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Symmetry Studies

Experimental data can often be associated with or indexed by certain
symmetrically interesting structures or sets of labels that appear, for
example, in the study of short symbolic sequences in molecular biology,
in preference or voting data, in visual field and corneal topography arrays,
or in experimental refractive optics. The symmetry studies introduced in
this book describe the interplay among symmetry transformations that are
characteristic of these sets of labels, the resulting algebraic decomposition
of the data that are indexed by them, and the research questions that are
induced by those transformations. The overall purpose is to facilitate and
guide the statistical study of the structured data from both a descriptive
and inferential perspective. The text combines notions of algebra and
statistics and develops a systematic methodology to better explore the
many different data-analytic applications of symmetry.
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Preface

This text is an introduction to data-analytic applications of symmetry principles and
arguments or symmetry studies. Its motivation comes from a variety of disciplines
in which these principles continue to play a significant role in describing natural
phenomena, and from the goal of methodologically applying them to classification,
description, and analysis of data. The product of the methodology presented here is a
broader class of data-analytic tools derived from well-established and theoretically
related areas in algebra and statistics, such as group representations and analysis
of variance.

The principles discussed in the text reflect many defining aspects of symmetry,
a Greek conception dating from the Hellenic Era and part of a class of terms
and forms of expression that designated harmony, rhythm, balance, stability, good
proportions, and evenness of structure. Early Greek art and architecture often
capture the outstanding dualism intrinsic to the original notion of symmetry – that
of retaining the static uniqueness of one’s being and at the same time promoting
its dynamical multipresent realizations. This dualism is only apparently hidden in
the 12th-century Athenian detail shown in the front cover. I invite you to recognize
the presence of these pleasant concepts in the methodology to be introduced in the
coming pages.

The text is divided as follows. Chapter 1 gives a complete overview of the
methodology, including an introduction to the concepts of data indexed by sym-
metries, finite groups, group actions, orbits and classification, and representations
in the data space. At the same time it outlines the step-by-step connection between
the algebra and statistical inference, in the context of analysis of variance. It also
emphasizes the fact that the same symmetry arguments useful here for classification
and data reduction are part of the common language of the chemist, the geneticist,
and the physicist.

Chapters 2, 3, and 4 cover the algebraic background, presented along with
characteristic data-analytic applications. Readers with a basic course in linear or
abstract algebra will have the required preparedness to follow these chapters, with
focus on the applications and motivation to complete the proposed exercises. Their
familiarity with the principles of analysis of variance will make more evident,
broader, and attractive the applications introduced in these chapters.

ix
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x Preface

Chapter 5 describes a number of prototypic applications, ranging from classical
examples in experimental designs to specific symmetry studies of data indexed
by objects with dihedral and cyclic symmetries. The more detailed applications,
described in Chapters 6, 7, and 8, are symmetry studies for data indexed by short
symbolic sequences, corneal curvature, and the study of handedness in simple
planar images.

The chapters include briefly annotated suggestions for further reading and com-
plementary exercises, followed by a chapter with basic computing algorithms in
c©Maple and a glossary of main symbols and notations. The text also includes

a selected number of short biographical citations, abstracted from very valuable
sources, including The MacTutor History of Mathematics Archives at the Univer-
sity of St. Andrews and The Nobel Lectures (Elsevier, Amsterdam). The reader is
invited to send notice of errors of any form to the author at viana@uic.edu.

This text evolved from lecture notes and talks prepared for short courses and spe-
cial sessions held at several institutions since 2003, including the Instituto Nacional
de Matemática Pura e Aplicada (IMPA) in my hometown (Rio de Janeiro), the
EURANDOM, the Greek Statistical Institute, the International Commission for
Optics, the Sociedad Chilena de Estadı́stica, the Universidad de Antofagasta, Uni-
versity of Connecticut, Universidad de Costa Rica, University of Cyprus, Eind-
hoven University of Technology, Indiana University, University of Piraeus, Uni-
versidade Federal do Rio de Janeiro, Universidade de São Paulo, Universidad
Simón Bolı́var, and St. Petersburg State (ICMO).

Throughout this project, I benefited from the dedicated suggestions, conversa-
tions, enthusiasm, and inspiration of many colleagues, to whom I owe my gratitude.
In particular, to Steen Andersson, Henrik Aratyn, Arjeh Cohen, Persi Diaconis,
Alessandro Di Bucchianico, Joe Glaz, Markos Koutras, Vasudevan Lakshmi-
narayanan, Gérard Letac, Peter McCullagh, Ingram Olkin, Takis Papaioannou,
Carlos de B. Pereira, Michael Perlman, Donald Richards, Stephen Smith, Peter van
de Ven, and Henry Wynn. This text also reflects the constant enthusiasm of my
students at the Honors College who attended our weekly “Symmetry in Science
and Applications” seminar.

I am thankful to D. Azar, J. Bauman, and L. Kaufman for their timely facili-
tation of the institutional support for both research and teaching, essential to the
completion of this text.

My special thanks go to my editor, Lauren Cowles with Cambridge University
Press, for her professional guidance, encouragement, and constant attention to the
project.

This work is dedicated to my wife, Grace, and our children, Alice, Andrew, and
Alex, who together gave me the strength to pursue it over the years.

Marlos A. G. Viana
Chicago, April 23, 2008.
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1

Symmetry, Classification, and the Analysis
of Structured Data

1.1 Introduction

George Pólya, in his introduction to mathematics and plausible reasoning, observes
that

A great part of the naturalist’s work is aimed at describing and classifying
the objects that he observes. A good classification is important because it
reduces the observable variety to relatively few clearly characterized and
well-ordered types.

Pólya’s (1954, p. 88) remark introduces us directly to the practical aspect of
partitioning a large number of objects by exploring certain rules of equivalence
among them. This is how symmetry will be understood in the present text: as a set of
rules with which we may describe certain regularities among experimental objects
or concepts. The classification of crystals, for example, is based on the presence of
certain symmetries in their molecular framework, which in turn becomes observable
by their optical activity and other measurable quantities.

The delicate notion of measuring something on these objects and recording their
data is included in the naturalist’s methods of description, so that the classification
of the objects may imply the classification or partitioning of their corresponding
data. Pólya’s picture also includes the notion of interpreting, or characterizing, the
resulting types of varieties. That is, the naturalist has a better result when he can
explain why certain varieties fall into the same type or category.

This chapter is an introduction to the interplay among symmetry, classification,
and experimental data, which is the driving motive underlying any symmetry study
and is often present in the basic sciences. The purpose here is to demonstrate
that principles derived from such interplay often lead to novel ways of looking at
data, particularly of planning experiments and, potentially, of facilitating contextual
explanation. We will observe the intertwined presence of symmetry, classification,
and experimental data in a number of examples from chemistry, biology, and
physics. Many principles and techniques will repeat across different disciplines, and

1
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2 Symmetry, Classification, and the Analysis of Structured Data

it is exactly this cross-section of knowledge that constitutes the higher motivation
and basis for these symmetry studies.

1.2 Symmetry and Classification

In grade school we were amused (for a little while at least!) by drawings and
games with colorful patterns repeated periodically along straight lines and contours.
These bands can be classified according to their distinct generating rules, such
as horizontal translations, line and point reflections and rotations. These rules
for symmetry in two dimensions are explored in wallpaper, textile, and tapestry
designs, with the technical constraint of artistically and graphically designing these
repeating motifs within the finite boundaries of the work.

The common understanding and perception of symmetry developed from our
collective sensory and cultural experience with repetition or constancy can guide
us in classifying, for example, the uppercase roman font printing of the English
alphabet, imagined as subsets of the Euclidean plane. For example, the letters
N, S, and Z are characterized by having a center of reflection symmetry whereas
the letters H, I, O, and X have line (horizontal and vertical) and point reflection
symmetry.

When a letter and its transformed image under a vertical line reflection
v : (y1, y2) �→ (−y1, y2) are indistinguishable, we say that the letter has the sym-
metry of v. If, in addition, the letter has the symmetry of a horizontal line reflection
h : (y1, y2) �→ (y1,−y2), then, consequently, it must have the symmetry of the
iterated transformation (vh) of these two symmetries. Because the iterated trans-
formation of h and v is a point reflection o : y �→ −y, we then learn that the letter
has the symmetries of v, h, and o. Trivially, all letters have the symmetry of the
identity transformation 1 : y �→ y, often indicated simply as 1.

The resulting symmetries in G = {1, v, h, o} multiply according to Table (1.1)
and share the algebraic properties of a finite group: the product (∗) of two sym-
metries is a symmetry; the product is associative; 1 is the identity element and all
symmetries have an inverse symmetry also in G.

∗ 1 v h o

1 1 v h o

v v 1 o h

h h o 1 v

o o h v 1

(1.1)

We observe, in addition, that any f ∈ G is a bijective transformation of the Eu-
clidean plane preserving its algebraic properties, in the sense that f (x + y) =
f (x)+ f (y) for all vectors x, y in the plane. These are called automorphisms of
the plane.
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1.3 Data Indexed by Symmetries 3

Any two letters are then classified together when they share the same set of
symmetries or automorphisms. For example, the letters � ∈ {H,I,O,X} are classified
together by sharing the symmetries of G. We then say that G is their automorphism
group and write Aut{�} = G for all � ∈ {H,I,O,X}. In summary, after classifying
the letters of the English alphabet, we have the following:

� Aut(�)

F,G,J,K,L,P,Q,R 1
A,M,T,U,V,W,Y 1, v

B,C,D,E 1, h

N,S,Z 1, o

H,I,O,X 1, h, v, o

1.3 Data Indexed by Symmetries

The lines in the left-hand side of Table (1.2) were abstracted from a visual
acuity testing chart developed for the Early Treatment Diabetic Retinopathy
Study, or ETDRS (Ferris III et al., 1993, Table 5). The 10 different letters
{Z,N,H,V,R,K,D,S,O,C} that appear in the actual chart differ only in that they
are printed with specially created Sloan fonts (Sloan, 1959) and are presented
according to an experimental protocol.

C O H Z V
S Z N D C
V K C N R
K C R H N
Z K D V C
H V O R K
R H S O N
K S V R H

� Aut(�) p(�) entropy(�) − log CS(�)

Z 1, o 0.844 0.433 0.63
N 1, o 0.774 0.535 0.53
H 1, o, v, h 0.688 0.619 0.44
V 1, v 0.636 0.656 0.56
R 1 0.622 0.663 0.46
K 1 0.609 0.669 0.57
D 1, h 0.556 0.687 0.43
S 1, o 0.516 0.693 0.44
O 1, o, v, h 0.470 0.692 0.34
C 1, h 0.393 0.673 0.36

(1.2)

The individual letters are shown in the adjacent table, along with their automor-
phisms, estimated probability (p) of correct identification, corresponding entropy
−[p log p + (1− p) log(1− p)], and estimated (− log) contrast sensitivity. The
entropy of a letter is a measure of the relative uncertainty in its correct identifi-
cation. Its value is zero in the absence of uncertainty, and it is positive otherwise
and attains its maximum value (log 2 = 0.693) when the events are equally like,
that is, p = 1/2. The probabilities of correct identification were estimated from a
large sample of test subjects reported by Ferris III et al. (1993). The letter contrast
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sensitivity is a direct measure of the subject’s visual performance. It is estimated
from psychophysical experiments to determine the threshold of perception under
varying levels of background contrast (Alexander et al., 1997). The smaller is the
contrast needed to see the letter, the larger is the sensitivity.

We are interested in describing the connection among font symmetry, letter
entropy, and contrast sensitivity from samples of Sloan lines similar to those shown
in (1.2).

To each symmetry t in G = {1, v, h, o}, indicate by fixt the subset of letters in a
selected line with the symmetry of t and by xt = |fixt | the number of elements in
fixt . For example, the first line C O H Z V in the chart gives

(1, v, h, o)
x−→ (5, 3, 3, 3), (1.3)

which is an example of data indexed by the elements in G, and a point in the vector
space V = R

4. If |fixt | �= 0 then the mean line entropy

1

|fixt |
∑
�∈fixt

entropy(�)

based on those letters with the symmetry of t leads to a different indexing of data
by the elements of G. In this case, for the same line, the new indexing is

(1, v, h, o)
x−→ (0.512, 0.655, 0.661, 0.575). (1.4)

Similarly, when averaging the (− log) contrast sensitivity over the letters with same
symmetry, the indexing is

(1, v, h, o)
x−→ (0.466, 0.446, 0.380, 0.476). (1.5)

Note that the first components in (1.3), (1.4), and (1.5) are, respectively, the total
number (5) of letters in each line, the line mean entropy and mean contrast sensi-
tivity. These are examples of data indexed by a particular structure (a finite group
in this case) or, simply, examples of structured data.

If similar lines are sampled from a larger set of charts, then x is a random vector
and statistical summaries of the resulting sample are of interest. For example,
Figure 1.1 summarizes the distributions of the four entropy components in (1.4)
based on a sample of 42 lines similar to those in (1.2). The distributions should
be interpreted along with the symmetry content of the underlying set of Sloan
letters and the likely distribution of these symmetries over the 42 lines. Table
(1.6) summarizes the underlying joint distribution of the 10 reference letters and
symmetries. The marginal column and row sums are, respectively, the number
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Figure 1.1: Distribution of line mean letter entropy by symmetry type.

|Aut(�)| of automorphisms of � and the number |fixt | of letters with the symmetry
of t .

t\� Z N H V R K D S O C |fixt |
1 1 1 1 1 1 1 1 1 1 1 10
v 0 0 1 1 0 0 0 0 1 0 3
h 0 0 1 0 0 0 1 0 1 1 4
o 1 1 1 0 0 0 0 1 1 0 5

|Aut(�)| 2 2 4 2 1 1 2 2 4 2 22

(1.6)

It is observed that point symmetry is present in the largest number (|fixt | = 5) of
reference letters and that at the same time the two letters with the smallest entropy
(Z and N) have |Aut(�)| = 2 characterized precisely by the same symmetry.

1.4 Symmetry and Data Reduction

Classical physical measurements are understood, mathematically, as real vectors
x in the usual Euclidean vector space. Consequently, it is of natural interest
to represent the symmetries described by G = {1, h, v, o} into the vector space
V = R

4 for the data, shown in (1.3), (1.4), or (1.5), indexed by G. These rep-
resentations are accomplished by associating to each element t in G a linear
transformations ρt in V .

Specifically, using the multiplication table of G shown in (1.1), to each element
t in G associate the permutation matrix

{e1, ev, eh, eo} ρt−→ {et∗1, et∗v, et∗h, et∗o}, (1.7)
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in which the entry (ρt )sf of ρt at row s and column f is equal to 1 if and only
if f = t ∗ s, for f, t, s ∈ G. For example, (ρv)ho = 1 indicates that v ∗ h = o.
Therefore,

ρ1 =

⎡⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎦ , ρv =

⎡⎢⎢⎢⎣
0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

⎤⎥⎥⎥⎦ ,

ρh =

⎡⎢⎢⎢⎣
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎤⎥⎥⎥⎦ , ρo =

⎡⎢⎢⎢⎣
0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

⎤⎥⎥⎥⎦ .

These resulting linear transformations then connect the symmetries in the group G

with the vector space V for (1.3), (1.4), or (1.5) in a way that the multiplication
in G described by (1.1) is now represented as multiplication of nonsingular linear
transformations in V , that is,

ρt∗t ′ = ρtρt ′ for all t, t ′ ∈ G. (1.8)

This is the homomorphic property, characteristic of these linear representations.
The algebraic aspects developed in the next chapters will show that certain

linear combinations of {ρ1, ρv, ρh, ρo} then lead to four algebraically orthogonal
projection matrices P1, . . . ,P4, given by

1/4

⎡⎢⎢⎢⎣
1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

⎤⎥⎥⎥⎦ , 1/4

⎡⎢⎢⎢⎣
1 1 −1 −1

1 1 −1 −1

−1 −1 1 1

−1 −1 1 1

⎤⎥⎥⎥⎦ ,

1/4

⎡⎢⎢⎢⎣
1 −1 1 −1

−1 1 −1 1

1 −1 1 −1

−1 1 −1 1

⎤⎥⎥⎥⎦ , 1/4

⎡⎢⎢⎢⎣
1 −1 −1 1

−1 1 1 −1

−1 1 1 −1

1 −1 −1 1

⎤⎥⎥⎥⎦ , (1.9)

respectively, which determine statistical summaries P1x, . . . ,P4x characterized
by the particular representation (1.7) of G. We will refer to these summaries, in
general, as the canonical invariants in the study – a concept that will be developed
throughout the text. In the present case, these projections directly identify four
invariants, namely,

I1 = x1 + xo + xv + xh, Iv = x1 + xv − xo − xh,

Ih = x1 + xh − xo − xv, Io = x1 + xo − xv − xh, (1.10)
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Figure 1.2: Distribution of the canonical invariants Iv, Ih, Io for the mean line entropy
data.

each one taking values on subspaces in the dimension of 1. These summaries
depend on the labels (provided by G) only up to companion points determining
a linear subspace of the data space (called invariant subspace). For example, the
summary x1 + xo − xv − xh is such that

xt∗1 + xt∗o − xt∗v − xt∗h = ±(x1 + xo − xv − xh) for all t ∈ G.

The summaries of the data induced by G can then be interpreted as of exactly two
types:

(1) The overall sum of responses (I1) and
(2) The three pairwise comparisons (±Iv,±Ih,±Io).

These pairwise comparisons are the basis for inferences in this particular symmetry
study. Figure 1.2 summarizes the distributions of the canonical invariants Iv, Ih, Io

based on 42 lines of Sloan fonts.
The invariants are the data that should be retained when the arbitrariness of where

is left (right) and where is up (down), associated with the action (1.7), is resolved.
For example, then, x1 + xo − xv − xh compares point and line symmetries in a way
that depends on the chosen planar orientation only up to an invariant subspace. As
effectively suggested by Weyl (1952, p. 144),

Whenever you have to do with a structure-endowed entity try to determine
its group of automorphisms, the group of those element-wise transforma-
tions which leave all structural relations undisturbed. You can expect to
gain a deep insight into its constitution this way.

We observe that the derivation of these data summaries depends only on the
set of labels and the symmetries of interest. Any subsequent statistical analysis,



P1: JZZ

CUUS182-Main.tex CUUS182/Viana 978 0 521 84103 0 April 28, 2008 15:21

8 Symmetry, Classification, and the Analysis of Structured Data

of course, would include the assumptions that apply to a particular experimental
condition. For example, if the data indexed by G are the frequency distributions

x1 = (0, 42), xo = (21, 21), xv = (39, 3), xh = (32, 10)

with which the corresponding symmetries appeared in at most 2 or in 3 or more
of the 5 letters in each line, respectively, summed over 42 Sloan lines, then the
invariants may be interpreted as three pairwise comparisons

x1 + xo = (21, 63) vs. xv + xh = (71, 13),

x1 + xh = (32, 52) vs. xv + xo = (60, 24), (1.11)

x1 + xv = (39, 45) vs. xo + xh = (53, 31)

between these frequency distributions, which, statistically, could be carried out in
many different ways.

1.5 Statistical Aspects

We have remarked that the matrices P in (1.9) lead to the data summaries Px

shown in (1.10). These matrices are algebraically orthogonal (PiPj = PjPi = 0
for i �= j ) projections (P2

i = Pi , i = 1, . . . , 4) that reduce the identity operator I

in the data vector according to the sum

I = P1 + P2 + P3 + P4,

so that, consequently, the theory of statistical inference for (real symmetric)
quadratic forms can be applied to study the decomposition

x ′x = x ′P1x + · · · + x ′P4x

of the sum of squares x ′x of x.
To illustrate, consider the data shown in (1.12). Each row is a sample of size 5,

obtained from 5 different Sloan chart lines, of the corresponding mean line entropy
xt =

∑
�∈fixt

entropy(�)/|fixt |, indexed by the symmetry element t .

t\Sample 1 2 3 4 5

1 0.614 0.636 0.632 0.624 0.66
v 0.675 0.619 0.692 0.640 0.619
h 0.655 0.619 0.660 0.690 0.667
o 0.603 0.603 0.553 0.603 0.635

(1.12)

The application of the algebraic arguments outlined above and detailed in the next
chapters resulted in the analysis of variance table shown in (1.13), where the degrees
of freedom (df) are the traces of the corresponding canonical projections and the
F-ratios derived from the ratios of the mean sum of squares x ′Px/df relative to
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the mean error sum of squares.

Component x ′Px df x ′Px/df F-ratio

I1 8.0633 1 8.0633
Iv 0.000757 1 0.000757 1.036
Ih 0.002312 1 0.002312 3.165
Io 0.006956 1 0.006956 9.525

Error 0.011684 16 0.000730

(1.13)

Here, the decomposition of the sum of squares is the consequence of jointly shuf-
fling the rows and columns of the table in (1.12) using G = {1, h, v, o} and the
permutations of {1, 2, 3, 4, 5}, respectively.

Shuffling the rows in (1.12) according to G means relabeling them according to⎡⎢⎢⎣
v

1
o

h

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
h

o

1
v

⎤⎥⎥⎦ , or

⎡⎢⎢⎣
o

h

v

1

⎤⎥⎥⎦ ,

the result of multiplying the original first column by v, h, o respectively. On the
other hand, shuffling the columns, indexed by {1, 2, 3, 4, 5}, simply means per-
forming all their permutations.

Under the usual normality assumptions and corresponding hypotheses of the
form I = 0 (in terms of expected values), the indicated F-ratios have a central
F-distribution with degrees of freedom 1 and 16 and can be used to test these
parametric hypotheses.

It is now evident that the same canonical invariants I = Px can be the ob-
ject of descriptive summaries (Figure 1.2), nonparametric comparisons (1.11), or
parametric hypotheses (1.13) for the structured data.

The analysis of variance (1.13) points to a significant distinction in mean line
entropy when the differentiation (among chart lines) is due to point vs. line symme-
tries (Io �= 0). The explanation of this finding, expressed in terms of the invariant
Io, may then be found in the theories of eye movement, for example.

1.6 Algebraic Aspects

The role of algebra in the analysis of structured data is that of ascertaining its
methodological aspects, of providing a well-defined sequence of steps leading to
predictable data-analytic tools. We illustrate this with the following preliminary
summary.

The mean line entropy data x ′ = (x1, xv, xh, xo) shown in Table (1.12) were
introduced as an example of data indexed by the elements of a finite group G =
{1, v, h, o}. It was then possible to identify



P1: JZZ

CUUS182-Main.tex CUUS182/Viana 978 0 521 84103 0 April 28, 2008 15:21

10 Symmetry, Classification, and the Analysis of Structured Data

(1) a set (G) of labels with the algebraic properties of a finite group;
(2) a set of data (x) indexed by those labels (the structured data);
(3) a group action, defined in (1.7), with which the symmetries in G were applied

to itself;
(4) a linear representation (ρ) of that action connecting the labels and the data

vector space (V);
(5) the projection matrices P1, . . . ,P4 shown in (1.9);
(6) the canonical invariantsP1x, . . . ,P4x in the data, described in (1.10), and their

interpretations, and
(7) the resulting analysis of variance x ′x = x ′P1x + · · · + x ′P4x based on the

decomposition I = P1 + · · · + P4, shown in (1.13) .

Note that the effect of reordering the basis used in the construction (1.7) of the
representation ρ is such that the new decomposition is now

I = ηP1η
′ + · · · + ηP4η

′

where η is the corresponding permutation matrix. The new decomposition is in fact
the same as (1.9), but relabeled. For example, if the entries had been written in the
order of 1, o, v, h instead of the original order 1, v, h, o, then ηP4η

′ = P3, ηP3η
′ =

P2, and ηP2η
′ = P4. Consequently, the invariants (1.10), their interpretation, and

the resulting analysis of variance (1.13) would remain exactly the same.
However, the algebra has more to say here. A quick review of the projection

matrices in (1.9) reveals that they can be written in terms of the matrices

A = 1

2

[
1 1
1 1

]
, Q = 1

2

[
1 −1
−1 1

]
(1.14)

which combine and compare the two components of a point in R
2 and orthogonally

reduce, or decompose, the identity matrix in that space into the sum A+Q. This
reduction in R

2 is an example of a standard reduction and will be used many times
in these studies.

We have, using the symbol⊗ to indicate the Kronecker product of two matrices,
that

P1 = A⊗A, P2 = Q⊗A, P3 = A⊗Q, P4 = Q⊗Q.

If, in addition, the data x can justifiably be indexed by a product f ⊗ g of two two-
level labels f and g, then the data (briefly identified here with the labels) decompose
as Af ⊗Ag, Qf ⊗Ag, Af ⊗Qg, and Qf ⊗Qg. This, more elementary, con-
struction of the projections P1, . . . ,P4 is explained in terms of smaller component
symmetry groups acting (by simple transpositions) on the bivariate component la-
bels f, g. It leads, precisely, to the well-known concepts of factors and factor levels
in simple factorial experiments. It is only when these component groups are intro-
duced that a distinction between the projections {P2,P3} and P4 can be envisioned.
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The projections {P2,P3} average the data over the levels of one factor and compare
over the levels of the other factor, whereasP4 describes what is known as an interac-
tion between the two factors. For example, it is now clear that if the two components
of f or the two components of g are equal then (Q⊗Q)(f ⊗ g) = Qf ⊗Qg = 0,
or conversely, if (Q⊗Q)(f ⊗ g) �= 0 then the components of either factors must
be unequal. Only an eventual interpretation of G = {1, v, h, o} as a product of
smaller symmetries may then justify the distinctions just described.

The tables in (1.15) show the analysis of variance for the original data of Table
(1.12) now indexed by the labels F1 × F2.

F1 F2 1 2 3 4 5
1 1 0.614 0.636 0.632 0.624 0.660

−1 1 0.675 0.619 0.692 0.64 0.619
1 −1 0.655 0.619 0.660 0.69 0.667

−1 −1 0.603 0.603 0.553 0.603 0.635

Source SS df MS F-ratio

F1 0.000757 1 0.000757 1.036
F2 0.002312 1 0.002312 3.169

F1 ∗ F2 0.006956 1 0.006956 9.525
Error 0.011648 16 0.000730

(1.15)

With this design, the original variance component assigned (by actual experimen-
tal construction) to point symmetry would be now interpreted as an interaction
component.

1.7 Structured Data

The previous sections illustrated the reduction of data indexed by a group of
symmetries, consequence of shuffling the labels according to the multiplication
table of the group. This type of group action, called regular action, has many
data-analytic applications and deserves a special introduction. Data from studies
of voting preferences are naturally indexed by the group of permutations of the
rankings under consideration. Table (1.16) shows the frequencies (xτ ), abstracted
and adapted from Diaconis (1989), with which voters chose each one of the 24
different rankings (τ ) of four candidates {a, g, c, t}.

For example, 29 voters ranked candidates in the order of (a, g, c, t) whereas
37 voters chose the order (t, g, c, a). Consequently, the frequency xτ = 37 can be
associated to the permutation transposing candidates a and t , relative to the word
agct .
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The choice of agct as a reference (or of any one of the 24 rankings) is certainly
arbitrary and should then be resolved by the resulting invariants. This is in analogy
with the symmetry study of the Sloan fonts, which can be interpreted as an example
of data indexed by the permutations {agct, gatc, atcg, ctag}, each one of which can
be arbitrarily assigned to be the reference one.

τ xτ τ xτ τ xτ τ xτ

agct 29 tgca 37 ctga 22 gcta 26
agtc 11 actg 25 tacg 43 gtac 44
acgt 19 atgc 46 tgac 24 ctga 57
atcg 50 gcat 24 gatc 35 catg 34
gact 50 gtca 54 ctag 49 tagc 26
cgat 22 cagt 26 tcga 29 tcag 67

. (1.16)

These two studies are then examples of data indexed by certain permutations of
{1, 2, 3, 4}, which are particular functions {1, 2, 3, 4} �→ {a, g, c, t}. This leads us
to the consideration of the case in which the set of labels is any finite set (V ) en-
dowed with certain symmetries of experimental interest. In the previous examples,
we had V = G. This extension requires, however, a broader interpretation of some
of the steps in the summary presented in Section 1.6.

To illustrate, suppose that the labels (V ) of interest are the 16 purine-pyrimidine
sequences in length of 4 shown in Table (1.21), where the symbols {u, y} represent
the classes of purines {a, g} and pyrimidines {c, t}, respectively, translated from
the original sequence written with the alphabet {a, g, c, t} of adenines (a), guanines
(g), thymines (t), and cytosines (c). The structured data are the frequencies with
which these sequences appear in 10 subsequent 200-bp-long regions of the BRU
isolate of the Human Immunodeficiency Virus Type I (HIV-1). The entire 9229-
bp-long DNA sequence is available from the National Center for Biotechnology
Information1 database using the accession number K02013.

The symmetries of potential interest, among others, are all the permutations of
the four positions in L = {1, 2, 3, 4} or the permutations of the two symbols in
C = {u, y}. These sets of permutations, together with the operation of composition
of functions, are examples of full symmetric groups, indicated by SL, SC , or simply
by S� when only the number (�) of elements in the set is of interest. An important
distinction, however, is the fact that now the group operation in general is not
commutative, as the reader may verify by composing different pairs of permutations
in S3. The consequences of this fact for the analysis of data indexed by S� and
other noncommutative groups will become evident later on during the algebraic
considerations introduced in Chapter 2.

1 http://www.ncbi.nlm.nih.gov/
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Given a sequence s ∈ V , a permutation τ in S4, and a permutation σ in S2, we
observe that the composites

sτ−1 : L
τ−1−→ L

s−→ C and σs : L
s−→ C

σ−→ C

are also binary sequences in length of 3 and consequently a point in V . The resulting
subsets {sτ−1; τ ∈ S4} and {σs; σ ∈ S2} of V are examples of symmetry orbits. The
collection of all orbits in V obtained under a particular group action is generally
indicated by V/G.

The action of the permutations in S4 on the positions of the symbols of each
word in V generates a partition V = O0 ∪O1 ∪O2 ∪O3 ∪O4 of V in which each
orbit Ok has exactly

(4
k

)
elements, specifically,

O0 = {yyyy}, O4 = {uuuu}, (1.17)

O1 = {yyyu, yyuy, yuyy, uyyy}, O3 = {yuuu, uyuu, uuyu, uuuy}, (1.18)

and

O2 = {yyuu, yuyu, yuuy, uyyu, uyuy, uuyy}, (1.19)

and can be characterized by the distribution

(k, �− k) (1.20)

of purines (u) and pyrimidines (y) in the sequences.

Word\region 1 2 3 4 5 6 7 8 9 10

yyyy 5 8 3 5 7 8 5 25 16 6
uuuu 52 29 36 35 30 34 44 35 37 17
yuuu 18 16 20 16 20 20 16 18 17 17
uyuu 12 16 19 14 20 14 15 11 16 14
uuyu 15 14 21 17 21 12 13 10 16 12
uuuy 17 16 20 16 20 19 16 18 17 17
yyuu 16 11 11 10 10 14 12 15 11 15
yuyu 6 12 9 11 6 8 8 2 4 10
yuuy 10 11 9 8 10 8 11 8 10 11
uyyu 11 14 10 11 8 12 14 10 11 15
uyuy 9 10 11 14 7 6 6 1 4 9
uuyy 12 14 8 8 8 15 14 16 11 16
yyyu 5 6 5 7 8 8 6 10 7 10
yyuy 1 9 4 8 7 7 7 5 7 10
yuyu 4 6 7 11 8 5 5 4 7 9
uyyy 5 6 5 7 8 8 6 10 7 10

(1.21)
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The reader may want to identify, in this example, all the steps described in Pólya’s
reasoning, introduced earlier on in the chapter, namely: description, classification,
and interpretation of the objects of interest.

A good classification is important because it reduces the observable variety
to relative few clearly characterized and well-ordered types.

The practical aspect of this simple example, and its consequences for the planning
and analysis of experimental data, is the varied structural classifications that can be
obtained from the same initial set of labels by introducing different symmetries, and
different actions on the sets of positions L = {1, 2, 3, 4} and symbols C = {u, y}.
In each case a new partition of V can be obtained, with a corresponding new
partition in the data space.

In each one of the elementary orbits O0,O1, . . . , a representation of G is
then determined, in analogy with the original case in which V = G so that steps
(4)−(7) in the summary of Section 1.6 would then lead to the canonical projections.
Consequently, the identification of elementary orbits, in a way that will be made
more specific later on, constitutes a methodological step of interest in our studies.
These orbits will be referred to as sets in which the group acts transitively. To
illustrate further the notion of an elementary orbits, transitive actions, and the role
of the underlying group of symmetries, consider the words in the orbit

O2 = {yyuu, uuyy, yuyu, uyuy, yuuy, uyyu} ≡ {a, α, b, β, c, γ } ⊂ V

introduced above. Indicate by v = (12)(34) the transposing of positions 1, 2 and
3, 4, and similarly o = (13)(24), h = (14)(23). These permutations multiply ac-
cording to (1.1) and the resulting action

a α b β c γ

1 a α b β c γ

h α a β b c γ

v a α β b γ c

o α a b β γ c

,

on O2 identifies three elementary orbits

O21 = {a, α}, O22 = {b, β}, O23 = {c, γ }

decomposing O2, each one of which giving a linear representation of G in the
dimension of 2. With the algebraic tools of Chapters 2 and 3, it will be seen that
the decomposition of the identity matrix in each of these three subspaces of the
original space V (in the dimension of 6) indexed by orbit O2 is simply the standard
reduction

I = A+Q,
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introduced earlier in (1.14) on page 10. The identity matrix in V then reduces
according to the sum PA + PQ of two canonical projections

PA = Diag(A,A,A), PQ = Diag(Q,Q,Q) (1.22)

in V . In the above expression, the two projections are block diagonal matrices with
blocks A and Q, respectively.

The nontrivial canonical invariants of interest are, clearly, the within-orbit com-
parisons. For (log) frequency data {xa, xα, xb, xβ, xc, xγ }, say, the broader inter-
pretation of the canonical invariants would suggest the study of the ratios

log
xa

xα

, log
xb

xβ

, log
xc

xγ

.

This example suggests that the orbits O21, O22, and O23 are essentially the same
and could be classified as of the same type. Similarly, the orbits in (1.17), (1.18)
and (1.19) define three classes or types of orbits. In the following section, we give
an account of these important facts from two complementary perspectives.

1.8 Partitions

Consider first the set V of all binary sequences or words in length of � and let P

indicate a probability model in V , where a group G of symmetries is identified.
We say that P has the symmetry of G if P is constant (uniform) over each one
of the orbits of V . For example, if P (s) = P (sτ−1) for all sequences s in V

and permutations τ in S�, then the probability law P should be constant in the
position-symmetry orbits, characterized in (1.20). If the sequences are random, the
probability laws

Li =
(

i

�
,
�− i

�

)
, i = 0, 1, . . . , �, (1.23)

associated with the position symmetry orbits are also random. The likelihood of
each one of the possible probability laws

L0 = (0, 1), L1 =
(

1

4
,

3

4

)
, L2 =

(
2

4
,

2

4

)
, L3 =

(
3

4
,

1

4

)
, L4 = (1, 0)

derived from V is therefore determined by the probability of seeing a sequence
that is associated with that law. Because all sequences in the orbit Oi lead to the
law Li and conversely, we see that Li occurs with probability P (Oi). Clearly, if
the law P is such that all sequences are equally likely (P is said to be uniform),
then P (s) = P (sτ−1) for all sequences s ∈ V and permutations τ ∈ S� and

Probability of law Li = P (Oi) = |Oi |
|V | =

(
�

i

)
|V | , (1.24)

so that the most likely distribution under uniformly distributed sequences in V is
L2 = (1/2, 1/2).
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Consider now the set V of all sequences in length of 3 in the symbols {a, c, g, t}
so that V has 64 sequences. If these sequences are random, then the probability
laws

Lλ =
(

fa

3
,
fc

3
,
fg

3
,
ft

3

)
,

where (fa, fc, fg, ft ) are frequency distributions with fa + fc + fg + ft = 3 are
also random. The index λ in Lλ indicates the corresponding orbit type, in analogy
with expression (1.23), in which O0 and O4 belong to class O40, O1 and O3 belong
to the class O31, and O2 coincides with O22.

Integer partitions

The indices λ in Lλ are the possible integer partitions of 3 in length of 4, namely
the nonnegative integers {n1, . . . , n4} with n1 ≥ n2 ≥ n3 ≥ n4 ≥ 0 satisfying
n1 + · · · + n4 = 3. Consequently, there are three types of orbits, namely O3000,
O2100 and O1110, and corresponding laws

L3000 = (1, 0, 0, 0), L2100 =
(

2

3
,

1

3
, 0, 0

)
, L1110 =

(
1

3
,

1

3
,

1

3
, 0

)
.

Similarly to expression (1.24), we now obtain

Probability of a law type Lλ = P (Oλ) =

⎧⎪⎨⎪⎩
( 3

3,0,0,0

)
/|V | = 1/64, if λ = 3000( 3

2,1,0,0

)
/|V | = 3/64, if λ = 2100( 3

1,1,1,0

)
/|V | = 6/64, if λ = 1110,

so that, under the assumption that all 64 sequences are equally likely (uniform prob-
ability), the most probable distribution comes from the class of distribution given
by L1110, each of which has the highest probability, 6/64. Simple combinatorics
show that there are 4!/3!1! = 4 orbits of type λ = 1110, namely(

1

3
,

1

3
,

1

3
, 0

)
,

(
1

3
,

1

3
, 0,

1

3

)
,

(
1

3
, 0,

1

3
,

1

3

)
,

(
0,

1

3
,

1

3
,

1

3

)
. (1.25)

These are the most probable probability laws describing the 64 sequences after
their position symmetry classification.

A view from mechanics

In physics as in chemistry, we find that certain physical properties of a system
remain unchanged under certain transformations of such system. Riley et al. (2002)
observe that

If a physical system is such that after application of a particular symmetry
transformation the final system is indistinguishable from the original sys-
tem then its behavior, and hence the functions that describe its behavior,
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must have the corresponding property of invariance when subject to the
same transformations.

The study of these transformations is a study of the symmetries of the system.
Bacry (1963) remarks that the study of the symmetries of a physical system of-
ten suggests the study of the symmetries of certain physical laws and theories,
and not infrequently, leads to symmetry-related principles, such as Kepler’s Law
of planetary motion, the principle of time-reversal invariance, or the Relativity
Principle.

The following quote is from von Mises (1957, p. 200), with the notation partially
adapted. The theory studies the distributions of a certain number � of molecules
over c regions in the velocity space under the assumption that all possible c�

distributions have the same probability. Given two molecules with labels in {1, 2},
and three different locations x,y,z then the number of different distributions is nine,
since each of the three locations of molecule 1 can be combined with each of
molecule 2. According to the classical theory, all these distributions, as random
events, have the same probability, 1/9.

A new theory, first suggested by the Indian physicist Bose,2 and developed
by Einstein, chooses another assumption regarding the equal probabilities.
Instead of considering single molecules and assuming that each molecule
can occupy all location in the velocity space with equal probability, the new
theory starts with the concept of repartition. This is given by the number of
molecules at each location of the velocity space, without paying attention to
the individual molecules. From this point of view, only six “partitions” are
possible for two molecules on three locations, namely, both molecules may
be together at locations x, y, or z, or they may be separated, one at location
x and one at y, one at x and one at z, or one at y and one at z. According to
the Bose-Einstein theory, each of these six cases has the same probability,
1/6. In the classical theory, each of these three possibilities would have
the probability of 1/9, each of the other three, however, 2/9, because, in
assuming individual molecules, each of the last three possibilities can be
realized in two different ways: molecule 1 can be at location x, and 2 at y,
or vice versa.

The Italian physicist Fermi3 advanced still another hypothesis.
He postulated that only such distributions are possible – and possess equal
probabilities – in which all molecules occupy different places. In our ex-
ample of two molecules and three locations, there would only be three

2 Satyendranath Bose, born: January 1, 1894, in Calcutta, India, died: February 4, 1974, in Calcutta, India.
3 Enrico Fermi was born in Rome on September 29, 1901. The Nobel Prize for Physics was awarded to Fermi for

his work on the artificial radioactivity produced by neutrons, and for nuclear reactions brought about by slow
neutrons. He died in Chicago on November 29, 1954.
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possibilities, each having the probability 1/3; i.e., one molecule at x and
one at y; one at x and one at z; one at y and one at location z.

To identify the symmetry argument in von Mises’ narrative, let L = {1, 2}, C =
{x, y, z}, and

V = {xx, yy, zz, xy, yx, xz, zx, yz, zy}
the set of all ternary sequences s : L → C in length of 2.

Under the Maxwell-Boltzmann (MB) model, it is assumed that all points or
configurations in V are equally likely, or uniformly distributed, that is:

P (s) = 1

|V | =
1

9
, for all s ∈ V.

The number |V | = c� of points in V is called the MB statistic.
Under the Bose-Einstein (BE) model, it is assumed that the sets of points,

obtained from V by shuffling the molecules’ labels in L, are equally likely. Thus,
in the BE model, the uniform probability applies to the resulting orbits

Ox = {xx}, Oy = {yy}, Oz = {zz},
Oxy = {xy, yx}, Oxz = {xz, zx}, Oyz = {yz, zy},

each one having probability of 1/6. A probability law in V/S2 such as

P (s) =
{

1/6 when s ∈ Ox ∪Oy ∪Oz,

1/12 when s ∈ Oxy ∪Oxz ∪Oyz,

would be consistent with the assumptions of the BE model. The BE statistic is the
number (

c + �− 1

�

)
of distinct orbits. In the example, there are

(4
2

) = 6 distinct orbits.
The Fermi-Dirac (FD) model assumes that only the injective mappings VI =

{xy, yx, xz, zx, yz, zy} are admissible representations of the physical system, and
that a uniform probability law is assigned to the resulting orbits Oxy , Oxz and Oyz

in VI/S2, each of these assigned with a probability of 1/3. In the present example,
a probability law in VI/S2 given by P (s) = 1/6 when s is injective and P (s) = 0
otherwise, would be consistent with the assumptions of the FD model. The FD
statistic is the number

(
c

�

)
of distinct orbits. In the example, we observed

(3
2

) = 3
distinct orbits.

Table 1.1 summarizes the domains of the uniform law in each of the models
discussed above.
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Table 1.1. Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac
Probabilities.

Model Domain of the Uniform Law Probability

Maxwell-Boltzmann V 1/c�

Bose-Einstein V/G 1/
(
c+�−1

�

)
Fermi-Dirac VI/G 1/

(
c

�

)

Macrostates and microstates in thermodynamics. Consider, to illustrate, six
distinguishable molecules and four energy levels, leading to 46 = 4,096 accessible
microstates described by the mappings

s : {1, 2, 3, 4, 5, 6} → {E1, E2, E3, E4}.
Microstates become measurable macrostates by the effect of similarities among
the molecules when their identifying labels are erased. That is, when their labels
are shuffled by the action sτ−1 of the permutations τ in the symmetric group
S6. The resulting classes Oλ of orbits, indexed by the possible integer partitions
(n1, n2, n3, n4) of 6, are then the energy macrostates realized by the system. The
resulting classes, their volume |Oλ|, usually indicated by 
λ in the thermodynamics
context, and their number Qλ of quantal states are described in Table (1.26).

λ 
λ Qλ 
λ ×Qλ

6000 1 4 4
5100 6 12 72
4200 15 12 180
4110 30 12 360
3300 20 6 120
3210 60 24 1,440
3111 120 4 480
2220 90 4 360
2211 180 6 1,080

Total 522 84 4,096

. (1.26)

There are Q = 6 quantal states associated with the most probable (
 = 180) orbit
type, λ = 2211. Also, note that∑

λ

Qλ =
(

c + �− 1

�

)
=
(

9

6

)
= 84,

where c in the number of energy levels and � the number of molecules, is the
Bose-Einstein statistic.
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Boltzmann’s Entropy Theorem. In Boltzmann’s model, the mean energy level

E = 1

�

∑
i

Eifi,

where fi indicates the number of molecules at the energy level Ei , of any con-
figuration in V , is an invariant under the composition rule sτ−1 and, therefore,
depends only on the orbit (macrostate) realized by the configuration. Boltzmann
reasoned that the molecule-energy configurations in V evolved from least probable
configurations to most probable configurations, so that the quest for describing
the equilibrium energy distribution in the ensemble requires the determination of
the most likely configurations in V . This, in turn, requires the determination of the
macrostate (orbit) with the largest volume 
, conditioned on the fact that mean
energy of the isolated ensemble must remain constant. Given a configuration s with
f1 particles at the energy level E1, f2 particles at the level E2, f3 particles at the
level E3, etc., its orbit Os has volume

|Os | = �!

f1!f2!f3! . . .
.

We have then a well-defined mathematical problem: find the macrostate identified
by f1, f2, . . . , which maximizes |Os | for a given mean energy level E . The solution
is fi = � P (Ei), where

P (Ei) = e−βEi∑
j e−βEj

is the Maxwell-Boltzmann canonical distribution or partition function. It describes
the most likely energy distribution of the ensemble. Similar calculations, e.g.,
Huang (1987), and Reif (1965, pp. 343-350), can be obtained for the models of
Fermi-Dirac and Bose-Einstein.

In addition, the entropy

H = −
∑

i

fi

�
ln

(
fi

�

)
of the probability law associated with the orbit of f1, f2, f3, . . . , is a physical
characteristic (such as temperature, mass) of the gas and, at the same time, a measure
of uniformity in its thermodynamical probability law. The canonical distribution
corresponds to an ensemble configured to its maximum entropy. Boltzmann’s
statistical expression

S = k ln 


for the equilibrium entropy (usually indicated by S in thermodynamics) relates
the equilibrium or limit number of accessible microstates, 
, and k, the (known
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now as) Boltzmann constant 1.3807× 10−23 KJ/molecule. A volume of gas, left
to itself, will almost always be found in the state of the most probable distribution.

Maxwell-Boltzmann law for velocities in a perfect gas. Maxwell’s assump-
tions, e.g., Ruhla (1989, Ch. 4), lead to the searching of a probability law (F ) for
the random velocity vector v such that the component-velocities are statistically
independent and identically distributed, i.e., F (v) = f (vx)f (vy)f (vz), where f

indicates the common probability law for the component-velocities. In addition,
the isotropic condition F (Uv) = F (v) should hold for all central space rotations
U . This is in analogy with the invariance condition P (s) = P (sτ−1) for all s ∈ CL

and permutations τ ∈ SL discussed earlier in this section. These two conditions
lead to a probability law that has the form

F (v) = Ae−µ||v||2,

where ||v|| =
√

v2
x + v2

y + v2
z is the speed in the velocity vector v and

the constants are determined from additional physical considerations, e.g.,
Reif (1965, p. 267). The speed orbits, then, are simply those velocity vectors
with common speed.

Canonical projections

The symmetry among the two molecules imposed by the Bose-Einstein argument
introduced on page 18 led to the classification of the ternary sequences in length
of 2 into six elementary orbits

Ox = {xx}, Oy = {yy}, Oz = {zz},
Oxy = {xy, yx}, Oxz = {xz, zx}, Oyz = {yz, zy}.

In each of the three two-element orbits the associated canonical reduction is I =
A+Q, where A and Q are given by (1.14) on page 10, whereas each single-
element orbit reduces only trivially as the identity. As a consequence, the original
space V in dimension of 9 reduces into the direct sum of 3 similar subspaces
each in dimension of 1 associated with Q and 6 similar subspaces in dimension
of 1 associated with the identity. This collecting together of similar subspaces that
appear in the canonical reduction of the data space will be an important aspect of
the main theorem on canonical decomposition later on in Chapter 3.

A core concept, discussed later on in the subsequent chapters, refers to the
property of certain vector subspaces that are determined by particular linear repre-
sentations of the groups of interest, called irreducible representations. In the present
example, this means that Ax is in a subspace in dimension of 1 that transforms
according to identity (or symmetric) representation of S2, whereas the subspace of
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Qx transforms according to another one-dimensional representation of S2, called
the sign or alternating representation.

In quantum chemistry, these projections, indexed by the irreducible representa-
tions, play a central role in determining whether a chemical bonding can take place
in a molecule. The bonding, point Riley et al. (2002, p. 948), is strongly dependent
on whether the wavefunction of the two atoms forming a bond transforms according
to the same (irreducible) representation. Typically, these reductions take place in a
infinite dimension Hilbert spaceH, in such a way that the invariant subspaces in the
reduction of H define the properties of the quantum system. Consequently, prop-
erties are identified with the corresponding projections – one for each irreducible
representation – which follow from the physical basis of the system.

For example, the projections I and 0 correspond to the sure property and the
impossible property, whereas the projection I − P corresponds to the negation of
the property associated with P . The properties associated with two commuting
projections P and F are said to be compatible, in which case the projection
PF = FP represents the conjunction of P and F , whereas the projection PF +
P(I − F)+ (I − P)F = P + F − PF is associated with the disjunction of the
two properties. If, in addition, PF = 0, the properties are compatible, mutually
exclusive, and the disjunction is given by the sumP + F . See, for example, Omnès
(1994) or Faris (1996) for a review of Omnès’ work.

Unit vectors y in the Hilbert space are associated with the states of the system,
and determine a mathematical specification of probabilities for all properties. These
probabilities are obtained from the fact that associated to each set of mutually
exclusive properties P1, . . . ,Ph whose disjunction is sure, i.e., I = P1 + · · ·Ph,
there is a decomposition

1 = ||y||2 = y ′y = y ′P1y + · · · y ′Phy,

which is interpreted as a probability distribution among the corresponding proper-
ties P1, . . . ,Ph. Each state y ∈ H then provides a probabilistic description,

y → (y ′P1y, . . . , y ′Phy) = (||P1y||2, . . . , ||Phy||2),

of the system4. In the present finite analogy, in which I = A+Q, we have y �→
(||Ay||2, ||Qy||2).

The projections on one-dimensional subspaces are pure states, characteristic of
exactly two types of one-dimensional representations: those associated with A are
symmetric, i.e., ρτAy = Ay for all τ ∈ S2; and those associated with Q are anti-
symmetric, i.e., ρτQy = Qy if τ = 1 and ρτQy = −Qy if τ is a transposition
in S2.

4 The notation y′Py has the interpretation of the <y,Py > under the appropriate inner product in H.
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1.9 Summary

In this chapter we illustrated the key steps and most of the concepts present in the
analysis of structured data. These steps were first introduced in Section 1.6 and are
now reviewed to include the additional structures introduced in Section 1.7.

A symmetry study includes the identification of

(1) a set V of labels;
(2) a set of data (x) indexed by those labels (the structured data);
(3) a rule or group action, with which the symmetry transformations in G are

applied to V ;
(4) the classes and multiplicities of the resulting elementary orbits, subsets of V ,

where G acts transitively;
(5) the resulting linear representations of these actions in the corresponding data

vector spaces;
(6) the canonical (algebraically orthogonal) projection matrices P1,P2, . . .;
(7) the canonical invariants P1x,P2x, . . . on the data, and their interpretations;

and
(8) a statistical analysis of the canonical invariants and, if applicable, their analysis

of variance x ′x = x ′P1x + x ′P2x + . . . based on the canonical decomposition
I = P1 + P2 + . . . of the identity operator in the data spaces.

When necessary, these canonical projections may be grouped together to describe
the original data space V , as outlined in (1.22) on page 15 and in analogy with
the partitioning calculations shown in (1.26) on page 19. Specifically, if there are
qλ orbits of type λ, each with oλ elements, classifying the v =∑

λ qλoλ points in
V then, for each class of orbits with vλ = qλoλ points, the identity matrix in the
corresponding vector space reduces according to

Ivλ
= P

λ
1 + P

λ
2 + · · ·

where P
λ
j is the canonical projection constructed with qλ copies of the canonical

projection Pλ
j in the vector space associated with the elementary orbits of type

λ, and indexed by the irreducible representations j = 1, 2, . . . , of the underlying
group G. The reduction in the original space V is then

Iv = Diag(. . . , Ivλ
, . . .)

with as many components as the different types of orbits identified by the action of
G on V .

Further Reading

The classical introductory work of Weyl (1952) on symmetry includes the notions
of bilateral, translatory, rotational, ornamental, and crystal symmetry.
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A thing that is symmetrical . . . if there is something that you can do to it, so
that after you have finished doing it, it still looks the same as it did before
you did it.

Hermann Weyl was born on November 9, 1885, in Elmshorn, Germany, and
died on December 8, 1955, in Zürich, Switzerland. He was a student of Hilbert
at Göttingen, and from 1933 until he retired in 1952 he worked at the Institute
for Advanced Study at Princeton. From 1923 to 1938 he evolved the concept of
continuous groups, using matrix representations and its applications to quantum
mechanics. Weyl (1950) is the English translation of the original German text
first published in 1931. Weyl (1953) is a revised and supplemented edition of his
1939 publication on the invariants and representations of the classical groups. The
work of Weyl, Wigner5 and van der Waerden6, pioneered the methods of group
representation to quantum mechanics – the three W’s of quantum mechanics. The
English translation of Wigner’s work by J. J. Griffin appeared in 1959 under the
title Group Theory and Its Application to Quantum Mechanics and Atomic Spectra,
Academic Press, New York.

A connection between the notions of symmetry and prior (to experiment) pre-
dictions or statements is described in Weyl (1952, p. 126) where he argues that
all a priori statements in physics have their origin in symmetry. If conditions that
uniquely determine their effect possess certain symmetries, then the effect will
exhibit the same symmetry. For example, equal weights balance in scales of equal
arms, concluded Archimedes a priori; in casting dice which are perfect cubes, each
side is perceived as equally likely. In contrast, the law of equilibrium for scales
with arms of different lengths can be settled only by experience or by physical
principles based on experience.

The propagation of symmetry from cause to effect appears in Rosen’s symmetry
principle (Rosen, 1995) and earlier on in the work of Jaeger (1919). See also Rosen
(1975), Bryan (1920), and Sarton (1921).

George Pólya, an American mathematician of Hungarian origin, was born in
Budapest, Hungary, on December 13, 1887, and died in Palo Alto, the USA on
September 7, 1985. He worked on a variety of mathematical topics, including
series, number theory, combinatorics, and probability. Geometric symmetry and the
enumeration of symmetry classes of objects was a major area of interest for Pólya
over many years. He added to the understanding of the 17 plane crystallographic
groups in 1924 by illustrating each with tilings of the plane. Pólya’s work using
generating functions and permutation groups to enumerate isomers in organic
chemistry was of fundamental importance. Pólya’s remark on the consequences of a

5 Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren, Braunschweig: Vieweg,
1931.

6 Die gruppentheorietische Methode in der Quantenmechanik, Berlin: Springer, 1932.



P1: JZZ

CUUS182-Main.tex CUUS182/Viana 978 0 521 84103 0 April 28, 2008 15:21

Exercises 25

good classification, introduced at the opening of this chapter, is further illustrated
in the words of the Nobel Laureate Sir Anthony James Leggett:

In trying to make sense of the bewildering variety of observed particles, and
the ways in which they interact and decay into one another, it is impossible
to overemphasize the role played by symmetry (or invariance ) principles
and the related conservation laws. (Leggett, 1987, p. 54)

In particular, invariance under time translation implies that the total energy of an
isolated system of particles is preserved; invariance under space translation implies
that its total momentum is conserved. Similarly, for an isolated system all directions
in space appear to be indistinguishable – this isotropy, or invariance under rotation
in space leads to the conservation of the system’s angular momentum.

The text by Aigner (1979) on combinatorial theory has a comprehensive discus-
sion on symmetry operations on the set of functions on finite sets.

Vibrational spectroscopy is a perfect example illustrating the objective connec-
tion between symmetry and observable measurements. The reader may refer to
Harris and Bertolucci (1978), where the authors review the classical symmetry
operations applied to molecules and their resulting classification according to the
symmetries of point groups. The algebraic methods of symmetry studies are an
integral part of the contemporary language with which the theory of vibrational
spectroscopy can be explained. See, for example, Sternberg (1994).

The notion of points as labels identifying potential events appears in modern-day
physics, in contrast to Newton’s views in which points are essentially indistinguish-
able. A comment in that direction is found in Cartier (2001).

The structure of short nucleotide sequences introduced in this chapter appears,
implicitly, in the work of Doi (1991) on evolutionary molecular biology. Related
examples with applications of algebraic arguments appear in the works of Evans
and Speed (1993) on phylogenetic trees and Dudoit and Speed (1999) on linkage
analysis, among others.

Exercises

Exercise 1.1. The group G = {1, v, h, o} of the symmetries of the rectangle, in-
troduced in this chapter, is know as the Klein7 four-group and is often indicated
by K4. Show that its elements are bijective transformations of the Euclidean plane
preserving its additive structure, distances, and angles.

Exercise 1.2. Classify the equations {y = x2, y2 = x, y = x3, x2 + 2y2 = 1,

y = x + x4}, from Pólya (1954, p. 89), according to the transformations in K4.

7 Christian Felix Klein, a German mathematician 1849–1925.
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Exercise 1.3. Determine the group of symmetries of a rigid parallelepiped in each
one of the following cases: (i) all three dimensions are unequal; (ii) two dimensions
are equal, and (iii) all dimensions are equal.

Exercise 1.4. Evaluate Table (1.6) for the five vowels {A,E, I,O,U} and then
for the five equations in Exercise 1.2 and show that

∑
t |fixt | =

∑
� |Aut(�)|. This

argument, of summing over rows and over columns will appear later on again in
Section 2.9 on page 58 of Chapter 2.

Exercise 1.5. Show, using Table (1.1), that xt∗1 + xt∗o − xt∗v − xt∗h = ±(x1 +
xo − xv − xh), for all t ∈ G.

Exercise 1.6. Show that the c� mappings s : {1, . . . , �} → {1, . . . , c} can be enu-
merated by i(s) = 1+∑�

j=1(s(j )− 1)cj−1 and that, conversely, (s(1), . . . , s(�)) is
the base c expansion of i(s)− 1. To obtain the unumeration shown in Appendix A,
to this chapter make y = 1 and u = 2, � = 4 and c = 2, so that, e.g., the mapping
with label i(s) = 13 corresponds to the base 2 expansion [0, 0, 1, 1] of 12.

Exercise 1.7. If r(t) = (ut cos(t + α), vt sin(t + α), 0) describes the moving in
the xy plane of an object of mass m, evaluate its momentum p = mdr/dt and
show that the angular momentum r × p remains invariant under rotations in the
xy plane around the z axis. Also, show that the trajectories of constant angular
momentum are elliptic orbits in the xy plane.

Exercise 1.8. The diagram8 of a basic Wheatstone bridge circuit, shown in Fig-
ure 1.3, contains four resistances {r1, r2, r3, r4}, a constant unit voltage input Vin,
and an output voltage Vg, related by

Vg = r1r3 − r2r4

(r1 + r2)(r3 + r4)
.

