MEET(LA,LB) 
D = FA * DYS(NAQ) * DYS(NAQ) + FB * DYS(NBQ) * DYqNBQ) 
D - D + FC*DYS(NAB)*DYS(NAB) 
DYqNAQ) = SQRT(D) 

FC - TQ / (TA + TB + TQ) 

instead of the original ones. 
The methods discussed until now (group average, single linkage, com- 

plete linkage, centroid, Ward) were all based on an inherent definition of 
the dissimilarity between any pair of clusters, from which update equations 
were derived. The next three methods (weighted average, Gower, flexible 
strategy) are of a different type, because they onb have update equations. 
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Hence, the dissimilarity between clusters is defined recursively and can only 
be computed among clusters occurring at the same level of the hierarchy. 
As we shall see, this may even lead to contradictions. Therefore, we do not 
recommend these methods, but merely describe them for the sake of 
completeness. 

e. Weighted Aoerage Linkage 
Weighted average linkage (Sokal and Sneath, 1963) is a variant of the group 
average method used in this chapter. One starts with the original dissimilar- 
ities between objects (which need not be Euclidean distances, but may be of 
any type) and at each merger of clusters A and By forming some new 
cluster R, the dissimilarities are updated by 

d ( R ,  Q) = $ d ( A ,  Q) + i d ( &  Q) (26) 

This recipe is very simple, but does not correspond to any inherent 
definition of dissimilarity between clusters. Indeed, in some situations 
contradictions will occur. Consider a set of four objects { a, 6, c, d } with 
the dissimilarity matrix 

Q 6 C d 
0.0 10.0 10.0 
10.0 0.0 15.0 

C 10.0 15.0 0.0 
d 24.0 20.0 28.0 

28.0 
0.0 

In the first step, one can choose arbitrarily whether to join a with 6 or with 
c. In the second step, the cluster {a ,  by c }  is formed. However, let us now 
consider d({ a, 6, c } ,  { d}). If a was first joined with 6, we find 

d ( { a , b , c ) ,  (4 )  = : d ( { a , b ) , { d ) )  + $ d ( { C } , { d } )  

= 1  2 [ 2  I d  ( a J ) +  w h d ) ]  2 + i d ( c ,  d )  = 25.0 

but if a was first joined with c we obtain 

d ( { a , b , c } , { d } )  = : d ( ( a , c ) , { d } )  + $ d ( { b } J d } )  

= : [ + d ( a , d )  + $ d ( c ,  d ) ]  + i d ( 6 ,  d )  = 23.0 

These different results also affect the banner, because d({ a, 6 ,  c } ,  { d}) is 
the level of the last step. The same kind of example can even be constructed 
using Euclidean distances. 
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Implementation of the weighted average linkage method is very simple, 
because one only has to insert the lines 

NAQ = MEET(LA, LQ) 
NBQ = MEET(LB, LQ) 
DYS(NAQ) = (DYYNAQ) + DYS(NBQ)) / 2$ 

instead of the original ones. 
The name “weighted average linkage” at first sight appears rather 

strange, because there are no weights in formula (26). However, imagine a 
large cluster A being merged with a small cluster B. In this case, the objects 
of B will carry a much larger weight than those of A in the dissimilarity 
(26). On the other hand, the group average method assigns to all pairs of 
objects the same weight by formula ( 5 )  and is therefore sometimes called 
unweighted average linkage, notwithstanding the weights in the update 
equation (10). This situation has lead to some confusion between the terms 
weighted and unweighted, but calling the latter method group average 
(Lance and Williams, 1966b) has largely resolved this ambiguity. 

f. Gower’s Method 
The method of Gower (1967) is a variant of the centroid method previously 
described and its interpretation is also restricted to measurement data and 
Euclidean distances. When clusters A and B join, the centroid X( R )  of the 
new cluster R is given by formula (18). Thus Z ( R )  lies on the straight line 
segment between X ( A )  and F(B), and it is closer to the centroid of the 
cluster containing the largest number of objects. This is part of the 
“ unweighted” principle, which assigns the same importance to all objects, 
making large clusters more influential than small ones. Gower argued that 
there are situations in which it is more sensible to attach equal importance 
to all clusters, regardless of their number of objects (as in weighted average 
linkage). As a consequence, he did not work with the real centroid but with 
something we shall call the center c ( A )  of a cluster. In the case of clusters 
containing only a single object, the center equals this object. When joining 
clusters A and B, Gower argued that the center of the new cluster should 
be the midpoint of the previous centers, 

instead of (18). Unfortunately, this implies that the center of a cluster is not 
always uniquely defined, because it depends on the order in which the 
cluster was assembled. The dissimilarity of cluster R to any other cluster Q 
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is now defined as the Euclidean distance between their centers: 

It turns out that d( R, Q) is measured along the median line passing 
through c ( Q )  of the triangle spanned by { c ( A ) ,  c ( B ) ,  c ( Q ) } ,  and for this 
reason Gower’s approach has often been referred to as the median method 
(Lance and Williams, 1966b). It is not difficult to obtain the update 
equation for the dissimilarity (29) because one only has to note that (28) is 
a special case of (18) when IAI = IBI. Therefore, we can simply repeat the 
reasoning leading to (21), substituting IRI = 214 = 2 1 4  in the latter equa- 
tion, which yields 

Gower’s algorithm may be applied by means of the lines 

NAQ = MEET(LA,LQ) 
NBQ = MEET(LB,LQ) 
NAB = MEET(LA,LB) 
D = (DYqNAQ) * DYqNAQ) + DYS(NBQ) * DYS(NBQ)) / 2$ 
D D - (DYS(NAB)*DYS(NAB))/4$ 
DYS(NAQ) = SQRT(D) 

It looks as if (29) provides a solid explicit definition of a dissimilarity 
between clusters, but this is not the w e  because the centers of the clusters 
may not be uniquely defined. As in the case of weighted average linkage, 
application of the update equation (30) may lead to contradictions [this 
happens for the example of (27)]. 

g. F&x& Stmew 
Lance and Williams (1966b) introduced an algorithm depending on a 
parameter a which can be specified by the user. They start from an 
arbitrary set of dissimilarities between objects (which may be Euclidean 
distances, squared Euclidean distances, Manhattan distances, or whatever) 
and use the update equation 

where a is a strictly positive constant. This update equation does not come 
from any inherent definition of dissimilarity between clusters, and indeed 
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contradictions can occur. [For instance, the matrix (27) provides such an 
example for weighted average linkage, Gower’s method and the flexible 
strategy.] The flexible method can be applied by means of the lines 

NAQ = MEET(LA, LQ) 
NBQ = MEET(LB, LQ) 
NAB = MEET(LA, LB) 
D = ALPHA*(DYS(NAQ) + DYS(NBQ)) 
DYS(NAQ) = D + (1.&2.fl*ALPHA)*DYS(NAB) 

provided the user has assigned a value to ALPHA earlier in the subroutine, 
for instance by inserting the line 

ALPHA - 0.625 

The behavior of this clustering algorithm depends strongly on the 
specified value of a. For a = t one obtains weighted average linkage. When 
a tends to 0 the method becomes space contracting, leading to long-shaped 
clusters. When a grows larger than $ the method becomes space dilating, 
yielding a large number of compact clusters in the first stag& of the 
hierarchy. Lance and Williams themselves proposed taking a value of a 
slightly larger than $, so that 1 - 2a becomes a small negative number. 

Lance and Williams (1966b) were the first to consider a unified frame- 
work for the commonly used agglomerative methods. Indeed, all update 
equations we have seen in this chapter are of the form 

where D sometimes stands for an arbitrary dissimilarity and sometimes for 
squared Euclidean distance. Equation (32) is now generally called the 
Lunce- Williams formula. The idea is to start from the original dissimilari- 
ties between objects and then to use (32) where the a,, a,, 8, and y may 
be either fixed constants or depend on IAI, lBl, and lQl. The fact that 
Ward’s method also falls into this category was proven by Wishart (1969b). 
Some mathematical properties of (32) were investigated by DuBien and 
Warde (1979). 

There exist several agglomerative algorithms that cannot be fitted into 
the Lance-Williams framework, such as Delattre and Hansen’s (1980) 
bicriterion analysis, which compromises between single linkage and com- 
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plete linkage. However, a discussion of this or other methods falls beyond 
the scope of this book. Bock (1974) and Gordon (1981) contain some 
references to techniques not covered here. 

5.2 Comparing Their Properties 

In this chapter we have described eight agglomerative methods: group 
average linkage, single linkage, complete linkage, centroid sorting, Ward’s 
method, weighted average linkage, Gower’s method, and the flexible strat- 
egy. These methods are usually considered together because they all fit into 
the Lance-Williams formalism (32) and can therefore easily be imple- 
mented with the same computer program. The user of such a program has 
to face a perplexing multitude of methods to choose from (also because the 
parameter a of the flexible strategy may be selected arbitrarily). 

Of course, there is no single “best” clustering procedure, and some 
methods will work better for a particular application than others, as was 
illustrated by Dubes and Jain (1976). For instance, a user expecting 
long-shaped clusters will apply single linkage or the flexible strategy with 
small a, but when one searches for compact clusters, of which no two 
objects are far apart, one will run complete linkage or the flexible strategy 
with large a. Most often people are looking for roughly spherical clusters, 
in which case they will use one of the other methods. It is also possible to 
compare the results of different algorithms on the same data (Fowlkes and 
Mallows, 1983). 

A good understanding of the properties of these algorithms is important 
because to a certain extent they impose their own structure on the data (this 
is especially true for the space-contracting and space-dilating methods). 
Jardine and Sibson (1968, 1971) and Sibson (1970, 1971) introduced some 
mathematical conditions in an axiomatic framework. For instance, they 
required that permutation of the objects or multiplication with a constant 
scale factor should not change the clustering in an essential way. Taken 
together, their axioms are only satisfied by the single linkage method. The 
crucial axiom seems to be the restriction to classifications that are (in a 
certain mathematical sense) continuous functions of the data. Several work- 
ers (Cormack 1971, 1980; Gower 1971b) argue that this continuity condi- 
tion is too severe. [A similar point was made by Rousseeuw (1983a, Remark 
2) showing that the only continuous afiine equivariant central point of a 
cluster is its centroid, notwithstanding the sensitivity to outliers noted in 
Section 5.3 of Chapter 2.1 A more versatile approach is due to Fisher and 
Van Ness (1971). They made up a list of useful properties one might be 
interested in having and then verified which clustering techniques satisfy 
these (so-called admissibility) conditions. For instance, the result of a 
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clustering technique is image admissible if the data cannot be clustered in 
another way (in which each cluster has the same number of objects as in the 
original clustering) that is uniformly better (in the sense that within-cluster 
dissimilarities are not larger than before and between-cluster dissimilarities 
are not smaller, with strict improvement for at least one dissimilarity). 
Cluster omission admissibility means that upon omitting a cluster and 
restarting the procedure, the remaining clusters will again be found. 
Van Ness (1973) extended this work by investigating more clustering 
algorithms and adding two admissibility properties. It turns out that single 
linkage satisfies the largest number of conditions. 

At this point, we feel we should say something about the “optimality” of 
single linkage. Because it is the oldest and most simple method, it has 
gathered the largest collection of mathematical properties. This situation 
resembles the position of the least squares estimator in regression, which 
was also the oldest technique and the easiest one to compute. Afterward, 
many mathematicians produced nice conditions and optimality criteria 
especially tailored to suit the least squares estimator. Some of these justifi- 
cations were plainly circular, such as the use of quadratic loss functions or 
the argument that least squares is optimal under the Gaussian distribution; 
indeed, Gauss himself constructed the distribution carrying his name in 
order to fit the least squares estimator (Gauss, 1821). Even now that the 
dangers of the least squares estimator are becoming well known, especially 
its extreme sensitivity to outliers, many people still hang on to its nice 
mathematical properties (although robust methods are available; see 
Rousseeuw and Leroy, 1987). 

The same kind of self-justification mechanism has been going on for the 
single linkage method. Many criteria have been invented to make single 
linkage come out best. In our opinion, its most useful property (shared with 
complete linkage and some more recent techniques, such as nearest 
q-neighbors) is that monotone transformations on the dissimilarities do not 
change the clustering, which is important for ordinal dissimilarities. How- 
ever, many other criteria have been devised (which do not take the negative 
aspects of single linkage into account, such as the chaining effect) in order 
to recommend single linkage in all situations. For instance, the axioms of 
Jardine and Sibson (1971), taken together, are only satisfied by the single 
linkage method. The same thing has been done over and over again for the 
least squares estimator, the real advantage of which was its algorithmic 
simplicity (the estimate can be obtained explicitly), making it the only 
computationally feasible method in the precomputer age. Similarly, the 
simplicity of single linkage has made it possible to construct very efficient 
algorithms (Sibson, 1973) that can technically run on large data sets. 
Ironically, many people have therefore recommended single linkage for 
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large data sets, when the very nature of the method makes it inappropriate 
because the clusters then tend to stick to each other due to the building of 
chains connecting them. 

To show that the mathematical respectability of a method depends on 
who is writing down the criteria, we shall in this subsection consider a set of 
three simple conditions leading to the selection of the group average 
method among the eight techniques considered, following Rousseeuw (1985). 

The first condition is that the dissimilarity between merging clusters be 
monotone. We already saw in Section 1 that this condition is necessary for 
us to be able to represent the clustering graphically, because we can then 
talk about the level of a merger. For group average linkage we saw in 
Section 4.1 that this condition is satisfied. We proved this by formula (11) 
which followed from the update equation (10). Let us now consider more 
general agglomerative procedures defined by the Lance-Williams update 
equation (32). It is well known that the resulting dissimilarity D is mono- 
tone whenever aA > 0, aB > 0, y = 0, and (aA + a,, + & > 1. To see this, 
we merely have to repeat the reasoning involving formula (11): 

These constraints on aA, aB, 8, and y hold for group average linkage, 
Ward’s method, weighted average linkage, and the flexible strategy. The 
constraint y = 0 does not hold for single linkage or complete linkage, but 
for these methods the monotonicity follows from 

d (R ,Q)  = min{d(A,Q),d(B,Q)} > min{d,d} = d  

and 

The constraint (aA + aB + 8 )  2 1 does not hold for centroid sorting nor 
for Gower’s method, and for these cases counterexamples are easily con- 
structed. Hence, graphical representations of these methods may be very 
misleading. [In a dendrogram, exceptions to the monotonicity lead to 
so-called reuersals discussed by Anderberg (1973).] We conclude that only 
centroid sorting and Gower’s method do not satisfy the first condition. 

For the second condition, we require that the dissimilarities between 
clusters be unambiguour. In particular, we do not want contradictions as in 
the case of weighted average linkage applied to (27), where two equivalent 
choices lead to different dissimilarities between the same clusters. Also 
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Gower’s method and the flexible strategy suffer from this defect. On the 
other hand, there is no problem for the group average rule, single linkage, 
and complete linkage, because for them the dissimilarity between two 
clusters is defined explicitly in terms of the original interobject dissimilari- 
ties, by (9, (12), and (14). The same can be said about centroid sorting and 
Ward’s method when the objects are characterized by interval measure- 
ments, that is, when they can be described by points in some Euclidean 
space, because then we only have to compute the Euclidean distance 
between cluster centroids. Therefore, only weighted average linkage, Gower’s 
method, and the flexible strategy do not satisfy the second condition. 

The third condition imposes that the dissimilarities between clusters be 
statistically consistent. In sampling situations, we want the dissimilarity 
between groups to be meaningful when the sample becomes larger. For 
instance, consider a one-, two-, or multidimensional Euclidean space. Take 
two statistical distributions F and G on this space, and sample a large 
number of points from both. When the two densities are fairly well-sep- 
arated, two clusters will be visible in the resulting data set. What does the 
dissimilarity between these samples tend to, when the number of observa- 
tions increases? Clearly, there is no point in considering methods that were 
already excluded by the second condition. On the other hand, the centroid 
method does satisfy the third condition, because the dissimilarity (20) tends 
to the Euclidean distance between the means of the underlying distribu- 
tions. In mathematical notation, the limit is 

For the group average method the limit is also meaningful because we 
obtain 

(Note that neither limiting formula is a distance in the strict sense. Also 
note that the average dissimilarity of points to their medoids, which is the 
objective to be minimized in Chapter 2, is statistically consistent as well. 
Therefore, average dissimilarities were used again in Chapter 3 for cluster- 
ing large data sets.) However, Ward’s method runs into trouble because the 
factor IRI IQI/(IRI + lQl) in formula (22) makes the dissimilarity blow up 
to infinity. (Indeed, in many real data sets we have noticed that the final 
level of Ward’s clustering was much larger than the largest dissimilarity 
between any two objects.) The dissimilarity (12) of single linkage will tend 
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to 0: The more points you draw from two strictly positive densities, the 
closer will be their nearest neighbors. For any two such densities, their 
limiting dissimilarity becomes 0. Complete linkage (14) suffers from the 
opposite defect: The more points you draw, the more their furthest neigh- 
bors will be apart. Like Ward‘s method, complete linkage will also lead to 
an infinite limiting dissimilarity. Consequently, only group average linkage 
and centroid sorting satisfy the third condition. Probably some people will 
say that this condition is too severe. However, we feel that for a statistician 
it is perfectly natural to expect that more observations yield more accurate 
results, or a sharper image of what is going on, instead of something 
completely blurred. In our opinion the third condition is not strong at all, 
because it only concerns the dissimilarity between groups known in advance 
and does not even ask whether the “right” groups were actually uncovered 
by the algorithm. In the case of single linkage, often the “right” groups are 
not found because large samples lead to chains of intermediate objects 
connecting one cluster to another. The question of consistency of the 
clustering itself was addressed by Degens and Federkiel (1978) who found 
that complete linkage is not consistent in one dimension. 

Combining all three conditions, only the group average method remains. 
Of course, we do not claim that group average is the only reasonable 
agglomerative clustering method. Nevertheless, we do think that group 
average linkage is a good technique which performs well in practice. We 
also like it because it is easy to understand and to explain, and can be used 
on data that are not restricted to Euclidean distances. This is why we only 
implemented the group average method in AGNES. For similar reasons, 
average dissimilarities are used in many other parts of this book. 

Another way to compare the various clustering methods is by means of 
simulation studies. The general idea is to generate data with known struc- 
ture and then to see if the clustering techniques can recover it. However, 
this leads to a similar problem as in the case of mathematical conditions, 
because generating different types of data will make different clustering 
methods look best. For instance, when spherical multivariate normal distri- 
butions are used, Ward’s method is excellent (Kuiper and Fisher, 1975), 
which is only natural because this method is based on a sum of squares 
criterion. Similar results were obtained by Blashfield (1976) and Bayne et al. 
(1980). However, it must be noted that Ward’s method only performs well if 
an equal number of objects is drawn from each population and that it has 
difficulties with clusters of unequal diameters. Moreover, Everitt (1977) 
showed that Ward’s method often leads to misclassifications when the 
clusters are distinctly ellipsoidal rather than spherical, that is, when the 
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variables are correlated within a cluster. On the other hand, Cunningham 
and Ogilvie (1972) considered a wide variety of sampling situations and 
clustering methods, and found that group average linkage was usually the 
most effective technique. Also Sneath (1966) and Milligan and Isaac (1980) 
concluded that group average linkage ranked first. It appears that this 
method is suitable for many situations and possesses a certain robustness 
with respect to slight distortions. Virtually all authors agreed that single 
linkage was least successful in their studies. 

