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 Preface 

Still image from a Maya simulation 
model of cell migration in a 
3D scaffold. The cell extends 
protrusions in search of scaffold 
fi bers. When it contacts a fi ber, the 
protrusion adheres to it. The cell 
body then contracts, pulling it in the 
direction of the adhesion. Maya’s 
extensive 3D modeling toolset and 
programming capabilities make it 
well suited to 3D visual simulations 
of biological phenomena such as 
cell migration.

Courtesy and © 2006 Donald Ly.



  Who is this book for?  
 If, like us, you are involved with the study of cells and cell biology, or if your work 
takes inspiration from the organic world, this book is for you. We have written In 
Silico for the diverse creative community—scientists, artists, media designers, stu-
dents, and hobbyists—now deeply involved with the living cell as a key to unlocking 
the complexity of organic matter and a gateway to powerful new understanding of 
disease. In the scientifi c area, cell and molecular biologists and their research part-
ners today have little time to spare developing complex computer programs from the 
ground up. High-end three-dimensional (3D) computer programs like Autodesk Maya 
provide the busy scientist with a robust, fl exible development environment in which 
state-of-the-art computer methods can be used to analyze, model, and visualize cell 
data. Equipped with deeply customizable user and application programming inter-
faces, Maya and other top-tier 3D animation programs aff ord rapid prototyping of 
data analysis and models through advanced graphics, physics, and rendering systems. 
Output capability embraces both crisp numerical data and polished 3D dynamic visu-
alizations of cell physiology. Th ese tools have enough programming fl exibility that the 
working researcher can concentrate on the functional aspects of the data mapping or 
simulation capability they wish to create.   

 In the communications fi eld are individuals and groups immersed in the burgeon-
ing marketplace of biocommunications, especially medical and scientifi c animation. 
Th e telling of stories is a human universal, common to all peoples and cultures. Th e 
increasingly complex world enabled by science and technology makes the accurate, 
compelling telling of scientifi c stories more important than ever. Constantly, anima-
tors of medical and scientifi c subjects are called on to present ever more intricate, 
unusual phenomena involved in understanding how cells work and what goes wrong 
with them to cause devastating illnesses like cancer and heart disease. At the same 
time, the expectations of a media-savvy public for concise, truthful, entertaining 
visual stories rise even higher. Taking control of a program like Maya can empower 
the media artist to better interpret and visualize wonderfully intricate cellular phe-
nomena—such as the crowded molecular landscapes of the cell interior, the cell 
waves coursing through the embryo ’ s interior, or the skein of blood vessels healing a 
wound—that would be impractically tedious or impossible to animate by hand.   

 And too numerous to count, surely, are the artists and citizens everywhere who draw 
inspiration from biology and the natural world, and who dream of imparting some 
facet of organic vitality and complexity to their creative work or personal appre-
ciation of nature. Th e ideas and methods of this book will, we believe, inform and 
inspire everyone with such interests. Although the focus of our applications is the 
exciting realm of the living cell, those whose interests embrace other parts of liv-
ing nature will fi nd the knowledge and techniques they learn here of useful in many
diff erent ways.    

  Why Maya?  
 Although Maya is a top-tier product used worldwide for 3D animation in entertain-
ment, gaming, and manufacturing, this Academy Award® winning program does not 
stand alone in representing the cutting edge of high-end 3D. Superb tools such as 
SoftImage XSI, Maxon Cinema 4D, NewTek LightWave 3D, Autodesk 3ds Max, and 
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Side Eff ects Software ’ s Houdini, stand alongside Maya to defi ne the state of the art 
in 3D animation capability. Maya is our subject in this book for three reasons. First, 
despite the excellence of alternative tools Maya currently enjoys a pre-eminent sta-
tus in top-end 3D animation work. Second, the Maya programming interfaces—
accessed through a C�� application toolset (the API—which we plan to deal with in 
a subsequent book), via scripting in the Python language, and through Maya ’ s own 
scripting language MEL, which we treat in this book—allow enormous power and fl ex-
ibility in customizing Maya for scientifi c applications. Th ird, the academic outreach
initiatives supported by Autodesk, the fi rm that makes and sells Maya, have
enabled us to test Maya and some of its predecessors (such as Alias PowerAnimator) 
in demanding real-world science projects in cell and medical science. As a threesome, 
we have between us accumulated roughly 40 person-years of experience across a
wide range of such applications. We fi nd Maya worthy of close attention whenever 
there is a need to model and visualize 3D cell biology using a computer. Since our 
origins trace back to the early days, in which such computer methods were lab-writ-
ten custom jobs in languages like Fortran, C��, and OpenGL, Maya for us means 
shorter time to software completion while increasing the power of the animated 
visualization.   

 If you are already a user of a 3D animation package other than Maya, you will still 
fi nd considerable useful material in the pages to follow. Th e book is going to show you 
how to approach complex biological problems eff ectively, by means of a workfl ow in 
3D visual computing. We have developed this workfl ow over the years of our medical 
and biocommunications research and use it daily in our teaching and scientifi c inves-
tigation. By working through the book ’ s projects and case studies, you will be able 
to adapt our workfl ow to other 3D animation products as well as take them much 
further in Maya itself.     

  What the book offers  
 In the world of computer graphics software, Maya is a relatively complicated applica-
tion. Learning and, eventually, some degree of genuine mastery, take time, but don ’ t 
despair. Page by page, the learning map we have set up will take you from one pro-
ductive result to the next. You will deal throughout with learning content that has 
genuine interest and signifi cance in the world of science and cell biology. In  Part 1  
you will meet the key ideas and terms from scientifi c computer graphics needed to 
dive into Maya while assessing its historic relevance to leading edge visualization. In 
 Part 2 , you will receive a self-contained introduction to Maya and to our workfl ow 
that will take you from starting the program through to a polished animation ren-
dering of a complex protein. With this foundation you are ready to meet MEL, the 
programming language by which you will harness Maya ’ s ability to model and render 
complex events. Th en in  Part 3 , we put this all to work. You will develop a portfolio 
of case studies ranging from the single biological molecule to populations of inter-
acting macromolecules, and then on to mobile cells as they move through their tis-
sue environment. As you complete each element in the portfolio, you will have taken 
command of powerful new strategies for using MEL to control Maya ’ s numerical and 
visual rendering activity.   

 Here ’ s what you can expect in the rest of the book.   
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Part 1:  Setting the stage  

01  Introduction  
     To get started, we attempt to answer the question:  “ Why 
visualize? ”  We briefl y discuss the power of visual percep-
tion in human learning and discovery, and how we can 
leverage our innate visual intelligence to advance under-
standing in science. Th e role of structural hierarchy in 

biology is explored, and we take this opportunity to introduce some of the  “ major 
players ”  at the levels of molecules, cells, and tissues. Maya is introduced, and some of 
its history traced. Finally, we celebrate the advances in 3D computer animation that 
have provided powerful, yet aff ordable tools for conducting visual explorations of 
complex systems.     

02  Computers and the organism  
     Th is chapter will survey the basic idea of computation and 
how it should be done automatically, by a machine. We will 
see to that a core tenet of information processing,  condi-
tional control , is used by both computer programs and liv-
ing organisms to regulate activity. Th is sets the stage for 
understanding how computer programs can illuminate the 
structures and functions of biological systems.     

03  Animating biology  
     In this chapter, you ’ ll explore the standard animation 
workfl ow, and see how it can be adapted to the needs of 
a biomedical researcher or animator. We examine the 
preproduction process, where a story is developed and 
refi ned, and a plan for the execution of the fi lm is made. In 
the production phase, the hard work of building, textur-

ing, animating, and rendering of the story elements takes place. In postproduction, the 
media developed in production are composited, edited, and packaged for delivery. Th ese 
steps are applicable to most science communication contexts, and we propose a modi-
fi ed version of them to accommodate the unique requirements of biological systems 
visualization.       

   Part 2:  A foundation in Maya  

04  Maya basics  
     Th is chapter will get you immediately familiar with Maya, 
via a tour of the primary features of the user interface 
(UI). You ’ ll learn about Maya ’ s program architecture—the 
proprietary Dependency Graph and Scene Hierarchy—and 
get a sense of what ’ s actually happening when you start 

pressing Maya ’ s buttons. A basic understanding of  “ Maya behind the scenes ”  will 
greatly extend what you can accomplish with the software. We ’ ll continue to develop 
this understanding in the subsequent chapters.     

60Å
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05  Modeling geometry  
     In this chapter you will learn to make geometric models.
A discussion of diff erent model types and their components 
gives an understanding of how complex surfaces are cre-
ated from relatively simple beginnings. You ’ ll also see how 
models are composed of nodes and attributes—the stuff  of 
Maya ’ s Dependency Graph—via practical examples.     

06  Animation  
     With animation, you ’ ll bring your models to life. In Maya, 
to animate is to change some attribute over time—be 
it position, color, or speed, for example. You will see this 
defi nition applied as you learn to work with the tools of 
animation—keyframes and animation curves—to make 

objects move around and change shape. You ’ ll wrap up the chapter with your fi rst 
procedural—or algorithm-driven—animation, and a taste or what ’ s possible when 
you set aside the standard UI animation tools and begin using written expressions to 
simulate motion.     

07  Dynamics  
     One of the truly powerful features of Maya is that it ’ s a 
sophisticated, built-in dynamics engine that you can use 
to simulate real-world physics. It calculates forces and col-
lision dynamics for soft- and rigid-bodied objects and for 
entities called particles. In this chapter you will create 
animations driven entirely by Maya Dynamics, in which 

objects are moved about by forces and collide with one another. Th ese ready-made 
physics simulation capabilities are a boon not only to visual eff ects artists looking 
to emulate real-world phenomena, but also to the computational biologist looking to 
breadboard dynamic modeling scenarios before going through the eff ort and expense 
of building a custom physics engine.   

 With Maya, you have at your fi ngertips the same tools for rendering proteins, cells, 
and tissues that professional CGI artists use to create the stunning imagery that has 
revolutionized Hollywood visual eff ects. In each of the following four chapters, you ’ ll 
focus on an aspect of Maya ’ s extensive rendering capabilities. Together these chapters 
will take you through the process of preparing an animated scene (showing the four 
subunits of the blood protein hemoglobin) for rendered output.     

08  Shading  
     In this, the fi rst chapter on the rendering process, you ’ ll 
learn how to make and apply shading networks, or  shad-
ers  for short. Shaders work with the lights in a scene to 
determine the appearance—color, texture, opacity, etc.—
of objects in your fi nished renderings. You ’ ll learn how 
to quickly create and apply shaders to multiple objects in 
preparation for rendering.     
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09  Cameras  
     Like a real movie camera, a Maya camera defi nes what 
your audience will see. Many features are available with 
a real camera are embodied in the Maya version, allowing 
you to set up and record shots in virtual 3D space much 
as you would in the real world. Th e Maya camera also 
defi nes your view of the 3D scene as you work with it, and 

is therefore an indispensable tool, whether or not you plan to make fi nished (ren-
dered) movies with Maya. By the end of this chapter, you ’ ll know how to set up and 
animate a camera along a track called a motion path—much the way a movie camera 
is set up on a track to move as it records the action.     

10 Lighting  
     If the camera is a cinematographer ’ s  brush , then light is the 
paint. Just like in the real world, light defi nes what is visible 
in your Maya scenes, and the quality of its appearance. We ’ ll 
show you how to achieve professional illumination with 
minimal eff ort in order to get the most out of your images.     

11  Action! Maya rendering  
     In this fi nal chapter on the rendering process, you ’ ll see 
how Maya integrates shaders, camera view, and lights to 
produce one or more image fi les. We ’ ll explore the diff er-
ent render  “ engines ”  available in Maya and their relative 
advantages.     

12  Mel scripting  
     At this point in the book, you ’ ll know your way around 
the UI and be familiar with the concepts and terminology 
involved in modeling, animating, and rendering in Maya. 
You ’ ll be ready to depart somewhat from the standard UI 
tools and start exploring Maya ’ s scripting capabilities. 

Th is chapter introduces Maya ’ s scripting (or programming) language, MEL (short for 
Maya Embedded Language). You ’ ll learn how to run individual MEL commands and 
how to compose a script—or short computer program—out of multiple MEL state-
ments in order to automate tasks in Maya. Readers new to computer programming 
will learn the basic concepts—syntax, variables, operators, fl ow control, etc.—in the 
context of MEL. Th ose with previous programming experience can scan the chapter 
to pick up the MEL basics. In either case, plentiful examples and a short tutorial will 
have you coding Maya tasks using MEL in no time.     

13  Data input/output  
     Ready-made software plug-ins are available for porting 
some of the more common 3D data formats to and from 
Maya. However, if you ’ re working with a format for which 
no plug-in exists, such as experimental data formatted in 
a spread sheet, you may want to create your own importer 

move -a 0 ($H/2) 0 $name1;
move -a 0 (-$H/2) 0 $name2;
$groupName = `group $name1 $name2`;

if ($j==0){ 

  // Create the first peptides.
  $locatorName1 = `spaceLocator -p 0 0 0`;
  move $W 0 0 $locatorName1;
  parent $locatorName1 $groupName;

  move -r $x $y $z $groupName;
  rotate -r $rx $ry $rz $groupName;
    
  // Increment the helix rotation.
  $rx = ($rx + $helix);

}
else { // Create the next peptide.

    
  // Store the translate values of the locator.
  $xyz1 = `xform -q -t -ws $locatorName1`;
  $x = $xyz1[0]; $y = $xyz1[1]; $z = $xyz1[2];
    
  // delete the previous locator and make a ne
  delete $locatorName1;
  $locatorName1 = `spaceLocator -p 0 0 0`;
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or exporter. Th is chapter shows you how to do just that using a suite of MEL com-
mands for reading and writing external fi les. You ’ ll also learn the MEL commands 
useful for formatting the text that you read and write. In the chapter ’ s tutorial, you ’ ll 
extract 3D coordinates from a cell migration data fi le, use them to visualize the mov-
ing cells, and then save out a report summarizing key migration statistics.       

Part 3:  Biology in silico—Maya in action  
 In this part of the book, you ’ ll explore and use a workfl ow for in silico modeling and 
simulation that builds on your knowledge of Maya ’ s UI and scripting capabilities. We 
present fi ve tutorial-style projects, each dealing with a diff erent level of biological 
organization—from a single protein up to a population of cells in a tissue matrix. In 
each project we ’ ll guide you, step by step, through the composition of custom MEL 
scripts that automate the model building and/or dynamic simulation. Whether you ’ re 
a scientist looking to explore Maya techniques in 3D computation or an artist visual-
izing topics in cell science, you ’ ll learn a range of useful techniques that can subse-
quently be applied to your own projects.   

14  Building a protein  
     Th e ability to work with molecular models is essential to 
any 3D in silico approach to cell (and molecular) biology. To 
begin, one must fi rst be able to build models using struc-
tural data. Once built, these models can be used to study 
and simulate a range of phenomena from protein folding to 

shape complementarity. In this chapter, you ’ ll build a custom script to make a protein 
model using an external Protein Data Bank (PDB) fi le. You ’ ll be able to use this script 
to make models from other PDB fi les and revise it to suit other data formats. Moreover, 
the chapter doesn ’ t end when your model is built: we ’ ll guide you through setting up 
and rendering a fi nished picture worthy of a book cover or wall poster.     

15  Self-assembly  
     Th e self-assembly of macromolecular structures is key 
to the organization and function of cells and tissues. In 
this chapter you ’ ll create a dynamic model of regulated 
self-assembly featuring an actin protein fi lament. You ’ ll 
do this with custom MEL scripts that emulate molecular 
diff usion and chemical reaction dynamics.     

16  Modeling a mobile cell  
     Th e study of mobile cells spans a huge range of biomedi-
cal research, from the spread of cancer to tissue regenera-
tion. In this chapter you will create a simple cell model in 
Maya and make it crawl in response to a simulated chemi-
cal stimulus. By setting up parameters that control the 
cell ’ s motion, including the degree to which it responds to 

the stimulus, you ’ ll see how such a model could be extended to simulate and predict 
diff erent modes of cell behavior.     
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17  Modeling an ECM scaffold  
     In the body, cells live in complex 3D environments of the 
various tissue types. Research in regenerative medicine 
is increasingly focused on the relationships between cells 
and their surroundings, with a growing awareness that 
3D tissue architecture plays a key role in cell behavior. 
In this project you ’ ll use our in silico workfl ow to build 

a fi brous tissue matrix. A set of model parameters will let you vary the structure of 
each matrix you create. You ’ ll see that, given a set of model criteria, you can leverage 
MEL to create structures of a complexity that would be impractical to attempt using 
the standard modeling tools available through Maya ’ s UI.     

18  Scaffold invasions  
     In this, the fi nal project of the book, you ’ ll model the pen-
etration of your tissue matrix by a mobile group of cells—
using only MEL and some custom methods we developed 
for mapping 2D cell motion onto 3D surfaces.   

 In no way does this chapter represent the limit of what ’ s 
possible for modeling cell biology in Maya. On the contrary, we have only scratched 
the surface! We hope that this and the projects before it will inspire you to create new 
developments in this exciting fi eld of 3D in silico biology.     

19  Conclusion  
 In this chapter we revisit the themes and methods cov-
ered in the book and look ahead to the future of biocom-
munications and computational cell science.       

Further   reading  
 We tour the cell biology, 3D visual computing, and Maya tools and techniques in suf-
fi cient detail to advance you quickly and effi  ciently through each chapter in the book. 
Nonetheless, practical constraints have made it necessary to be brief in our treatment 
of many of the subjects. Where you desire more information, we encourage you to 
explore the Further reading we ’ ve listed according to topic.     

  Glossary  
 Th is book was written for artists and scientists alike. Depending on your fi eld of work 
or study, you may encounter terminology and concepts that are new to you. In the 
 Glossary , we ’ ve compiled many of the key terms used throughout the book. Th ey are 
listed with references to the pages on which they ’ re used.     

  CD-ROM and companion Website  
 Everything you need to work through the examples, tutorials, and projects—
background information, step-by-step instructions, and MEL code listings—is pro-
vided on the printed pages. In addition, we ’ ve enclosed a CD-ROM with supplemen-
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tary material. It includes MEL scripts, Maya fi les, and rendered animations from 
various chapters. Th e  read_me.txt  fi le in the root directory of the CD-ROM includes an 
index of the enclosed computer fi les.     

On the books’s companion Website you’ll fi nd updates and corrections (when neces-
sary) to the fi les provided on the CD-ROM. 

www.insilico.book.net.

  Computer hardware and software 
Th e Maya fi les and MEL scripts listed in this book and included on the CD-ROM 
were created and tested on a mid-range consumer-level PC with the following 
specifi cations:

Software   Maya 8.5 for Windows 
OS   Windows XP Professional 2002 (Service Pack 2) 
PC   Dell Dimension 8300 

CPU   Pentium 4, 3.20       GHz 
RAM   1 GB 

Graphics adapter   ATI Radeon 9800 XT, 256 MB DDR 

Th e book ’ s tutorials and projects have been developed over a number of versions 
of Maya, both in Windows and Mac OS. Th ey have been  tested to work in Maya 8.5 for 
Windows . Users of older versions of Maya may have to look around for commands whose 
names have changed, but the MEL code will probably work largely unaltered. As this 
book went to press, a new version was announced (Maya 2008). Although we have 
not had the opportunity to test our projects against Maya 2008, we have no reason to 
believe that the techniques we rely on would have altered enough to have broken them. 

 Similarly, the instructions for accessing Maya menus and tools, along with references 
to the Maya Help Library, are specifi c to Maya 8.5 for Windows. With a little adaptation 
they can readily be applied to learning Maya in other environments, namely Mac OS 
and Linux.   

 If you are considering purchasing Maya, we strongly recommend you ensure its com-
patibility with your hardware and software confi guration by consulting the  system 
requirements  and  qualifi ed hardware  specifi cations available via Autodesk ’ s website:   

  www.autodesk.com/fo-products-maya           
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Still image from a 
simulation model of 
molecular diffusion 
in Maya. The molecules 
are actin protein 
monomers and 
fi laments which you'll 
meet in Chapters 14
and 15. In the 
3D model on the 
left, different colors 
indicate different 
fi lament lengths. 
Width of one actin 
monomer �  60 Å.   

60Å
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  The challenge 
  “ I see. ”  

 With these words, human beings convey their understanding. Th is pervasive meta-
phor, of sight as the stand-in for comprehension, tells us something about the nature 
of thought. 

 Visual exploration is fundamental to human learning, problem-solving, and innova-
tion. A surprisingly large portion of the cerebral cortex is devoted to decoding what 
we see with our eyes. So sophisticated is our visual perception that we are scarcely 
aware of its activity, and the cognitive sciences are only beginning to understand its 
complexity. 

 Since the Renaissance, the sciences have gradually awoken to the power of images to 
facilitate understanding. Andreas Vesalius  ’   De Humani Corporis Fabrica  (1543 C.E.) is 
considered the founding  text  of scientifi c anatomy, but its popularity and impact—it 
was serially and repeatedly plagiarized—was due to its exquisite dissection imagery. 
William Playfair, the inventor of many statistical graphics, opened the eyes of 18th 
century mathematicians and economists to the astonishing power of bar charts and 
scatter plots to condense pages of tabular data into readily apprehensible visual form. 

 Technologies of representation, reproduction, and mass communication were often fi rst 
exploited for scientifi c communication. In the 18th and 19th centuries, the develop-
ment of color reproduction technologies, so common in our mass media world, was 
driven by the demand of medical publication, where topics like dermatology required 
the accurate rendition of color. 

 Th rough the 20th century, many imaging technologies, such as electron and confocal 
microscopy, CT and MRI scanning, and ultrasound, were developed to satisfy science 
and medicine ’ s demand for more and better evidence. 

 Now, in the 21st century, computer-generated imagery (CGI) is yet again expanding 
the scope of our visual exploration. Th e power to map complex esoteric data into 
images, expand and compress time and scale, and fl exibly render concepts and proc-
esses in multiple forms have made the computer an essential component of many 
research endeavors. But there are gaping holes in the toolset available to researchers, 
and if commercial tools are not available, modern researchers usually have to con-
template building their own. Phenomena at the cellular and molecular levels are the 
principal focus of modern medical and bioscience research. At these scales, structures 
and events are often diffi  cult or impossible to see in the lab, in real time, as they hap-
pen: the distances are too small, the times too short, the events too unusual. Instead, 
they are measured—mapped as numerical properties. But how can we envision what 
the numbers mean? New tools are needed that leverage the power of computer graph-
ics ( CG ) to see into the complex web of structure and function in cells and tissues. 

 We, and other researchers in the emerging fi eld of computational biology, are meeting 
this challenge with CGI: using the computer as a visual information machine to har-
ness the brain ’ s enormous prowess for insight into the knowledge encoded in cellular
data and computer models. We call this approach in silico, since it is focused on com-
puter methods for research discovery that will complement traditional in vivo and 
in vitro methods. Our approach is perhaps novel, in using tools built for another fi eld 
entirely, to breadboard and simulate complex cell-scale phenomena. In this book you 
are going to learn about Maya, one of the most powerful computer programs for CGI, 
and how to use Maya (or tools like it) to represent, model, animate, and visualize in 

               In vivo  is a Latin term common 
in medical research used to 

refer to things, processes, or 
experiments  " in a living thing " ; 
it is often used in opposition to 

in vitro, meaning  " in glass " , or, in 
other words, in an experimental 

apparatus.      
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silico diverse aspects of cell biology. Th is is an exciting new area bridging the sciences 
and the arts, and we have written the book with both scientists and artists vividly
in mind. 

 In this chapter, we will begin by looking at why we visualize and how visualization in 
science can be characterized. Th en we will approach topic of our visualization exer-
cises: a hierarchical cast of biological characters, from atoms to tissues. Finally, we 
will look at the origins of our chosen tool, Maya.  

  Wetware for seeing 
  “ Th e drawing shows me at one glance what might be spread over ten pages in a 
book. ” 
 —Ivan Turgenev,  Fathers and Sons6.  

 Why do we so easily refer to sight when we want to express understanding? Nature 
has equipped us with remarkable brains: a compact, energy-demanding organ that 
contains about 100 billion neurons, each neuron densly connected with up to 10,000 
other neurons. Th e most distinctive part of the human brain is its cortex: a slab of 
gray matter equivalent to a sheet approximately 50       cm        �        50       cm, and 2–4       cm deep, 
densely folded up and packed into our skulls. Th e cortex is central to our  “ higher ”  
brain functions, like language and consciousness. A surprisingly large portion—
40% 1 —of the cerebral cortex is devoted to vision. Why do we need such a large pro-
portion of our brains devoted to decoding what we see with our eyes? 

 Human visual perception is a pattern recognizer of extraordinary speed, power, and 
discrimination. And yet, on a day to day basis, we remain scarcely aware of the aston-
ishing suite of tasks performed by visual perception. It ’ s as if we walk through the 
world with an incomprehensibly powerful supercomputer behind our eyes, and as we 
employ that supercomputer to navigate stairs or read the cereal box in the morning, 
we remain completely oblivious to it. 