Shuffle the resistances in the circuit by applying the permutations in G =
{1, (12)(34), (13)(24), (14)(23)} (see page 14) to their labels, so that xτ = [rτ1rτ3 −
rτ2rτ4]/[(rτ1 + rτ2)(rτ3 + rτ4)] is an example of data indexed by the elements in G

and show that x can be written as xτ = χ (τ )x1, where χ (τ ) ∈ {1,−1} and satisfies
χ (τσ ) = χ (τ )χ (σ ) for all τ, σ in G. Following Section 1.4 on page 5, interpret
χ as a one-dimensional representation of G. As it turned out, χ (τ ) is the direc-
tion of the electric current through the potential Vg determined by the resistance
configuration τ .

8 e.g., http://www.efunda.com/designstandards/sensors/methods/
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Figure 1.3: Wheatstone bridge circuit.

Exercise 1.9. Appendix A to this chapter shows the set (V ) of binary sequences
in length of 4, numbered according to the rule described in Exercise 1.6, the per-
mutations of {1, 2, 3, 4} defining the group S4 and the resulting words obtained
by shuffling the positions of the symbols in each word in V according to the rule

s → sτ−1. For example, the permutation τ = (1234
3214

) = τ−1, indicated by 3214,
takes s = uuyu (word number 12) into yuuu (word number 15). Following Sec-
tion 1.7 on page 11, identify the resulting position symmetry orbits of V and, for
each sequence s in a given orbit, determine the group (indicate it by Gs) of those
permutations in S4 fixing s. How are these groups related to each other within each
position orbit of S4 in V ? In analogy with the calculations shown in (1.6), evaluate
the sum of the number |Gs | of elements in Gs when s varies in V and compare it
with the sum of the number |fix(τ )| of sequences fixed by the permutation τ when
τ varies in S4.

Exercise 1.10. Following Exercise 1.9, derive the symbol symmetry orbits for V

and their Gs groups.

Exercise 1.11. Table (1.27) shows the entropy (top half) and the corresponding –
log contrast sensitivity (bottom half) obtained from a sample of 5 Sloan chart lines.

t\sample 1 2 3 4 5

1 0.614 0.636 0.632 0.624 0.66
v 0.675 0.619 0.692 0.640 0.619
h 0.655 0.619 0.660 0.690 0.667
o 0.603 0.603 0.553 0.603 0.635

1 0.476 0.496 0.482 0.51 0.484
v 0.450 0.490 0.34 0.525 0.490
h 0.415 0.490 0.427 0.385 0.420
o 0.470 0.470 0.50 0.470 0.450

(1.27)
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For example,

x1 = (0.614, 0.476), xv = (0.675, 0.45),

xh = (0.655, 0.45), xo = (0.603, 0.47)

is the first bivariate sample indexed by {1, v, h, o}. Use the canonical projections
shown in (1.9) to decompose and describe the association between the entropy and
contrast sensitivity with the language symmetry studies.

Exercise 1.12. Indicate by A the n× n matrix with all entries equal to 1/m, and
let Q = I −A, so that I = A+Q is the n-dimensional equivalent of the standard
reduction introduced in (1.14). Applying Step 8 in the summary of Section 1.9 to
the standard reduction, show that the resulting canonical components depend only
on the sample mean and the sample standard deviation.
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Appendix A

The action sτ−1 of S4 on the binary sequences in length of 4

s(1) y u y u u u y y y u u u y y y u

s(2) y u u y u u y u u y y u y y u y

s(3) y u u u y u u y u y u y y u y y

s(4) y u u u u y u u y u y y u y y y

S4\s 1 16 15 14 12 8 13 11 7 10 6 4 9 5 3 2

1234 1 16 15 14 12 8 13 11 7 10 6 4 9 5 3 2
1243 1 16 15 14 8 12 13 7 11 6 10 4 5 9 3 2
1324 1 16 15 12 14 8 11 13 7 10 4 6 9 3 5 2
1432 1 16 15 8 12 14 7 11 13 4 6 10 3 5 9 2
2134 1 16 14 15 12 8 13 10 6 11 7 4 9 5 2 3
3214 1 16 12 14 15 8 10 11 4 13 6 7 9 2 3 5
4231 1 16 8 14 12 15 6 4 7 10 13 11 2 5 3 9
1342 1 16 15 12 8 14 11 7 13 4 10 6 3 9 5 2
1423 1 16 15 8 14 12 7 13 11 6 4 10 5 3 9 2
2314 1 16 14 12 15 8 10 13 6 11 4 7 9 2 5 3
2431 1 16 14 8 12 15 6 10 13 4 7 11 2 5 9 3
3124 1 16 12 15 14 8 11 10 4 13 7 6 9 3 2 5
3241 1 16 12 14 8 15 10 4 11 6 13 7 2 9 3 5
4232 1 16 8 15 12 14 7 4 6 11 13 10 3 5 2 9
4213 1 16 8 14 15 12 6 7 4 13 10 11 5 2 3 9
2143 1 16 14 15 8 12 13 6 10 7 11 4 5 9 2 3
3212 1 16 12 8 15 14 4 11 10 7 6 13 3 2 9 5
4321 1 16 8 12 14 15 4 6 7 10 11 13 2 3 5 9
2341 1 16 14 12 8 15 10 6 13 4 11 7 2 9 5 3
2413 1 16 14 8 15 12 6 13 10 7 4 11 5 2 9 3
3421 1 16 12 8 14 15 4 10 11 6 7 13 2 3 9 5
3142 1 16 12 15 8 14 11 4 10 7 13 6 3 9 2 5
4123 1 16 8 15 14 12 7 6 4 13 11 10 5 3 2 9
4312 1 16 8 12 15 14 4 7 6 11 10 13 3 2 5 9
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Sorting the Labels: Group Actions and Orbits

2.1 Introduction

The analysis of variance shown in Table (1.13) on page 9 of Chapter 1 was a
consequence of the joint action of G = {1, h, v, o} and S5 shuffling, respectively,
the rows and columns of Table (1.12). The study and data-analytic applications of
these rules for shuffling the experimental labels, called group actions, are among
the main objectives of the present chapter. The study of group actions and orbits is
an integral part of any symmetry study, and was identified earlier in the summary
of Chapter 1, on page 23, steps 3, and 4. The algebraic aspects in this and the next
two chapters follow closely from Serre (1977, Part I).

2.2 Permutations

In the classification of the binary sequences in length of 4 introduced in Chap-
ter 1, the symmetries of interest were the permutations of the four positions and
the permutations of the two symbols {u, y}. These sets of permutations, together
with the operation of composition of functions, share all the defining algebraic
properties identified in the multiplication table of {1, v, h, o}, characteristics of a
finite group. In Section 1.7 of Chapter 1, it was shown that permutations appear in
many, if not all, steps of a symmetry study. They appear as labels for the voting
preference data on page 12, in matrix form as linear representations, on page 6,
and as shuffling machanisms with which sets of labels could be classified and
interpreted for the purpose of describing the data indexed by those labels.

Recall, from Chapter 1, that we denote by SL the set of all bijective mappings
defined on a set L and write S� when only the number (�) of elements in L is of
interest. When � is finite, the �! mappings in SL are called the permutations in L.

30
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The cycle notation for permutations

To illustrate the notation, the 3! = 6 permutations

1 2 3
↓ ↓ ↓
1 2 3

,

1 2 3
↓ ↓ ↓
2 3 1

,

1 2 3
↓ ↓ ↓
3 1 2

,

1 2 3
↓ ↓ ↓
2 1 3

,

1 2 3
↓ ↓ ↓
3 2 1

,

1 2 3
↓ ↓ ↓
1 3 2

in S3 are denoted, respectively, by {1, (123), (132), (12), (13), (23)}, or also by
{123, 231, 312, 213, 321, 132}.

Permutations such as (12) or (132) are called cycles. Every permutation can be
expressed as the composition of disjoint cycles. For example,

σ =
1 2 3 4 5 6 7 8 9
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
3 8 7 6 1 2 5 4 9

= (1375)(2846), (2.1)

observing that cycles with a single element are excluded. Equivalently, σ =
(2846)(1375), a consequence of the fact that the composition of any two disjoint
(without common elements) cycles is commutative. We note that the composition
τσ of two permutations τ and σ is the permutation obtained by first applying σ fol-
lowed by τ , e.g., if τ = (23) and σ = (13), then τσ = (123). Because στ = (132),
the composition of permutations is not commutative in general.

Parity of a permutation

Two-element cycles, such as (13), are called transpositions. Note that

(1375) = (15)(17)(13), (2846) = (26)(24)(28) . (2.2)

In general, every cycle can be expressed as a composition of transpositions. This is
trivially true for all two-element cycles. Assuming that it holds for cycles of length
n− 1, direct evaluation shows that (12 . . . n) = (1n)(12 . . . n− 1), thus proving
that the stated decomposition holds for cycles of length n. From (2.1) and (2.2) we
obtain

σ = (1375)(2846) = (15)(17)(13)(26)(24)(28),

and observe that σ , of length 8, is the composition of 2 disjoint cycles. These two
numbers are sufficient to characterize the permutation. The difference 8− 2 = 6 is
called the decrement and corresponds to the number of transpositions expressing
σ . To see this in general, note that every cycle of length n is the composition
(12 . . . n) = (1n)(1 n− 1) . . . (12) of n− 1 transpositions, so that a permutation
σ of length m with h disjoint cycles of length n1, . . . , nh can be written as the
composition of

∑h
i=1(ni − 1) = m− h transpositions, equal to its decrement.
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The parity of a permutation is defined as the parity of its decrement. Conse-
quently, an even (respectively odd) permutation is the composition of an even
(respectively odd) number of transpositions.

Proposition 2.1. For all permutations σ and transpositions τ , decrement (τσ ) =
decrement (σ )± 1.

Proof. Following Bacry (1963), there are 2 cases to consider: When {a, b} belong
to a common cycle of σ , the fact that (ab)(a . . . xb . . . y) = (a . . . x)(b . . . y) shows
that the number of cycles of σ is increased by one unit, so that the decrement of
σ decreases by one unit; Similarly, when {a, b} belong to a different cycle, the
fact that (a . . . xb . . . y) = (ab)(a . . . x)(b . . . y) shows that the number of cycles is
decreased by one unit, and consequently the decrement of σ is increased by one
unit. In both cases, because disjoint cycles commute, it is always possible to write
the transposition to the left of the cycle(s) of interest. �

The sign (Sgn), or signature, of a permutation is given by

Sgn(σ ) =
{
+1 if σ is even,

−1 if σ is odd.

As a consequence of Proposition 2.1, the reader may verify that the parity of the
composition στ of any two permutations σ, τ is given by

σ\τ even odd

even even odd
odd odd even

,

and that, consequently, for any two permutations σ, τ ,

Sgn (στ ) = Sgn (σ )Sgn (τ ). (2.3)

Clearly, Sgn (1) = 1 and Sgn (τσ ) = −Sgn (σ ) for all transpositions τ .

Conjugacy classes

Two permutations σ and η are conjugate when σ = τητ−1 for some permutation τ .
Conjugacy defines an equivalence relation among permutations and the resulting
classes are called conjugacy classes. Also note that the only effect the operation
of conjugacy has on the cycle structure of a permutation is that of eventually re-
naming the elements within each cycle. For example, in S3, if η = (12) and τ =
(23), then the conjugacy τητ−1 transforms the cycle (12) into the cycle (13),
that is, τητ−1 = (13). The conjucacy classes of S3 are {1}, {(123), (132)} and
{(12), (13), (23)}. We have:
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Proposition 2.2. Conjugacy classes determine the same cycle structure.

Integer partitions and Young frames

The conjugacy classes of S�, and hence by Proposition 2.2, their cycle structure, can
be described by the integer partitions λ = (n1, n2, . . . , n�) of �, defined by the in-
tegers n1 ≥ . . . ≥ n� ≥ 0 with n1 + · · · + n� = �. For example, the cycle structure
of S3 described above is determined by λ = (1, 1, 1) indicating the cycle structure
with 3 cycles of length 1, also indicated by λ = 111. Its single representative ele-
ment is the identity permutation; λ = (2, 1, 0) or 211 indicating the cycle structure
with one cycle of length 2 and one of length 1. A representative is the transposition
(12); λ = (3, 0, 0), or 300, having one cycle of length 3. A representative is the
permutation (123).

These classes of cycle structures can be represented by their respective Young1

frames

111 :

−
−
−

, 210 :

− −
− , 300 :

− − −

which, in general, have n1, . . . , n� boxes in rows 1, . . . , � respectively. Indicating
by (m�, . . . , m1) the multiplicities with which the distinct cycle lengths of each
frame occur, each frame can be written, uniquely, as λ = �m� . . . 2m2 1m1 .

Data indexed by Young tableaux. The Young tableaux are the distinct n! as-
signments of permutations to Young frames. They have a number of particularly
useful data-analytic interpretations. To illustrate, consider the case n = 4, the vot-
ing data of page 12 and λ = 31. A possible assignment of names of candidade to
the corresponding Young frame is

a g c

t ,

which may be utilized to sort out the ranking preferences for two types of positions,
say, committee president, first and second vice presidents from committee secretary,
to single out the least favored candidate from the others, or to denote a partial or
incomplete rankings. This is obtained by defining two tableaux as equivalent when
their rows differ only by a permutation of their entries. These “order free” tableaux
can be identified with the sets

{a, g, c}, {a, g, t}, {a, c, t}, {g, c, t},

1 Alfred Young, a mathematician at Cambridge University, 1873–1940.
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to each one of which a summary of the data indexed by their elements may be
obtained. If the summary is the total number of votes, then we would have the
following indexing:

x{a,g,c} = 170, x{a,g,t} = 186, x{a,c,t} = 268, x{g,c,t} = 225.

These structured data can then be further reduced with the methods to be developed
in the coming chapters.

Young frames and tableaux are also in one-to-one correspondence with the
patterns of ties in ordered observations and give a classification of the space of all
mappings of a finite set into itself. We will return to these useful constructs later
on in Section 3.9 on page 82.

2.3 Groups and Homomorphisms

In Chapter 1 we remarked that the composition table

∗ 1 v h o

1 1 v h o

v v 1 o h

h h o 1 v

o o h v 1

of G = {1, v, h, o} summarizes the defining properties of a finite group, namely, the
composition of two symmetries is also a symmetry, the composition is associative,
the identity element 1 is an element in G and each element in G has an inverse
element also in G. More specifically,

Definition 2.1. A group is a nonempty setG equipped with an associative operation
(σ, τ ) ∈ G×G → σ ∗ τ ∈ G, an (identity) element 1 ∈ G, satisfying 1 ∗ τ = τ ∗
1 = τ , for all τ ∈ G and such that for every τ ∈ G, there is an (inverse) element
τ−1 ∈ G such that τ ∗ τ−1 = τ−1 ∗ τ = 1.

The group operation is generally referred to as multiplication so that the n-th
power τn of a group element τ means its n-fold τ ∗ . . . ∗ τ product.

A word about notation. We adopt the convention that when a group multiplication
τ ∗ σ is defined by the composition of functions that then τ ∗ σ = στ , for τ, σ ∈ G.
For example, (123) ∗ (23) = (13), which is the result of (123) followed by (23).
Otherwise, the group operation (∗) is omitted and we write, for simplicity, τσ

instead. The complete multiplication table for S3 is shown in (2.4), constructed
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using Algorithm 2 on page 221.

∗ 1 (123) (132) (12) (13) (23)

1 1 (123) (132) (12) (13) (23)
(123) (123) (132) 1 (23) (12) (13)
(132) (132) 1 (123) (13) (23) (12)
(12) (12) (13) (23) 1 (123) (132)
(13) (13) (23) (12) (132) 1 (123)
(23) (23) (12) (13) (123) (132) 1

(2.4)

Indicating by |S| the cardinality of a finite set S, the group order is the number |G|
of elements in the group. A commutative, or Abelian, group G is one in which the
operation is commutative, that is, τσ = στ for all σ, τ ∈ G. The group {1, v, h, o}
is Abelian, whereas S3 is not.

A subgroup of G is any subset of G that is a group under the operation of G

restricted to that subset. For example, {1, v}, {1, h}, and {1, o} are subgroups of
{1, v, h, o} of order 2. C3 = {1, (123), (132)} is a commutative subgroup of S3 of
order 3.

The order of a group element τ is the smallest positive integer n such that
τn = 1. The elements v, h, and o have order 2. The permutation (123) has order
3.

Group homomorphisms

Given two groups G, H , a homomorphism from G to H is a function ρ : G → H

preserving their group structure, that is, ρτσ = ρτρσ for all τ, σ in G. Homomor-
phisms map the identity of G into the identity of H and the inverse of τ ∈ G

into the inverse in H of its image, for all τ in G. An injective homomorphism
is called a monomorphism. An isomorphism is an invertible homomorphism. We
write G  H to indicate that G is isomorphic with H .

A simple, however important, fact is that the symmetric group S� is isomorphic
with the group of �× � permutation matrices. It follows from associating to each
permutation τ ∈ S� the permutation matrix rτ defined by

(rτ )ij = 1 ⇐⇒ j = τ i. (2.5)

We then have r(τ ∗ σ ) = r(τ )r(σ ), for all τ, σ ∈ S�. It is often more convenient,
if not computationally more attractive, to think of permutations in terms of their
corresponding permutation matrices.
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The 3 × 3 permutation matrices. Applying Algorithm 1 on page 221 gives the
permutation matrices

r1 =
⎡⎣1 0 0

0 1 0
0 0 1

⎤⎦ , r(123) =
⎡⎣0 1 0

0 0 1
1 0 0

⎤⎦ , r(132) =
⎡⎣0 0 1

1 0 0
0 1 0

⎤⎦ ,

r(12) =
⎡⎣0 1 0

1 0 0
0 0 1

⎤⎦ , r(13) =
⎡⎣0 0 1

0 1 0
1 0 0

⎤⎦ , r(23) =
⎡⎣1 0 0

0 0 1
0 1 0

⎤⎦
for S3. Isomorphic groups can be considered as algebraic copies of each other, or
different realizations of a common abstract group defining their algebraic charac-
teristics. Consequently, groups become distinct only up to isomorphisms.

When G = H , an isomorphism of G is called an automorphism of G. The kernel,
indicated by kerρ of a homomorphism ρ : G → H is the set of those elements in
G mapped into the identity element of H , whereas its range or image is the set
imρ = {ρτ ; τ ∈ G}. Clearly kerρ and imρ are subgroups of G and H , respectively.
Moreover, if kerρ = {1} and ρτ = ρσ then ρτσ−1 = ρτρσ−1 = ρσρσ−1 = 1, so that
τσ−1 ∈ {1} and σ = τ . That is, G is isomorphic with imρ .

The complex numbers

The set C of the complex numbers is an additive Abelian group and the sets R and
Z of the real and integer numbers, respectively, are subgroups of C. The unit-norm
complex numbers with the operation of multiplication form a group called the
circle group.

Cyclic groups

The sets Cn = {1, ω, ω2, . . . , ωn−1}, for n = 1, 2, . . . , and ω = e2πi/n are multi-
plicative groups of order n. We refer to Cn and any of its equivalent realizations as
cyclic groups. They are characterized here as any finite group with some element of
order equal to the order of the group. Any such element is called a group generator.
For example, C3 may be realized, isomorphically, as

{1, (123), (132)}  {1, ω, ω2}  {3Z, 3Z+ 1, 3Z+ 2}  {1, r, r2}  {1, β, β2},

where 3Z+ k = {3m+ k; m ∈ Z}, k = 0, 1, 2,

r =
[
cos 2π/3 − sin 2π/3
sin 2π/3 cos 2π/3

]
, β =

[
ω 0
0 ω

]
,
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with group generators, (123), 3Z+ 1, r and β, respectively. Similarly, (132), 3Z+
2, r2 and β2 are also generators. The groups {1, r, r2} and {1, β, β2} are realizations
of C3 as groups of rotations in the plane.

Note that (1234) generates C4 = {1, (1234), (13)(24), (1432)}, whereas (13)(24)
does not. When n > 1 is prime, however, Cp can be generated, without distinc-
tion, by any one of its members distinct from the identity. Equivalently (Weyl,
1952, p. 140), because the points in Cn may be realized as the roots in C of
the equation zn − 1 = 0 then Cn can be generated by any one of its nontrivial
roots. The roots of the equation zn − 1 = 0 form the vertices of a regular n-sided
polygon, and since zn − 1 = (z− 1)(zn−1 + zn−2 + · · · + z+ 1), the roots of
zn−1 + zn−2 + · · · + z+ 1 are said to be algebraically indiscernible.

Data indexed by cyclic labels. The joint frequencies of mining disasters during a
certain period, shown in Matrix (2.6) and discussed in Wit and McCullagh (2001),
constitute an example of data indexed by a set product (yearly seasons × weekly
days) the components of which are chronological cycles. This fact suggests the
joint action of the cyclic groups C4 and C7 to analyze the joint frequencies. The
study is presented in Chapter 5 on page 153.

Mon Tue Wed Thu Fri Sat Sun total

Autumn 7 10 5 5 6 7 1 41
Winter 5 9 10 10 11 7 0 52
Spring 3 7 10 12 13 9 2 56
Summer 4 8 8 9 5 6 2 42

total 19 34 33 36 35 29 5 191

(2.6)

Cosets

The sets Ok = nZ+ k, k = 0, 1, . . . , n− 1 are examples of cosets of a subgroup,
in this case nZ ⊂ Z. They decompose the original group Z into their disjoint union.
Direct calculation shows that the sets Ok, together with the operation O� +Om =
O�+m mod n, form a group, called the quotient group and denoted by Z/nZ. More
generally, the (left) cosets of a subgroup H of G are the subsets τH = {τσ : σ ∈
H } ⊆ G, defined for all τ ∈ G. Because an element τ ∈ G belongs to exactly one
coset, namely τH , it follows that any two cosets are disjoint sets and the union
of the collection of all cosets decomposes the set G. Moreover, any two cosets
have the same (eventually infinite) number of elements, called the index of H in G

and indicated by |G : H |. This follows from the fact that τσ → τ ′σ is a bijective
correspodence between τH and τ ′H . There is no need to distinguish between left
and right cosets, which are defined equivalently
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Data indexed by cosets. The bijective correspondence between a subgroup and
its cosets has some fundamental consequences for the analysis of data indexed by
Abelian groups, as demonstrated in great detail, in Van de Ven and Di Bucchianico
(2006) and Van de Ven (2007).

To illustrate a simple noncommutative situation, consider the observed frequen-
cies

1 2 3 4 5 6 7 8 9

act 8 16 16 7 17 11 12 6 14
cta 15 8 14 9 14 15 8 5 16
tac 7 17 13 15 9 11 18 5 17
cat 14 15 16 14 21 17 15 10 8
tca 11 18 10 17 11 16 14 9 13
atc 7 15 9 13 11 11 11 12 10

total 62 89 78 75 83 81 78 47 78

(2.7)

with which the nucleotide sequences V = {act, cta, tac, cat, tca, atc} appear
in nine subsequent 900-bp-long regions along the BRU isolate of the HIV-1 de-
scribed earlier on in Chapter 1 on page 13. Note that V describes all permutations
of the nucleotides {a, c, t}, so that (2.7) is an example of data indexed by S3.
Observing that H = {act, cta, tac} and F = {cat, tca, atc} are isomorphic to C3,
it then follows H and F are cosets to each other in S3. Also note that one set is
obtained from the other by transposing, for example, the symbols in positions 2
and 3, or equivalently, the result of the action sτ−1, with s ∈ V and τ = (23).

These two cosets can be clearly identified in Table (2.8), which is simply the
multiplication table of S3 shown in (2.4), relabeled with reference to s = act .

act cta tac cat tca atc

cta tac act atc cat tca

tac act cta tca atc cat

cat tca atc act cta tac

tca atc cat tac act cta

atc cat tca cta tac act

(2.8)

The two top blocks make evident the fact that each row transforms according to
the permutations

r1 =
⎡⎣1 0 0

0 1 0
0 0 1

⎤⎦ , r(123) =
⎡⎣0 1 0

0 0 1
1 0 0

⎤⎦ , r(132) =
⎡⎣0 0 1

1 0 0
0 1 0

⎤⎦ ,

of the elements in the first row in the block. These matrices, indexed by the elements
of C3, are group homomorphisms introduced on page 36.
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The reduction of the data indexed by each coset will follow from linear combi-
nations P1, P2, and P3 of these permutations, with respective sets of coefficients

χ1 = {1, 1, 1}, χ2 = {1, ω, ω2}, χ3 = {1, ω2, ω},
where ω = e2πi/3 is a generator of C3  {1, ω, ω2}. This is in analogy to the
construction illustrated earlier in Section 1.4 on page 5 and outlines the theory
being developed in this and the next chapter. The resulting matrices

P1 = 1/3

⎡⎣1 1 1
1 1 1
1 1 1

⎤⎦ , P2 = 1/3

⎡⎣ 1 ω ω2

ω2 1 ω

ω ω2 1

⎤⎦ , P3 = 1/3

⎡⎣ 1 ω2 ω

ω 1 ω2

ω2 ω 1

⎤⎦
are the canonical projections of interest. Further evaluating P2 + P3 leads to two
real symmetric projections, namely A = P1 and

Q = 1/3

⎡⎣ 2 −1 −1
−1 2 −1
−1 −1 2

⎤⎦ ,

which we recognize as the standard reduction I = A+Q, introduced on page 10,
now defined in R

3.
We see that, consequently, C3 induces two structurally identical analysis in each

half fraction of the data indexed by those labels, namely their standard reduction,
in which Q defines the within-coset comparisons, each one taking values on a
subspace in dimension of 2. As introduced earlier on in Exercise 1.12, the joint
summaries derived from A and Q may be expressed then as the within-coset means
and standard deviations.

In this particular case, in which the (rank) dimension of Q is 2, we may in
addition consider the graphical display of the bases

{H1, H2} =
{

log
act2

cta · tac
, log

cta2

act · tac

}
,

{F1, F2} =
{

log
cat2

tca · atc
, log

tca2

cat · atc

}
,

for the image space of Q, in each coset. These subspaces share the invariance
properties introduced in Chapter 1, resolving the arbitrariness in the reference
word generating the two cosets, under C3. Figure 2.1 shows the distribution of the
nine regions in each subspace, based on the frequency data in Table (2.7), from
which the (apparent) similarities in within-cosets variability among regions can be
observed.

The two cosets can also be distinguished by the set {(a, c), (c, t), (t, a),
(c, a), (a, t), (t, c)} of the directed edges of a regular triangle, where (x, y) in-
dicates a directed edge x → y. The permutation action of S3 on the vertices gives
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Figure 2.1: Distribution of the nine regions in the {H1,H2} and {F1, F2} subspaces.

two orbits in a way that the orientations correspond to cosets, independenly of how
the symbols were originally assigned to the vertices.

Semidirect and direct products of groups

Following up with the notation introduced in the previous sections, let C3 
{1, ω, ω2} and C2  {1,−1}, so that if H = {act, cta, tac}  {1, ω, ω2} then
F = {cat, tca, atc}  {1, ω2, ω}. This suggests the definition of

αd : ωk ∈ H → ωdk ∈ F, d = ±1,

or, isomorphically, αd : C3 → C3 for each d ∈ C2. Consequently, because

αd(αd ′(ω
k)) = αd(ωd ′k) = ωdd ′k = αdd ′(ω

k),

orαdαd ′ = αdd ′ , for all d, d ′ inC2, we see thatα : d → αd is in Hom(C2). Moreover,

αd(ωkωk′) = αd(ωk+k′) = ωd(k+k′) = ωdkωdk′ = αd(ωk)αd(ωk′)

showing that αd ∈ Hom(C3). Also, if αd(ωk) = αd(ωk′) then dk = dk′ mod 3 so
that k = k′ for k, k′ ∈ {0, 1, 2}. Since αd is clearly surjective, then αd ∈ Aut(C3),
and, in summary, α ∈ Hom(C2) taking values in Aut(C3).

Semidirect products. With these properties in mind, we can define an operation
in C3 × C2, called the semidirect product of C3 and C2, and indicated by ×α.
Specifically

(ωk, d)×α (ωk′, d ′) = (ωkαd(ωk′), dd ′). (2.9)
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It simply states that the effect ωk+dk′ of a reversal is that of introducing a phase
shift of ω±k′ to ωk. The reader may want to verify that the product set C3 × C2

endowed with the semidirect product is a group, in which the identity is (1, 1) and
(αd(ω−k), d) is the inverse of (ωk, d) in C3 × C2. This definition can be extended
to any two finite groups.

Direct products. If alpha is the trivial (≡ 1) homomorphism, the product set is
then endowed with the componentwise product operation

(ωk, d)× (ωk′, d ′) = (ωk+k′, dd ′),

and the resulting group is called the direct product of groups C3 and C2. This
componentwise multiplication extends naturally to three or more groups.

Dihedral groups of the plane. The semidirect product Cn ×α C2 for n ≥ 3 gives
a group of order 2n, called the dihedral group, and indicated by Dn. It will prove
useful, in many data-analytic interpretations, to think of the dihedral groups as
two-sided groups of (planar) rotations. To illustrate, with the case n = 4, consider
the rotations

agct :
a −−−−−→ g�⏐⏐ ⏐⏐�
t ←−−−−− c

tagc :
t −−−−−→ a�⏐⏐ ⏐⏐�
c ←−−−−− g

ctag :
c −−−−−→ t�⏐⏐ ⏐⏐�
g ←−−−−− a

gcta :
g −−−−−→ c�⏐⏐ ⏐⏐�
a ←−−−−− t

, (2.10)

of C4, generated, respectively, by shuffling the symbols in the word agct according
to the permutations {1, (1234), (13)(24), (1432)} of their positions. Each diagram
in (2.10) displays the letters of the corresponding word according to

a : 1 −−−→ g : 2�⏐⏐ ⏐⏐�
t : 4 ←−−− c : 3

,

respectively, whereas the arrows indicate the orientation of the edges. Composing
each rotation with (12)(34) has the effect of transposing or substituting the symbols
{a, c}, thus leading to the coset

cgat :
c ←−−−−− g⏐⏐� �⏐⏐
t −−−−−→ a

tcga :
t ←−−−−− c⏐⏐� �⏐⏐
a −−−−−→ g

atcg :
a ←−−−−− t⏐⏐� �⏐⏐
g −−−−−→ c

gatc :
g ←−−−−− a⏐⏐� �⏐⏐
c −−−−−→ t

. (2.11)

The orientation now appears as if seen “from the other side.” Together, the resulting
permutations define the group D4. The semidirect product (2.9) applied to C4 × C2,
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where C2  {1, (12)(34)}  {−1, 1} leads to its multiplication table,

1 agct tagc ctag gcta cgat tcga atcg gatc

(1432) tagc ctag gcta agct gatc cgat tcga atcg

(13)(24) ctag gcta agct tagc atcg gatc cgat tcga

(1234) gcta agct tagc ctag tcga atcg gatc cgat

(13) cgat tcga atcg gatc agct tagc ctag gcta

(14)(23) tcga atcg gatc cgat gcta agct tagc ctag

(24) atcg gatc cgat tcga ctag gcta agct tagc

(12)(34) gatc cgat tcga atcg tagc ctag gcta agct

, (2.12)

in analogy to the multiplication table (2.8) for D3  S3 on page 38. These per-
mutations, clearly, define the symmetry permutations for the square with vertices
labeled according to the diagrams above.

With the data-analytic applications to be developed later on in Chapter 7, how-
ever, we will make extensive use of the following realization of the dihedral groups.

Dihedral groups in the plane

Writing φ = 2π/n and ω = eiφ , let

βk,d = 1

2

[
(1+ d)ωk−1 (1− d)ωk−1

(1− d)ω−k+1 (1+ d)ω−k+1

]
, k = 1, . . . , n, d = ±1. (2.13)

These 2n matrices are the canonical or phase space (Bacry, 1967, p. 203) versions
of the matrices

Xβk,1X
−1 =

[
cos ((k − 1)φ) − sin ((k − 1)φ)
sin ((k − 1)φ) cos ((k − 1)φ)

]
,

Xβk,−1X
−1 =

[
cos ((k − 1)φ) sin ((k − 1)φ)
sin ((k − 1)φ) − cos ((k − 1)φ)

]
, (2.14)

in the Euclidean plane, where

X =
√

2

[
1 i

1 −i

]
/2.

In that space, βk,1 are planar rotations around the origin in the counterclockwise
direction by an angle of kφ radians, whereas βk,−1 are planar reflections along lines
oriented at (dihedral) angles of kφ/2 radians. The notation in (2.13) is consistent
with the fact that d = det βk,d = ±1 (Cartan, 1966, Ch. 1, Sec. II). We will use
the same notation βk,d to indicate either representation unless there is need to
distinguish between them.
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The reader may want to verify that these matrices, in either representation,
multiply according to the semidirect product (2.9), so that the mapping

(k, d) → βk,d (2.15)

is a group homomorphism of Dn = ((Cn, C2), ×α). That is, (k, d)×α (k′, d ′) →
βk,dβk′d ′ . The association,

βk,d →

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1 . . . m . . . n)k[(1 n)(2 n− 1) · · · (m− 1 m+ 1)︸ ︷︷ ︸

reversal

](3−d)/2, if n is odd,

(1 . . . m m′ . . . n)k[(1 n)(2 n− 1) · · · (m m′)︸ ︷︷ ︸
reversal

](3−d)/2, if n is even, k = 1, . . . , n, d = ±1,

gives an isomorphism between the permutation group and the planar rota-
tions/reversals realization of Dn.

The dihedral group D4. Using the representation given by (2.14), and writing
r = r1,1 the four-fold planar rotations fixing the square are then

βk,1 =
[

1 0

0 1

]
,

[
0 −1

1 0

]
,

[−1 0

0 −1

]
,

[
0 1

−1 0

]
, k = 1, 2, 3, 4,

whereas the reversals are the line reflections

βk,−1 =
[

1 0

0 −1

]
,

[
0 1

1 0

]
,

[−1 0

0 1

]
,

[
0 −1

−1 0

]
, k = 1, 2, 3, 4

defined, respectively, by the lines y = 0, y = x, x = 0, and y = −x. The notation,

D4 = {βk,d ; k = 1, . . . , 4, d = ±1} (2.16)

will be followed from now on. The reader may want to verify that, not surprisingly,
βk,−1 = βk,1β1,−1.

Data indexed by Dn. In optical applications, the representations (2.13) and (2.14)
can be used to construct dihedral labels, such as

xk,d = 1

n
Tr [β−kd,dM], (2.17)

for experimental 2× 2 data matrices M. These labels will appear later on in
applications of dihedral Fourier analyses.

Matrix groups

The general linear group is defined by the set GL(n, F) of n× n nonsingular
(i.e., nonzero determinant) matrices with real (F = R) or complex (F = C) entries,
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under the operation of matrix multiplication. Equivalently, we may consider the un-
derlying vector space V = F

n and simply write GL(V). Some classical subgroups:
the n× n permutation matrices define a finite subgroup of GL(V), of order n!, also
called the Weyl subgroup; the special linear group of the matrices in GL(n, F) of
determinant 1, denoted by SL(n, F). More generally, the general linear group may
be considered as the set GL(V) of all invertible linear transformations of the vector
space V .

Isometry groups

The bilinear symmetric form x ′y =∑
xiyi is an example of an inner product

of two vectors x, y in R
n. The bilinear Hermitian form x ′x, where x indicates

the complex conjugate of x, is an inner product in C
n. The form < x, y >=

x ′1y2 − x ′2y1, for x = (x1, x2) and y = (y1, y2) in R
2n is antisymmetric bilinear, that

is < x, y >= − < y, x >. The corresponding isometries defined by the different
ways of measuring distances and angles (geometries) define the orthogonal, unitary,
and symplectic groups, respectively. The corresponding subgroups of SL(n, F) are
the special orthogonal and unitary groups. For example, Sp(2, R) is the subgroup
of GL(2, R) leaving the symmetric bilinear form

(v,w) = det

[
r1 r2

p1 p2

]
= r1p2 − r2p1, v′ = (r1, p1), w′ = (r2, p2)

invariant. Equivalently, (v,w) = v′
[

0 1
−1 0

]
w. In physics, r and p have the in-

terpretation of position and momentum, respectively, of a particle constrained to
move on a line. The set of vectors (r, p) ∈ R

2 define the particle’s phase space and
its geometry, determined by the standard form (., .), is called symplectic geometry
and Sp(2, R) is the (real) symplectic group. It respects the geometry of the phase
space and is one of the classic isometry groups.

The Lorentz Group. The geometry of the four-dimensional space-time vector
space, indicated here by M, is determined by the (Lorentz2) fundamental form

g(x, y) = x1y1 + x2y2 + x3y3 − x4y4, x, y ∈ R
4,

where (x1, x2, x3) and (y1, y2, y3) are the spatial coordinates, and x4 and y4 are the
time coordinates of the point-events x, y, relative to an orthonormal basis typically
identified with a frame of reference for an observer of the events. Equivalently,
g(x, y) = x ′ηy, where η = Diag(1, 1, 1,−1).

Moving from one frame of reference to another without disturbing the geometry
of M has the effect of transforming the point events according to non-singular

2 Dutch physicist and mathematician Hendrik Antoon Lorentz, 1853–1928.
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linear transformations (L) that are consistent with the geometry of M. That is,
we must have g(Lx, Ly) = g(x, y), for all x, y ∈M. These symmetrically related
frames are the admissible frames of reference in the Relativity Principle, stating that
all admissible frames of reference are completely equivalent for the formulation of
the laws of physics.

The subgroup

L = {L ∈ GL(R4) : L′ηL = η} (2.18)

of all transformations L ∈ GL(R4) commuting with η defines the Lorentz group.
Defining the distance between two elements in L in terms of the (maximum)

distance among their corresponding matrix entries (Lij ), we observe that M �→ ML

and L �→ L−1 are continuous transformations so that a continuous Lorentz curve
connecting two points M and L can be obtained. However, because L′ηL = η

it follows that (det L)2 = 1, or det L = ±1, and that L2
44 ≥ 1. Therefore, either

L44 ≥ 1 or L44 ≤ −1. The continuity argument then leads to the identification and
classification of four connected classes of Lorentz symmetries:

L
↑
+: det L = +1 and L44 ≥ 1; L

↑
−: det L = −1 and L44 ≥ 1;

L
↓
+: det L = +1 and L44 ≤ 1; L

↓
−: det L = −1 and L44 ≤ 1.

Any two symmetries within the same class are connected, but no Lorentz transfor-
mation in one component can be connected with another in a different component.
L
↑
+ contains the identity matrix and defines a subgroup of L, called the restricted

Lorentz group, whereas L↑ = L
↑
+ ∪ L

↑
− defines the orthochronous Lorentz group.

The orthochronous symmetries are the transformations consistent with the geome-
try of M, preserving time orientation: x4 > y4 implies (Lx)4 > (Ly)4. The proper
Lorentz group is defined by L+ = L

↑
+ ∪ L

↓
+, whereas L0 = L

↑
+ ∪ L

↓
− defines the

orthochorous Lorentz group. When the symmetries of the Lorentz group are en-
larged to include spacetime translations, we obtain the so-called inhomogeneous
Lorentz group, or Poincaré group.

The group of the quaternions

Given an observation x ′ = (x1, x2, x3) ∈ R
3, the matrix

X =
[

x3 x1 − ix2

x1 + ix2 −x3

]
is called the matrix associated with x. These matrices have several remarkable
properties of their own (Cartan, 1966, p. 43), for example,

det X = −||x||2; X2 = ||x||2
[
1 0
0 1

]
; XY + YX = 2x ′y,
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for all x, y ∈ R
3. In particular, if we consider the matrices

H1 =
[
0 1
1 0

]
, H2 =

[
0 −i

i 0

]
, H3 =

[
1 0
0 −1

]
associated with the basis vectors e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1),
we observe that H 2

1 = H 2
2 = H 2

3 ,

H1H2 +H2H1 = H1H3 +H3H1 = H2H3 +H3H2 = 0,

and H1H2H3 = iH0, where H0 =
[
1 0
0 1

]
. Moreover, because

∑3
�=0 a�H� =[

a0 + a3 a1 − ia2

a1 + ia2 a0 − a3

]
, we conclude that there is no linear relation of the form∑3

�=0 a�H� = 0 with complex coefficients unless all these coefficients are zero.
That is, any complex 2× 2 matrix can be expressed uniquely as the sum of
a scalar matrix a0H0 and the matrix associated with a vector. Consequently,
we can identify H0, . . . , H3 with a basis for a four-dimensional vector space
H in which a vector multiplication has been defined. For all f, g, h ∈ H and
all scalars α, we have fg ∈ H, f (g + h) = fg + f h, (f + g)h = f h+ gh,
a(fg) = f (ag) = (af )g. That is, H constitutes an algebra. When expressed in
terms of I0 = H0, I1 = −iH1, I2 = −iH2, I3 = −iH3, the algebra is known
as Hamilton’s algebra3 of the quaternions. This algebra is associative but not com-
mutative. The elements 1 ≡ H0, i ≡ iH3, j ≡ iH2 and k = iH1 satisfy the relations

ij = −ji = k, jk = −kj = i, ik = −ki = −j, i2 = j2 = k2 = −1,

and {±1,±i,±j,±k} form a (noncommutative) group known as the group of the
quaternions.

We observe that

det

[
3∑

�=0

a�H�

]
= det

[
a0 + a3 a1 − ia2

a1 + ia2 a0 − a3

]
= a2

0 − a2
1 − a2

2 − a2
3 = −||a||2,

where in the above expression ||.|| indicates the norm defined by the Lorentz
fundamental form. Whether or not ||a||2 = 0 has nonzero solutions depends on
the field of scalars. In particular, when a0 = 0, there are infinitely many complex
(isotropic vectors) solutions to ||a||2 = 0, whereas only (0, 0, 0, 0) is a solution over
the real field. For each nonzero real a0 the real solutions to ||a||2 = 0 transform as
the full group of rotations in three dimensions.

3 Irish mathematician, physicist, and astronomer William Rowan Hamilton, 1805–1865.
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Normal subgroups

Fix any member τ of a group G and define the mapping iτ : G → G by iτ (σ ) =
τστ−1. Then, for every τ ∈ G, iτ is an automorphism in G, and τ �→ iτ is a
homomorphism from G to Aut(G). The mapping iτ is usually called the conjugation
by τ , or the inner automorphism generated by τ . A normal or stable subgroup of G

is a subgroup N of G satisfying the property τNτ−1 ⊂ N for all τ ∈ G. Therefore,
a normal subgroup contains the complete conjugacy classes of all its elements.
For example, 2Z, 3Z, . . . are normal subgroups of (Z,+). This is true for every
subgroup of an Abelian group. Homomorphism kernels are normal subgroups. C3

is a normal subgroup of the symmetric group S3.

2.4 Group Actions

We have briefly introduced the notion of group action in a number of examples
in Chapter 1, such as on pages 5, 14, and 29. We also calculated a number of
group orbits such as {sτ−1; τ ∈ S4} and {σs; σ ∈ S2} when discussing the classi-
fication of binary sequences in length of 4, or when studying the energy levels
and accessible microstates. We now give a precise definition of that important
concept.

Definition 2.2 (Group action). The action of a group G on a set V is a mapping
ϕ : G× V → V satisfying ϕ(1, s) = s, for all s in V and ϕ(σ, ϕ(τ, s)) = ϕ(στ, s),
for all s ∈ V , τ, σ in G.

In short notation, we may also write ϕτ (s) to indicate ϕ(τ, s) so that G acts on V

according to ϕ when ϕ1 is the identity mapping in V and ϕτσ = ϕτϕσ , for all τ, σ

in G.
When τ �→ ϕτ is a monomorphism we say that the corresponding action is

faithful, or that G acts on V faithfully.

Regular actions

Earlier on in Chapter 1, Section 1.4 on page 5, we illustrated the reduction of data
indexed by a group acting by multiplication on itself. More precisely, when V = G

and G acts on itself according to ϕτ (σ ) = τσ , we say that ϕ is a (right) regular
action. Similar definition applies to left regular actions.

Orbits, stabilizers, and transitive actions

The orbit Os of an element s ∈ V generated by G acting on V according to ϕ is
the set Os = {ϕτ (s); τ ∈ G}. We indicate by fix (τ ) = {s ∈ V ; ϕτ (s) = s} the set
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of elements in V that remain fixed by τ under the action ϕ. The set Gs = {τ ∈
G; ϕτ (s) = s} of elements τ ∈ G fixing the point s ∈ V is called the stabilizer of s

by G under ϕ. It is then easy to check that |G| = |Os ||Gs |.
Gs is a subgroup of G, often called the isotropy group of s in G under ϕ.
If θ : V → V and θϕτ = ϕτθ for all τ in G, we say that θ and ϕ commute.

In this case, as the reader may want to verify, s and θ (s) have the same group
stabilizers, for all s ∈ V . In particular, then, commuting actions share the same
group stabilizers.

Note that σ stabilizes ϕτ (s) if and only if ϕσϕτ (s) = ϕτ (s), or equivalently,
ϕτ−1στ (s) = s, or, τ−1στ ∈ Gs , or if and only if σ ∈ τGsτ

−1. Therefore, Gϕτ (s) =
τGsτ

−1.
When the orbit Os of an element s ∈ V generated by G under the action ϕ

coincides with V we say that the action ϕ is transitive, or that G acts transitively
on V .

If f ∈ Os then, for some σ ∈ G, ϕτ (f ) = ϕτϕσ (s) = ϕτσ (s) ∈ Os , so that the
restriction ϕτ |O of ϕτ to Os is a (transitive) group action on Os .

If s �= f then either Os ∩Of = ∅ or Os = Of . In fact, given s ′ ∈ Os and an
element h in Os ∩Of then s ′ is in Of . Similarly, starting with a point f ′ ∈ Of .
ThenOs = Of . Moreover, because s ∈ Os for every s ∈ V , we have the following:

Proposition 2.3. Every group action ϕ on V decomposes V as the disjoint union
of the resulting orbits, in each one of which the restriction of ϕ acts transitively.

Applying Proposition 2.3 to the regular action, we conclude that G acts transi-
tively on its cosets. This fact was illustrated earlier with G = S3 on page 38 and
with G = D4 on page 42.

Group actions and permutations

Given an action ϕ of G on V then ϕτ ∈ SV for all τ in V . In fact, because
ϕτ (s) = ϕτ (f ) implies s = ϕ(τ−1, ϕ(τ, s)) = ϕ(τ−1, ϕ(τ, f )) = f then ϕτ is one-
to-one, and since ϕτ takes ϕτ−1 (f ) to f for all f ∈ V , ϕτ is a bijective mapping.
Also, by definition, ϕτσ = ϕτϕσ . Therefore,

Proposition 2.4. τ �→ ϕτ is a group homomorphism from G to SV .

Conversely, it is clear that given a homomorphism η from G to SV then ϕτ (s) =
η(τ )(s) defines a group action of G on V .

Applying Proposition 2.4 to an orbit O of V , it then follows that τ �→ ϕτ |O is
a group homomorphism from G to SO. Applying it to the regular action, we see
that τ �→ ϕτ is a group homomorphism from G to SG. In view of Propositions 2.3
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and 2.4, we will focus our attention, primarily, on the identification of transitive
actions.

Contravariant actions

When in Definition 2.2 we have ϕσϕτ = ϕτσ , we say that the ϕ is a contravariant
action. To illustrate, suppose that G acts on V according to ϕ and let F = F(V )
indicate the vector space of scalar-valued functions, x, defined on V . Then, θτ (x) =
xϕτ is a contravariant action of G onF . In fact, (θτ θσ )(x) = θτ (θσ (x)) = θτ (xϕσ ) =
xϕσϕτ = xϕστ = θστ (x).

2.5 Actions on Mappings

Binary sequences in length of 2

Consider the set V = {uu, yy, uy, yu} of binary sequences in length of 2, so that
each sequence is a mapping s from {1, 2} into {u, y}. The reader may verify
that

ϕ1 : {1, 2} τ−1−→ {1, 2} s−→ {u, y}, s ∈ V, τ ∈ S2  {1, (12)},

and

ϕ2 : {1, 2} s−→ {u, y} σ−→ {u, y}, s ∈ V, σ ∈ S2  {1, (uy)},

are actions of S2 on V . Action ϕ1 classifies the sequences by shuffling the posi-
tions {1, 2} whereas ϕ2 gives a classification by shuffling the symbols {u, y}. The
evaluation

ϕ1 :
τ uu yy uy yu

1 uu yy uy yu

(12) uu yy yu uy

, ϕ2 :
σ uu yy uy yu

1 uu yy uy yu

(uy) yy uu yu uy

of these actions shows that ϕ1 decomposes V as the disjoint union of three orbits
{uu}, {yy}, and {uy, yu}, in each of which (the restriction of) ϕ1 acts transitively,
whereas, similarly, ϕ2 decomposes V as the disjoint union of the two orbits {uu, yy}
and {uy, yu}. Table (2.19) shows the orbits of S4 acting on the binary sequences in
length of 4 according to sτ−1 (position symmetry), the resulting isotropy groups
and the sequences fixed by each permutation.
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s(1) y u y u u u y y y u u u y y y u

s(2) y u u y u u y u u y y u y y u y

s(3) y u u u y u u y u y u y y u y y

s(4) y u u u u y u u y u y y u y y y

label → 1 16 15 14 12 8 13 11 7 10 6 4 9 5 3 2 |f ix|
1 1 16 15 14 12 8 13 11 7 10 6 4 9 5 3 2 16

(34) 1 16 15 14 8 12 13 7 11 6 10 4 5 9 3 2 8
(23) 1 16 15 12 14 8 11 13 7 10 4 6 9 3 5 2 8
(24) 1 16 15 8 12 14 7 11 13 4 6 10 3 5 9 2 8
(12) 1 16 14 15 12 8 13 10 6 11 7 4 9 5 2 3 8
(13) 1 16 12 14 15 8 10 11 4 13 6 7 9 2 3 5 8
(14) 1 16 8 14 12 15 6 4 7 10 13 11 2 5 3 9 8
(234) 1 16 15 12 8 14 11 7 13 4 10 6 3 9 5 2 4
(243) 1 16 15 8 14 12 7 13 11 6 4 10 5 3 9 2 4
(123) 1 16 14 12 15 8 10 13 6 11 4 7 9 2 5 3 4
(124) 1 16 14 8 12 15 6 10 13 4 7 11 2 5 9 3 4
(132) 1 16 12 15 14 8 11 10 4 13 7 6 9 3 2 5 4
(134) 1 16 12 14 8 15 10 4 11 6 13 7 2 9 3 5 4
(142) 1 16 8 15 12 14 7 4 6 11 13 10 3 5 2 9 4
(143) 1 16 8 14 15 12 6 7 4 13 10 11 5 2 3 9 4

(12)(34) 1 16 14 15 8 12 13 6 10 7 11 4 5 9 2 3 4
(13)(24) 1 16 12 8 15 14 4 11 10 7 6 13 3 2 9 5 4
(14)(23) 1 16 8 12 14 15 4 6 7 10 11 13 2 3 5 9 4
(1234) 1 16 14 12 8 15 10 6 13 4 11 7 2 9 5 3 2
(1243) 1 16 14 8 15 12 6 13 10 7 4 11 5 2 9 3 2
(1324) 1 16 12 8 14 15 4 10 11 6 7 13 2 3 9 5 2
(1342) 1 16 12 15 8 14 11 4 10 7 13 6 3 9 2 5 2
(1432) 1 16 8 15 14 12 7 6 4 13 11 10 5 3 2 9 2
(1423) 1 16 8 12 15 14 4 7 6 11 10 13 3 2 5 9 2

|Gs | 24 24 6 6 6 6 4 4 4 4 4 4 6 6 6 6 140

. (2.19)

Cyclic orbits for binary sequences in length of 4

Table (2.20) shows the action sτ−1 of C4 = {1, (1234), (13)(24), (1432)} on the
mapping space V , abstracted from Table (2.19).

s(1) y u y u u u y y y u u u y y y u

s(2) y u u y u u y u u y y u y y u y

s(3) y u u u y u u y u y u y y u y y

s(4) y u u u u y u u y u y y u y y y

C4\s 1 16 15 14 12 8 13 11 7 10 6 4 9 5 3 2

1 1 16 15 14 12 8 13 11 7 10 6 4 9 5 3 2
(13)(24) 1 16 12 8 15 14 4 11 10 7 6 13 3 2 9 5
(1234) 1 16 14 12 8 15 10 6 13 4 11 7 2 9 5 3
(1432) 1 16 8 15 14 12 7 6 4 13 11 10 5 3 2 9

(2.20)
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The resulting orbits (indicating the sequences by their labels) are

O0 = {1}, O1 = {9, 5, 3, 2}, O21 = {13, 7, 10, 4},
O22 = {11, 6}, O3 = {15, 14, 12, 8}, O4 = {16}.

We note that C4 splits the original orbit O2 under S4 into two new orbits, O21 and
O22, so that O21 ∪O22 = O2. Similarly, the action

G\s 1 16 15 14 12 8 13 11 7 10 6 4 9 5 3 2

1 1 16 15 14 12 8 13 11 7 10 6 4 9 5 3 2
(13)(24) 1 16 12 8 15 14 4 11 10 7 6 13 3 2 9 5

, (2.21)

sτ−1 of G = {1, (13)(24)} on V gives the orbits

O0 = {1}, O11 = {9, 3}, O12 = {5, 2},
O211 = {13, 4}, O212 = {7, 10}, O221 = {11}, O222 = {6},
O31 = {14, 8}, O32 = {15, 12}, O4 = {16},

and further splits the original orbits.

Dihedral orbits for binary sequences in length of 4

Table (2.22) shows the action sτ−1 of the dihedral group D4 on the binary sequences
in length of 4, and the resulting orbits.

D4\s 1 16 15 14 12 8 13 11 7 10 6 4 9 5 3 2
1 1 16 15 14 12 8 13 11 7 10 6 4 9 5 3 2

(24) 1 16 15 8 12 14 7 11 13 4 6 10 3 5 9 2
(13) 1 16 12 14 15 8 10 11 4 13 6 7 9 2 3 5

(12)(34) 1 16 14 15 8 12 13 6 10 7 11 4 5 9 2 3
(13)(24) 1 16 12 8 15 14 4 11 10 7 6 13 3 2 9 5
(14)(23) 1 16 8 12 14 15 4 6 7 10 11 13 2 3 5 9
(1234) 1 16 14 12 8 15 10 6 13 4 11 7 2 9 5 3
(1432) 1 16 8 15 14 12 7 6 4 13 11 10 5 3 2 9

. (2.22)

The action leads to the same set of position symmetry orbits generated by C4.
This structure is then said to be achiral. The loss of handedness can be seen by
translating the Diagrams (2.10) and (2.11) on page 41 into their purine-pyrimidine
equivalents, so that the resulting sequences define the orbit O21 indicated above.
From one side we see

uuyy :

u −−−−−→ u�⏐⏐ ⏐⏐�
y ←−−−−− y

yuuy :

y −−−−−→ u�⏐⏐ ⏐⏐�
y ←−−−−− u

yyuu :

y −−−−−→ y�⏐⏐ ⏐⏐�
u ←−−−−− u

uyyu :

u −−−−−→ y�⏐⏐ ⏐⏐�
u ←−−−−− y

,
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whereas from the other, without distinction,

yuuy :

y ←−−−−− u⏐⏐� �⏐⏐
y −−−−−→ u

yyuu :

y ←−−−−− y⏐⏐� �⏐⏐
u −−−−−→ u

uyyu :

u ←−−−−− y⏐⏐� �⏐⏐
u −−−−−→ y

uuyy :

u ←−−−−− u⏐⏐� �⏐⏐
y −−−−−→ y

.

Dihedral orbits for binary sequences in length of 3

Table (2.23) shows the orbits of D3  S3 acting on the binary sequences in length
of 3 according to sτ−1.

τ uuu yyy uyy yuy yyu uuy uyu yuu
1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8
(123) 1 2 4 5 3 8 6 7
(132) 1 2 5 3 4 7 8 6
(23) 1 2 3 5 4 7 6 8
(13) 1 2 5 4 3 8 7 6
(12) 1 2 4 3 5 6 8 7

. (2.23)

The reader may want to verify that, in each one of the two nontrivial orbits, this
action is equivalent to the action τ i of S3 on i ∈ {1, 2, 3}.

Ternary sequences in length of 4

Following with notation introduced earlier on in Section 1.8 on page 15 of Chap-
ter 1, consider the mapping space V = CL representing the 43 = 81 compositions

s : {1, 2, 3, 4} �→ {red (◦), blue (•), green (�)}
of an urn with four numbered and colored marbles. Two urn compositions are
defined as equivalent when they differ only by renumbering of the marbles. That
is, when they share the same orbit under the action sτ−1, for τ ∈ S4 and s ∈ V .
The elementary orbits, where S4 acts transitively, are grouped into m = 4 classes
λ1 = 402, λ2 = 310, λ3 = 220 and λ4 = 212, and

|V | = c� =
∑

λ

�!

(a1!)m1 (a2!)m2 . . . (ak!)mk

c!

m1!m2! . . . mk!
≡
∑

λ


λQλ

decomposes the Maxwell-Boltzmann count c� into the sum of the products 
λQλ

of the volumes 
λ of the elementary orbits and their multiplicities Qλ. In the above
decomposition, λ varies over the m integer partitions (am1

1 , . . . , a
mk

k ) satisfying
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m1a1 + · · · +mkak = � and m1 + · · · +mk = c. Moreover,∑
λ

Qλ =
(

c + �− 1

�

)

is a decomposition of the Bose-Einstein count
(
c+�−1

�

)
into the sum of the number

Qλ of quantal states associated with the partition λ. Table (2.24) summarizes the
correspondence among frames, orbits, volumes of elementary orbits, multiplicities,
and urn compositions.

λ urn composition 
λ Qλ 
λQλ

400 {◦ ◦ ◦ ◦} 1 3 3
310 {◦ ◦ ◦ •} 4 6 24
220 {◦ ◦ • •} 6 3 18
211 {◦ ◦ • �} 12 3 36

(2.24)

We observe that |V | = 34 = 81 =∑
λ v(λ), and that

∑
λ Qλ =

(
c+�−1

�

) = (6
4

) =
15.

Applying Propositions 2.3 and 2.4, we observe that the study of data indexed by
ternary sequences in length of 4, when reduced by sτ−1, leads to Qλ equivalent
studies of transitive actions in each one of the orbits of type λ.

