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Preface 

There are good reasons to believe that 
nonstandard analysis, in some ver
sion or other, will be the analysis of 
the future. 

KURT GODEL 

This book is a compilation and development of lecture notes written for 
a course on nonstandard analysis that I have now taught several times. 
Students taking the course have typically received previous introductions 
to standard real analysis and abstract algebra, but few have studied formal 
logic. Most of the notes have been used several times in class and revised 
in the light of that experience. The earlier chapters could be used as the 
basis of a course at the upper undergraduate level, but the work as a 
whole, including the later applications, may be more suited to a beginning 
graduate course. 

This preface describes my motivations and objectives in writing the book. 
For the most part, these remarks are addressed to the potential instructor. 

Mathematical understanding develops by a mysterious interplay between 
intuitive insight and symbolic manipulation. Nonstandard analysis requires 
an enhanced sensitivity to the particular symbolic form that is used to ex
press our intuitions, and so the subject poses some unique and challenging 
pedagogical issues. The most fundamental of these is how to turn the trans
fer principle into a working tool of mathematical practice. I have found it 
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unproductive to try to give a proof of this principle by introducing the 
formal Tarskian semantics for first-order languages and working through 
the proof of Los's theorem. That has the effect of making the subject seem 
more difficult and can create an artifical barrier to understanding. But the 
practical use of transfer is more readily explained informally, and typically 
involves statements that are no more complicated than the "epsilon-delta" 
statements used in standard analysis. My approach then has been to illus
trate transfer by many examples, with demonstrations of why those exam
ples work, leading eventually to a situation in which its formulation as a 
general principle appears quite credible. 

There is an obvious analogy with standard laws of thought, such as 
induction. It would be an unwise teacher who attempted to introduce this 
to the novice by deriving the principle of induction as a theorem from 
the axioms of set theory. Of course one attempts to describe induction, 
and explain how it is applied. Eventually after practice with examples the 
student gets used to using it. So too with transfer. 

It is sensible to use this approach in many areas of mathematics, for 
instance beginning a course on standard analysis with a description of the 
real number system lR as a complete ordered field. The student already 
has well-developed intuitions about real numbers, and the axioms serve to 
summarise the essential information needed to proceed. It is rare these days 
to find a text that begins by explicitly constructing lR out of the rationals 
via Dedekind cuts or Cauchy sequences, before embarking on the theory of 
limits, convergence, continuity, etc. 

On the other hand, it is not so clear that such a methodology is ade
quate for the introduction of the hyperreal field *JR itself. In view of the 
controversial history of infinitesimals, and the student's lack of familiar
ity with them, there is a plausibility problem about simply introducing *JR 
axiomatically as an ordered field that extends JR, contains infinitesimals, 
and has various other properties. I hope that such a descriptive approach 
will eventually become the norm, but here I have opted to use the founda
tional, or constructive, method of presenting an ultrapower construction of 
the ordered field structure of *JR, and of enlargements of elementary sets, 
relations, and functions on JR, leading to a development of the calculus, 
analysis, and topology of functions of a single variable. At that point (Part 
III) the exposition departs from some others by making an early introduc
tion of the notions of internal, external, and hyperfinite subsets of *JR, and 
internal functions from *JR to *JR, along with the notions of overflow, under
flow, and saturation. It is natural and helpful to develop these important 
and radically new ideas in this simpler context, rather than waiting to ap
ply them to the more complex objects produced by constructions based on 
superstructures. 

As to the use of superstructures themselves, again I have taken a slightly 
different tack and followed (in Part IV) a more axiomatic path by positing 
the existence of a universe 1U containing all the entities (sets, tuples, rela-
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tions, functions, sets of sets of functions, etc. ,  etc.) that might be needed in 
pursuing a particular piece of mathematical analysis. 1IJ is described by set
theoretic closure properties (pairs, unions, powersets, transitive closures) .  
The role of the superstructure construction then becomes the foundational 
one of showing that universes exist. From the point of view of mathemat
ical practice, enlargements of superstructures seem somewhat artificial (a 
"gruesome formalism" , accord!ng to one author) , and the approach taken 
here is intended to make it clearer as to what exactly is the ontology that 
we need in order to apply nonstandard methods. Looking to the future, 
if (one would like to say when) nonstandard analysis becomes as widely 
recognised as its standard "shadow" , so that a descriptive approach with
out any need for ultrapowers is more amenable, then the kind of axiomatic 
account developed here on the basis of universes would, I believe, provide 
an effective and accessible style of exposition of the subject. 

What does nonstandard analysis offer to our understanding of math
ematics? In writing these notes I have tried to convey that the answer 
includes the following five features. 

(1 )  New definitions of familiar concepts, often simpler and more intu
itively natural 

Examples to be found here include the definitions of convergence, 
boundedness, and Cauchy-ness of sequences; continuity, uniform con
tinuity, and differentiability of functions; topological notions of inte
rior, closure, and limit points; and compactness. 

(2) New and insightful (often simpler} proofs of familiar theorems 

In addition to many theorems of basic analysis about convergence and 
limits of sequences and functions, intermediate and extreme values 
and fixed points of continuous functions, critical points and inverses 
of differentiable functions, the Bolzano-Weierstrass and Heine-Borel 
theorems, the topology of sets of reals, etc. ,  we will see nonstandard 
proofs of Ramsey's theorem, the Stone representation theorem for 
Boolean algebras, and the Hahn-Banach extension theorem on linear 
functionals. 

(3) New and insightful constructions of familiar objects 

For instance, we will obtain integrals as hyperfinite sums; the reals 
lR themselves as a quotient of the hyperrationals *Q; other comple
tions, including the p-adic numbers and standard power series rings 
as quotients of nonstandard objects; and Lebesgue measure on lR by 
a nonstandard counting process with infinitesimal weights. 
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(4) New objects of mathematical interest 
Here we will exhibit new kinds of number (limited, unlimited, in
finitesimal, appreciable) ; internal and external sets and functions; 
shadows; halos; hyperfinite sets; nonstandard hulls; and Loeb mea
sures. 

(5) Powerful new properties and principles of reasoning 
These include transfer; internal versions of induction, the least num
ber principle and Dedekind completeness; overflow, underflow, and 
other principles of permanence; Robinson's sequential lemma; satu
ration; internal set definition; concurrence; enlargement; hyperfinite 
approximation; and comprehensiveness. 

In short, nonstandard analysis provides us with an enlarged view of the 
mathematical landscape. It represents yet another stage in the emergence of 
new number systems, which is a significant theme in mathematical history. 
Its rich conceptual framework will be built on to reveal new systems and 
new understandings, so its development will itself influence the course of 
that history. 
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Part I 

Foundations 





1 
What Are the Hyperreals? 

1 . 1  Infinitely Small and Large 

A nonzero number c is defined to be infinitely small, or infinitesimal, if 

lei < �  for all n = 1 , 2, 3, . . . .  

In this case the reciprocal w = � will be infinitely large, or simply infinite, 
meaning that 

lwl > n for all n = 1 ,  2, 3, . . . .  

Conversely, if a number w has this last property, then t will be a nonzero 
infinitesimal. 

However, in the real number system lR there are no such things as nonzero 
infinitesimals and infinitely large numbers. Our aim here is to study a larger 
system, the hyperreals, which form an ordered field *IR that contains lR as 
a subfield, but also contains infinitely large and small numbers according 
to these definitions. The new entities in *IR, and the relationship between 
*R and IR, provide an intuitively appealing alternative approach to real 
analysis and topology, and indeed to many other branches of pure and 
applied mathematics. 



4 1. What Are the Hyperreals? 

1 .  2 Historical Background 

Our mathematical heritage owes much to the creative endeavours of people 
who found it natural to think in terms of the infinite and the· infinitesimal. 
By examining the words with which they expressed their ideas we can 
learn much about the origins of our twentieth-century perspective, even if 
that perspective itself makes it difficult, perhaps impossible, to recapture 
faithfully the "mind-set" of the past. 

Archimedes 

An old idea that has never lost its potency is to think of a geometric 
object as made up of an "unlimited" number of "indivisible" elements. 
Thus a curve might be regarded as a polygon with infinitely many sides 
of infinitesimal length, a plane figure as made up of parallel straight line 
segments viewed as strips of infinitesimal width, and a solid as composed 
of infinitely thin plane laminas. 

The formula A =  �rC for the area of a circle in terms of its radius and 
circumference was very likely discovered by regarding the circle as made 
up of infinitely many segments consisting of isosceles triangles of height r 
with infinitesimal bases, these bases collectively forming the circle itself. In 
the third century Be., Archimedes gave a proof of this formula using the 
method of exhaustion that had been developed by Eudoxus more than a 
century earlier. This involved approximating the area arbitrarily closely by 
regular polygons. From the modern point of view we would say that as the 
number of sides increases, the sequence of areas of the polygons converges 
to the area of the circle, but the Greek mathematicians did not develop 
the idea of taking the limit of an infinite sequence. Instead, they used an 
indirect reductio ad absurdum argument, showing that if the area was not 
equal to A =  �rC, then by taking polygons with sufficiently many sides a 
contradiction would follow. 

Archimedes applied this approach to give proofs of many formulae for 
areas and volumes involving circles, parabolas, ellipses, spirals, spheres, 
cylinders, and solids of revolution. He wrote a treatise called The Method 
of Mechanical Theorems in which he explained how he discovered these 
formulae. His method was to imagine geometrical figures as being connected 
by a lever that is held in balance as the elements of one figure whose 
magnitude (area or volume) and centre of gravity is known are weighed 
against the elements of another whose magnitude is to be determined. These 
elements are as above: line segments in the case of plane figures, with 
length as the comparative "weight" ; and plane laminas in the case of solids, 
weighted according to area. 1 Archimedes did not regard this procedure as 

1 A lucid illustration of the "Method" is given on pages 69-70 of the book 
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providing a proof, but said of a result obtained in this way that 

this has not therefore been proved, but a certain impression has 
been created that the conclusion is true. 

The demonstration of its truth was then to be supplied by the method of 
exhaustion. The lesson of history is that the way in which a mathematical 
fact is discovered may be very different from the way that it is proven. 
Indeed Archimedes' treatise, along with all knowledge of his "method" , 
was lost for many centuries and found again only in 1906. 

Newton and Leibniz 

In the latter part of the seventeenth century the differential and integral 
calculus was discovered by Isaac Newton and Gottfried Leibniz, indepen
dently. Leibniz created the notation dx for the difference in successive values 
of a variable x,  thinking of this difference as infinitely small or "less than 
any assignable quantity" . He also introduced the integral sign J, an elon
gated "S" for "sum" , and wrote the expression J y dx to mean the sum of 
all the infinitely thin rectangles of size y x dx. He expressed what we now 
know as Leibniz's rule for the differential of a product xy in the form 

dxy = x dy + y dx. 

To demonstrate this he first observed that 

dxy is the same thing as the difference between two successive 
xy 's; let one of these be xy, and the other x + dx into y + dy. 

Then calculating 

dxy (x + dx) (y + dy) - xy 
- x dy + y dx + dx dy, 

he stated that the desired result follows by 

the omission of the quantity dx dy, which is infinitely small in 
comparison with the rest, for it is supposed that dx and dy are 
infinitely small. 

Leibniz's views on the actual existence of infinitesimals make interesting 
reading. In response to certain criticisms, he drew attention to the fact that 
Archimedes and others 

found out their wonderfully elegant theorems by the help of such 
ideas; these theorems they completed with reductio ad absurdum 

by C.H. Edwards cited in Section 1 .4, showing how it yields the area under the 
graph of y = x2 between 0 and 1 .  
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proofs, by which they at the same time provided rigorous demon
strations and also concealed their methods, 

and went on to write: 

It will be sufficient if, when we speak of infinitely great (or more 
strictly unlimited}, or of infinitely small quantities (i. e. ,  the very 
least of those within our knowledge), it is understood that we 
mean quantities that are indefinitely great or indefinitely small, 
i. e . , as great as you please, or as small as you please, so that 
the error that one may assign may be less than a certain as
signed quantity . . .  by infinitely great and infinitely small we un
derstand something indefinitely great, or something indefinitely 
small, so that each conducts itself as a sort of class, and not 
merely as the last thing of a class . . .  it will be sufficient sim
ply to make use of them as a tool that has advantages for the 
purpose of calculation, just as the algebraists retain imaginary 
roots with great profit. 

Further indication of this attitude is found in the following passage from 
an argument in one of his manuscripts: 

If dx, ddx . . .  are by a certain fiction imagined to remain, even 
when they become evanescent, as if they were infinitely small 
quantities (and in this there is no danger, since the whole 
matter can be always referred back to assignable quan
tities), then . . .  

Newton's formulation of the calculus used a different language and had a 
more dynamic conception of the phenomena under discussion. He consid
ered fluents x, y, . . .  as quantities varying in a spatial or temporal sense, 
and their fluxions x, y, . . .  as 

the speeds with which they flow and are increased by their gen
erating motion. 

In modern parlance, the fluxion x is the derivative �� of x with respect to 
timet (or the velocity of x). Newton wrote (1671) :  

The moments of the fluent quantities (that is, their indefinitely 
small parts, by addition of which they increase during each in
finitely small period of time} are as their speeds of flow . . .  if 
the moment of any particular one, say x, be expressed by the 
product of its speed x and an infinitely small quantity o (that is 
by xo) . . .  it follows that quantities x and y after an infinitely 
small interval of time will become x + xo and y + yo . Con
sequently, an equation which expresses a relationship of fluent 
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quantities without variance at all times will express that rela
tionship equally between x + xo and y + yo as between x and 
y; and so x + xo and y + yo may be substituted in place of the 
latter quantities, x and y, in the said equation. 

In other words, if ( x, y) is a point on the curve defined by an equation in 
x and y, then ( x + xo, y + yo) is also on the curve. But this does not seem 
right: surely ( x + xo, y +yo) should lie on the tangent to the curve, the line 
through (x, y) of slope yjx, rather than on the curve itself? Moreover, in 
making the proposed substitution and carrying out algebraic calculations, 
Newton permitted himself to divide by the infinitely small quantity o while 
at the same time stating that 

since o is supposed to be infinitely small so that it be able to ex
press the moments of quantities, terms which have it as a factor 
will be equivalent to nothing in respect of others. I therefore cast 
them out . . .  

which seems to amount to equating o to zero. 
Such perplexities are typical of the confusions caused by the concepts of 

infinitesimal calculus. In later writing Newton himself tried to explain his 
theory of fluxions in terms of limits of ratios of quantities. He wrote that 
he did not (unlike Leibniz) 

consider Mathematical Quantities as composed of Parts ex
treamly small, but as generated by a continual motion, 

and that 

fluxions are very nearly as the Augments of the Fluents. 

His conception of limits is conveyed by the following passages: 

Quantities, and the ratios of quantities, which in any finite time 
converge continually to equality, and before the end of time ap
proach nearer to each other than by any given difference, become 
ultimately equal . . .  Those ultimate ratios with which quantities 
vanish are not truly the ratios of ultimate quantities, but limits 
towards which the ratios of quantities decreasing without limit 
do always converge; and to which they approach nearer than by 
any given difference, but never go beyond, nor in effect attain 
to, till the quantities are diminished ad infinitum. 

Newton considered that the use of limits of ratios provided an adequate 
basis for his calculus, without ultimately depending on indivisibles: 

In Finite Quantities so to frame a Calculus, and thus to inves
tigate the Prime and Ultimate Ratios of Nascent or Evanescent 
Finite Quantities, is agreeable to the Ancients; and I was willing 
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to shew, that in the Method of Fluxions there 's no need of intro
ducing Figures infinitely small into Geometry. For this Analysis 
may be performed in any Figures whatsoever, whether finite or 
infinitely small, so they are but imagined to be similar to the 
Evanescent Figures . . .  

Euler 

The greatest champion of infinitely small and large numbers was Leonhard 
Euler, said to be the most prolific of all mathematicians. He simply assumed 
that such things exist and behave like finite numbers. A good illustration 
of his approach is to be found in the book Introduction to the Analysis 
of the Infinite (1748) ,  where he developed infinite series for logarithmic, 
exponential, and trigonometric functions from the following basis: 

Let w be an infinitely small number, or a fraction so small that, 
although not equal to zero, still aw = 1 + '¢, where '¢ is also 
an infinitely small number . . .  we let '¢ = kw. Then we have 
aw = 1 + kw, and with a as the base for the logarithms, we 
have w = log(1 + kw) . . .  If now we let j = �, where z denotes 
any finite number, since w is infinitely small, then j is infinitely 
large. Then we have w = } , where w is represented by a fraction 
with an infinite denominator, so that w is infinitely small, as it 
should be. 

Euler took it for granted that Newton's formula for the binomial series 
works for his numbers, and applied it to the expansion of az = awj = 
( 1  + kw)j to deduce that 

and hence when z = 1 that 

a = 
k k2 k3 

1 + 1 !  + 2f + 3f + ... 
In fact, since kw = �z , the general term ( �) ( kw) n of the binomial series for 
az should be 

j(j- l)(j- 2) . . · (j- n + 1) knzn 
I 

· -. n- , n. J 
but Euler reduced this to k"�n by the following extraordinary reasoning: n . 

Since j is infinitely large, j-/ = 1, and the larger the number we 
substitute for j, the closer the value of the fraction 1j1 comes 
to 1 .  Therefore, if j is a number larger than any assignable 
number, then j-:1 is equal to 1 .  For the same reason j-:2 = 1 ,  J J 
1j3 = 1 ,  and so forth. 
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His next step was a natural one: 

Since we are free to choose the base a for the system of loga
rithms, we now choose a in such a way that k = 1 . . . we obtain 
the value for 

a =  2.71828182845904523536028. 

When this base is chosen, the logarithms are called natural or 
hyperbolic. The latter name is used since the quadrature of a 
hyperbola can be expressed through these logarithms. For the 
sake of brevity for this number 2. 718281828459 · · · we will use 
the symbol e . . .  

Whereas the modern view is that 

e = lim (1 + .!.) n 
, n ->oo n 

Euler had obtained it by stipulating that e = (1 + } )j, and indeed ez = 
( 1 + y) j, for infinitely large j. In this way he "proved" that 

log(1 + x) 

and also showed that 

cos x 

sinx 2i 
by using the equations cosw = 1, sinw = w, and j = j- 1 = j - 2 = · · · 
with w infinitely small and j infinitely large. 

Euler's demonstration that the function ex is equal to its own derivative 
employed the practice, which, as we saw, was adopted by Leibniz and New
ton, of "casting out" higher-order infinitesimals like dx dy, ( dx )2 , ( dx )3, etc. 
Applying his series expansion for the exponential function to edx he argued 
that 

d(ex) ex+dx - ex 

ex (edx - 1) 
(dx)2 (dx)3 - ex (dx + -- +-- +·· · ) 2! 3! 
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Demise of Infinitesimals 

The conceptual foundations of the calculus continued to be controversial 
and to attract criticism, the most famous being that of Berkeley, who wrote 
(1734) in opposition to the ideas of Newton and his followers: 

And what are these fluxions? The velocities of evanescent incre
ments? And what are these same evanescent increments? They 
are neither finite quantities, nor quantities infinitely small, nor 
yet nothing. May we not call them the ghosts of departed quan
tities? 

Eventually infinitesimals were expunged from analysis, along with the de
pendence on intuitive geometric concepts and diagrams. The subject was 
"arithmetised" by the explicit construction of the real numbers out of 
the rational number system by the work of Dedekind, Cantor, and oth
ers around 1872. Weierstrass provided the purely arithmetical formulation 
of limits that we use today, defining limx-+a f(x) = L to mean that 

(Vc > 0) (:38 > 0) such that 0 < lx - a l < 8 implies lf(x) - L l  <c. 

Robinson 

Three centuries after the seminal discoveries of Newton and Leibniz, in
finitesimals were restored with a vengeance by Abraham Robinson, who 
wrote in the preface to his 1966 book Non-standard Analysis: 

In the fall of 1960 it occurred to me that the concepts and meth
ods of contemporary Mathematical Logic are capable of provid
ing a suitable framework for the development of the Differential 
and Integral Calculus by means of infinitely small and infinitely 
large numbers. 

The progress of symbolic logic in the twentieth century had produced an 
exact formulation of the syntax of mathematical statements; an account 
of what it is for a statement to be true of a mathematical system or 
structure-i.e. for the structure to be a model of the statement; and meth
ods for obtaining models of prescribed statements. One such method comes 
from the compactness theorem: 

• If a set E of statements (of an appropriate kind) has the property 
that each finite subset E' of E has a model (a structure of which all 
members of E' are true) , then there must be a single structure that 
is a model of E itself. 

Now suppose that we take EIR to consist of all appropriate statements true 
of JR. (including the axioms for ordered fields amongst other things) together 
with the infinitely many statements 

0 < c, c < 1 ,  c < !, c < �' . . . ' c < l n' 
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Using the compactness theorem it can be deduced that EJR has a model 
*JR, which will be an ordered field in which the element c is a positive 
infinitesimal. Moreover, this model will satisfy the transfer principle: 

• Any appropriately formulated statement is true of *JR if and only if 
it is true of JR. 

This is reminiscent of Leibniz's above-quoted remark that 

the whole matter can be always referred back to assignable quan
tities, 

and might even suggest that there is no point in considering *JR, since it 
satisfies the same theorems as JR. But on the contrary, what it offers is a 
new methodology for real analysis, because the availability of infinitesimals 
allows for easier and more intuitively natural proofs in *JR of some theorems 
that can then immediately be inferred to hold of JR by transfer. 

Of course for this to work, the theorems in question must be "appropri.,. 
ately formulated" , and explaining what this means is one of our major goals. 
As we shall see, *JR fails to satisfy Dedekind's completeness axiom stipulat
ing that any nonempty set with an upper bound must have a least upper 
bound, so this is not the sort of assertion to which transfer applies. In order 
to determine which statements are subject to it we will need the "concepts 
and methods of contemporary Mathematical Logic" that were available to 
Robinson, but not to Leibniz, nor indeed to those in the intervening period 
who tried to work with infinitesimals or construct non-Archimedean exten
sions of the real number system. Robinson's great achievement was to turn 
the transfer principle into a working tool of mathematical reasoning. In 
the last few decades it has been applied to many areas, including analysis, 
topology, algebra, number theory, mathematical physics, probability and 
stochastic processes, and mathematical economics. 

To those unfamiliar with formal logic, the use of compactness may seem 
like a kind of sleight of hand. A model of EJR is produced, but we do not see 
where it came from. However, the compactness theorem itself has a proof, 
and one way to prove it is to use the notion of an ultraproduct, an algebraic 
construction that takes all the assumed models of the finite subsets of E 
and builds a model of E out of them. We can apply this construction 
directly to the structure JR to build *JR as a special kind of ultraproduct 
called an ultrapower. This will be our first main task. 

1 .3  What Is a Real Number? 

Consideration of this question provides motivation for the definition of the 
hyperreal number system. Here are some standard answers. 
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( 1) A real number is an infinite decimal expression, such as 

J2 = 1.4142135623731 .. .  ' 

that identifies vf2 as the sum of the infinite power series 

(2) A real number is an element of a complete ordered field. Here "com
plete" , often called Dedekind complete, means that any nonempty 
set with an upper bound must have a least upper bound. Any two 
complete ordered fields are isomorphic, so this notion uniquely char
acterises JR.. 

(3) A real number is a Dedekind cut in the set (Q of rational numbers: a 
partition of (Q into a pair (L, U) of nonempty disjoint subsets with 
every element of L less than every element of U and L having no 
largest member. Thus vf2 can be identified with the cut 

L = { q E (Q : q2 < 2}, U = { q E Q : q2 > 2}. 

The set of all Dedekind cuts of (Q can be made into a complete ordered 
field. 

(4) A real number is an equivalence class of Cauchy sequences of ratio
nal numbers. A sequence (r1 , r2 , r3, . . .  ) is Cauchy if its terms get 
arbitrarily close to each other as we move along the sequence, i.e., 

lim lrn - Tm l = 0. n ,m->oo 

Thus vf2 is the limit of the rational Cauchy sequence 

1 ,  1 .4, 1.41, 1 .414, 1.4142, 1.41421 , 1 .414213, 

as well as being the limit of any of the subsequences of this sequence, 
and of other rational sequences besides. 

Two Cauchy sequences ( r1 , r2 , r3 , . . .  ) and ( 81 , 82 , 83 , . . .  ) are equiv
alent if their corresponding terms approach each other arbitrarily 
closely: 

lim lrn - 8nl = 0. n->oo 
This defines an equivalence relation on the set of rational-valued 
Cauchy sequences, and the resulting set of equivalence classes forms 
a complete ordered field. Any two equivalent Cauchy sequences will 
have the same limit , and so represent the same real number. For ex
ample, vf2 corresponds to the equivalence class of the above sequence. 
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Answer (2) provides the basis for the axiomatic or descriptive approach 
to the analysis of JR. The object of study is simply described as being a 
complete ordered field, since all its properties derive from that fact. The 
axioms for a complete ordered field are listed, and everything follows from 
that. This is by far the favoured approach in introductory texts on real 
analysis. 

The constructive approach takes as given only the rational number sys
tem and proceeds to construct JR explicitly. There are at least two ways 
to do this, due respectively to Dedekind (answer (3)) and Cantor (answer 
( 4) ) .  

It would be possible to develop an axiomatic approach to the hyperreals 
*R by assuming that we are dealing with an ordered field containing R as 
well as infinitesimals and satisfying the transfer principle "appropriately 
formulated" . However, in view of the controversial history of the notion 
of infinitesimal, one could be forgiven for wondering whether this is an 
exercise in fantasy, or whether there does exist a number system satisfying 
the proposed axioms. The constructive approach is needed to resolve this 
issue. We will be discussing a construction of *JR out of JR that is analogous 
to Cantor's construction of R out of Q. Hyperreal numbers will arise as 
equivalence classes of real-valued sequences, and the challenge will be to 
find an equivalence relation on such sequences that produces the desired 
outcome. 

To conclude this introduction to our subject, let us examine another 
putative answer to the question "what is a real number?"-namely, that a 
real number is a point on the number line: 

-------------------------·-------------------------

Now, the intuitive geometric idea of a line is an ancient one, much older 
than the notion of a set of points, let alone an infinite set. The identification 
of a line with the set of points lying on that line is a perspective that belongs 
to modern times. For Euclid a line was simply " length without breadth" , 
and his diagrams and arguments involved lines with a finite number of 
points marked on them. By applying the field operations and taking limits 
of converging sequences we can assign a point to each real number, but the 
claim that this exhausts all the points on the line is just that: a claim. One 
could seek to justify it by invoking a principle such as the one attributed 
to Eudoxus and Archimedes that any two magnitudes are such that 

the less can be multiplied so as to exceed the other. 

This entails that for each real number r there is an integer n > r, and that 
precludes there being any infinitely large or small numbers in JR. But then 
one could say that the Eudoxus-Archimedes principle is just a property 
of those points on the line that correspond to "assignable" numbers. The 
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hyperreal point of view is that the geometric line is capable of sustaining 
a much richer and more intricate number set than the real line. 

1 .4 Historical References 

Amongst the numerous books available, the following are worth consulting 
for more details on the historical background we have been discussing. 

M .  E. BARON AND H. J .  M.  Bos. Newton and Leibniz. Open Uni
versity Press, 1974. 

J. M .  CHILD. The Early Mathematical Manuscripts of Leibniz. Open 
Court Publishing Co., 1920. 

E. J. DIJKSTERHUIS. Archimedes. Princeton University Press, 1987. 

C .  H. EDWARDS. The Historical Development of the Calculus. Springer, 
1979. 

LEONHARD EULER. Introduction to the Analysis of the Infinite, Book 
I, translated by John D. Blanton. Springer, 1988. 



2 
Large Sets 

2 . 1  Infinitesimals as Variable Quantities 

Cauchy ( 1789-1857) is regarded as one of the pioneers of the precision that 
is characteristic of contemporary mathematics. He wrote: 

My principal aim has been to reconcile rigor, which I have made 
a law to myself in my Cours d'analyse, with the simplicity which 
the direct consideration of infinitely small quantities produces. 

His method was to consider infinitesimals as being variable quantities that 
vanish: 

When the successive numerical values of a variable decrease in
definitely so as to be smaller than any given number, this vari
able becomes what is called infinitesimal, or infinitely small 
quantity . . . . One says that a variable quantity becomes in
finitely small when its value decreases numerically so as to con
verge to the limit zero. 

Even today there are textbooks containing statements to the effect that a 
sequence satisfying 

lim rn = 0 
n-->oo 

is an infinitesimal, while one satisfying 

lim rn = 00 n-->oo 
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is an infinitely large magnitude. Can we then construct a number system in 
which such sequences represent infinitely small and large numbers respec
tively? 

According to Cauchy, the sequence 

1 ,  � '  �' � '  . . .  

is an infinitesimal, as is 

If these represent infinitely small numbers, perhaps we should regard the 
second as being half the size of the first because it converges twice as 
quickly? Similarly, the sequences 

1 , 2, 3, 4, . . .  ' 
2, 4, 6 , 8, . .  . 

both represent infinitely large magnitudes, and arguably the second is twice 
as big as the first because it diverges to oo twice as quickly. On the other 
hand, the distinct sequences 

1 ,  2, 3, 4, . . .  ' 
2, 2, 3 , 4, . .  . 

will presumably represent the same infinite number. 
These ideas are attractive because they suggest the possibility of using 

infinitely small and large numbers as measures of rates of convergence. But 
in the construction of real numbers out of Cauchy sequences (Section 1 .3) ,  
all sequences converging to zero are identified with the number zero itself, 
while diverging sequences have no role to play at all. Clearly then we need 
a very different kind of equivalence relation among sequences than the one 
used in Cantor's construction of lR from Q. 

2 .  2 Largeness 

Let r = (r1 ,  r2 , r3, . . .  ) and s = (s1 , s2 , s3 , . . .  ) be real-valued sequences. 
We are going to say that r and s are equivalent if they agree at a "large" 
number of places, i.e. , if their agreement set 

Ers = {n :  Tn = Sn } 

is large in some sense that is to be determined. Whatever "large" means, 
there are some properties we will want it to have: 

• N = {1 ,  2 ,  3, . . .  } must be large, in order to ensure that any sequence 
will be equivalent to itself. 
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• Equivalence is to be a transitive relation, so if Ers and Est are large, 
then Ert must be large. Since Ers n Est � Ert , this suggests the 
following requirement: 

If A and B are large sets, and A n  B � C, then C is large. 

In particular, this entails that if A and B are large, then so is their 
intersection A n  B, while if A is large, then so is any of its supersets 
C ;2 A. 

• The empty set 0 is not large, or otherwise by the previous require
ment all subsets of N would be large, and so all sequences would be 
equivalent . 

Requiring A n  B to be large when A and B are large may seem restrictive, 
but there are natural situations in which all three requirements are fulfilled. 
One such is when a set A � N is declared to be large if it is cofinite, 
i.e. its complement N - A is finite. This means that A contains "almost 
all" or "ultimately all" members of N. Although this is a plausible notion 
of largeness, it is not adequate to our needs. The number system we are 
constructing is to be linearly ordered, and a natural way to do this, in 
terms of our general approach, is to take the equivalence class of sequence 
r to be less than that of 8 if the set 

Lrs = {n : Tn < 8n} 

is large. But consider the sequences 

r ( 1 , 0, 1 , 0, 1 , 0, . . .  ) 

8 (0, 1 , 0, 1 , 0, 1 ,  . . .  ) 

Their agreement set is empty, so they determine distinct equivalence classes, 
one of which should be less than the other. But Lrs (the even numbers) is 
the complement of Lsr (the odds) , so both are infinite and neither is cofi
nite. Apparently our definition of largeness is going to require the following 
condition: 

• For any subset A of N, one of A and N - A is large. 

The other requirements imply that A and N - A cannot both be large, 
or else A n (N - A) = 0 would be. Thus the large sets are precisely the 
complements of the ones that are not large. Either the even numbers form 
a large set or the odd ones do, but they cannot both do so, so which is it 
to be? 

Can there in fact be such a notion of largeness, and if so, how do we 
show it? 
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2.3 Filters 

Let I be a nonempty set. The power set of I is the set 

P(I) = {A : A �  I} 

of all subsets of I. A filter on I is a nonempty collection F � P(I) of 
subsets of I satisfying the following axioms: 

/ 
• Intersections: if A, B E  F, then A n  B E  F. 

• Supersets: if A E F and A �  B � I, then B E  F. 

Thus to show B E  F, it suffices to show 

A1 n · · · n An � B, 

for some n and some A1 , . . .  , An E F. 
A filter F contains the empty set 0 iff F = P(I) . We say that F is proper 

if 0 (j. F. Every filter contains I, and in fact {I} is the smallest filter on I. 
An ultrafilter is a proper filter that satisfies 

• for any A � I, either A E F or Ac E F, where Ac = I - A. 

2.4 Examples of Filters 

( 1) Fi = {A � I : i E A} is an ultrafilter, called the principal ultrafilter 
generated by i .  If I is finite, then every ultrafilter on I is of the form 
Fi for some i E I, and so is principal. 

(2) ;:co = {A � I :  I - A is finite} is the cofinite, or Frechet, filter on I, 
and is proper iff I is infinite. ;:co is not an ultrafilter. 

(3) If 0 -I- 1i � P(I) , then the filter generated by 1i, i.e., the smallest 
filter on I including 1i, is the collection 

;:'H. = {A � I : A -;2 B1 n · · · n Bn for some n and some Bi E H} 

(cf. Exercise 2.7(4) ) .  For 1i = 0 we put ;:11. = {I}. 
If 7t has a single member B, then ;:11. = {A �  I :  A -;2 B}, which is 
called the principal filter generated by B. The ultrafilter Fi of Exam
ple (1) is the special case of this when B = {i}. 

( 4) If { Fx : x E X} is a collection of filters on I that is linearly ordered by 
set inclusion, in the sense that Fx � Fy or Fy � Fx for any x, y E X, 
then 

UxEX Fx = {A : 3x E X (A E Fx) }  
is a filter on I. 
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2.5 Facts About Filters 

(1) The filter axioms are equivalent to the requirement that 

A n B E F iff A, B E F. 

(2) If F � P(I) satisfies the superset axiom, then F =/= 0 iff I E  F. Hence 
{I} � F for any filter F. 

(3) An ultrafilter F satisfies 

A n  B E F iff A E F and B E F, 
A U  B E F iff A E F or B E F, 

Ac E F iff A ¢:.  F. 

(4) Let F be. an ultrafilter and {A1 , . . .  , An} a finite collection of pairwise 
disjoint (Ai n Ai = 0) sets such that 

A1 U · · · U An E F. 

Then Ai E F for exactly one i such that 1 ::; i ::; n. 

(5) If an ultrafilter contains a finite set, then it contains a one-element 
set and is principal. Hence a nonrincipal ultrafilter must contain all 
cofinite sets. This is a critical property used in the construction of 
infinitesimals and infinitely large numbers (cf. Section 3. 8}. 

(6) F is an ultrafilter on I iff it is a maximal proper filter on I, i.e., a 
proper filter that cannot be extended to a larger proper filter on I 
( cf. Exercise 2. 7 ( 5)) . 

(7) A collection 1i � P(I) has the finite intersection property, or fip, 
if the intersection of every nonempty finite subcollection of 1i is 
nonempty, i.e. , 

B1 n . .  · n Bn =/= 0 

for any n and any B1 , . . .  , Bn E H. 
Then the filter F'H is proper iff 1i has the fip. 

(8) If 1i has the fip, then for any A � I, at least one of the sets 1i U {A} 
and 1i U {Ac} has the fip. 

2.6 Zorn's Lemma 

Fact 2.5(8) suggests a way to construct an ultrafilter: start with a set that 
has the fip, e.g. , {I}, and go through all the members A of P(I) in turn, 
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adding whichever of A and Ac preserves the fip. This presupposes that 
there is such a thing as a listing of the members of P(I) that could be used 
to "go through them all in turn" . 

Now, the assertion that any set can be listed in this way is one of many 
mathematical statements that are equivalent to the axiom of choice , which 
asserts that for any given collection of sets there exists a function whose 
range of values selects a member from each set in the collection. The version 
of the axiom of choice most used in algebra is Zorn's lemma: 

If (P, ::; ) is a partially ordered set in which every linearly ordered 
subset (or "chain") has an upper bound in P, then P contains 
a ::; -maximal element. 

(An element p of a partially ordered set is ::;-maximal if there is no element 
q of P that is greater than p in the sense that p ::; q and p =/= q.) 

Here is an outline of how Zorn's lemma can be proven from the assump
tion that the axiom of choice is true. Let f be a choice function defined 
on the collection of all nonempty subsets of P. Thus for each such set X, 
f(X) E X. Now begin with the element Po = f(P) .  If Po is maximal, we 
have the desired conclusion. Otherwise, we use f to choose an element p1 
that is greater than Po , i.e. , P1 = f (X) , where X =  {x E P :  Po < x} =/= 0. If 
P1 is maximal, again we are done. Otherwise we can choose P2 with p1 < p2 . 
If this process repeats denumerably many times, the Pn 's form a chain. By 
the hypothesis of Zorn's lemma, this chain must then have an upper bound 
Pw , giving 

Po < P1 < · · · < Pn < · · · < Pw · 

If Pw is maximal, we are done; otherwise there exists Pw+l > Pw , and so 
on. Now, this whole construction cannot go on forever, because eventually 
we will "run out of" elements of P. At some point we must finish with the 
desired maximal element. 

This argument shows what is going on behind the scenes when Zorn's 
lemma is applied. Of course the part about running out of elements is 
vague, and to make it precise we would need to introduce the theory of 
infinite "ordinal" numbers and "well-orderings" in order to show that we 
can generate a list of all the elements of P. In many applications, appeal
ing directly to Zorn's lemma itself allows us to avoid such machinery. For 
example: 

Theorem 2.6.1 Any collection of subsets of I that has the finite intersec
tion property can be extended to an ultrafilter on I .  

Proof If 1t has the fip, then the filter ;::1t generated by :F is proper 
(2.5(7) ) . Let P be the collection of all proper filters on I that include ;::1t , 
partially ordered by set inclusion �. Then every linearly ordered subset of 
P has an upper bound in P, since by 2.4( 4) the union of this chain is in 
P. Hence by Zorn's lemma P has a maximal element, which is thereby a 
maximal proper filter on I and thus an ultrafilter by 2.5(6) . D 
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Corollary 2.6.2 Any infinite set has a nonprincipal ultrafilter on it. 

Proof If I is infinite, the cofinite filter ;::co is proper and has the finite 
intersection property, and so is included in an ultrafilter :F. But for any 
i E I we have I - { i} E ;::co � :F, so { i} ct, :F, whereas { i} E :Fi . Hence 
:F :I :Fi . Thus :F is non principal. 0 
This result is the key fact we need to begin our construction of the hy
perreal number system. We could have simply taken it as an assumption, 
but there is insight to be gained in showing how it derives from more gen
eral principles like Zorn's lemma. In fact, a deeper set-theoretic analysis 
proves that there are as many nonprincipal ultrafilters on an infinite set I 
as there possibly could be: an ultrafilter is a member of the double power 
set P(P(I) ) ,  and there is a one-to-one correspondence between the set of 
all nonprincipal ultrafilters on I and P(P(I)) itself. 

2.  7 Exercises on Filters 

(1) If 0 # A � I, there is an ultrafilter :F on I with A E F. 

(2) There exists a nonprincipal ultrafilter on N containing the set of even 
numbers, and another containing the set of odd numbers. 

(3) An ultrafilter on a finite set must be principal. 

(4) For 1{ � P(I) , let ;::rt be as defined in Example 2.4(3) . 

(i) Show that ;::rt is a filter that includes 1{, i.e., 1{ � ;::rt . 
(ii) Show that ;::rt is included in any other filter that includes H. 

(5) Let :F be a proper filter on I. 

(i) Show that :FU{Ac} has the finite intersection property iff A rf- :F. 
(ii) Use (i) to deduce that :F is an ultrafilter iff it is a maximal 

proper filter on I. 





3 
Ultrapower Construction of the 
Hyperreals 

3 .1  The Ring of Real-Valued Sequences 

Let N = {1 ,  2, . . .  } ,  and let �1'11 be the set of all sequences of real numbers. 
A typical member of �1'11 has the form r = (r1 , r2 , r3 , . . .  ) , which may be 
denoted more briefly as (rn : n E N ) or just (rn) · 

For r = (rn) and s = (sn), put 

r E9 s (rn + Sn : n E N ) , 
r 8 s ( r n · Sn : n E N) . 

Then (�1'11 , E9, 8) is a commutative ring with zero 0 = (0, 0, 0, . . .  ) and unity 
1 = ( 1 ,  1 ,  . . . ) ,  and additive inverses given by 

-r = ( - r  n : n E N ) . 

It is not, however, a field, since 

(1 ,  0, 1 ,  0, 1, . . . ) 8 (0, 1 ,  0, 1 ,  0, . . . ) = 0 ' 

so the two sequences on the left of this equation are nonzero elements of 
�N with a zero product; hence neither can have a multiplicative inverse. 
Indeed, no sequence that has at least one zero term can have such an inverse 
in JRN. 
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3 .2  Equivalence Modulo an Ultrafilter 

Let F be a fixed nonprincipal ultrafilter on the set N (such exists by Corol
lary 2.6.2) . F will be used to construct a quotient ring of JRN . 

Define a relation = on IRN by putting 

(rn) - (sn) iff {n E N :  rn = sn} E F. 
When this relation holds it may be said that the two sequences agree on a 
large set, or agree almost everywhere modulo :F, or agree at almost all n. 

3.3 Exercises on Almost-Everywhere Agreement 

( 1)  = is an equivalence relation on JRN. 

(2) - is a congruence on the ring (JRN , E9, 0) ,  which means that if r = r' 
and s - s' , then 

r E9 s = r' E9 s' and r 0 s - r' 0 s'. 

(3) (1 , � , ! ,  . . .  ) ¢: (0, 0, 0, . . .  ) .  

3.4 A Suggestive Logical Notation 

It is suggestive to denote the agreement set {n E N :  rn = sn } by [r = s] , 
rather than Ers as in Section 2.2. Thus 

r s iff [r = s] E F. 
Then results like 3.3 (1 ) and 3.3(2) can be handled by first proving proper
ties such as those in Section 3.5 below. 

The set [r = s] may be thought of as the interpretation, or value, of the 
statement "r = s" ,  or as a measure of the extent to which "r = s" is true. 
Normally we think of a statement as having one of two values: it is either 
true or false. Here, instead of assigning truth values , we take the value of 
a statement to be a subset of N. When [r = s] E F, it is sometimes said 
that r = s almost everywhere (modulo F). 

This idea can be applied to other logical assertions, such as inequalities, 
by defining 

and so on. 

[r < s] {n E N :  rn < sn }, 
[r > s] {n  E N :  rn > sn}, 
[r s; s] - {n E N :  rn s; sn} ,  
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3.5 Exercises on Statement Values 

(1) [r = s] n [s = t] � [r = t] .  

(2) [r = r'] n [s = s'] � [r EB s = r' EB s'] n [r 8 s = r' 8 s'] . 

(3) [r = r'] n [s = s'] n [r < s] � [r' < s'] . 

(4) If r = r' and s = s', then [r < s] E :F iff [r' < s'] E :F. 

3.6 The Ultrapower 

The equivalence class of a sequence r E IRN under _ will be denoted by [r] . 
Thus 

[r] = {s E IRN : r  s}. 

The quotient set (set of equivalence classes) of IRN by = is 

Define 

and 

*JR = { [r] : r E JRN} .  

[r] + [s] -
[r] · [s] 

[r EB s] 
[r 8 s] 

[ (rn + Sn)J , 
[ (rn · Sn)J , 

[r] < [s] iff [r < s] E :F iff {n E N :  rn < sn} E :F. 

By 3.3(2) and 3.5( 4) these notions are well-defined, which means that they 
are independent of the equivalence class representatives chosen to define 
them. 

A simpler notation, which is attractive but puts some burden on the 
reader, is to write [rn] for the equivalence class [ (rn : n E N)] of the sequence 
whose nth term is rn · The definitions of addition and multiplication then 
read 

[rn] + [sn] 
[rn] · [sn] 

[rn + Bn] , 
[rn · Sn] · 

Theorem 3.6.1 The structure (*R, +, · ,  <) is an ordered field with zero [0] 
and unity [1] . 

Proof (Sketch) As a quotient ring of JRN, *JR is readily shown to be a 
commutative ring with zero [OJ and unity [1] , and additive inverses given 
by 

-[ ( r n : n E N ) ] = [ ( -r n : n E N ) ] , 
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or more briefly, -[rn] = [-rn] · To show that it has multiplicative inverses, 
suppose [r] f:. [0]. Then r :/= 0, i.e. , {n E N : Tn = 0} ¢. F, so as F is an 
ultrafilter, J = {n E N :  rn f:. 0} E F. Define a sequence s by putting 

if n E J, 
otherwise. 

Then [r 8 s = 1] is equal to J, so [r 8 s = 1] E F, giving r 8 s 1 and 
hence 

[r] · [s] = [r 8 s] = [1] 
in *R. But this means that [s] is the multiplicative inverse (r]- 1 of (r] . 

To see that the ordering < on *IR is linear, observe that N is the disjoint 
union of the three sets 

[r < s] , [r = s] , [s < r] ,  

so exactly one of the three belongs to  F (by 2.5(4)) ,  and so exactly one of 

[r] < (s] , [r] = [s] , [s] < [r] 

is true. It remains to show that the set { [r] : [OJ < (r] } of "positive" 
elements in *R is closed under addition and multiplication. This is left as 
an exercise. 

D 
In the proof just given we were trying in effect to show that [rnt1 = [r;;:-1] ,  
but were constrained by the fact that the real number r;;:-1 may not exist for 
some n. The reason why [rJ-1 nonetheless exists is that r;;:-1 exists for almost 
all n (i.e . ,  for all n in the set {n E N : rn f:. 0} E F) . This relationship 
between *R and R characterises the definitions of the relations =, < ,  >, 
etc. in *R, in the sense that 

[rn] = [sn] iff Tn = Sn for almost all n, 
[rn] < [sn] iff Tn < Sn for almost all n, 

[rn] + [sn] = [tn] iff Tn + Sn = tn for almost all n, 
[rn] · [sn] = [tn] iff Tn · Sn = tn for almost all n, 

and so on. Let us call this relationship the almost-all criterion. As we will 
see, it holds for many other properties and is the basis of the transfer 
principle. Theorem 3.6 .1 is itself a special case of transfer: *R is an ordered 
field because R is. This is explained further in Section 4.5. 

The ring IRN is an example of what is known in algebra as a direct power 
of IR, a special case of the notion of direct product. An ultrapower is a 
quotient of a direct power that arises from the congruence relation defined 
by an ultrafilter. 
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3.7 Including the Reals in the Hyperreals 

We can identify a real number r E JR with the constant sequence r 
(r, r, . . .  ) and hence assign to it the *JR-element 

*r = [r] = [(r, r, . . .  ) ]  . 

It can be shown that for r, s E JR, we have 

*(r + s) *r + *s , 
*(r · s) *r · *s ' 

*r < *s iff r < s ,  
*r = *s iff r = s .  

Hence 

Theorem 3. 7. 1 The map r � *r is an order-preserving field isomorphism 
from JR into *JR. D 

This result allows us to identify the real number r with *r whenever con
venient, and hence to regard JR as a subfield of *R In particular we may 
identify [0] with 0 and [1] with 1 .  

3.8 Infinitesimals and Unlimited Numbers 

Let c = ( 1 ,  � ,  �, . . .  ) = (-!i : n E N ) . Then 

[0 < c] = { n E N : 0 < � }  = N E F, 

so [OJ < [c] in *JR. But if r is any positive real number, then the set 

[c < r] = { n E N : � < r} 
is cofinite (because c converges to 0 in JR ! ) .  Now, since F is nonprincipal, 
it contains all cofinite sets (2.5(5) ) ,  so [c < r] E F and therefore [c] < *r 
in *JR. Thus [c] is a positive infinitesimal. 

Now let w = (1, 2, 3, . . .  ) . Then for any r E JR, the set 

[r < w] = {n E N :  r < n} 

is cofinite (by the Eudoxus-Archimedes principle!) and so belongs to F, 
showing that *r < [w] in *JR. Thus [w] is "infinitely large" compared to JR in 
*JR, although we will prefer to use the adjective unlimited to describe such 
entities. In fact c · w = 1 ,  so [w] = [c] - 1 and [c) = [w]-1 . 

The properties observed of [c] and [w] show that *JR is a proper extension 
of JR, and hence a new structure. Even more directly, for any r E JR, the 



28 3. Ultrapower Construction of the Hyperreals 

set [r = w] is either 0,  or equal to {r} when r E N, so cannot belong to F, 
implying *r =!= [w] . Thus [w] E *JR - JR. 

This argument depends crucially on the fact that F is nonprincipal. If 
F were principal, then there would be some fixed J1 E N  such that 

F = P- = {A �  N :  '!1 E A}. 

But then each sequence s E JRN would agree almost everywhere with the 
sequence taking the constant value s!l, and from this it would follow that 
*JR = {*r : r E JR}, and hence *JR would be isomorphic to R The details 
of this are left as an exercise: the essential point is that use of a principal 
ultrafilter to construct *JR does not lead to anything new. 

Our discussion of c and w shows in fact that if r is any real-valued 
sequence converging to zero, then [r] is an infinitesimal in *IR, while if r 
diverges to oo, then [r] is unlimited in *JR. Thus we have achieved the 
objective proposed in Section 2.1 of building a number system with these 
features. 

Now that we have shown that there are infinitesimals in *JR, we can begin 
to apply the field operations to them to construct new numbers. What 
happens for instance if we multiply or divide an infinitesimal by a positive 
real number? Or by a negative real number? The general arithmetic of 
hyperreals will be described in Chapter 5. 

Exercise 3.8.1 
Use only general properties of ordered fields to deduce from the fact that 
[c] is a positive infinitesimal the conclusion that [c] -1 is greater than every 
real number. 

3.9 Enlarging Sets 

A subset A of lR can be "enlarged" to a subset *A of *JR: for each r E JRN , 
put 

[r] E *A iff {n E N : rn E A} E F. 

Thus we are declaring, by the almost-all criterion, that [rn] is in *A iff rn 
is in A for almost all n. Again it has to be checked that this is well-defined. 
Invoking the [ . . .  ] notation, put 

Then 

so 

[r E A] =  {n E N :  rn E A}. 

[r = r'] n [r E A] � [r' E A] , 

r = r' & [r E A] E F implies [r' E A] E F 
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as required. We have 

[r] E *A iff [r E A] E F. 

Observe that if s E A, then [s E A] = N E F (where s = (s, s ,  . . . ) as 
usual) , so *s E *A. Identifying s with *s , we may regard *A as a superset of 
A : A � *A. Elements of *A - A may be thought of as new "nonstandard" , 
or "ideal" , members of A that live in *R 

For example, let A =  N, and w = (1 ,  2, 3, . . .  ) as above. Then [w E N] =  
N E F, so [w] E *N. [w] is a "nonstandard natural number" . 

Theorem 3.9.1 Any infinite subset of JR. has nonstandard members. 

Proof Note first that this result must depend on F being nonprincipal, 
because if F were principal, there would be no nonstandard elements of *JR. 
at all. 

Now, if A � JR. is infinite, then there is a sequence r of elements of A 
whose terms are all distinct. Then [r E A] = N E F, so [r] E *A. But for 
each s E A, { n : r n = s} is either 0 or a singleton, neither of which can 
belong to F (2.5(5)), so [r] f:- *s. Hence [r] E *A - A. D 
The converse of this theorem is also true ( cf. the next exercise) , so the 
property of having nonstandard members exactly characterises the infinite 
sets. 

3 .10 Exercises on Enlargement 

(1) If A is finite, show that *A = A, and hence A has no nonstandard 
members. 

(2) 

(3) 

(4) 

(5) 

A � B  iff 
A = B  iff 

*(A U B) 
*(A n  B) 
*(A - B) 

*0 

*A c *B - ) 

*A = *B. 

*A U *B ) 

*A n *B, 
*A - *B, 
0. 

Is it true that * (U�=1 An) = U�=1 *An ? 

Show that if A � JR., then *A n JR. = A. 

( 6) For a, b E JR., let [a, b] be the closed interval { x E JR. : a � x � b}. 
Prove that *[a, b] = {x E *IR : a �  x � b}. 

(7) *Z is a subring of *JR. , i.e., *Z is closed under +, 
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(8) If �+ = {x E � :  x > 0}, show that *(JR+) = {x E *� : x > 0},  i.e. , 
*(JR+) = (*�)+ .  

3 . 11  Extending Functions 

A function f : lR --t � extends to * f : *� --t *IR as follows. First, for each 
sequence r E JRN , let f o r be the sequence (f ( ri) ,  f ( rz) ,  . . .  ) . Then put 

* f( [r]) = [f o r] .  

In other words, 

or in the simplified notation, 

Now, in general, 
[r = r'] � [f o r = f o r'] , 

and so 
r - r' implies f o r - f o r', 

ensuring that * f is well-defined. Observe that * f obeys the almost-all cri
terion: 

* f ( [ r] ) = [ s] iff [! o r = s] E :F 
iff {n E N :  f(rn) = sn} E :F 
iff f ( r n)  = Sn for almost all n. 

For example, the sine function is extended to all of *� by 

* sin( [r] ) = [(sin(r1 ) ,  sin(rz) ,  . . .  ) ] = [sin(rn)]  . 

3 .12 Exercises on Extensions 

( 1 )  Show that *f agrees with f on IR: if r E �' then *f (r) = f(r) . 

( 2) If f is injective, so is *f. What about surjectivity? 

(3) For x E *�, let { X if X >  0, 
lx l = 0 if x = 0, 

-X if X <  0 
be the usual definition of the absolute value function. Show that this 
extends the definition of 1 · 1 on R I [r] l = [( lr1 l , lrz l , . . .  ) ]  = [ lrn l ] .  
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( 4) Let XA be the characteristic function of a set A C R Show that 
*(XA) = X*A· 

(5) Show how to define * f when f is a function of more than one argu
ment. 

3 .13  Partial Functions and Hypersequences 

Let f A ----+ JR be a function whose domain A is a subset of JR. (e.g., 
f(x) = tan x). Then f extends to a function *! : *A ----+ *JR whose domain is 
the enlargement of A, i.e., dom * f = *( dom f). 

To define this extension, take r E JRN with [r] E *A, so that 

Let 

[r E A] =  {n E N : rn E A} E F. 

Sn = { f(rn) if n E [r E A] , 
0 if n � [r E A] 

(it is enough to define Sn for almost all n). Then put 

*j( [r]) = [s] . 

Essentially, we have defined 

as in Section 3.11 ,  but with a modification to cater for the complication 
that J(rn) may not be defined for some n. The construction works because 
f(rn) exists for almost all n modulo F. 

It is readily shown that if r E A, then */(*r) = *(f(r)) ,  or identifying *r 
with r etc. ,  we have *J(r) = f(r) , so *J extends f. Therefore it would do 
no harm to drop the * symbol and just use f for the extension as well, and 
we will do so most of the time. It is a particularly natural practice for 
the more common mathematical functions. For instance, the function sin x 
is now defined for all hyperreals x E *JR.. 

An important case of this construction concerns sequences. A real-valued 
sequence is just a function s : N ----+ JR, and so the construction extends this 
to a hypersequence s : *N ----+ *R Hence the term sn is now defined even 
when n E *N - N. 

3 . 14 Enlarging Relations 

Let P be a k-ary relation on JR. Thus P is a set of k-tuples: a subset of JRk . 
For given sequences r1 , . . .  , rk E JRN, define 

[P(r1 , . . .  , rk )] = {n E N :  P(r� , . . .  , r�)} .  
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Now P can be enlarged to a k-ary relation *P on *JR., i.e. , a subset of (*JR.)k. 
For this we use the notation *P([r1 ] ,  . . .  , [rk] )  to mean that the k-tuple 
( [r1 ] ,  . . .  , [rk] )  belongs to * P. The definition is: 

*P([r1 ] ,  . . .  , [rk] )  iff [P(r\ . . .  , rk )] E F 
iff P(r� , . . .  , r�) for almost all n. 

As always with a definition involving equivalence classes named by partic
ular elements, it must be shown that the notion is well-defined. In this case 
we can prove 

[r1 = s1 ] n · · · n [rk = sk] n [P(r\ . . .  , rk )] � [P(s1 , . . .  , sk )] ,  

so that if r1 _ s1 and . . .  and rk _ sk and [P(r1 , . . .  , rk )] E F, then 
[P(s1 , . . .  , sk)] E F. 

When r1 , . . .  , rk are real numbers, 

P(r1 , . . .  , rk ) iff *P(*r1 , . . • , *rk ) ,  

showing that * P is an extension of P. 
This definition of k-ary *P encompasses the work of Sections 3.9-3. 13 on 

extensions of sets and functions. A subset A of JR. is just a unary relation 
( k = 1 ) ,  so the definition of *A is a special case of that of * P. When P is 
any of the relations =, <,  > ,  � on JR., then * P is the corresponding relation 
that we defined on *JR., because 

and so on. 

[r] = [s] iff [r = s] E F, 
[r] < [s] iff [r < s] E F, 

An m-ary function f : lRm --+ JR. can be identified with its ( m + 1 )-ary 
graph 

Graph f = { (r\ . . .  , rm, s) : J(r\ . . .  , rm) = s }. 
Then the extension of Graph f to *JR. is just the graph of the extension 
*J : *!Rm --+ *IR of f (Exercise 3. 12(5) ) ,  i.e., 

*(Graph !) = Graph (*J) .  

Moreover, Graph f is defined even when f is a partial function, and so that 
case is covered as well. 

3 . 15 Exercises on Enlarged Relations 

( 1) If A1 , . . .  , Ak are subsets of JR., put P = A1 x · · · x Ak and apply the 
definition of * P to show that 

*(Al X . . . X Ak) = *Al X . . .  X *Ak . 
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In particular, explain why *(JRk) = (*JR)k , so that it is okay to write 
*JRk . 

(2) Let dom P denote the domain of a binary relation. If P � JR2, show 
that *(dom P) = dom *P. 

(3) Generalise Exercise (2) to k-ary relations. In particular, show that if 
f is a partial m-ary function, then the domain of * f is given by 

dom *f = *(dom f) � *JRm. 

3 . 16 Is the Hyperreal System Unique? 

The construction of *JR as a quotient ring of JRN depends on the choice of 
the nonprincipal ultrafilter :F that determines the congruence = · But there 
are many such ultrafilters on N, as many as there are subsets of P(N)-the 
set of all nonprincipal ultrafilters on N is in bijective correspondence with 
P(P(N)) .  

Now, it has been shown that under a certain set-theoretic assumption 
called the continuum hypothesis the choice of :F is irrelevant: all quotients of 
JRN with respect to nonprincipal ultrafilters on N are isomorphic as ordered 
fields. To explain this assumption, let us say that a set A is smaller than set 
B, and that B is larger than A, if there exists an injective function from A 
to B, but none from B to A. A famous result of Cantor is that lR is bigger 
than N (and more generally that a set A is always smaller than its power 
set P(A)) .  The continuum hypothesis asserts that there is no subset of lR 
that is smaller than lR but bigger than N. This implies that lR represents 
the least "infinite size" greater than the size of N. 

The continuum hypothesis is neither provable nor disprovable from the 
generally accepted axioms of set theory, including the axiom of choice. Thus 
we can say that if we take the continuum hypothesis as an axiom, then our 
construction of *JR produces a unique result. Without this assumption the 
situation is undetermined. 





4 
The Transfer Principle 

What properties are preserved in passing from lR to *IR? We have seen a 
number of examples, and will now consider some more in order to illustrate 
the powerful logical transfer principle that underlies them. To formulate 
this principle we will need to develop a precise language in which to de-

. scribe transferable properties. Ultimately this will allow us to abandon the 
ultrapower description of *IR and ultrafilter calculations, in the same way 
that the Dedekind completeness principle allows us to abandon the view of 
real numbers as cuts or equivalence classes of Cauchy sequence of rationals. 

Later it will be seen that the strength of nonstandard analysis lies in the 
ability to transfer properties back from *IR to IR, providing a new technique 
for exploring real analysis. 

4.1  Transforming Statements 

1 .  The Eudoxus-Archimedes Principle. The statement 

Vx 3m (x < m and m E N) 

is true when the variable x ranges over IR, but is no longer true when 
x ranges over *IR (e.g. , let x = [ (1 ,  2, 3, . . .  ) ] ) .  But if N is replaced by 
its "*-transform" *N, the result is the statement 

Vx 3m (x < m and m E  *N) , 

which is true when x ranges over all of *JR. 
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This example shows that in order to determine the truth value of 
a sentence, we need to explain what values a quantified variable is 
allowed to take. We can achieve this by using bounded quantifiers, a 
notational device that displays the range of quantification explicitly. 
Thus the first sentence can be conveniently written as 

Vx E II:E:Im E N (x < m) , 

which is simply true. Its *-transform 

Vx E *�:3m E *N (x < m) 

is also true. On the other hand, 

Vx E *� :3m E N ( x < m) 

is false. 