 Vision is a source of deep, and paradoxically  invisible , intelligence; harnessing that 
intelligence is one of the goals of scientifi c visualization. A comprehensive under-
standing of vision would perhaps help us map scientifi c goals to standardized design 
criteria; alas, such an understanding is as yet a work in progress. Th e mechanisms 
underlying much of the process of visual perception are largely mysterious. Decades 
of eff ort by cognitive psychologists and neuroscientists have begun to unravel the 
mystery, but they are far from the complete story, and a comprehensive explana-
tion of vision may be tied to even more hard-won understanding (such as the elusive 
nature of consciousness itself). Th e fact that computer scientists and artifi cial intelli-
gence ( AI ) researchers have yet to mimic vision ’ s power in even the most rudimentary 
way (they have yet to create a robot that can  “ see ”  anywhere near as well as a human 
toddler) is a testament to the diffi  culty of the challenge. In the interim, we can draw 
inspiration from the understanding of visual perception that currently exists and 
from existing heuristics in the realms where meaning is concentrated in the form of 
images: fi lm, illustration, and art. 

 Let ’ s give vision ’ s computational might its due and create some images that exploit its 
power, solving scientifi c problems in the process. At the very least, given the above, 
the failure to take advantage of our most complex and subtle faculty, the failure to 
visualize—when it would enhance our productivity or understanding—would be a 
terrible waste of the processing power inside our heads. 
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 Th e quote from Turgenev is perhaps the source of the familar proverb:  “ a picture is 
worth a thousand words. ”  It rings true, even though, as a cynic would point out, it is 
hard to imagine a picture that could express the sentiment embodied in the phrase. 

 In the hurly-burly of science, the potential power of visual expression occasionally 
takes a back seat to the practical importance of verbal expression, especially for  “ seri-
ous ”  communication. Papers must be written, presentations prepared, and posters 
assembled, all depending principally or exclusively on words and numbers. Th is is 
understandable; as far as we can tell, language is essential to human intelligence and 
is sometimes considered the  “ stuff  of thought ” . But if we could open up our heads and 
 “ listen in ”  on our thoughts, they would be far diff erent, and more confusing, than the 
transcription of an  “ internal conversation. ”  Th e  “ stuff  of thought ”  contains images 
(or their mental counterparts!), as well as numerous other sense impressions, such as 
sound, tactility, body position, and physiological state. 

 We are a multimedia species. We hear repeatedly that we live in an increasingly vis-
ual, media-saturated world. New literacies are being formed around the sophisticated 
media objects we consume, and science is becoming open to the idea that exploiting 
such literacies will facilitate scientifi c communication and discovery. 

 Th at we may take vision for granted—not just in our everyday lives, but in the process 
of scientifi c understanding—should not obscure its power. Indeed, it is hard to think 
of a revolution in scientifi c understanding over the past 3,000 years—astronomy,
medicine, physics, chemistry, engineering, geography, and so on—that has not relied, 
in whole or in part, on a breakthrough technology for seeing the world in new ways. 
CG and animation are working this transformative eff ect on modern biology and 
medical science—especially in the realm of the otherwise small, invisible cells where 
the fi rst steps to aging and disease are born.  

  Visualization in science 
 Th e verb  visualize  has two meanings: the conjuring up of an image in the mind ’ s eye; 
and—more importantly for science—to make visible to the eye. Visualization in
science has a long history (as noted above) and has taken on numerous forms,
serving numerous purposes. A comprehensive survey of visualization in science would 
include everything from classroom blackboard sketches to supercomputer renderings, 
and all the problem-solving visual representations in between. Some representations 
are direct mappings of perceptible phenomena (a simulation of a storm cloud) and 
some are visual analogies or metaphors which aid interpretation of the phenomena 
(a diagram of the  “ plumbing ”  of a cell-signaling pathway). Some images simplify the 
phenomena and some seek to represent it in its full, empirical complexity. 

 It can be helpful to think of visualization as existing within a potential  “ design-
space ” , with  “ level of interpretation ”  along one axis, and  “ level of complexity ”  along 
another ( Figure 01.01   ). We don ’ t intend this scheme to be defi nitive or exhaustive, but it 
can help to frame the available possibilities. 

 Visualization goals may be positioned at various points within this design-space. At 
the upper left of the space (high in interpretation and low in complexity), images and 
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 FIGURE 01.01 

    Above: One potential visualization 
 " design-space " .

Below: Three representations of 
the bacterial fl agellum and their 
respective positions in the proposed 
design-space.

events are simplifi ed and analogized, perhaps in order to teach, to clarify, to show 
trends, or to convey an overall impression. At the lower right (high in complexity 
and low in interpretation), the image is derived from an imaging method or linked 
directly to data (indeed, it is usually a direct rendering of that data). While teaching 
and showing trends are possible with such images, they are designed to be as accu-
rate as possible, such that it may stand as a source of measurement, evaluation, or 
diagnosis. 

 Valuable work can be done anywhere within the design-space, but it is 
important to know the purpose of the visualization and its intended audi-
ence. Th e same phenomena can be visualized in a number of ways depend-
ing on the audience; imagine explaining bacterial self-propulsion to young 
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schoolchildren, or to undergraduate biology students, or to doctoral students in a sub-
specialty of cell biology. 

 We term what we do interpretive visualization (regardless of whether the fi nal media 
are bound for a lay audience or experts) since we are modeling systems invisible to 
the naked eye and since we are using visual computing to represent and explore spe-
cifi c ideas about how cells work and how diseases begin with changes in cell function. 
Where necessary, we simplify the representations in order to communicate most 
eff ectively and, where appropriate, we take advantage of various representational 
strategies to make the images more intelligible. Interpretive visualization inhab-
its most of the upper left of our design-space, leaving a small area for empirically 
derived images. We don ’ t want to convey the impression, however, that  “ interpretive ”  
means that these visualizations are less rigorous. Across the frontier of in silico biol-
ogy, you can be involved with developing visualization models that fuel learning and 
innovation. 

 Th e organizational context of visualization will prove important in choices about 
the methods and approaches we will explore later in this book. We will now turn our 
attention to the organizational context of biology, which informs the very phenom-
ena we wish to represent.  

  Organizational hierarchy: Keys to biology in vivo
and in silico
 Any suffi  ciently detailed examination of the structure of living things reveals an 
astonishing hierarchy of organization (see  Figure 01.02   ). From the simplest amino acids 
upwards, nature builds on the underlying structure in fascinating ways. Understanding 
this organization is crucial to comprehending how living matter operates and how 
those operations can be represented and visualized using computers. Indeed, in  Chapter 
02  we will explain some of the analogies between the hierarchical nature of computa-
tion and the functional activity of living physiology. We will sketch here some of the 
more important components of this hierarchy; readers with a background in biology 
may safely skip this section. Readers new to some of these ideas may wish to comple-
ment this survey with further reading in an introductory college-level biology text, or 
in a popular explication such as David Goodsell ’ s  Th e Machinery of Life . Complete refer-
ences are listed in the  Further reading  section of the book. 

  Atoms and molecules 
 Atoms are the base units for our consideration of living structure. Th ese particles are 
the smallest unit which retain an element ’ s chemical properties. Th e chemical proper-
ties of atoms essentially defi ne whether they attract or repel other atoms and under 
what conditions. Molecules form when two or more atoms form an arrangment due 
to mutual chemical bonds.  

  Amino acids 
 Amino acids are the small molecules that are strung together, using instructions 
from our DNA, into proteins. As the building blocks of all proteins, they can be con-
sidered the base of organismal hierarchy ( Figure 01.02 ).  
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 FIGURE 01.02 

    A  " cast of characters "  
representative of selected levels of 
organismal hierarchy.    
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  Proteins 
 Proteins are an amazingly diverse group of biomolecules, all composed of long chains 
of amino acids folded into complex, and functional, three-dimensional ( 3D ) shapes. 
At this moment there are about 10,000 types of protein actively at work in your body: 
digesting your food (pepsin); carrying oxygen in your blood (hemoglobin); clearing 
a path through collagen for a migrating white blood cell (matrix metalloproteinase); 
self-assembling into cell-skeletons (actin, tubulin, and vimentin); transcribing DNA 
into RNA (RNA polymerase); and translating RNA into fresh proteins (the multi-
protein ribosome) to name just a few.  

  Molecular arrays: Protein societies 
 Proteins sometimes work on their own as single large molecules, as in the case of 
soluble enzymes. More often they are part of larger, multi-part structures like cell 
membranes. Many structural proteins, such as those involved in the cytoskeleton, 
self-assemble into long polymers, which further join together into networks provid-
ing deformability and structural resilience to cells. You ’ ll be seeing much more of one 
such protein, actin, as you work through this book. 

 Other proteins link together in pairs (forming dimers), trios (trimers), or in multi-
protein complexes (multimers). Some of these structures can be very elaborate, perform 
complex tasks, and exhibit strikingly machinelike behaviors. Some of these multimeric 
structures in turn make up larger structures, such as the organelles we see inside cells. 

 Th e bacterial fl agellum ( Figure 01.03   ), for instance, is composed of the molecular equiv-
alents of an engine, drive-shaft, bearings, and a propeller all made of protein mol-
ecules that, with the aid of other cellular components, assemble into a complex array. 
Th e result of this molecular assembly is a highly functional molecular machine that 
can operate at an astonishing 200–1,000        rpm, propelling the bacteria through its 
aqueous environment.  

  DNA 
 Although it doesn ’ t fi t neatly into our hierarchy, we should mention an essential (per-
haps  the  essential) molecule of life, which has its own unique structural hierarchy 
and a unique information storage capacity. DNA (deoxyribonucleic acid) is a long, 
polymeric nucleic acid which takes the form of two complementary strands arranged 
in a double-helix. Th e two strands are linked by the bases adenine (A), thymine 
(T), cytosine (C), and guanine (G). DNA is the foundation of the molecular basis of 
heredity: the sequence of base pairs (A,T,C,G) forms a long serial code organized into 
genes (discrete, protein encoding sequences), regulatory sequences, and regions of 
unknown function. Genes code for the sequence of amino acids in a protein molecule; 
the Human Genome Project has revealed that our cells contain about 25,000 genes. 
Genes are translated into messenger RNA, which is transcribed into proteins by a 
complex molecular machine called a ribosome.  

  The whole cell 
 At the level of the whole cell, various multi-molecular complexes—such as the those 
composing the cell ’ s structural framework, the cytoskeleton—are large enough to be vis-
ible to light microscopy. Th e cytoskeleton is composed of actin fi laments, intermediate 
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 FIGURE 01.03 

    Illustration of the molecular 
machinery comprising a bacterial 
fl agellum—an elegant example of 
multimeric protein organization. 
Scale bar � 10 nm.

Courtesy and © David Goodsell. Used 
with permission.    

fi laments, and microtubules, and plays an essential role in cell structure, motility, divi-
sion, and the transport of substances within the cell. 

 Th e cytoskeleton is a dynamic, hierarchical mesh ( Figure 01.04   ). It grows and shrinks, 
degrades and reassembles. Actin fi laments exemplify this activity and are vital to 
cell deformation and movement, as well as muscular contraction. Actin fi laments are 
0.7       nm thin polymers, made up of twinned helical, rope-like chains of F-actin. 

 A startling example of the dynamic nature of cell organization is mitosis, or cell 
division. In this act of cellular reproduction, many events have to carefully coordi-
nate, beginning with the duplication of the cell ’ s genetic material (so that there 
is enough for each of the daughter cells). Th e envelope surrounding the DNA (the 
nuclear membrane) dissolves and the duplicated DNA condenses into paired chro-
matids. Microtubules extend from anchor points within the cell to attach to the cen-
tral regions of the chromatids and then pull the newly minted chromosomes apart. 
Once the genetic material has been cleanly split, two nuclear envelopes can reform. 
A cleavage furrow, powered by actin and myosin (the same proteins that allow muscles 
to contract), forms around the center of the elongated cell and pinches the cell 
into two.  

  Tissues and organs 
 Some cells are lone actors, like the patrolling lymphocytes of the immune system, 
which migrate throughout our bodies looking for foreign invaders. Most cells, how-
ever, aggregate by the thousands or millions into tissues, whose composition and 
hierarchy serve some functional goal. 
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 For example, connective tissue is essential to the structural integrity of most mul-
ticellular organisms; it is a major component of cartilage and bones and underlies 
the structural resilience of many tissues and organs, such as skin. Connective tissue, 
which will form the basis for one of your Maya projects in this book ( Figure 01.05   ), is pri-
marily composed of long polymers of various types of the protein collagen. Collagen 
is deposited as structural meshes by various cell types in the body. 

 Engineered connective tissue scaff olds are an area of modern research. Currently, 
creating scaff olds optimized for particular research or therapeutic purposes is a 
time-consuming endeavor. In some of our research work we use computational mod-
els to experiment, in silico, with variously structured virtual scaff olds. Th is approach 
may one day speed the development of engineered tissues vital to future therapies in 
wound-healing, spinal injuries, and more.  

  Micro to macro 
 As we have seen, living matter is organized via a deep structural hierarchy: amino 
acids build proteins; proteins (often) build polymers; proteins and polymers build 
cells; cells and cell products (e.g. extracellular matrix) build tissues and organs; and 
tissues and organs build organisms. We ’ ve simplifi ed here, especially with respect to 
the many other cell components (fats, carbohydrates, micronutrients) that are neces-
sary inputs to, and products of, living physiology. But this hierarchy will be our guide; 
in  Part 3  of the book you will build computer models that represent biology at several 
of these key levels of structure: a single protein; a protein polymer; a single cell; a tis-
sue; and a cell population.   

 FIGURE 01.04 

    Still frame from an animation 
(created in Maya) demonstrating 

concepts of cytoskeleton dynamics 
as put forth by Harvard cell 

biologist Don Ingber. 
Scale bar � 1� m.

Courtesy and © 2004, Eddy Xuan.
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 FIGURE 01.05 

    The connective tissue scaffold you 
will build using Maya in Chapter 17 . 
Scale bar � 10 � m.

  Enter Maya 
 Even the most amazing idea for new ways of seeing the world is powerless without 
the tools and technical means of bringing the new vision into practical use. Th is 
book is not about all of computational biology or even about all the important ways 
cell biology is being visualized on computers. Th e science and art are already 
too vast (and our expertise too limited!) to cover all of that. Instead, this book is 
going to introduce you to a specifi c means of visual simulation—using modern 
high-end 3D animation software to accelerate development—via a specifi c tool: 
the Maya animation program. Having used many of the traditional alternatives 
( Figure 01.06   ) in our research and teaching during the past 30 years, we are convinced 
that this more recent approach and tool is an important addition to the visual com-
puting arsenal. Maya and the methods it supports are not panaceas and will not 
displace key special tools already in place (or yet to be invented). As a mediator of 
exploration and rapid hypothesis prototyping, however, Maya (and software like it) is 
powerful and accessible to fast deployment by users from either scientifi c or artistic 
backgrounds. 

 Maya is a general purpose modeling, animation, and rendering application with a 
sophisticated dynamics engine for simulating physical forces and collisions. Users 
can import or create geometry of varying types (polygonal and spline-based surfaces), 
arrange these objects in a virtual 3D world, and change their positions and deforma-
tions over time. Numerous tools are provided within a well-designed user interface ( UI ) 
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 FIGURE 01.06 

    In silico workfl ows: theoretical 
advantages in throughput of using 

advanced tools like Maya.    

to allow for the creation of sophisticated animations, from the articulation of synthetic 
characters for fi lm and television to the explosion of a dying cell. 

  Maya: A brief history 
 Maya was released commercially in 1998 by the CG software fi rm Alias|Wavefront 
( A|W  for short), which was headquartered in Toronto, Canada. As the top-tier anima-
tion and visual eff ects ( VFX ) package it was by no means the work of a single soft-
ware company in a single development eff ort. Maya incorporated the product lines 
of Toronto ’ s Alias Research (Alias for short), Wavefront Technologies (Wavefront for 
short) of Santa Barbara, and Th ompson Digital Images ( TDI ) of Paris, into a single 
package. Interestingly, each of the three contributing companies began developing 
commercial products in 1984, independent of one another. Between them they came 
to dominate the global markets in computer animation, special eff ects, and indus-
trial design ( ID ) software—markets that the three were in fact largely responsible for 
creating. 

 Wavefront was founded by Mark Sylvester, Larry Barels, and Bill Kovacs. During 
their fi rst year, under the production leadership of John Grower, Wavefront created 
some of the earliest CGI for television—notably, opening sequences for National 

              In 2003, Alias|Wavefront 
became Alias Systems 

Corporation. Then in 2006, 
the company was bought by 

Autodesk, makers of AutoCAD 
drafting software and 3Ds Max, 

another high-end 3D modeling 
and animation package. 

Autodesk continues to develop 
and market the Alias Systems 

product line: Studio Tools; 
SketchPad; MotionBuilder; and 

Maya.      
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Geographic Explorer, BRAVO, and Showtime. Th eir fi rst commercial software off er-
ing, called Preview, was adopted by NBC Television, game developer Electronic Arts, 
and NASA, among others. Subsequently, Wavefront branched into the ID and sci-
entifi c visualization fi elds with desktop software they co-developed with computer 
maker Silicon Graphics Inc. ( SGI ). Wavefront ’ s core 3D modeling, animation, and ren-
dering package for movies and television was called Th e Advanced Visualizer (TAV). 
In 1992 they released Dynamation, a sophisticated particle dynamics tool developed 
by Jim Hourihan. Hourihan wrote a scripting language called Sophia that allowed 
users to automate tasks in Dynamation with user-friendly computer code. Also 
in 1992, Wavefront released Kinemation with SmartSkin, a sophisticated inverse
kinematics ( IK ) package used for character rigging and animation. In 1993, Wavefront 
bought TDI for their modeling and rendering technologies. Th e combined team of 
Wavefront and TDI began working on a next-generation CGI package called Cyclone 
which would combine elements of TDI ’ s Explore and Wavefront ’ s TAV, Dynamation, 
and Kinemation. Th e project was short-lived, however: another corporate merger 
would bring more graphics technology into the mix in another next-generation 
package—Maya. 

 Alias Research was formed in 1984 by fi lm and animation enthusiast Stephen 
Bingham, programmer Susan McKenna, CG specialist Nigel McGrath, and artist/pro-
grammer David Springer. Th eir fi rst commercial off ering was a spline-based modeling 
and animation package called Alias/1 (we will explore the two cardinal surface 
modeling techniques—spline-based and polygonal—in  Chapter 05: Modeling geometry ). 
Th e Alias product line was used by TV post-production facilities for animation and 
motion graphics and in manufacturing for ID. One of the fi rst and longest-standing 
Alias customers was General Motors, which used Alias software to realize effi  ciencies 
in automotive design. Like rival company Wavefront, Alias worked closely with SGI 
on the implementation and distribution of their ID product line (this relationship 
would later be cemented in the merger of Alias and Wavefront under SGI). Th e 
advances in modeling and rendering embodied in the Alias ID software (now Autodesk 
StudioTools) have helped major manufacturers worldwide—BMW, Honda, Volvo, Ford, 
Apple, GE, Sony, Kraft, Motorola, and many others—design, previsualize, and show-
case their products, while reducing the time from concept to production. 

 Th e ingenuity that made Alias software so valuable to the manufacturing sector was 
also turning up opportunities in Hollywood. With Alias/2 (and later PowerAnimator), 
VFX artists were able to tackle problems that were previously unimaginable. In 1989, 
former Alias employee Steve Williams used Alias/2 at Industrial Light and Magic 
( ILM ) to create the  “ living water ”  creature eff ects in James Cameron ’ s  Th e Abyss . Th e 
movie won an Oscar for Best Visual Eff ects in 1990. Another Best Visual Eff ects 
Oscar followed in 1992 for James Cameron ’ s  Terminator 2: Judgment Day , recogniz-
ing the chromium villain VFX which Steve Williams created using PowerAnimator. 
Yet another Oscar acknowledging VFX created with PowerAnimator came in 1993 
for the dinosaurs in Steven Spielberg ’ s  Jurassic Park . PowerAnimator was both 
the state of the art and the industry standard for CGI in Hollywood, used by most 
major animation and VFX studios, including ILM, Pixar, Walt Disney, Sony Pictures 
Image Works, Dream Quest Images, and Warner Brothers. Later, the developers of 
PowerAnimator—John Gibson, Rob Krieger, Milan Novacek, Glen Ozymok, and Dave 
Springer—were recognized for technical achievement in the 1998 Academy Awards, 
as were Wavefront ’ s Bill Kovacs, Roy Hall, Jim Keating, Michael Warhman, and 
Richard Hollander for the development of Advance Visualizer. 

            For his role in creating 
Wavefront ' s Dynamation 
software Jim Hourihan received 
a Scientifi c and Engineering 
Award from the Academy 
of Motion Picture Arts and 
Sciences in 1996.      
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 Th e same year Jurassic Park dinosaurs caused a stir, Alias began work on their next-
generation animation software—code named Maya (a Sanskrit word referring to 
 “ the illusion or appearance of the phenomenal world ”  2 ). Originally conceived as an 
add-on animation module for PowerAnimator, Maya would soon become a platform 
for the leading technologies in surface modeling, animation, dynamics, and render-
ing. In 1995, SGI bought strategic partners Alias and Wavefront and merged them 
into a single company: Alias|Wavefront (the purchase included Wavefront-owned 
TDI and its Explore software). Rather than duplicate work in separate product lines, 
it was decided to combine the resources of the three development teams. Th ey were 
tasked with creating a single product, one that would incorporate the best of what 
PowerAnimator, TAV, Dynamation, Kinemation, and Explore had to off er, and con-
tinue to serve each of the original three customer groups. Th e new software took its 
core architecture—the Dependency Graph and Scene Hierarchy (which you ’ ll meet in 
 Chapter 04 )—and its name from the Alias Maya project, along with a fl edgling script-
ing architecture based on Tcl and used to build the UI and to run commands. Alias 
also contributed its extensive spline modeling code base to the software. Wavefront 
brought its dynamics and IK engines as well as the Sophia scripting language. Sophia 
replaced Tcl and was developed into MEL, the Maya Embedded Language (you ’ ll use 
MEL extensively throughout the projects in Part 3 of the book). TDI contributed its 
polygon modeling engine. 

 Maya 1 was released in 1998, three years after its development  offi  cially  began. It 
integrated the top CG advances to date and over a decade of R & D and industry expe-
rience spanning three companies and their clients. In its early days, due to its price 
tag, Maya was not widely accessible to CG artists. At a cost of about $50 K an install 
of several Maya seats represented a signifi cant investment for all but the largest stu-
dios. Its price eventually came down to the level of competitors SoftImage, 3D Studio 
Max, and Cinema 4D (among others), so that smaller studios and individuals could 
aff ord access to Maya ’ s capabilities. 

 Like its predecessors—PowerAnimator, TAV, Kinemation, and Dynamation—Maya 
dominated 3D computer animation and CGI in Hollywood and earned A|W an Oscar 
for Scientifi c and Technical Achievement in 2003. Since Maya evolved in the design 
and entertainment industries, it ’ s not surprising that a high priority has been placed 
on the visual quality of its output. Maya provides users with powerful control over 
simulated lights, cameras, and textures in order to control the appearance of the fi n-
ished renderings. Th ese are important qualities not just for the development of mov-
ies and games, but also for relating scientifi c concepts and visualizing data, where 
they are critical to making complex processes readily understood. 

 Beyond the obvious reasons related to visual sophistication, Maya ’ s continued popu-
larity among high-end visual eff ects companies grows from its fl exibility and open-
ness. Along with its scripting language, MEL, Maya has a well-documented API 
(Application Programming Interface) based in C �  �  for writing custom plug-ins—
software modules design to automate special, often repetitive, tasks. Maya ’ s unique 
node-based Dependency Graph architecture, along with its API and scripting capabil-
ities allows for its integration into custom workfl ows—where an animation studio ’ s 
 “ home-built ”  tools are mated with commercial software to create solutions specifi c to 
the needs of a particular project.  
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  Maya and interpretive visualization 
 In the book ’ s projects, you ’ ll use Maya to create visual interpretations of cell biol-
ogy data and phenomena. As molecular biologists and biochemist know, there exist 
many special-purpose tools for the representation and manipulation of computer-
simulated biological structures, especially at the molecular level. Th ese include 
excellent free software (freeware) applications. Popular molecule viewing applica-
tions like UCSF Chimera 3  and Jmol 4  make it easy to view biomolecules in a variety 
of representations, including ball-and-stick, ribbon, and solvent-accessible surface. 
Simulation software such as the NIH Visual Molecular Dynamics ( VMD ) 5  application 
enables users to model molecular interactions in small numbers using structure and 
reaction data. Th ese powerful tools were designed for specifi c tasks and users, and 
therefore don ’ t fulfi ll a complete range of visualization needs. For instance, camera, 
lighting, shading, and animation options are limited in even the most advanced mol-
ecule viewing applications, such as UCSF Chimera. However, through an integrated 
workfl ow with more sophisticated visual software packages like Maya, users can 
leverage the combined power of bioinformatics-driven modeling and advanced data 
visualization. 

 Moreover, the ease with which complex, dynamic systems of interacting objects can be 
built, animated and visualized in Maya make it an eff ective tool for the rapid  proto-
typing of molecular dynamics simulations like the one shown in  Figure 01.07    (we ’ ll touch 
on the history and conventions of molecular representation in  Chapter 14 ). 

 Biological visualization and simulation software must satisfy several requirements. 
First is the ability to import structure and interaction data directly from publicly 
accessible databases. Second is a physics engine that helps rapidly prototype critical 
events, such as diff usion and chemical reaction inside the cell. And third is a robust 
suite of visualization tools to allow the user complete control over how images are 
recorded and presented. Th is last point is especially important, whether the end goal 
is to demonstrate a biotechnology product or to identify a previously unknown event 
in a sequence of biochemical reactions. As you will see, Maya off ers diverse strengths 
in the context of these criteria.  