Translations

The actions σ �→ στ−1 and σ �→ τσ are, respectively, the left and right translations.
The argument supporting Proposition 2.4, when applied to translations, implies that
τ ∈ ker (τ �→ τ ∗) if and only if τ = 1, so that τ �→ τ ∗ is a monomorphism from
G to SG. This leads to Cayley’s Theorem:

Theorem 2.1 (Cayley, 1878). Every group G is isomorphic to a subgroup of SG.
If G is finite with � elements, then G is isomorphic to a subgroup of S�.

2.6 Genotypic Classification

In genetics, many simple genotypic classifications follow from permutations in the
genetic material. With two genes {A, a} and two loci, the structure of interest is
V = {AA, aa, Aa, aA}, with four chromosomes in it. The action

S2 aa AA aA Aa

1 aa AA aA Aa

(12) aa AA Aa aA
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of S2 on the location of the two genes shows the presence of three

{aa}, {AA}︸ ︷︷ ︸
homozygous

, {aA,Aa}︸ ︷︷ ︸
heterozygous

locus substitution invariant subsets, or orbits. The resulting classification, shown
in Table (2.25), describes the genetic homogeneity in V and is characterized by
number of integer partitions of 2.

partition genotype orbit size number of orbits partition size

20 homozygous 1 2 2
11 heterozygous 2 1 2

(2.25)

With 4 genes {A,A′, a, a′} and four loci, the corresponding mapping structure V

has 256 (chromosomes) points and the genotypic variation is much larger. The
genotypes are obtained by the action of S4 on the loci. The resulting classification
corresponds to the 5 integer partitions of 4, namely,

tetraploid genotypes =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

homogenic, 4000,

digenic, simplex or triplex, 3100,

digenic, duplex, 2200,

trigenic, 2110,

tetragenic, 1111.

(2.26)

Table (2.27) shows the resulting number of distinct genotypes. There are, for c = 4
genes and � = 4 loci, (

c + �− 1

�

)
= 35

genotypes, corresponding to the total number of location-symmetry orbits.

partition orbit volume number of orbits total

4000 1 4 4
3100 4 12 48
2200 6 6 36
2110 12 12 144
1111 24 1 24

35 256 = |V |

(2.27)

For example, partition 3100 yields 12 genotypes, each one defined by a locus
substitution orbit with 4 equivalent chromosomes, for a total of 48 chromosomes
associated with that partition. Note that there are exactly six permutations in S4

leaving each one of the 48 chromosome of the type V3100 invariant by location
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substitution, and that the number (12) or orbits in that partition is the average
(6× 48)/4! number of fixed points.

Following Propositions 2.3 and 2.4 on page 48, the study of data indexed by these
256 chromosomes, when reduced by loci symmetry, is equivalent to the study of
the four (nontrivial) different group homomorphisms from S4 to SOλ

, for λ = 3100,
2200, 2110, and 1111.

2.7 Actions on Binary Trees and Branches

The set T of all m-generation binary trees with nodes indexed by the elements in
a finite group G can be obtained by defining Lj = {1, . . . , 2j }, Vj = GLj so that
T = V0 × V1 × · · · × Vm is the structure of interest. The trees, as labels for data,
may be factored by the multiplicative action of G on their nodes.

To illustrate, consider the case in which G = {1, v, h, o}, as in Chapter 1, let x

indicate a probability law in G, and define Pt (u) = x(ut), for t, u ∈ G. Then∑
u∈G

Pt (u) =
∑
u∈G

x(ut) =
∑
u∈G

x(u) = 1,

and consequently, Pt is a transition probability for each t ∈ G, and the matrix
X with entries Xtu = x(ut) determines a transition probability matrix for each
fixed probability law x in G. Factorization of branching probabilities can then be
obtained from the action of G on the tree structure T . For example, the branch o1h1
has probability P (o1h1|x) = x(1o)x(h1)x(1h) = x(o)x(h)x(h) = x(o)x2(h), and
is mapped into the branch (ho)(h1)(hh)(h1) = vh1h under the product with h ∈ G.
In turn,

P (vh1h|x) = x(hv)x(1h)x(h1) = x(o)x(h)x(h) = x(o)x2(h)

so that these two branches are classified together. A similar argument, applied to
phylogenetic trees, is found in the work of Evans and Speed (1993).

Data indexed by short branches or transitions

Table (2.28) summarizes the 16 different transitions among the elements of
G = {1, v, h, o} and their respective frequencies derived from three Sloan charts
presented in Ferris III et al. (1993) and discussed earlier on page 3. Each frequency
distribution was obtained as the sum of the transition frequencies over the 14 five-
letter lines in each chart. Since each line has five letters, there are at most four left
to right adjacent transitions in each line and hence at most 56 transitions in each
chart.
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transitions 1 1 1 1 v v v v h h h h o o o o

1 v h o 1 v h o 1 v h o 1 v h o

chart 1 56 17 22 28 18 4 4 9 22 8 7 13 27 7 7 14

chart 2 56 16 21 30 16 4 3 10 23 7 7 13 30 11 13 16

chart 3 56 18 23 28 17 1 2 8 22 6 5 12 27 10 10 13

(2.28)

Table (2.29) shows the componentwise action (η, (τ, σ )) → (ητ, ησ ) of G on
G×G, the set of labels for the transitions among the symmetries.

η = 1 τ = 1 1 1 1 v v v v h h h h o o o o

σ = 1 v h o 1 v h o 1 v h o 1 v h o

v v v v v 1 1 1 1 o o o o h h h h

v 1 o h v 1 o h v 1 o h v 1 o h

h h h h h o o o o 1 1 1 1 v v v v

h o 1 v h o 1 v h o 1 v h o 1 v

o o o o o h h h h v v v v 1 1 1 1
o h v 1 o h v 1 o h v 1 o h v 1

(2.29)

Although G acts transitively on itself, its action on G×G identifies four orbits,
namely,

O11 = {11, vv, hh, oo}, O1v = {1v, v1, ho, oh},
O1h = {1h, h1, vo, ov}, O1o = {1o, o1, vh, hv}.

Following Propositions 2.3 and 2.4 on page 48, the study of transition data is
reduced to the study of the distinct group homomorphisms from G to SO.

2.8 Counting Orbits in Linkage Analysis

The segregation products or inheritance vectors for a sibship of size 2 can be
represented by the set V of all mappings s : C = {1, 2} → Lp × Lm ≡ {1, 2} ×
{3, 4}, where each mapping represents a possible configuration of chromosome
pairs for the two sibships. The paternal chromosomes are labeled here by Lp =
{1, 2} and the maternal chromosomes by Lm = {3, 4}. If s(j ) = (p(j ), m(j )) ∈
Lp × Lm, j = 1, 2, indicates the components of each mapping s, then the identity
by descent (IBD) of the inheritance vector s is given by x(s) = δp(1)p(2) + δm(1)m(2),
where δ denotes the Kronecker delta. Table (2.30) illustrates a number of inheritance
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vectors and their corresponding IBD values evaluated as x(s).

s(1) s(2) s x(s) = IBD

a = (1, 3) a = (1, 3) aa 2
c = (2, 3) a = (1, 3) ca 1
c = (2, 3) b = (1, 4) cb 0
c = (2, 3) d = (2, 4) cd 1

(2.30)

With the additional notation introduced in Table (2.30), we identify the space of
inheritance vectors as the structure V = {a, b, c, d}{1,2} of all mappings defined
in {1, 2} with values in {a, b, c, d}. The space V has 16 labels or indices for
possible IBD evaluations. Next, we consider the symmetries of interest, namely the
permutations σ1 = (ac)(bd) for paternal chromosome symmetry; σ2 = (ab)(cd)
for maternal chromosome symmetry, and σ3 = (bc), or equivalently σ3 = (ad), for
parental origin symmetry. Together these permutations generate the dihedral group
of the square

a b∥∥∥ ∥∥∥
d c

of interest, with vertices the chromosome pairs a = (1, 3), b = (1, 4), c = (2, 3),
and d = (2, 4). It acts on V according to the rule (σ, s) → σs, giving the orbits
shown in Table (2.31).

D4\s aa bb cc dd ac ca ab ba cd dc bd db ad da bc cb

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
(abdc) 2 4 1 3 8 7 11 12 5 6 10 9 15 16 14 13

(ad )(bc) 4 3 2 1 12 11 10 9 8 7 6 5 14 13 16 15
(acdb) 3 1 4 2 9 10 6 5 12 11 7 8 16 15 13 14

(ac)(bd ) 3 4 1 2 6 5 9 10 7 8 12 11 16 15 14 13
(ab)(cd ) 2 1 4 3 11 12 8 7 10 9 5 6 15 16 13 14

(ad ) 4 2 3 1 10 9 12 11 6 5 8 7 14 13 15 16
(cb) 1 3 2 4 7 8 5 6 11 12 9 10 13 14 16 15
IBD 2 2 2 2 1 1 1 1 1 1 1 1 0 0 0 0

. (2.31)

In addition to the action of D4, the sibship symmetry is generated by S2, which
then acts on the left of V according to the rule (τ, s) → sτ−1, τ ∈ S2. The orbits
obtained from studying the joint action

ϕ((τ, σ ), s) = σsτ−1 (2.32)
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of S2 ×D4 coincide precisely with the classes of similar IBD-valued inheritance
vectors obtained by Dudoit and Speed (1999).

2.9 Burnside’s Lemma

The following result shows that the number of orbits generated by a group action is
simply the average number of points fixed by the action. The reader may first refer
to Table (2.19) on page 50, which summarizes the action sτ−1 of S4 on the space
V of all binary sequences in length of 4 and identifies, for each τ ∈ G the number
|fix(τ )| of points in V fixed by the action on V , and the number |Gs | of points in
G that leave the element s ∈ V fixed.

Lemma 2.1 (Burnside4). If a finite group G acts on V , then

Number of orbits in V = 1

|G|
∑
τ∈G

|fix (τ )|.

Proof. Indicate by ϕ the action of G on V and let A = {(τ, s) ∈ G× V ; ϕτ s = s}
so that |A| evaluates as

|A| =
∑

τ

|{s; ϕτ s = s}| =
∑
τ∈G

|fix (τ )|.

Similarly, if m is the number of orbits in V and s1, . . . , sm are orbit representatives,
we have

|A| =
∑

s

|{τ ; ϕs = s}| =
∑
s∈V

|Gs | =
m∑

i=1

|Oi ||Gsi
| =

m∑
i=1

|Oi | |G||Oi | = m× |G|.

The result follows from equating the two evaluations of |A|. �

Binary sequences in length of 4

To illustrate, consider the action sτ−1 on the binary sequences in length of 4, shown
in Table (2.19). It then follows that

Number of orbits of V = 1

| G |
∑
G

| fix(σ ) |= 120

24
= 5.

As introduced in Chapter 1, each orbit can be characterized by the number of
symbols (u) in the sequences. Also note that |G|/|Gs | is the number of elements
in the orbit of which s is a representative.

4 William Burnside was born July 2, 1852, in London, England and died August 21, 1927, in West Wickham,
London, England. The proof of the lemma, however, is due to Frobenius in 1887, e.g. Rotman (1995, p. 58).
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Further Reading

In genetics, the interplay among symmetry, classification, and the statistical analysis
of experimental data has a long history, as evident from the early work of Fisher
(1930) on natural selection. The laws of inheritance obtained by genetic studies,
points Fisher, are the rules whereby, given the constitution of an organism, the
kinds of gametes it can produce, and their relative frequencies, can be predicted
(Fisher, 1947). Fisher was born in London, on February 17, 1890. His studies
of errors in astronomical calculations, together with his interests in genetics and
natural selection, led to his involvement in statistics. He died on July 29, 1962.

Exercises

Exercise 2.1. Following Section 1.8 on page 15, consider the space V of binary
sequences in length of � and let Pk(s) = 1/

(
�

k

)
if s ∈ Ok and Pk(s) = 0 otherwise.

Verify that

(1) P =∑�
k=0 γkPk, where

∑
k γk = 1, γk > 0, is a probability law in V ;

(2) P (sτ−1) = P (s) for all τ ∈ S� and s ∈ V ;
(3) Conversely, all probability laws in V satisfying property (2) are convex linear

combinations of the elementary (within-orbit) uniform probability laws Pk.

Exercise 2.2. Following Exercise 2.1 with � = 4, show that there are only three
types of position-symmetry orbits,Oλ, namelyO40,O31, andO22, corresponding to
the integer partitions of four in length of 2. Consequently, verify that the elementary
probability laws take values 1/16, 1/4, and 3/8 in O40, O31, O22, respectively.
Moreover, there are

( 2
1,1

) = 2 orbits of type λ = 40 or λ = 31, and
( 2

2,0

) = 1 orbit
of type λ = 22.

Exercise 2.3. Show that the matrices Diag(±1,±1) form a multiplicative group
isomorphic with K4. Study the groups Diag(±1, . . . ,±1).

Exercise 2.4. Consider the action σs of S2 on m copies of {uy, yu} and show that
it gives 2m − 1 orbits.

Exercise 2.5. Let S2 = {∅, {1}, {2}, {1, 2}} indicate the set of all subsets of {1, 2},
and define a multiplication (∗) in S2 by inclusion-exclusion so that, for example,
{1} ∗ {2} = {1, 2} and {1} ∗ {1, 2} = {2}. Show that S2 is isomorphic with K4. The
groups (Sn, ∗) appear in Fisher (1942).

Exercise 2.6. In analogy with the construction of the dihedral groups earlier on
in this chapter, given two groups N and H and a homomorphism α from H to
Aut(N ), define for (τ, σ ) and (τ1, σ1) in N ×H , the operation (τ, σ )×α (τ1, σ1) =
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(τα(σ )(τ1), σσ1). Show that G = N ×H , together with ×α, is a group, called the
semidirect product of N and H under α, in which (1N, 1H ) is the identity in G and
(α(σ−1)(τ−1), σ−1) is the inverse of (τ, σ ) in G.

Exercise 2.7. Show that the multiplication table for C3 × C2 is

× 1 2 3 4 5 6

1 = (1, 1) 1 2 3 4 5 6
2 = (τ, 1) 2 3 1 5 6 4
3 = (τ 2, 1) 3 1 2 6 4 5
4 = (1, σ ) 4 5 6 1 2 3
5 = (τ, σ ) 5 6 4 2 3 1
6 = (τ 2, σ ) 6 4 5 3 1 2

, (2.33)

where the elements of C3 × C2 are indicated according to the first column of the
table. Comparing the second and third rows of the table, we observe that they
define the permutation (123)(456). Similarly, following with the remaining rows,
we obtain the permutations (τ 2, 1)  (132)(465), (1, σ )  (14)(25)(36), (τ, σ ) 
(153426), and (τ 2, σ )  (162435), which are isomorphic with those of C6. We
have then, C3 × C2  C6. In general, Cm × Cn  Cmn, provided that m and n are
relative primes.

Exercise 2.8. Let αt (τ ) = τ if t = 1 and αt (τ ) = τ−1 if t = (12). Show that the
multiplication table for C3 ×α C2 is given by

×α 1 2 3 4 5 6

1 = (1, 1) 1 2 3 4 5 6
2 = (τ, 1) 2 3 1 5 6 4
3 = (τ 2, 1) 3 1 2 6 4 5
4 = (1, σ ) 4 6 5 1 3 2
5 = (τ, σ ) 5 4 6 2 1 3
6 = (τ 2, σ ) 6 5 4 3 2 1

.

Show that, relative to the first row in the above matrix,

(τ, 1)  (123)(456) ≡ (123), (τ 2, 1)  (132)(465) ≡ (132),

(1, σ )  (14)(26)(35) ≡ (12), (τ, σ )  (15)(24)(36) ≡ (13),

(τ 2, σ )  (16)(25)(34) ≡ (23).

The subsets {1, 6}, {2, 4}, and {3, 5} constitute what is known as an imprimitive
system.



P1: JZZ

CUUS182-Main.tex CUUS182/Viana 978 0 521 84103 0 April 28, 2008 15:21

Exercises 61

Exercise 2.9. Show that

{[
x y

0 1

]
, x > 0

}
is a group under matrix multiplication.

It is called the proper affine group in the line.

Exercise 2.10. Show that the proper affine group in the line is isomorphic with
the group of transformations t → xt + y, x > 0, thus justifying its name. More

specifically, show that if Fi =
{[

xi yi

0 1

]
, xi > 0

}
, fi(t) = xit + yi , and ξ (fi) =

Fi , i = 1, 2, then f1f2(t) = f1(f2(t)) = x1x2t + x1y2 + y1 so that ξ (f1f2) =
ξ (f1)ξ (f2). Verify also that ξ maps the identity transformation t → t into the
2× 2 identity matrix I . By showing that any point t → tx + y can be smoothly
connected to the identity transformation, it follows that any point in the proper
affine group can be smoothly connected to the identity matrix I . A (continuous)
group in the neighborhood of I is called a Lie Group.

Exercise 2.11. Show that

{[
x y

0 x

]
, x > 0

}
is a group under matrix multiplica-

tion. It is called the step transformation group.

Exercise 2.12. The convex hull of all permutation matrices in dimension of n is the
set of all doubly stochastic matrices in dimension of n. Given a doubly stochastic
matrix P and a vector y satisfying y1 ≥ · · · ≥ yn then the new vector x = Py is
said to majorize y in the sense that x1 ≥ · · · ≥ xn and

n∑
j=1

xj =
n∑

j=1

yj ,

m∑
j=1

xj ≥
m∑

j=1

yj , m = 1, . . . , n− 1.

To indicate this we write x � y. Shown that x � y ⇐⇒ x = Py. For a detailed
discussion of majorization and further references, see Marshall and Olkin (1979).

Exercise 2.13. Apply Burnside’s Lemma to evaluate the number of orbits derived
from the group actions described in (2.20), (2.21), (2.29), and (2.31).

Exercise 2.14. Let V indicate the set of all 2× 2 (incidence, or ralation) matrices
with entries in {0, 1} and indicate by W the set of all binary sequences in length
of 2. Show that there is a one-to-one correspondence between V and W ×W , and
study the orbits of V under different group actions on W ×W . Study the orbits of
3× 3 incidence matrices under different group actions.

Exercise 2.15. For ω1 and ω2 probability laws in a finite group G, define the
convolution ω1 � ω2 of ω1 and ω2 by ω1 � ω2 : s �→∑

t∈G ω1(ts−1)ω2(t) for s ∈ G.
Show that ω1 � ω2 is a probability law in G. Describe the convolution laws for S3,
C3, D4, and K4.
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Exercise 2.16. Indicate by x(s) =∑
τ∈G x(sτ−1)/|G| the (left) symmetrized ver-

sion of a scalar function x in CL. Let w be a probability law in CL, which is
permutation (sτ−1) symmetric. Then, relative to w, show that E(x) = E(x), when
the action sτ−1 is transitive, and otherwise, E(x) =∑

i E(x | Oi)Pw(Oi), where
Oi are the distinct orbits generated by the action sτ−1.

Exercise 2.17. Show that the mapping τ ∗ : G → G defined by τ ∗(σ ) = τστ−1 is
an isomorphism in G. Moreover, the mapping τ �→ τ ∗ is a homomorphism in G

taking values in Aut(G).
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Connecting Symmetries and Data:
Linear Representations

3.1 Introduction

This chapter gives continuation to the study of the remaining steps outlined earlier
on in Section 1.9 of Chapter 1. We are interested in learning how to represent the
symmetries of interest into the data vector space (step 5), which will lead us into the
study of the linear representations of group actions in the corresponding data vector
spaces. This will be complemented, in the next chapter, with the construction of
the canonical projection matrices and the study and interpretation of the canonical
invariants on the data (steps 6 and 7).

3.2 Representations

Permutation representations

The group homomorphisms τ �→ ϕτ from G to SV (see Proposition 2.4 on page
48) are called permutation representations of G on SV , or, shortly, permutation
representations of G on V . Its (permutation) matrix form ρτ , similarly to (2.5), is
defined by

(ρτ )sf = 1 ⇐⇒ ϕτ s = f. (3.1)

To illustrate, the restriction of the action

τ\s uu yy uy yu

1 uu yy uy yu

(uy) yy uu yu uy

,

of S2 = {1, (uy)} on V = {uu, yy, uy, yu} to each one of its orbits {uu, yy} and
{uy, yu} gives a permutation representation

ρ1 =
[
1 0
0 1

]
, ρ(uy) =

[
0 1
1 0

]
of S2 on R

2, a subspace of the data space V for V .

63
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Choose an ordering 1, 2, . . . , v, for the elements in V and assign them in corre-
spondence with the canonical basis {e1, e2, . . . , ev} for V = R

v. Then, equivalence
(3.1) extends to

ϕτ s = f ⇐⇒ (ρτ )sf = 1 ⇐⇒ e′sρτ ef = 1 ⇐⇒ ρτef = es. (3.2)

Applying (3.2) to the equality ϕτ (ϕτ−1h) = h gives ρτeϕ
τ−1h = eh, or eϕ

τ−1h =
ρτ−1eh, for all τ ∈ G. That is ρτes = eϕτ s , for all τ ∈ G and s ∈ V . As a con-
sequence, we have

(ρτρσ )es = ρτ (ρσ es) = ρτeϕσ s = eϕτ ϕσ
= eϕτσ s = ρτσ es,

for all s ∈ V . The homomorphism extends by linearity to all x =∑
s∈V xses ∈ V ,

where xs are real scalars so that ρτρσ = ρτσ for all τ, σ in G.

The permutation representation of Sn. If in particular V = {1, . . . , �}, G = S�,
and ϕτ i = τ i then (ρτ )ij = 1 if and only if τ i = j . We will refer to the correspond-
ing representation simply as the permutation representation of Sn. The case � = 3
appeared earlier on page 36. The reference also applies to the subgroups of Sn.

Linear representations

More generally, group homomorphisms from G to GL(V) are called linear repre-
sentations of G on V .

Linear representations map the identity of G into the identity matrix (or operator)
of GL(V), that is, ρ1 = I . Also, the inverse τ−1 of τ is mapped to the inverse ρτ−1

of the matrix ρτ , that is ρτ−1 = ρ−1
τ .

The dimension of a linear representation is defined as the dimension of the
corresponding vector space. Often we refer to all linear representations simply as
representations. The reader may want to verify that the transformations on page 42
are linear representations of Dn. For example, the matrices

βk,d 
[
1 0
0 1

]
,

[−1 −1
1 0

]
,

[
0 1

−1 −1

]
,

[−1 −1
0 1

]
,

[
1 0

−1 −1

]
,

[
0 1
1 0

]
,

give a linear representation of D3 (or S3) on R
2 and coincide with those in (2.14),

for k = 1, 2, 3, d = ±1 after a change of basis.

Equivalent representations

If ρ is a linear representation of G on V and B ∈ GL(V) then β : τ �→ BρτB
−1 is

also a linear representation of G in GL(V). Any two such linear representations,
obtained one from another by a changing of basis, are called equivalent or iso-
morphic representations. It was apparent, in the construction of the permutation
representations, that the identification of V with a basis for V could be done in as
many different ways as the arbitrary orderings of the elements in V . The resulting
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representations, however, are all equivalent. The matrices (2.13) and (2.14) defined
on page 42 are equivalent linear representations of the dihedral group Dn on R

2.

One-dimensional representations

The unity or symmetric representation assigns the value ρτ = 1 for all τ ∈ G. The
alternating or sign representation of S� is defined as

Sgnτ =
{
+1 if the permutation τ is even;

−1 if the permutation τ is odd.

From Proposition 2.1, we know that Sgnστ = Sgnσ Sgnτ , for any two permutations
σ , τ . When G is the subgroup Cn of Sn, the reader may verify that

ρk(τ
j ) = ωjk, j = 0, . . . , n− 1, k = 1, . . . n,

where τ is a generator of Cn and ω is a primitive n-th root of 1, are n distinct
one-dimensional representations of Cn.

The regular representation

The representation of the action ϕτ (σ ) = στ−1 of G on itself is called the (left)
regular representation of G. Its dimension is the number of elements in G. Similarly,
ϕτ (σ ) = τσ defines the right regular representation. We will refer to either action
as the regular action, the context indicating which one is at work. The regular
representation

φ1 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ , φv =

⎡⎢⎢⎣
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤⎥⎥⎦ ,

φh =

⎡⎢⎢⎣
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤⎥⎥⎦ , φo =

⎡⎢⎢⎣
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤⎥⎥⎦ (3.3)

appeared earlier on in Chapter 1 under the action of G = {1, v, h, o} on itself.

Data indexed by point groups. The symmetry transformations that leave the sta-
ble configuration of a molecule physically indistinguishable are generally known
as point groups. The name indicates that at least one point in the molecular frame-
work remains fixed. To illustrate, consider the following transformations in R

3,
represented with the standard notation used by chemists:

(1) E: the identity operator;
(2) C2: a rotation by 180◦ around the z-axis;
(3) i: an inversion or point reflection through the origin (0, 0, 0);
(4) σh: a reflection on the xy-plane.
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The transformations {E,C2, i, σh} in R
3 define the point group C2h. Its multiplica-

tion table is given by

C2h :

∗ E C2 i σh

E E C2 i σh

C2 C2 E σh i

i i σh E C2

σh σh i C2 E

, (3.4)

which is isomorphic with the multiplication table of G = {1, v, h, o}, on page 2.
For example, the 180◦ rotation (C2) around the z-axis followed by an inversion (i)
through the origin is equivalent to a reflection on the xy-plane, that is, iC2 = σh.
The planar structure of a dichloroethene C2H2Cl2-trans molecule is among the
molecules characterized by the symmetries of C2h. The group acts transitively on
the canonical basis for R

3 giving a representation

ρE = Diag(1, 1, 1), ρσ = Diag(1, 1,−1), ρC = Diag(−1,−1, 1), ρi = Diag(−1,−1,−1)

of C2h on R
3.

The molecular framework of the dichloroethene molecule can be used as a
data structure. To see this, consider a rectangular parallelepiped with vertices
{(±2,±1,±1)} expressed as the set of labels

V = {abb, abB, aBb, aBB, Abb, AbB, ABb, ABB}.
For example, AbB is the label for the point (−2, 1,−1). Then C2h acts on V

according to

abb abB aBb aBB Abb AbB ABb ABB

E abb abB aBb aBB Abb AbB ABb ABB

σh abB abb aBB aBb AbB Abb ABB ABb

C2 ABb ABB Abb AbB aBb aBB abb abB

i ABB ABb AbB Abb aBB aBb abB abb

, (3.5)

and its restriction to the resulting two orbits

{abb, abB, ABb, ABB}, {aBb, aBB, Abb, AbB}
of V gives two transitive actions, each one of which leading to (isomorphic copies
of) a linear representation of C2h on the data space R

4.

3.3 Unitary Representations

The linear representations introduced in the previous section verify the property
(ρτx, ρτy) = (x, y), for all τ ∈ G, under the standard inner product (x, y) = x ′y
in R

v. Equivalently then ρτρ
′
τ = I for all τ ∈ G.
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To define the corresponding property for complex linear spaces, recall that an
inner product in a real or complex vector space V is a function (., .) : V2 �→ F such
that, for all x, y, z ∈ V , and scalars a, b,

(1) (x, y) = (y, x), (Hermitian symmetric)
(2) (ax + by, z) = a(x, y)+ b(y, z), (conjugate bilinear)
(3) (x, x) ≥ 0, (x, x) = 0 if and only if x = 0, (positive definite).

The vector space V , together with (., .), is called an inner product space. An
Euclidian (respectively unitary) space is a real (respectively complex) inner product
space.

A linear representation ρ of G on the inner product space V is unitary if

(ρτx, ρτy) = (x, y)

for all x, y ∈ V , and τ ∈ G. If (.|.) is an inner product in V , direct evaluation shows
that then

(x, y) = 1

|G|
∑
τ∈G

(ρτx|ρτy) (3.6)

is an inner product in V , relative to which ρ is unitary.
Moreover, ρ is equivalent to a representation that is unitary in the original

inner product space. To see this, indicate by {e1, . . . , ev} an orthonormal basis
relative to (.|.) and by {f1, . . . , fv} an orthonormal basis relative to the invariant
inner product (., .), and let A be the linear transformation defined by Aei = fi .
Then (Aei, Aej ) = δij = (ei |ej ), so that (Ax, Ay) = (x|y). Define rτ = A−1ρτA,
τ ∈ G. Then r and ρ are equivalent and, because

(rτ x|rτ y) = (A−1ρτAx|A−1ρτAy) = (ρτAx, ρτAy) = (Ax, Ay) = (x|y),

r is unitary in the original inner product space.
To illustrate, we will construct a representation unitarily equivalent to the two-

dimensional representation of S3  D3 shown on page 64. The invariant scalar
product derived from the Euclidean inner product ( | ) in R

2 is

(x, y) =
∑

τ

(βτx|βτy) =
∑

τ

x ′β ′τβτy = 4x ′
[
2 1
1 2

]
y ≡ x ′Fy.

Next, starting with the canonical basis e1 = (1, 0), e2 = (0, 1) for R
2, use Gram-

Schmidt to construct a basis {w1, w2} that is orthonormal relative to the invariant
inner product, such as w′

1 = (
√

2/4, 0) and w′
2 = (−√6/12,

√
6/6). The resulting

new (unitarily equivalent) representation is then bτ = A−1βτA, where

A =
√

2

12

[
3 −√3
0 2

√
3

]
.
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We obtain b1 = I2 and

1

2

[ −1
√

3
−√3 −1

]
,

1

2

[−1 −√3√
3 −1

]
,

1

2

[
1

√
3√

3 −1

]
,

[−1 0
0 1

]
,

1

2

[
1 −√3

−√3 −1

]
,

for b(123), b(132), b(12), b(13), and b(23), respectively. In each case we have b′τ bτ = I2.
More generally, in the complex case, unitary representations satisfy ρ∗τ ρτ = I ,

where ρ∗τ indicates the conjugate transpose of ρτ , that is, ρ∗τ = ρ ′τ . To see this, first
note that any linear operator ρ on a finite-dimensional vector space when applied
to a basis {es ; s ∈ V } for V gives

ρes =
∑
h∈V

(ρ)hseh, s ∈ V.

Let then {es ; s ∈ V } be an orthonormal basis for V under the inner product (·, ·),
relative to which ρτ (or an equivalent representation) is unitary. Then, writing ρτ

sf

to indicate the entry sf of ρτ ,
δsf = (es, ef ) = (ρτes, ρτ ef ) =

∑
h,h′

ρτ
hs ρτ

h′ f (eh, eh′) =
∑

h

ρτ
hsρ

τ
hf

=
∑

h

ρτ ′
f hρ

τ
hs = (ρ ′τ ρτ )f s,

so that ρ ′τ ρτ = I , or ρ∗τ ρτ = I for all τ ∈ G.

3.4 Regular Representations and Group Algebras

Consider the (real or complex) vector space V in the dimension of the number g

of elements in a finite group G and write the elements of V as symbolic linear
combinations

x =
∑
σ∈G

xσσ,

with scalar coefficients xσ ∈ G. Then V has an operation of multiplication defined
by

xy =
∑
σ,η

xσ yηση =
∑

τ

[∑
ση=τ

xσ yη

]
τ ∈ V (3.7)

so that for all x, y, z ∈ V , and all scalars γ , we have xy ∈ V , x(y + z) = xy + xz,
(x + y)z = xz+ yz, γ (xy) = x(γy) = (γ x)y. Moreover, because the group op-
eration is associative, we have x(yz) = (xy)z = xyz. In this case, we say that the
vector space V , along with the multiplication so defined, constitutes an associative
group algebra. The subspaces, B, corresponding to the (left) regular action of G

satisfy τB ⊂ B for all τ ∈ G and, by the linearity of the multiplication, are exactly
those subalgebras I of V that satisfy yI ⊂ I for all y ∈ V . These subspaces are
examples of stable or invariant subspaces and are studied in Section 3.7. Equiv-
alently, in this example, they define left ideals of V so that the determination of
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the invariant subspaces of regular representations corresponds to searching for the
ideals of V .

3.5 Tensor Representations

If G acts on V and W giving linear representations ρ and η of G on V and W ,
respectively, then the identification of V ×W as a basis for V ×W gives a linear
representation of G on V ×W , indicated by ρ ⊗ η, evaluated as

(ρ ⊗ η)τ = ρτ ⊗ ητ ,

and called the tensor product of the two representations ρ and η.
By expressing the data points in V ×W as x ⊗ y, we see that the these data then

evaluate as (ρτx)⊗ (ητy).
Clearly, the same construction can be extended to define the tensor representation

derived from more than two linear representations of G.
To illustrate, recall from Chapter 2 (page 53) that the set of characters or traits

that are produced by two genes {A, a} stems from S2 acting on the location of the
genes, with resulting orbits

O0 = {aa}, O1 = {Aa, aA} O2 = {AA}.
In terms of their phenotype, if O0 is the recessive trait, then O1 and O2 are the
dominant traits. Genotypically, O1 is the heterozygous pair, whereas the other two
orbits contain the homozygous pairs. The basic aspects of the cell meiosis process
can be represented by the subset of the structure V of all binary sequences in length
of 4, introduced earlier on in Chapters 1 and 2. Under the position-symmetry action
of S4, the structure V decomposes as V = V40 ∪ V31 ∪ V22, with V40 = O0 ∪O4,
V31 = O1 ∪O3, and V22 = O2. The substructure of interest here is exactly

V22 = {AAaa, AaAa, AaaA, aAAa, aAaA, aaAA}
indicated, respectively, by the labels {13, 11, 7, 10, 6, 4} shown in Table (2.19) on
page 50.

Here, two organisms f and g in V22 are considered equivalent if they differ only
by a location-symmetry transformation, that is, f = gτ−1 for some τ ∈ S4.

According to Hannan (1965), Fisher (1947) explored the fact that the trace χρ(τ )
of the permutation matrix ρτ describes exactly the number of pairs of organisms
that are self-similar under the given permutation, or the number of points fixed by
the permutation. The number k of classes (or orbits) of equivalent organisms is
then given by the average number

k = 1

4!

∑
τ∈S4

χρ(τ )
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of fixed points, an application of Burnside’s Lemma. Since the action sτ−1 of S4 on
V22 is transitive, we must have k = 1. Indeed, a systematic reading of Table (2.19)
on page 50 shows that k = (6+ 9× 2)/4! = 1, thus saying that all organisms are
equivalent.

The classification problem is certainly more interesting when m loci are simulta-
neously considered. There are now 6m labels in V = V22 × V22 × · · ·V22, product
of m copies of the original space V22, where S4 acts according to(

sτ−1, gτ−1, . . . , hτ−1
)
, τ ∈ S4, s, g, . . . , h ∈ V22.

The resulting representation of S4 on R
6m is the m-fold tensor product ρ ⊗ · · · ⊗ ρ

of the representation ρ.
Because the trace of the tensor product is simply the product of the component

traces, it then follows that there are exactly k = [6m + 9.2m]/4! orbits or classes
of nonequivalent organisms or genotypes.

Tensor representations and direct products of groups. It is simple to verify that
if ρ and η are linear representations of groups G and H on V and W , respectively,
then ξτ,σ = ρτ ⊗ ησ is a linear representation of G×H on V ×W . To illustrate,
the linear representation of G = {1, v, h, o} on page 6 is isomorphic to a linear
representation of C2 × C2  G on R

2 × R
2 given by φτ,σ = ρτ ⊗ ρσ , where ρ is

the linear representation of C2 = {1, t} on R
2 given by

ρ1 = I2, ρt =
[
0 1
1 0

]
.

3.6 Matrices with Group Symmetry

The Lorentz group (Chapter 2, page 44) introduced a classical argument of com-
mutativity and symmetry, which is useful for the analysis of data. To see this,
note that Expression (2.18) says that L includes the subgroup G of all nonsingular
orthogonal matrices that commute with η. The matrix η then is said to have the
symmetry of G, or to be centralized by G.

Conversely, we may start with a given group G of symmetries and ask to char-
acterize those matrices that commute with all elements of (a given representation
of) G. To illustrate, consider the regular representation

φE =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ , φC2 =

⎡⎢⎢⎣
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤⎥⎥⎦ ,

φi =

⎡⎢⎢⎣
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤⎥⎥⎦ , φσh
=

⎡⎢⎢⎣
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤⎥⎥⎦ (3.8)
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of C2h, derived from its multiplication table on page 66. If the data indexed by the
components {E,C2, i, σh} of C2h are indicated by (x, y, z, w), it then follows that

1

4

∑
τ∈G

φ(τ )

⎡⎢⎢⎣
x2 xy xz xw

xy y2 yz yw

xz yz z2 zw

xw yw zw w2

⎤⎥⎥⎦φ(τ )′ =

⎡⎢⎢⎣
F B C D

B F D C

C D F B

D C B F

⎤⎥⎥⎦
with

F = x2 + y2 + w2 + z2, B = 2( xy + zw), C = 2( xz+ yw), D = 2( xw + yz),

is the C2h-centralized version of the crossproduct matrix for the data.
Similar calculations appear, for example, in the determination of all covariance

structures ρ�ρ ′ that are consistent with the invariant property L(ρY ) = L(Y ) of
a probability law L. See, for example, Andersson (1992) and Gao and Marden
(2001). More specifically, we have,

Proposition 3.1. Given a representation ρ of G on R
n and � a real n× n matrix,

then

� =
∑
τ∈G

ρτ�ρτ−1 (3.9)

has the symmetry of (or is centralized by) ρ in the sense that ρσ� = �ρσ for all
σ ∈ G.

Proof. For any σ ∈ G, we have ρσ�ρσ−1 =∑
τ∈G ρσρτ�ρτ−1ρσ−1 =∑

τ∈G

ρστ�ρ−1
στ = �, observing that στ spans G when τ ∈ G, for any σ in G. �

In this case, we also say that � commutes with the representation ρ. The set of
all linear operators commuting with a representation ρ in V is a linear subspace of
the space of linear operators in V . Also in that subspace are the linear operators
of the form x̂(ρ) =∑

τ∈G xτρτ , where xτ are scalar functions constant over the
conjugacy classes of G. See also Naimark and Štern (1982, p. 55) and Simon
(1996, p. 28).

Matrices with dihedral structure

In this section we apply Proposition 3.1 to determine the pattern of matrices
centralized by the regular representation of the dihedral group D4. First, we con-
struct the regular representation of D4, which will appear again in later chapters
in data-analytic applications in which the data are indexed by those symmet-
ries.
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The regular representation of D4. The reader may want to verify, from the
multiplication table (2.12) of D4, on page 42, and Algorithm 6 on page 223, that
its regular representation can be expressed as

φk,d = t (d+3)/2 ⊗ (RkH (d+3)/2), k = 1, 2, 3, 4 d = ±1

where

t =
[
0 1
1 0

]
, R =

⎡⎢⎢⎣
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤⎥⎥⎦ , H =

⎡⎢⎢⎣
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤⎥⎥⎦ .

Rotations are represented when d = 1 and reversals when d = −1. We now apply
Proposition 3.1 to centralize the 8× 8 matrix xx ′ of dihedral crossproducts, where
x is the vector of (data indexed by the) dihedral rotations x ′+ = (r1, . . . , r4) and
reversals x ′− = (t1, . . . , t4). Direct evaluation then shows that

∑
k,d

φk,d(xx ′)φ−1
k,d =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A B C B a b c d

B A B C d a b c

C B A B c d a b

B C B A b c d a

a d c b A B C B

b a d c B A B C

c b a d C B A B

d c b a B C B A

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where, writing γ to indicate the permutation matrix for the cycle (1234) and
observing that y ′γ kz is then the lag-k crossproduct of two vectors y, z in R

4,

A = x ′x, B = x ′+γ x+ + x ′−γ x−, C = x ′+γ 2x+ + x ′−γ 2x−,

a = 2x ′+x−, b = 2x ′+γ x−, c = 2x ′+γ 2x−, d = 2x ′+γ 3x−.

Together, these coefficients can be generated as x ′(t (d+3)/2 ⊗ γ k)x, for= 0, 1, 2, 3,
and d = ±1.

Matrices with complex structure

The group defined by G = {1, i,−1,−i}, and its multiplication table

∗ 1 −1 i −i

1 1 −1 i −i

−1 −1 1 −i i

i i −i −1 1
−i −i i 1 −1

,



P1: JZZ

CUUS182-Main.tex CUUS182/Viana 978 0 521 84103 0 April 28, 2008 15:21

3.6 Matrices with Group Symmetry 73

is called the complex group. The reader may want to verify that

ρ(ik) =
[
0 −1
1 0

]k

, k = 0, 1, 2, 3.

is a representation of the complex group in R
2, and that

3∑
k=0

ρ(ik)

[
a b

c d

]
ρ(ik)−1 = 2

[
d + a −c + b

−b + c d + a

]
.

Matrices of the form

M =
[

A B

−B A

]
where A and B are n× n real matrices are said to have complex structure and
carry the symmetry of the complex group represented by ρ in the sense that
(ρτ ⊗ In)M = M(ρτ ⊗ In), for all τ ∈ G.

Matrices with quaternionic structure

Following the comments on page 45, define

ρ(±1) = ±

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ , ρ(±k) = ∓

⎡⎢⎢⎣
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎤⎥⎥⎦ ,

ρ(±j) = ∓

⎡⎢⎢⎣
0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎤⎥⎥⎦ , ρ(±i) = ∓

⎡⎢⎢⎣
0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

⎤⎥⎥⎦ .

Direct verification shows that ρ is a linear representation in R
4 of the group of the

quaternions. Given a real matrix

F =

⎡⎢⎢⎣
a b c d

e f g h

p q r s

t u v x

⎤⎥⎥⎦ ,

it then follows that

∑
ρτFρτ−1 = 2

⎡⎢⎣a + f + r + x b − e − s + v c + h− p − u d − g + q − t
e − b − v + s a + f + r + x g − d + t − q c + h− p − u
p + u− c − h d − g + q − t a + f + r + x e − b − v + s
g − d + t − q p + u− c − h b − e − s + v a + f + r + x

⎤⎥⎦ ,
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so that matrices of the form

M =

⎡⎢⎢⎣
A B1 B2 B3

−B1 A −B3 B2
−B2 B3 A −B1
−B3 −B2 B1 A

⎤⎥⎥⎦ ,

where A, B1, B2, and B3 are any n× n real matrices, are said to have a quater-
nionic structure. Those are exactly the matrices with the symmetry of the given
representation, in the sense that

(ρτ ⊗ In)M = M(ρτ ⊗ In), for all τ ∈ Q.

3.7 Reducibility

Stable subspaces

If ρ is a representation of G on the vector space V and W is a subspace of V
such that ρτx ∈W for all τ ∈ G and x ∈W then W is called a stable of invariant
subspace. Clearly {0} and V are stable subspaces of V .

Note that if x =∑
s∈W xses is a point in the subspace W spanned by {es ; s ∈ W }

and W is an orbit of V under the action ϕ of G on V then

ρτx =
∑
s∈W

xsρτ es =
∑
s∈W

xseϕτ s ∈W,

for all τ ∈ G, so that W is a stable subspace of the space generated by {es ; s ∈ V }.

The Sym2 and Alt2 subspaces. Let ρ be the representation of S2 shuffling the
indices of the basis {e1, e2} of V = R

2 and consider the tensor representation ρ ⊗ ρ

of G on V × V . Define also

v1 = 2e1 ⊗ e1, v2 = 2e2 ⊗ e2, v3 = e1 ⊗ e2 + e2 ⊗ e1, v4 = e1 ⊗ e2 − e2 ⊗ e1.

It then follows that V × V =< v1, v2, v3 > ⊕ < v4 > is a direct sum decomposi-
tion of V , each component of which is a stable subspace of V under ρ ⊗ ρ. The
action of ρ ⊗ ρ on the bases of these subspaces, in turn, defines two represen-
tations, called respectively, the symmetric square (Sym2) and alternating square
(Alt2) representations of S2. More generally, if V is spanned by a basis indexed by
the elements of a set V with v elements and ρ is a permutation representation of a
group G acting on V , then

V × V =< es ⊗ ef + ef ⊗ es ; (s, f ) ∈ D ∪ U > ⊕ < es ⊗ ef − ef ⊗ es ; (s, f ) ∈ U >,

where D indicates the main diagonal of V × V , and U its upper triangular part. The
component subspaces are stable subspaces of ρ ⊗ ρ, the corresponding symmetric
square representation is in dimension of v(v + 1)/2 and the alternating square is in
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dimension of v(v − 1)/2. We write ρ ⊗ ρ  Sym2 ⊕ Alt2 to indicate the associated
decomposition of ρ ⊗ ρ.

The reader may want to verify that a decomposition V1 ⊕ V2 of V in which V1 is
a stable subspace under a representation ρ can be characterized by the matrix form

ρτ =
[
R1(τ ) 0
M(τ ) R2(τ )

]
of ρτ so that R1 and R2 are representations of G, in the dimensions of the corre-
sponding submatrices. In this case, we say that ρ is a reducible representation.

Irreducible representations

We say that a representation ρ of G in GL(V) is irreducible when the only proper
stable linear subspace of V is the null subspace.

Clearly, then, all one-dimensional representations are irreducible. To illustrate,
consider the representation

ξ1 =
[

1 0
0 1

]
, ξt =

[
−1 0
−1 1

]
,

of S2 = {1, t} given by its action (by multiplication) on the indices of the basis
spanning the subspaces < et − e1 > and < et > of V = R

2.
Here, V =< et − e1 > ⊕ < et > is a direct sum decomposition of V in which

< et − e1 > is reduced by the alternating representation (page 65). Therefore, ρ is
reducible. However, < et > is not yet a stable complement of < et − e1 > in V .

Consider, instead, the direct sum decomposition V =< et − e1 > ⊕ < et +
e1 >, relative to which the representation is now

β1 =
[

1 0
0 1

]
, βt =

[
−1 0

0 1

]
.

The new component reduces as the identity or symmetric representation, which
is also one-dimensional and hence irreducible. In summary, ρ decomposes as the
sum 1⊕ Sgn of two irreducible one-dimensional representations, V decomposes
as the sum V1 ⊕ VSgn of two stable (and also irreducible) subspaces:

V = V1 ⊕ VSgn, ρ  ρ1 ⊕ ρSgn.

A reduction for binary sequences. The representation ρ for the action

τ\s uu yy uy yu

1 uu yy uy yu

t = (12) uu yy yu uy
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of S2 on the binary sequences in length of 2 reduces as the identity in each one
of the subspaces indexed by single-element orbits and as 1⊕ Sgn in the subspace
indexed by the two-element orbit. That is, ρ  1⊕ 1⊕ 1⊕ Sgn.

A two-dimensional irreducible representation of S3. Start with the subspace
W1 =< e > generated by the sum e′ = (1, 1, 1) of the vectors in the canonical
basis {e1, e2, e3} of V = R

3. If ρ indicates the permutation representation of S3

(page 64) then clearly ρτy ∈ W1 for all y ∈ W1 and τ ∈ S3, so that W1 is a stable
subspace of ρ.

Let W0 = {y ∈ V; e′y = 0} be the orthogonal complement of W1 in V and A =
ee′/3 the projection on W1 along W0, that is, V = W0 ⊕W1, A2 = A and Ay = 0
for all y ∈ W0. Similarly, let

Q = I −A = 1

3

⎡⎣ 2 −1 −1
−1 2 −1
−1 −1 2

⎤⎦ (3.10)

indicate the projection on W0 along W1. The reader may want to verify that Q is
centralized by ρ, that is, ρτQ = Qρτ for all τ ∈ S3, and that, consequently, if y ∈
W0 then y ∈ Qz for some z ∈ V , and ρτy = ρτQz = Qρτz ∈ W0, for all τ ∈ S3.
That is, W0 is a stable two-dimensional complement of W1 in V . To construct a
two-dimensional representation (β) in W0, note, from the corresponding projection
in (3.10), that a basis {v1, v2} for the image subspace of Q is v1 = 2e1 − e2 − e3,
v2 = −e1 + 2e2 − e3. The resulting representation of τ = (12), for example, is
obtained from the fact that

τv1 = 2eτ1 − eτ2 − eτ3 = 2e2 − e1 − e3 = v2,

τv2 = −eτ1 + 2eτ2 − eτ3 = −e2 + 2e1 − e3 = v1,

that is, β(12) =
[
0 1
1 0

]
. Similar calculations, noting that −e1 − e2 + 2e3 = −v1 −

v2, leads to the linear representation of S3 shown on page 64.
The two-dimensional representation β is irreducible. In fact, if there were

a proper one-dimensional stable subspace W , with generator y, then it would
verify β(12)y = λy for some scalar λ, which implies y2 = λy1, y1 = λy2. The
nonzero eigenvalue solutions to y2 = λ2y2 are λ = ±1, that is, y = (y1, y1) or
y = (y1,−y1). Since the subspace W must also be stable under β(13), then we
would have

β(13)y =
[−1 −1

0 1

] [
y1

y1

]
=
[−2y1

y1

]
∈ W

⇐⇒ y1 = 0, using y = (y1, y1) or y = (y1,−y1) =⇒ W = {0}.
Because {0} is the only proper stable subspace, β is irreducible.

Table (3.11) summarizes the irreducible representations of S3. It includes
the presently derived two-dimensional representation, along with the trivial and
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alternating (one-dimensional) ones. Since the trace Tr ρτ of a representation, indi-
cated here by χρ(τ ), is constant over conjugacy classes, it is sufficient to report it
for representatives of these classes.

χ 1 (12) (123)

χ1 1 1 1
χβ 2 0 −1
χSgn 1 −1 1

. (3.11)

These tables completely describe the representations and will be studied later on
in the text with greater detail.

A comment on irreducibility and the field of scalars. To appreciate the role
of the field of scalars in the search for irreducible representations, consider the
restriction

γ =
{[

1 0
0 1

]
,

[−1 −1
1 0

]
,

[
0 1

−1 −1

]}
of the two-dimensional representation of S3, from page 64, to the subgroup
C3 = {1, (123), (132)} of S3. The equalities γτy = λy, for τ ∈ C3, lead to the
characteristic equations (1− λ)2 = 0 and λ2 + λ+ 1 = 0, which identify three
one-dimensional (irreducible) subspaces over the complex field. However, over the
reals, γ is irreducible. Table (3.12) shows the three irreducible representations of
C3, indicated here by χ1, χ2, and χ3.

χ 1 (123) (132)

χ1 1 1 1
χ2 1 ω ω2

χ3 1 ω2 ω

. (3.12)

Note that χ2 and χ3 are complex conjugate to each other and that Tr γ = χ2 + χ3.

Planar rotations. Let V indicate the real vector space of all trigonometric Fourier
series

f (t) =
∞∑

m=0

am cos(mt)+ bm sin(mt), −π ≤ t ≤ π, am, bm ∈ R,

spanned by {cos(mt), sin(mt) : m = 0, 1, 2, . . .}, and consider the subspaces W�

of V spanned by B�, the set of the first � elements in B. Then, C� acts on B�

according to ϕ(τh, g)(t) = gτ−h(t) = g(t − h). In fact,[
cos(m(t − h))
sin(m(t − h))

]
=
[
cos (mh) − sin (mh)
sin (mh) cos (mh)

] [
cos (mt)
sin (mt)

]
,
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so that ϕ(τh, ϕ(τ k, g) = ϕ(τh+k, g)). This linear relationship defines a family of
representations

ρm(τh) =
[
cos (mh) − sin (mh)
sin (mh) cos (mh)

]
, h,m = 0, 1, . . . , �− 1,

in dimension of 2, the direct sum ρ = ρ0 ⊕ ρ1 ⊕ . . .⊕ ρ�−1 of which gives a
real representation of C� in dimension of 2�. Moreover, each component ρm is
irreducible (over R) for m > 0 and ρ0 further reduces as 1⊕ 1. For example, when
� = 3, ρ  1⊕ 1⊕ ρ1 ⊕ ρ2.

The construction of the linear representation ρ, described in terms of three-fold
planar rotations in the present example (� = 3), extends naturally to � = ∞.

This example also outlines the general structure of the representation obtained
when the planar rotations are replaced by spherical rotations. In that case, the
invariant subspaces under the action of the full three-dimensional rotation group
are spanned by the spherical harmonics Y�m(θ, φ). To each basis indexed by � there
corresponds a 2�+ 1-dimensional subspace. See also Riley et al. (2002, p. 930).

Theorem 3.1. Let ρ : G → GL(V) be a linear representation of G in V and let
W1 be a vector subspace of V stable under G. Then there is a complement W0 of
W1 in V which is also stable under G.

Proof. Let P1 be a projection on W1 along some vector space complement of W1

in V . Form the average

P1 = 1

|G|
∑
τ∈G

ρτP1ρτ−1

of projections on W1 along that vector space complement. Then, im P1 = {P1z; z ∈
V} = W1. To see this, first note that for z ∈ V we have P1ρτ−1z ∈ W1, and because
W1 is a stable subspace, ρτ [P1ρτ−1z] ∈ W1, so that P1z ∈ W1, that is, im P1 ⊆ W1.
Second, if z ∈ W1, which is stable, we have ρτ−1z ∈ W1 for all τ ∈ G, so that
P1ρτ−1z = ρτ−1z. This implies

P1z = 1

|G|
∑
τ∈G

ρτP1ρτ−1z = 1

|G|
∑
τ∈G

ρτρτ−1z = z,

that is, if z ∈ W1 then z = P1z ∈ im P1, and hence W1 ⊆ im P1. Therefore,
W1 = im P1. Let then W0 = ker P1 = {z ∈ V;P1z = 0}, so that V = W1 ⊕W0.
To conclude the proof, we must show that W0 is G-stable: In fact, for all τ ∈ G,

ρτP1ρτ−1 = 1

|G|
∑
σ∈G

ρτρσP1ρσ−1ρτ−1 = 1

|G|
∑
σ∈G

ρτσP1ρ(τσ )−1 = 1

|G|
∑
σ∈G

ρσP1ρσ−1 = P1,
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so that y ∈ W0 = ker P1 implies P1y = 0 and hence P1ρτy = ρτP1y = 0, thus
showing that ρτy ∈ W0, for all τ ∈ G. Consequently, W0 is a stable subspace of V
under G. �

The invariant subspaces of a group algebra

With the definitions and notation introduced on page 68, let I1 indicate a left ideal
of the group algebra A. Theorem 3.1 implies that A decomposes as the direct sum
A = I1 ⊕ I2 of I1 and a complementary ideal I2. If x ∈ A then x = x1 + x2 with
x1, x2 in I1, I2 respectively. In particular, the identify 1 ∈ A can be expressed as
1 = e1 + e2, so that x = xe1 + xe2, for all x ∈ A, thus showing that the subspaces
I1, I2 are spanned by e1 and e2, respectively. When x ∈ I1, because I1 is a left ideal,
xe1 ∈ I1 and x = x(e1 + e2) = xe1. In particular, for x = e1, e1 = e2

1. Similarly,
e2 = e2

2. In addition, e1 = e1(e1 + e2) = e2
1 + e1e2 = e1 + e1e2, so that e1e2 = 0.

Similarly, e2e1 = 0. Repeating the argument in each component, we obtain a final
decomposition of the form

A = I1 ⊕ I2 ⊕ · · · ⊕ Ih, 1 = e1 + e2 + · · · + eh,

with e2
i = ei and eiej = 0 for i �= j , and such that each ideal cannot be further

reduced as a sum of two left ideals. The irreducible left ideals are called the
primitive idempotents of the group algebra.

Theorem 3.2. Every representation is a direct sum of irreducible representations.

Proof. Given a linear representation in GL(V), if V is irreducible, the proof is
complete. Suppose, otherwise, that dimV = n+ 1 and that the result holds for
every representation in dimV ≤ n. Since V is not irreducible, then, from Theo-
rem 3.1, there are stable subspaces V ′ and V ′′ such that V = V ′ ⊕ V ′′⊕ with
dim V ′ ≤ n and dim V ′′ ≤ n. By the induction hypothesis, V ′ and V ′′ are direct
sum of irreducible representations, and then so is V . �

3.8 Schur’s Lemma

Lemma 3.1 (Schur). Let ρi : G → Vi be irreducible (complex) representations of
G, i = 1, 2, and let f : V1 → V2 be a nonzero linear mapping satisfying fρ1(τ ) =
ρ2(τ )f for all τ ∈ G. Then ρ1 and ρ2 are isomorphic. If, in addition, V1 = V2 and
ρ1 = ρ2 then f is a scalar multiple of the identity mapping.

Proof. Let W1 = ker f = {x; f (x) = 0}. If x ∈ W1 then f (x) = 0 and fρ2(τ )x =
ρ1(τ )f (x) = 0, which implies ρ1(τ )x ∈ W1, for all τ ∈ G. That is, W1 is a stable
subspace. Since ρ is irreducible, we must have W1 = {0} or W1 = V1. If W1 = V1
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then f = 0, contrary to the hypothesis, hence W1 = {0}. Similarly, we obtain
im f is stable and equal to V2. Hence, f is an isomorphism, and the two rep-
resentations are equivalent or isomorphic. To verify the second statement, let λ

be an eigenvalue (possibly complex) of f and define f ′ = f − λ, understand-
ing that λ ≡ λI . If f (x) = λx then (f − λ)x = 0, so that ker (f − λ) �= {0}, and
equivalently, f − λ is not an isomorphism. Moreover, (f − λ)ρτ = fρτ − λρτ =
ρτf − ρτλ = ρτ (f − λ), for all τ ∈ G. From the first part of the Lemma, it follows
that f − λ = 0, or f = λI . �

Proposition 3.2. For every nonequivalent irreducible representations ρ1, ρ2 of G

and every linear mapping H : V1 → V2, it holds that
∑

τ∈G ρ1(τ )Hρ2(τ−1) = 0.

Proof. Note that H0 =
∑

τ∈G ρ1(τ )Hρ2(τ−1) is a linear mapping from V1 into V2

which intertwines with ρ1(τ ) and ρ2(τ ) for all τ ∈ G, that is, ρ1(τ )H0 = H0ρ2(τ )
for all τ ∈ G. From Schur’s Lemma (the representations are nonequivalent irre-
ducible) it follows that H0 = 0. �

Proposition 3.3. Let ρ be an irreducible representation of G into GL(V) with
dim ρ = n. Then, for any linear mapping H in V ,

1

|G|
∑
τ∈G

ρτHρτ−1 = Tr H

n
In.