5.3 Graphical Displays 

There are many ways to represent the result of a hierarchical clustering 
algorithm graphically. After applying group average linkage to the data of 
matrix (4) we first constructed Figure 3, which visualizes the order in which 
the clusters are assembled. Because the dissimilarity between merging 
clusters turns out to be monotone for this clustering method (a fact we 
proved in Section 4.1), it was possible to replace Figure 3 by Figure 4, 
which contains all the details of the amalgamation process. In Section 2.2 
we explained how all this information can be stored in just two sequences 
of numbers, the one containing the final ordering of the objects (array 
NER) and the other consisting of the levels at which the clusters are merged 
(array BAN). For practical reasons, we decided to use the banner (Figure 5 )  
instead of Figure 4, because the production of a banner requires no 
sophisticated plotting machinery, but merely a line printer, and it can 
therefore be implemented in portable programs. 

Let us now describe the historical origin of the banner and its relation to 
the icicle plot. Basically, there are two roots, the first of them being the 
display proposed by Ward (1963). Figure 13 shows a Ward-type display 
describing the same hierarchy as in Figures 3, 4, and 5. 

Unlike the banner, Figure 13 is to be read from right to left, at least if 
one wants to follow the order in which the calculations have taken place. 
The number of groups is given from left to right, whereas the number of the 
amalgamation step would go from right to left. In Ward's display, the 
dotted arrows indicate separation, and white space between objects stands 
for linking: Therefore, white space has opposite meanings in this display 
and the banner. The labels of the objects are repeated within the display, 
even when the object is the only element of a cluster (in which case said 
label is suppressed in the banner). The length of the dotted arrows depends 
on the number of steps and not on the actual level of the merger, which is 
listed at the bottom of the figure. [Actually, Ward himself did not enter the 
level but the total error sum of squares ESS given by formula (23), which is 
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7.83 4.5 3.0 2.0 0.0 

Number o f  GrouPs 

ObJ ec t 

basic to the method he was proposing; the dissimilarity between merging 
clusters essentially appears as the sequence of first differences AESS given 
by (24), which he lists too.] 

The second root of both banner and icicle plot is Johnson’s (1967) 
display, which we have constructed in Figure 14 for the same data. 

This display is read from top to bottom. The dissimilarity between 
merging clusters is given in the leftmost column, for each computation step. 
(In Johnson’s application a coefficient of similarity was used, which de- 
creases from top to bottom.) Again, the scale of the diagram is in terms of 
the number of the amalgamation step, in this case going from 0 to 4, and 
not in terms of the actual level. The object labels are printed only once, at 
the top of the picture. The dots in the main part of the diagram denote 
objects that are still unlinked at a certain stage, but as soon as the object 
joins at least one other object it is depicted by the letter X. Also the links 

ObJects 

Ulsslmilarl t y  

a b c d e  

0.00 . I . . .  

2.00 x x x  . . . 
Figure 14 A Johnson-type display of the 3.00 x x x  * x x x  
group average linkage clustering of the data 4.50 x x x  x x x x x  
of matrix (4). 7. a3 x x x x x x x x x  
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A B C D E  
A B C D E  
A B C D E  

4 7,83 A = B = C = D = E  
3 4,50 A = B  C = D = E  
2 3.00 A = B D = E Figure 15 Icicle plot of the group average linkage 
1 2,OO & = & clustering of the data of matrix (4). 

between clusters are denoted by X ' s ,  whereas white space now separates 
clusters. Johnson's display is contained in the output of HICLUS, in the 
MDS( X) series of multidimensional scaling programs (Davies and Coxon, 
1983). Quite similar displays were also used by Wirth, Estabrook, and 
Rogers (1966) and Hartigan (1975, Tables 8.2, 8.6, and 8.7). 

The banner is closely related to the icicle plot of Kruskal and Landwehr 
(1983), displayed in Figure 15 for the same data set. Its name stems from its 
resemblance to a row of icicles hanging from the eaves. This display is to be 
read from bottom to top. The leftmost column contains the number of the 
amalgamation step and the second column lists the level of each merger. 
Again the diagram is scaled by the number of the step and not by the level. 
(However, Kruskal and Landwehr also consider a variant that is regularly 
spaced in terms of the logurithm of the level.) The object labels can be read 
off vertically above the plot as well as in it, where they are separated by the 
character "&". The idea to reproduce the labels within the plot stems from 
Ward's display, whereas the deletion of labels corresponding to singleton 
clusters was inherited from Johnson's diagram. Linking is now denoted 
with an equal sign and white space indicates nonlinking. 

The resemblance between the icicle plot and the banner is very large. The 
different characters for linking clusters ( *  instead of =) and for separating 
labels (+ instead of &) are only a matter of taste. However, there are two 
differences. First, the banner lists the objects vertically, whereas the icicle 
plot lists them horizontally. Therefore, the banner can always be printed as 
a whole, whatever the size of the data set, whereas the icicle plot is limited 
by the width of the printing paper. As a consequence, except for small data 
sets the icicle plot must be printed in sections, which makes the program 
more complicated, and then the user has to tape or paste the parts together. 
(It recently came to our attention that the package SPSS-X also provides a 
vertical version of the icicle plot.) The second and more essential difference 
is the scaling. The banner uses the actual level of each merger, which to us 
seems more natural (for instance, imagine what would happen to Figures 9, 
10, and 11 if the number of the step were used). This provides a better 
impression of relative magnitudes of dissimilarities (at least with a space- 
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conserving method like group average linkage). As an additional advantage, 
the average width of the banner gives a quick impression of the cluster 
quality of the data, which can be summarized by the agglomerative coeffi- 
cient AC. All this holds for divisive clustering too, only then the banner 
floats in the opposite direction. 

Most users of agglomerative clustering have been displaying their results 
by means of dendrograms. In Figure 16 two types of dendrograms are 
illustrated, but many other variants exist. Type (a) is probably most 
familiar and descends clearly from the tree diagram in Figure 4. This 
dendrogram is read from left to right, and the labels are listed only once in 
the column on the left. The horizontal scale is proportional to the actual 
level of the mergers. Type (b) is very similar, but the vertical line specifying 
each cluster now extends over all its objects: For instance, the vertical line 
at level 4.5 extends over c, d, and e (see Kruskal and Landwehr, 1983). 
Some people feel that a dendrogram is more aesthetically pleasing than a 

C bv 
d 
.) 

0.0 2.0 3.0 4.5 7.03 

(4 

a 

b 

C 

d 

c 
d 

7.03 
w 

0.0 2.0 3.0 4. 5 

(b) 

Figure 16 Two types of dendrogram. applied to the group average linkage clustering of the 
data of matrix (4). 
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banner, but we think that the latter display is more practical in actual data 
analysis because the labels are within the plot and because-at least to us 
-it gives a better overall insight into cluster structure and data quality. 

The dendrograms in Figure 16 proceed from left to right, but often the 
picture is rotated 90’ so it has to be read from bottom to top. In many 
cases the axis containing the levels is omitted. 

Dendrograms can be prepared in many ways. Figure 16 was made by 
hand, but dendrograms very much like these can be produced by automatic 
plotting equipment. However, this depends strongly on the computer sys- 
tem at hand. Therefore, several programs are available which display 
dendrograms on a line printer, making them look considerably less beauti- 
ful. Program BMDP2M (Engelman, 1977) prints dendrograms that are to 
be read from top to bottom, making use of the characters I, - , and + . This 
limits the number of objects by the width of the paper, making it necessary 
to print the dendrogram in several sections that must be pasted together. 
BMDPZM can also produce a skewed dendrogram if desired. (It also 
provides a shaded dissimilarity matrix, as described in Section 5.6 of 
Chapter 2). On the other hand, the program of Anderberg (1973) prints 
dendrograms in the same direction as Figure 16, only making use of the 
characters - and I. Therefore, the dendrograms are always printed as a 
whole. Whereas BMDP scales its dendrograms by the number of the 
amalgamation step, Anderberg uses the actual level of each merger. Because 
a line printer offers only a discrete set of possibilities, Anderberg starts by 
segmenting the dissimilarities into 25 equally spaced classes between the 
smallest and the largest. (In the banner, we used 75 classes between 0 and 
the largest dissimilarity.) The package CLUSTAN (Wishart, 1978) provides 
similar horizontal dendrograms which are scaled by the actual level, starting 
from 0. Other CLUSTAN options include vertical dendrograms resembling 
those of BMDP2M and horizontal tables in which the tree may be sketched 
by hand. 

Recently, Kent (1984) proposed a display with some characteristics of 
both dendrograms and icicle-type diagrams. Figure 17 illustrates this dis- 
play for the data of matrix (4). At the left we find the labels and the 
numbers of the objects. The diagram is scaled by the number of clusters, as 
is Ward’s display (Figure 13). To understand the main part of Kent’s 
display, we must read our previous diagrams in the “wrong” direction, that 
is, Figures 3, 4, 5, and 16 from right to left, Figure 13 from left to right, 
Figure 14 from bottom to top, and Figure 15 from top to bottom. We first 
look at the final stage of the clustering, when all objects have come together. 
We call this cluster 1, and write “1” in a vertical line extending over all 
objects. The last merger was of clusters ( a ,  b} and ( c ,  d, e} ,  so Kent calls 
( c ,  d, e }  cluster 2 and puts “2” in a vertical line next to CCC, DDD, and 
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LABEL No 1 2 3 4 5  

AAA 1 1 

BEE 2 1 5 

ccc 3 1 2  

DDD 4 1 2 3  

EEE 5 1 2 3 4  

Figure 17 A Kent-type display of the group average linkage clustering of the data of 
matrix (4). 

EEE. The merger before that one was of { c }  and { d, e},  so Kent calls 
(d, e }  cluster 3 and writes “3” next to DDD and EEE. Before that, {d} 
and { e }  came together, so singleton { e }  is called cluster 4. In the very first 
merger { a } and { b} were joined, so { b} is called cluster 5 .  Kent’s display 
allows a backward reconstruction of the clustering. Its main advantage is 
that it takes less space than the other displays. However, we think it is 
needlessly compressed (a simple printout of the numbers in the arrays NER 
and BAN contains even more information in a still smaller space). Kruskal 
and Landwehr (1984) pointed out the main weakness of Kent’s display: 
Because at each divisive step only the lower cluster is numbered, half of the 
clusters are not displayed at all and may easily be forgotten by the data 
analyst. The vertical lines of digits correspond to some of the vertical lines 
of Figure 16(b), but not to all of them: In our example, there is no 
counterpart to the vertical line next to cluster { a ,  b}. 

All the displays considered until now (Figures 3 to 5 and 13 to 17) can 
be constructed from the two arrays NER and BAN in program AGNES. 
Indeed, NER lists the final ordering of the objects, which is the same for all 
displays, and BAN shows the level of each merger (and hence the order in 
which the mergers take place, up to some arbitrariness in the case of equal 
levels). Therefore, it is possible to replace the subroutine BANAG by a 
different subroutine which plots any of the other displays. 

There exists still another type of display, for which more information 
about the original data is needed. In Figure 18, the group average linkage 
clustering of the data in Table 1 is described by a loop plot. Here the 
original data is two-dimensional, so it can easily be plotted as in Figure 1. 
The loop plot can then be formed by adding nested loops to this picture 
which indicate the clusters that were obtained. The resulting diagram is 
pretty and instructive, especially when the loops are smooth. In more 
complicated situations, which are no longer two-dimensional, loop plots 
may still be used (Shepard, 1974). In general, one has to place the object 
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- 
1 2 3 4 5 6 7 I 

Figure 18 Loop plot of the group average linkage clustering of the data of Table 1 

labels in suitable positions in the plane so that the loops are well-shaped 
and do not intersect; this could be done by trial and error. When the data 
consist of points in higher dimensions, one could try plotting the first two 
principal coordinates, perhaps adjusting the position of the object labels 
manually in order to permit well-formed loops. In case of general dissimi- 
larity matrices such as matrix (4), multidimensional scaling techniques can 
be used. Bertin (1967, p. 270) also experimented with three-dimensional 
versions of loop plots. 

We think that loop plots are very useful tools for interpreting the results 
of cluster analysis. The main problem is in obtaining them; to date they are 
only made by hand. The most difficult part is to find a suitable configura- 
tion of points in the plane, which allows the drawing of nice loops. 
Especially when the number of cases increases, this can become a cumber- 
some task. However, i t  is hoped that the current boom in interactive 
computer graphics will provide efficient ways to construct loop plots. 
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A similar two-dimensional display was proposed by Fowlkes et al. 
(1976). Starting from a dendrogram, some important clusters are selected 
by means of certain criteria. These clusters are then represented by circles 
that are connected by a series of horizontal and vertical lines. 

Other people have used agglomerative clustering techniques to construct 
general-purpose graphical displays for multivariate data. Kleiner and 
Hartigan (1981) apply a hierarchical clustering algorithm to the p variables 
and then represent each object by a tree or a castle. Kent (1985) uses the 
minimum spanning tree (which corresponds to single linkage clustering) to 
construct a new coordinate axis against which the objects are plotted. 

On the other hand, it is also possible to extend the theory of hierarchical 
clustering to allow for overlapping clusters. Diday (1985) introduced so- 
called pyramids as a visual representation of such a clustering. 

EXERCISES AND PROBLEMS 

1. Repeat the group average clustering of (4), but change d(a, b )  from 2.0 
to 0.1. Check that all subsequent levels remain the same as before and 
that Figure 3 is unaltered. 

2. Chandon and Pinson (1981) give the following dissimilarity matrix 
between four mammals: 

Camel Monkey cow Pig 
0 5 .O 5.6 7.2 

4.9 
0 

5 .O 0 4.6 
5.6 4.6 0 
7.2 5.7 4.9 

Camel 
Monkey 
cow 
Pig 

Construct an agglomerative hierarchy on this data set by means of the 
group average clustering method. 

3. Apply the program AGNES to cluster the data concerning the 11 
sciences in Table 6 of Chapter 1. 

4. Use the data in Table 7 of Chapter 1 to examine the effect of a 
noninformative variable on the clustering of objects. First apply AGNES 
to all four variables, and then to the same data without the variable 
“month.” 
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5. Apply AGNES to the data on 47 stars in Table 1 of Chapter 6, without 
standardization and using Euclidean distance. Check whether the re- 
sulting partition with k 5 2 separates the giants from the main se- 
quence stars. 

6. (a) Apply AGNES to the bacteria data in Exercise 1 of Chapter 2. 
Does the clustering into two clusters correspond to the result of 
PAM? 

(b) When a data set consists of two L*-clusters (in the sense of Section 
2.2 of Chapter 2) show that AGNES always recovers these groups. 

7. The critical dissimilarities of successive mergers can be used to define a 
new dissimilarity between objects. This new dissimilarity, denoted by 
u(i, j), is the critical dissimilarity encountered when forming the first 
cluster containing both objects i and j. 
(a) Show that the u(i, j) possess the ultrametric property 

u( i ,  j )  s max{ u(i,  h ) ,  u ( h ,  j ) }  for every i, j, h 

(b) Construct the matrix of dissimilarities u(i ,  j) from the clustering of 
the 12 countries data in Section 3. 

8. Prove the equalities in (13) and (15): 

9. An alternative to the group average method is to replace ( 5 )  by another 
dissimilarity between clusters, defined by 

d ( R ,  Q) = median d ( i ,  j )  
i e R  
i sQ 

where the median is over all pairs of i and j ,  of which there are (RI lQl. 
The median is defined by sorting the d( i ,  j) from smallest to largest. 
When the number of values is odd, the median is the middle value. 
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When their number is even, we define the median as the highest of the 
two middle values. 
(a) Show that the dissimilarity between merging clusters is monotone. 
(b) Show that the dissimilarity between clusters is unambiguous and 

statistically consistent in the sense of Section 5.2. 
(c) Show that monotone transformations on the dissimilarities between 

objects do not change the clustering (and, in fact, the levels of the 
mergers are transformed in the same way). 

10. Another alternative method is based on the dissimilarity 

which is again uniquely defined and symmetric in R and Q. 
(a) Show that this dissimilarity transforms properly under monotone 

transformations of the interobject dissimilarities d( i ,  j). 
(b) As opposed to the group average dissimilarity (9, now the dissimi- 

larity of a cluster to itself is 0. 
(c) Assuming that d( i ,  j) = 0 implies i =j, it even follows that 

d ( R , Q )  = 0 implies R = Q 

which is not true for any other method we considered, not even for 
single linkage or the centroid method. 



C H A P T E R 6  

Divisive Analysis 
(Program DIANA) 

1 SHORT DESCRIPTION OF THE METHOD 

Divisive clustering techniques are hierarchical in nature. Their main differ- 
ence with the agglomerative methods of Chapter 5 is that they proceed in 
the inverse order. At each step, a divisive method splits up a cluster into 
two smaller ones, until finally all clusters contain only a single element. 
This means that the hierarchy is again built in n - 1 steps when the data 
set contains n objects. 

In the literature, divisive methods have been largely ignored. (In fact, 
when people talk about hierarchical clustering, they often mean agglomera- 
tive clustering.) Most books on cluster analysis pay little attention to 
divisive techniques, and many software packages do not include divisive 
algorithms at all. The main reason for this appears to be the computational 
aspect. In the first step of an agglomerative algorithm all possible fusions of 
two objects are considered, leading to 

n(n - 1) 

2 
c,' = 

combinations. This number grows quadratically with n, so it does become 
large, but the computations are still feasible. A divisive algorithm based on 
the same principle would start by considering all divisions of the data set 
iqto two nonempty subsets, which amounts to 

Finding Groups in Data: An Introduction to Cluster Analysis 
Leonard Kaufman and Peter J. Rousseeuw 

Copyright 01990,2005 by John Wiley & Sons, Inc 
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possibilities. The latter number grows exponentially fast and soon exceeds 
the current estimate of the number of atoms in the universe. Even for 
medium-sized data sets, such a complete enumeration approach is computa- 
tionally prohibitive. 

Nevertheless, it is possible to construct divisive methods that do not 
consider all divisions, most of which would be totally inappropriate any- 
way. In this chapter we will use an algorithm based on the proposal of 
Macnaughton-Smith et al. (1964). This algorithm can be applied to exactly 
the same types of data as in Chapters 2, 4, and 5. All data sets that can be 
clustered by means of the agglomerative nesting approach of the preceding 
chapter can also be analyzed in a divisive way. In most examples the 
computation time is merely increased by a factor of 2, so the algorithm is 
still faster than the nonhierarchical methods of Chapters 2 and 4. 
To illustrate the divisive analysis algorithm, we cluster the same example 

that we used in Section 1 of Chapter 5 to explain the agglomerative 
approach. The data consist of a matrix of dissimilarities 

a b c d  

; [ 0.0 
2.0 6.0 10.0 9.0" ] 

2.0 0.0 5.0 9.0 8.0 
c 6.0 5.0 0.0 4.0 5.0 
d 10.0 9.0 4.0 0.0 3.0 
e 9.0 8.0 5.0 3.0 0.0 

between the objects a,  by c, d ,  and e. Being divisive, the algorithm assumes 
that the objects initially form a single cluster { a,  b, c, d ,  e } .  