2. Density of the Rationals. This is expressed by the true statement 

Vx, y E � (x < y implies :3q E <Q (x < q < y)) .  

The *-transform 

Vx, y E *� (x < y implies :3q E *<Q (x < q < y)) 

is also true. 

3. Finiteness. Let A = { r1 , . . .  , Tk} be a finite subset of R Then the 
statement 

Vx E A (x = r1 or x = r2 or · · · or x = rk) 

is true, and so is its *-transform 

Vx E *A (x = *r1 or x = *r2 or · · · or x = *rk) · 

Since we identify Ti with *ri in regarding � as a subset of *�, this 
implies that *A = A. Hence finite sets of standard numbers have no 
nonstandard elements (Ex. 3.10( 1) ) .  

Question: why does this argument not work for infinite sets (Theorem 
3.9. 1)? 

4. Finitary Set Operations. If A, B � �' then the statement 

Vx E � (x E A U  B iff x E A or x E B) 

transforms to the true statement 

Vx E � (x E *(A U B) iff x E *A or x E *B), 
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which shows that *(A U B) = *A U  *B. Similarly for the other results 
of Exercise 3.10(3) .  

Question: why does the argument not work for unions of infinitely 
many sets (3.10(4))?  

5 .  Discreteness of N. If n E N, then the statement 

Vx E N  (n ::; x ::;  n + 1 implies x = n or x = n + 1) 

transforms to 

Vx E *N (*n ::;  x ::; *(n + 1)  implies x = *n or x = *(n + 1)) ,  

which again is true. Since n = *n and likewise *(n + 1)  = n + 1 ,  
this shows that there are no nonstandard members of *N occurring 
between any standard natural numbers. Also, there are no members 
of *N smaller than 1 ,  i.e. , 

Vx E *N (x 2:: 1) ;  

hence any member of *N - N must be greater than all members of N, 
and so is unlimited, i.e. , infinitely large (Section 3.8). 

6. Unbounded Sets of Reals. If we assume that there is an unlimited 
N E *N, then we can deduce the Eudoxus-Archimedes principle in 
the following way. If r is any real number, then r < N, since N is 
unlimited, and so the statement 

3n E *N (r < n) 

is true. This is the *-transform of the statement 

3n E N (r < n) , 

and as we shall see, a statement must be true if its *-transform is. 
This shows that there is a positive integer greater than r. 
More generally, this argument can be used to show that if the en
largement *A of a set of reals has an unlimited member, then A itself 
must be unbounded in JR. in the sense that for any real r there is a 
member of A that is greater than r. In brief: if A has an unlimited 
nonstandard member, then it has arbitrarily large standard members. 

It appears from these examples that the *-transform of a statement arises 
by attaching the "*" prefix to symbols that name particular entities, but 
not attaching it to variable symbols. The precise definition of *-transform 
will be laid out in Section 4.4. 

Exercise 4.1.1 
Verify the truth of the *-transforms given in 1-5 above. 
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4.2 Relational Structures 

The examples just given used a semiformal logical symbolism to express 
statements that were asserted to be true or false of the structures JR and 
*R This symbolism will now be explicitly described. 

A relational structure is a system of the form 

S = (S, Rels , Funs) ,  

where S is a nonempty set , Rel S is a collection of  finitary relations on S, and 
Funs is a collection of finitary functions on S (possibly including partial 
functions) . For instance, associated with any set S is the full structure 

(S, Rels, Funs) 

based on S, where Rels consists of all the finitary relations on S, and Funs 
consists of all the finitary functions on S. Since sets are unary relations, a 
full structure includes all subsets of S in Rels. 

The full structure based on JR will be denoted by 9t. Associated with it 
is the structure 

*9t = (*JR, {*P : P E RelJR} ,  {*f : f E FunJR}) .  

Thus *9t consists of the extensions * P and * f of all relations and functions 
on JR, as defined in Sections 3.9, 3 . 11 ,  and 3. 14. *9t is not, however, a full 
structure, since there are relations on *JR that are not of the form * P for 
any P E Rel!Jl. 

Exercise 4.2.1 
Show that none of the sets N, Z, Q, JR, and indeed no infinite subset of JR, 
can belong to Rel*!Yl.· 

4.3 The Language of a Relational Structure 

Associated with each relational structure S is a language .Cs based on the 
following alphabet: 

• Logical Connectives: 

• Quantifier Symbols: 

A. and 
V or 
...., not 
--+ implies 
+--t if and only if 

't/ for all 
3 there exists 



• Parentheses: (, ) , [, ] 

4.3 The Language of a Relational Structure 39 

• Variables: A countable collection of symbols, for which we use letters 
like x, y, z, x1 , x' , etc. 

Terms of Cg 

These are strings of symbols defined inductively by the following rules: 

• Each variable is an .Cg-term. 

• Each element s of S is an .Cg-term, called a constant. 

• If f E Fung is an m-ary function, and 71 , . . .  , 7m are .Cg-terms, then 
/(71 , . . .  , 7m ) is an .Cg-term. 

We will adopt the customary conventions of notation that depart from this 
formal definition. For instance, we continue to use the usual "infix" notation 
for binary operations, writing 71 +72 or 71 ·72 for f( 7t , 72 ) when f is addition 
or multiplication, etc. We will also retain such standard notations as 1/x, 
�' x2 , Jx J , ex , etc. 

What Does a Term Name ? 

A closed term is one that has no variables and therefore is made up of con
stants and function symbols. Such a term is intended to name a particular 
element of the structure S. But there are many opportunities in mathemat
ics to write down symbolic expressions that have no meaning because the 
element they purport to name does not exist, as in 

tan(7r'/2) . 

(In ordinary language there is the similar phenomenon of syntactically well
formed expressions that do not denote anything, such as Chomsky's famous 
"green ideas" .) 

A closed term is undefined if it does not name anything. Here are the 
rules that determine when, and what, a closed term names: 

• The constant s names itself. 

• If 71 , . . .  , 7m name the elements s1 , . . .  , sm, respectively, and the m
tuple (st , . . .  , sm) is in the domain of J , then f(7t , . . .  , 7m ) names the 
element f(s1 , . . .  , sm)· 

• f ( 71 , . . .  , 7 m) is undefined if one of 71 , . . .  , 7 m is undefined, or if they 
are all defined but name an m-tuple that is not in the domain of f. 
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Atomi c Formulae of £s 

These are strings of the form 

P(7t , . . .  , 7k ) 
where P E Rels is k-ary, and the 7i are .Cs-terms. Such strings assert basic 
relationships between elements of S and serve as the building blocks for 
more complex expressions. 

We also use conventional notation for atomic formulae where appropriate. 
For binary relations (k = 2) there is the usual infix notation: P(71 , 72) is 
written 

71 = 72 
when P is the identity relation { (a, b) E S x S : a = b}, and as 

71 < 72 
when P = { (a, b) : a <  b}. Similarly for 7t > 72 , 7t :::; 72 , 7t 2:: 72 . 

When k = 1 we have unary , or monadic, atomic formulae of the form 
P(7) , with P being a subset of S. Such a formula expresses membership 
of P and so will usually be written in the form 

7 E  P. 

Formulae 

• Each atomic .Cs-formula is an .Cs-formula. 

• If cp and '1/J are .Cg-formulae, then so are cp 1\ '1/J, cp V '1/J, •cp, cp ---+ '1/J, 
cp � '1/J. 

• If cp is an .Cs-formula, x is any variable symbol, and P E Rels ts 
unary, i.e. , P is a subset of S, then 

(Vx E P) cp ,  (::3x E P) cp 
are .Cs-formulae. Here P is the bound of the quantifier in question. 

A formula is said to be defined if and only if all of its closed terms are 
defined. 

Parentheses will be inserted or deleted in formulae where convenient to 
aid legibility. Various abbreviations and informalities will be used, such as 
writing 

x s y s z  
for the formula ( x :::; y) 1\ (y :::; z), or collapsing a string of similar quantifiers 
with the same bound like 

(Vx E P) (Vy E P) (Vz E P) 
to the form (Vx, y, z E P) . 
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An occurrence of the variable x within a formula '1/J is called bound if it is 
located within a formula of the form (Vx E P) <p or (3x E P) <p that is part 
of '1/J. An occurrence that is not bound is free . Thus in 

(x < 1) 1\ (Vx E N) (x > y), 

the first occurrence of x is free, while the others are bound, and the only 
occurrence of y is free. 

If a formula contains free variables, then it has no particular meaning 
until we assign some values to those free variables. Thus the above formula 
makes a true assertion if x = y = 0, but if x = 2, then it cannot be true 
whatever the value of y is. 

A sentence is a formula in which all variables are bound. The role of 
each symbol in a sentence is determined. There are no free variables that 
need to be assigned a value, and if the closed terms of the sentence are 
all defined then it has a fixed meaning and makes a definite assertion. A 
defined sentence is either true or false. 

An atomic sentence is just an atomic formula P( 71 , . . . , 7k ) that is 
a sentence. This means that the terms 71 , . . .  , 7k are all closed, i.e. , the 
formula has no variables at all. 

Truth and Quantification 

Suppose that there is only one variable, say x, that has any free occurrence 
in a certain formula <p. Then we write cp( s) for the sentence that is obtained 
by substituting the constant s in place of all free occurrences of x in <p. For 
example, if <p is 

tan( -x) = - tan(x) , 

then <p(7r/2) is the (undefined) atomic sentence 

tan( - 1r  /2) = - tan( 1r /2) . 

Now consider the truth of a defined sentence of the form (Vx E P) <p. Here 
only the variable x can have any free occurrence in <p, so we can form 
sentences of the type cp( s) . Intuitively, (Vx E P) <p asserts that whatever <p 
"says about x" is true of each member of P, provided that this is defined, 
and so it asserts that the sentence cp( s) is true for every element s of P for 
which it is defined. Thus 

• (Vx E P) <p is true if and only if for all s in P, if the sentence cp( s) 
is defined, then it is true. 

For example, the following sentence is true: 

(Vx E JR) [tan(-x) = - tan(x) ] .  
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The corresponding analysis of the existential quantifier is 

• (3x E P) cp is true if and only if there is some s in P for which cp( s) 
is (defined and) true. 

The standard meanings of the symbolic connectives A , V, •, -t, � are given 
by the rules: 

• cp A 'lj; is true if and only if cp is true and 'lj; is true. 

• cp V 'lj; is true if and only if cp is true or 'lj; is true. 

• •cp is true if and only if cp is not true (i. e., is false). 

• cp -t 'lj; is true if and only if the truth of cp implies that of 'lj; (i. e . ,  
either cp is false or else 'lj; is true). 

• cp � 'lj; is true if and only if cp -t 'lj; and 'lj; -t cp are true (i. e . , cp and 
'lj; are either both true or both false). 

With all these rules, calculation of the truth value of a sentence is reduced 
to the determination of the truth value of atomic sentences. For them we 
have 

• P( T1 , . . . , Tk ) is true if and only if the closed terms T1 , . . .  , Tk are all 
defined and the k-tuple of elements they name belongs to P. 

This analysis of the meaning of "true" may appear to be making the ob
vious seem complex and convoluted. But as was said in Section 1.2, it is 
precisely this exact formulation of the syntax of mathematical statements, 
with an associated account of their truth conditions, that makes the theory 
of infinitesimals possible. We are able to distinguish exactly which prop
erties are transferable between R and *R because we can give an explicit 
description of the sentences that express such properties. 

4.4 *-Transforms 

A formula in the language LfR of the real-number structure � has symbols 
P, f for relations and functions of �. It can be turned into a formula of the 
language L•fR of the hyperreal structure *� by replacing P by * P, and f 
by *f. Any constant r naming a real number is left as is, since we identify 
r in � with *r in fs. 

More precisely, we first define the *-transform *7 of an LfR-term T. This is 
obtained by replacing each function symbol f occurring in T by * f ,  leaving 
the variables and constants of T alone. Even more formally, we can give the 
definition by induction on the formation of T, using the following rules: 

• If T is a variable or an LfR-constant , then *7 is just T. 
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• If 7 is /(71 , . . .  , 7m) ,  then *7 is */(*71 , . . .  , *7m) · 

The *-transform *cp of an .C!R-formula cp is obtained by 

• replacing each term 7 occurring in cp by *7; 

• replacing the relation symbol P of any atomic formula occurring in 
cp by *P; and 

• replacing the "bound" P of any quantifier (\:fx E P) or (3x E P) 
occurring in cp by * P. 

Again we can spell this out by induction on the formation of cp: 

*P(*71 , . . .  , *7k) 
*cp 1\ *'¢ 
*cp v *'¢ 

*(P(7I , . . .  , 7k ) )  
*(cp 1\ '¢) 
*(cp v '¢) 

*( •cp) 
*( cp -+ '1/J) 

*(cp � '¢) 

· - •(*cp) 

*(Vx E P) cp · 

*(:Jx E P) cp .-

*cp -+ *'¢ 
*cp � *'¢ 
(Vx E *P) *cp 
(:Jx E * P) *cp. 

We tend to drop the * symbol when referring to the transforms of some 
of the more well-known relations like = ,  #, <, 2: ,  etc. ,  and well-known 
mathematical functions like sin, cos, log, ex , etc. For instance, 

*(1r < f(x + 1 ) )  
*(sin ex E Q) 

(1r < *f(x + 1 ) ) ,  
(sin ex E *Q) , 

and so on. Even further, we noted in Section 3.13 that it would do no harm 
to drop the * symbol in referring to the extension * f of any function f. If 
this practice is adopted systematically, then the transform *7 of each term 
7 will just be 7 itself. Then atomic formulae like 

etc. that express basic equalities and inequalities will be left alone under 
*-transformation, while a membership formula 7 E P becomes 7 E *P. 

With all these conventions in place, the general procedure for "adding 
the stars" reduces simply to replacing 

P(7I , . . .  ' 7k ) by *P(7I , . . .  ' 7k ) ,  
Vx E P by Vx E * P, 
:Jx E P by :Jx E * P. 

To summarise all of this in words; the essence of *-transformation is to 
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(i) replace the bound P of any quantifier by its enlargement * P; and 

(ii) replace relations appearing in atomic formulae by their enlargements, 
but only in the (unary) case of a membership formula (T E P) , or for 
relations of arity greater than one other than the common relations 
=, =/-, <, 2:: , etc. 

Exercise 4.4. 1 
Review the examples of Section 4. 1 ,  formalising them precisely in L>.R., and 
verify that they conform to our definition of *-transform. 

4.5 The Transfer Principle 

The notion of an L>.R sentence and its *-transform provides an explanation 
of the notion of an "appropriately formulated statement" as discussed in 
Section 1 .2 ,  and hence provides a first answer to the question as to which 
properties are subject to transfer between IR and *IR: any property express
ible by an L>.R.-sentence is transferable. Formally, the transfer principle is 
stated as follows: 

• A defined L>.R-sentence cp is true if and only if *cp is true. 

As a first illustration of this, beyond the examples of Section 4. 1 ,  consider 
the proof that *IR is an ordered field (Theorem 3.6.1 ) .  Now, the fact that 
IR is an ordered field can be expressed in a finite number of L>.R.-sentences, 
like 

(Vx, y E lR ) (  x + y = y + x), 
(Vx E IR) (x · 1 = x), 

(Vx, y E lR) (X < y V x = y V y < X) ,  

and so on. By transfer we can immediately conclude that the *-transforms 
of these sentences are true, showing that *IR is an ordered field. In partic
ular, to show that multiplicative inverses exist in *IR, instead of making an 
ultrapower construction of the inverses as in the proof of Theorem 3.6 .1 we 
simply observe that it is true that 

(Vx E IR) [x =/- 0 -t (3y E IR) x · y = 1] 

and conclude by transfer that 

(Vx E *IR) [x =/- 0 -t (3y E *IR) x · y = 1] . 

For another example, consider the closed interval 

[a, b] = {x E IR :  a �  x � b} 
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in the real line defined by points a ,  b E JR. Then it is true that 

('Vx E JR) (x E [a, b] +--+ a ::;  x ::; b) , 

so by transfer we see that the enlargement of [a, b] is the hyperreal interval 
defined by a and b (Exercise 3. 10(6) ) :  

*[a, b] = {x E *JR : a :S x :S b} . 

Similarly, we can transfer to *JR many familiar facts about standard math
ematical functions. Thus the following are true: 

('Vx E *JR) sin(7r - x) = sin x, 

('Vx E *JR) cosh x + sinh x = ex, 
('Vx, y E *JR+) log xy = log x + log y. 

All of the above examples involve taking a universally quantified LfJl.
sentence of the form ('Vx, y, . . .  E JR) <p and transforming it to an L•fJl. 
sentence ('Vx, y, . . .  E *JR) *<p. They are instances of the following general 
principle. 

• Universal Transfer: if a property holds for all real numbers, then 
it holds for all hyperreal numbers. 

Of course the meaning of "property" has to be explained here, and that 
is what the formal language LfJl. was introduced for. To use nonstan
dard analysis we need to develop the ability to show that a given 
property can be expressed in a transferable form. 

Dual to universal transfer is 

• Existential Transfer: if there exists a hyperreal number satisfying 
a certain property, then there exists a real number with this property. 

For example, take a real-valued sequence s : N � lR for which we can 
show (by some means) that the extended hypersequence *s : *N � *JR 
never takes infinitely large values. Then existential transfer can be used to 
conclude that the original sequence must be bounded in R To see this, let 
w be a member of *N - N. By hypothesis it is true that 

('lin E  *N) ( l *s(n) l < w) .  

Now, this sentence is not the *-transform of an L!Jt-sentence, because it 
contains the constant w. But the constant can be removed in favour of an 
existentially quantified variable, by observing that the sentence implies 

(3y E *JR) ('Vn E *N) ( l *s(n) l < y), 
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which is now "appropriately formulated" . Existential transfer then yields 
that 

(3y E IR) (Vn E N) ( i s (n) i < y) ,  
which is the desired conclusion. Put informally, from the existence of a 
hyperreal bound on *s we infer the existence of a real bound on s .  

Typically, in order to show that a real number of a certain type exists, it 
may be easier to show that a hyperreal of this type exists and then apply 
existential transfer. 

Exercise 4.5.1 
Which of Exercises 3 .10 can be proven using transfer? 

4.6 Justifying Transfer 

In constructing the ordered field *IR we repeatedly used the criterion that a 
particular property was to hold of hyperreals [r) , [ s) , . . .  iff the corresponding 
property held of the real numbers rn, Sn , . . .  for almost all n. In fact, this 
almost-all criterion works for any property expressible by an L!Jt-formula, 
and that ultimately is why the transfer principle holds. 

To spell this out some further technical notation is needed. For a formula 
cp we write 

cp(x1 ,  . . .  , xp) 
to indicate that the list x1 , . . .  , Xp includes all the variables that occur free 
in the formula cp. Then 

cp(sb . . .  , sp) 
is the sentence obtained by replacing each free occurrence of Xi in cp by the 
constant si · For example, if cp(x1 , x2 ) is the formula 

(3y E Q) (xi +  X� < y), 

then cp( 1r, .J2) is the sentence 

(3y E Q) (1r2 + (vl2)2 < y) . 

Now, if cp(x1 ,  . . .  , xp) is a formula of L!R, and r1 , . . .  , rP E IRN, put 

[cp(r1 , . . .  , rP )] = {n E N :  cp(r;., , . . .  , r�) is true} . 

This extends the definitions of [r = s] , [r < s] , etc. to L!R-formulae in gen
eral. Then such statements as 

[r] = [s] iff [r = s] E :F, 
[r] < [s] iff [r < s] E :F, 
[r] E *A iff [r E A] E :F 

*P((r1] ,  . . .  , [rk] )  iff [P(r1 , • . .  , rk)] E :F 



4. 7 Extending Transfer 4 7 

(cf. Sections 3.6, 3.9, 3. 14) are seen to be cases of the following fundamental 
result. 

For any £�-formula <p(x1 , . . .  , xp) and any rl , . . .  , rP E JRN, the 
sentence *<p( [r1) ,  . . .  , [rP] )  is true if and only if <p(r� , . . .  , r�) is 
true for almost all n E N. 
In other words, 

*<p( [r1 ] ,  . . .  , [rP] )  is true iff [<p(r1 , . . .  , rP)] E :F. 

This result is known as Los's theorem, after the Polish mathematician who 
first proved it in the early 1950s. It includes transfer as a special case, 
because if <p is a sentence, then it has no free variables, so that <p( s1 , . . .  , sp) 
is just <p and likewise for *<p. Hence [<p(r1 , . . .  , rP)] is N if <p is true and 0 
otherwise, independently of the sequences rj . Since 0 � :F, Los's theorem 
in this case simply says 

*<p is true iff <p is true, 

which is the transfer principle! 

A proof of Los's theorem would proceed by induction on the formation 
of the formula <p, considering first atomic formulae and then dealing with 
inductive cases for the logical connectives and quantifiers. We will not enter 
into those details here, but rely on the examples already discussed to lend 
plausibility to the assertion of Los's theorem, and hence to transfer. 

4.7 Extending Transfer 

We defined general relational structures S and their languages £s , but 
applied these ideas only to the language [,fJt in describing the transfer prin
ciple. In fact, it is possible to use the ultrapower construction to build an 
"enlargement" of any structure S and obtain a transfer principle for it. For 
instance, by replacing lR by C this would give us a way of embarking on 
the nonstandard study of complex analysis. 

It is important also to realise that the language [,fJt is limited by the 
fact that its quantifiable variables can range only over elements of IR, and 
not over more complicated entities like subsets of IR, sequences, real-valued 
functions, etc. For example, the Dedekind completeness principle, 

every subset of lR that is nonempty and bounded above has a 
least upper bound, 

cannot be formulated in Lr.Jt because the language does not allow quantifiers 
of the type 

Vx E P(IR) 
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that apply to a variable (x) whose range of values is the set of all subsets 
of JR. 

Later on (Chapter 13) , a language will be introduced that does have such 
"higher-order" quantifiers and for which an appropriate transfer principle 
exists. Before then we will see that .C'.R is still powerful enough to develop 
a great deal of the standard theory of lR, including the convergence of se
quences and series, differential and integral calculus, and the basic topology 
of the real line. Indeed, for the next half-dozen chapters we will forget about 
the ultrapower construction and explore all t�:Iese topics using only the fact 
that *JR is an ordered field that 

• has lR as a subfield; 

• includes unlimited numbers N E *.N - .N, hence infinitesimals (such 
as ..1.) · and N ' 

• satisfies the transfer principle. 



5 
Hyperreals Great and Small 

:Members of *R are called hyperreal numbers, while members of R are real 
and sometimes called standa·rd. *Q consists of hyperrationals, *Z of hyper
integers, and *N of hypernaturals. That *Q consists precisely of quotients 
mjn of hyperintegers m, n E *Z follows by transfer of the sentence 

'r/x E R [x E Q +-+ :3y, z E Z (z =/= 0 ;\ x = yj z)] . 

It is now time to examine the basic arithmetical and algebraic structure of 
xlR, particularly in its relation to the structure of R. 

5 . 1  (Un) limited, Infinitesimal, and Appreciable 
Numbers 

A hyperreal number b is: 

• limited if r < b < s for some r, s E JR; 

• positive unlimited if r < b for all r E R; 

• negative unlimited if b < r for all r E R; 

• unlimited if it is positive or negative unlimited; 

• positive infinitesimal if 0 < b < r for all positive r E R; 

• negative infinitesimal if r < b < 0 for all negative r E R; 
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• infinitesimal if it is positive infinitesimal, negative infinitesimal, or 0. 

• appreciable if it is limited but not infinitesimal, i.e. , r < lb l < s for 
some r, s E �+. 

Thus all real numbers, and all infinitesimals, are limited. The only infinites
imal real is 0: all other reals are appreciable. An appreciable number is one 
that is neither infinitely small nor infinitely big. Observe that b is 

• limited iff l b l < n for some n E N; 

• unlimited iff l b l  > n for all n E N; 

• infinitesimal iff l b l < � for all n E N; 

• appreciable iff � < lb l < n for some n E N. 

We denote the set *N-N of unlimited hypernaturals by *N00• Similarly, *Ill� 
denotes the set of positive unlimited hyperreals, and *Ill� the set of negative 
unlimited numbers. This notation may be adapted to an arbitary subset 
X of *Ill, putting Xoo = {x E X  : X  is unlimited}, x+ = {x E X :  X >  0}, 
etc. 

We will also use IL for the set of all limited numbers, and TI for the set of 
infinitesimals. 

5 .2 Arithmetic of Hyperreals 

Let c, 0 be infinitesimal, b, c appreciable, and H, K unlimited. Then 

• Sums: 

c + 0 is infinitesimal 

b + c is appreciable 

b + c is limited (possibly infinitesimal) 
H + c and H + b are unlimited 

• Opposites: 

-c is infinitesimal 

-b is appreciable 
-H is unlimited 

• Products: 

c · 8 and c · b are infinitesimal 

b · c is appreciable 

b · H and H · K are unlimited 



• Reciprocals: 

� is unlimited if c =/= 0 
i is appreciable 

Jr is infinitesimal 

• Quotients: 
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c E d b • fi 't • 1 b '  H '  an H are m m es1ma 

� is appreciable (if c =/= 0) 

* '  � , and I[ are unlimited (c, b =/= 0) 

• Roots: 

If c > 0, y'c is infinitesimal 

If b > 0, \lb is appreciable 

If H > 0, f/H is unlimited 

• Indeterminate Forms: 

� ,  �, c · H, H + K  

It follows from these rules that the set lL of limited numbers and the set ][ 
of infinitesimals are each a subring of *JR. Also, the infinitesimals form an 
ideal in the ring of limited numbers. What then is the associated quotient 
ring IL/][? Read on to Theorem 5.6.3. 

With regard to nth roots, for fixed n E N the function x � y'X is defined 
for all positive reals, so extends to a function defined for all positive hyper
reals. But we could also consider nth roots for unlimited n. The statement 

(Vn E N) (Vx E JR+) (3y E JR) (yn = x) 

asserts that any positive real has a real nth root for all n E N. Its transform 
asserts that every hyperreal has a hyperreal nth root for all n E *N. 

Exercise 5 .2 .1 
For any positive hyperreal a ,  explain why the function x � ax is defined 
for all x E *JR. Use transfer to explore its properties. 

5.3 On the Use of "Finite" and "Infinite" 

The words "finite" and "infinite" are sometimes used for "limited" and 
"unlimited" , but this does not accord well with the philosophy of our sub
ject. A set is regarded as being finite if it has n elements for some n E N, 
and therefore is in bijective correspondence with the set 

{1 , 2, . . .  , n} = {k E N :  k :::; n} . 
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However, if N is an unlimited hypernatural, then the collection 

{1 ,  2, . . .  , N} = {k E *N :  k � N} 

is set-theoretically infinite but, by transfer, has many properties enjoyed 
by finite sets. Collections of this type are called hyperfinite, and will be ex
amined fully later. They are fundamental to the methodology of hyperreal 
analysis. 

There is also potential conflict with other traditional uses of the word 
"infinite" in mathematics, such as in describing a series or an integral as 
being infinite when it it is divergent or undefined, or in referring to the area 
or volume or some more general measure of a set as being infinite when 
this has nothing to do with unlimited hyperreals. 

5.4 Halos , Galaxies , and Real Comparisons 

• Hyperreal b is infinitely close to hyperreal c, denoted by b � c, if b - c 
is infinitesimal. This defines an equivalence relation on *�, and the 
halo of b is the �-equivalence class 

hal (b) = { c E *� : b � c}. 

• Hyperreals b, c are of limited distance apart , denoted by b rv c, if b - c 
is limited. The galaxy of b is the rv-equivalence class 

gal(b) = {c E *� :  b rv c}. 

So, b is infinitesimal iff b � 0, and limited iff b rv 0. Thus hal(O) = II, the 
set of infinitesimals, while gal(O) = L, the set of limited hyperreals. 

Abraham Robinson called hal(b) the "monad" of b and used the notation 
J.L(b) , which is quite common in the literature. The more evocative name 
"halo" has been popularised by a French school of nonstandard analysis, 
founded by George Reeb, which is also responsible for "shadow" (see Sec
tion 5.6) .  The work of this school is described in the book listed as item 10 
in the bibliography of Chapter 20. 

5 .5  Exercises on Halos and Galaxies 

( 1 )  Verify that � and rv are equivalence relations. 

(2) If b "'  x � y � c with b and c real, show that b � c. What if b and/or 
c are not real? 

(3) hal(b) = {b + c :  c E hal(O)} .  



(4) gal(b) = {b + c :  c E gal(O)} .  
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(5) If x � y and b is limited, prove that b · x "' b · y. Show that the result 
can fail for unlimited b. 

(6) Show that any galaxy contains members of *Z, of *Q - *Z, and of 
*JR - *Q. 

Real Comparisons 

Exercise (2) above embodies an important general principle, which we will 
often use, about comparing the sizes of two real numbers b, c. If b > c, 
then the halos of the two numbers are disjoint, with everything in hal(b) 
greater than everything in hal(c). Thus to show that b :::; c it is enough to 
show that something in hal(b) is less than or equal to something in hal(c) . 
In particular, this will hold if there is some x with either b � x :::; c or 
b ::S X '"'"'  C. 

5.6 Shadows 

Theorem 5.6.1 Every limited hyperreal b is infinitely close to exactly one 
real number, called the shadow of b, denoted by sh(b) .  

Proof Let A = {r E 1R : r < b}. Since b is limited, there exist real r, s 
with r < b < s, so A is nonempty and bounded above in 1R by s. By the 
completeness of .!R, it follows that A has a least upper bound c E JR. 

To show b � c, take any positive real E E JR. Since c is an upper bound of 
A, we cannot have c + E E A; hence b :::; c + E. Also, if b :::; c - E, then c - c 
would be an upper bound of A, contrary to the fact that c is the smallest 
such upper bound. Hence b i c - E. Altogether then, c - c < b :::; c + E, so 
l b - cl :::; E. Since this holds for all positive real E, b is infinitely close to c. 

Finally, for uniqueness, if b � c' E JR, then as b � c, we get c ,......, c' , and 
so c = c' , since both are real. D 

Theorem 5.6.2 If b and c are limited and n E N, then 

( 1 )  sh(b ± c) = sh(b) ± sh(c) , 

(2) sh(b · c) = sh(b) · sh(c) , 

(3) sh(b/c) = sh(b)/sh(c) if sh(c) =1- 0 (i. e., if c is appreciable}, 

(4) sh(bn ) = sh(b)n , 

(5) sh( lb l ) = ish(b) l , 

(6) sh( vb) = y!Sii(b) if b � 0, 
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(7) if b � c then sh(b) � sh(c) . 

Proof Exercise. D 
We see from these last facts that the shadow map sh : b �---+ sh(b) is an 
order-preserving homomorphism from the ring lL of limited numbers onto 
IR. The kernel of this homomorphism is the set {b E lL : sh(b) "-J 0} of 
infinitesimals, and the cosets of the kernel are the halos hal(b) for limited 
b (cf. Exercise 5 .5(3) ) .  Thus we have an answer to our question about the 
quotient of lL by IT: 

Theorem 5.6.3 The quotient ring 1LIIT is isomorphic to the real number 
field IR by the correspondence hal(b) �---+ sh(b) . Hence ][ is a maximal ideal 
of the ring lL. D 

The shadow sh(b) is often called the standard part of b. 

5 .  7 Exercises on Infinite Closeness 

(1 )  Show that if b, c are limited and b ""  b', c � c', then b ± c � b' ± c',  
b · c � b' · c', and bl c � b' I c' if c ':f:. 0.  Show that the last result can 
fail when c � 0. 

(2) If c is infinitesimal, show that 

sine 0, 

cos c "-J 1 ,  

tan c rv 0,  

sin clc 1 ,  

(cos c - 1)  1 c o 

(use transfer of standard properties of trigonometric functions) . 

(3) Show that every hyperreal is infinitely close to some hyperrational 
number. 

( 4) Show that IR is isomorphic to the ring of limited hyperrationals *QnlL 
factored by its ideal *Q n ][ of hyperrational infinitesimals. 

5.8 Shadows and Completeness 

We saw in the proof of Theorem 5.6.1 that the existence of shadows of 
limited numbers follows from the Dedekind completeness of IR. In fact, 
their existence turns out to be an alternative formulation of completeness, 
as the next result shows. 
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Theorem 5.8.1 The assertion "every limited hyperreal is infinitely close 
to a real number" implies the completeness of JR. 

Proof Let s : N � IR be a Cauchy sequence. Recall that this means that 
its terms get arbitrarily close to each other as we move along the sequence. 
In particular, there exists a k E N such that all terms of s beyond Sk are 
within a distance of 1 of each other, i.e., 

Vm, n E N (m, n � k � Ism - sn l < 1 )  

is true. Hence the *-transform of this sentence is also true, and applies to 
the extended hypersequence ( Sn : n E *N) as defined in Section 3. 13. In 
particular, if we take N to be an unlimited member of *N, then k, N � k, 
so 

l sk - sN I < 1 ,  

and therefore s N is limited. By the assertion quoted in the statement of 
the theorem, it follows that s N � L for some L E JR. We will show that the 
original sequence s converg�s to the real number L. 

If c is any positive real number, then again, since s is Cauchy, there exists 
f� E N such that beyond SJe all terms are within c of each other: 

Vm, n E N (m, n � ic: � Ism - sn l  < c ) .  

But now we can show that beyond SJe all terms are within c of L. The 
essential reason is that all such terms are within c of SN ,  which is itself 
infinitely close to L. For if m E N  with m � jc: , we have m, N � jc: , so by 
transfer of the last sentence we get that Sm is within c of s N : 

Ism - SN I < c. 

Since s N is infinitely close to L, this forces Sm to be within c of L. Indeed, 
I sm - L l � Ism - SN I + lsN - L j < c + infinitesimal, 

so as sm - L and c are real, I sm - L l � c. 
This establishes that all the terms Sj , SJ+l , SJ+2 , . . .  are within c of L, 

which is enough to prove that the sequence s converges to the real number 
L. All told, we have demonstrated that every real Cauchy sequence is con
vergent in IR, a property that is equivalent to Dedekind completeness ( cf. 
Exercise 5.9 below) . 0 
This result will be revisited in the next chapter (cf. Theorem 6.5.2 and the 
remarks following it) . 

5.9 Exercise on Dedekind Completeness 

For Theorem 5.8.1 ,  instead of showing that Cauchy sequences converge we 
can develop a direct proof that any subset A � IR with a real upper bound 
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has a least real upper bound. First , for each n E N, let sn be the least k E Z 
such that kin is an upper bound of A. Then take an unlimited N E *N00 
and let L E � be infinitely close to s N IN. 

(a) Verify that Sn exists as defined for n E N. 

(b) Show that s N IN is limited, so that such a real L exists under the 
hypothesis of Theorem 5.8. 1 .  

(c) Prove that L is a least upper bound of A in �

Hint: consider (sN - 1)IN. 

5 . 10 The Hypernaturals 

We now develop a more detailed description of *N. First, by transfer, *N is 
seen to be closed under addition and multiplication. Next observe that the 
only limited hypernaturals are the members of N. For if k E *N is limited, 
then k :::; n for some n E N. But then by transfer of the sentence 

Vx E N  (x :::; n -+  x = 1 V x = 2 V · · · V x = n) 

it follows that k E {1 ,  2, . . .  , n} , so k E N. 
Thus all members of *N - N are unlimited, and hence greater than all 

members of N. Fixing K E *N - N, put 

"Y( K) = { K} U { K ± n : n E N}. 

Then all members of "Y(K) are unlimited, and together form a "copy of Z" 
under the ordering <. Moreover, it may be seen that 

"Y(K) = {H E *N : K rv H} = gal(K) n *N, 

the restriction to *N of the galaxy of K. The set "Y(K) will be called a 
*N-galaxy. We can also view N itself as a *N-galaxy, since N = gal(l) n *N. 
Thus we define "Y(K) = N when K E N. Then in general, 

"Y (K) = "Y(H) iff K rv H, 

and the *N-galaxies may be ordered by putting 

"Y(K) < "'f(H) iff K < H 

whenever K rf H (i.e., whenever IK - HI is unlimited) .  
There is no greatest *N-galaxy, since "Y(K) < "Y(2K) . Also, there is no 

smallest unlimited one: since one of K and K + 1 is even (by transfer) and 
"Y (K) = "'f(K + 1 ) ,  we can assume that K is even and note that Kl2 E *N, 
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with 'Y(K/2) < 'Y(K) and K/2 unlimited when K is. Finally, between any 
two *N-galaxies there is a third, for if 'Y(K) < 'Y(H), with K, H both even, 
then 

'Y(K) < 'Y((H + K)/2) < 'Y(H) . 

To sum up: the ordering < of *N consists of N followed by a densely ordered 
set of *N-galaxies (copies of Z) with no first or last such galaxy. 

5 . 1 1  Exercises on Hyperintegers and Primes 

(1) Provide an analogous description of the order structure of the hyper
integers *Z. 

(2) Show that for any M E *N there is an N E *N that is divisible in 
*N by all members of {1 ,  2, . . .  , M}. Hence show that there exists a 
hypernatural number N that is divisible by every standard positive 
integer. 

(3) Develop a theory of prime factors in *N: if II is the set of standard 
prime numbers, with enlargement *II � *N, prove the following. 

(a) *II consists precisely of those hypernaturals > 1 that have no 
nontrivial factors in *N. 

(b) Every hypernatural number > 1 has a "hyperprime" factor, i.e. , 
is divisible by some member of *II. 

(c) Two hypernaturals are equal if they have exactly the same fac
tors of the form pn with p E *II and n E *N. 

(d) A hypernatural number is divisible by every standard positive 
integer iff it is divisible by pn for every standard prime p and 
every n E N. 

5 . 12 On the Existence of Infinitely Many Primes 

The set II of all standard prime numbers is infinite, a fact whose proof 
is attributed to Euclid. Therefore, the enlargement *II has nonstandard 
members (by Theorem 3.9. 1 ) ,  so there are unlimited hypernatural numbers 
that are prime in the sense of having no nontrivial factors in *N. 

But by using ideas suggested in the above exercises, together with a 
nonstandard adaptation of Euclid's own argument, we can show directly 
that *II has nonstandard members, thereby giving an alternative proof that 
II must be infinite, since if it were finite it would be equal to *II. 

Let N be a hypernatural number that is divisible by every member of N 
(Exercise 5 . 11 (2) ) ,  and let q be a member of * II that divides N + 1 (Exercise 
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5 .11 . (3b)) . Then q is our desired nonstandard prime. For if q E II,  then q 
would divide N by assumption on N. But since it divides N + 1 ,  it would 
then divide the difference N + 1 - N = 1,  which is false for a prime number. 
Hence q cannot be standard. 



Part II 

Basic Analysis 





6 
Convergence of Sequences and 
Series 

A real-valued sequence (sn : n E N) is a function s : N � JR, and so extends 
to a hypersequence s : *N � *JR by the construction of Section 3. 13. Hence 
the term sn becomes defined for unlimited hypernaturals n E *N00 (a fact 
that was already used in Theorem 5.8. 1 ) ,  and in this case we say that Sn 
is an extended term of the sequence. The collection 

{sn : n E *Noo} 

of extended terms is the extended tail of s. 

6 . 1  Convergence 

In real analysis, (sn : n E N) converges to the limit L E 1R when each open 
interval (L - c, L + c) around L in 1R contains some standard tail of the 
sequence, i.e. , contains all the terms 

from some point on (with this point depending on c) . Formally, this is 
expressed by the statement 

(Vc E JR+) (:Jmc E N) (Vn E N) (n > me � isn - L l < c), 

which is intended to capture the idea that we can approximate L as closely 
as we like by moving far enough along the sequence. It turns out that this 
is equivalent to the requirement that if we go "infinitely far" along the 
sequence, then we become infinitely close to L: 



62 6. Convergence of Sequences and Series 

Theorem 6.1 . 1  A real-valued sequence ( sn : n E N) converges to L E R 
if and only if Sn � L for all unlimited n. 

Proof Suppose (sn : n E N) converges to L, and fix an N E  *N00• In order 
to show that SN � L we have to show that lsN - L l  < c for any positive 
real c. But given such an c, the standard convergence condition implies 
that there is an me E N such that the standard tail beyond Sme is within 
c of L: 

(Vn E N) (n > me �  lsn - Ll < c) . 

Then by (universal) transfer this holds for the extended tail as well: 

(Yn E *N) (n > me � lsn - Ll < c) .  

But in fact , N > me because N is unlimited and me is limited, and so this 
last sentence implies ! sN - Ll < c as desired. 

For the converse, suppose sn � L for all unlimited n. We have to show 
that any given interval ( L - c, L + c) in lR contains some standard tail of 
the sequence. The essence of the argument is to invoke the fact that the 
extended tail is infinitely close to L, hence contained in *(L - c ,  L + c) ,  and 
then apply transfer. 

To spell this out, fix an unlimited N E *N00• Then for any n E *N, 
if n > N, it follows the!t n is also unlimited, so sn � L and therefore 
lsn - L l  < c. This shows that 

(Vn E *N) (n > N � lsn - L l  < c). 

Hence the sentence 

(:3z E *N) (Vn E *N) (n > z � lsn - Ll < c) 

is true. But this is the *-transform of 

(:3z E N) (Vn E N) (n > z � lsn - L l  < c) , 

so by (existential) transfer the latter holds true, giving the desired conclu
�oo. D 
Thus convergence to L amounts to the requirement that the extended tail 
of the sequence is contained in the halo of L. In this characterisation the 
role of the standard tails is taken over by the extended tail, while the stan
dard open neighbourhoods ( L - c, L + c) are replaced by the "infinitesimal 
neighbourhood" hal( L) . 

6 .2 Monotone Convergence 

As a first application of this infinitesimal approach to convergence, here is 
an interesting alternative proof of a fundamental result about the behaviour 
of monotonic sequences. 
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Theorem 6.2.1 A real-valued sequence (8n : n E N) converges in R if 
either 

(1) it is bounded above in R and nondecreasing: 81 ::::::; 82 ::::::; · · · ; or 
(2) it is bounded below in R and noninereasing: s1 2: s2 2: · · · .  

Proof Consider case (1) .  Let 8N be an extended term. We will show that 
s N has a shadow, and that this shadow is a least upper bound of the set 
{ sn : n E N} in R. Since a set can have only one least upper bound, this 
implies that all extended terms have the same shadow, and so by Theorem 
6. 1 .1  the original sequence converges to this shadow in R. 

Now, by hypothesis there is a real number b that is an upper bound for 
{8n : n E N}. Then the statement 81 ::::::; 8n ::::::; b holds for all n E N, so 
it holds for all n E *N by universal transfer. In particular, s1 ::::::; SN ::::::; b, 
showing that 8N is limited, so indeed has a shadow L. 

Next we show that L is an upper bound of the real sequence. Since this 
sequence is nondecreasing, by universal transfer we have 

for all n, m E *N. In particular, if n E N, then n ::::::; N, so Sn ::::::; 8N c:::: L, 
giving Sn ::::::; L, as both numbers are real. 

Finally, we show that L is the least upper bound in JR. For if r is any 
real upper bound of { sn : n E N}, then by transfer, 8n ::::::; r for all n E *N, 
so L �  SN ::::::; r, giving L ::::::; r, as both are real. 0 

One significant use of this result in standard analysis is to prove that if 
e is a real number between 0 and 1 ,  then 

lim en = 0. n---+= 
To show this from the nonstandard perspective, note that if 0 < c < 1 ,  
then the sequence (en : n E N) is nonincreasing and bounded below, and 
hence by Theorem 6.2.1 converges to some real number L. Thus if N is 
unlimited, then both eN c:::: L and eN+l c:::: L. But then 

L c:::: eN+l = e · eN (by transfer of (Vn E N) en+l = e · en) 
c:::: e · L (by Exercise 5.5(5),  as e is real) , 

so we must have L c:::: c · L. Hence L = e · L, as both numbers are real, so 
as e # 1 ,  it follows that L = 0 as desired. 

6.3 Limits 

It follows readily from Theorem 6 . 1 . 1  that a real-valued sequence has at 
most one limit. For if (sn) converges to L and M in R, then taking an 
unlimited n, we have Sn c:::: L and Sn c:::: M, so L c:::: M, and therefore L = M 
because L and M are real. 
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Theorem 6.3.1 If limn---.00 Sn = L and limn-->oo tn = M in lR, then 

(1) limn---.oo (Sn + tn) = L + M, 

(2) limn__.00 (csn ) = cL, for any c E lR, 

(3) limn__.00 (Sntn) = LM, 
(4) limn__.00 (snftn) = LjM, if M =/= 0. 

Proof Use Exercise 5.7(1) . 

6.4 Boundedness and Divergence 

D 

Theorem 6.4.1 A real-valued sequence (sn) is bounded in lR if and only 
if its extended terms are all limited. 

Proof To say that (sn : n E N) is bounded in lR means that it is contained 
within some real interval [-b, b] , or equivalently that its absolute values l sn l 
have some real upper bound b: 

('v'n E N) l sn I < b. 

Then by universal transfer the extended sequence is contained in *[ -b, b] , 
i.e., lsn l  < b for all n E *N; hence sn is limited in general. 

For the converse, if Sn is limited for all unlimited n E *N00, then it is 
limited for all n E *N. Hence if r E *JR;t, is any positive unlimited hyperreal, 
we observe that the entire extended sequence lies in the interval {x E *JR : 
-r < x < r} and apply transfer. More formally, we have l sn I < r for all 
n E *N, so the sentence 

(3y E *IR) (\In E *N) l sn l < Y 

is
· 
true. But then by existential transfer it follows that there is some real 

number that is an upper bound to l sn l for all n E N. D 
This proof can be refined to show the following: 

• the real-valued sequence (sn) is bounded above in IR, i.e., there is a 
real upper bound to {sn : n E N}, if and only if it has no positive 
unlimited extended terms; 

• (sn) is bounded below in JR, i.e., there is a real lower bound to {sn : 
n E N} , if and only if it has no negative unlimited terms. 

We say that (sn) diverges to infinity if for each real r there is some n E N  
such that all terms of the standard tail sn, Sn+b sn+2 , . . .  are greater than 
r. Correspondingly, (sn) diverges to minus infinity if for each real r there 
is some n E N such that sm < r for all m :2:: n. 
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Theorem 6.4.2 A real-valued sequence 

( 1) diverges to infinity if and only if all of its extended terms are positive 
unlimited; and 

(2) diverges to minus infinity if and only if all of its extended terms are 
negative unlimited. 

Proof Exercise. 

6.5 Cauchy Sequences 

The standard definition of a Cauchy sequence is one that satisfies 

lim lsn - sm l = 0, m,n->oo 

0 

meaning that the terms get arbitrarily close to each other as we move along 
the sequence. Formally this is rendered by the sentence 

(Vc E JR+) ( ::Jj E N) ('Vm, n E N) (m, n 2': j ---+ Ism - sn l < c) . 

Theorem 6.5.1 A real-valued sequence (sn ) is Cauchy in 1R if and only 
if all its extended terms are infinitely close to each other, i. e., iff Sm � Sn 
for all m, n E *N00 • 

Proof Exercise. 0 

Theorem 6.5.2 (Cauchy's Convergence Criterion) . A real-valued se
quence converges in 1R if and only if it is Cauchy. 

Proof If (sn : n E N) is Cauchy, then it is bounded (standard result-why 
is it true?) . Thus taking an unlimited number m E  *N00 , we have that Sm 
is limited (Theorem 6.4. 1) and so it has a shadow L E JR. But all extended 
terms of the sequence are infinitely close to each other (Theorem 6.5. 1 ) ,  
hence are infinitely close to sm , and therefore are infinitely close to L as 
sm � L. This shows that the extended tail of the sequence is contained in 
the halo of L, implying by Theorem 6 . 1 . 1  that (sn ) converges to L E JR. 

Converse: exercise. D 
Note that the assertion that Cauchy sequences converge is often taken as 
an "axiom" for the real number system, and is equivalent to the Dedekind 
completeness assertion that sets that are bounded above have least up
per bounds in R We used Dedekind completeness to prove the existence 
of shadows (Theorem 5.6. 1 ) ,  which were then applied in Theorem 6.5.2 
above. But we saw also in Theorem 5.8.1 that the existence of shadows in 
turn implies convergence of Cauchy sequences (and existence of least upper 
bounds in Exercise 5.9). The constructions in the proofs of Theorems 5.8. 1 
and 6.5.2 are essentially the same. 
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6 .6 Cluster Points 

A real number L is a cluster point of the real-valued sequence (sn : n E N) 
if each open interval (L - c:, L + e) in 1R contains infinitely many terms of 
the sequence. This is expressed by the sentence 

(Vc: E JR+) (Vm E N) (3n E N) (n > m 1\ i sn - Ll < e) . (i) 

From this it can be shown that the original sequence has a subsequence 
converging to L. Cluster points are also known as limit points of the se
quence. 

Theorem 6.6.1 L E 1R is a cluster point of the real-valued sequence (sn : 
n E N) if and only if the sequence has an extended term infinitely close to 
L, i .e. , iff SN � L for some unlimited N. 

Proof Assume that (i) holds. Let e be a positive infinitesimal and m E 
*N00 • Then by transfer of (i) , there is some n E *N with n > m, and hence 
n is unlimited, and 

l sn - Ll < e � 0. 

Thus sn is an extended term infinitely close to L. (Indeed, the argument 
shows that any interval of infinitesimal width around L contains terms 
arbitrarily far along the extended tail.) 

Conversely, suppose there is an unlimited N with SN � L. To prove (i) , 
take any positive c: E 1R and m E N. Then N > m and i sN - L l < e. This 
shows that 

(3n E *N) (n > m l\ l sn - Ll < c:) . 

Thus by existential transfer, l sn - Ll < e for some n E N, with n > m. D 

This characterisation shows that a shadow of an extended term is a cluster 
point of a real sequence, and indeed that the cluster points are precisely 
the shadows of those extended terms that have them, i.e., are limited. But 
if the sequence is bounded, then all of its extended terms are limited and 
so have shadows that must be cluster points. In particular, this gives a very 
direct proof of a famous result: 

Theorem 6.6.2 (Bolzano-Weierstrass) Every bounded sequence of real 
numbers has a cluster point in JR. D 

6 .  7 Exercises on Limits and Cluster Points 

( 1 )  Let (sn) and (tn) be real-valued sequences with limits L, M respec
tively. Show that if Sn :::; tn for n E N, then L :::; M. 
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(2) If rn � Sn � tn in 1R for all E N, and limn--+oo rn = limn--+oo tn , show 
that (sn) converges to this same limit. 

(3) If a sequence converges in JR, show that it has exactly one cluster 
point. 

( 4) Suppose that a real-valued sequence has a single cluster point. If the 
sequence is bounded, must it be convergent? What if it is unbounded? 

6.8 Limits Superior and Inferior 

Let s = (sn : n E N) be a bounded real-valued sequence. Even if the 
sequence does not converge, its behaviour can be analysed into patterns 
of regularity: the Bolzano-Weierstrass theorem guarantees that it has a 
cluster point, and it may have many such cluster points with subsequences 
converging to each of them. If Cs is the set of all cluster points of s, then 
by the characterisation of Theorem 6.6.1 it can also be described as the set 
of all shadows of the extended tail: 

Cs = {sh(sn) : n is unlimited}. 

Now, any real upper bound of the original sequence is an upper bound of 
C8 , for if sn � b for all n E N (with b E JR), then for an unlimited n we 
get sh(sn) � Sn � b and hence sh(sn) � b, since both are real. Similarly, 
any real lower bound of s is a lower bound of C 8• Since s is a bounded 
sequence, it follows that the set C8 is bounded above and below in JR, and 
so has a real least upper bound, known as the limit superior of s, and a 
real greatest lower bound, known as the limit inferior. The notations 

lim sup Sn and lim inf Sn 
n--+oo n--+oo 

are used for these two numbers. 
Writing "sup" for the least upper bound (supremum) and "inf" for the 

greatest lower bound (infimum), we have 

lim sup sn sup{sh(sn) : n E *Noo}, 
n--+oo 
lim inf Sn - inf{sh(sn)  : n E *N00} .  n---+oo 

The symbols lim and lim are also used for lim sup and lim inf. 

Exercise 6.8.1 
Prove, by nonstandard reasoning, that both the limit superior and the limit 
inferior are cluster points of the sequence s. 0 
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This exercise shows that lim s and lim s both belong to Cs , and hence are 
the maximum and minimum elements of C8 respectively. 

Theorem 6.8.2 A real number L is equal to lim s if and only if 
(1 )  Sn < L or Sn � L for all unlimited n; and 
(2) Sn � L for at least one unlimited n. 

Proof The condition "sn < L or Sn � L" holds iff sh(sn) :S L. Thus (1) is 
equivalent to the assertion that L is an upper bound of C8 • But (2) asserts 
that L is a cluster point , so ( 1 )  and (2) together assert precisely that L is 
the maximum element of C8 , i.e. , that L = lim s. 0 
Formulation of the nonstandard characterisation of lim s corresponding to 
Exercise 6.8.1 is left as a further exercise. 

Theorem 6.8.3 A bounded real-valued sequence s converges to L E 1R if 
and only if 

lim sup sn = lim inf Sn = L. n-+oo n-+oo 

Proof. Since lim s and lim s are the maximum and minimum elements 
of C8 , requiring that they both be equal to L amounts to requiring that 
Cs = { L }. But that just means that the shadow of every extended term 
is equal to L, which is equivalent to having s converge to L by Theorem 
6. 1 . 1 .  D 

Theorem 6.8.4 If s is a bounded real-valued sequence with limit superior 
lim, then for any positive real c :  

( 1 )  some standard tail of s has all its terms smaller than lim + c, i. e. , 
Sn < lim + c for all but finitely many n E N; 

(2) lim - c < Sn for infinitely many n E N. 

Proof. 

(1 )  If m E  *N is unlimited, then sh(sm) :::;: lim, so 

Sm � sh(sm) < lim + c ,  

showing that sm < lim + c because sh(sm) and lim + c are both real. 
Thus all extended terms are smaller than lim + c, and in particular, 
this holds for all terms after SN for any fixed unlimited N: 

(Vm E *N) ( m 2: N --t sm < lim + c) . 

Existential transfer then provides an n E N such that all of 

are smaller than lim + c. 
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(2) lim is the shadow of some extended term SN with N unlimited. Then 
lim - c < lim � sN , so lim - c < SN . But now for any limited m E N  
we have m < N and lim - c < s N. Existential transfer then ensures 
that there is a limited n with m < n and lim-e < Sn · This shows that 
lim - c < Sn for arbitrarily large n E N, giving the desired conclusion. 

0 
The two parts of the proof just given illustrate two fundamental principles 
of nonstandard reasoning: 

(a) If a property (in the above case Sn < lim + c) holds throughout the 
extended tail of a sequence, then it holds throughout some standard 
tail. More generally, if a certain property holds for all unlimited hy
pernatural n, then it holds for all but finitely many (limited) n E N. 

(b) If a certain property (in the above case lim - c < sn) holds for some 
unlimited n, then it holds for arbitrarily large limited n. 

Principle (a) was also at work in the proof of Theorem 6 . 1 . 1 ,  where we saw 
that if the extended tail lies between L - c and L + c, then so does some 
standard tail. The principle itself is an instance of "underflow" (Section 
1 1 .8) . 

Principle (b) is manifest in the situation of Section 5. 12: the existence 
of a prime number bigger than some unlimited n implies the existence of 
arbitrarily large standard primes. 

Now, if a real sequence s is bounded in R, any standard tail sn, sn+b . . .  
is also bounded and hence has a least upper bound, which we denote by 
Sn . Thus we are putting 

In general, Sn ?: Sn+b so the sequence S = (Sn : n E N) is nonincreasing. 
Moreover, it is bounded below, for if b E R is a lower bound for s, then in 
general b � sn � Sn . Thus by monotone convergence (Theorem 6.2. 1 ) ,  S 
converges in JR, and indeed its limit is the same as its greatest lower bound. 
We will now see that this limit is also the limit superior. 

Theorem 6.8.5 For any bounded real-valued sequence s, 

lim sup Sn = lim Sn = lim ( sup srn) . n-+oo n-+oo n-+oo rn2:n 

Proof First we show that 

lim � Sm for all m E N. (ii) 

To see this, take an extended term s N whose shadow is infinitely close to 
the cluster point lim. Then if m E N, we have Bn � Srn for all limited 
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n � m, and hence for all hypernatural n � m by transfer. In particular, 
BN ::; Bm, so as lim � BN , this forces lim ::; Bm as required for (ii) . 

Now let L = limn->oo Bn . Then L is the greatest lower bound of the 
sequence S, and by (ii) , lim is a lower bound for this sequence, so lim ::; L. 
But if lim < L, we can choose a positive real c with lim + c < L, and 
then by Theorem 6.8.4( 1) there is some n E N such that the standard tail 
sn , Sn+l ,  Bn+2 , . . .  is bounded above by lim + c. This implies that the least 
upper bound Bn of this tail is no bigger than lim + c. However, that gives 

Bn ::; lim + c < L, 

which contradicts the fact that L is a lower bound of S, and so L ::;  Bn · 
We are left with the conclusion that lim = L, as desired. 0 

The notion of limit superior can be defined for any real-valued sequence 
s = (sn) ,  bounded or not, by a consideration of cases in the following way. 

(1) If s is not bounded above, put lim supn->oo Sn = +oo. In this case s 
has at least one positive unlimited extended term (Section 6.4). 

(2) If s is bounded above, hence has no positive unlimited extended 
terms, then there are two subcases: 

(i) s diverges to minus infinity. Then put lim supn->oo Sn = -oo. In 
this case all extended terms are negative unlimited (Theorem 
6.4.2) , so there are no limited extended terms and therefore no 
cluster points. 

(ii) s does not diverge to minus infinity. Then there is at least one ex
tended term that is not negative unlimited, and hence is limited 
because there are no positive unlimited terms (as s is bounded 
above). The shadow of this term is a cluster point of s. Thus 
the set C8 of cluster points is nonempty and bounded above (by 
any upper bound for s). Then we define lim supn->oo Sn to be 
the least upper bound of Cs as previously. 

6.9 Exercises on lim sup and lim inf 

(1) Formulate the definition of the limit inferior of an arbitrary real
valued sequence. 

(2) Formulate and prove theorems about the limit inferior of a bounded 
sequence that correspond to Theorems 6.8.4 and 6.8.5. 

(3) If s is a bounded sequence, show that for each c E JR+ there exists an 
n E N such that the standard tail .Sn , Sn+b Bn+2, . . .  is contained in 
the interval ( lim - c, lim + c ) . 



6.10 Series 

6 . 11  Exercises on Convergence of Series 71 

A real infinite series 2:::� ai is convergent iff the sequence s = (sn : n E N) 
of partial sums 

Sn = a1 + . . .  + an 

is convergent. We write 2:::� ai for sn , and 2:::: ai for Sn -sm-1 when n � m. 
Extending s to a hypersequence (sn : n E *N) , we get that Sn and sm- l 
are defined for all hyperintegers n, m, so the expressions 2:::� ai and 2:::: ai 
become meaningful for all n, m E  *N, and may be thought of as hyperfinite 
sums when n is unlimited. 

Applying our results on convergence of sequences to the sequence of 
partial sums, we have: 

• 2:::� ai = L in 1R iff 2:::� ai � L for all unlimited n. 

• 2:::� ai converges in 1R iff 2:::: ai � 0 for all unlimited m, n with 
m � n. 

The second of these is given by the Cauchy convergence criterion (Theorem 
6.5.2), since 2:::: ai � 0 iff Sn � Sm-1 for unlimited m, n. Taking the 
case m = n here, we get that if the series 2:::� ai converges, then an � 0 
whenever n is unlimited. This shows, by Theorem 6 .1 . 1 ,  that 

• if 2:::� ai converges, then limi-+oo ai = 0. 

0 bserve that for a convergent real series we have 

L� ai = sh (2:::� ai) 

for any unlimited n. 
A series 2:::� ai always converges if it is absolutely convergent, which 

means that the series 2:::� lai I of absolute values converges. The standard 
proof of this uses the comparison test, which is itself illuminated by non
standard ideas (see Exercise ( 4) below) . 

6 . 1 1  Exercises on Convergence of Series 

(1) Give an example of a series that diverges but has an infinitesimal for 
all unlimited n. 

(2) Give nonstandard proofs of the usual rules for arithmetically combin
ing convergent series: 

2:::� ai + 2:::� bi 
2:::� ai - 2:::� bi 

2:::� cai 

L�(ai + bi) ,  
- L�(ai - bi) ,  

c (2:::� ai ) . 
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(3) Suppose that ai � 0 for all i E N. Prove that 2:� ai converges iff 
2:� ai is limited for all unlimited n, and that this holds iff 2:� ai is 
limited for some unlimited n. 

(4) (Comparison Test) Let 2:� ai and 2:� bi be two real series of non
negative terms, with 2:� bi convergent. If ai ::; bi for all i E N, use 
result (3) to show that 2:� ai is convergent. 