  MEL: Maya ’ s in silico language for interpretive visualization 
 Th e MEL language uses familiar programming conventions to allow control over vir-
tually every aspect of Maya ’ s operation, from its UI to model-making, from simple 
translational motion to complex dynamic behaviors ( Figure 01.08   ). At the heart of MEL, 
as with most programming languages, is math. It follows that just about any struc-
ture or process that can be described mathematically—from simple molecular dif-
fusion to a complex AI scenario—can be expressed using MEL. Th is means that, in 
addition to employing Maya ’ s built-in physics capabilities, you can program the rules 
of cell activity relevant to a specifi c project, in essence writing your own in silico biol-
ogy engine. Parameters and equations then can be adjusted to test hypotheses or 
to make predictions in silico in advance of expensive, time-consuming real-world 
experimental work. 

 Th ere are two important features that separate Maya from other mathematics-based 
research tools such as MATLAB and Mathematica. First is its facility for physical 
modeling, whereby surfaces and structures of non-trivial complexity can be created 

            For more information on 
biomolecular visualization 
history and resources, please 
refer to the   Further  reading
section that begins on page 585.      
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60Å

 FIGURE 01.07 

    Maya provides a robust, 
programmable environment in 
which to prototype molecular 

structures and events. Shown here 
is a still from one of our Maya-based 
simulations of the dynamics of actin 

protein assembly. Width of one actin 
monomer � 60       Å.  

 FIGURE 01.08 

    A simple program, or script, written 
in MEL, populates a scene with the 

objects on the right.    

in 4D space (3D-space plus time), with a sophisticated UI for interactive exploration, 
a task that is not yet possible with strictly numerical, non-visual software. Second is 
Maya ’ s visual fl exibility in producing striking 4D visual representations of the under-
lying functions at work in a simulation. Th is is signifi cant both for investigators and 
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those with whom they must communicate, since it allows researchers to tailor the 
representation to best communicate their work. Th e MEL-based simulation environ-
ment can satisfy both this visual, or qualitative, requirement and the need for hard, 
quantitative data.   

  Endless possibilities 
 Th e scientifi c study of the living cell brings countless opportunities to apply com-
puting and visualization to crucial problems, to map the cell ’ s molecular world, and 
develop new treatments for disease. Th ere is now so much data on how cells work, 
and so many possible paths to understanding, that only computers and mathematics, 
aided by the human brain ’ s incredible ability to see, can tame the complexity. Today, 
the cutting edge is the adventurous, eff ective use of the latest high-end tools for dig-
ital graphics and animation programming, as top-tier aids to achieving these goals. 
In just a few short years, visual computing has become an indispensable engine of 
discovery in cell biology. In order to get the most out of our time with Maya and MEL, 
let us therefore take a closer look at the nature of computing and of animation to see 
why tools like Maya are making such an impact.  
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  Introduction           
 Terms like  “ bioinformatics ”  and  “ computational biology, ”  which we met in  Chapter 01 , 
sound impressive. But what is a computer and what does one mean by computation? For 
that matter, why should either matter to the scientifi c study of cells, organisms, and 
the diseases affl  icting them? Since this book is a meeting place for readers from many 
backgrounds, where science and the visual arts come together on common frontiers, 
we would be remiss in overlooking such questions before plunging into the details of 
Maya, MEL, and biological simulation. 

 In this chapter we are going to give you some additional background and context for 
the many things you ’ ll learn about Maya and MEL as you work through the book. We 
hope this will not only increase your enjoyment of the technical material, but will 
strengthen your ability to apply what you will learn in exciting new ways. Inventions 
like Maya and MEL are high impact breakthroughs not just because brilliant people 
created them. Th ey also have the good fortune of appearing at the right time and right 
place in human history. Th erefore, appreciating historic trends in computer technol-
ogy, computer programming, and 3D computer animation can enhance our grasp of 
Maya and MEL. You won ’ t uncover any secrets of Maya programming in what follows. 
If you are eager to press ahead into MEL coding, you can skip to the next chapter and 
return here when you want to explore some of the context of in silico biology via MEL 
and Maya. 

 Th is context is sending ripples through the life sciences, and the waves of change are 
spreading far past debates about numerical methods best suited to crunch biological 
data. As we write these words, research biologists are mapping the molecular logic 
that drives living matter ’ s structure and function. How is this previously hidden logic 
to be decoded, understood, and applied? It turns out that ideas invented by computer 
engineers to help build the 20th century ’ s information processing machines—ideas 
about codes, algorithms, procedures, and so on—are revolutionizing the way biolo-
gists think about the origins and operation of living systems. And, remarkably, the 
discoveries biologists are making about how cells operate and communicate are, in 
turn, giving computer scientists ideas for radical new computers with unprecedented 
capabilities, based on principles of information processing in living matter. Later on 
in the chapter we ’ ll take a brief look at these exciting trends, in which computer engi-
neering is shaping biology and vice versa, and where they might be heading. 

 Our approach will be an historical quick start, moving rapidly from crucial ideas to 
the discoveries of a few major pioneers. We must, yielding to considerations of space 
in the book, omit mention of many infl uential people and milestones on the path to 
modern computation. Th e absence of a specifi c person, invention, or acronym from 
our short account in no way implies a belief they lack historical relevance: quite the 
opposite. What follows is a tightly focused sampler, meant to ground the specialized 
discussion of our later chapters. Hopefully it will also whet your interest to delve 
more deeply into the people and inventions that took us from the abaci and meas-
uring rods of yesteryear to the supercomputers of today. Th e readings at the end of 
this chapter and in Further reading section will take you further in your historical 
explorations.  

  Information and process 
 By a computer we mean a machine that transforms patterns of information into 
other patterns of information by following a strictly defi ned procedure or algorithm. 
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Computable procedures are those we can write down in suffi  cient detail for their cor-
rect, automatic execution and completion by a non-conscious device. Computers are 
remarkable artifacts because, when supplied with power, they are capable of going 
through a sequence of changes in their physical state that is equivalent to going 
through the steps of an algorithm. 

 In the mechanical computers of the early 1900s the state was a particular confi gura-
tion of the machine ’ s rods, cams, and gears. As the gears turned, the computer state 
changed and input was transformed into output. Calculating a diff erent algorithm 
meant changing the mechanical connections holding the machine together—literally 
rebuilding the device. With the arrival of digital electronic circuits, the physical 
state could be much more ductile patterns of electric charge in vacuum tubes or of 
magnetization in solid state circuit chips. Th e early mechanical computers had to be 
built with specifi c types of problems, like ballistic trajectory prediction, in mind. In 
the electronic computing machines, changing algorithms was as easy as changing to 
another magnetic pattern, and thus by comparison hugely versatile. 

 Since computers are machines, they must obey the laws of physics. Th e digital elec-
tronic computer must be built so the fl ow of electricity through its circuits (its hard-
ware) can change a stored digital pattern in a manner equivalent to the operations of 
logic, arithmetic, and storage/retrieval on the information represented by the pat-
tern (the software). For example, if addition takes place, a part of the machine must, 
at just the right moment, move into a physical state capable of triggering the appear-
ance of the digital pattern for the sum in the computer ’ s circuits. We say the instruc-
tion for addition has been carried out. It does so by setting in motion the electrical 
events for the sum operation in the hardware. For traditional binary digital comput-
ers, the instruction would be written as a string of 1s and 0s, each numeral specifying 
the active (1) or inactive (0) state of a digital element in the instruction-sensing circuit 
(called a register in certain hardware designs, see below). Th e set of instructions recog-
nized by the digital hardware is the machine language of the computer.  

  Language and program 
 Once coded into the instruction language of its machine hardware, the procedure fol-
lowed by the computer is called the (computer) program. People who write programs 
are called computer programmers. Programmers of the earliest electronic computers 
had no option to coding in machine language—a time consuming, error-prone, tedi-
ous practice that immediately motivated the development of more human-friendly 
instruction sets or programming languages. To see the burdens of a workfl ow based 
on coding in machine language, consider this instance of an (entirely hypothetical) 
computer in which three binary digits are used to distinguish among the instructions, 
and digital memory locations are allocated as bytes, or sequences of eight binary dig-
its. Our hypothetical machine therefore has a memory capable of holding 28  �  256 
numbers, a capacity not out of keeping with the earliest digital machines. Again hypo-
thetically, we ’ ll suppose that setting the binary string 101 in the instruction register 
triggers the addition operation, placing the results in a temporary storage location (an 
arithmetic register) of the circuitry. Once loaded in the instruction register, the string 
011 triggers another sequence of changes in the electrical state of the machine, which 
end with the contents of the arithmetic register copied to a specifi ed location in the 
computer ’ s memory and the arithmetic register cleared to zero for the next time it is 
needed. 
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 FIGURE 02.01 

    Instruction code for the EDSAC 
computer at University of Cambridge, 
from Maurice Wilkes '  1949 program1

to solve Airy ' s differential equation 
d2 y/dx 2 �  xy.   The equation describes 
rainbows and other electromagnetic 

wave phenomena in the atmosphere. 
The Wilkes program is one of 

the earliest science calculations 
(perhaps the very fi rst) to run on 

the EDSAC or any other stored 
program digital electronic computer. 

The program instructions are the 
letter–number–letter combinations 

in the center of the drawing. The 
corresponding section of the paper 
tape is at the right. Programs were 

input to the EDSAC through its paper 
tape reader. Maurice Wilkes lead 

EDSAC ' s development at Cambridge 
and would soon co-author the 

world ' s fi rst computer programming 
textbook.2

Illustration by and courtesy of Martin 
Campbell-Kelly. Copyright ©1992 IEEE. 

Used with permission. 1

            One of the fi rst instruction sets 
to use mnemonics is Betty 
Holberton ’ s C-10 language 

(1949) for the BINAC (and later 
UNIVAC) computer.      

 At the start of our addition sequence we (somehow) know that the numbers to add 
are stored in the memory locations 10011001 and 01100011. Note that these are the 
locations of the numbers, not the values of the numbers stored there. We have also 
(somehow) determined that their sum is best stored at memory location 01111100. 
Our machine language code for the addition is then expressed by the binary string: 

 1011001100101100011 
 (i.e. instruction 101 acting on the values at locations 10011001 and 01100011) 

 followed by the string 

 0110111110000000000 
 (i.e. instruction 011 acting to move the arithmetic register contents to location 
01111100) 

 Imagine having to code an entire video game or a complex ecological simulation this 
way! With the benefi t of a half century ’ s hindsight in software history, we can see 
ways to ease the programmer ’ s task. For example, we might write a machine language 
program that can accept alphabetic acronyms or mnemonics for the machine code 
instructions as input, along with some white space between the address bytes, then 
output the packed binary strings for processing by the hardware. Aided by such a lan-
guage processor, our code snippet already looks better: 

 ADD 10011001 01100011 
 (which our language processor outputs as 1011001100101100011) 
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 MV 01111100 
(output as 0110111110000000000 by the language processor)

 Suppose we next enhance our language processor with the capacity use a symbol 
table, in which we tell it that certain alphanumeric character strings stand for certain 
memory location bytes (call the command for that DFL, or defi ne memory location); 
we can then write: 

 DFL X 10011001 

 DFL Y 01100011 

 DFL Z 01111100 

 ADD X Y 

 MV Z 

 which looks even better. If the language processor is made smart enough to build the 
symbol table on its own, then we are relieved of the duty to fi gure out all the mem-
ory allocations manually, ahead of time. Now the machine can do that automatically, 
once the program in input. All we need write is: 

 ADD X Y 

 MV Z 

 and let the language processor take over. Language processors with this type of 
capacity for acronym substitution are known as assemblers, and the languages often 
referred to as assembly languages.  

 FIGURE 02.02 

    User interface of Professor 
Campbell-Kelly ' s EDSAC simulator, a 
PC program that lets you experience 
what it was like to code and run 
programs on a fi rst-generation 
von Neumann machine 3 . See  
http://edsac.net  for documentation 
and downloads. The circular display 
at the top left visualizes the contents 
of the EDSAC memory. Registers 
involved in processing instructions 
and arithmetic operations are 
below. The tic-tac-toe pattern 
visible on the memory tube is no 
accident. While a Ph.D. student at 
University of Cambridge, Alexander S
  " Sandy "  Douglas wrote one of 
the earliest computer games—an 
EDSAC program that played tic-tac-
toe and used the memory tube to 
visualize the game state as a 35 �
16 element bitmap. 

Courtesy Martin Campbell-Kelly.    

            The Initial Orders program, 
developed c. 1948–1951 by David 
Wheeler, Maurice Wilkes, and 
Stanley Gill to process user input 
to the EDSAC computer ( Figure 
02.01 ), was an early assembler. 
Running the Initial Orders also 
bootstrapped the machine and 
loaded the assembled user code 
into memory.      
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  High and low 
 Although assemblers mark a big step toward a more human-friendly programming 
language ( Figure 02.03   ), some important limitations are evident. For example, every 
time we need to carry out a multi-step mathematical or logical operation we must 
code in the lines for the sequence. It would be helpful to have libraries of often-used 
instruction sequences, say for sorting lists or evaluating common mathematical func-
tions such as the logarithm or the cosine, and to be able to refer to these sequences by 
an acronym code (a macro). Th e assembler would then recognize the code, extract the 
machine instruction sequence (the subroutine) from the program library, and drop it 
into place in the binary instruction sequence. Modern assemblers make extensive use 
of macros and subroutine libraries. 

You can see, however, that despite such facilities there lingers a rather direct relation-
ship between the arrangement of the coding statements in our assembly program and 
the sequence in which the machine hardware carries out its digital operations. Along 
with their syntactic elegance and their semantic concision, assemblers acknowledge the 
strictures of machine code. Users of computers, however, generally care about the logi-
cal structure of the problems they want to solve, and not as much about the inner work-
ings of the computer ’ s circuits. Users want high-level programming languages, whose 
elements and operations target their problem-solving needs. Other, automatic pro-
grams could then translate code written in a high-level language into the low-level lan-
guage: the assembly code, or the machine code instructions of the computer ’ s hardware.

 FIGURE 02.03 

    With the 1960s came minicomputers, 
smaller and more affordable by 

far than the mainframes. Sold by 
the tens of thousands, they helped 

popularize assembly language 
programming and ignited progress 

in computer networks and graphics. 
Shown here is one of the most 
famous, the diminutive PDP-8 

introduced in 1965 by the Digital 
Equipment Corportation ( " DEC " ) of 
Maynard, Massachusetts. With a 

core memory of 4K–32K 
12-bit words, an entry price under 

$20K (i.e. under $100K in 2006 
dollars), assembler and compilers, 

the mass-produced PDP-8 was a 
runaway success. In this photo 

Khym, a domestic short-hair 
feline who resides with PDP-8 

archivist-collector David Gesswein 
( http://www.pdp8online.com ), 

helps us see just how compact a 
PDP-8 is (compare the mainframe 
setups in Figures 02.05 and 02.08). 

The DEC VR14 graphics monitor 
beneath Khym is driven by the 

minicomputer—here a PDP-8/I—via 
the multi-purpose AX08 Laboratory 

Peripheral interface unit, just above 
left. The VR14 rendered graphics 
on its display screen as patterns 

of discrete spots of variable 
brightness. On the 8/I ’ s front panel 
run the rows of activity lights and 

rocker switches (a hallmark of 
PDP-8 design) used to set register 
and memory contents and control 

machine activity. Arriving three 
years after the original PDP-8, the 

8/I was the fi rst in the series to 
use integrated circuits in place of 

discrete transistors. 

Photograph by, courtesy of, and 
copyright © 2007, David Gesswein, The 
Online PDP-8 Home Page,  http://www.

pdp8online.com     
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 For example, many of the earliest users of computers were scientists and engineers 
whose problems demanded a lot of algebra and formula manipulation. If instead of: 

 ADD X Y 

 MV Z 

 we can instead input the code line: 

 Z  �  X  �  Y 

 for the formula itself, we are programming the computer in a language that more 
directly expresses our mathematical problem. Moreover, if X, Y, and Z are not simple
integers but more involved mathematical entities like complex numbers or arrays, the 
required sequence of machine language instructions—to work out the sum of two 
complex numbers or two arrays—could be quite lengthy indeed. Th ese long sequences 
in machine language are  “ summed up ”  by the elegant statement Z  �  X  �  Y in our 
high-level programming language. MEL, the programming language of Maya, is a very 
high-level language. MEL of course enables you to instruct Maya in algebraic opera-
tions. But with MEL you can also invoke and operate on a diversity of elements spe-
cifi c to the needs of 3D computer graphics and animation. With a few keystrokes you 
can create virtual movie cameras and set their simulated optical properties, place and 
activate simulated lights and set their spectral characteristics, generate 3D shapes 
and move them in complicated ways, and so on. For example, the little command: 

 sphere –radius 5 –name  " Cell " ; 

 causes a 3D sphere labeled Cell, of radius 5, to appear in your Maya world space at the 
origin. Behind the scenes, the MEL language processor embedded in Maya translates 
the sphere instruction and carries it out in your computer ’ s machine language.  

  Interpret or compile? 
 Th e designer of high-level programming languages must deal with two linked issues. 
Th e fi rst is the structure of the language itself: the problem-solving elements and 
operations it will allow (such as addition of arrays or the creation of 3D spheres), the 
rules by which such operations are expressed and combined, and the way in which 
control of the computer circuits is passed among the various parts of the program 
code. Much of our book deals with the principles of MEL language structure and their 
use in designing eff ective MEL programs. 

 Th e second issue confronting language designers is the manner in which programs writ-
ten according to the language ’ s rules will be processed and executed by the hardware. 
Today ’ s high-level language processors usually work in one of two ways (or some mod-
ern hybrid of them). Both date from the earliest days of digital electronic computing: 

   1.     Th e high-level code acts as instructions to a  “ virtual computer ”  running as a 
real-time simulation on the computer ’ s hardware. Th e high-level instructions are 
thereby executed right away. Th e virtual computer, coded in machine language or 
assembly (or, today, even in another high-level language), drives the hardware to 
produce results consistent with the meaning of your program code. Such language 
processors are known as  interpreters . Maya ’ s language processor for MEL runs as 
an interpreter, giving you real-time access to the execution of MEL commands and 
MEL code fi les. Th e MEL interpreter is very effi  cient and you will be able to watch 
it operate and work with it in rapid-fi re cycles of coding and code testing.  

            Early interpreters of interest 
to scientists and applied 
mathematicians included R. A. 
Brooker ' s FLOATCODE (1952) 
for the Ferranti Mark I computer 
at Manchester University in 
England, the Laning-Zierler 
algebraic formula interpreter 
(1953) for MIT ' s Whirlwind 
computer, and John Backus '  
Speedcoding (1953) for the IBM 
701 mainframe.      
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  2.     Th e high-level code is submitted as data to a language processor that translates 
the high-level instructions into machine language. Th e machine language version 
of the program is then placed on the hardware to execute. Language processors 
that operate this way are called compilers. Maya itself runs in your computer as 
a program compiled into machine code.   

 To get the most out of MEL and Maya it is important to grasp the basic distinction 
between interpreters and compilers. Although both types of language processor 
accept high-level program code as input, their output is diff erent. Th e output of an 
interpreter is the results of the executed program, e.g. data. Th e output of a compiler 
is another computer program, ready for execution (and data output) on the same or 
diff erent hardware. 

Modern compilers operate in several steps, in which the high-level code is trans-
lated into effi  ciently organized assembly language, required auxiliary programs are 
brought in from subroutine libraries, symbol tables are constructed, and the fi nal 
executable machine language fi le is prepared to receive control of the computer hard-
ware. Actually, current vernacular tends to limit use of the term compiler to the 
actions of the fi rst of a series of programs that lead from your fi le of high-level code 
to its binary machine code version running on the hardware. Compilers massage the 
program into assembly language (or an equivalent) and hand off  the tasks of library 
fetching, address resolution, and so on to partner programs with names like linkers 
and linkage editors. Th e fi nal result is an executable program ready to go, and for sim-
plicity we ’ ll use compile to refer to the whole pipeline.

 As of this writing, we are aware of no compilers for the MEL language per se. Projects 
needing to blend the advantages of Maya ’ s real-time user interface with the poten-
tial effi  ciencies of compiled execution can transition from an all-MEL workfl ow to 
Maya ’ s C ��  application programming interface (API). Th is API lets you steer Maya 
with compiled C ��  code. We look forward to exploring this API ’ s uses in biomedical 
science in a future book.  

 The Backus watershed 
A common misunderstanding is that the coding rules of a high-level language (its 
grammar and syntax) determine whether the language will be a compiled language 
or an interpreted language. Th is is not the case. BASIC, for example, was fi rst imple-
mented as a compiled language but, with the rise of Microsoft, gained fame as a user-
friendly interpreted language. True, some languages, like Fortran, are designed with 
highly effi  cient compilation in mind, and others (like JavaScript) with interpretation, 
but in today ’ s world of fast, big capacity hardware the selection of a compiled or an 
interpreted language implementation tends to be driven by the vendor ’ s understand-
ing of user needs. Interpreters, for example, aff ord right-away execution and are 
thus well tailored to quick prototyping in real-time interaction between the user, the 
hardware, and the program results. On the downside, an interpreter ’ s  “ virtual com-
puter ”  emulation runs as code on top of the real machine ’ s hardware, and so typi-
cally execute programs less quickly than the hardware will execute a well compiled 
version of the same program. Compilation, however, separates the user from the pro-
gram results by a sequence of (potentially time-consuming) steps in which the high-
level code is transformed into machine code, run, errors spotted, fi xes made, the code 
re-compiled, and so on around the shakedown loop of program design.

             Early language processors 
with recognizable attributes of 

modern compiler pipelines were 
A-0 from Grace Hopper ' s team 
for the UNIVAC 1 (1952–1953), 

Alick Glennie ' s AUTOCODE 
(1952) for the Ferranti Mark I at 

Manchester, and the Transcode 
(1954) of J. Patterson Hume and 
Beatrice Worsley for the Mark I 

(the  " FERUT "  ) at the University of 
Toronto, Canada.      

             BASIC was developed as 
a novice-friendly computer 

language under the direction 
of John Kemeny and Thomas 

Kurtz at Dartmouth College 
in 1964.      
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 Th e  “ virtual computer ”  running inside an interpreter also can incorporate handy 
instructions and processing abilities absent in the machine hardware. Th is can ease 
the programmer ’ s task. Early digital electronic computers did integer arithmetic fast 
and well, as they did juggling fractions between  � 1 and  � 1. Hardware circuitry for 
general fl oating-point calculations and array index management, however, was not 
marketed until the mid-1950s. Before that, number crunchers were obliged to fi gure 
out how their problems could be scaled into the integer and fraction-arithmetic range 
of the machine. Alternatively, they could run their problems on machines in which 
fl oating-point math and array handling were carried in software. By the early 1950s, 
time in fl oating-point subroutines accounted for a substantial fraction of processor 
time, to which interpreters added little additional overhead. Th ese interpreters could 
emulate computers with fl oating point and array index management right in their 
instruction language. With the arrival of fl oating point and array index hardware this 
edge, enjoyed for several years by programming language interpreters, was lost. 

Nonetheless, professional programmers of the time remained skeptical about compilers. 
It seemed unlikely that a computer program, running as a compiler, could take high-
level program code and transform it into machine code as effi  cient and reliable as the 
low-level code written by human specialists—let alone do this job quickly and automati-
cally, across the general range of computer programming applications. Th e doubts, while 
understandable, soon disappeared. Th e breakthrough was instigated by John Backus 
( Figure 02.04   ) and his team at IBM. It took the form of an amazing compiler for their 

 FIGURE 02.04 

    John Backus, lead inventor of the 
Fortran programming language, 
pauses for a photograph in 1997, 40 
years after Fortran ' s offi cial release 
in 1957. Before the ascension of 
the C ��  language Fortran ' s easy 
learning curve, scientist-friendly 
syntax, and fast compiled code kept 
it unrivaled as the prime choice for 
high performance number crunching 
on digital computers. Photograph by 
Louis Fabian Bachrach III. 

Louis Fabian Bachrach  © .    

            We have heard it said, by 
die-hard scientifi c number 
crunchers, that all of 
programming language history 
since Backus is a series of 
footnotes to Fortran and its 
compiler. We would not go quite 
this far ourselves.      
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             John von Neumann, b. 
Hungary 1903—d. USA 1957. 

Mathematician/chemical 
engineer celebrated for his 

fundamental work in diverse 
areas of mathematics and 

science, including logic and the 
foundations of mathematics, 

quantum physics, game theory, 
mathematical economics, 

computer design, and automata 
theory.      

 FIGURE 02.05 

    The IBM 7094, one of the early 
transistorized mainframes, 

was a workhorse of the batch 
processing environments available 

to scientists and engineers in the 
1960s. Introduced by IBM in 1962, 

the 7094 carried 32K of 36-bit word 
core memory and double-precision 

(72-bit) fl oating-point arithmetic 
hardware. About three million 

1960s-era US dollars (roughly $50 
million today) would buy you a 7094 

setup (not counting the system 
operators and the  " glass room "  

environment needed to house it). 
Or if you could spare $60K or so 

a month, there was a rental plan. 
IBM documented a basic cycle 

time of two microseconds for the 
7094s operation. Here: the 7094-
II operating at the University of 

Toronto (mid-1960s).

Calvin Gotlieb Personal Records 
B2002–0003/001P(21), courtesy of the 

University of Toronto Archives and 
Records Management Services.    

Fortran language specifi cation (1954–1957). Th rough a series of ingenious optimizing 
steps, the Backus compiler for Fortran systematically output executable low-level code 
that closely matched, or even exceeded, what expert programmers could write by hand.