In the first step, the algorithm has to split up the data set into two 
clusters. This is not done by considering all possible divisions, but rather by 
means of a kind of iterative procedure. The mechanism somewhat resem- 
bles the way a political party might split up due to inner conflicts: First the 
most discontented member leaves the party and starts a new one, and then 
some others follow him until a kind of equilibrium is attained. So we first 
need to know which member disagrees most with the others. Translated 
back to the algorithm, we look for the object that is most dissimilar to all 
other objects. To make this precise, we have to define the dissimilarity 
between an object and a group of objects. As in Chapters 2, 3, and 5 ,  we 
use the auerage dissimilarity for this purpose, so we look for the object for 
which the average dissimilarity to all other objects is largest. (When there 
are two such objects, we have to pick one at random.) In our example, we 
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obtain 

Object Average Dissimilarity to the Other Objects 
~ 

a 
b 
C 

d 
e 

(2.0 + 6.0 + 10.0 + 9.0)/4 = 6.75 
(2.0 + 5.0 + 9.0 + 8.0)/4 = 6.00 
(6.0 + 5.0 + 4.0 + 5.0)/4 = 5.00 

(10.0 + 9.0 + 4.0 + 3.0)/4 = 6.50 
(9.0 + 8.0 + 5.0 + 3.0)/4 = 6.25 

so object a is chosen to initiate the so-called splinter group. At this stage we 
have the groups { a }  and { b, c, d, e } ,  but we don’t stop here. For each 
object of the larger group we compute the average dissimilarity with the 
remaining objects, and compare it to the average dissimilarity with the 
objects of the splinter group: 

Average Dissimilarity 
Average Dissimilarity to Objects of 

Object to Remaining Objects Splinter Group Difference 

b (5.0 + 9.0 + 8.0)/3 = 7.33 2.00 5.33 
c (5.0 + 4.0 + 5.0)/3 t: 4.67 6.00 - 1.33 
d (9.0 + 4.0 + 3.0)/3 = 5.33 10.00 - 4.67 
e (8.0 + 5.0 + 3.0)/3 = 5.33 9.00 - 3.67 

On the political scene, some party members are secretly asking themselves 
whether they disagree more (on average) with the people remaining in the 
old party than with the splinter group. The politician for whom this 
difference is largest will be the next to move. In our example the difference 
is largest for object b, which lies much further from the remaining objects 
than from the splinter group. Therefore object b changes sides, so the new 
splinter group is { a, b} and the remaining group becomes { c,  d, e 1. When 
we repeat the computations we find 

Average Dissimilarity 
Average Dissimilarity to Objects of 

Object to Remaining Objects Splinter Group Difference 

C (4.0 + 5.0)/2 = 4.50 (6.0 + 5.0)/2 = 5.50 -1.00 
d (4.0 + 3.0)/2 = 3.50 (10.0 + 9.0)/2 = 9.50 -6.00 
e (5.0 + 3.0)/2 = 4.00 (9.0 + 8.0)/2 = 8.50 -4.50 
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At this stage, all the differences have become negative. Returning to our 
political analogy, the remaining party members have more quarrels with the 
splinter group than with each other. Therefore, no further moves are made. 
The process stops and we have completed the first divisive step, which splits 
the data into the clusters { a ,  b} and { c, d, e} .  

In the next step we divide the biggest cluster, that is, the cluster with the 
largest diameter. (As before, the diameter of a cluster is just the largest 
dissimilarity between two of its objects.) The diameter of {a, b} is 2.0, and 
for { c, d, e )  we find 5.0. Therefore, the above procedure will be applied to 
the cluster { c, d, e},  with dissimilarity matrix 

To find the rebel to start the splinter group with, we compute 

Average Dissimilarity 
Object to the Other Objects 

~ ~~ ~~ 

C 

d 
e 

(4.0 + 5.0)/2 = 4.50 
(4.0 + 3.0)/2 = 3.50 
(5.0 + 3.0)/2 = 4.00 

and obtain object c. Afterward, we find 

Average Dissimilarity 
Average Dissimilarity to Objects of 

Object to Remaining Objects Splinter Group Difference 

d 3.0 
e 3.0 

4.00 - 1.00 
5 .oo - 2.00 

and the process stops because all differences are negative. Therefore, our 
second step divides { c, d, e }  into { c }  and { d, e} ,  so we are left with the 
clusters { a ,  b) ,  { c},  and { d, e} .  The cluster { c }  is called a singleton 
because it contains only one object. 

In the third step we must decide which of these clusters to split. 
Obviously, the singleton { c }  cannot be divided any further (also note that 
its diameter is 0). The cluster { a ,  b} has diameter 2 and that of { d, e )  is 3. 
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Therefore, we have to divide the cluster { d, e} with dissimilarity matrix 

257 

d 
d [ 0.0 3.:] 
e 3.0 0.0 

To start the splinter group, we calculate very little: 

Average Dissimilarity 
Object to the Other Objects 

Becau the 

d 3.00 
e 3.00 

rerage dissimilarities are the same, we may choo-e either 
object to begin the splinter group with. Let us choose object d, so we obtain 
{ d } and { e}. It is clear that object e, being the last remnant, cannot join 
the splinter group. Therefore, step 3 divides { d, e} into the singletons { d } 
and { e}. (Note that the same result would be obtained if we had picked 
object e to start the splinter group with.) Step 3 leaves us with four clusters: 
( a ,  b ) ,  { c ) ,  { d } ,  and { e l .  

In the fourth step we have to split up the cluster { a ,  b ) ,  because all the 
others contain only a single object. As in the third step, { a ,  b }  is divided 
into the singletons { a }  and { b}. After this fourth step we only have 
singleton clusters { a } ,  { b}, { c} ,  { d }, and { e) ,  so the algorithm stops. 

The resulting hierarchy may be displayed as in Figure 1, in which the 
horizontal axis contains the step number. At step 0 there is still a single 

> 
s t e p 0  s t e p 1  s t e p 2  s t e p 3  s t e p 4  s t e p  

1 c l u s t e r  2 c l u s t e r s  3c lus ters  Lclusters S c l u s t e r s  

Figure 1 Graphical display of a divisive hierarchy. 
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I I I I 
I I 

.I 
1 

d 10.0 5.0 3.0 2.0 0.0 

Figure 2 Diagram showing the same hierarchy as in Figure 1, but also displaying the level of 
each division. 

cluster with all the objects, while at step 4 all objects are apart (in this 
example the objects retain their original ranking, but of course this need not 
be true in general). 

It is possible to construct a more informative version of this diagram. 
Rather than just displaying the order in which the divisions take place, we 
could also indicate the diameter of the clusters involved, because we know 
that the bigger clusters are divided first. For this purpose, in Figure 2 each 
cluster is plotted versus its diameter. This diameter is a monotone function 
of the step number, because when a cluster has been split into two 
subclusters, neither can have a larger diameter than the original one. Also 
note that everything we have done only depends on the dissimilarity matrix, 
so the data need not consist of measurements. (When they do consist of 
measurements, we begin by computing dissimilarities, as will be illustrated 
in some examples.) 

Instead of Figure 2, which was drawn by hand, it is possible to construct 
a display by means of an ordinary line printer. Figure 3 shows a banner 
(Rousseeuw, 1986) that contains the same information as Figure 2. At the 
extreme left (where the flagstaff can be imagined) all objects still stick 
together and the diameter is 10.0. The first split produces two clusters. The 

I I I I 

I I I I 
10.0 5.0 3.0 2.0 0.0 

Figure 3 A divisive banner containing the same information as Figure 2. 
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first cluster is ( a ,  b}, the objects of which are denoted by the labels AAA 
and BBB, and linked by a row of asterisks. The second cluster is ( c ,  d, e } .  
Next, (c, d, e }  is split (at the level 5.0) into ( c )  and { d, e} .  Note that the 
label CCC is no longer continued after that, because { c }  is a singleton. The 
third step divides (d,  e }  into { d } and ( e }  at the level 3.0 and the last step 
splits ( a ,  b}  at the level 2.0. 

Note that the representations in Figures 1, 2, and 3 are very similar to 
those of an agglomerative hierarchy, described in Section 1 of Chapter 5 .  
The main difference is the direction of the algorithm, so the present displays 
look like mirror images of the previous ones. Also their interpretations are 
alike. For instance, one may again draw a vertical line through the banner 
to find the clustering corresponding to a certain level. However, the divisive 
algorithm is not the exact counterpart of the agglomerative one, so in 
general the resulting hierarchies do not coincide. 

2 HOW TO USE THE PROGRAM DIANA 

To apply this algorithm we use the program DIANA (from DIvisive 
ANAlysis), which was combined with the program AGNES described in 
Chapter 5 .  Both programs accept the same data sets. To run DIANA, we 
have to insert the floppy with the file TWINS.EXE in drive A and type 

A:TWINS 

which yields the screen 

I HIERARCHICAL CLUSTERING I 
DO YOU WANT AGGLOMERATIVE NESTING (AGNES) 
OR DIVISIVE ANALYSIS (DIANA) ? 
PLEASE ENTER YOUR CHOICE (A OR D) : - D 

By typing D we select the divisive algorithm. After that, the remaining 
input is exactly the same as for AGNES. 

When we apply DIANA to the example treated in Section 1, we obtain 
the output shown in Figure 4. The first part is identical to the correspond- 
ing output of AGNES (Figure 6 of Chapter 9, but the cluster results and 
the banner are different. The program begins by telling us that in the first 
step the five objects are divided into two objects and three objects. This is 
useful because the first step of a divisive algorithm is very important. 
Indeed, the objects separated in the first step will stay apart throughout the 
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....................... 
8 . 
' DIVISIVE ANALYSIS : ....................... 

TITLE : Dissimilarities between five objects 
DATA SPECIFICATIONS AND CHOSEN OPTIONS ____________________-- - - -_- - - - -_- - - - - -  
THERE ARE 5 OBJECTS 
LABELS OF OBJECTS ARE READ 
INPUT OF DISSIMILARITIES 
LARGE OUTPUT IS WANTED 
GRAPHICAL OUTPUT IS WANTED (BANNER) 
THE DISSIMILARITIES WILL BE READ IN FREE FORMAT 
YOUR DATA RESIDE ON FILE : a:exampla.dat 

AAA 
BBB 2 . 0 0  ccc 6 . 0 0  5 . 0 0  
DDD 10.00 9.00 4 . 0 0  
EEE 9.00 8 . 0 0  5.00 3 . 0 0  

CLUSTER RESULTS --------_-__--- 
AT THE FIRST STEP THE 5 OBJECTS ARE DIVIDED INTO 

2 OBJECTS AND 3 OBJECTS 

THE FINAL ORDERING OF THE OBJECTS IS 
1 2 3 4 5 

THE DIAMETERS OF THE CLUSTERS ARE 
2 .000  10 .000  5 . 0 0 0  3 . 0 0 0  

............ * s 
* BANNER : ............ 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
o 4 4 d d a i i 6 6 ~ S i i i i 4 3 i i z i i o o o  
0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0  

THE ACTUAL DIAMETER OF THIS DATA SET IS 10.0000000000 

THE DIVISIVE COEFFICIENT OF THIS DATA SET IS .70 

THE OUTPUT IS WRITTEN ON FILE : a:sxample.dla 

Figure 4 DIANA output for the example of Section 1. 
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hierarchy, in which both clusters are divided further. We can easily identify 
the clusters found in the initial step because they consist of the first two and 
the last three objects in the “final ordering of the objects” list. The 
diameters of the clusters are listed below this ordering. 

The final ordering and the diameters were already encountered in Figure 
2. In fact, these two sequences of numbers together characterize the whole 
hierarchy. In this example, they are 

1 2  3 4 5  

2.0 10.0 5.0 3.0 

In the bottom row we first look up the largest diameter, 10.0, which stands 

. . . * . . I  l..*lll.t...*... 
* 
* DIVISIVE ANALYSIS : ... tl.....t.....*.**... 

TITLE : Data set of Table 1 of Chapter 5 

DATA SPECIFICATIONS AND CHOSEN OPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THERE ARE 7 OBJECTS 
LABELS OF OBJECTS ARE NOT READ 
INPUT OF MEASUREMENTS 
LARGE OUTPUT IS WANTED 
GRAPHICAL OUTPUT IS WANTED (BANNER) 
THERE ARE 2 VARIABLES IN THE DATA SET 
THE LABELS OF THESE VARIABLES ARE : 
AND 2 OF THEM WILL BE USED IN THE ANALYSIS 

X 

THE MEAS~REMENTS WILL NOT BE STANDARDIZED 
EUCLIDEAN DISTANCE IS USED 
THERE ARE NO MISSING VALUES 
THE MEASUREMENTS WILL BE READ IN FREE FORMAT 
YOUR DATA RESIDE ON FILE : a:seven.dat 

001 
002 4 . 0 3  
003 
004 
005 1 . 4 1  5 . 4 1  5 . 6 6  1 . 5 8  
006 
007 

4 . 2 4  1 . 1 2  

5 . 8 3  1 . 8 0  2 . 0 0  6 . 0 4  7 . 2 1  
5 . 8 6  2 . 5 1  1 . 6 8  5 . 8 4  7 . 2 7  1 . 9 5  

. 7 1  4 . 2 7  4 . 3 0  

CLUSTER RESULTS 

AT THE FIRST STEP THE 7 OBJECTS ARE DIVIDED INTO 

__..__-..-___---- 

3 OBJECTS AND 4 OBJECTS 

THE FINAL ORDERING OF THE OBJECTS IS 
1 4 5 
6 7 

2 

THE DIAMETERS OF THE CLUSTERS ARE 
,707  1 . 5 8 1  7 . 2 6 7  1 . 1 1 8  

2 . 5 1 2  

3 

2 . 0 0 0  

Figure 5 DIANA output for the data in Table 1 of Chapter 5 .  
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between two numbers of the upper row. This means that the whole data set 
will be split at the level 10.0, yielding a cluster with the objects 1 and 2 
(standing to the left of 10.0) and a cluster with the objects 3, 4, and 5 
(standing to the right of 10.0). The second largest diameter is 5.0, indicating 
that (3,4,5} is to be split into (3) and (4,5} at that level. Continuing in 
this way, one can immediately reconstruct Figure 2. 

The last part of the output is the banner that we already saw in Figure 3. 
It looks like the agglomerative banner in the AGNES output, but it floats in 
the opposite direction. Also the scales that surround it are plotted differ- 
ently because they decrease from 1.00 to 0.00. Here, 0.00 indicates a zero 
diameter (corresponding to singletons) and 1.00 stands for the actual 
diameter of the data set (which is printed immediately below the banner). 
Again the overall width of the banner reflects the strength of the clustering: 
A very pronounced structure implies that the diameter of the entire data set 
is much larger than the diameters of the individual clusters, leading to a 
wide banner. As in the case of agglomerative nesting, we may summarize 
the blackness of the banner in a coefficient. For each object i we measure 
the length I( i) of its line in the banner, with respect to the normalized scale. 
Therefore all I ( i )  lie between 0 and 1, so the same holds for the diuisiue 

*****....*I* 
8 * 

BANNER ; 
*.*..**.**.. 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
O 6 6 8 8 8 i i 6 6 6 i i i i i 3 3 i i 2 i i o o o  
0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0  

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
o 4 6 8 8 ~ i i 6 ~ 6 ~ i i i i 3 3 i i ~ i i O o o  
0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0  

THE ACTUAL DIAMETER OF THIS DATA SET IS 7.2672210000 

THE DIVISIVE COEFFICIENT OF THIS DATA SET IS .81 

THE OUTPUT IS WRITTEN ON FILE : a:seven.dia 

Figure 5 (Continued) 
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coeficient (DC) defined by 

1 “  

i - 1  
DC = - I ( i )  (3) 

The DC can be seen as the average width of the divisive banner, so it is the 
counterpart of the agglomerative coefficient (AC) defined in Section 2 of 
Chapter 5. Also the DC does not change when all the original dissimilarities 
are multiplied by a constant factor, nor does it depend on the ordering of 
the objects in the banner [because the I ( i )  only depend on the actual 
hierarchy]. In Figure 4, the DC equals 0.70, which is quite good. 

Of course, DIANA can also deal with data consisting of interval-scaled 
measurements. To illustrate this, we analyze the data Listed in Table 1 of 
Chapter 5. When running DIANA, we specify that there are seven objects 
and two variables, which we decide not to standardize. We also instruct the 
program to compute Euclidean distances. Figure 5 contains the resulting 
output, which again looks very similar to the corresponding AGNES output 
in Figure 7 of Chapter 5. In the first (and most important) step, the data are 
split up into the clusters {1,4,5} and {2,3,6,7},  as could be anticipated 
from the scatterplot (Figure 1 of Chapter 5). The second largest value in the 
“diameters of the clusters” list is 2.512, so {2,3,6,7} is divided into 
{2,3,6}  and (7) in the second step (note that all these diameters are 
dissimilarities between two objects, so they can always be traced back in the 
dissimilarity matrix). Because the diameter of the entire data set (7.267) is 
much larger than those of the clusters, the banner becomes rather wide, 
yielding a DC of 0.81. The ordering of the objects in the banner corre- 
sponds to that in Figure 7 of Chapter 5. This is partly due to the particular 
implementation of AGNES and DIANA, because in all our programs we 
have strived to modify the original ordering as little as possible to enable 
the user to compare the results of different methods. 

3 EXAMPLES 

Let us look at some examples to gain a better insight into the divisive 
approach. Applying DIANA to the 12 countries data in Table 5 of Chapter 
2 yields Figure 6. (The first part of the output is identical to that produced 
by AGNES, so only the second part is shown here.) The first step divides 
the 12 objects into the clusters {BEL, FRA, USA, ISR, BRA, 
ZAI, EGY, IND} and {CHI, CUB, USS,YUG}, which means that the 
Communist countries are split off first. In the second step, the remainder 
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CLUSTER RESULTS _ _ _ _ _ _ _ _ _ _ _ _ - - _  

AT THE FIRST STEP THE 12 OBJECTS ARE DIVIDED INTO 
8 OBJECTS AND 4 OBJECTS 

THE FINAL ORDERING OF THE OBJECTS IS 
1 

12 
10 

6 
5 

11 

THE DIAMETERS OF THE CLUSTERS ARE 
2 . 1 7 0  

3 .750  
s . 080 

2 .500  
4 .670  

9 
7 

3 .920  
8 .170  

8 
3 

2 
4 

6 . 4 2 0  
4 .500  

3 .000  
2 . 6 7 0  

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 6 2 6 4 0  
o 4 6 8 6 8 i i 6 6 ~ s s i i i 6 ~ i i i i i o o o  

THE ACTUAL DIAMETER OF THIS DATA SET IS 8.1700000000 

THE DIVISIVE COEFFICIENT OF THIS DATA SET IS .60 

THE OUTPUT IS WRITTEN ON FILE : a:country.dia 

Figure 6 Output of DIANA for the 12 countries data. 

is divided into (BEL, FRA, USA, ISR), the Western countries, and 
{BRA, ZAI, EGY, IND}, the developing ones. (This may be seen from the 
cluster results or from the banner.) As usual, the most important informa- 
tion is provided by the first few steps of the divisive algorithm. 

This clustering of the 12 countries is very similar to the results we 
obtained in previous chapters by means of PAM, FANNY, and AGNES. 
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l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

0 9 9 E E E 7 7 6 6 6 5 5 4 4 4 3 3 2 2 Z l ! O O O  
0 6 2 E 5 0 6 2 8 4 0 6 2 8 4 0 6 2 E 4 0 6 2 E 4 0  

. . . . . . . . . . . . . . . . . . . . . .  . .  