(5) Show that the comparison test holds under the weaker assumption 
that an ::; bn for all unlimited n (hint: use the Cauchy convergence 
criterion) . Show that this weaker assumption is equivalent to requir
ing that there be some limited k E N  with an ::; bn for all n � k. 

(6) Let 2:� ai and 2:� bi be two series of positive terms such that the 
sequence (adbi : i E N) is convergent in JR. Show that for unlimited 
m and n, 2:� ai is infinitesimal if and only if 2:� bi is infinitesimal. 
Deduce that either both series converge, or both diverge. 

(7) Let c E R Recall the identity 

1 - cn+l 
1 + c +  c2 + · · · + en = ---

1 - c  

(a) Considering the case of unlimited n, show that the series 2:� ci 
converges if lei < 1. 

(b) Show that 2:� ci is infinitesimal when m and n are unlimited, 
either by applying result (a) or by making further use of the 
above identity. 

(8) (Ratio Test: Convergence) Suppose that 

li� sup l
a
l
i+

l
l l 

< 1 
�-+oo a� 

in lR (i.e. , the limit superior of the sequence of ratios is a real number 
smaller than 1 ) .  Prove that the series 2:� ai is absolutely convergent , 
by the following reasoning. 

(a) Show that there exists a positive real c < 1 with lan+l l < c !an i  
for all unlimited n. 

(b) Hence show that there is some limited k E N such that lan+l l  < 
c ian I for all n � k. 

(c) Deduce from (b) that in general, 

and hence 

iak+n i < en lak i ' 
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(d) Use the last inequality and result 7(b) to conclude that E� ai 
converges absolutely. 

(9) (Ratio Test: Divergence) Suppose that 

l. . f l ai+I I 
1 Im m 

-1-1 
> 

t-+oo ai 

in ffi. (i.e. , the lim inf is a real number greater than 1 ) .  Prove that the 
series E� ai diverges, as follows. 

(a) Show that l an+l l > lan l for all unlimited n. Hence prove that 
there is some limited k E N such that lan l > lak l > 0 for all 
n > k. 

(b) Deduce, by considering unlimited n, that E� ai cannot con
verge. 

(10) Apply the ratio test with ai = (xi /i!) to show that for any real 
number x, the hyperreal xn jn! is infinitesimal when n is unlimited. 

(11 )  (Leibniz's Alternating Series Test) Suppose (ai : i E N) is a real 
sequence that is nonincreasing (i.e., ai 2: ai+1 ) and converges to 0. 
Prove that the alternating series 

converges by showing that in general 

and then considering the case of unlimited m. 





7 
Continuous Functions 

Let f be an JR-valued function defined on an open interval (a, b) of JR. In 
passing to *JR, we may regard f as being defined for all hyperreal x between 
a and b, since *(a, b) = {x E *JR : a <  x < b}. 

7.1 Cauchy's Account of Continuity 

Informally, we describe the assertion 

f is continuous at a point c in the interval (a, b) 

as meaning that f(x) stays "close to" f(c) whenever x is "close to" c. The 
way Cauchy put it in 1821 was that 

the function f(x) is continuous with respect to x between the 
given limits if between these limits an infinitely small increase 
in the variable always produces an infinitely small increase in 
the function. 

From the enlarged perspective of *JR, this account can be made precise: 

Theorem 7.1.1 f is continuous at the real point c if and only if f(x) � 
f(c) for all x E *JR such that x � c, i. e . , iff 

f(hal(c)) � hal(f(c) ) .  

Proof The standard definition is  that f is continuous at c iff for each 
open interval (f (c) - c, f (c) + c) around f (c) in lR there is a corresponding 
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open interval (c- 8, c + 8) around c that is mapped into (! (c) - c, f(c) + c) 
by f. Since a < c < b, the number 8 can be chosen small enough so that 
the interval ( c - 8, c + 8) is contained with (a, b) , ensuring that f is indeed 
defined at all points that are within 8 of c. 

Continuity at c is thus formally expressed by the sentence 

(Vc E R+) (:38 E JR+) (Vx E R) ( lx - ci < 8 --+ if(x) - /(c) I < c) .  (i) 

Now suppose x � c implies f(x) � f(c) . To show that (i) holds, let c 
be a positive real number. Then we have to find a real 8 small enough 
to fulfill ( i). First we show that this can be achieved if "small enough" 
is replaced by "infinitely small" , and then apply transfer. For if d is any 
positive infinitesimal, then for any x E *IR, if lx - ci < d, we have x � c, 
hence f(x) � f(c) by assumption, so i f(x)-f(c) i < c, as c is real. Replacing 
d by an existentially quantified variable, this shows that the sentence 

(:38 E *JR+) (Vx E *R) ( lx - cl < 8 --+ l f(x) - f(c) i < c) 

is true. By existential transfer we then infer 

(:38 E JR+) (Vx E R) ( lx - ci < 8 --+ l f (x) - /(c) I < c), 

which is enough to complete the demonstration of (i) . 

Conversely, assume that (i) holds. Let c be any positive real. Then by 
(i) there is a positive 8 E lR such that the sentence 

(Vx E R) ( lx - c l  < 8 --+ l f (x) - /(c) I < c) 

is true, and hence by universal transfer we have 

(Vx E *IR) ( lx - cl < 8 --+ i f (x) - /(c) I < c). 

But now if x � c in *IR, then Jx - cl < 8, and so by this last sentence 
I f  ( x) - f (c) I < c. Since this holds for arbitrary c E R+, it follows that 
f(x) � f(c). 

In other words, the halo hal(c) is mapped by f into the interval (!(c) -
c, f(c) + c) for any positive real c, and hence is mapped into the halo 
hal(f(c) ) .  0 
A close inspection of the first part of this proof reveals that in order to 
establish the standard criterion for continuity at c it suffices to know that 
f(x) � f(c) for all x that are within some positive infinitesimal distance d 
of c. Thus we have this stronger conclusion: 

Corollary 7.1.2 The following are equivalent. 
(1)  f is continuous at c E JR. 

(2) f(x) � f(c) whenever x � c. 
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(3) There is some positive d � 0 such that f(x) � f(c) whenever J x-cj < 
d. D 

If A is a subset of the domain of function J, then f is continuous on the set 
A if it is continuous at all points c that belong to A. Sometimes we would 
like A to be something other than an open interval (a, b) , such as a half
open or closed interval (a, b] , [a, b), or [a, b], or a union of such sets. In this 
case the definition of continuity is modified to specify that for each positive 
E there is a corresponding 8 such that f ( x) belongs to (f (c) - c, f (c) + c) 
whenever x is a point of A that belongs to (c - 8, c + 8). In other words, 
the bounded quantification of x in sentence (i) is restricted to the set A: f 
is continuous at all points c in A if 

(Vc E A) (Vc E JR+) (38 E JR+) (Vx E A) ( jx - cj < 8 --+ if(x) - f(c) J < c) . 

Reworking the proofs of Theorem 7. 1 . 1  and Corollary 7.1 .2 , we obtain a 
hyperreal characterisation of this refinement: 

Theorem 7.1.3 The following are equivalent. 

( 1 )  f is continuous at c in A.  

(2) f(x) � f(c) for all x E *A with x � c. 

(3) There is some positive d � 0 such that f(x) � f(c) for all x E *A 
with Jx - cj < d. 

It would be natural at this point to ask whether continuity of f on A 
entails that the condition f(hal(c)) � hal(f(c)) must hold for all points 
c E *A and not just the real ones. It turns out that this need not be so: it 
is a stronger requirement , which, remarkably, is equivalent to the standard 
notion of uniform continuity. We take this up in Section 7. 7. 

7.2 Continuity of the Sine Function 

To illustrate the use of Theorem 7.1 . 1 ,  let c be real and x � c . Then x = c+c 
for an infinitesimal c, and 

sin x - sin e sin ( c + c:) - sin c 
- sin c cos c: + cos c sin c: - sin c 

sin c (cos c - 1 )  + cos c sin c: 

an infinitesimal, 

since cos c � 1 and sin e � 0 (Exercise 5.7(2)) , while sin e and cas e are real. 
Hence sin x � sin c. This proves that the sine function is continuous at all 
c E R  
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Note that in this proof we used the addition formula 

sin ( c + c) = sin c cos c + cos c sin c. 

This holds for all real numbers, and hence by transfer it holds for all hy
perreals. 

7.3 Limits of Functions 

Continuity is often defined in terms of limits of functions. By similar argu
ments to those of Section 7. 1 ,  one can establish that if c, L E lR and f is 
defined on A � JR, then 

• limx-+c+ f(x) = L iff f(x) � L for all x E *A with x � c and x > c. 

• limx-+c- f(x) = L iff f(x) � L for all x E *A with x � c and x < c. 

• limx-+c f(x) = L iff f(x) � L for all x E *A with x � c and x -=/=- c. 

• limx-+c f(x) = +oo iff f(x) E *JR� for all x E *A with x � c and 
X -=/=- C. 

• limx-+c f(x) = -oo iff f(x) E *JR� for all x E *A with x � c and 
X -=/=- C. 

• limx-++oo f(x) = L iff f(x) � L for all positive unlimited x E *A (and 
such x exist) .  

• limx-+-oo f(x) = L iff f(x) � L for all negative unlimited x E *A 
(and such x exist) . 

7.4 Exercises on Limits 

(1) Review the standard definitions of limits of functions, and derive the 
above characterisations. 

(2) Use these results to show the following standard facts: 

• limx-+c f(x) = L iff limx-+c+ f(x) = L and limx-+c- f(x) = L. 

• If limx-+c f ( x) and limx-+c g( x) exist, then 

lim [f(x) + g(x)] 
x-+c 

lim (f(x)g(x)] 
X-+C 

lim [f(x )/ g(x )] 
X-+C 

lim f(x) + lim g(x) , 
x-+c x-+c 
lim f(x) · lim g(x) ,  
X-+C X-+C 
lim f(x )/ lim g(x) , if lim g(x) -=/=- 0. 
X-+C X-+C X-+C 
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• f is continuous at c iff limx->c f ( x) = f (c) . 

(3) Use infinitesimals to discuss the continuity of the following functions: 

fl (x) 

h(x) 

h(x) -

fs (x) 

{ s
0
in � if X :;f 0, 

if X =  0. { x
0 
sin � if x # 0, 

if X = 0. { 
0
1 if x is rational, 

if x is irrational. { x if x is rational, 
-x if x is irrational. { 0

n
1 if X is irrational, 

if x = 7; E Q in simplest form with n 2 1 .  

7.5 The Intermediate Value Theorem 

This fundamental result of standard real analysis states that 

if the real function f is continuous on the closed interval [a, b] 
in JR, then for every real number d strictly between f (a) and 
f(b) there exists a real c E (a, b) such that f(c) = d. 

There is an intuitively appealing proof of this using infinitesimals. The basic 
idea is to partition the interval [a, b] into subintervals of equal infinitesimal 
width, and locate a subinterval whose end points have !-values on either 
side of d. Then c will be the common shadow of these end points. In this 
way we "pin down" the point at which the !-values pass through d. 

We deal with the case f(a) < f(b) , so that f(a) < d < f(b) . First, for 
each (limited) n E N, partition [a, b] into n equal subintervals of width 
(b - a)fn. Thus these intervals have end points Pk = a +  k(b - a)fn for 
0 ::; k ::; n. Then let sn be the greatest partition point whose !-value is less 
than d. Indeed, the set 

{Pk : f(Pk) < d} 

is finite and nonempty (it contains Po = a but not Pn = b) . Hence Sn exists 
as the maximum of this set, and is given by some Pk with k < n. 

No� for all n EN we have 

a S Sn < b and f (sn) < d ::;  f(sn + (b - a)jn), 

and so by transfer, these conditions hold for all n E *N. 
To obtain an infinitesimal-width partition, choose an unlimited hypernat

ural N. Then SN is limited, as a ::;  BN < b, so has a shadow c = sh(sN) E JR 
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(by transfer, s N is a number of the form a + K (b - a) IN for some K E *N). 
But (b- a) IN is infinitesimal, so s N and s N + (b - a) IN are both infinitely 
close to c. Since f is continuous at c and c is real, it follows (Theorem 7. 1 . 1) 
that f(sN) and f(sN + (b - a)IN) are both infinitely close to f(c) . But 

f(sN ) < d ::;  f(sN + (b - a)IN) , 

so d is also infinitely close to f(c). Since f(c) and d are both real, they 
must then be equal. D 

7.6 The Extreme Value Theorem 

If the real function f is continuous on the closed interval [a, b] 
in :IR, then f attains an absolute maximum and an absolute 
minimum on [a, b] , i. e., there exist real c, d E [a, b] such that 
f(c) ::; f(x) ::; f(d) for all x E [a, b] . 

Proof. To obtain the asserted maximum we construct an infinitesimal
width partition of [a, b] , and show that there is a particular partition point 
whose f-value is as big as any of the others. Then d will be the shadow 
of this particular partition point. As with the intermediate value theorem, 
the construction is first approximated by finite partitions with subintervals 
of limited width l .  In these cases there is always a partition point with n 
maximum f-value. Then transfer is applied. 

For each limited n E N, partition [a, b] into n equal subintervals, with 
end points a +  k(b - a)ln for 0 ::;  k ::; n. Then let sn E [a, b] be a partition 
point at which f takes its largest value. In other words, for all integers k 
such that 0 ::; k ::; n, 

a ::;  Sn ::; b and f(a + k(b - a)/n) ::; f(sn) · (ii) 

By transfer, (ii) holds for all n E *N and all hyperintegers k such that 
0 ::; k ::; n .  

Similarly to the intermediate value theorem, choose an unlimited hyper
natural N and put d = sh( s N) E JR. Then by continuity 

(iii) 

Now the "infinitesimal-width partition" 

P = {a + k(b - a)IN : k E *N and 0 ::;  k ::;  N} 

has the important property that it provides infinitely close approximations 
to all real numbers between a and b: the halo of each x E [a, b] contains 
points from this partition. To show this, observe that if x is an arbitrary 
real number in [a, b] , then for each n E N  there exists an integer k < n with 

a +  k(b - a) In ::; x ::; a +  (k + l)(b - a)ln. 
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Hence by transfer there exists a hyperinteger K < N such that x lies in 
the interval 

[a + K(b - a)/N, a +  (K + 1 ) (b - a)/N] 
of infinitesimal width (b - a)/N. Therefore x � a +  K(b - a)/N, so x is 
indeed infinitely close to a member of P. It follows by continuity of f at x 
that 

f(x) � f(a + K(b - a)/N) . (iv) 
But the values of f on P are dominated by f(sN ) , as (ii) holds for all 
n E *N, so 

f(a + K(b - a)/N) ::; f(sN ) .  (v) 
Putting (iii) , (iv) , and (v) together gives 

f(x) � f(a + K(b - a)/N) ::; f(sN) � f(d) , 

which implies f(x) ::; f(d) , since f(x) and f(d) are real (Exercise 5.5(2) ) .  
Thus f attains its maximum value at d. 

The proof that f attains a minimum is similar. D 

7. 7 Uniform Continuity 

If A � 1R and f : A -----t .IR, then f is uniformly continuous on A if the 
following sentence is true: 

('Vs E JR+) (38 E JR.+) (Vx, y E A) ( lx - Yl < 8 -----t l f (x) - f(y) l < s) 

(compare this to the formal sentence just prior to Theorem 7.1 .3) . Essen
tially, this says that for a given s, the same 8 for the continuity condition 
works at all points of A. 

Theorem 7.7.1 f is uniformly continuous on A if and only if x � y 
implies f(x) ""' f(y) for all hyperreals x, y E *A. 

Proof. Exercise. D 
Theorem 7.7. 1 displays the distinction between uniform and ordinary conti
nuity in a more intuitive and readily comprehensible way than the standard 
definitions do. For by Theorem 7. 1 . 1 ,  f is continuous on A � IR iff x � y 
implies f(x) "' f(y) for all x, y E *A with y standard. Thus uniform conti
nuity amounts to preservation of the "infinite closeness" relation � at all 
hyperreal points in the enlargement *A of A, while continuity only requires 
preservation of this relation at the real points. 

Of course for some sets, these two requirements come to the same thing: 

Theorem 7. 7.2 If the real function f is continuous on the closed interval 
[a, b] in IR, then f is uniformly continuous on [a, b] . 
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Proof Take hyperreals x, y E *[a, b] with x � y. Let c = sh(x) .  Then 
since a � x � b and x � c, we have c E [a, b] , and so f is continuous at 
c. Applying Theorem 7. 1 . 1 ,  we get f(x) � f(c) and f(y) � f(c) , whence 
f(x) � f(y). Hence f is uniformly continuous by Theorem 7.7. 1 .  0 

7.8 Exercises on Uniform Continuity 

(1) Explain why the argument just given fails for intervals (a, b), (a, b] , 
(a, +oo), (-oo, b) ,  etc. that are not closed. 

(2) Show that f(x) = 1/x is not uniformly continuous on (0, 1) .  

(3) If f is uniformly continuous on JR. and (sn : n E N) is a Cauchy 
sequence, show that (f(sn) : n E N) is a Cauchy sequence. 

( 4) Let the real function f be monotonic on [a, b] , and suppose that for 
all real r between f(a) and f(b) there exists a real c E [a, b] such that 
f(c) = r. Prove that f is continuous on [a, b] . 

The property of closed intervals that makes Theorem 7.7.2 work will be 
examined further in Section 10.4 when we study compactness from the 
hyperreal perspective. 

7. 9 Contraction Mappings and Fixed Points 

A function f : JR. � JR. is said to satisfy a Lipschitz condition if there is a 
positive real constant c such that 

lf(x) - f(y) J � c Jx - Y l (vi) 

for all x, y E JR. Such a function is always continuous , indeed uniformly 
continuous, as is readily explained by infinitesimal reasoning. First observe 
that (vi) holds for all hyperreal x, y by transfer. But then if x � y, we 
have that c Jx - y J is infinitesimal, since c is real and J x - y J � 0, so by (vi) 
if(x) - f(y) J is infinitesimal, making f(x) � f(y) . Hence f is uniformly 
continuous by the characterisation of Theorem 7. 7. 1 .  

A contraction mapping is a Lipschitz function with constant c less than 
1 .  Such a function acts on any two points to move them closer to each 
other. It turns out that a contraction mapping has a fixed point: a point x 
satisfying f(x) = x. It certainly cannot have two such points, for if f(x) = x 
and f(y) = y, then 

Jx - Yl = if (x) - f(y) J � c Jx - y J , 
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and since c < 1 ,  this is possible only if lx - Y l  = 0 and hence x = y. 
Consider for example the contraction mapping f defined by 

X 1 f(x) = 2 + 2 
(what is the constant c here?) . Its fixed point is the unique solution to 
� + � = x, namely x = 1 .  Moreover, this fixed point can be approached by 
starting at any real number x and repeatedly applying f to generate the 
sequence 

X 3 f(f(x)) = 4 + 4 '  

The nth term of this sequence is 

X 1 
- + 1 - -2n 2n ' 

X 7 f(f(f(x))) = 8 + B '  

so the sequence does indeed converge to 1 regardless of what x is (this can 
also be effectively demonstrated visually by plotting a graph of the function 
and the terms of the sequence) . 

Theorem 7.9.1 Any contraction mapping f :  � - IR has a (unique} fixed 
point. 

Proof Let c be the Lipschitz constant for f. Take any x E �' put so = x, 
and inductively define 

Observe that 

l s1 - s2 l 
ls2 - s3 l  
ls3 - s4 1  

Sn+l = f(sn) · 

< c lso - s1 l ,  
< c ls1 - s2 l :S c2 lso - s1 ! , 
< c ls2 - s3 l :S c3 l so - s1 l ,  

(vii) 

and so on. In general, for n E N we get 

Hence 

< 

(viii) 

! so - s1 l + c lso - s1 l + c2 lso - s1 l + · · ·  + cn- l lso - s1 i  
l so - s1 l (l + c + c2 + · · · + cn-l) 
1 - en 

1 - c lso - sl l ,  
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and therefore 

for all n E N. 
The standard proof of this theorem uses the more general formula · 

(ix) 

to prove that the sequence (sn : n E N) is Cauchy, hence convergent, and 
that its limit is a fixed point for f. Here we will instead extend to the 
hypersequence (sn :E  *N) and take the shadow of any term in the extended 
tail. 

Thus if n E *N is unlimited, then by transfer lso - sn l is bounded by 
the real right side of (ix) , so sn is limited and has a shadow L E JR. Then 
Sn � L, and so as f is continuous, f(sn) � f(L) . But f(sn) = Sn+l by 
transfer of (vii) , and sn+ 1 � Sn by transfer of (viii) , since en is infinitesimal 
when c < 1 and n is unlimited, making l sn - sn+I I infinitesimal. Altogether 
then we have 

f(L) � f(sn) = Sn+l � Sn � L, 
giving f(L) � L. Since f(L) and L are real, it follows that they are equal, 
so L is the desired fixed point. D 
Notice that the fact that the sequence x, f (x) , f(f(x) ) ,  . . .  converges to a 
fixed point of f now becomes a consequence of our proof, rather than being 
part of the proof as in the standard argument. For we have shown that for 
any unlimited n, the shadow sh(sn ) exists and is a fixed point . Since there 
can be only one fixed point, it follows that all extended terms have the same 
shadow, and hence (Theorem 6. 1 .1) that the original sequence converges 
to this shadow. 

Theorem 7.9. 1 is an instance of the Banach fixed point theorem, which 
asserts the existence of a fixed point for a contraction mapping on any 
"complete metric space" . Essentially the same nonstandard analysis can 
be used for the proof in that more general setting. 

7. 10 A First Look at Permanence 

One of the distinctive features of nonstandard analysis is the presence of 
so-called permanence principles, which assert that certain functions must 
exist , or be defined, on a larger domain than that which is originally used 
to define them. For instance, any real function f : A --t lR automatically 
extends to the enlargement *A of its real domain A. 

In discussing continuity of a real function f at a real point c, we may 
want (the extension of) f to be defined at points infinitely close to c. For 
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this it suffices that f be defined on some real neighbourhood (c-c-, c+c:) in 
JR, for then the domain of the extension of I includes the enlarged interval 
*( c- c:, c + c:) , which contains the halo hal( c) of c. But the converse of this is 
also true: if the extension of I is defined on hal( c) , then I must be defined 
on some real interval of the form ( c - c:, c + c:) , and hence on *( c - c: , c + c:) . 

In fact, for this last conclusion it can be shown that it suffices that I 
be defined on some hyperreal interval ( c - d, c + d) of infinitesimal radius 
d. This is our first example of a permanence statement that is sometimes 
called Cauchy 's principle. It asserts that if a property holds for all points 
within some infinitesimal distance of c, then it must actually hold for all 
points within some real (hence appreciable) distance of c. At present we 
can show this for the transforms of properties expressible in the formal 
language £fR.. If cp(x) is a formula of this language for which there is some 
positive d � 0 such that 

*cp(x) is true for all hyperreal x with c - d < x < c + d, 

then the sentence 

(3y E *JR+) (Vx E *JR) ( lx - cl < Y � *cp) 

is seen to be true by interpreting y as d. But then by existential transfer 
there is some real c > 0 such that 

(Vx E JR) ( lx - cl < c: � y;) , 

so that cp is true throughout ( c - c, c + c) in JR. Hence by universal transfer 
back to *JR, 

(Vx E *JR) ( lx - cl < c � *cp) , 
showing that 

*cp(x) is true for all hyperreal x with c - c < x < c + c. 

Note that in this argument c is a real number. Later it will be shown that 
permanence works for any hyperreal number in place of c, and applies to 
a much broader class of properties than those expressible in the language 
LfR. (cf. Theorems 1 1 .9.1 and 15. 1 . 1 ) .  

7. 1 1  Exercises on Permanence of Functions 

( 1) If f is a real function and c E �' verify in detail that f ( x) is defined 
for all x � c if and only if I ( x) is defined for all real x in some open 
interval (c - c, c + c) with real radius c > 0. 

(2) Let I be a real function that is defined on some open neighbourhood 
of c E JR. Show that if I is constant on hal(c) , then it is constant on 
some interval (c - c, c + c:) � JR. 

'I 
.� 
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(3) Let f be a real function that is continuous on some interval A � �- If 
f(x) is real for all x E *A, show with the help of the previous exercise 
that f is constant on A. 

7 .12 Sequences of Functions 

Let (f n : n E N) be a sequence of functions f n : A � � defined on some 
subset A of R The sequence is said to converge pointwise to the function 
f : A � � if for each x E A the �-valued sequence Un(x) : n E N) 
converges to the number f(x) . Symbolically, this asserts that 

('ilx E A) lim fn(x) = f(x) , n->oo 
which is rendered in full by the sentence 

('ilx E A) ('i/c E �+ ) (:Jm E N) ('iln E N) (n > m � !fn (x) - f(x) ! < c) . 

In this statement, the integer m that is asserted to exist depends on the 
choice of x E A as well as on c. More strongly, we say that (f n : n E N) 
converges uniformly to the function f if m depends only on c in the sense 
that for a given c, the same m works for all x E A: 

('ilc E JR+) (:Jm E N) ('ilx E A) ('iln E N) (n > m � !fn (x) - f(x) ! < c) . 

Now, we know how to extend a sequence of numbers to a hypersequence 
(Section 3. 13), but at this point we would like to do the same for a sequence 
of functions. For n E N, the function f n extends to a function with domain 
*A, but we would like to define f n : *A � *� also for unlimited n. To 
achieve this we first identify the original sequence (f n : n E N) of functions 
with the single function 

F : N x A � �  
defined by putting F(n, x) = fn(x) for all n E N  and x E A. This function 
F has an extension 

* F : *N X *A � �' 
which can then be used to define f n : *A � *IR by putting f n ( x) = * F( n, x). 
Thus we now have a hypersequence of functions (f n : n E *N) as desired. 

For each standard integer n E N, the new construction of fn just repro
duces the extension of the original function fn , as defined in Section 3. 13. 
This follows by transfer of 

('ilx E A) Un(x) = F(n, x)) .  

Moreover, for each x E A, the real-number sequence s = Un(x) : n E N) 
has as its extension the hypersequence (f n ( x) : n E *N) . This follows by 
transfer of 

('iln E N) (s(n) = F(n, x)) . 
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In view of the characterisation of converging number sequences given by 
Theorem 6 .1 . 1 ,  we can thus immediately infer 

Theorem 7.12.1 The sequence Un : n E N) of real-valued functions de
fined on A � JR. converges pointwise to the function f : A -+ JR. if and only 
if for each x E A and each unlimited n E *N, fn (x) � f(x) . D 

On the other hand, as the discussion in Section 7. 7 might suggest, we have: 

Theorem 7. 12.2 Un : n E N) converges uniformly to the function f : 
A -+ lR if and only if for each x E *A and each unlimited n E *N, f n ( x) � 
f(x) . 

Proof Exercise. D 
The ideas underlying this characterisation are well illustrated by the be
haviour of the sequence Un : n E N) given by fn (x) = xn on A = [0, 1 ] .  
This converges pointwise to the function f that is constantly zero on [0, 1) 
and has f(1) = 1. Thus when x < 1, the sequence (xn : n E N) converges 
to 0, but as x moves towards 1 the rate of convergence slows down, in the 
sense that for a fixed c E JR+, as x approaches 1 we have to move further 
and further along the sequence of powers of x before reaching a point where 
the terms are less than c. Ultimately, when x becomes infinitely close to 1 
(but still less than 1 ) ,  it takes "infinitely long" for xn to become infinitely 
close to 0. Indeed, by transferring the statement of pointwise convergence 
and taking c to be a positive infinitesimal, it follows that there will be 
some M E *N such that for n > M we have xn < c and hence xn � 0. 
Now, this M will be unlimited, because when n is limited, x � 1 implies 
xn � 1 .  Hence { xn : n E N} is contained entirely within the halo of 1 .  
But there is a permanence principle that concludes from this that there is 
some unlimited N such that { xn : n � N} is contained in the halo of 1 
(cf. Robinson's sequential lemma in Section 15.2) . In particular, xN '/:- 0, 
i.e. , fN (x) '/:- f(x) , showing that the condition of Theorem 7. 12.2 is vio
lated, and therefore that the original standard sequence (f n : n E N) is not 
uniformly convergent to f. 

7 .13 Continuity of a Uniform Limit 

A sequence Un : n E N) of continuous functions can converge pointwise 
to a discontinuous function. We have just discussed the standard example: 
take fn (x) = xn on A =  [0, 1] . Under uniform convergence this phenomenon 
cannot occur. Here is a hyperreal approach to this classical result: 

Theorem 7.13.1 If the functions Un : n E N) are all continuous on A �  
R, and the sequence converges uniformly to the function f : A -+ IR, then 
f is continuous on A.  
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Proof Let c belong to A. To prove that f is continuous at c, we invoke 
Theorem 7.1 .3(2). If x E *A with x � c, we want f(x) � f(c) , i.e . ,  if (x) 
f(c) i < c for any positive real c. The key to this is to analyse the inequality 

if(x) - f(c) i :S if (x) - fn (x) i + lfn (x) - fn (c) i + l fn (c) - f(c) i . (x) 

On the right side, the middle term l fn (x) - fn (c) i will be infinitesimal for 
any n E N because x "-J c and f n is continuous at c. By taking a large 
enough n, the first and last terms on the right can be made small enough 
that the sum of the three terms is less than c. 

To see how this works in detail, for a given c E JR+ we apply the definition 
of uniform convergence to the number c /4 to get that there is some integer 
m E N such that 

n > m implies lfn (x) - f(x) i < c/4 

for all n E N and all x E A, and hence for all n E *N and all x E *A by 
universal transfer. 

Now fix n as a standard integer, say by putting n = m + 1.  Then for any 
x E *A with x � c it follows, since x, c E *A, that 

lfn (x) - f(x) i , lfn (c) - f(c) i < c/4, 

and so in (x) we get 

!f (x) - f(c) i < c/4 + infinitesimal + c/4 < c 

as desired. 0 
Note that this proof is a mixture of standard and nonstandard arguments: 
it uses the hyperreal characterisation of continuity of f n and f, but the 
standard definition of uniform convergence of (f n : n E N) rather than the 
characterisation given by Theorem 7 .12.2. 

In fact, we could invoke Theorem 7. 12.2 to make the first and last terms 
on the right of the inequality (x) become infinitesimal (instead of less than 
c/4) , by choosing n to be unlimited. But then what happens to the middle 
term lfn (x) - fn (c) i when n is unlimited? Can we constrain it to still be 
infinitesimal? We will take this up first as a separate question. 

7. 14 Continuity in the Extended Hypersequence 

Given a sequence Un : n E N) of functions that are continuous on a set 
A � IR, it is natural to wonder about the continuity properties of the 
extended terms f n of the associated hypersequence (f n : n E *N) . 

Now, when n is unlimited, then fn is a function from *A to *IR, and 
even when restricted to A it may take values that are not real, e.g., when 
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fn (x) = xn . Thus fn may not be the extension of any �-valued function, 
and so we cannot apply the transfer argument of Theorem 7. 1 . 1  directly. 
However, we can demonstrate a continuity property of f n that corresponds 
to that of 7. 1 .3(3) . Thus even though fn may not map the whole of the 
halo of a point y into the halo of f n (y) , it will do this to some sufficiently 
small infinitesimal neighbourhood of y: 

Theorem 7.14.1 If the functions Un : n E N) are all continuous on A �  
�' then for any n E *N and any y E *A there is a positive infinitesimal d 
such that fn (x) � fn (Y) for all x E *A with lx - Y l < d. 

Proof. The fact that f n is continuous on A for all n E N is expressed by 
the sentence 

(Vn E N) (Vy E A) 
(Vc E �+) (38 E �+) (Vx E A) ( lx - Yl < 8 ---+ l fn (x) - fn (Y) I < c), 

which states that "for all n E N and all y E A, f n is continuous at y in A" . 
Transfer this, take n E *N and y E *A, and let c be a positive infinitesimal. 
Then from the transferred sentence we get that there is some hyperreal 
t E *�+ such that lx - Y l  < 8 implies l fn (x) - fn (Y) I < c for all x E *A. 
Hence for all such x, 

lx - Yl < 8 implies fn (x) � fn (Y) 

because c is infinitesimal. Now replace 8 by any positive infinitesimal d < 8, 
and the desired conclusion follows. 0 

This last result can now be used to give the suggested alternative proof 
that uniform convergence preserves continuity (Theorem 7.13. 1 ) ,  a proof 
:hat does use the hyperreal characterisation of uniform convergence given 
by Theorem 7.12.2. As explained, the idea was to take the inequality 

1/ (x) - f(c) l � lf(x) - fn (x) l + lfn (x) - fn (c) l + lfn (c) - f(c) l (x) 

used in the proof of Theorem 7.13.1 and make the terms lf(x) - fn (x) l 
and 1/n (c) - f(c) l become infinitesimal, thereby forcing lf(x) - f(c) l to be 
infinitesimal. To achieve this we must take n to be unlimited. In fact, the 
inequality itself can be dispensed with in favour of a direct examination of 
:he infinitely close proximity of the terms involved. 

To review this argument , let f n be continuous on A � � for all n E N, 
and suppose (! n : n E N) converges uniformly to f : A ---+ R Take c E �' 
with the object of showing that f is continuous at c. Choose an unlimited 
'1 E *N. Then by our new result, Theorem 7.14. 1 ,  there is some infinitesimal 
i > 0 such that 

lx - cl < d implies fn (x) � fn (c) 
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whenever x E *A. But now if x E *A and lx - cl < d, we have fn (x) � f(x) 
and fn (c) � f(c) by uniform convergence (Theorem 7. 12.2) because n is 
unlimited and x, c E *A. Then 

f(x) � fn (x) � fn (c) � f(c) , 

making f(x) � f(c) . 
All told, we have established that there is a positive d � 0 such that for 

all x E *A, 

!x - cl < d implies f(x) � f(c) . 

By Corollary 7 . 1 .  2 ( 3) this guarantees that f is continuous at c. 

7.15  Was Cauchy Right? 

The ideas discussed in this chapter are of central importance in analysis, 
and have caused difficulty and controversy in the past. There is a famous 
"theorem" of Cauchy ( 1821) stating: 

If the different terms of the series 

Uo + U} + · · · + Un + Un+l + . .  " 

are functions of the same variable x, continuous with respect to 
this variable in the neighbourhood of a particular value for which 
the series is convergent, the sum s of the series is also, in the 
neighbourhood of this particular value, a continuous function 
of x. 

It has been widely held that this statement is in error, because it leaves 
out the hypothesis of uniform convergence. But the development of Robin
son's nonstandard analysis has caused a reassessment of Cauchy's ideas, 
producing the view that his theorem is correct if it is understood that he 
intended to assert continuity of un (x) even for infinitely large n, and that 
"neighbourhood of a particular value" refers to points infinitely close to 
that value. The following articles explore this issue in depth: 

JOHN P.  CLEAVE. Cauchy, Convergence, and Continuity. British J. 
Phil. Sci., 22 ( 1971 ) ,  27-37. 

IMRE LAKATOS. Cauchy and the Continuum: The Significance of 
Non-Standard Analysis for the History and Philosophy of Mathemat
ics. In Mathematics, Science and Epistomology, Philosophical Papers 
volume 2, edited by John Worrall and Gregory Currie. Cambridge 
University Press, 1978, 43-60. 



8 
Differentiation 

We come now to an examination-from the modern infinitesimal perspec
tive-of the cornerstone concept of the calculus. 

8 . 1  The Derivative 

Newton called the derivative the fluxion iJ of a fluent quantity y, thinking 
of it as the "speed" with which the quantity flows. In more modern par
lance, the derivative of a function f at a real number x is the real number 
f' (x) that represents the rate of change of the function as it varies near x. 
Alternatively, it is the slope of the tangent to the graph of f at x. Formally 
it is defined as the number 

1. f(x + h) - f(x) 
lm 

h 
. 

h--+0 

Theorem 8.1 .1  If f is defined at x E .!R, then the real number L E 1R is 
the derivative of f at x if and only if for every nonzero infinitesimal c, 
f(x + c) is defined and 

f (x + c) - f(x) ':::!. L . 
c 

Proof Let g (h) = f(x+hz-f(x) and apply the characterisation of 

" lim g(h) = L "  
h--+0 

(i) 
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given in Section 7.3. 

Thus when f is differentiable (i.e. ,  has a derivative) at x, we have 

J' (x) = sh ( f(x + c:�- f (x) ) 
for all infinitesimal c: f. 0. 

0 

If (i) holds only for all positive infinitesimal c: , then L is the right-hand 
derivative of f at x, defined classically as 

l. 
f(x + h) - f(x) 

Im . 
h-.O+ h 

Similarly, if (i) holds for all negative c: � 0, then L is the left-hand derivative 
given by the limit as h -t o- . 

Exercise 8.1.2 
Use the characterisation of Theorem 8.1 .1 to prove that the derivative of 
sin x is cos x at real x (cf. Section 7.2 and Exercise 5.7(2)) . 

8.2 Increments and Differentials 

Let L!x denote an arbitrary nonzero infinitesimal representing a change or 
increment in the value of variable x. The corresponding increment in the 
value of the function f at x is 

L!f = f(x + L!x) - f(x) . 

To be quite explicit we should denote this increment by L!f ( x, L!x) , since 
its value depends both on the value of x and the choice of the infinitesimal 
L!x. The more abbreviated notation is, however, convenient and suggestive. 

If f is differentiable at x E R, Theorem 8 .1 . 1  implies that 

�� � !'(x) , 

so the Newton quotient * is limited. Hence as 

L!f 
L!f = 

L!x 
L!x, 

it follows that the increment L!f in f is infinitesimal. Thus f ( x + L!x) � 
f ( x) for all infinitesimal L!x, and this proves 

Theorem 8.2.1 If f is differentiable at x E JR, then f is continuous at x.  
D 
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The differential of f at x corresponding to Llx is defined to be 

df = J' (x)Llx. 

Thus whereas Llf represents the increment of the "y-coordinate" along the 
graph of f at x, df represents the increment along the tangent line to this 
graph at x. Writing dx for L\x, the definition of df yields 

df = J'(x) . dx 

Now, since f' ( x) is limited and Llx is infinitesimal, it follows that df is 
infinitesimal. Hence df and Llf are infinitely close to each other. In fact, 
their difference is infinitely smaller than L\x, for if 

£ = Llf _ !'(x) , L1x 

then £ is infinitesimal, because �� � f' ( x), and 

df - df = df - J'(x)L\x = £L1x, 

which is also infinitesimal (being a product of infinitesimals) . But 

df - df _ £Llx _ "" 0 
Llx - L1x - £ 

- ' 

and in this sense L1f - df is infinitesimal compared to L1x (equivalently, 
t:J.f:!.df is unlimited) . These relationships are summarised in 

Theorem 8.2.2 (Incremental Equation) If f'(x) exists at real x and 
L1x = dx is infinitesimal, then L\f and df are infinitesimal, and there is an 
infinitesimal £, dependent on x and Llx, such that 

df = J'(x)L1x + £Llx = df + Edx, 

and so 
f (x + L1x) = f(x) + f'(x)Llx + £L1x. 

0 
This last equation elucidates the role of the derivative function J' as the 
best linear approximation to the function f at x. For the graph of the linear 
function 

l ( Llx) = f ( x) + f' ( x) Llx 
gives the tangent to f at x when the origin is translated to the point (x, 0), 
and l(Llx) differs from f(x + L1x) by the amount £L1x, which we saw above 
is itself infinitely smaller than L1x when L1x is infinitesimal, and in that 
sense is "negligible" . 
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8.3 Rules for Derivatives 

If f and g are differentiable at x E R, then so to are f + g, fg, and f jg, 
provided that g(x) -=/= 0. Moreover, 

(1) (! + g)'(x) = f'(x) + g'(x) , 

(2) (fg)' (x) = f'(x)g(x) + f(x)g'(x), 

(3) (fjg)'(x) = f'(x)g(x) - f(x)g' (x) . 
g(x)2 

Proof We prove Leibniz's rule (2) , and leave the others as exercises. 
If ..1x -=/= 0 is infinitesimal, then, by Theorem 8 . 1 . 1 ,  f(x + ..1x) and g(x + 

..1x) are both defined, and hence so is 

(fg) (x + ..1x) = f(x + ..1x)g(x + ..1x). 

Then the increment of f g at x corresponding to ..1x is 

..1(/g) f(x + ..1x)g(x + ..1x) - f(x)g(x) 
(f(x) + ..1/) (g(x) + ..1g) - f(x)g(x) 
(..1/)g(x) + f(x)..1g + ..1f ..1g 

(compare this to Leibniz's reasoning as discussed in Section 1 .2) . It follows 
that 

..1(/g) 
..1x - ��g(x) + f(x)�! + ..1f�! 

� f' (x)g(x) + f(x)g' (x) + 0, 

since * � f'(x) , * c:: g'(x) , ..1f � 0 and all quantities involved are 
limited. 

Hence by Theorem 8 .1 . 1 ,  f' (x)g(x) + f(x)g' (x) is the derivative of fg 
at x. D 

8 .4  Chain Rule 

If f is differentiable at x E R, and g is differentiable at f ( x), then g o f is 
differentiable at x with derivative g' (! ( x)) f' ( x) . 

Proof Let ..1x be a nonzero infinitesimal. Then f ( x + ..1x) is defined and 
f(x + ..1x) � f(x) , as we saw in Section 8.2.  But g is defined at all points 
infinitely close to f(x) , since g'(f(x)) exists, so (g o f) (x + ..1x) = g(f(x + 
..1x) )  is defined. 
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Now let 

t1f = f(x + t1x) - f(x) , 
t1(g o f) = g(f(x + t1x)) - g(f(x)) 

be the increments of f and g o  f at x corresponding to t1x. Then t1f is 
infinitesimal, and 

t1(g o f) = g(f(x) + t1f) - g(f(x) ) ,  

which shows, crucially, that 

t1(g o f) is also the increment of g at f ( x) corresponding to t1f. 
In the full incremental notation, this reads 

t1(g o f) (x, t1x) = t1g(f(x) , t1f). 

By the incremental equation (Theorem 8.2.2) for g, it then follows that 
there exists an infinitesimal c such that 

Hence 

t1(g o f) =  g' (f(x) )t1f + ct1f. 

t1(g 0 f) 
t1x g'(f(x)) �� + c �� 

g'(f(x))f'(x) + 0, 
establishing that g'(f(x))f' (x) is the derivative of g o  f at x. 

8. 5 Critical Point Theorem 

D 

Let f have a maximum or a minimum at x on some real interval (a, b). If 
f is differentiable at x ,  then f' ( x) = 0.  
Proof Suppose f has a maximum at x. By transfer, 

f(x + t1x) ::::; f (x) 

for all infinitesimal t1x. Hence if c is positive infinitesimal and 6 is negative 
infinitesimal, 

J'(x) � f(x + c�- f(x) ::::; 0 ::::; f(x + 6�- f(x) � f'(x) , 

and so as f' (x) is real, it must be equal to 0. 
The case of f having a minimum at x is similar. D 
Using the critical point and extreme value theorems, the following re

sults can be successively derived about a function f that is continuous on 
[a, b] � lR and differentiable on (a, b) . The proofs do not require any further 
reasoning about infinitesimals or limits. 
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• Rolle 's Theorem: if f(a) = f(b) = 0, then f' (x) = 0 for some x E 
(a, b) . 

• Mean Value Theorem: for some x E (a, b) , 

f' (x) = f(b� =�(a) . 

• If f' is zero/positive/negative on (a, b), then f is constant/increasing/ 
decreasing on [a, b] . 

8 .  6 Inverse Function Theorem 

Let f be continuous and strictly monotone (increasing or decreasing) on 
(a, b) , and suppose g is the inverse function of f. If f is differentiable 
at x in (a, b), with f' (x) f. 0, then g is differentiable at y = f(x) , with 
g' (y) = 1/ f' (x) . 

Proof Using the intermediate value theorem and monotonicity of f it can 
be shown that g is defined on some real open interval around y. The result 
g' (f ( x)) = 1/ f' ( x) would follow easily by the chain rule applied to the 
equation g(f (x)) = x if we knew that g was differentiable at f(x) . But 
that is what we have to prove! 

Now let Lly be a nonzero infinitesimal. We need to show that 

g(y + Lly) - g (y) 1 
Lly � f'(x) " 

Now, if g(y + Lly) were not infinitely close to g(y), then there would be a 
real number r strictly between them. But then, by monotonicity of f, f ( r) 
would be a real number strictly between y + Lly and y. Since y is real, this 
would mean that y + LJ.y and y were an appreciable distance apart, which 
is not so. Hence 

Llx = g(y + Lly) - g(y) 
is infinitesimal and is nonzero. (Thus the argument so far establishes that 
g is continuous at y . )  Observe that .t1x is, by definition, the increment 
Llg(y, Lly) of g at y corresponding to Lly. 

Since g (y) = x, the last equation gives g(y + Lly) = x + Llx, so 

Hence 

f(x + Llx) = f(g(y + Lly) ) = y + Lly. 

Lly f(x + L1x) - f(x) 
Llj, the increment of f at x corresponding to Llx. 
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Altogether we have 

and 

Llf(x, Llx) Lly 
Llx Llx 

Llg(y, Lly) 
LJ.y 

LJ.x Llx 
Lly - LJ.f

' 

Put more briefly, we have shown that 

LJ.g 1 
- ---

Lly Llf I Llx · 

To derive from this the conclusion g' (y) = 11 f'(x) we invoke the hypoth
esis that f'(x) =/:. 0 (which is essential: consider what happens at x = 0 
when f(x) = x3) .  Since sh(L1flt1x) = f'(x) , it follows that L1flt1x is 
appreciable. But then 

Therefore, 

-
sh( Llf I LJ.x) by 5.6.2(3) 

1 
f'(x) · 

Llg(y, Lly) Llx 1 
LJ.y = LJ.y � f'(x)

' 

Because LJ.y is an arbitrary nonzero infinitesimal, this establishes that the 
real number 11 f' (x) is the derivative of g at y, as desired. 0 

8. 7 Partial Derivatives 

Let z = f(x, y) be a real-valued function of two variables, with partial 
derivatives denoted by fx and /y· At a real point (a, b) , fx (a, b) is the 
derivative of the function x � f(x, b) at a, while jy(a, b) is the derivative 
of y � f(a, y) at b. Thus for nonzero infinitesimals Llx, LJ.y, 

fx (a, b) 

/y(a, b) � 

f(a + Llx, b) - f(a, b) 
Llx 

f(a, b + LJ.y) - f(a, b) 
LJ.y 

Points (x1 , Yl )  and (x2 , Y2) in the hyperreal plane *JR2 are infinitely close 
if both x1 � X2 and y1 � y2 , which is equivalent to requiring that their 
Euclidean distance apart, 

..j(xl - X2)2 + (Yl - Y2)2 , 
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be infinitesimal. 
The function f is continuous at the real point (a, b) if (x, y) � (a, b) 

implies f(x, y) � f(a, b) for all hyperreal x, y. For this to hold it is necessary 
that f be defined on some open disk about (a, b) in the real plane. 

We say that f is smooth at (a, b) if fx and fy both exist and are contin
uous at (a, b) . 

The increment of f at a point (a, b) corresponding to ..dx, ..dy is defined to 
be 

..df = f(a + ..dx, b + ..dy) - f(a, b) , 
while the total differential is 

df = fx (a, b)..dx + fy (a, b)..dy. 

The graph of z = f ( x, y) is a surface in three-dimensional space, and ..df 
is the change in z-value on this surface in moving from the point (a, b) . to 
the point (a + ..dx, b + ..dy). The total differential df is the corresponding 
change on the tangent plane to the surface at (a, b) . 
Theorem 8.7. 1 (Incremental Equation for Two Variables) If f is 
smooth at the real point (a, b) and ..dx and ..dy are infinitesimal, then 

..df = df + c:..dx + 8..1y 

for some infinitesimals c and 8. 

Proof. The increment of f at (a, b) corresponding to ..dx, ..dy can be writ
ten as 

..df = [f(a + ..dx, b + ..dy) - f(a + ..dx, b)] + [f (a + ..dx, b) - f(a, b)] . (ii) 

The second main summand of ( ii) is the increment at a corresponding to 
..dx of the one-variable function x �---+ f(x, b) , whose derivative fx (a, b) is as
sumed to exist. Applying the one-variable incremental equation (Theorem 
8.2.2) thus gives 

f(a + ..dx, b) - f(a, b) = fx(a, b)..dx + c:..dx (iii) 

for some infinitesimal c. 
Similarly, for the first summand we need to show that 

f(a + ..dx, b + ..dy) - f(a + ..dx, b) = fy (a, b)..dy + 8..1y (iv) 

for some infinitesimal 8. Then combining (ii)-(iv) will give 

..df = fx(a, b)..dx + fy (a, b)..dy + c:..dx + 8..dy, 

which is the desired result. 
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Now the left side of equation (iv) could be described as the increment in 
the function y �----+ f(a + .1x, y) at b corresponding to the infinitesimal .1y. 
This is not a real function, because of the hyperreal parameter a + .1x, so 
the incremental equation 8.2.2 does not apply directly to it. To overcome 
this we will examine the family of functions y �----+ f (a + x0 , y) for real xo, 
and consider their increments corresponding to real increments y0 in y. 
This will give a statement about x0 and y0 to which we can apply transfer 
and then replace xo and Yo by .1x and .1y. 

The technical details of this are as follows. Since fx and /y are continuous 
at (a, b) , f must be defined on an open disk D around (a, b) of some real 
radius r. Then if x0, y0 are real numbers such that (a + xo, b + Yo) E D, 
the function y �----+ f(a + xo, y) is defined on the interval [b, b + y0] and is 
subject to the one-variable mean value theorem. Hence there is some real c0 
between b and b + y0 such that the derivative of this one-variable function 
at co is given as 

and so 

f ( ) f(a + xo , b + yo) - f(a + xo, b) 
Y a +  xo, Co = b + Yo - b ' 

f(a + xo, b + Yo) - f(a + Xo ,  b) = /y (a + xo , c)yo . (v) 

This obtains for all real x0 , Yo such that (a + xo , b +Yo) is within r of (a, b) . 
That is, for all such xo , Yo there exists co E [b, b + Yo] such that (v) holds. 
Symbolically, 

('r/xo, Yo E IR) ( y,....
x
"'5 -+

-
Y
""'i'i"5 < r ---+ (3Co E lR) [b :::; co :::; b + Yo and ( v) holds ]) . 

But (a + .1x, b + .1y) is within r of (a, b) , since .1x, L1y are infinitesimal, so 
by transfer there exists some hyperreal c between b and b + L1y such that 

f(a + .1x , b + L1y) - f(a + L1x, b) = /y (a + .1x, c)L1y. (vi) 

Then c c::: b, so (a + L1x, c) c::: (a, b) , and hence by continuity of /y at (a, b) , 

Therefore the difference 

8 = /y (a + .1x, c) - /y(a, b) 

is infinitesimal, with /y (a + L1x, c) = /y (a, b) + 8. Applying this to (vi) 
yields (iv) and completes the proof. 0 
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8.8 Exercises on Partial Derivatives 

(1) Show that if f is smooth at (a, b) , then it is continuous at (a, b) . 

(2) Let f be smooth at (a, b). Given infinitesimals Llx, Lly show that 
the difference between Llf and df is itself infinitely smaller than the 
infinitesimal distance Lll = 

J Llx2 + Lly2 between (a, b) and (a + 
Llx, b + Lly) , in the sense that 

8.9 Taylor Series 

Llf - df "-J 0 Lll - . 

Let f be a real function and a a real number. The Taylor series of f at 
x E IR, centred on a, is the series 

f
"
(a) J(k) (a) f(a) + J'(a) (x - a) + 2!(x - a)2 + · · · + 

k! 
(x - al + · · · , 

or more briefly, E� 1'k�!(a) (x - a)k , where J(k
) 

is the kth derivative of f. 
For this to be defined, f must be differentiable infinitely often at a ,  but even 
if J(k

)
(a) exists for all k E N, the series need not converge. Even if it does 

converge, the sum need not be equal to f(x). A well-known example is the 
function f(x) = e-l/x2 with f(O) = 0. This is so "flat" at the centre a =  0 
that all its derivatives J(k) (0) there are equal to 0. Hence the associated 
Taylor series converges at all real x, but converges to f(x) only when x = 0. 

The partial sums of a Taylor series are the Taylor polynomials. The nth 
polynomial is 

Pn(x) - E� j<�!(a) (x - a)k 
f
"
(a) f

(n) (a) f(a) + J' (a) (x - a) + -- (x - a)2 + . . · + (x - a)n . 
2! n! 

For any given x, the sequence (Pn(x) : n E N) extends to a hypersequence, 
so Pn(x) is defined for all n E *N. Then from our earlier work on sequences 
and series (Chapter 6) we see that 

• the Taylor series for f at x converges to a real number L if and only 
if Pn ( x) c:::: L for all unlimited n. 

The difference between f(x) and Pn(x) is the nth remainder at x: 
Rn (x) = f(x) - Pn (x) . (vii) 

If f is infinitely differentiable at a, then (vii) defines Rn ( x) for all n E N. 
The sequence (Rn (x) : n E N) then extends to a hypersequence, and by 
transfer (vii) holds for all hypernatural n. Then: 
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• the Taylor series for f at x converges to f ( x) if and only if Rn ( x) is 
infinitesimal for all unlimited n. 

If the derivatives f (n) exist for all n E N on some open interval J containing 
a, then the sequence of functions (!Cn) : n E N) extends to a hypersequence 
(f (n) : n E *N) of functions defined on * J in the manner described in Section 
7. 12. Formally, we put F(n, x) = f(n) (x) for n E N  and x E J and then by 
extension get f(n) (x) = *F(n, x) for n E *N and x E *J. Then results like 

f(n) (a) n 
Pn(x) - Pn-I (x) = 1 (x - a) 

n. 

continue to hold for unlimited n, by transfer. 
Now, the Lagrange form of the remainder stipulates that if f can be 

differentiated n + 1 times on some open interval containing a, then for each 
x in that interval there is some real number c between a and x such that 

f(n+l) ( ) 
R (x) = c 

(x - a)n+l . n (n + 1 ) !  

Thus if f is infinitely differentiable on some open interval J containing a ,  
then for every n E N and every x E J we have 

f(n+I) (c) f(x) - P (x) = (x - a)n+I n 
(n + 1 ) !  

(viii) 

for some c between a and x. Hence by transfer, for every n E *N and x E * J, 
the Taylor formula (viii) holds for some hyperreal c between a and x (c 
may no longer be real) . If we can show for a real x that the right side of 
(viii) is infinitesimal whenever n is unlimited, it will follow that the Taylor 
series of f at x converges to f ( x) .  

Let us illustrate this with the case of the function f(x) = cos x, analysing 
its Maclaurin series, which is the Taylor series at the centre a =  0. For any 
x E *JR. and n E *N we have 

(n+l) 
Rn (x) = cos c 

xn+I 
(n + 1 ) !  

for some c with le i :::; x .  Now, if n E N  and c E IR, then cosCn+l)c is ±sin e 
or ±cos c, and so in all cases lies between -1  and 1 .  This fact then holds 
by transfer for any n E *N and c E *IR, so cosCn+l) c is always limited. But 
if x E JR. and n is unlimited, 

(n + 1) !  

is infinitesimal (Exercise 6 . 11(10) ) .  It follows in this case that Rn(x) is 
infinitesimal, and therefore (cf. (vii)) f(x) � Pn(x) .  This shows that the 
�-Iaclaurin series for the cosine function converges to cos x at all real x. 
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Exercise 8.9.1 
Verify that the Maclaurin series for ex converges to ex at any x E 1R by 
proving that the remainder Rn(x) is infinitesimal when n is unlimited. 

8 . 10 Incremental Approximation by Taylor's 
Formula 

The incremental equation of Theorem 8.2.2 approximates the value f(x + 
.1x) by a linear function f(x) + f'(x)Llx of the increment Llx, with an 
error c:Llx that is infinitely smaller than Llx. We will now see that there 
are similar approximations by higher-order polynomials in Llx (quadratics, 
cubics, quartics, etc . ) .  

Fix a real number x and a positive integer n E N. Consider polynomials 
centred at x itself. If the nth derivative f(n) exists on an open interval 
J containing x, then the Taylor formula with Lagrange remainder (viii) 
stipulates that for real numbers of the form x + Llx in J, 

f(x + Llx) Pn-I (X + .1x) + Rn-l (x + Llx) 
"'n- 1 f(k

)
(x) A k + f(n) (c) A n 

LJo k! 
�x 

n! 
�x (ix) 

for some c between x and x + Llx. By transfer this holds whenever x + Llx 
belongs to * J, and so it holds for any infinitesimal Llx, in which case c � x. 
Now (ix) can be modified to give 

and if f(n) is continuous at x, then from c � x we infer f(n) (c) � f(n) (x) , 
implying that the number 

is infinitesimal. Altogether: 

Theorem 8.10.1 If the nth derivative f(n) exists on an open interval con
taining the real number x, and f(n) is continuous at x, then for any in
finitesimal Llx, 

f
"
(x) f(n) (x) f(x + Llx) = f(x) + f'(x)Llx + 2!.1x

2 
+ · · · + 

n! 
Llxn + c:Llxn 

for some infinitesimal c:. D 
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In other words, the difference between f ( x + L1x) and the nth-order poly
nomial 

f
"
(x) f(n) (x) f(x) + f'(x)L1x + --L1x2 + · · · + L1xn 

2! n! 

in L1x is the infinitesimal cL1xn , which is, as Leibniz would put it (Section 
1 .2) , infinitely small in comparison with L1xn. 

Exercise 8 .10.2 
There are forms for the Taylor remainder other than Lagrange's. One of 
these is 

Rn (x) = 
j(n) (c) - f(n) (a) (x - a)n+l 
(c - a)(n + 1) !  

for some c between a and x when f(n+l) exists between a and x. 
Apply this form for Rn-1 (x) to show that Theorem 8. 10. 1 holds without 

the hypothesis of continuity of f(n) . 

8. 1 1  Extending the Incremental Equation 

The equation 
f(x + L1x) = f(x) + f'(x)t1x + ct1x 

holds for any real number x at which f is differentiable. It is natural to ask 
whether a similar formula holds for nonreal x, and it turns out that this is 
intimately connected with the question of the continuity of the derivative 
function f'. 

Let us say that a hyperreal x is well inside an interval (y, z) if y < 
x < z but x is not infinitely close to either of the end points y and z. 
Equivalently, this means that the halo of x is included in the interval, so 
that y < x + t1x < z for all infinitesimals t1x. 

Theorem 8.11 .1  Let f be differentiable on an interval (a, b) in JR. Then 
the derivative f' is continuous on (a, b) if and only if for each hyperreal x 
that is well inside *(a, b) and each infinitesimal t1x, 

f(x + L1x) = f(x) + f'(x)t1x + cL1x 

for some infinitesimal c. 

Proof Assume that the incremental equation holds at points well inside 
*(a, b). To prove continuity of f', let c be a real point in (a, b) and suppose 
x ::::: c. We want f' (x) ::::: f'(c) . 

Now, if ..1 = (x - c) ::::: 0, then using Theorem 8.2 .2 we get 

f(x) = f(c + ..1) = f(c) + f'(c)L1 + ct1 
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for some c � 0. But x is well inside *(a ,  b), since a <  c < b and x � c, so by 
the assumed incremental equation at x, applied to the infinitesimal -Ll, 
we have 

f(c) = f(x + ( -Ll)) = f(x) + f'(x)( - Ll) + c' ( -Ll) 

for some c' � 0. Combining these equations leads to 

J'(x) - f'(c) = c - c' � 0, 

giving our desired conclusion f'(x) � f'(c) . 
The proof that continuity of f' implies the incremental equation at points 

well inside *(a, b) is indicated in the following exercises, which also giye an 
example to show what can happen when continuity fails. 0 

8 . 12 Exercises on Increments and Derivatives 

(1 )  Let f be differentiable and have f' continuous on (a, b) � R Let x 
be well inside *(a, b) and Llx � 0. 

(a) By an argument involving transfer of the standard mean value 
theorem (Section 8.5), the shadow of x, and the continuity of j', 
prove that 

f'(x) � 
f(x + Ll;;- f(x) 

(b) Hence show that for some c � 0, 

(2) Let 

j (X + Llx) = j (X) + j' (X) Llx + c Llx. (X) 

{ 2 . 1 
f(x) = 

� sm -x if X #  0, 
if X =  0. 

(a) Prove that f' exists at 0 but is not continuous there. 

(b) Let x = 1/(27rN) with N unlimited. Show that there is an in
finitesimal Llx such that equation ( x) of Exercise ( 1 b) fails for 
any c � 0. 

In terms of Theorem 8. 11 . 1 ,  note that in Exercise (2), f' is continuous on 
the interval (0, 1)  while the infinitesimal 1/(27rN) at which the incremental 
equation fails is not well inside *(0, 1 ) .  



9 
The Riemann Integral 

The definite integral J: f(x)dx represents the area under the graph of the 
function y = f(x) between x = a  and x = b. The standard way to define 
this is to partition the interval [a, b] into a finite number of subintervals, 
approximate the desired area by sums of areas of rectangles based on these 
subintervals, and then take the limit as the number of subintervals is in
creased. 