A consequence was the temporary eclipse of interpreters as an effi  cient medium for 
processing higher-level programming languages. With compilers, there was no  “ hit ”  
from the overhead of the interpreter running the program. Jobs could be compiled 
and fed through the bulky mainframes of the time in large batches, which kept the 
pricey hardware well occupied ( Figure 02.05   ). Users cooled their heels till the batch 
holding their compiled job was fi nally done. Th e speed and capacity of today ’ s desktop 
computers, however, have again made interpreters a strategic option, especially in sit-
uations where, as noted above, rapid prototyping is carried out in real-time settings. 
Now most users in the sciences and the arts work with high-level languages for which 
effi  cient interpreters and/or compilers are available; problem coding in low-level lan-
guages like assembly and machine instruction sets has become a specialized skill for 
crucial niche applications like hardware device drivers. We have carefully designed 
the coding projects you will undertake in this book, to give you MEL programs that 
generate interesting results in reasonable time on mid-range desktop computers. We 
hope you will enjoy the brisk pace of MEL and Maya mastery this approach supports.

  Stored programs 
 We have said that a computer is an algorithm-guided machine for transforming 
information. As most of us encounter it, however, the computer is not just any 
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            When von Neumann fi rst met 
them in Summer 1944, Eckert 
and Mauchly were leading the 
ENIAC computer project at the 
University of Pennsylvania ’ s 
Moore School of Electrical 
Engineering. A giant of its time, 
ENIAC sported as many as 
17,000 vacuum tubes and 1,500 
electromechanical relays in its 
circuitry. Eckert and Mauchly 
would go on to develop the 
UNIVAC line of commercial 
mainframe computers. von 
Neumann was retained for a 
time by IBM to advise on its 
early ventures in electronic 
computing.      

Gears and cams

Analog circuit

Plug board

Electromechanical
relay

CU

APU

I/O

RAM

CU Control logic unit

APU Arithmetic
processing unit

RAM Random access 
memory

I/O Input/output
 FIGURE 02.06 

    The von Neumann machine and 
some immediate ancestors.    

old information-wrangling digital electronic machine. It is a device of a very spe-
cifi c kind, often called a von Neumann machine ( Figure 02.06   ) in honor of John von 
Neumann ( Figure 02.07   ), the mathematical genius whose writings launched computer 
engineering as a formal discipline grounded in the logic and mathematics of informa-
tion processing circuitry. 

 von Neumann certainly did not stand alone in the 1940s rush of breakthroughs, 
which began the era of modern computing. A revolutionary new architecture for 
computer hardware design was  “ in the air. ”  Far-ranging discussions involved 
von Neumann with other leaders of computer design and construction, such as 
J. Presper Eckert, John W. Mauchly, Herman Goldstine, and Arthur Burks. However, 
von Neumann ’ s noted passion for writing things up combined with his prodigious 
insights in a set of documents, authored between 1945 and 1948, which amount to 
the fi rst detailed plans for digital computer operation in recognizably modern form. 

Untill the mid-1940s, machines capable of transforming information, and so calcu-
lating answers to scientifi c and engineering problems of the era, took many shapes 
as engineers debated the technology best suited to replace the  “ state of the art ”  (i.e., 
legions of error-prone humans cranking out numbers with the aid of pencil, paper, 
slide rules, logarithm tables, and adding machines). Ingenious arithmetical contrap-
tions of diverse forms—those whirling collections of gears and cams we met ear-
lier, nets of analog circuit boards, clacking banks of electric relays, simmering racks 
of vacuum tubes—took a turn in the limelight. Th ese were the worthy ancestors of 
today ’ s digital computers.
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Some of these calculating engines already could run programs of sequential instruc-
tions. Th ese programs, however, typically resided outside the machine, coded as 
binary patterns of holes punched on paper tape or cards, or hard-wired into their 
circuitry. Th e program outside was read slowly into the machine, hole-by-hole, to 
guide the calculation from beginning to end—a sensible strategy so long as the hard-
ware ’ s speed of instruction processing did not tower over the speed at which instruc-
tions could be fed in. By the 1940s, vacuum tube switching elements (transistors 
and chips lay years in the future) could run instructions many times faster than 
punch cards or paper tape could input them. Th e digital electronic processors were 
hamstrung, so long as the computer program lay coiled up on a paper tape clunking 
through an external reader. Th e solution, so obvious in hindsight, was to store the 
complete program in the computer ’ s circuits before starting the calculation. Program 
instructions could then run as fast as the machine hardware allowed. No more pro-
gram bottleneck.

 In the computing architecture named in von Neumann ’ s honor, program and data sit 
together in high-speed memory. It is the computer as stored program machine. From 
the computer hardware ’ s point of view, both the program and the data processed 
are forms of input information, and thus endowed with a strong family affi  nities. In 
the von Neumann architecture, electronic pulses from the fast-access memory feed 
program instructions to a hardware region, or logic/control unit, designed to trigger 
the calculation steps done on numbers in the arithmetic unit, into and out of which 
data whips from the fast-access storage locations in the memory ( Figure 02.06 ). Arrays 

 FIGURE 02.07 

    John von Neumann with the IAS 
computer at Princeton ' s Institute for 
Advanced Study. Computer historian 

William Aspray dates the picture 
to 1952, perhaps at the machine ' s 
offi cial dedication. The cylinders 
running across the bottom front 
of the machine are electrostatic 

storage tubes, based on a design 
by FC Williams of Manchester 
University. They made up the 

machine ' s fast-access memory. 
Early fi rst-generation computers 

adopting the IAS design had colorful 
acronymal names like ILLIAC, 

ORDVAC, MANIAC and JOHNNIAC. 
IBM also learned from the IAS 

in designing its System 701, the 
company ' s fi rst all-electronic stored 

program digital computer.

Photograph by Alan Richards, courtesy 
of the Archives of the Institute for 

Advanced Study.    

             Offi cially dedicated in mid-1952 
but in practical use since Spring 

1951, the IAS machine ( Figure
02.07 ) relied on some 3,000 

vacuum tubes and weighed 
half a ton. The arithmetic unit 
could achieve around 30,000 

addition operations and 1,600 
division operations per second. 

The IAS was not the fi rst 
digital all-electronic computer 

to successfully run a stored 
program. Computer history 

allocates that honor to machines 
built in England: the Manchester 

Small-Scale Experimental 
Machine (the SSEM) and 

Cambridge University ' s EDSAC 
(Figure 02.08   ). SSEM ran its fi rst 

stored program in mid-1948, 
EDSAC by mid-1949.      
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 FIGURE 02.08 

    The University of Cambridge 
Mathematical Laboratory housed 
the original EDSAC, now regarded 
as the fi rst all-electronic stored 
program digital computer to run 
application software on a regular 
basis. The imposing vacuum tube 
frames, clearly visible in foreground 
of the shot, implemented the 
system ' s arithmetic and control 
logic circuits. Memory capacity 
was 1,024 words of 17 bits, stored 
as vibrational patterns in liquid 
mercury. The operator ' s console, 
with three of the display tubes 
for inspecting the memory state 
(compare Figure 02.02), can be seen 
in the back right.

Copyright the Computer Laboratory, 
University of Cambridge. Reproduced 
by permission under Creative Commons 
License per  http://creativecommons.
org/licenses/by/2.0/uk/legalcode     

of slower storage units, culminating ultimately in the input and output units we 
humans need to make sense of the digital events, keep the fast core fully primed. Th e 
IAS machine, the stored program computer built by von Neumann and his team at 
Princeton ’ s Institute for Advanced Study to realize these ideas, became the template 
for many research and commercial designs. Serious use of analog computers would 
continue for at least two decades more, and the merits of radically diff erent hardware 
architectures continue to be explored, especially for problems (like artifi cial intel-
ligence) well suited to massively parallel manipulation of data. But the computer 
most of us sit in front of each day is a direct descendant of the IAS architecture and 
von Neumann ’ s reports. To the extent that our global civilization is a postindustrial 
information economy, the engine of postindustrial commerce and innovation is the 
von Neumann machine.  

  Conditional control 
 Th e circuits of EDSAC and its kin could be wired up to perform the basic steps of 
arithmetic and of switching logic such as  “ AND ”  and  “ NOT. ”  By sequencing these 
logical atoms adroitly, the power of the stored program would be limited only by the 
expressive power of logic and arithmetic itself. About a decade before these break-
throughs in computer engineering, the British mathematician Alan Turing had pro-
posed that all computable information patterns could be generated as the output of 
elementary operations such as these, provided the operations were carried out in 
the right sequence. Turing showed the existence, in the form of a theoretical math-
ematical concept, of a computing machine (now called a Turing machine) capable 
of carrying out the task with the aid of a suitable program code. Stored program 

             Alan Turing, b. England 1912—d. 
England 1954. British logician 
and mathematician celebrated 
for his contributions to the 
formal theory of computation and 
the foundations of mathematical 
biology. Like von Neumann, 
Turing died far too young.      
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machines like the EDSAC were a practical realization of Turing ’ s abstract  “ universal 
machine ”  .

von Neumann and his colleagues realized that eff ective use of a stored program com-
puter requires a well designed machine language: some arrangements of program-
ming instructions are better than others. Th e program commands should allow exact 
but fl exible routing of the hardware operations through the problem-solving task. 
Th e programming language should allow the program to branch between alternative 
pathways if certain conditions arise in the algorithm, and to jump or loop through 
sets of instructions when cyclic progressions are needed in the data processing or 
data array manipulation ( Figure 02.09   ).

 Computer languages since EDSAC embody this vision of conditional control. Th ey 
allow the program code to switch among multiple streams of activity given suit-
able triggering events and provide for jumping and looping within the instruction 
sequence. Programming languages diff er, however, in the relative complexity of the 
branching operations and looping types allowed by their command syntax. One of 
us (CJL) is old enough to have programmed in languages—the early Fortrans—in 
which conditional control was pretty much limited to IF  …  , looping to DO  …  , and the 
pleasures (plus nascent disasters) of jumping to the since much maligned GO TO  …  
command. Following the heritage of modern high-level programming languages, the 
MEL command set lets you exert a subtle diversity of control over your program ’ s fl ow 
of information processing events. We will introduce these to you in  Chapter 12: MEL 
Scripting  in Part 2 of the book, where you ’ ll meet conditional control variants like the 
WHILE  …  and SWITCH  …  CASE  …  commands, and at once start using them to model 
and visualize biological projects in Maya.  

 FIGURE 02.09 

    Conditional control of program 
execution.

Commands for branching and 
looping (L) take linear sequences 
of instructions (Panel a) and join 
then into more complex patterns 

(Panel b) that can iterate over 
cases and vary program response 

if needed during a calculation. 
Subroutine libraries (represented 

by S1, S2, S3, S4 (in Panel (b)) make 
frequently used chunks of code 
available in pre-packaged form. 
Panels (c) and (d) show typical 

branch and loop operations.  
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(a) (b)

 FIGURE 02.10 

    Computer-based interpretive 
visualization at work.

(a) In 1952 Cambridge chemist John 
(later Sir John) Kendrew (1917–1997) 
and student John Bennett published 
this contour map tracing structure 
in the oxygen storage protein 
myoglobin. 4  They programmed 
the EDSAC computer to analyze 
myoglobin ' s crystal diffraction 
pattern and print the visualization. 
This is one of the earliest computer-
generated images in the study of 
large biological molecules.

(b) The original EDSAC (which was 
followed by the yet more powerful 
EDSAC 2) supported structure 
mapping to a resolution of 6 
Angstroms. Stacking the contour 
maps gave the world its fi rst look at 
the myoglobin molecule. Kendrew ' s 
success in deciphering the 
3D structure of myoglobin 
would earn him a Nobel 
Prize.

(a) From reference 4. Courtesy 
and  ©  the International Union of 
Crystallography. 

(b) Courtesy and  ©  MRC Laboratory of 
Molecular Biology, Cambridge, UK.      

  The computed organism 
 Th e 20th century ’ s revolutionary decades of computer and software engineering were 
also years of astonishing progress in the sciences of biochemistry and cell biology. 
Some of the exciting details we ’ ll explore in the chapters ahead. Here we can briefl y 
consider the implications of the basic fact, now universally accepted in the scientifi c 
community, that all living things—all organisms—are composed of chemicals, that 
is, molecules whose complex interactions set in motion the processes of life. Th ere is 
no evidence for some mysterious, supernatural  “ life force ”  acting alongside the chem-
istry of living matter. A deep understanding of biological molecules and their inter-
actions appears necessary and suffi  cient to answer the question  “ What is life? ”  if by 
that question we are seeking to understand the physical mechanisms sustaining bio-
logical activity. 

 Civilizations equipped with powerful computers must therefore be in a position to 
greatly accelerate the rate at which they gain understanding of living matter. Cells 
obey the laws of chemistry and chemistry obeys the laws of physics. Th e laws of phys-
ics and chemistry are, in turn, intensely and fundamentally mathematical. One must 
conclude that mathematical calculating machines—capable of large scale comput-
ing based on enormous volumes of data and information—can be used to analyze, 
predict, and ultimately re-design the biochemical activity of cells and organisms 
( Figure 02.10   ). Th e machines can do this by invoking mathematical operations to pre-
cisely represent the biochemical mechanism and calculate its properties ( Figure 02.11   ). 
Computational biology is the application of computing to explore these intricate links 
of structure to function in living things. It is one of the fastest growing frontiers of 
biological and medical research. 
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 FIGURE 02.11 

    By the mid-1960s, mainframes and 
minicomputers were harnessed 
to interactive displays of protein 
and nucleic acid structure. The 

fi rst cutting edge was defi ned 
by MIT physicist Cyrus Levinthal 

(1922–1990) and his students. They 
used the ESL (Electronic Systems 
Laboratory) Display Console, then 

known locally and ever after as 
the  " Kluge ",  housed at MIT. Either 

directly or through a DEC model 
PDP-7 minicomputer, the 7094 

mainframe at MIT ' s Project MAC 
drove a DEC Type 330 monochrome 

display in real time, producing 
vector images with 1024 �  1024 

addressable-point resolution. The 
pipeline between the Kluge and 

the mainframe ran under the 7094 ' s 
CTSS (Compatible Time-Sharing 

System), the fi rst operating system 
to let multiple users to log on at 

once via dedicated terminals. 
Levinthal ' s team wrote software for 

building and rendering graphical 
descriptions of 3D protein structure 
on the Kluge. Levinthal ' s colleague 
Robert Langridge, then at Harvard, 

pioneered nucleic acid visualization 
on the Kluge. 

(a) The DEC minicomputer and its 
tape units are in the background, 
teletypewriter in the middle, and 
ESL graphics scope and  " Globe "  

3D controller in front. By twisting 
the Globe, users could spin the 

molecule ' s image to a different 3D 
viewing angle.

(b) Close-up. The scope is showing 
the carbon atom backbone of the 

protein lysozyme. The Kluge ran its 
own visualization software, called 

GRAPHSYS, in turn authored in 
AED-0, a descendent of the Algol 

programming language. A core 
reference for the Kluge is the 1968 
report by Thornhill and his Project 
MAC colleagues, which as of this 

writing is archived on line at the 
Bitsavers Project. See  http://www.

bitsavers.org/pdf/mit/lcs/tr/MIT-
LCS-TR-056.pdf . 

Photographs by and permission of 
Martin Zwick.      

(a) (b)

 For much of the last century there was slow progress in teasing chemical information 
out of living matter. Now, exceedingly eff ective methods allow dozens or hundred or 
thousands of chemical species to be mapped at once inside the living cell ’ s network of 
biochemical and genetic interactions. So much information is now available that sci-
entists and health care researchers speak hopefully of grasping the systems biology 
of the living cell that is the totality of its operational biophysics and biochemistry. 
Computers are essential to systems biology research: there is too much data to organ-
ize, sift, and communicate by hand, and only computational biology off ers a hope for 
deciphering the fundamental biochemistry these huge volumes of data encode. Each 
project chapter of this book will take you on a step through the use of Maya and MEL 
as exciting tools in computational and systems biology.  

  The computational organism 
 Th e computer pioneers were not alone in their obsessions with information and the 
secrets of its many transformations. Following 1900, an astonishing range of disci-
plines appeared in rapid succession to answer the call for new methods of managing 
complex events in nature and society. Each new discipline off ered a vision in which 
matter, energy, and human behavior became abstract patterns of information ready 
for analysis and control: systems science, cybernetics, mathematical economics, con-
trol engineering, communications design, information theory. It was a large van-
guard and a new technical vocabulary: information, control, regulation, feedback, 
communication, error, stability. 

 Th ose were heady times. For a while it seemed a new general science of information 
and control might leap into existence, providing the matrix by which complex sys-
tems of all stripes—natural and cultural—would fall smoothly into line for rational 
analysis and management. Th at an all-embracing mega-science failed to emerge is no 
slight on the accomplishments of each specialized fi eld. Computational biology and 
systems biology, which we met above, number among the worthy off spring of this 
turbulent period. Th e paradigm of system/information/control infl uenced disciplines 
then far removed from computer engineering. 
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 Prime case in point: reporting his discovery of biochemical control by negative feed-
back (where the product molecule of a biochemical pathway cuts down the rate of the 
pathway ’ s fi rst step), Edwin Umbarger, writing in 1953 in the pages of the august 
research journal Science, considered it natural to open his account with the impor-
tance of feedback loops in regulating industrial automation. No doubt the chemists 
and biologists intent on Umbarger ’ s biochemical fi ndings at once grasped the anal-
ogy. A little more than a decade later, so many cases of biochemical self-regulation 
by feedback had been reported that the same journal published a lengthy review. 
Today, 50 years after Umbarger, we understand that the logic of conditional control 
governs more than the action of computer programs and industrial assembly lines. It 
organizes and regulates the self-sustaining activities of the living cell. Th is includes 
branch points on diverging biochemical reaction pathways, at which conditions are 
tested and alternate outcomes selected for the activities of genes and proteins; loops, 
cycling the downstream eff ects of biochemical pathways to upstream feedback con-
trol points; and biochemical subroutines, triggering of entire modules of successive 
reaction steps by single control inputs. 

 Chemical response to other molecules provides the  “ hardware ”  for conditional con-
trol of cell activity. Th e biochemical hardware often acts in a binary, off /on manner. 
In the classic off /on response pattern illustrated in  Figure 02.12   , a small molecule called 
a regulatory factor binds to a specifi c site on a protein. Th e protein recognizes the 
factor. Th e recognition event triggers changes in the protein ’ s shape, in turn altering 

Protein

Regulatory factor

Substrate

Concentration of regulatory factor

Activity
of protein

1 2 3
Regulatory site

Catalytic site

 FIGURE 02.12 

    In the living cell, sensor regions of 
large molecules such as proteins 
bind other molecules acting as 
regulators. The response is often 
switch-like: the building block of cell 
activity regulation.    
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 FIGURE 02.13 

    Binding of regulator factors 
produces chemical effects whose 

logic structure parallels familiar 
commands for programming 

computers.

the activity of its catalytic site. As you can see in the graph, the shape of the response 
resembles an S-curve: the protein acts like a binary switching element in its reaction 
to the input signal. 

 By combining these binary switch-like responses across successive chemical reac-
tions, the cell can build up biochemical pathways that carry out more complex tasks 
of conditional control. We have illustrated some examples in  Figure 02.13   . In (a) the 
binding of a regulatory factor to a protein enacts a biochemical  “ IF  …  THEN  …  ” ; i.e. 
IF (factor bound) THEN {increase catalytic rate}. In (b), the binding of alternative 
gene regulatory factors to an operator region O of a genome causes the gene sequence 
region to be read off  at diff erent rates, enacting a biomolecular IF; ELSE IF  … . P is 
the gene ’ s promoter region, where the read-out starts. In (c), the repeated cyclic bind-
ing, release, and motion of the myosin molecular motor along an actin fi lament (as in 
muscle contraction) gives a protein-encoded DO loop: DO {repeat motor cycle until 
muscle cell contraction signal stops}. Elsewhere in the cell (d), a two-footed dynein 
molecular motor walks along a microtubule, dragging its cargo molecule (shaded 
block) from a source point in the cell to its delivery point: WHILE (no end-of-route 
signal detected) {continue walking}. 

 Cells therefore may be chemical engines, but they are also information processing 
machines self-assembled from complex organic molecules. Th e cell ’ s DNA molecule 
encodes its genetic information. Th e activity of its biochemical network encodes 
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 FIGURE 02.14 

    Bjarne Stroustrup, the inventor 
of C �� .

Courtesy Bjarne Stroustrup. Used with 
permission.    

metabolic and behavioral information. Nature and computer engineers, working with 
vastly diff erent materials and at very diff erent size scales, have converged on com-
mon strategies for managing information fl ow. von Neumann, with key mysteries of 
computer design solved and new interests calling, was by the late 1940s at work on 
a new mathematical theory of self-reproducing machines. Th e treatment would have 
placed the living cell ’ s puzzling ability to duplicate itself in the clarifying light of 
mathematical logic. To history ’ s loss, a fatal cancer took von Neumann in the midst of 
his new project, leaving just partially completed notes for others to carry on. One can 
only wonder what computers and computational biology would today be like if this 
remarkable polymath had lived on, into the era of the DNA double helix, the genetic 
code, the Human Genome Project, and integrative systems biology.  

  OOPs and agents 
 In some applications the computing process is used to change one pattern of informa-
tion (the input) into another (the output). Th e output might be a set of numbers (in a 
scientifi c calculation) or a string of text (as it will be in the automated typesetting of 
this book). Th e output from Maya is a sequence of number arrays, each array defi ning 
the grid of pixel colors that make up one digital image from your computed 3D ani-
mation sequence. 

In other instances the process of information change is more transactional, as for exam-
ple in a video game or in an airline ticket reservation system. In these transactional 
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systems many patterns of information are changing all the time. Each transaction 
may be thought of as an event in which some part of an overall system-wide informa-
tion store is updated or changed. Although formally each event has an input and an 
output, designers of transactional procedures are very concerned with the accurate 
and effi  cient orchestration of the overall fl ow of information among the events. Th e 
idea of computation as transactions among automated parcels of computer code is 
the heart of object-oriented programming (OOP), an infl uential movement in mod-
ern approaches to software design.

 A moment ’ s refl ection tells us that the OOP viewpoint is also well suited to describing 
how information is processed in living systems. Th e organs and tissues of our bodies 
are built from cells that coordinate their activity by exchanging chemical and electri-
cal signals. Within the cell, the living material is composed of intricate chemical net-
works whose pathways signal each other. In all these cases, one ’ s description of the 
biology is based on observable units (cells, modules of reaction pathways) interacting 
with each other in a transactional manner. High-level languages designed for OOP, 
like C �� , are therefore a popular choice in computational biology. Although MEL is 
not designed as an OOP language, its command structure gives you immediate access 
to the huge diversity of software objects and methods comprising Maya. MEL ’ s vector 
and array data types allow you to map the structure and interactions of cells and bio-
chemical reactions without resorting to OOP conventions. For projects demanding an 
OOP coding practice, you can assess Maya ’ s C ��  API. 

It is interesting to speculate that, under the impetus of new applications like those 
you ’ ll carry out here, future versions of MEL will deploy expressly object-oriented 
capabilities—let us call this future language for Maya programming MEL �� . Time 
will tell. Meanwhile, current MEL has serious capability for computational modeling 
in biology. We are going to show you how to harness that power by factoring MEL ’ s 
command structure against an OOP-inspired breakdown of your biology problem 
according to its functional transactions and the entities interacting through these 
signals and messages. Th e resulting workfl ow, you will see, is an effi  cient means of 
organizing the complex data you must handle in any biology project ( Figure 02.15   ).

 As you progress, we will have you take this approach a step further. Th e transactional 
paradigm behind OOP lacks a natural vocabulary for situations in which the objects 
not only signal one another, but move around, explore, and modify their environ-
ment while doing so. Such objects behave more like mobile agents—self-directed 
robots—than like fi xed nodes in a communication network. Th is is of great biologi-
cal relevance. Important types of cells, such as immune cells, blood cells, and can-
cer cells, are highly mobile within your body. Th ey are not fi xed in one place. Maya 
and MEL, with their diverse tools for describing and simulating 3D motion, are well 
suited to computational problems based around mobile agents. Doing the projects 
in this book will help you develop an agent-oriented approach to assessing and solv-
ing problems in computational biology, and will assist you in understanding when an 
agent-oriented programming (AOP) workfl ow is to be preferred. As this book goes 
to press, AOP is one of the hot frontiers in software design and program language 
development.  

             The Simula-67 high-level 
language (Ole-Johan Dahl and 

Kristen Nygaard, 1967, Norway) 
for discrete event simulation 

introduced programmers to key 
OOP constructs such as the 

object and the class. Smalltalk 
(Alan Kay team, Xerox PARC, 

1971–1972) is considered the fi rst 
(and perhaps only) pure OOP 

language.      

             The current lingua franca 
of hard-core higher-level 

programming, C ��  (Bjarne 
Stroustrup, Bell Labs, 1983 

(Figure 02.14   )) accommodates 
both procedural (sequential 

command) and object-oriented 
code design.      
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  Summary 
 Computers are information processing machines, as are living cells. Despite the 
diff erences in their size, construction materials, and power sources, computers 
and cells use some similar strategies to control their information processing activ-
ities. But while the development of computers has already advanced to the level of 
high-level programming languages, our understanding of the cell as an information 
machine is much more primitive. Cell science provides some glimpses of the cell ’ s 
 “ machine code ” —the low-level nuts-and-bolts of the genetic code and of signal trans-
duction through individual biochemical pathways and chemical reactions—but so 
far no hints at all on the mystery of the cell ’ s  “ high-level programming language ” , its 
properties, and even whether one can speak accurately about the design of living mat-
ter in this way. Th ese are among the exciting scientifi c problems to be studied with 
the aid of the methods you will learn about in this book. In order to step into the 
Maya user interface and so into the world of MEL programming, we must turn to the 
basic concepts and vocabulary of 3D animation and computer graphics. Let us now 
do that and then, via Maya and MEL, see where the scientifi c path leads ( Figures 02.16 
and 02.17     ).  