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

0 9 9 E E E 7 7 6 6 6 5 5 4 4 4 3 3 2 2 2 I l O O O  
0 6 2 8 4 0 6 2 8 4 0 6 2 E 4 0 6 2 E 6 0 6 ) 8 4 0  

O P 9 E E E 7 7 6 6 6 5 5 4 4 4 3 3 2 2 2 1 1 0 0 0  
0 6 2 E 4 0 6 2 E 4 0 6 2 8 4 0 6 2 E 4 0 6 2 8 4 0  

0 9 9 E E E 7 7 6 6 6 5 5 4 4 4  3 3 1 C ' P l I  0 0 0  
0 6 2 E 4 0 6 2 8 4 0 6 2 E 4 0 6 2 E 4 0 6 ~ E 4 0  

...... 
008 

l o o o o o o o o o o o o o o o o o o o o o u o o o  

0 9 9 8 E E 7 7 6 6 6 5 5 4 4 4 3 3 2 2 2 l l O O O  
0 6 2 E 4 0 6 2 E ~ 0 6 2 E 4 0 6 2 8 4 0 6 2 6 4 0  

. .  . . . . . . . . .  . ,  

Figure 7 Divisive banners of some extreme examples, with (a)'no clustering structure, (b) two 
very tight clusters, and (c) one distant outlier. 
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Table 1 Logarithmic Surface Temperature (x) and Logarithmic 
Light Intensity ( y )  of 47 Stars 

i x ,  Yl 
~ 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

4.37 
4.56 
4.26 
4.56 
4.30 
4.46 
3.84 
4.57 
4.26 
4.37 
3.49 
4.43 
4.48 
4.01 
4.29 
4.42 
4.23 
4.42 
4.23 
3.49 
4.29 
4.29 
4.42 
4.49 
4.38 
4.42 
4.29 
4.38 
4.22 
3.48 
4.38 
4.56 
4.45 
3.49 
4.23 
4.62 
4.53 
4.45 
4.53 
4.43 
4.38 
4.45 

5.23 
5.74 
4.93 
5.74 
5.19 
5.46 
4.65 
5.27 
5.57 
5.12 
5.73 
5.45 
5.42 
4.05 
4.26 
4.58 
3.94 
4.18 
4.18 
5.89 
4.38 
4.22 
4.42 
4.85 
5.02 
4.66 
4.66 
4.90 
4.39 
6.05 
4.42 
5.10 
5.22 
6.29 
4.34 
5.62 
5.10 
5.22 
5.18 
5.57 
4.62 
5.06 
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6.0 - 

5.6- 

5.2- 

L.8- 

L .L - 

4.0- 

Table 1 (Continued) 

i x ,  Y, 

0 

0 

0 0 

0 .  

8 

' 0 .  * *  
*. 

0 .  

0. 

- 0  

3 '  0 

0: 

' 0  

0 
n 

0 

0 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

~ ~ 

43 4.50 5.34 
44 4.45 5.34 
45 4.55 5.54 
46 4.45 4.98 
47 4.42 4.50 

Source: Rousseeuw and Leroy (1987). 

The main features are found in all four analyses. The DC = 0.60, so it is 
somewhat larger than the AC, as is often the case. 

To illustrate the interpretation of the divisive banner and the DC, we 
turn to the same extreme examples that were considered in Section 3 of the 
preceding chapter. Figure 7a is the banner of the situation where all 
dissimilarities between objects equal the same positive constant. It clearly 
tells us that the data have no clustering structure, hence the DC is 0. Figure 
7b corresponds to two very tight and well-separated clusters, yielding the 
widest possible banner with DC = 1.00. When the data contain an extreme 
outlier, we obtain the banner in Figure 7c, with DC = 1 - l / n  = 0.88. All 

Figure 8 Scatterplot of the data in Table 1 
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three banners are mirror images of those produced by AGNES, so the 
results of both hierarchical methods are consistent with each other. 

The data in Table 1 are about the star group denoted by CYG OB1, 
which consists of 47 stars in the direction of Cygnus. This set of real data 
was given to us by C. Doom (personal communication). The variable x 
stands for the logarithm of the star’s surface temperature (as measured from 
its spectrum) and y is the logarithm of its light intensity. In astronomy it is 
common practice to draw the so-called Hertzsprung-Russell diagram (Fig- 
ure 8), which is simply a scatterplot of y versus x (but note that x is 
plotted from right to left). 

In Figure 8, our eyes see two rather distinct clusters. Most of the points 
lie close to a steep band, whereas four points sit in the upper right corner of 
the plot. These regions of the Hertzsprung-Russell diagram are well known: 
The 43 stars belong to the so-called main sequence, whereas the four 
remaining ones (numbers 11, 20, 30, and 34) are giant stars. Running 
DIANA yields the banner of Figure 9, in which the first step does 
distinguish the main sequence from the giants. In subsequent steps the 
algorithm then splits up both clusters until all points are isolated. Also 
when the data are standardized, DIANA finds the “right” clusters in the 
first step. By means of AGNES we obtain a similar (though reversed) 
picture. Note that this example is not easy, because the first cluster is much 
larger and contains many more objects than the second, from which it is 
not clearly separated. For this reason, many algorithms have difficulties 
with these data. For instance, PAM yields two other clusters when k = 2, 
but it does isolate the giants for k = 3. One may also apply a totally 
different approach: Because the largest cluster (the main sequence) is nearly 
linear, it may be identified by means of a robust regression technique, as 
done by Rousseeuw and Leroy (1987, p. 28) who apply the least median of 
squares method of Rousseeuw (1984). 

Our last example is the data set of Ruspini (Table 6 of Chapter 2) that 
was already analyzed in Chapters 2 and 4. In the scatterplot (Figure 12 of 
Chapter 2) four natural groups were indicated, namely A = { 1, .  . . ,20}, 
B = (21,. . . ,43}, C = (44,. . . ,60}, and D = (61,. . . ,75}. When we apply 
DIANA we obtain the banner of Figure 10. In the first step, the data are 
divided into A U D on the one hand and B U C on the other. In step 2 the 
cluster A U D is split into A and D, and in step 3 also B U C is divided 
into B and C. In step 4 the trio {46,47,48} is taken out of C,  whereas step 
5 bisects A (but note that steps 4 and 5 occur at a much lower level, so it 
would seem reasonable to stop after step 3). This whole process corresponds 
exactly to the partitions obtained by PAM for 2, 3, 4, 5, and 6 clusters, the 
silhouettes of which are shown in Figure 13 of Chapter 2. Apparently the 
natural structure is sufficiently clear-cut to be uncovered by very different 
clustering algorithms. 
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*4 MORE ON THE ALGORITHM AND THE PROGRAM 

4.1 Description of the Algorithm 

A divisive analysis proceeds by a series of successive splits. At step 0 
(before starting the algorithm) all objects are together in a single cluster. At 
each step a cluster is divided, until at step n - 1 all objects are apart 
(forming n clusters, each with a single object). 

Each step divides a cluster, let us call it R,  into two clusters A and B. 
This is done according to the iterative method of Macnaughton-Smith et al. 
(1964) that was illustrated in Section 1. Initially, A equals R and B is 
empty. In a first stage, we have to move one object from A to B. (Naturally, 
it is assumed here that A contains more than one object, or there is nothing 
to split.) For each object i of A ,  we compute the average dissimilarity to all 
other objects of A :  

j + i  

The object i' for which (4) attains its maximal value will be moved, so we 
Put 

In the next stages, we look for other points to move from A to B. As long 
as A still contains more than one object, we compute 

J # i  

for each object i of A and we consider the object i" that maximizes this 
quantity. When the maximal value of (6) is strictly positive, we move i" 
from A to B as in ( 5 )  and then look in the new A for another object that 
might be moved. On the other hand, when the maximal value of (6) is 
negative or 0 we stop the process and the division of R into A and B is 
completed. 

At each step of the divisive algorithm we also have to decide which 
cluster to split. For this purpose we compute the diameter 

diam(Q) = max d ( j ,  h )  (7) 
I E Q  
hcQ 



272 DIVISIVE ANALYSIS (PROGRAM DIANA) 

for each cluster Q that is available after the previous step, and choose the 
cluster for which (7) is largest. This value of (7) is also used as the level for 
representing the division of Q in the banner. We can do this because (7) is 
monotone: 

A c R implies diam( A )  s diam( R) (8) 

from which it follows that the levels of the successive steps form a 
nonincreasing sequence. 

4.2 Structure of the Program 

A list of subroutines and functions of the program TWINS was already 
given in Section 4.2 of Chapter 5. When we ask the program to perform a 
divisive analysis, the subroutines AVERL and BANAG (corresponding to 
agglomerative nesting) are no longer used, but instead SPLYT, SUPCL, 
and BANDY are activated. 

The subroutine SPLYT divides a cluster by means of (4) to (a), except 
when the cluster has only two objects, because it can then be split without 
these computations. At each step the array NER, which contains the 
ordering of the objects, is updated in such a way as to disturb the original 
ranking as little as possible. (This implies that the splinter group B may 
either be listed as the first or as the second subcluster, depending on the 
situation.) The diameter (7) of a cluster is computed in subroutine SUPCL 
and afterward stored in the array BAN, which is updated accordingly. 
When the algorithm is finished, the numbers in NER (“final ordering of the 
objects”) and BAN (“diameters of the clusters”) are printed. Finally, 
the subroutine BANDY combines the arrays BAN and NER to draw the 
banner of the divisive hierarchy. 

Table 2 lists some computation times for various values of n. In order to 
compare the speed of DIANA with that of AGNES, we used the same data 

Table 2 Computation Times of DIANA (in minutes on an IBM-XT 
with 8087 coprocessor) for Increasing Numbers of Objects 

Objects Variables Time 

20 2 0.20 
40 2 0.60 
60 2 1.50 
80 2 3.45 

100 2 6.65 
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as in Table 2 of Chapter 5. It turns out that DIANA consumes about twice 
as much time as AGNES, which is perfectly feasible. In fact, DIANA is still 
faster than the nonhierarchical algorithms of Chapters 2 and 4, because a 
single run of DIANA yields partitions for all k = 1,2,. . . , n. 

*5 RELATED METHODS AND REFERENCES 

5.1 Variants of the Selected Method 

In their very concise article, Macnaughton-Smith et al. (1964) describe how 
a cluster may be split in two by means of (4) to (6). Instead of (4), they also 
consider other measures of dissimilarity between clusters, particularly for 
binary data. They argue that divisive methods are safer than agglomerative 
ones, because “wrong” decisions in the early stages of an agglomerative 
analysis cannot be corrected later on, and one is mostly interested in the 
large clusters. Also, they note that it is infeasible to consider all possible 
divisions, of which there are 2”-’ - 1. One could, of course, restrict 
attention to monothetic methods, that make each split according to a single 
variable, whereas polythetic methods use all variables simultaneously. (Our 
own point of view is to give preference to methods that only depend on 
interobject distances or dissimilarities, such as the algorithms of Chapters 2, 
4, 5 ,  and 6. Such methods are necessarily polythetic.) The method of 
Macnaughton-Smith et al. combines the three advantages of being divisive 
rather than agglomerative, polythetic rather than monothetic, and computa- 
tionally manageable even for large n. To demonstrate the latter property, 
Rousseeuw (1983b) implemented this technique on an Apple I1 microcom- 
puter in a way to minimize the use of memory. The implementation in 
DIANA takes somewhat more memory but less computation time. 

Lance and Williams (1966a) investigated the computational complexity 
of several hierarchical methods. They found that the number of operations 
needed for the first step of the Macnaughton-Smith technique varies with 
the evenness of the division it produces. When the data set is divided into 
two clusters with n’ and n - n’ objects, the number of operations was 
(n‘ + 1)(2n - 1) - n. In the worst case, when n’ = n/2, this is of the order 
of n2 .  In the best case, when n’ = 1, it reduces to 3n - 2. Therefore, the 
actual computation time depends on the course of the analysis, as in many 
iterative methods (such as our programs PAM and FANNY). But at any 
rate, the worst-case computation time of the Macnaughton-Smith technique 
remains feasible. 

In order to reduce the amount of computation, Macnaughton-Smith 
et al. (1964) also considered the following variant of their procedure. 
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Provided that d( i ,  A \ { i }) - d(i ,  B) > 0, they chose the object i minimiz- 
ing d ( i ,  B) instead of maximizing (6). It seems that this version might lead 
to a good internal cohesion in the splinter group B, but maybe not in the 
remaining cluster A. 

Another variant that we might think of would be to start as in (4) and 
(5) ,  and at each following stage move the object i that maximizes the group 
average dissimilarity 

A possible stopping rule would be to halt the process as soon as 
d(A,, B,) no longer increases. Note that this procedure is internally 
consistent, because (4) is a special case of (9). Unfortunately, it takes 
somewhat more computation time than the Macnaughton-Smith method. 

Chandon and Pinson (1981, p. 122) go even further when they propose to 
divide the data into any clusters A and B maximizing d ( A ,  B). This is a 
complete enumeration approach in which all 2"-' - 1 possible divisions 
must be considered, making the method extremely time-consuming [al- 
though much more elegant from a theoretical point of view, because it is 
dual to the group average method described in Chapter 5 ,  in which d(A,  B) 
is minimized at each agglomerative step]. 

It appears that divisive clustering is only computationally feasible 
when performed in some iterative way. However, one aspect of the 
Macnaughton-Smith technique one might object to is its asymmetric treat- 
ment of the two clusters A and B, one of which arises as a splinter group 
whereas the other may be a rather loose collection of remaining objects. 
Therefore, one may prefer to grow the clusters from two kernel objects, 
instead of the single object i determined in (4). One proposal (Hubert, 
1973, p. 51) would be to start with the objects i and j with the largest 
interobject dissimilarity d( i ,  j). Afterward one could assign the remaining 
objects to i or j, whichever is nearer, or apply an iterative procedure in 
which the objects are assigned one at a time, taking into account their 
average dissimilarities to the clusters being formed. The main problem with 
this method appears to be its lack of robustness, as both i and j may be 
outliers. 

A more robust approach would be to begin with two objects i and j that 
are centrally located in the clusters they determine. For instance, one might 
select i and j so as to maximize d( A, B) where A contains all objects that 
are nearer to i than to j and B contains all objects that are nearer to j than 
to i. Note that this is similar to the k-medoid partition (for k = 2) 
described in Chapter 2. Indeed, one could also carry out a 2-medoid 
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clustering at each step and obtain another divisive hierarchy. However, 
these methods would also require more computation time. 

Until now, we have only discussed how to split up a cluster. In the 
original method of Macnaughton-Smith et al. (1964) this was sufficient 
because at each step they split all available clusters. However, in our 
concept of a divisive hierarchy we want to split one cluster at a time, so we 
also need to know which cluster to split next. Leaving aside trivial solutions 
(such as making an arbitrary choice or splitting the cluster with the largest 
number of objects) this begs for the definition of a level. For instance, one 
may use a dispersion measure of the cluster to be split, or a kind of average 
dissimilarity between the two subclusters. Such a level must be meaningful 
(in relation to the interobject dissimilarities) and monotone, which means 
that neither subcluster may have a larger level than the original one. For 
some of the divisive methods sketched above the choice of a level is quite 
natural, but for the Macnaughton-Smith technique it is not so simple. We 
have tried out many definitions, but most of them were not monotone in all 
data sets (sometimes monotonicity could be proved for the splinter group 
but not for the remaining subcluster). This left us with the diameter, which 
is always monotone by (8) but not very satisfactory otherwise because of its 
sensitivity to outliers and its lack of consistency when n goes to infinity. 

The program DIANA uses diameters for displaying the divisive hierar- 
chy (as we did in Figures 2 and 3), which is better than just plotting the 
number of the divisive step (as in Figure 1) because it may happen that two 
clusters are split at the same level, in which case their step number would be 
arbitrary. Moreover, the step number always ranges from 1 to n - 1, so it 
does not reflect the particular clustering structure of the data. When a 
continuous level is plotted, the user may notice when a data set has been 
split into two clusters with much smaller levels than the original one (as in 
Figure 7b), leading to a wide banner and thus a large DC, whereas a banner 
merely displaying the step number would not have revealed the strength of 
the clustering structure. 

The graphical displays that were considered in Section 5.3 of Chapter 5 ,  
such as those of Ward and Johnson as well as icicle plots and dendrograms, 
may also be used to describe a divisive hierarchy. It suffices to draw these 
displays in the inverse direction. Note that the DC does not depend on the 
type of display or the ranking of the objects in it. 

5.2 Other Divisive Techniques 

The methods reviewed in Section 5.1 only needed a matrix of distances or 
dissimilarities between the objects. Some other divisive methods are more 
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restrictive, in that they need a matrix of objects by variables. In this 
subsection we discuss some polythetic divisive methods, whereas mono- 
thetic divisive methods will be treated in Chapter 7. 

The most well-known polythetic divisive method is that of Edwards and 
Cavalli-Sforza (1965). It assumes that the n objects are characterized by p 
interval-scaled variables. It is basically a least squares ( L , )  method, just like 
minimum variance partitioning (Section 5.3 of Chapter 2) and Ward’s 
agglomerative method (Section 5.2 of Chapter 5). Everything is based on 
the error sum of squares 

where X( R )  is the centroid of the cluster R, with coordinates 

1 
Z , ( R )  = - xi, for!= 1 ,..., p 

I R I  i a R  

Edwards and Cavalli-Sforza divide the cluster R into two subclusters A and 
B in such a way that the objective function 

ESS( A )  + ESS( B) (11) 

is minimized. In Section 5.2 of Chapter 5 [between (23) and (24), in 
connection with Ward’s method] we proved that 

IAI IBI 
IRI 

E S S ( R )  = ESS(A) + ESS(B) + - l lZ (A)  - Z ( B )  / I 2  

This means that the total sum of squares ESS(R) can be written as the 
within sum of squares ESS( A )  + ESS( B) plus the between sum of squares 

Therefore, minimizing (11) is equivalent to maximizing (12), and the latter 
objective function is somewhat easier to compute. Unfortunately, the 
method of Edwards and Cavalli-Sforza still imposes a computational bur- 
den because all possible divisions of R into some clusters A and B must be 
tried out. A simplified sequential algorithm was announced, but not de- 
scribed. Such an approximate algorithm was, however, proposed by Gower 
(1967, p. 632). Gower advised against the exhaustive method of Edwards 
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and Cavalli-Sforza because it is computationally impracticable and because 
the centroid is not always a desirable measure of the location of a cluster. 
When comparing this method with agglomerative nesting and a monothetic 
divisive method, he recommended the agglomerative technique. Also Lance 
and Williams (1966a) dismissed the method of Edwards and Cavalli-Sforza 
because of the large number of dichotomous choices that would have to be 
examined. Steinhausen and Langer (1977, p. 100) decided not to pursue 
such divisive methods, because they consume more computation time than 
agglomerative methods and at the same time yield less satisfactory results 
than partitioning techniques. Roux (1985, pp; 86-87) independently redis- 
covered the Edwards and Cavalli-Sforza criterion (12) and proposed an- 
other heuristic algorithm yielding an approximate solution. 