The hyperreal perspective suggests the alternative procedure of parti
·:ioning [a, b] into subintervals of infinitesimal width, in line with Leib-
::liz's conception of the expression J y dx-with J as an elongated "S" for 
-sum" -as meaning the sum of all the infinitely thin rectangles of size 
'J x dx. In order to develop this approach we will first review the standard 
definition of the integral that is associated with Riemann. 

9 . 1  Riemann Sums 

Let f be a function that is bounded on [a, b] in R A partition of [a, b] is 
a finite set P = {xo, . . .  , xn}  with a =  xo < · · · < Xn = b. Let Mi and 
m i  be the least upper bound and greatest lower bound of f on [xi_1 , xi] ,  
respectively, and L!xi = Xi - Xi_1 .  Define the 

• upper Riemann sum: U�(f, P) = 2::::�=1 Midxi; 

• lower Riemann sum: L�(f, P) = 2::::�=1 midxi ; 

• ordinary Riemann sum: S�(f, P) = 2::::�=1 f(xi-t )dxi . 
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If M and m are the least upper bound and greatest lower bound of f on 
[a, b] , then 

m(b - a) �  L�(f, P) � S�(f, P) � Ui(f, P) � M(b - a) . 
Also, by using refinements of partitions it is shown that any lower sum is 
less than or equal to any upper sum: 

L�(f, P1) � U!(f, P2) .  

We say that f is Riemann integrable on [a, b] with integral I: f(x)dx if the 
latter is a real number equal to the least upper bound of the lower sums 
L� (f, P) and also to the greatest lower bound of the upper sums U�(f, P) 
taken over all partitions P of [a, b] . This holds iff 

(1) L�(f, P) � I: f(x)dx � U�(f, P) for all partitions P; and 

(2) for any real c > 0 there is a partition P with U�(f, P) - L� (!, P) < c. 

For a given positive real .dx, let P.tlx = {xo , . . .  , xn}  be the partition 

[a, Xt ] ,  . . .  , [xn-2 , Xn-1] 
of [a , b] into subintervals of equal width .dx, together with a (possibly 
smaller) last subinterval [xn- l ,  b] . This is given by taking n to be the least 
integer such that a +  n.dx 2: b, and Xk = a+  k.dx for k <  n. The partition 
P .tlx is uniquely determined by the number .dx (observe that if .dx 2:: b- a, 
then n = 1 ,  and we just get P.tlx = {a, b}). 

Now let U�(f, .dx) , L� (f, .dx) , S� (f, .dx) be the upper, lower, and or
dinary Riemann sums for this partition. These quantities can be regarded 
as functions of the real variable .dx, defined on JR+. Hence these functions 
extend automatically to *JR+. In particular, they are defined for all positive 
infinitesimals, giving a hyperreal meaning to the notion of Riemann sums 
for infinitesimal width partitions. For instance, we may informally think of 
S�(f, .dx) as being the "sum" 

f(xo)Llx + f(xt )Llx + · · · + f(xn-2).dx + /(Xn-t ) (b - Xn-d , 
where n is the least hyperinteger such that a +  n.dx 2: b. When .dx is 
infinitesimal, this n will be unlimited. (In Section 12.7 we will analyse this 
informal view further, and express S�(f, .dx) as a "hyperfinite sum" over 
a "hyperfinite partition" .) 

The relationships 

m(b - a) � L�(f, .dx) � S�(f, .dx) � U!(f, Llx) � M(b - a) 
hold for all .dx E JR+, and hence by universal transfer hold for all positive 
hyperreal .dx, including positive infinitesimals. Similarly we have 

L�(f, .dx) � U�(f, .dy) 

for all .dx, .dy E *JR+ . 
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Theorem 9.1.1 If f is continuous on the real interval [a, b] , then for any 
positive infinitesimal L1x, L� (f, L1x) ::::: Ui(f, L1x) . 
Proof The key to this is the fact that 

We will find an upper bound of the right side of this equation that has the 
form 

[/(c) - f(d)] (b - a) , 

where c, d are two numbers that are smaller than L1x. When L1x is infinites
imal, the continuity of f then ensures that f (c) ::::: f (d), making our upper 
bound infinitesimal. 

By a method that is now becoming familiar, we first formalise the real 
version of this construction, and then apply transfer. For positive real L1x, 
let J-L( L1x) be the maximum of the numbers Mi - mi for 1 :::; i :::; n in 
the partition determined by L1x. Mi - mi is the oscillation of f on the 
ith interval, so J-L(L1x) is the largest oscillation on any subinterval of the 
partition. 

If J-L(L1x) = Mi - mi , let c(L1x) and d(L1x) be the points in [xj-l ,  xi] 
where Mi and mj are attained. Existence of these points is guaranteed 
by the extreme value theorem 7.6, because f is continuous on the closed 
interval [xj_1 , xj ] ·  Then 

and 

Hence 

and so 

J-L(L1x) = f(c(L1x)) - f(d(L1x)) ,  

lc(L1x) - d(L1x) l :::; L1x. 

U!(f, L1x) - L� (f, L1x) L:�=l (Mi - mi)L1xi 
< L:�=l J-L(L1x)L1xi 

J-L( L1x) 2:�1 L1xi 
J-L(L1x) (b - a), 

(i) 

U!(f, L1x) - L�(f, L1x) ::; [f(c(L1x)) - f(d(L1x))] (b - a) . (ii) 

Thus we have shown that for all real L1x > 0 there exist c( L1x) ,  d( L1x) E 
:a, b] such that (i) and (ii) hold. But then this transfers to *JR. Choosing 
.dx to be a positive infinitesimal, the transfer of (i) gives c(L1x) "'-' d(L1x) 
in *[a, b] , so by taking their shadow we get a real r E [a, b] with 

c(L1x) ::::: r ::::: d(L1x). 
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Then by continuity of f, 

f(c(L1x)) � f(r) � f(d(L1x)) ,  

so f(c(L1x)) - f(d(L1x)) is infinitesimal (this is just a repetition of  the 
proof from Theorem 7.7.2 that f is uniformly continuous on [a, b] ) .  Since 
(b - a) is limited, transfer of (ii) then implies that Ui(f, L1x) - L� (f, L1x) 
is infinitesimal, as desired. D 

Exercise 9.1.2 (Monotonic Functions) 
Suppose that f is nondecreasing on [a, b] in the sense that f(x) < f(y) 
whenever x :::; y. Show that for L1x E JR+, 

U�(f, L1x) - L� (f, L1x) :::; L1x(f(b) - f(a)) . 

Similarly, if f is nonincreasing in the sense that f(x) > f(y) whenever 
x :::; y , show that 

U�(f, L1x) - L� (f, L1x) :::; L1x(f(a) - f(b)) . 

A function is monotonic on [a, b] if it is either nondecreasing or else nonin
creasing. Prove that Theorem 9 .1 . 1  holds for monotonic functions as well 
as for continuous ones. 

9 .2  The Integral as the Shadow of Riemann Sums 

It will now be shown that any continuous or monotonic function on a 
closed interval in JR is Riemann integrable (note that any such function is 
bounded) . 

Let L1x1 and L1x2 be positive infinitesimals, with associated lower sums 
L1, L2 and upper sums U1 1 U2 for a continuous or monotonic function f 
on [a, b] . Then L1 :::; U1 and L2 :::; U2 . But since real upper sums dominate 
all real lower sums, and this continues to be true in the hyperreal case by 
transfer, we also have L2 :::; U1 and L1 :::; U2 . Thus the possible relationships 
are 

or 

or the corresponding statements with the subscripts interchanged. But 
L1 � U1 and L2 � U2 by Theorem 9 .1 . 1  or Exercise 9.1 .2 , so it follows 
that in any case 
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Also, since the associated ordinary Riemann sums lie between their corre
sponding upper and lower sums, these are also infinitely close: 

S�(f, Llxl) � S�(f, L1x2) .  
Altogether then, the Riemann sums determined by arbitrary positive in
finitesimals are all infinitely close to each other, and moreover are bounded 
above and below by the real numbers m(b - a) and M(b - a) , so are all 
limited, and hence have the same shadow. Thus we may conveniently define 

I: f(x)dx = sh(S�(f, Llx)) (iii) 
for any positive infinitesimal Llx. 

Now we show that this definition fulfills the characterising conditions (1) 
and (2) of Section 9.1 for Riemann integrability. First observe that if P is 
any standard partition of [a, b] , then taking an infinitesimal Llx yields 

L
�(f, P) ::; U

�(f, Llx) � I: f(x)dx � L
� (f, Llx) ::; U

�(f, P) , 
and so as L�(f, P) and U�(f, P) are real, 

L
�(f, P) ::; I: f(x)dx ::; U

�(f, P). 
Secondly, given a positive c E lR then by Theorem 9 .1 . 1  there exists a 
hyperreal Llx (namely any positive infinitesimal) such that 

U�(f, Llx) - L
� (f, L1x) < c:, 

and so by existential transfer this holds for some real Llx. 
This completes our proof using infinitesimals that a continuous or mono

tonic function f is Riemann integrable on [a, b] , with integral defined as in 
(iii) . 

Notice that (iii) implies the standard characterisation of the integral as 
a limit: 

I: f(x)dx = lim.:1x->O+ S� (f, L1x). 
Here S�(f, L1x) was obtained formally as the extension of a standard func
tion. In Section 12.7 we will see how to obtain it by a more explicit summa
tion of terms f(x)L1x, with L1x infinitesimal, over a "hyperfinite" partition 
of [a, b] . 

If a function f is Riemann integrable on [a, b] , then in the standard 
theory it is shown that the upper and lower sums approximate each other 
arbitrarily closely, by showing that for any given e E JR+ there exists a 
6 E JR+ such that 

(VL1x E JR+) (L1x < 8 implies U�(J, Llx) - L�(f, L1x) < c:) . 

Transferring this and taking Llx to be infinitesimal, we get U�(f, L1x) -
L� (!, L1x) < c:. Since c is an arbitrary member of JR+ here, it follows that 
U�(f, L1x) and L�(f, L1x) are infinitely close. Hence 



110 9. The Riemann Integral 

Ui(f, Llx) � L�(J, Llx) for all positive infinitesimals Llx. 

But it was just this property that enabled us to obtain I: f(x)dx by the 
definition (iii) . The property is therefore equivalent to Riemann integrabil
ity of a bounded function f on [a, b]. 

Exercise 9.2.1 
For each (standard) n E N, let Ui(f, n) , L� (f, n) , S�(f, n) be the upper, 
lower, and ordinary Riemann sums for the partition determined by the 
number Llx = b-;,_a . Prove that if n E *N is unlimited, then 

L�(f, n) � S�(f, n) � U!(f, n). 

Show how the definition and proof of existence for the Riemann integral 
could be developed just using these functions of (hyper )natural numbers. 

9 .3  Standard Properties of the Integral 

If f and g are integrable on [a, b] in JR., then 

• I: cf(x)dx = c I: f(x)dx. 

• I: f(x) + g(x)dx = I: f(x)dx + I: g(x)dx. 

• I: f(x)dx = I: f(x)dx + I: f(x)dx if a :s; c :s; b. 

• I: f(x)dx :s; I: g(x)dx if f(x) :s; g(x) on [a , b] . 

• m(b - a) :s; I: f(x)dx :s; M(b - a) if m :s; f(x) :s; M on [a, b] . 

Here is a concise proof via infinitesimals of the third (juxtaposition) prop
erty. If Llx = (c - a)/n with n E N, then it is readily seen that 

S�(J, Llx) = S�(f, Llx) + S�(J, Llx). (iv) 

Hence by transfer, this equation holds when Llx = ( c - a)/ N with N 
unlimited in *N. But then Llx is infinitesimal, so applying the shadow map 
to (iv) and invoking (iii) gives the result. 

Exercise 9.3.1 
Derive proofs in this vein for the other properties of the integral listed 
above. 
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9.4 Differentiating the Area Function 

Integration and differentiation are processes springing from quite different 
intuitive sources, but they are intimately related and, as every calculus stu
dent knows, are in a sense inverses of each other: differentiating the integral 
gives back the original integrand. This fundamental result is explained by 
examining the area function F, defined by 

F(x) = J:f(t)dt 

for x E [a, b] , where f is continuous on [a, b] . The key to the relationship 
between differentiation and integration is the following fact. 

Theorem 9.4.1 The function F(x) = J:j(t)dt is differentiable on [a, b) , 
and its derivative is f. 

(This includes the right- and left-hand derivatives at the end points of the 
interval.) 

There is a very intuitive explanation of why this relationship should hold. 
The increment 

LlF = F(x + Llx) - F(x) 
of F at x corresponding to a positive infinitesimal Llx is closely approxi
mated by the area of the rectangle of height f(x) and width .dx, i.e, by 
f(x)Llx. Thus the quotient �� should be closely approximated by f(x) 
itself. 

Does "closely approximate" here mean �� � f(x)? Well, observe that 
l1F is bounded above and below by f(x1 )Llx and f(x2)Llx, where XI and 
x2 are points where f has its greatest and least values between x and 
x + Llx, so �� lies between f(xi) and j(x2) . But XI and x2 are infinitely 
close to x, hence by continuity j(x1 ) and j(x2) are infinitely close to j(x) , 
and therefore so is �� . 

We will now use transfer to legalise this intuitive approximation argu
ment. First, if Llx is a positive real number less than b - x, then by juxta
position of the integrals, 

F(x + Llx) - F(x) = J:+Llx f(t)dt . 

But on the interval [x, x + Llx] , f attains maximum and minimum values 
at some points XI and x2, and so 

Hence 

f( ) F(x + Llx) - F(x) f( ) X2 < < XI . - Llx - (v) 
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Thus for all real Llx E (0, b - x) there exist x1 , x2 such that x ::;: x1 , x2 ::;: 
x+Llx, and (v) is true. Hence by transfer, if L1x is any positive infinitesimal, 
then there are hyperreal X1 , x2 E [x, x + L1x] for which (v) holds. But now 
x � x + L1x, so x1 � x "' x2 , and hence by the continuity of f at x, 
f(xl ) � f(x) � f(x2) ,  from which (v) yields 

F(x + Llx) - F(x) "' f( ) L1x 
- x . 

Similarly, this conclusion can be derived for any negative infinitesimal L1x. 
It follows (Theorem 8.1 .1 )  that f(x) is the derivative of F at x, proving 
Theorem 9.4. 1 .  

Theorem 9.4.2 Fundamental Theorem of Calculus. If a function G 
has a continuous derivative f on [a, b) , then J: f(x)dx = G(b) - G(a) . 

Proof This follows from Theorem 9.4.1 by standard arguments that re
quire no ideas of limits or infinitesimals. For if F(x) = fa

x f(t)dt , then on 
[a, b) we have (G(x) - F(x) )' = f(x) - f(x) = 0, so there is a constant 
c with G(x) - F(x) = c. This implies G(b) - G(a) = F(b) - F(a). But 
F(b) - F(a) = J: f(t)dt. 0 

9 .5 Exercise on Average Function Values 

Let f be continuous on [a, b] � JR. Define the "sample average" function 
Av by putting, for each n E N, 

Av(n) = f(xo) + · · · + f(xn-d
, 

n 

where Xi = a + i(b - a)fn. 
Prove that if N E *N is unlimited, then 

1 1b Av(N) � b _ a  a f(x)dx 

(i.e. , the average value of f on [a, b] is given by the shadow of Av(N)) .  
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Topology of the Reals 

Abstract topology studies the the notions of nearness and proximity of 
points by axiomatising the concept of an open neighbourhood of a point. 
Intuitively, an open set is one with the property that if it contains a point 
x, then it contains all points near x. In the hyperreal context we can make 
this idea quite explicit by taking "near" to mean "infinitely close" . As we 
shall see, this leads to a very natural formulation and treatment of many 
topological ideas. 

10. 1 Interior, Closure, and Limit Points 

If A � IR and r E IR, then the following are standard definitions: 

• r is an interior point of A if (r - e, r + e) � A for some real e > 0. 
The interior of A is the set A 0 of interior points of A. 

• r is a closure point of A if ( r - e, r + e) intersects A for every real 
c > 0. The ( topological) closure of A is the set A of closure points of 
A. 

• r is a limit point of A if for every real c > 0, ( r - c, r + e) intersects A 
in a point other than r. The set A' of limit points of A is the derived 
set of A. 

It follows readily from these definitions that 

A o � A � A = A u A'. 
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Now, r is an interior point of A if all points within some positive real 
distance of r belong to A. Our discussion of permanence in Section 7.10 
suggests that this property should be equivalent to requiring that all points 
infinitely close to r should belong to *A. This is confirmed by the first part 
of the next result. 

Theorem 10.1.1 If A s;;;; lR and r E JR, 

(1 )  r is interior to A if and only ifr � x implies x E *A, i .e . ,  iff hal(r) s;;;; 
*A. 

(2) r is a limit point of A if and only if there is an x -=1- r such that 
r � x E *A, i. e., iff hal(r) n *A contains a point other than r. · 

(3) r is a closure point of A if and only if r is infinitely close to some 
x E *A, i. e . ,  iff hal(r) n *A is nonempty. 

Proof 

(1) Let r E A0 • Then (r - c ,  r + c) s;;;; A for some real c > 0. Then the 
sentence 

('Vx E lR) ( ir - xi  < c ----+ x E A) (i) 

is true. But now if r � x in *JR, then ir - xi < c, so by universal 
transfer of (i) , x E *A. This shows that hal(r) s;;;; *A. (An alternative 
way of putting this is to observe that hal(r) s;;;; *(r - c, r + c) s;;;; *A.) 
Conversely, if hal( r) s;;;; *A, then the sentence 

(3c E *JR+) ('Vx E *JR) ( ir - x i  < c ----+ x E *A) 

is seen to be true by interpreting c as any positive infinitesimal. But 
then by existential transfer there is some real c > 0 for which (i) 
holds, so (r - c, r + c) s;;;; A and hence r E A0 • 

(2) If r E A' , then the sentence 

(Vc E JR+) (3x E lR)(x -=/- r A ir - x l  < c A x  E A) (ii) 

is true. Now take c to be a positive infinitesimal. Then by transfer of 
(ii) , there is a hyperreal x -=1- r with ir - xi  < c, whence r � x, and 
X E *A. 
Conversely, suppose there exists x E hal(r) n *A with x -=1- r. Then if 
c > 0 is real, ir - xl < c, since r "' x, and thus the sentence 

(3x E *lR) (x -=/- r A lr - xi < c A x E *A) 

is true. By transfer then, there exists a real number distinct from r 
that belongs to ( r - c, r + c) n A. This shows that r is a limit point 
of A. 
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(3) If r E A, then either r E A, in which case r E hal(r) n *A, or else 
r E A' , in which case hal(r) n *A =/= 0, again by part (2) . 
Conversely, if there exists x E hal(r) n *A, then either x = r, so r E  
*An.IR = A, or else x =/= r, and so r E  A' by (2) . Thus r E AUA' = A. 

D 

10.2 Open and Closed Sets 

If A �  JR, then 

• A is open if all its points are interior to it, i.e., Ao = A. 

• A is ( topologically) closed if it contains all its closure points, i.e. , 
A = A. Since A = A U A', this is equivalent to requiring that A 
contain all its limit points, i.e. , A' � A. 

In view of Theorem 10. 1 . 1 ,  it follows that 

• A is open if and only if for all r E A, if x is infinitely close to r ,  then 
X E *A ; 

• A is closed if and only if for all real r, if r is infinitely close to some 
x E *A, then r E A. 

Theorem 10.2.1 

( 1) A is open in lR if and only if its complement A c = lR - A is closed in 
JR. 

(2) The collection of open sets is closed under finite intersections and 
arbitrary unions. 

(3) The collection of topologically closed sets is closed under finite unions 
and arbitrary intersections. 

Proof 

(1) Observe that x E *(Ac) iff x rf. *A, by transfer of 

Suppose A c is closed. To show A is open, let x c::= r E A. Then we 
must show x E *A. 
Now, if x E *(Ac) ,  then we would have r c::= x E *(Ac) , making r a 
closure point of Ac, so as Ac is closed, r E Ac, contradicting r E A. 
Thus we must have x rf. *(Ac) , implying x E *A, as desired, by the 
above observation. 

The converse is similar, and given as an exercise. 

1 :  



1 16 10. Topology of the Reals 

(2) Let A1 , . . .  , An be open. If x � r E A1 n · · · n An , then for each i, 
x rv r E Ai, and so x E *Ai . Hence 

X E *Al n . . . n *An = *(Al n . . .  n An ) · 

This shows that A1 n · · · n An is open. 

Now let {Ai : i E I} be a collection of open sets. If X �  r E uiEJ Ai , 
then for some j, X �  r E Aj , so X E *Aj � *(UiEJ Ai)· Hence uiE;

·Ai 
is open. 

(3) Exercise. 
0 

Theorem 10o2o2 For any real number r, 

hal(r) = n{*A :  r E A  and A is open} . 

Proof. We have already observed that if r E A � IR and A is open, then 
hal( r) � *A. On the other hand, if x � hal( r) , then x '/=- r, so there must 
exist some real £ > 0 such that lr - xi  > £. Put A = (r - £, r + c) � JR. 
Then r E A  and A is open, but x � *A =  {y E *IR : lr - Yl < c}. 

0 

A topology on a set X is defined axiomatically to be a collection of subsets 
of X that includes 0 and X and is closed under finite intersections and 
arbitrary unions. The members of this collection are declared to be the open 
sets, and their complements are called closed. In such a setting it is possible 
to study any topological idea that can be characterised by properties of 
open and closed sets, even in the absence of a notion of numerical distance 
between points. For instance, the halo of a point r E X could be defined 
by the equation of Theorem 10.2.2, leading to a nonnumerical account of 
"infinite closeness" of points. 

Exercise 10 o 2 o 3 
Show that the proof of 10.2 .1 (2) does not work for infinite intersections by 
showing that 

1003 Compactness 

A set B � IR is compact if every open cover of B has a finite subcover, i.e. , 
if whenever B � UiEI Ai and each Ai is open in IR, then there is a finite 
J � I  such that B � UiEJ Ai . 
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This concept does not appear out of thin air. It emerged from studies 
in the nineteenth century of bounded and closed intervals in the real line, 
leading to a proof that such intervals are compact in the sense just de.: 
fined (Beine-Borel theorem) . Since the definition refers only to open sets, 
it becomes the appropriate one to use for an abstract topological space 
where there is no notion of numerical distance to specify the notion of 
boundedness. 

Robinson's Compactness Criterion. B is a compact subset of � if 
and only if every member of * B is infinitely close to some member of B, 
i.e., iff 

*B � U hal(r) . 
rEB 

Since the members of B are all real, the only such member that a given 
x E * B could be infinitely close to is its shadow. Thus another way to state 
Robinson's criterion is 

if x E *B, then x is limited and sh(x) E B. 

This criterion gives an intuitively appealing and useful characterisation 
of the notion of compactness. Constructions involving open covers are re
placed by elementary reasoning about hyperreal points. For instance: 

• The open interval (0, 1 )  � lR is not compact, because if c is a positive 
infinitesimal, then c E *(0, 1 )  as 0 < c < 1 ,  but c is not infinitely close 
to any member of (0, 1 )  because its shadow is 0 � (0, 1) .  

• Any closed interval [a, b] � lR is compact, because if x E *[a, b] , then 
a :::; x � b, so x is limited and its shadow r must also satisfy a :::; r � b. 
Thus x � r E [a, b]. 

• Any finite set is compact, because if B is finite, then *B = B, so each 
member of * B is infinitely close to itself in B. 

• If B � lR is unbounded above, in the sense that 

(Vx E JR) (3y E B) (x < y) , 

then B cannot be compact: taking any unlimited x E *JR, by transfer 
there exists y > x with y E *B . Then y is unlimited, so cannot be 
infinitely close to any member of B. Similarly, B cannot be compact 
if it is unbounded below. 

Altogether then, a compact set must be bounded above and below. 

• If B is not closed, then B cannot be compact: it must have a closure 
point r that does not belong to B. As a closure point, r is infinitely 
close to some x E *B. But then x is not infinitely close to any member 
of B, since sh(x) = r � B. 
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Hence a compact set must be closed. 

Proof of Robinson's Criterion. 

We will show that Robinson's criterion fails if and only if the standard 
definition of compactness fails. 

If Robinson's criterion fails, there is a hyperreal b E *B that is not 
infinitely close to any member of B. Then for each r E B, b j:. r, so there 
must be a real E:r > 0 such that l b - r i  2: E:r . Then { (r - En r + E:r) : r E B} 
is an open cover of B. But this cover can have no finite subcover: if, say, 

then by properties of enlargements of sets (3.10), 

Since b E  *B, it then follows that b E  *(ri - Eri , ri+e:rJ , and hence j b-ri l < 
E:ri for some i, contradicting the definition of Er; . Thus compactness fails 
for B. 

For the converse, suppose B is not compact, so that there is an open 
cover C = {Ai : i E J} of B that has no finite subcover. Each r in B 
belongs to Aj for some j E J, and hence r E (r - e:, r + c) � Aj for some 
c E R+ because Ai is open. But then using the density of the rationals we 
can find some rational numbers p, q with r E (p, q) � Aj . This shows that 
there is an open cover C' of B by intervals with rational end points, each of 
which is included in a member of C. Because the rationals are countable, 
there are only countably many intervals with rational end points, so we can 
enumerate C' and write 

C' = { (pn , Qn) : n E N}, 

where (pn : n E N) and (qn : n E N) are sequences of rational numbers. 
Now, C' includes no finite subcovering of B, or else this would lead to a 

finite subcover from C, since each member of C' is included in a member of 
C. Thus for each k E N, 

We can express this fact by the following true sentence: 

(Vk E N) (3x E B) (\fn E N) [n ::::; k ---+ -. (pn < x < Qn)] . 

Now take an unlimited K E *N. Then by transfer there exists some hyper
real x E * B such that the statement Pn < x < Qn is false for all n E *N 
with n ::::; K. In particular, Pn < x < Qn is false for all standard n. But now 
x cannot be infinitely close to any r E B, because such a point r belongs 
to (Pn , Qn) for some n E N, and so if x � r, then Pn < x < Qn· Hence 
Robinson's criterion fails, and the proof is complete. D 
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Robinson's criterion can be established for abstract compact topological 
spaces (and leads to a beautifully simple proof of Tychonoff's theorem that 
the product of compact spaces is compact) .  In that context the reduction 
to a countable cover via the density of Q in JR is not generally applicable, 
and instead a special principle of hyperreal analysis, known as enlargement 
(cf. Chapter 14) , is needed to establish the criterion. 

Theorem 10.3.1 (Heine-Borel) A set B � 1R is compact if and only if 
it is closed and bounded. 

Proof We have already seen that if B satisfies Robinson's criterion, then 
it is closed and bounded (above and below) . 

Conversely, if B is closed and bounded, then there is some real b such 
that 

(Vx E B) ( Jx J � b) . 

Now, to prove Robinson's criterion, suppose x E *B. Then by transfer, 
Jx l � b E JR. Hence x is limited, and so has a shadow r E JR. Then r � 
x E * B, and so r E B because B is closed. Thus we have shown that x is 
infinitely close to the member r of B, proving that B is compact. D 

Exercise 10.3.2 
Use Robinson's criterion to prove that in JR a closed subset of a compact 
set is compact . 

10.4 Compactness and (Uniform) Continuity 

Compactness is an inherently topological notion, being preserved by con
tinuous transformations. Here is a simple hyperreal proof of that fact. 

Theorem 10.4.1 The continuous image of a compact set is compact. 

Proof Let f be a continuous real function, and B a compact subset of lR 
included in the domain of f. Now, it is true, by definition of f(B), that 

(Vy E f(B)) (3x E B) (y = f(x)) .  

Thus by transfer, if y E *(!(B)) ,  then y = f(x) for some x E *B. Since B 
is compact , x � r for some r E B. Then by continuity of J, f(x) � f(r) , 
i.e. , y is infinitely close to f(r) E f(B). This shows by Robinson's criterion 
that f(B) is compact. D 

In Theorem 7.7.2 it was shown that a continuous function on a closed inter
val [a, b] is uniformly continuous. We can now see that it is the compactness 
of [a, b] that accounts for this phenomenon: 
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Theorem 10.4.2 If f is continuous on a compact set B � JR, then f is 
uniformly continuous on B.  

Proof By Theorem 7.7. 1 we have to show that for all x, y E *B, 

x � y implies f(x) � f(y) . 
But if x, y E *B, then by compactness x � r E B  and y � s E B for some 
r, s. Thus if x � y, then r � s, and so r = s, as both are real. Hence by 
continuity of f at r E B, f(x) � f(r) and f(y) � f(r) , whence f(x) � f(y) 
as desired. 0 

10 .5 Topologies on the Hyperreals 

There is no canonical way to extend the definitions of interior, closure, 
and limit point-and hence the definitions of open and closed sets-to 
general subsets of *lR. These definitions depend on the concept of an open 
neighbourhood (r - c, r + c) of a point r, and one option would be to 
allow r to be any member of *JR but to continue to require that the radius 
c be a positive real number. Here (r - c, r + c) is the hyperreal interval 
{ x E *JR : r - c < x < r + c} , and we call it a real-radius neighbourhood of 
r when c is a real number. 

Thus a subset of *lR will be called real-open if it is a union of real
radius neighbourhoods. Examples of real-open sets include the sets of lim
ited numbers, unlimited numbers, positive (respectively negative) unlimited 
numbers, appreciable numbers, positive (respectively negative) appreciable 
numbers, and any galaxy (Section 5.4). 

The class of real-open sets is closed under arbitrary unions, but is not 
a topology on *lR because it is not closed under finite intersections. For 
instance, if (r - c, r + c) and (s - 8, s + 8) are real-radius neighbourhoods 
that overlap in such a way that s - 8 is infinitely close to r + c, then the 
intersection (s - 8, r + c) has infinitesimal width and so does not contain 
any real-radius neighbourhoods, hence is not real-open. 

This suggests that the overlaps between real-radius neighbourhoods are 
in some sense "too small" . One way to remedy this is to modify the neigh
bourhoods by removing those members that are infinitely close to the end 
points, retaining those that are well inside the interval (as defined in Sec
tion 8. 1 1 ) ,  thereby forcing any overlaps to be appreciable. To formalise this, 
put 

(( r - c, r + c)) {x E *lR : x is well inside (r - c, r + c)} 
- { x E *lR : hal ( x) � ( r - c, r + c)} . 

A set of the form ((r -c, r+c)) with real c will be called an S-neighbourhood, 
and an S-open set is one that is a union of S-neighbourhoods. The S-open 
sets form the S-topology on *JR, first introduced by Abraham Robinson. 
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(The "S-" prefix here is for "standard" and is typically used when a stan
dard concept , or the nonstandard characterisation of some standard con
cept, is applied more widely to nonstandard entities. In Theorem 11 . 14.4, 
S-openness of a set B will be related to the notion of B being open when 
it includes the halo of each of its points.) 

Note that when c E JR+ , each point of ((r - c, r + c)) is of appreciable 
distance from r-c  and from r+c. Alternatively, we can define ((r -c, r+c)) 
as consisting of those points x whose distance from r is appreciably less than 
c, in the sense that 

sh !r - x l < c, 
i.e. , c - jr - xl is appreciable. The intersection of two S-neighbourhoods 
((r - c, r + c)) and ((s - 6, s + 6)) is S-open, because if t belongs to this 
intersection, then 

((t - 1, t + 1)) � ((r - c, r + c)) n ((s - 8, s + 6)) ,  

where 1 is any positive real number such that 

1 :::; min{ c - sh jr - t j ,  6 - sh js - t j } .  

From this it follows that the intersection of S-open sets is S-open. 

Exercise 10.5 .1  
Show that 

(i) any S-open set is real-open; 

(ii) each S-open set is a union of halos, but a union of halos need not be 
S-open; 

(ii) no real-radius neighbourhood can be S-open. D 

Another topology on *JR is obtained if neighbourhoods are allowed to have 
any positive hyperreal (possibly infinitesimal) as radius. Thus any hyperreal 
open interval (a, b) can be a neighbourhood, and we define a set A � *IR 
to be interval-open if it is a union of intervals (a, b) with a ,  b E *R The 
interval-open sets form the interval topology on *JR. It is immediate that 
all real-open sets are interval-open, but the converse is not true. There are 
many hyperreal intervals (a, b) that are interval-open but not real-open, for 
instance any having a �  b. Also, any halo becomes interval-open but is not 
real-open. 

Consider furthermore the construction 

n{A : r E A  and A is open}. 

If "open" here means real-open (or S-open) , then this gives the halo of r. 
If it means interval-open, then the result is just { r}. 

Any hyperreal interval (a, b) can be readily constructed as the inter
section of two real-radius neighbourhoods (in many ways) . Therefore any 
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topology that includes the real-radius neighbourhoods must include all hy
perreal intervals, and hence all interval-open sets. 

Exercise 10.5.2 
Let A be an open subset of JR. 

(i) Show that *A is interval-open in *JR. 

(ii) Suppose A is the union of a sequence (An : n E N) of pairwise 
disjoint open intervals in JR, with the length of An being less than 
l .  Use transfer to show that some element of *A is infinitely close to n 
something not in *A. Deduce that *A is not S-open. 

(iii) Show further that *A contains a point that does not belong to any 
real-radius neighbourhood that is included in *A. Hence deduce the 
stronger result that *A is not real-open. 

The relationships between various topologies on *JR will be explored further 
in Section 11 . 14. 
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1 1  
Internal and External Sets 

In the construction of *JR as an ultrapower in Chapter 3, each sequence of 
points r = (rn : n E N) in JR gives rise to the single point [r] of *JR, which 
we also denote by the more informative symbol [rnl · Equality of *JR-points 
is given by 

[rn] = [sn] iff {n E N :  rn = sn} E F. 
This description works for other kinds of entities than points. We will now 
see that a sequence of subsets of JR determines a single subset of *JR. In the 
next chapter we will see that a sequence of functions on JR determines a 
single function on *JR. 

1 1 . 1  Internal Sets 

Given a sequence (An : n E N) of subsets An � JR, define a subset [An] � *JR 
by specifying, for each [rn] E *JR, 

[r n] E [An] iff { n E N : r n E An} E F. 

Of course it must be checked that this is a well-defined notion that does 
not depend on how points are named, which means that if [rn] = [snJ , then 

{n E N :  rn E An} E F iff {n E N :  Sn E An} E F. 

This is a slight extension of the argument given in Section 3.9. 

The subsets of *.IR that are produced by this construction are called internal. 
Here are some examples: 
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• If (An) is a constant sequence with An = A � JR.  for all n E N, then 
the internal set [An] is just the enlargement *A of A defined in Section 
3 .9. Hence we may also denote *A as [A] . 
Thus the enlargement of any subset of JR. is an internal subset of *JR.. 
In particular, we see that *N, *Z, and *Q and *JR. itself are all internal, 
as is any finite subset A � JR., since in that case A = *A. 

• More generally, any finite set X = { [r�] , . . .  , [r�] } of hyperreals is 
internal, for then X =  [An] , where An = {r� , . . .  , r� } .  

• If a < b in *JR., then the hyperreal open interval 

(a, b) = {x E *JR. : a <  x < b} 

is internal. Indeed, if a = [an] and b = [bn] , then (a, b) is the inter
nal set defined by the sequence ( (an , bn) : n E N) of real intervals 
(an, bn) � JR.. This follows because 

[an] < [rn] < [bn] iff {n E N :  an < Tn < bn} E F. 

Similarly, the hyperreal intervals (a, b] ,  [a, b) , [a, b] , {x E *JR. : a <  x} 
are internal. Notice that if a is unlimited, then each of these intervals 
is disjoint from JR., so none of them can be the enlargement *A of a 
set A �  JR., since *A always includes the (real) members of A. 

• If N E *N, then the set 

{k E *N : k :::; N} = {1 ,  2, . . .  , N} 

is internal. If N = [Nn] , then this is the internal set [An] ,  where 

An = { k E N : k :::; Nn} = { 1 ,  2, . . .  , N n}  

(since N E *N, we have {n : Nn E N} E F,  so we may as well assume 
N n E N for all n E N) . 

• If N = [Nn] E *N, then the set 

{ k  
* 

} { 1 2 N - 1 } 
N : k E N U {0} and k :::; N = 0, N , N , . . .  , N , 1 

is the internal set [An] ,  where 

{ 1 2 Nn - 1  } An = 0, Nn ' Nn , . . .  , Nn , 1  . 

These last two examples illustrate the notion of hyperfinite set , which will 
be studied in the next chapter. 
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1 1 .2  Algebra of Internal Sets 

(1 )  The class of internal sets is closed under the standard finite set op
erations n, U, and -, with 

[An] n [Bn] 
[An] U [Bn] 
[An] - [Bn] 

[An n En] ,  
[An U En] ,  
[An - En] ·  

(2) [An] � [En] iff {n E N :  An � En } E :F. 

(3) [An] = [En] iff {n E N :  An = En} E :F. 

(4) [An] =I [Bn] iff {n E N :  An #- En} E :F. 

Proof. 
( 1) Exercise. 

(2) If [An] � [En] , then there is some hyperreal [rn] E [An] - [BnJ , so by 
(1) we have 

I =  {n E N :  rn E An - En} E :F. 

But if 
J = { n E N : An � En} ,  

then I � Jc, so Jc E :F and hence J ¢:. :F. 

Conversely, if J ¢:. :F, then Jc E :F, so choosing rn E An - En for each 
n E Jc and rn arbitrary for n E J, the argument reverses to give a 
point [rn] E [An] - [En] · 

(3) This follows from (2) and closure properties of :F (note that the result 
is not a matter of the definition of [An] via :F, since equality of [An] 
and [En] is defined independently of :F to mean "having the same 
members" ) . 

( 4) Exercise. 
D 

Part (3) above is important for what it says about the sequence (An : n E 
N) that determines a certain internal set. We can replace this sequence by 
another (En : n E N) without changing the resulting internal set, provided 
that An = En for :F-almost all n. Thus we are free to alter An arbitrarily 
when n is outside a set that belongs to :F. For instance, if [An] is nonempty, 
then as 0 = [0] , we can assume that An i- 0 for every n E N  ( 11 .2(4) ) ,  while 
if [An] is a subset of *N, then as *N = [N] , we can assume that An � N for 
every n ( 1 1 .2(2)) . Moreover, we can combine finitely many such conditions, 
using the closure of :F under finite intersections. So if [An] is a nonempty 
subset of *N, we can assume that 0 i- An � N for every n E N. 
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Subsets of Internal Sets 

The fact that the intersection of two internal sets is internal allows us to 
prove now that 

• if a set A of real numbers is internal, then so is every subset of A. 
Proof. Let X � A. Then *X is internal, so if A is internal, then so is 
A n  *X. But since A �  !R, 

A n *X = A n *X n !R = A n x  

(cf. Ex. 3 . 10.5) , so X =  A n  X is internal. 0 
This result will be used in Section 11 .7 to show that actually the only 
internal subsets of lR are the finite ones. 

1 1 .3 Internal Least Number Principle and 
Induction 

A characteristic feature of N is that each of its nonempty subsets has a least 
member (indeed this holds for any subset of Z that has a lower bound) . The 
same is not true, however, for *N: the set *N- N of unlimited hypernaturals 
has no least member, for if N is unlimited, then so is N - 1 (why?) . But 
we do have 

Theorem 11.3. 1 Any nonempty internal subset of *N has a least mem
ber. 

Proof. Let [An] be a nonempty internal subset of *N. Then by the obser
vations above we can assume that for each n E N, 

and so An has a least member rn . This defines a point [rn] E *IR with 

{ n E N : r n E An} = N E F, 

so [rn] E [An]· Moreover, if [sn] E [An] , then 

{ n E N : Sn E An} E F and { n E N : Sn E An} � { n E N : r n :::; Sn} '  

leading to  the conclusion [rn] :::; [sn] in *JR. Hence [An] indeed has a least 
member, namely the hyperreal number [rn] determined by the sequence of 
least members of the sets An . 

Writing "min X" for the least element of a set X, this construction can 
be expressed concisely by the equation 

min [An] = [min An] · 



1 1 .4 The Overflow Principle 129 

0 
Now, the least number principle for N is equivalent to the principle of 
induction: 

A subset of N that contains 1 and is closed under the successor 
function n 1---7 n + 1 must be equal to N. 

The corresponding assertion about subsets of *N is not in general true, and 
can only be derived for internal sets: 

Theorem 11.3.2 (Internal Induction) If X is an internal subset of 
*N that contains 1 and is closed under the successor function n 1---7 n + 1 ,  
then X =  *N. 

Proof Let Y = *N - X. Then Y is internal ( 1 1 .2(1 ) ) ,  so if it is nonempty, 
it has a least element n. Then n -=!= 1 ,  as 1 E X, so n - 1 E *N. But now 
n - 1 � Y, as n is least in Y, so n - 1 E X, and therefore n = ( n - 1) + 1 is 
in X by closure under successor. This contradiction forces us to conclude 
that Y = 0, and so X = *N. 0 

1 1 .4 The Overflow Principle 

The set N cannot be internal, or else by internal induction it would be 
equal to *N. Thus if an internal set X contains all members of N, then 
since X cannot be equal to N, it must "overflow" into *N - N. Indeed, 
we will see that X must contain the initial segment of *N up to some 
unlimited hypernatural. In fact, a slightly stronger statement than this can 
be demonstrated by assuming only that X contains "almost all" members 
of N: 

Theorem 11.4. 1 Let X be an internal subset of *N and k E N. If n E X  
for all n E N with k � n, then there is an unlimited K E *N with n E X 
for all n E *N with k � n � K. 

Proof If all unlimited hypernaturals are in X, then any unlimited K E *N 
will do. Otherwise there are unlimited hypernaturals not in X. If we can 
show that there is a least such unlimited number H, then all unlimited 
numbers smaller than H will be in X, giving the desired result. 

To spell this out: if *N - X has unlimited members, then these must be 
greater than k, and so the set 

Y = { n E *N : k < n E *N - X} 

is nonempty. But Y is internal, by the algebra of internal sets, since it is 
equal to 

( *N - {1 ,  . . .  , k} )  n (*N - X). 
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Hence Y has a least element H by the internal least number principle. 
Then H is a hypernatural that is greater than k but not in X, so it must 
be the case that H rt N, because of our hypothesis that all limited n � k 
are in X. Thus H is unlimited. Then K = H - 1 is unlimited and meets 
the requirements of the theorem: H is the least hypernatural greater . than 
k that is not in X,  so every n E *N with k ::; n ::; H - 1 does belong to X. 

Exercise 11 .4.2 
Show that overflow is equivalent to the following statement: 

If an internal subset X of *N contains arbitrarily small unlim
ited members, then it is unbounded in N, i. e . , contains arbitrar
ily large limited members. 

(Hint: consider *N - X.) 

D 

D 

The overflow principle implies that any cofinite subset of N is external: if 
an internal A � N were cofinite, then it would contain { n E N : k ::; n} 
for some k E N, so by overflow A would contain some unlimited number, 
contradicting A � N. 

1 1 .5 Internal Order-Completeness 

The principle of order-completeness, attributed to Dedekind, asserts that 
every nonempty subset of ffi. with an upper bound in ffi. must have a least 
upper bound in ffi.. The corresponding statement about *ffi. is false. In fact, 
ffi. itself is a nonempty subset of *ffi. that is bounded but has no least upper 
bound. This is because the upper bounds of ffi. in *ffi. are precisely the pos
itive unlimited numbers, and there is no least positive unlimited number. 

Just as for the least number principle, order-completeness is preserved 
in passing from ffi. to *ffi. for internal sets: 

Theorem 11.5.1 If a nonempty internal subset of *ffi. is bounded above/ 
below, then it has a least upper/ greatest lower bound in *ffi.. 

Proof We treat the case of upper bounds. In effect, the point of the proof 
is to show that the least upper bound of a bounded internal set [An] is the 
hyperreal number determined by the sequence of least upper bounds of the 
An 's: 

lub [An] = [lubAn] · 

More precisely, it is enough to require that F-almost all An 's have least 
upper bounds to make this work. 
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Suppose then that a nonempty internal set [An] has an upper bound [rn] · 
Write An ::::; x to mean that x is an upper bound of An in JR., and put 

J = {n E N :  An ::::; rn} · 

We want J E F. If not, then Jc E F. But if n E Jc, there exists some 
an with rn < an E An. This leads to the conclusion [rn] < [an] E [An] , 
contradicting the fact that [rn] is an upper bound of [An]· 

It follows that J E F. Since [An] =J 0, this then implies 

J' = { n E N : 0 =J An ::::; r n} E F. 

Now, if n E J' , then An is a nonempty subset of JR. bounded above (by rn) ,  
and so by the order-completeness of JR., An has a least upper bound Bn E JR. 
Then if [bn] E [An] ,  

{ n E N : bn E An} n J' � { n E N : bn ::::; Sn} ' 

leading to [bn] ::::; [sn] , and showing that [sn] is an upper bound of [An] · 
Finally, if [tn] is any other upper bound of [An] , then {n : An ::::; tn } E F 
by the same argument as for [rn ] ,  and 

{ n E N : An ::::; tn} n J' � { n E N : Sn ::::; tn } ' 

so we get [sn] ::::; [tn] . This shows that [sn] is indeed the least upper bound 
of [An] in *JR. 

D 

Exercise 11 .5 .2 
Let X be an internal subset of *JR. Prove the following. 

(i) If X has arbitrarily large limited members, then it has a positive 
unlimited member. 

(ii) If X has only limited members, then there is some real r such that 
X is included in the interval [-r, r] in *JR. 

(iii) If X has arbitrarily small positive unlimited members, then it has a 
positive limited member. 

(iv) If X has no limited members, then there is some unlimited b such 
that X �  {x E *JR. : x < -b or b < x}. 

1 1 .6 External Sets 

A subset of *JR is external if it is not internal. Many of the properties that 
are special to the structure of *JR define external sets: 
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• Unlimited Hypernatumls. Since *N - N has no least member, the in
ternal least number principle (Theorem 1 1 .3 .1 )  implies that it cannot 
be internal. 

• Limited Hypernaturals. If N were internal, then by 1 1 .2(1) so too 
would be *N - N, which we have just seen to be false. 

Alternatively, by the internal induction principle, Theorem 11 .3.2, if 
N were internal, it would be equal to *N. 

• Real Numbers. lR is external, for if it were internal, then so too would 
be !R n  *N = N. 

Alternatively, as noted at the beginning of Section 11 .5 ,  lR is bounded 
but has no least upper bound in *JR, so must fail to be internal by the 
internal order-completeness property, Theorem 11 .5 . 1 .  

The fact that N is external will be used in the next section to show 
that all infinite subsets of JR. are external. 

• Limited Hyperreals. The set IL of limited numbers is external for the 
same reason lR is: it is bounded above by all members of *JR.�, but 
has no least upper bound. Since 

lL = n{( -b, b) : b is unlimited} , 

it follows that the intersection of an infinite family of internal sets 
can fail to be internal. 

Observe that if X is an internal set that includes IL, then X =f. IL, and 
so X must contain unlimited members ( cf. (i) and (ii) of Exercise 
1 1 .5.2) .  In fact, by considering lower and upper bounds of *JR� - X  
and *JR.� - X, respectively, we can show that if X is an internal set 
with IL � X, then [ -b, b] � X for some unlimited b. 

• Injinitesimals. The set JI = hal(O) of infinitesimals is bounded above 
(by any positive real) ,  so if it were internal, it would have a least 
upper bound b E *JR. Such a b would have to be positive but less than 
every positive real, forcing b � 0. But then b < 2b E JI, so b cannot be 
an upper bound of ll after all. 

By similar reasoning, any halo hal(r) is seen to be an external set, as 
are its "left and right halves" {x > r :  x � r} and {x < r :  x � r} . 

More strongly, this type of reasoning shows that if X is any internal 
subset of JI, then the least upper bound and greatest lower bound of 
X must be infinitesimal, and so X �  [-c, c] for some c � 0. 
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Show that the following form external sets: 

the positive real numbers JR+, 
the integers Z, 

the rational numbers Q, 

the (positive/negative) unlimited hyperreals, 

the appreciable numbers. 

11 .7 Defining Internal Sets 

In proving the internal least number and order-completeness properties, 
we reverted once more to ultrafilter calculations, so it is natural to ask 
whether such results could be obtained instead by a logical transfer. The 
assertion that a nonempty set A of natural numbers has a least element 
can be expressed by the .C9'l-sentence 

[(:3x E IR) (x E A) A (\lx E A)(x E N)) � (::Jx E A) (\t'y E A) (x � y). 

This sentence transforms to 

[(:3x E *IR) (x E *A) A (\lx E *A) (x E *N)] � (::Jx E *A) (\t'y E *A)(x � y), 

which asserts the least number principle for the enlarged set *A in *JR. But 
what we saw in Section 1 1.3  was that this transformed sentence is true 
when *A is replaced by any internal set X � *N. The same observation 
applies to the assertion 

(::Jx E IR) (\t'y E A) (y � x) � 

(3x E IR) [(\ly E  A)(y � x) A (\lz E IR) [(\t'y E A) (y � z) � x � z J] , 
which expresses the order-completeness property that if A has an upper 
bound, then it has a least upper bound. The transform of this last sentence 
is also true when *A is replaced by any nonempty internal set X � *IR 
(Theorem 11 .5. 1 ) .  

Let us write cp(A) to indicate that cp is an .C9'l-sentence containing the 
set symbol A. Then *cp(X) denotes the sentence obtained by putting X in 
place of * A in *cp. The examples just discussed suggest the following transfer 
principle: 

(t) If cp(A) is true whenever A is taken as an arbitrary subset of IR, then 
*cp( X) is true whenever X is taken as an arbitrary internal subset 
of *JR. 
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To understand what is happening here we need to look more widely at 
formulae that may have free variables. Let c.p(x, y, A) be a formula with 
free variables x and y as well as the set symbol A; for example the formula 

(V z E IR) (X < z < y � z E A). 

We can replace x and y in *c.p by elements of *R Thus *c.p([rn] , [sn] , [An]) 
would be the sentence 

(Vz E *IR) ( [rn] < z < [sn] � Z E [An] ) . 

It can be shown that this sentence is true if and only if 

{n E N : Vz E IR (rn < z < Sn � z E An) }  E F. 

The general situation here is that 

(i) 

if and only if 
(ii) 

This fact can then be used to derive the transfer principle ( t) . But it also 
leads to a new way of defining internal sets: holding the hyperreal [sn] and 
the internal set [An] fixed, and allowing the value of x to range over *IR, 
define 

X =  {b E *IR :  *c.p(b, [sn] , [An]) is true} . 

Correspondingly, for each n E N put 

Bn = {r E IR :  c.p(r, Sn , An) is true} . 

Then the equivalence of (i) and (ii) amounts to saying that for any hyperreal 
[rnJ , 

[rn] E X  iff {n E N :  rn E Bn } E F. 

But this shows that X is the internal set [Bn] determined by the sequence 
of real subsets (Bn : n E N) . 

Expressing this phenomenon in the most general form available at this 
stage, we have the following statement. 

11.7. 1  Internal Set Definition Principle. Let 

be an LfR -formula with free variables xo , . . . , Xn and set symbols A 1 , . . . , Ak . 
Then for any hyperreals c1 , . . . , Cn and any internal sets X 1 , . . .  , X k ,  
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is an internal subset of *JR. 0 

Note that this statement applies in particular to formulae that have only 
number variables and no set symbols. It provides a ready means of demon
strating that various sets are internal, including the examples from Section 
11 . 1 :  

• Taking <p(xo , x1 , . . .  , Xn ) as the formula (x0 = x1 V · · · V Xo = Xn) 
shows that any finite set 

{cl , . . . , Cn } = {b E  *JR : *<p(b, C1 , . . .  , Cn ) } 

of hyperreals is internal. 

• Taking <p(xo , x � ,  x2) as (x1 < xo < x2 ) yields that any open hyperreal 
interval 

is internal. 

We observed at the end of Section 1 1 .4 that the overflow principle implies 
that any cofinite subset of N is external. But much more strongly than 
this, we can now use internal set definition to show (as promised earlier, in 
Section 1 1 .2) that 

• every infinite set of real numbers is external. 

In other words, if A �  JR is internal, then A must be finite. 

Proof: if such an A were infinite, then it would contain an infinite sequence, 
i.e., there would be an injective function f :  N ---+ A. Put X =  {f(n) : n E 
N}. Then X is internal, since it is a subset of the internal set A, and we 
saw at the end of Section 1 1 .2 that any subset of an internal set of real 
numbers is internal. 

Now, X is a bijective copy of N, so we should be able to show that N is 
internal if X is, thereby getting a contradiction because we already know 
that N is external. To make this work requires the internal set definition 
principle, applied with <p(x, A) as the formula (x E N 1\ f(x) E A) . This 
implies that the set 

B = {n E *JR : *<p(n, X)} 
is internal. 0 bserve that 

B = {n E *N : *j(n) E X} =  *j-1 (X) .  

However, as f is injective, * f : *N ---+ *A is an injective extension of f 
(by transfer) , from which it follows that B is just N itself, so we have the 
contradiction. 0 
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We will reconsider the internal set definition principle in a stronger formu
lation in Section 13.15. 

Exercise 11. 7.1 Use the internal set definition principle to show that all 
hyperreal intervals of the form 

(c, d ] ,  [c, d ) , [c, d ] ,  {b E *R : c � b}, {b E *R :  b < c} 
etc. are internal, as are the sets 

for all N E *N. 

{1 , 2, . . . , N} ,  {O, � , � ,  . . . , NN1 , 1 } ,  

1 1 .8 The Underflow Principle 

This is the order-theoretic dual of the overflow principle of Theorem l l.4.1 , 
but its proof requires the additional reasoning power provided by the in
ternal set definition principle. 

Theorem 11.8. 1  Let X be an internal subset of *N, and let K E *N be 
unlimited. If every unlimited hypernatuml H � K belongs to X, then there 
is some k E N such that every limited n with k � n belongs to X. 

Proof For M, N E *N with M � N, let 

LM, NJ = {z E *N : M � z � N} 

be the interval in *N between M and N. Our hypothesis is that L H, K J � X 
for all unlimited hypernatural H � K. What we want to show is that 
L k, K J � X for some k E N. To put this more symbolically, we want to 
show that the set 

y = {k E *N : Lk, KJ � X} 
has a limited member. 

Now, if Y is internal, then by the internal least number principle it has a 
least element k, and such a k must belong to N, because if it were unlimited, 
then k - 1 would be unlimited, so by our hypothesis k - 1 would also be 
in Y but less than k. 

It thus suffices to show that Y is internal. But if cp(x, y, A) is the formula 

x E N 1\ x � y 1\ Vz E N  (x � z � y � z E A) , 

expressing "x  E N and L x, y J � A " ,  then by the internal set definition 
principle the set 

{k E *R : *cp(k, K, X)} 
= {k E *N : k � K and Vz E *N (k � z � K � z E X)} 

is internal. This set is just Y. 0 
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Show that underflow is equivalent to the following statement: 

If an internal subset X of *N contains arbitrarily large limited 
members, then it contains arbitrarily small unlimited members. 

Deduce that if A is any infinite subset of N, then *A contains arbitrarily 
small unlimited members. 

1 1 .9 Internal Sets and Permanence 

In Section 7. 10 it was shown that any property that is expressible by an 
.C!n-formula cp( x) and holds for all points infinitely close to a real number 
c must in fact hold for all points within some real distance of c. In other 
words, *cp cannot be true exactly of the members of the halo of c, and so 
hal( c) cannot be defined by the transform of any .C!n-formula. 

Now, the set B = {b E *� : *cp(b)} is internal, by the internal set defini
tion principle, so cannot be equal to hal(c) because the latter is external. 
Viewed in this way, the result of Section 7.10 is seen to be a manifestation 
of the fact that external sets are not internal. 

Similar observations hold for the overflow and underflow principles, which 
are related to the fact that an internal set cannot be equal to the external 
set N, and the "spillover" results of Exercise 11 .5 .2 and Section 11 .6, which 
relate to the fact that an internal set cannot be equal to n... In general then, 
we see that a permanence principle is typically a statement to the effect 
that a property that defines an internal set cannot hold just of the members 
of an external set like hal(r) , N, N - {1 ,  . . . , k}, *N - N, IL, etc. If such an 
internal property holds for all members of an external set E, then it must 
continue to hold throughout a larger internal set strictly containing E. 

Notice that universal transfer (Section 4.5) is a permanence assertion. It 
states that if a certain kind of property holds for all members of the external 
set �' then it must continue to hold throughout the internal extension *R 

Here now is a stronger version of the result of Section 7. 10, which gives 
:he promised extension to arbitrary hyperreal numbers. We will consider 
an even stronger form of the result in Section 15 .1 .  

Theorem 11 .9.1 If X is an internal subset of *� that contains all points 
that are infinitely close to b E *�, then there is a positive real e such that 
X contains all points that are within e of b. 

Proof Our hypothesis is that hal(b) � X. For k E *N, let (b - f ,  b + f) 
be the hyperreal interval 

{ z E *� : lz - b l < f }  . 
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Now, 
(b - l b + 1) c X k ' k -

whenever k is unlimited, because in this case fc is infinitesimal, and so 

(b - fc , b +  f ) � hal(b) � X  

by our hypothesis. Thus the set 

Y = { k E *N : (b - fc, b + fc )  � X }  

contains all unlimited members of *N. Hence by underflow we could con
clude that (b - fc, b + fc )  � X for some k E N, and thereby complete the 
proof by putting c = fc ,  provided that Y is internal. But applying internal 
set definition with c.p(x, y, A) as the formula 

X E N !\ (V z E JR.) ( I  z - y I < � --t z E A) 

(expressing "x E N and (y - � ,  y + �)  � A" ) shows that the set 

{k E *JR. : *c.p(k, b, X)} = {k E *N : (Vz E *JR.) ( lz - bi < fc --t z E X)} 

is internal, and this set is just Y. 

1 1 . 10 Saturation of Internal Sets 

0 

The internal sets form a very special collection whose members are related 
to each other in remarkable ways. For instance, it is impossible to con
struct a nested sequence of internal sets whose intersection is empty. This 
fact, which we now prove, is known as countable saturation. (The use of 
"saturation" is explained at the beginning of the next section. ) 

Theorem 11.10.1 The intersection of a decreasing sequence 

of nonempty internal sets is always nonempty : 

Proof. This is a delicate analysis of the ultrapower construction, involving 
a kind of diagonalisation argument, that is not easy to motivate intuitively. 

For each k E N, let Xk = [A�] , so that Xk is the internal set defined by 
the sequence (A� : n E N) of subsets of JR. Then by Section 11.2 the sets 
{n E N :  A� =/= 0} and {n E N :  A� ;2 A�+l } belong to :F. Hence if 

Jk = { n E N :  A� ;2 · · · 2 A� =/= 0} ,  
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then by closure of F under finite intersections it follows for each k E N that 
Jk E F. Note that J1 ::::2 J2 ::::2 • . . . 

We want to define a hyperreal [sn] that belongs to every Xk . This will 
require that for each k we have sn E A� for F-almost all n. We will arrange 
this to work for almost all n 2: k, in the sense that 

{ n E N : k :::; n} n Jk � { n E N : sn E A�}. (iii) 

But the set {n E N : k :::; n} is cofinite in N, and so belongs to the 
nonprincipal ultrafilter F. Since also Jk E F, (iii) then yields { n E N : 
Sn E A�} E F, and therefore (sn] E xk as desired. 

It thus remains to define Sn fulfilling (iii) . For n E J1 let 

kn = max{k :  k :::; n and n E Jk}. (iv) 

Then n E Jkn ,  so by the definition of Jkn we can choose some Sn E A�n , 
and hence 

(v) 

For n (j. J1 let sn be arbitrary. Now, to prove (iii) , observe that if k :::; n 
and n E Jk , then by (iv), k :::; kn , and so by (v) , Sn E A� . 

D 

Countable saturation has some important consequences for the nature of 
countable unions and intersections of internal sets: 

Corollary 11.10.2 If { Xn : n E N} is a collection of internal sets and X 
is internal, then: 

(1) nnENXn :f=. 0 if {Xn : n E N} has the finite intersection property. 

(2) If X �  UnENXn , then X � Un::;kXn for some k E N. 

(3) If nnENXn � X, then nn::;kXn � X  for some k E N. 

(4) If UnENXn is internal, then it is equal to Un::;kXn for some k E N. 

(5) If nnENXn is internal, then it is equal to nn::;kXn for some k E N. 

Proof. 

(1) Let yk = X1 n · · · n Xk . Then Y1 ::::2 Y2 ::::2 · · · , and each yk is internal 
by 1 1 .2(1) .  The finite intersection property implies that yk i= 0, so 
by the above theorem there is some hyperreal that belongs to every 
yk , and hence to every xk . 

(2) Suppose that for all k E N, X g Un::;kXn and hence 
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Then {X - Xn : n E N} is a collection of internal sets with the finite 
intersection property, so by ( 1 )  there is some x with 

X E nnEN(X - Xn) = X - (UnENXn) i 
hence X g UnENXn-

(3) Exercise. 