 FIGURE 02.15 

    Some of the protein–protein 
interactions active in a living 
cell ' s molecular program for self-
destruction. The self-destruct 
program can be triggered by 
excessive cell damage or certain 
disease states. Compared to von 
Neumann machines with their 
deterministic linear chains of 
instruction fetch-execute steps, 
cells organize their information 
transduction actions into dense 
stochastic clusters carried out in 
parallel.

These protein networks were set 
up and visualized using the Human 
Interactome database and browser 
toolset public bioinformatics resource 
( http://www.himap.org ) of Rhodes, 
Chinnaiyan, et al 5  at the University of 
Michigan.    
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    The in silico biology workfl ow.    
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 FIGURE 02.17 

    Modern desktop systems are von 
Neumann computing machines 
many times more powerful that the 
early mainframes. Here, the authors 
(left CJL, middle NW, right JS) 
discuss MEL code for a Maya-based 
model of cell motion.

Courtesy and copyright © 2008 Eddy 
Xuan.  
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  Introduction           
 We have been introduced to the need for dynamic visualization in science, considered 
a basic framework of biological organization, and explored the relationship between 
biology and computation. How then do we integrate these science-inspired notions 
with the art of computer animation using Maya? And what is animation, anyway?         

 To animate is to give life to an otherwise inanimate object. 1  For our purposes in 3D 
computing, the verb refers to a change over time in a property of a given item, rendered 
into a succession of still images, or frames. Somehow, our visual system is able to view 
this succession and create, in our minds, the perception of motion and behavior in the 
depicted objects. So we will begin this chapter with a brief look at how we see and how 
we perceive motion in animated images. You ’ ll then meet some of the lexicon and meth-
ods of animation, and how and why they might be adapted to scientifi c visualization. 
A 3D computer animation workfl ow will be laid out to give us the roadmap to learning 
Maya and MEL, placing them in the overall process of 3D animation production. 

 Since Maya is designed for animation, its eff ective use follows the workfl ow you ’ d fi nd 
in a professional animation studio. Th is workfl ow, which we ’ ll explore in this chapter, 
applies terminology and conventions that draw (pardon the pun) on modes of prac-
tice honed over decades in the ateliers of animation pioneers like Walt Disney and 
the Fleischer Brothers. Th ese terms and conventions may seem strange, at fi rst, if you 
are coming to Maya from a science or engineering fi eld. But we hope to show you that 
there are benefi ts to the co-option of cinema-oriented animation practices by scien-
tists ’  intent on understanding biological phenomena. 

 Experienced animators may encounter some familiar topics in this chapter, but will 
still benefi t from the connections drawn between the animator ’ s and the bioscientist ’ s 
workfl ow. By the end of this chapter you should be able to see how animator ’ s tech-
niques can potentially apply to the science discovery process, and have a broadened 
appreciation for the experimental and expressive power of modern digital animation 
tools.  

  Animation and fi lm perception 
 In fi lm and video, there is no motion, there is only a succession of still images, rapidly 
displayed. Yet we perceive motion. How is this possible? 

  Seeing, in brief 
 Th e early,  “ anatomical ”  stages of vision are fairly well known; we will sketch them 
below as means of explaining the raw processing power that vision brings to the 
world. Th e sensory impulses originating in the retina are ultimately transformed 
into a skein of neuronal activity in the brain that presents to our consciousness an 
integrated picture of the world. Th is latter process—how biochemical fl uxes turn into 
meaning—is the hard part, and a something we can ’ t hope to address here. 

 Five crucial events make up the initial stages of vision (the structures described 
below are illustrated in  Figure 03.01   ): 

   1.     Light originating from the sun or some other source scatters through the environ-
ment, bouncing off  various objects. A small fraction of this light happens to pass 
through the pupil of your eye (a distensible hole that varies in diameter between 2 
and 6       mm and is analogous to a camera ’ s aperture).  
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  2.     Th e light is refracted by the lens in your eye (as well as the cornea and the refractive 
gels that fi ll the eyeball) to focus a high-resolution two-dimensional (2D) image on our 
retina, a complex nine-layered tissue comprised of photoreceptors, blood vessels, and 
multiple layers of neurons. Th ese neurons form the earliest stage of visual processing: 
they take the light pattern detected by the photoreceptors and perform various tasks, 
such as enhancing the contrast at edges, and suppressing jittery motion.  

  3.     Impulses derived from the photoreceptors, and modulated by those early neurons, 
are relayed to the optic nerve. Th e optic nerve passes through the back of the eye 
(creating the blind spot), and after passing through the optic chiasm (a  “ neural 
traffi  c interchange ”  where the left and right visual fi elds from each eye are united 
and sent to the appropriate hemisphere), the signals are sent to the lateral genic-
ulate nucleus in the thalamus (a deep brain structure). Early stages of color and 
motion processing occur here.  

  4.     From the lateral geniculate nucleus, the nerve impulses are passed to an area near 
the base of the occipital lobe known as V1 (visual area 1). Th e cortical processing 
of vision occupies about 40% of the gray matter of our brain, and V1 is the fi rst 
station in that process.  

  5.     From V1, the neural activity is distributed to brain regions V2, V3, V4, V5, and 
onward. In a feat of massively parallel processing, an astonishing array of features 
are rapidly extracted from the 2D image received on the retina: edges are detected, 
objects are separated from the background, depth is assessed through multiple 
concurrent cues, the direction and magnitude of motion is appraised, faces are 
recognized, and various salient object features (orientation, size, color, and tex-
ture, among others) of the scene are assessed. In addition, remarkable feats of 
 “ mental construction ”  are accomplished, as 3D stereoscopic depth is created from 
the divergent images originating from each eye, and partially represented (or, in 
the case of some visual illusions, even non-existent!) objects are built from frag-
mentary evidence in the scene.   

 Less than one-fi fth of a second has elapsed since the light wave reached the retina at 
the back of the eye. 

        A  neuron  is a cell type essential 
to the operation of our nerves 
and brains. Neurons are 
electrically excitable, and 
conduct signals from one part of 
our body to another.      

 FIGURE 03.01 

    The anatomy of vision. Light enters 
the eye and is focused upon the 
retina, where it is transduced into 
electrochemical signals by the 
photoreceptors. The signals travel 
via the optic nerve, through the 
lateral geniculate nucleus, to the 
primary visual cortex in the occipital 
lobe of the brain. Here the signals 
are rapidly dispatched in a parallel 
fashion to various processing 
centers (V1, V2, etc.) where salient 
features of the scene are extracted, 
and ultimately integrated into a 
coherent internal representation of 
the scene.    
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 In the moments that follow, your brain integrates this initial decoding of the visual 
scene with other elements of your conscious awareness, calling on the power of your 
memories, reason, and emotions to interpret it. How astonishing that so much com-
plicated processing occurs so quickly, and with so little deliberate eff ort! 
 Th e fact that vision requires so much active (if unconscious) creation on the part of 
the viewer helps to explain how we end up imparting so much meaning to cinematic 
stories; we will see another aspect of the  “ creative ”  abilities of visual perception in 
the next section.  

  Seeing motion and animation 
 It may be hard to believe, but the nature of motion perception is still under active 
investigation. 
 Many fi lm theory textbooks still claim that the basis for motion perception in fi lm is 
a phenomenon known as persistence of vision, where the image falling on the retina 
persists biochemically over some interval until it is replaced by succeeding images; 
this overlap allows the images to blend, retinally, into  “ motion ” . While some biochem-
ical truth lies behind this idea—photoreceptors in the eye do continue to signal for 
some time after the stimulus has passed—the idea of persistence of vision has largely 
been replaced by a more comprehensive understanding of mechanisms of motion 
perception. 2  Newer accounts of motion perception call for a more active engagement 
from the viewer, and rely on multiple, overlapping mechanisms. 
 Two of those mechanisms—fl icker fusion and short range apparent motion—are 
worth spending some time on, as they relate rather directly to the standard frame 
rates that animators use in the production of their fi lms. 
 Film has a frame rate of 24 frames per second (fps), but each individual frame is actu-
ally fl ashed onto the screen two or three times in succession, leading to a fl icker rate of
48–72       Hz (times per second). Why is this? It turns out that in order to present the 
sensation of viewing a continuously illuminated screen, the projector must fl ash 
on-and-off  rapidly enough to achieve fl icker fusion. Th is is a phenomenon whereby 
a fl ickering source of illumination will, at some frequency, fuse into the perception 
of continuous illumination. If you watch a strobe light fl ashing at an increasing rate, 
at some point the discrete fl ashes will fuse into what seems like a light that is simply 
 “ on ” . Th e rate required for fl icker fusion varies depending on a number of factors (e.g. 
whether the fl icker is present in central or peripheral vision, the brightness of the 
illumination, the fatigue of the viewer) but is usually in the range of 50–60       Hz for 
fi lm and television applications. 
Th is helps explain how frame rates for fi lm and video were determined: if each frame of 
a 24       fps fi lm were shown only once, the image would  “ strobe ”  in a way that would make 
it very diffi  cult to watch, so each frame is projected more than once. In North American 
video (NTSC), which is nominally 30       fps (actually 29.97       fps), each frame is composed of 
two interlaced sub-frames displayed in sequence, leading to a 60       Hz fl icker rate.
 Does fl icker fusion explain motion perception? No, it simply explains how many 
projection and display technologies can appear to present a continuous image, rather 
than one that is strobing. It is worth noting that most newer fl at panel display 
technologies, such as LCDs, do not fl icker, since they are continuously illuminated by 
their back lights. Any digital display, however, has a refresh rate, separate from the 
potential fl icker rate of the display, that is determined by how often the displayed 
image is updated by the underlying graphics circuitry. 

        European (PAL) video is 25       fps, 
leading to a 50 Hz fl icker rate.      
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 Apparent motion is the term for several distinct phenomena, initially discovered 
by vision researchers in the early 20th century, in which certain confi gurations of 
rapidly displayed still images could precipitate a perception of motion. Short range 
apparent motion requires fi ne-grained changes between successive images, as is the 
case with most fi lm and video. 

 Th e perceptual mechanisms underlying short range apparent motion appear to be 
identical to those active in perceiving real-world motion. Clinical evidence for this 
comes from the cases of unfortunate individuals who have experienced damage to the 
part of the brain that allows them to perceive the shape of still objects; these patients 
cannot recognize, or even see, objects that are not moving. Once an object moves, 
however, it pops into existence in their preceptual world. Fascinatingly, these indi-
viduals can also perceive moving objects in television and fi lm, despite the fact that, 
of course, they are really seeing a sequence of still images. Th is demonstrates that, in 
these subjects, and probably people in general, the mechanisms of fi lm perception are 
the same as, or very similar to, that of general motion perception. 

 So, the mystery of fi lm motion perception is starting to yield to scientifi c study: 
animated representations of motion are similar enough to real-world stimuli that 
they engage the same perceptual mechanisms that real-world motion does. Two of 
those mechanisms—fl icker fusion, which in some media makes still images appear 
as continuous, and short range apparent motion—help to explain why animation is 
usually crafted as sequences of 24–30 still images-per-second, with relatively small 
diff erences between individual frames. Later in this chapter we will look at anima-
tion frame rates, and in which contexts it might be advisable (or not) to vary them.   

  The animator ’ s workfl ow 

  Story: The workfl ow ’ s driving force 
 Th e animator ’ s workfl ow ( Figure 03.02   ) is a time-tested approach to the highly eco-
nomical depiction of an idea expressed in a fi nished scene or in the completed fi lm. 
 “ Economical ”  is not used here in a fi nancial sense, but in terms of effi  ciency: anima-
tion is generally so labor intensive—even when powerful computers and software are 
used—that many benefi ts accrue to animators who do what they need to, but no more 
than is necessary; spending weeks diligently animating a scene that is ultimately 
left out of the fi lm is a painful, costly experience. Th us the necessity of an organized 
approach to the animation process. Th is is a process of experimentation and refi ne-
ment, and it is very much a part of the computer animator ’ s approach as well, where 
modern digital tools can somewhat speed the iterations shown in  Figure 03.02 . 

 Many scientists experience similar cycles as they refi ne experimental protocols, 
improving results and explanatory models ( Figure 03.03   ). At the heart of science is 
humanity ’ s yearning to make sense of the world, in a way we are all free to understand 
and to evaluate in a logical, testable manner. Th is notion of making sense, of arrang-
ing objects and concepts in plausible causal chains, is also at the heart of storytelling. 

 Th e broad range of stories—those limited only by the teller ’ s imagination—encompass 
a much larger range of possibilities beyond the narratives of reality told by science. 
Science, of course, is concerned with what is, with actuality and truth. But like the 
great novels, plays, and myths, important works of fi ctive cinema—animated and 
otherwise—also illuminate truth. 
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 FIGURE 03.02 

    A typical workfl ow for computer 
animation production.    
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        When discussing storytelling in 
the Hollywood style, we forego 
for the moment movements in art 
and literature, such as Dadaism, 
that have sought to undermine 
conventional storytelling 
requirements.      

Experiencing fi ctional worlds helps us make sense of human existence, its glory, 
and its foibles. Filmmaking of the  “ Hollywood style ” , for example, is all about tell-
ing  “ readable ”  stories—the struggles and confl icts of exciting imaginary charac-
ters—written, shot, and edited in ways that allow them to be easily interpreted. Th is 
ease of interpretation is partially a result of the set of production heuristics that have 
evolved over the history of fi lmmaking.

 Since these established animation production workfl ows support fi lmmaking economy, 
as well as fi lm  “ readability ” , we can adapt them to support the needs of thoroughly 
actuality-driven enterprises like science research and scientifi c communication.   

  The three-stage workfl ow 
 Th e animator ’ s initial task is to critically formulate the story idea to be communi-
cated and then explore and refi ne potential approaches to its expression. Th is stage 
is known as preproduction. At the end of this stage, the animator has a solid plan for 
the execution of the project. Preproduction leads to the production stage. Here the 
animator implements the plan generated in preproduction and creates the resources 
necessary to complete the fi lm. Th is is generally the longest and most labor-intensive 
part of the process. Postproduction follows, where the media developed in production 
are assembled (edited together) and refi ned into a form suitable for fi nal delivery. 
Th is usually takes the form of a fi lm or fi lm segment intended for theatrical release, 
for television broadcast, release via the web or podcast, presentation at a scientifi c 
meeting, or a video game cut scene. 

 Let ’ s explore this workfl ow. 

  Workfl ow stage 1: Preproduction 
 Animation is one of the least direct of the visual arts: the animator works at the 
drawing table or computer screen, preparing countless images, intending that the 

 FIGURE 03.03 

    A typical science animation/
simulation workfl ow. We will be 
adapting this approach and using it 
in combination with the traditional 
animation workfl ow illustrated in 
Figure 03.02.    

Define hypothesis to be explored
(objects/agents, attributes, behaviors,

interactions, data)

Develop logic (flowchart)

Encode

Build
Test and iterate

Execute (run simulation)

Visualize (render) data
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arrangement of those images in time will evoke the sense of life that is sought. 
Preproduction involves all the project initiation steps, as well as the development of 
a coherent plan for the completion of the fi lm. Eff ective preproduction helps assure 
that suitable animations are produced in the fewest possible steps of execution and 
revision. Th e key elements of eff ective preproduction are the defi ning your anima-
tion ’ s visual style or  “ look ” , the treatment and the script, the storyboard, and the 2D 
 animatic . 

  The animation ’ s  “ look ”  
 A cancer animation that depicts the deadly cells as whimsical, anthropomorphic car-
toon characters might work well for an audience of young children. However, it might 
also leave an audience of investment bankers ready to fund a new cancer drug less 
than impressed. Such qualities of overall visual appearance are often referred to as 
your fi lm ’ s  “ look ” , a subject demanding careful attention right at the start of your 
project. Th e message or point of a fi lm can be misunderstood, or lost entirely, if poor 
decisions are made about its appearance or look. 

 Let ’ s consider three of the most popular looks for cell science animation. Th e list is by 
no means exhaustive; indeed, one of the benefi ts of working with a 3D program is the 
possibility of creating entirely new, never-seen-before representations. 

     1.       The photorealistic look . Photorealism is a term from art criticism which refers to 
pictures which attempt to emulate the qualities of photographs. As a movement in 
20th century painting, it has been associated with the work of artists like Chuck 
Close and Mary Pratt. Photorealism consciously imitates the eff ects of optical lenses 
and adheres closely to the rules of vanishing point perspective, creating solid, believ-
able images. In addition to the surface qualities of light and texture familiar to us 
from our experience of the real world, photorealism often includes artifacts of the 
photographic process, such as depth-of-fi eld eff ects, motion blur related to shut-
ter speed, compressed dynamic range, and lens fl are. One version of the history of 
computer graphics research would see it as a progressive march toward the goal of 
seamless, true photo-like rendering (which has, arguably, recently been achieved with 
unbiased, light simulator-style rendering engines like Maxwell, from Next-Limit 
Technologies). A broader look at computer graphics would see computer-generated 
imagery (CGI) encompassing a number of representational styles.  

   2.       The micrographic look . A sub-style of photorealism, devoted to emulating microg-
raphy, has emerged over the past several years: this is the micrographic look 
(the appearance of objects as seen or photographed through microscopes). At the 
present time in human history, photorealism is a near-universal strategy for depicting 
the events of our everyday lives in the entertainment and news media. Th e camera ’ s 
 “ eye ”  is ubiquitous. Th e conventions of photorealistic depiction have therefore been 
adapted by artists and scientists to reveal objects and events too large (as in astron-
omy) or too small (as in cellular medicine) to be seen with the unaided eye. Sometimes, 
although objects are small, they are still big enough to defl ect light rays. Most intact 
cells are big enough to do this, so with special lenses and other imaging technologies 
(microscopes) we can magnify their images and take their picture. Other subjects 
require more exotic preparations and techniques; for instance, researchers have begun 
to use small fl uorescent proteins (such as green fl uorescent protein, derived from a jel-
lyfi sh) to  “ tag ”  cellular components they wish to observe. Th e resulting micrographs 
are often hauntingly beautiful ( Figure 03.04   ).
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   A popular approach for animators working at the cellular and molecular level there-
fore is to render their models in a style of micrographic photorealism. Th ese can 
include light microscopy, scanning electron microscopy (SEM) (simulated in  Figure
03.05   ), phase-contrast microscopy (simulated in  Figure 03.06   ), confocal micros-
copy ( Figure 03.04 ), and transmission electron microscopy (TEM). Each of these 
approaches produces a signature visual texture, which is imitable in a 3D program 
like Maya.     

   3.       Non-photorealistic looks . At the molecular level (see  Chapter 01 ), the objects of bio-
logical interest are at or below the dimensions of the wavelengths of ordinary vis-
ible light; ordinary cameras don ’ t work in this world. Here, our everyday intuitions 
about the nature of light and form break down. We could try to (and scientists do!) 
use illuminations of shorter wavelength to diff ract from those small structures, as 
in X-ray crystallography and electron microscopy. Th e resulting photographs hover at 
the threshold where our sense of visual comprehension departs from the everyday 
experience. Once we reach the molecules and atoms of biological structure, we are 
on the doorstep of atomic physics. Th is is the quantum realm, where matter seems at 
once wave like and particle like—traits that do not have anything like a photorealis-
tic depiction. Nevertheless, photorealism has, as we shall see in a later project, been 
used for depicting certain properties of atoms and molecules. Th ese properties are 
both essential to biological function and well described in terms of the mathematics 
of NURBS surfaces. But that is just a start: as a result, animation at the cellular and 
molecular level is ripe for various kinds of interpretive rendering, which can draw 
even further on photorealistic eff ects, or mix them with other non-photorealistic 
approaches to represent the molecular fabric of living matter for maximum impact 
and interpretability.    

 FIGURE 03.04 

    Cell micrographs can often be 
appreciated for their intrinsic 
beauty, quite apart from their 
obvious utility as scientifi c objects. 
This image shows cardiomyocytes 
(or heart muscle cells) that have 
been specially stained to make the 
cellular proteins actin (red) and 
calreticulin (blue) visible to the 
microscope under special lighting 
conditions.

Scale bar � 10 �m

Images courtesy and copyright © 
2006 Sylvia Papp, Institute of Medical 
Science, University of Toronto and 
Michal Opas, Department of Laboratory 
Medicine and Pathobiology, University 
of Toronto. From research supported 
by the Canadian Institutes of Health 
Research (CIHR).    



 FIGURE 03.06 

    A Maya rendering of a lymph node, 
composited in Adobe After Effects 

to stimulate the appearance of 
phase-contrast microscopy.

Scale bar �  2 mm

Courtesy and © 2006 Marc Dryer. Used 
with permission.    
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(a)

 FIGURE 03.05 

    The appearance of objects in a 
SEM—with their characteristic 

bright edges and darkened 
centers—is often emulated in 

illustrated depictions of cells and 
molecules. Such a look can be 

created in Maya using the Ramp 
shader (a), as was done for the 

rendering of bacteria 
(C. diffi cile) in (b).

Scale bar �  10 �m
(b) Courtesy Shaftesbury Films 

and AXS Biomedical Animation Studio.

Copyright Shaftesbury ReGenesis III Inc.    
(b)



 Th e term non-photorealistic rendering (often abbreviated to NPR) refers to computer-
generated images that either emulate traditional artistic styles (hand-drawn, 
painted, engraved, etc.), or otherwise represent images in a non-photoreal way 
(see  Figure 03.07   ). As noted above, research in computer graphics, for its fi rst few 
decades, was consumed primarily with the goal of creating photorealistic images. 
Before that goal was even accomplished, many questioned why photorealism should 
be the default end goal of rendering systems 3,4 —after all, artists have, for millennia, 
made compelling and informative images without cameras (or computers), and there 
must be something of use in the variety of visual styles toward which they have grav-
itated. In response, over the last decade or so numerous graphics researchers have 
explored stylized depiction; the result has been a discipline named (unfortunately) 
for what it is not, rather than what it is. 5  

 Why choose an NPR style to defi ne the look of your animation or fi lm? Th ere are sev-
eral possible reasons: 

     •      A number of studies 6,7  have shown that non-photorealistic representation (espe-
cially well-constructed line drawings) is often easier for people to interpret than 
photographs or continuous tone images. Th e reason for this has not been fully 
elucidated, but it may have to do with the necessary simplifi cation of line draw-
ings, their elimination of extraneous detail, and the pre-segmented nature of the 
objects in a line drawing. It is worth noting that, despite the ease of acquiring 
photographs, line drawings are still very common in technical documentation.  

   •      Photorealistic rendering approaches can be convincing enough that viewers of an 
animation might mistake what they are looking at as empirical imagery, rather 
than a simulation, reconstruction, or interpretation. In some cases, this misat-
tribution of veridicality to animated sequences could be problematic. One could 
argue that NPR-rendered sequences will usually be understood by viewers as 
interpretations, and would be far less likely to be mistaken for  “ reality ”  as cap-
tured by a camera.  

   •      NPR approaches tend to communicate the  “ provisional ”  or contingent nature 
of what is being represented, and therefore may be more appropriate when the 
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 FIGURE 03.07 

    A 3D model rendered using left: a 
typical  “ photorealistic ”  adaptive 
scanline render; middle: a pen-
and-ink style  “ non-photorealistic ”  
(NPR for short) render; and right: an 
engraving style NPR render.    
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animation is highly simplifi ed, or when the particular structures or processes 
being represented are not fully characterized.  

   •      NPR can be used for purely aesthetic reasons. Also, digital pen-and-ink is far less 
messy than its real-world counterpart, and potentially easier to learn.    

 Th ere has been an explosion of interest during the last few years in stylized depic-
tion, with attendant research groups, conferences, and commercial development. 
Interestingly, the diffi  culty of deriving a good line-drawn representation of a 3D 
model, for instance, has emphasized how little science grasps about the psychology 
of picture perception. In that sense, many NPR researchers may be helping, from the 
algorithm upwards, to build models of human visual perception. 

 As you work through the book, we will guide through projects that create a distinctive 
look for each fi nal animation produced by Maya and your MEL programming. You will 
also see many images that showcase the looks chosen for other projects. We think 
this will help build your experience in creating visual styles— “ looks ” —well suited to 
the needs of your future endeavors. But regardless which visual style you select, keep 
in mind that look of your fi lm is no more subjective than any other facet of scientifi c 
communication; it is the result of a series of reasoned decisions about how an anima-
tion is meant to be interpreted, and is thus of crucial importance.  

  The treatment and the script 
 A fi lm treatment is a short, narrative description of what the viewer of the proposed 
fi lm would see. It is less about the  “ back story ”  of the animation and more about what 
the experience of watching the fi lm would be like. Treatments are often the fi rst step 
in the fi lmmaking process and are often used to gain initial approval and fi nancing 
for a project. 

 A script is also a written document, but a far more detailed one which formalizes the 
proposed fi lm in terms of sequences, scenes, shots, dialog or narration, sound eff ects, 
and production notes. Th ere are several standard formats for scripts, which use spe-
cial text formatting to distinguish these diff erent elements (see  Figure 03.08   ). 

 FIGURE 03.08 

    Examples of script formatting styles: 
from left to right: BBC, color-coded, 

and tombstone.
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 If the fi lm is a live action one, the script is often the fi nal required preproduction 
document created before shooting can begin. Animation, however, requires a more 
intensive preproduction phase, and two more elements are usually required before 
production starts.  