Proof. Schur’s Lemma implies that H0 =
∑

τ∈G ρτHρτ−1/|G| = λIn for some
scalar λ. Taking the trace on both sides (and using its invariance under similarity)
the result λ = Tr H/n obtains. �

Consider again the irreducible representations 1, Sgn and β of S3 (page 64). Let
H = (h11, h12) be any linear mapping from R

2 into R. From Schur’s Lemma we
know that ∑

τ∈G

SgnτHβτ−1 = 0,

so that the linear forms∑
τ∈G

Sgnτ

[
h11β11(τ

−1)+ h12β21(τ
−1)

]
,

∑
τ∈G

Sgnτ

[
h11β12(τ

−1)+ h12β22(τ
−1)

]
in h11 and h12 must vanish for all values of h11 and h12. Therefore, the corresponding
coefficients must be zero, that is,∑

τ∈G

Sgnτβij (τ−1) = 0, i, j = 1, 2. (3.13)



P1: JZZ

CUUS182-Main.tex CUUS182/Viana 978 0 521 84103 0 April 28, 2008 15:21

3.8 Schur’s Lemma 81

The reader may want to verify the relations in (3.13) from Table (3.14).

τ 1 Sgn(τ ) β11(τ ) β21(τ ) β12(τ ) β22(τ )

1 1 1 1 0 0 1
(123) 1 1 −1 1 −1 0
(132) 1 1 0 −1 1 −1
(12) 1 −1 −1 0 −1 1
(13) 1 −1 1 −1 0 −1
(22) 1 −1 0 1 1 0

. (3.14)

This is the argument that proves

Corollary 3.1. For any two nonequivalent irreducible representations ρ, β of G,
the relation ∑

τ∈G

ρij (τ )βk�(τ
−1) = 0

holds for all i, j, k, � indexing the entries of these representations.

Consider again the irreducible two-dimensional representation β of S3. From
Proposition 3.2, we know that

1

|G|
∑
τ∈G

βτ

[
h11 h12

h21 h22

]
βτ−1 = Tr H

2
I2,

implying that, for all scalars h11, h12, h21, h22, we must have

1

|G|
∑
τ∈G

2∑
j,k=1

βij (τ )hjkβki(τ
−1) = 1

2
h11 + 1

2
h22, i = 1, 2.

Consequently, equating the coefficients of the linear forms, the equality∑
τ∈G βij (τ )βk�(τ−1) = δi�δjk/2 must obtain. This is the argument proving the

following result:

Proposition 3.4. For any n-dimensional irreducible representation, ρ, of G we
have ∑

τ∈G

ρij (τ )ρk�(τ
−1) = δi�δjk|G|/n.

The reader may refer to Table (3.14) and verify the relations obtained from
Proposition 3.4.

We conclude this chapter with an outline of the steps leading to the explicit
contruction of the irreducible representations of the symmetric group.
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3.9 Constructing the Irreducible Representations of Sn

Fix, to illustrate, n = 3 and the partition λ = 21. Indicate by ij.k the assignment

i j

k

of the permutation
(1 2 3
i j k

)
to the Young frame (page 33). The Young tableaux or

diagrams are the n!

12.3, 21.3, 13.2, 31.2, 23.1, 32.1

possible assignments of permutations to Young frames. Two diagrams are equiv-
alent if and only if one is obtained from the other by a permutation of S3 fixing
their row elements. The resulting classes of diagrams are then indexed by the col-
lection of sets defining the different rows. In the present example, we can identify
the classes {1, 2}, {1, 3}, and {2, 3} of diagrams, corresponding to {12.3, 21.3},
{13.2, 31.2}, and {23.1, 32.1} There are 3 = 3!/2!1! classes for λ = 21.

The symmetric group S3 acts transitively on these classes according to ϕ :
{τ i, τj }, specifically,

{1, 2} {1, 3} {2, 3}
1 {1, 2} {1, 3} {2, 3}

(123) {2, 3} {1, 2} {1, 3}
(132) {1, 3} {2, 3} {1, 2}
(12) {1, 2} {2, 3} {1, 3}
(13) {2, 3} {1, 3} {1, 2}
(23) {1, 3} {1, 2} {2, 3}

giving a permutation representation, indicated here by ρ, of S3 on Mλ (the subspace
of R

n in dimension equal to the number of classes). This representation is reducible
but contains the irreducible representation of interest, which will be identified in
the following step.

Define the column stabilizer of a given diagram as the subgroup SX of Sn leaving
all columns of the diagram fixed. Note that SX is determined by a given diagram
and not by the classes of diagrams. However, different classes of diagrams lead to
different (sets of) column stabilizers. In our example, S{1,3}, S{1,2}, and S{2,3} are the
stabilizers. Then, for each SX, construct the projections

PX = 1

|SX|
∑
τ∈SX

Sgnτ ρτ .
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Specifically, in the present case,

P{1,3} = 1

2
[ρ1 − ρ(13)] = 1

2

⎡⎣ 1 0 −1
0 0 0

−1 0 1

⎤⎦ , P{1,2} = 1

2
[ρ1 − ρ(12)] = 1

2

⎡⎣0 0 0
0 1 −1
0 −1 1

⎤⎦ ,

P{2,3} = 1

2
[ρ1 − ρ(23)] = 1

2

⎡⎣ 1 −1 0
−1 1 0

0 0 0

⎤⎦ ,

which suggest defining u = {1, 2} − {2, 3}, v = {1, 3} − {2, 3}, so that < u >,

< v >, < u− v > are the subspaces spanned by P{1,3}, P{1,2} and P{2,3} respec-
tively, and Sλ =< u, v > is the resulting subspace spanned by the distinct PX. It
gives a representation

β :

u v

1 u v

(123) −v u− v

(132) −u+ v −u

(12) u− v −v

(13) −u −u+ v

(23) v u

,

or

β1 =
[
1 0
0 1

]
, β(123) =

[
0 −1
1 −1

]
, β(132)

[−1 1
−1 0

]
,

β(12) =
[
1 −1
0 −1

]
, β(13) =

[−1 0
−1 1

]
, β(23) =

[
0 1
1 0

]
,

which is the irreducible representation we are looking for.
Similarly, if λ = 111, there are 3!/1!1!1! = 6 classes of diagrams of the type

i.j.k. The action τ i.τj.τk of S3 gives its regular representation φ. The single
column stabilizer is S{1,2,3} and the resulting projection

∑
τ∈S3

Sgnτφτ /6 identifies
the subspace VSgn =< r1 + r2 + r3 − t1 − t2 − t3 > to appear later on page 105.
It gives, of course, the Sign (irreducible) representation of S3. Similarly, λ = 300
gives the trivial representation.

Proposition 3.5. For all τ ∈ Sn, ρτ−1PXρτ = PτSXτ−1 .

Proof.

ρτ−1PXρτ = 1

|SX|
∑
σ∈SX

Sgnτ−1στρτ−1στ

= 1

|SX|
∑

γ∈τSXτ−1

Sgnγ ργ = 1

|τSXτ−1|
∑

γ∈τSXτ−1

Sgnγ ργ = PτSXτ−1 .

�
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Because diagrams have the same cycle structure, when a permutation τ ∈ Sn

acts on a diagram then its column stabilizer SX moves to τ−1SXτ . For example,

1 2 3
4 5

−−−→ SX = {1, (14), (25), (14)(25)}

τ = (1234)
⏐⏐� τ−1SXτ

⏐⏐�
2 3 4
1 5

−−−→ SX′ = {1, (12), (35), (12)(35)}

(3.15)

Now let U ⊂ Sλ ⊆ Mλ be an invariant subspace of ρ. Because U ⊂ Sλ, U is
then spanned by all points PXy where X, the index of SX, is determined by the
different diagrams and y is in V ⊂ R

n in dimension equal to the number of classes
of diagrams in that partition. Given any y ∈ V , suppose first that we can choose a
diagram such that PXy �= 0. Since U is invariant then ρτPXy ∈ U so that, from
Proposition 3.5,

ρτPXy = PτSXτ−1ρτy ∈ U,

for all τ ∈ Sn. As τ varies in Sn, PτSXτ−1ρτy covers a basis for Sλ so that then
Sλ ⊆ Mλ.

If otherwise PXy = 0 for all X (i.e., for all diagrams), let <,> indicate an inner
product in V relative to which ρ is invariant. Direct calculation shows that

< PXy, z >=< y,PXz > (3.16)

for all y, z ∈ V . Consequently, < y,PXz >= 0 for all X, and hence y is in the
orthogonal complement Sλ⊥ of Sλ. In summary.

Proposition 3.6. Let U be an invariant subspace of Mλ. Then either Sλ ⊂ U or
U ⊂ Sλ⊥. In particular, Sλ is irreducible.

Proposition 3.6 (Diaconis (1988, p. 133, Submodule Theorem)) gives an irre-
ducible representation for each partition λ and since there are as many irreducible
representations as the number of partitions, it only remains to show that these
representations, indexed by λ, are all nonequivalent.

Given two partitions λ and µ of n, let

Pµ
λ =

1

|SXλ
|
∑

τ∈SXλ

Sgnτ ρ
µ
τ .

Then, if any pair of distinct points {i, j} ⊂ Xλ share a common row of µ thenPµ
λ =

0. To see this, write SXλ
= σ1H + · · · + σkH where σ1, . . . , σk are representative
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of the cosets determined by H = {1, (ij )} in SXλ
, so that then

∑
τ∈SXλ

Sgnτ ρ
µ
τ =

∑
k

∑
η∈H

Sgnσkη
ρµ

σkη
=
∑

k

Sgnσk
(ρµ

1 − ρ
µ

(ij )) = 0.

Consequently, if Pµ
λ �= 0 then the numbers in any given row of µ are all in different

columns of λ.

Proposition 3.7. If the numbers in any given row of µ are all in different columns
of λ then µ � λ.

Proof. If the numbers in the first row of µ = (µ1, . . . , µn) are all in different
columns of λ = (λ1, . . . , λn) then clearly µ1 ≤ λ1. If the numbers in the second
row of µ are all in different columns of λ then no column of λ can have more than
two of the numbers in the first or second row of µ so that after sliding those entries
up to the top of their columns in λ we have that µ1 + µ2 ≤ λ1 + λ2. The same
argument applies to the subsequent rows. �

Combining Proposition 3.7 and the remark preceding it, we have

Proposition 3.8. If Pµ
λ �= 0 then µ � λ.

Suppose now that there is a nonnull linear mapping F : Mµ �→ Mλ intertwining
ρλ and ρµ, that is, Fρµ

τ = ρλ
τ F for all τ ∈ Sn. Summing in SXλ

gives

|SXµ
|

|SXλ
| F Pµ

λ = PXλ
F,

so that either (i) F ⊂ kerPXλ
for all Xλ indexed by λ or (ii) PXλ

F �= 0 for at least
one Xλ, and hence Pµ

λ �= 0, in which case µ � λ, from Proposition 3.8. In case of
(i), we have PXλ

Fy = 0 for all X indexed by λ, so that then F ⊂ Sλ⊥.
As a result, given a mapping Sµ �→ Sλ intertwining with ρ, extend it linearly to

a mapping F : Sµ �→ Sλ by defining it to be zero on Sλ⊥ and if F �= 0 then µ � λ.
Similar argument applied to Sµ �→ Sλ then gives λ = µ. This proves

Theorem 3.3. The Sλ are all of the irreducible representations of Sn.
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An irreducible representation of S4

We will obtain an irreducible representation of S4 indexed by the partition λ =
3100. Associated with the Young frame

i j k

�

there are 4! = 24 Young diagrams, such as 123.4, and 4 = 4!/3!1! classes

a = {1, 2, 3}, b = {1, 2, 4}, c = {1, 3, 4}, d = {2, 3, 4}
of (row permutation) equivalent diagrams, upon which S4 acts transitively ac-
cording to ϕ : {τ i, τj, τk}, giving a representation ρ. Since the column stabilizers
are

SX = S{1,2}, S{1,3}, S{1,4}, S{2,3}, S{2,4}, S{3,4},

we need to evaluate ϕ only at the permutations defined by these subgroups. It gives

τ a b c d

1 a b c d

(12) a b d c

(13) a d c b

(14) d b c a

(23) a c b d

(24) c b a d

(34) b a c d

,

from which the corresponding ρτ are obtained. The evaluation of

PX = 1

|SX|
∑
τ∈SX

Sgnτ ρτ ,

for each SX gives six projections in the dimension of 1, jointly defining Sλ. For
example,

P{1,2} = 1

2
(ρ1 − ρ(12)) = 1

2

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 1 −1
0 0 −1 1

⎤⎥⎥⎦ ,

which identifies the invariant ±(c − d). Together, the six projections identify the
basis Sλ =< u, v, w > for the irreducible representation, where

u = c − d = {1, 3, 4} − {2, 3, 4}, v = b − c = {1, 2, 4} − {1, 3, 4},
w = a − c = {1, 2, 3} − {1, 3, 4}.
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Table (3.17) gives the action of the elementary generators of S4 on Sλ. The full
representation is shown in Table (3.19), corresponding to the permutations given
by Table (3.18).

u v w

1 u v w

(12) −u v + u u+ w

(13) −v −u w

(14) −w v −u

(23) v + u −v −v + w

(24) u+ w v − w −w

(34) u w v

123) v −v − u −v + w

(234) v + u −v + w −v

(134) −v w −u

(124) w v − w −u− w

(1234) v −v + w −v − u

(1324) −v + w −w −u− w

(1243) w −u− w v − w

(3.17)

1 (12) (13) (14) (23) (24)
(34) (123) (132) (234) (243) (134)
(143) (124) (142) (1234) (13)(24) (1432)
(1324) (12)(34) (1423) (1243) (14)(23) (1342)

. (3.18)

1 0 0 −1 0 0 0 −1 0 0 0 −1 1 1 0 1 0 1
0 1 0 1 1 0 −1 0 0 0 1 0 0 −1 0 0 1 −1
0 0 1 1 0 1 0 0 1 −1 0 0 0 −1 1 0 0 −1
1 0 0 0 1 0 −1 −1 0 1 1 0 1 0 1 0 −1 0
0 0 1 −1 −1 0 1 0 0 0 −1 1 0 0 −1 0 0 1
0 1 0 0 −1 1 1 0 1 0 −1 0 0 1 −1 −1 0 0
0 0 −1 0 0 1 −1 0 −1 0 1 0 0 −1 1 −1 0 −1

−1 0 0 0 1 −1 1 1 0 0 −1 1 −1 0 −1 1 0 0
0 1 0 −1 0 −1 1 0 0 −1 −1 0 0 0 −1 1 1 0
0 −1 1 −1 0 0 0 1 −1 0 0 1 0 1 −1 −1 −1 0
0 0 −1 1 0 1 −1 −1 0 −1 0 −1 0 −1 0 1 0 1

−1 0 −1 1 1 0 0 −1 0 0 1 −1 −1 −1 0 1 0 0

. (3.19)

Further Reading

The reader interested in a concise and yet comprehensive historical account of the
first 100 years of representations of finite groups will enjoy reading Lam (1998a)
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and Lam (1998b). The theory of the representations of the symmetric groups,
developed in James (1978), is elegantly summarized in Diaconis (1988, Chap-
ter 7).

Exercises

Exercise 3.1. Show that any linear operator ρ on a finite-dimensional vector space
when applied to a basis {es ; s ∈ V } for V gives ρes =

∑
h(ρ)hseh.

Exercise 3.2. Show that if ρ is a linear representation of S� in dimension of v then
τ �→ Sgnτ ρτ is also a linear representation of S� in dimension of v.

Exercise 3.3. Following with the notation of Section 3.7 on page 74, show that

V × V =< v1 + v2, v3 > ⊕ < v1 − v2, v4 >,

and that each component of V × V is a stable subspace under ρ ⊗ ρ.

Exercise 3.4. Show that

ρi =
[
0 −1
1 0

]
, ρ−1 =

[−1 0
0 −1

]
, ρ−i =

[
0 1

−1 0

]
, ρ1 =

[
1 0
0 1

]
is a two-dimensional representation of the complex group.

Exercise 3.5. Indicate by F(G) the vector space of all complex-valued functions
defined on a given group G and let ϕσ (x)(τ ) = x(στσ−1), where for σ, τ ∈ G and
x ∈ F(G). Show that

(1) ϕ is a group action of G on F(G);
(2) ϕσ ∈ GL(F(G));
(3) σ ∈ G �→ ϕσ ∈ GL(F(G)) is a group homomorphism.

The result is a linear representation of G in GL(F(G)).

Exercise 3.6. Data indexed on a subset (fraction) of {0, 1, 2}3. Let L = {0, 1, 2}
and consider the subset

V =
0 1 2

0 0 1 2
1 2 0 1
2 1 2 0

⊂ L3,
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or,

V = [
0 0 0 0 1 1 0 2 2 1 0 2 1 1 0 1 2 1 2 0 1 2 1 2 2 2 0

]
,

as the set of labels of interest. Show that the group C3 × C3 acts on V by permutation
according to

((σ, τ ), (i, j, k)) = (σ i, τj, σ−1τk), (3.20)

giving a representation

σ τ 0 0 0 0 1 1 0 2 2 1 0 2 1 1 0 1 2 1 2 0 1 2 1 2 2 2 0
0 0 0 0 0 0 1 1 0 2 2 1 0 2 1 1 0 1 2 1 2 0 1 2 1 2 2 2 0
0 1 0 1 1 0 2 2 0 0 0 1 1 0 1 2 1 1 0 2 2 1 2 2 2 0 2 0 1
0 2 0 2 2 0 0 0 0 1 1 1 2 1 1 0 2 1 1 0 2 2 0 2 0 1 2 1 2
1 0 1 0 2 1 1 0 1 2 1 2 0 1 2 1 2 2 2 0 0 0 0 0 1 1 0 2 2
1 1 1 1 0 1 2 1 1 0 2 2 1 2 2 2 0 2 0 1 0 1 1 0 2 2 0 0 0
1 2 1 2 1 1 0 2 1 1 0 2 2 0 2 0 1 2 1 2 0 2 2 0 0 0 0 1 1
2 0 2 0 1 2 1 2 2 2 0 0 0 0 0 1 1 0 2 2 1 0 2 1 1 0 1 2 1
2 1 2 1 2 2 2 0 2 0 1 0 1 1 0 2 2 0 0 0 1 1 0 1 2 1 1 0 2
2 2 2 2 0 2 0 1 2 1 2 0 2 2 0 0 0 0 1 1 1 2 1 1 0 2 1 1 0

,

or, equivalently,

σ τ 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9
0 1 2 3 1 5 6 4 8 9 7
0 2 3 1 2 6 4 5 9 7 8
1 0 4 5 6 7 8 9 1 2 3
1 1 5 6 4 8 9 7 2 3 1
1 2 6 4 5 9 7 8 3 1 2
2 0 7 8 9 1 2 3 4 5 6
2 1 8 9 7 2 3 1 5 6 4
2 2 9 7 8 3 1 2 6 4 5

.

Argue that this example suggests the construction of group actions θ on V × V

starting with an action ϕ on V , such as θτ (s, f ) = (s, ϕτf ).

Exercise 3.7. Let ρ be a representation of G (with g elements) on a finite-
dimensional vector space V , in which a inner product ( | ) is defined (e.g., page 66).
Show that (x, y) =∑

τ∈G(ρτx|ρτy)/g is a inner product in V and that it satisfies
(ρτx, ρτy) = (x, y) for all τ ∈ G and all x, y ∈ V .
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Exercise 3.8. [Contributed by K.S. Mallesh] Show that the matrices centralized
by the regular representation of S3 have the pattern⎡⎢⎢⎢⎢⎢⎢⎣

♣ ♦ ♥ ♠ × �

♥ ♣ ♦ � ♠ ×
♦ ♥ ♣ × � ♠
♠ � × ♣ ♥ ♦
× ♠ � ♦ ♣ ♥
� × ♠ ♥ ♦ ♣

⎤⎥⎥⎥⎥⎥⎥⎦ ,

and identify their components.
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4

Data Reduction and Inference: The Canonical
Projections and Their Invariants

4.1 Introduction

In the previous chapter we introduced the linear representations as a connection
between the symmetries applied to the data labels and the data vector space. We now
follow it with the construction of the canonical projection matrices and the study
and interpretation of the canonical invariants on the data. These are the concluding
steps outlined on page 23 of Chapter 1.

4.2 Characters of a Linear Representation

Given a linear representation ρ in GL(V), the complex-valued function χρ(τ ) =
Tr ρτ is called the character of the representation. Since ρ1 is the indentity matrix
in V , we see that χρ(1) = dim V .

If λ is an eigenvalue of ρ, then, relative to the invariant inner product defined in
(3.6), we have

(y, y) = (ρτy, ρτy) = (λy, λy) = λλ(y, y),

so that λλ = 1. Let λ1, . . . , λm indicate the (eventually complex) eigenvalues of
ρτ . Then

χρ(τ−1) = Tr ρτ−1 = Tr ρ−1
τ =

∑
λ−1

i =
∑

λi = Tr ρτ = χρ(τ ). (4.1)

Also note, since the trace operations is invariant under similarity, that χρ(τστ−1) =
χρ(σ ), for all τ, σ ∈ G. It is also simple to verify that if ρ and θ are two linear
representations of G with corresponding characters χρ and χθ , then χρ⊕θ = χρ +
χθ and χρ⊗θ = χρχθ .

Recall, from page 74, that ρ ⊗ ρ  Sym2 ⊕ Alt2. Direct evaluation of the action
of C4 on the components of

D ∪ U = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)},
U = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)},

91
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leads to the following table of characters:

C4 χρ(τ ) χSym2(τ ) χAlt2 (τ )
1 4 10 6

(1234) 0 0 0
(13)(24) 0 2 −2
(1432) 0 0 0

Note that, for all τ ∈ C4, χ2
ρ (τ ) = χρ⊗ρ(τ ) = χSym2(τ )+ χAlt2 (τ ), and

χSym2(τ ) = 1

2

(
χ2

ρ (τ )+ χρ(τ 2)
)
, χAlt2 (τ ) = 1

2

(
χ2

ρ (τ )− χρ(τ 2)
)
.

It can be shown that these two equalities hold in general for any linear representation
ρ of G.

Characters and direct products of groups. Recall, from page 70, that if ρ

and η are linear representations of groups G and H with characters χρ and χη,
respectively, then ξτ,σ = ρτ ⊗ ησ is a linear representation of G×H on V ×W
and χξ (τ, σ ) = χρ(τ )χη(σ ) is its character.

4.3 Orthogonality Relations for Characters

Following Section 3.3, we observe that

(f | g) = 1

|G|
∑
τ∈G

f (τ )g(τ ) (4.2)

is a inner product in the vector space F(G) of complex-valued functions defined
in G. In particular, if χ1 and χ2 are characters of a representation of G, then
χ1, χ2 ∈ F(G), and because χ (τ−1) = χ (τ ), we have

(χ1 | χ2) = 1

|G|
∑
τ∈G

χ1(τ )χ2(τ ) = 1

|G|
∑
τ∈G

χ1(τ )χ2(τ
−1).

From Section 3.3 we may assume that the representation ρ is unitary so that
Proposition 3.4 can then be expressed as∑

τ∈G

ρij (τ )ρk�(τ
−1) =

∑
τ∈G

ρij (τ )ρ∗k�(τ ) = |G|(ρij | ρ�k) = δi�δjk|G|/n. (4.3)

Similarly, Corollary 3.1 becomes

(ρij | βk�) = 0, for all i, j, k, �, (4.4)

where ρ and β are two nonequivalent irreducible representations of G.
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Irreducible characters

We often refer to the character of an irreducible representation as an irreducible
character and indicate the set of irreducible characters of a group G by Ĝ. The same
notation will be used to indicate a set of nonequivalent irreducible representations
of G.

Theorem 4.1. (χi | χj ) = δij for any χi, χj ∈ Ĝ.

Proof. From Expression (4.3), we have

(χ | χ ) = 1

|G|
∑
τ∈G

⎛⎝ n∑
i=1

ρii(τ )
∣∣∣ n∑

j=1

ρjj (τ )

⎞⎠ = n∑
i=1

(ρii | ρii) =
n∑

i=1

1

n
= 1,

whereas, from Expression (4.4), similarly, we obtain (χ1 | χ2) = 0. �

The irreducible characters of S3. Table (4.5) shows three irreducible characters
of S3, corresponding to the irreducible representations 1, Sgn, and β discussed
earlier on page 77.

τ χρ χ1 χSgn χβ

1 3 1 1 2
(123) 0 1 1 −1
(132) 0 1 1 −1
(12) 1 1 −1 0
(13) 1 1 −1 0
(23) 1 1 −1 0

. (4.5)

It also shows the character χρ of the representation ρ of S3. The reader may want
to verify, from Table (4.5) that (χ1|χρ) = (χβ |χρ) = (χSgn|χρ) = 1. We will argue,
later in the chapter, that these are all the irreducible representations of S3.

A remark on notation. Given a linear representation ρ, the notation ρ  m1ρ1

⊕ . . .⊕mhρh indicates that there is a basis in V relative to which

ρτ = Diag (Im1 ⊗ ρ1(τ ), . . . , Imh
⊗ ρh(τ )), τ ∈ G,

where Im is the m×m identity matrix. If ρ1, ρ2, . . . ∈ Ĝ then, from Theorem 4.1,
it follows that mi = (χi |χ ). That is:

Proposition 4.1. If ρ is a linear representation of G with character χ and ξ ∈ Ĝ,
then (ξ |χ ) is the number of representations in any decomposition of ρ that are
isomorphic to ξ .
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To illustrate, consider the action sτ−1 of S2 = {1, t} on the position of the
symbols in {uu, yy, uy, yu}, giving the representation

ρ1 = I4, ρt = Diag

(
1, 1,

[
0 1
1 0

])
,

or, relative to a basis for V indexed by {uu, yy, uy + yu, uy − yu},
ρ1 = I4, ρt = Diag(1, 1, 1, Sgn),

that is ρ  1⊕ 1⊕ 1⊕ Sgn. In fact, from the character table

τ χρ χ1 χSgn

1 4 1 1
t 2 1 −1

,

we obtain (χ1 | χρ) = [χ1(1)χρ(1)+ χ1(t)χρ(t)]/2 = (4+ 2)/2 = 3, which is the
multiplicity with which the symmetric representation appears in ρ. The alternating
representation appears with multiplicity

(χSgn | χρ) = 1

2
(1× 4+ (−1)× 2) = 1.

In correspondence, V decomposes as the direct sum 3V1 ⊕ VSgn of irreducible
subspaces.

Similarly, the action σs of S2 V gives the representation

ρ1 = I4, ρt = Diag

([
0 1
1 0

]
,

[
0 1
1 0

])
 Diag(1, Sgn, 1, Sgn),

so that ρ  1⊕ 1⊕ Sgn⊕ Sgn.
Note that the multiplicity of a given irreducible component does not depend

on the underlying choice of basis. Moreover, two representations with the same
set of characters are isomorphic, because they contain each irreducible component
with exactly the same multiplicity. These arguments reflect the importance of
characters in the study of linear representations. It is in that sense that irreducible
representations are the building blocks of generic representations.

In summary, if ρ is a linear representation of G on V , we may then restrict our
attention to the set χ1, . . . , χh of distinct irreducible characters of G, and write

ρ  m1ρ1 ⊕ . . .⊕mhρh, χρ = m1χ1 + · · · +mhχh, V = m1V1 ⊕ . . .⊕mhVh, (4.6)

where the multiplicities mi are given by the integers (χρ | χi) ≥ 0 and Vi are
subspaces of V in the dimension equal to the dimension of ρi , i = 1, . . . , h. In the
previous example, under location symmetry, χρ = 3χ1 + χSgn.
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Moreover, the orthogonality relations among the irreducible components imply
that (χρ | χρ) =∑h

i=1 m2
i . The following result is a useful characterization of the

irreducible representations.

Theorem 4.2. (χρ | χρ) = 1 if and only if ρ is irreducible.

Proof. We have (χρ | χρ) =∑h
i=1 m2

i = 1 if and only if exactly one of the mi’s is
equal to 1 and all the others are equal to 0, in which case ρ is isomorphic to that
irreducible component. �

To illustrate, consider the irreducible representations 1, β and Sgn of S3

(page 77), along with the representation β ⊗ β. Table (4.7) shows the correspond-
ing characters, from which it can be verified that (χβ | χβ) = (χ1 | χ1) = (χSgn |
χSgn) = 1.

τ β β ⊗ β 1 Sgn

1 2 4 1 1
(123) −1 1 1 1
(132) −1 1 1 1
(12) 0 0 1 −1
(13) 0 0 1 −1
(23) 0 0 1 −1

. (4.7)

Since (χβ⊗β | χβ⊗β) = 18/6 = 3, the representation β ⊗ β must be reducible. On
the other hand,

(χβ⊗β | χβ) = (χβ⊗β | χ1) = (χβ⊗β | χSgn) = 1,

so that these representations appear in its decomposition with single multiplicity.
That is, β ⊗ β  1⊕ β ⊕ Sgn, with the corresponding character decomposition.

The characters of the regular representation

Of particular interest in the study of structured data is the regular representation
(φ), introduced on page 65. Its dimension is the number |G| of elements in the
group G. For example, the regular representation of D4 is shown on page 72.

Since, for all σ ∈ G, ϕ(τ, σ ) = ϕ(η, σ ) if and only if τ = σ , and ϕ(τ, 1) = τ

for all τ ∈ G, it follows that its character is given by

χφ(τ ) =
{

0 if τ �= 1;

|G| if τ = 1.
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Consequently, for any irreducible representation ρ of G with character χρ , we have

(χφ, χρ) = 1

|G|
∑
τ∈G

χφ(τ )χρ(τ−1) = χρ(1) = dim ρ, (4.8)

that is, from (4.6), every irreducible representation is contained in the regular
representation with multiplicity (χφ|χρ) equal to its dimension.

Proposition 4.2. The dimensions n1, . . . , nh of the distinct irreducible represen-
tations of G, satisfy the relation |G| =∑h

i=1 n2
i .

Proof. From (4.6) and (4.8) we have χφ(τ ) =∑h
i=1 miχi(τ ), with mi = (χφ|χi) =

dim ρi = ni . Taking τ = 1, the proposed equality obtains. �

Note that for τ �= 1, the defining property of χφ implies that
∑h

i=1 niχi(τ ) =
0. This equality, together with Proposition 4.2, shows that

∑h
i=1 niχi(σ−1τ ) =

|G|δστ .
To illustrate, the irreducible nonequivalent representations 1, β and Sgn of S3 are

contained in the regular representation with multiplicities 1, 2, 1, respectively. Be-
cause |S3| = 6 = 12 + 22 + 12, these must be all the distinct irreducible nonequiv-
alent representations of S3.

The irreducible characters of S4. Table (4.9) gives the character of the irreducible
representation of S4, from page 87, indicated here by χθ . The first row shows rep-
resentatives of the conjugacy classes of S4, with the corresponding number of
elements in each class in the second row. In addition to the symmetric χ1 and alter-
nating χSgn characters, it also includes the irreducible character χSgnχθ (applying
Theorem 4.2 on the previous page) in dimension of 3. From Proposition 4.2, and
knowing that the number of conjugacy classes of S4 is five, the remaining character,
indicated here by χβ must be in dimension of 2 so that 24 = 1+ 1+ 32 + 32 + 22.
This gives χβ(1) = 2. Using the orthogonality relations (Theorem 4.1 on page 93)
with the existing (four) characters determines the remaining (four) entries of χβ ,
thus completing the table.

1 (12) (123) (12)(34) (1234)

1 6 8 3 6

1 1 1 1 1 1
χSgn 1 −1 1 1 −1

χθ 3 1 0 −1 −1
χθχSgn 3 −1 0 −1 1

χβ 2 0 −1 2 0

(4.9)
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The irreducible characters of Dn. Assume first that n is even and refer to the
representation βk,d of Dn shown on page 42. Using its canonical space realiza-
tion, it is simple to verify that βm

k,d , for m = 1, . . . , n/2− 1 is also a represen-
tations of Dn, in dimension of 2. Indicating by χm its character, then, clearly
χm �= χ� for m �= �, so that the corresponding representations are nonisomorphic. In
addition,

(χm | χ�) = 1

2n

∑
d=±1

n−1∑
k=0

(1+ d)2 cos(mkφ) cos(�kφ) = 2

n

n−1∑
k=0

cos(mkφ) cos(�kφ) = δm�,

for m, � = 1, . . . , n/2− 1, so that (from Theorem 4.2) these are nonequivalent
irreducible characters, in dimension of 2. Together, their square dimention adds to
22(n/2− 1) = 2n− 4. The remaining four dimensions (Proposition 4.2) are found
by assigning four one-dimensional characters as follows: χ1 is the trivial character;
χSgn(k, d) = d; χθ (k, d) = (−1)k and finally χSgn(k, d)χθ (k, d).

When n is odd, the construction above gives, similarly, (n− 1)/2 irreducible
representations in dimension of 2, namely, βm

k,d , for m = 1, . . . , (n− 1)/2. They
account for 22(n− 1)/2 = 2n− 2 = |G| − 2 dimensions. The remaining two are
the symmetric and the alternating representations.

Irreducible characters and direct product of groups. If χρ and χη are irre-
ducible characters of groups G and H then χξ (τ, σ ) = χρ(τ )χη(σ ) is an irreducible
character of G×H . Indeed, applying Theorem 4.2,

(χξ | χξ ) = 1

|G||H |
∑

(τ,σ )∈G×H

χξ (τ, σ )2 = (χρ | χρ)(χη | χη) = 1.

Moreover, every irreducible character of G×H is a product of irreducible char-
acters of G and H . To see this, note, from Proposition 4.2 on the facing page
that ∑

ρ,η

[χρ(1)χη(1)]2 =
∑

ρ

χ2
ρ (1)

∑
η

χ2
η (1) = |G||H |,

where the sum is over all irreducible representations of G and H . The same
argument extends similarly to the product of more than two groups.

To illustrate, let G = {1, v, h, o}  C2 × C2. The irreducible characters of C2 =
{1, t} are the characters

χ1 : (1, t) �→ (1, 1), χSgn : (1, t) �→ (1,−1)
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of the symmetric and the alternating representations. It then follows that

τ σ χ1(τ )χ1(σ ) χ1(τ )χSgn(σ ) χSgn(τ )χ1(σ ) χSgn(τ )χSgn(σ )

1 1 1 1 1 1
1 t 1 −1 1 −1
t 1 1 1 −1 −1
t t 1 −1 −1 1

(4.10)

are the irreducible characters of C2 × C2. Note that C2 × C2 is Abelian and that all
characters are in dimension of 1.

Class functions

A scalar-valued function x defined on G and satisfying x(τστ−1) = x(σ ), for all
σ, τ ∈ G is called a class function.

Clearly, class functions are constant within each conjugacy class of G. We
indicate by C the set of class functions on G. Note that C is a linear subspace of the
vector space F(G) of scalar-valued functions defined on G. All characters belong
to C. From Exercise 3.5 on page 88, we observe that C is a stable subspace of F(G)
under the linear representation σ

ϕ−→ ϕσ , that is, x ∈ C implies ϕσ (σ )x = x, for all
σ ∈ G. More precisely, C is the subspace of F(G) of functions invariant under this
conjugation action. For each class function x and any representation ρ, define the
linear mapping

x̂(ρ) =
∑
τ∈G

xτρτ . (4.11)

Note that x̂(ρ) commutes with ρτ for all τ ∈ G. In fact,

ρτ x̂(ρ)ρτ−1 = ρτ

∑
σ

xσρσρτ−1 =
∑

σ

xσρτρσρτ−1 =
∑

σ

xσρτστ−1

=
∑

σ

xτστ−1ρτστ−1 =
∑

σ

xσρσ = x̂(ρ).

Therefore, if ρ is an irreducible representation, it follows from Schur’s Lemma that
x̂(ρ) = λI . To evaluate λ we take the trace in each side of the above equality, to
obtain

Tr x̂(ρ) =
∑
τ∈G

xτ Tr ρτ =
∑
τ∈G

xτχρ(τ ) =
∑
τ∈G

xτχρ(τ−1) = |G|(x, χρ) = Tr λIn = nλ,

so that λ = |G|(x, χρ)/n. This proves
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Proposition 4.3. If ρ is an n-dimensional irreducible representation of G and x is
a class function, then

x̂(ρ) = |G|
n

(x|χρ)In.

Theorem 4.3. The distinct irreducible characters form an orthonormal basis
for C.

Proof. From Theorem 4.1 we know that the set of distinct irreducible characters
form an orthonormal set of functions in C. We need to show that this set generates
C. Suppose that x ∈ C and that x is orthogonal to χ1, . . . , χh. Therefore, for any
irreducible n-dimensional representation ρ of G, we have

x̂(ρ) = |G|
n

(x | χρ)In = 0, x ∈ C.

Because every representation decomposes isomorphically as a sum of irreducible
components, it follows that x̂(ρ) = 0 for every representation ρ of G. In particular,
if ρ is the regular representation we have: x̂(ρ) = 0, {eτ : τ ∈ G} is a basis for V ,
and

0 = x̂(ρ)e1 =
∑
τ∈G

xτρτ e1 =
∑
τ∈G

xτ eτ , x ∈ C

which implies x(τ ) = 0 for all τ ∈ G. That is, x = 0. �

Note that the dimension of the subspace C of class functions is then the number
of distinct irreducible representations of G or, equivalently the number of orbits or
conjugacy classes of G under the action στσ−1, in which the class functions can be
arbitrarily defined. Consequently, the number of distinct irreducible representations
of G coincides with the number of its conjugacy classes. If G = Sn, this number is
also equal to its distinct cycle structures, as discussed earlier on page 32.

Irreducible representations of Cn. If G is a commutative group, then G has |G|
conjugacy classes and hence |G| distinct irreducible representations ρ1, ρ2, . . ..
Moreover, because |G| =∑

j dim2ρj , we conclude that these representations are
all one-dimensional. In particular, the irreducible representations of Cn are given
by ρj (τ k) = e2πijk/n, j, k = 0, 1, . . . , n− 1, which clearly coincide with the irre-
ducible characters of Cn.

Proposition 4.4. If χ1, . . . , χh are the distinct irreducible characters of group G

and Oτ = {στσ−1, σ ∈ G}, then

|Oτ |
|G|

∑
i

χ i(η)χi(τ ) =
{

1 if η ∈ Oτ ;

0 if η /∈ Oτ .
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Proof. Define xτ (η) = 1 if η ∈ Oτ and equal to zero otherwise. Then xτ is a class
function and, consequently, can be expressed as a linear combination

∑
i ciχi of

the distinct irreducible characters χ1, . . . , χh of G. The reader may verify that, in
this case, ci = (xτ | χi) = |Oτ | χi(τ )/|G|, so that

xτ (η) = |Oτ |
|G|

∑
i

χ i(τ )χi(η) =
{

1 if η ∈ Oτ ,

0 if η /∈ Oτ ,

from which the result follows. �

To illustrate, Table (4.12) shows the irreducible characters χ1, χSgn, χβ of S3,
along with the characters χρ, χβ⊗β, χφ of the permutation, β ⊗ β and the regular
representation of S3, respectively.

τ χρ χ1 χSgn χβ χβ⊗β χφ

1 3 1 1 2 4 6
(123) 0 1 1 −1 1 0
(132) 0 1 1 −1 1 0
(12) 1 1 −1 0 0 0
(13) 1 1 −1 0 0 0
(23) 1 1 −1 0 0 0

. (4.12)

From the conjugacy orbits O1 = {1}, Ot = {(12), (13), (23)} and Oc =
{(123), (132)} of S3 we obtain

χ1(τ )χ1(τ )+ χSgn(τ )χSgn(τ )+ χβ(τ )χβ(τ ) =
⎧⎨⎩

4+ 1+ 1 = 6 = |G|/|O1|, if τ ∈ O1;
0+ 1+ 1 = 2 = |G|/|Ot |, if τ ∈ Ot ;
1+ 1+ 1 = 3 = |G|/|Oc|, if τ ∈ Oc,

whereas xτ (η) = 0 if τ = 1, η = (12), τ = 1, η = (123) or τ = (12), η =
(123).

To decompose, say, the character of β ⊗ β, we write χβ⊗β = c1χ1 + cSgnχSgn +
cβχβ , in which the coefficients are determined by c1 = (χβ⊗β | χ1) = 6/6 = 1,
cSgn = (χβ⊗β | χSgn) = 6/6 = 1 and cβ = (χβ⊗β | χβ) = 6/6 = 1. In fact, χβ⊗β =
χ1 + χSgn + χβ .

Reducing the conjugacy action on S3

Table (4.13) shows the conjugacy action ϕτσ = τστ−1 of S3 on itself, followed by
the character (χρ) of the resulting representation (ρ), and the irreducible characters
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of S3 (page 77). The resulting orbits are exactly the three conjugacy classes of S3.

ϕ r1 r2 r3 r1 t1 t2 χ χSgn χβ χ1

1 = r1 r1 r2 r3 t1 t2 t3 6 1 2 1
(123) = r2 r1 r2 r3 t3 t1 t2 3 1 −1 1
(132) = r3 r1 r2 r3 t2 t3 t1 3 1 −1 1

(12) = t1 r1 r3 r2 t1 t3 t2 2 −1 0 1
(13) = t2 r1 r3 r2 t3 t2 t1 2 −1 0 1
(23) = t3 r1 r3 r2 t2 t1 t3 2 −1 0 1

(4.13)

Applying Proposition 4.1, we obtain ρ = 1⊕ 1⊕ 1⊕ Sgn⊕ β, whereas the re-
striction of ρ to each one of the orbits

O1 = {1}, Ot = {t1, t2, t3}, Or = {r2, r3}
reduces according to 1, 1⊕ β and 1⊕ Sgn, respectively. This separation is obtained
by restricting the representation to the orbits where it acts transitively. This fact
will be important in the next section where we construct the canonical projections.

4.4 The Canonical Projections

In the previous chapters we have emphasized that, for data-analytic purposes,
our interest is focused on permutation representations associated with transitive
actions. This was remarked earlier (Chapter 1, on page 23) in the identification of
the classes and multiplicities of the elementary orbits where G acts transitively.
The next three examples will explain why such identification is sufficient, although
not always necessary, for data-analytic purposes. These examples also illustrate the
algument used in the proof of the canonical decomposition theorem.

The canonical projections for the Sloan Fonts study

Returning to our starting point in Chapter 1 (page 5), consider again the group
G = {1, v, h, o} and its representation ρ described in (1.9). Note that ρ1 = φ1 ⊗ φ1,
ρv = φ1 ⊗ φt , ρh = φt ⊗ φ1 and ρo = φt ⊗ φt , where φ is the regular represen-
tation of C2  {1, t}. The irreducible characters of G  C2 × C2 are given by
Table (4.10).

The projection matrices P1, . . . ,P4 shown on page 6 were obtained from linear
combinations

1

4

∑
τ∈G

χτρτ ,

of the ρτ in which the scalar coefficients are indexed by the irreducible charac-
ters χτ of G. These matrices are the canonical projections associated with the
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representation ρ = φ ⊗ φ of C2 × C2 on R
4. There are, in this case then, four

canonical projections, one for each irreducible character of G.
To understand the role of these projections in decomposing the data space V =

R
4, let {1, v, h, o} indicate a basis for V indexed by the elements of G (the double

notation should be self-evident) so that
V =< 1+ v + h+ o > ⊕ < 1+ v − h− o > ⊕ < 1+ h− v − o >

⊕ < 1+ o− v − h >≡ V1 ⊕ . . .⊕ V4,

is a direct sum of stable subspaces in dimension of 1. Correspondingly, ρ reduces
isomorphically as the direct sum ξ1 ⊕ ξ2 ⊕ ξ3 ⊕ ξ4 of the irreducible representa-
tions of G.

Observing that ξ = Tr ξ = χξ when ξ is a representation in dimension of 1, and
applying Proposition 4.3 with x = χ ∈ Ĝ we obtain, in the new basis,

Pi = 1

4

∑
τ∈G

ξi(τ )BρτB
−1 = 4χ̂ (φ) = Diag((ξi |ξ 1)I1, (ξi |ξ 2)I1, (ξi |ξ 3)I1, (ξi |ξ 4)I1),

where

B =

⎡⎢⎢⎣
1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎤⎥⎥⎦
is the matrix connecting the two bases. Consequently, from Proposition 4.1,

P1 = Diag(1, 0, 0, 0), P2 = Diag(0, 1, 0, 0),

P3 = Diag(0, 0, 1, 0), P4 = Diag(0, 0, 0, 1).

Clearly, these are algebraically orthogonal (PiPj = PjPi = 0, i �= j ) projection
matrices (P 2

i = Pi , i = 1, 2, 3, 4) such that

I4 = P1 + P2 + P3 + P4,

in correspondence with the decomposition V1 ⊕ . . .⊕ V4 of V . Specifically, Pi is
a projection from V to Vi , for i = 1, 2, 3, 4.

Equivalently, the matrices Pi on page 6 are the canonical projections B−1PiB

on the original basis {1, v, h, o}. These matrices remain a set of algebraically
orthogonal projections decomposing the identity matrix in V . In that sense of
equivalence, therefore, we have derived the canonical projections of the given
representation of G.

Canonical invariants. The invariants in (1.10) are precisely I = Bx, where x is
the structured data vector.

This derivation illustrates the case of an Abelian group acting on itself so that the
action was transitive (single orbit) and in addition all irreducible representations
were in dimension of 1. In the next derivation the group action is not transitive.
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The canonical projections for the binary sequences study

Consider the permutation representations of S2  {1, t} acting on the space V =
{uu, yy, uy, yu} of binary sequences in length of 2, first according to position
symmetry and then according to letter symmetry (page 49). In each case the data
space for the structured data is V = R

4. Also recall that here Ĝ = {1, Sgn}.
In the position symmetry representation, indicated here by ρ, the orbits of G

suggest the decomposition

V =< uu > ⊕ < yy > ⊕ < uy, yu >

of V into a direct sum of stable subspaces, in which < uy, yu > further reduces as
< uy + yu > ⊕ < uy − yu >, so that

V =< uu > ⊕ < yy > ⊕ < uy + yu > ⊕ < uy − yu >

is a direct sum decomposition of V into irreducible subspaces. In < uu > ⊕
< yy > ⊕ < uy + yu >, ρ reduces as three copies of the symmetric represen-
tation, whereas in < uy − yu > as a single copy of the alternating representation,
that is,

ρ  1⊕ 1⊕ 1⊕ Sgn.

Clearly, the multiplicities of the symmetric and the sign representations come
directly from Proposition 4.1 on page 93. Therefore, without repeating the details
of the previous illustration, we obtain the canonical projections

P1 = Diag(1, 1, 1, 0), PSgn = Diag(0, 0, 0, 1),

corresponding to the decomposition V1 ⊕ VSgn of V . Specifically, P1 is a projection
from V onto V1, in dimension of 3, whereas PSgn is a projection on VSgn, in
dimension of 1. Equivalently, the matrices

B−1P1B = Diag(1, 1,A), B−1PSgnB = Diag(0, 0,Q)

are the canonical projections on the original basis {uu, yy, uy, yu}, respectively,
and I = Bx are the canonical invariants on the original data, where

B = Diag

(
1, 1,

[
1 1
1 −1

])
, A = 1

2

[
1 1
1 1

]
, Q = 1

2

[
1 −1

−1 1

]
.

Remark. This example shows an important fact: that the canonical projec-
tions are not in correspondence with the stable subspaces of the representation
on V (equivalently, the orbits on V ). Here, although < uu > ⊕ < yy > and
< uy + yu > ⊕ < uy − yu > are stable subspaces, the canonical projections are
on V1 =< uu > ⊕ < yy > ⊕ < uy + yu > and VSgn =< uy − yu >.

The following is the summary of the results for the symbol symmetry decompo-
sition, where the same remark clearly applies:
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(1) V < uu+ yy > ⊕ < uy + yu > ⊕ < uu− yy > ⊕ < uy − yu >;
(2) ρ  1⊕ 1⊕ Sgn⊕ Sgn;
(3) P1 = Diag(1, 1, 0, 0), PSgn = Diag(0, 0, 1, 1);
(4) B−1P1B = Diag(A,A), B−1PSgnB = Diag(Q,Q), I = Bx,

where

B = Diag

([
1 1
1 −1

]
,

[
1 1
1 −1

])
.

Our third illustration is similar to the first one in that the set of labels coincides
with the symmetries of interest (V = G), and hence the action is transitive action.
This prototypic study of data indexed by S3 illustrates many of the basic features
of that type of symmetry study.

The canonical projections for the regular representation of S3

Table (4.14) shows the three irreducible characters of S3, corresponding to the
irreducible representations 1, Sgn, and β discussed earlier on page 77. The data
space V = R

6 has a natural basis indexed by the elements {r1, r2, r3, t1, t2, t3} of
S3, in dimension of 6.

τ χ1 χSgn χβ

r1 1 1 1 2
r2 (123) 1 1 −1
r3 (132) 1 1 −1
t1 (12) 1 −1 0
t2 (13) 1 −1 0
t3 (23) 1 −1 0

(4.14)

The regular representation (φ) of S3 follows directly from its multiplicative action
on itself and can be derived from Table (2.4) on page 35 using Algorithm 1. We
reproduce the multiplication table here,

r1 r2 r3 t1 t2 t3

r2 r3 r1 t3 t1 t2

r3 r1 r2 t2 t3 t1

t1 t2 t3 r1 r2 r3

t2 t3 t1 r3 r1 r2

t3 t1 t2 r2 r3 r1

with the notation introduced above. From (4.8) on page 96, it follows that φ 
1⊕ Sgn⊕ 2β. It is clear that the subspace

V1 =< r1 + r2 + r3 + t1 + t2 + t3 >
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reduces as the symmetric representation whereas

VSgn =< r1 + r2 + r3 − t1 − t2 − t3 >

reduces as the alternating representation. With a little more of effort, the reader can
verify that the subspace

Vβ =< r1 − r2 − t1 + t2, −r2 + r3 − t1 + t3 > ⊕ < r2 − r3 − t2 + t3, r1 − r3 + t1 − t2 >

reduces as two copies of β. More specifically, writing

{r1 − r2 − t1 + t2, −r2 + r3 − t1 + t3} = {v1, v2} = Bv,

{r2 − r3 − t2 + t3, r1 − r3 + t1 − t2} = {w1, w2} = Bw

and using the multiplication table of S3 above, we see that the basis Bv transforms
according to

Bv

βv

−→ τ ∗ Bv :

v1 v2

r1 r1 − r2 − t1 + t2 −r2 + r3 − t1 + t3

r2 r2 + t1 − r3 − t3 r1 + t2 − r3 − t3

r3 r3 + t3 − r1 − t2 r2 + t1 − r1 − t2

t1 r2 + t1 − r1 − t2 r3 + t3 − r1 − t2

t2 r1 + t2 − r3 − t3 r2 + t1 − r3 − t3

t3 −r2 + r3 − t1 + t3 r1 − r2 − t1 + t2

,

or,

βv : τ →
[
1 0
0 1

]
,

[
0 −1
1 −1

]
,

[−1 1
−1 0

]
,

[−1 0
−1 1

]
,

[
1 −1
0 −1

]
,

[
0 1
1 0

]
,

(4.15)

τ = r1, r2, r3, t1, t2, t3, respectively. It then follows that βv
τ∗σ = βv

τ βv
σ , thus giving

a two-dimensional representation of S3. Its character coincides with that of β, so it
is irreducible, and hence isomorphic to (the unique two-dimensional) β. Similarly,
working with the other basis, we obtain

Bw

βw

−→ τ ∗ Bw :

w1 w2

r1 r2 − r3 − t2 + t3 r1 − r3 + t1 − t2

r2 r3 + t2 − r1 − t1 r2 + t3 − r1 − t1

r3 r1 + t1 − r2 − t3 r3 + t2 − r2 − t3

t1 r3 + t2 − r2 − t3 r1 + t1 − r2 − t3

t2 r2 + t3 − r1 − t1 r3 + t2 − r1 − t1

t3 r1 − r3 + t1 − t2 r2 − r3 − t2 + t3

and βw = βv. Comparing with

βk,d 
[
1 0
0 1

]
,

[−1 −1
1 0

]
,

[
0 1

−1 −1

]
,

[−1 −1
0 1

]
,

[
1 0

−1 −1

]
,

[
0 1
1 0

]
,

k = 1, 2, 3, d = ±1,



P1: JZZ

CUUS182-Main.tex CUUS182/Viana 978 0 521 84103 0 April 28, 2008 15:21

106 Data Reduction and Inference: The Canonical Projections and Their Invariants

from page 64, we see that βv = β ′−1.
Relative to this new basis, then,

φ = Diag(1, Sgn, I2 ⊗ β).

The canonical projections are the linear combinations

Pχ = nχ

6

∑
τ∈G

χτφτ ,

indexed by the irreducible characters of S3, where nχ is the dimension of the
corresponding irreducible representation and |S3| = 6. Therefore, in the new basis

Pχ = nχ

6

∑
τ

Diag(χτ 1τ , χτ Sgnτ , I2 ⊗ χτβτ ).

From Proposition 4.3,

∑
τ

χτ ξτ = 6

nχ

(χξ |χ )Inχ
, ξ ∈ {1, Sgn, β} = Ĝ,

so that, applying Theorem 4.1, we obtain

P1 = Diag(1, 0, 0, 0, 0, 0), PSgn = Diag(0, 1, 0, 0, 0, 0), Pβ = Diag(0, 0, I2 ⊗ I2).

The matrix connecting the two bases is

B =

⎡⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1
1 1 1 −1 −1 −1
1 −1 0 −1 1 0
0 −1 1 −1 0 1
0 1 −1 0 −1 1
1 0 −1 1 −1 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

and the canonical invariants I = Bx on the data coincide with the bases for the
irreducible subspaces. In particular, Bv and Bw. Moreover, direct calculation shows
that in the original basis

P1 = B−1P1B = A2 ⊗A3 = 1/6

⎡⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎦ ,
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PSgn = B−1PSgnB = I2 ⊗Q3 = 1/6

⎡⎢⎢⎢⎢⎢⎢⎣

1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
1 1 1 −1 −1 −1

−1 −1 −1 1 1 1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

Pβ = B−1PβB = Q2 ⊗A3 = 1/3

⎡⎢⎢⎢⎢⎢⎢⎣

2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0

0 0 0 2 −1 −1
0 0 0 −1 2 −1
0 0 0 −1 −1 2

⎤⎥⎥⎥⎥⎥⎥⎦ .

Invariant plots

In contrast to the previous examples, here we obtained two invariants in dimension
of 2 given by the components ofBv andBw appearing in I = Bx, each one reducing
as β. A graphical display of data in an invariant subspace is generally called an
invariant plot. Consequently, any symmetry study of data indexed by S3, or D3,
generates essentially two non trivial invariant plots. One in the alternating subspace

VSgn =< r1 + r2 + r3 − t1 − t2 − t3 >,

in dimension of 1, and one (type of) bivariate plot for the each one of the two copies
of Vβ .

The canonical projections for the regular representation of D4

Table (4.16) shows the multiplication table of D4, isomorphic with Table (2.12)
shown on page 42, in the present notation.

1 r1 r2 r3 r4 t1 t2 t3 t4

(1432) r2 r3 r4 r1 t4 t1 t2 t3

(13)(24) r3 r4 r1 r2 t3 t4 t1 t2

(1234) r4 r1 r2 r3 t2 t3 t4 t1

(13) t1 t2 t3 t4 r1 r2 r3 r4

(14)(23) t2 t3 t4 t1 r4 r1 r2 r3

(24) t3 t4 t1 t2 r3 r4 r1 r2

(12)(34) t4 t1 t2 t3 r2 r3 r4 r1

(4.16)

The irreducible characters of D4 are shown in Table (4.17). The representation α

in dimension of 1 is suggested by the two-coset structure of D4 and the fact that
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rotations and reversals have opposing parity, whereas γ = Sgn× α.

χ r1 r2 r3 r4 t1 t2 t3 t4

χ1 1 1 1 1 1 1 1 1
χSgn 1 −1 1 −1 −1 1 −1 1
χα 1 1 1 1 −1 −1 −1 −1
χγ 1 −1 1 −1 1 −1 1 −1
χβ 2 0 −2 0 0 0 0 0

(4.17)

The two-dimensional representation β was introduced earlier on page 96. Since
1+ 1+ 1+ 1+ 22 = 8 these are all the irreducible representations of D4, and
consequently, its regular representation reduces as the direct sum 1⊕ Sgn⊕ α ⊕
γ ⊕ β.

If ξ is in dimension of 1 then ξ = χξ and we may write its corresponding
subspace as

Vξ =<
∑
τ∈G

xτ ξτ >

Remarkably, it turns out that this construction extends to higher-order represen-
tations and can be used to determine the canonical bases of interest. In fact, the
bases Bv and Bw for Vβ in the previous example are precisely the rows of the 2× 2
matrix

∑
τ∈G xτβτ . We will return to this argument later on in the chapter. In the

present case, Vβ =< Bv > ⊕ < Bw >, where

Bv = {v1, v2} = {r1 − r3 + t1 − t3, −r2 + r4 + t2 − t4},
Bw = {r2 − r4 + t2 − t4, r1 − r3 − t1 + t3}.

Together, then, V = V1 ⊕ VSgn ⊕ Vα ⊕ Vγ ⊕ Vβ . Referring to the multiplication
table of D4 shown above, we see that the basis Bv transforms according to

Bv

βv

−→ τ ∗ Bv :

v1 v2

r1 r1 − r3 + t1 − t3 −r2 + r4 + t2 − t4

r2 r2 − r4 + t4 − t2 r1 − r3 + t1 − t3

r3 r3 − r1 + t3 − t1 r2 − r4 + t4 − t2

r4 −r2 + r4 + t2 − t4 r3 − r1 + t3 − t1

t1 r1 − r3 + t1 − t3 r2 − r4 + t4 − t2

t2 −r2 + r4 + t2 − t4 r1 − r3 + t1 − t3

t3 r3 − r1 + t3 − t1 −r2 + r4 + t2 − t4

t4 r2 − r4 + t4 − t2 r3 − r1 + t3 − t1

or,

βv : τ →
[
1 0
0 1

]
,

[
0 −1
1 0

]
,

[−1 0
0 −1

]
,

[
0 1

−1 0

]
,

[
1 0
0 −1

]
,

[
0 1
1 0

]
,

[−1 0
0 1

]
,

[
0 −1

−1 0

]
,
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τ = r1, r2, r3, r4, t1, t2, t3, t4, respectively, which is precisely the realization of β

shown on page 43. Similarly, working with Bw, we obtain

Bw

βw

−→ τ ∗ Bw :

w1 w2

r1 r2 − r4 + t2 − t4 r1 − r3 − t1 + t3

r2 t1 − t3 + r3 − r1 r2 − r4 + t2 − t4

r3 t4 − t2 − r2 + r4 t1 − t3 + r3 − r1

r4 r1 − r3 − t1 + t3 t4 − t2 − r2 + r4

t1 r2 − r4 + t2 − t4 t1 − t3 + r3 − r1

t2 r1 − r3 − t1 + t3 r2 − r4 + t2 − t4

t3 t4 − t2 − r2 + r4 r1 − r3 − t1 + t3

t4 t1 − t3 + r3 − r1 t4 − t2 − r2 + r4

and βw = βv.
For D4, the matrix connecting the two bases is

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 −1 1 −1 −1 1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 1 −1 1 −1
1 0 −1 0 1 0 −1 0
0 −1 0 1 0 1 0 −1
0 1 0 −1 0 1 0 −1
1 0 −1 0 −1 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and again, the canonical invariants I = Bx on the data are defined as the bases for
the irreducible subspaces.