(4) Put X =  UnENXn in (2). 

(5) Similarly, from (3) . 0 
Result (4) of Corollary 11 . 10.2 plays a crucial role in the nonstandard 
approach to measure theory discussed in Chapter 16 ( cf. example 6 of 
Section 16. 1 and example 3 of Section 16.2) . 

Exercise 11 .10.3 
Show that the union of a strictly decreasing, or strictly increasing, sequence 
of internal sets is external. 

What is the corresponding result about intersections of internal sets? 

1 1 . 1 1  Saturation Creates Nonstandard Entities 

The use of the term "saturation" is intended to convey that *.JR is "full 
of elements" . Countable saturation legislates into existence those elements 
that can be characterised as belonging to the intersection of a decreasing 
sequence of internal sets. For example, if we take Xn to be the hyperreal 
interval (0, *) ,  then (Xn : n E N) is a decreasing sequence of nonempty · 
internal sets. Its (nonempty) intersection nnENXn is precisely the set of 
positive infinitesimals. 

Exercise 11 .11 .1  
Use countable saturation to infer the existence of positive unlimited and 
negative unlimited members of *.JR. 0 

Another interesting consequence of saturation is the property that 

• every sequence of infinitesimals has an infinitesimal upper bound. 
To see this, take (en : n E N) with en � 0 for all n E N. If Xn is the 
internal hyperreal interval [en , * ) ,  then the collection {Xn : n E N} has the 
finite intersection property. For in general, if c is the maximum element of 
{en1 , • • •  , cnk }, then 

e E [en1 , ; ) n · · · n [enk ' ;J . 

But any member of nnENXn is an upper bound of the Cn 's that is smaller 
than * for all n E N, and hence is infinitesimal. 

Dually, we can use saturation to show that 
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• every sequence (sn : n E N) of unlimited hypernatural numbers has 
an unlimited hypernatural lower bound, 

by considering the internal intervals Xn = (n, sn] · In this case if x belongs 
to nnENXn , then X is a positive unlimited lower bound of the Sn 's. But 
then (by transfer) we can take a member of *N between x - 1 and x to 
get an unlimited hypernatural number that is less that Sn for all n E N. 
(Alternatively, put Xn = (n, Sn] n *N in this argument. )  

Exercise 11.11 .2 
Show that the two properties 

• every sequence of infinitesimals has an infinitesimal upper bound, 

• every sequence of unlimited hypernatural numbers has an unlimited 
hypernatural lower bound, 

imply each other without using saturation. 0 

We will consider this property from another perspective at the end of Sec
tion 15.4. 

1 1 . 12 The Size of an Internal Set 

Countable saturation implies that *JR has so many elements that any big 
internal set is very big. Such a set cannot be countably infinite: 

• Every internal set is either finite or uncountable. 

We already have an argument for this in the case of subsets of JR: any in
ternal set of reals must be finite. In proving this in Section 11 .7 we showed 
in effect that an internal subset of lR cannot be put in one-to-one corre
spondence with N. But now we can demonstrate this for any internal set 
whatsoever. 

To see why this is so, let X = { Xn : n E N} be a countable internal set. 
We remove all the points from X in turn, by defining for each n the set 
Xn = X - {x1 , . . .  , xn} ,  which is internal. But the Xn's form a decreasing 
sequence, so if they were all nonempty, countable saturation would imply 
that their intersection would be nonempty, which is false. We must therefore 
conclude that there is an n for which Xn = 0 and so X =  {x1 , . . .  , xn} · 

This shows that any countable internal set must be finite. Hence an 
infinite internal set must be uncountable. 

This observation has an interesting bearing on the structure of the set *N 
of hypernatural numbers (Section 5.10). If N is an unlimited hypernatural, 
then the initial segment {1 , 2,  . . . , N} of *N is internal, and is certainly 
infinite, since it includes all of N, so is uncountable. It follows that there 
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must be uncountably many unlimited members of *N that are less than 
N. The set of all unlimited hypernaturals is partitioned into *N-galaxies , 
each of which looks like a copy of Z. If N is unlimited, then there are 
uncountably many of these *N-galaxies between N and N. 

1 1 . 13 Closure of the Shadow of an Internal Set 

For any X � *JR, let 

sh(X) = {sh(x) : x E X  and x is limited} . 

For example, if X is an interval (a, b) in *JR, then if a, b are limited, sh(X ) is 
the closed interval [sh(a) , sh(b)] in R, while if a is limited but b unlimited, 
then sh(X) = [sh(a) , +oo) � R, again a topologically closed subset of R 

Theorem 11.13.1 If X is internal, then sh(X ) is closed. 

Proof Let r E lR be a closure point of sh(X) . We need to show that 
r E sh( X) , i.e. , r is the shadow of some y E X. 

Now, for each n E N,  the hyperreal open interval ( r - � ,  r + �) meets 
sh(X) in some real point sn that must be the shadow of some Xn E X. 
Hence Xn � Sn E ( r - � ,  r + �) ,  so the internal set 

X = X n (r - 1 r + 1) n n ' n 

contains Xn and is thereby nonempty . The Xn's form a decreasing se
quence, so by countable saturation there is a point y in their intersec
tion. Then y E X and IY - r i < � for all n E N, so y � r. Hence 
r = sh (y) E sh(X) . 

This shows that sh(X) contains all its closure points and so is closed. 0 

Topological closure of the shadow of an internal set plays an important 
role in the hyperreal "reconstruction" of Lebesgue measure. This will be 
explained in Chapter 16 (cf. the proof of Theorem 16.8.2) . 

Exercise 11.13.2 
Apply the internal set definition principle to show that if X is internal, 
then for any hyperreal number r the set 

{n E *N :  X n (r - � '  r + �) � 0} 

is internal. Use this fact together with overflow to give an alternative proof 
of Theorem 1 1 . 13 . 1  that does not appeal to countable saturation. D 

The connection between countable saturation and overflow indicated by 
this last exercise will emerge again in Chapter 15 ( cf. the proof of Theorem 
15.4.2) . 
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1 1 . 14 Interval Topology and Hyper-Open Sets 

In Section 10.5 we introduced the following notions: 

• A set A of hyperreals is interval-open if each of its points belongs 
to some hyperreal open interval (a, b) that is included in A. Thus 
the interval-open sets are precisely those that are unions of hyperreal 
open intervals. The class of interval-open sets is the interval topology 
on *JR.. 

• A real-open set, on the other hand, is one that is a union of hyperreal 
open neighbourhoods (r - c, r + c) having real radius c. Equivalently, 
a real-open set is a union of hyperreal open intervals of appreciable 
length. Each real-open set is interval-open, but not conversely: the 
real-open sets are not a topology on *JR., since they are not closed 
under intersection. 

• An S-open set is a union of S-neighbourhoods (( r - c, r + c)) having 
real radius c, where 

(( r - c, r + c)) = { x E *1R : hal( x) � ( r - c, r + c) } . 

The S-open sets form the S-topology on *JR.. Every S-open set is real
open, but not conversely. Every S-open set is a union of halos, but 
not conversely. 

The example of the set 

1L = UnEN( -n, n) 

of limited numbers shows that while a real-open set is always a union of 
internal sets (namely, open intervals) , it may itself be external. 

\Ve now introduce a further class of subsets of *JR.: an internal set [An] will 
be called hyper-open if 

{ n E N : An is open in �} E F. 

Each hyperreal interval (a, b) is hyper-open, as we saw in Section 11 . 1 :  if 
a =  [an] and b = [bn] , then (a, b) is the internal set defined by the sequence 
An : n E N) , where An is the real interval (an , bn) , which is indeed open 

:.n JR.  

Lemma 11.14.1 Every hyper-open set is a union of hyperreal open inter
�·als. 

Proof. Let A =  [An] be hyper-open. Take a point r = [rn] in A. Then we 
:ind that the set 

J = { n E N : r n E An and An is open in JR.} 



144 11 .  Internal and External Sets 

belongs to the ultrafilter :F. Our task is to show that r belongs to some 
hyperreal interval (a, b) that is included in A. 

Now, if n E J, then there is some real interval (an, bn ) � IR with 

Since J E :F, this is enough to specify a as the hyperreal number [an] and 
b as [bn] · Working with the properties of :F, in a now familiar way, we can 
then show that [an] < [rn] < [bn ] ,  and also that [sn] E [An] whenever 
[an] < [sn] < [bn] , so that 

r E (a, b) � A 

as desired. 0 
This lemma implies that every hyper-open set is interval-open. But there 

are interval-open sets, like the set IL of limited numbers, that are not hyper
open, simply because they are external, whereas hyper-open sets are always 
internal by definition. The example of IL shows that the class of hyper
open sets is not a topology, because it is not closed under infinite unions. 
Instead, it is what is known as a base for the interval topology, because 
every interval-open set is a union of hyper-open sets (open intervals) . 

Exercise 11 .14.2 
Show that the class of hyper-open sets is closed under finite unions. 0 

However, for internal sets, hyper-openness does prove to be equivalent to 
interval-openness: 

Exercise 11 .14.3 
If A = [An] is an internal set , let B = [Bn], where Bn is the interior of 
An in IR (cf. Section 10. 1 ) .  Show that B is interval-open, and is in fact the 
interior of A in the interval topology, i.e. , B is the union of all interval-open 
subsets of A. 

Deduce from this that an internal set is interval-open iff it is hyper-open. 
D 

The classes of real-open sets and hyper-open sets are incomparable: L 
is real-open (indeed S-open) but not hyper-open, while any infinitesimal
length open interval is hyper-open but not real-open. This latter example 
shows that even for internal sets the two classes remain distinguishable. 

There is a characterisation of S-openness of internal sets that corresponds 
to the nonstandard characterisation of openness of subsets of �' and in
volves an interesting application of underflow: 

Theorem 11.14.4 If B is an internal set, then B is S-open if and only if 
it contains the halo of each of its points. 

Proof We have already observed that an S-open set is a union of halos. 
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Conversely, assume that hal( r) � B whenever r E B. For such an r, 
consider the set 

X = { n E *N : (Vx E *IR) ( ir - xi < � --+ x E B)} .  

Since B is internal, it follows by the internal set definition principle that 
X is internal. Moreover, since hal( r) � B, it follows that X contains every 
unlimited hypernatural n, because for such an n, ir - x i  < � implies x E 
hal(r) . Hence by underflow, X must contain some standard n E N, so B 
includes the real-radius interval (r - �,  r + � ) . But then since � is real, 

r E 1(r - .!.. r + .!.. )� C (r - .!.. r + .!.. ) C B. � n ' n 'J - n ' n -

This shows that B is the union of S-neighbourhoods, and is thereby S-open. 
0 





1 2  
Internal Functions and Hyperfinite 
Sets 

The method used to construct an internal subset of *IR out of a sequence of 
subsets of lR will now be adapted to build hyperreal-valued functions out 
of sequences of real-valued functions. 

12 . 1  Internal Functions 

Let Un : n E N) be a sequence of functions fn : An ---+ IR, with domains An 
included in R Then a *JR-valued function [fn] is defined on the internal set 
[An] by putting 

Observe that if [rn] E [An] , then the set J = {n E N :  rn E An} belongs to 
F, and for each n E J, fn (rn) is defined. This is enough to make [fn] ( [rn]) 
well-defined. We have 

dom [fn] = [dom fn] · 
Functions f : X ---+ *JR that are obtained by this construction are called 
internal. In the case that Un) is a constant sequence, with fn = f : A ---+ lR 
for all n, then (f n] is just the function * f : *A ---+ *JR extending f, as defined 
in Section 3. 13. 

The following result shows that we only need to specify almost all of the 
real functions fn in order to determine the internal function [fn] · 

Theorem 12. 1 .1 Let Un : n E N) and (gn : n E N) be sequences of partial 
functions from lR to JR. Then the internal functions [fn] and [gn] are equal 
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if and only if 
{n E N :  fn = gn} E :F. 

Proof. Let Jfg = {n E N : fn = gn} ,  and suppose Jfg E :F. Now in 
general, two functions are equal precisely when they have the same domain 
and assign the same values to all members of that domain. Thus 

Jfg � {n E N :  dom fn = dom gn} ,  

leading by 11 .2(3) to the conclusion that the internal sets [dom f�] and 
[dom gn) are equal, i.e. , dom (fn] = dom (gn] · But for [rn] E dom [fnJ , 

which leads to [fn] ( [rn] )  = [gn) ( [rn] ) .  Hence [fn] = [9n] · 
For the converse, suppose that Jfg � :F. Now, Jjg is a subset of the 

union 

{n E N :  dom fn f dom gn} U {n E N :  domfn = dom gn but fn f 9n} ,  

so either {n : dom fn f dom gn}  E :F, whence dom [fn] f dom [gn] and so 
[fn] f [gn] ,  or else 

J = {n E N :  dom fn = domgn but fn f gn} E :F. 

But for n E J there exists some rn with fn (rn) f gn (rn) ·  This leads to 
[fn] ( [rn] )  f [gn] ( [rn] ) ,  and SO [fn] f [gn] ·  D 

12 .2  Exercises on Properties of Internal Functions 

(1) The image of an internal set under an internal function is internal: 
if f =  [fn] is an internal function, and A =  [An] is any internal subset 
of dom f, then the image set 

f(A) = {f(a) : a E A} 

is in fact the internal set [f n (An)] . 

(2) The inverse image of an internal set under an internal function is 
internal: if f = [fn] is an internal function, and B = [Bn] is an 
internal set, then the inverse-image set 

f-1 (B) = {a E dom f : f(a) E B} 

is the internal set [f; 1 ( Bn) ] .  
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(3) The composition of internal functions is internal: if f and g are inter
nal functions, with the range of f included in the domain of g, then 
g o f is an internal function. 

(4) An internal function (fn] is injective iff {n E N :  fn is injective} E :F. 

(5) The inverse of an internal function is internal: if [fn] is injective, 
then [fnt 1 is the internal function [f,-;-1] (which is well-defined by 
the previous exercise and Theorem 12. 1 . 1 ) .  

(6 )  If f and g are internal functions (with the same domain) , then so are 
the functions f + g, f · g, and cf for any hyperreal c. 

(7) Let f be an internal function that takes only infinitesimal values: 
f(x) � 0 whenever f(x) is defined. Show that the range {f(x) : x E 
dom f} of f has an infinitesimal least upper bound. 

(8) Give an alternative proof that every infinite subset of lR is exter
nal (Section 11 .7) , by using Exercise 1 in place of the internal set 
definition principle. 

12 .3  Hyperfini te Sets 

If An is finite for (almost) all n E N, then [An] may nevertheless be infinite 
(and then in fact uncountable!) but will have many properties that are 
similar to those of finite sets. Thus an internal set A = [An] is called 
hyperfinite if almost all An's are finite, i.e. , if 

{n E N :  An is finite} E :F. 

In that case, by 11 .2(3) we may as well assume that all An 's are finite and 
have finite integer size JAn l ·  The internal cardinality (or size) of A is then 
defined to be the hyperinteger 

IAI = [ ( JAn l :  n E N) ] . 

(More succinctly, I [An] I = [ IAn J ] . )  For example: 

• Let An = {1 ,  . . .  , n} � N. The resulting hyperfinite set A includes N. 
Being internal, it must therefore be an uncountable subset of *N. To 
see that N � A, observe that if m E N, then the set { n E N : m E An} 
is co finite, being equal to { m, m + 1 ,  . . .  } , so belongs to :F. Hence 
*m E A. 

• Refining the previous example, we see that if B is any countable 
subset of JR, then there exists a hyperfinite set A with B � A � *B. 
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For if B = {xn : n E N}, let A =  [An] where An = {xi , . . .  , Xn} · In 
this case the internal size of A is w = [ ( 1 ,  2 , 3, . . .  ) ] .  
Later we will see that the restriction to countability here can be 
removed: any subset B of lR has a "hyperfinite approximation" A 
satisfying B � A �  *B (cf. Sections 14. 1 and 14.2) . 

• Any finite set of hyperreals is hyperfinite: as observed in Section 1 1 . 1 ,  
if X = { [r;] , . . .  , [r�l } � *JR, then X is the hyperfinite set [An] , where 
An = {r; , . . .  , r�} .  

• If N = [Nn] E *N, then the set 

{k E *N : k ::;  N} = {1 ,  2, . . .  , N} 

discussed in Section 1 1 . 1  is hyperfinite and has internal cardinality N, 
since it is equal to [An] , where An = {1 ,  2, . . .  , Nn} and IAn l = Nn . 

• If N = [Nn] E *N, then the set 

{ k * } { 1 2 N - 1 } 
N : k E Z and 0 ::; k ::; N = 0, N , N , . . .  , N 

, 1 

is hyperfinite of internal cardinality N + 1 ,  since it is equal to [An], 
where { 1 2 Nn - 1 } 

An = 0, Nn ' Nn ' ' ' ' ' Nn 
, 1  . 

• The last example is a special case of the fact that for any hyperreals 
a, b, and any N E *N, the uniform partition 

{a + k ( b ; a) : k E *Z and 0 ::; k ::; N} 
is hyperfinite of internal cardinality N + 1 .  

12 .4 Exercises on Hyperfiniteness 

(1) Any hyperfinite set has a greatest and a least element. 

(2) The union and intersection of any two hyperfinite sets X and Y are 
hyperfinite, with 

IX u Yl = lX I + IY I - IX n YI . 

(3) Any internal subset of a hyperfinite set is hyperfinite. 
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12 .5  Counting a Hyperfinite Set 

The above results are indicative of ways in which hyperfinite sets behave 
like finite sets. More fundamentally, a finite set can be defined as one that 
has n elements for some n E N, and so is in bijective correspondence with 
the set {1 ,  . . .  , n}. Correspondingly, for hyperfinite sets we have 

Theorem 12.5 .1  An internal set A is hyperfinite with internal cardinality 
N if and only if there is an internal bijection f :  {1 ,  . . .  , N} � A. 

Proof Let A = [An] · If A is hyperfinite with internal cardinality N = 
[Nn] , then we may suppose that for each n E N, An is a finite set of 
cardinality Nn. Thus there is a bijection In : { 1 ,  . . .  , Nn} � An . Let f = 
[fn] · Then f is an internal function with domain {1 ,  . . .  , N} that is injective 
( 12 .2(4)) and has range A (12.2(1) ) . 

Conversely, suppose that f = [/n] is an internal bijection from {1 ,  . . .  , N} 
onto A. Then 

[dom fn] = dom [/n] = { 1 ,  . . .  , N} = [{1 ,  . . .  , Nn}J , 

so for F-almost all n, 

dom fn = {1 ,  . . .  , Nn} · (i) 

Also, as A is the image of {1 ,  . . .  , N} under [fn ] ,  Exercise 12.2(1) implies 
that A =  [fn (  {1 ,  . . .  , Nn} )] , SO 

(ii) 

for F-almost all n. Finally, by 12.2(4) , 

In is injective (iii) 

for .1'-almost all n. Then the set J of those n E N satisfying (i)-(iii) must 
belong to .1'. But for n E J, An is finite of cardinality Nn . Hence A is 
hyperfinite of internal cardinality N. 

D 
An important feature of this result is that it gives a characterisation of 
hyperfinite sets that makes no reference to the ultrafilter .1', but requires 
only the hypernatural numbers *N and the notion of an internal function. 
This approach will be revisited in Section 13. 17. 

12 .6 Hyperfinite Pigeonhole Principle 

One classical way to distinguish the finite from the infinite is to characterise 
the infinite sets as those that are equinumerous with a proper subset of 
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themselves. Thus A is infinite iff there is an injection f :  A ---+ A whose range 
f(A) is a proper subset of A. Equivalently, A is finite iff every injection 
f : A ---+ A mapping A into itself is surjective, i.e., has f(A) = A (this 
latter statement is known as the pigeonhole principle) .  Correspondingly, 
we have the following characterisation of hyperfiniteness. 

Theorem 12.6.1 An internal set A = [An] is hyperfinite if and only if 
every injective internal function f whose domain includes A and has 
f(A) � A must in fact have f(A) = A. 

Proof Suppose A is hyperfinite. Let f [fn] be an internal injective 
function with A � dom f and f (A) � A. Then each of the following is true 
for F-almost all n E .N: 

An is finite, 

An � dom fn , 

fn (An) � An , 
f n is injective. 

cf. 12 .2(1) , 1 1 .2(2) 

Thus the set J of those n E .N satisfying all of these conditions must belong 
to F. But 

J � { n E N : f n (An ) = An } 

by the standard pigeonhole principle, and so f(A) = [fn (An )] = [An] = A. 
For the converse, suppose A is not hyperfinite. It follows that 

J' = {n E N :  An is infinite} E F. 

But for each n E J' there is an injective function fn : An ---+ An and some 
Tn E An - fn (An) · Let f = [fnl · This makes f an internal function with 
domain A that is injective ( 12.2(4)) and has f(A) = [fn (An)] � A , while 
[rn] E A - f(A) and so f(A) f. A. - 0 

Here now is an example of a noninternal function: 

f(n) = { �n if n E N, 
if n rf. N. 

This function maps the internal set *N injectively into, but not onto, itself. 
Hence by the hyperfinite pigeonhole principle (Theorem 12.6. 1 ) ,  f cannot 
be internal. 

12 .7  Integrals as Hyperfinite Sums 

The operation of forming the sum of finitely many numbers can be ex
tended to hyperfinitely many. More generally, we can define the sum over 
a hyperfinite set of the values of an internal function. 
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To see this, if X is a finite set, let the symbol 

LxEX g(x) 

denote the sum of the members of {g(x) : x E X}. Then if A = [An] is 
a hyperfinite set included in the domain of an internal function f = [fn] , 
define LxEA f(x) to be the hyperreal number [rn] given by 

Tn = LxEAn fn (x) . 

This makes sense because for F-almost all n we have An a finite subset of 
dom fn· Thus 

LxE[An] [fn] (x) = [ LxEAn fn (x)] · 
This operation has many of the properties familiar from finite summations: 
if J, g are internal functions, A, B are hyperfinite sets, and c E *JR., then: 

• LxEA cf(x) = C (LxEA f(x)) . 

• LxEA f(x) + g(x) = LxEA f(x) + LxEA g(x). 

• LxEAUB f(x) = LxEA f(x) + LxEB f(x) if A and B are disjoint. 

• LxEA f(x) � LxEA g(x) if f(x) � g(x) on A. 

These are analogues of familiar properties of integrals ( cf. Section 9.3). We 
will now see that standard integrals can be realised as hyperfinite Riemann 
sums over hyperfinite partitions. 

Let f : [a, b] --+ JR.  be an integrable function on the closed interval [a, b] � 
R Take a positive infinitesimal L:lx = [c:n] ·  Then for each n E N we inay 
assume that C:n is a positive real number less than b - a .  Let Pn U {b} be 
the finite partition of [a, b] into subintervals of width C:n- Thus if Pn is of 
size Nn, we have the description 

Pn = {a +  kc:n :  k E Z and 0 � k < Nn} · 

Let P be the hyperfinite set [Pn] , of internal size N = [Nn] E *N. Then in 
fact, 

P = {a +  k.Llx : k E *Z and 0 � k < N}, 

so PU {b} is a hyperfinite partition of [a, b] into subintervals of infinitesimal 
width L:lx. 

Now, the original function f lifts to the internal function [fn] : * [a, b] --+ 

*JR. determined by the constant sequence of functions f n = f. We continue 
to use the symbol "!" for this extended function. Its domain includes P, 
so the hyperfinite sum LxEP f (x) is specified as the hyperreal number 

[ (LxEP1 f(x), LxEP2 f(x) , · · . )  ] · 
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Thus 

LxEP f(x) = [ LxEPn f(x) ] · 

The ordinary Riemann sum for the real partition Pn U {b} was defined in 
Section 9 .1  as the number 

But the sequence of numbers (S�(f, en )  : n E N) determines a hyperreal, 
which by definition is the extension of the function s� (!, -) to the hyperreal 
[en] = Llx: 

Thus we calculate 

S�(f, Llx) = [S� (f, en)] . 

S� (f, Llx) [(LxEPn f(x)) en] 

[LxEPn f(x)] [en] 

(LxEP f(x)) Llx 
LxEP f(x)Llx, 

showing that the hyperreal number s� (!, Llx) ' defined formally by the ex
tension process of Section 3 .13, can be viewed as the (extended) ordinary 
Riemann sum of the hyperfinite partition P. 

Finally, from the analysis in Section 9.2 of the Riemann integral as a 
shadow of Riemann sums we get that for any positive infinitesimal Llx, 

1b f(x)dx = sh (S�(f, Llx)) = sh (LxEP f(x)Llx) . 

Exercise 12.7.1 
Verify that each member of the hyperfinite set P has the form a +  kLlx for 
some nonnegative hyperinteger k < N. 



Part IV 

Nonstandard Framew-orks 





1 3  
Universes and Frameworks 

The discussion of internal sets and functions in the previous two chapters 
raises some fundamental conceptual issues: 

• In proving internal versions of induction, the least number principle, 
order-completeness, etc., we reverted once more to ultrafilter calcu
lations. Could we instead obtain these results by a logical transfer 
principle, involving an extended version of the formal language of 
Chapter 4? A limited extension of this kind is provided by the state
ment (t) of Section 11 .7, but perhaps this can be taken further by 
using a more powerfully expressive language that would allow the 
quantifiers V, .:3 to range over collections of sets or functions rather 
than just collections of numbers ( cf. Section 4. 7.) 

• Now that we see how to identify certain subsets and mnctfonfi in 
*JR as being internal, can we do the same for other more complex 
entities? Are there internal topologies on *JR? Or internal measures? 
If A � *� is hyperfinite of internal cardinality N 1 does it follow 
that the power set of A is hyperfinite of cardinality 2N? Or is it the 
collection of internal subsets of A that should be hyperfinite? This 
would seem to require the notion of an internal function of the type 
{ 1 ,  . . .  , 2N } -:-+ P(A). 

It is time in fact to consider just how widely the methodology we have been 
developing can be applied. To address this we will work with the entire set

theoretic universe that can be erected on a set like � by forming sets of 
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sets, sets of sets of sets, etc. ,  and then consider how this universe may 
be "enlarged" to admit nonstandard entities, by analogy with the enlarge
ment of JR. to *JR.. Ultimately this will provide a framework that allows the 
methodology of nonstandard analysis to be applied to any kind of math
ematical structure (function spaces, measure spaces, infinite-dimensional 
Hilbert spaces, . . .  ) .  It will also cause us to review what we have been 
doing so far from a more abstract set-theoretic standpoint. 

13. 1 What Do We Need in the Mathematical 
World? 

In developing a mathematical theory, or analysing a particular structure, 
access may be needed to a wide range of entities: sets, members of sets, 
sequences, relations, functions, etc. We will posit the existence of a "uni
verse" 1IJ that contains all such entities that might be required. This will 
have an associated formal language .Cu whose sentences express properties 
of the members of 1IJ. Then 1IJ will be enlarged to another universe *1U that 
contains certain new (nonstandard) entities whose behaviour can be used 
to establish results about 1U by the use of transfer and other principles. 

Here now is some more detailed discussion about the entities and closure 
properties that 1U should have. 

• Individuals. Although a real number might be viewed as a set of 
Cauchy sequences, or a pair of sets of rationals (Section i.3) , when 
studying real analysis we generally regard real numbers as individu
als, i.e. , as "points" or entities that have no internal structure. The 
same applies to the basic elements of any other structure that might 
concern us, be they elements of an algebraic number field, complex 
numbers, vectors in some Hilbert space, and so on. 

The universe 1U will contain a set X of entities that are viewed as 
individuals in this way. An element of X will be taken to have no 
members within 1U. It will be assumed that JR. �  X. 

• Functions. If two sets A and B belong to 1U, then we may wish to 
have all functions f : A �  B available in 1U, along with the range of 
j, the !-image f(C) � B of any C � A, and the inverse image of any 
subset of B under f. Moreover, the set BA of all functions from A to 
B should itself be in 1U. 
Also, we should be able to compose functions in 1U. 

• Relations. An m-ary relation is a set of m-tuples (a1 , . . .  , am) ,  and 
is usually presented as a subset of some Cartesian product A1 x 
· · · x Am, the latter being the set of all such m-tuples that have 
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a1 E A1 , . . .  , am E Am· Thus 1U should be closed under the formation 
of tuples, and of Cartesian products and their subsets. 

For binary relations ( m = 2) the domain and range should be avail
able, and the operations of composing and inverting relations should 
be possible within our universe. 

• Set Operations. All the usual set operations of intersection A n B, 
union A U  B, difference A - B, and power set P(A) , when performed 
on sets in 1U, should produce entities that belong to 1U. In fact, some 
important constructions will require the union UY and intersection 
nY of any (possibly infinite) collection y E u to be available. Also, 
if a set A belongs to 1U, then all subsets of A should too. 

• Transitivity. If a set A is in 1U, we will want all members. of A to 
be present in U as well, i.e. , A � \U. This condition is usually called 
transitivity of U, because it takes the form 

a E A E lU implies a E U. 

This has an important bearing on the interpretation of a bounded 
quantifier (Vx E A) . We naturally read this as "for all x in A" , but 
when used to express a property of an entity of U, there is a potential 
issue as to whether this means "for all x in A that belong to U" , or 
whether the variable x is ranging over all members of A absolutely. 
When lU is transitive, this is not an issue: the members of A that be
long to lU are simply all the members of A that there are. Transitivity 
thus ensures that quantified variables always range over members of 
lU when given their natural interpretation. 

Subset and Relation Closure 

Transitivity of lU together �ith closure under the power set operation will 
guarantee that lU has the property mentioned above of closure under subsets 
of its members. For then if A �  B E 1U, we get A E P(B) E U, and hence 
A E 1U by transitivity. 

Then closure of lU under Cartesian products will lead to closure under 
relations between given sets in general. Thus if A, B are sets in 1U and 
R .� A x  B, then if A x  B E  U, it follows that R E 1U by the argument just 
given for subset closure. 

13.2 Pairs Are Enough 

The more we assume about the entities that exist and constructions that 
can be performed within 1U, the more powerful will be this universe as a 
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tool for applications. On the other hand, for demonstrating properties of 
1I.J itself or showing that it exists (and *'[] does too) , it is desirable to have 
very few primitive concepts, so that we can minimize the number of cases 
and the amount and complexity of work required in carrying out proofs. 

Studies of the foundations of mathematics have shown that these op
posing tendencies can be effectively balanced by basing our conceptual 
framework on set theory. To see this we will first show that apart from 
purely set-theoretic operations, the other notions just described in Section 
13.1 can be reduced to the construction of sets of ordered pairs: 

• Functions. A function f : A ---+ B can be identified with the set of 
pairs 

{ (a, b) : b = j(a) } ,  

which is a subset of the Cartesian product set Ax B.  Set-theoretically, 
we define a function from A to B to be a set f of pairs satisfying 

(i) if (a, b) E f then a E A and b E B; 
(ii) if (a, b) , (a, c) E j, then b = c (functionality) ; 

(iii) for each a E A there exists b E  B with (a, b) E f (the domain of 
f is A). 

• m-Tuples. Given a construction for ordered pairs (2-tuples) , the case 
m > 2 can be handled by defining 

(ab . . .  , am) = { (1 ,  a1) ,  . . .  , (m, am)} .  

Thus an m-tuple becomes a set of ordered pairs (and actually is a 
function with domain { 1 ,  . . .  , m}) .  

Note: an alternative approach would be to inductively put 

(al , · · ·  , am+! ) =  ((al , · . .  , am) , am+l ) ,  

so that an m-tuple beomes a pair of pairs of · · ·  of pairs. This works 
just as well, but would be more complex set-theoretically than the 
definition given. 

• Relations. An m-ary relation is a set of m-tuples (a1 , . . .  , am) ,  and 
hence becomes a set of sets of ordered pairs. The Cartesian product 
A1 x · · · x Am is a particular case of this, being the set of all such 
m-tuples that have a1 E A1, . . . , am E Am. 

13 .3 Actually, Sets Are Enough 

But what is an ordered pair? Well, one of the most effective ways to explain 
a mathematical concept is to give an account of when two instances of the 
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concept are equal, and for ordered pairs the condition is that 

(a, b) = (c, d) iff a =  c and b = d. 

In fact, this condition is all that is ever needed in handling pairs, and it 
can be fulfilled by putting 

(a, b) = { {a} , {a, b} } . 

In this way pairs are represented as certain sets, and therefore so too are m
tuples, relations, and functions. When it comes to the study of a particular 
structure whose elements belong to some given set X, all the entities we 
need can be obtained by applying set theory to X. This demonstrates the 
power and elegance of set theory, and explains the sense in which it provides 
a foundation for mathematics. 

Exercise 13.3. 1 

(i) Verify that { {a} , {a, b} } = { {c}, {c, d} } iff a =  c and b = d. 

(ii) Show that for m 2: 2, 

Product Closure 

Closure of 1U under Cartesian products can now be derived set-theoretically 
from transitivity and closure under unions and power sets. If A, B E 1U and 
(a, b) E A x  B, then both {a} and {a, b} are subsets of A U B, i.e. , members 
of P(A U B). Hence 

(a, b) = { {a}, {a, b} } E PP(A U B) .  

This shows that Ax  B � PP(AUB),  and so Ax  B E  PPP(AuB) .  Closure 
under U and P and transitivity of 1U then give A x B E 1U. 

13.4 Strong Transitivity 

Before giving the axioms for a universe, there is a further important prop
erty to be explained, which we do with the following example. 

If a binary relation R belongs to 1U, then its domain dom R should be 
available in U as well. Now, if a E dom R, then there is some entity b 
with (a, b) E R. According to our new definition of pairs, we then have the 
"membership chain" 

a E {a} E (a, b) E R E  1U. 
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Transitivity of lU will ensure that it is closed downwards under such mem
bership chains, giving a E U. But this leads only to the conclusion that 
dom R � U, whereas we want dom R E U Is dom R perhaps too "big" to 
be an element of U? 

Now, if R itself were transitive, we would get a E R, showing dom R � 
R E U, from which our desired conclusion would result by subset closure. 
But of course R need not be transitive. On the other hand, it is reasonable 
to suppose that R can be extended to a transitive set B that belongs to lU 
(i.e. , R � B E U). Then we can reason that dom R � B E U, leading to 
dom R E U, as desired, by subset closure. 

The justification for this is that any set A has a transitive closure Tr(A) , 
whose members are precisely the members of members of · · ·  of members 
of A. Tr(A) is the smallest transitive set that includes A: any transitive 
set including A will include Tr(A) . We are going to require that lU be "big 
enough" to have room for the transitive closure of any set A E lU. For this 
to hold it is enough that some transitive set including A belong to lU. Thus 
our requirement is 

• Strong Transitivity: for any set A in lU there exists a transitive 
set B E  lU with A �  B � U. 

Note that the stipulation that B � lU is superfluous if lU is transitive, since 
it then follows from B E U. But the definition of strong transitivity itself 
implies that lU is transitive (since we get A � lU when A E lU because 
A � B � U) , so this single statement captures all that is needed. 

In a strongly transitive lU we can assume that any set we are dealing 
with is located within a large transitive set. This will be the "key to the 
universe" , as will become apparent. 

13 .5  Universes 

In the light of the foregoing discussion, we now define a universe to be any 
strongly transitive set lU such that 

• if a, b E  U, then {a, b} E U; 

• if A and B are sets in U, then A U  B E  U; 

• if A is a set in U, then P(A) E lU. 

Such a lU will be called a universe over X if X is a set that belongs to U 
(X E lU) , and the members of X are regarded as individuals that are not 
sets and have no members: 

(Vx E X) [x # 0 A (Vy E lU) (y � x)] . 
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It will always be assumed further that a universe contains at least one 
set, and also contains the positive integers 1 ,  2, . . . to ensure that m-tuple 
formation can be carried out. In practice we will be using universes that 
have � E ll.J, with each member of � being an individual, so these conditions 
will hold. 

Here now is a list of the main closure properties of such universes, many 
of which have been indicated already. Uppercase letters A, B, Ai , etc. are 
reserved for members of liJ that are sets. 

Set Theory 

• If a E ll.J, then {a} E liJ. 

• A1, . . .  , Am E liJ implies A1 U · · · U Am E liJ. 

• liJ contains all its finite subsets: if A � li.J and A is finite, then A E liJ. 

• A � B E liJ implies A E liJ. 

• 0 E ll.J. 

• If { Ai : i E I} � A E ll.J, then UiEJAi E liJ. (Note: this uses strong 
transitivity. ) 

• liJ is closed under unions of sets of sets: if B = { Ai : i E I} E li.J and 
each Ai is a set, then UB = uiEJAi E 1U. 

• li.J is closed under arbitrary intersections: if { Ai : i E J} � ll.J, then 
niEJAi E liJ, whether or not the set {Ai : i E /} itself belongs to liJ. 

Relations and Functions 

• If a, b E  ll.J, then (a, b) E ll.J. 

• If A, B E li.J and R � A x  B, then R E ll.J. 

• If ab . . .  , am E li.J (m > 2), then (a1 , . . .  , am) E ll.J. 

• 1U is closed under finitary relations: if A1 , . . .  , Am E liJ and R C 
A1 X · · · X Am, then R E lU. 

• If R E 1U is a binary relation, then liJ contains the domain dom R, the 
range ran R, the R-image R' (C) of any C � dom R, and the inverse 
R-1 , where 

dom R {a : 3b ((a, b) E R)} ,  
ran R - {b : 3a ( (a, b) E R)} ,  
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R' (C) {b : 3a E C ( (a, b) E R) } ,  

R-1 - { (b, a) : (a, b) E R} . 

• If R, S E 1IJ are binary relations, then 1IJ contains their composition 

R o S = { (a, c) : 3b( (a, b) E R and (b, c) E S) }. 

• If f : A ----7 B is a function with A, B E 1U, then f E 1IJ. Moreover, for 
any C � A and D � B, 1IJ contains the image 

j'(C) = {f(a) : a E C} 

and the inverse image 

j-1 (D) = {a E A :  f(a) E D}. 

• If A, B E 1U, then the set BA of all functions from A to B belongs to 
1IJ. 

• If {Ai : i E J} E 1IJ and I E  1U, then (IliEI Ai ) E 1IJ. 

13 .6 Superstructures 

It is time to demonstrate that there are such things as universes. Let X 
be a set with 1R � X. The nth cumulative power set 1Un (X) of X is defined 
inductively by 

so that 

lUo(X) - X, 
lUn+l (X) 1Un (X) U P(lUn (X)) ,  

The superstructure over X is the union of all these cumulative power sets: 

The rank of an entity a is the least n such that a E lUn (X) . The rank 0 
entities (members of X) will be regarded as individuals: 

(Vx E 1Uo(X)) [x of. 0 A (Vy E 1U(X)) (y ¢:. x) ] .  

All other members of lU(X) (those with positive rank) are sets, and so lU(X) 
has just these two types of entity. We can show: 

(1 )  1Un+I (X) = X U P(lUn(X) ) .  
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(2) lUn (X) E 1Un+1 (X). Hence lUn (X) E lU(X) , and in particular, X E 
lU(X) . 

(3) lUn+l (X) is transitive. Indeed, a E B E  lUn+l (X) implies a E lUn(X) . 

(4) If a , b E lUn (X) , then {a, b} E lUn+l (X). 

(5) If A, B E  lUn (X) , then A U  B E  lUn+l (X) . 

(6) A E lUn(X) implies P(A) E Un+2 (X) . 

From (3) it follows that U(X) is strongly transitive, since every element of 
U(X) belongs to some Un+l (X) . Properties ( 4)-(6) then ensure that lU(X) 
is a universe, and by (2) it is a universe over X. 

In fact , U(X) is the smallest universe containing X, in the sense that if 
any universe U has X E lU, then U(X) � lU. Another description of this 
superstructure over X is that it is the smallest transitive set that contains 
X and is closed under binary unions A U  B and power sets P(A) . 

Exercise 13.6.1 
Verify results (1)-(6) above, and the observations that follow them. Show 
further that if X �  Y, then U(IR) � U(X) � U(Y) . D 

A universe is not closed under arbitrary subsets: if A � lU, it need not 
follow that A E 1U (e.g. , consider A = lU). In the case of a superstructure, 
A will belong to U(X) iff there is an upper bound n E N on the ranks of 
the members of A, i.e. , iff A �  Un(X) for some n. All the entities typically 
involved in studying the analysis of X can be obtained in lU(X) using only 
rather low ranks. If A, B E lUn (X) , then any subset of A x B, and in 
particular any function from A to B,  is in 1Un+2 (X) . So constructing a 
function between given sets increases the rank by at most 2. Using this, we 
see that: 

• A topology on X is a subset of P (X) , hence a subset of llh (X) , so 
belongs to U2(X) . Thus the set of all topologies on X is itself a member 
of U3(X) . 

• An IR-valued measure on X is a function J.L :  A ---+ IR with A a collection 
of subsets of X, so A is of rank 2 and J.L of rank 4. Thus the set of all 
measures on X is also an element of U(X) , of rank 5. 

• A metric on X is a function d : X x X ---+ IR of rank 5 (since X x X has 
rank 3). The set of all metrics on X has rank 6. 

• The Riemann integral on a closed interval [a, b] can be viewed as a 
function 

J: : R[a, b] ---+ IR, 
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where R[a, b] is the set of integrable functions f : [a, b] -t R Such an 
f is of rank 3, since [a, b] and IR have rank 1 ,  so R[a, b] has rank 4 

and therefore the integral J: is an entity of rank 6. 

13 .7  The Language of a Universe 

Given a denumerable list of variables, a language £u associated with the 
universe liJ is generated as follows: 

Cu- Terms 

• Each variable is an £u-term. 

• Each member of 1U is a constant £u-term. 

• If T1 , . . .  , Tm are £u-terms (m ;::::: 2), then (TI , . . .  , Tm) is an £u-term, 
called a tuple. 

• If T and u are £u-terms, then T(u) is a function-value £u-term. 

Notice that our rules allow iterated formations of tuples of terms, such as 

((T, a) , T, (Tb . . .  , Tm) ) .  

A term with no variables is closed, and will name a particular entity of U 
if it is defined (recall the discussion of undefined terms in Section 4.3. 1) .  

The rules for determining when a closed tuple is defined, and what it 
names, are as follows: 

• If T1 , . . .  , T m name elements a1 , . . .  , am , respectively, then ( T1 , . . .  , T m) 
names the the m-tuple (ai , · . .  , am) · 

• ( T1 , . . .  , T m) is undefined if one of T1 , . . .  , T m is undefined. 

For a closed function-value term, the rules are: 

• If T names a function f and u names an entity a that belongs to the 
domain of J, then T(u) names the entity f(a). 

• T(a") is undefined if one of T and CJ is undefined, or if they are both 
defined but T does not name a function, or if T names a function but 
CJ does not name a member of its domain. 

The language L()l. of Chapter 4 allowed formation of terms f ( TJ , . . .  , T m) 
where f is an m-ary function. This is catered for here because of tuple 
formation. Any finitary function on IR belongs to liJ because IR � X, so f is 
a constant of £u, and j(T1 , . . .  , Tm ) can be taken to be a simplified notation 
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for the £u-term f ( ( 71 , . . .  , 7 m)) .  More generally, we can write 0'( 71 , . . .  , 7 m) 
for 0'( (71 , . . .  , 7m) ) when 0' is an arbitrary £u-term (this is in line with 
common practice: an m-ary function on a set A is just a one-placed function 
on Am).  

It follows that all L!)t-terms are .Cu-terms. 

Atomi c Cv-Formulae 

These have one of the forms 

7 = 0', 

7 E 0', 

where 7 and 0' are .Cu-terms. For example, if P E 1U is a k-ary relation, 
then· there are atomic formulae 

which may also be written P( 71 , . . .  , 7k) as in the notation of Section 4.3, 
or, in the case k = 2, using infix notation, as in 71 < 72 , 71 =/= 72 , etc. 

Since a function is a special kind of relation, symbols for functions may 
occur in atomic formulae in two ways. For example, the two formulae 

have the same intended meaning. 

Formulae 

• Each atomic .Cu-formula is an .Cu-formula. 

• If t..p and 'lj; are .Cu-formulae, then so are t..p 1\ 'lj;, t..p V 'lj;, •t..p, t..p ---t 'lj;, 
t..p � 'lj;. 

• If c.p is an .Cu-formula, then so are (Vx E 7)t..p and (:3x E 7)c.p, where 7 
is any .Cu-term and x is any variable symbol that does not occur in 
7. 

A sentence is, as usual, a formula in which every occurrence of a variable 
is within the scope of a quantifier for that variable. 

If t..p is a formula in which only the variable x occurs freely, and 7 is a 
closed term denoting the set A E 1U, then the sentence (Vx E 7)c.p asserts 
that c.p(a) is true for every a E A, while (::lx E 7)c.p asserts that c.p(a) is true 
for some such a. As explained in Section 13. 1 ,  transitivity of 1IJ ensures 
that quantified variables always range over members of 1IJ when given their 
natural interpretation. 
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As we will see later in applications of the language .Cu to mathematical 
reasoning, the term T in a quantifier form (Vx E T) or (3x E T) is usually 
a variable or a constant. 

Having observed above that the .Cu-terms include all L!Jt-terms, and that 
.Cu allows the atomic formation P(T1 , . . .  , Tk) ,  we can now conclude that 
the .Cu-formulae include all .C!R-formulae: any subset P of lR is in 1U, so the 
formation rules of .Cu admit the bounded quantifier forms (Vx E P) and 
(3x E P). 

13 .8 Nonstandard Frameworks 

Let 1U � 1U1 be a mapping between two universes, taking each a E 1U to an 
element *a of 1U'. Then each .Cu-term T has an associated *-transform *T, 
which is the £u,-term obtained by replacing each constant symbol a by *a. 

A constant a occurring in an .Cu-formula cp will do so as part of a term 
T that appears either in an atomic formula or within one of the quantifier 
forms ('i/x E T) and (3x E T) . Applying the replacement a �  *a to all such 
constants transforms cp into an £u,-formula *cp. If cp is a sentence, then so 
too is *cp. 

A nonstandard framework for a set X comprises a universe 1U over X and 
a map 1U � lU' satisfying: 

• *a = a for all a E X  . 

• *0 = 0. 

• 'Transfer: an .Cu-sentence cp is true if and only if *cp is true. 

Such a map will be called a universe embedding or transfer map. It preserves 
many set-theoretic operations: 

• a = b iff *a = *b. Hence a � *a is injective. 

• a E B iff *a E *B. 

• A �  B iff *A � *B. 

• If A � X, then A � *A � *X. In particular, X � *X. 

• *(A n B) = *A n *B. 

• *(A U B) = *A U *B. 

• *(A - B) = *A - *B. 

• *{a1 , . . .  , am} = {*ab . . .  , *am } · Thus *A = {*a : a E A} if A is finite. 
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• All members of *X are individuals in 1IJ'. 

• � preserves transitivity: if A is a transitive set in 1IJ, then *A is 
transitive. 

• *P(A) � P(*A) .  

• I f  R E 1IJ is an m-ary relation, then so is * R. 

• *(A1 X · · ·  X Am) = *A1 X · · · X *Am. Hence *(Am) =  (*A)m for m E  N. 

• If R E 1IJ is a binary relation, then 

*(dom R) dom *R, 

*(ran R) ran *R, 

*(R-1) (*R)-1 , 
*(R'(C)) (*R) ' (*C) 

*(R- 1 (C)) - (*R)-1 (*C) 
for C � dom R, 

for C � ran R. 

• If R and S are binary relations, then *(R o S) = *R o *S. 

• If a function f : A ---7 B belongs to 1IJ, then * f is a function from *A to 
*B, with *(!(a)) = *!(*a) for all a E A. Also, f is injective/surjective 
iff * f is. 

To show that A � *A � *X whenever A � X, observe that if A � X, then 
*A � *X, and if a E A, then a E X, and so a = *a E *A. Also, by transfer 
(using *0 = 0) we have 

(Vx E *X) [x =f. 0 /\  -{3y E x) (y E x)] 

true, so if b E *X, then b is not the empty set and has no members, and 
therefore is an individual. 

For preservation of transitivity by �. let A E 1IJ be transitive, i.e. , 

(Vx E A) (Vy E x) y E A. 

This transforms to 
(Vx E *A) (Vy E x) y  E *A, 

showing that any set belonging to *A is a subset of *A, i.e., *A is transitive 
as desired. 
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The fact that * P(A) � P(*A) follows by transfer of 

(Vx E P(A)) (Vy E x) (y E A) . 

This shows that if x E *P(A) , then y E x  implies y E *A, and so x � *A, 
whence x E P(*A) . The exact relationship between *P(A) and P(*A) will 
be revealed in Section 13.12. 

Exercise 13.8.1 
Verify all the other properties of the transfer map listed above. 0 

If lR � X, all of the standard operations and relations on lR like +, - ,  x ,  lx l , 
sin x, <, 2':, =/=-, etc. are entities in 1U, and so have corresponding entities *+, 
* sin x, *=/=-, etc. for *JR in 1U'. We will continue the practice of dropping the 
*-prefix from such familiar notions when the intention is evident. However, 
while this is harmless for functions and relations between individuals, when 
entities of nonzero rank are involved, a transformed function * f need not 
agree with f where their domains overlap, so more caution is needed. In 
general, if a E dom f, then *f(*a) = *(!(a) ) ,  but even when *a = a this will 
reduce to *f(a) = f(a) only when *(!(a)) is equal to f(a). For an example 
showing that this need not hold, let f :  lR -+  P(JR) be defined by 

f(r) = {x E lR :  x > r } .  

For a given r E JR,  transfer of the sentence 

(Vx E JR.) (x E f(r) � x > r) 

shows (since *r = r) that 

*f(r) = *(f(r)) = {x E *JR : x > r}. 

In particular, f(O) = JR.+ , while * f(O) = *JR+ . 

Exercise 13.8.2 
If cp(x1 , . . .  , xm) is an .Cu-formula and A E 1U, show that 

*{ (al l . . .  , am) E Am : cp(a1 , . . .  , am)} = 
{ (b1 , . . .  , bm) E *Am : *cp(b1 , . . .  , bm)} .  

Explain how various of the above results about preservation of propertiffi 
by � can be derived from this general fact. 

13 .9 Standard Entities 

The members of 1U' of the form *a with a E 1U, will be called standard. The 
other members of 1U' are nonstandard. Any element a of X is thus standard, 
since in that case a = *a. 
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The question of the existence of nonstandard entities will be taken up 
in earnest in the next chapter. For now we will just assume that lU is a 
universe over a set X that includes IR, and that 

• there exists an element n E *N - N. 

Then � will be infinitesimal, and using transfer instead of ultrafilter calcu
lations we can derive in lU' the arithmetical properties of limited, unlimited, 
appreciable, etc. numbers as in Chapter 5, and then develop the theory of 
convergence, continuity, differentiation, integration for IR-valued sequences 
and functions as in Chapters 6�9. 

All standard members of *N belong to N, for if *a E *N, then by transfer 
a E N, and so *a = a E N. Thus any member of *N-N must be nonstandard. 
More generally, this argument shows that if A � X, then any member of 
*A - A will be nonstandard. 

We see then that standard sets *A may have nonstandard members. In 
fact it turns out that *A has nonstandard members for every infinite set 
A E 1U (cf. Section 13. 14). 

Examples of nonstandard sets are provided by initial segments of *N. 
Consider the sentence 

(Vn E N) (::3V E P(N)) (Vx E N) [x E V +--> x � n] , 

which expresses "for all n E N, { 1 ,  . . .  , n} E P(N)" . By transfer it follows 
that for any N E *N, the subset {1 ,  . . .  , N} of *N belongs to the standard 
set * P(N) . If N E *N - N, then {1 ,  . . .  , N} cannot itself be a standard set. 
For if *A is any standard subset of *N, then A � N, so either A is finite 
and hence *A = A, or else A is unbounded in N, and hence by transfer *A 
is unbounded in *N. In either case *A :f= {1 ,  . . .  , N} .  

For another illustration, let Int E 1U2 (X) be the set of open subintervals 
of the real line: 

Int = { (a, b) � IR :  a, b E  IR}. 

It follows by a transfer argument that 

*(a, b) = {X E *JR : a < X < b}, 

so the standard set *(a, b) will have nonstandard elements. By transfer of 
the statements 

we get 

(VA E Int) (::3a, b E  IR) (Vx E JR) (x E A +--> a <  x < b), 
(Va, b E  IR) (3A E Int) (Vx E IR) (x E A +--> a < x < b) , 

(VA E *Int) (3a, b E *JR) A = {x E *JR : a <  x < b} , 
(Va, b E *JR) ( ::3A E *I nt) A = { x E *IR : a < x < b} , 



172 13. Universes and Frameworks 

so we see that the standard set *I nt E lU' consists precisely of the hyperreal 
intervals (a, b) � *� for all a, b E  *R When one of a, b is nonstandard, the 
corresponding interval is a nonstandard member of *Int. 

Exercise 13.9.1 Characterise exactly the standard elements of *Int. 

External Images of Infinite Sets 

If *A has nonstandard members, then it is distinguishable from the set 

imA = {*a :  a E A}, 

which will be called the image of A. We have already observed that when A 
is finite, then {*a : a E A} is equal to *A. If A is infinite, we will call im A the 
external image of A. The reason for this name will be given in Theorem 
13. 14. 1 .  imA is a subset of *A (since a E A implies *a E *A) that forms 
a copy of A, in the sense that the transfer map a �---+ *a gives a bijection 
between A and imA. It turns out that imA is a proper subset of *A for any 
infinite A E 1U (cf. Section 13. 14). 

Note that imN = N, im]R = IR, and in general imA = A  whenever A �  X. 

Theorem 13.9.2 imA is the set of all standard members of *A : 

imA = {b E  1IJ' : b E  *A and b is standard} .  

Hence *A and imA have the same standard elements. 

Proof The members of im A are standard by definition, and were noted 
above to be members of *A. 

Conversely, if b is a standard member of *A, then b = *a for some a E lU, 
so then *a E *A and hence a E A by transfer, showing b = *a E imA. D 
Thus the nonstandard members of * A are precisely the members of * A-im A. 

Exercise 13.9.3 
Prove that standard sets are uniquely determined by their standard mem
bers. In other words, if two standard sets have the same standard members, 
then they are equal. 

13. 10 Internal Entities 

In a nonstandard framework, an entity of lU' is called internal if it belongs 
to some standard set: 

• a is internal if and only if a E *A for some A E 1IJ. 
The set of all internal entities will be denoted by *lU. Observe that 

• every standard entity is internal, 
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because in general *a E * {a} , so the standard entity *a belongs to the 
standard set * {a} and hence is itself internal. In other words, *a E *lU for 
all a E lU. 

Members of U' that are not internal are external. The question of the 
existence of external entities will be clarified once we have explored the 
world of internal entities a little further: in Theorem 13. 14.1 it will be 
shown that im A is an external subset of the standard set *A whenever A is 
infinite. 

Theorem 13.10.1 Any internal set belongs to a standard set that is tran
sitive. Hence *1[] is strongly transitive, and in particular, every member of 
an internal set is internal. 

Proof. Let A be internal, with A E * B for some B E lU. By strong transi
tivity of 1U there is a transitive T E 1U with B � T. But as we have seen, 
transitivity is preserved by the transfer map, so the standard set *T E *lU 
is transitive. Also, * B � *T, so A E *T, establishing the first part of the 
theorem. But then A � *T, and every member of *T is internal by defini
tion, so belongs to *lU. Thus A �  *T � *lU, completing the proof that *lU is 
strongly transitive. 

The assertion that every member of an internal set is internal is now just 
the statement that *U is transitive. 0 
We have already seen in Section 13.9 some interesting examples of nonstan
dard internal entities. Every initial segment { 1 ,  . . .  , N} of the hypernaturals 
*N is internal, since it belongs to *'P(N) , while any open hyperreal interval 
{x E *JR : a < x < b} with a, b E *JR is internal, since it belongs to *Int. 
Also, any uniform partition 

PJ:/ = {a +  k (b�a) : k E *Z & 0 :S k :S N} 
with a, b E  *JR and N E *N is internal, since it belongs to * 'P(JR) � P(*JR) 
and hence is an internal subset of *JR. This follows by transfer of the state
ment 

(Va, b E  JR) (Vn E N) (3P E P(JR)) (Vx E JR) 

[X E P +-+ (3k E Z) ( 0 :S k :S n 1\ x = a +  k (b�a) )] . 
13 . 1 1  Closure Properties of Internal Sets 

• If A and B are internal sets, then so are A n  B, A U  B, A - B, and 
A x  B. 

• The union and intersection of any internal collection of sets are in
ternal: if { Ai : i E I} E *lU and each Ai is a set, then UiEJAi and 
nieiAi are internal. (Note: {Ai : i E J} � *lU does not suffice here.)  
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• If al l . . .  , am are internal, then so are the finite set {al l . . .  , am} and 
the m-tuple (a1 , . . .  , am) · 

• If a binary relation R is internal, then so is its domain dam R, its 
range ran R, its inverse R- 1 , and the image R' (C) for any internal 
C � dom R. 

• If binary relations R, S are internal, then so is their composition RoS. 

• If a function f is internal and a E dam f, then f (a) is internal. 
Moreover, if C is an internal subset of dam f, then f' (C) is internal, 
and if D is an internal subset of ran / then f-1 (D) is internal. 

Here is the proof that the union of two internal sets is internal, i.e. , *\U is 
closed under binary unions. The proof uses the closure of U under unions 
together with strong transitivity of U to include any such union in a tran
sitive set. 

So, let A, B E *U, with A E *C and B E *D. Now, in U there is a 
transitive set T including CUD. Then A, B E *T. Since *T is also transitive 
(cf. the proof of Theorem 13. 10.1 ) ,  A and B are then subsets of *T. 

Now consider the sentence 

(Vx, y E T) (3z E P(T)) (Vu E T) [u E z +--t u E x V u E y] , 

which asserts the existence in P(T) of the union z = x U  y when x, y E T  
(and hence x,  y � T) . By transferring this sentence and applying it to 
A, B E *T we see that there is some Z E * P(T) such that Z and A U B 
contain exactly the same elements of *T: 

Z n *T = (A U B) n *T. 

Then Z E P(*T) , so Z and A U  B are subsets of *T, i.e. , all members of Z 
and A U B are in *T. Therefore A U B is equal to the internal set Z. 

Exercise 13.11 .1  
Verify all the other closure properties of *U listed above. 

13 . 12  Transformed Power Sets 

*U falls short of being a universe in its own right because it is not closed 
under power sets. If it were, then P(*N) would be internal, i.e. , P(*N) E *U. 
By transitivity of *U this would imply that every subset of *N was in *U 
too, and in particular N would be internal. However, this is incompatible 
with the internal induction principle when *N - N -=/= 0, as will be seen in 
this section. 
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Now, for any set A E 1U we have 

imp(A) = {*B : B E  P(A)} � *P(A) � P(*A), 

but these three sets derived from P(A) are not the same (for infinite A). 
imp(A) is the collection of all standard subsets of *A, while *P(A) consists 
of the internal subsets: 

Theorem 13.12.1 *P(A) is the set of all internal subsets of *A, i. e., 

*P(A) = P(*A) n *lU = {B � *A :  B is internal} .  

Proof We have *P(A) � P(*A) in general. Moreover, if B E  *P(A) , then 
B belongs to a standard entity, so B is internal. 

For the converse, let B be an internal subset of *A. Then B E *C for 
some C E 'lU. Now, the sentence 

(Vx E C) [(Vy E x) (y E A) ---+ x E P(A)] 

is true, since it asserts of any x E C that if x � A, then x belongs to P(A) . 
By transfer it follows that for any x E *C, if x � *A, then x belongs to 
*P(A) . But B E  *C and B � *A, i.e. , 

(Vy E B) (y E *A) , 

so we get B E  *P(A) as desired. 0 

This result has an extremely significant consequence for statements that 
quantify over power sets. Since the .Cu-sentence (Vx E P(A))cp transforms 
to (Vx E *P(A))*cp, we now see from the characterisation of *P(A) that a 
true .Cu-statement of the form 

for all subsets x of A, cp 

gives rise to a true .Cu, -statement of the form 

for all internal subsets x of *A, *cp. 

Consider for instance the least number principle 

(Vx E P(N) ) [x # 0 ---+ (3y E x) (Vz E x) (y :::; z)] . 

This transforms to show that every nonempty internal subset of *N has a 
least element, which is the internal least number principle of Section 1 1 .3. 

In a similar manner we can now derive the internal induction principle by 
a transfer argument . Either of these principles can then be used to conclude 
that if *N - N =I 0, then N must be external, for the reasons explained in 
Section 1 1.6. 



176 13. Universes and Frameworks 

13 . 13 Exercises on Internal Sets and Functions 

(1) Derive in *1U the principles of internal induction (Theorem 1 1 .3.2) 
and internal order-completeness (Theorem 1 1.5 .1) .  

(2) Show that P(A) is in bijective correspondence with the set of all 
functions f : A -+ {0, 1 } .  Adapt this to show that *P(A) is in bijective 
correspondence with the set of all internal functions f : *A -+ { 0, 1} .  