  The storyboard 
 A storyboard ( Figure 03.09   ) takes the production script and breaks it down, shot for 
shot, into visual form. Salient frames from each shot are rendered in thumbnail form 
and assembled in sequence. Narration or other scripted elements are often included 
below or to the side of the rendered frames. Storyboards are a presentation medium 
and are the focal point of the  “ pitch ” , where team members are lead through a pro-
posed fi lm sequence. 

 Th e storyboard images refl ect what the camera would see. Graphic devices, such as 
arrows and superimposed rectangles, are used to indicate intended camera motion 
or change in focal length. Th e rendering approach used to make storyboard frames 
should not be  “ careful ”  or  “ fi nished ”  since a storyboard is meant to be a working 
document that, in a successful project, will see numerous revisions as sequences are 
reworked, new camera angles and movements tested, and shots added or eliminated. 

 In classical (i.e. Disney-style) animation preproduction, the storyboard can be the 
principal arena for the defi nition of the overall narrative, supplanting the script as 
the source of the story.  

  The 2D animatic 
 Th e 2D animatic is a more recent innovation. It usually involves the transformation 
of the static storyboard into a piece of motion media, complete with test soundtrack. 

Video:  fl ash to — live cancer 
cell footage; a diseased cell 
— and back to …

Audio: underwater sounds

Video:  … in vitro pack of crawling 
fibroblasts

Audio: underwater sounds

Video:  crash zoom on GCI crawling cell

Audio:  sudden increase in music tempo 
and energy

Video:  pass through cell wall into the 
super-crowded cytoplasm. Large 
proteins jostle about. The scene 
is frenetic. Cut to …

Audio: high-energy music

Video:  … montage of cell 
videomicroscopy

Audio: high-energy music

Video:  multi-screen drawings, equation 
footage

Audio:  high-energy music, several 
pencils scratching

 FIGURE 03.09 

    Plans for animation, storytelling, and 
science unite in this storyboard for 
a fi lm about cancer cell migration. A 
storyboard is an essential tool in the 
computer animation workfl ow.    
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Storyboard frames are scanned and assembled in an editing, compositing, or motion 
graphics software package like Adobe After Eff ects. Th ese programs allow for the ani-
mation of 2D elements over time; thus object and camera movement can be simulated 
and synchronized with audio. Th e storyboard images are sometimes separated into 
foreground, midground, and background elements, to better facilitate the creation of 
object motion and  parallax  eff ects. Th e animatic allows the fi lm director to test story 
fl ow and timing; since the result is a rudimentary fi lm, it is the fi rst working version 
of the project. In some studios, an animatic is called a  story reel . In the earliest years 
of hand-drawn animation, story reels were known as  pencil tests  since the animators ’  
penciled drawings were put on a camera stand and photographed, one by one, as fi lm 
frames to be projected for review and criticism of the animation.   

  Workfl ow stage 2: Production 
 In the production stage, the plan developed in the preproduction phase is imple-
mented. Ideally, at this point the story is well defi ned, and no further narrative 
changes are anticipated. In most studio settings, animated scenes and fi lms are 
the creative work of teams of artists and technical specialists who work together in 
the preproduction, production, or postproduction stages of the workfl ow. One artist 
would not normally undertake all of the numerous steps and stages alone. One 
advantage of this book is that you will gain experience in all of these principal roles 
and functions. We believe this will strengthen your ability to undertake, from start 
to fi nish, self-assigned projects on your own, and to function well as a member of 
these large, diverse teams. Animation production in Maya and similar top-tier prod-
ucts for 3D computer animation will require your attention to the following elements 
of the production workfl ow. 

  The 3D scene: Your digital stage 
 Th e term scene has two meanings for animators. Traditionally, it refers to a sequence of 
events that comprise a distinct element in a story. In Maya, on the other hand, a scene 
is the 3D environment, including models and animation, contained in one computer 
fi le. It is essentially a stage for digital action. Several Maya scenes may be developed to 
create a single traditional one, or one Maya scene may contain the models, action, cam-
eras, and lights needed to create an entire story comprised of many traditional scenes. 
In this book we ’ ll use the Maya defi nition of a scene: one 3D environment embodied in 
a fi le computer—Maya scene—fi le. 

 For a scientist, this notion of the word scene might seem a hazy or foreign concept. 
Perhaps the best way to think about it is as a model world, or, more specifi cally, a spe-
cialized apparatus for running an experiment. Just as the cell biologist might have 
a bank of Petri dishes, each growing a diff erent variety of bacteria, the Maya-using 
researcher might have a range of scene fi les, comprising various projects, tests, and 
iterations of particular experimental approaches.  

  Geometry modeling 
 Th e creation of objects and environments in digital 3D space is called modeling. Objects 
in computer animation are typically modeled as shells with no solid, or volumetric, 
form to them. Th ere are two main surface types that make up these shells. Th ese are 
polygonal surfaces, comprised of many interconnected fl at polygons and spline surfaces,
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also called NURBS, that are described by mathematical curves ( Figure 03.10   ). NURBS 
modeling generally produces smoother surfaces with geometries limited by the curve 
properties, whereas polygonal models, comprised of many small facets, can appear 
coarser but can be built in any conceivable shape, unencumbered by topological limi-
tations. Th e choice of model type depends on the purpose and desired qualities of the 
fi nished model, but often comes down to personal preference. 

 Modeling and animation applications typically off er a suite of tools for model crea-
tion and manipulation in addition to a collection of primitives—ready-made models 
like spheres, cubes, cylinders, cones, and tori that are often the starting point for 
more complex geometries. Maya has a range of polygon and spline primitives as well 
as tools for working with both types of model. We will discuss Maya ’ s model-making 
capabilities in some detail in the second part of the book. Once you understand how 
models are created and manipulated using the standard tools, you can tackle proce-
dural modeling, using a computer program to automate the modeling for you and to 
simulate the dynamics of their interaction. 

 As you work on your geometry models in Maya, you may fi nd it necessary to adjust 
the fi delity of the display to the source geometry ( Figure 03.11   ). Several preset levels of 
detail and shading are available, such as smooth shaded, wireframe, point mode, and 
box. Th ese trade off  visual quality for display speed. When models and scenes become 
complex, it is also handy to be able to selectively hide or reduce detail on specifi c 
objects, so your workspace becomes less cluttered.  

  Volumetric modeling 
 Mention should be made of volumetric models, which use an approach very diff er-
ent from most commercial 3D modeling applications. Surface models, such as those 
discussed above, are shells possessing no inherent solidity. Volumetric models, on 
the other hand, are composed of arrays of cubes inhabiting 3D space called voxels 
(a word derived from  vo lume pi xels ), or densely sampled point clouds. Voxels encode 
for some spatially distributed variable, such as luminance, color, temperature, or 
density. Volumetric models can be derived from serial imaging technologies, like CT, 
MRI, and confocal microscopy, or produced by computational models of dynamic sys-
tems (as in modeling of storm systems). One famous example of volumetric modeling 

 FIGURE 03.10 

    Common surface model types:

(a) Polygonal surface: composed of 
interconnected three- or four-sided 
polygons.

(b) NURBS surface: described by 
parametric curves known as splines .      

(a)

Polygon

(b)

Spline
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is the Visible Human Project, 8  a freely available database of sectional anatomy. 
In this project, sponsored by the US National Library of Medicine, researchers froze 
and thin-sliced male and female cadavers taking detailed photographs of the end 
blocks. Th is huge serial image database (along with calibrated MRI and CT scans done
before the slicing started) can be reconstructed into a highly detailed volumetric model,
with the voxels deriving their color from the pixels in the 2D images. Th is volumet-
ric model is then amenable to various representational approaches (arbitrary slices, 
selective transparency) that allow for an unprecedented look into the human body. 

 While voxels are generally arranged in a rectilinear grid, point clouds can be freely 
arranged, with more densely packed points concentrated at points of detail or inter-
est. Like voxels, point clouds can have color or some other property at each sample 
location, and can build up interestingly representative displays that are less computa-
tionally demanding than voxels. 

 Maya contains some volumetric tools, in the form of Maya Fluid Eff ects, and, to some 
extent, particle tools and Maya Paint Eff ects. But generally speaking, volumetric 
modeling comes at some computational cost, and the tools available for the manipu-
lation and de novo creation of volumetric models have yet to approach the sophis-
tication of those available for surface models. For this reason, we will concentrate 
primarily on surface models in this book. As tools and algorithms evolve, volumet-
ric animation and simulation approaches will surely move into the mainstream, and 
therefore developments in the fi eld bear watching.  

  Procedural modeling 
 Procedural modeling is the generation of geometry in a 3D program by algorithmic 
means. Many natural structures, such as plants, landscapes, and circulatory trees, 
exhibit qualities that are tedious to model by hand but which are amenable scripted 
or programmed modeling approaches. Some of these qualities include randomness, 
high detail, and self-similarity at a number of scales. Th e key benefi t of this approach 
is that, with a small amount of input (simple equations or formulas, initial param-
eters), a huge amount of output can be derived (complex models of forests, coastlines, 
mountains, arteries, and veins). 

 Th ere are numerous procedural modeling approaches, several of which are built in to 
Maya. You will be exploring the use of procedural modeling when you build a protein 
model in  Chapter 14  and a tissue matrix in  Chapter 17 .  

(a) (b) (c) (d)

 FIGURE 03.11 

    3D scenes can often be visualized 
using different display modes. 

Shown here from least to most 
computer intensive are: (a) box; 
(b) points; (c) wireframe; and (d) 

smooth shaded.    
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  The frame rate 
 It ’ s important to note that, when using 3D software for a simulation, the work doesn ’ t 
necessarily end when the simulation has run its course. Th e stunning imagery that 
makes a program like Maya so attractive to use must be rendered out. Once produced, 
the fi nal images are played back at a specifi ed rate of display, in  fps . For example, a 30-
frame animation will produce one second of motion when played back at 30       fps. Th e 
frame rate determines the quality of perceived motion and varies depending on the 
requirements of the viewing medium. Th e slower the frame rate, the less convincing 
the illusion becomes. Nonetheless, there are practical considerations that may war-
rant a slower frame rate. Rendering fi nished frames is a time-intensive, and therefore 
expensive, endeavor. A slower frame rate is therefore often a cost-saving measure 
used by animation studios resulting in a trade-off  between quality and effi  ciency. 
In the case of animations produced for Internet viewing, a slower frame rate may be 
used to conform to limited data transfer rates, resulting in uninterrupted viewing 
but with relatively poor visual persistence. 

 Th e intended rate of display should be determined  before  you begin animating items 
in a scene. A walking fi gure animated for 30       fps playback will appear in slight slow 
motion if projected at 24       fps. When using a 3D application for simulation, the frame 
rate acquires an additional meaning; it becomes the rate at which simulation events 
are evaluated. In the cell migration project in  Chapter 18 , we equate one Maya frame 
with approximately 200 seconds of  “ real ”  cell time. Th erefore, when you play a ren-
dering of the simulation at the typical NTSC 30       fps, one second of playback equates 
to roughly 100 minutes of cell movement! Were you to set the frame rate to 15       fps, 
one second of playback would represent only 50       minutes of migration. Th is distinc-
tion is important when presenting simulation results to your audience.  

  Animation 
 Animation, we ’ ve seen, is the art of taking otherwise static images and objects and 
imparting a sense of motion, and life, to them. Th e property being animated (called 
an  attribute  in Maya) could be position, scale, shape, or color among others. For exam-
ple, consider depicting a defl ating balloon with a sequence of still images (see  Figure
03.12   ). As air rushes out, we make the balloon careen in all directions and gradually 
shrink, so it winds up looking fl atter, less bright and more opaque frame by frame. 
To achieve this, we have animated, over time, the balloon ’ s position (or translation in 
Maya), scale, shape, and its color and transparency. 

 Animation software like Maya generally takes two diff erent approaches to creat-
ing these changes:  key-framed animation  and  procedural animation . Th e concept of 
animation is inseparable from that of time. Th e smallest unit of time in fi lm anima-
tion is the frame (many physically based calculations within a 3D application can 
rely on arbitrarily divided sub-frames for precision, however). Animators use a 
timeline, a linear scale divided into equal measures of seconds or frames, to locate 
key moments in the action. Frames containing these key moments are called  key 
frames , for which values are assigned by the animator or by a script to the attribute(s) 
being animated. 

 Disney-style animation exemplifi es the key frame approach taken to a highly refi ned 
stage of drawing and action timing: the term key frame comes from hand-drawn ani-
mation, where a senior, or  “ lead ” , animator would draw only those frames considered 
 “ key ”  to the action being represented—the most dramatically intense moments of 
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the action. Less experienced animators known as animation assistants and (below 
them)  “ in-betweeners ”  would fi ll in the frames between those key frames. 

 In the digital era, the computer acts as our in-betweener, interpolating object qual-
ities from key frame to key frame. Th e interpolation is represented as an  animation 
curve , a 2D plot of the attribute in question versus time. In the case of translation 
through space, the animation curve is a velocity graph. Some applications, including 
Maya, give animators complete control over the shape of these curves and, there-
fore, over the nature of the in-between action. Th e velocity curve, for example, can be 
manipulated to give a desired acceleration throughout a translation. 

 Procedural animation is a term for animation that is driven algorithmically, not 
unlike its cousin procedural modeling. It is far more similar to simulation than 
animation per se; the animator sets the initial parameters for the objects and then 
watches to see how the animation evolves over time. In a procedural animation, the 
animation curves are produced by your computer model. We will examine animation 
curves, both key framed and simulation generated, in detail later in the book.  

  Dynamics 
 Many 3D applications have dynamic simulation capabilities that utilize a built-in 
 physics engine . In this case natural laws of motion can be applied to a model, which 
has assigned physical properties, to emulate the eff ects of various forces acting on 
it. A simple example is that of a bouncing ball. A gravitational force applied to a ball 
on a sloped surface makes it roll, drop off  the edge, and bounce when it strikes the 
ground below. Attributes such as mass, elasticity, and friction are input by the user 
and the physics engine does the rest. A useful time saver for animators, the robust 

 FIGURE 03.12 

    A defl ating balloon represents the 
concept of animated attributes. 

Not only do the balloon ' s position 
and rotation change over time, but 

so do its size (scale), and surface 
appearance (opacity).    

1 2 3

4 5 6
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onboard dynamics capabilities of a program like Maya can prove useful in the type of 
predictive scientifi c modeling that we ’ re interested in exploring in this book. Where 
the modeling requirements go beyond the capabilities of the onboard engines, Maya ’ s 
programming tools let you develop the model to meet your needs.  

  Lights 
 Like a real stage, a digital stage is dark until you add lights. Most 3D applications off er 
a suite of available lights that mimic those found on a movie set or in a photographer ’ s 
studio. Th ese include spotlights, area lights, point lights, and infi nite lights among oth-
ers, but vary in actual name from application to application. For instance, a light bulb 
is a  point light  in Maya but an  omni light  in Cinema 4D (another robust 3D animation 
package developed by MAXON Computer GmbH of Germany). Th ere is usually a default 
light to provide general illumination before you begin adding lights to a scene. Once 
lights are added, the default is switched off . You may add as many or as few lights as you 
wish, as you will see, and place them throughout the 3D space to best illuminate your 
models to be seen from a given viewpoint. Lights can be colored and assigned a number 
of attributes that produce special eff ects such as dappling or a visible beam of light. 

 Shadows cast by lighted objects in a scene can be a very useful device for conveying 
realism and for emphasizing spatial relationships within a scene. CGI shadows may 
have hard or soft edges (as do real-world shadows) and are typically set and adjusted 
within the controls for a given light. 

 Good lighting is an art in itself, but a beginner can achieve a reasonably good eff ect 
with the standard three-point lighting setup pictured in  Figure 03.13   . Th is confi gura-
tion, often a starting point for photographers, involves a key light for primary illu-
mination, a fi ll light to  “ fi ll in ”  the potentially harsh shadows created by the  key light , 
and a  back light  to add a highlit rim to the upper edges of objects and emphasize their 
contours. Later on in the book you will set up and apply a three-point scheme in a 
protein modeling project.  

Key light

Back light

Fill light
(a)

SubjectCamera

Key light

Back light

Fill light

Subject

Camera(b)

 FIGURE 03.13 

    A standard three-point lighting rig 
involves a key , a  fi ll , and a  back  light. 
(a) Side view. 
(b) Top view.      
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  Cameras 
 In everyday life we use cameras to view and record models and action in our 3D envi-
ronment. Maya, like many other 3D animation tools, implements the same idea to 
help you plan how you will depict the events of your 3D virtual world. When you 
create a new scene in Maya, a default camera provides the view that you see. As you 
maneuver in the space to get a desired view of the scene, you are actually translat-
ing, rotating, and perhaps zooming the Maya virtual camera through which you ’ re 
looking. 3D cameras provide orthogonal and perspective views and have many of the 
attributes of real cameras, such as exposure settings, lens angle, and focal length. 
Th ese attributes, along with the camera ’ s translation and rotation, can be animated 
and keyed for narrative purposes.  

 Shading 
In 3D CGI, shading refers to the combined eff ects of lighting, surface color, surface 
texture, and geometry, determining the fi nal rendered appearance of your models. 
When a Maya object is fi rst created it is assigned a default shader (also called a mate-
rial in Maya) with appearance attributes including color, opacity, and surface char-
acteristics like texture or a geometric pattern. Shaders can be created and applied to 
objects in a number of ways to emulate real-world surfaces and, in some cases, vol-
umes such as glass or fog. Some approaches to shading focus on non-realistic appear-
ances, such as a pen and ink or cartoon (or toon) style ( Figure 03.07 ).

 Rendering 
 Th e production of images from a 3D scene is called rendering, a complex subject 
which combines the eff ects of lights, cameras, and shading. Th e images are saved 
as individual picture fi les or as a group in one movie fi le and can then be displayed 
in succession using a viewing application or passed along for postproduction work. 
Collectively, rendered images are often referred to as footage, borrowing from fi lm 
terminology. Th e image format and pixel resolution of the footage are assigned in the 
render settings of the 3D application, having been determined by the end purpose of 
the animation. For example, you would usually require a diff erent format and reso-
lution for a small movie destined to be viewed in an Internet browser, compared to 
a feature fi lm on a large screen. It is important to know the requirements prior to 
setting up cameras and rendering, particularly if you ’ re creating an animation for an 
established format such as NTSC or an existing web page. 3D applications provide a 
range of standard formats and resolutions to choose from as well as custom settings. 

 Render engines support a number of  photorealism  eff ects that may be of use in devel-
oping a look for your animation projects, including: 

     •       Sub-surface scattering , in which light penetrates a surface, scatters, and re-emerges 
(as in real-world translucent materials such as skin and wax). Th is can create the 
impression of translucent, gel-like substances.  

   •       Ambient occlusion , which models the decrease of ambient light where surfaces come 
close together. Th is is a computationally inexpensive way to add a sense of real-
world light interaction and solidity to an object.  

   •       Global illumination  ,  which is a computationally expensive way to model real-world 
illumination, where light bounces diff usely around a scene and the color of one 

        In recent years computer 
graphics cards have improved 

to the point where, in certain 
cases, their output is suffi cient 

for fi nal quality renders. 
Programs like Maya have 

embraced this possibility with 
the option to render scenes using 
the hardware renderer. Enabling 
this option uses the power of the 

hardware in modern graphics 
cards (sometimes called GPUs, 

for Graphics Processing Units) to 
create the fi nal images, often in 

a fraction of the time a software-
based render would take.      
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object can  “ bleed ”  onto another one nearby. One global illumination algorithm is 
 radiosity .    

 A simple approach to creating a photorealistic look of SEM in Maya, for example, is to 
apply a material called a Ramp shader, that is controlled by the camera direction. Th is 
technique was used to create the image in  Figure 03.05b . You will meet the Ramp shader, 
as well as shaders for the other eff ects discussed here, in  Chapter 08 . 

 Th ere are currently numerous rendering algorithms available to assist you in creating 
non-photorealistic looks for your animations. Th ese NPR tools are available commer-
cial options (built in to production renderers like mental ray; see  Chapter 11 ) and as 
do-it-yourself shader techniques. Many NPR algorithms are designed to emulate tra-
ditional cel-based animation (which consisted of pen drawings on transparent acetate 
 “ cels ” , with fl at or simply shaded color painted on the back) and are therefore referred 
to as toon shader (from cartoon) or cel shader techniques. 

 Whatever approach you choose in terms of the look of your fi lm, you will need an 
effi  cient strategy for producing your fi nal renders. Th is strategy should have two 
components: 

     1.       Compositing plan . A computer animation scene, like the ones you see in fi lms and 
on television, is rarely rendered as a single entity. Usually an individual frame is com-
posed of layers, numbering anywhere from two to tens (or even hundreds) of sepa-
rately rendered images. Sometimes the passes are composed of diff erent image planes 
(e.g. foreground, midground, and background), sometimes they are of diff erent  “ char-
acters ”  (e.g. interacting proteins), and sometimes they are of individual image com-
ponents (e.g. texture color, shadow, and highlight passes). Th ere are very practical 
reasons for this: some eff ects are too diffi  cult or compute intensive to render directly 
(e.g. depth-of-fi eld eff ects) and relatively easy to add at the compositing stage; and 
changes are easier to make when only one component of a scene needs be re-rendered 
rather than the whole scene. Also, by rendering elements like lights and shadows in 
separate passes, they can be easily tweaked for maximum eff ect. While aff ording fl ex-
ibility, rendering multiple passes can be more time consuming than rendering just 
one. Th e choice, therefore, will depend on available time, and the end use.  

   2.       Data management plan . Given the huge number of render fi les generated by the 
typical animation project and the general practicality of rendering in multiple passes 
(which can multiply the number of render fi les many times), it is essential to main-
tain a sane data management strategy. Th is has a number of components:  

   •      Project directory hierarchies are used to organize fi les by type. For example, Maya 
will, by default, save rendered image fi les to the Images directory within your cur-
rent Maya Project folder (more on this in the next chapter).  

   •      File naming conventions help you keep track of your work and are important for 
tracking fi le versions (e.g.  myScene_001 ,  myScene_002 , and so on). Naming conven-
tions are especially helpful on larger projects where multiple users are sharing 
fi les.  

   •      Multiple backups of essential fi les: the most important fi les in the production 
phase are your Maya animation scene fi les and the fi les on which they depend (tex-
tures, ASCII data, embedded reference fi les); these should be redundantly backed 
up, preferably with an off -site option. Final renderings are also important, but in a 
crunch, they can be re-rendered from the scene fi les. In the postproduction phase, 
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your editing/compositing application project fi les are most important. Losing your 
footage (render) fi les means re-rendering lost scenes; annoying and time consum-
ing, but not tragic. But losing your Maya scene and editing/compositing project 
fi les would mean recreating the project from scratch.    

Rendering can tax your computer system enormously, with a single frame taking 
from as little as a few seconds to as long as 30 minutes or more to produce. Th e time 
taken is a function of scene complexity, image resolution, available memory ( RAM )  , 
and processor speed among other factors. Commercial animation studios typically 
employ an array of computers, called a  render farm , to produce renderings more effi  -
ciently. Imagine a 90 minute animated feature created at 30       fps, with each frame 
taking an average of 10 minutes to render. Th is translates to 27,000 hours, or 1,125 
days on a single computer! Th at ’ s over 3 years of non-stop computing, assuming there 
are no errors and, therefore, a need to re-render some portion. It ’ s easy to see why 
RAM and processors are at a premium when it comes to producing animated footage. 
Don ’ t be discouraged, however. We routinely produce high-end rendered animations 
on modestly powerful desktop PCs and Macs. Th roughout the book we will explore 
diff erent rendering modalities that span a range of aesthetic and time-effi  cient 
possibilities.

  The 3D animatic or layout 
 In some 3D animation production workfl ows, a further refi nement of the 2D animatic 
is completed as an early stage of production. Th is is called the layout stage, or the 3D 
animatic. Draft versions of key object geometry and sets are constructed in 3D and 
camera movement and simple object motions are choreographed. Draft quality ren-
derings are set to a  “ scratch ”  (draft) soundtrack. Th e result off ers another opportu-
nity to confi rm the choices made in the earlier stages, or to refi ne the narrative fl ow 
further. An added benefi t to the animator is the knowledge of exactly where cameras 
are to be placed in each scene and the economy that can be realized by only build-
ing and refi ning things that will be seen by those cameras. Th ere is no use building a 
whole street when you are only going to shoot one side of it. 

 Th e 3D animatic is considered part of production since much of the work, especially the 
camera positioning and animation, will survive in the fi nal version, even though the
sets and objects are usually substantially refi ned or completely replaced.   

  Workfl ow stage 3: Postproduction 
It is rare that an animation is in fi nal form when rendered from a program like Maya. 
More often lengths of footage are produced and combined in an editing application 
where other elements like sound and titles are added. It is here, in the postprocess-
ing (or just post) stage, that special eff ects usually are produced. In our workfl ow, 
for example, we regularly use Adobe After Eff ects to composite and enhance the 
appearance of our footage, and to add special eff ects, titles, narration, and music. 
Compositing applications like Adobe After Eff ects, Discreet ’ s Combustion, and 
Apple ’ s Shake are well suited to compositing and special eff ects work for short fi lms 
and for individual shots within longer fi lms. While also a competent compositor, an 
application like Apple ’ s Final Cut Pro is more oriented to editing and is well suited to 
longer fi lms. It is not uncommon to use After Eff ects to produce segments of eff ects-
heavy footage and then composite all footage in an editor like Final Cut Pro to create 
the assembled fi lm.