In the new basis, then,

φ = Diag(1, Sgn, α, γ, I2 ⊗ β).

Similarly to D3, the canonical projections are the linear combinations

Pχ = nχ

8

∑
τ∈G

χτφτ ,

indexed by the irreducible charactes of D4, where nχ is the dimension of the
corresponding irreducible representation and 8 = |D4|. In that basis

Pχ = nχ

8

∑
τ

Diag(χτ 1τ , χτ Sgnτ , χτατ , χτγτ , I2 ⊗ χτβτ ).

From Proposition 4.3 and Theorem 4.1, we obtain

P1 = Diag(1, 0, 0, 0, 0, 0, 0, 0), PSgn = Diag(0, 1, 0, 0, 0, 0, 0, 0),

Pα = Diag(0, 0, 1, 0, 0, 0, 0, 0), Pγ = Diag(0, 0, 0, 1, 0, 0, 0, 0),

Pβ = Diag(0, 0, 0, 0, I2 ⊗ I2).
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Direct calculation shows that in the original basis P1 = B−1P1B = A8,

PSgn = B−1PSgnB = 1/8

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1 −1 −1 1 −1 1
−1 1 −1 1 1 −1 1 −1

1 −1 1 −1 −1 1 −1 1
−1 1 −1 1 1 −1 1 −1
−1 1 −1 1 1 −1 1 −1

1 −1 1 −1 −1 1 −1 1
−1 1 −1 1 1 −1 1 −1

1 −1 1 −1 −1 1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Q2 ⊗A2 ⊗Q2,

Pα = B−1PαB = 1/8

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 −1 −1 −1 −1
1 1 1 1 −1 −1 −1 −1
1 1 1 1 −1 −1 −1 −1
1 1 1 1 −1 −1 −1 −1

−1 −1 −1 −1 1 1 1 1
−1 −1 −1 −1 1 1 1 1
−1 −1 −1 −1 1 1 1 1
−1 −1 −1 −1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Q2 ⊗A2 ⊗A2,

Pγ = B−1Pγ B = 1/8

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1 −1 1 −1 1 −1
−1 1 −1 1 −1 1 −1 1

1 −1 1 −1 1 −1 1 −1
−1 1 −1 1 −1 1 −1 1

1 −1 1 −1 1 −1 1 −1
−1 1 −1 1 −1 1 −1 1

1 −1 1 −1 1 −1 1 −1
−1 1 −1 1 −1 1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= A2 ⊗A2 ⊗Q2,

Pβ = B−1PβB = 1/2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −1 0 0 0 0 0
0 1 0 −1 0 0 0 0

−1 0 1 0 0 0 0 0
0 −1 0 1 0 0 0 0
0 0 0 0 1 0 −1 0
0 0 0 0 0 1 0 −1
0 0 0 0 −1 0 1 0
0 0 0 0 0 −1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= I2 ⊗Q2 ⊗ I2.
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Invariant plots

The invariant plots are defined, similarly, by the bases of the irreducible subspaces,
or I = Bx. Any symmetry study of data indexed by D4 generates four nontrivial
invariant plots, corresponding to VSgn,Vα, and Vγ , and two bivariate plots for the
two copies of Vβ .

With these illustrations in mind, we now prove the following theorem.

Theorem 4.4 (Canonical Decomposition). If ρ is a linear representation of G on
GL(V) then, for each irreducible representation ξ of G in dimension of nξ and
character χξ ,

Pξ = nξ

|G|
∑
τ∈G

χξ (τ )ρτ ,

is a projection of V onto a subspace Vξ , sum of mξ isomorphic copies of
irreducible subspaces of ξ . Moreover: PξPξ ′ = Pξ ′Pξ = 0, for any two dis-
tinct irreducible representations ξ, ξ ′ of G; P2

ξ = Pξ and
∑

ξ∈Ĝ Pξ = Iv, where
v = dimV =∑

ξ∈Ĝ mξnξ .

Proof. Indicate by ξi the distinct irreducible representations of G, with corre-
sponding characters and dimensions χi and ni , respectively, i = 1, . . . , h. From
Proposition 4.1 we know that ρ ∑h

j=1 mjρj , where ξ1, . . . , ξh are the distinct
irreducible representations of G. That is, there is a basis B in V relative to which

ρ = Diag(Im1 ⊗ ξ1, . . . , Imh
⊗ ξh).

Therefore,

Pi = BPiB
−1 = ni

|G|
∑

τ

Diag(Im1 ⊗ χi(τ )ξ1(τ ), . . . , Imh
⊗ χi(τ )ξh(τ )).

Applying Proposition 4.3 with x = χi , so that x̂(ξj ) =∑
τ χ i(τ )ξj (τ ), we have∑

τ

χ i(τ )ξj (τ ) = |G|
ni

(χj |χi)Ini
= |G|

ni

δij Ini
,

and consequently

Pi = Diag(δi1Im1 ⊗ In1, . . . , δihImh
⊗ Inh

).

It is then clear that P 2
i = Pi , so that Pi is a projection ofV into the subspaceVi direct

sum of mi copies of the irreducible subspaces associated with ξi , i = 1, . . . , h. It
is also clear that, in addition, PiPj = 0 for j �= i and that

h∑
i=1

Pi = Diag(Im1 ⊗ In1, . . . , Imh
⊗ Inh

) = Iv,
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all of these statements holding true for the original components Pi = B−1PiB of
the decomposition, concluding the proof. �

Note that Tr Pi = nimi = dim Vi . From now on we will refer to
∑

i Pi = I ,
under the conditions of Theorem 4.4, simply as the canonical reduction of the
identity operator I in the data space V .

Data reduction by conjugacy action in S3

Returning to the conjugacy action of S3 on itself, defined by Table (4.13) on page
101, direct evaluation shows that the resulting canonical projections are given by

P1 = Diag(1,A2,A3), PSgn = (0,Q2, 0), Pβ = (0, 0,Q3),

in dimensions of 3, 1, 2, respectively, whereA andQ are the matrices introduced in
(1.14) on page 10 with the appropriate dimensions. The reader may want to identify
the resulting canonical reduction appearing in each one of the three conjugacy orbits
of S3.

4.5 The Standard Decomposition

In this section we will derive the canonical decomposition for the permutation
representation of Sn, indicated here by ρ, which is naturally associated with data
that are indexed by {1, 2, . . . , n}, such as in uniform sampling.

With the notation A = ee′/n, where ee′ is the n× n matrix of ones and
Q = I −A in mind, note that the reduction I = A+Q satisfiesA2 = A,Q2 = Q
andAQ = QA = 0. Moreover,A projectsV = R

n into a subspaceVa of dimension
dim Va = Tr A = 1 generated by e = e1 + · · · + en = (1, 1, . . . , 1) ∈ V , whereas
Q projects V into the subspace Vq in dimension n− 1, the orthogonal complement
of Va in V . We will show that the reduction V = Va ⊕ Vq is exactly the canon-
ical reduction determined by ρ. We refer to this decomposition as the standard
decomposition or standard reduction.

To illustrate the argument, consider first the case n = 3. The joint character table
for ρ and the irreducible representations of S3 is

χ 1 (12) (123)

χρ 3 1 0
χ1 1 1 1
χβ 2 0 −1
χSgn 1 −1 1

,

where β is the two-dimensional irreducible representation derived earlier on page
77. Recall also that there are 3 elements in the conjugacy class of (12) and two
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elements in the class of (123). It then follows that (χ1|χρ) = 1, (χSgn|χρ) = 0 and
(χβ |χρ) = 1, so that ρ  1⊕ β and χβ = χρ − 1. In general, we have

Proposition 4.5. χβ = χρ − 1 is an irreducible character of Sn. Its dimension is
n− 1.

Proof. Write χρ = χ to indicate the character of the permutation representation of
Sn. To evaluate

(χβ |χβ) = 1

|G|
∑

τ

(χ (τ )− 1)2 = 1

|G|
∑

τ

(χ2(τ )− 2χ (τ )+ 1)

and verify the irreducibility criteria (χβ |χβ) = 1 of Proposition 4.2, we need the
first two moments ∑

τ

χ (τ )/|G|,
∑

τ

χ2(τ )/|G|,

of χ . The argument is as follows: Consider the action (τ i, τj ) of Sn on the product
space V 2. Its character is χ2 and the number of orbits is clearly 2, namely

O0 = {(i, i), i = 1, . . . , n}, O1 = {(i, j ), i, j = 1, . . . , n, i �= j}.

Now apply Burnside’s Lemma to write

2 = Number of orbits in V 2 = 1

|G|
∑

τ

χ2(τ ).

Similarly, since Sn acts transitively on {1, . . . , n}, we have

1 = Number of orbits in V = 1

|G|
∑

τ

χ (τ ).

Consequently,

(χβ |χβ) = 1

|G|
∑

τ

(χ2(τ )− 2χ (τ )+ 1) = (2− 2+ 1) = 1,

thus showing that χβ is an irreducible character of Sn. Its dimension is χβ(1) =
χ (1)− 1 = n− 1, concluding the proof. �

Because (χ1|χρ) = (χβ |χρ) = 1 and the dimension of ρ is n we conclude that
ρ  1⊕ β is an irreducible decomposition of ρ.

The implication for the canonical decomposition of ρ is as follows: Because
ρ  1⊕ β there are only two (nonnull) projections, namely P1 associated with
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the symmetric character, and Pβ associated with the irreducible character χβ of
dimension n− 1. Clearly,

P1 = 1

|G|
∑

τ

ρτ = A.

Moreover, I = A+Q = A+ Pβ so we must have Pβ = Q. That is, A and Q are
the only nonnull canonical projections associated with ρ, which is the characteri-
zation we had in mind.

The results summarized in the following proposition are useful in obtaining new
canonical decompositions from existing ones. Its proof is by direct verification
that in each case the appropriate identity matrix decomposes as a sum of pairwise
algebraically orthogonal projections.

Proposition 4.6. If Im =
∑

i Pi and In =
∑

j Tj are canonical reductions, then
Imn =

∑
i,j Pi ⊗ Tj is a canonical reduction. In particular, for any component

P ⊗ T in the decomposition,

(µ⊗ e)′(P ⊗ T )(µ⊗ e) =
{

nµ′Pµ if T = A
0 if T = Q

.

If L1, . . . , Lh is a disjoint partition of L then

Im =
(∑

i∈L1

Pi

)
+ · · · +

⎛⎝∑
i∈Lh

Pi

⎞⎠
is also a canonical reduction. If, in addition, m = n and the components Pi and
Tj all commute, then In =

∑
i,j PiTj is a canonical reduction. In particular, the

components A and Q of the standard reduction commute with every symmetric
matrix of same dimension.

Sampling considerations

An important application of Proposition 4.6 is in obtaining the sampling or error
component in the analysis of variance based on a canonical decomposition. Specif-
ically, if a sample of size n is obtained in each point s ∈ V (with v points) where
the action of a group G leads to a canonical decomposition

Iv =
∑

j

Pj ,

and In = An +Qn is the standard decomposition for Sn (shuffling the labels for
the sample) then,

Inv = Iv ⊗ In =
⎛⎝∑

j

Pj

⎞⎠⊗ (An +Qn)
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is the canonical decomposition for the data x ∈ R
vn. The error term x ′(Iv ⊗Qn)x

is obtained by collecting together the components
∑

j x ′(Pj ⊗Qn)x of Inv.

Matrices with the symmetry of Sn

The following result describes the matrices that are centralized by the permutation
representation of Sn. In multivariate analysis, these matrices play a significant
role in describing the (intraclass) covariance structure of permutation symmetric
random variables. It also complements the content of Section 3.6 on page 70.

Proposition 4.7. If ρ indicates the permutation representation of Sn, then, for
every real or complex n× n matrix H ,

1

n!

∑
τ∈Sn

ρτHρτ−1 = a0ee
′ + a1In,

where the coefficients a0 and a1 are scalars defined by the relations n(a0 + a1) =
Tr H and n(n− 1)a0 = e′He − Tr H , in which e′He is the sum of the entries
in H.

Proof. Let M =∑
τ∈Sn

ρτHρτ−1/n! and J = BHB−1 where

B =

⎡⎢⎢⎢⎣
1 1 . . . 1 1

n− 1 −1 . . . −1 −1
...

...
...

...
...

−1 −1 . . . n− 1 −1

⎤⎥⎥⎥⎦ . (4.18)

It is simple to verify that the irreducible decomposition ρ  1⊕ β of ρ is realized
by BρB−1. Consequently, applying Proposition 3.3, we have

PMP−1 = 1

n!

∑
τ

(BρτB
−1)J (Bρτ−1B−1) = Diag

(
J11,

Tr J22

n− 1
In−1

)
,

from which we obtain

M = B−1Diag

(
J11,

Tr J22

n− 1
In−1

)
B.

Direct evaluation, using the definition of the matrix B, shows that M is the matrix
with entries

Mij =
{

Tr H/n if i = j,

(e′He − Tr H )/(n− 1) if i �= j,

which is the proposed result. �
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Linear representations of order statistics and ranks

Let x indicate the vector of the (distinct) ranks derived from the components of a
random vector y ∈ R

n when these components are ordered from the smallest to the
largest value. Let also ρτ indicate the permutation matrix arranging the observed
ranks in increasing order.

By virtue of the randomness in the ranks of y, the matrices U = ρτ are then
random permutation matrices. In particular, U ′y gives the ordered version of y. For
example, if the vector of ranks of an observed vector y is x ′ = (3, 4, 2, 1), then

ρτ =

⎡⎢⎢⎣
0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

⎤⎥⎥⎦ .

If we indicate by Y the ordered version of y, then the random permutation matrix
U = ρτ is such that x = Ur andY = U ′y. If (y, z) are concomitant random vectors
of corresponding dimensions, then the action U ′z of U on z generates the vector of
concomitants of (or induced) order statistics. If the probability distribution of y is
permutation symmetric, in the sense that y and ρτy are equally distributed for all
τ ∈ Sn, then the probability law of U is uniform in Sn and the covariance structure
of ranks, order statistics, and concomitants may then be expressed as multiplicative
actions of uniformly distributed random permutations. See, for example, Lee and
Viana (1999).

The covariance structure. In general, to obtain the covariance structure of vectors
resulting from actions such as x = Ur , we need to evaluate the uniform expected
value

∑
τ ρτ r/n! of U ′r , indicated here by E(Ur), and the uniform expected value∑

τ ρτ (rr ′)ρ ′τ /n! of U ′rr ′U , denoted by E(Urr ′U ′). The reader may want to verify
that

E(Ur) = E(U )r = ee′

n
r = n(n+ 1)

2n
e = n+ 1

2
e,

whereas the covariance of Ur is given by E(Urr ′U ′)− E(Ur)E(Ur)′. To evaluate
E(Urr ′U ′), following Proposition 4.7, we note that Tr rr ′ = n(n+ 1)(2n+ 1)/6
and that e′rr ′e = [n(n+ 1)/2]2. Therefore,

n(a0 + a1) = n(n+ 1)(2n+ 1)

6
,

n(n− 1)a0 =
[
n2(n+ 1)2

4
− n(n+ 1)(2n+ 1)

6

]
= 1

12
n(n+ 1)(n− 1)(3n+ 2),

from which we obtain

Cov(Ur) =
[
a0 − (n+ 1)2

4

]
ee′ + a1I = −(n+ 1)

12
ee′ + n(n+ 1)

12
I.
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These results show that the common variance among the ranks is (n+ 1)(n−
1)/12, and the common covariance between any two ranks is −(n+ 1)/12, so
that the resulting common correlation is −1/(n− 1). The mean and variance of
the usual Wilcoxson rank-sum statistics W follow from fixing, say, the first m

components of R. Writing f ′ = (1, . . . , 1, 0, . . . , 0) with 1 ≤ m < n components
equal to 1, then W = f ′R and EW = f ′E(Ur) = m(n+ 1)/2, whereas var(W ) =
f ′Cov(Ur)f = m(n−m)(n+ 1)/12. Similar arguments can be applied to rank
correlations.

Concomitants of order statistics. Suppose that y and z are related by z = Ty +
F , where F and y are jointly independent and T is a constant matrix with the
symmetry of Sn. That is, T commutes with every permutation matrix in dimension
of n. Then, the covariance structure between Uy, the ordered version of y, and the
induced order Uz is given by

Cov[(Uy,Uz)] =
⎡⎣� �T

T � �22 + T (� −�11)T

⎤⎦ ,

where � = Cov(Uy), �11 = Cov(y) and �22 = Cov(z). To see this, write[
y

z

]
= A

[
y

F

]
, with A =

[
I 0
T I

]
.

Then, because T commutes with U, Uz = U (Ty + F ) = T Uy + UF , and conse-
quently, [

Uy

Uz

]
= A

[
Uy

UF

]
.

Moreover, because y and F are jointly independent, Cov(F ) = Cov(UF ) = �22 −
T �11T so that

Cov[(Uy,Uz)] = A

[
� 0
0 �22 − T �11T

]
A′,

from which the result follows. The covariance structure of ordered observations
from symmetrically dependent observations is described with detail in Viana
(1998), Viana and Olkin (1997), and Olkin and Viana (1995).

4.6 Harmonic Analysis

Earlier in Section 4.3 (page 92) we introduced the linear transforms

x̂(ρ) =
∑
τ∈G

xτρτ ,



P1: JZZ

CUUS182-Main.tex CUUS182/Viana 978 0 521 84103 0 April 28, 2008 15:21

118 Data Reduction and Inference: The Canonical Projections and Their Invariants

defined for class functions x and linear representations ρ. If ρ is an irreducible
representation of G and x is any scalar-valued function defined on G, the evaluation
x̂(ρ) is called the Fourier transform of x at ρ. In analogy to the Fourier transform

f̂ (r) =
∫

R

f (t)ωrtdt

in the real line we think of each irreducible representation as the spectral frequen-
cies. Similarly, the discrete Fourier transform of a scalar-valued function x defined
in Cn = {1, ω, . . . , ωn−1}, evaluated at ωj ∈ Ĝ, is

x̂(j ) =
∑

k

xkω
jk, k, j = 0, 1, . . . , n− 1.

Its inverse Fourier transform is

xk = 1

n

∑
j

x̂(j )ω−jk.

By observing that the irreducible representations of Cn have dimension nj = 1, we
may rewrite the above formula as

xk =
∑

j

nj

g
Tr [ω−jkx̂(j )],

which suggests the formula for arbitrary finite groups. This formula will be derived
next, starting with the canonical projections of the regular representation of the
group.

Theorem 4.5. If x is a data vector indexed by the finite group G with g elements
and x̂(β) =∑

τ∈G xτβτ is its Fourier transform at the irreducible representation
β then, conversely,

xτ =
∑
β∈Ĝ

nβTr [βτ−1 x̂(β)]/g,

where the sum is over all irreducible representations of G.

Proof. Indicate by φ the (left) regular representation of G and by x the vector of
observations indexed by G so that the σ -th component of φτx is e′σφτx = xστ−1 .
Evaluating the canonical projections for φ, we obtain

ge′σPβx/nβ =
∑
τ∈G

χβ(τ−1)xστ−1 =
∑
η∈G

χβ(σ−1η)xη =
∑
η∈G

Tr [βσ−1η]xη

= Tr

⎡⎣∑
η∈G

βσ−1βη

⎤⎦ xη = Tr [βσ−1 x̂(β)].
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Consequently, summing over the irreducible representations of G, we have I =∑
β Pβ , and

e′σ x = e′σ
∑

β

Pβx =
∑

β

nβTr [βσ−1 x̂(β)]/g,

from which the Fourier-inverse formula xσ =
∑

β∈Ĝ nβTr [βσ−1 x̂(β)]/g follows.
�

A decomposition for x ∈ F (G)

Here we consider, in general, any irreducible representation β in dimension of nβ

of a finite group G with g elements. Define the g × g matrix

(Tβ)στ = nβTr [βτ−1σ ]/g,

in which the rows (σ ) and columns (τ ) are indexed by the elements of G arranged
in a fixed, arbitrary, order. Let also

Pβ = nβ

∑
γ∈G

χβ(γ−1)φγ /g

indicate be the canonical projection for the left regular representation φ associated
with β ∈ Ĝ. It then follows that Pβ = Tβ . To see this note that the single nonzero
entry in row σ of the permutation matrix φγ is at column τ if and only if σγ = τ ,
or γ = σ−1τ . Consequently,

(Pβ)στ = nβ

∑
γ∈G

χβ(γ−1)
(
φγ

)
στ

/g = nβχβ((σ−1τ )−1)/g = nβTr βτ−1σ /g = (Tβ)στ .

Moreover, then, for an arbitrary vector x ∈ F(G),

(P ′βx)σ =
∑

τ

(T ′β )στ xτ = nβTr

[
βσ−1

∑
τ

xτβτ

]
/g = nβTr [βσ−1 x̂(β)]/g = xβ (σ ), σ ∈ G,

thus showing that the scalar indexing

xβ(σ ) = nβTr [βσ−1 x̂(β)]/g, σ ∈ G (4.19)

of G is a linear superposition in the projection space for Pβ . Since
∑

β∈Ĝ P ′β = I ,

xσ =
∑
β∈Ĝ

(P ′βx)σ =
∑
β∈Ĝ

xβ(σ ) =
∑
β∈Ĝ

nβTr [βσ−1 x̂(β)]/g, (4.20)

which, in particular, reveals the Fourier-inverse formula. The resulting equality

x =
∑
β∈Ĝ

xβ
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shows that any indexing x ∈ F(G) of G decomposes as the linear superpo-
sition

∑
β∈Ĝ xβ of points xβ in the (left) regular canonical projection spaces

of G.

Remarks.

(1) We often refer to the canonical projections derived from regular representations
as regular canonical projections.

(2) Since, in the regular case, P ′ = P , the above results can be expressed equiva-
lently in terms of the complex conjugates P of P .

(3) The choice of left or right regular has the effect of commuting βσ−1 and x̂(β)
in the expression for xβ(σ ). For Abelian groups there is no distinction between
the two;

(4) The matrix transpose P ′ appearing in these derivations is necessary only for
consistency with the adopted definition

∑
τ xτβτ of the Fourier transform x̂(β)

and choosing between the left and right regular action.

A decomposition for x ∈ F (S3)

Following with the notation on page 104, let x ′ = (r1, r2, r3, t1, t2, t3) indicate a
point in F(S3). Again here, the labels and the data indexed by those labels are
indicated with the same notation. First we evaluate the Fourier transform

x̂(β) = r1

[
1 0
0 1

]
+ r2

[−1 −1
1 0

]
+ r3

[
0 1

−1 −1

]
+ t1

[−1 −1
0 1

]
+ t2

[
1 0

−1 −1

]
+ t3

[
0 1
1 0

]

of x at the two-dimensional irreducible representation β of S3, introduced earlier
on page 64. It gives

x̂(β) =
[
r1 − r2 − t1 + t2 −r2 + r3 − t1 + t3

r2 − r3 − t2 + t3 r1 − r3 + t1 − t2

]
=
[

v1 v2

w1 w2

]
,

where its components are exactly the bases Bv = {v1, v2} and Bw = {w1, w2} that
appear in the decomposition of the irreducible subspaceVβ , on page 105. Evaluation
of the regular indexing gives

xβ = 1/3 (2r1 − r3 − r2, −r1 + 2r2 − r3, −r2 + 2r3 − r1, 2t1 − t3 − t2, 2t2 − t1 − t3, −t2 + 2t3 − t1) ,

which, when compared with Pβ on page 110, shows that xβ = Pβx. Therefore,
xβ is indeed in the projection space for Pβ . These derivations, of course, coincide
with those for x ∈ F(D3).
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A decomposition for x ∈ F (D4)

Let x ′ = (r1, r2, r3, r4, t1, t2, t3, t4) indicate a point inF(D4). The Fourier transform
of x at the two-dimensional irreducible representation

βk,1 =
[
1 0
0 1

]
,

[
0 −1
1 0

]
,

[−1 0
0 −1

]
,

[
0 1

−1 0

]
, k = 1, 2, 3, 4,

βk,−1 =
[
1 0
0 −1

]
,

[
0 1
1 0

]
,

[−1 0
0 1

]
,

[
0 −1

−1 0

]
, k = 1, 2, 3, 4

of D4 evaluates as

x̂(β) =
4∑

k=1

(rkβk,1 + tkβk,−1)

=
[
r1 − r3 + t1 − t3 −r2 + r4 + t2 − t4

r2 − r4 + t2 − t4 r1 − r3 − t1 + t3

]
=
[

v1 v2

w1 w2

]
,

where its components are exactly the bases Bv = {v1, v2} and Bw = {w1, w2} that
appear in the decomposition of the irreducible subspace Vβ of D4, on page 108,
109. The regular indexing gives, for rotations,

xβ = {r1 − r3, r2 − r4, −r1 + r3, −r2 + r4}
and, for reversals,

xβ = {t1 − t3, t2 − t4, −t1 + t3, −t2 + t4}.

A Poisson summation formula

The regular indexing can be used to derive a class of Poisson summation formulas,
of special practical importance in symmetry studies of data indexed by cosets. See,
for details, Van de Ven and Di Bucchianico (2006) and Van de Ven (2007).

Specifically, let, for η ∈ Ĝ, x ∈ F(G), τ ∈ G and H a subgroup of G,

yσ =
∑
τ∈H

χη(τσ )xτσ

and assume that G is Abelian with g elements. Rewrite y as yσ =
∑

τ∈G

χη(τσ )xτσh(τ ), where h is the indicator function for H . To apply (4.20) to the
indexing y ∈ F(G) first evaluate the Fourier transform

ŷ(β) =
∑
σ∈G

yσχβ(σ ) =
∑
σ∈G

[∑
τ∈G

χη(τσ )xτσh(τ )

]
χβ(σ )

=
∑
τ∈G

χη(τ )h(τ )

[∑
σ∈G

χη(σ )xτσχβ(σ )

]
.
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of y at β ∈ Ĝ. Writing ĜH to indicate those characters χ ∈ Ĝ identically equal to
1 over H , it is not difficult to verify (Van de Ven, 2007) that

∑
h∈H χ (h) = |H |,

for χ ∈ ĜH and
∑

h∈H χ (h) = 0, otherwise. Because∑
σ∈G

χη(σ )xτσχβ(σ ) = χη(τ−1)χβ(τ−1)̂x(ηβ),

then,

ŷ(β) =
[∑

τ∈G

χβ(τ−1)h(τ )

]
x̂(ηβ) =

[∑
τ∈H

χβ(τ−1)

]
x̂(ηβ) = |H |̂x(ηβ), β ∈ ĜH ,

and ŷ(β) = 0 otherwise. From (4.20) it follows that

yσ =
∑
β∈Ĝ

|H |[χβ(σ−1)̂x(ηβ)]/g, β ∈ ĜH ,

and 0 otherwise. That is,

yσ =
∑

β∈ĜH

|H |[χβ(σ−1)̂x(ηβ)]/g,

which is, up to notation, the Poisson Summation formula in Van de Ven and Di
Bucchianico (2006, p. 13).

Exercises

Exercise 4.1. Show that
∑

τ∈Sn
ρτ /n! = An, where ρ is the permutation represen-

tation of Sn.

Exercise 4.2. Verify, using Theorem 4.2, that the representation βk,d of D4 shown
on page 42 is irreducible. When n = 3, show that βk,d and β (page 64) are
equivalent.

Exercise 4.3. Propose and carry out a symmetry study for the transition frequency
data shown on Table (2.28) (page 56).

Exercise 4.4. Derive the canonical projections associated with action defined by
(2.32) on page 57.

Exercise 4.5. Show that if P is a regular canonical projection then P ′ = P .

Exercise 4.6. Show that if χ ∈ Ĝ then χ ∈ Ĝ.

Exercise 4.7. Following Exercises 4.5 and 4.6, show that if Pχ is a regular canon-
ical projection of a group G then Pχ = Pχ so that P is also a canonical projection
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of G. Moreover, then, Pχ + Pχ is a real symmetric canonical projection of G (see
Proposition 4.6 on page 114).

Exercise 4.8. Interpret Proposition 4.7 in terms of the standard decomposition
(page 112).

Exercise 4.9. Following with the canonical decomposition for the conjugacy ac-
tion of S3 derived on page 112, indicate by x ′ = (r1, r2, r3, t1, t2, t3) the data indexed
by S3 and show that the following canonical invariants

I1 = r1 + r2 + r3 + t1 + t2 + t3, ISgn = ±(r2 − r3),

Iβ = {t1 − t2 + t1 − t3, t2 − t1 + t2 − t3}
in dimensions of 1, 1, 2 respectively, can be identified. In addition, show that
x ′P1x = r2

1 + (t1 + t2 + t3)2/3+ (t2 + t3)2/2,

x ′PSgnx = (r2 − r3)
2/2, x ′Pβx = 2/3[t1(t1 − t2)+ t2(t2 − t3)+ t3(t3 − t1)]

are the components in the decomposition x ′P1x + x ′PSgnx + x ′Pβx of x ′x and
interpret the underlying parametric hypotheses associated with each component.

Exercise 4.10. Reduction of oriented triangles. Indicate by V =
{(a, b), (b, a), (a, c), (c, a), (b, c), (c, b)} the set of the directed edges of a
triangle with vertices {a, b, c}, where (x, y) indicates a directed edge x → y.
Equivalently

V =
⎡⎣0 1 1

1 0 1
1 1 0

⎤⎦ ,

where Vij = 1 ⇐⇒ (i, j ) ∈ V . Let also x ′ = (ab, ba, ac, ca, bc, cb) indicate the
vector of elementary data indexed by V . Show that

τ : (i, j ) ∈ V
ρ−→ (τ i, τj ) ∈ V, τ ∈ S3, (4.21)

gives a representation of S3 in dimension of six. Evaluate the canonical projections
and the canonical invariants on the data indexed by the oriented triangles.

Exercise 4.11. Reduction of A-loops. Given the set of labels

V = {(12, 22), (22, 32), (32, 12), (11, 21), (21, 31), (31, 11)} ≡ {a, b, c, d, e, f },
show that

(τ, σ ) : (ij, k�) ∈ V
ρ−→ (τ iσj, τkσ�) ∈ V, (τ, σ ) ∈ C3 × C2 (4.22)
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there is a representation of C3 × C2 defined by

τ σ a b c d e f

1 1 a b c d e f

r 1 b c a e f d

r2 1 c a b f d e

1 t d e f a b c

r t e f d b c a

r2 t f d e c a b

, r = (123), t = (12).

Determine the canonical projections and their six one-dimensional canonical in-
variants on the data indexed by the A-loops.

Exercise 4.12. Reduction of cross-loops. Let

V = {(11, 22), (22, 31), (31, 12), (12, 21), (21, 32), (32, 11)} ≡ {a, b, c, d, e, f }.
Show that

(τ, σ ) : (ij, k�) ∈ V
ρ−→ (τ iσj, τkσ�) ∈ V, (τ, σ ) ∈ C3 × C2, (4.23)

gives a representation of C3 × C2, defined from

τ σ a b c d e f

1 1 a b c d e f

r 1 e f a b c d

r2 1 c d e f a b

1 t d e a b c d

r t b c d e f a

r2 t f a b c d e

, r = (123), t = (12).

Determine and interpret the resulting linear representation and the six one-
dimensional canonical invariants on the data indexed by the cross-loops.

Exercise 4.13. Reduction of closed loops. Let

V = {(11, 21), (21, 31), (31, 32), (32, 22), (22, 12), (12, 11)} ≡ {a,A, b, B, c, C}
and identify it (uniquely) by the restriction

V = {(1, 2), (2, 3), (3, 3), (3, 2), (2, 1), (1, 1)}
of (ij, k�) to (i, k). Show that

τ : (i, k) ∈ V
ρ−→ (i, τ−1k) ∈ V (4.24)
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gives a representation of C3 = {1, τ, τ 2} with generating matrix

ρτ =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

In addition, show that there is an action of S3 on V . To see this, first verify that
the action in (4.24) defines a partition Oa ∪OA of V into orbits Oa = {a, b, c}
and OA = {A,B,C}, which in turn identifies an action of C2 on the whole set
V , obtained by transpositions between the two orbits. Show that the resulting
permutation representation is generated by

m =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

and that it follows from the action

(σ, τ ) : (i, k) ∈ V
η−→ (σ i, τ−1k) ∈ V, σ ∈ C2, τ ∈ C3, (4.25)

of C2 × C3 realized as η(σf , τ g) = rgmf , g = 1, 2, 3, f = 1, 2. Its multiplication
table is defined by m2 = 1, mrm = r2, r3 = 1, that is, G  S3  D3. Determine
the canonical projections and their canonical invariants.

Exercise 4.14. Consider the action

ϕ((σ, τ ), (i, j )) = (σ i, τj ), σ ∈ G ⊆ S�1, τ ∈ G′ ⊆ S�2, (i, j ) ∈ L1 × L2,

where �i = |Li | and G and G′ symmetric subgroups. Derive the canonical pro-
jections derived from ϕ, assuming H = H ′ = S2 and show that the resulting data
reduction can be assembled in matrix form as[
x11 x12

x21 x22

]
= (x11 + x12 + x21 + x22)

[
1 1
1 1

]
/4+ (x11 − x12 − x21 + x22)

[
1 −1

−1 1

]
/4

+ (x11 − x12 + x21 − x22)

[
1 −1
1 −1

]
/4+ (x11 + x12 − x21 − x22)

[
1 1

−1 −1

]
/4,
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and that the decomposition gives four canonical invariants in dimension of 1, the
coefficients in the above decomposition. Moreover, show that the matrices

A =
[
1 1
1 1

]
/2, D =

[
1 −1

−1 1

]
/2, C =

[
1 −1
1 −1

]
/2, R =

[
1 1

−1 −1

]
/2

multiply according to

∗ A D C R

A A 0 C 0
D 0 D 0 R

C 0 C 0 A

R R 0 D 0

,

and generate a non commutative algebra, with multiplication induced by the usual
matrix multiplication. Argue that within this vector space, contingency tables can
be combined, compared, scaled and that the same construction can be extended to
V = L1 × . . .× Lf .

Exercise 4.15. The action σsτ−1. With the same notation from Exercise 4.14,
let s ∈ V = LF and show that ϕ((σ, τ ), s) = σsτ−1, s ∈ V, σ ∈ G ⊆ S�, τ ∈
G′ ⊆ Sf , gives an action of G×G′ on V . Show that the case f = � = 2, with F =
{1, 2} (position) and L = {u, y} (symbols) corresponds to V = {uu, uy, yu, yy}
and

ϕ :

σ, τ uu uy yu yy

11 uu uy uy yy

1, (12) uu yu uy yy

(uy), 1 yy yu uy uu

(uy), (12) yy uy yu uu

.

Derive the canonical projections for c = � = 2 and show that they lead to the
decomposition

2

[
x11 x12

x21 x22

]
= (x11 + x22)I + (x12 + x21)D + (x11 − x22)H + (x12 − x21)R,

where

I =
[
1 0
0 1

]
, R =

[
0 1

−1 0

]
, H =

[
1 0
0 −1

]
, D =

[
0 1
1 0

]
.

Note that there are three invariants now:

(1) {x11 + x22, x12 + x21} in dimension of 2,
(2) x11 − x22 in dimension of 1,
(3) x12 − x21 in dimension of 1.
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The matrix R defines a 90◦ central rotation, whereas H is a horizontal line reflection
and D is a 45◦ line reflection. These matrices multiply according to

· 1 R H D

1 1 R H D

R R −1 −D H

H H D 1 R

D D −H −R 1

,

and generate an associative algebra. In this vector space the data indexed by V can
then be investigated.

Exercise 4.16. Apply Algorithm 3 (page 221) to derive the canonical projections
associated with the group action given by Table (3.5) on page 66.

Exercise 4.17. Show that {1, (12)(34), (14)(23), (13)(24)} is isomorphic with
C2 × C2 and that its character table is given by the products

χ (1, 1) (1, t) (t, 1) (t, t)

χ1χ1 1 1 1 1
χ1χSgn 1 −1 1 −1
χSgnχ1 1 1 −1 −1

χSgnχSgn 1 −1 −1 1

, (4.26)

of the irreducible characters χ1 and χSgn of C2 = {1, t}. Derive the regular canonical
projections and corresponding invariants.
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5

Examples and Techniques

5.1 Introduction

In the next sections we bring the algebraic results from previous chapters in contact
to well-known methods of statistical inference, such as the many applications of the
Fisher-Cochran theorems for the distribution of quadratic forms, and illustrate how
those same principles apply and extend to the broader interpretation of structured
data in symmetry studies.

5.2 Analysis of Variance

In the proof of Theorem 4.4 on page 111 we observed that relative to a new basis
y = Bx in the original data vector space V ,

h∑
i=1

Pi = Diag(Im1 ⊗ In1, . . . , Imh
⊗ Inh

) = Iv.

If B is real (as in the case of regular projections; see Exercise 4.7 on page 122) so
that its orthonormal version B is also real, and the distribution of x is normal with
mean µ and covariance matrix Iv, shortly x ∼ N (µ, Iv), then Bx ∼ N (Bµ, Iv)
and,

x ′x = y ′y =
h∑

i=1

y ′Pj y =
h∑

i=1

x ′B−1PjBx =
h∑

i=1

x ′B′PjBx =
h∑

i=1

(Bx)′PjBx,

which is distributed as the sum
∑h

i=1 χ2
νi

(δi) of chi-square distributions χ2
νi

(δi) with
νi = Tr Pi degrees of freedom and noncentrality parameter δi = µ′Piµ. Clearly,
these components are independently distributed.

128
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Analysis of variance for scalar data indexed by S3 � D3

Following with the notation introduced on page 104 and assuming that x ∼
N (µ, Iv), we obtain

(1) x ′P1x = (r1 + r2 + r3 + t1 + t2 + t3)2/6 ∼ χ2
1 (δ1);

(2) x ′PSgnx = (r1 + r2 + r3 − t1 − t2 − t3)2/6 ∼ χ2
1 (δSgn);

(3) x ′Pβx = [r1(2r1 − r2 − r3)+ r2(2r2 − r1 − r3)+ r3(2r3 − r1 − r2)
+ t1(2t1 − t2 − t3)+ t2(2t2 − t1 − t3)+ t3(2t3 − t1 − t2)]/3 ∼ χ2

4 (δβ).

The corresponding parametric hypotheses of interest, in terms of the expected value
µ of x, are then

HSgn :
∑

j

(µrj
− µtj ) = 0

under which δSgn = 0 and

Hβ : µr1 = µr2 = µr3 and µt1 = µt2 = µt3

under which δβ = 0. The equality in HSgn defines the hypothesis of no difference
between rotations and reversals, whereas Hβ tests the joint hypotheses of no vari-
ation among rotations and no variation among reversals. Other interpretations, of
course, can be obtained from different contexts.

Analysis of variance for a simple triangular array

Consider the simple triangular array

V = {(0, 0), (1, 0), (0, 1), (2, 0), (0, 2), (1, 1)} ≡ {α, x, y, X, Y, γ },
where S2 acts on the coordinates of each point according to

S2 α x y X Y γ

1 α x y X Y γ

τ α y x Y X γ

.

The resulting canonical decomposition

P1 = Diag(1,A2,A2, 1), P2 = Diag(0,Q2,Q2, 0),

leads to the canonical invariants P1µ = {α, x + y, X + Y, γ } and P2µ = {x −
y, X − Y } on µ = (α, x, y, X, Y, γ ) in dimensions of 4 and 2, respectively. Corre-
spondingly,

µ′P1µ = 1/2
[

2 α2 + (x + y)2 + (X + Y )2 + 2 γ 2
]
, µ′P2µ = 1/2

[
(x − y)2 + (X − Y )2

]
.
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Suppose that n = 3 independent, identically distributed normal observations are
obtained in each point of V so that the analysis of variance

P x ′Px Tr P
P1 ⊗A 687.66 4
P2 ⊗A 11.33 2
P1 ⊗Q 24.33 8
P2 ⊗Q 9.66 4

total 733 18

,

source ss df

P1 ⊗A 687.66 4
P2 ⊗A 11.33 2
residual 34 12

total 733 18

for the resulting data

x ′ = (α1, α2, α3, . . . , γ1, γ2, γ3) = (3, 4, 3, 4, 5, 5, 6, 7, 3, 9, 7, 4, 10, 9, 9, 5, 5, 9) ∈ R
18,

is then obtained from x ′[(P1 + P2)⊗ (A3 +Q3)]x and from combining the error
terms P1 ⊗Q+ P2 ⊗Q.

Under the hypothesis H : {x = y, X = Y }, then µ′P2µ = 1/2 [(x − y)2 +
(X − Y )2] = 0 so that

E(x ′(P2 ⊗A)x) = E(x ′(P1 ⊗Q+ P2 ⊗Q)x) = 0,

where E indicates expected value. Therefore, under the hypothesis H ,

F = x ′(P2 ⊗A)x/Tr (P2 ⊗A)

x ′(P1 ⊗Q+ P2 ⊗Q)x/Tr (P1 ⊗Q+ P2 ⊗Q)

has a F distribution with degrees of freedom df1 = Tr (P2 ⊗A) = 2 and df2 =
Tr (P2 ⊗Q) = 12, and can be used to assess that hypothesis. In the present exam-
ple, F = 1.99.

5.3 Classical Structures and Their Analysis of Variance

One-way analysis of variance

The canonical reduction for the one-way analysis of variance is simply

In = A+Q(DA +DQ),

where A+Q is the standard reduction in dimension of n = n1 + · · · + nk, DA =
Diag(An1, . . . ,Ank

), and DQ = In −DA. To illustrate, let n1 = n2 = 3 and n3 =
5, so that DA = diag (A3,A3,A5). It then follows that I11 = A11 +Q11DA +
Q11DQ ≡ P1 + P2 + P3 is a canonical reduction and, given the data

y ′ = (12, 14, 11︸ ︷︷ ︸
group 1

, 10, 9, 11︸ ︷︷ ︸
group 2

, 8, 12, 15, 14, 12︸ ︷︷ ︸
group 3

),
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the resulting decomposition is

P y ′Py Tr P y ′Py/Tr P
P1(constant) 1,489.45 1 1,489.45
P2 (treatment) 11.07 2 5.53
P3 (residual) 35.46 8 4.43

I ( total) 1,536.0 11

.

Two-way analysis of variance

The reduction of a two-way ANOVA with r row levels, c column levels, and n

observations in each cell is given by

Ircn = (Ar +Qr )⊗ (Ac +Qc)⊗ (An +Qn),

in which Ar ⊗Ac ⊗An is the constant, Qr ⊗Ac ⊗An the row effect, Ar ⊗Qc ⊗
An the column effect, Qr ⊗Qc ⊗An the interaction term and Ar ⊗Ac ⊗Qn +
Qr ⊗Ac ⊗Qn +Ar ⊗Qc ⊗Qn +Qr ⊗Qc ⊗Qn the error term.

To illustrate, let V = L1 × L2 ≡ {u, v} × {1, 2, 3} be the set of data labels[
u1 u2 u3

v1 v2 v3

]
,

where S2 × S3 acts by permutation. The canonical reduction follows from Propo-
sition 4.6 on page 114 with P1 = A2 ⊗A3, P2 = A2 ⊗Q3, P3 = Q2 ⊗A3 and
P4 = Q2 ⊗Q3 and is summarized on Table (5.1).

P Tr P invariant subspaces interpretation
P1 1 u1 + u2 + u3 + v1 + v2 + v3 baseline average
P2 2 2u1 − u2 − u3 + 2v1 − v2 − v3, −u1 + 2u2 − u3 − v1 + 2v2 − v3 column effect
P3 1 u1 + u2 + u3 − v1 − v2 − v3 row effect
P4 2 2u1 − u2 − u3 − 2v1 + v2 + v3, −u1 + 2u2 − u3 + v1 − 2v2 + v3 remainder ε

(5.1)

Suppose that n = 3 independent and identically distributed are obtained at
each point of the initial structure. The new underlying data structure is then
V × {1, 2, 3} so that the corresponding data space V has dimension �1 × �2 × n.
The ensuing reduction is now obtained by an additional factoring with the
standard reduction I3 = A3 +Q3 for the sampling part. From Proposition 4.6,
I = P1 ⊗A+ · · ·P4 ⊗A+ P1 ⊗Q+ · · ·P4 ⊗Q is the canonical reduction of
interest.
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Reducing the standard 2 p factorial data

The canonical reduction for the 2p factorial data is obtained as the p-fold tensor of
the standard reduction for S2, that is,

I2p = (A+Q)⊗ · · · ⊗ (A+Q)︸ ︷︷ ︸
p times

.

The resulting projections act on observations indexed by the 2p combinations of
high (1)-low (0) levels describing the labels in V . To illustrate, consider the case
in which n = 2 observations are obtained at each of the 8 labels of a 23 factorial
experiment, that is,

V =
⎡⎣0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤⎦ , y =
[

15 999 499 286 438 926 871 891
779 990 212 611 239 787 303 663

]
∈ V.

The data reduce according to I = uuu⊗A+ . . . t t t ⊗A+ uuu⊗Q+ . . . t t t ⊗
Q, leading to the decomposition shown on Table (5.2)

trait P y ′(P ⊗A)y Tr P ⊗A
1 uuu 5, 651, 317.56 1
c uut 488, 950.56 1
b utu 43, 785.56 1
bc utt 173, 264.06 1
a tuu 33, 033.06 1
ac tut 76.56 1
ab ttu 143, 073.06 1
abc tt t 7, 788.06 1

error I ⊗Q y ′(I ⊗Q)y Tr I ⊗Q
75, 331.31 8

Sum I 7, 143, 939.00 16

. (5.2)

Latin squares

The reduction of a Latin square experiment has the form

I = [(A+Q)︸ ︷︷ ︸
rows

⊗ (A+Q)︸ ︷︷ ︸
columns

] (A+Q)︸ ︷︷ ︸
letters

.

To illustrate, consider the following experiment described in Youden (1951, p. 96),
in which the data



P1: JZZ

CUUS182-Main.tex CUUS182/Viana 978 0 521 84103 0 April 28, 2008 15:21

5.3 Classical Structures and Their Analysis of Variance 133

I II III IV

1 A B C D

2 C D A B

3 B C D A

4 D A B C

→
36 38 36 30
17 18 26 17
30 39 41 34
30 45 38 33

are the melting point temperature readings of four chemical cells (1, 2, 3, 4) ob-
tained from four thermometers (I,II,III,IV) in four different days (A,B,C,D). The
numerical entries are the readings converted to degrees Centigrade. The experi-
mental background is such that there is no reason to assume an interaction between
cells and thermometers. Write the data as

y ′ = (36, 38, 36, 30, 17, 18, 26, 17, 30, 39, 41, 34, 30, 45, 38, 33)

and first evaluate the four projections associated with (A+Q)⊗ (A+Q), where
I4 = A+Q is the standard reduction in dimension 4. As a result, SS total = y ′y =
17230, SS constant = y ′(A⊗A)y = 16129, SS thermometers = y ′(A⊗Q)y =
182.50, SS cells = y ′(Q⊗A)y = 805, SS days+ SS residual = y ′(Q⊗Q)y
= 113.5. To further reduce y ′(Q⊗Q)y and determine the component due to
eventual day-to-day variability, the standard reduction (indicated here by A• and
Q•) is applied to aggregate the data from corresponding days, obtaining

SS days = y ′([Q⊗Q]A•)y = 70, SS residual = y ′([Q⊗Q]Q•)y = 43.5.

Table (5.3) summarizes the results. The F ratio for cells is quite significant
(268.33/7.25 = 37.01). The F ratio for thermometers, 60.83/7.25 = 8.39, also
points to a difference among the thermometers whereas the F ratio for days is only
suggestive of a probable day-to-day effect. The estimated standard deviation for a
single measurement is

√
7.25 = 2.69, which shows an improvement in the error

of comparison. In fact, if the effect of days on the readings is not eliminated, the
standard deviation would then be

√
113.5/9 = 3.55.

P ss = y ′Py df = Tr P ss/df

A⊗A (constant) 16,129.00 1 16,129.00
A⊗Q (thermometers) 182.50 3 60.83
Q⊗A (cells) 805.00 3 268.33
(Q⊗Q)A• (days) 70.00 3 23.33
(Q⊗Q)Q• (residual) 43.50 6 7.25

I (total) 17,230.00 16

. (5.3)
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5.4 The Analysis of Variance for Dihedral Data

Table (5.4) shows the analysis of variance for the data x ′ = (r ′, t ′) indexed by
the dihedral group D4, where r ′ = (r1, . . . , r4) indicates the rotations part and
t ′ = (t1, . . . , t4) the reversals part of the data.

The canonical projections P1, . . . ,P5 for the regular representation of D4 were
derived on page 110, in correspondence with the symmetric, α, Sgn, γ and β

irreducible representations.
The reduction of the data space (R8) and the determination of their invariants

follow from the canonical projections. The resulting decomposition x ′x = x ′P1x +
· · · + x ′P5x of the sum of squares x ′x is then

source x ′Px df

P1
[∑

i(ri + ti)
]2

/8 1

P2
[∑

i(ri − ti)
]2

/8 1
P3 (r2 − r1 + r4 − r3 + t2 − t1 + t4 − t3)2 /8 1
P4 (r2 − r1 + r4 − r3 − t2 + t1 − t4 + t3)2 /8 1
P5 [(r1 − r3)2 + (r2 − r4)2 + (t1 − t3)2 + (t2 − t4)2]/2 4

total
∑

i x
2
i 8

. (5.4)

The following interpretations are relevant: x ′P1x is the overall reference constant;
x ′P2x compares rotations and reversals; x ′P3x and x ′P4x combine and contrast
within-rotation and within-reversal variability, respectively, whereas x ′P5x as-
sesses the presence of point symmetry.

Sampling considerations. When a sample of size n is obtained at each one of
the dihedral symmetries, the new decomposition of the sum of squares x ′x for
the 8× n data points is then obtained from the new canonical decomposition I =
I8 ⊗ In =

∑5
i=1 Pi ⊗ (A+Q), where A and Q define the standard decomposition

in dimension of n.

5.5 Cyclic Reduction of Binary Sequences

Consider the set V of binary sequences (s) in length of 4 where C4 =
{1, (1234), (13)(24), (1432)} acts according to sτ−1 (position symmetry). This is
the group action introduced earlier on page 50. Table (5.5) shows the set V along
with an arbitrary data vector xs indexed by V .

1 y u y u u u y y u u y u y y y u

2 y u u y u u y u y u u y y y u y

3 y u u u y u u u y y y u y u y y

4 y u u u u y u y u y u y u y y y

s 1 16 15 14 12 8 13 7 10 4 11 6 9 5 3 2

xs y z p q r s a b c d e f k l m n

(5.5)
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The resulting orbits

O0 = {1}, O1 = {9, 5, 3, 2}, O21 = {13, 7, 10, 4}, O22 = {11, 6},
O3 = {15, 14, 12, 8}, O4 = {16},

are characterized essentially by the number of u symbols in the sequence, noting
that O2 (two occurences of u) is now split into two smaller orbits distinguishing
whether the u elements are adjacent to each other in the sequence. For example, the
two points yyuu and yuyu, originally in the same orbit under the full permutation
group S4, are not cyclically related.

To evaluate form the canonical projections, we start with the representation ρ of
τ = (1234) acting on V according to

[
1 16 15 14 12 8 13 7 10 4 11 6 9 5 3 2

1 16 14 12 8 15 10 13 4 7 6 11 2 9 5 3

]
,

giving a 16× 16 permutation matrix that can be directly evaluated using Algo-
rithm 1 (page 221). The representation of interest is then ρτk = ρk

τ , for k =
1, 2, 3, 4.

The table of irreducible characters for C4 is

C4 1 τ τ 2 τ 3

χ1 1 1 1 1
χ2 1 i −1 −i

χ3 1 −1 1 −1
χ4 1 −i −1 i

, (5.6)

from which we derive the one-dimensional canonical projections

Pj = 1

4

∑
τ∈C4

χj (τ )ρτ , j = 1 . . . , 4.

The data invariants are summarized in (5.7), along with the dimensions Tr P
of each reduced subspace of V = R

16. Note that the orbits O22 = {11, 6} and
O21 = {13, 7, 10, 4} are now displayed one adjacent to the other. We also observe
that P1x is a one-dimensional invariant averaging the data over each orbit; P3x is
a one-dimensional invariant comparing the resulting (mean) measurements p + r

and q + s when the positions of the symbols are rotated by 90◦ and (P2 + P4)x is
a two-dimensional invariant. One dimension is accounted by the comparison of p

and r , whereas the other by the comparison of q and s. These comparisons result
from rotating the positions in the symbols by 180◦.
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Similar interpretations apply to each one the other orbits so that we may summa-
rize the invariants obtained in this experimental setting as within orbit averaging,
90◦ and 180◦ shift effects.

data 4P1x 4P3x

y 4 y 0

z 4 z 0

p p + q + r + s p − q + r − s

q p + q + r + s −p + q − r + s

r p + q + r + s p − q + r − s

s p + q + r + s −p + q − r + s

e 2 e + 2 f 2 e − 2 f

f 2 e + 2 f −2 e + 2 f

Tr (P) 6 4

,

data 4P2x 4P4x 4(P2 + P4)x

y 0 0 0

z 0 0 0

p p − is − r + iq p + is − r − iq 2 p − 2 r

q ir + q − ip − s −ir + q + ip − s 2 q − 2 s

r −p + is + r − iq −p − is + r + iq −2 p + 2 r

s −ir − q + ip + s ir − q − ip + s −2 q + 2 s

e 0 0 0
f 0 0 0

Tr (P) 3 3 6

. (5.7)

5.6 Dihedral Reduction of Binary Sequences

Given continuation to the previous example, consider now the action sτ−1 of the
dihedral group D4 on the space V of binary sequences in length of 4. The resulting
action

D4\s 1 16 15 14 12 8 13 11 7 10 6 4 9 5 3 2
1 1 16 15 14 12 8 13 11 7 10 6 4 9 5 3 2

(24) 1 16 15 8 12 14 7 11 13 4 6 10 3 5 9 2
(13) 1 16 12 14 15 8 10 11 4 13 6 7 9 2 3 5

(12)(34) 1 16 14 15 8 12 13 6 10 7 11 4 5 9 2 3
(13)(24) 1 16 12 8 15 14 4 11 10 7 6 13 3 2 9 5
(14)(23) 1 16 8 12 14 15 4 6 7 10 11 13 2 3 5 9
(1234) 1 16 14 12 8 15 10 6 13 4 11 7 2 9 5 3
(1432) 1 16 8 15 14 12 7 6 4 13 11 10 5 3 2 9

, (5.8)

shows that D4 and C4 generate the same set of orbits.
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Table (5.9) summarizes the results, based on the canonical projections derived
on page 110.

data 4P1x 4P2x 4P3x 4P4x 4P5x

x 4 x 0 0 0 0
y 4 y 0 0 0 0
p p + q + r + s 0 0 p − q + r − s 2p − 2r

q p + q + r + s 0 0 −p + q − r + s 2q − 2s

r p + q + r + s 0 0 p − q + r − s −2p + 2r

s p + q + r + s 0 0 −p + q − r + s −2q + 2s

e 2 e + 2 f 0 0 2 e − 2 f 0
f 2 e + 2 f 0 0 −2 e + 2 f 0
a a + b + c + d 0 a − b − c + d 0 2a − 2d

b a + b + c + d 0 −a + b + c − d 0 2b − 2c

c a + b + c + d 0 −a + b + c − d 0 −2b + 2c

d a + b + c + d 0 a − b − c + d 0 −2a + 2d

k k + l +m+ n 0 0 k − l +m− n 2k − 2m

l k + l +m+ n 0 0 −k + l −m+ n 2l − 2n

m k + l +m+ n 0 0 k − l +m− n −2k + 2m

n k + l +m+ n 0 0 −k + l −m+ n −2l + 2n

Tr (P) 6 0 1 3 6

. (5.9)

We observe that the effect of introducing the dihedral symmetries is that of isolating
the effect of orbitO21 indexing the data {a, b, c, d}. In fact, the dihedral symmetries
split the invariants determined by P3 under C4 into the invariants determined by
P3 and P4 under D4, as summarized in the following table

D4 P1 P3 + P4 P5

C4 P1 P3 P2 + P4

.

Dihedral stratifications for voting preferences

The data on Table (5.10) were introduced earlier on Chapter 1 on page 12 to describe
the frequencies with which the rankings of four candidates, their names indicated by
{a, g, c, t}, were selected. For example, 29 voters ordered the candidates according
to (a, g, c, t), or xagct = 29. The complete election result is then an example of
frequency data indexed by S4. We will stratify the data and summarize the results on
the basis of the dihedral decomposition described in Chapter 4 on pages 108, 109,
and 121. This is obtained by observing that S4 has three distinct cyclic orbits, namely
those generated by (1234), (1243) and (1324). To each generator we add a reversal,
thus obtaining three dihedral subgroups, respectively here D4 =< (1234), (13) >,
D′

4 =< (1243), (14) > and D′′
4 =< (1324), (12) >.
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D4 ranking agct gcta ctag tagc cgat tcga atcg gatc

votes 29 26 49 28 22 29 50 35

D′
4 ranking agct gtac tcga catg tgca ctag acgt gatc

votes 29 44 29 34 37 49 19 35

D′′
4 ranking agct ctga gatc tcag gact tcga agtc ctag

votes 29 57 35 67 50 29 11 49

(5.10)

For the first dihedral stratification, the canonical invariants are the rows of the
Fourier transform

x̂β =
[
agct − ctag + cgat − atcg −gcta + tagc + tcga − gatc

gcta − tagc + tcga − gatc agct − ctag − cgat + atcg

]
.

For frequency data we may express the invariants in the log scale, in which case

Bv =
(

log
agct cgat

atcg ctag
, log

gcta tcga

gatc tagc

)
, Bw =

(
log

gcta tcga

gatc tagc
, log

agct atcg

cgat ctag

)
describe the two two-dimensional invariants. Similarly, for the second dihedral
stratification,

x̂β =
[
agct − tcga + tgca − acgt −gtac + catg + ctag − gatc

gtac − catg + ctag − gatc agct − tcga − tgca + acgt

]
,

and for the third stratification,

x̂β =
[
agct − gatc + gact − agtc −ctga + tcag + tcga − ctag

ctga − tcag + tcga − ctag agct − gatc − gact + agtc

]
.