(3) Extending the previous exercise, recall that BA denotes the set of all 
functions from A to B. If A, B E 1U, show that *(BA) is the set of all 
internal functions from *A to *B. 

13 . 14 External Images Are External 

Externality of N implies that of any set of the form im A with A infinite, 
thereby justifying the name "external image" , as the following result shows. 

Theorem 13. 14. 1 The image imA of any infinite set A E 1U is external. 

Proof The method of proof was hinted at in Exercise 12.2(8), which is 
itself the special case in which A is an infinite subset of lR ( cf. also Section 
1 1 .7) . 

In general, if A is infinite, then there is an injection f : N -+ A. Put 
X =  {f(n) : n E N} �  A. Then *X is internal (indeed standard) , and so if 
imA were internal, then so too would be imA n *X (Section 13. 1 1 ) .  Observe 
that 

imA n *X =  {*a : a E A and *a E *X} = {*a :  a E X} =  imx. 

Since the transform * f : *N -+ *A is internal, this would then imply that the 
inverse image of im X under * f is internal (Section 13. 1 1 ) .  But by transfer 
* f is injective, and from this it can be shown that * f-1 (im X) is equal to 
the external set N. 

Therefore im A cannot be internal. D 

Exercise 13.14.2 
Verify that *J- lemx) = N in the proof just given. D 

Since *A is internal, it follows from Theorem 13. 14.1 that there are elements 
in *A - imA. By Theorem 13.9.2 these elements are nonstandard. All told 
then, it has now been established that 

• if *N has nonstandard elements, then so does *A for every infinite 
set A E 1U. 
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Since imA is an external subset of *A, it belongs to P(*A) but not to * P(A) . 
Thus *P(A) is always a proper subset of P(*A) when A is infinite. 

Exercise 13. 14.3 
Explain why *P(A) = P(*A) whenever A is finite. 

13 . 15 Internal Set Definition Principle 

In Section 11 .7  we saw how internal subsets of *� could be defined from 
properties expressible by (the transforms of) formulae from the language 
L�Jt. We can now formulate and prove a much stronger version of this that 
applies to formulae of the language £u, . Such a formula may refer to much 
more complex entities than are available in L�Y.., including entities of arbi
trarily high rank in the superstructure U(*X) over *X . 

This new version of the internal set definition principle is as follows: 

If cp(x) is an internal LTI1' -formula {i. e., all of its constants are internal), 
with x the only free variable in cp, then for any internal set A, the set 

{a E A : cp(a) is true} 

is internal. In other words, if B = {a E U' : cp( a) } is a subset of lU' defin
able by an Lv' -formula with only internal constants, then for any internal 
set A, A n  B is internal. 

Proof Let c1 , . . .  , Cm be all the (internal) constants that occur in cp. Re
place each constant ci by a new variable Xi to get a formula cp(x, x1 , . . .  , xm) 
that has no constants, hence is an Cu-formula and is equal to its own *
transform. 

Now, the entities A, c1 , . . .  , em all belong to some standard set *T that 
is transitive (Theorem 13.10. 1 ) .  But the sentence 

('Vy, x1 , . . .  , Xm E T) (3z E P(T)) ('t/x E T) 
x E z � [x E y 1\ cp(x, x1 , . . . , xm)] 

is true, because it asserts the presence in P(T) of the set 

z · {x E T :  x E y and cp(x, x1 , . . .  , xm) } . 

Applying the transfer of this sentence to A, c1 , • • •  , Cm E *T, we find that 
there is some internal set Z E * P(T) such that 

Z = {a E *T : a E A and cp(a, c1 , . • .  , em ) } . 

But A � *T by transitivity of *T, so Z is just the desired set {a E A : cp( a)} . 
0 
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To illustrate this principle, let cp(x) be the internal formula 

(3k E *Z) ( 0 :S k :S N A x  = a +  k (b�a) ) . 
Then { c E *IR : cp( c)} is the internal partition PJ} discussed above. 

13. 16 Internal Function Definition Principle 

Let f : A � B be a function between internal sets A and B. Suppose that 
there is an internal .Cu� -term r(x) with sole variable x such that f(a) = r(a) 
for all a E A. Then f is an internal function. 

Proof By the internal set definition principle, since A x  B is internal and 

f = {c E A x  B :  (3x E A) (3y E B) (c = (x, y) A y = r(x)) } . 
D 

We can illustrate this result by the internal partition example PJ:l once 
more. Let r(x) be the internal term a +x (b�a) . Then by the internal func
tion definition principle the function {0, 1 ,  . . .  , N} � *JR defined by r is 
internal. The image of this function is thus internal, and is just PJ}. 

13. 17  Hyperfiniteness 

If A E 1U, let 
Pp (A) = {B � A :  B is finite} 

be the set of all finite subsets of A. Then Pp(A) E 1U. Under a transfer map 
we have 

* Pp(A) � * P(A) � P(*A), 

so that each member of *Pp (A) is an internal subset of *A. But we should 
not expect to have *Pp (A) � Pp(*A) , unless A is finite. Consider for 
instance the true .Cu-sentence 

(Vn E N) (3V E Pp(N)) (Vx E N) [x E V � x :S n] , 

which modifies the sentence of Section 13.9 to assert that for each natural 
number n the set V = { 1 ,  . . . , n} is actually in Pp(N) . By transfer, for 
each n E *N, the initial segment 

{1 ,  . . . , n} = {x E *N :  x :::; n} 

of *N belongs to * Pp (N) , and when n is unlimited this set includes N and 
is infinite! 
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The members of * Pp (A) are called hyperfinite subsets of *A. Thus a hy
perfinite set is one that belongs to *Pp (A) for some A E 1U. This notion 
applies now to sets A of any rank, and is related by the following result to 
our earlier study in Chapter 12 of the case A = R 

Theorem 13.17.1 A set B is hyperfinite if and only if there is an internal 
bijection 

f : {1 ,  . . .  , n} -4 B  

for some n E *N. 

Proof Let 4>(V, n, f, Z) be the conjunction of the following formulae with 
free variables V, n, f, Z: 

(\fx E V) (x E N  1\ x ::; n) , 

(\fx E N) (x ::; n -4 x E V), 
(Vb E f) (3x E V) (3y E Z) [b = (x, y)] ,  
(Vx E V) (Vy, z E Z) [(x , y) E f 1\ (x, z) E f -4 y = z] , 
(\fx E V) (3y E Z) [(x, y) E f] , 
(\fy E Z) (3x E V) [(x, y) E f] , 
(Vx, y E V) (Vz E Z) [ (x, z) E f 1\ (y , z) E f -4 x = y] . 

Thus 4>(V, n, j, Z) asserts that V = { x E N : x � n} and f is a function 
from V onto Z that is injective. Hence if we define c.p(n, f, Z) to be the 
formula 

(3V E P(N)) 4>(V, n, f, Z) , 

then c.p asserts that f is a bijection between { 1 ,  . . .  , n} and Z. Its transform 
*c.p makes exactly the same assertion, but replaces N by *N and so allows 
the possibility that n E *N - N. 

Now, if A E 1U, then the .Cu-sentence 

(VZ E Pp(A)) (3n E N) (3/ E P(N x A)) c.p(n, f, Z) 

is true. Hence by transfer, if B E * PF(A) , then there is some n E *N and 
some f E * P(N x A) , i.e. , some internal f � *N x *A, such that f is a 
bijection from { 1 ,  . . .  , n} to B. Moreover, f is internal, as it belongs to the 
standard set * P(N x A) . 

For the converse, suppose that there is an internal bijection f : V ----+ B, 
where V = { x E *N : x ::; n} for some n E *N. Thus B is internal, being 
the range of an internal function, and so B E *A for some A E 1U, which we 
may take to be transitive, with *A transitive as well. Then B � *A, so f is 
an internal subset of *N x *A, whence 

f E P(*N x *A) n *1U = P(*(N x A)) n *1U = * P(N x A) , 
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and *cp(n, J, B) holds. 
Now consider the sentence 

(VZ E A) ([(3n E N) (3f E 'P(N x A)) cp(n, J, Z)] � Z E 'Pp(A)) . 

This sentence is true (using the fact that Z E A implies Z � A), since it 
asserts that if there is a bijection to Z from a set {1 ,  . . .  , n} with n E N, 
then Z is in 'Pp (A) . Thus applying transfer and taking Z = B, we conclude 
that B E *'Pp(A) , so that B is a hyperfinite subset of *A. D 

The number n in this theorem is the internal cardinality of the hyperfinite 
set B: n = IB I .  The map B 1--4 IB I is an internal function *'Pp(A) � *N, and 
is the function that arises under the *-embedding from the corresponding 
function 'Pp(A) � N. 

13. 18 Exercises on Hyperfinite Sets and Sizes 

(1) If there is an internal injection {1 ,  . . .  , n} � {1 ,  . . . , m} , then n � m. 
If there is an internal bijection {1 ,  . . . , n} � {1 ,  . . .  , m } , then n = m. 

(2) Let A be hyperfinite. Show that any internal set B � A is also hy
perfinite and has IBI < !A I .  

(3) Any hyperfinite subset of *JR has a greatest and a least element. 

( 4) If A is hyperfinite, then so is the internal power set 

'P1 (A) = P(A) n *1IJ = {B � A :  B is internal}. 

Moreover, if IA I = n, then i'PI (A) l = 2n . 

(5) A set B is hyperfinite iff there is a surjection f :  { 1 ,  . . . , n} � B, for 
some n E *N, that is internal. 

(6) Internal images of hyperfinite sets are hyperfinite: if f is internal and 
B is hyperfinite, then f(B) is hyperfinite. 

13 .19 Hyperfinite Summation 

In Section 12.7 the ultrapower construction was used to give meaning to the 
symbol I':xeB f(x) when B is a hyperfinite set and f an internal function. 

In the context of a universe embedding 1IJ � 1IJ' , summation of hyperfinite 
sets is obtained by applying transfer to the operation of summing finite 
sets. The map B 1--4 E B from 'Pp (.IR) to 1R assigns to each finite set B � 
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IR the sum of its members. This map transforms to an internal function 
from *Pp(IR) to *JR, thereby giving a (hyperreal) meaning to E B for every 
hyperfinite set B � *JR. 

Now, if f is an internal *IR-valued function whose domain includes a 
hyperfinite set B, then f(B) will be a hyperfinite subset of *JR for which E 
is defined. Thus we can specify 

'ExEB f(x) = 'E f(B). 

13 .20 Exercises on Hyperfinite Sums 

( 1 )  Explain why hyperfinite summation has the following properties: if 
J, g are internal functions, B, C are hyperfinite sets, and c E *IR, then 

• 'ExEB cf(x) = c ('ExEB f(x)) , 
• 'ExEB f(x) + g(x) = 'ExEB f(x) + 'ExEB g(x) , 
• ExEBUC f(x) = ExEB f(x) + ExEC f(x) if B n c = 0, 
• 'ExEB f(x) :::; 'ExEB g(x) if f(x) :::; g(x) on B. 

(2) Explain how and when it is possible to define indexed sums E� Xi 
with n unlimited. 





14 
The Existence of Nonstandard 
Entities 

How do we know that *JR contains new entities in addition to the real num
bers? In the ultrapower construction of *� in Chapter 3, this was deduced 
from the fact that the nonprincipal ultrafilter :F contains no finite sets. 
That allowed us to show that *A - A is nonempty whenever A is an infinite 
subset of �. 

If *� is the transform of lR under a universe embedding, we may not be 
able to conclude that *� # IR  (for instance, the identity function on lU is a 
universe embedding lU --+ lU making *� = IR) . The condition that *JR - IR 
be nonempty will have to be added as a new requirement (as was done in 
the previous chapter by assuming *N - N =I 0), or else derived from some 
other principle. 

In Section 1 1 . 1 1  it was shown that countable saturation guarantees the 
existence of hyperreal numbers that are characterised by countably many 
internal conditions. Saturation will be discussed further in Chapter 15. In 
this chapter we look at another principle, known as "enlargement" , which 
is particularly convenient in the way it allows us to obtain nonstandard 
entities. We will then see how enlargements can be constructed by forming 
ultrapowers of superstructures. 

14. 1 Enlargements 

Assume from now on that lU is a universe over some set that includes �. lU' 
is called an enlargement of lU if there exists a universe embedding lU � lU' 
such that: 
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if A E 1U is a collection of sets with the finite intersection prop
erty, then there exists an element b E U' that belongs to * B for 
every B E  A, i. e., 

b E n{* B : B E A} = n im A. 

Enlargements have an abundance of nonstandard internal entities: 

• Let A be the set of intervals (0, r) � JR. for all positive real r. Then 
A E l!h(:IR.) and A has the finite intersection property. If 

b E  n{*(O, r) : r E JR.+} ,  

then b is a positive infinitesimal member of *R Indeed, in this case 
n im A is precisely the set of positive infinitesimals, and the enlarge
ment principle ensures that it is nonempty. 

If we take A instead to consist of the intervals ( -r, r) - {0} , then 
n im A is the set of all nonzero infinitesimals. 

• For r E JR.+ , let (r, oo) = { x E JR. :  r < x } .  Then by transfer *(r, oo) = 
{ x E *JR. : r < x}. The collection of intervals ( r, oo) has the finite 
intersection property, and any member of 

is a positive unlimited hyperreal. 

• Let A E U be an infinite set. Then the collection 

{A - {a} : a E A} 

has the finite intersection property. Since *(A - {a}) = *A - {*a}, it 
follows that in any enlargement of U there must be an entity b that 
belongs to *A but is distinct from *a for all a E A. Thus 

b E  *A - {*a : a E A} = *A - imA . 

Such a b will be nonstandard, because if b = *a for some a E U, then 
*a E *A, implying a E A (recall from Theorem 13.9.2 that imA is the 
set of standard members of *A) .  
So we see that in an enlargement, any infinite standard set has non
standard members. In particular, if A is any infinite subset of JR. (e.g. , 
A = N, Z, Q, etc.) ,  then as A = imA , we deduce that A is a proper 
subset of *A. 

• If a E A, let Aa = {Z E PF(A) : a E Z} be the collection of 
finite subsets of A that contain a. Then { Aa : a E A} has the finite 
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intersection property, for if a1 , . . .  , an E A, put Z = { a1 , . . .  , an} to 
get Z E Aa1 n · · · n Aan . But if 

B E  n{*(Aa) : a E A}, 

then B E *Pp(A) , since in general *(Aa ) � *Pp(A), and *a E B for 
each a E A by transfer of the sentence 

(VZ E Aa ) (a E Z) . 

Thus B is a hyperfinite subset of *A that contains {*a : a E A}, i.e. , 
imA � B � *A. 

The last example shows that enlargement is a stronger property than we 
had considered hitherto, since we were previously only able to establish the 
existence of such hyperfinite approximating sets in relation to countable 
subsets of :IR (cf. Section 12.3) . 

We are left then with the question of whether enlargements themselves 
exist. In fact , they can be obtained by applying the ultrapower construction 
to the superstructure 1U(X) , as will be explained below. The outcome is this: 

Enlargement Theorem. For any set X there exists an enlargement of 
IU(X) that is of the form 1U(*X) . 

14.2 Concurrence and Hyperfinite Approximation 

A binary relation R is called concurrent, or finitely satisfiable, if for any 
finite subset { x1 , . . .  , Xn} of the domain of R there exists an element y with 
XiRY for all i between 1 and n. 

If a concurrent relation R belongs to 1U, then an enlargement will contain 
entities b with *x(* R)b for all x E dam R. This provides another language 
for describing the above examples: 

• Let R be the "greater than" relation on n�+: 

R = { (r, y) E JR+ x JR+ : r > y} .  

R is concurrent, and by transfer * R is the "greater than" relation on 
*JR+ . If r(* R)b for all r E JR+ , then b is a positive infinitesimal. 

• Let R be the "less than" relation on JR+ : 

R = { (r, y) E JR+ X JR+ : r < y } .  

If r(* R)b for all r E JR+, then b is a positive unlimited hyperreal. 
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• Let R be the nonidentity relation on a set A E lU: 
R = { (a, y) E A x  A :  a #  y}. 

Then R is concurrent precisely when A is infinite, and * R is the 
nonidentity relation on *A. If *a(* R)b for all a E A, then 

b E  *A - {*a : a E A}, 

and so b is a nonstandard member of *A. 

• Let R be the membership relation between A and PF(A) : 

R = { (a, Z) : a E Z E PF(A)} .  

For any A E lU, R is a concurrent relation in lU .  If *a(* R)B for all 
a E A, then B is a hyperfinite subset of *A that includes im A. 

These notions yield alternative characterisations of the concept of enlarge
ment: 

Theorem 14.2.1 If lU � liJ' is a universe embedding, then the following 
are equivalent. 

( 1 )  lU' is an enlargement of 1U relative to �-

(2) For any concurrent relation R E lU there exists an entity b E  liJ' such 
that *x(*R)b for all x E dom R. 

(3) For each set A E 1U there exists a hyperfinite subset B of *A that 
contains all the standard entities of * A: 

im A = {*a : a E A} � B E * PF (A) . 

Proof First assume (1 ) .  If R is a binary relation in 1U, for each x E dom R 
let R[x] = {y E ran R : xRy}. Then if R is concurrent, the collection 

{R[x] : x E dom R} 

has the finite intersection property. Also, this collection is a subset of the · 
power set P(ran R) , so belongs to lU. Hence by (1)  there is a b E  1U' that 
belongs to every *(R[x]) .  By transfer of (Vy E R[x]) (xRy) we then have 
*x(*R)b for all x E dom R, establishing (2) . 

The proof that (2) implies (3) was indicated in the discussion of the last 
example above. 

To show that (3) implies ( 1 ) ,  let A E 1U be a collection of sets with the 
finite intersection property. Take a transitive T E 1U with A �  T. Then the 
sentence 

(VZ E 'PF(A)) (3y E T) (Vz E Z) (y E z) 
is true. But assuming (3) , there exists a hyperfinite B � *A containing 
imA. Then by transfer of this sentence, since B E * PF (A) , there exists 
some b E *T with b E z for all z E B, and hence b E *C for all C E A. 
Therefore ( 1) holds. D 
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14.3 Enlargements as Ultrapowers 

In Chapter 3 we constructed *� by starting with certain real-valued se
quences, i.e. , functions r, 8 : N -4 �' and identifying them when the set 

[r = 8] = { n E N : r n = 8n} 

on which they agree belongs to an ultrafilter :F on N. 
This method of construction can be applied much more widely by allow

ing :F to be an ultrafilter on a set I other than N. Then any two functions 
with domain I can be identified if the subset of I on which they agree 
belongs to :F. The approach can be used to build enlargements of a super
structure lU(X), and we will now sketch out the way in which it works. 

So, let I be an infinite set and F a nonprincipal ultrafilter on I. Then 
lU(X)1 is the set of all functions from I to U(X) . For a E lU(X) , let a1 E 
lU(.X:)f be the function with constant value a. For j, g E lU(X)f, put 

[! = g] 
[/ E g] 
[/ E a] -
[a E !] 

Zn 
z 

{i E I :  f(i) = g(i ) } ,  
{ i  E I :  f(i) E g(i) } ,  
[f E a1] = { i  E I :  j(i) E a} ,  
[a I E /] = { i E I :  a E f(i)}, 
{f E lU(X)1 : [j E Un (X)] E F}, 
U{Zn : n 2: 0}. 

Z is then the union of the increasing chain Z0 <;;;; Z 1 <;;;; • • • • The members 
of Z may be viewed as functions of "bounded rank" in the sense that if 
f E Zn , then f(i) E Un(X) for :F-almost all i in I. In fact, such an f can 
itself be assigned a rank, because 

[/ E IUn(X)] <;;;; {i E I :  f(i) has rank 0} U · · · U {i E I :  f(i) has rank n} ,  

and the union on the right is made up of pairwise disjoint sets, so 

{i E I :  f(i) has rank k} E :F 

for exactly one k ::; n, allowing us to define f to be of rank k. Then 
Zn - Zn-1 consists of the functions of rank n, and the rank of the function 
a1 in Z is the same as the rank of the entity a in U(X) . 

For f E Zo , let (!] = {g E Zo : [/ = g] E :F}. Put 

lf = { [/] : f E Zo } .  

There is a map f � [!] from Z to the superstructure IU(li) over lf that com
poses with the map a �  a1 of IU(X) into Z to give a universe embedding. 
The definition of [!] is by induction on the rank of f. 
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For f E Zo, [f] has just been defined and is a member of Uo (Y) . Thus 
for n 2 0 we can make the inductive hypothesis that for all f E Zn , [f] has 
been defined and is a member of Un (Y) . Then for g E Zn+l - Zn put 

[g] = { (!] : f E Zn and [f E g] E F}. 

This specifies [g] as a subset of Un (Y) , and hence a member of Un+l (Y) , 
and completes the inductive construction. 

· 

Now, for f, g E Z it can be shown that 

and 

(!] E (g] iff {i E I :  f(i) E g(i)} E F 

[f] = [g] iff {i E I :  f(i) = g(i) } E F. 

For each a E UJ(X) define *a to be [ai] E UJ(Y). For a E X, a1 is of rank 0, 
i.e., a1 E Z0 , and we let a be identified with *a E Y. For a of rank n + 1 we 
find that 

Consequently, 

In particular, 

*a = { [f] : f E Zn and [f E a] E F}. 

*Un(X) - { (!] : [f E Un(X)] E F} 
{ [f] : f has rank � n}. 

*X = { (!] : [f E X] E F} = Y, 
showing that UJ(Y) is just UJ(*X) . Also, since [f E 0] = 0, 

*0 = { [f] : [f E 0] E F} = 0. 

To show that the transfer principle holds for this construction requires the 
demonstration of a version of Los's theorem. This takes the following form. 

For any .Cucx) -formula cp(x1 , . . .  , xp) and any /I,  . . . , fp E Z, 
the sentence 

*cp( [h] , . . . , [fp]) 
is true if and only if 

{i E I :  cp(fi (i) ,  . . .  , fp (i)) is true} E F. 

If the ultrafilter F is non principal, then *JR will have nonstandard members, 
as shown in Sections 3.8 and 3.9. But to obtain UJ(*X) as an enlargement of 
1IJ (X) a special ultrafilter F has to be used. To define this, let I = P F (UJ (X)) ,  
the set of all finite subsets of  U(X) . Each member of I belongs to UJ(X), 
but I itself does not. For each a E I, define 

Ia = {b E  I :  a �  b}. 
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Then if a1 , . . .  , an E I, putting b = a1 U · · · U an E I gives 

b E Ia1 n · · · n Ian . 
This shows that the collection {Ia : a E I} has the finite intersection 
property, and so is included in some ultrafilter F on I (Theorem 2.6. 1 ) .  

To show that the superstructure lU(*X) associated with this particular F 
is an enlargement, let A E lU(X) be a collection of sets that has the finite 
intersection property. For each b E I, b n A is a finite subcollection of A, 
so if b n A is nonempty, it has nonempty intersection. In that case, let f(b) 
be any member of this intersection. Hence 

f(b) E nCb n A) E P(UA). 
If, however, b n A =  0, let f(b) = 0. The resulting function f has bounded 
rank, and so determines an element [!] of lU(*X) . It will suffice to show that 

[/] E n{* B : B E A}. 
Now if B E  A, then {B} E I, and so I{B} = {b E  I :  B E  b} E F. But now 
if B E  b, then B E  b n A, and so f(b) E B. This shows that 

I{B} � {b E I :  f(b) E B} = [/ E B] , 
giving [/ E B] E F, and therefore [/J E * B, as desired. This completes the 
proof of the enlargement theorem. 

An alternative proof that lU(*X) is an enlargement can be given by 
directly proving the hyperfinite approximation property that for any set 
A E lU(X) there exists a B with 

imA � B E  *Pp(A) . (i) 

For such an A put g(b) = b n A to define a function g : I �  Pp(A). Then 

[g E PF(A)] = I E  F, 
making [g] E *PF (A) . But for a E A, we have a E b n A when a E b, so 

I{a} = {b E  I :  a E b n A} = [a E g] , 
implying that *a E [g] . Thus putting B = [g] fulfills (i) . 

14.4 Exercises on the Ultrapower Construction 

( 1 )  Verify the details of the ultrapower construction of enlargements. 

(2) Suppose F E Z  is such that F(i) is a function for (almost all) i E I. 
Show that [ F] is a function satisfying 

[F] ( [h]) = [k] iff {i : F(i) (h(i) ) = k(i) } E F. 

(3) Is the ultrafilter used in the above construction nonprincipal? 





1 5  
Permanence , Comprehensiveness , 
Saturation 

Nonstandard analysis introduces a brave new world of mathematical enti
ties. It also has a number of distinctive structural features and principles 
of reasoning that can be used to explore this world� Already in the context 
of subsets of *IR we have examined several of these principles: permanence, 
internal induction, overflow, underflow, saturation. Now we will see that in 
the context of a universe embedding U � U' they occur in a much more 
powerful form, since they apply to properties that may refer to any internal 
entities in U'. We assume from now on that we are dealing with such an 
embedding for which *N - N =/= 0. 

15 . 1  Permanence Principles 

Several times we have discussed situations in which a property of a certain 
kind that holds on a particular type of set must continue to hold on some 
larger set (cf. Sections 7. 10 and 11 .9). Here is a statement of how such 
situations occur in U': 

Theorem 15.1.1 Let cp(x) be an internal .C�Jy -formula with only the vari
able x free. Then 

( 1) (Overflow) If there exists k E N such that cp( n) is true for all n E N 
with k ::; n, then there exists K E *N - N such that cp(n) is true for 
all n E *N with k ::;  n ::;  K. 
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(2) (Underflow) If there exists K E *N - N such that cp(n) is true for all 
n E *N - N with n ::::; K, then there exists k E N such that cp(n) is 
true for all n E N with k ::::; n .  

(3) If cp(a) is true for all hyperreals a that are infinitely close to some 
b E *JR., then cp(a) is true for all hyperreals a that are within some 
positive real distance of b. 

(4) lf cp(a) is true for arbitrarily large (resp. small} a E JR., then it is' true 
for some positive (resp. negative) unlimited hyperreal a .  

(5) If there exists r E lR such that cp(a) is true for all a E JR. with r ::::; a, 
then there exists a positive unlimited b E *JR. such that cp( a) is true for 
all a E *JR. with r ::::; a ::::; b. 

Proof. 

(1)  We adapt the proof of Theorem 1 1.4. 1 .  Formula (k < x) 1\ •<p(x) is 
internal, and *N is internal, so by the version in Section 13.15 of the 
internal set definition principle, 

Y = {n E *N : k < n and not cp(n)} 

is an internal set. Now, if cp(n) is true for all *N - N, then any 
K E *N-N gives the desired result (remember we assume *N-N =f. 0). 
Otherwise Y is nonempty, and so by the internal least number prin
ciple has a least element H. Then H is unlimited and K = H - 1 
gives the result. 

(2) Adapt the proof of Theorem 1 1 .8 .1 ,  using the internal formula 

y < K 1\ (Vx E *N) (y ::S x ::S K ---+ <p(x)) .  

(3) Adapt the proof of Theorem 1 1 .9. 1 .  

(4) Exercise, using internal order-completeness. Likewise for (5) . 
D 

There are other permanence results in this vein, analogous to the ones 
appearing in Exercise 11 .5.2 and Section 11 .6. Formulation and proofs of 
these are left to the reader. 

Exercise 15.1.2 
Let f be an internal *JR.-valued function such that f(x) in limited for all x 
in some internal set A � dom f. Show that there is a standard n E N such 
that \f(x)\ < n for all x E A. 
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15 .2 Robinson's Sequential Lemma 

Overflow has the following useful consequence: 

Lemma 15.2.1 If s : *N ---+ *JR is an internal hypersequence such that sn 
is infinitesimal for all standard n E N, then there is an unlimited K E *N 
such that Bn is infinitesimal for all hypernatural n :::; K. 

Proof We cannot just apply overflow to {n E *N : Sn :::::: 0} , since we do 
not know that this set is internal. Instead we use { n E *N : I Sn I < � }. 
Because s is internal, the formula 

lx · s (x) l < 1 

is internal, and for each n E N, since sn :::::: 0 we have n · Sn :::::: 0, and so 
I n · sn l < 1. Hence by overflow there is a K E *N= such that if n :::; K, then 
In ·  sn l < 1 and so i sn l  < � · But when such an n is unlimited, � :::::: 0 and 
SO Sn :::::: 0. 0 
The argument just given can be adapted to apply to an internal hyperse
quence of the form s : { n E *N : n :::; N} ---+ *JR with N unlimited, by using 
the internal formula x :::; N A lx · s (x) l < 1 .  

Exercise 15.2.2 
If c E *� and s : *N ---+ *JR (or s : {n E *N : n ::; N} ---+ *JR) is an 
internal hypersequence such Bn ""' c for all standard n E N, then there is an 
unlimited K E *N such that Sn :::::: c for all hypernatural n :::; K. 0 

Variations on the theme of Robinson's lemma can derived from other per
manence principles. For instance: 

Theorem 15.2.3 If f is an internal *JR-valued function and f (x) zs zn
finitesimal for all limited hyperreals x, then there is an unlimited b such 
that f(x) is infinitesimal for all x E [-b, b] � *JR. 

Proof As for the proof of Lemma 15.2. 1 ,  but using the internal formula 
Jx · f(x) l < 1 and the fact that if an internal set includes lL then it includes 
[ -b, b] for some unlimited b (Section 11 .6) . 0 

15.3 Uniformly Converging Sequences of 
Functions 

Robinson's sequential lemma (15.2 .1) can be used to give an interesting 
alternative proof of the following classical result that was already discussed 
in Section 7.13: 
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• If a sequence (! n : n E N) of continuous real-valued functions on the 
closed interval [a, b] � � converges uniformly to a function g, then g 
is continuous. 

The sequence (! n : n E N) is identifiable with a function of the type 

J :  N � �[a,b] 
( cf. Section 7.12) .  This function belongs to lU and transforms to 

*f : *N � * (�(a,bJ ) . 
But * (�[a,bJ ) is the set of all internal functions from *[a, b] to *�, so we get 

*fn : *[a, b] � *� 
for all n E *N. Thus the original sequence extends to an internal hyperse
quence *J = (*fn : n E *N) . For standard n and x, *fn (x) = fn (x) . 

Now, uniform convergence of the fn 's to g on [a, b] means that for each 
e E �+ there exists a k E N  such that 

(Vx E [a, b] ) (Vn E N) [k ::; n � lfn (x) - g(x) l < e ] .  

Then by transfer it follows that l *fn (x) - *g(x) l < e whenever x E *[a, b] 
and k ::; n E *N. In particular, this will hold for any unlimited n, whatever 
positive real e is taken here. Therefore 

*fn (x) � *g(x) for any n E *N - N and x E *[a, b] .  (i) 
To prove that g is continuous at any real c E [a, b] we apply the theory of 
Section 7. 1 and show that if x � c in *[a, b] , then *g(x) � *g(c) . But given 
x � c, then for n E N, *fn (x) � *fn (c) by continuity of fn · Thus 

I * f n ( x) - * f n (c) I � 0 for all n E N. 

But the hypersequence ( I * f n (X) - * f n (c) I : n E *N) is internal (by the 
internal function definition principle 13. 16) , and therefore by Robinson's 
lemma (15 .2 .1)  it follows that there is some unlimited K for which I *JK (x)
*fK(c) l � 0, and so 

*!K (x) � *fK (c) . 

Then by (i) we get that *fK (x) � *g(x) , and *!K (c) � *g(c) , so *g(x) � *g(c) 
follows as desired. 

Exercise 15.3. 1 
Show that the condition (i) above is also sufficient for the sequence Un : 
n E N) of continuous real-valued functions on the closed interval [a, b] � IR 
to converge uniformly to the function g. 
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15 .4 Comprehensiveness 

We know that a real-valued sequence (sn : n E N) extends to a hyperreal
valued function (sn : n E *N) that is internal. But what about a hyperreal
valued sequence N -+ *IR? Does this have an internal extension of the form 
*N -+ *IR? 

A universe embedding is called comprehensive if for each set A E lU and 
each internal set B E *lU, any function f : A -+ B extends to an internal 
function +j :  *A -+ B, in the sense that +j(*a) = f(a) for all a E A. 

The embedding is called countably comprehensive if this condition holds 
whenever A is countable. If it holds whenever A = N, we will call it se
quentially comprehensive. Since *a = a for a E N, it follows that in a 
sequentially comprehensive embedding, any sequence N -+ *IR does indeed 
have an internal extension of the form *N -+ *R More generally, any se
quence (sn : n E N) of elements of any internal set B will extend to an 
internal hypersequence (sn : n E *N) of elements of B. 

The ultrapower construction of Section 14.3 always produces a compre
hensive embedding of a superstructure 1U(X) . The reason for this, which 
involves some intricate details, is as follows. If B is internal, then it is equal 
to [ H] , where H E Z is a function with some rank n, and we can suppose 
that H(i) E 1Un(X) for all i E I. For each b E  B choose a function Pb E Z to 
represent b ,  i.e. , b = [Pb] · In particular, for each a E A we have f(a) E B, 
and so f(a) = [PJ(a)] E [H] . Hence we can suppose P!(a) (i) E H(i) for all 
i E I. 

Now for each i E I, define fi : A -+ H(i) by putting fi(a) = PJ(a) (i) for 
all a E A. Then fi E (lUn (X) )A ,  so putting F( i) = fi makes F a function 
on I of bounded rank, i.e. , F E Z. Let +j = [F] E 1U(*X). 

Using the fact that each F(i) is a function from A to H(i) , it can be 
shown (with the help of Los's theorem) that the internal entity [F] is a 
function from *A to [H] = B as desired. Its action on any [h) E *A (with 
h( i) E A for all i E I) is given by [F] ( [h] ) = [k) , where k is the function 
k(i) = F(i) (h(i) ) .  Thus in general, 

k (i) = fi (h(i)) = PJ(h(i)) (i) ,  

and so 
+j( [h] ) = [ (PJ(h(i) ) (i) : i E I)] .  

But for a E A ,  we have *a = [ai ] where a1 (i) = a, and so 

[(PJ(a1 (i)) (i) : i E I)] 
[(PJ(a) (i) : i E I)] 
[PJ(a)] = f(a) , 

showing that +j extends f in the manner required to prove comprehensive
ness of the embedding of lU(X) into lU(*X) . 
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Exercise 15.4. 1 
For f 1---7 +j defined as above, prove the following. 

(i) If two functions j, g : A ---+ B differ only at finitely many elements 
a 1 ,  . . .  , an of A, then +j and +g differ only at *a1 , . . .  , *an. 

(2) If f : A ---+ *C is the extension by * of some function h : A ---+ C in 
1U(X), i.e. , f(a) = *(h(a)) for a E A, then +j is just the *-transform 
*h : *A ---+ *C of h. (Use a suitable choice of the representatives Pb in 
this case. )  0 

Theorem 15.4.2 For any universe embedding, the following are equiva
lent. 

( 1) The embedding is countably comprehensive with *N - N =/:; 0. 

(2) The embedding is sequentially comprehensive with *N - N =/= 0. 

(3) (Countable Saturation) Every decreasing sequence of nonempty inter
nal sets has nonempty intersection. 

Proof (2) follows as a special case from ( 1 ) .  
To show that (2) implies (3), let (An : n E N) be a sequence of nonempty 

internal sets, with An � An+! · Because A1 is internal, it is a subset of some 
standard transitive set *T (Theorem 13. 10. 1 ) .  Put B = *P(T). Now, each 
An is an internal subset of Ar, hence of *T, and so belongs to the internal 
set B. Thus by sequential comprehensiveness the sequence (An : n E .N) 
extends to an internal hypersequence (An : n E *N) of elements of B. 

By hypothesis, for each standard k E N  we have 

(\:In E *N) [n � k implies An � Ak =/= 0] . 

But this is an internal statement, so if *.N - N =/= 0, we can apply overflow 
to conclude that it must hold for some unlimited k. Then for such a k we 
have 

which establishes (3) . 

Finally, we derive (1) from (3). First, put An = {k E *N : n � k}. Then 
for each n E N, An is internal by the internal set definition principle 13. 15, 
with An � An+! · Hence by (3) there exists some K E n{An : n E N}, 
which entails K E *.N - .N, so *N - N =/= 0. 

Now to prove countable comprehensiveness. Let A = {an : n E N} be a 
countable member of 1IJ, and f : A ---+ B with B internal. For each n E N let 
An be the set of all internal functions from *A to B that have g(*ak ) = f(ak) 
for all k � n. Then An � An+b and An can be shown to be nonempty and 
internal. Hence by (3) there exists a g E n{An : n E N}. Such a g is an 
internal function from *A to B that has g(*an) = f(an) for all n E N, so 
g(*a) = f(a) for all a E A as desired. 
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To see that An is internal, take a standard set *T with *A, B � *T. Let 
'Pn (g) be the statement 

• g is a function from *A to B such that g(*a1 ) = f(al ) ,  · · · , g(*an) = 
f(an ) ·  

For each particular n E N ,  'Pn (g) is expressed by an internal formula. Also, 
an internal function from *A to B is a subset of *T x *T = *(T x T) and 
hence belongs to the transformed power set *P(T x T). Thus 

An = {g E *P(T X T) : 'Pn(g) is true} , 

and this is internal by the internal set definition principle. 
Lastly, An is shown to be nonempty by transfer of the property that 

for any set Y E P(T) , and any XI ,  . . .  , Xn E Y, there is a g E P(A x T) 
that is a function from A to Y such tha.t g(at} = Xt , · · · , g(an} = Xn · The 
transferred property is applied with Y =  B E  *P(T) and Xi = *ai to obtain 
a function from *A to B that meets the definition of An· 0 
The property expressed in Theorem 15.4.2(3) was derived in Section 1 1 . 10 
for sequences of internal subsets of *JR. Now we have seen that it holds for 
any nested sequence of sets from *1U. From what we have learned about 
ultrapowers in this section it follows that the particular ultrapower con
struction in Section 14.3 produces an enlargement that is comprehensive, 
hence countably comprehensive, and so by Theorem 15.4.2 is countably 
saturated. The argument of Section 1 1 . 12 then applies to show that any 
infinite set in *1U is uncountable. 

An instance of this last property is the fact that an unlimited hypernatu
ral number K has uncountably many hypernaturals greater than it, i .e., the 
internal set { n E *N : K < n} is uncountable. Under countable saturation 
we also have the result that K has uncountably many unlimited hyper
naturals less than it: the internal set { n E *N : n < K} is uncountable, 
while its limited part N is countable. This result can instead be obtained 
from the following theorem, due to Abraham Robinson, which we derived 
using countable saturation in Section 1 1 . 1 1 .  Here now is Robinson's own 
proof, which uses sequential comprehensiveness and indeed was his original 
reason for introducing the comprehensiveness notion. 

Theorem 15.4.3 In a sequentially comprehensive enlargement, if X is 
any countable set of unlimited hypernaturals, then there is an unlimited 
hypernatural K less than every member of X.  

Proof Write X = (sn : n E N) and extend this to an internal hyperse
quence (sn : n E *N) by sequential comprehensiveness . Put 

Y = {k E *N : (Yn E *N) (n � k ---+ k < sn)} .  

Then Y is internal, as its defining formula is internal. Moreover, Y contains 
each standard k E N, since in that case s1 , . . .  , Sk are all in X, hence 
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unlimited and so greater than k. By overflow, then, there is some unlimited 
K in Y. Then K < Sn whenever n ::;  K, which includes all n E N. Hence 
K < x whenever x E X. D 
Yet another proof of this result can be obtained from Robinson's sequential 
lemma, by the following construction. Given an internal hypersequence 
s : *N ---+ *IR, define the hypersequence §.. = (§..n : n E *N) by putting 

§..n = min{sm : m :S n}. 

Note that {sm : m ::;  n} is hyperfinite, being the image of {m E *N : m ::;  
n} under the internal function s, so §..n is indeed defined (13 .18(3) ) .  The 
following exercise completes the proof. 

Exercise 15.4.4 
Show that §.. is internal. If sn E *N00 for all n E N, apply Robinson's 
sequential lemma to the reciprocals of the §..n 's to obtain an unlimited 
hypernatural number that is less than every member of { sn : n E N}. 

15 .5  Saturation 

Countable saturation is itself equivalent to the assertion ( cf. Corollary 
11 .10 .2(1) ) :  

• Every countable collection of internal sets with the finite intersection 
property has nonempty intersection. 

We should not, however, expect that the corresponding statement always 
holds for uncountable collections of internal sets. For instance, the collection 

{*IR - {r} : r E *IR} 

of internal sets has empty intersection, but does have the finite intersection 
property. 

If K is a cardinal number, then an enlargement is called K-satumted when 

• any collection of fewer than K internal sets with the finite intersection 
property has nonempty intersection. 

(Consequently, "countably saturated" is the same as "�1-saturated" , where 
�1 is the least uncountable cardinal.) 

By using special kinds of ultrafilters it is possible to show that for any 
cardinal K, any superstructure li.J(X) has a K-saturated enlargement. In such 
an enlargement *IR must in fact be a set of size at least K (as indeed must 
every infinite internal set! ) . 

Some theorems of nonstandard analysis require K-saturation for large K. 
For instance, in the theory of topological spaces there is the property that 
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the shadow of an internal set is topologically closed. This was demonstrated 
for the topology of the real line in Section 11 . 13. For a general topological 
space it requires x:-saturation with K larger than the number of open sets 
in the topology. 

Exercise 15.5.1 
Show that x:-saturation is equivalent to the following statement: 

If an internal relation R is concurrent on a subset A of its 
domain that has cardinality less than K (A need not be internal), 
then there is an entity b in the range of R such that aRb for all 
a E  A. 





Part V 

Applications 





1 6  
Loeb Measure 

Measure theory studies operations that assign magnitudes to sets, like mea
suring the length of an interval, the area of a plane region, or the volume of 
a solid; counting the number of elements in a set; calculating the probabil
ity of an event in a sample space or the definite integral of some function 
over a set; etc. 

Now, the "measure spaces" on which such operations are defined are 
typically closed under countable set unions, and this feature is fundamental 
to the theory. But an internal collection of sets typically fails to be closed in 
this way. However, in 1973 Peter Loeb discovered that this very failure could 
be exploited to give a new way of constructing standard measure spaces 
out of nonstandard entities. 1 This has led to some interesting applications, 
particularly in probability theory and stochastic analysis. For instance, it 
provides a representation of Brownian motion as a "random walk with 
infinitesimal steps" . 

We will now develop Loeb's construction, elucidating the role played in 
it by the nonstandard principles of countable saturation, sequential com
prehensiveness, and overflow. We will then apply it to show that Lebesgue 
measure on the real line can be represented by a weighted counting measure 
on hyperfinite sets, using infinitesimal weights. 

But first , a review of some of the basic concepts of measure theory. 

1See example 6 of Section 16.1 and example 3 of Section 16.3. 
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16 . 1 Rings and Algebras 

A ring of sets is a nonempty collection A of subsets of a set S that is closed 
under set differences and unions: 

• If A, B E A then A - B, A U B E A. 

It follows that 0 E A, since A-A = 0, and that A is closed under symmetric 
differences A�B and intersections A n B, since 

A�B 
A n B  

(A - B) U (B - A), and 

A - (A - B). 

An algebra is a ring A that has S E A and hence (indeed equivalently) is 
closed under complements Ac = S - A. If A is a ring, then A U {S - A :  
A E A} is an algebra, the smallest one including A. 

A a-ring is a ring that is closed under countable unions: 

• If An E A for all n E N, then UnENAn E A. 
The equation 

nneNAn = A1 - (UneN(Al - An)) 
shows that a a-ring is also closed under countable intersections. 

A a- algebra is a a-ring that is an algebra. The intersection of any family 
of a-algebras is a a-algebra. Thus for any A � P(S) there is a smallest 
a-algebra S(A) that includes A. This S(A) is the a-algebra generated by 
A. 

Here are some examples of these concepts: 

( 1 )  P(S) itself is a a-algebra. 

(2) If S is infinite, then 

• the collection of all finite subsets of S is a ring that is not an 
algebra; 

• the collection of all finite or cofinite subsets of S is an algebra 
that is not a a-algebra; 

• the collection of all countable subsets of S is a a-ring that is not 
an algebra when S is uncountable. 

(3) Let CIR be the collection of all subsets of lR that are finite unions of 
left-open intervals (a, b] = { x E lR : a < x :::; b} with a ,  b E lR and 
a :::; b. (Thus 0 = (a, a] E CJR.) CIR is ring in which each member is in 
fact a disjoint union of left-open intervals (a, b] . CIR is not an algebra, 
and is not closed under countable unions: (0, 1 )  is not in CIR, since each 
member of CIR will have a greatest element, but (0, 1 )  is the union of 
the intervals (0, 1 -�] for n E N. 
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CIR does, however, contain certain significant countable unions: for 
instance (0, 1] is the union of the pairwise disjoint intervals ( n�l , �] . 
Any reasonable notion of measure should thus assign to (0, 1 ]  the 
infinite sum of the measures of the intervals ( n�l , �] . 

( 4) Let BR be the O"-algebra generated by CR. Each open interval (a, b) in 
.IR is in BJR, being the union of the countably many left-open intervals 
(a, b - �] for n E N. Hence every open subset of lR is in BR , being the 
union of countably many open intervals (take ones with rational end 
points) . 

On the other hand, if a O"-algebra contains all open intervals, it must 
contain any left-open (a, b] as the intersection of all (a, b + �) for 
n E N. Thus BJR is also the O"-algebra generated by the open intervals, 
as well as the O"-algebra generated by the open sets of JR. 
The members of BJR are called the Borel sets. 

(5) Let S = {1 ,  . . .  , N} with N an unlimited hypernatural. Then S is 
hyperfinite, and the collection Pr (S) of all internal subsets of S is 
an algebra (also hyperfinite) that by transfer of the finite case will 
be closed under hyperfinite unions, i.e., unions of internal sequences 
(An : n ::; K) for K E *N. Pr (S) is not, however, a O"-algebra: it 
contains each initial segment {1 ,  . . .  , n} with n E N, but does not 
contain their union because that is the external set N. 
This same analysis applies to the algebra of internal subsets of any 
nonstandard hyperfinite set S = {sn : n ::;  N}. 

(6) Let A be an algebra in some universe liJ. In any enlargement of lU, 
*A will be an algebra, by transfer, but in a countably saturated en
largement *A will not in general be a O"-algebra, even if A is. To see 
this, let (An : n E N) be a sequence of members of *A with union A. 
Each An is internal, and if A were in A, it would also be internal and 
hence by countable saturation would be equal to Un<kAn for some 
k E N  (cf. Corollary 1 1 . 10.2) . Thus if A is a genuinelyinfinite union 
of the An's, it cannot be in *A. This will happen, for example, if the 
An 's are strictly increasing (An £;: An+I) or pairwise disjoint.  

For instance, in the case of the Borel algebra the internal sets *( -n, n) 
belong to *BJR for all n E N, but their union is not in *BJR because it 
is the external set of all limited hyperreals. 

The closure condition that we do get for *A is that the sequence 
(An : n E N) extends to an internal sequence (An : n E *N) whose 
union can be shown by transfer to be in *A. In this sense *A is a 
"hyper-O"-algebra" , but that is not the type of structure on which a 
standard measure is defined. 
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This reasoning in fact shows that for any internal algebra of sets (not 
just one of the form *A) 

• the union of a countable sequence of sets can belong to the algebra 
only if it is equal to the union of finitely many of its terms. 

It is this feature upon which Loeb measure is founded. 

16 .2 Measures 

Standard measure theory employs the extended real numbers 

[-oo, +oo] = {-oo} U R U  {+oo}, 

with -oo < r < +oo for r E JR., r ± oo = ±oo, etc. We will usually put oo 
for +oo, and also make use of the set [0, oo] = {r E R :  r 2 0} U { oo }. 

Let A be a ring of subsets of a set S, and 1-l a function from A to [0, oo] 
that has !-l(0) = 0. Then 1-l is called a measure if it satisfies: 

(Ml) If (An : n E N) is a sequence of pairwise disjoint elements of A 
whose union is in A, then 

This condition is called countable additivity. Note especially that it is not 
required to hold for all (pairwise disjoint) sequences (An : n E N) , but only 
those whose union happens to belong to A (which is not guaranteed when 
A is not a a-algebra) . 

The function 1-l is called finitely additive if in place of Ml it satisfies 

(M2) 1-l(A U B) = 1-l(A) + 1-l(B) whenever A, B E  A with A n  B = 0 .  

Since a ring is closed under finite unions, M2 implies that 

whenever A1 , . . .  , An is a finite sequence of pairwise disjoint members of 
A. M2 also implies that 1-l is monotonic: 

• A � B implies 1-l(A) :::; 1-l(B) , for all A, B E A; 

as well as being subtractive: 

• A � B and 1-l(B) < oo implies 1-l(B - A) = 1-l(B) - 1-l(A) , for all 
A, B E A. 

Countable additivity implies the following important fact: 
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• If (An : n E N) is an increasing sequence of elements of A whose 
union is in A, then 

An element A E A is called J.t-finite if J.t(A) < oo, and J.t-null if J.t(A) = 0. 
The function J.t itself is lT-jinite if the set S is the union of countably many 
f.J,-finite subsets. 

For example: 

(1) If A �  S, put J.tc (A) = { �� ' if A is finite, 
if A is infinite. 

Then f.tc is a measure on P(S) ,  the counting measure, which is lT-finite 
iff S is countable. The restriction of f.tc to the ring of finite subsets of 
S, or to the algebra of finite or cofinite sets, is also a measure. 

(2) On the ring CIR of disjoint unions of left-open intervals (a, b] , put 
A( (a, b]) = b - a and extend A additively to all members of CJR . Then 
A proves to be a measure on CJR , and A is lT-finite because JR. is the 
union of the intervals ( -n, n] . 
Here the symbol A may be thought of as denoting "length" , but it 
also stands for "Lebesgue" . 

(3) Consider a countably saturated enlargement of a universe over a set 
X that has [-oo, +oo) � X. Then the set 

*[0, oo) = {x E *JR. : x � 0} U {oo} 

is internal. Now let S be a hyperfinite set and P1 (S) the algebra of 
all internal subsets of S. For each A E P1 (S) put 

IAI 
J.t(A) = TSI 

(where IAI is the internal cardinality of the hyperfinite set A). Then 
J-£ is finitely additive in the sense of M2, because lA U Bj = IAI + IBI  
when AnB = 0 (but note that we are referring to + in *JR. rather than 
JR.) . Since IAI :::; lSI whenever A �  S, J-£ takes limited values between 
0 and 1 ,  i.e . ,  J-£ :  P1(S) --t *[0, 1 ) .  Putting 

J-tL (A) = sh(J.t(A)) 

then defines f.J,L : P1 (S) ----+ [0, 1) as a genuinely real-valued finitely 
additive measure on P1 (S) ,  with J-tL(S) = 1 .  
B ut J-tL is in fact a measure, for the reason explained in example 
6 of Section 16. 1 .  If (An : n E N) is a sequence of pairwise disjoint 
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elements of PI(S) whose union A belongs to PI(S) ,  then A must be 
equal to Un<kAn for some k. But then when m > k, Am = 0, since 
Un:::;kAn and Am are disjoint, and so J.tL (Am) = 0. Hence 

UnENAn 
LnEN J.tL (An) 

A1 U · · · U Ak, and 
J.tL (AI ) + · · · + J.tL (Ak) ,  

from which it follows that Jl.L satisfies Ml. 

( 4) Let A be an internal ring of subsets of some internal set S in a 
countably saturated enlargement, and let J.t : A �  *[0, oo] be a finitely 
additive function. Adapting the construction of (3), put 

Jl.L (A) = { sh(J.t(A)) ,  
oo, 

if J.t(A) is- limited, 
if J.t(A) is unlimited or oo. 

Then reasoning as in (3) , we show that Jl.L : A � [0, oo] is countably 
additive, and so is a measure on the ring A. 

(5) This last construction has (3) as a special case, and also covers other 
natural extensions of (3) that involve hyperfinite summation. Let w :  
S � *JR be an internal "weighting" function on a hyperfinite set S. 
For each A E PI(S) put 

(recall the definition of hyperfinite sums in Section 13.19). Then J.tw 
is a "weighted counting function" that is finitely additive and induces 
the measure J.t£ on PI (S) . 

In fact, every internal finitely additive function J.t : PI (S) � *[0, oo] 
arises in this way: put w(s) = J.t({s}) .  Example (3) itself is the special 
case of a uniform weighting in which each point is assigned the same 
weight w(s) = 111 . 

16 .3 Outer Measures 

We now review the classical procedure of Caratheodory for extending a 
measure J.t on a ring of sets A to a measure on a a-algebra including A. 

If B is an arbitrary subset of the set S on which A is based, put 

Here the infimum is taken over all sequences (An : n E N) of elements 
of A that cover B. The function J.t+ : P(S) � [0, oo] is called the outer 
measure defined by J.t (although it may not actually be a measure) .  It has 
the following properties: 
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• J.L+ agrees with J.L on A: if B E A, then J.L+ (B) = J.L( B). 

In particular, J.L+ (0) = 0. 

• Monotonicity: if A �  B, then J.L+(A) � J.L+(B). 

• Countable subadditivity: for any sequence (An) of subsets of S, 

• For any B � S and any c E JR+ there is an increasing sequence 
A1 � A2 � · · · of A-elements that covers B and has 

A set B � S is called J.L+ -measurable if it splits every set E C S J.L+
additively, in the sense that 

For this to hold it is enough that 

whenever J.L+(E) < oo. 
The class A(J.L) of all J.L+ -measurable sets has the following properties. 

• A(J.L) is a a-algebra. 

• A � A(J.L) , i.e. , all members of A are J.L+ -measurable. Hence A(J.L) 
includes the a-algebra S(A) generated by A. 

• All J.L +-null sets belong to A(J.L) . 

• J.L+ is a measure on A(J.L) , and hence is a measure on S(A) . 

• If J.L is a-finite on A, and A is an algebra, then J.L+ is the only extension 
of J.L to a measure on S(A) or on A(J.L) . 

Because A(J.L) contains all J.L+ -null sets, J.L+ is a complete measure on it, 
which means that 

• if A �  B E A(J.L) and J.L+(B) = 0, then A E A(J.L) . 

This entails that 

• if A, B E  A(J.L) with A �  B and J.L+(A) = J.L+(B) , then any subset of 
B - A belongs to A(J.L) (and is J.L+-null) , and hence any set C with 
A �  C � B belongs to A(J.L) and has J.L+(c) = J.L+ (A) = J.L+(B) . 
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16.4 Lebesgue Measure 

Lebesgue measure is defined by the outer measure ..\ + constructed from 
the measure A on CIR that is determined by putting ..\( (a, b]) = b - a. The 
members of the a-algebra CJR(..\) are known as the Lebesgue measurable sets 
and include all members of the a-algebra BIR of Borel sets generated by CJR. 
We will write ..\(B) for ..\+ (B) whenever B is Lebesgue measurable. 

Some facts about Lebesgue measure that will be needed are: 

( 1 )  A is the only measure on BIR that has ..\((a , b) ) = b - a: any measure 
on an algebra including BIR that agrees with A on open intervals must 
agree with ..\ on all Borel sets. 

(2) For any Lebesgue measurable set B there exist Borel sets C, D with 
C � B � D and ..\(D - C) = 0, hence ..\(B) = ..\(C) = ..\(D) . 

(3) A set B � IR is Lebesgue measurable if for each c E JR+ there is a 
closed set Cc � B and an open set De :2 B such that ..\(De - Cc) < c. 

By using the axiom of choice it can be shown that there is a subset of IR 
that is not Lebesgue measurable. 

16 .5 Loeb Measures 

Loeb measures are defined by applying the outer measure construction 
to measures of the type IlL introduced in example 4 of Section 16.2. We 
work from now on in a nonstandard framework that is countably saturated, 
and hence sequentially comprehensive (Theorem 15.4.2) . Let (S, A, 11) be 
any "measure space" consisting of an internal finitely additive function 
11 : A --+ *[0, oo] on an internal ring A of subsets of an internal set S. 
Take IlL : A --+ [0, oo] to be the measure defined in example 16.2( 4) , and 
let 11! be its associated outer measure on P(S) . The members of the set 
A(11L) of 11! -measurable subsets of S will be called the Loeb measurable 
sets determined by 11· We write /lL (B) for 11!(B) whenever B is Loeb 
measurable and refer to IlL as the Loeb measure and (S, A(!lL ) ,  IlL)  as the 
Loeb measure space determined by 11· 

This definition of Loeb measure via the outer measure construction is 
the way that the notion was first arrived at. By analysing its properties 
we will see that A(!lL) has a characterisation that would allow it and its 
measure /lL to be defined in a more direct way (cf. the comments at the 
end of Section 16.7) . 

Lemma 16.5.1 If B is Loeb measurable with respect to /1, then 

/lL (B) = inf {!lL (A) : B � A  E A}. 
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Proof. By monotonicity, /-LL (B) is a lower bound of the 11L (A) 's for B � 
A E A. If /-LL (B) = oo, then the result follows. If, however, 1-LL (B) < oo, 
to show that it is the greatest lower bound it suffices to show that for any 
c E JR+ there is some set Ac: E A with B � Ac: and 1-LL (Ac: ) ::;; /-LL (B) + c. 

Now, for such an c, by properties of outer measure there is an increasing 
sequence A1 � A2 � • • · of A-elements whose union includes B and has 

The sequence (An : n E N) extends by sequential comprehensiveness to an 
internal sequence (An : n E *N) of elements of A. Then for each k E N  we 
have 

(Vn E *N) (n ::;; k implies An � Ak and M(An) < /-LL (B) + c) (i) 

(since M(An) ::= MdAn) :S: Mt(UnENAn)) .  But (i) is an internal assertion, 
since 11 and the extended sequence are internal, while k, c, and 11L (B) are 
fixed internal entities (real numbers) . Therefore by overflow (i) must be 
true with some unlimited K E *N in place of k. For such a K we have 
AK E A and An � AK for all n E N, so that 

while M(AK) < 1-£L (B) + c:. Hence as I-£(AK) ::= /-LL(AK) ,  

11L (AK) :S: 11L (B) + c: , 

establishing that AK is the set Ac: we are looking for. 

Lemma 16.5.2 If B is Loeb measurable and I-LL -finite, then 

11L (B) = sup {11L (A) : A �  B and A E A} . 

D 

Proof Given any c E JR+ , we will show that there is some set Ac: E A 
such that Ac: � B and 1-LL(B) - c: < M(Ac:) ·  

Since /-LL (B) < oo, we know from Lemma 16.5.1 that there is some D E  A 
with B � D and 1-LL(D) < oo. The desired result is obtained by using 
complementation relative to D. Firstly, D - B is Loeb measurable and 
I-LL-finite, so by Lemma 16 .5 .1 there is a set C with D - B �  C E A and 

I-LL( C) < 1-LL (D - B) + c:. 

We may assume C � D (since we could replace C by C n D here) . Let 
Ac: = D - C E A. Then Ac: � B, and C is the disjoint union of D - B and 
B - Ac: , so 

1-LL (D - B) + I-£L (B - Ac:) = /-LL (C) < 1-LL (D - B) + c, 
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implying that J.-tdB - Ae-) < c. Therefore 

so J.-lL(B) - c < J.-t(Ae-) as desired. 

16 .6 JL-Approximability 

0 

An arbitrary subset B of S is called J.-t-approximable if for every c E JR+ 
there exist "approximating" sets Ce- , De- E A such that 

Equivalently, for every c E �+ there exist Ce- , De- E A with Ce- � B � De
and J.-lL (De- - Ce-) < c. (The equivalence holds because J.-t(A) � J.-lL(A) in 
general.) 

The notion of J.-t-approximability will provide an alternative characteri
sation of Loeb measurability (Theorem 16. 7. 1 ) .  For this we need several 
preliminary results. 

Lemma 16.6. 1 If B is Loeb measurable with J.-lL(B) < oo, then B is J.-t
approximable. 

Proof Given c E �+, by Lemmas 16.5 . 1  and 16.5.2 there are Ce- , De- E A 
with Ce- � B � De- and J.-tL(De-) < J.-lL (B) + � while J.-lL (B) < J.-lL(Ce-) + �
Then 

0 
The next lemma makes further appeal to sequential comprehensiveness and 
overflow. 

Lemma 16.6.2 If B is J.-t -approximable, then there is a set A E A that is 
"almost equal" to B in the sense that their symmetric difference A�B is 
J.-t! -null. 

Proof Applying J.-t-approximability, construct a pair of sequences of A
elements (Cn :  n E N) and (Dn : n E N) with 

and J.-lL (Dn - Cn) < � - To see how this works at the inductive stage, given 
Cn and Dn, take C�+l , D�+l E A with 

C�+l � B � D�+l and J.-lL (D�+l - C�+l ) < n�l ; 
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put Cn+l = Cn U C�+l and Dn+l = Dn n D�+I · 
By sequential comprehensiveness, these sequences extend to internal hy

persequences ( Cn : n E *N) and (Dn : n E *N) of A-elements. Then for 
each k E N, 

(Vn E *N) (n � k implies Cn � Dk � Dn) · (ii) 

This is an internal statement, so by overflow there is some unlimited K E *N 
such that for all n E N, 

But then for any n E N, 

and hence 

Thus J.Lt (DKllB) = 0, and so Lemma 16.6.2 holds with A =  DK E A. 0 

Note that we cannot arrange to get B � DK in this argument, because 
if we included "B � Dk" in (ii) , we would no longer have an internal 
statement to which we could apply overflow. 