        Much of our rendering work 
to date has been done on PCs 

equipped with Pentium 4 or AMD 
Athlon XP2700 processors and 

typically 1 GB of RAM.      

        At the time this book was 
published, Apple Shake was 

available for Mac OS X
and Linux systems only and 

Adobe After Effects supported 
Mac OS X and Windows 

systems.      
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 Moreover, it is also common to render components of 3D animated scenes, such as the 
background and foreground elements, in separate passes to be composited in post. 
By rendering elements like lights and shadows in separate passes, they can be eas-
ily tweaked for maximum eff ect. If, however, they are rendered together in one pass, 
they can only be adjusted within the 3D application and then re-rendered. While fl ex-
ible, rendering multiple passes is more time consuming than just one, and requires 
competent fi le organization and management. Th e choice, therefore, will depend on 
available time, and the end use. 

 Regardless of the approach taken, your fi nal animation must be output from the edit-
ing application as a sequence of image fi les or as a self-contained movie fi le. Since 
there is considerably less computer processing involved at this stage, the output or 
 “ fi nal render ”  from the editing or compositing stage (not to be confused with the 3D 
animation rendering discussed above!) takes far less time than an average render 
from a 3D application.   

  Putting it all together 
 Now that you have a sense of the computer animation workfl ow, it ’ s time to start 
Maya and have a closer look at how crucial workfl ow steps like modeling, animation, 
and rendering are tackled. Th e next part of the book will introduce you to Maya. We ’ ll 
then have you writing MEL code and rendering your own animations. Onward!  
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         We wanted this book to be self-contained without just repeating what others have 
communicated so well. Th e material in this part of this book is therefore intentionally 
brief. Th ere are many excellent resources available for learning Maya, including the 
Help library that comes with the software. Also, we encourage you to take advantage 
of the resources listed in the  Further reading  section under the heading,  Learning Maya .       
  Getting started 
 Th is chapter will get you started in Maya. We ’ ll begin with a quick description of 
the diff erent Maya packages, followed by where to look for help and a listing of sys-
tem requirements, and then a description of Maya scene fi les and projects. Next we 
provide a brief discussion of how Maya works behind the scenes. With these basics 
out of the way, you ’ ll be ready to explore the user interface ( UI ), which we introduce 
throughout the rest of the chapter. 

  Maya Complete 
 Maya Complete is the name given to the software package which contains the basic 
modeling, animation, dynamics, and rendering functionality. It is also programmable 
via the Maya Embedded Language (MEL) and Python scripting interface and the C �  �  
developer application programming interface (API).  

  Maya Unlimited 
 Maya Unlimited includes all of the Maya Complete functionality, with the addition of 
software modules that enhance specifi c areas of the computer animation workfl ow. With 
the release of Maya 2008, the following modules were included: hair; fl uid; fur; live; and 
nCloth. Descriptions of these are available on Autodesk ’ s website and within Maya Help.  

  Maya Personal Learning Edition 
 Autodesk, the makers of Maya, provide a limited version of the software free-of-charge 
for non-commercial use. Maya Personal Learning Edition (PLE) can be downloaded 
from the Autodesk website at the following URL (current February 2008): 

     http://usa.autodesk.com/adsk/servlet/index?siteID = 123112 & id = 7639525     

 With this version of Maya you can be up and running in a matter of minutes. For a 
list of limitations and restrictions to Maya PLE, follow the  Questions  &  Answers  link 
on the above Web page. Among these limitations, the following should be noted with 
regards to the material presented in this book: 

     •      Maya PLE uses a diff erent fi le type (.mp) than the commercial version of Maya 
(.ma and .mb).  

   •      Maya PLE fi les cannot be opened in the commercial version of Maya.  

   •      Images rendered from Maya PLE bear a watermark.  

   •      Vector image formats cannot be rendered from Maya PLE.  

   •      Certain MEL commands cannot be run in Maya PLE. Th ose worth noting here are 
 fopen  and  fwrite .  

   •      Certain fi le translators (for importing and exporting non-Maya fi le formats) are 
not supported in Maya PLE.     
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 System requirements 
 Check the documentation accompanying the version of Maya you ’ re using for sys-
tem requirements. Autodesk provides information on their website regarding Maya-
qualifi ed hardware: 

     http://www.autodesk.com/qual-charts     

  The mouse 
 We recommend using a 3-button mouse and have written instructions throughout 
this book accordingly. In the text, we use the following abbreviations: 

    LMB   =  left mouse button  

  MMB  =  middle mouse button  

  RMB   =  right mouse button  

   The terms  click  and  Double-click  apply to the  LMB.     

 Monitors 
If your budget and desk space allow, dual monitors are a good idea. Editing windows 
can be placed on one screen, allowing you to maximize the view of your scene in the 
main window on the other.

  Help and instructions 
 As you learn to use the software, Maya ’ s Help Library ( Figure 04.01   ) will be your single 
greatest resource. It provides information, and often examples, for most of the pro-
gram ’ s features and functions. Frequently in the text, we will set down a Maya Help 
reference where you can pick up more information on the current topic, with arrow 
characters ( → ) separating links or titles as follows:

Maya Help  →  Using Maya  →  Tools, Menus, and Nodes  →  Main Window       

 To launch Maya Help: 

    Choose Help  →  Maya Help  

  or  

  press F1    

You may also fi nd the  Popup Help  feature useful as you feel your way around the UI; it 
is enabled by default the fi rst time you start Maya and will display a short description 
of each tool and button that you pause over with your mouse.  

 Th rough this and the subsequent chapters, we have written step-by-step instructions 
as follows: 

    1.     Choose Create  →  Polygon Primitives  →  Cube     .    

  Figure 04.02    shows the menu selection corresponding to the above instruction. Th e 
result is the creation of a polygonal cube model.  

    Consult the Qualifi ed Hardware 
lists on the Autodesk Maya 
support website if you are 
considering using Maya with a 
small display. Some laptop and 
tablet displays are too small 
(smaller than 1280  �  1024) for 
Maya and limit its usability.    

    To enable or disable  Popup 
Tooltips , choose  Help →Popup 
Help . Popup Tooltips work only 
on the active window. You make 
a window (or editor) active by 
clicking on it.    
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  Release notes 
 You may encounter strange limitations in Maya ’ s performance, including UI oddi-
ties that are peculiar to a specifi c operating system. Th e Maya developers at Autodesk 
often are aware of these problems before the software package is published and 
include a list of known limitations along with suggested solutions (or work-arounds):

Release Notes 

 Maya Help  →  Using Maya  →  General  →  Release Notes        

  Hotkeys 
 A  hotkey , also known as a  keyboard shortcut , performs a task with a single keystroke 
or combination of keystrokes. Th is saves the time otherwise spent locating an item 
with your mouse pointer. Useful hotkeys will be mentioned where appropriate. You 
can create a custom hotkey for just about any operation in Maya, including the execu-
tion of MEL commands and whole scripts. 

 In Windows, Linux, and IRIX, key combinations involve either the Ctrl or Alt key. Th e 
Mac OS equivalents are the Command (or Apple) key and Option key, respectively.
Th e Shift key is common to all systems. For effi  ciency, we use the Windows key nota-
tion throughout this book.

FIGURE 04.01

Maya Help can be accessed 
using the F1 hotkey. References 
throughout the text of this book 

indicate the links to click on in the 
Contents section. Keyword searches 

return links in two categories: 
Information and Tutorial.
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Hotkeys 

 Maya Help  →  Using Maya  →  General  →  Basics  →  Basic Tools  →  Hotkeys        

  User profi les 
 Maya, when installed, automatically creates a profi le for each user account on the 
computer.  Figure 04.03    shows the directories and several of the fi les that make up a 
user profi le, where Maya, by default, stores and retrieves fi les, including user prefer-
ences. Th e advantage to this setup is that users don ’ t require system administrator ’ s 
access to use Maya and organize their fi les, and each user can have their own settings 
for Maya.  

  Start Maya 
 To start Maya, do one of the following: 

      Double-click the Maya desktop icon or the Maya application icon in your 
program (or applications) directory.  

or   Type maya at a command prompt.  

or    In Windows, choose: Start  →  All Programs  →  Autodesk  →  Maya (version #) 
→  Maya (Complete, Unlimited, or PLE, and version  # ).     

FIGURE 04.02

Menu selections in Maya are 
written as follows in the text:

Choose Create → Polygon 
Primitives → Cube .
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  The scene fi le 
 In Maya, a scene is the 3D environment, including models, animation, lights, and 
cameras, contained in one fi le. When you open a fi le in Maya, you open a scene. Scene 
fi les are of two types: 

1.     Maya ASCII, denoted by the fi le extension .ma as in myNewScene.ma. A Maya 
ASCII fi le, which is written in MEL script, can be opened and edited in a text 
editing application. Th is comes in handy if a Scene fi le becomes corrupted 
and will not open in Maya; it is often possible to track down and delete or 
correct the off ending bit of code in a text editor, then resave the fi le and 
attempt to open it again in Maya .

2.     Maya Binary, denoted by the extension, .mb, as in myNewScene.mb. Binary fi les 
are written in computer machine code and therefore cannot be easily edited 
in a text application, the way ASCII fi les can. However, .mb fi les are generally 
smaller than .ma fi les, so they take up less storage space on your hard drive, 
and take less time to open, save, and render than .ma fi les do. We usually 
work with Maya binary fi les but save backups in Maya ASCII format because 
of the security the latter provides against corrupt fi les .          

  Figure 04.04    shows excerpts from .ma and .mb versions of the same fi le.  

  The Maya project 
 Maya saves scene and related fi les in a  projects  directory on your hard disc. It is the 
directory that Maya defaults to when saving or retrieving fi les. Multiple projects 
directories can exist, but Maya will refer only to the one that has been specifi ed, either 
by default the fi rst time you launch Maya, or by you as described below. Within the 
projects directory, you have the option to create subdirectories to organize diff erent 
fi le types that may be associated with your main Scene fi le. To create a new Project: 

    1.   Choose File  →  Project  →  New. This will open the Project window.  

  2.     Enter a name for your Project in the Name fi eld.  

FIGURE 04.03

A user profi le consists of directories 
and fi les specifi c to Maya for a 

given user.

We recommend saving frequent 
incremental backup versions of 

a scene fi le as you work on it. 
If the current version becomes 

corrupted or you made a change 
to the scene that you wish to 

undo but can ’ t, you can simply 
open the previous version of the 

fi le and continue working.
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  3.   Click Use Defaults to create default subdirectories  

or   Enter names only in the fi elds for which you want subdirectories created.  

    For the projects and tutorials in this book, the confi guration shown in  Figure
04.05 will suffi ce. You won ’ t require directories for the fi elds that have been 
left blank because you won ’ t generate or read in the types of data typically 
stored in those fi elds—at least with respect to the exercises in this book.    

 Th e new project is created in the default Maya projects directory unless you navigate 
to a preferred location using the Browse button before hitting Accept. By creating a 

FIGURE 04.05

The New Project window. The 
names in the text fi elds will be used 
to create the directories in which 
Maya writes and looks up fi les.

    FIGURE 04.04 

    Excerpt from a Maya scene viewed 
in a text editor:

(a) Maya ASCII format, 

(b) Maya Binary format, and 

(c) as seen in Maya.         

(a) (b) (c)
FOR4[•šÈMayaFOR4[][¤HEADVERS[][]
ef[][MADE[][]undef[][CHNG[][]Wed,[A
:11:00[PM[][ICON[][]undef[][INFO[][]u
undef[][INCL[][]undef([]LUNI[][]cm[]T
[][]deg[FINF[][]application[maya[][]FI
t[Maya[Unlimited[7.0[]FINF[][version

icrosoft[Windows[XP[Service[Pack[2[
n[]PLUG[][]Mayatomr[7.0.1.14m[-[3.4
4[][¨XFRMCREA[][]persp[]DBL3[][]t[]¿ç

è[][DBL3[][]rp[]<Ð[][][]<[][][][<À[][][]D

spShape[persp[][FLGS[][]v[][DBLE[][]r

//Maya ASCII 8.5 scene
//Name: mayaCodeSample.ma
//Last modified: Sat, Nov 10, 2007 12:1
//Codeset: 1252
requires maya “8.5”;
currentUnit -l centimeter -a degree -t 
fileInfo “application” “maya”;
fileInfo “product” “Maya Unlimited 8.5
fileInfo “version” “8.5”;
fileInfo “cutIdentifier” “200612162224-
fileInfo “osv” “Microsoft Windows XP S
createNode transform -s -n “persp”;

setAttr “.v” no;
setAttr “.t” -type “double3” 239 179 
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project, you have already begun exploring Maya ’ s UI. Th e next section puts the UI in 
the context of how Maya works behind the scenes.   

  How Maya works (briefl y) 
 Th ough deep, Maya is designed to be remarkably transparent; its inner workings are 
exposed for those who wish to explore beyond the basic UI tools. Our discussion of the 
program architecture will lay the foundation for such an exploration and help you under-
stand what ’ s actually happening—with the models, cameras, lights, animation, and so 
on—when you start pressing Maya ’ s buttons. While much of what follows here may seem 
rather abstract to the Maya beginner, this is nonetheless the place to discuss it since it 
concerns the foundation on which everything you will do in Maya is based. You may wish 
to skim this section at fi rst, then come back to it after covering the rest of  Part 02 . 

  The Maya program architecture 
 Th e underlying architecture of Maya is what sets it apart from other high-end 3D com-
puter graphics applications. It is arguably infi nitely fl exible and expandable, which is 
a primary reason for choosing Maya as a platform for in silico biology. However, it is 
possible to use Maya extensively without ever being aware of what ’ s going on beneath 
the surface. Th is is a testament to Maya ’ s ease of use. Nonetheless, a basic knowledge 
of the underlying structure will make your experience with Maya more meaningful, 
and can pave the way to more advanced work with the program, including the develop-
ment of custom tools called  plug-ins.   

  The Dependency Graph and DG nodes 
 In Maya, scene elements are represented by nodes connected to one another. Th e com-
plete network of nodes and their connections is called the  Dependency Graph  ( DG,  for 
short), and the nodes themselves,  DG nodes . Th e term  dependency  refers to the interde-
pendency of elements in the Maya scene. For example, the location of a moving cube 
 depends  on an input connection from an animation node which calculates its position. 
Th e animation node in turn depends on a Time node in order to calculate its value(s). 

 Th e DG essentially  is  the Maya scene. Most users interact with the DG using the win-
dows, menus, and tools of the UI.  Figure 04.06    is a schematic illustration of the DG and 
UI working together. When you perform an action through the UI, it is relayed as a 
MEL command to the DG, where either a DG node is created and/or connected to 
another. 

 A DG node stores, sends, and receives information (or data) about an item in a Maya 
scene. Data is stored in  attributes  which can be connected to the attributes of other 
nodes in order to send or receive information. Th ere are many types of attributes, 
each storing specifi c information, such as the color of an object or the brightness of 
a light. In many cases, a node performs calculations on the data it receives (through 
input attributes) to produce the data it sends (through output attributes).  Figure 04.07    
is a schematic representation of a simple DG node. Maya allows great fl exibility for 
viewing and interacting with the DG nodes and their attributes.  Figure 04.08    shows 
three UI windows with diff erent views of the same node and its attributes. 

From the software engineer ’ s point of view, working in Maya might be said to 
boil down to creating nodes, then setting and interconnecting their attributes. 
For example,  Figure 04.09    shows the DG nodes that are created and connected when you 
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Windows
Menus
Tools

MEL script
MEL command

engine

Plug-ins
Changes to the DG are

reflected in the UI

User Interface Dependency
Graph

DG
node

FIGURE 04.06

The Maya UI translates user input 
through MEL commands to the 
DG. Updates to the DG are in turn 
refl ected in the UI.

DG node

Attribute A

Function

Data In
(upstream)

Attribute B

Attribute D

Data Out
(downstream)

Attribute C

FIGURE 04.07

Schematic representation of 
a simple DG node. Attributes 
store data. Functions calculate 
new data. Data coming into a 
node is commonly referred to 
as “upstream”. Data leaving is 
“downstream”.

(a) (b) (c)

FIGURE 04.08

One node, as represented by:

(a) the Hypergraph

(b) the Attribute Editor

(c) the Connection Editor.
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make a sphere model in Maya. Most items in a scene, including the sphere, are repre-
sented by at least two nodes, called the  transform  and  shape  nodes. Th ere is only one 
type of transform node, which is used by all objects, cameras, and lights in a scene. 
Transform node attributes store the position (or translation), rotation, scale, and 
visibility of an item. In contrast, there are many types of shape node, each of which 
stores attributes peculiar to the entity it represents.  Figure 04.10    shows the transform 
and shape nodes of a camera, as represented in the Attribute Editor, a tool you will 
use a lot for working with nodes in Maya. Note the translation, rotation, scale, and 
visibility attributes of the transform node. Th is shape node contains attributes 
unique to a camera, such as Focal Length and Camera Aperture.       

  Construction history 
 When combined, any number of nodes used to create an object—the sphere from 
 Figure 04.09 , for example—make up that object ’ s construction history. As long as 
this network of history nodes remains intact, their attributes can be edited to 
change some feature of the sphere. Th e node called polySphere1 contains creation 
attributes—those that you set when you made the sphere. As long as polySphere1 

FIGURE 04.09

The DG nodes that represent a 
polygon sphere are displayed in 
the Hypergraph as boxes. When 

selected, a node turns yellow, as is 
the case for pSphere1.

The Attribute Editor is one 
of many editors that allow 

interaction with the elements of 
a Maya scene. You ’ ll see more of 

it in the next section.

FIGURE 04.10 

   The Transform node (left) and 
Shape node (right) of a camera, as 

displayed in the Attribute Editor.    
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remains connected to the shape node, pSphereShape1, you can change the radius of 
the sphere, for example. As soon as that connection is broken, by deleting history for 
the sphere, you can no longer edit the radius. Construction history is a powerful fea-
ture of Maya ’ s architecture: you can alter any node in the history network, and the 
object updates automatically. 

 As you work in Maya, you will become familiar with nodes and how to set and con-
nect their attributes. You can work with nodes through the standard UI tools, through 
MEL scripting, or directly in the Hypergraph. We will explore the DG a little further in 
 Chapter 05 , using a graphical representation called the  Hypergraph  ( Figure 04.09 ).

The DG 

 Maya Help  →  Using Maya  →  General  →  Basics  →  Nodes and attributes  →
Dependency Graph         

  Scene hierarchy and the DAG 
In addition to the DG, which maps the interdependency of nodes and their attributes, 
Maya uses a system of connections among transform nodes called the  scene hierarchy .
Th ere are two types of relationship in the hierarchy. Th ese are parent/child and group 
relationships, and they aff ect how items in your scene relate spatially to one another. 
An example of these hierarchical relationships is shown in  Figure 04.11   . pSphere1 (short 
for polygon sphere 1) is a child of pCube1, and pCube1 is the parent of pSphere1. Both 
pCube1 and pCube2 are  “ grouped ”  together under group1. It can also be said that the 
cubes are children of group1. Th e scene hierarchy is represented graphically by the 
 Directed Acyclic Graph  (DAG), which is viewed through the Hypergraph ( Figure 04.11 ).

       When a parent is transformed (translated, rotated, or scaled), so are its children. 
A child may also be transformed relative to the transform of its parent. Th ese features 
of parent/child relationships are used extensively in computer animation, enabling 
the build up of complex relative motion. One everyday example of parent/child hier-
archy concerns a wristwatch. Th e hands, which are children of the watch move rela-
tive to it. Th e watch in turn is a child of the wrist of its wearer, which is a child of the 
wearer ’ s body. As the wearer walks down the street, the motion of the hands rela-
tive to the ground is considerably complex—a formidable kinematics problem—but 

In 3D computer graphics, the 
term   parenting   refers to making 
one item the child of another.

(a) (b)

                   FIGURE 04.11 

  Scene hierarchy (parent/child and 
group relationships) is displayed 
graphically in both the

(a) Outliner, and

(b)  as the DAG in the Hypergraph.
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this motion was brought about by simple hierarchical relationships. We will exploit 
parenting in the upcoming tutorials and projects.

Scene hierarchy 

 Maya Help  →  Using Maya  →  General  →  Basics  →  Nodes and attributes  →
Scene hierarchy        

  The DG, DAG, and biology 
 It has not escaped our notice that the DG bears striking similarities to biochemical reac-
tion pathway diagrams familiar to biochemists, both visibly and conceptually ( Figure 
04.12   ). In the latter, nodes represent specifi c molecules and the connecting lines, poten-
tial reactions between molecules. Similarly, processes in cell development and inter-
action, can be mapped as interconnected nodes. Parallels can also be drawn between 
Maya ’ s transform hierarchy and hierarchical organization in biology. For example, the 
compartmentalization of functional groups of molecules within cells and the arrange-
ment of cells into tissues bears resemblance to the parent/child and group relationships 
in a Maya scene ( Figure 04.11 ). It is with these ideas in mind that we are exploring the 
application of Maya ’ s programmable architecture to problems in cell biology.   

  Maya ’ s UI 
 A logical way to start exploring Maya is with a tour of the graphical UI. Its main ele-
ments are labeled in  Figure 04.13   . In addition to a view of the 3D digital stage, which 
Maya calls the workspace, you have access to many menus, tools, and controls. Th e 
items that are labeled will be introduced below, while others will be described only as 

FIGURE 04.12

Molecular interaction and reaction 
pathway diagrams share visual and 

conceptual similarities with the 
underlying organization of a scene 

in Maya.

(a) A scene represented in the 
Hypergraph.

(b) Molecular interaction pathways 
involved in the regulation of the 
actin cytoskeleton. Detail from 

“Regulation of actin cytoskeleton” 
KEGG Pathway Database:  http://

www.genome.jp/kegg/pathway/hsa/
hsa04810.html. Accessed January 
20, 2008. Kanehisa Laboratories in 

the Bioinformatics Center of Kyoto 
University and the Human Genome 

Center of the University of Tokyo. 
Used with permission.

© Copyright and courtesy 
Bioinformatics Center, Institute 

for Chemical Research, Kyoto 
University.

(a) (b)



83CHAPTER 04: MAYA BASICS

needed as they arise in the tutorials and projects. Furthermore, the UI may be cus-
tomized in a number of ways to suit specifi c requirements. UI customization is dis-
cussed briefl y in the Hotbox, Toolbox, and Preferences sections. 

 If a UI Element in  Figure 04.13  was not visible after you started Maya, it may have been 
hidden the last time Maya was used. You can hide and display an element in the fol-
lowing way: 

    1.     In the Main menu bar, choose Display  →  UI Elements.  

  2.      Select the item you wish to hide or display. A check mark appears next to 
ones that are already displayed.    

 Alternately, you can hide or show all UI Elements or restore the default UI display by 
selecting Hide UI Elements, Show UI Elements, or Restore UI Elements, respectively. 

  Title bar 
 Th e fi le name and the path as well as the name of the currently selected item are dis-
played in this space.  

  Main menu bar 
 As you work in Maya, you will encounter many  tools  and  editors . Tools let you transform 
and otherwise manipulate items in a scene, while editors give you access to tool set-
tings, item attributes, and software functionality. All of Maya ’ s tools and editors can be 
accessed through the UI ’ s pull-down menus. Th e icons arranged around the UI simply 
off er quicker access to many of the tools and actions represented in the menus. Th ere 

Main menu 
bar

Workspace
(panel)

Panel menus

Time SliderRange Slider

Playback controls

Status line

Shelves

Toolbox

Command 
Line

Preferences button
Script Editor button

Channel Box

Layer Editor
Layout shortcuts

Grid

Help Line
FIGURE 04.13

The Maya UI.
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are four main menu sets (more if you purchased extra modules or the Unlimited version 
of Maya) which are displayed, one at a time, along the Main Menu bar at the top of the 
interface. Th ey are Animation, Polygons, Surfaces, Dynamics, and Rendering, and each 
corresponds to a specifi c software module, or more generally, to a collection of like tasks. 

 Th ere are seven pull-down menus (File, Edit, Modify, Create, Display, Window, and 
Help) that are common to all menu sets, while the remaining pull-down menus con-
tain items specifi c to each set. To switch between menu sets, say from Animation to 
Modeling, use the menu at the far left of the Status Line. 

 Alternately you can use a hotkey to bring up each set: 

    F2 for Animation  

  F3 for Polygons  

  F4 for Surfaces  

  F5 for Dynamics  

  (The Rendering menu set does not have a default hotkey)   

Hotkey Editor 

 Maya Help  →  Using Maya  →  General  →  Basics  →  Basic Windows and Editors 
→  Hotkey Editor       

 Each time you launch Maya, it loads all of the licensed software modules. Each mod-
ule takes up memory (RAM) on your computer. You can disable any of these modules 
(e.g. Dynamics, Hair, or Fur) so that it doesn ’ t load automatically on Maya startup, 
and therefore saves memory. To disable a software module: 

    1.     Choose Window  →  Settings/Preferences  →  Preferences.  

  2.      Under Categories  →  Modules  →  Load on Startup, uncheck the box next to 
the module you wish to disable. To enable a module, check its box.     

  Working with menus 
 Menus are critical to how tools and actions are accessed in Maya. Th e following descrip-
tions will help you take advantage of built features that enhance menu usability. 

  Tear Off menus 
 Many individual menus in Maya can be  “ torn off  ”  so that they remain open, with 
their contents easily accessible, and can be positioned anywhere on the screen. Th e 
Tear Off  option is indicated at the top of the menu by a double line in Windows and a 
dotted line in Mac OS.  