5.7 Projections in the Space of Scalar-Valued Functions

The canonical projections are collective ways of summarizing the data vector
x ∈ R

v. In this section we study the role of canonical projections restricted to
transitive actions. This is a local interpretation of any group action ϕ on a set V of
indices for the data.

We indicate by F the vector space of scalar-valued functions defined in V .
For each τ ∈ G with g elements, define τ ∗ : F → F , which takes x ∈ F into
τ ∗(x) ∈ F given by τ ∗(x)(s) = x(ϕτ s). It is simple to verify that τ ∗ is linear, and
that τ → τ ∗ is a homomorphism in G into Aut (F). Moreover, τ ∗ is unitary with
respect to the scalar product

(x, y)s = 1

g

∑
τ∈G

x(ϕσ s)y(ϕσ s), s ∈ V,

in F . Applying Theorem 4.4 on page 111 to the representation τ ∗, we have
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Proposition 5.1. The mapping τ ∗ is a unitary linear representation of G in GL(F),
and, for each irreducible character χ of G in dimension of nχ , the corresponding
canonical projection evaluates as Pχ (x)(s) =∑

τ∈G nχχτ−1x(ϕτ s)/g.

Direct verification shows that the symmetric projection P1(x) evaluates at s ∈ V

as

P1(x)(s) = 1

g

∑
τ∈G

x(ϕτ s) = 1

g
|Gs |

∑
f∈Os

x(f ) = 1

g

g

|Os |
∑
f∈Os

x(f ) = 1

|Os |
∑
f∈Os

x(f ),

the average of x in the orbit Os of s under action ϕ. We also note that Proposition
5.1 applies to the vector space F(G) of scalar-valued functions defined in G, with
ϕ : G×G → G, and scalar product

(x, y) = 1

g

∑
τ∈G

xτyτ = (x, y)1.

5.8 Decompositions in the Dual Space

Elie Cartan, in his 1937 seminal book on the theory of spinors1 makes the following
remark, adapted to our current notation:

Let two vectors x and y be referred to the same Cartesian frame of ref-
erence and let us consider the n2 products xiyi ; as a result of a rotation
they obviously undergo a linear transformation T , which also possesses
the property that if T and T ′ correspond to the rotations R and R′, the
transformation T T ′ corresponds to RR′. The n2 quantities xiyj therefore
provide a new linear representation of the group of rotations, completely
distinct from the two previous ones. (p. 22)

Recall, from Section 3.5 that if G acts on V and W giving linear representations ρ

and η of G on V and W , respectively, then ρ ⊗ η gives a linear representation of G

on V ×W , evaluated as (ρ ⊗ η)τ = ρτ ⊗ ητ . To recognize Cartan’s construction,
it is now sufficient to identify the entries of x ′y with the entries of x ⊗ y.

As a result, the canonical decomposition for (block) matrices of the form

� =
[
xx ′ xy ′

yx ′ yy ′

]
,

where x and y are structured data, can be ontained. We refer to the resulting de-
compositions as canonical decompositions in the dual space, and to their invariants
as coinvariants.

1 The English version (Cartan, 1966) of the original text was published by MIT Press.
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Planar rotations

Recall, from page 42, that the set of matrices

βk,d = 1

2

[
(1+ d)ωk−1 (1− d)ωk−1

(1− d)ω−k+1 (1+ d)ω−k+1

]
, k = 1, . . . , n, d = ±1,

gives a linear representation of Dn. In particular, the planar rotations ρk =
Xβk,1X

−1 give a representation of Cn. The transformation X is defined up to a
rotation factor; that is, we may replace X by ξX for an arbitrary complex unimod-
ular factor ξ .

When n = 2, the canonical decomposition determined by this representation, as
the reader may want to verify, leads to x = [z(x)X1 + z(x)X2]/2, where z(x) =
x1 + ix2 and

X1 =
[

1
−i

]
, X2 =

[
1
i

]
.

That is, the canonical decomposition is simply the embedding of x in the rotation
space, relative to the basis X (see also Exercise 5.2). The rotation invariants are then
z(x) and z(x) in rotation space. The interpretation of x as an invariant in rotation
space is concurrent with the view in which rotations provide a passage between
components of the same vector, but referred to rotated frames of reference, e.g.,
Cartan (1966, p. 23).

The dual decomposition. We will derive the dual decomposition of planar ro-
tations as representations of C3. The structured data are indexed by V = {1, 2}.
Starting with its character table

k 1 2 3
χ1 1 1 1
χ2 1 ω ω2

χ3 1 ω2 ω

, (5.11)

the canonical projections Pj =
∑3

k=1 χj (k)[ρk ⊗ ρk]/3 are then

P1 = 1

2

⎡⎢⎢⎣
1 0 0 1
0 1 −1 0
0 −1 1 0
1 0 0 1

⎤⎥⎥⎦ , P2 = 1

4

⎡⎢⎢⎣
1 −i −i −1
i 1 1 −i

i 1 1 −i

−1 i i 1

⎤⎥⎥⎦ , P3 = 1

4

⎡⎢⎢⎣
1 i i −1
−i 1 1 i

−i 1 1 i

−1 −i −i 1

⎤⎥⎥⎦ ,
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in dimensions of 2, 1, 1, respectively. When these projections act on the entries
f = x ⊗ y of xy ′, the invariants associated with

P1f = 1

2

⎡⎢⎢⎣
x1y1 + x2y2

x1y2 − x2y1

−x1y2 + x2y1

x1y1 + x2y2

⎤⎥⎥⎦
are, as expected, the angular component α = x1y1 + x2y2 and the area com-
ponent δ = x1y2 − x2y1, whereas P2f = (X1 ⊗X1)/4 and P3f = (X2 ⊗X2)/4
leave w = x1y1 − x2y2 + i(x1y2 + x2y1) and w invariant, respectively. Therefore,
we obtain the decomposition

xy ′ = 1

2

[
α δ

−δ α

]
+ 1

2

[$(w) %(w)
%(w) −$(w)

]
in terms of four (dual) canonical invariants, namely, α, δ, $(w) and %(w). In
particular, when x = y,

xx ′ = 1

2

[
x2

1 + x2
2 0
0 x2

1 + x2
2

]
+ 1

2

[
x2

1 − x2
2 2x1x2

2x1x2 −x2
1 + x2

2

]
, (5.12)

in which case α = ||x||2, a consequence of the fact that α = cos ∠(x, y)||x||||y||.
Moreover, then, the list of coinvariants reduces to α, $(w), and %(w). This one-
to-one correspondence between the dimension of xy ′ and the number of coin-
variants reflects the fact that Cn is Abelian and all irreducible characters are one-
dimensional. In addition, it can be shown that the entries of these matrices are the
only invariants of the 2-dim planar rotation representations of Cn, for all n ≥ 3.
When n = 2, the planar rotation is a point inversion x →−x so that all components
x1y1, x1y2, x2y1, x2y2 of xy ′ remain invariant. This also follows from the fact that
in this case the canonical projections are P1 = I4 and P2 = 0. It is also opportune
to note that the decomposition (5.12) has the form

xx ′ = A

[
1 0
0 1

]
+
[
B C

C −B

]
,

that coincides with the form

xx∗ = A

[
1 0
0 1

]
+
[

B D

D∗ C

]
,

of decompositions obtained for coherence matrices xx∗, utilized in the theory of
partial polarization of light. Here, A, B, and C are real positive quantities, and x∗

is the Hermitian conjugate of x. See, for example, O’Neill (1963, p. 151).
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Coinvariants of bilateral symmetries

Consider two scalar measurements, x and y, obtained on the two sides of an
experimental unit and let S2 act on the sides {1, 2} by permutation. We observe
the data x ′ = (x1, x2), and y ′ = (y1, y2). For example, x and y may indicate the
intraocular pressure and the visual acuity obtained from fellow eyes.

Direct evaluation of ρ ⊗ ρ and the associated canonical decomposition of xy ′

gives

xy ′ = 1

2

[
x1y1 + x2y2 x1y2 + x2y1

x1y2 + x2y1 x1y1 + x2y2

]
+ 1

2

[
x1y1 − x2y2 x1y2 − x2y1

−x1y2 + x2y1 −x1y1 + x2y2

]
,

and in particular,

xx ′ = 1

2

[
x2

1 + x2
2 2x1x2

2x1x2 x2
1 + x2

2

]
+ 1

2

[
x2

1 − x2
2 0

0 −x2
1 + x2

2

]
. (5.13)

The two components in the canonical decomposition represent, respectively, the
coinvariants of intraclass covariance and bilateral variance differentiation. To see
this in the usual statistical formulation, we apply the decomposition (5.13) to

A = 1

n

∑
α

zαz
′
α, α = 1, . . . , N,

where zα = xα − x, x =∑
α xα/N and n = N − 1, so that then the canonical

decomposition

A = 1

2
Aintraclass + 1

2

(
s2

1 − s2
2

) [1 0
0 −1

]
obtains. Not surprisingly, it also says that matrix A is an intraclass matrix if and
only if the second component in the decomposition vanishes, that it, when s2

1 = s2
2 ,

as well-known. In that case, in fact, A is the usual maximum likelihood estimate
of the underlying covariance structure. Algebraically, the first component in the
decomposition is a matrix that commutes with all the elements in the permutation
representation of S2. We say that it intertwines with the permutation representa-
tion.

Coinvariants of C4

We conclude this section with an outline of the derivation of the coinvariants of C4

acting by permutation on V = {1, 2, 3, 4}. Here, the structured data take the form
of

x ⊗ y ≡ xy ′ =

⎡⎢⎢⎣
x1y1 x1y2 x1y3 x1y4

x2y1 x2y2 x2y3 x2y4

x3y1 x3y2 x3y3 x3y4

x4y1 x4y2 x4y3 x4y4

⎤⎥⎥⎦ , x, y ∈ R
4.
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Starting with the representation of C4 and its character table, respectively,

ρk =

⎡⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎤⎥⎥⎦
k−1

,

k 1 2 3 4

χ1 1 1 1 1
χ2 1 i −1 −i

χ3 1 −1 1 −1
χ4 1 −i −1 i

, k = 1, 2, 3, 4, (5.14)

the resulting canonical projectionsPj =
∑

k χj (k)[ρk ⊗ ρk]/4, j = 1, . . . , 4, each
in dimension of 4, lead to the decomposition

xy ′ = 1

4

⎡⎢⎣α β γ δ
δ α β γ
γ δ α β
β γ δ α

⎤⎥⎦+ 1

4

⎡⎢⎣ A B C D
−D −A −B −C

C D A B
−B −C −D −A

⎤⎥⎦+ 1

2

⎡⎢⎣ a c e f
g b d h
−e −f −a −c
−d −h −g −b

⎤⎥⎦ ,

obtained, respectively, from P1, P3, and P24 = P2 + P4. We remark that P2 and
P4 are complex conjugate and that P∗2P4 = P∗4P2 = 0. We note that the first
component in the above decomposition intertwines with C4 whereas the other two
components exhibit a pattern that has essentially the symmetry of C4.

The corresponding 16 coinvariants for xy ′ and 10 coinvariants for xx ′ are shown
in Table (5.15).

entry coinvariants of xy ′ coinvariants of xx ′

α x1y1 + x2y2 + x3y3 + x4y4 x1
2 + x2

2 + x3
2 + x4

2

β x1y2 + x2y3 + x3y4 + x4y1 x4x1 + x2x1 + x3x2 + x4x3

γ x1y3 + x2y4 + x3y1 + x4y2 2 x3x1 + 2 x4x2

δ x1y4 + x2y1 + x3y2 + x4y3 x4x1 + x2x1 + x3x2 + x4x3

A x1y1 − x2y2 + x3y3 − x4y4 x1
2 − x2

2 + x3
2 − x4

2

B x1y2 − x2y3 + x3y4 − x4y1 −x4x1 + x2x1 − x3x2 + x4x3

C x1y3 − x2y4 + x3y1 − x4y2 2 x3x1 − 2 x4x2

D x1y4 − x2y1 + x3y2 − x4y3 x4x1 − x2x1 + x3x2 − x4x3

a x1y1 − x3y3 x1
2 − x3

2

c x1y2 − x3y4 x2x1 − x4x3

e x1y3 − x3y1 0
f x1y4 − x3y2 −x3x2 + x4x1

g x2y1 − x4y3 x2x1 − x4x3

b x2y2 − x4y4 x2
2 − x4

2

d x2y3 − x4y1 x3x2 − x4x1

h x2y4 − x4y2 0

. (5.15)

Note that in the decomposition of xx ′ we have the additional 6 constraints β =
δ, B = −D, e = h = 0, c = g and f = −d, thus bringing the total number of
coinvariants to be 16− 6 = 10, the dimension of xx ′.
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Cyclic coinvariants for short nucleotide sequences. The cyclic coinvariants can
be utilized to explore a nucleotide sequence. For example, the work of Doi (1991)
on the evolutionary strategy of the HIV-1 virus is based on the study of frequencies
of certain cyclic orbits. To illustrate, we use as a reference sequence the isolate
BRU from the HIV-1, which is a 9,229 bp (base-pair) long nucleotide sequence.
Specifically, we will consider the six cyclic orbits in length of 4, namely,

Oagct = {agct, tagc, ctag, gcta}, Oacgt = {acgt, tacg, gtac, cgta},
Oagtc = {agtc, cagt, tcag, gtca}, Oactg = {actg, gact, tgac, ctga},
Oatcg = {atcg, gatc, cgat, tcga}, Oatgc = {atgc, catg, gcat, tgac},

where C4 acts transitively according to sτ−1 for s ∈ O and τ ∈ C4. At each point
s ∈ O we measure the frequency xs with which the sequence s appeared in six
adjacent subsequences in length of 1,500 bps. Following the evaluation of the 10
coinvariants of xx ′, as described by Table (5.15), the range (= max −min), mean,
and signal-to-noise ratio (SNR) over the six adjacent regions were calculated, for
each orbit. The results are shown in Tables (5.16), (5.17), and (5.18), respectively.

range Oagct Oacgt Oagtc Oactg Oatcg Oatgc

α 945.55 80.00 290.21 768.19 92.57 164.00
β 260.00 24.00 240.00 357.09 46.78 156.00
γ 720.61 42.00 204.00 120.00 36.00 164.00
A 1030.00 78.00 216.00 90.00 45.00 114.00
B 101.58 7.00 84.00 427.09 46.78 12.00
C 1084.60 36.00 264.00 188.00 48.00 281.58
a 581.46 71.00 176.00 421.09 47.78 96.00
c 209.15 9.00 50.00 457.09 10.00 90.78
f 141.58 8.00 146.00 50.00 56.78 68.78
b 85.78 1.00 133.00 457.09 91.78 78.78

(5.16)

mean Oagct Oacgt Oagtc Oactg Oatcg Oatgc

α 311.00 57.60 164.00 223.00 34.80 117.00
β 167.00 6.33 122.00 140.00 15.10 97.60
γ 262.00 11.70 104.00 70.00 7.33 97.60
A 161.00 56.30 −2.87 1.17 −15.80 −1.04
B 14.40 −2.00 −20.80 71.00 −9.13 2.33
C 74.10 10.70 −90.30 −20.00 −10.70 −49.40
a 109.00 −55.00 −64.10 78.80 7.46 −9.33
c 27.50 −1.17 −8.17 69.80 1.67 −8.96
f −5.43 −3.50 −48.70 9.50 4.80 3.30
b 0.46 0.33 50.00 68.70 8.04 −0.96

(5.17)
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SNR Oagct Oacgt Oagtc Oactg Oatcg Oatgc

α 0.937 4.990 2.570 0.642 1.150 4.580
β 2.720 0.545 2.440 1.210 0.640 3.900
γ 1.150 0.606 2.660 3.610 0.311 3.490
A 0.220 5.120 0.001 0.002 1.040 0.561× 10−3

B 0.164 0.480 0.523 0.206 0.290 0.283
C 0.048 0.674 1.080 0.121 0.364 0.259
a 0.283 5.680 1.160 0.265 0.180 0.101
c 0.146 0.144 0.291 0.195 0.200 0.110
f 0.015 0.925 1.070 0.344 0.063 0.019
b 0.205× 10−3 0.500 0.981 0.186 0.081 0.001

(5.18)

These data summaries are systematic extensions of the cyclic diversities
maxs∈O xs/ mins∈O xs that appear in the work of Doi (1991), defined as the ra-
tio between the largest and the smallest local frequencies xs , as s varies within
the orbit O. The frequency diversity can be used to probe the randomness of base
substitution for the virus in certain local regions of interest. The cyclic orbits are
sufficient to characterize the nucleotide sequence according to whether or not a
certain orbit can be observed. The closest the frequency diversity is to 1 the more
characteristic that orbit is, while conversely, the frequency diversity of a non charac-
teristic orbit is relatively larger. Clearly, the frequency diversity is also an invariant
under the action on C4. The SNR of each coinvariant may also characterize the
sequence in the sense that large values of SNR should imply small variability in the
coinvariant across the (six) localized regions in the sequence. We observe, for ex-
ample, that the acgt to atcg SNR ratio for A = x1

2 − x2
2 + x3

2 − x4
2 is 9,126 : 1,

thus conveying the fact that these two pairs of orbits characterize the genome in
remarkably distinct ways and may provide a basis for explanation at the molecular
biology level.

We conclude this example with the evaluation of the coinvariants for six of the
orbits in length of 4 considered in Doi’s work, namely, the cyclic orbits generated
by aatt, acac, atat, gtgt, cttg and ggtt . Tables (5.19) to (5.24) show the observed
coinvariants at each one of the six adjacent regions in length of L = 1, 500 bps,
whereas Tables (5.25) and (5.26) show the mean and range over the same regions.
We note that for orbits acac, atat , and gtgt the action of C4 is such that x1 = x3

and x2 = x4, and consequently the coinvariants B, a, c, f , and b are all equal to
0. The SNRs for the remaining orbits are shown in Table (5.27). These ratios are
all relatively small, thus implying a relatively large potential for separating the six
regions of the genome.
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Oaatt α β γ A B C a c f b

1 450 336 322 190 −64 124 192 −40 152 −112
2 771 682 674 271 −36 −28 279 37 161 −88
3 291 198 274 −209 4 −428 9 29 −7 88
4 1047 992 938 77 30 −490 320 203 107 93
5 174 165 172 52 −1 −8 15 −2 13 −11
6 1 0 0 1 0 0 −1 0 0 0

(5.19)

Oacac α β γ A B C a c f b

1 82 80 82 −18 0 −68 0 0 0 0
2 232 160 232 −168 0 −368 0 0 0 0
3 200 192 200 −56 0 −184 0 0 0 0
4 520 448 520 −264 0 −656 0 0 0 0
5 370 352 370 −114 0 −356 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0

(5.20)

Oatat α β γ A B C a c f b

1 50 48 50 −14 0 −46 0 0 0 0
2 232 160 232 168 0 136 0 0 0 0
3 314 264 314 170 0 98 0 0 0 0
4 324 324 324 0 0 −162 0 0 0 0
5 122 120 122 22 0 −28 0 0 0 0
6 4 4 4 0 0 −2 0 0 0 0

(5.21)

Ogtgt α β γ A B C a c f b

1 52 20 52 −48 0 −98 0 0 0 0
2 4 4 4 0 0 −2 0 0 0 0
3 298 280 298 −102 0 −302 0 0 0 0
4 146 96 146 −110 0 −238 0 0 0 0
5 208 80 208 −192 0 −392 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0

(5.22)

Octtg α β γ A B C a c f b

1 24 12 16 −16 4 −32 −4 −8 −4 −12
2 3 2 2 −1 0 −4 −1 −1 −1 0
3 158 135 148 76 −3 28 −45 −6 −21 9
4 66 33 64 56 1 52 −11 −7 4 −3
5 321 294 316 121 −2 28 −21 14 −28 28
6 68 64 60 0 −4 −30 −16 0 −16 16

(5.23)
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Oggtt α β γ A B C a c f b

1 97 60 72 63 12 48 −48 −28 8 −15
2 60 48 40 20 −8 −8 −32 −4 −20 12
3 81 50 44 55 −6 8 −60 −10 −20 5
4 163 132 102 17 −30 −42 −72 −3 −63 55
5 319 252 266 171 −14 56 −147 −21 −63 24
6 2 1 0 0 1 0 1 1 0 1

(5.24)

mean Oaatt Oacac Oatat Ogtgt Octtg Oggtt

α 456.0 234.0 174.0 118.0 107.0 120.0
β 396.0 205.0 153.0 80.0 90.0 90.5
γ 397.0 234.0 174.0 118.0 101.0 87.3
A 63.7 −103.0 57.7 −75.3 39.3 54.3
B −11.2 0.0 0.0 0.0 −0.7 −7.5
C −138.0 −272.0 −0.7 −172.0 7.0 10.3
a 136.0 0.0 0.0 0.0 −16.3 −59.7
c 37.8 0.0 0.0 0.0 −1.3 −10.8
f 71.0 0.0 0.0 0.0 −11.0 −26.3
b −5.0 0.0 0.0 0.0 6.3 13.7

(5.25)

range Oaatt Oacac Oatat Ogtgt Octtg Oggtt

α 1046 520 320 298 318 317
β 992 448 320 280 292 251
γ 938 520 320 298 314 266
A 480 264 184 192 137 171
B 94 0 0 0 8 42
C 614 656 298 392 84 98
a 321 0 0 0 44 148
c 243 0 0 0 22 29
f 168 0 0 0 32 71
b 205 0 0 0 40 70

(5.26)

SNR Oaatt Octtg Oggtt

α 1.630 0.985 1.420
β 1.360 0.792 1.220
γ 1.580 0.893 1.040
A 0.177 0.639 0.922
B 0.135 0.061 0.336
C 0.354 0.049 0.095
a 1.030 1.270 1.730
c 0.236 0.031 1.090
f 0.993 0.921 0.896
b 0.004 0.233 0.390

(5.27)
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The examples in this section apply to a set {x, y, z} of three or (similarly) more
measurements by extending

x ⊗ y = (x1y1, x1y2, . . . , xnyn)′,

to x ⊗ y ⊗ z and observing that then ρ ⊗ ρ ⊗ ρ is the linear representation of G

taking the components of x ⊗ y ⊗ z into the components of (ρτx)⊗ (ρτy)⊗ (ρτz),
for each τ ∈ G. The entries of x ⊗ y ⊗ . . . are often called Euclidean tensors (rel-
ative to G) in Cartan’s notation. The illustration on page 140 also has the inter-
pretation that {x1y1 ± x2y2, x1y2 ± x2y1, x

2
1 ± x2

2 , y
2
1 ± y2

2} is the set of cyclically
invariant polynomials in {xy ′, xx ′, yy ′}.

5.9 Canonical Decompositions of Entropy Data

The entropy H = −∑
j pj log pj of a finite set of n mutually exclusive events

with corresponding probabilities p1, . . . , pn measures the amount of uncertainty
associated with those events (Khinchin, 1957, p. 3). Its value is zero when any of the
events is certain, it is positive otherwise, and attains its maximum value (log n) when
the events are equally like, that is, p1 = . . . = pn = 1/n. Alternatively (Kullback,
1968, p. 7), H is the mean value of the quantities− log pj and can be interpreted as
the mean information in an observation obtained to ascertain the mutually exclusive
and exhaustive (hypotheses defined by those) events. In the case of (structured)
events s indexed by V , we write, accordingly, H = −∑

s∈V ps log ps .

The Standard Decomposition of Entropy

In the simplest case in which the probability distribution is p′ = (p1, p2) and S2 acts
on V = {1, 2} by permutation, the canonical decomposition is simply I = A+Q.
Writing �′p = (log p1, log p2), we see that

H = −p′�p = −p′I�p = −(p′A�p + p′Q�p),

is the canonical decomposition of the entropy, the components of which can be
expressed as the log geometric mean

H1 = −p′A�p = −1

2
log(p1p2)

of the components of p, and as

H2 = −p′Q�p = −1

2
(p1 − p2) log

(
p1

p2

)
.
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However, equivalently,

H2 = −
2∑

i=1

(
pi − 1

2

)
log

pi

1/2
,

is precisely Kullback’s (1968) divergence between p and the uniform distribution
(1/2, 1/2), which is consistent with the interpretation of entropy as a measure of
nonuniformity.

Invariant plots. Observe that both H1 and H2 remain invariant under S2, in the
sense that

(ρτp)′P(ρτ�p) = p′P�p, P = A,Q,

for all permutations ρτ , τ ∈ S2, so that they provide a natural system of coordinates
for displaying and interpreting the entropy of p and any covariates jointly observed
with p.

The n-component case. The standard decomposition of the entropy obtained
for two-component distributions extends to n-component distributions simply
by applying the standard decomposition I = A+Q in the corresponding di-
mension to the entropy H = −p′�p of a distribution p′ = (p1, . . . , pn), where
�′p = (log(p1), . . . , log(pn)).

The standard reduction of the entropy H in p′ = (p1, . . . , pn) is then H =
H1 +H2 with

H1 = −1

n
log(p1p2 . . . pn), H2 = −1

n

∑
i<j

(pi − pj ) log
pi

pj

.

Similarly to the case n = 2 described earlier,−H decomposes as the sum of the
log geometric mean and Kullback’s divergence

−H2 =
n∑

i=1

(
pi − 1

n

)
log

pi

1/n

between p and the corresponding uniform distribution. This can be easily verified
by direct evaluation of the RHS of the above equality.

Invariant plots in the H1 × H2 space

Table (5.28) shows the observed frequencies with which the words in the permu-
tation orbit V = {act, cta, tac, cat, tca, atc} of the DNA word act appear in
nine subsequent regions along the BRU isolate of the HIV-1, introduced earlier on
page 38. The table also shows the entropy (H ) of each distribution and its standard
decomposition: the log geometric mean (−H1) and divergence (−H2) relative to
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1.80 1.82 1.84 1.86
H1

-0.14

-0.11

-0.08

-0.05

-0.02

H
2

1.73
1.74
1.75
1.76
1.77

H

Figure 5.1: Points of constant entropy for the nine ACT orbits of Table (5.28).

the corresponding uniform distribution. In the present example S6 acts on V by
permutation of the DNA words as labels for the data.

The decompositions are shown in the invariant plot of Figure 5.1. Note, for ex-
ample, the splitting of two distributions with the same entropy (H = 1.77) into two
representations in the H1 ×H2 space, one of them with increased divergence from
the corresponding uniform distribution. Differentiations of that nature are possible
because the dimension of the invariant subspace associated with the projection Q
is Tr Q = m− 1 > 1, where m is the number of components in the distribution
under consideration.

s\region 1 2 3 4 5 6 7 8 9

act 8 16 16 7 17 11 12 6 14
cta 15 8 14 9 14 15 8 5 16
tac 7 17 13 15 9 11 18 5 17
cat 14 15 16 14 21 17 15 10 8
tca 11 18 10 17 11 16 14 9 13
atc 7 15 9 13 11 11 11 12 10

total 62 89 78 75 83 81 78 47 78

H 1.74 1.76 1.77 1.75 1.75 1.77 1.76 1.73 1.76
H1 1.84 1.82 1.82 1.84 1.83 1.81 1.82 1.85 1.82
H2 −0.10 −0.06 −0.05 −0.09 −0.08 −0.04 −0.06 −0.12 −0.06

(5.28)

It is remarked again that H1 and H2 are the only (nonzero) canonical compo-
nents associated with the permutation action on the components of the distribution,
and in that sense the space H1 ×H2 is the unique, up to equivalent representa-
tions, two-dimensional permutation-invariant space for the graphical display of
entropy.

The standard decomposition of the entropy of the Sloan fonts

Table (5.29) shows the 10 Sloan fonts introduced earlier on page 3, along with their
estimated entropy and standard components H1 and H2 of H . It gives a numerical
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Figure 5.2: Porosity levels in the standard invariant plot for coxite data.

assessment of the role of −H2 as the divergence from the uniform distribution,
ranging from 0.58 when the distribution is p′ = (0.844, 0.156) to 0.001 when
p′ = (0.516, 0.484).

Sloan font Difficulty Entropy H1 H2

Z 0.844 0.433 1.010 −0.580
N 0.774 0.535 0.870 −0.337
H 0.688 0.619 0.770 −0.152
V 0.636 0.656 0.730 −0.076
R 0.622 0.663 0.725 −0.061
K 0.609 0.669 0.720 −0.048
D 0.556 0.687 0.700 −0.012
S 0.516 0.693 0.695 −0.001
O 0.470 0.692 0.695 −0.003
C 0.393 0.673 0.715 −0.040

(5.29)

Geological compositions

The geological composition data shown in Aitchison (1986, p. 354) describe the
composition of albite, blandite, cornite, daubite, and endite in 25 samples of coxite,
in addition to their porosity (percentage of void space). In that context, probability
distributions are referred to as compositions, following Aitchison (1986, p. 26).

Figure 5.2 shows the porosity levels in the canonical components. The entropy
among all compositions is within the range of 75− 87% of the max entropy (log 5 =
1.6), thus being concentrated in a relatively narrow segment of the invariant space.
Evaluation of the joint distribution of porosity and H2 suggested that porosity
is negatively correlated with H2, or, equivalently, positively correlated with the
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divergence. In fact, the observed sample correlation coefficient based on 25 samples
of these two variables is 0.78.

The regular decomposition of entropy

Indicate by p′ = (π1, π2, π3, θ1, θ2, θ3) a probability distribution in which the com-
ponents are indexed by S3. Direct application of the canonical decomposition of
the regular representation of S3 derived on pages 106–107 shows that entropy H

in p resolves into the sum of the components

H1 = −p′P1�p = −1

6
log[π1π2π3θ1θ2θ3],

H2 = −p′Pβ�p

= −1

3
log

[(
π1

π2

)π1−π2
(

π1

π3

)π1−π3
(

π2

π3

)π2−π3
(

θ1

θ2

)θ1−θ2
(

θ1

θ3

)θ1−θ3
(

θ2

θ3

)θ2−θ3
]

,

and

H3 = −p′PSgn�p = −1

6
log

(
π1π2π3

θ1θ2θ3

)(π1+π2+π3−θ1−θ2−θ3)

.

Data-analytic aspects. When the distribution of the observed frequencies x is
multinomial M(x | p), the posterior distribution of p given the data x under a
Dirichlet prior model D(a) for p is again Dirichlet D(x + a), so that the eval-
uation of the posterior moments for scalar functions of p often follows from
numerical methods to evaluate the corresponding integrals over the simplex
S = {p;

∑
j pj = 1}. Alternatively, the posterior Dirichlet densities can be sim-

ulated from independent univariate gamma distributions (Devroye, 1986, p. 593).
To illustrate, consider the decompositions of the entropy in the frequency distribu-
tions indexed by the full permutation orbit of the DNA word {act} in Region 2,
shown in Table (5.28). A similar calculation was obtained for the orbit of {agc},
also in region 2. A total of 5,000 samples of the posterior Dirichlet distributions
under uniform prior were generated. Figure 5.3 shows the (90% approximate) con-
tours for the posterior joint density of H2 and H1, determined by Pβ , for each one
of the two orbits. The mean and standard deviations for the entropy components
are shown in Table (5.30)

Hagc H1,agc H2,agc H3,agc Hact H1,act H2,act H3,act

mean 1.403 2.444 −1.029 −0.013 1.790 1.855 −0.041 −0.024
SD 0.083 0.236 0.325 0.071 0.123 0.035 0.142 0.028

(5.30)

The striking difference in the entropy of the two orbits is explained, following the
interpretation of the regular component H2 of H under the action of S3, by the
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Figure 5.3: Posterior joint density contours (90%) for H2 and H1.

amount with which the relative freguencies of rotations and reversals differ from
the uniform distribution (1/3, 1/3, 1/3). Inspection of the posterior distribution of
H3 reveals that there is very little divergence between the marginal distribution
of rotations and translations and the uniform distribution (1/2, 1/2), which is the
interpretation of the component H3. Again, in this example, the canonical invariants
derived from permutation symmetries applied to the labels for the data led to the
discovery of contrasting summaries of that data. See also Viana (2006).

5.10 A Two-Way Cyclic Decomposition

When the cyclic permutations act on the c rows and � columns of V = C × L, the
resulting c� canonical projections matrices are given by

Pmn = 1

c�

∑
k,j

ωmk
c ω

nj

�

(
ρk

c ⊗ ρ
j

�

)
, (5.31)

where ωf = e−2πi/f and ρf is a generating matrix for Cf , for f ∈ {c, �},
k, n = 0, . . . , c − 1, j,m = 0, . . . , �− 1. To illustrate, consider the mining dis-
aster frequency data, shown in Table (5.32) and discussed in Wit and McCullagh
(2001). The frequencies, recorded over a 11-year period, are distributed according
to days of the week and seasons of the year so that � = 4 and c = 7.

Mon Tue Wed Thu Fri Sat Sun total

Autumn 7 10 5 5 6 7 1 41
Winter 5 9 10 10 11 7 0 52
Spring 3 7 10 12 13 9 2 56

Summer 4 8 8 9 5 6 2 42

total 19 34 33 36 35 29 5 N = 191

(5.32)
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Following with the notation introduced on page 148, there are 28 one-dimensional
canonical projections reducing the entropy H = −p′�p in the joint frequency
distribution. The entropy components shown on Table (5.33) were derived from
the canonical decomposition

I28 = I4 ⊗ I7 = (Pq

1 + Pq

2 + Pq

3 )⊗ (Pw
1 + Pw

2 + Pw
3 + Pw

4 )

in which the quarterly component Pq

2 is the sum of two complex conjugate compo-
nents and, similarly for three weekly componentsPw

2 ,Pw
3 , andPw

4 . The component
Pq

1 ⊗ Pw
1 is the symmetric component.

⊗ Pw
1 Pw

2 Pw
3 Pw

4

Pq

1 3.5200 −0.1600 −0.0500 −0.02000
Pq

2 −0.0159 −0.0390 −0.0132 −0.00499
Pq

3 0.0001 −0.0039 −0.0018 0.00004

. (5.33)

The estimated overall entropy is 3.21 (the maximum entropy is −log(1/28) =
3.33). Indicating by H1 the symmetric entropy component (the log geometric
mean), it follows that H2 = N (H −H1) is then Kullback’s divergence against the
corresponding uniform distribution. In the joint distribution H2 = −191(3.21−
3.52) = 59.2, which is clearly significant under the (null hypothesis) large-sample
χ2

27 distribution of H2 (Kullback, 1968, p. 113). Similarly, in the weekly marginal
distribution, H2 = 55.4, whereas in the quarterly distribution H2 = 15.3, both also
clearly significant.

5.11 Data Structures Induced by Point Groups

In this section we illustrate an application of the canonical reduction to data in-
duced by point groups. Since these groups are well-known,2 the data analyst has a
potentially large class of structures to work with. These groups were introduced,
with the present notation, earlier on page 65.

Data structures induced by C3v

The symmetry transformations in R
3 defined by the point group C3v include the

identity (E), a 120◦ rotation (C) around the z axis, a 240◦ rotation (C2) around
the z axis, and three reflections (σ1, σ2, σ3) on dihedral vertical planes contain-
ing the z axis. That is,

C3v = {E,C,C2, σ1, σ2, σ3}.

2 The reader may refer, for example, to the Max Plank Institute for Polymer Research (Web site: www.mpip-
mainz.mpg.de) for the character table of these groups.
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The ammonia molecule NH3, for example, has the symmetry of C3v. The multipli-
cation table for C3v is

C3v E C C2 σ1 σ2 σ3

E E C C2 σ1 σ2 σ3

C C C2 E σ2 σ3 σ1

C2 C2 E C σ3 σ1 σ2

σ1 σ1 σ3 σ2 E C2 C

σ2 σ2 σ1 σ3 C E C2

σ3 σ3 σ2 σ1 C2 C E

. (5.34)

Note that C3v is noncommutative and that every rotation factors as a product of two
reflections (a particular case of the fact that in the Euclidean n-dimensional space
every rotation factors a the product of an even number ≤ n of reflections, e.g.,
Cartan (1966, p. 10). The natural action of C3v on the canonical basis {e1, e2, e3} of
R

3 is given by

r(E) =
[

1 0 0
0 1 0
0 0 1

]
, r(C) = 1/2

⎡⎣ −1
√

3 0
−√3 −1 0

0 0 2

⎤⎦ , r(C2) = 1/2

⎡⎣−1 −√3 0√
3 −1 0

0 0 2

⎤⎦ ,

r(σ1) = 1/2

⎡⎣ 1
√

3 0√
3 −1 0

0 0 2

⎤⎦ , r(σ2) = 1/2

⎡⎣ 1 −√3 0
−√3 −1 0

0 0 2

⎤⎦ , r(σ3) =
[−1 0 0

0 1 0
0 0 1

]
,

where the rotation on the xy plane is clockwise, σ3 is the reflection on the yz plane,
and σ1 and σ2 are the reflections on the two other (120◦) dihedral planes containing
the z axis. It extends, by linearity, to an action of C3v on R

3.
Observing that C3v  S3 via (τ, ei) = eσi , τ ∈ C3v, σ ∈ S3, we obtain the canon-

ical projections associated with the natural action (r), namely,

P1 = 1

6

[∑
i

r(Ci)+
∑

i

r(σi)

]

= Diag(0, 0, 1), Pβ = 2

6
[2r(E)+ r(C)+ r(C2)] = Diag(1, 1, 0),

whereas PSgn = [
∑

i r(Ci)−∑
i r(σi)]/6 = 0. The corresponding invariant sub-

spaces have dimensions 1, 0, 2, respectively. Clearly, if v′ = (x, y, z) ∈ R
3 then C3v

induces a partition of ||v||2 into two orthogonal components, namely, x2 + y2 from
P3v = (x, y, 0) and z2 from P1v = (0, 0, z). The decomposition, or reduction, of

v ⊗ v =
⎡⎣x2 xy xz

yx y2 yz

zx zy z2

⎤⎦
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follows from the canonical projections (T ) associated with the tensor representation
r ⊗ r . Here we have displayed the column vector v ⊗ v, for convenience, as a 3× 3
matrix. Specifically, v ⊗ v reduces as m1 +m2 +m3, in which m1, m2 and m3 are,
respectively,

1

2

⎡⎣x2 + y2 0 0
0 x2 + y2 0
0 0 2 z2

⎤⎦ ,
1

2

⎡⎣ 0 xy − yx 0
−xy + yx 0 0

0 0 0

⎤⎦ ,
1

2

⎡⎣x2 − y2 xy + yx 2 xz

xy + yx −x2 + y2 2 yz

2 zx 2 zy 0

⎤⎦ .

The associated invariant subspaces have dimensions bounded by 2, 1, 6, respec-
tively. Note that T2(v ⊗ v) = 0 when the algebra is commutative. The entries in
T (v ⊗ v) are the invariant quadratic polynomials3 characterized by the point group
C3v. Similarly, the components for the decomposition of v ⊗ v ⊗ v are,

m1 = 1

4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 3 x2y − y3 2 x2z+ 2 y2z

3 x2y − y3 0 0
2 x2z+ 2 y2z 0 0
3 x2y − y3 0 0
0 −3 x2y + y3 2 x2z+ 2 y2z

0 2 x2z+ 2 y2z 0
2 x2z+ 2 y2z 0 0
0 2 x2z+ 2 y2z 0
0 0 4 z3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, m2 = 1

4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x3 − 3 xy2 0 0
0 −x3 + 3 xy2 0
0 0 0
0 −x3 + 3 xy2 0

−x3 + 3 xy2 0 0
0 0 0
0 0 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

m3 = 1

4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 x3 + 3 xy2 x2y + y3 2 x2z− 2 y2z

x2y + y3 x3 + xy2 4 xyz

2 x2z− 2 y2z 4 xyz 4 xz2

x2y + y3 x3 + xy2 4 xyz

x3 + xy2 3 x2y + 3 y3 −2 x2z+ 2 y2z

4 xyz −2 x2z+ 2 y2z 4 yz2

2 x2z− 2 y2z 4 xyz 4 xz2

4 xyz −2 x2z+ 2 y2z 4 yz2

4 xz2 4 yz2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The corresponding invariant subspaces have dimensions bounded by 5, 4, 18, re-
spectively. These are the C3v-invariant cubic polynomials. We have m1 +m2 +
m3 = v ⊗ v ⊗ v.

5.12 Data Indexed by Homogeneous Polynomials

Consider the real homogeneous polynomial aX2 + bY 2 + wXY in X, Y and inter-
pret

V = {X2, Y 2, XY }

3 The character tables, linear, quadratic and cubic functions of all point groups ara available, for example, from
the Max Planck Institute for Polymer Research – www.mpip-mainz.mpg.de.
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as a set of labels for the potential data x ′ = (a, b,w). This structure is prototypic
of many experimental conditions. In one example, we may interpret (a, b,w) as
the clearance rates with which an organism responds to medication under drug
X alone, under drug Y alone, or under a combination XY of these two drugs. In
another example, the data might consist of the frequencies (a, b,w) with which the
apparent position u(x, y) of an object is displaced along a given X-axis, along a
second Y -axis, or along any other line in the X − Y plane. In eye movement studies,
the X-axis might be the nasal-temporal axis and the Y axis the superior-inferior
axis, centered in the apex of the cornea. In yet another interpretation, (a, b,w) may
be equated to the partial derivatives (uxx, uyy, 2uxy) evaluated at (0, 0) that appear
in the Maclaurin expansion

u(x, y) = · · · + 1

2!
[uxxX

2 + uyyY
2 + 2uxyXY ]+ · · · (5.35)

of a given locally smooth function u(x, y) in the variables x, y. More generally
(Hoffman, 1966), given a smooth function F (x, y) and the Lie derivative

L = f (x, y)
∂

∂x
+ g(x, y)

∂

∂y

of a given Lie group, we may interpret the operational components in L2 as the
labels for the corresponding data L2F , where L2 indicates the twofold application
of L.

In linear optics (Lakshminarayanan and Viana, 2005) we may consider the labels
in V assembled in the form of the 2× 2 matrix

V =
[

X2 XY

YX Y 2

]
,

and observe that the multiplication V M of V with an arbitrary 2×m matrix M

generates another matrix in which each entry is then an homogenous polynomial
in degree of 2. As a consequence, the operation V M has the effect of indexing the
data in M with the labels in V . The matrix M may represent a linear instrument or
a ray vector. If, for example, X = cos(α) and Y = sin(α), the resulting matrix

P (α) =
[

cos2 (α) sin (α) cos (α)

sin (α) cos (α) sin2 (α)

]
,

represents a polarizer, which takes the projection of the electric field in the direction
making an angle α with the x-axis. If M = P (α) and V = P (φ) then V Mf indexes
the outcoming ray Mf from the polarizer M (excited by the incoming ray f ) with
the labels in the analyzer V . Similar constructions apply to n-fold products V × . . .

and V⊗ . . . of V . In general, the mapping space V = V L with c� elements is in one-
to-one correspondence with the homogeneous polynomial (a1X1 + · · · + acXc)�.
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For example, the set V = {uu, yy, uy, yu} of binary sequences in length of 2 can
be indexed by

(aU + bY )2 ≡ c11U
2 + c12UY + c21YU + c22Y

2,

where the coefficients may be interpreted as observations indexed by the points
in V . In typical applications, these are frequencies with which the corresponding
words appear in a reference sequence.

Broadly, then, the labels in V are consistent with experiments in which the
potential data are indexed by each one of two distinct conditions alone and by
the joint presence of the two conditions. We observe (Bacry, 1967, p. 207) that
V appears as a representation space for the planar rotations within the context of
solving the Laplace equation in V . See also Lakhsminarayanan and Varadharajan
(1997) for related application in the context of matrix optics.

5.13 Likelihood Decompositions

We conclude this chapter with a brief overview of applying canonical decompo-
sitions to the parameterization of probability models. We refer to Section 3.3 on
page 66, and Exercises 4.5–4.7 on page 122.

First we make the following remark. Given a canonical projection P =∑
τ nχτ−1ρτ/g in which the representation ρ of G (with g elements) is unitary

relative to the inner product (·, ·), we have

(x,Py) =
(

x,
∑

τ

nχτ−1ρτy/g

)
=
∑

τ

nχτ (ρτ−1x/g, y) =
(∑

τ

nχτρτ−1x/g, y

)
= (Px, y). (5.36)

Multinomial models. Let x have a multinomial distribution with underlying prob-
abilities p′ = (p1, . . . , pm), and write �p to indicate the vector of corresponding
log probabilities (assumed to be all nonzero). It is then simple to verify that the
probability distribution P (x | p) of x can be expressed as

P (x | p) = B(x)e(x,�p),

where the inner product is given by x ′�p and B(x) is the multinomial coefficient
for x given the total number N of observations. Let G act on the components of p,
giving a representationρ (isomorphically) unitary in (·, ·), and canonical projections
Pχ associated with the irreducible characters χ ∈ Ĝ. Then I =∑

χ∈Ĝ Pχ is the
resulting canonical decomposition of Im and, applying (5.36),

P (x | p) = B(x)
∏
χ∈Ĝ

e(x,Pχ �p).
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In the binomial case, the two components are the symmetric and the alternating
ones, in which

(x,P1�p) = N

2
log p(1− p), (x,PSgn�p) = x1 − x2

2
log

p

(1− p)
,

respectively. Note that the symmetric component does not depend on data, given
the total number N = x1 + x2 of observations, whereas the alternating component
depends on the probability parameter p only through the log odds ratio. To illus-
trate it further, consider a multinomial distribution P (x | p) indexed by S3. More
specifically, write x ′ = (r1, r2, r3, t1, t2, t3) to indicate the frequencies indexed by
the rotations r1, r2, r3 and reversals t1, t2, t3, and by p′ = (π1, π2, π3, θ1, θ2, θ3) the
corresponding probabilities. Direct calculations based on the canonical projections
described on pages 106–107 then show that

P (x | p) = B(x)e[(x,P1�p)+(x,PSgn)+(x,Pβ )],

in which

(x,P1�p) = n

6
log[π1π2π3θ1θ2θ3],

(x,PSgn�p) = 1

6
(r1 + r2 + r3 − t1 − t2 − t3) log

π1π2π3

θ1θ2θ3
,

and (using the fact that PβP1 = 0),

(x,Pβ�p) = 1

3

[
(2r1 − r2 − r3) log

π1

π3
+ (2r2 − r1 − r3) log

π2

π3

+ (2t1 − t2 − t3) log
θ1

θ3
+ (2t2 − t1 − t3) log

θ2

θ3

]
.

The new parameterization p̃ = M�p is described by

p̃′ =
(

log[π1π2π3θ1θ2θ3], log
π1π2π3

θ1θ2θ3
, log

π1

π3
, log

π2

π3
, log

θ1

θ3
, log

θ2

θ3

)
and

M = 1

6

⎡⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1
1 1 1 −1 −1 −1
2 0 −2 0 0 0
0 2 −2 0 0 0
0 0 0 2 0 −2
0 0 0 0 2 −2

⎤⎥⎥⎥⎥⎥⎥⎦ .

Similarly to the bivariate case we see that the symmetric component is now mod-
ulated by the alternating (Sgn) and the two-dimensional (β) components. If, for
example, the frequencies of rotations and reversals are about the same then the
distribution is essentially modulated by the within reversals, within rotations dif-
ferences accounted by β.
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Multivariate normal. Not surprisingly, if the distribution of x is multivariate
normal with vector of means µ and covariance matrix � then

f (ρτx | (µ, �)) = f (x | (ρτµ, (ρτ�ρ ′τ )−1)

for all τ ∈ G and unitary ρ, so that if � is centralized by G and µ is invariant under
G then f (ρτx | (µ, �)) = f (x | (µ, �)) for all τ ∈ G and the model is invariant
under G. In general, the distibution can be factorized from

(x − µ, �−1(x − µ)) = (x − µ, �−1P1(x − µ))+ · · · + (x − µ, �−1Ph(x − µ))

where I = P1 + · · · + Ph is a canonical decomposition of interest.

Further Reading

The theoretic aspects of the distribution of quadratic forms are covered in many
texts. The reader may refer to Searle (1971), Rao (1973), Muirhead (1982), and
Eaton (1983). Additional details for some of the applications described in the
chapter can be found in Viana (2007).

Applications of group-theoretic principles in statistics and probability have a long
history and tradition of their own, from Legendre-Gauss’s least squares principle
through R.A. Fisher’s method of variance decomposition. According to E.J. Hannan
(1965), the work of A. James (1957) appears to be among the first describing
the group-theoretic nature of Fisher’s argument, giving meaning to the notion of
relationship algebra, or the commuting algebra of a representation of the group of
symmetries of an experimental design. See also Mann (1960) and the earlier work
of James (1954) on the normal multivariate analysis and the orthogonal group. At
that same time, the integral of Haar, object of L. Nachbin’s (1965) monograph,
became a familiar tool among statisticians. An earlier report by Ledermann (1968)
described the joint action of the symmetric group on the rows and columns of a data
matrix and the resulting analysis of variance that follows from the decomposition
of the identity operator.

Two decades later, the relevance of group invariance and group representation
arguments in statistical inference would become evident in the works of Farrell
(1985), Diaconis (1988), Dawid (1988), Eaton (1989), Wijsman (1990), Anders-
son (1990), and Bailey (1991). These earlier references are certainly required com-
panion for the reader interested in related views of symmetry studies. The col-
lection of contemporary work (Viana and Richards, 2001) coedited by the author
clearly documents the continued interest in the applications of algebraic methods in
statistics. See also Andersson and Madsen (1998) and Helland (2004). The recent
work of Van de Ven and Di Bucchianico (2006) and Van de Ven (2007) is a compre-
hensive synthesis of the mathematical framework uderlying (fractional) factorial
designs, using arguments of Abelian groups. Details about projection matrices in
factorial designs are given in Gupta and Mekerjee (1989).
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The reader may refer to Viana (2007b) and Viana (2008) for complementary
readings related to the section on dihedral stratifications for voting preferences
(page 137).

Exercises

Exercise 5.1. The data shown in Table (5.37) is described in Cox and Snell (1989,
p. 6).

s successes trials s successes trials

none 84 477 d 2 12
a 75 231 ad 7 13
b 13 63 bd 4 7
ab 35 94 abd 8 12
c 67 150 cd 3 11
ac 201 378 acd 27 45
bc 16 32 bcd 1 23
abc 102 169 abcd 23 31

(5.37)

The study assessed the individual’s general knowledge about cancer, conditioning
on four factors expected to account for the variation in the probability of success
(defined by a high scoring). The individuals were classified into 24 classes, de-
pending on the presence of exposure to (a) newspapers; (b) radio; (c) solid reading;
(d) lectures.

(1) Identify these data as an example of data indexed by a group (suggestion: refer
to Exercise 2.5 on page 59);

(2) Determine the multiplication table of the group and its structure;
(3) Propose a symmetry study for these data.

Exercise 5.2. Following the definitions on page 140, consider the canonical basis
Y1 = X1/

√
2, Y2 = X2/

√
2, e.g., Bacry (1967)[p. 203]. Show that ||Y1|| = ||Y2|| =

0 and that Y ′1Y2 = 1.

Exercise 5.3. Signed matrices. Show that the set of all n× n matrices {Diag
(±1, . . . ,±1)} with the operation of matrix multiplication defines a finite group of
order 2n. It can be identified with the space of all binary sequences in length of n.

Exercise 5.4. Table (5.38) shows the frequency counts (xs) obtained from five
regions (in length of 200) of the HIV isolate m26727. Apply Proposition 5.1 to
evaluate the projections Px of x derived from the left action sτ−1 of S4 on the
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binary sequences in length of 4 (s). The location number indicates the region’s
starting position in the genome.

s 1 16 15 14 12 8 13 11 7 10 6 4 9 5 3 2
s(1) y u y u u u y y y u u u y y y u

s(2) y u u y u u y u u y y u y y u y

s(3) y u u u y u u y u y u y y u y y

s(4) y u u u u y u u y u y y u y y y

location xs

200 5 52 18 12 15 17 16 6 10 11 9 12 5 1 4 5
1000 7 30 20 20 21 20 10 6 10 8 7 8 8 7 8 8
3000 1 43 20 15 17 19 12 8 8 11 10 10 6 5 7 6
5000 6 24 18 19 21 18 11 9 12 12 12 9 6 6 9 6
6000 4 18 14 15 14 14 11 20 12 8 19 12 11 8 7 11

. (5.38)

Exercise 5.5. Consider a clinical experimental in which 60 subjects are be ran-
domized into one of the 6 regimen sequences ABC, . . . , CBA of three medications
{A,B,C}. Following each sequence, the weight loss relative to baseline is obtained
from each subject. Outline a symmetry study for these data.

Exercise 5.6. For x, y, z ∈ R
2, derive the permutation (S2) coinvariants of x ⊗

y ⊗ z.

Exercise 5.7. For x, y ∈ R
3, derive the permutation (S3) coinvariants of x ⊗ y and

obtain the matrix decompositions of xy ′ and xx ′.

Exercise 5.8. For x, y ∈ R
4, derive the permutation dihedral (D4) coinvariants of

x ⊗ y and obtain the matrix decompositions of xy ′ and xx ′.

Exercise 5.9. Starting with the multiplication table

D2h 1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8
2 = C21 2 1 4 3 6 5 8 7
3 = C22 3 4 1 2 7 8 5 6
4 = C23 4 3 2 1 8 7 6 5
5 = σh1 5 6 7 8 1 2 3 4
6 = σh2 6 5 8 7 2 1 4 3
7 = σh3 7 8 5 6 3 4 1 2
8 = i 8 7 6 5 4 3 2 1

for the point groupD2h = {E,C21, C22, C23, i, σh1, σh2, σh3}  C2 ⊗ C2 ⊗ C2, de-
termine its canonical decomposition. To which factorial experiment does it corre-
spond to?
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Exercise 5.10. Pistone et al. (2001) describe the two-dimensional structure

•
•
• • •

or V = {(0, 2), (0, 1), (0, 0), (1, 0), (2, 0)}. This is called an echelon structure, or
design. Echelon structures are suggested by the property that if a point s = (x, y)
is in V , then also (x ′, y ′) is in V for 0 ≤ x ≤ x ′, 0 ≤ y ≤ y ′.

(1) Define a group action of S2 = {1, (xy)} on V ;
(2) calculate the resulting orbits in V ;
(3) derive the corresponding linear representation ρ of S2;
(4) evaluate the canonical projections;
(5) show that P1 and P2 are canonical projections;
(6) suppose that you measure something in V according to the instrument xs =

m+ ax + by + αx2 + βy2, s = (x, y) ∈ V , and indicate by z the resulting
data indexed by V . Evaluate and interpret P1z and P2z.

Exercise 5.11. In Game Theory [see, for example, Savage (1954, p. 193)], a bilin-
ear game is defined by

L(f ; g) =
∑
r,i

L(r; i) f (r) g(i), r ∈ R, i ∈ I,

where R and I are finite sets, f and g are probability distributions defined on R

and I , respectively, and L(r; i) is a real-valued function such that the quantities
maxiL(r; i), minrL(r; i), L∗ = minrmaxiL(r; i) and L∗ = maximinrL(r; i) exist.
For bilinear games, the classical result of von Neumann says that L∗ = L∗. Math-
ematically, points Savage, the solution of a bilinear game is often simplified by
conditions of symmetry, introduced as follows: Assume, for convenience of nota-
tion, that R and I are disjoint and let σ ∈ XR and τ ∈ SI be permutations of the
sets R and I , respectively, and write η = (σ, τ ) to indicate a permutation of the set
R ∪ I . We say that η ∈ XR∪I leaves the game L invariant if L(σr; τ i) = L(r; i).

The interpretation here is that for each permutation σ ∈ XR there is a permutation
τ ∈ SI such that the two permutations taken together leave the game invariant.4

Indicate by G the group of all permutations leaving the game invariant. G is
called the group of the game. Define also ηf = f σ−1 and ηg = gτ−1, and say
that f , respectively g, is invariant under the group of the game when ηf = f ,
respectively ηg = g, for all η in G. Show that L(ηf ; ηg) = L(f ; g) for all η in
G. Moreover, for any distributions f (with support R) and g (with support I ),
verify that f̄ =∑

η ηf/|G| and ḡ =∑
η ηg/|G| are invariant under G. This is a

4 The reader may want to compare this interpretation with Definition 2 and Lemma 2 of Chapter 4 in Ferguson
(1967).
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common technique to obtain invariant distributions. The reader will recognize the
same argument present in Eaton (1989), Expression (4.2).

Exercise 5.12. Indicate by p′ = (π1, π2, π3, θ1, θ2, θ3) a probability distribution
in which the components are indexed by S3. Apply the canonical decomposition of
the regular representation of S3 to show that the entropy H in p resolves into

H1 = −p′P1�p = −1

6
log[π1π2π3θ1θ2θ3],

H2 = −p′P2�p

= −1

3
log

[(
π1

π2

)π1−π2
(

π1

π3

)π1−π3
(

π2

π3

)π2−π3
(

θ1

θ2

)θ1−θ2
(

θ1

θ3

)θ1−θ3
(

θ2

θ3

)θ2−θ3
]

,

and

H3 = −p′P3�p = −1

6
log

(
π1π2π3

θ1θ2θ3

)(π1+π2+π3−θ1−θ2−θ3)

,

where �p indicated the vector of the log probabilities (assumed to be all positive).

Exercise 5.13. Study the canonical decompositions of multinomial models in-
dexed by C3 and D4.

Exercise 5.14. Action on homogeneous polynomials. Study the action of S{x,y,z}
on the the set V defined by the terms xαyβzγ of (x + y + z)3. Show that it gives
three orbits O1, O2, and O3, in dimension of 3, 6, and 1, respectively. Derive the
canonical projections and invariants for the action on O2.

Exercise 5.15. Following Section 5.7, show that τ → τ ∗ is a homomorphism from
G to Aut (F), that τ ∗ is linear and unitary with respect to the scalar products

(x, y)s = 1

g

∑
τ∈G

x(ϕσ s)y(ϕσ s), s ∈ V.
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6

Symmetry Studies of Short Symbolic Sequences

6.1 Introduction

The work of Doi (1991) on the evolutionary strategy of the HIV-1 virus defines
the frequency diversity in each cyclic orbit Of = {f τ−1; τ ∈ C�}, as the ratio
maxs∈Of

xs/ mins∈Of
xs between the largest and the smallest of the observed local-

ized frequencies xs , as s varies within the orbit Of of f . Here s and f are short
DNA sequences or mappings defined in L = {1, 2, . . . , �} with values in the four
nucleotides C = {a, g, c, t}. These sequences are, therefore, points in the structure
V = CL, where the cyclic group C� acts by cyclically moving the positions of the
residues on the sequence. The frequencies xs are calculated within a given fixed
region of interest, such as conservative or hyper variable regions, associated with
different interpretations of the virus’ evolutionary strategies.