Edwards and Cavalli-Sforza split all available clusters at each step. 
MacQueen (1967) proposed a variant of this method in which at each step 
only the cluster with the largest error sum of squares (10) is divided, so that 
there are again n - 1 steps. This algorithm may be considered as a divisive 
counterpart to Ward’s agglomerative method. Instead of making the splits 
by total enumeration, it is also possible to apply the k-means algorithm 
(Section 5.3 of Chapter 2) with k = 2 to find approximate solutions for 
some or all steps. 

The reasons why we did not select any of these variance minimization 
techniques are similar to our objections to k-means clustering and Ward’s 
method. First of all, we prefer clustering techniques that only need a 
collection of dissimilarities because measurements are not always available, 
and second, methods based on sums of squares are generally nonrobust to 
the presence of outliers. 

EXERCISES AND PROBLEMS 

1. Draw a diagram as in Figure 2 for the divisive clustering of the 
countries in Section 3. 

2. Show that for a three object cluster, the final splinter group consists of 
the object for which the average dissimilarity to the other two objects is 
maximal. 

3. Run DIANA again on the 47 stars in Table 1, but select the option to 
standardize the data first. 

4. Apply DIANA to the nine diseases in Figure 12 of Chapter 5 ,  and 
compare the results with those of AGNES. 
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5. Apply DIANA to cluster the 11 sciences in Table 6 of Chapter 1. 
Compare the results with those obtained by running AGNES. 

6. Run DIANA to cluster the objects of the artificial data set of Figure 1 
in Chapter 4. (The actual data are listed in Section 2.1 of that chapter.) 
Do not standardize the measurements, and use Euclidean distance. 
What does DIANA do with the intermediate objects 6 and 13? 

7. As suggested in Section 5.1, splitting a cluster into two subclusters 
could be done with the program PAM. (Note that for k = 2 the 
algorithm in PAM is exact, so this approach should lead to a tight 
clustering.) Apply this method (repeatedly!) to the dissimilarity matrix 
in Section 1 and compare the results with those of DIANA. 

8. Often agglomerative and divisive algorithms yield similar clustering 
results. To show that this is not always the case, consider the following 
bivariate data set with 18 points: 

(a) Make a scatterplot of this data set. 
(b) Use both the agglomerative and divisive options of the program 

(c) Indicate on the plot the clusterings into two clusters, obtained with 
TWINS to cluster the data. 

both methods. 

9. (a) Apply DIANA to the bacteria data in Exercise 1 of Chapter 2. 
Does the clustering into two clusters correspond to the result of 
PAM? 

(b) When a data set consists of two L*-clusters (in the sense of Section 
2.2 of Chapter 2) show that DIANA always recovers these groups. 
(Note that AGNES also finds the same groups by Exercise 6 of 
Chapter 5.) 

10. Show that the number of possible partitions of n objects into two 
nonempty subsets is 2"-' - 1 (either directly, or by means of binomial 
coefficients, or as a special case of Stirling's result for a general number 
of subsets). 
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11. At each step of the algorithm, a cluster R is split into two subclusters A 
and B. The level of this division is presently defined as the diameter of 
R, which is monotone in the sense that the diameters of A and B are 
smaller than that of R. One could think of several alternative defini- 
tions of a level, to be used with the same splitting method. Show that 
the following variants, although intuitively appealing, are not always 
monotone: 

average d (  i ,  j )  
i ,  j E R  

i + j  

max average d ( i , j ) 
j € R  
j # i  

average d (  i ,  j )  
i a A  
jell 



C H A P T E R 7  

Monothetic Analysis 
(Program MONA) 

1 SHORT DESCRIPTION OF THE METHOD 

In the social sciences one often encounters binary variables. They take only 
two values, 0 and 1, corresponding to the presence or absence of some 
attribute. An example of such a data set is shown in Table 1. 

There are several ways to cluster such data. Most of the algorithms 
described in the previous chapters use a matrix of dissimilarities between 
objects. In the case of binary variables, such dissimilarities can be com- 
puted by means of the program DAISY described in Chapter 1. Then one 
can apply one of the programs of Chapters 2, 4, 5, or 6 to the resulting 
dissimilarity matrix. 

In the program MONA an approach of a quite different nature is 
adopted. The basic idea is to select one of the variables and to divide the set 
of objects into those objects with and those without the corresponding 
attribute. In each of the two subsets, one of the remaining variables is 
selected and used in the same way to divide this subset into two smaller 
groups. (Note that it is not necessary to use the same second variable in 
both subsets.) The process is continued until either the subset contains a 
single object (it is then called a singleton) or until the remaining variables 
cannot separate the subset any further. This last situation only occurs when 
each variable remains constant for all objects of this subset. (For example, 
objects CCC and DDD in Table 1 cannot be separated.) 

Because the set of objects is divided into subsets and this process is 
continued inside each subset, the algorithm is hierarchical. To be more 
precise, it is divisive. Furthermore, because each separation is carried out 
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Table 1 Example of a Data Set with Binary Variables 

Variables 

Objects 1 2 3 4 5 6 

AAA 
BBB 
ccc 
DDD 
EEE 
FFF 
GGG 
HHH 

1 1 
1 1 
1 1 
1 1 
0 0 
0 0 
0 0 
0 0 

0 1 1 0 
0 0 0 1 
1 1 1 0 
1 1 1 0 
0 1 0 1 
0 0 0 0 
1 1 0 1 
1 1 1 0 

using a single variable, it  is called monothetic. Methods such as the divisive 
analysis of Chapter 6, which use all variables simultaneously, are called 
polythetic. 

The most important part of the algorithm is how to choose the variable 
to separate a subset. The idea is to select the variable for which the sum of 
“similarities” to all the other variables is as large as possible, i.e., the 
variable which is the most centrally located. Several measures of association 
have been proposed to define the similarity between binary variables, some 
of which will be discussed in Section 5.  

In MONA we have opted for a quite simple measure of association 
between two variables, which uses the number of objects for each combina- 
tion of values that the two variables can take. The product of the number of 
objects for which the two variables take on the value 0 and the number for 
which they take on the value 1 is calculated. Then the number of objects 
for which the first variable is 0 and the second is 1 is multiplied with the 
number of objects for which the two variables take on opposite values. The 
measure of association (similarity) is defined as the absolute value of the 
difference between these two products. As an example, consider the mea- 
surements of Table l .  The variables l and 2 are identical and should 
therefore show a high association value. The two products are 16 (4 X 4) 
and 0 (0 x 0), so the measure of association becomes 116 - 01 = 16. The 
variables 1 and 3 are quite different from each other, and indeed their 
association value is 1(2 X 2) - (2 X 2)1 = 0. The measure of association 
between two variables can be calculated from a two-by-two contingency 
table. In Figure l a  a general contingency table is shown and Figure l b  
corresponds to the variables 1 and 3 of Table 1. 
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1 0 

1 0 

0 

for the variables 1 and 3 of Table 1. (c) Table for two variables 
with opposing values for all objects. (c) 

The measure of association just defined expresses whether two variables 
provide similar divisions of the set of objects. The variables 1 and 3 give 
quite different information and are therefore not at all similar (their 
measure of association is 0). However, if two variables have different values 
for all objects of a data set, they give identical information and the measure 
of association is very large (see, for example, Figure lc). It should be noted 
that the measure of association closely resembles the chi-squared statistic 
for the two-by-two table. 
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objects 

- 
0 1 2 3 step 

Figure 2 Example of the results of applying the program MONA. 

Because we are searching for the variable that is most similar to all other 
variables, we maximize the sum of its associations to all other variables. 
Because we are looking at a sum of absolute values, this criterion bears 
resemblance to the one used in Chapters 2 and 3 (for finding representative 
objects) as well as those of Chapters 5 and 6. It falls in line with one of the 
aims of this book, which is to advocate the use of robust criteria in 
clustering algorithms. 

An example of the results of MONA is shown in Figure 2. In the 
beginning of the algorithm (the left side of the figure), all objects belong to 
a single cluster. During the first step, variable 5 is used to separate this 
cluster into two subsets. The separation steps are continued until either a 
cluster consists of a single object, or until the remaining variables cannot be 
used to split it up. This last situation occurs for the cluster { CCC, ODD} .  

2 HOW TO USE THE PROGRAM MONA 

Like the techniques of previous chapters, the clustering method described in 
Section 1 was programmed in Fortran for an IBM-PC or compatible 
computer (with at least 256 K of internal storage). In Section 2.1 we will 
describe an interactive session (which is similar to previous chapters), and 
in Section 2.2 we will explain the output. In Section 3 some examples will 
be examined. In Section 4 some limitations of the program are described, 
and the Appendix contains more details on its implementation. 
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2.1 Interactive Use and Input 

In order to run the program, the first thing to do is to insert the diskette 
containing the file MONA-EXE and to type MONA. This starts an interac- 
tive session, an example of which follows. 

1-ANALYSIS( 
THE PRESENT VERSION OF THE PROGRAM CAN HANDLE UP TO 200 
OBJECTS. 

GRAM MUST BE ADAPTED.) 
HOW MANY OBJECTS ARE TO BE CLUSTERED ? 
PLEASE GIVE A NUMBER BETWEEN 3 AND 200 : - 8 

(IF MORE ARE TO BE CLUSTERED, THE ARRAYS INSIDE THE PRO- 

DO YOU WANT TO ENTER LABELS OF OBJECTS ? 
PLEASE ANSWER YES OR NO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .YES 

EACH LABEL MAY CONSIST OF AT MOST 3 CHARACTERS 

OBJECT LABEL 
--------------- .11 J. 

AAA NUMBER 1 : 
BBB NUMBER 2 : 

NUMBER 3 : ccc 

- 

- 
- 

THE PRESENT VERSION OF THE PROGRAM ALLOWS TO ENTER UP TO 
200 VARIABLES, OF WHICH AT MOST 100 CAN BE USED IN THE ACTUAL 
COMPUTATIONS. 
(IF MORE ARE NEEDED, THE ARRAYS INSIDE THE PROGRAM MUST BE 
ADAPTED) 
AT LEAST THREE VARIABLES ARE NECESSARY FOR ASSOCIATION 
ANALYSIS. 
IF LESS ARE AVAILABLE A DIFFERENT CLUSTERING STRATEGY 
SHOULD BE USED. 

LARITY MATRIX.) 

WHAT IS THE TOTAL NUMBER OF VARIABLES IN YOUR DATA SET ? 

PLEASE GIVE A NUMBER BETWEEN 3 AND 200 : 6 
HOW MANY VARIABLES DO YOU WANT TO USE IN THE ANALYSIS ? 

PLEASE GIVE A NUMBER BETWEEN 3 AND 6 : - S 

DO YOU WANT TO ENTER LABELS OF VARIABLES ? PLEASE ANSWER 
YESORNO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  YES 

(FOR EXAMPLE, RUN THE PROGRAM DAISY TO COMPUTE A DISSIMI- 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

- 
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VARIABLE TO BE USED : POSITION LABEL (AT MOST 3 

-____-_-__-_________---J 1 1  3 - - - 3  11--------------___--_ 
NUMBER 1 : - - 
NUMBER 2 : - 3 v 3  
NUMBER 3 : - - 
NUMBER 4 : - 5 g  
NUMBER 5 : - - 

CHARACTERS) 

1 v l  

4 v4 

6 v6 

PLEASE ENTER A TITLE FOR THE OUTPUT (AT MOST 60 CHARACTERS) 

Data of Table 1 

DO YOU WANT LARGE OUTPUT ? (PLEASE ANSWER YES) 
OF. IS SMALL OUTPUT SUFFICIENT ? (THEN ANSWER NO) 

____________________--------- - - - - - - - - - - - - - - - - - - - - - - - -_- 

(IN THE FORMER CASE MEASUREMENT VALUES AND DETAILED IN- 
FORMATION ON EACH SEPARATION STEP ARE PROVIDED. IF THE 
PROGRAM FINDS MISSING VALUES, THE ESTIMATES ARE ALSO 
GIVEN.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  YES 

DO YOU WANT GRAPHICAL OUTPUT (BANNER) ? PLEASE ANSWER YES 
ORNO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  YES 

DO YOU WANT TO READ THE DATA IN FREE FORMAT ? 

THIS MEANS THAT YOU ONLY HAVE TO INSERT BLANK@) BETWEEN 
MEASUREMENTS. 

MATS TO ANSWER YES.) 
MAKE YOUR CHOICE (YES / NO) : NO - 

PLEASE ENTER A FORTRAN FORMAT. 
THIS FORMAT MAY CONTAIN AT MOST 60 CHARACTERS AND SHOULD 
BE PUT BETWEEN BRACKETS, e.g. (10(2X,F1.0)). 
ONLY F AND E FORMATS ARE ALLOWED (THIS DOES NOT MEAN 
THAT YOUR MEASUREMENTS MUST CONTAIN DECIMAL POINTS, BUT 
IT ENABLES YOU TO HANDLE MIXED DATA FILES). 
(6(2X,F1.0)) 

- 

- 

____________________-_- - - - - - - - - - - - - - - - - - - - - -  

(NOTE: WE ADVISE USERS WITHOUT KNOWLEDGE OF FORTRAN FOR- 

The only measurement values allowed by the program are 0 and 1. All other 
values will be treated as missing measurements. (In Section 4.2 it is shown 
how the program can be adapted to allow other values.) 

PLEASE GIVE THE NAME OF THE FILE CONTAINING THE DATA (e.g. 
A:EXAMPLE.DAT) OR TYPE KEY IF YOU PREFER TO ENTER THE DATA 
BY KEYBOARD. 
WHAT DO YOU CHOOSE ? - KEY 
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DO YOU WANT TO SAVE YOUR DATA ON A FILE ? 
PLEASE ANSWER YES OR NO : y E S  

ON WHICH FILE DO YOU WANT TO SAVE YOUR DATA ? 
(WARNING : IF THERE ALREADY EXISTS A FILE WITH THE SAME 

NAME THEN THE OLD FILE WILL BE OVERWRITTEN.) 
TYPE e.g. B:SAVE.DAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .TEST.DAT 

WHERE DO YOU WANT YOUR OUTPUT ? ................................ 
TYPE CON IF YOU WANT IT ON THE SCREEN 

OR TYPE PRN IF YOU WANT IT ON THE PRINTER 
OR TYPE THE NAME OF A FILE (e.g. B:EXAMPLE.OUII") 
(WARNING : IF THERE ALREADY EXISTS A FILE WITH THE SAME 

WHAT DO YOU CHOOSE ? . . . . . . . . . . . . . . . . . . .  TEST.RES 
NAME THEN THE OLD FILE WILL BE OVERWRITTEN.) 

DATA SPECIFICATIONS AND CHOSEN OPTIONS 

TITLE : Data of Table 1 
THERE ARE 8 OBJECTS 
LABELS OF OBJECTS ARE READ 
LABELS OF VARIABLES ARE READ 
LARGE OUTPUT IS WANTED 
GRAPHICAL OUTPUT IS WANTED (BANNER) 

THERE ARE! 6 VARIABLES IN THE DATA SET, 

THE INPUT FORMAT FOR THE MEASUREMENTS IS 
(6(2X,F1 .O)) 
THE DATA WILL BE READ FROM THE KEYBOARD 
THE DATA WILL BE SAVED ON FILE : TABLE 1.DAT 
YOUR OUTPUT WILL BE W R I "  ON : TABLE 1.RES 

ARE ALL THESE SPECIFICATIONS OK ? YES OR NO : - YES 

______--____---_---_-_---_-------_--- 

AND 5 OF THEM WILL BE USED IN THIS ANALYSIS 

PLEASE ENTER YOUR DATA FOR EACH OBJECT 

THE 6 MEASUREMENTS FOR OBJECT AAA : 

THE 6 MEASUREMENTS FOR OBJECT BBB : 

THE 6 MEASUREMENTS FOR OBJECT CCC : 

THE 6 MEASUREMENTS FOR OBJECT DDD : 

1 1 0 1 1 0  

1 1 0 0 0 1  

1 1 1 1 1 0  

1 1 1 1 1 0  
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THE 6 MEASUREMENTS FOR OBJECT EEE : 

THE 6 MEASUREMENTS FOR OBJECT FFF : 

THE 6 MEASUREMENTS FOR OBJECT GGG : 

THE 6 MEASUREMENTS FOR OBJECT HHH : 

0 0 0 1 0 1  

0 0 0 0 0 0  

0 0 1 1 0 1  

0 0 1 1 1 0  

Note that only the variables 1, 3,4, 5 ,  and 6 are to be used in this particular 
analysis. 

2.2 output 

In this section the output generated by MONA is described and illustrated 
with the output from the data set of Table 1. This output can be divided 
into several parts. 

a. Data Specifictiom and Measurement Values 
In Figure 3,  an example is given of part a of the output corresponding to 
the input described in Section 2.1. 

6. Missing Measurements 

If there are no missing measurements (all measurement values are 0 or 
l), a message is given indicating this. 

If there are missing measurements, a message is printed in the following 
situations: 
0 the number of missing measurements for some variable is at least 

0 all measured values are identical for some variable 
0 each variable lacks at least one measurement 
If any of these situations arises, the program stops after all variables 
have been examined. 

Inventory of the variables for which some measurements are lacking, the 
number of missing measurements for each of these variables, and the 
total number of missing measurements. 

After all the missing measurements have been filled in, the revised data 
are outputted (only if large output was requested). 

half the number of objects 
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*.***..*...,*****..*** -**.***I*** 

* * . MONOTHETIC ANALYSIS : 
8 

* 8 * * * * * . * * . * * * * * . * * . * * * * * * . * * * * * *  

DATA SPECIFICATIONS AND CHOSEN OPTIONS ________-___________-------_-----_---- 
TITLE : Data of Tabla 1 
THERE ARE 8 OBJECTS 
LABELS OF OBJECTS ARE READ 
LABELS OF VARIABLES ARE READ 
LARGE OUTPUT IS WANTED 
GRAPHICAL OUTPUT IS WANTED (BANNER) 

THERE ARE 6 VARIABLES IN THE DATA SET. 

THESE VARIABLES ARE : 
AND 5 OF THEM WILL BE USED IN THE ANALYSIS 

vl (POSITION : 1)  
v3 (POSITION : 3) 
v4 (POSITION : 4) 
v5 (POSITION : 5 )  
v6 (POSITION : 6) 

THE INPUT FORMAT FOR THE MEASUREMENTS IS 
(6(2X.F1.0)) 

YOUR DATA RESIDE ON FILE : TABLE1 .DAT 

v v v v v  
1 3 4 5 6  

A A A  1 0 1 1 0  
BBB 1 0 0 0 1  
ccc 1 1 1 1 0  
DDD 1 1 1 1 0  
EEE 0 0 1 0 1  
FFF 0 0 0 0 0  
COG 0 1 1 0 1  
HHH 0 1 1 1 0  

THERE ARE NO MISSING VALUES 

Figure 3 Parts a and b of the MONA output for the example of Section 2.1. 