Lemma 16.6.3 If B is J.L-approximable, then B is Loeb measurable. 

Proof. We have to show that any E � S is split J.L t -additively by B, for 
which it suffices that 

Now, by Lemma 16.6.2 there is an A E A that is almost equal to B. The 
desired inequality holds with A in place of B, since A is Loeb measurable, 
and so as J.Lt(B�A) = 0, we can show it holds for B as well. Formally, let 

C (E n B) - A, 
D (E n A) - B, 
G E - (A u B) ,  
H E n A n B  

(draw a Venn diagram!). Then C and D are included in B�A, so J.Lt(C) = 
J.Lt(D) = 0. Thus 

J.Lt(E n B) = J.Lt (C U H) � J.Lt (C) + J.Lt (H) = J.Lt(H), 

and similarly 
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Hence 

11t(E n B) + 11t(E - B) < 11t (H) + 11t(G) 
< J-t! (E n A) + J-t! (E - A) by monotonicity 

J-t!(E), 

with the last step given by the 11! -measurability of A. 0 

Lemma 16.6.4 If J-t! (B) < oo ,  then B is Loeb measurable with respect to 
11 if and only if it is J-t-approximable. 

Proof. By Lemmas 16.6.1 and 16.6.3. 

16 .7 Loeb Measure as Approximability 

0 

The work of the last section yields the following characterisation of Loeb 
measurable sets. 

Theorem 16. 7.1 An arbitrary subset B of S is Loeb measurable with re
spect to 11 if and only if B n A is 11-approximable for all J-t-finite A E A. 

Proof. Let B be Loeb measurable. If A E A is 11-finite, then B n A is Loeb 
measurable, since the Loeb measurable sets are n-closed, and J-L! -finite 
since B n A �  A, so by Corollary 16.6.4 B n A is 11-approximable. 

Conversely, let B n A be 11-approximable for all 11-finite A E A. To show 
that B is Loeb measurable, we have to show that for any 11! -finite E � S, 

J-t!(E) 2: J-t! (E n B) + J-t!(E - B). (iii) 

But in such a case 11! (EnB) < oo, so there must be a sequence (An : n E N) 
of A-elements that covers EnB with each An being 11-finite. Each BnAn is 
then J-t-approximable, by hypothesis, and so is Loeb measurable by Lemma 
16.6.3. Hence if 

A =  UnEN (B n An) ,  
it follows that A is Loeb measurable, and so 

But 
E n  A =  E n  (UnEN(B n An)) = E n  B, 

(iv) 

as the An 's cover E n B. Then E - A  = E - B, and hence (iii) follows from 
(iv) . 0 

The statement of Theorem 16.7. 1 could be used to provide a direct def
inition of the class A(J-tL ) of Loeb measurable sets, with Lemma 16.5.1 
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providing the definition of the Loeb measure J-LL itself. But then we would 
have work to do in proving that A(J-LL) was a a-algebra including A, on 
which J-LL was a complete measure. 

16 .8 Lebesgue Measure via Loeb Measure 

Let N E *N be a fixed unlimited hypernatural number, and 

s { � : k E *Z and I k I :::; N2 } 
{ � : 1 :::; k < N2 } U {0} U { � : 1 :::; k :::; N2} .  

S is a hyperfinite set, of internal cardinality 2N2+ 1 ,  forming a grid of points 
spread across the hyperreal line between -N and N, with adjacent points 
being of infinitesimal distance Jif apart. Each real number r is approximated 
infinitely closely on either side by these grid points. This follows by transfer 
of the statement 

(Vn E N) ( lr l < n � (3k E Z) [ lk l  < n2 and ( * :::; r < k�l ) ] ) . 

Now, let A =  P1(S) be the set of all internal subsets of S. A is an algebra, 
is itself internal and hyperfinite, and all its members are hyperfinite. The 
function J-L : A � *[0, oo) given by 

J-L(A) = � N 
is internal and finitely additive (and similar to example 16.2(3) ) .  J-L is a 
weighted counting function in the sense of 16.2(5) ,  determined by assigning 
the infinitesimal weight Jif to each grid point. It induces the measure J-LL 
on A having 

PL(A) = { sh ( 1�1) , if � is limited, 
oo, otherwise. 

Let (S, A(J-LL ) ,  J-LL) be the associated Loeb measure space as defined in 
Section 16.5. Our first step is to show that the Lebesgue measure of any 
real interval is obtainable by using J-LL to count the weighted number of 
grid points between the end points of the interval. 

Theorem 16.8.1 For any a, b E  IR with a <  b, 

J-LL ({s E S :  a < s < b}) = b - a. 

Proof Let A =  {s E S :  a <  s < b}. Then A =  S n *(a, b) , so A is internal 
and belongs to A, hence is Loeb measurable. Moreover, A is hyperfinite, 
so has smallest and greatest elements, say s and t. Since a and b can be 
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approximated infinitely closely by members of S, we must then have a � s 
and b � t .  Also, we can put s = K J1 and t = t for some K, L E *.Z. Thus 

A - { K+l K+2 L } - { M .  K M < L}  - � , � , . . . , N - N ' < - ' 

which is hyperfinite of cardinality L- K, since the internal function f ( x) = 
K)/ is a bijection from { 1 , . . .  , L - K} onto A. It follows that 

and so JLL(A) = b - a as desired. D 

Note that the proof of Theorem 16.8.1 shows readily that JLL assigns 
measure b - a as well to the sets 

S n *(a, b] , S n *[a, b) , S n *[a, b] . 

Thus if B is any finite interval in �. the Lebesgue measure of B is equal 
to the Loeb measure of the set S n * B of grid points that are (possibly 
nonstandard) members of B. One might wonder whether this equation 

>..(B) = JLL (S n *B) 

holds in general, but that suggestion is quickly dispelled by the case B = Q. 
Every grid point is a hyperrational number, so S � *Q and hence JLL (S n 
*Q) = JLL(S) = oo, while >..(Q) = 0. 

Rather than S n * B, the appropriate set to represent B in S is the set of 
grid points that approximate members of B infinitely closely. This is the 
set 

{ s E S : s is infinitely close to some r E B} 
{ s  E S :  s is limited and sh(s) E B}, 

which may be called the inverse shadow of B. The definition of sh -l  (B) 
uses a condition that is not internal, so the set itself cannot be guaranteed 
to be internal, and more strongly may not be Loeb measurable, i.e. , may 
not belong to A(JLL) .  One case in which it is not internal but nonetheless 
is Loeb measurable occurs when B = �: since 

sh- 1 (R) = {s E S :  s is limited} = UnEN(S n *(-n, n)) ,  

while each set Sn*( -n, n) is an internal subset of S and so belongs to A, it 
follows that sh- 1 (R) belongs to A(JLL) by closure under countable unions. 
But sh-\R) cannot be internal, because it is bounded in *� but has no 
least upper (or greatest lower) bound. 

The general situation is this: 
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Theorem 16.8.2 A subset B of JR is Lebesgue measurable if and only if 
sh- 1 (B) is Loeb measurable. When this holds, the Lebesgue measure of B is 
equal to the Loeb measure of the set of grid points infinitely close to points 
of B: 

>.(B) = J.LL(sh-1 (B) ) . 

Proof Let M = {B � JR :  sh- 1 (B) E A(J..t£ )} .  For B E M, put 

v(B) = J..lL (sh-1 (B)) .  

Our task is to show that M is the class CJR(>.) of Lebesgue measurable sets, 
and that v is the Lebesgue measure >. . 

By properties of inverse images of functions, 

sh- 1 (0) -
sh-1 (A - B) 

sh-1 (UnENAn) 

0, 
sh -1 (A) - sh -1 (B) , 

UnENsh-l (An) · 

Since A(J.LL ) contains 0 and is closed under set differences and countable 
unions, these facts imply that M has the same closure properties . Since 
sh- 1 (1R) E A(J.LL ) ,  as was shown above, we also have JR E M. Altogether 
then M is a a-algebra, on which v proves to be a measure. 

At this point we need the the following lemma. 

Lemma 16.8.3 M includes the Borel algebra BJR, and v agrees with Lebes
gue measure on all Borel sets. 

Proof Each open interval (a, b) � JR belongs to M, since sh -l ( (a, b)) is 
the union of the sequence (An : n E N) , where 

A = S n *(a + .! b - .! ) E A. n . n ' n 

But BJR is the smallest a-algebra containing all open intervals (a, b), so this 
implies that BR � M .  Also, by Theorem 16.8. 1 ,  

J.LL (An) = (b - �) - (a + �) = b - a - � ' 

and hence as the An 's form an increasing sequence, 

v((a, b)) = j..tL (sh- 1 ( (a, b) ) = lim j..tL (An) = b - a. n�oo 

Thus v is a measure on BJR that agrees with A on all open intervals. But 
any such measure must agree with >. on all Borel sets (16.4(1 ) ) .  D 

Now, if B � JR is Lebesgue measurable , then ( 16.4(2)) there are Borel 
sets C, D with C � B � D and >.(C) = >.(B) = >.(D) . Then 

sh-1 (C) � sh-1 (B) � sh-1 (D) , 
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and by Lemma 16.8.3, C, D E M, whence sh- 1 (C) , sh-1 (D) E A(JLL ) ,  and 

JLL (sh-1 (C)) = v(C) = >.(C) = >.(D) = v(D) = JLL(sh-1 (D) ) .  

Since J.lL is  a complete measure on A(JLL ) (by the general theory of outer 
measures) , it follows that sh- 1 (B) E A(JLL ) ,  and hence B E  M,  with 

v(B) = JLL (sh-1 (B)) = JLL (sh-1 (C) ) = .A(C) = >.(B). 

This establishes that every Lebesgue measurable set is in M (i.e. , CIR (.A) � 
M) and that v agrees with >. on all Lebesgue measurable sets. 

It remains now to show that M � CIR (.A) , and for this we need the 
result from Section 1 1 .13 that the shadow of any internal subset of *IR is 
topologically closed as a subset of IR, and so is a Borel set. 

Let B E M, i.e. , sh-1 (B) E A(JLL)· First we consider the case that 
sh-1 (B) is JLL-finite and show that B is Lebesgue measurable by the crite
rion 16.4(3) . But if JLL (sh-1 (B)) < oo, then by Lemma 16.6. 1 ,  sh- 1 (B) is 
JL-approximable, so for any given c E JR+ there exist sets C, D E A with 

C � sh- 1 (B) � D and JLL (D) - JLL (C) < c. 

Let Cc: = sh(C) = {sh(s) : s E C n lL} .  Now, C is internal, being a member 
of A, and so by Theorem 1 1 . 13. 1 Cc: is closed, hence Borel, and therefore 
Cc: E M by Lemma 16.8.3. But since C � sh- 1 (B) , every member of C 
has a shadow, so 

Hence 
(v) 

Similarly, sh(S - D) is closed, and is disjoint from B because sh-1 (B) � D. 
Thus De: = lR - sh(S - D) is open in JR, hence Borel, and has B � De:. 
Moreover, sh-1 (Dc:) � D, and so 

(vi) 

Thus we have Cc: � B � De: , with Cc: closed, De: open, and 

.A(Dc:) - .A(Cc:) JLL (sh-1 (Dc:)) - JLL (sh-1 (Cc:))  by Lemma 16.8.3 
< JLL(D) - JLL(C) by (v) and (vi) 

< c. 

According to 16.4(3) , this is enough to ensure that B is Lebesgue measur
able. 

For the general case, we use the fact that the set B of reals is the count
able union 

B = UnEN(B n ( -n, n) ) , 
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so that it is enough to show that each B n ( -n, n) is Lebesgue measurable 
in order to deduce that B itself is Lebesgue measurable. 

Now, sh- 1 ((-n, n)) belongs to A(ttL) ,  since (-n, n) belongs to M, and 
so A(tt L) contains the set 

But this set is ttL-finite, because 

JLL (sh-1 (B n ( -n, n))) � JLL (sh-1 ( (  -n, n))) = 2n, 

so the case just considered proves that B n ( -n, n) is Lebesgue measurable. 

This finishes the proof of Theorem 16.8.2, completing our demonstration 
that the Lebesgue measure .>..(B) of a subset B of lR can be obtained as the 
Loeb measure JLL (sh-1 (B) ) .  

D 





1 7  
Ramsey Theory 

So far, the nonstandard methodology has been applied to calculus, analysis, 
and topology. This is to be expected, since the notions of infinitely small 
and large numbers, infinitely close approximation, limiting concepts, etc. 
belong to those subjects. But there are other areas of mathematics that 
can be illuminated by the methodology of enlargement , and we will look 
at one such now: the combinatorics of infinite sets. 

17. 1  Colourings and Monochromatic Sets 

Let 01 , . . .  , Cr be a finite sequence of pairwise disjoint sets and A a set 
satisfying 

(i) 

If each of the sets Ci is finite, then so too is A. To put this another way: 

• If A is infinite, then at least one of the Ci 's must be infinite. 

This observation can be reformulated in the language of colourings. We 
regard (i) as inducing a partition of the set A given by an assignment of 
r different colours to the members of A. Then Bi = A n Ci is the set of 
elements of A that are assigned colour i . In these terms we have we have: 

• For any colouring of an infinite set A using finitely many colours , 
there must be an infinite subset B of A that is monochromatic, i.e., 
all members of B get the same colour. 
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This is the simplest case of a powerful principle known as Ramsey 's theo
rem, which has significant combinatorial applications and which forms the 
basis of a subject called Ramsey theory. To formulate the general case we 
introduce the notation [A] k for the set of all k-element subsets of A (where 
k E N) :  

[A] k = {B � A :  IBI = k}. 

Notice that if B � A, then [B] k � [A] k .  Given a finite colouring 

[A] k � C1 u · · · u Cr 

of the k-element subsets of A, a set B � A is called monochromatic if all 
its k-element subsets get the same colour, i.e. , [B] k  � Ci for some i. 

Ramsey's Theorem. If A is infinite, then for any finite colouring of [A]k 
there exists an infinite monochromatic subset of A. 

Here is an illustration of the use of this principle. 

Theorem 17 .1 .1  If ( P, ::; ) is an infinite partially ordered set, then P con
tains a sequence (Pn : n E N) that is 

(1 )  strictly increasing: Pl < P2 < · · · or 
(2) strictly decreasing: Pl > P2 > · · · or 

(3) an antichain, i. e. , Pn and Pm are incomparable under the ordering :::::; 
for all n f=. m .  

Proof Take a colouring 

of the 2-element subsets of P in which 

cb = { {p, q} : p ::;  q or q :::; p} 

and 
Cw = [P]2 - Cb . 

Thus Cb (the black sets) consists of pairs of elements that are comparable, 
and Cw (white) consists of the incomparable pairs. 

By Ramsey's theorem there is an infinite set Q � P that is monochro
matic for this colouring. If [Qj2 � Cw , then any sequence of distinct points 
in Q will be an antichain fulfilling (3). If, however, [Q]2 � cb , then Q is 
an infinite chain, from which we can extract a sequence satisfying (1) or 
(2). Indeed, if Q is not well-ordered by :::::; , then it must contain an infinite 
decreasing sequence (2), and if it is well-ordered, then each of its nonempty 
subsets has a least element, and we can use this fact to construct an in
creasing sequence (1) inductively. 0 
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17 .2 A Nonstandard Approach 

The proof of Theorem 17. 1 . 1  reveals nothing about the structure of the 
poset (P, �) , and leaves an air of mystery: we simply invoke this marvelous 
new principle called Ramsey's theorem, and it delivers the set Q we need. 
We do not see whether [Qj2 turned out to be black or white. 

Here now is a nonstandard argument that does analyse the structure 
of the partial ordering. We work in an enlargement of a universe 1U that 
contains P and � and in which members of P are individuals. The extension 
of the relation � to * P will also be denoted by �. It will be assumed that 
P has a least element 0 and a greatest element 1 (we can always add such 
elements and then take them away at the end to get the desired result) .  

Let 1r be a nonstandard member of * P in this enlargement (recall from 
Section 14 .1 that infinite sets from 1U always have such members) .  Put 

L {p E P : p < 1r},  
U {p E P : p > 7r}. 

These sets are nonempty, since they contain 0 and 1 respectively. Several 
cases are considered. 

First, if L has no maximal member, then it must contain an increasing 
sequence of the type ( 1 )  (p is maximal in L if there is no x E L with p < x) . 
Likewise, if U has no minimal member, it yields a decreasing sequence (2) . 
If neither of these cases holds, then L has a maximal element Ql and U has 
a minimal element Qu . Since q1 < 1r < Qr , the statement 

(:Jy E *P) (qz < Y < Qu) 

is then true, and so by transfer it follows that the set 

M = {p E P : qz < P < Qu} 

is nonempty, and contains an element PI · We will now inductively define 
an antichain in M to complete the proof. The entity 1r belongs to * M and 
is used to guide the construction of the antichain. 

Assume that PI , . . 0 Pn E M have been defined and are pairwise incom
parable. Now, M is disjoint from L,  since all members of M are greater 
than Ql , which is maximal in L. Similarly, M is disjoint from U. But then 
no member of M can be comparable with 1r, because an element of P that 
is comparable with 1f must belong to L or U. Hence the statement 

(:Jy E * M) (Pl i. Y i. P1 A · · · A Pn i. Y i. Pn) 

is true (when y = 1r) . By transfer it follows that there is some Pn+l E M 
that is incomparable with each of p1 , 0 • •  , Pn· This completes the inductive 
step, showing that we can indeed obtain (Pn : n E N) as an antichain in M. 



224 17. Ramsey Theory 

17.3 Proving Ramsey's Theorem 

The essence of the inductive construction just given is that at each stage 
the nonstandard element 1r of * M has the desired property (incomparability 
with Pl l . . .  , Pn) ,  and so by existential transfer gives rise to a (standard) 
element of M having the same property. 

By an argument similar to this we can prove Ramsey's theorem itself, us
ing a nonstandard entity to guide the construction of a monochromatic set. 
But first we observe that it is enough to obtain the resUlt for 2-colourings, 
because the rest can be done by standard induction. Fixing the parame
ter k,  assume inductively that any r-colouring of a set of the form [B]k 
with B infinite has an infinite monochromatic subset of B. Then given an 
r + 1-colouring 

[A]k � C1 u · · · u Cr+l ,  
put Cb = C1 u · · · u Cr and Cw = Cr+l to turn it into a 2-colouring. If 
the 2-colouring case holds, then it yields an infinite monochromatic set 
B � A for this 2-colouring. If [B]k � Cb , then C1 , . . .  , Cr induce an r
colouring on [B]k that by the induction hypothesis on r has an infinite 
monochromatic set B' � B. Then B', being a subset of A, is an infinite 
monochromatic set for the original (r + 1)-colouring of [A] k .  If on the other 
hand [ B] k � Cw = Cr+l ,  then B itself is a monochromatic set for the 
( r + 1 )-colouring. 

Thus we are reduced to proving Ramsey's theorem for 2-colourings 

[A] k � Cb U Cw 
for infinite sets A. Now we proceed by induction on the parameter k. The 
case k = 1 is just the special case described at the beginning: [A] l can be 
identified with A, via the correspondence {a} f.-+ a, and if A � Cb U Cw, 
then one of Cb and Cw must be infinite. For the inductive case, assume that 
Ramsey's theorem holds for any 2-colouring of any set of the form [D]k .  
Let 

(ii) 

be a 2-colouring of [A]k+I ,  with A infinite. Then the enlarged sets *Cb 
and *Cw give a 2-colouring of [*A] k+I ,  i .e. , the partition of (k + I)-element 
subsets of A into "black" and "white" extends to all ( k + 1 )-element subsets 
of *A. To see this, observe that the fact that every (k + 1)-element subset 
of A belongs to [A] k+I can be expressed by the sentence 

(Vai , . . .  , ak+l E A) 
(/\1�ih�k+I ai =I= aJ) --+ (:Jz E [A]k+l ) z = {a1 , . . .  , ak+I } ,  

where "z = { a1 ,  . . .  , ak+ 1 }" abbreviates the formula 

a1 E z 1\ · · · 1\ ak+l E z 1\ (Vx E z) (x = a1 V · · · V x = ak+I ) · 
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By transfer of this sentence it follows that every ( k + 1 )-element subset of 
*A belongs to *( [A]k+1 ) : 

[*A]k+I � *( [A]k+l ) . 
Exercise 17.3. 1 Show that in fact, [*A]k+l = *( [A]k+l ) . 
Now by transfer of (ii) , 

*( [A]k+1 )  � *(Cb u Cw) = *Cb U *Cw , 

0 

and *Cb and *Cw are disjoint, by transfer of the fact that Cb n Cw = 0. 
Altogether then we get a 2-colouring 

of the claimed type. 

[*A]k+l c *C u *C - b w 

Because A is infinite, it includes a denumerable subset , so we may as well 
assume N � A. Now, let 1r E *N - N be an unlimited hypernatural number. 
Then 1r E *A, and we use 1r to control the construction of an increasing 
sequence s1 < s2 < · · · of standard positive integers with the property 
that whenever n1 < · · · < nk+b then 

This property asserts that each member of the sequence behaves in relation 
to its predecessors just like 1r. 

If such a sequence exists, then putting D = { sn : n E N} � A, a 2-
colouring 

(iv) 
of [ D] k may be defined by 

{snp · . .  , snk } E C� iff {snp . . .  , snk , 1r} E *Cb , (v) 

and C:V = [D]k - C�. (Here we list the members of any k-element subset of 
D in increasing order.) 

By the inductive assumption that Ramsey's theorem holds for k, it fol
lows that there is an infinite B � D that is monochromatic for the colouring 
(iv) . But then B will also be our desired monochromatic set for (ii) . For if 
[B]k � C�, then [B]k+l � Cb, because if 

(with n1 < · · · < nk+I ) ,  then 

{sn1 , . . .  , Snk } E (B]k � C� , 
and so by (v) , 
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and hence by (iii) , 

Similarly, if [B]k � C:V , then [B]k+I � Cw, because (iii) and (v) also imply 

It remains now to construct a sequence of standard integers satisfying (iii) . 
Choose s1 < · · · < sk arbitrarily. For n 2: k suppose inductively that 
s1 , . . .  , sn have been defined in such a way that (iii) holds whenever n1 < 
· · · < nk+I :::; n. We have to define Sn+I so that it behaves in relation to 
its predecessors just like 1r. Thus Sn+I must satisfy the condition 

(vi) 

whenever n1 < · · · < nk :::; n and 

(vii) 

Likewise, sn+I must satisfy the condition 

(viii) 

whenever n1 < · · · < nk :::; n and 

(ix) 

But there are only finitely many such conditions to be fulfilled, and so 
our requirements can be expressed in a sentence of the formal language 
associated with lU. 

-

To facilite this we will list the members of any ( k + 1 )-element subset of 
{s1 , . . .  , sn} in increasing order, so that such (k + 1)-element subsets can 
be identified with (k + 1)-tuples (sn1 , • • •  , Snk+1 ) having n1 < · · · < nk+I · 
Now, let <p(x) be the conjunction of all (atomic) formulae 

such that (vii) holds and all formulae 

such that (ix) holds (where n1 < · · · < nk ::; n). 
The transformed formula *<p(x) is a conjunction of formulae of the form 

(sn1 , • • •  , Snk , x) E *Cb or (sn1 , • • •  , Snk , x) f/:. *Cb . It makes an assertion 
about x that is true of the unlimited hypernatural number 1r, i.e. , *<p( 1r) is 
true. Since sn is standard, it follows that the sentence 

(3x E *N) (sn < x A *<p(x)) 
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is true. By existential transfer this implies that there is an Sn+ 1 E N with 
Sn < sn+l and cp(sn+l ) true. The definition of cp then ensures that (vi) and 
(viii) hold according as (vii) and (ix) hold. Together with the induction 
hypothesis on n, this guarantees that (iii) holds whenever n1 < · · · < 
nk+l :S: n + 1 .  

This completes the construction of a sequence fulfilling (iii) in general, 
and hence completes the proof of Ramsey's theorem. 

17.4 The Finite Ramsey Theorem 

If a set A is finite, then of course no colouring of [A]k can produce an infinite 
monochromatic subset of A. But we can ask for a large monochromatic set, 
by specifying in advance a minimum size for it. In this situation there 
is a finitary version of Ramsey's theorem, which can be deduced in an 
interesting way from the infinite version by further nonstandard reasoning. 
In essence the new version says that if we specify the required size m for a 
monochromatic subset of A, then such a monochromatic subset will exist 
if the size n of A itself is great enough. 

To simplify the formulation, we will confine the discussion of finite sets 
to initial segments {1 ,  . . . , n} of N. 

Finite Ramsey Theorem. For any given numbers k, r, m E N there 
exists a number n E N such that the following holds: 

'lj;(n) : for any r-colouring 

of [{1 ,  . . .  , n }]k there is a subset B of {1 ,  . . .  , n} that is monochro
matic, i.e. , [B]k � Ci for some i, and has at least m elements, i.e., 
/B/ � m. 

Proof Fix the numbers k, r, m. Then the condition '1/J(n) can be written 
out as a formula of the language for 1U, with n as a variable. This formula 
begins with the quantifier form 

and has B as a variable bound by the quantifier (::JB E Pp(N)) .  The trans
formed formula *'lj;( n) asserts that 

for any r-colouring of ({ 1 ,  . . .  , n}]k by sets in *P( [N]k )  (i.e. ,  by 
internal subsets of [*N]k) there exists a hyperfinite subset of 
{1 ,  . . . , n} that is monochromatic and has at least m elements. 
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Now, if n is interpreted as some unlimited hypernatural number N, then 
the sentence *'1/J(N) is readily shown to be true by using the infinite Ramsey 
theorem. To see this, observe that any r-colouring 

of [ { 1 ,  . . .  , N}] k induces an r-colouring of [N] k , because N � { 1 ,  . . .  , N}. 
But for the latter colouring we know that there is an infinite set D � N 
that is monochromatic: [D] k � Ci for some i .  Since D is infinite, we can 
then take any m-element subset B of D to get [B]k � ci and IB I = m, 
giving a B that fulfills the condition *'1/J(N) . 

Thus by interpreting n as an unlimited hypernatural we establish that 

(:3n E *N) *'1/J(n) . 

By transfer it then follows that there is some n E N such that '1/J(n), and 
so the finite Ramsey theorem is proved. D 

Exercise 17 .4.1 
Verify in detail that ¢( n) can be written out as a formula of the language 
for llJ. 

17.5 The Paris-Harrington Version 

The proof just given of the finite Ramsey theorem leaves room for its con
clusion to be strengthened, since the desired monochromatic set B was 
chosen arbitrarily from the infinitely many m-element subsets of the infi
nite monochromatic set D. This gives us scope to impose further properties 
on B. For instance, consider the requirement 

IBI � min(B) 

that the size of B be at least as great as the smallest element of B. This is 
sometimes expressed by saying that B is relatively large. From an infinite 
set D � N we can select relatively large finite subsets of unbounded size: 
given a lower bound m for IB I ,  choose any number j E D that is at least 
as big as m, and add to j another j - 1 elements of D that are bigger than 
j to form a B having IB I  = min(B) = j � m. 

Applying these observations to the above arguments leads to a proof that 

for any given numbers k, r, m E N there exists a number n E 
N such that for any r-colouring of [{1 ,  . . .  , n}]k there exists a 
relatively large subset B of { 1 ,  . . .  , n} that is monochromatic 
and has at least m elements. 
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This statement may appear to be a rather innocuous strengthening of the 
finite Ramsey theorem, but in fact it is a remarkable one. It was shown 
by Paris and Harrington that the statement cannot be proved in the first
order axiom system of Peano arithmetic. This was the first mathematically 
significant example of the Godel incompleteness phenomenon: a true state
ment about the structure of the natural numbers that cannot be proven 
from an appropriate set of axioms. Godel's own argument constructs such 
sentences that are designed specifically to make his proof work and do 
not have independent status. The Paris-Harrington version of Ramsey's 
theorem, however, involves natural combinatorial ideas that arise quite in
dependently of considerations of the proof theory of statements about N. 

17 .6 Reference 

The nonstandard approach to Ramsey theory presented in this chapter is 
due to Joram Hirshfeld, and was presented in the following article: 

JORAM HIRSHFELD. Nonstandard Combinatorics. Studia Log
ica 47 ( 1980), 221-232. 
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Completion by Enlargement 

There are many mathematical structures that are "incomplete" because 
they lack certain elements, such as the limit of a Cauchy sequence, the sum 
of infinite series, the least upper bound of a set of elements, a point "at 
infinity" , and so on. A variety of standard techniques exist for completing 
such structures by adding the missing elements. 

Now, the enlargement of a structure in a nonstandard framework is a 
kind of completion, and we are going to explore ways in which enlarge
ments give an alternative approach to standard completions. From this 
perspective there is some redundancy in the enlargement process because 
in a sense it "saturates" a structure with all the elements one could ever 
imagine adjoining to it. Some of these new elements are irrelevant to com
pletion, while others may be distinct but indistinguishable in terms of their 
role in completing the original structure. Thus we need to factor out such 
redundancy, and as we shall see, standard completions can typically be 
obtained as quotients of certain kinds of enlargement. 

18 . 1 Completing the Rationals 

The set *Q of hyperrationals contains infinitely close approximations of all 
real numbers. For if r E JR, then by transfer 

(Vx E *JR) [r < x � (3q E *Q) (r < q < x)] .  

So, putting x = r + c with c a positive infinitesimal implies that there is 
some q E *Ql with r < q < r + c and hence q � r. Thus q E *Q n hal(r) and 
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r is the shadow of q. 
There are two points to immediately note here: 

• By this argument, for each x E hal( r) there is a member of *Q between 
x and r, and these members are all equally good as infinitely close 
hyperrational approximations to r. 

• There are many members of *Q, namely all the unlimited ones, that 
are "infinitely far away" and hence irrelevant to the issue of approx
imating reals. 

This suggests that we confine attention to the set 

*Qlim = {x E *Q : X is limited} = *Q n JL 

of limited hyperrationals, and that we identify those that are in the same 
halo. The way to make this work is to use the shadow map 

sh : *Qlim --t lR 

introduced in Section 5.6. We have just seen in effect that this map is a 
surjection from *Qlim to IR: for each r E lR there is an element q E *Qlim with 
sh(q) = r. But *Qlim is closed under addition and multiplication, so forms 
a subring of *IR, and the shadow map preserves addition and multiplication 
(Theorem 5.6.2) so is a ring homomorphism from *Qlim onto JR. Thus by 
the fundamental homomorphism theorem for rings, lR is isomorphic to the 
quotient ring of *Qlim factored by the kernel 

{x E *Qlim : sh(x) = 0} 

of the shadow map. But this kernel is just the set 

*Qinf = {X E *Q : X � 0} = *Q n II 
of infinitesimal hyperrationals. So we have an isomorphism 

*Qlim /*Qinf � JR 

(cf. Exercise 5.7(4)) .  The members of *Qlim /*Qinf are the cosets 
*Qinf + X = { q + X : q E *Qinf} 

of elements x E *Qlim . These are the same as the equivalence classes of *Q1im 
under the relation � of infinite closeness, because the following conditions 
are all equivalent: 

X "' y, 
sh(x) sh(y), 

sh(x - y) 0, 

(x - y) E *Qinf1 
*Qinf + X  *Qinf + y. 
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*Qinf + X = {y E *Qlim : X � y} = hal(x) n *Q, 

and *Qlim I*Qinf can also be described as the quotient set *Qlim I � .  Its 
isomorphism with lR is given by the map *Qinf + x 1--7 sh(x) . 

This construction can be viewed as providing an alternative way of build
ing the reals out of the rationals. As it stands, we have assumed the ex
istence of lR in the above analysis and used its Dedekind completeness in 
obtaining the shadow map on which the discussion was based. But we could 
try to prove directly that *Qlim I*Qinf is a complete ordered field: since all 
complete ordered fields are isomorphic , this would show that the construc
tion was independent of the choice of nonstandard framework in which *Q, 
*Qlim, and *Qinf reside. The question of completeness of quotient structures 
like *Qlim I*Qinf will be addressed in the next two sections. We will see that 
there are many structures X for which *Xlim I �  is a "completion" of X. 

18 .2  Metric Space Completion 

A metric on a set X is a function d : X x X - JR� = JR+ U {0} satisfying 
the axioms 

• d(x, y) = 0 iff x = y; 

• d(x, y) = d(y, x); 

• d(x, y) :::; d(x, z) + d(z, y) (triangle inequality) . 

The pair (X, d) is a metric space, in which the number d( x, y) is to be 
thought of as the distance from x to y. The Euclidean metric on lR is given 
by d(x, y) = lx - Y l ·  

When X carries a commutative ring structure, a metric sometimes comes 
from a norm, which is a function x 1--7 l lx l l  E JR� satisfying 

• l lx l l = 0 iff x = 0; 

• l l x · Yl l = l lx l l  · I IY I I ; 

• l lx + Y l l  :::; l lx l l  + I IY I I  · 

Then putting d(x, y) = l lx - Yi l induces a metric on X. The absolute value 
function lxl is a norm on lR that induces the Euclidean metric. 

A sequence (xn : n E N) in a metric space (X, d) is Cauchy if 
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This is just like the definition of a Cauchy sequence in �
' but with d in 

place of the Euclidean metric on R In fact, many of the ideas and results 
about convergence etc. of sequences can be lifted to an abstract metric 
space in this way. For instance, the sequence (xn : n E N) converges to x 
in (X, d) if 

(Vc E �+) (3kc: E N) (Vn E N) [n � kc: ---+ d(xn , x) < c ] .  

Then the metric space can be defined to be complete if every Cauchy se
quence in the space converges to a point in the space. 

A completion of a metric space (X, d) is another space (X', d') such that 

• X �  X' and d is the restriction of d' to X, i.e. , (X, d) is a subspace of 
(X', d') ;  

• (X', d') is complete; 

• X is dense in X'. 

The last condition means that any point x' in X' can be approximated 
arbitrarily closely by points of X, i.e., there is a sequence (xn : n E N) of 
points Xn E X that converges to x' . For this it suffices that for each c E �+ 

there is some Xc: E X with d' ( x', Xc: ) < c. Thus � is a completion of Q under 
the Euclidean metric. 

It can be shown that any two completions of a metric space are isometric, 
meaning that there is a bijection between them that preserves their metrics 
and leaves the original space fixed. In this sense a completion of a metric 
space is unique. In particular, � is the completion of Q. 

18 .3  Nonstandard Hulls 

Consider a nonstandard framework for a set X that carries a metric d. We 
will take this framework to be a sequentially comprehensive enlargement. 

The extended function *d on *X is not a metric, because it takes values in 
*�2: rather than JR2: . But it does satisfy the axioms of a metric, by transfer, 
and this is enough to ensure that we can define equivalence relations � and 
"' of infinitesimal and limited proximity in *X. Put 

x � y iff *d(x, y) � 0, 
x "' y iff * d( x, y) is limited, 

for all x, y E *X. The equivalence classes under � are the halos 

hal( X) = {y E *X : X � y}, 

while the equivalence classes under "' are the galaxies 

gal(x) = {y E *X : x "' y}.  
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A member x of *X is limited if it is of limited distance from some member 
of X, i.e., if x "'  y for some y E X. Let 

*Xlim = {x E *X :  x is limited} .  

*Xlim proves to be a galaxy including X, and is sometimes called the prin
cipal galaxy. At first sight it might be thought that the metric d could be 
extended to *Xlim by taking the distance between limited points x, y to be 
the real number sh(*d(x, y)) .  But this number will be 0 whenever x � y, so 
the first axiom for a metric is not satisfied. What we must do therefore is 
identify points that are infinitely close, by passing to the quotient set 

X = (*Xlim j �) = {hal(x) : x is limited} 

(note that if x E *Xlim, then hal(x) � *Xlim, so *�lim is partitioned by the 
halos of its points). A metric is then defined on X by 

d(hal(x), hal(y)) = sh(*d(x , y)) . 

.This is well-defined, since if hal(x) = hal(x') and hal(y) = hal(y') ,  then 
*d(x, y) � *d(x', y') .  

The pair (X, d) is called the nonstandard hull of (X, d) . Observe that if 
x, y are distinct members of X, then hal(x) and hal(y) are distinct (indee�, 
they are disjoint), so the mapping x �----+ hal(x) is an injection of X into X, 
allowing us to identify X with a subset of its nonstandard hull. Moreover, 
when x , y E X, 

d(x, y) = *d(x, y) = sh(*d(x, y)) = d(hal(x), hal(y) ) ,  

so under this identification (X, d) becomes a subspace of (X, d), and t�is is 
what justifies us continuing to use the symbol "d" for the metric on X. 
Theorem 18.3.1 The nonstandard hull (X, d) is complete. 

Proof. Let (hal(xn) : n E N) be a Cauchy sequence in X. The sequence 
(xn : n E N) of points in *Xlim extends to an internal hypersequence 
(xn : n E *N) in *X, by sequential comprehensiveness. We will show that 
(hal(xn) : n E N) converges to hal(xK) for some K E *N00• 

Now, for each n E N, by the Cauchy property there exists kn E N  such 
that for all standard m 2: kn , 

and hence 

(i) 
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But the set {m E *N : *d(xm , Xkn ) < 1/(2n)} is internal, so by overflow we 
conclude that there is some unlimited Kn E *N such that (i) holds for all 
m E *N with kn :::; m :::; Kn. 

Invoking sequential comprehensiveness again, there is some unlimited 
K E *N that is smaller than every Kn (cf. Theorem 15.4.3) . Then XK is 
limited (e.g., *d(xK, Xk1 ) < � and Xk1 is limited) ,  so hal(xK) E X. To show 
that (hal(xn) : n E N) converges to hal(xK) it is enough to show that for 
each n E N we get 

*d(xm, XK) < � n 
whenever m E N  and kn :::; m. But for such m we have kn :::; m, K < Kn, 
so by two applications of (i) , 

0 
The nonstandard hull X need not be a completion of (X, d) . It may contain 
points that cannot be approximated arbitrarily closely (in the real sense) 
by points of X. To clarify this situation we intr<;>duce the concept of a point 
x E *X being approachable from X, meaning that for each c E �+ there is 
some (standard) xc in X such that *d(x, xc) < c. Let 

*Xap = { x E *X : x is approachable from X} � *X lim . 

Now, if x is approachable from X, then so is any point infinitely close to x, 
i.e. , hal(x) � *XaP . Thus 

{hal(x) : x E *Xap} � X, 

and so *Xap I � is a subspace of X in which X is dense, as follows readily 
from the definition of "approachable" . Moreover, in the completeness proof 
of Theorem 18.3. 1 ,  if the points Xn E *Xlim are all approachable from X, 
then so is the point x K. This implies that Cauchy sequences in *Xap I r-.; 
converge in *Xap I �, and so 

Theorem 18.3.2 (*Xap I�,  d) is a completion of (X, d) . 0 
A point x E *X is near to X if it is infinitely close to some y E X, i.e. , if x 
has the same halo as a (standard) point from X. Thus if a limited point x 
is not near to X, then its halo is distinct from the halos of all points of X, 
so hal(x) is a point of X that is not (identifiable with) a point of X. 

All points near to X are approachable from X. If, conversely, every mem
ber of *Xap is near to X, then 

(*Xap I �) = {hal(x) : x E X}, 

which is the set we identify with X itself. Thus: 
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Corollary 18.3.3 If in *X every point approachable from X is actually 
near to X, then (X, d) is a complete metric space. 0 

Exercise 18.3.4 
Prove, conversely to Corollary 18.3.3, that if a metric space (X, d) is com
plete, then in *X every point approachable from X is near to X. 0 

Consider for example a hyperrational x E *Q that is infinitely close to 
.J2 (recall that every real number is the shadow of some hyperrational). 
Then x is not near to Q, because it is not infinitely close to any standard 
rational number, but x is approachable from Q, since there is a sequence 
in Q converging to J2. This is a manifestation of the fact that Q is not 
complete under the Euclidean metric. 

A point near X is often called nearstandard, since it is infinitely close 
to a standard point. (Points approachable from X are sometimes referred 
to by the less evocative term pre-nearstandard. )  The hyperrational x just 
considered as not being near to Q is, on the other hand, near to JR., hence 
nearstandard, because x � J2 E JR.. This underlines the point that nearness 
is always specified in relation to a particular set. 

In the case of the rationals it turns out that 

and so the nonstandard hull ij is equal to the completion *Qap I I'V of Q 
(which is isomorphic to JR.). This is because if x E *Qlim , then the shadow 
sh(x) is a real number that can be approximated arbitrarily closely by 
rational numbers. Therefore, x can be approximated by rationals in this 
way too and so is approachable from Q. 

In Section 18.6 we will see an example, involving power series, of a metric 
space (X, d) whose enlargement has limited points that are not approach
able from X. In that case the nonstandard hull X is strictly larger than the 
completion *Xap I �-

18.4 p-adic Integers 

Integers Modulo m 

Recall that for x ,  y E Z, x = y(mod m) means that x is congruent to y 
modulo m, i.e. , the difference (x - y) is divisible by m, or equivalently, x 
and y have the same remainder upon division by m. 

Z/m = {0, 1 ,  . . .  , m  - 1} 

is the set of residues modulo m, i.e. , remainders for division by m. Each 
integer z is congruent modulo m to exactly one member of Z/m, which 
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will be denoted by z mod m. Z/m is itself a commutative ring under the 
operations EBm and ®m of addition and multiplication modulo m. 

p-adic Distance 
Fix a prime number p E N. Each positive integer z has an expansion in 
base p of the form 

Z = Zo + ZtP + Z2P
2 + · · · + ZnPn 

with each Zi belonging to Zjp, i.e., 0 � Zi < p. Let 

a1 - zo E Zjp, 
a2 Zo + ZtP E Z/p2 , 
a3 zo + ZtP + Z2P2 E Zjp3 , 

an+l Zo + ZtP + Z2P2 + · · · + ZnPn E Zjpn+t . 

Consider the notion that the list a1 , a2 , . . . , an+l = z provides a sequence of 
successively better approximations to z. This would require that successive 
ai 's get closer to each other, which is evidently not the case if the Euclidean 
metric is used to measure proximity. But notice that 

a2 = a1 (mod p) , a3 = a2 (mod p2) ,  a4 = a3(mod p3) ,  . . .  , 

which suggests that we should view two numbers as being "close" if their 
difference is divisible by a power of p: the higher the power of p, the closer 
together are the numbers in question. 

Now, every nonzero integer z E Z has a highest power of p dividing it, 
i.e., there is a largest n 2:: 0 such that z _ O(mod pn) . In other words, z 
can be written uniquely in the form 

with y an integer that does not have p as a factor. This unique n will be 
denoted by op(n) and called the p-adic order of z. (It is also known as 
the p-adic valuation of z, denoted by vp(z) , and could equally naturally be 
thought of as the p-adic "exponent" or "logarithm"-important concepts 
often have more than one name.) Thus if z� = N U { 0}, we have 

op : z - {o} -----+ z� 

(sometimes op(O) is set equal to oo, but we will avoid this). The p-adic 
order satisfies the laws 

op(z) + op(w) ,  
> min { op ( z) , Op ( w)} .  



Now put 

l z lp = pop(z) { P-op (z) = 1 

0 
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if z =I 0, 
if z = 0. 

The function I IP is a norm on Z (sometimes called the p-adic absolute 
value) , and satisfies 

lz lp lw lp ,  
< max{ lzlp, lwlp}· 

It gives rise to the p-adic metric 

Observe that IPn iP = p-n, so the sequence p, p2, p3 ,  . . .  converges to zero in 
the sense of this p-adic size of its terms. Thus an expression like 

with 0 � zi < p, can be seen as analogous to the decimal representation of 
certain real numbers in the form 

ro + r1 ( 1
1
0 ) + r2 ( 1�) 2 + . . .  + r n ( lor + . . .  

with 0 � ri < 10. 

p-adic Integers 

A p-adic integer is a sequence a =  (an : n E N) such that for each n E N, 

(1) an E Zjpn, and 

(2) an+l = an (mod pn) .  

This implies that 

(3) am = an (mod pn) whenever m � n 

(hence if am =  0, then an = 0 for all n < m) . 
The set Zp of all p-adic integers is a subset of the direct product 

Zjp X Zjp2 X · · · X Zjpn X · • · 

and inherits operations of addition and multiplication from this direct prod
uct. Thus if a and b are p-adic integers, then 

a + b - (an EBn bn : n E N) , 
ab (an ®n bn : n E N) , 
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where an ffin bn and an 0n bn are the sum and product modulo n. Zp proves 
to be an integral domain under these operations, and we now briefly review 
its basic structure. 

The divisibility relation I is defined in Zp just as it is in Z: for x, y E Zp, 

x ly iff (::Jz E Zp) y = xz. 

Each integer z E Z (positive or negative) can be identified with the p-adic 
integer 

az = (z mod p, z mod p2 , . • .  , z mod pn , . . . ) 

For instance, - 1  corresponds to the p-adic integer 

(p - 1, p2 - 1 ,  . . .  , pn - 1, . . .  ) 

The map z � az is an injection of Z into Zp that preserves addition and 
multiplication and allows us to identify .Z with a subring of Zw 

A p-adic integer a has a multiplicative inverse in 'llp iff a1 # 0 .  When 
a1 # 0, then in general an "¥= O(mod p) and an has an inverse bn in Zjpn , i.e. , 
anbn - 1 (mod pn). Then (bn : n E N) is the inverse of a in Zp. Invertible 
elements of Zp are called p-adic units, and can also be characterised as 
those elements that divide 1 in Zp. 

Let a be a unit. Then any factor of a is also a unit. But p itself is not a 
unit, since it corresponds to the sequence ap = (0, p, p, . . .  ) , so p is not a 
factor of a, and therefore the only way to express a in the form pnb is to 
put n = 0 and b = a. 

On the other hand, if a is a nonunit, and nonzero, then taking the least 
n 2:: 0 such that an+l # 0, we have n 2:: 1 and an = 0, so an+m - O(mod pn) 
for all m E N. Then 

proves to be a unit of Zp with a =  pnb. 
This shows that the p-adic units are precisely those members of Zp that 

are not divisible by p. The representation of any nonzero a in the form pnb 
with b not divisible by p is unique, and this allows us to put op(a) = n. 
Then defining la lp = p-op (a) and IO IP = 0 gives a norm on Zp extending 
the p-adic norm on Z and inducing the associated extended metric dp on 
Zp. Note that a is a p-adic unit iff la lp = 1 .  

Any p-adic integer a has 

in Zp, i .e. , the difference a-an is equal to pnb for some b E Zp. This implies 
op(a - an) 2:: n, hence Ia - an lp � p-n . Thus the sequence a1 , a2 , ag , . . . 
converges to a in the p-adic metric, showing that Z is dense in the metric 
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space (Zp, dp) · But in fact, using (1)  and (2) it can be shown that a has 
the form 

(zo, Zo + ZIP, Zo + ZIP + Z2P2 , . . .  ) 

with 0 :S Zn < p, and so we can also write 

For instance, when p = 5, 

- 1  (-1 mod 5, - 1  mod 25, . . .  , - 1  mod 5n, . . .  ) 
(4, 24, 124, 624, . . .  ) 

4 + 4 · 5 + 4 · 52 + 4 · 53 + · · · 
+ 4 · 5n + · · · . 

The Nonstandard Analysis 

Zp is complete under the p-adic metric dp, and is a completion of (Z, dp) ·  
We are going to demonstrate this fact, not by appealing to any of the 
convergence results just claimed for Zp, but by showing: 

• (Zp, dp) is isometric to the nonstandard hull of (Z, dp) · 

• In (*Z, *dp), every limited point is approachable from Z. 

This implies that the nonstandard hull of (Z, dp) is equal to the completion 
of (Z, dp) based on approachable points, as given by Theorem 18.3.2. 

The symbols I I P and Op will continue to be used for the extension of 
these functions from Z to the commutative ring *Z, as provided by the 
nonstandard framework. In general, Op ( x) is a nonnegative hyperinteger, 
i.e. , op takes values in the set *Z?: = *N U { 0}.  The basic properties and 
relationships of I IP and op are preserved by transfer. In particular, 

for all nonzero hyperintegers x, so I IP takes hyperreal values in the set 
{p-n : n E *Z?: } .  These values consist of positive infinitesimals (when n in 
unlimited) and real numbers :S 1 (when n is standard) .  

These functions can then be used to define the sets of limited and in
finitesimal elements in the p-adic sense as 

{x E *Z :  lx - z ip is limited for some z E Z}, 
{x E *Z :  lxiP � 0 in *R}. 

Now, lx - Olp = lxlp :S 1 holds for all standard integers x E Z, and hence 
for all hyperintegers x E *Z by transfer. This means that every member 
of *Z is p-adically limited, so *zlimv = *Z and the nonstandard hull here 
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is just *Z/ � with the metric induced by the shadows of *dp. To explain 
what the p-adic infinitesimals are, observe first that pN will be infinitesimal 
whenever N is unlimited because then by transfer IPN IP = p-N � 0. The 
idea that a p-adically "small" number is one that is divisible by a "large" 
power of p finds its ultimate expression in the following characterisation. 

Theorem 18.4.1 For any nonzero hyperinteger x E *Z, the following are 
equivalent. 

(1) x E *zinfp . 

(2) op(x) is unlimited. 

(3) x is divisible by pn in *'ll for all n E N. 

( 4) x is divisible by pN for some unlimited N E *N. 

Proof lxlp is the reciprocal of p0P (x) , so is infinitesimal iff p0P(x) is unlim
ited, which holds iff op(x) is unlimited, as p is standard. Thus (1) and (2) 
are equivalent. 

Since the divisibility relation I is defined in 7l by 

xiy iff (3z E .Z) y = xz, 

it follows by transfer that xly for hyperintegers in *Z iff y = xz for some 
z E *Z. Now, the statement 

(ii) 

holds for all x E *Z and n E *Z� ,  again by transfer. Hence if (2) holds, then 
for every n E N  we have n ::;  op (x) , as op(x) is unlimited, and so pn lx by 
(ii) . Thus (2) implies (3). 

Next, observe that for each x E *Z the set 

is internal, by the internal set definition principle, so if (3) holds, this set 
contains all members ofN, and hence by overflow it contains some unlimited 
N, establishing ( 4) . 

Finally, if pN ix with N unlimited, then (ii) gives N ::;  op (x), so op(x) is 
also unlimited. Thus (4) implies (2). 0 
This result shows that 

*zinfp = {pNq :  N is unlimited and q E *Z}. 

The main properties of congruence relations lift to *Z by transfer. In par
ticular, if m E N, then each x E *Z is congruent modulo m to a unique 
element r E Z/m, i.e., x - r is divisible by m in *Z. We continue to denote 
this unique element r by x mod m. The map x �----+ x mod m, which is a ring 
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homomorphism from Z onto Z/m, thereby lifts to a ring homomorphism 
from *Z onto *(Z/m) = Zfm. This allows us to define a homomorphism 

by putting 

Bp (x) = (x mod p, x mod p2, • • .  , x mod pn, . . .  ) . 

It is left as an instructive exercise to check that Bp (x) E Zp, i.e. , 

x mod pn+l - x mod pn(mod pn) ,  

and that Bp preserves addition and multiplication. Notice also that since 
we identify the standard integer z with the p-adic integer 

(z mod p, z mod p2 , • . •  , z mod pn , . . .  ) , 

it follows that Bp leaves all members of Z fixed. The kernel 

{x E *Z :  Bp(x) = 0} 

of Bp consists of those x E *Z such that for all n E N we have x mod pn = 0, 
which means that pn divides x. By Theorem 18.4 .1  this holds precisely when 

lxlv � 0. Thus the kernel is exactly the set *zinfp of p-adic infinitesimals, 
which is therefore an ideal of the ring *Z. Then the coset 

*zinfp + x = {pNq + x :  N is unlimited and q E *Z} 

is the set of all hyperintegers that are infinitely close to x in the p-adic 
metric, because IY - xiP is infinitesimal if and only if y - x is of the form 
pN q with N unlimited. 

If we can show that Bp maps onto Zp, then by the homomorphism theo
rem we will have a ring isomorphism 

To prove that (}P is onto Zp requires us to invoke the concurrence version of 
enlargement (Theorem 14.2 .1 ) .  If a =  (an : n E N) E Zp, define a relation 
Ra � N x Z by putting 

Ra has domain N and is concurrent: given integers n1 ,  . . .  , nk E N, take 
any m E N  with m 2:: n1 , . . .  , nk .  Then since am - an(mod pn) whenever 
m 2:: n (condition ( 3) of the definition of p-adic integer) , it follows that 
n1Raam, . . .  , nkRaam. Hence as Ra is concurrent, there must be an x E *Z 
such that n(*Ra)x for all n E N. Transferring the definition of Ra then 
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shows that for all such n, x = an (mod pn ), and hence x mod pn = an. 
Thus ()P ( x) = a, and the proof that ()P is onto is complete. 

Note that in proving the concurrence of Ra here we can choose m such 
that am > 0, so the proof shows that Ra is concurrent as a relation from 
N to N, and hence will produce a positive x (i.e. , a member of *N) with 
Bp (x) = a. This fact will be used at the end of this chapter to derive a 
description of p-adic integers as certain hyperfinite formal sums. Another 
explanation of why such a positive x can be found is that the hyperintegers 
whose Bv-image is equal to a form a coset *zinfp + y, and any coset must 
contain positive elements. Indeed, for a given y, pN + y (which belongs to 
*zinfp + y) will be positive for large enough unlimited N. 

Preserving the Metric 

We have observed that the coset *zinfp + x is just the �-equivalence class 

halp(x) = {y E *Z : lx - YIP � 0} 

of x in *Z. Hence 
(*Z/ �) = *Zj*zinfp "" Zp. 

This bijection between the nonstandard hull *Z/ � and Zp is given by 
halp(x) H- Bp(x) . If we can show that it preserves the metrics, we will 
have our desired demonstration that the nonstandard hull is isometric to 
(Zp, dp) · But the metric on *Z/ � is induced by the norm function 

so we want shlxlp = ! Bv(x) !p ,  or equivalently, !x !P � IBp (x) lp · There are two 
cases: 

(2) Bp(x) -=/= 0. Then by definition of Bp(x) there must be some standard 
n 2: 0 such that x mod pn+l -=/= 0, and op (Bp(x)) is the least such n by 
definition of the p-adic norm on Zp. Now, 

P
n lx iff n � op (x) 

for all n 2: 0 (cf. (ii) in the proof of Theorem 18.4. 1) ,  and op(x) is a 
standard integer because Jx iP 'f. 0, so op(x) is the least standard n for 
which pn+l f x, i.e., the least standard n for which x mod pn+ l -=/= 0. 
Thus in this case op (x) = op (Bp(x)) and lx iP = JOp(x) lp· 

Having now shown that the nonstandard hull of (Z, dp) is isometric to 
(Zp, dp) ,  it remains to show that this hull is a completion of (Z, dp) ,  by 
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showing that any point x E *Z is approachable from Z. But for each n E N, 
pn divides x - (x mod pn) ,  so 

Then for any c E �+ , by choosing a standard n large enough that p-n < c 
we get the standard integer x mod pn that is within c of x in the p-adic 
metric. This shows .that x is approachable from Z. Thus 

N earstandardness 

To round out this discussion, consider the points in *Z that are near to Z. 
If ix - zip � 0, then pN divides x - z for some unlimited N E *N. So the 
nearstandard points of *Z are precisely those of the form x = pNy + z with 
N unlimited and z standard. 

Since (Z, dp) is incomplete, there must be points in *Z that are approach
able from Z but not near to Z (Corollary 18.3.3) . Indeed, if ix - zip � 0 
with z standard, then Op (x - z) = 0, and so Op (x) = Op (z) = z. This shows 
that the nearstandard points in *Z are just the Op-preimages of members 
of Z. Any x E *Z with Op(x) E (Zp - Z) fails to be near to Z. 

18 .5  p-adic Numbers 

The ring Zp has a field of fractions 

Qlp = { � : a, b E Zp and b i- 0} . 
Members of Qlp are called p-adic numbers, and equality between them is 
given by a c 

iff ad = be in Zp. -b d 
The field operations are given by the familiar formulae from rational arith
metic: 

a c 
- + -b d 
a c 
b d 

- (�) 
(�) - 1  

ad + bc 
bd 

ac -
bd ' 
(�a) ' 

(�) · 
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Thus Qp stands in the same relation to Zp that Q stands to Z. Moreover, 
since Z � Zp, it follows that Q � Qp. 

The p-adic order function extends to Qp by putting 

Op(ajb) = Op(a) - Op (b) . 
This is well-defined, because if ajb = cjd, then op (a) - op(b) = op (c) -
op(d) by the "logarithmic" law op(ad) = op(a) + op(d) etc. Then we put 
lx lp = p-ov (x) and dp(x, y) = lx - Yip as before, but now for x, y E Qp. In 
particular, this gives a p-adic order function and norm on Q. To analyse 
this further, recall that nonzero p-adic integers a, b can be written uniquely 
in the form a = pnc and b = pmd with n, m � 0, c, d units in Zp, and p not 
a factor of c or d. Then 

n a p c n-m c 
b = pmd = p "d : 

Here op (ajb) = n - m E  Z, and cjd is a unit in  Zp· 
In general, then, any nonzero p-adic number has a representation in the 

form pmb with m a standard integer and b a unit in Zp, and this represen
tation is unique (the case m � 0 giving the p-adic integers) .  Moreover, in 
view of the representation in Section 18.4 of p-adic units as power series 
with nonzero initial term, each p-adic number x =J. 0 is uniquely expressible 
in the form 

X Pm ( ZO + Z1P + Z2P2 + · · · + ZnPn + ' · ' ) 
ZoPm + Z1Pm+l + Z2Pm+2 + · · · , 

where m is the integer op(x), 0 ::; Zn < p, and z0 � 1 .  Since m can be 
negative here, it follows that a p-adic number can be written in the general 
form 

Z-kP-k + · · · + Z-lP- l + Zo + ZIP + Z2P2 + · · · + ZnPn + · · · ,  

with 0 ::;  Zi < p, showing that it is the sum of a standard rational number 
z-kP-k + · · · + Z-IP-1 and a p-adic integer. Note the analogy with the fact 
that any real number can be represented as an infinite decimal expression 

r_k (lo )-k + . .  · + r-1 C�)- 1 +ro + r1 ( I1o )  + r2 C1o ) 2 . .  · + rn C1or + · . . . 

Under the metric dp, Qp is a completion of Q. 

Limited p-adics 

In a nonstandard framework, the functions Op and l iP extend from Q to *Q 
by the transfer map and continue to satisfy the usual properties, including 

p-op(x) ,  

lx lp 
I YIP 
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for x, y E *Q. The sets of hyperrationals that are limited or infinitesimal 
in the p-adic sense are given by 

and 

{ x E *Q : lx - qlp is limited for some q E Q} 

{x E *Q : lx lp is limited} 

{x E *Q : lx lp � 0 in *IR}. 

The p-adic order op(x) of a nonzero hyperrational x is itself a hyperinteger, 
so falls under one of three cases: 

( 1 )  op(x) is limited, and hence is a standard integer. Then lx lp is a non
negative real number, equal to 0 when x = 0, and otherwise of the 
form pm with m E Z. 

(2) op(x) is positive unlimited (i.e. , in *N00) .  Then pop (x
) 

is positive un
limited, and l x lp is a positive infinitesimal: lxlp � 0. 

(3) op(x) is negative unlimited. Then -op(x) E *N00, and so lx lp is posi
tive unlimited. 

This shows that x can fail to be p-adically limited only when case (3) 
occurs, so 

{x E *Q : op (x) is not negative unlimited} 
{x E *Q : op(x) E Z U *N00} .  

This characterisation gives rise to a more useful one: p-adic limitedness of 
a hyperrational depends on the size of the denominator, as the next result 
indicates. 

Theorem 18.5.1 Let y, z E *Z. If ! z ip is not infinitesimal, then yj z is 
p-adically limited. 

Proof. op(z) is a nonnegative hyperinteger, so if lz lp = p-op(z) '/:. 0, then 
op(z) must be limited, i.e . ,  op(z) E N  U {0}. But then since op(y) � 0, 

Op (yjz) = Op (Y) - Op(z) 

cannot be negative unlimited. Hence as above, y / z E *Qlimp . 0 
The converse of this can fail. If lz lp � 0, then jyfz ip will still be limited if 
!Y ip � niz ip for some n E N (in which case IY IP is also infinitesimal) . For 
instance, this happens when y = 2p

N 
and z = p

N 
with N unlimited. 