In this chapter we discuss a number of elementary symmetry studies in which
the data are indexed by V = CL. We generally refer to L as the set of positions in
the sequence and to C as the set of symbols.

6.2 Symmetry Studies of Four Sequences in Length of 3

In this section we present a summary of the canonical decompositions for the set
V of all mappings s : L := {1, 2, 3} �→ C = {a, g, c, t} where subgroups of S3

may act according to sτ−1 shuffling the positions of the symbols and subgroups
of S4 may act on the symbols according to σs. Table (6.1) shows the complete set
V of four-sequences in length of 3 and their base-4 labels, using the convention

165
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(1, 2, 3, 4) = (a, g, c, t) (see Exercise 1.6 of Chapter 1).

V =

1 a a a 5 a g a 23 c g g 8 t g a

22 g g g 9 a c a 24 t g g 50 g a t

43 c c c 13 a t a 41 a c c 14 g t a

64 t t t 18 g a g 42 g c c 20 t a g

17 a a g 26 g c g 44 t c c 57 a c t

33 a a c 30 g t g 61 a t t 45 a t c

49 a a t 35 c a c 62 g t t 12 t c a

6 g g a 39 c g c 63 c t t 51 c a t

38 g g c 47 c t c 37 a g c 15 c t a

54 g g t 52 t a t 34 g a c 36 t a c

11 c c a 56 t g t 7 c g a 58 g c t

27 c c g 60 t c t 25 a c g 46 g t c

59 c c t 2 g a a 10 g c a 28 t c g

16 t t a 3 c a a 19 c a g 55 c g t

32 t t g 4 t a a 53 a g t 31 c t g

48 t t c 21 a g g 29 a t g 40 t g c

(6.1)

As remarked in the previous chapters, a generic strategy for data analysis is the
identification of the subsets of V where the group of interest acts transitively,
and proceed with the decomposition of that smaller space. Globally, the canoni-
cal projections do not identify the subspaces in the data space indexed by those
selected orbits (the selection of which is arbitrary). The projections, the reader
may recall from Section 4.4 on page 101, are uniquely indexed by the irreducible
representations of the selected group. In the next section we summarize the overall
projections.

6.3 Reductions by Position Symmetry

The action sτ−1 of S3 on V is described in the Appendix to this Chapter on page
177. For example, the permutation τ = (123) acting on the sequence aac (label
33) gives sτ−1 = caa (label 3).

The data vector space V = R
64 associated with V decomposes as follows: There

are h = 3 canonical projections Pk on V , each one of the form

Pk =

⎡⎢⎣P
λ1
k 0 0

0
. . . 0

0 0 Pλm

k

⎤⎥⎦ , k = 1, . . . , h,

where m is equal the number of integer partitions of � in length of c, as introduced
earlier on Chapter 1, page 52.
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Specifically, in this case λ1 = 303, λ2 = 2102, and λ3 = 130 so that m = 3, and

Pλ1
k =

⎡⎢⎣Q
λ1
1 0 0

0
. . . 0

0 0 Qλ1
c1

⎤⎥⎦ , P
λ2
k =

⎡⎢⎣Q
λ2
1 0 0

0
. . . 0

0 0 Qλ2
c2

⎤⎥⎦ , P
λ3
k =

⎡⎢⎣Q
λ3
1 0 0

0
. . . 0

0 0 Qλ3
c3

⎤⎥⎦ .

In addition, each projection:

(1) Q
λ1
i acts on a subspace of dimension �1 = 1, i = 1, . . . , c1 = 4;

(2) Q
λ2
i acts on a subspace of dimension �2 = 3, i = 1, . . . , c2 = 12;

(3) Q
λ3
i acts on a subspace of dimension �3 = 6, i = 1, . . . , c3 = 4,

so that dim V = 64 = 4× 1+ 12× 3+ 4× 6. The first projection P1 is deter-
mined by

Q
λ1
1 = · · · = Q

λ1
4 = 1, Q

λ2
1 = · · · = Q

λ2
12 = A3, Q

λ3
1 = · · · = Q

λ3
4 = A6;

The second projection P2 is determined by

Q
λ1
1 = · · · = Q

λ1
4 = 0, Q

λ2
1 = · · · = Q

λ2
12 = 0, Q

λ3
1 = · · · = Q

λ3
6 = Q2 ⊗A3,

whereas P3 is determined by

Q
λ1
1 = · · · = Q

λ1
4 = 0, Q

λ2
1 = · · · = Q

λ2
12 = Q3 Q

λ3
1 = · · · = Q

λ3
4 = I2 ⊗Q3.

Moreover, note that Tr P1 = 20n1, Tr P2 = 4n2, and Tr P3 = 20n3, where ni is the
dimension of the corresponding irreducible representations. That is, ρ  20ρ1 ⊕
4ρSgn ⊕ 20ρβ .

Determining the classes of transitivity

The equivalent types of orbits are given by the integer partitions λ = 303, 2102

and 130 of 3 in length of 4. The class λ = 303 includes four orbits of size 1, a
representative of which is {aaa}; class λ = 2102 includes 12 orbits of size 3, a
representative of which is

{aag, aga, gaa},

identified by the labels {17, 5, 2} respectively, whereas the class λ = 130 includes
4 orbits of size 6, a representative of which is

{agc, gca, cag, gac, cga, acg},

identified by the labels {37, 10, 19, 34, 7, 25}, respectively, in Table (6.1).
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Canonical decompositions in the partition λ = 2102

Consider the action

s(1) s(2) s(3) label 1 (123) (132) (12) (13) (23)
a a g 17 17 2 5 17 2 5
a g a 5 5 17 2 2 5 17
g a a 2 2 5 17 5 17 2

sτ−1 of S3 on the representative orbit {aag, aga, gaa} abstracted from Table (6.1)
and indicate by ρ the resulting representation. Table (6.2) summarizes the irre-
ducible characters of S3 along with the character χρ of ρ, from which, applying
Proposition 4.1 on page 93, we see that ρ reduces as 1⊕ β. This is not surprising,
since ρ is isomorphic to the standard representation of S3.

τ χρ χ1 χSgn χβ

1 3 1 1 2
(123) 0 1 1 −1
(132) 0 1 1 −1
(12) 1 1 −1 0
(13) 1 1 −1 0
(23) 1 1 −1 0

(6.2)

As a consequence, the canonical decomposition in each one of these orbits is simply
the standard decomposition I = A+Q.

To illustrate, consider the observed frequencies shown on Table (6.3) with which
the words {aag, aga, gaa} appear in 45 subsequent 200-bp-long regions in the
BRU isolate of the HIV-1.

A canonical invariant in dimension of 2 is determined by β and, in this case
of a single copy, by its associated projection, Q. Indicating the labels and the
corresponding data with the same notation, a realization of the canonical invariant
for the log-frequency data is given by the pair

I21 = log
aag2

aga gaa
, I22 = log

aga2

aag gaa
.

Table (6.4) shows, for each region, the pair (I21, I22), along with its invariant norm
(δ), scaled to the maximum value of 1. Their joint distribution over the regions is
shown in Figure 6.1.
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region aag aga gaa region aag aga gaa region aag aga gaa

1 7 9 7 16 4 4 5 31 6 7 5
2 4 9 7 17 6 10 6 32 2 1 3
3 10 10 5 18 7 6 8 33 6 11 7
4 9 10 6 19 7 10 7 34 2 5 5
5 6 7 6 20 6 6 7 35 6 4 6
6 6 10 5 21 9 7 9 36 7 11 7
7 13 6 9 22 11 9 8 37 4 3 3
8 6 16 6 23 8 7 7 38 5 8 12
9 7 8 7 24 5 11 5 39 3 3 4

10 5 5 5 25 7 7 5 40 4 12 8
11 9 13 13 26 4 8 7 41 8 8 6
12 4 5 5 27 10 8 6 42 6 6 4
13 2 10 5 28 7 9 5 43 8 7 4
14 6 6 6 29 4 6 6 44 6 11 5
15 9 14 11 30 5 5 4 45 4 3 1

(6.3)

region I21 I22 δ region I21 I22 δ region I21 I22 δ

1 −0.252 0.507 0.029 16 −0.223 −0.223 0.014 31 0.029 0.489 0.028
2 −1.370 1.060 0.259 17 −0.511 1.020 0.118 32 0.285 −1.790 0.344
3 0.693 0.693 0.136 18 0.019 −0.443 0.021 33 −0.761 1.060 0.147
4 0.300 0.615 0.063 19 −0.357 0.713 0.057 34 −1.830 0.916 0.381
5 −0.154 0.307 0.010 20 −0.154 −0.154 0.006 35 0.405 −0.810 0.074
6 −0.329 1.210 0.155 21 0.255 −0.504 0.029 36 −0.453 0.904 0.092
7 1.140 −1.180 0.230 22 0.519 −0.083 0.029 37 0.577 −0.288 0.037
8 −0.981 1.960 0.438 23 0.270 −0.135 0.008 38 −1.350 0.067 0.202
9 −0.135 0.270 0.008 24 −0.790 1.580 0.284 39 −0.288 −0.288 0.023

10 0.000 0.000 0.000 25 0.336 0.336 0.032 40 −1.800 1.500 0.472
11 −0.736 0.372 0.061 26 −1.250 0.829 0.196 41 0.285 0.285 0.023
12 −0.446 0.223 0.022 27 0.732 0.067 0.064 42 0.405 0.405 0.046
13 −2.530 2.300 1.000 28 0.086 0.842 0.085 43 0.824 0.425 0.118
14 0.000 0.000 0.000 29 −0.810 0.405 0.074 44 −0.425 1.400 0.209
15 −0.642 0.683 0.074 30 0.223 0.223 0.014 45 1.670 0.811 0.469

(6.4)

Canonical decompositions in the partition λ = 130

Table (6.5) shows the action sτ−1 of S3 on the representative orbit {agc,gca,

cag,gac,cga,acg} identified by the labels {37, 10, 19, 34, 7, 25}, respectively,
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I_
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Figure 6.1: Invariant plot for the orbit {aag, aga, gaa}.

abstracted from Table (6.1).

s(1) s(2) s(3) label 1 (123) (132) (12) (13) (23)
a g c 37 37 10 19 34 7 25
g c a 10 10 19 37 7 25 34
c a g 19 19 37 10 25 34 7
g a c 34 34 25 7 37 19 10
c g a 7 7 34 25 10 37 19
a c g 25 25 7 34 19 10 37

(6.5)

The character χφ of the resulting representation, along with the irreducible char-
acters of S3, are shown in Table (6.6), which clearly identifies it as the regular
representation so that φ  1⊕ Sgn⊕ 2β.

τ χφ χ1 χSgn χβ

1 6 1 1 2
(123) 0 1 1 −1
(132) 0 1 1 −1
(12) 0 1 −1 0
(13) 0 1 −1 0
(23) 0 1 −1 0

(6.6)

The canonical invariants were described on pages 105 and 120. Associated with
the alternating representation, we have, in the log scale,

ISgn = log
agc · gca · cag

gac · cga · acg
,



P1: JZZ

CUUS182-Main.tex CUUS182/Viana 978 0 521 84103 0 April 28, 2008 15:21

6.4 Reductions by Symbol Symmetry 171

comparing rotations {agc, gca, cag} with reversals {gac, cga, acg}. On the other
hand, there are two invariants, also expressed here in the log scale,

Bv = (v1, v2) =
(

log
agc cga

gac gca
, log

cag acg

gac gca

)
,

Bw = (w1, w2) =
(

log
gca acg

cga cag
, log

agc gac

cga cag

)
(6.7)

determined by the bases Bv and Bw associated with the irreducible representation
β.

An example with DNA frequencies – continued

Table (6.8) shows the observed frequencies with which the words in the or-
bit {agc, gca, cag, gac, cga, acg} appear in 10 subsequent regions, in length of
900 bps, along the BRU isolate of the HIV-1.

region agc gca cag gac cga acg

1 28 19 32 15 8 4
2 26 23 35 19 2 0
3 8 10 26 13 2 1
4 18 21 31 17 1 2
5 20 23 36 8 0 1
6 20 17 20 16 2 1
7 22 22 22 12 2 1
8 13 15 22 10 1 3
9 16 23 23 13 6 5

10 28 16 25 14 5 5

(6.8)

The plot of the invariants described in (6.7) can then be obtained, summarizing the
results in eight of the original regions (Regions two and five may be excluded in
this analysis due to the presence of zeros in the observed frequencies of words cga

and acg). The chiral aspect of the sequences along the genome is illustrated in Fig-
ure 6.2, showing the rotation to reversal ratios of frequencies gac/agc, cga/gca,
and acg/cag, indicated by rgac, rcga, and racg respectively. The continuous lines
are smoothed contours of those ratios along the regions.

6.4 Reductions by Symbol Symmetry

The action σs of S4 on the set V of all four-sequences in length of 3 is described in
Appendix B to this chapter on page 178. For example, the permutation σ = (agc)
acting on the sequence aac (label 33) by

{1, 2, 3} s−→ {a, g, c, t} (agc)−−→ {a, g, c, t}
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Figure 6.2: Rotation/reversal ratios for the AGC orbit.

gives σs = gga (label 6).
There are h = 5 canonical projections Pk of S4 on the data space V = R

64,
indexed by the five irreducible characters

χ\τ 1 (12) (12)(34) (123) (1234)

χ1 1 1 1 1 1
χ2 1 −1 1 1 −1
χ3 2 0 2 −1 0
χ4 3 1 −1 0 −1
χ5 3 −1 −1 0 1

(6.9)

of S4. Globally, each projection has the form

Pk =
⎡⎣Pλ1

k 0 0
0 Pλ2

k 0
0 0 Pλ3

k

⎤⎦ , k = 1, . . . , 5,

with

Pλ1
k =

⎡⎢⎣Q
λ1
1 0 0

0
. . . 0

0 0 Qλ1
c1

⎤⎥⎦ , Pλ2
k =

⎡⎢⎣Q
λ2
1 0 0

0
. . . 0

0 0 Qλ2
c2

⎤⎥⎦ , Pλ3
k =

⎡⎢⎣Q
λ3
1 0 0

0
. . . 0

0 0 Qλ3
c3

⎤⎥⎦ .

In addition,

(1) Q
λ1
i acts on a subspace of dimension �1 = 4, i = 1, . . . , c1 = 1;

(2) Q
λ2
i acts on a subspace of dimension �2 = 12, i = 1, . . . , c2 = 3;

(3) Q
λ3
i acts on a subspace of dimension �3 = 24, i = 1, . . . , c3 = 1,

so that dim V = 64 = 1× 4+ 3× 12+ 1× 24.
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Moreover, we have, for the τs action,

i Tr Pi ni Tr Pi/ni

1 5 1 5
2 1 1 1
3 10 2 5
4 30 3 10
5 18 3 6

so that ρ  5ρ1 ⊕ 1ρ2 ⊕ 5ρ3 ⊕ 10ρ4 ⊕ 6ρ5.

6.5 Dihedral Studies

In this section we illustrate a dihedral study of frequency data suggested by the
argument introduced earlier on page 137 to study the four-candidate voting prefer-
ences. In the present example, however, the frequencies of interest are those with
which the words in the corresponding dihedral cosets of S4 appear in the BRU
isolate of the HIV-1 virus.

We remarked, in the voting preferences example, that S4 has three distinct
cyclic orbits, namely those generated by (1234), (1243), and (1324), so that by
adding to each generator a reversal we obtained three copies of the dihedral group,
specifically,

G1 =< (1234), (13) > {agct, gcta, ctag, tagc, cgat, tcga, atcg, gatc} :

a1 −−−−→ g2�⏐⏐ ⏐⏐�
t4 ←−−−− c3

,

G2 =< (1243), (14) > {agct, gtac, tcga, catg, tgca, ctag, acgt, gatc} :

a1 −−−−→ c3�⏐⏐ ⏐⏐�
g2 ←−−−− t4

,

and

G3 =< (1324), (12) > {agct, ctga, gatc, tcag, gact, tcga, agtc, ctag} :

a1 −−−−→ t4�⏐⏐ ⏐⏐�
c3 ←−−−− g2

.

The frequencies were obtained over 15 consecutive regions of the genome, each
one in length of 500 bps. The dihedral analysis of variance (page 134) was comple-
mented with the inclusion of the error term I ⊗Q and understood as a large-sample
approximation. The results are summarized on Tables (6.10), (6.11), and (6.12),
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including (on the LHS) the dihedral frequencies in each region, and the correspond-
ing analysis of variance (on the RHS).

G1 :

region r1 r2 r3 r4 t1 t2 t3 t4

1 4 2 1 1 0 0 0 2
2 3 2 2 2 0 0 0 0
3 2 1 1 1 1 0 0 2
4 1 1 0 0 0 0 0 1
5 2 0 1 1 0 0 0 2
6 2 2 2 2 0 0 0 0
7 3 2 3 2 0 0 0 0
8 0 0 0 4 0 0 0 1
9 2 3 4 2 0 0 0 2

10 3 1 7 3 0 1 0 2
11 0 2 0 4 0 0 0 0
12 1 2 0 1 1 0 0 1
13 2 2 2 3 0 0 0 1
14 1 2 0 1 0 0 0 1
15 3 1 1 0 0 0 2 1

,

P x ′Px df x ′Px/df F

P1 ⊗A 128.100 1 128.100
P2 ⊗A 2.133 1 2.133 2.024
P3 ⊗A 56.034 1 56.034 53.180
P4 ⊗A 0.833 1 0.833 0.791
P5 ⊗A 8.866 4 2.216 2.103
I ⊗Q 118.010 112 1.053
total 313.970 120

(6.10)

G2 :

region r1 r2 r3 r4 t1 t2 t3 t4

1 4 1 0 5 1 1 0 2
2 3 1 0 1 4 2 0 0
3 2 1 0 0 0 1 0 2
4 1 1 0 0 2 0 0 1
5 2 2 0 2 3 1 0 2
6 2 1 0 3 1 2 1 0
7 3 4 0 4 1 3 0 0
8 0 1 0 1 0 0 0 1
9 2 1 0 1 2 4 0 2

10 3 1 1 1 1 7 0 2
11 0 2 0 2 0 0 0 0
12 1 1 0 5 3 0 1 1
13 2 1 0 2 0 2 1 1
14 1 2 0 2 3 0 0 1
15 3 0 0 1 1 1 0 1

,

P x ′Px df x ′Px/df F

P1 ⊗A 175.230 1 175.230
P2 ⊗A 0.208 1 0.208 0.151
P3 ⊗A 1.874 1 1.874 1.364
P4 ⊗A 10.207 1 10.207 7.429
P5 ⊗A 43.637 4 10.909 7.940
I ⊗Q 153.880 112 1.373
total 385.020 120

(6.11)
The canonical projections for the regular representation of D4 were derived on page

110 and are written here as P1, . . . ,P5, respectively, the symmetric, alternating, α,
γ , and β projections.

The chiral arrangement of the dihedral orbits, clearly evident in one case, can be
assessed by the component of x ′x associated with P3, that compares rotations and
reversals.

The resulting F-ratios reflect the marked difference between rotations and rever-
sals present in the dihedral orbit induced by G2 (F1,112 = 53.18).
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G3 :

region r1 r2 r3 r4 t1 t2 t3 t4

1 4 1 2 7 0 0 0 1
2 3 1 0 3 2 0 0 2
3 2 1 2 5 0 0 0 1
4 1 1 1 5 3 0 1 0
5 2 3 2 4 3 0 1 1
6 2 2 0 0 3 0 0 2
7 3 2 0 5 3 0 3 3
8 0 1 1 1 0 0 1 0
9 2 1 2 4 3 0 1 4

10 3 1 2 2 1 1 1 7
11 0 0 0 3 2 0 2 0
12 1 1 1 3 0 0 1 0
13 2 1 1 2 0 0 1 2
14 1 4 1 2 0 0 0 0
15 3 0 1 1 0 0 1 1

,

P x ′Px df x ′Px/df F

P1 ⊗A 240.820 1 240.820
P2 ⊗A 7.499 1 7.499 4.601
P3 ⊗A 24.300 1 24.300 14.911
P4 ⊗A 1.633 1 1.633 1.002
P5 ⊗A 49.205 4 12.301 7.547
I ⊗Q 182.530 112 1.629
total 505.990 120

(6.12)

Further Reading

The reader interested in a didactical introduction to sequence analysis in biology
may refer to Durbin et al. (1998). Aspects of entropy, long-range correlation,
and local complexity in nucleotide sequences are discussed, for example, in Herzel
et al. (1994), Peng et al. (1992), and Salamon and Konopka (1992), respectively.

Pattern recognition methods for microarray data analysis accounting for the
geometry of the data space have been recently introduced by Vencio et al. (2007).

A statistical mechanics view of computational biology was introduced by Blossey
(2006). The contributions of Bernd Sturmfels and colleagues to the development
and applications of algebraic geometric and computational methodos in biology
are documented in Pachter and Sturmfels (2005).

The reader may refer to Viana (2008a) for the derivation and data-analytic
applications of the regular invariants of S4.

Exercises

Exercise 6.1. Determine the fixed points and the orbit stabilizers for the action
described on Table 6.5.

Exercise 6.2. Following the decomposition for x ∈ F(S3) on page 120, construct
the invariant plots for the data shown on Table (2.7), page 38. Contrast with the
decomposition for x ∈ F(C3) described in that section.

Exercise 6.3. Following Section 6.4 and the action σs of S4 on the set V of all
four sequences in length of 3 described in the Appendix to this Chapter, page 178,
determine and interpret the resulting letter symmetry orbits.
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Exercise 6.4. Table (1.21), introduced earlier on in Chapter 1, page 13, describes
the frequencies with which the 16 purine-pyrimidine sequences in length of 4
appear in 10 subsequent 200-bp-long regions of BRU isolate of the HIV-1. Carry
out a symmetry study for position and letter symmetries for those data.

Exercise 6.5. Compare the canonical invariants determined by the two-
dimensional irreducible representation (β) of S3 in its permutation (ρ = 1⊕ β)
and regular (φ = 1⊕ 2β ⊕ Sgn) representations.

Exercise 6.6. Evaluate the letter-symmetry orbits generated by the action σs of S3

on the set V of all ternary sequences in length of 3 given by Table (6.13).

s(1) s(2) s(3) label σ : 1 (12) (13) (23) (123) (132)
1 1 1 1 1 14 27 1 14 27
2 2 2 14 14 1 14 27 27 1
3 3 3 27 27 27 1 14 1 14
1 1 2 10 10 5 18 19 23 9
1 2 1 4 4 11 24 7 17 21
2 1 1 2 2 13 26 3 15 25
2 2 1 5 5 10 23 9 18 19
2 1 2 11 11 4 17 21 24 7
1 2 2 13 13 2 15 25 26 3
1 1 3 19 19 23 9 10 5 18
1 3 1 7 7 17 21 4 11 24
3 1 1 3 3 15 25 2 13 26
3 3 1 9 9 18 19 5 10 23
3 1 3 21 21 24 7 11 4 17
1 3 3 25 25 26 3 13 2 15
2 2 3 23 23 19 5 18 9 10
2 3 2 17 17 7 11 24 21 4
3 2 2 15 15 3 13 26 25 2
3 3 2 18 18 9 10 23 19 5
3 2 3 24 24 21 4 17 7 11
2 3 3 26 26 25 2 15 3 13
1 2 3 22 22 20 6 16 8 12
1 3 2 16 16 8 12 22 20 6
2 1 3 20 20 22 8 12 6 16
3 1 2 12 12 6 16 20 22 8
2 3 1 8 8 16 20 6 12 22
3 2 1 6 6 12 22 8 16 20

(6.13)
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Appendix A

The action sτ−1 of S3 on the set of all four-sequences in length of 3.

σ\s 1 22 43 64 17 33 49 6 38 54 11 27 59 16 32 48

1 1 22 43 64 17 33 49 6 38 54 11 27 59 16 32 48
(12) 1 22 43 64 17 33 49 6 38 54 11 27 59 16 32 48
(13) 1 22 43 64 2 3 4 21 23 24 41 42 44 61 62 63
(23) 1 22 43 64 5 9 13 18 26 30 35 39 47 52 56 60

(123) 1 22 43 64 2 3 4 21 23 24 41 42 44 61 62 63
(132) 1 22 43 64 5 9 13 18 26 30 35 39 47 52 56 60

σ\s 5 9 13 18 26 30 35 39 47 52 56 60 2 3 4 21

1 5 9 13 18 26 30 35 39 47 52 56 60 2 3 4 21
(12) 2 3 4 21 23 24 41 42 44 61 62 63 5 9 13 18
(13) 5 9 13 18 26 30 35 39 47 52 56 60 17 33 49 6
(23) 17 33 49 6 38 54 11 27 59 16 32 48 2 3 4 21

(123) 17 33 49 6 38 54 11 27 59 16 32 48 5 9 13 18
(132) 2 3 4 21 23 24 41 42 44 61 62 63 17 33 49 6

σ\s 23 24 41 42 44 61 62 63 37 34 7 25 10 19 53 29

1 23 24 41 42 44 61 62 63 37 34 7 25 10 19 53 29
(12) 26 30 35 39 47 52 56 60 34 37 10 19 7 25 50 20
(13) 38 54 11 27 59 16 32 48 7 19 37 10 25 34 8 14
(23) 23 24 41 42 44 61 62 63 25 10 19 37 34 7 29 53

(123) 26 30 35 39 47 52 56 60 19 7 25 34 37 10 20 50
(132) 38 54 11 27 59 16 32 48 10 25 34 7 19 37 14 8

σ\s 8 50 14 20 57 45 12 51 15 36 58 46 28 55 31 40

1 8 50 14 20 57 45 12 51 15 36 58 46 28 55 31 40
(12) 14 53 8 29 51 36 15 57 12 45 55 40 31 58 28 46
(13) 53 20 29 50 12 15 57 36 45 51 28 31 58 40 46 55
(23) 20 14 50 8 45 57 36 15 51 12 46 58 40 31 55 28

(123) 29 8 53 14 36 51 45 12 57 15 40 55 46 28 58 31
(132) 50 29 20 53 15 12 51 45 36 57 31 28 55 46 40 58
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Appendix B

The (letter symmetry) action σs of S4 on four sequences in length of 3, given by
their labels defined on Table (6.1) on page 166, fixed points and stabilizers. The
partial number of fixed points in each table is indicated by fix∗.

τ\s 1 22 43 64 17 33 49 6 38 54 11 27 59 16 32 48 fix∗

1 1 22 43 64 17 33 49 6 38 54 11 27 59 16 32 48 16
(34) 1 22 64 43 17 49 33 6 54 38 16 32 48 11 27 59 4
(23) 1 43 22 64 33 17 49 11 27 59 6 38 54 16 48 32 4
(24) 1 64 43 22 49 33 17 16 48 32 11 59 27 6 54 38 4
(12) 22 1 43 64 6 38 54 17 33 49 27 11 59 32 16 48 4
(13) 43 22 1 64 27 11 59 38 6 54 33 17 49 48 32 16 4
(14) 64 22 43 1 32 48 16 54 38 6 59 27 11 49 17 33 4

(234) 1 43 64 22 33 49 17 11 59 27 16 48 32 6 38 54 1
(243) 1 64 22 43 49 17 33 16 32 48 6 54 38 11 59 27 1
(123) 22 43 1 64 38 6 54 27 11 59 17 33 49 32 48 16 1
(124) 22 64 43 1 54 38 6 32 48 16 27 59 11 17 49 33 1
(132) 43 1 22 64 11 27 59 33 17 49 38 6 54 48 16 32 1
(134) 43 22 64 1 27 59 11 38 54 6 48 32 16 33 17 49 1
(142) 64 1 43 22 16 48 32 49 33 17 59 11 27 54 6 38 1
(143) 64 22 1 43 32 16 48 54 6 38 49 17 33 59 27 11 1

(12)(34) 22 1 64 43 6 54 38 17 49 33 32 16 48 27 11 59 0
(13)(24) 43 64 1 22 59 11 27 48 16 32 33 49 17 38 54 6 0
(14)(23) 64 43 22 1 48 32 16 59 27 11 54 38 6 49 33 17 0

(1234) 22 43 64 1 38 54 6 27 59 11 32 48 16 17 33 49 0
(1243) 22 64 1 43 54 6 38 32 16 48 17 49 33 27 59 11 0
(1324) 43 64 22 1 59 27 11 48 32 16 38 54 6 33 49 17 0
(1342) 43 1 64 22 11 59 27 33 49 17 48 16 32 38 6 54 0
(1432) 64 1 22 43 16 32 48 49 17 33 54 6 38 59 11 27 0
(1423) 64 43 1 22 48 16 32 59 11 27 49 33 17 54 38 6 0
|Gs | 6 6 6 6 2 2 2 2 2 2 2 2 2 2 2 2

τ\s 5 9 13 18 26 30 35 39 47 52 56 60 2 3 4 21 fix∗

1 5 9 13 18 26 30 35 39 47 52 56 60 2 3 4 21 16
(34) 5 13 9 18 30 26 52 56 60 35 39 47 2 4 3 21 4
(23) 9 5 13 35 39 47 18 26 30 52 60 56 3 2 4 41 3
(24) 13 9 5 52 60 56 35 47 39 18 30 26 4 3 2 61 3
(12) 18 26 30 5 9 13 39 35 47 56 52 60 21 23 24 2 2
(13) 39 35 47 26 18 30 9 5 13 60 56 52 42 41 44 23 2
(14) 56 60 52 30 26 18 47 39 35 13 5 9 62 63 61 24 2

(234) 9 13 5 35 47 39 52 60 56 18 26 30 3 4 2 41 0
(243) 13 5 9 52 56 60 18 30 26 35 47 39 4 2 3 61 0
(123) 26 18 30 39 35 47 5 9 13 56 60 52 23 21 24 42 0
(124) 30 26 18 56 60 52 39 47 35 5 13 9 24 23 21 62 0
(143) 35 39 47 9 5 13 26 18 30 60 52 56 41 42 44 3 0
(134) 39 47 35 26 30 18 60 56 52 9 5 13 42 44 41 23 0
(142) 52 60 56 13 9 5 47 35 39 30 18 26 61 63 62 4 0
(143) 56 52 60 30 18 26 13 5 9 47 39 35 62 61 63 24 0

(12)(34) 18 30 26 5 13 9 56 52 60 39 35 47 21 24 23 2 0
(13)(24) 47 35 39 60 52 56 9 13 5 26 30 18 44 41 42 63 0
(14)(23) 60 56 52 47 39 35 30 26 18 13 9 5 63 62 61 44 0

(1234) 26 30 18 39 47 35 56 60 52 5 9 13 23 24 21 42 0
(1243) 30 18 26 56 52 60 5 13 9 39 47 35 24 21 23 62 0
(1324) 47 39 35 60 56 52 26 30 18 9 13 5 44 42 41 63 0
(1342) 35 47 39 9 13 5 60 52 56 26 18 30 41 44 42 3 0
(1432) 52 56 60 13 5 9 30 18 26 47 35 39 61 62 63 4 0
(1423) 60 52 56 47 35 39 13 9 5 30 26 18 63 61 62 44 0
|Gs | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
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τ\s 23 24 41 42 44 61 62 63 37 34 7 25 10 19 53 29 fix∗

1 23 24 41 42 44 61 62 63 37 34 7 25 10 19 53 29 16
(34) 24 23 61 62 63 41 42 44 53 50 8 29 14 20 37 25 0
(23) 42 44 21 23 24 61 63 62 25 19 10 37 7 34 57 45 1
(24) 63 62 41 44 42 21 24 23 45 36 15 57 12 51 29 53 1
(12) 3 4 42 41 44 62 61 63 34 37 19 10 25 7 50 14 2
(13) 21 24 3 2 4 63 62 61 7 10 37 19 34 25 55 31 2
(14) 23 21 44 42 41 4 2 3 40 46 55 28 58 31 8 20 2

(234) 44 42 61 63 62 21 23 24 57 51 12 45 15 36 25 37 0
(243) 62 63 21 24 23 41 44 42 29 20 14 53 8 50 45 57 0
(123) 41 44 2 3 4 62 63 61 10 7 25 34 19 37 58 46 0
(124) 63 61 42 44 41 2 4 3 46 40 31 58 28 55 14 50 0
(143) 2 4 23 21 24 63 61 62 19 25 34 7 37 10 51 15 0
(134) 24 21 63 62 61 3 2 4 55 58 40 31 46 28 7 19 0
(142) 3 2 44 41 42 24 21 23 36 45 51 12 57 15 20 8 0
(143) 21 23 4 2 3 44 42 41 8 14 53 20 50 29 40 28 0

(12)(34) 4 3 62 61 63 42 41 44 50 53 20 14 29 8 34 10 0
(13)(24) 61 62 3 4 2 23 24 21 15 12 45 51 36 57 31 55 0
(14)(23) 42 41 24 23 21 4 3 2 28 31 58 40 55 46 12 36 0

(1234) 44 41 62 63 61 2 3 4 58 55 28 46 31 40 10 34 0
(1243) 61 63 2 4 3 42 44 41 14 8 29 50 20 53 46 58 0
(1324) 62 61 23 24 21 3 4 2 31 28 46 55 40 58 15 51 0
(1342) 4 2 63 61 62 23 21 24 51 57 36 15 45 12 19 7 0
(1432) 2 3 24 21 23 44 41 42 20 29 50 8 53 14 36 12 0
(1423) 41 42 4 3 2 24 23 21 12 15 57 36 51 45 28 40 0
|Gs | 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1

τ\s 8 50 14 20 57 45 12 51 15 36 58 46 28 55 31 40 fix∗ fix
1 8 50 14 20 57 45 12 51 15 36 58 46 28 55 31 40 16 64

(34) 7 34 10 19 45 57 15 36 12 51 46 58 31 40 28 55 0 8
(23) 12 51 15 36 53 29 8 50 14 20 55 31 40 58 46 28 0 8
(24) 14 20 8 50 25 37 10 19 7 34 28 40 58 31 55 46 0 8
(12) 20 53 29 8 58 46 28 55 31 40 57 45 12 51 15 36 0 8
(13) 40 58 46 28 51 15 36 57 45 12 50 14 20 53 29 8 0 8
(14) 53 14 50 29 12 36 57 15 51 45 10 34 25 7 19 37 0 8

(234) 10 19 7 34 29 53 14 20 8 50 31 55 46 28 40 58 0 1
(243) 15 36 12 51 37 25 7 34 10 19 40 28 55 46 58 31 0 1
(123) 28 55 31 40 50 14 20 53 29 8 51 15 36 57 45 12 0 1
(124) 29 8 20 53 10 34 25 7 19 37 12 36 57 15 51 45 0 1
(143) 36 57 45 12 55 31 40 58 46 28 53 29 8 50 14 20 0 1
(134) 37 10 34 25 15 51 45 12 36 57 14 50 29 8 20 53 0 1
(142) 50 29 53 14 28 40 58 31 55 46 25 37 10 19 7 34 0 1
(143) 55 46 58 31 36 12 51 45 57 15 34 10 19 37 25 7 0 1

(12)(34) 19 37 25 7 46 58 31 40 28 55 45 57 15 36 12 51 0 0
(13)(24) 46 28 40 58 19 7 34 25 37 10 20 8 50 29 53 14 0 0
(14)(23) 57 15 51 45 8 20 53 14 50 29 7 19 37 10 34 25 0 0

(1234) 25 7 19 37 14 50 29 8 20 53 15 51 45 12 36 57 0 0
(1243) 31 40 28 55 34 10 19 37 25 7 36 12 51 45 57 15 0 0
(1324) 45 12 36 57 7 19 37 10 34 25 8 20 53 14 50 29 0 0
(1342) 34 25 37 10 31 55 46 28 40 58 29 53 14 20 8 50 0 0
(1432) 51 45 57 15 40 28 55 46 58 31 37 25 7 34 10 19 0 0
(1423) 58 31 55 46 20 8 50 29 53 14 19 7 34 25 37 10 0 0
|Gs | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 120

.
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Symmetry Studies of Curvature Data

7.1 Introduction

In this chapter we will discuss the application of symmetry methods to the study
of curvature data, such as that obtained from the anterior surface of the (human)
cornea. The objective is illustrating the effect that the symmetries, imposed by
certain geometric and optic constraints, have in the underlying probability laws and
parametric structures for the curvature data. Once these symmetries are identified,
the corresponding canonical decompositions can be applied to reduce the data, and
the invariance properties for the underlying probability laws can be proposed and
assessed. Finally, a classification of the resulting types of curvature profiles can be
obtained.

In contrast with Chapter 6, the structured data of interest here are, in one case,
the mapping space in itself (V = CL), whereas in that chapter CL represented the
labels for the frequency data. Specifically, in this chapter, we assume that C is
a finite set of real scalars, L = {1, . . . , �}, and embed the mappings y ∈ CL into
mappings (using the same notation)

y : k �→ yk[cos(kφ), sin(kφ)] ∈ R
2, φ = 2π/�, (7.1)

so that the data y are indexed by

V = {[cos(kφ), sin(kφ)] : k = 1, . . . , �} ⊂ R
2. (7.2)

The nature and interpretations of V , in each application, will suggest which group
of symmetries is suitable for acting on V . In particular, we remark that because V ⊂
R

2, any linear representation in dimension of 2 acting on V is a potential candidate
for reducing the curvature data. The restrictions on that choice are discussed in the
next section.

180



P1: JZZ

CUUS182-Main.tex CUUS182/Viana 978 0 521 84103 0 April 28, 2008 15:21

7.3 Astigmatic and Stigmatic Constraints 181

7.2 Keratometry

Keratometry is the measurement of corneal curvature, usually restricted to a small
region of the anterior surface of the cornea. The measurements are obtained using a
sample of reflected points of light along an annulus 3 to 4 mm. in diameter, centered
about the apex of the cornea. Computerized keratometry uses the relative separation
of reflected points of light along concentric rings to calculate the curvature of the
measured surface. Using several scaled copies of V as a set of concentric light-
reflecting rings and sampling at specific circularly equidistant intervals, a numerical
model for the curvature of the measured surface can be obtained and estimated. In
this case, the observed curvature data are indexed by intersections

Vi = {di[cos(kφ), sin(kφ)] : k = 1, . . . , �}, 1.5 mm ≤ di ≤ 2mm, i = 1, . . . m, (7.3)

of m rings and � equally-spaced semimeridians. In ophthalmic geometric optics
it is of interest to determine the angular variation between the extreme corneal
curvature values along a given ring. The difference between the steep (maximum)
and the flat (minimum) curvatures, as well as the angular variation between these
extremes across rings, are related to the amount of regular astigmatism present in
the optics of the eye. The different curvatures of these various refractive surfaces
diffuse light rays and interfere with a sharp formation of the image on the retina.
The concentric rings in L represent idealized locations in the anterior surface of
the cornea where curvature measurements are obtained.

7.3 Astigmatic and Stigmatic Constraints

The simplest geometrical representation of a corneal curvature mapping is that
derived from a spherical-cylindrical surface with the location of steep (κs) and
flat (κf ) curvatures oriented with a 90◦ angular separation. This is simply Euler
Theorem of classical differential geometry. The resulting refractive profile,

π (θ ) = (η − η′)[κs cos2(θ − α)+ κf sin2(θ − α)], 0 ≤ θ ≤ 2π, 0 ≤ α ≤ π, (7.4)

at each ring V can be expressed as π (θ ) = s + c cos2(θ − α), where s = (η −
η′)κf , c = (η − η′)(κs − κf ) and α are respectively the spherical, cylindrical, and
axial (or reference angle for the {ks, kf } orthogonal directions) components of
the spherocylindrical corrective element, and {η′, η} are refractive indices. The
notation {s, c, α} is commonly used in refractive references and mantained here
in this specific context. For example, Figure 7.1 shows the refractive profiles
indicated by R20, with (s, c, α) = (4.25, 1.5, 20◦), and by R60, with (s, c, α) =
(−2.75, 1, 60◦).
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Figure 7.1: Refractive profiles R20, with (s, c, α) = (4.25, 1.5, 20◦), and R60, with
(s, c, α) = (−2.75, 1, 60◦).

Probability laws and optical constraints

First note that given two components ym and yn of a refractive profile y (7.1), then
their angular variation is given by 0 ≤ |m− n|)φ ≤ π .

We say that a probability law L(y) of y satisfies the astigmatic property when
the mean angular variation between two order statistics is 90◦ if and only if these
are the extreme order statistics. In contrast, a spherical (c = 0) surface would lead
to a constant mean curvature and, in particular, the mean angular variation between
any two ordered curvatures should be a constant. We say that a probability law
L(y) satisfies the stigmatic property when the mean angular variation between any
two order statistics is functionally independent of these order statistics.

7.4 Ranking Permutations

Implicit in the above definitions is the understanding that the mean angular variation
in the astigmatic case is only approximately 90◦. The limit mean angular variation,
as � →∞, should reach the right-angle value. Because the components of y are
in a totally ordered set, it is possible to order these components according to the
specified total order relation (≤) in C. We indicate by y the ordered version of y

and write

τ = {y ∈ V; yτ−1 = y} (7.5)

to indicate the set of all mappings (or vectors) y in V which are ordered by the
permutation τ−1, that is,

yτ−11 ≤ yτ−12 ≤ . . . ≤ yτ−1�.

In particular, 1 = {y ∈ V; y = y} is the set of all ordered mappings and, clearly,
τ = 1τ−1, for all τ in S�. Because of the random nature of y, the permutations
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involved in the ordering of the components of y are also random. We refer to these
random permutations as ranking permutations. Note that when C is a finite set then
τ is obviously measurable with respect to L(y), for all τ ∈ S�.

Partitions

If for any two distinct permutations τ and σ we have P (τ ∩ σ ) = 0 with respect to
P ≡ L(y), we say that V = ∪τ∈S�

τ is a stochastically disjoint partition of V .
Clearly, if y ∈ τ ∩ σ then both σ and τ are ranking permutations for y. The

following proposition establishes a basic connection between the symmetries in
the probability law L(y) of y ∈ V (describing the observable curvatures) and the
probability law L(τ ) of the ranking permutations τ ∈ S�.

Proposition 7.1. If L(y) = L(yτ−1) for all τ ∈ S�, and
⋃

τ τ is a stochastically
disjoint partition of V , then L(τ ) is the uniform probability law in S�.

Proof. Under the stated assumptions, P = L(y) induces the law π = L(τ ) in S�

given by π (τ ) = P (τ ), so that

1 =
∑
τ∈S�

P (τ ) =
∑
τ∈S�

(1τ ) = �!P (1),

and consequently π (τ ) = P (τ ) = P (1) = 1/�! for all τ ∈ S�, that is, L(τ ) is uni-
form in S�. �

Two-color topography

To illustrate, consider the simplest case in which C = {a, b}, such as with binary-
colored topography mappings, and V is a single ring with two points only, say
V = {1, 2}. Suppose also that a ≤ b. The data space CL has four points, namely,
CL = {aa, bb, ab, ba}, where S2 acts according to yτ−1, giving three orbits

O11 = {aa}, O12 = {bb}, O21 = {ab, ba}.
For each τ ∈ S2 = {1, (12)}, we apply the definition {y ∈ V; yτ−11 ≤ yτ−12} of τ

to obtain

1 = {aa, bb, ab}, (12) = {aa, bb, ba} = 1(12).

Next we introduce the probability laws P ≡ L(y) satisfying the permutation-
symmetry L(yτ−1) = L(y) for all τ in S�. These laws (See Exercise 2.1) have
the form of convex linear combinations

P = f11w11 + f12w12 + f21w21,
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where wi = 1/|Oi | if y ∈ Oi and wi = 0 otherwise, and
∑

i fi = 1, fi ≥ 0, for
i ∈ {11, 12, 21}. It then follows that

P (1) = f11 + f12 + 1

2
f21 = P ((12)),

and, because f11 + f12 + f21 = 1, the condition P (1)+ P ((12)) = 1 is equivalent
to f21 = 1, or f11 = f12 = 0. In this case, P induces a well-defined probability law
π in S2, given by π(τ ) = P (τ ), which is also invariant, and hence uniform. Here
we see that whenL(y) is S2-invariant then the lawL(τ ) of the ranking permutations
τ in S2 is uniform if and only if V = 1 ∪ (12) is a stochastic partition.

Three-level gray scale

Consider the case c = � = 3, and interpret the values in C as three distinct levels in
a gray scale, say, and write these levels as {1, 2, 3} to borrow their natural ordering.
We observe a map y = (y1, y2, y3). In the resulting decomposition V = V300 ∪
V210 ∪ V111 of V , each component of V300 = O11 ∪O12 ∪O13 is a single-mapping
orbit, the components of V210 = O21 ∪ . . . ∪O26 are three-mapping orbits, and
V111 = O31 has six mappings in it.

Table (7.18) in Appendix A to this chapter summarizes the orbits and classes
τ generated by the action yτ−1. In each column, the boxed labels indicate the
mappings defining the corresponding class τ . For example, the mapping number
3, y = (3, 1, 1), is ordered by the permutations in the set {(13), (132)}, giving the
mapping number 19, y = (1, 1, 3). Their product, in general, however, is not an
ordering permutation of the given mapping.

Note that each one of the 10 orbits has exactly 1 element from 1, a fact that
characterizes 1 (and τ in general) as cross sections in V . More precisely, a subset
� ⊂ V is a cross section in V if, for each y ∈ V , � ∩O(y) consists of exactly 1
point (see, for example, Eaton (1989, p. 58) on conditions under which there is
a stochastic representation of the form L(y) = L(xτ ) for the law of y, where x

is a random variable defined in 1 and independent of τ uniformly distributed in
S�).

The invariant laws in V are convex combinations P =∑
i fiwi , where wi =

1/|Oi | for y ∈ Oi wi = 0 otherwise, and
∑

i fi = 1, fi ≥ 0, for i = 1, . . . , 10.
More precisely,

P =
3∑

i=1

f1iw1i +
6∑

j=1

f2jw2j + f31w31,

where w1i = 1 inside each orbit of type λ300 and w1i = 0 elsewhere; w2j = 1/3
inside each orbit of type λ210 and zero elsewhere; w31 = 1/6 inside the single orbit
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of type λ111 and zero elsewhere, and

3∑
i=1

f1i +
6∑

j=1

f2j + f31 = 1.

As a consequence, we obtain

P (τ ) =
3∑

i=1

f1i + 1

3

6∑
j=1

f2j + 1

6
f31, for all τ ∈ S3. (7.6)

Similarly to the previous example, the condition
∑

τ∈S3
P (τ ) = 1 is obtained (and

hence the law of the ranking permutations is uniform in S3) if and only if V =
∪τ∈S3τ is a stochastic partition.

Expression (7.6) reflects the fact that the space V decomposes as the sum of three
orbits of size 1, corresponding to frame 3102, six orbits of size 3 corresponding
to frame 211101 and one orbit of size 6 corresponding to frame 13, so that |V| =
27 = 3× 1+ 6× 3+ 1× 6. Combinatorial results discussed earlier on page 52
show that, in general, there are nλ orbits of size mλ corresponding to frame λ, with
|V| = c� =∑

λ mλnλ, where

mλ = �!

(a1!)m1 (a2!)m2 . . . (ak!)mk
, nλ = c!

m1!m2! . . . mk!
,

so that (7.6) extends to

P (τ ) =
∑

λ

1

mλ

nλ∑
j=1

fjλ
,

where λ varies over the (m) different frames λ = a
m1
1 . . . a

mk

k , with m1a1 + · · · +
mkak = � and m1 + · · · +mk = c.

Consequently we see that given a permutation invariant probability law L(y),
then the law L(τ ) of the ranking permutations τ in S� is uniform if and only if
V = ∪τ∈S�

τ is a stochastic partition.

7.5 Classification of Astigmatic Mappings

The argument introduced in the previous section can be extended to determine the
symmetries that are consistent with a given contraint, such as those imposed by the
astigmatic properties of maximum and minimum. Similarly to the simple ordering
case, the subsets τ ⊂ V of those mappings turned astigmatic by the permutation
τ ∈ S4 could then be determined, leading to a table similar to (7.18).

Here, we take an alternative approach, illustrated as follows: Consider the case
in which y has � = 8 components and C = {a, b, c} is ordered according to a ≤
b ≤ c, so that V has 38 = 6,561 curvature mappings. A mapping in V consistent
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Figure 7.2: An astigmatic curvature mapping with the symmetry of K4.

with the astigmatic property, given by Figure 7.2, is defined by the constraints

y1 = y5 = a; y2 = y4 = y6 = y8 = b, y3 = y7 = c, a < b < c. (7.7)

It belongs to the partition λ = 422 in an orbit of size 420 (see Exercise 7.10),
whereas the other two orbits are defined by a4b2c2 and c4a2b2. With the notation
introduced in (7.3), the domain of these mappings is a single ring (m = 1) with its
components 45◦ apart (� = 8), specifically,

y : k �→ yk[cos(kφ), sin(kφ)] ∈ R
2, φ = 2π/8,

V = {[cos(kφ), sin(kφ)] : k = 1, . . . , 8} ⊂ R
2.

The astigmatic restrictions imposed on y ∈ V , in addition to those suggested by the
circular shape of V , bring down the number of subgroups of S8 that consistently act
on V . Clearly, the resulting data summaries, classification, and inference are also
determined by those experimental choices of symmetries. This aspect of choice
is true to the nature of a broad symmetry study like this, and this is why it is
emphasized here.

Specifically, the astigmatic restrictions given by (7.7) on y determine the auto-
morphism group

Aut(Y ) =< 1, (15)(24)(68), (28)(37)(46), (15)(26)(37)(48) >≡< 1, v, h, o >

acting on V , which is simply the Abelian group K4 = {1, v, h, o}  C2 × C2 in-
troduced earlier on in Chapter 1. Table (7.8) describes the action yτ−1 of K4 on
V , where we rearranged the indices of y in the order of {1, 5, 3, 7, 2, 4, 6, 8} to
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highlight the three permutation orbits.

τ 1 5 3 7 2 4 6 8

1 1 5 3 7 2 4 6 8
v 5 1 3 7 4 2 8 6
h 1 5 7 3 8 6 4 2
o 5 1 7 3 6 8 2 4

(7.8)

We remark that the symmetries in K4 are necessary to sustain the astigmatic
restrictions defined by this choice of y.

It then follows thatP1 = Diag(A2,A2,A2 ⊗A2), P2 = Diag(0,Q2,Q2 ⊗A2),
P3 = Diag(Q2, 0,Q2 ⊗Q2), and P4 = Diag(0, 0,A2 ⊗Q2) are the resulting
canonical projections, and, writing y ′ = (a1, a2, c1, c2, b1, b2, b3, b4) to indicate
a generic point in V , that

i y ′Piy

1 (a1 + a2)2/2+ (c1 + c2)2/2+ (b1 + b2 + b3 + b4)2/4
2 (c1 − c2)2/2+ (b1 + b2 − b3 − b4)2/4
3 (a1 − a2)2/2+ (b1 + b4 − b3 − b2)2/4
4 (b1 + b3 − b4 − b2)2/4

total y ′y

is the corresponding decomposition of y ′y. The hypotheses (H) that y satisfies the
astigmatic property and (H’) that yτ−1 = y for all τ ∈ K4 are related by

H : y satisfies the astigmatic property =⇒ H ′ : yτ−1 = y for all τ ∈ K4 =⇒ y′P2y = y′P3y = y′P4y = 0,

and provide a basis for classification and testing the astigmatic mappings in V .

The distribution of the y′P y components

To study the distribution of the components y ′Py, it is convenient, for computa-
tional purposes, to work with the base 3 representation of each mapping. Therefore,
we set C = {0, 1, 2}. Next, to each integer number between 0 and 6,560 (recall
that |V| = 6,561), the simple Maple c© procedure

T:=proc(n) g:=(convert(n,base,3)):J:=[0,0,0,0,0,0,0,0]:
for i from 1 to nops(g) do J[i]:=op(i,g) end do:
matrix(8,1,J): end:

converts the mapping’s identifying label into a point y ∈ C8 by inserting the nec-
essary trailing zeros to the fixed dimension arrays. For example,

T (27)′ = [
0 0 0 1 0 0 0 0

]
, T (3936)′ = [

0 1 2 1 0 1 2 1
]
.
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The original mappings, which have images in {1, 2, 3}, are then obtained after
adding 1 unit to each component of the expansion. Note that T (3936) corresponds
to the astigmatic mapping shown in Figure 7.2, in the original basis {1, 2, . . . , 8}.
Finally, the components y ′Piy are evaluated for each (rearranged) y and each
i = 1, 2, 3, 4.

Table (7.10) shows the joint frequency distribution L23 of y ′P2y and y ′P3y,
whereas Table (7.11) shows the joint frequency distributionL24 of y ′P2y and y ′P4y.
Note that the two marginal frequency distributions L2 and L3 of L23 coincide.
All values of y ′Py were evaluated as nonnegative integers by multiplying all
projections by 4.

Computer sorting of the 6,561 mappings by increasing values of y ′Q2y, y ′Q3y

and y ′Q4y identified the 26 mappings in which all three components vanish, that
is, the mappings with the symmetry of K4. These mappings, indicated by s0, . . . s25

are described in Appendix B. The graphic display of mappings s1, . . . , s24 is shown
in Appendix C to this chapter.

The astigmatic mapping that we started with, on Figure 7.2, is displayed as
mapping s15.

The likelihood of an astigmatic mapping

If a mapping is selected at random according to a uniform probability in V and
only the values of the three components y ′P2y, y ′P3y, and y ′P4y are known, then
H ′ would be rejected for all but the 26 mappings in which all three components
are zero. One would eventually see the hypothesis H ′, and hence H , being rejected
with probability 1− 26/6, 561 > 0.99.

If, otherwise, H ′ is accepted, we know that there is at least one astigmatic
mapping with the symmetry of K4. Are there any other ones among the remaining
25 mappings?

Equivalently, what are the mappings in V that are consistent with the astigmatic
contours given by (7.4), as equations u cos2(kφ − α)+ v sin2(kφ − α)], φ = 2π/8,
k = 0, . . . , 7, 0 ≤ α ≤ π in u, v?. The solutions, for alpha = 0, are listed in
Table (7.9), along with their derived spherical s = u and cylindrical c = v − u

coefficients.

mapping u v spherical (s) cylindrical (c) α

0 1 1 1 0 0
11 3 1 3 −2 0
13 2 2 2 0 0
15 1 3 1 2 0
25 3 3 3 0 0

(7.9)
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In addition to mapping 15, we identified mapping 11: [2 1 0 1 2 1 0 1 ], which
is simply mapping 15, [0 1 2 1 0 1 2 1], rotated by 90◦, and the three spherical
ones: mappings 0, 13, and 25. Note that the spherical mappings 0 and 25 are similar
to mapping 13 and are not displayed in Appendix B. The mappings

1312 :
[
2 3 2 1 2 3 2 1

]
5248 :

[
2 1 2 3 2 1 2 3

]
are the two astigmatic companions to mappings 11 and 13 at the directions α =
45◦ and α = 135◦. These mappings are identified in Appendix B, along with the
isomorphic K4-symmetric mappigs at those directions.

The odds on correctly accepting the astigmatic hypothesis H having the hypoth-
esis H ′ of K4 symmetry as the criterion are then limited to only 5 : 21 at each
direction. This reduced power, we must recall, is mostly a consequence of the
counting (uniform) probability distribution assumed for the mapping space.

L23 0 1 2 3 4 6 8 9 11 12 16 17 18 24

0 80 0 108 0 72 96 54 0 0 48 18 0 24 12
1 0 216 0 288 0 0 0 216 96 0 0 48 0 0
2 108 0 144 0 96 128 72 0 0 64 24 0 32 16
3 0 288 0 384 0 0 0 288 128 0 0 64 0 0
4 72 0 96 0 108 144 48 0 0 72 0 0 0 0
6 96 0 128 0 144 192 64 0 0 96 0 0 0 0
8 54 0 72 0 48 64 36 0 0 32 12 0 16 8
9 0 216 0 288 0 0 0 192 64 0 0 32 0 0
11 0 96 0 128 0 0 0 64 0 0 0 0 0 0
12 48 0 64 0 72 96 32 0 0 48 0 0 0 0
16 18 0 24 0 0 0 12 0 0 0 0 0 0 0
17 0 48 0 64 0 0 0 32 0 0 0 0 0 0
18 24 0 32 0 0 0 16 0 0 0 0 0 0 0
24 12 0 16 0 0 0 8 0 0 0 0 0 0 0

(7.10)

L24 0 1 2 3 4 6 8 9 11 12 16 17 18 24

0 242 0 324 0 216 288 162 0 0 144 54 0 72 36
1 0 648 0 864 0 0 0 648 288 0 0 144 0 0
4 216 0 288 0 324 432 144 0 0 216 0 0 0 0
9 0 216 0 288 0 0 0 144 0 0 0 0 0 0
16 54 0 72 0 0 0 36 0 0 0 0 0 0 0

(7.11)
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7.6 Astigmatic Covariance Structures

The results discussed in the previous section have the implication that in the
search for astigmatic laws we need to restrict the symmetries of interest to proper
subgroups of the full symmetric group.

This same principle applies to the determination of mean and covariance struc-
tures that are necessary for meeting the astigmatic restrictions. To illustrate the
construction of these parametric structures, we apply the techniques introduced in
Section 3.5 on page 70 with a generic point in y ∈ R

8, a (real) symmetric 8× 8
matrix �, and the linear representation ρ of K4 on R

8 given by action (7.8). Direct
evaluation of

� =
∑
τ∈K4

ρτ�ρτ−1

gives the centralized version

� = 1

4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A B C C D E E D

B A C C E D D E

C C F G H H I I

C C G F I I H H

D E H I J K L M

E D H I K J M L

E D I H L M J K

D E I H M L K J

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A 2 �1,1 + 2 �5,5

B 4 �1,5

C �1,3 +�3,5 +�1,7 +�5,7

D �1,2 +�4,5 +�1,8 +�5,6

E �1,4 +�2,5 +�1,6 +�5,8

F 2 �3,3 + 2 �7,7

G 4 �3,7

H �2,3 +�3,4 +�7,8 +�6,7

I �2,7 +�4,7 +�3,8 +�3,6

J �2,2 +�4,4 +�8,8 +�6,6

K 2 �2,4 + 2 �6,8

L 2 �2,6 + 2 �4,8

M 2 �2,8 + 2 �4,6

of �.