In Section 3 an example is discussed with missing measurements. The 
estimation of missing measurements is explained in Section 4. 

c. Detailed Clustering Information 
While the algorithm is being carried out, and if large output was requested, 
the following information is provided for each step: 

1. The subset to be separated: The objects of the subset are given in the 

2. The number of objects in each of the two subsets. 
3. The variable used for the separation. 

order obtained after separation. 
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?TBP*!Y??F?.,.,.! 
THE CLUSTER A A A  CCC DDD HHH BBB EEE FFF GGG 
IS DIVIDED INTO 4 AND 4 OBJECTS, USING VARIABLE v 5  

"FI.IY??FF,.,.*? 
THE CLUSTER AA A  CCC DDD HHH 
IS DIVIDED INTO 3 AND 1 OBJECTS, USING VARIABLE Vl 

THE CLUSTER BBB FFF EEE COG 
IS DIVIDED INTO 2 AND 2 OBJECTS, USING VARIABLE V4 

?TBP.!Y??F?..*.,? 
THE CLUSTER AAA CCC DDD 
IS DIVIDED INTO 1 AND 2 OBJECTS, USING VARIABLE v3 
THE CLUSTER BBB FFF 
IS DIVIDED INTO 1 AND 1 OBJECTS, USING VARIABLE Vl 

THE CLUSTER EEE COG 
IS DIVIDED INTO 1 AND 1 OBJECTS, USING VARIABLE v 3  

~?E*%!!2?!!****.? 
THE CLUSTER CCC DDD 
CANNOT BE SEPARATED BY THE REMAINING VARIABLES 

5!1?4*?S2Y4E 
THE FINAL ORDERING OF THE OBJECTS IS 

AAA  CCC DDD HHH BBB FFF EEE GGG 

THE SEPARATION STEP IS 
3 0 2 1 3 2 3 

THE VARIABLE USED IS 
v3 v1 v5 V l  v4 v3 

..... *'*...* 
* BANNER ; .....*...... 

v3 

v1 

v5 

Vl 

v4 
v3 

The output is on file : TABLEl.RE.5 

Figure 4 Parts c. d, and e of the MONA output for the example of Section 2.1. 
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An example of this output is: 

The cluster AAA CCC DDD HHH BBB EEE FFF GGG 
is divided into 4 and 4 objects using the variable v5 

The two new clusters are {AAA,CCC,DDD,HHH) and {BBB,EEE, 
FFF, GGG}. 

d Finul Results 
The first array in the final results contains the objects, ordered as on the 
vertical axis to the right in Figure 2. In the second array the separation 
steps are listed: Note, for example, that the 1 in this array appears between 
objects HHH and BBB, because at the Jirst step the set of objects starting 
with BBB (i.e., objects BBB, FFF, EEE, and GGG) are separated from the 
other objects. This separation was carried out using the variable v5, which is 
why v5 appears at the same place in the third array. By the way, note that a 
0 in the array of separation steps means that the objects above it could not 
be separated. This is the case for objects CCC and DDD in the example. 

a Banner 
Finally, the results of the algorithm are summarized in a banner, which is 
quite similar to the banners used in Chapters 5 and 6. Figure 4 contains the 
banner for the data of Table 1. 

Each object of the data set corresponds to a horizontal line in the 
banner. These horizontal lines are ordered in the same way as in the first 
array of the final results. The end of a row of stars * * * * * indicates a 
separation between clusters. (If two or more lines representing objects are 
stuck together this means that these objects cannot be divided; see, for 
example, the rows of objects CCC and DDD in Figure 4.) The length of a 
row of stars is proportional with the step number at which the separation 
was carried out. The variable used for the separation is shown to the left of 
the row of stars. When the row of an object does not continue to the 
right-hand side of the banner, this means that at the corresponding step it 
became a singleton cluster. For example, object HHH became a singleton at 
step 2. 

3 EXAMPLES 

The first example is the family data described in Table 9 of Chapter 1. It 
consists of 10 binary variables measured on 8 persons (the objects). Only 0s 
and 1s appear in the data, so that there are no missing measurements. 
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The analysis carried out on these data uses all variables. The large output 
option and the banner are both selected. The labels of the objects are the 
first three letters of each name, and for each variable a three-letter code was 
chosen as label. 

Figure 5 contains the output of MONA with these options. This output 
was directed to the printer (by entering option PRN for output). Below the 
data specifications and chosen options, the input data are shown. The 
program then searches for missing data (values different from 0 and 1). As 
none are found, this is mentioned and the actual algorithm can be carried 
out. In the first step of the calculations the variable MAR was selected as 
the most representative, and therefore as the most adequate for dividing the 
data set into two clusters. The actual split .can be seen in Figure 5 under 
“step number 1.” In the output, the first object of a cluster is the one which 
appears first in the data matrix. Then all objects are given that have the 
same value for the separation variable. In the example, the first person 
(object) is ILA, who is not married. He is followed by KIM, TAL, and TIN. 
After this first cluster, the objects are given that have the opposite value; in 
the example they are JAC, LIE, LEO, and PET. Note that in both clusters 
the objects appear in the same order as in the data matrix. The algorithm is 
constructed so that the final ordering is as close as possible to the original 
ranking. This was done in all programs, in order to facilitate comparisons 
of outputs for the same data. 

It is interesting to observe that in this example the variable used for the 
first division is intuitively the most important, because it distinguishes 
between the children and the adults. 

In the second step, both clusters are separated using one of the remain- 
ing variables. The cluster of children is separated on the basis of the color 
of hair, while for the adults the variable SEX is the most centrally located. 

In the third step the following clusters are examined: {ILA,KIM}, 
{TAL, TIN}, {JAC, LIE}, and {LEO, PET}. The first of these clusters can 
only be separated using the variables SEX and LFT. (The other variables 
take the same value for both children, so they will no longer be considered.) 
The similarity between SEX and LFT will be calculated using the following 
table: 

LFT 
1 0 

SEX WI 
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......***.***.*~*****.**** I * * * * * *  

* * 
* MONOTHETIC ANALYSIS * 
* * 
~ ~ 1 ~ 8 ~ ~ ~ 1 1 ~ ~ 1 8 8 8 8 1 1 1 . . . . . . . L . I . . t  

DATA SPECIFICATIONS AND CHOSEN OPTIONS ______________-_____-__-- - - - - -_- - - - - - -  
TITLE : Binary family data 
THERE ARE 8 OBJECTS 
LABELS OF OBJECTS ARE READ 
LABELS OF VARIABLES ARE READ 
LARGE OUTPUT IS WANTED 
GRAPHICAL OUTPUT IS WANTED (BANNER) 

THERE ARE 10 VARIABLES IN THE DATA SET, 

THESE VARIABLES ARE : 
AND ALL OF THEM WILL BE USED IN THE ANALYSIS 

sex (POSITION : 1 )  
mar (POSITION : 2 )  
ha i  (POSITION : 3 )  
eye (POSITION : 4) 
pla (POSITION : 5 )  
fac (POSITION : 6 )  
pes (POSITION : 7 )  
eve (POSITION : 8 )  
one (POSITION : 9) 
1ft (POSITION : 10) 

THE MEASUREMENTS WILL BE READ IN FREE FORMAT 

YOUR DATA RESIDE ON FILE : FAMIMONA.DAT 

INPUT DATA 
..*.I*...* 

s m h e g f p e o l  
e a a y l a e v n f  
x r i e a c a e e t  

Ila 1 0 1 1 0 0 1 0 0 0  
Jac 0 ~ 0 o ~ o 0 0 0 0  
Kim 0 0 1 0 0 0 1 0 0 1  
Lie 0 1 0 0 0 0 0 1 1 0  
Leo 1 1 0 0 1 1 0 1 1 0  
Pet 1 1 0 0 1 0 1 1 0 0  
Tal 0 0 0 1 0 1 0 0 0 0  
Tin 0 0 0 1 0 1 0 0 0 0  

THERE ARE NO MISSING VALUES 

STEP NUMBER 1 
**8.***D*****DDtl 

THE CLUSTER I l a  Kim Tal Tin Jac Lle Leo Pet 
IS DIVIDED INTO 4 AND 4 OBJECTS. USING VARIABLE mar 

Figure 5 MONA output for the binary family data. 
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STEP NUMBER 2 ................. 
THE CLUSTER ria Kim Tai Tin 
IS DIVIDED INTO 2 AND 2 OBJECTS, USING VARIABLE 

THE CLUSTER Jac Lie Leo Pet 
IS DIVIDED INTO 2 AND 2 OBJECTS, USING VARIABLE 

STEP NUMBER 3 ................. 
THE CLUSTER Iia Kim 
IS DIVIDED INTO 1 AND 1 OBJECTS. USING VARIABLE 

THE CLUSTER Tal Tin 
CANNOT BE SEPARATED BY THE REMAINING VARIABLES 

THE CLUSTER Jac Lie 
IS DIVIDED INTO 1 AND 1 OBJECTS, USING VARIABLE 

THE CLUSTER Leo Pet 
IS DIVIDED INTO 1 AND 1 OBJECTS, USING VARIABLE 

FINAL RESULTS ............. 
THE FINAI ORDERING OF THE OBJECTS IS 

I!a K i m  Tal Tin Jac Lie Leo Pet 

THE SEPARATION STEP IS 

3 2 0 1 3 2 3 

THE VARIABLE USED IS 

mar gla sex fac sex ha1 

0 

............ 
f 

BANNER * ............ 
1 2 
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ha i 

sex 

sex 

g l a  

f ac 

3 

Ila+Ila+Ila+Ila+Ila+Ila+IlatIia+Ila+Ila+Ilat~la+IlatIia+Ila+Ila+Ila+~la+ ........................................................................... 
KIm+KintKim+Kim+Kim+KimtKim+Kim+Kim+Kim+Kim+Kim+Kim+KimtKim+Kim+Kim+Kim+ .................................................... 
Tal+Tal+Tal+Tal+Tal+Tal*Tal*Tai+Tal+TaltTaltTaliTal+T 
Tin+Tin+Tin+Tin+Tin+TintTin+Tin+T~n+Tin+TintTlniT ............................. 
Jac+Jac+Jac+Jac+Jac+Jac+Jac+Jac+Jac+Jac+Jac+Jac+JaciJac+Jac+JactJac+Jac+ ........................................................................... 
LietLie+LietLie+Lie+Lie+LietLietLie+Lie+Lie+Lie+Lie+Lie+Lie+LieiLie+Lie+ .................................................... 
Leo+Leo+Leo+Leo+LeotLeo+Leo+Leo+Leo+Leo+Leo+Leo+Leo+Leo+Leo+Leo+Leo+Leo+ 

fac ........................................................................ 
Pet+Pet+Pet+Pet+Pet+Pet+Pet+Pet+Pet+Pet+Pet+Pet+Pet+Pet+Pet+PettPet+Pet+ 

0 1 2 3 

Figure 5 (Continued) 
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The similarity between the two variables equals 10 X 0 - 1 X 11 = 1, 
which is also the total similarity for each variable. In a situation where 
several variables yield the same total similarity, the one that appears first in 
the data matrix is chosen for the separation. This is of course an arbitrary 
choice. Note that when there are two objects in a cluster, the first variable is 
selected which takes different values in them. 

The next cluster to be considered in step 3 is {TAL,TIN}. Because all 
remaining variables take the same values for these two children, they 
cannot be separated. In such a situation this cluster will no longer be 
considered in subsequent steps. Observe that the objects of such a cluster 
are identical for all variables of the data set, not only for the remaining 
ones. Indeed, because they are in the same cluster they are also identical for 
the variables used to obtain this cluster. 

The remaining clusters {JAC, LIE} and {LEO, PET} are separated by 
the variables GLA and FAC, as these are the first variables for which the 
objects have different values. 

When small output is requested, the detailed clustering information is 
not given. In this case the hierarchical structure yielded by the algorithm 
can be deduced from the final results. These start with the final ordering 
of the objects, which can be different from the original one. (However, 
as in the other programs, the first object has remained where it was.) Then, 
between each pair of objects the separation step is printed, indicating when 
the clusters to which ihese objects belong were formed. For example, the 
number 1 between objects TIN and JAC indicates that the clusters 
to which TIN and JAC belong (clusters (ILA,KIM,TAL,TIN} and 
{ JAC, LEO, LIE, PET}) have been separated during the first step. The 
variable used for this separation (MAR) is shown in the third array, right 
underneath the number of the step. Sometimes a 0 is given for the 
separation step. This means that the adjacent objects (between which the 0 
is lying) cannot be separated. In the example this is the case for persons 
TAL and TIN. 

Finally, the results are summarized in the banner. The first split, using 
the variable MAR, divides the data into the clusters { ILA, KIM, TAL, TIN} 
and {JAC, LIE, LEO, PET}. In the first of these clusters the variable HA1 is 
used for the next division, and in the second one it is the variable SEX. The 
variables used in the third step are of less importance. However, note that 
the cluster (TAL, TIN} cannot be separated, which is why their label lines 
were printed right below each other. 

In the banner, the end of a row of stars * * * * * indicates a separation. 
The shorter the row, the earlier the separation was carried out in the 
algorithm. However, the banner does not provide a quantitative measure of 
the importance of a separation. In the graphical output of the other 
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programs of this book this is the case, making it possible to deduce the 
quality of the clustering from the fullness of the graphical representation. 
The banner of MONA cannot be used in this way because the length of a 
row of stars is proportional to the number of the separation step, not to the 
tightness of the clusters. 

An alternative way of investigating this binary data set is to start by 
computing a dissimilarity matrix with the program DAISY and then to 
cluster the objects using either AGNES or DIANA. (See Exercise 4.) 

Let us now look at a data set with missing values and see how the 
missing attributes are estimated by the program. Six 0-1 attributes were 
considered for 20 animals. The six attributes are 

WAR : 1 = warm-blooded 
FLY : 1 = can fly 
VER : 1 = vertebrate 
END : 1 = endangered 
GRO : 1 = live in groups 
HA1 : 1 = have hair 

0 = cold-blooded 
0 = cannot fly 
0 = invertebrate 
0 = not endangered 
0 = do not live in groups 
0 = do not have hair 

INPUT DATA .....*.. I .  

W F V E G H  
A L E N R A  
R Y R D O I  

ant 0 0 0 0 1 0  
bee 0 1 0 0 1 1  
c a t  1 0 1 0 0 1  
cpl  0 0 0 0 0 1  
chi  1 0 1 1 1 1  
cow 1 0 1 0 1 1  
duc 1 1 1 0 1 0  
s a g  1 1 1 1 0 0  
ale 1 0 1 1 1 0  
f l y  0 1 0 0 0 0  
fro 0 0 1 1 9 0  
her 0 0 1 0  1 0  
lio 1 0 1 9 1 1  
l i z  0 0 1 0 0 0  
lob 0 0 0 0 9 0  
man 1 0 1 1 1 1  
rab 1 0 1 0 1 1  
s a l  0 0 1 0 9 0  
s p i  0 0 0 9 0 1  
wha 1 0 1 1 1 0  

2 VARIABLES HAVE MISSING VALUES 

VARIABLE END HAS 2 MISSING VALUES 
VARIABLE GRO HAS 3 MISSING VALUES 

5 MISSING VALUES HAVE BEEN ESTIMATED 

Figure 6 First part of the output for the 
animal data. 
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The following animals were selected (in a rather arbitrary way): ant, bee, 
cat, caterpillar, chimpanzee, cow, duck, eagle, elephant, fly, frog, herring, 
lion, lizard, lobster, man, rabbit, salmon, spider, and whale. For the 
variables WAR, FLY, VER, and HA1 information was available for all 
animals. But for the variables END and GRO there was some doubt 
for, respectively, two and three animals. Therefore we decided to consider 
the corresponding measurements as missing. These values were identified 
by the program, and in Figure 6 the input data are followed by an 
inventory of the missing values for each variable. 

After the identification of missing measurements, a procedure is carried 
out for estimating their values. In this procedure each variable containing 
missing values is considered in turn. Each time the algorithm looks for the 
most similar complete variable and then uses the latter for filling in the 
missing values. In our example END has two missing values. The similari- 
ties between this variable and the complete variables are given in Figure 7. 

The variable WAR has the highest similarity with END and is therefore 
the most appropriate for estimating the missing values of END. The two 

variable 
END 

1 0  

WAR l*l 
0 1  

END 
1 0  

'H-4 0 5 9 

END 
1 0  

VER Fl 
0 0 5  

END 

H A 1  ' Figure 7 Similarities between a variable with missing 
values (END) and all variables without missing values, 
in the animal data set. 

0 6 7  

similarity 

36 

6 

30 

6 
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REVISED DATA 
* . I . . . . . . . * .  

W F V E G H  
A L E N R A  
R Y R D O I  

a n t  o o o o i o  
bee 0 1 0 0 1 1  
c a t  1 0 1 0 0 1  
CPl 0 0 0 0 0 1  
c h i  1 0 1 1 i 1  
cow 1 0  1 0  1 1  
duc 1 1 1 0 1 0  
eag  1 1 1 1 0 0  
a l e  1 0 1 1 1 0  
f l y  0 1 0 0 0 0  
f r o  O O i i o o  
her  0 0 1 0  1 0  
l i o  1 0 1 1 1 1  
l i z  0 0 1 0 0 0  
lob  0 0 0 0 0 0  
man 1 0 1 1 1 1  
r a b  1 0 1 0 1 1  
s a l  0 0 1 0 0 0  
SPi 0 0 0 0 0 1  
wha 1 0 1 1 1 0  

THE CLUSTER a n t  bee c p l  f l y  f r o  her  l i z  lob s a l  s p i  c a t  c h i  cow duc eag  

IS DIVIDED INTO 10 AND 10 OBJECTS, USING VARIABLE 
ele l i o  man r a b  wha 

THE CLUSTER a n t  bee c p l  f l y  l o b  s p i  f r o  h e r  l i z  s a l  
IS DIVIDED INTO 6 AND 4 OBJECTS, USING VARIABLE 

THE CLUSTER c a t  c h i  cow ele lio man r a b  wha duc eag  
IS DIVIDED INTO 8 AND 2 OBJECTS, USING VARIABLE 

THE CLUSTER a n t  c p l  l o b  a p i  bee fly 
IS DIVIDED INTO 4 AND 2 OBJECTS, USING VARIABLE 

THE CLUSTER f r o  her  l i z  s a l  
IS DIVIDED INTO 1 AND 3 OBJECTS, USING VARIABLE 

THE CLUSTER c a t  cow r a b  c h i  ele l i o  man wha 
IS DIVIDED INTO 3 AND 5 OBJECTS, USING VARIABLE 

THE CLUSTER duc eag  
IS DIVIDED INTO 1 AND 1 OBJECTS. USING VARIABLE 

Figure 8 Some results for the animal data. 

WAR 

VER 

FLY 

FLY 

END 

END 

END 
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animals for which the attribute END is missing (lion and spider) have 
values 1 and 0 for WAR. They are given the same value for END, as can be 
seen in Figure 8 in the revised data matrix. Figure 8 also contains the first 
three steps of the algorithm. 

In the first separation step (which is usually the most important) the two 
clusters of warm-blooded and cold-blooded species are found. In Figure 8 
we can see that after this first separation, different variables are used for 
further divisions. In the cold-blooded group the next separation is between 
vertebrate and invertebrate animals, while in the warm-blooded cluster the 
attribute of being able to fly is the most centrally located. Observe that the 
attribute “ vertebrate” cannot be used in the warm-blooded cluster because 
all animals in this group are vertebrate. Analogously, in the third step, the 
cluster {cat, cow, rabbit, chimpanzee, elephant, lion, man, whale} is sepa- 
rated into {cat,cow,rabbit} and the others. It should be noted that the 
separation variables used after step 3 are not very significant because the 
total similarities found are often the same for several variables, yielding an 
arbitrary choice of the separating variable (in such a case the first variable is 
chosen, which implies that another ranking of the variables would result in 
a different choice). 

Another example can be obtained by applying MONA to the binary 
variables of a mixed data set, such as the flower data in Table 12 of Chapter 
1 (see Exercise 6a). 