Now, we can express any hyperrational as a ratio of hyperintegers that 
have no factors on common. It is the presence of unlimited powers p

N 
of p 

as factors that makes a hyperinteger p-adically infinitesimal, and it turns 
out that the absence of common factors of this particular kind is enough 
to give the converse to Theorem 18.5 .1 .  
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Theorem 18.5.2 Let y, z be hyperintegers that have no common factors 
of the form PN with N E *.Noo . If IY / zlv is limited, then I z ip is not in
finitesimal. 
Proof Suppose that IY/ zip is limited, but !z iP � 0. Then op(z) is positive 
unlimited (Theorem 18.4. 1) ,  while op(yjz) = ov(Y) - op(z) is not negative 
unlimited. But this can be so only if op(y) is also positive unlimited. Then 
if N is the smaller of op(Y) and op(z), we have N E *.N00 and pN a factor 
of both y and z. However, this contradicts the hypothesis. 0 

The Completion 

We are going to show that Qp is a completion of Q under the p-adic metric 
by exhibiting an isomorphism 

(iii) 

and demonstrating that all elements of *Qlimp are approachable from Q. 
For the isomorphism we need a homomorphism from *Qlimp onto QP. We 
already have a homomorphism ()P : *Z -+ Zp, and the relationships between 
*Q and *Z and QP and Zp suggest that we extend ()P to hyperrationals by 
putting 

(iv) 

Of course for this to be defined we need Bp(y) -=/= 0 ,  but that is exactly 
where limitedness comes in. We apply the definition (iv) only when xjy is in 
reduced form, i.e. , x and y have no proper factors in common. In particular, 
they have no common factors pN with N unlimited, so by Theorem 18.5.2 
if xjy E *Qlimp , then !Y ip '/:. 0, and so Bp (y) -=/= 0. Thus (iv) is well-defined 
for all members of *Qlimp . 

The fact that Bp : *Z -+ Zp preserves addition and multiplication and 
maps *Z onto Zp can be used to show: 

• 0-:J is a ring homomorphism from *Qlimp onto Qp that extends Bp . 
Thus to obtain the isomorphism (iii) we have only to show that *Qinfp is 
the kernel of B:J . But for xjy E *Qlimp in reduced form, lx/y iP = ix ip/ iYip 
with !Yip '/:. 0, and hence !Y ip is a standard real number. Therefore 

!xfy iP � 0 iff !x!p � 0 iff Bp (x) = 0 iff o: (xjy) = 0, 

so indeed xjy belongs to *Qinfp iff it is in the kernel of 0-:J. 

Preserving the Metric 

In order to show that the isomorphism (iii) preserves the metric of the space 
*Qlimp /*Qinfv , and hence show that Qp is isomorphic to the nonstandard 
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hull of (Q, dp), we need to show that shiv ip = iOt(v) ip ,  or equivalently, 
iv iv � iOt (v) iv , for all v E *Qiimp . As with the integer case in Section 18.4, 
there are two parts to this: 

(1 )  e:(v) = 0. Then v E *Qinfp and iv ip � 0 = i O ip = i Ot (v) ip · 

(2) o: (v) =I= 0. Then in fact, iOt (v) ip = iv ip, because if v = xjy in 
reduced form with x, y E *Z, then Op(x), Op(Y) =/= 0 ,  so ix ip = i Ov (x) iv 
and iY iv = iOp(Y) ip by the integer case, and therefore 

ix/y iP = ix ip/ iY iv = i0p(x) iv/i0p(Y) ip = i Op(x)/Op (Y) ip = i Ot (xjy) iv · 

It remains now to prove that each v E *Qlimp is approachable from Q. 
Again there are two parts: 

(1) If Ot (v) = 0, then i v - Oip � 0, so v is actually near to Q. 

(2) If o: (v) =I= 0, then as just shown, iv ip = iOt(v) iv - Since o:(v) is a 
p-adic number, it is equal to pmb for some m E Z and some b E  Zp 
with p f b, and so i biv = 1. Now choose an x E *Z with Op (x) = b. 
Then o: leaves pm fixed because it is a standard integer, and 

o:(v - pmx) = o: (v) - o: (pmx) = e: (v) - (pmb) = 0,  

so iv - pmx ip � 0. 

But given any E E JR.+ , since x E *Z is approachable from Z, there 
must be a standard z E Z such that 

cpm 
ix - zip < T · 

Then pm z is a standard rational number that is p-adically within c 
of v, since 

iv - pm z ip < iv - pmxiv + iPmX - Pm z ip 
iv - pmxip + iPm ip ix - z ip 

< iv - pmxiv + p-m(cpm)/2 
< c 

because iv - pmxip is infinitesimal. 

18 .6 Power Series 

Polynomials 

Let (R, +, - , · , 0, 1) be a commutative ring. A polynomial in x of degree n 
over R is a "finite formal sum" 

ao + a1x + a2x2 + · · · + anxn , 
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where ao , . . . , an are elements of R, called the coefficients of the polynomial. 
Coefficient ai is of degree i. The leading coefficient is an, which is required 
to be nonzero if n =J. 0. The set of all polynomials in x over R of all possible 
degrees n E z� is denoted by R[x] . 

When n = 0, a single element a0 of R is regarded as a polynomial, and 
has degree 0 (unless ao = 0: the zero polynomial 0 will not be assigned a 
degree). Thus we have R � R[x]. Members of R are constant polynomials. 

Two polynomials are equal if they have the same degree and correspond
ing coefficents (i.e., those of the same degree) are identical. Thus a poly
nomial is uniquely determined by its list of coefficents, and this suggests 
that a more explicit way to define a polynomial is to view it as a se
quence a = ( a0, • . .  , an , . . . ) of elements of R, or equivalently, a function 
a : z� --+ R, that is ultimately zero in the sense that 

(3n E Z�) (Vm E N) (m > n --+  am = 0). 

The least such n is the degree of a. The inclusion of R in R[x] arises by 
identifying each r E R with the sequence (r, 0, 0, . . .  , 0, . . . ) . 

The set R[x] of polynomials over R forms a commutative ring under the 
operations 

a + b - ( ao + bo , . . .  , an + bn , . . .  ) , 
-a ( -a0 , • . .  , -an , . . .  ) , 
ab - (aobo , aob1 + a1bo , . . .  , aobn + a1bn-1 + · · · + anbo, . . .  ) . 

Power Series 

A power series over R is an "infinite formal sum" 

with coefficients from R. Thus we may simply say that a power series is 
any sequence a = (ao , . . .  , an , . . .  ) of elements of R, or equivalently, any 
function a : z� --+ R. The set of all power series over R will be denoted by 
R[x] . It forms a ring under the operations defined as for R[x] and has R[x] 
as a subring. Altogether now we have 

R � R[x] � R[x] . 

If a power series a is nonzero, then it must have a nonzero coefficient . The 
least n such that an =J. 0 is called the order of a, denoted by o(a). Put 

{ 2-o(a) 
!a ! = 0 

if a =J. 0 ,  
if a =  0 .  

Then d(a, b) = la- b ! defines a metric on R[x] . Note that I a !  � 1 in  general. 
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A power series a as above determines the sequence 

of partial sums, which are polynomials. The order of 

a - (ao + a1x + · · · + anxn ) 

is at least n + 1 ,  and so 

It follows that the sequence of partial sums converges to a in the metric 
just defined. This implies that R[x] is dense in R[x] . In fact, R[x] is a 
complete metric space, hence a completion of R[x] , as we will now show by 
invoking the nonstandard hull construction again. 

Enlargement 

Let *R[x] abbreviate the enlargement *(R[x] ) of R[x] in a nonstandard 
framework for R. Since members of R[x] are functions from z2: to R, the 
members of *R[x] are internal functions from *Z2': to *R (Exercise 13. 13(3) ) ,  
or alternatively internal hypersequences a =  (an : n E *Z2':) .  Since polyno
mials are ultimately zero, so too are members of * R[x] . This is because 

(:In E Z2 ) ('i/m E N) (m > n -t am = 0) 

is true for all a E R[x] , so 

(:In E *Z2': ) (Vm E *N) (m > n -t am = 0) 

is true for all a E *R[x] . But now the largest n for which an =I= 0 may 
be unlimited, so in general a member of *R[x] may be thought of as a 
hyperfinite formal sum 

with its degree N E *N possibly being unlimited. The coefficients an can 
be nonstandard here, even when n is standard. Thus a member of * R[x] 
is an internal hyperpolynomial with coefficients from * R (note that * R is a 
commutative ring, by transfer of the fact that R is) . 

*R[x] is not the same thing as (*R) [x] . The latter is the ring of (finite) 
polynomials a0 +a1x+a2x2+ · · ·+anxn with coefficients from *R. Of course 
we can view a polynomial as a special case of a hyperpolynomial, and so 
identify each member of (*R) [x] with a member of *R[x] . To be precise this 
requires a use of transfer: for a fixed n E z;::: , the statement 

('ifao , . . .  , an E R) (3b E R[x] ) 

[ bo = ao I\ · · ·  I\ bn = an I\ ('i/m E N) (m > n -t bm = 0) ] 
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asserts (correctly) that for any list a0 , • . .  , an of elements of R there is a 
polynomial b in R[x] having this list as its coefficients. By transfer then, 
for any list a0 , . . .  , an of elements of *R (possibly including nonstandard 
elements) there is a hyperpolynomial b in *R[x] with a0 , . . .  , an as its coef
ficients. 

In particular, * R[x] includes all members of * R as constant hyperpolyno
mials. Also, if a E R[x] , then a is regarded as being in *R(x] by identifying 
it with its extension to *Z� having an = 0 for all unlimited n. The functions 
o(a) , la l ,  a +  b, ab all extend from R[x] to *R[x] , preserving many of their 
properties by transfer. 

Theorem 18.6.1 a E * R[x] is approachable from R[x] if and only if the 
coefficient an belongs to R for all standard n. 

Proof. Fix a standard n E Z< Then if two polynomials a, b E R[x] are 
closer than 2-n to each other (i.e., Ia - b l  < 2-n) , the order of a - b must 
be at least n + 1 ,  so (a - b)n = 0 and hence an = bn . Thus the statement 

holds for all a, b E  R[x] , and so by transfer holds for all a, b E  *R[x] . 
Now suppose that a is in * R[x]ap , the set of all members of * R[x] ap

proachable from R[x] . Then for each standard n there must be some poly
nomial b E  R[x] with Ia - bl < 2-n . From the previous paragraph it then 
follows that an = bn E R. Thus the coefficient an is in R for each standard 
n. 

Conversely, suppose a E *R[x] has an E R for all standard n. For each 
such n, the polynomial 

belongs to R[x] . But a r n is within 2-n of a, because the statement 

!a - a r n l < 2-n 

holds for all a E R[x] (see above) so holds for all a E *R[x] by transfer. 
This shows that a is approachable from R[x] . D 

At the end of Section 18.3 we promised to provide an example of a metric 
space having limited entities that are not approachable. The theorem just 
proved furnishes many examples. All members of *R[x] are limited, and 
indeed satisfy Ia I :S 1 by transfer. But if R is infinite then * R[x] will have 
members that have some coefficents of standard degree that are nonstan
dard, i.e., belong to * R - R. Such hyperpolynomials are not approachable 
from R[x] , as Theorem 18.6. 1 shows. 
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The infinitesimal members of * R[x] can be characterised as those internal 
hyperpolynomials whose coefficients of standard degree all vanish: 

Theorem 18.6.2 For any nonzero a E * R[x] , the following are equivalent. 

(1 )  la l � 0. 

(2) o(a) is unlimited. 

(3) There is an unlimited N E *N such that an = 0 for all n < N. 

( 4) an = 0 for all standard n. 

Proof In general, la l = 2-o(a) and o(a) is a nonnegative hyperinteger, 
so I a  I will be appreciable iff o( a)  is limited, or equivalently, Ia I will be 
infinitesimal iff o(a) is unlimited. Thus (1) and (2) are equivalent. 

Now, by transfer we have that for any nonzero a E *R[x] , 

(Vm E *Z� ) [m < o(a) +--+ (Vn E *Z�) (n :::; m - an = 0)] . 

From this, (2) implies (3) by putting N = o(a) . It is immediate that (3) 
implies (4) . Finally, if (4) holds, then the above transferred sentence ensures 
that each standard m is smaller than o(a) , so (2) follows. 0 

Corollary 18.6.3 In *R[x] , two hyperpolynomials are infinitely close pre
cisely when their coefficients of standard degree are identical: a � b if and 
only if an = bn for all standard n. 0 

The Completion 

Let (} :  *R[x]ap - R[x] be the restriction map 

a =  (an : n E *Z�) �------+ (an : n E Z� ) ,  

i .e. , O(a) is the standard power series defined by putting O(a)n = an for all 
standard n. By Theorem 18.6 .1 ,  O(a) is indeed a member of R[x] whenever 
a E *R[x]aP . 

The map (} is a ring homomorphism. To see that it preserves addition, 
notice that 

(a + b )n = an + bn 

holds for all n E *Z� and all a, b E  *R[x] , by transfer, and this is more than 
enough to guarantee 

()(a + b) = ()(a) + ()(b) . 

For multiplication, observe that for any fixed standard n, 
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for all a ,  b E R[x] , and hence for all a, b E  *R[x]. But this equation asserts 
that (O(ab))n = (O(a)O(b) )n · As this holds for all standard n, we conclude 
that 

O(ab) = O(a)O(b). 
Next we want to establish that 0 maps onto R[x] . Given a power series 
a E R[x] , then a is a function from z� to R, and so it transforms to a 
function *a : *Z� --+ * R that has *an = an E R for all standard n. In spite 
of Theorem 18.6 .1  we cannot conclude from this that O(*a) = a, because we 
do not know whether *a is in the domain * R[x]ap of (} at all. Indeed, *a will 
not even be in *R[x] unless it is ultimately zero, and if all the coefficients 
of a are nonzero, then we will have *am # 0 for all m E *Z� by transfer. 
To overcome this, consider the statement 

• for any function c E Rz� and any n E z� there is a polynomial 
b E  R[x] that agrees with c up to n, i. e . ,  Cm = _bm for all m � n. 

Since this is manifestly true, so is its *-transform. But *a is a standard, 
hence internal, function from *Z� to *R, so belongs to *(RZ� ) . Therefore 
if we take an unlimited N E *N, by this *-transform we deduce that there 
is some b E  *R[x] that agrees with *a up to N. Hence b agrees with *a on 
all standard n, so that bn = an E R for all such n, implying both that 
b E  *R[x]ap (Theorem 18.6. 1) and O(b) = a. Thus (} maps onto R[x] . 

From the definition of (} we have that 

O(a) = 0 iff an = 0 for all n E Z� . 

Theorem 18.6.2 then gives 

O(a) = 0 iff l a l � 0, 

so the kernel of (} is the set *R[xpnr of infinitesimal elements of *R[x] . As 
with previous cases, the cosets of the kernel are the equivalence classes 
under the infinite closeness relation �, and we conclude that R[x] is iso
morphic to the corresponding quotient: 

(*R[x]ap I �) "' R[x] . 

It remains only to show that this isomorphism preserves metrics, in the 
sense that sh la l = IO(a) i , to conclude that the space R[x] of power series 
over R is isometric to the completion (*R[x]ap I �, d) of (R[x] , d). This is 
left as an exercise: 

Exercise 18.6.4 
If a is a nonzero member of * R[x]ap , show: 

(1) If o(a) is limited, then l al = IO(a) l .  

(2) If o(a) is unlimited, then ia l � IB(a) l .  
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18.7 Hyperfinite Expansions in Base p 

Any p-adic integer can be represented as an infinite sum 

2::=0 ZnPn = Zo + ZIP + Z2P2 + · · · + ZnPn + · · · 

with coefficients Zn from Zjp. In view of our discussion of power series in 
the last section, this suggests that we could view it instead as a hyperfinite 
sum. 

To see how this works, recall that each standard positive integer z E N  
has a unique expansion in base p of the form 

Z = ZQ + Z1P + Z2P2 + · · · + ZnPn 

and so is represented in this base by the sequence (zi : 0 :::; i :::; n) of 
numbers that are between 0 and p- 1 .  The representation gives a bijection 
between N and the set Seq(p) of all finite sequences of elements of Zjp. 
This bijection is provided by the operator 

2: : Seq(p) � N 

taking (zi : 0 :::; i :::; n) to the number E7=o ZiPi . In a nonstandard frame
work 2: will lift to a bijection 

2: :  *Seq(p) � *N. 

By appropriate transfer arguments we can see that *Seq(p) is the set of 
all internal hyperfinite sequences of elements of *(Z/p) = Zjp. A typical 
member of *Seq(p) is an internal function of the form 

(zi : i E *Z� and i :::; n) , 

with 0 :::; Zi < p and n possibly unlimited. The operator 2: takes this 
hypersequence to an element of *N that we denote by E7=o ZiPi . Every 
member of *N is represented in this way as a hyperfinite sum determined 
by a unique member of *Seq(p) , and so has an expansion in base p. 

Now, within z� ' if n < m, then the difference (E::o ZiPi) - (E�o ZiPi) 
is divisible by pn+l , so 

"m i _ "n i ( d n+l ) wi=O ZiP = L-i=O ZiP mo p . (v) 

By transfer, (v) holds for all n, m E *Z� with n < m when these sums 
are defined. This property can be used to analyse the relation of infinite 
closeness of hyperintegers in terms of the behaviour of the coefficients of 
their base p expansions. 

Consider two hyperintegers that have base p expansions 
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with N, M unlimited. If z and w are infinitely close in the p-adic metric, 
i.e. , j z-w lv � 0, then for any standard n :2: 0, pn+I divides z - w  (Theorem 
18.4. 1) ,  so 

Ef:o ZiPi = L�o WiPi (mod pn+l ) . 
But n < N, M, so applying result (v) gives 

and likewise 

Consequently, 

But then 

""!! z ·pi - ""� z ·pi (mod pn+l) L...t�=O � L...t�=O � 

'\;""' M i _ '\;""'n i ( d n+l ) L...ti=O WiP = Lti=O WiP mo P · 

'\;""'n i _ '\;""'n i ( d n+l ) L..i=O ZiP = L...ti=O WiP mo P · 

L�=O ZiPi = E�=O WiPi (mod pn+ 1 ) 
because both sums belong to Z/pn+I ,  and so the uniqueness of the base 
p expansion of standard integers implies that Zi = Wi for i � n, and in 
particular, Zn = Wn . 

This argument can be worked in reverse, to establish the following ana
logue of Corollary 18.6.3. 

Theorem 18. 7. 1 Two positive hyperintegers are p-adically infinitely close 
precisely when their base p expansions have identical coefficients of standard 
degree: 

Now, we saw in Section 18.4 that if 

a = zo + ZtP + Z2P2 + . . . + ZnPn + . . . 

is a p-adic integer, then there exists a positive hyperinteger x with 

a =  Ov (x) = (x mod p, x mod p2 , . . .  , x mod pn , . . . ) . 

Hence X mod pn+l = zo + ZIP + Z2P2 + . . .  + ZnPn for all n E z� . 
But x has a base-p expansion 

N X =  Xo + XtP + · · · + XNP 

D 

for some N E *Z� , and for each standard n � 0 we get by result ( v) that 

x = "'n x ·pi (mod pn+l ) - L...ti=O � ' 

so 
'\;""'n i _ d n+l '\;""'n i L...ti=O XiP - X mo p = L...ti=O ZiP , 
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and therefore Xi = Zi for all i :::; n. Thus the p-adic integer a and the 
hyperinteger x have the same coefficients of standard degree in these base
p expansions. 

Of course for any given a E Zp there will be more than one x E *N 
representing a in this way, i.e., having Op(x) = a, but all such x's will be 
infinitely close in the p-adic metric. Altogether, this discussion shows that 
we can view any p-adic integer as a hyperfinite base-p expansion 

N zo + Z1P + · · · + ZNP 

with 0 ::; Zi < p, provided that we identify any two such expansions that 
differ only at coefficients of unlimited degree. 

18 .8 Exercises 

(1)  Write out in full the transfer arguments showing that members of 
*Seq(p) are internal hyperfinite sequences of members of '11../p (cf. the 
proof of Theorem 13. 17.1 for guidance) .  

(2) Complete the proof of Theorem 18.7.1 by showing that if two positive 
hyperintegers have identical coefficients of standard degree in their 
hyperfinite base p expansions, then they are p-adically infinitely close. 





1 9  
Hyperfinite Approximation 

In some nonstandard frameworks there are infinite sets that can be "ap
proximated" by hyperfinite sets. From the discussion in Chapter 14 we 
know that in an enlargement of a universe over a set A there will be a 
hyperfinite set B with 

A �  B � *A. 

This phenomenon suggests a new methodology for analysing infinite struc
tures by "lifting" a corresponding analysis that is known for finite ones. 
The steps involved are as follows: 

(1) Obtain information about finite structures by standard reasoning. 

(2) Use transfer to lift this to hyperfinite structures, including the set B 
above. 

(3) Find some way of "pushing down" the results from B to the infinite 
set A. 

This procedure will now be illustrated with three applications: colouring of 
graphs, representation of Boolean algebras, and the Hahn-Banach theorem 
about extensions of linear functionals on vector spaces. For the first two 
of these, the pushing-down step (3) is immediate. For the Hahn-Banach 
theorem, however, it requires a little further nonstandard analysis in the 
form of an appeal to the shadow map. 
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19 .1  Colourings and Graphs 

An r-colouring of a set G is a sequence C1 , . . .  , Cr of pairwise disjoint sets 
satisfying 

Thus each member of G belongs to exactly one of the sets Ci . This situation 
induces a partition of G, which we regard as being given by an assignment 
of r different colours to the members of G. G n Ci is the set of elements of 
G that are assigned colour i ( cf. Section 17.1 ) .  

Notice that the way we have defined this notion ensures that any r
colouring of G is also an r-colouring of any subset of G. 

In any nonstandard framework for G we will get 

with *Ci n *Cj = 0 whenever i # j. Hence the enlarged sets *C1 , . . .  , *Cr 
form an r-colouring of *G, which moreover agrees with the original colouring 
when restricted to G. 

A graph is a structure ( G, E) comprising a nonempty set G with a binary 
relation E on G that is irreflexive and symmetric: 

(Vx E G) (x, x) ¢. E, 

(Vx, y E G) ( (x, y) E E --+ (y, x) E E ) . 

This is visualised as a collection of nodes, or vertices, labelled by the mem
bers of G, with a line connecting the nodes labelled by x and y whenever 
(x, y) E E. A pair (x, y) that belongs to E is called an edge with vertices x 
and y. 

Any subset H of G defines the subgraph of (G, E) determined by retaining 
just those edges whose vertices both belong to H.  In other words, there is 
a line connecting x and y in this subgraph precisely when x, y E H and 
(x, y) E E. 

In a nonstandard framework for G the structure (*G, *E) is a graph, 
since transfer ensures· that * E is irreflexive and symmetric: Moreover, the 
subgraph of this enlarged graph defined by G is just the original graph 
(G, E) , because 

( x,  y) E E iff ( x, y) E * E 

for each x, y E G by transfer (note here that *(x, y) = (*x, *y) = (x, y) , 
since x and y are individuals in a nonstandard framework for G). 

An r-colouring of a graph is an r-colouring of its set of nodes with the 
additional property that the vertices of any edge have different colours, i.e., 
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there is no line connecting two nodes of the same colour. This requires that 
each of the statements 

(Vx, y E G) ( (x, y) E E 1\ x E Ci � y � Ci) 
must hold true for i =  1, . . .  , r. An r-colouring of any graph is automatically 
an r-colouring of any of its subgraphs. 

Now, the assertion 

"C1 , . . .  , Cr is an r-colouring of (G, E)" 
can be expressed by a formula that we abbreviate as 

Colour( C1 , . . .  , Cn G, E). 
If 01 , . . .  , Cr , G, E are all taken to be constants naming particular entities 
in a universe over G, then this formula is a sentence whose *-transform 
asserts that *Cb . . .  , *Cr is an r-colouring of the enlarged graph (*G, *E) .  If, 
however, we take 01 , . . . , Cr to be variables, then we can form the sentence 

(301 , . . . , Cr E P(G)) Colour(C1 ,  . . .  , Cn G, E), 
which states that there exists an r-colouring of (G, E) . This can be modified 
further to express the assertion that every finite subgraph of (G, E) has an 
r-colouring: replace G by a variable H and form 

(VH E PF(G)) (301 , . . .  , Cr E P(G)) Colour(C1 ,  . . .  , Cr , H, E) . (i) 
Note that for (i) to be true it is required only that each finite subgraph 
have its own r-colouring. The colourings of different finite subgraphs need 
not agree with each other, so it is not obvious from (i) that the whole graph 
(G, E) can itself be r-coloured. Nonetheless, it is true that 

• if every finite subgraph of a graph has an r-colouring, then the graph 
itself has an r-colouring. 

A proof of this result will now be given by a simple application of the 
hyperfinite approximation methodology. We work in an enlargement of a 
universe over G, and observe first that by applying transfer to (i) we can 
infer that each member of *PF(G) defines a subgraph of (*G, *E) that has 
an r-colouring. Thus the fact that every finite subgraph of ( G, E) has an 
r-colouring can be lifted to the conclusion that 

every hyperfinite subgraph of (*G, *E) has an r-colouring. 

But in the enlargement there is a hyperfinite approximant of G, i.e. , a set 
H E  *PF(G) with G � H � *G. Then the subgraph of (*G, *E) defined by 
H has an r-colouring, and it remains only to push this situation down to 
(G, E) itself. But this is immediate, since (G, E) is a subgraph of the graph 
defined by H, so the r-colouring of H is also an r-colouring of ( G, E) . 

Exercise 19. 1 .1 
Write out explicitly the formula Colour(C1 , . . .  , Cn G, E) .  
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19 .2  Boolean Algebras 

George Boole (1815-1864) was a pioneer of mathematical logic. He showed 
that the study of logical connectives, and the validity of inferences, could 
be carried out by a mathematical analysis of equations involving operations 
that constitute what we now refer to as Boolean algebra. 

To explain this, consider first the collection P(A) of all subsets of a set 
A. This is closed under the binary operations n and U of intersection and 
union of sets, and under the unary operation - of complementation relative 
to A. The structure 

(P(A) ; n, U, - , 0, A) 

is the power set algebra of A. More generally, a field of sets is any nonempty 
collection B of subsets of a set A (i.e. , B � P(A)) that is closed under n, 
U, and - .  Then 

(B; n, U, .,.... , 0,  A) 

is a subalgebra of the power set algebra of A. 
These are concrete examples of the abstract notion of a Boolean algebra, 

which can be defined as any structure 

(B; n, u, ', o, 1) 

in which B is a nonempty set that contains elements 0 (the zero) and 1 
(the unit) and carries binary operations n and U and a unary operation 1 

such that the following equations hold for all x, y, z in B: 

x n y  y n x, 
x U y  y U x, 

x n (y u z) (x n y) u (x n z) ,  
x u  (y n z) - (x u y) n (x u z) ,  

x n 1  x, 
x U O  x, 

X n x' 0, 
x U x' 1 .  

From these many other properties are deducible, including 

x n x  - x, 
x u x  x, 

x n (y n z) (x n y) n z, 
x U  (y U z) (x u y) U z, 
x U (y n x) x, 
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x n (y u x) x, 
(x n y)' x' U y' , 
(x U y)' x' n y', 

x U 1  - 1 ,  
x n o - 0, 

O' 1 ,  
1' - 0, 

x n y' = o iff x n y  = x. 

The element x n y is called the meet of x and y ,  while x U y is their join. 
A relation � is defined in any Boolean algebra by 

X � y iff X n y = X ( iff X U y = y iff X n y' = 0). 

Then � proves to be a partial ordering (reflexive, transitive, antisymmetric) 
in which the meet x n y is the greatest lower bound of x and y, and the 
join x U y is the least upper bound. In a field of sets, � is the relation � of 
set inclusion. 

Notice that in any nonstandard framework for B, the operations n, U, 1 
will extend to corresponding operations on *B, for which we continue to use 
the same symbols. The Boolean algebra axioms hold for these operations by 
transfer, and so *B becomes a Boolean algebra having B as  a subalgebra. 

Of singular importance is the two-element algebra based on the set {0, 1 }, 
in which 1 is identified with "true" and 0 with "false" , and n, U, 1 are the 
operations specified by the truth tables that give the usual meanings of the 
logical connectives /\, V,  ' · This algebra is denoted by 2. It is isomorphic 
to the power set algebra of any one-element set {a}, identifying 1 with 
{a} and 0 with 0. The algebra 2 is a fundamental building block: from 
the representation to be discussed below it can be shown that any Boolean 
algebra is isomorphic to a subalgebra of an algebra that is constructed as 
a direct product of copies of 2 .  This implies that any equation satisfied by 
2 will be satisfied by every Boolean algebra. 

Now, the properties of the set operations n, U, - follow from their defi
nitions, 

C n D  -
C U D  

-C -

{ x : x E C and x E D}, 
{X : X E C or X E D}, 
{ x E A : not x E C}, 

and hence depend on the meaning of the words and, or, not. Thus it is the 
behaviour of these logical connectives that dictate that P(A) should be a 
Boolean algebra, indicating a natural connection between the algebra of sets 
and the algebra of connectives. This is further exemplified by a construction 
that builds Boolean algebras out of formulae. Let II be a nonempty set, 
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whose members will be called sentence letters, and consider the class of 
II -formulae generated inductively from members of II by the connectives 
1\, V, ---, , �, f--7 . A II -valuation is a function v : II � { 0, 1 }  assigning a truth 
value to each sentence letter. Any valuation extends in a unique way to all 
formulae by the usual truth conditions: 

v(•<p) = 1 iff v (<p) = 0, 
v(<p 1\ '1/J) = 1 iff v (<p) = v('lj;) = 1 ,  
v(<p V '1/J) = 1  iff v (<p) = 1 or v('lj;) = 1 ,  

v (tp � 'l/J) = 1  iff v (<p) = 0 or v('lj;) = 1 ,  
v (<p f--7 '1/J) = 1 iff v (<p) = v ('lj;). 

A II-formula is a tautology if it is assigned the value 1 by every II-valuation. 
Examples of tautologies are <p V •<p, <p � <p, and <p 1\ 1/J � <p, where ¢ and 
1/J are any formulae. An inconsistent formula is one that always takes value 
0, such as <p 1\ •<p. 

An equivalence relation rv on the set of all II-formulae is defined by 

<p rv '1/J iff <p f--7 '1/J is a tautology 

iff v (<p) = v('lj;) for all ii-valuations v .  

The purpose of this relation is to identify formulae that are indistinguish
able by any truth-value assignment. Thus <p 1\ 1/J and 1/J 1\ r.p, while being 
distinct formulae, will belong to the same equivalence class. 

The equivalence class of a formula <p will be denoted by [<p] . The set 
BII of all such equivalence classes becomes a Boolean algebra under the 
operations 

In this algebra we get 

[�.p] :::; [7/J] 
[<p] = 1 
[<p] = 0 

['P] n ['1/J] 
[<p] u ['1/J] 

[<p] ' 

iff 

iff 

iff 

1 
0 

[<p 1\ '1/J] , 
- [<p v '1/J] , 

[ ''P l '  
[<p v •<p] , 
[<p 1\ •<p] . 

<p � '1jJ is a tautology, 

<p is a tautology, 

<p is inconsistent. 

If II is infinite, then so too is B II ,  since no two sentence letters are equiv
alent. On the other hand, if II is finite, then the algebra BII will be finite, 
even though there are infinitely many II-formulae. Indeed, if II consists 
of n sentence letters, then there are only 2n valuations II � {0, 1}  for 
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distinguishing formulae. Each equivalence class can be identified with the 
set of valuations { v : v( cp) = 1} ,  and there are no more than 22n such sets. 
Further investigation establishes that B II has exactly this number 22n of 
members: 

Exercise 19.2.1 
Show that if fl is finite, then for any set V of ll-valuations there is a ll
formula cp such that in general, v(cp) = 1 iff v E V. Hence verify in detail 
that B II has exactly 22n members if fl has n. 

19.3 Atomic Algebras 

We are going to prove (in Section 19 .4) that any Boolean algebra has an 
isomorphic representation as a field of sets. The key to this is the notion of 
an "atom" . To see what this means, observe that in the power set algebra 
of a finite set each nonzero element of the algebra is itself a finite set and 
so can be decomposed as the union/join 

of finitely many singleton sets. These singletons themselves cannot be fur
ther decomposed into smaller elements (so this is analogous to the decom
position of integers into primes) . One way to characterise the singletons is 
by the fact that the only element smaller than them is 0. 

In an abstract Boolean algebra we define an atom to be a nonzero element 
that has no nonzero element smaller than itself in the partial ordering. This 
can be symbolized by the formula atom( a, B), defined as 

a i= 0 1\ (Vx E B) (x :::; a --7 x = 0 V x = a) ,  

which expresses "a is an atom of B" . Note that reference to the ambient 
algebra B is crucial here, since an atom of one algebra may fail to be an 
atom within a larger algebra. This is the case with the atom {1 ,  2} of the 
field of sets 

{0, {0}, {1 , 2}, {0, 1 , 2}}, 
which is not an atom in P( {0, 1 ,  2} ) . 

Now let 
Bx = {a  E B : atom( a, B) 1\ a :::; x} 

be the set of atoms in B that are "below" x.  Thus B1 is the set of all atoms 
of B, while Bo = 0. In general, it can be shown for any atom a that 

a :s; x n y  iff a :::; x and a :::; y, 
a :s; x u y  iff a :::; x or a :::; y ,  

a :::; x' iff a 1: x, 
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implying that 

These conditions state that the map x 1---7 Bx is a homomorphism from B 
into the power set algebra P(B1 ) of all subsets of the set of atoms of B. 

A Boolean algebra is atomic if each of its nonzero elements has an atom 
below it: 

('Vx E B) [x =I= 0 � (3a E B) (atom( a, B) /\  a :::; x)] . 

This means that 
x =I= 0 implies Bx =I= 0, 

which can be used to show that 

x =I= y implies Bx =I= By , 

and so altogether the map x 1---7 Bx is an injective homomorphism from B 
into P(B1 ) . The image of B under this injection will be a subalgebra of 
P(B1) isomorphic to B itself. This establishes that 

• any atomic Boolean algebra is isomorphic to a field of sets. 

If B is finite, the injection x 1---7 Bx maps onto P(BI) (and so B has exactly 
2n elements, where n is its number of atoms) . This is because each nonzero 
element {a1 , . . .  ak} of P(B1 )  is equal to Bx, where 

For infinite B the injection need not be onto, so we cannot conclude that 
B is isomorphic to P(B1 ). For example, if II is countably infinite, then so 
is the formula algebra En , and hence this algebra cannot be isomorphic 
to any power set. The point is that there is no such thing as a countably 
infinite power set: if A is finite, then so is P(A) (since IP(A) I  = 2 IAI ) , while 
if A is infinite, then P(A) is uncountable (by a famous diagonalisation 
argument of Cantor, showing that there is no map from A onto P(A)) . 

This whole theory fails to apply to an algebra that is not atomic, i.e., 
has at least one element that lacks atoms below it. An extreme example 
of this is provided by the formula algebra En whenever II is infinite. This 
has no atoms at all! For if [<p] is a nonzero element of Bn and II is infinite, 
we can choose a sentence letter p E II that does not occur in <p. Then 

0 =I= [<p /\ p] < [<p] ,  
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showing that [cp] is not an atom in Err. We have [cp 1\ p] � [cp] because 
<p /\ p - <p is a tautology. As [cp] -:j; 0 ,  there is a valuation v with v(cp) = 1 .  
Since p does not occur in <p, we can define a valuation v1 that agrees with 
v on the letters occurring in <p and has v1 (p) = 1 .  Then v1 ( <p) = v( <p) = 1 ,  
so Vt (<p/\p) = 1 ,  showing [cp /\p] "I 0. Similarly, there is a v2 with v2 (<p) = 1 
but v2 (p) = 0, so v2 (<p 1\ p) =/= v2 (cp), implying [cp 1\ p] -:j; [cp] . 

On the other hand, the theory does always apply to a finite Boolean 
algebra, since a finite one is always atomic. To see this, observe that if a 
nonzero element a is not an atom, then there must be some nonzero a1 
below it. If a1 is not an atom, then there must be an a2 "I 0 with a2 < a1 , 
and so on. If this argument could be repeated infinitely often, it would 
generate an infinite chain 

· · · < an < · · · < a2 < a1 < a 

of distinct elements of B. Thus if B is finite, the argument must stop at 
some atom an below a. 

To sum up: 

• Every finite Boolean algebra is atomic and is isomorphic to the power 
set algebra of its set of atoms. 

19 .4  Hyperfinite Approximating Algebras 

The discussion of Boolean algebras so far has been entirely concerned with 
their standard theory. We now bring in some nonstandard ideas to prove 
that for any Boolean algebra B there is an atomic Boolean algebra B+ that 
has B as a subalgebra. From the results described above we know that B+ 
is isomorphically embeddable into the power set algebra of its set of atoms, 
and so B is likewise embeddable into that power set by the map 

(x E B) � s; 

that takes each member of B to the set of atoms of B+ that are below it. 
Thus the representation of B+ as a field of sets immediately pushes down 
to B itself. This establishes the fundamental representation result that 

• every Boolean algebra is isomorphic to a field of sets. 

Our desired algebra B+ is hyperfinite, and will be obtained as an approxi
mation to B in the sense that 

(ii) 

in a nonstandard framework for B. The essential reason why s+ turns 
out to be atomic is that all finite Boolean algebras are atomic, and this 
property is preserved by transfer to the hyperfinite s+. 
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We already know how to realise B+ as a hyperfinite set fulfilling (ii) , but 
now we want it to be a Boolean algebra. For this it suffices that it be closed 
under the Boolean operations n, U, and ', so that it is a subalgebra of the 
Boolean algebra * B and hence is a Boolean algebra in its own right. There 
is one more piece of standard theory that we need to make this work: 

• Every finitely generated Boolean algebra is finite. 

To explain this, let C be a subset of Boolean algebra B. Then there is a 
smallest subalgebra of B that includes C. This is known as the subalgebra 
generated by C. It may be defined in a "top-down" way as the intersection 
of all subalgebras of B that include C, or given a "bottom-up" construction 
by starting with the elements of C and repeatedly applying n, U, and ' until 
a set of elements is produced that is closed under these operations. A finitely 
generated algebra is one that is generated in this way by a finite set C. 

Now, if C = { b1 , . . .  , bn} ,  then because of the particular equations satis
fied by Boolean algebras it can be shown that any member of the subalgebra 
of B generated by C is equal to the join of finitely many elements of the 
form 

where bf is either bi or b� . But there are at most 2n elements of this form 
in B, and hence at most 22n joins of sets of such elements. In other words, 

• a Boolean algebra with n generators has at most 22n elements 

(cf. Exercise 19.5(2) below for an alternative proof of this) .  
Now let us work in a nonstandard framework for B that is an enlarge

ment. Define a binary relation R � B x PF(B) by letting 

bRA iff b E  A E PF(B) and A is a subalgebra of B. 

Then R is concurrent, for if b1 , . . .  , bk E B, and A is the subalgebra of B 
generated by {b1 , . . .  , bk} ,  then (as above) A is finite, and so biRA for all 
1 :::; i :::;: k. In particular, this shows (when k = 1) that the domain of R is 
B itself. 

It follows (Theorem 14.2.1) that in the enlargement there exists an entity 
B+ such that b(*R)B+ for all b E  B. This B+ is a hyperfinite subset of *B 
including B, since by transfer *R � *B x *PF (B) and 

b(* R)A ---+ b E A 

in general. Hence (ii) holds. 
Next we show that B+ is a subalgebra of *B, and so is a Boolean algebra. 

Every member of the range of R is a subalgebra of B, hence is closed under 
the Boolean operations: 

(VA E ran R) (Vx, y E B) (x, y E A ---+ x n y  E A l\ x U y  E A l\ x1 E A) . 
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By transfer it follows that every member of the range of * R is likewise 
closed (recall that *(ran R) = ran (*R)) .  In particular, this applies to B+ , 
which is thereby a subalgebra of *B. 

Finally, we want B+ to be atomic. But every member of the range of R 
is a finite Boolean algebra, so is atomic: 

(\fA E ran R) (\fx E A) [x =I 0 --+  (:3a E A) (atom( a ,  A) 1\ a ::;  x)] , 

where atom( a ,  A) , as defined earlier, is the formula 

a =I 0 1\ (\I x E A) (  x ::; a --+ x = 0 V x = a) . 

'fransfer of this asserts that all members of the range of * R, and in particular 
B+, are atomic. 

This completes the proof of the existence of a B+ with the desired prop
erties. 

19 .5  Exercises on Generation of Algebras 

(1 )  Let C be a hyperfinite subset of *B. Prove that there exists a smallest 
internal subalgebra of *B including C, and that this subalgebra is 
hyperfinite. 

(2) If B is a Boolean algebra with an n-element generating set, show 
that there is a homomorphism from Err onto B where II is an n
element set of sentence letters. Deduce from this that B has at most 
22n elements (cf. Exercise 19.2. 1 ) .  

19.6 Connecting with the Stone Representation 

The fact that every Boolean algebra is isomorphic to a field of sets is known 
as the Stone representation theorem after its discoverer, Marshall Stone. 
The most commonly presented proof of this consists of an embedding of 
the algebra into the power set of its set of ultmfilters. 

Now, a filter of a Boolean algebra B is a nonempty set F «;;:; B satisfying 

x n y E F iff x E F and x E F 

for all x, y E F. Thus a filter on a set I, in the sense of Section 2.3, is the 
same thing as a filter of the power set algebra P(I). A filter is proper if 
0 ¢. F, and is an ultrafilter if it is proper and has 

x E F or x' E F 
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for all x E B. For example, if a E B, the principal filter 

{x E B : a ::; x} 

of B generated by a is an ultrafilter of B if and only if a is an atom of 
B. More generally, if a is an atom of any algebra B+ that has B as a 
subalgebra, then the set 

{y E B : a ::; y in B+} 

is an ultrafilter of B. This is just the restriction to B of the principal 
ultrafilter {y E B+ : a ::; y} of B+ generated by a. The restriction itself 
need not have a generator in B (see below) . 

Any ultrafilter F satisfies 

x U y E F iff x E F or y E F, 

x' E F iff x ¢: F, 

so if Ux is the set of ultrafilters of B that have x as an element, then U1 is 
the set of all ultrafilters of B, U0 = 0, and 

Uxny Ux n Uy, 
Uxuy Ux U Uy, 

Ux' -Ux.  

This means that the map x �---+ Ux is a homomorphism from B into P(U1) .  
To make it injective it is enough to show that 

or in other words, 

x #--0 implies Ux # 0, 

any nonzero element of a Boolean algebra belongs to an ultrafilter. (iii) 

To prove this, we have to invoke Zorn's lemma to extend any proper filter 
to a maximal one, and then observe that a maximal proper filter is the 
same thing as an ultrafilter. This establishes the 

Ultrafilter Theorem: any proper filter of a Boolean algebra 
B can be extended to an ultrafilter of B. 

By applying this theorem to the principal filter generated by a given nonzero 
element , we obtain the desired result (iii) (cf. Section 2.6) .  

When the ultrafilter theorem is applied to power set algebras it pro
duces the ultrafilters needed to carry out the construction of ultrapowers 
of superstructures as in Section 14.3. This construction then yields the en
largement theorem, asserting the existence, for any set X, of an enlargement 
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of a universe over X. Here we can turn the tables by assuming the existence 
of enlargements and using them to give an explicit demonstration of the 
ultrafilter theorem lying at the heart of Stone's theory. 

We saw in the last section that if B is any Boolean algebra, then in a 
suitable enlargement there is a hyperfinite and atomic Boolean algebra B+ 
having B as a subalgebra. Now, if F is a proper filter of B, we can extend 
F to a maximal filter by showing that in B+ there is an atom that is below 
all members of F, and then using this atom to define an ultrafilter of B in 
the way described above. 

There are two main steps in this procedure: 

( 1) Extend F to an internal proper filter p+ of B+ . 

(2) Show that in n+, every internal filter is principal. 

To carry out (1) , note that the enlargement *F of F will be a proper filter 
of * B, by transfer of 

(0 f/:. F) 1\ (Vx, y E B) [x n y E F � x E F 1\ x E F] . 

Hence if we define p+ = * F n B+, then p+ will be a proper filter of B+ . 
Moreover, p+ is internal, being the intersection of two internal sets. Note 
that F � * F n B � p+. 

Result (2) holds in any hyperfinite Boolean algebra like B+ , because 
in a finite Boolean algebra any filter is principal: the filter { b1 , . . .  , bn} is 
generated by the element b1 n · · · n bn . This fact transfers to show that any 
internal subset of a hyperfinite Boolean algebra that is a filter must have 
a generating element. 

By ( 1 ) and ( 2) , there is some element b E B+ that generates p+ = 
*F n B+ : 

p+ = {y E B+ : b ::;  y } .  
Now, b =/= 0, since p+ is proper, and B+ is atomic, so there is an atom a 
in B+ with a ::;  b. Then the set 

G = {y E B : a ::; y in B+} 

is an ultrafilter of B, and G includes F because F � p+ � G. This com
pletes our nonstandard proof of the ultrafilter theorem. 

The ultrafilter G is just the restriction to B of the principal ultrafilter 

of B+ . G itself may be non principal in B, for instance when F is the prin
cipal filter of B generated by some x =/= 0 and there is no atom in B below 
x. Thus we may think of a nonprincipal ultrafilter as a rather complicated 
"ghost of a departed atom" , just as a sequence of real numbers that con
verges to 0 is a vestige in the standard world of a missing infinitesimal. 
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It would be incorrect to conclude on the basis of this discussion alone 
that the ultrafilter theorem and the enlargement theorem are equivalent 
as axiomatic principles. To construct an enlargement as an ultrapower, we 
need to establish Los's theorem to verify the transfer principle, and the 
proof of Los's theorem involves some form of choice principle in handling 
the inductive case of the quantifiers. In fact, it has been shown that Los's 
theorem and the ultrafilter theorem together are equivalent to the axiom 
of choice, while the ultrafilter theorem by itself is weaker than the axiom 
of choice. On the other hand, there are other model-theoretic techniques 
for building enlargements that depend on principles no stronger than the 
ultrafilter theorem-but that is outside of our present scope. 

19 .7 Exercises on Filters and Lattices 

(1) Verify that G above is an ultrafilter of B. 

(2) Write out in detail the transfer argument that every internal filter of 
a hyperfinite Boolean algebra is principal. 

(3) Work in an enlargement of a universe over a set I. Show that for any 
nonprincipal ultrafilter F on I (in the sense of Chapter 2) there is an 
element of *I that belongs to every member of F. 

(4) (This is really a project rather than an exercise.) A lattice is an 
algebra of the form (L; n, U) with n and U being binary operations 
on the set L that are commutative and associative and satisfy the 
idempotence laws 

x n x = x = x U x  
and the absorption laws 

x n (x u y) = x = x u  (x n y). 

A distributive lattice is one satisfying 

x n (y U z) 
x U (y n z) 

(x n y) u (x n z) ,  
(x u y) n (x u z). 

These laws are satisfied by any set lattice, which is one of the form 
(S, n, U) where S is a collection of subsets of some fixed set. Any 
finitely generated distributed lattice is finite. 

An element a of a lattice is called join-irreducible if 

a = x U y implies a = x or a = y 

for all x,  y E L. By using join-irreducible elements in place of atoms, 
adapt the analysis of Boolean algebras to give proofs by hyperfinite 
approximation of the following facts. 
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(a) Every distributive lattice is isomorphic to a set lattice. 

(b) Every proper filter of a distributive lattice can be extended to a 
proper filter G that is prime, meaning 

x U y E G implies x E G or y E G. 

19 .8 Hyperfinite-Dimensional Vector Spaces 

Our study of Boolean algebras made use of a special feature: any Boolean 
algebra B is locally finite, which means that its finitely generated subal
gebras are finite. This implies that the finitely generated subalgebras are 
atomic, a property that can then be transferred to the approximating al
gebra n+. It also leads to the conclusion that n+ is hyperfinite. 

A similar construction to this can be carried out for other kinds of al
gebraic structure, even if they are not locally finite. By working with the 
finitely generated subalgebras we can obtain an analogue of n+ that is hy
perfinitely generated rather than hyperfinite. This is particularly relevant 
to linear algebra, where the emphasis is on finite dimensionality rather 
than actual finiteness. By making an enlargement it is possible to ap
proximate an infinite-dimensional vector space by one that is hyperfinite
dimensional. This provides a methodology for transferring results about 
finite-dimensional spaces to vector spaces in general. 

We will assume familiarity with the general theory of vector spaces over 
fields. Recall that a real vector space is an Abelian group (V, +, - ,  0) with 
a scalar multiplication map (A, x) �----* AX from � x V to V satisfying, for all 
vectors x, y E V and scalars A, J.L E �' 

A(x + y) 
(A + J.L)x 

A(J.LX) 
lx 

AX + Ay, 
AX + J.LX, 
(AJ.L)x, 
X. 

In a nonstandard framework for V the operations + and - lift to *V, 
and scalar multiplication becomes a map of the form *� x *V ---+ *V. The 
vector space axioms are preserved by transfer, and so *V is a vector space 
over the field *�, i.e., a hyperreal vector space. We can of course ignore the 
nonstandard scalars and restrict scalar multiplication to a map from � x *V 
to *V, thereby viewing *V as a real vector space. It is important to recognise 
that these two descriptions of *V, as a real space and as a hyperreal space, 
are descriptions of spaces with different properties. For instance, *IR itself 
is a one-dimensional vector space over *IR, but is infinite-dimensional as a 
vector space over � (see Exercise 19.9. (2) ) .  
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A subspace of a real vector space V is a subset W � V that is closed 
under vector addition and under multiplication by real scalars, and hence 
contains all finite linear combinations 

(iv) 

for which x1 , . . .  , Xn E W and A1 , . . .  , An E JR.. W is of dimension n, 
dim(W) = n, if there exists a sequence x1, . . .  , Xn of vectors in W (a ba
sis) such that each member of W can be written uniquely as the linear 
combination E� AiXi for some scalars Ai. 

In a nonstandard framework the vector summation operator E� can be 
defined for unlimited n, allowing the formation of hyperfinite sums and 
linear combinations in *V. To achieve this we regard the symbol "E" as 
denoting a function whose domain is the set Seq(V) of finite sequences of 
elements of V, and whose range is included in V. A member of Seq(V) is 
itself a function into V from some initial segment { i E N : i ::; n} of N. 
Thus by transfer, *Seq(V) is the set of all internal hyperfinite sequences 
of elements of *V. A typical member of *Seq(V) is an internal function of 
the form (xi : i :::; n) defined on some initial segment { i E *N : i ::; n} of 
*N, with Xi E *V and n possibly unlimited. The operator E extends to a 
function from * Seq(V) to *V, giving a meaning to the expression 2::� Xi for 
all internal hyperfinite sequences (xi : i ::; n) . 

Let Fin(V) be the set of all finite-dimensional subspaces of V. The func
tion dim : Fin(V) � N assigns to each member of Fin(V) its dimension. 
This extends to a function dim : *Fin(V) ---+ *N. By transfer, since mem
bers of Fin(V) are closed under finite combinations with real scalars, a 
typical member of * Fin(V) will be an internal subset of *V that is closed 
under internal hyperfinite linear combinations with hyperreal scalars. If 
W E *Fin(V) with dim(W) = n (possibly n E *N00 ), then W is a hyper
real subspace of *V, and there exists an internal sequence (xi : i ::; n) of 
vectors in W that forms a "basis" in the sense that each member of W is 
equal to 2::� AiXi for a unique internal sequence (Ai : i ::; n) of hyperreal 
numbers. Thus W is a hyperfinite-dimensional vector space over *JR., with 
hyperfinite dimension n. 

Exercise 19.8.1 
Write out the formal sentences whose transforms ensure that *Seq(V) and 
* Fin(V) fulfill the descriptions just given of them. (The proof of Theorem 
13.17.1 may provide some guidance.) 0 
The approximation of a general vector space by hyperfinite-dimensional 
ones is given by the following result: 

Theorem 19.8.2 If V is a real vector space, then in any enlargement of 
a universe over V there is a hyperreal subspace v+ of *V with 

V � v+ E *Fin(V) . 
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Proof. Let R be the membership relation from V to Fin(V) , i.e. , 

xRW iff x E W E  Fin(V) . 

Then R is concurrent , for if x 1 ,  . . •  , Xn are vectors in V, and W is the 
subspace they span (i.e . ,  the set of all linear combinations 2.::� AiXi with real 
scalars) , then W has dimension at most n, and so xiRW for all 1 ::; i ::; n. 
This also shows that the domain of R is V. 

Since * R £;;; *V x * Fin(V) , it follows that in the enlargement there is 
some v+ E *Fin(V) with x(*R)v+ for all X E v, and hence v � v+. D 

19.9 Exercises on (Hyper) Real Subspaces 

( 1) Let (xi : i ::; n) be an internal hyperfinite sequence of elements of *V. 
Show that there exists a W E * Fin(V) such that 

(i) W is the smallest internal hyperreal subspace of *V that contains 
X1 , . . .  , Xni and 

(ii) each member of W is equal to 2.::� AiXi for some internal se
quence (>..i : i ::; n) of hyperreal numbers. 

(2) Let r E *JR - R Prove that r is not a root of any polynomial with 
real coefficients. (Hint: a polynomial has finitely many roots.) Deduce 
that the set {rn : n E N} of finite powers of r is linearly independent 
over JR, and therefore that *JR is infinite-dimensional as a vector space 
over JR. 

(3) Explain why the set lL of limited hyperreals is an infinite-dimensional 
real subspace of *JR. 

19 . 1 0  The Hahn-Banach Theorem 

A function of the form f : V � lR is called a functional on a real vector 
space V. A linear functional is one that is additive, in the sense that 

f(x + y) = f (x) + f(y) (v) 

for all x, v E V, and homogeneous in the sense that 

f(>..x) = >..f(x) (vi) 

for all x E V and >.. E JR. If f satisfies (vi) only for >.. 2: 0, then it is positively 
homogeneous, and if it satisfies 

f(x + y) :S f(x) + f(y) 
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in place of (v) , then it is subadditive. Finally, a function f is dominated by 
a function p if f ( x) S p( x) for all x in the domain of f. 

Armed with these definitions we can state the following cornerstone result 
from functional analysis. 

Hahn-Banach Theorem: Let p be a positively homogeneous 
and subadditive functional on a real vector space V, and f a 
linear functional on a subspace W of V with f dominated by 
p. Then there exists a linear functional g on V that extends f 
and is still dominated by p .  

They key idea for the proof is a construction that takes a vector x E V- vV 
and extends f to the subspace generated by adjoining x to W: 

Lemma 19.10.1 Given the hypothesis of the Hahn-Banach theorem, if 
x E V - W, then there exists a linear functional h on a subspace of V 
including W U { x} such that h extends f and is dominated by p. 

Proof We give only a sketch of the proof of this standard piece of linear 
algebra. The subspace of V generated by W U { x} is the set 

{y + Ax : y E W and A E lR}. 

A functional h is defined on this subspace by putting h (y+Ax) = f(y) +Ac, 
where c is a real constant . Any such c will make h a linear functional 
extending f,  but c has to be chosen suitably to ensure that h is dominated 
by p. It turns out that for this purpose c can any number bounded above 
by the infimum of the numbers p(y+x) - f(y) and below by the supremum 
of the numbers -p( -y - x) - f(y) as y ranges over W. 0 
The nature of this result suggests that we can prove the Hahn-Banach the
orem by repeatedly applying the procedure of adjoining elements. Having 
extended f to an h whose domain contains x, we then choose an x' � dom h 
and extend h to a linear functional h' that is dominated by p and defined 
at x' . We continue this until we run out of elements of V to adjoin. 

Recalling the discussion in Section 2.6, we see that this process involves 
the axiom of choice in selecting x, x', etc. Alternatively, we could "well
order" V - W into a linear list along which we iterate the construction 
transfinitely often. This was precisely how Hahn and Banach (indepen
dently) proved their theorem, and in fact, Banach expressed it very briefly. 
Having explained the procedure that proves Lemma 19.10. 1 ,  he completed 
his argument by simply stating, 

It now suffices to well-order the set V - W, obtaining, by suc
cessive extensions off, following the procedure described above, 
a functional g satisfying the conclusion of the theorem. 

Modern treatments of the Hahn-Banach theorem use Zorn's lemma instead 
to make a maximal extension of f and then show that its domain is the 
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whole of V. Here we will show that a proof can be developed in the language 
of enlargements. The essential idea is to iterate the construction of Lemma 
19. 10.1 hyperfinitely often, adjoining enough elements to the domain of the 
functional to include all of V. 

By iterating the adjunctions finitely many times we can take any finite 
sequence (xi : i :s; n) of elements of V and extend f to a linear functional 
dominated by p whose domain includes the subspace generated by the Xi 's. 
Hence by applying transfer we can take any internal hyperfinite sequence 
(xi : i :s; n) and extend f to the hyperfinite-dimensional subspace of *V 
that it generates. In particular, this would allow us to lift f to the space 
v+ E * Fin(V) including V that was obtained in Theorem 19.8.2, and then 
push this extension down to V itself. 

In fact, an even more direct approach is to incorporate into our present 
situation the kind of concurrency argument used to derive v+ . Given the 
hypothesis of the Hahn-Banach theorem, define a binary relation R by 
specifying that xRh if and only if 

x E V and h is a linear functional that extends f and is domi
nated by p and whose domain is a subspace of V that includes 
W U  {x}. 

If x� ,  . . .  , Xn E V (where n E N) , then applying Lemma 19. 10. 1 at most n 
times produces an h having XiRh for all 1 :s; i :s; n. So R is current and 
has domain V. Working in an enlargement of a universe over V, we then 
obtain an j+ such that x(*R)j+ for all x E V. By transferring properties 
of R we conclude that: 

• j+ is a *�-valued function whose domain is a hyperreal subspace of 
*V that includes V. 

• j+ is hyperlinear, meaning that it is additive and is homogeneous for 
hyperreal scalars: f ( >..x) = >..J ( x) whenever >.. E *�. 

• j+ extends f: j+ (x) = f(x) for all x E W. 

• j+ is dominated by the extension of p to *V: j+ ( x) :s; p( x) for all 
x E dom j+ . 

At this stage we cannot simply restrict j+ to V to produce our desired 
functional extension of f, because j+ may take nonstandard values on V. 
However, these values are always at least limited, so we can take their 
shadows. To see that this is so, note that in general, 

whence 

-p(-x) :s; j+ (x) :s; p(x) 
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for all x E dom j+. Therefore when x E V, j+(x) is sandwiched between 
the real numbers -p( -x) and p(x) , so is limited and has a shadow. Putting 

g(x) = sh(f+(x)) 

defines g : V ---+ lR as a function that extends f. Then g is dominated by p 
because g(x) � j+ (x) ::; p(x) ,  implying g(x) < p(x), since both g(x) and 
p( x) are real. Finally, the shadow map sh : lL ---+ lR is a linear functional 
that composes with the restriction of the hyperlinear j+ to V to make g 
linear. 

This completes our nonstandard proof of the Hahn-Banach theorem. 

19 . 1 1  Exercises on (Hyper) Linear Functionals 

(1) Verify that sh : IL ---+ lR is a linear functional on the real vector space 
IL of limited hyperreal numbers. 

(2) Write out in full the transfer arguments showing that j+ has the 
properties listed above. 

(3) (Due to W. A. J. Luxemburg) Given the hypothesis of the Hahn
Banach theorem, let {fi : i E I} be the set of all linear functionals 
that extend f, are dominated by p, and are defined on a subspace of 
V including W. For each x E V, put Ax = {i E I :  x E dom ji} ,  and 
let r x : I ---+ lR be a function satisfying r x ( i) = fi ( x) for all i E Ax 
(for definiteness rx can be equated to 0 outside of Ax) · 

(a) Show that {Ax : x E V} has the finite intersection property. 

(b) Let F be an ultrafilter on I including {Ax : x E V}. Taking *JR 
to be the ultrapower of lR by F, define j# : V ---7 *JR by putting 
j#(x) = [rx] · Show that j# is hyperlinear. 

(c) Use j# in place of j+ to prove that there is a linear functional 
g on V that extends f and is dominated by p. 

This gives a direct derivation of the Hahn-Banach theorem from the 
ultrafilter theorem. 
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partial, 97 
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differential, 93 
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Euler, 8 
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extended 
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term, 61 
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filter, 18 
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j.1-, 207 
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finitely generated, 268 
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formula, 40, 167 

atomic, 40, 167 
defined, 40 
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II-, 264 
unary, 40 

free variable, 41 
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function, 160 
function-value term, 166 
functional, 275 

linear, 275 
fundamental theorem of calculus, 
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hyperinteger, 49 
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pre- , 237 
Newton, 6 
Newton quotient, 92 
node, 260 
nondecreasing, 63, 108 
nonincreasing, 63, 108 
nonstandard 

entity, 170 
framework, 168 
hull, 235 
member, 29 
natural number, 29 
set, 171 

norm, 233 
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definition of, 161 
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integer, 239 
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Paris-Harrington theorem, 229 
partial derivative, 97 
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partition, 105 
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real-open set, 120 
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