7.7 Dihedral Fourier Analysis

The dihedral indexing introduced on page 43 has its justification from the Fourier-
inverse formula described by Theorem 4.5, on page 118. Generic derivations of the
Fourier transform for data indexed by D3 and D4 appeared on page 120. Similarly,
in optics, the one-to-one correspondence between a coherency matrix J and the
Stokes coefficients S0, . . . , S3 that appear in its resolution J = S0σ0 + S1σ1 +
S2σ2 + S3σ3 in terms of the Pauli matrices σ0, . . . , σ3, is intrinsic to the definition

Sj = 1

2
Tr Jσj (7.12)
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of the Stokes coefficients (O’Neill, 1963, p. 152). The uniquiness follows from the
fact that Tr σiσj = 2δij , so that the resolution

M =
[
a b

c d

]
=

3∑
j=0

Sjσj = S0

[
1 0

0 1

]
+ S1

[
0 1

1 0

]
+ S2

[
0 −i

i 0

]
+ S3

[
1 0

0 −1

]

of an arbitrary real or complex matrix M is obtained with S0 = (a + d)/2, S1 =
(b + c)/2, S2 = i(b − c)/2 and S3 = (a − d)/2. See also, for example, Silverman
(1995, p. 140) and Streater and Wightman (1964, p. 12).

We conclude this chapter with an application of the dihedral Fourier analysis
to curvature data, showing its effectiveness in reproducing well-known quantities
commonly used in linear optics. These techniques will be given continuation in the
next chapter, in which we study the data-analytic aspects of handedness.

Rotations and reversals in canonical space

The dihedral groups in the plane were introduced earlier on page 42. The underly-
ing planar rotations in R

2 are in the counterclockwise direction, and the reversals
are defined as the horizontal reflection followed by a rotation. It is remarked that
the planar horizontal reflection, in the case of a rigid body, requires its realization
as the 180◦ rotation in R

3 along the x-axis (thus changing the polarity of the z

axis). In canonical space, rotations are given by z �→ wz and reversals by z �→ wz̄.
In particular, when n = 4, the correspondence with the Pauli matrices is given by
βk,d = (iσ3)kσ (1−d)/2

1 . The complete set of two-dimensional irreducible representa-
tions of Dn is obtained by defining, in (2.13), ω = e2πi�/n for � = 1, . . . , m, where
m = (n− 1)/2 for n odd and m = n/2− 1 for n even. In the present application
we concentrate in the case � = 1.

Adding to the language of optical instruments, βk,d are compensators introducing
mirror-image relative phase differences, in the sense that if z = eiθ , then βk,d

induces a phase difference of 2(kφ + dθ ) between the two components of z. This
two-sided view of a phase shift is a realization in canonical two-space of the polarity
induced in the z axis under the 180◦ rotation along the x axis described above. Also
note that the sign of index d in the operator βk,d is passed to its operand θ .

The dihedral Fourier coefficients

Given any 2× 2 real matrix M = (mij ), let M indicate its conjugate XMX−1 in
canonical space. Specifically,

M =
[

f+ f−

f − f +

]
, with fd = 1

2
[m11 + dm22 + i(m21 − dm12)], d = ±1.
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Let xk,d = Tr [β−k,dM]/n be the dihedral indexing introduced earlier on page 43,
so that conversely, from Theorem 4.5, M =∑

k,d xk,dβk,d . That is,

M =
∑
k,d

xk,dβk,d ⇐⇒ xk,d = 1

n
Tr [β−k,dM], k = 1, . . . , n, d = ±1.

Moreover, xk,d = 2$fdω
−k/n = 2[cos(kφ)$fd + sin(kφ)%fd]/n, where $ and %

indicate the real and complex parts of a complex number, respectively. In summary,
then,

M =
∑
k,d

xk,dβk,d ⇐⇒ xk,d = 2

n
[cos(kφ)$fd + sin(kφ)%fd],

d = ±1, k = 1, . . . , n. (7.13)

Phase correlations. Direct evaluation shows that, for d = ±1, xd =
∑

k xk,d/n =
0 and

< xd, γ
�xd >= 1

n

∑
k

xk,dxk−�,d = 2[($fd)2 + (%fd)2] cos(�φ),

� = 0, . . . , n− 1. (7.14)

In particular, ||γ �xd ||2 =< xd, xd >= 2[($fd)2 + (%fd)2] for � = 0, . . . n− 1, so
that

< xd, γ
�xd >

< xd, xd >< γ �xd, γ �xd >
= cos(�φ), d = ±1,

is the phase correlation between xd and its lag � companion vector γ �xd . Writing
F ′

d = ($fd,%fd), the (lag 0) correlation between rotations and reversals is

< F+, F− >

||F+|| ||F−|| .

For � > 0, the lagged correlations between rotations and reversals can be obtained
with similar derivations. If the matrix M is complex, the decomposition of M is
obtained from adjoining the decompositions of the real and imaginary matrix parts
of M .

Dihedral Fourier analysis of refractive profiles

The refractive power matrix of a spherocylindrical lens is given by

F =
[

s + c sin2 (α) −c sin (2α) /2

−c sin (2α) /2 s + c cos2 (α)

]
=
[
S − C+ −Cx

−Cx S + S+

]
,

where the scalars (s, c, α) indicate, respectively, the sphere, cylinder, and axis.
The RHS notation is from Campbell (1997) and Campbell (1994), in which S =
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s + c/2, C+ = (c/2)+ cos(2α), Cx = (c/2) sin(2α). The observable data are the
scalars (s, c, α), respectively the sphere, cylinder, and axis.

The matrix F is expressed as

XFX−1 =
[
M C0 + iC45

C0 − iC45 M

]
in canonical space, thus identifying the coefficients M = s + c/2, C0 =
−c cos(2α)/2 and C45 = −c sin(2α)/2 appearing in W.E. Humphrey’s principle
of astigmatic decomposition (Humphrey, 1976). See also Thibos et al. (1994). It
then follows that

F = 2

n

∑
k

{M cos(kφ)βk,+ + [C0 cos(kφ)+ C45 sin(kφ)]βk,−} (7.15)

is the resolution of F . Its rotation-reversal signature is defined by the ensemble of
n points

k �→ (M cos(kφ), C0 cos(kφ)+ C45 sin(kφ)) ⊂ R
2, k = 1, . . . n, (7.16)

parameterized by Humphrey’s coefficients. Consequently, in analogy with the re-
sults described on page 191, we have shown that the classic components

{s + c sin(α)2, −c sin(2α)/2} = {S − C+, −CX}
of linear optics are precisely the canonical invariants relative to the data indexed
by the dihedral rotations and reversals, that is, the coefficients of βk,d in (7.15).

Dihedral Fourier analysis-related applications

Rotators. For the (counterclockwise) rotator R(θ ), it follows that f+ = eiθ and
f− = 0, and hence xk,+ = 2 cos(θ − kφ)/n, xk,− = 0. Consequently, in canonical
space,

R(θ ) = 2

n

∑
k

cos(θ − kφ)βk,+.

Since rotators in canonical space have the form of β+, only those components
appear in the decomposition.

Polarizers. For the polarizer P (α), the results are: f+ = 1/2, f− = e2iα/2, xk,+ =
cos(kφ)/n, xk,− = cos(2α − kφ)/n so that P (α) resolves in canonical space as

P (α) = 1

n

∑
k

[cos(kφ)βk,+ + cos(2α − kφ)βk,−].

Its rotation-reversal signature is defined by the ensemble of n points pk(α)′ =
(cos(kφ), cos(2α − kφ)) in R

2. If uk is observed with uncertain α, its value may then
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be numerically estimated as the value that minimizes, for example,
∑

k ||pk(α)−
uk||2.

A Hamiltonian. Consider the Hamiltonian

H =
[
a2

1 2a1a2e
iδ

2a1a2e
−iδ a2

2

]
=
[
a2

1 0

0 a2
2

]
+ 2a1a2

[
0 eiδ

e−iδ 0

]

of a monochromatic plane wave represented as the superposition of linearly polar-
ized basis states with real amplitudes a1, a2, and a relative phase δ. Transforming the
first component to canonical space gives f+ = (a2

1 + a2
2)/2 and f− = (a2

1 − a2
2)/2.

The second component gives f+ = 0 and f− = 2a1a2e
iδ. Combining the like co-

efficients gives

xk,+ = 1

n
(a2

1 + a2
2) cos(kφ), xk,− = 1

n
(a2

1 − a2
2) cos(kφ)+ 2a1a2 cos(kφ − δ),

in which a2
1 + a2

2 is the total light intensity, 2a1a2 cos(δ) is the angular orienta-
tion of the elliptical motion traced out by the electric vector of the light wave,
2a1a2 sin(δ) is the handedness or sense of circulation of the electric vector, and
a2

1 − a2
2 is the eccentricity of the elliptical motion (Silverman, 1995, p. 181). The

orientation and the handedness appear out of the term cos(kφ − δ) and the com-
ponents x1 = a2

1 − a2
2 , x2 = i(a2

1 + a2
2), x3 = −2a1a2 define an isotropic vector

(Cartan, 1966, p. 51).

Further Reading

The linear and ophthalmic optics aspects of this chapter are detailed in Viana
(2003), Lakshminarayanan and Viana (2005), and Viana and Lakshminarayanan
(2006).

Patterned covariance matrices arise from a variety of contexts. Wilks (1946), in
one of the early papers with patterned structure, considered a set of measurements
on k equivalent psychological tests and proposed a covariance matrix with equal
diagonal elements and equal off-diagonal elements. Votaw (1948) extended this
model to a set of blocks in which each block had a pattern. Olkin (1973) studied
a multivariate version in which each element was a matrix, and the blocks were
patterned. The circular covariance matrix, carrying the cyclic symmetry of Cn,
has a long history. There, typical measurements arise from a physical, spatial, or
temporal model, as for example, measurements on the petals of a flower. For a
discussion of this model, see Olkin and Press (1969) and Olkin (1973).

Some patterns arising from certain group operations will not have linear structure,
and Diaconis (1989) provides a discussion of how such patterns can arise.
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An algebraic synthesis of the possible classes of patterned matrices was obtained
by Andersson (1975). See, also of related interest, the aspects of group symmetry
covariance models described in Perlman (1987) and Andersson (1992).

The argument of testing for certain patterns of symmetry by averaging over a
class of permutation matrices is applied, for example, by Gao and Marden (2001).
In particular, the reader may consult Diaconis (1990) for specific aspects of group
invariance applied to the characterization of patterned matrices.

The reader interested in the algebraic treatment of dioptric power and optical
aberrations may want to consult Lakshminarayanan et al. (1998). For an earlier
algebraic formulation of developmental vision, see Hoffman (1966).

Exercises

Exercise 7.1. Refer to Table (7.18) and extend the definition of τ given by (7.5) on
page 182 to construct an indexing {xτ }τ∈G of data by the underlying group G. This
can be done by by summarizing the data (originally indexed by V ) within each set
τ . For example, τ �→∑

s∈τ xs . Give examples.

Exercise 7.2. The uniform mean angular variation. Following with the definitions
introduced in this chapter, assume that ∪τ∈S�

τ is a stochastically disjoint partition
of V and let τ be the ranking permutation in S� ordering the components of y,
so that τ1 is the location of the flat (minimum) curvature and τ� the location of
the steep (maximum) curvature. The angular displacement between the extreme
curvatures may be defined as follows: fix a reference point m ∈ {1, 2, . . . , �} and
an orientation σ = (12 . . . �) in S� for counting steps along V . If, in the direction
determined by σ , it takes n steps to move from the point of flat curvature to the
reference point and N steps from the point of steep curvature to the reference point,
we then write σnτ1 = m and σNτ� = m. Consequently n−N = τ1− τ�, in the
direction given by σ and n−M = τ�− τ1, in the direction defined by σ−1. This
justifies the definition of the angular variation α(τ ) between the extreme values
of y as α�1(τ ) = |τ�− τ1|2π/�. Show that the factor |τ�− τ1| can be expressed
as d ′ρτ r , where d ′ = (−1, 0, . . . , 0, 1), r ′ = (1, 2, . . . , �) and ρ is the permutation
representation of S�, and that, consequently, |τ�− τ1|2 = d ′ρτ (rr ′)ρ ′τ d.

Exercise 7.3. Following Problem 7.2, derive the (uniform) mean-squared angular
variation by applying the result, from page 115,

∑
τ∈S�

ρτHρ ′τ /�! = v0A+ v1Q,
where v0 is the sum of the components of H , and v0 + (n− 1)v1 = Tr H and, in
this case, H = rr ′.

Exercise 7.4. Average linear ranks. See also Section 4.5 on page 116. Show that
the mean linear rank R(y) of y, under a uniform law in S�, is given by R(y) =∑

y ρ ′τ r/|y|, where r ′ = (1, 2, . . . , �) and ρ is the permutation representation of
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S�. For y = (1, 1, 2), show that y = {1, (12)} and consequently

1

2
[ρ(1)′ + ρ((12))′] = 1

2

⎡⎣1 1 0
1 1 0
0 0 2

⎤⎦⎡⎣1
2
3

⎤⎦ =
⎡⎣1.5

1.5
3

⎤⎦ .

For y = (1, 2, 1), show that y = {(23), (132)}, and

1

2
[ρ((23))′ + ρ((132))′] = 1

2

⎡⎣1 1 0
0 0 2
1 1 0

⎤⎦⎡⎣1
2
3

⎤⎦ =
⎡⎣1.5

3
1.5

⎤⎦ .

Exercise 7.5. Curvature profiles in phase (or canonical) space. Show that (7.4) can
be written as w′

α,θDν,κwα,θ , with

Dν,κ = (ν − ν ′)
[
κs 0
0 κf

]
, w′

α,θ = (cos(θ − α), sin(θ − α)),

so that the refractive profile transforms to phase space according to

Xw′
α,θ = (ωθ−α, ω−θ+α) ≡ ωα,θ , X =

[
1 i

1 −i

]
, ωφ = eiφ,

and

XDν,κX
−1 = ν − ν ′

2

[
κs + κf κs − κf

κs − κf κs + κf

]
= 1

2

[
2s + c c

c 2s + c

]
≡ �s,c,

where s and c are the spherical and cylindrical parameters. Consequently, in phase
space, the refraction profile is given by πθ :s,c,α = ω′α,θ�s,cωα,θ . Conclude then that
πθ :s,c,α = (2s + c) cos(2(θ − α))+ c.

Exercise 7.6. Joint profiles. Given two profiles πθ :s,c,α1 and πθ :s,c,α2 with common
spherical and cylindrical components and varying orientations α1, α2, argue that
the two profiles can be jointly described by

[ωα1,θ ⊗ ωα2,θ ]′(�s,c ⊗�s,c)[ωα1,θ ⊗ ωα2,θ ] = πθ :s,c,α1πθ :s,c,α2,

and that, similarly, two or more profiles can be jointly be described by their product∏
j πθ :s,c,αj

.

Exercise 7.7. The coefficients in the joint profile. Examine the coefficients ap-
pearing in a joint profile πθ :s,c,α1πθ :s,c,α2 with common spherical and cylindrical
components and interpret the coefficients in c2, s2, and sc.
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Exercise 7.8. Dihedral decompositions. In phase space, the dihedral (Dn) decom-
position of �s,c is given by

�s,c =
∑
k,d

xk,dβ−k,d , k = 0, . . . , n− 1, d = ±1,

where βk,d are opposite direction compensators of phase shift 2ωk, with ωk ≡
2kπ/n, xk,1 = (2s + c) cos(ωk) and xk,−1 = c sin(ωk). Following Exercise 7.5, ob-
tain the dihedral decomposition of the single profile and show that the coefficients
xk,j and �s,c are in one-to-one correspondence via the dihedral Fourier formula
from Theorem 4.5. How does the argument extend to joint profiles?

Exercise 7.9. Review Exercises 7.5–7.8 by separating out the direction parameter
alpha from the argument parameter θ . Show that then (7.4) can be written as
w′

θDν,κ,αwθ , with

Dν,κ,α = (ν − ν ′)
[
κs cos2(α)+ κf sin2(α) 1

2 (κs − κf ) sin(2α)
1
2 (κs − κf ) sin(2α) κf cos2(α)+ κs sin2(α)

]
,

w′
θ = (cos(θ ), sin(θ )).

From (7.13), evaluate and interpret the dihedral Fourier coefficients of Dν,κ,α .

Exercise 7.10. Show that the set V of all mappings y : {1, 2, . . . , 8} �→ {a, b, c}
decomposes under the action yτ−1 of S8 according to |V | =∑

λ mλnλ, where the
components mλ and nλ are given by

λ mλ nλ mλnλ

800 1 3 3
710 8 6 48
620 28 6 168
611 56 3 168
530 56 6 336
521 168 6 1,008
440 70 3 210
431 280 6 1,680
422 420 3 1,260
332 560 3 1,680

total 6,561

(7.17)
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Appendix A

O y1 y2 y3 label τ : 1 (12) (13) (23) (123) (132)
11 1 1 1 1 1 1 1 1 1 1

12 2 2 2 14 14 14 14 14 14 14

13 3 3 3 27 27 27 27 27 27 27

21 1 1 2 10 10 10 2 4 2 4

21 1 2 1 4 4 2 4 10 10 2

21 2 1 1 2 2 4 10 2 4 10

22 2 2 1 5 5 5 13 11 13 11

22 2 1 2 11 11 13 11 5 5 13

22 1 2 2 13 13 11 5 13 11 5

23 1 1 3 19 19 19 3 7 3 7

23 1 3 1 7 7 3 7 19 19 3

23 3 1 1 3 3 7 19 3 7 19

24 3 3 1 9 9 9 25 21 25 21

24 3 1 3 21 21 25 21 9 9 25

24 1 3 3 25 25 21 9 25 21 9

25 2 2 3 23 23 23 15 17 15 17

25 2 3 2 17 17 15 17 23 23 15

25 3 2 2 15 15 17 23 15 17 23

26 3 3 2 18 18 18 26 24 26 24

26 3 2 3 24 24 26 24 18 18 26

26 2 3 3 26 26 24 18 26 24 18

31 1 2 3 22 22 20 6 16 12 8

31 1 3 2 16 16 12 8 22 20 6

31 2 1 3 20 20 22 12 8 6 16

31 3 1 2 12 12 16 20 6 8 22

31 2 3 1 8 8 6 16 20 22 12

31 3 2 1 6 6 8 22 12 16 20

(7.18)
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Appendix B

The 26 K4-symmetric mappings, their distinct (at lines indicated by ∗) isomorphic
companions, and astigmatic companions (at the line indicated with †)

j mapping ID sj

0 0 0 0 0 0 0 0 0 0
1 82 1 0 0 0 1 0 0 0
2 164 2 0 0 0 2 0 0 0
3 738 0 0 1 0 0 0 1 0
4 820 1 0 1 0 1 0 1 0
5 902 2 0 1 0 2 0 1 0
6 1476 0 0 2 0 0 0 2 0
7 1558 1 0 2 0 1 0 2 0
8 1640 2 0 2 0 2 0 2 0
9 2460 0 1 0 1 0 1 0 1
10 2542 1 1 0 1 1 1 0 1
11 2624 2 1 0 1 2 1 0 1
12 3198 0 1 1 1 0 1 1 1
13 3280 1 1 1 1 1 1 1 1
14 3362 2 1 1 1 2 1 1 1
15 3936 0 1 2 1 0 1 2 1
16 4018 1 1 2 1 1 1 2 1
17 4100 2 1 2 1 2 1 2 1
18 4920 0 2 0 2 0 2 0 2
19 5002 1 2 0 2 1 2 0 2
20 5084 2 2 0 2 2 2 0 2
21 5658 0 2 1 2 0 2 1 2
22 5740 1 2 1 2 1 2 1 2
23 5822 2 2 1 2 2 2 1 2
24 6396 0 2 2 2 0 2 2 2
25 6478 1 2 2 2 1 2 2 2

α = 45◦ α = 135◦

0 0
∗2214 246
∗4428 492
246 2214
2460 2460
∗4674 2706
492 4428
∗2706 4674
4920 4920
820 820
∗3034 1066
∗ †5248 1312

1066 3034
3280 3280
∗5494 3526
1312 5248
∗3526 5494
5740 5740
1640 1640
∗3854 1886
∗6068 2132
∗1886 3854
4100 4100
∗6314 4346
∗2132 6068
∗4346 6314
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Appendix C
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Figure 7.3: K4-symmetric mappings.
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8

Symmetry Studies of Planar Chirality

8.1 Introduction

Chirality is a term coined by Lord Kevin1 meant to designate the quality of “any
geometrical figure, or group of points of which a plane mirror image, ideally
realized, cannot be brought to coincide with itself.” The handedness in molecules
was first identified by Pasteur2 and since then the investigation of its presence,
effects, and quantification in the natural sciences has received continued interest.

For example, molecular chirality is a necessary and sufficient condition for a
substance to exibit optical activity, a property discovered by Huygens3 in 1690
when studying a crystal of calcite. Optically active substances are capable of
rotating the plane of polarization of a ray of plane polarized light. The presence of
the symmetry of an improper rotation (an axial rotational followed by reflection on
a plane orthogonal to the axis of rotation) in a molecule is a sufficient condition
for its nonchirality as its mirror image created by the plane of reflection, after a
rotation, is superimposable. In particular, molecules with the symmetry of a planar
reflection or with point symmetry are achiral and hence optically inactive.

Many molecules such as amino acids and sugars are chiral, which in turn can
cause DNA molecules to be chiral. The differential effect of the two pairs becomes
observable only in the presence of a collective of chiral molecules, or by probing
the pair with circularly polarized light, which is in itself a chiral mechanism. Planar
chirality adds the constraint that the (planar and bounded) objects cannot be lifted
from the plane, and consequently, the allowed symmetry operations are restricted
to planar transformations.

In this chapter we apply the methods of symmetry studies to statistically probe
the handedness of simple planar images. Our probing mechanisms, not surprisingly,
are the two-dimensional irreducible linear representations of the dihedral groups
acting on subsets of the Euclidean plane where the images are defined. These

1 Scottish physicist William Thomson (Lord Kelvin), 1824–1907.
2 French chemist Louis Pasteur, 1822–1895.
3 Dutch mathematician Christiaan Huygens, 1629–1695.

201
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Figure 8.1: Rotations and reversals for mappings s7 = [2 3 1 1 1 1 1 1] (top two rows) and
s27 = [1 1 1 2 1 1 1 1] (bottom two rows).

actions have the effect of inspecting an image by looking it up from both sides.
This is precisely the role of dihedral rotations and reversals.

The role of rotations and reversals can be appreciated from their action on the
oriented edges of the squares illustrated on page 41, or by their action on the graphs
(as subsets of the Euclidean plane) shown in Figure 8.1.

The contours display the four fourfold rotations (first row) followed by the
reversals (second row) acting on the mapping

s7 =
[
2 3 1 1 1 1 1 1

]
,

whereas the bottom part shows the corresponding actions on the mapping

s27 =
[
1 1 1 2 1 1 1 1

]
.

These two mappings, identified here with the same labels from Chapter 7, can
be contrasted by their handedness: the reader may want to try a paper model of
the planar contours determined by the two mappings, rotating the models (say
counterclockwise around its center) and annotating what you see first from one
side, then repeating the process and inspecting the motion from the other side.
Mapping s27 will not register any difference: it is said to be achiral; in contrast, the
rotating of the model determined by mapping s7 will reveal a sharp leading edge
when seen from one side and a sharp trailing edge from the other side. This shape
is then said to be chiral. This is also apparent in the rotations and reversals rows of
the top and bottom displays.



P1: JZZ

CUUS182-Main.tex CUUS182/Viana 978 0 521 84103 0 April 28, 2008 15:21

8.2 Characterizing Rotations and Reversals 203

Handedness in canonical space

For a nonzero z ∈ C, a rotation βk,1 maps (z, z̄) to (ωkz, ω−kz̄), whereas a reversal
βk,−1 maps (z, z̄) to (ωkz̄, ω−kz).

As one facing a mirror with both arms wide open will recognize, if the right
hand moves up (ωkz) and the left hand moves down (ωkz̄) then the mirror image’s
left hand moves down (ω−kz̄) and the right hand moves up (ω−kz). By aligning
a coordinate system along a person’s up-down, left-right, front-back directions,
the rotations and reversals are planar representations describing (all products of)
n-fold axial rotations around the front-back and around the up-down axes. The
fundamental observation here is the fact that it takes both rotations and reversals to
jointly describe the handedness implicit in the act of moving (by planar rotation)
the right hand up and the left hand down. The dihedral motion is illustrated by
the sequence of n points g : k → (ωkz, ωkz̄), whereas its mirror motion is the
corresponding sequence g : k → (ω−kz̄, ω−kz), k = 1, . . . , n.

In the theory of light, these two enantiomeric (mirror-image non superimpos-
able) motions would describe, in the continuous limit, its left- and right-circular
polarization forms.

Handedness and Euclidean space

Indicating by rk,d the embedding of planar rotations and reversals in Euclidean
space, the handedness of these two classes of transformations is seen from the fact
that (rk,de1 × rk,de2) · e3 = d, independently of k. The parity induced in the axis
along e3 demonstrates the two distinctly oriented systems: a right-handed coor-
dinate system (d = 1) and a left-handed coordinate system (d = −1) (Silverman,
1995, p. 186). These two interpretations are the basis of what is argued here: that
rotations and reversals are jointly necessary to assess the eventual handedness in an
object. Essentially, one should be able to inspect the object from both sides. And
that is precisely what the dihedral symmetries accomplish.

8.2 Characterizing Rotations and Reversals

Recall from page 192 that given a real 2× 2 matrix M = (mij ) and its conjugate
M = XMX−1 in canonical space, that

M =
[

f+ f−

f − f +

]
=
∑
k,d

xk,dβk,d ⇐⇒ xk,d = 2

n
[cos(kφ)$ fd + sin(kφ)% fd],

d = ±1, k = 0, . . . , n− 1,

where xk,d = Tr [β−k,dM]/n are the data indexed by the rotations and reversals.
We also observe that f− and f− are the canonical invariants for the data xk,d , in

phase space, corresponding to the invariants Bv and Bw derived on page 121.
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If the matrix M is complex, the decomposition of M is obtained by adjoining
the decompositions of the real and imaginary matrix parts of M in canonical space.
In particular, the data coefficients xk,d of any βk∗,−d for a particular k∗ will be zero.
More specifically,

βk∗,d = 2

n

∑
k

cos(kφ − k∗φ)βk,d .

Direct calculation shows that

Ad =
{[

a1 a2

−da2 da1

]
; a = (a1, a2) ∈ R

2

}
, d = ±1,

are the classes of matrices with vanishing reversal coefficients (d = 1, pure ro-
tations) and vanishing rotation coefficients (d = −1, pure reversals). Elements
Ad ∈ Ad in these classes resolve in canonical space as

Ad = n

2

∑
k

[a1 cos(kφ)+ a2 sin(kφ)]βk,d, d = ±1,

and satisfy det Ad = d||a||2. Writing,

I =
[
1 0
0 1

]
, R =

[
0 1

−1 0

]
, H =

[
1 0
0 −1

]
, D =

[
0 1
1 0

]
,

it follows that null reversals or pure rotations are characterized by linear superpo-
sitions A+ = a1I + a2R of the identity and a 90◦ rotation R, whereas the matrices
with null rotations, or pure reversals, are linear superpositions A− = a1H + a2D of
a horizontal line reflection H and a 45◦ line reflection D. Clearly, A+ ∩ A− = {0}.
The matrices {I, R,D,H } multiply according to the table

· 1 R H D

1 1 R H D

R R −1 −D H

H H D 1 R

D D −H −R 1

,

and generate an associative algebra. In canonical space, writing a = a1 + ia2,

A+ =
[
a 0
0 a

]
, A− =

[
0 a

a 0

]
so that, not surprisingly, a pure rotation A+ acts as z �→ az whereas a pure reversal
A− acts as z �→ az̄ in canonical space. The elementary operators act as H (z) = z̄,
D(z) = iz̄ and R(z) = −iz. Also in canonical space, H = σ1 = −ik, R = −iσ3 =
−i, D = −σ2 = ij, are the relations to the Pauli matrices {σ1, σ2, σ3} and the unit
quaternions {1, i, j, k}.
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8.3 Canonical Classification of Handedness in Elementary Images

This and the next section conclude our introduction to the analysis of structured
data with the study and statistical classification of simple images as data indexed
by simple planar arrays. To illustrate, consider the binary image shown on Fig-
ure 8.2 in which the levels of gray are indexed by a planar array V = L× L.

Figure 8.2: A simple planar image.

We will refer to these data y : V �→ R simply as images. The symmetries acting on
the images are those of any linear representation ρ, in dimension of 2, of a group
G leaving the array V invariant. This, in turn, gives an action

τ ∈ G �→ yρτ−1 ∈ F(V )

of G on F(V ). We are interested in statistically studying the symmetries of a given
image y with reference to the canonical decomposition of the sum of squares x ′x
for the data

xτ = ||y − yρτ−1 ||2, τ ∈ D4 (8.1)

indexed by dihedral planar rotations and reversals acting on V . For each rotation or
reversal, xτ is the squared distance between the original image and the transformed
image.

The notation γi = x ′Pix, i = 1, . . . , 5 for the components of the canonical
reduction of x ′x (page 134) is used to facilitate the present narrative, so that, for
example,

∑
i γi is the analysis of variance for each single-sample image. With the

same objective, we indicate here by 1, r, r2, r3 the four-fold rotations, by h and v

the horizontal and vertical line reflections, and by d and D the reflections on the
45◦ and 135◦ lines, respectively. This notation is in correspondence

(x1,1, . . . , x4,1, x1,−1, . . . , x4,−1)  (r1, . . . , r4, t1, . . . t4)  (1, r, r2, r3, h, d, v,D)

with the generic notations for dihedral data introduced earlier on in the previous
chapters. A point reflection with center in the origin (0, 0) is indicated by o.
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The following classification of the images is then obtained:

Aut(V ) null components

D4 γ1, γ2, γ3, γ4, γ5

C4 γ3, γ4, γ5

{1, h} or {1, v} γ2, γ4

{1, d} or {1, D} γ2, γ3

{1, o}  C2 γ5

{1, v, h, o}  C2 × C2 γ2, γ4, γ5

{1, d, D, o}  C2 × C2 γ2, γ3, γ5

(8.2)

There are two conditions, namely,

0 /∈ {γ2, γ5}, 0 /∈ {γ3, γ4},

each one of which is sufficient for Aut(V ) ⊆ {{1}, {1, o}}, hence sufficient for
determining the image to be chiral.

Each one of the images illustrated below will be followed by its dihedral indexing
and the corresponding analysis of variance,

[
r r2 r3 h d v D

xr xr2 xr3 xh xd xv xD

]
,

⎡⎢⎢⎢⎢⎣
1 γ ′1
2 γ ′2
3 γ ′3
4 γ ′4
5 γ ′5

⎤⎥⎥⎥⎥⎦ ,

where (for relative comparisons) γ ′i = γi/
∑

j γj . In addition, in selected examples,
the dihedral correlation indexing

xτ = < y, yρτ−1 >

||y||2 , (8.3)

is also presented. The images are classified according to their canonical decompo-
sition components, γ1, . . . , γ5.

D4 symmetry

γ1 = . . . γ5 = 0.

0 1 1 0
1 2 2 1
1 2 2 1
0 1 1 0

[
r r2 r3 h d v D

0 0 0 0 0 0 0

] ⎡⎢⎢⎢⎢⎣
1 0
2 0
3 0
4 0
5 0

⎤⎥⎥⎥⎥⎦
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C4 symmetry

γ3 = γ4 = γ5 = 0.

0 1 2 0
2 2 2 1
1 2 2 2
0 2 1 0

[
r r2 r3 h d v D

0 0 0 8 8 8 8

]⎡⎢⎢⎢⎢⎣
1 0.5
2 0.5
3 0
4 0
5 0

⎤⎥⎥⎥⎥⎦ .

Line (x = 0) symmetry

γ2 = γ4 = 0.

0 10 10 0
1 2 2 1
1 2 2 1
0 1 1 0

[
r r2 r3 h d v D

324 324 324 324 324 0 324

]⎡⎢⎢⎢⎢⎣
1 0.74
2 0
3 0.08
4 0
5 0.16

⎤⎥⎥⎥⎥⎦

Line ( y = 0) symmetry

γ2 = γ4 = 0.

0 1 1 0
10 2 2 1
10 2 2 1
0 1 1 0

[
r r2 r3 h d v D

324 324 324 0 324 324 324

]⎡⎢⎢⎢⎢⎣
1 0.74
2 0
3 0.08
4 0
5 0.16

⎤⎥⎥⎥⎥⎦

Line ( y = x) symmetry

γ2 = γ3 = 0.

0 1 10 0
1 2 2 10
1 2 2 1
0 1 1 0

[
r r2 r3 h d v D

324 324 324 324 0 324 324

]⎡⎢⎢⎢⎢⎣
1 0.74
2 0
3 0
4 0.08
5 0.16

⎤⎥⎥⎥⎥⎦
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Line ( y = −x) symmetry

γ2 = γ3 = 0.

0 10 1 0
10 2 2 1
1 2 2 1
0 1 1 0

[
r r2 r3 h d v D

324 324 324 324 324 324 0

]⎡⎢⎢⎢⎢⎣
1 0.74
2 0
3 0
4 0.08
5 0.16

⎤⎥⎥⎥⎥⎦

C2 (point) symmetry

γ5 = 0 and 0 /∈ {γ3, γ4}. This image is chiral.

0 1 0 1
2 1 1 2
2 1 1 2
1 0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r 24.0
r2 0.0
r3 24.0
h 8.0
d 20.0
v 8.0
D 20.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
1 0.652
2 0.003
3 0.313
4 0.034
5 0

⎤⎥⎥⎥⎥⎦

A binary (chiral) spiral image

1 1 1 1 1 1
1 2 2 2 2 2
1 2 1 1 1 2
1 2 1 2 1 2
1 2 2 2 1 2
1 1 1 1 1 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r 18.0
r2 18.0
r3 18.0
h 6.0
d 18.0
v 18.0
D 12.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
1 0.81
2 0
3 0.04
4 0.01
5 0.14

⎤⎥⎥⎥⎥⎦

C4 symmetry

0 2 2 1 1 0
1 0 2 1 0 2
1 1 0 0 2 2
2 2 0 0 1 1
2 0 1 2 0 1
0 1 1 2 2 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r 0.0
r2 0.0
r3 0.0
h 24.0
d 24.0
v 24.0
D 24.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
1 0.5
2 0.5
3 0
4 0
5 0

⎤⎥⎥⎥⎥⎦
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Figure 8.3: C4-symmetry.

Figure 8.3 Shows an image with the symmetry of C4.

Analytically generated images

�(x, y) = 2x2 + y2. Here Aut(L) = {1, v, h, o}.

12 6 4 6 12
9 3 1 3 9
8 2 0 2 8
9 3 1 3 9

12 6 4 6 12

,

[
r r2 r3 h d v D

140 0 140 0 140 0 140

]⎡⎢⎢⎢⎢⎣
1 0.5
2 0
3 0.5
4 0
5 0

⎤⎥⎥⎥⎥⎦

�(x, y) = x y. Here Aut(L) = {1, d, D, o}.

−4 −2 0 2 4
−2 −1 0 1 2

0 0 0 0 0
2 1 0 −1 −2
4 2 0 −2 −4

,

[
r r2 r3 h d v D

400 0 400 400 0 400 0

]⎡⎢⎢⎢⎢⎣
1 0.5
2 0
3 0
4 0.5
5 0

⎤⎥⎥⎥⎥⎦

�(x, y) = x2 y. Here, Aut(L) = {1, v} and it is observed that

8 2 0 2 8
4 1 0 1 4
0 0 0 0 0

−4 −1 0 −1 −4
−8 −2 0 −2 −8

[
r r2 r3 h d v D

680 1360 680 1360 680 0 680

]⎡⎢⎢⎢⎢⎣
1 0.66
2 0
3 0
4 0
5 0.33

⎤⎥⎥⎥⎥⎦ ,
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so that D4, C4, C2, and K4 are ruled out. The correlation indexing

[
r r2 r3 h d v D

0.0 −1.0 0.0 −1.0 0.0 1.0 0.0

]⎡⎢⎢⎢⎢⎣
1 0.04
2 0.04
3 0.04
4 0.04
5 0.83

⎤⎥⎥⎥⎥⎦ ,

complements the classification, pointing to the correct automorphisms.

�(x, y) = x + y. Similarly to the previous array, here Aut(L) = {1, d},
0 1 2 3 4

−1 0 1 2 3
−2 −1 0 1 2
−3 −2 −1 0 1
−4 −3 −2 −1 0

[
r r2 r3 h d v D

200 400 200 200 0 200 400

]⎡⎢⎢⎢⎢⎣
1 0.66
2 0
3 0
4 0
5 0.33

⎤⎥⎥⎥⎥⎦
whereas the correlation indexing leads to

[
r r2 r3 h d v D

0.0 −1.0 0.0 0.0 1.0 0.0 −1.0

]⎡⎢⎢⎢⎢⎣
1 0.04
2 0.04
3 0.04
4 0.04
5 0.83

⎤⎥⎥⎥⎥⎦
�(x, y) = 4 cos2(xπ/4) + 2 sin2(xπ/4).

2 4 6 4 2
1 3 5 3 1
0 2 4 2 0
1 3 5 3 1
2 4 6 4 2

[
r r2 r3 h d v D

252 0 252 0 252 0 252

]⎡⎢⎢⎢⎢⎣
1 0.5
2 0
3 0.5
4 0
5 0

⎤⎥⎥⎥⎥⎦
Here, Aut(L) = {1, h, v, o}  C2 × C2. The same function evaluated on a 7× 7
image:

3 1 3 5 3 1 3
4 2 4 6 4 2 4
3 1 3 5 3 1 3
2 0 2 4 2 0 2
3 1 3 5 3 1 3
4 2 4 6 4 2 4
3 1 3 5 3 1 3

[
r r2 r3 h d v D

360 0 360 0 360 0 360

]⎡⎢⎢⎢⎢⎣
1 0.5
2 0
3 0.5
4 0
5 0

⎤⎥⎥⎥⎥⎦
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�(x, y) = x2 − y2. Similarly,

0 −5 −8 −9 −8 −5 0
5 0 −3 −4 −3 0 5
8 3 0 −1 0 3 8
9 4 1 0 1 4 9
8 3 0 −1 0 3 8
5 0 −3 −4 −3 0 5
0 −5 −8 −9 −8 −5 0

,

[
r r2 r3 h d v D

4704 0 4704 0 4704 0 4704

]⎡⎢⎢⎢⎣
1 0.5
2 0
3 0.5
4 0
5 0

⎤⎥⎥⎥⎦ .

8.4 Handedness of Short Symbolic Sequences

In this section we will statistically classify the handedness of elements in the
mapping space of all 6,561 sequences in length of 8 taking values in {1, 2, 3}
introduced in Chapter 7, following the same steps developed in the previous section.
That is, each profile is rotated, front and back, and compared with the original one.
The sum of squares of the resulting data indexed by these rotations and reversals
is then reduced using the canonical decomposition.

Classification of the profiles with K4-symmetry

These are the 26 profiles identified in Chapter 7. The results are summarized in
Appendix A to this chapter (page 217). It is simple to verify, from the resulting
data x1, . . . , xD that γ1 = x ′P1x and γ3 = x ′P3x are the only eventually nonzero
components in the decomposition of x ′x, so that the classification is then primarily
based on γ3. With Table (8.2) in mind, note that all mappings have γ2 = γ4 = γ5 =
0, which is the necessary condition for K4 symmetry. Specifically, the canonical
decomposition identifies three classes of mappings: Those with

(1) γ3 = 0 corresponding to Dihedral mappings, as γ1 = . . . ,= γ5 = 0;
(2) γ3 = 32, which, correctly, rule out all but the K4 symmetries, correctly so;

and
(3) γ3 = 512, which do so as well, only more decisively.

The graphical display of these three classes of mappings is shown in Appendix B,
Figures 8.6–8.8.

Sampling the mapping space

It is not difficult to verify, analytically, that γ2 = 0 for all mappings in that space,
so that we discuss γ3, γ4, and γ5.
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Table (8.4) shows the joint distribution of the canonical components γ3 and γ4

based on a random sample of size 100 from the mapping space (with 6,561 points).

γ3\γ4 0 2 32 162 512 Total

0 6 10 4 2 0 22
2 6 21 4 4 0 35

32 5 7 7 1 0 20
162 6 5 3 2 0 16
512 1 3 1 1 1 7

Total 24 46 19 10 1 100

(8.4)

Here is the detailed classification:

(1) There was a single mapping (ID 4592), displayed below, with γ5 = 0 and
0 /∈ {3, 4} so that it is chiral with (in this case) a center of symmetry.

(2) There were 6 mappings, illustrated below, with γ3 = γ4 = 0 and γ5 �= 0. The
condition on γ5 rules out all but the simple axial reflections. Among these, in-
deed, one mapping with the symmetry of {1, d} and one mapping with the sym-
metry of {1, D}were identified. Both are achiral. The remaining four are chiral.
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(3) A total of 16 mappings satisfy the condition γ3 = 0 with 0 /∈ {γ4, γ5}, thus
ruling out all but the chiral mappings and those with diagonal symmetries.
One mapping has diagonal symmetries and 15 are chiral. The mappings are
shown in Appendix C, Figure 8.9.

(4) A total of 18 mappings satisfy the condition γ4 = 0 with 0 /∈ {γ3, γ5}, thus
ruling out all but the chiral mappings and those with horizontal or vertical
symmetries; of those, 9 are chiral. The mappings are shown in the Appen-
dix C, Figure 8.10.

(5) Finally, there were 47 mappings with γ3 = γ4 = γ5 = 0, ruling out all
symmetries but the trivial. All mappings are chiral.

In total, then, a total of 1+ 4+ 15+ 9+ 47 = 76 chiral mappings were identified,
approximately 3/4 of the sample.

A particular interpretation of component γ5. Table (8.2) makes clear the role
of γ5 in the decomposition of the sum of squares for the dihedral data. It shows
that large values of γ5 should correspond to large deviations of point symmetry,
or C2 symmetry, which is quantized by xr2 . This effect is shown in Figure 8.4. In
addition, as pointed out above, large values of γ5 rule out all but the symmetries
of those groups of simple reversals, thus increasing the likelihood of pointing to
chiral mappings.

The component γ5 is also related to the canonical invariants derived earlier on
page 121. Figure 8.5 shows the lines of constant γ5 in the invariant space determined
by the basis Bv.

Further Reading

The difficult task of quantifying molecular chirality and relating it to its macroscopic
manifestations is described in Harris et al. (1999). Recent advances in optical
activity produced by a (thin film) planar grating consisting of elementary chiral
elements is reported in Papakostas et al. (2003). See also Prosvirnin and Zheludev
(2005). An extensive review of the many applications of chirality is documented
in Petitjean (2003). The special issue (V. 16 No. 4, 2005) of Symmetry: Culture
and Science covers a wide range of fields where chirality has been investigated,
such as thermodynamics, broken symmetry and chiroptics. See also Viana and
Lakshminarayanan (2005).

Exercises

Exercise 8.1. Carry out a symmetry study for an experimental data indexed by the
directed edges

{(a, b), (b, c), (c, a), (b, a), (a, c), (c, b)}
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0 100 200 300 400 500 600 700 800
x'P_5x

0

10

20

30

40

x_
r2

Figure 8.4: Joint distribution of x ′P5x and xr2 .
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Figure 8.5: Contours of γ5 on the dihedral Fourier invariants.

of the triangle with vertices in the set {a, b, c}, e.g., data on scalar responses indexed
by a two-step order of presentation of three conditions. Identify and quantify
eventual handedness effects.

Exercise 8.2. Following with Exercise 8.1, derive from Table (1.16) on page 12
the frequencies of pairwise preferences among the candidates in the set {a, g, c}
and carry out a symmetry study on these data. Then compare the results with the
corresponding study for the other three sets of candidates.
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Exercise 8.3. If a probability distribution is indexed by V where a group G acts
upon, giving a representation ρ, then xτ = J (s : sρτ−1 ), τ ∈ G, is the divergence in-
dexing based on Kullback’s divergence measure J (f : g) =∑

(fi − gi) log fi/gi

(Kullback, 1968). Apply the divergence indexing to study the voting data (1.16) on
page 12.

Exercise 8.4. Following the definition (8.1) and notation on page 205, show that
for an arbitrary point in R

8 we have xr = xr3 .

Exercise 8.5. Show that the matrices M and M in Section 8.2 with det M = 1
form two matrix groups, known as SL(2, R) and SU1,1, respectively. These are
conjugate subgroups of GL(2, C) in the sense that XSL(2, R)X−1 = SU1,1, e.g.,
Carter et al. (1995, p. 57).

Exercise 8.6. Let Q(z; k) = ε∗βk,dε/2, where ε′ = (z, z̄) in C
2, with z = x + iy

and ∗ indicates the conjugate transpose of a vector or matrix. Show that

Q(z; k) =
{
|z|2 cos kφ if d = 1 (rotations),

(x2 − y2) cos kφ + 2xy sin kφ if d = −1 (reversals),

and that the set {Q(z; k), k = 0, . . . , n− 1} is invariant under unitary rotations
z �→ wz and reversals z �→ wz̄.

Exercise 8.7. With the notation of page 204, show that the commutator relations

1 R H D

1 0 0 0 0
R 0 0 −2 D 2 H

H 0 2 D 0 2 R

D 0 −2 H −2 R 0

for the algebra A generated by {1, R, H, D} lead to the commutator relations

[Ad, Bf ] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 d = f = 1,

(a1d2 − a2b1)R d = f = −1,

a2b2H − a2b1D d = 1, f = −1,

−a2b2H + a1b2D d = −1, f = 1,

for the underlying associative algebra generated by true rotations and reversals.
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Exercise 8.8. Starting with the action

[., .] e1 e2 e3 e4

R −e2 − e3 e1 − e4 e1 − e4 e2 + e3

H 0 2e2 −2e3 0
D e3 − e2 e4 − e1 e1 − e4 e2 − e3

of the elementary operators on the canonical basis {e1, . . . , e4} for R
2×2 and indi-

cating the resulting representation by ρ, show that [ρR, ρH ] = ρ[R,H ]. These (Lie
algebra) representations may be useful in the analysis of data indexed by A.
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Appendix A

j mapping ID sj

0 0 0 0 0 0 0 0 0 0
1 82 1 0 0 0 1 0 0 0
2 164 2 0 0 0 2 0 0 0
3 738 0 0 1 0 0 0 1 0
4 820 1 0 1 0 1 0 1 0
5 902 2 0 1 0 2 0 1 0
6 1476 0 0 2 0 0 0 2 0
7 1558 1 0 2 0 1 0 2 0
8 1640 2 0 2 0 2 0 2 0
9 2460 0 1 0 1 0 1 0 1

10 2542 1 1 0 1 1 1 0 1
11 2624 2 1 0 1 2 1 0 1
12 3198 0 1 1 1 0 1 1 1
13 3280 1 1 1 1 1 1 1 1
14 3362 2 1 1 1 2 1 1 1
15 3936 0 1 2 1 0 1 2 1
16 4018 1 1 2 1 1 1 2 1
17 4100 2 1 2 1 2 1 2 1
18 4920 0 2 0 2 0 2 0 2
19 5002 1 2 0 2 1 2 0 2
20 5084 2 2 0 2 2 2 0 2
21 5658 0 2 1 2 0 2 1 2
22 5740 1 2 1 2 1 2 1 2
23 5822 2 2 1 2 2 2 1 2
24 6396 0 2 2 2 0 2 2 2
25 6478 1 2 2 2 1 2 2 2

x ′P3x x1 xr xr2 xr3 xh xd xv xD

0 0 0 0 0 0 0 0 0
32 0 4 0 4 0 4 0 4

512 0 16 0 16 0 16 0 16
32 0 4 0 4 0 4 0 4
0 0 0 0 0 0 0 0 0

32 0 4 0 4 0 4 0 4
512 0 16 0 16 0 16 0 16
32 0 4 0 4 0 4 0 4
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

32 0 4 0 4 0 4 0 4
512 0 16 0 16 0 16 0 16
32 0 4 0 4 0 4 0 4
0 0 0 0 0 0 0 0 0

32 0 4 0 4 0 4 0 4
512 0 16 0 16 0 16 0 16
32 0 4 0 4 0 4 0 4
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

32 0 4 0 4 0 4 0 4
512 0 16 0 16 0 16 0 16
32 0 4 0 4 0 4 0 4
0 0 0 0 0 0 0 0 0

32 0 4 0 4 0 4 0 4
512 0 16 0 16 0 16 0 16
32 0 4 0 4 0 4 0 4
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Appendix B
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Figure 8.6: K4 mappings with dihedral symmetry.
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Figure 8.7: K4 mappings without dihedral symmetry.
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Figure 8.8: K4 mappings without dihedral symmetry. More stringent deviations.
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Appendix C

Figure 8.9: The 16 mappings satisfying the conditions γ3 = 0, γ4 �= 0, γ5 �= 0.

Figure 8.10: The 18 mappings satisfying the conditions γ4 = 0, γ3 �= o, γ5 �= 0.
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Appendix A: Computing Algorithms

Algorithm 1 (Permutation matrices). This procedure generates the permutation
matrix for a given permutation of three objects labeled as {1, 2, 3}. To extend
it to four or more objetcs, modify the input indices and the matrix dimension
accordingly.

> restart:
> p3 := proc(a1,a2,a3) local f,m:
> f:=[a1,a2,a3]:
> m:=(i,j)->1-min(abs(f[i]-j),1):
> Matrix(3,3,m):
> end:

Algorithm 2 (Multiplication table for S3).

> restart:
> with(group):
> t:=[[], [[1,2,3 ]], [[1,3,2 ]], [[1,2]], [[1,3]], [[2,3]] ];
> ut:=[1,2,3,4,5,6];
> m:=(i,j)->mulperms(op(i,t),op(j,t));
> M:=Matrix(6,6,m):
> CS3:=subs( seq( op(i,t)=op(i,ut), i=1..nops(ut) ), evalm(M) );

Algorithm 3 (Canonical invariants for action (3.5) on page 66). The charater table
of C2h  C2 × C2 is shown on page 98. Notation: {u, c, o, s} ≡ {E,C2, i, σh}.
> restart:
> with(LinearAlgebra):
> p8 := proc( a1,a2,a3,a4,a5,a6,a7,a8 )
> local f,ff,m:
> f:=[a1,a2,a3,a4,a5,a6,a7,a8]:
> ff:=[7,8,1,2,3,4,5,6]: ## re-labeling
> m:=(i,j)->1-min(abs(f[i]-ff[j]),1):
> Matrix(8,8,m):
> end proc:
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> c:=p8(1,2,7,8,5,6,3,4); o:=p8(2,1,8,7,6,5,4,3);
> s:=p8(8,7,2,1,4,3,6,5); u:=p8(7,8,1,2,3,4,5,6);
> Q1:=(u+c+o+s)/4; Q2:=(u-c+o-s)/4;
> Q3:=(u+c-o-s)/4; Q4:=(u-c-o+s)/4;
> x:=<abb,abB,aBb,aBB,Abb,AbB,ABb,ABB>;
> MatrixVectorMultiply(Q1,x);
> MatrixVectorMultiply(Q2,x);
> MatrixVectorMultiply(Q3,x);
> MatrixVectorMultiply(Q4,x);

Algorithm 4 (Regular projections for S3).

> restart:
> with(group):
> t:=[[],[[1,2]],[[1,3]],[[2,3]],[[1,2,3]],[[1,3,2]]];
> ut:=[1,2,3,4,5,6];
> m:=(i,j)->mulperms(op(i,t),op(j,t));
> M:=Matrix(6,6,m):
> CS3:=subs( seq( op(i,t)=op(i,ut), i=1..nops(ut) ), evalm(M) );
> delta:=(i,j)->floor(2ˆ(-abs(i-j)));
> f:=(i,j,k)->floor(2ˆ(-abs(CS3[k,i]-CS3[1,j]))):

> c1:=<1,1,1,1,1,1>: ## the character table
> c2:=<2,0,0,0,-1,-1>:
> c3:=<1, -1,-1,-1,1,1>:

> P1:=Matrix(6,6,(i,j)->add(c1[k]*f(i,j,k),k=1..6))/6;
## the canonical projections

> P2:=Matrix(6,6,(i,j)->add(c2[k]*f(i,j,k),k=1..6))*2/6;
> P3:=Matrix(6,6,(i,j)->add(c3[k]*f(i,j,k),k=1..6))/6;

Algorithm 5 (Regular projections for S4).

> restart:
> with(group):
> t:=[[],[[3,4]],[[2,3 ]],[[2,4 ]],[[1,2 ]],[[1,3 ]],[[1,4]],
> [[2,3,4 ]],[[2,4,3 ]],[[1,2,3 ]],[[ 1,2,4]],[[1,3,2 ]],
> [[1,3,4 ]],[[1,4,2 ]],[[1,4,3 ]],[[1,2],[3,4]],
> [[1,3],[2,4 ]],[[1,4],[2,3 ]],[[1,2,3,4 ]],
> [[1,2,4,3 ]],[[1,3,2,4 ]],[[1,3,4,2 ]],[[1,4,3,2 ]],
> [[1,4,2,3 ]]];
> ut:=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,
> 21,22,23,24];
> m:=(i,j)->mulperms(op(i,t),op(j,t));
> M:=Matrix(24,24,m):
> CS4:=subs( seq( op(i,t)=op(i,ut), i=1..nops(ut) ), evalm(M) ):
> delta:=(i,j)->floor(2ˆ(-abs(i-j)));
> f:=(i,j,k)->floor(2ˆ(-abs(CS4[k,i]-CS4[1,j]))):
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> c1:=<1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1>:
## the character table

> c2:=<3,1,1,1,1,1,1,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1>:
> c3:=<2, 0,0,0,0,0,0, -1,-1,-1,-1,-1,-1,-1,-1,2,2,2, 0,0,0,

0,0,0>:
> c4:=<3,-1,-1,-1,-1,-1,-1, 0,0,0,0,0,0,0,0,-1,-1,-1, 1,1,1,

1,1,1>:
> c5:=<1, -1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1, -1,-1,-1,

-1,-1,-1>:

> P1:=Matrix(24,24,(i,j)->add(c1[k]*f(i,j,k),k=1..24))/24;
## the canonical projections

> P2:=Matrix(24,24,(i,j)->add(c2[k]*f(i,j,k),k=1..24))*3/24;
> P3:=Matrix(24,24,(i,j)->add(c3[k]*f(i,j,k),k=1..24))*2/24;
> P4:=Matrix(24,24,(i,j)->add(c4[k]*f(i,j,k),k=1..24))*3/24;
> P5:=Matrix(24,24,(i,j)->add(c5[k]*f(i,j,k),k=1..24))/24;

Algorithm 6. This code generates the canonical projections of the regular repre-
sentation of D4.

> restart:
> with(group):
> t:=[[],[[1,2,3,4 ]],[[1,3],[2,4]],[[1,4,3,2 ]],[[1,4],[2,3 ]],
> mulperms([[1,4],[2,3 ]], [[1,2,3,4]]),mulperms([[1,4],

[2,3 ]], [[1,3],[2,4]]),
> mulperms([[1,4],[2,3 ]], [[1,4,3,2]]) ];
> ut:=[1,2,3,4,5,6,7,8];
> m:=(i,j)->mulperms(op(i,t),op(j,t));
> M:=matrix(8,8,m):
> CD4:=subs( seq( op(i,t)=op(i,ut), i=1..nops(ut) ), evalm(M) ):
> delta:=(i,j)->floor(2ˆ(-abs(i-j)));
> f:=(i,j,k)->floor(2ˆ(-abs(CD4[k,i]-CD4[1,j]))):

> c1:=<1,1,1,1,1,1,1,1>:
> c2:=<1,1,1,1,-1,-1,-1,-1>:
> c3:=<1,-1,1,-1,1,-1,1,-1>:
> c4:=<1,-1,1,-1,-1,1,-1,1>:
> c5:=<2,0,-2,0,0,0,0,0>:

> P1:=Matrix(8,8,(i,j)->add(c1[k]*f(i,j,k),k=1..8))/8;
> P2:=Matrix(8,8,(i,j)->add(c2[k]*f(i,j,k),k=1..8))/8;
> P3:=Matrix(8,8,(i,j)->add(c3[k]*f(i,j,k),k=1..8))/8;
> P4:=Matrix(8,8,(i,j)->add(c4[k]*f(i,j,k),k=1..8))/8;
> P5:=Matrix(8,8,(i,j)->add(c5[k]*f(i,j,k),k=1..8))*2/8;
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Appendix B: Glossary of Selected
Symbols, Notations, and Terms

The following is a list of selected symbols and their definitions. Any exceptions
are noted in the text.

� $z and %z: the real and complex parts of a complex number z;
� Im: the m×m identity matrix;
� < v1, v2, v3 >: the subspace spanned by the vectors v1, v2, v3;
� V : a finite set of labels or indices, a structure;
� τ, σ, η, . . .: group elements;
� G: a finite group (typically) with g elements;
� S�: the group of permutations on {1, 2, . . . , �};
� SV : the group of permutations on V ;
� C�: the cyclic group of order �;
� Os : a symmetry orbit containing s;
� ρτ or ρ(τ ): a linear representation ρ evaluated at τ ∈ G;
� xτ or x(τ ): a scalar function x evaluated at τ ∈ G;
� An = ee′/n and Qn = In −An, where e′ = (1, . . . 1) with n components;
� |X|: the number of elements in a set X;
� CL: the set of mappings defined in L with values in C;
� Diag(a, b, . . .): a diagonal matrix with diagonal entries a, b, . . .;
� V , W: linear subspaces;
� GL(V): the general linear group of invertible linear transformations in the vector

space V;
� F(X): the vector space of scalar-valued functions defined on X;
� Ĝ: the set of all nonequivalent irreducible representations of G;
� A⊗ B: the Kronecker product of matrices A and B;
� A∗ indicates the conjugte-transpose, or Hermitian transpose of matrix A;
� x̂(β): the (group) Fourier transform of x ∈ F(G) evaluated at β ∈ Ĝ;
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� ρ  m β ⊕ · · · ⊕ n γ indicates the existence of a basis in V relative to which

ρτ = Diag (Im ⊗ βτ , . . . , In ⊗ γτ ), τ ∈ G;

� Regular projections: the canonical projection for a regular representation.

Figure 8.11: Detail from the Church of Agios Eleftherios (Mikrı́ Mitrópoli) 12th Century,
Athens, Greece.
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