*4 MORE ON THE ALGORITHM AND THE PROGRAM 

4.1 Description of the Algorithm 

The clustering algorithm used in MONA assumes that there are no missing 
measurements. However, in many situations not all data can be obtained. 
Therefore, the program has a provision for filling in missing data. The 
program starts by identifying all values different from 0 and 1 as missing. 
The actual filling in is done by examining, one at a time, those variables for 
which some of the measurements are missing. When investigating such a 
variable (with index f ) ,  each variable is considered for which all measure- 
ments are available. Let us call g one of these complete variables. Note that 
there exists at least one complete variable (because if all variables have 
missing measurements, a message is given and the program stops). The 
following measure of association is then calculated between f and g: 

A ,  = Ia/dfg - b/*C/A 

where the values ufg, bf8, cfg, and dfg are obtained from the following 
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contingency table: 

Variable g 
1 0 

Variable f 

Note that a,, + b,, + c,, + d is the total number of nonmissing values of 
the variable f. After calculating A,, for each complete variable g, the 
variable t is determined for which the association with the variable f is 
maximal: 

A,, = maxA,, 

fs 

8 

If the same maximal association is found for several complete variables, t is 
chosen as the first in the list. 

Because the variable t has the largest association with the variable f, it is 
used for filling in missing measurements of f. How this is done depends on 
the sign of a,,d,, - b,,c,,. If it is positive, a missing value xi, of the 
variable f is simply replaced by the value x i ,  of the variable t .  On the other 
hand, if a,,d,, - b,,c,, is negative, the variable f is actually most similar to 
the complementary variable of t .  In this case, a missing value xi, is replaced 

After a complete data matrix has been obtained, MONA starts the actual 
clustering algorithm. The algorithm used is of the hierarchical divisive type. 
At each separation step it selects one of the variables and divides the set of 
objects being considered into objects for which the selected variable equals 
0 and objects for which it equals 1. The selection of a variable is also based 
on the association between variables. For each variable f, the association 
measures with all other variables are added, giving the total measure 

by 1 - xi , .  

The variable t for which this sum is maximal is then determined: 

A, = maxA, 
f 

Again, if the same maximal value is found for several variables, t is chosen 
as the one appearing first. 
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The association between variables can be considered as a kind of 
similarity between them. Indeed, the association between a variable and 
itself is usually very large. (The reason for this is that bJJ and cJJ are both 0. 
Note that the association between a variable and itself can be 0 in the 
extreme case that either ~ j j  or djj is 0. However, in this case f cannot be 
used for separating the set of objects.) On the other hand, if the two 
variables provide quite different information (see, for example, the variables 
1 and 3 in Table l), their association is very small. (Strictly speaking, this 
association measure is not a real similarity because it may take values 
exceeding 1.) 

The variable selected for the separation is the one for which the total 
association with all other variables is as large as possible. Therefore it can 
be argued that the total dissimilarity with other variables is as small as 
possible. This variable can thus be considered as a medoid of the variables. 
(See Section 1 of Chapter 2 for the definition of a medoid of objects.) 

The association measure does not depend on the coding of the variables. 
Indeed, if (for example) for variable g all zeroes are replaced by 1 s  and all 
1s by Os, the association measure A,, is given by 

which is equal to the original Afg.  This implies that the criterion treats all 
binary variables as if they were symmetric. It should be observed that a 
variable with many more 0s than 1s (or many more 1s than 0s) is likely to 
yield small association measures. As an illustration, compare the measures 
obtained from the two tables in Figure 9. 

The association for the contingency table of Figure 9a equals 24. The 
table of Figure 9b was obtained by changing three-quarters of the 0s of the 
variable f to 1s. The association then becomes 6. If only half the 0s had 
been changed, a value of 12 would have been obtained. This example 

variable t 

1 0  

variable t 

1 0  

varioble f variable g 

Figure 9 Contingency tables for calculating the measure of association between: (a) a 
balanced variable f and a variable I;  (b) a strongly unbalanced variable g and the same 
variable r. 
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Table 2 Example of a Data Set in Which an Arbitrary Choice 
is Made for the Selection of a Semuation Variable 

v1 v2 v3 

illustrates why strongly unbalanced variables are unlikely to be selected for 
separations, because they are located far away from most variables. 

After the first separation of the objects into two subsets, the process is 
repeated within each of these. Of course the variable used for the first 
separation must not be considered any further, because it takes identical 
values for all objects of the same subset. Also, the separation of each subset 
is carried out independently. 

The separation steps are continued until either a subset consists of a 
single object or until the remaining variables cannot be used for its 
separation (because all of its objects have the same values for these 
variables). In the latter situation the subset is kept as a whole. 

The separation step relies heavily on the association between remaining 
variables. The way in which these associations are calculated implies that 
only a limited number of different values can be obtained. This is particu- 
larly the case during the latter stages of the algorithm. As an illustration, 
consider Table 2 in which there are six remaining objects and three 
variables that can be used for their separation. 

For the measurements of Table 2 the following values are obtained: 
A,, = 3, A,, = 3, and A,, = 9. Variables 2 and 3 will both yield a total 
measure of 12 and an arbitrary choice will be made between them. In most 
applications similar situations occur when there are just a few remaining 
variables and/or objects. In particular, this happens when there are just 
two variables remaining for the separation of a subset. In this case, the 
choice is always arbitrary. 

4.2 Structure of the Program 

The program MONA is written in Fortran and consists of approximately 
800 statement lines. Besides the main unit, the program contains one 
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dimension Statements  

f I le numbers 

call ENTR 

call DATMT 

m i s s i n g  d a t a  S R C t l O n  

c a l  I DFITMT 

a l p o r  i thrn 

c a l l  EANMT 

MAIN UNIT 

ENTR 

C d l l S  t o  QVN answers t o  

callm t o  NWLAE u yes/no u 
NWLAE 

o f  labels 

DATMT 

o u t p u t  o f  d a t d  "L___I 
EANMT 

c a l l  FRAME 

draw t h e  bdnnr  

c d l l  FRAME draw t h e  f rame 

Figure 10 Structure of the program MONA. 

function and six subroutines. The structure of the program is shown in 
Figure 10. 

The program starts with dimension and character statements. After these 
statements, values are given to MAX", MAXTT, and MAXPP, making it 
possible to cluster data sets of different sizes. MAX" and MAX" are 
the maximum numbers of objects and variables, and MAXPP is the 
maximum number of variables that can be used in the actual computations. 
In the compiled version of the program they were given the following 
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values: 

MAXNN = 200 
MAXTT' = 200 
MAXPP = 100 

The values of MAXNN, MAXTT, and MAXPP can be changed by the 
user who then must also adapt the dimensions of the arrays (both in the 
dimension and character statements). These changes only have to be made 
in the main program and not in the subroutines. However, it should be 
noted that the values cannot be changed arbitrarily because this has an 
effect on the size of the EXE file obtained after compilation. 

MONA considers all measurement values different from 0 or 1 as 
missing. In order to change the symbols used to denote measurements, two 
situations can be considered. If other real values are wanted, instead of 0.0 
and 1.0, it is sufficient to adapt the assignment statements situated at the 
beginning of the main program (right after the statements for MAXNN, 
MAXTT', and MAXPP): 

ABSL = -0.001 
ABSH = 0.001 
PRSL = 0.999 
PRSH = 1.001 

All values of a measurement between ABSL and BSH will be inter- 
preted as the 0 state and all values between PRSL and PRSH as the 1 state. 
All other values will be considered as corresponding to a missing measure- 
ment. If the user requires characters instead of reals, he must change the 
type of some Fortran variables to characters and also adapt the type of the 
array HULP (both in the main program and in the subroutine ENTR). 

Another possible adaptation of the program concerns the symbols used 
in the banner. The use of other symbols is discussed in the Appendix. 
Finally, the user might want to know the value of the objective function A, 
for the variable ( t )  used to separate a cluster. This can easily be achieved by 
adding the following statements just before statement 395 NBAN(KM) = 

NPASS in the main program: 

WRITE (LUB,9097)LAMA 
9097 FORMATCThe value of the objective function is ',17) 

when the user wishes this information. 
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*5 RELATED METHODS AND REFERENCES 

The monothetic divisive algorithm in MONA is a variant of a method 
called association analysis, which was introduced by Williams and Lambert 
(1959). In Section 5.1 association analysis and several other variants are 
discussed and compared. These methods are all based on the chi-squared 
statistic. The use of other statistics has led to different monothetic divisive 
algorithms for binary data (Section 5.2). In Section 5.3 some polythetic 
methods for binary data and monothetic divisive methods for continuous 
data are described. 

5.1 Association Analysis 

A well-known result from probability theory is that for a two-by-two 
contingency table (as in Figure l), the statistic 

(ad - bc)*n 
K =  ( a  + b ) ( a  + c ) ( b  + d ) ( c  + d )  (1) 

has approximately a chi-squared distribution with 1 degree of freedom. This 
result is widely used for testing the hypothesis of independence between the 
two variables used to construct the table. A corollary is that the value of K 
can be used as a measure of the association between the two variables. A 
small value of K implies that the two variables are unrelated and in a sense 
provide different information on the set of objects. This can be expressed as 
a large distance between the two variables. A similar argument shows that a 
large value of K implies that the two variables are very related (with either 
positive or negative dependence). 

The position of a variable f with respect to all other variables can be 
measured by calculating the sum of the Kf8 for all variables g: 

A large value of K f  indicates that f is centrally located in the set of 
variables. 

Association analysis (Williams and Lambert, 1959) is based on the 
selection of the variable f that maximizes K f .  The method starts by 
dividing the set of objects into those for which x, is 0 and those for which 
x, is 1. After this splitting the same operation is repeated on each of the 
two subsets, and subsequently on smaller and smaller subsets. When 
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calculating K / ,  Williams and Lambert only consider significant K,g values 
(at the 5 %  level of significance). When for a given subset none of the KrB 
values are significant, this subset is not divided any further. Also, these 
authors have suggested two variants of this method. In the first, the Yates 
correction is applied to the KjB values, and in the second the following 
objective function is maximized: 

Lance and Williams (1965) also consider (3) and justify its use by 
observing the following relationship between Kfg and the Pearson correla- 
tion coefficient: 

This follows from 

where 

E x 1 , =  E x $ =  a + b 
i 1 

E x i ,  = CxjLg = a + c 
1 i 

C x i / x i g  = a 
i 

Hence 

na - ( a  + b ) ( a  + c )  

( n ( a  + b )  - ( a  + b) ' ) (n (a  + c )  - (a + c ) ~ )  

( a  + b + c + d ) a  - ( a  + b ) ( a  + c )  

\I(c + d ) ( a  + b ) ( b  + d ) ( a  + c )  
- - 

ad - bc 

/ ( a  + b ) ( c  + d ) ( a  + c ) ( h  + d )  
- - 
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so finally 
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(ad - bc)2n 

n R i 7  = ( a  + b ) ( c  + d ) ( a  + c ) ( b  + d )  

This result implies that the original objective (2) is equivalent to maximiz- 
ing C,nR;, or also CgRjg. 

A computer program for association analysis was implemented by 
Williams and Lambert (1960). Lance and Williams (1965) also discuss 
computer programs for association analysis, as well as for the variants using 
the objective functions 

They showed that the use of (2) as a basis of splitting approaches the 
maximum information split (see the next subsection). However, they also 
remark that it has the disadvantage of fragmenting the clustering process by 
splitting off outliers at an initial stage of the algorithm. On the other hand, 
(4) appears to lead to more even splits and therefore preserves more of the 
structure in the data set through the initial part of the analysis. In their 
opinion (which to our knowledge is not accompanied by strong empirical or 
mathematical evidence), this last criterion provides the best general-purpose 
solution. 

The program MONA uses objective (a), which differs from (2) in three 
respects : 

1. The factor n has been removed because it has no effect on the 
clustering. 

2. The marginal totals ( a  + b), ( a  + c), (b + d), and (c + d)  are not 
considered, which has the computational advantage of not having to 
worry about any of these values being 0. 

3. The absolute value is taken instead of the square of expression 
ad - bc; this has the general advantage of being a more robust value. 

Finally it should be noted that association analysis has been widely 
applied in biology and particularly in plant ecology. For more information 
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the reader is advised to consult the series of papers by Williams and 
Lambert (1959,1960,1961), by Lambert and Williams (1962,1966), and by 
Williams, Lambert, and Lance (1966). 

5.2 Other Monothetic Divisive Algorithms for Binary Data 

It has been noted by Macnaughton-Smith (1965) that association analysis 
yields a near-optimum information split. Lance and Williams (1968) give 
the following definition of the information content of a population of n 
objects characterized by p binary variables: 

P 
I = p n  logn - c (a/ loga /+  ( n  - a/)log(n - a / ) )  

/- 1 

where a/ is the number of objects for which attribute f is present (takes 
value 1): 

n 

a/ = c X I /  

i - 1  

If a population X is divided into two groups, A and B, they define the 
information fall by: 

This coefficient can be considered as a measure for the importance of a 
splitting variable. The greater the information fall, the smaller the informa- 
tion remaining after the splitting. Therefore, the algorithm selects the 
variable for which the corresponding division yields a maximal information 
fall, and as in association analysis this variable is used to dichotomize the 
population. Lance and Williams note that since the information content 
falls monotonically (if A C B, then 1” 5 IB) the hierarchy yielded by the 
method can be plotted with the I value as hierarchical level. This is not 
possible in association analysis, in which reversals of K/ are frequent. 

Crawford and Wishart (1967) describe a rapid clustering method called 
group analysis which is based on the potential of a variable for determining 
a cluster. 

The Clustan package (see Wishart, 1978) contains a general monothetic 
algorithm that can be used with a large number of intercluster dissimilarity 
coefficients. 

In view of constructing a technique particularly suited for clustering 
large data sets, Openshaw (1980) has compared 17 methods using 24 data 
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sets with known cluster structure. Four of these methods are variants of 
association analysis, one is group analysis, and the general monothetic 
algorithm is considered with 12 intercluster dissimilarity coefficients. Com- 
bining the criteria of quality and computation time, Openshaw concluded 
that the error s u m  dissimilarity coefficient was best suited for clustering 
large data sets. The main idea he introduced to improve the performance of 
the algorithm is to use a sparse matrix technique to store only the nonzero 
measurements. According to Openshaw, his method makes it possible to 
cluster data sets of 50,000 to 400,000 objects with 50 variables into 35 
groups in times going from 170 to 800 CPU seconds on an IBM 370/168. 
Openshaw also proposes a relocation method to improve the resulting 
clustering. 

5.3 Some Other Divisive Clustering Methods 

The methods discussed so far in this chapter are all divisive and mono- 
thetic, and specifically designed for handling binary data. The divisive 
methods of Chapter 6 are of the polythetic type and intended for clustering 
continuous data. However, those methods can also be used for binary data, 
as we will see further on. In this section two additional situations will be 
investigated: monothetic methods for quantitative measurement data and 
polythetic methods for binary data. 

Gower (1967) proposed a variant of association analysis in which the 
separation variable is the one that maximizes the multiple correlation 
coefficient RZ instead of maximizing the sum of simple correlation coeffi- 
cients (see Section 5.1). As in association analysis, each variable is consid- 
ered in turn and a multiple linear regression is carried out with the other 
p - 1 variables as explanatory variables. Normally, this would require a 
matrix inversion for each variable. However, Gower also gives a way to 
replace all these matrix inversions by a single one, thus considerably 
reducing the amount of calculation. 

As Gower remarks, his variant is also suited for quantitative data, 
provided a rule is added for splitting the set of objects using the selected 
variable. Gower suggests using a cutoff point q that maximizes the differ- 
ence between the mean values of the selected variable in both subgroups. 
The set is then split into objects for which the selected variable is less than 
q and objects for which it exceeds q. Another monothetic method for 
quantitative measurements is to start by determining cutoff values for all 
variables (possibly in the same way as suggested by Gower) and then to 
replace all values below the cutoff value by 0 and the values above it by 1. 
Subsequently, the clustering can be carried out using MONA. This ap- 
proach can also be used for mixed data sets. 
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The projection pursuit algorithm of Friedman and Tukey (1974) is similar 
to monothetic clustering because it also uses a single variable for the 
splitting at each iteration. (However, because the variable is a linear 
combination of the original variables, their algorithm is closer to the 
polythetic methods.) The CART approach to discrimination and regression 
analysis (Breiman et al., 1984) uses the same kind of tree structure. 

When investigating binary data, and if one does not absolutely require a 
monothetic classification, a natural approach is to construct a matrix of 
dissimilarities between the objects and subsequently to apply one of the 
polythetic divisive algorithms. This can be achieved by using DAISY for 
the dissimilarity matrix and then running DIANA in which the option of 
dissimilarity input is selected. This approach has the additional advantage 
of also allowing other clustering methods, such as agglomerative nesting or 
partitioning, based on this dissimilarity matrix. 

Another algorithm in this category of polythetic methods for binary data 
was proposed by Macnaughton-Smith et al. (1964). This much cited method 
is a variant of their algorithm for quantitative data. The splitting of a 
cluster X proceeds by the construction of a splinter group, to which objects 
are assigned one at a time. Suppose the dissimilarity between two clusters A 
and B is denoted by d( A,  B). Let us denote the splinter group found so far 
by Xo and investigate the transfer of an object xi to the splinter group. One 
then calculates the dissimilarity between object xi and the remaining 
objects: 

and the dissimilarity between xi and the splinter group: 

If the difference between these two dissimilarities 

is positive, object xi is a candidate for joining the splinter group. All 
objects remaining in X are considered, and the object is transferred for 
which the computed difference is maximal. If all the differences are nega- 
tive, the separation of this cluster stops. For binary data Macnaughton- 
Smith et al. (1964) propose the dissimilarity 
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where XA, and XB, denote the proportions of objects possessing the 
attribute f in the clusters A and B. In order to reduce the amount of 
calculation, the x x  values are calculated in the cluster X which is to be 
divided, and not recalculated in the successive groups ( X \ X ,  and X,) 
along the way. 

EXERCISES AND PROBLEMS 

1. Consider the data set of Table 1. Compute the total similarity between 
variable 1 and all other variables. Repeat this computation for variable 
2, and so on. Which variable yields the largest total similarity? 

2. The animals data were listed in Figure 7 of Section 3. Cluster this data 
set with MONA, after dropping the animals for which not all measure- 
ments are available. Compare the results with those obtained in Section 
3. In particular, the order in which the variables are selected should be 
considered in both outputs. 

3. Extend the animal data set given in Figure 7 by adding data on 10 more 
animals. Cluster the entire data set using MONA. Compare the results 
with those obtained for the original data. 

4. Consider the family data clustered in Section 3. Compute a dissimilar- 
ity matrix between objects with the program DAISY (considering all 
binary variables to be symmetric) and apply DIANA to it. Compare the 
resulting hierarchy with the MONA results in Section 3. 

5. Repeat the preceding exercise for the data set of animals in Figure 6, 
again considering all binary variables to be symmetric. 

6. Consider the mixed data set of flowers listed in Table 12 of Chapter 1. 
(a) Apply MONA to the data set obtained by considering only the 

(b) Transform the other variables into binary variables by grouping 
binary variables. 

values, and then apply MONA to the entire data set. 

7. The program MONA can also be used to cluster a set of binary 
uariables. For this purpose the data matrix must first be transposed. 
Apply this approach to cluster the variables of the family data de- 
scribed in Section 3. Check that another clustering may be obtained 
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when some of the original variables are coded differently (that is, by 
interchanging 0 and 1). 

8. (a) Which values can be taken by the association measure between a 
variable and itself? In which situation is this similarity maximized? 

(b) Consider a clustering algorithm, similar to the one used in MONA, 
in which the selection of a variable is based on the sum of 
similarities to all variables (including the variable itself). Which 
variables will be favored by such an algorithm? 

9. Compute upper and lower bounds on the similarity used in MONA, for 
a data set containing n objects. Suggest a way of transforming the 
similarity between variables into a dissimilarity. Such a dissimilarity 
can then be used as input for PAM, FANNY, AGNES, and DIANA to 
cluster the variables. 

10. Construct a divisive monothetic algorithm for binary data, where the 
data are split according to the variable with smallest total Manhattan 
distance (computed from the transposed data matrix) to all other 
variables. Apply this algorithm to the data set of Table 1 and compare 
the results with Figure 4. 



Appendix 

The purpose of this appendix is to provide additional information about the 
programs described in this book. Besides giving a better understanding of 
the implementation of the various techniques and algorithms, this informa- 
tion should allow the reader to use the programs efficiently and to adapt 
them to his or her particular requirements when needed. Moreover, Section 
4 describes a new program called CLUSPLOT, by which a graphical 
representation of a partition can be obtained. 

1 IMPLEMENTATION AND STRUCTURE OF THE PROGRAMS 

The programs of Chapters 1 to 7 were written in Fortran. In an effort to 
make the programs as portable as possible we have decided to impose 
several restrictions: 

Many statements that are not used in the same way by all compilers 
or that may make it difficult to modify the programs were excluded, 
such as COMMON, DATA, EQUIVALENCE, EXTERNAL, REAL, 
INTEGER, and DOUBLE PRECISION. 

The only inline functions were ABS and SQRT. 
Names of variables and routines were limited to five alphabetical charac- 

ters. To avoid confusion, the characters I, 0, 1, and 0 were not used. 

The first versions of the programs were written for a mainframe com- 
puter. These were extensively tested for portability using the PFORT 
verifier (Ryder, 1974) and ran without problems on many different ma- 
chines, using either Fortran IV or Fortran 77 compilers. However, when the 
IBM-PC standard for personal computers came in general use, we decided 

312 

Finding Groups in Data: An Introduction to Cluster Analysis 
Leonard Kaufman and Peter J. Rousseeuw 

Copyright 01990,2005 by John Wiley & Sons, Inc 



RUNNING THE PROGRAMS 313 

to switch to the PC and to make all the programs interactively operated. 
Although this was done at the expense of some of the portability, this 
original aim was withheld whenever possible. Adapting the programs to 
various compilers has proven to be very straightforward. Even the adapta- 
tions necessary to run CLARA on a parallel computer system (see Section 
5.3 of Chapter 3) were minimal. 

The way the logical names of input and output files are assigned in the 
programs also serves the purpose of making them portable. The numbers of 
the input and output files are given in the main program unit, right after the 
dimension statements. In all programs, except DAISY and CLARA, the 
following statements are used: 

LUA = 1 (input file containing the data set) 
LUB - 2 (output file containing the clustering results) 
LUC = 3 (file used for saving the data set if it was entered from the keyboard). 

The program DAISY may open up to three new files: LUB contains 
information on the variables and the missing values, LUC is the file used 
for saving the data set if it was entered from the keyboard, and the 
dissimilarity matrix computed by the program is sent to LUD. In CLARA, 
which can only be used to process large data sets, the data always must be 
read from an existing file, so LUC is not used there. In all programs the 
actual numbers may of course be adapted to the user’s hardware. 

The names of all input and output files are entered during the interactive 
dialogue at the beginning of each run. The variables used for these names 
are FNAMEA, FNAMEB, and FNAMEC. They consist of up to 30 
characters and may contain a drive and a path. In all programs except 
CLARA the data may also be entered from the keyboard, provided the user 
types KEY in answer to the relevant question. This instructs the program to 
assign the characters CON to the variable FNAMEA. The name of the 
output file can be given as CON (if the output should be shown on screen), 
as PRN (if it should be directed to the printer), or the name of a disk file 
may be given. 

2 RUNNING THE PROGRAMS 

The programs described in this book all run on an IBM-PC, XT, AT or any 
compatible computer with at least 256 K of storage. A printer is not 
mandatory, but if one is available the output can be sent to it. In order to 
make this output easy to interpret, it was decided to make all of its lines at 
most 80 characters long, so that it fits on any screen or printer. The first 
character of any output line is always left blank. 
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The correspondence between programs, techniques, and chapters is shown 
in the following table: 

Program Purpose Chapter 

DAISY Computing dissimilarities 1 
PAM Partitioning by means of the 2 

CLARA Partitioning large data sets 3 
FANNY Fuzzy partitioning 4 

k-medoid method 

TWINS Agglomerative and divisive 5and6 
clustering (it combines the 
programs AGNES and DIANA) 

MONA Monothetic analysis of binary data 7 

Each program can be run by simply typing its name and hitting the 
return key. This starts an interactive dialogue during which the user may 
select certain options by responding to a series of questions. The program 
checks each answer to see whether it is a valid option or specification. If 
this is not the case, a message is given and the question is reiterated. For 
example, when entering the number of objects in PAM (and in most other 
programs), the following dialogue is possible: 

THE PRESENT VERSION OF THE PROGRAM CAN HANDLE UP TO 100 
OBJECTS. 

GRAM MUST BE ADAPTED) 

HOW MANY OBJECTS ARE TO BE CLUSTERED ? 

PLEASE GIVE A NUMBER BETWEEN 3 AND 

AT LEAST 3 OBJECTS ARE NEEDED FOR CLUSTER ANALYSIS, 
PLEASE FORESEE MORE OBJECTS 

HOW MANY OBJECTS ARE TO BE CLUSTERED 7 

PLEASE GIVE A NUMBER BETWEEN 3 AND 

NOT ALLOWED ! PLEASE ENTER YOUR CHOICE AGAIN : 

HOW MANY OBJECTS ARE TO BE CLUSTERED ? 

PLEASE GIVE A NUMBER BETWEEN 3 AND 

(IF MORE ARE TO BE CLUSTERED, THE ARRAYS INSIDE THE PRO- 

...................................... 
100 : - 2 

...................................... 
100 : - 120 

...................................... 
100 : 12 
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Many options take the form of a yes/no question. Only the first 
character of the answer is read. Both y and Y are interpreted as yes, and 
both n and N are taken to mean no. All other characters will cause the 
question to be asked again, as in the following excerpt: 

DO YOU WANT GRAPHICAL OUTPUT (SILHOUEITES) ? 
PLEASE ANSWER YES OR NO : - u 
NOT ALLOWED ! PLEASE ENTER YOUR CHOICE AGAIN : y 

Because such questions occur very often, a special subroutine was written 
for this purpose. 

Provisions similar to those for yes/no questions were made for other 
situations, such as the choice between measurement input ( m )  and input of 
dissimilarities (d). Sometimes options are numbered, such as 1, 2, 3, and 4 
at the beginning of DAISY. In such case all other characters are rejected. 

When the name of an input file is entered, the program verifies whether it 
exists. i f  it cannot be found on the disk, the program states this and asks 
for the name once again. However, the program does not check whether a 
file specified for ourpur already exists. If it does, it will be overwritten by 
the new file. For both input and output files, the program does verify the 
correctness of the file name syntax. A mistake will be signaled by the 
program, which will then ask for another name. 

For the input of the data, the programs allow the choice between free 
and fixed format. The free format, which is the easiest to use, supposes that 
the data all consist of numbers separated by blanks. If some data stick 
together or if some of it is not numerical (even if these variables are not 
used for the clustering), the user must supply an input format. Because the 
Fortran variables used for the data are real, only F and E formats are 
allowed. The general structure of an F format is Fw.d where w denotes the 
total number of characters (including the decimal point) and d is the 
number of digits after the decimal point. If the number to be read does not 
contain a decimal point, it may occupy all w positions. In this case, the 
rightmost d digits are interpreted as following the decimal point. (However, 
decimal points that occur at the “wrong” place take precedence over the 
format specifications.) Examples of F formats are F15.7 and F8.0. E 
formats are written as Ew.d. Also here, w is the total number of characters 
in the field and d is the number of digits after the decimal point. The 
number may also contain an exponent that is either a sign followed by an 
integer or an E followed by an optional sign followed by an integer. Note 
that the data may also contain an exponent when an F format is used. If 
the same E or F format is appropriate for several variables, it can be 
preceded by a repetition factor (as for example in 8F10.2). 
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D 

1 
3 
Country data set 
N 
Y 
N 
Y 
COUNTRY.DAT 
COUNTRY.PAM 
Y 

i a  
(input of dissimilarities) 
(number of objects) 
(initial number of clusters) 
(final number of clusters) 
(title for output) 
(small output is wanted) 
(graphical output is wanted) 
(no object labels will be entered) 
(data will be read in free format) 
(name of the file containing the data) 
(name of the output file) 
(all entered specifications are OK) 

Figure 1 Input file to be used with the program PAM: Its use replaces the interactive 
dialogue. 

To make it possible to disregard one or more positions on the input line, 
an X format may be used. For example, the format 1OX ensures that 10 
positions are skipped. Such a format is necessary if this field contains 
nonnumerical characters. Finally, one or several / make it possible to 
employ several input lines for the same object. Each time a / is encoun- 
tered, the program moves to the next input line. 

Apart from the usual interactive input of options and parameters as 
described in each chapter, it is also possible to use an input file containing 
all the answers and options that are otherwise entered by keyboard. Figure 
1 shows an example of such an input file for PAM. The meaning of each 
line is shown between brackets. 

In order to use such an input file (instead of typing the options and 
parameters on the keyboard), the input to the program must be redirected. 
This is possible by using a “less than” sign in the command. Suppose the 
input file depicted in Figure 1 is named 0PTIONS.DAT and that it should 
be used with PAM. This is achieved by typing the instruction 

PAM < OPTIONSDAT 

assuming that the file 0PTIONS.DAT is on the current disk. 

3 ADAPTING THE PROGRAMS TO YOUR NEEDS 

In the course of an application it may be necessary or desirable to modify a 
program. The most frequent type of modification is due to the size of the 
data set to be clustered. All of the programs begin by assigning values to 
the maximum dimensions of problems that can be processed. For example, 
in PAM, FANNY, AGNES, and DIANA the following upper limits are 
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set: 

MAXNN = 100 (maximum number of objects) 
MAX= = 80 (maximum number of variables in the data set) 
MAXPP - 20 (maximum number of variables that 

can be used for the clustering) 

In order to adapt these values, both the assignment statements and the 
DIMENSION and CHARACTER statements located at the beginning of 
the main unit must be changed. However, no changes are necessary in 
the subroutines because the upper limits are passed on as arguments 
in the calling sequences. It should of course be noted that a modification of 
the dimensions of the arrays has implications on the compilation of the 
programs. The characteristics of the compiler should be considered when 
carrying out any changes. For example, if MS Fortran is used it might be 
necessary to add a $LARGE metacommand at the beginning of a program 
to accommodate large arrays. 

Sometimes the user might want to change the algorithm used by the 
program. This is most likely to be the case for AGNES (Chapter 5 )  because 
of the popularity of a variety of agglomerative clustering methods. As was 
explained in Section 5.1 of Chapter 5 ,  a slight alteration in the subroutine 
AVERL makes it possible to replace the group average method by one of 
six other agglomerative techniques. In CLARA, the algorithm can be 
(slightly) modified by changing either the number or the size of the samples 
that are clustered. In the beginning of the main program unit the statements 

NRAN = 5 
NSAM = 40 + 2 * K K  

are used to determine the number of samples and their size. Both state- 
ments may be altered. 

Finally, the user may also change the appearance of the graphical output 
of all the clustering programs by modifying the following assignment 
statement that is to be found in the subroutine ENTR: 

NUM =‘0123456789+ + ’ 

Changing the last two characters * and + will alter the graphical output 
considerably, because these characters make up the silhouettes and the 
banners. 
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4 THE PROGRAM CLUSPLOT 

The graphical output of the partitioning programs (PAM, CLARA, and 
FANNY) consists of the so-called silhouettes. These provide a visual 
representation of each cluster, together with some statistics (the average 
silhouette width for each cluster and for the entire data set). Apart from 
this representation it seemed instructive to have a display containing both 
the objects and the clusters. Such a drawing can picture the size and shape 
of the clusters and their relative position in space. (Note that this informa- 
tion is partially provided by the neighbor of each object, as shown in the 
silhouette plot.) 

CLUSPLOT is a menu driven PASCAL program that uses output from a 
partitioning algorithm to visualize the objects and clusters in a two-dimen- 
sional plot. The input data structure can either be a matrix of objects by 
measurements or a dissimilarity matrix. The program also requires the 
input of a clustering vector, containing the cluster number of each object. 
The number of clusters drawn by CLUSPLOT is the number of different 
entries found in the clustering vector, 

Fipre 2 Example of a CLUSPLOT output. 
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If a dissimilarity matrix is used as input, CLUSPLOT begins by convert- 
ing the data to two-dimensional coordinates by means of multidimensional 
scaling. The same technique is used if the data consist of a matrix of 
measurements with more than two variables. 

In the plot, clusters are indicated by circles or ellipses. The program has 
options allowing the rotation and intersection of the clusters, in order to use 
the screen area in an optimal way. Further options make it possible to draw 
the individual points, number the clusters, plot the coordinate axes, shade 
the clusters, and draw lines between them. Also, the plot can be saved in a 
file for a quick reproduction on a later occasion. 

Figure 2 is a plot showing the results of PAM, obtained by clustering the 
12 countries data set into three clusters. The partition itself was discussed in 
Section 3 of Chapter 2. 
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distant, 219 
effect on function, 114 
elimination of, 115. 116 
identifying, 154 
removal of, 153 

sensitivity to, 8, 191, 275 
splitting off, 306 

PAM, see Partitioning around medoids (PAM) 
Partial sums, 186 
Partitioning around medoids (PAM), 40-41 

algorithm, 102-104 
cases, 73-74 
computing invariants, 85 
entering data, 70 
examples, 92-102 
graphical display, 83-88, 97-98, 

intermediate objects, 125 
labels, 74 
missing values, 77-78, 88-91 
portability, 104 
program structure, 104- 108 
using the program, 72-80 

119-123 

Partitioning methods, 3 
PASCAL, 318 
Pearson conelation, 17-18, 19, 21, 305 

DAISY program, 57 
Permutation of objects. 238 

graphical display, 1 19 
PFORT, 312 
Polythetic analysis, 50 
Polythetic clustering methods, 308 
Polythetic divisive methods, 273 
Polythetic variables, 281 
Portability of programs, 104, 312-313 
Positive match, 26 
Probability of locating objects, 145, 162 
Projection pursuit, 309 
Proximities, 4 
Proximity matrix, 20, 34-35 
P-value, 20 
Pyramids, 250 
Pythagoras' theorem, 11 
Pythagorean distance. I I 

Quadratic loss function, 239 

Random graph theory, 122 
Random number generator, 144 
Rank matrices, 122 
Ratio scale variables: 

application, 3 I 
computing dissimilarities, 36 
treatment of. 31-32 
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Regression analysis: 
CART approach, 309 
least squares estimator, 239 

Representative objects, 68 
CLARA program, 126, 131, 144 
clustering, 40 
FANNY program. 165-166 
PAM program, 102 
replacement by p-dimensional points, I 14 
selection of, 108, 110-1 I I 

Resemblance matrix, 20, 36 
Reversals, 240 
Robustness: 

CLARA program, 156 
criteria, 283 
divisive clustering, 274 
k-medoid method, 117, 121. 274-275 
mean absolute deviation, 8 
monothetic analysis, 306-307 

Robust regression, 268 
Rogers-Tanimoto dissimilarity, 64-65 
Rows, 4 
Ruspini data, 98-101, 196, 268 

fuzzy clusters, 197 

Saddle points, 185 
SAS, 18, 195 
Scatterplot. 4-5 
S-coefficient, 26 
Seed points, 113, 157 
Separation variable, 291 
Sequential dynamic kernel aglorithms, 156 
Silhouette coefficient, 87-88, 96. 142, 

212-213 
FANNY program, 174 
to select k values, I10 

Silhouette plot, 41, 72, 97, 318. See also 

CLARA program, 126-127, 141, 146 
FANNY program, 174, 175, 177 
fuzzy clustering, I88 
PAM, 83-84 
Ruspini data, 101 
vs.  cluster validity profile, 123 

Similarities, 3, 20-22 
binary variables. 22-23 
converting to dissimilarities, 35 
defining, 21 
invariant, 23, 24, 25 
total, 294 

Average silhouette width 

Similarity coefficient, 20 
Simple matching, 28-29 
Simple matching coefficient, 25 
Simulation studies, 242 
Single linkage, 25, 47-48, 225-226 

admissibility conditions satisfying. 

consistency of clustering, 242 
constraints, 240, 241 
large data sets, 157 
weakness of algorithm, 226 

239 

Single pass sequential algorithm, 156 
Space-conserving methods, 227. 245 
Space-contracting methods, 227, 237, 238 
Space-dilating methods, 227, 237, 238 
Spearman correlation. 18, 2 I ,  3 I ,  63 
Splinter group, 255, 256, 272, 309 

internal cohesion, 274 
Splitting of clusters 

ISODATA method, 1 15 
SPSS, 18, 195, 245 
Standard deviation, 8, 117 

computing, 63 
Standardizing data, 6- 15, 117 

benefits of, I 1  
converting to interval-scaled variables, 

mean value, 15 
PAM program. 89 

35-36 

Star group, 268 
Statistical distribution, 241 

chi-squared, 304 
spherical multivariate normal, 242 

Steepest descent method, 87 
Stirling number, I15 
Stopping rules, 208 
Subjective dissimilarity coefficient, 92 
Sum of squares, 242 
SWAP, 14, 103-104 

Taxometric maps, 120 
Taxonomic tree, 46 
Tolerance ellipsoids, I19 
Translation of data points, 119 
Tree diagram, 246 
Triangle inequality, 13, 18 
Trilinear coordinates, 196 
TWINS, 208, 223, 259. 272, 278 
Two-way clustering method. I17 
Typological analysis, 3 
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Ultrametric property, 25 I 
Unweighted average linkage, 235 
Unweighted pair-group average method, 47, 

Unweighted principle, 235 
Update mechanism, 221, 225, 229, 236 

UPGMA, see Unweighted pair-group average 

203 

form, 237 

method 

Validity coefficients, 121 
Variables: 

association between, 299 
continuous, 3 
discrete, 3 
explanatory, 308 
inverse, 11 
irrelevant, 53 
noninformative, 14 
qualitative, 31 
quantitative, 31 
splitting, 307 

symmetric, 23 
unbalanced, 30 I 
weighted, 13, 29, 156 

Variance minimization, 112-1 14, 230-231, 
277 

large data sets, 155 

Ward's agglomerative method, 230-234, 237, 
277 

constraints, 240, 241 
ellipsoidal clusters, 242-243 
furthest neighbors, 242 

Ward's display, 243, 245, 247 
Weighted average linkage, 234-236, 235, 

236, 231 
constraints. 240 

Yates correction, 305 

Z-scores, 9, 15, 75 
computing, 63 