  Marking menus 
 Th ese are customizable menus that can be accessed from anywhere in the interface. 
In addition to accessing Maya ’ s built-in tools and actions, you can tailor the Marking 
menus to execute custom scripts. Th is can be useful in a modeling application in 
which you use a script to execute a series of repetitive tasks. With a custom Marking 
menu you could, for example, execute the script easily from wherever your mouse 
pointer happened to be.



85CHAPTER 04: MAYA BASICS

Marking menus 

 Maya Help  →  Using Maya  →  General  →  Basics  →  Interface overview  →
Maya ’ s Interface  →  Marking menus        

  Hotbox 
 Th e Hotbox ( Figure 04.14   ) can display all of Maya ’ s menus at once, giving you access to 
every tool and editor. To access it, press and hold the space bar. It will pop up wher-
ever your mouse cursor happens to be. You can load the Hotbox with as many or as 
few menus, standard and custom, as you like. When you ’ re comfortable with it, you 
can hide most of the standard UI Elements (such as tool and menu bars) to reduce 
screen clutter and increase your visible workspace, using only the Hotbox to access 
the menus. To hide or show UI Elements: 

    1.     Choose Display  →  UI Elements.  

  2.      Elements that are currently displayed have check marks beside them. 
Choosing an element changes its status from displayed to hidden or vice 
versa.    

 To customize the Hotbox contents: 

    1.     Press and hold the space bar to bring up the Hotbox.  

  2.     Move your mouse pointer over Hotbox Controls.  

  3.     Choose from the many display/hide options.   

FIGURE 04.14

The Hotbox provides access to all 
menus available through the UI. It is 
activated by pressing the space bar 
and appears wherever the cursor is.
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To customize the Hotbox 

 Maya Help  →  Using Maya  →  General  →  Basics  →  Preferences and customiza-
tion  →  Customize Marking menus and the Hotbox  →  Customize the Hotbox        

  Option boxes 
 Many menu items are followed by the option box symbol,     . When chosen, this 
launches a window containing options for the selected tool or command. When it is not 
chosen, Maya applies the options that were most recently set—often the default values.   

  Status Line 
 Th e Status Line provides easy access to a variety of controls for the interface, for man-
aging your scene, and for modeling and rendering. Th ese items, as with most in the 
UI, can also be accessed through the pull-down menus and the Hotbox. In the Status 
Line, they are arranged in groups that can be collapsed and expanded by clicking on 
the vertical bars. At the far left of the Status Line is the menu with which you choose 
a software module: Animation, Dynamics, Polygons, Surfaces, or Rendering.  

  Shelves 
 Shelves are a means of organizing tools and actions for quick access. Maya comes 
with a number of prestocked shelves to which you can add more items. For exam-
ple, the Surfaces shelf displays buttons used to create each of the NURBS geometry 
primitives—sphere, cube cylinder, cone, plane, and torus—along with tools to edit 
and manipulate these surfaces. You can also create your own custom shelves for easy 
access to menus, palettes, tools, and actions that you use frequently. In the following 
example you will create a custom shelf to which you ’ ll add the Outliner, a window 
that you will use often in Maya. 

    1.      By default, Shelves will be displayed in the UI (Figure 04.13). If they are not vis-
ible, choose Display  →  UI Elements  →  Shelf.  

  2.      Choose Window  →  Settings/Preferences  →  Shelf Editor.  

FIGURE 04.15

(a) Creating a custom shelf and 

(b) adding an Outliner button to it.
(a) (b)
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  3.      In the Shelves editor, select the Shelves tab. Click on New Shelf ( Figure 04.15a)
and type  Custom  in the Name fi eld. A new empty shelf called Custom should 
appear alongside the existing ones. Notice that you can rename or delete any 
Shelf using this palette.  

  4.      Click on Save All Shelves.  

  5.      Click on the tab for the new Custom Shelf in the main window to make it the 
active shelf.  

  6.      Press and hold Ctrl+Shift while you choose Window  →  Outliner ( Figure 04.15b ). 
Release the mouse button, then the keys.

    This adds the Outliner to your Shelf—a new      icon will appear.  

    Follow the same procedure to add any menu item to a Shelf. In  Chapter 12 , you ’ ll 
create a shelf button to execute specifi c a MEL.     

  7.     Click on the      icon at any time to bring up the Outliner palette.   

Working with Shelves 

 Maya Help  →  Using Maya  →  General  →  Basics  →  Preferences and customiza-
tion  →  Customize Marking menus and the Hotbox  →  Customize shelves        

  Outliner 
 Th e Outliner is one the most commonly used windows in the Maya UI. It lists the 
objects, cameras, and lights in your Maya scene and enables you to easily select and 
organize them into hierarchies. While not a default UI Element, you will benefi t from 
having the Outliner ( Figure 04.16   ) close at hand—which is why you added it to your cus-
tom shelf. To open it, do one of the following: 

    Click on the      icon as described above in your Custom shelf.  

or  From the Main menu bar, choose Window  →  Outliner.    

 Unless you ’ ve added any objects to your new scene, the Outliner will only contain the 
default cameras, light set, and object set. We will use the Outliner and explain hierar-
chies in one of the upcoming tutorials.

FIGURE 04.16

The Outliner lists the objects, lights 
and cameras in a scene.
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Outliner 

 Maya Help  →  Using Maya  →  General  →  Basics  →  Basics Windows and Editors 
→  Outliner        

  Workspace and the Panel menus 
 Th e workspace is the part of the UI that displays the 3D scene ( Figure 04.17   ). Within it 
you view and manipulate objects, cameras, lights, and other elements of a scene. It 
contains one or more  panels . A panel can contain a view of your scene through a cam-
era—which we call a  scene view —or any one of Maya ’ s many windows and editors. 

  The active panel 
Within the workspace, the active panel is the one with a blue box around it (e.g. top- 
right panel in  Figure 04.17 ). Only the active panel responds when you move the scene 
view by tumbling the camera. You make a panel active by clicking anywhere inside it, 
or on its menu bar. You can toggle between a multi-panel arrangement, like that in 
 Figure 04.17 , and a full-workspace view of a single panel. To toggle between views:

    Move your mouse pointer over top of the view you want to toggle and hit the 
Space bar.     

  Panel menus 
 Th ese menus, at the top-left of the workspace, contain a number of settings that 
determine what is shown in the workspace, including options for cameras and 

        Hotkeys will only work 
if a panel is active.      

The Workspace

panels

FIGURE 04.17

The workspace with four panels 
displayed. A blue outline indicates 

the active panel (upper right).
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lights, and for the way that Maya displays various items. Below we describe the more 
commonly used items from the Shading, Lighting, and View menus. We will discuss 
the remaining functions and menus only as they are needed to assist you with the 
book ’ s tutorials and projects.

Panel menus 

 Maya Help  →  Using Maya  →  General  →  Basics  →  Basics menus  →  Panel 
menus        

  Shading menu 
Th is menu ( Figure 04.18a   ) is used to set the type of interactive shading used; 
in other words, how objects will appear as you interact with them in the workspace. 
Your selection here has no eff ect on how objects will appear when  rendered , but 
can impact the speed with which you work as it relates to the video refresh limita-
tions of your computer. In general, it takes more graphics computing power to dis-
play smooth shading and color than it does to display wireframe, bounding boxes, 
or points. It is common practice to switch between modes regularly as your needs 
change during a work session. Th e fi rst eight Shading menu items are the most 
relevant presently and are explained below. Th e remaining items are explained in the 
Help Library:

       Wireframe  displays polygon edges for polygonal objects and  isoparametric  curves 
(or  isoparms ) for NURBS objects. For navigating in complex scenes, this mode 
allows considerably faster interaction than smooth shading.  

FIGURE 04.18

The Panel menus:

(a) Shading menu,

(b) Lighting menu,

(c) Panels menu.
(a)

(b)

(c)

Wireframe mode hotkey:  4
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   Smooth Shade All  shows objects closer to how they ’ ll appear when rendered, with 
surface color and tone.  

   Smooth Shade Selected Items  same as above for selected items only.  

   Flat Shade All  displays surface color but lacks the smooth surface appearance of 
smooth shading and therefore is faster to refresh than smooth shading.  

   Flat Shade Selected Items  same as above for selected items only.  

   Bounding Box  represents each item in a scene with a wireframe box defi ned by 
the item ’ s bounding volume. It is very quick to redraw and therefore useful when 
navigating in complex scenes.  

   Points  diplays the surface vertices of an object. Th is mode is second only to 
Bounding Box mode for speed.  

   Hardware Texturing  displays textures applied to objects, that would otherwise 
appear only when the scene is rendered. Th is is useful for orienting the place-
ment of a texture on a surface in the scene view.    

  Figure 04.19    shows a model of a torus, viewed with each of the eight interactive shading 
modes.  

 Lighting menu 
 Th ere is one item on this menu ( Figure 04.18b ) that we use regularly: 

    Use All Lights  shows the eff ect, on objects, of lights that you have added to a scene. 
It can be used in conjunction with Smooth Shade, Flat Shade, and Hardware 
Texturing from the Shading menu.   

  Panels menu 
 Th e fi rst three items on this menu ( Figure 04.18c ) let you select a camera through which 
to view your scene. 

        Hardware texturing hotkey:  6

        The hotkey  7  toggles between 
Use Default Lighting and Use All 

Lights.      

Smooth shade mode hotkey:  5

FIGURE 04.19

A polygon torus as displayed in the 
eight interactive shading modes:

(a) Wireframe

(b) Smooth Shade

(c) Smooth Shade with High Quality 
Rendering enabled

(d) Flat Shade

(e) Bounding Box

(f) Points

(g) Hardware Texturing with Use 
Default Lighting enabled. The 

previous modes didn’t display the 
assigned texture, a checkered 

pattern.

(h) Hardware Texturing with Use All 
Lights enabled.

(a) (b) (c) (d)

(e) (f) (g) (h)
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     Perspective  cameras display your scene with a visual distortion similar to that 
which we see through a camera or the naked eye. Th e degree of distortion is 
determined by the focal length of the camera specifi ed in the camera settings. 
Th e default  Perspective  camera is called   persp  .  

   Orthographic  cameras show no distortion due to perspective. We often use mul-
tiple orthographic views to position objects precisely in 3D space. Th e default 
orthographic cameras are called   front, side  , and   top  . Th e default side view is called 
  Right Side  , with the camera pointed in the negative X-direction.  

   Look Through Selected  creates a perspective view along the  Z-axis  (described below) 
of the currently selected item (not necessarily a camera). Th is feature is handy 
when you need one item to point at another, such as a spot light to shine on a 
model; by viewing the scene through the light, you can center it on the model.    

 Th e remaining Panel menu items allow you to set panel contents to an item other 
than a camera view, and to confi gure panel layouts. 

    Panel  lets you choose an editor or window to display in the current panel.  

   Hypergraph panel  displays the Hypergraph—showing either DG relationships or 
scene hierarchy.  

   Layouts  lists the possible arrangements of  panels  (called  panes  in the menu). Th e 
layout in  Figure 04.17  has four panels: a perspective camera (top right); a top-view 
orthogonal camera; a front-view orthographic camera; and the Graph Editor, 
which will be described subsequently.  

   Saved Layouts  contains preset arrangements of camera views, editors, and other 
windows. Several of these layouts can also be accessed using the  Layout  shortcut 
buttons  in the  toolbox (  Figure 04.13  ) .  

   Tear Off  detaches the scene panel from the rest of the Maya interface.  

   Tear Off Copy  creates a free-fl oating copy of the scene panel. Th e panel that was 
copied remains intergrated with the rest of the UI.  

   Panel Editor  allows you to create new panels and customize layouts.   

 Th e  space bar  is a hotkey for toggling between single- and multi-panel layouts. With a 
multi-panel view displayed, placing your cursor over a single panel and quickly strik-
ing the space bar will enlarge just that panel. Striking it again will return the multi-
panel layout. Th is is a useful way to quickly enlarge the display to get a closer look at 
an object in a particular view.   

  The XYZ coordinate system and vectors 
 In Maya, every object is located in 3D space according to its distance along the 
 X-,   Y-, and  Z-axis , with its position described by a vector, using the notation, (X, Y, Z). 
Th e vector (0, 0, 0) is called the  world origin , which is represented in the  workspace  by 
the centre of the grid in your scene ( Figure 04.20   ). Th ree-dimensional vectors are used to 
describe translation, rotation, and scale of objects, as well as RGB (for the Red, Green, 

  To select other orthographic 
views, such as Left Side and 
Bottom, or to reset a view to its 
default settings, choose  View   →
Predefi ned Bookmarks   → , then 
make your selection.

        While you ’ re getting used to 
Maya, we recommend using the 
default four panes layout. As 
we go along, we ’ ll show you our 
favorite layouts for biomolecular 
and cellular work.      
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and Blue color system) colors in Maya. Much of what Maya does behind the scenes to 
transform objects relative to one another is performed by vector mathematics. 

 Th ere are two coordinate systems in Maya, called  world coordinates  and  local coordi-
nates.  Th ere is only one set of  world coordinates , centered at the  world origin , whereas 
every item in a scene has its own  local coordinate  system, centered at the origin of the 
item in question—like the hands of the wristwatch in our example on page 81. When 
an item, such as a sphere, is translated or rotated, so to are its local coordinates; they 
move with it. Th e  world coordinates  remain fi xed to the  origin  of the scene but appear 
to move as you move the view around. Th is is because you are moving the camera, 
through which the scene is viewed, relative to the  world coordinates . 

 The Up axis 
 Coordinates in Maya can use either a  Y  or a  Z Up axis , indicating which axis corre-
sponds to the vertical direction. In 3D modeling programs, animators typically use 
Y Up, whereas those involved in industrial and engineering design, and medical 
imaging generally work with Z Up . When using Y Up, the Z-axis represents depth. 
Conversely, when using Z Up, the Y-axis represents depth. In both cases, the X-axis 
corresponds to the horizontal direction. To change between the two, choose :

   1.     Window  →  Settings/Preferences  →  Preferences  →  Settings.  

  2.     Under World Coordinate System, select Y or Z.   

  Axis indicators 
 World coordinates are represented by global axes indicators. Th ese can be displayed at 
the bottom left corner of the scene view, where they ’ re called the  View Axis , or at the 
world origin, where they ’ re called the  Origin Axis . Local coordinates are represented 

Local Axes

Origin Axes

View Axes

FIGURE 04.20

Local and world coordinates in 
Maya are represented by axis 

indicators. Red, green, and blue are 
used throughout Maya for the X-, Y-, 

and Z-axis, respectively.

        Maya creates new objects as if 
they were Y Up, regardless of the 
Up Axis settings. In a Z Up world, 

a new objects is essentially 
rotated so that its Y-axis is 

horizontal.      
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by the  Local Axis . Th ese indicators will help you stay oriented as you move objects and 
navigate with your camera through 3D space.  

  UV coordinates 
 Maya uses another coordinate system for locating textures and materials on surfaces. 
Th is is the 2D  UV  system, which maps out an object ’ s surface. In character modeling 
for the entertainment industry, an understanding of UVs is important. However, the 
in silico workfl ow requires a minimal working knowledge of them. UVs will be intro-
duced in Chapter 11  Rendering .   

  Navigation: Viewing the scene through a camera 
 When you start Maya, you ’ re shown a view of the scene through the default perspec-
tive (or  persp ) camera. In order to look around the scene, you move the camera. You 
can move a camera in several ways. Th e most natural and spontaneous is to  tumble,
track,  and  dolly  the camera using your mouse ( Figure 04.21   ). To tumble is to rotate about 
the vertical and horizontal axes. To track is to move the camera up and down and side 
to side. Dollying moves the camera toward or away from its subject, along its Z-axis 
(or Y-axis if you are using  Z Up  coordinates).  Table 04.01    lists the keyboard/mouse com-
binations used for these camera movements. 

Tumble
(rotate about y- or z-axis)

Track
(translate along y- or z-axis) 

Dolly
(translate along x-axis) 

FIGURE 04.21

3D camera movements.

 Hold  Drag  Camera move 

  Alt    LMB  Tumble  (will not work for orthographic views unless you 
uncheck  Locked  in the Tumble Tool settings) 

  Alt    MMB    Track  

  Alt    RMB    Dolly  

  Alt    LMB �MMB   Dolly  

Ctrl � Alt    LMB  Bounding box dolly  draws a marquee (rectangular 
lasso) around the area in your scene that you wish to 
dolly in to or out from. This has a similar effect to “zoom” 
tools in other graphics software. 

TABLE 04.01 

Keyboard/mouse combinations used 
to view a scene through a camera.
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Time Slider Range Slider

Command Line

Current time Playback Controls

Command entry field Results field Show Script
Editor button

FIGURE 04.23

Time Slider, Range Slider, Playback 
controls, and Command Line. The 

current time is indicated by the 
black bar in the Time Slider. Vertical 

red lines indicate keyframes. The 
Command Line has three parts to 

it. The left fi eld is for entering MEL 
commands, the right is where Maya 

reports results and messages, and 
the button on the far launches the 

Script Editor.

Select Tool (Q)

Lasso Tool

Pain Selection Tool

Move Tool (W)

Rotate Tool (E)

Scale Tool (R)

Universal Manipulator (CTRL + T)

Soft Modification Tool

Show Manipulator Tool (T)

Last tool used (y)

FIGURE 04.22

Transform tools are available in the 
Toolbox. Hotkeys are indicated in 

parentheses.

  Toolbox 
 In addition to the Quick Layout buttons mentioned above, the toolbox ( Figure 04.22   ) 
contains tools commonly used for selecting and transforming items in your scene. 
You will use each of the tools in  Tutorial 1 .   

 Time Slider, Range Slider, and Playback controls 
 Th ese items are used to control the timing and playback of animation in your 
scene. Th e Time Slider ( Figure 04.23   ) displays the timeline, measured in frames, the
current time, and the playback (or transport) controls. You can manually move along 
the timeline in one of the following ways: 

    Enter the desired frame number it in the current time box.  

or  LMB + click anywhere along the timeline—the current time indicator will 
jump to that spot.  

or  LMB + drag or MMB+drag the current time indicator.    
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 Th e Range Slider is used to set the playback range that is displayed in the Time Slider. 
It is with the Range Slider that you set the animation start time and end time and the 
playback range that is displayed in the Time Slider. For example, when creating a three 
second animation at 30 fps (i.e. 90 frames), you would input 1 for the animation start 
time and 90 for the end time. To focus on only the fi rst 30 frames, input 1 for the play-
back start time and 30 for the playback end time, or just drag the ends of the Range 
Slider bar to these values. Now when you scrub the timeline (see side-bar, this page) or 
use the playback controls you will be confi ned to the fi rst 30 frames of your animation. 
To widen your playback range, simply drag the Range Slider bar ends or input a larger 
playback end time. 

Th e playback controls ( Table 04.02   ) are for playing and for stepping through an anima-
tion, and work much like the controls on a home DVD player. Th ey are active within 
the range set in the  Range Slider .

  The Command Line and the Script Editor 
 You can enter single lines of MEL code in the left half of the Command Line ( Figure
04.23 ). Th e right half displays system responses, warnings, and error messages. To 
scroll through previously entered lines, use the up and down arrow keys. 

 A more eff ective way to deal with multiple lines of MEL code is through the Script 
Editor. It can be launched with the        icon at the far right of the Command Line, or 
by choosing :

    Window  →  General editors  →  Script Editor    

 We will cover the Script Editor in some detail in  Chapter 12 .  

  Preferences 
 Maya stores UI and general application settings in a fi le called userPrefs.mel. Th e 
application reads this fi le each time you start the software and rewrites it when 
you click Save in the Preferences Window. Certain preference settings allow you 
to customize the UI to suit your requirements. Th ese include the option to turn UI 
Elements on and off  and to specify how certain ones are displayed. For example, we 
fi nd it preferable to have Maya open the Attribute Editor and Tool Settings (both of 
which are described subsequently) in separate windows rather than embedding them 
in the main Maya Window, which is the default action. An embedded window causes 

        Unlike a clock which starts 
at zero seconds, animations 
typically start at  frame 1.  A 
project that began at  frame 0
and ended at  frame 90 , would 
actually contain  91 frames  —
more than the three seconds 
of animation you intended to 
create.      

Button Function

Jump to the start or end of the playback range

Step backward or forward one frame at a time

Step backward or forward one keyframe

Play forward or backward. ESC key will stop the playback

Stop playback (replaces play button during playback)

 TABLE 04.02 

   Playback controls.  

  Dragging the   current time 
indicator   along the  timeline
is commonly referred to as 
scrubbing . You can   scrub the 
timeline  to see how an animation 
looks in the scene view.
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undesirable resizing of the workspace each time it is launched. To set the Attribute 
Editor and Tools Settings to open in windows separate from the main one: 

    1.     Choose Window  →  Settings/Preferences  →  Preferences.

or   LMB + click the      icon at the bottom right of the interface.     

  2.     Under Categories, choose Interface.  

  3.      For Open Attribute Editor, click the radio button      for In Separate Window.  

  4.     Do the same for Open Tool Settings.    

 Before clicking Save or Cancel, take a look at the other options available under UI 
Elements. Th ey enable you to show or hide certain elements in the UI. Notice that 
Attribute Editor and Tool Settings are turned off  and Channel Box/Layer Editor is on 
by default. Maya will let you select only one of these three windows. Th is just means 
that the other two won ’ t be displayed until called upon, which is a way to reduce desk-
top clutter. UI Elements can also be displayed or hidden as follows: 

    1.     Select UI elements.  

  2.      Check or uncheck the box next to the item you want to show or hide, 
respectively.    

 Under UI elements, you ’ ll also fi nd Panel Confi gurations. Th ese settings determine 
how the workspace panels are laid out when you start Maya and open a new fi le. 

 Under Display, you ’ ll see Performance and View options, including ones that deter-
mine how specifi c items are displayed. Under the heading, Settings, you will set one 
option for now: 

    1.     Choose Undo from the Categories list.  

  2.     Beside Undo, click the On button (if it ’ s not already selected).  

  3.      Beside Queue, click the Infi nite button. Infi nite undos can potentially use a 
lot of memory. In most cases this won ’ t be problem and the extra undos can 
come in handy. However, you may want to set the Queue back to Finite when 
running a memory intensive animation.    

 Finally, under Modules you can tell Maya what to load on startup. Loading modules 
ties up RAM and can increase startup time. Disabling ones that you don ’ t plan to use 
alleviates this. 

 When you are satisfi ed with the Preferences settings, hit Save. You can, at any time, 
open  Preferences  and change the settings. We will cover additional preferences as 
they are needed throughout the book. For more information, refer to:

Using Preferences 

 Maya Help  →  Using Maya  →  General  →  Basics  →  Basic Windows and Editors 
→  Preferences        

  Layer editors 
 Layers provide a way of organizing items that is independent of the scene hierarchy. 
Once a group of objects is added to a layer, they can be hidden by turning it off . Th ere 
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are two types of layer:  Display  and  Render . Display layers can be viewed in normal, 
template (T), or reference (R) mode. Template mode displays objects using wire-
frame shading and protects them from being selected or modifi ed in the scene view. 
Reference also protects objects from being modifi ed, but displays them in the regu-
lar scene view shading mode.  Figure 04.24    shows the result of setting a Display layer to 
Template mode. 

 Render layers are used to organize lights, cameras, objects, and shaders into separate 
rendering passes, for later assembly in a compositing program.

Display Layer Editor 

 Maya Help  →  Using Maya  →  General  →  Basics  →  Basic Windows and Editors 
→  Display Layer Editor      

Render Layer Editor 

 Maya Help  →  Using Maya  →  Rendering and Render Setup  →  Rendering  →
Rendering Windows and Editors  →  Render Layer Editor        

  Channel Box 
 In animation, a channel is an attribute that can be animated. Th e Channel Box 
( Figure 04.24 ) displays many of the keyable attributes for a selected item (object, camera, 
light, etc.). Th e attributes in the Channel Box are listed under the nodes to which they 
belong. You can use the Channel Box to easily set attribute values and keyframes. By 
default, when you create an item in Maya some attributes are set to be keyable and 

Channel Box

Layer Editor

Template mode

Keyable attributes for
the selected object

FIGURE 04.24

The Channel Box and the Layer 
Editor. The colored fi elds in the 
Channel Box indicate attributes that 
have connections to other nodes.
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some, non-keyable. Th e former will be visible in the Channel Box while the latter will 
not be listed.  

  Channel Control editor 
 Th e Channel Control editor determines what is and isn ’ t visible in the Channel Box. It 
is used to make non-keyable attributes keyable, and vice versa, and to lock and unlock 
attributes in order to prevent or permit their adjustment. For example, once you have 
a camera placed to your satisfaction, you may wish to lock its attributes to prevent it 
from accidentally being moved. To open the Channel Control editor: 

    1.     In the Channel Box, choose Channels menu  →  Channel Control

or   2.      In the main window, choose Window  →  General Editors  →  Channel 
Control   

Channel Control 

 Maya Help  →  Using Maya  →  Animation, Character Setup, and Deformers  →
Animation  →  Animation Windows and Editors  →  Editors  →  Channel Control editor        

  Attribute Editor 
 While the Attribute Editor ( Figure 04.25   ) is not a default UI Element, it is used exten-
sively in the Maya workfl ow, and therefore deserves special mention here. It enables 
you to view, set, create, and delete attributes, which are arranged by DG node. To 
open the Attribute Editor: 

   Choose Window  →  Attribute Editor.  

or   Press Ctrl + A in the workspace.  

or     Click the Show or hide the Attribute Editor       button on the Status Line.  

or   RMB-click the object in the scene view, or its node in the Hypergraph, and 
select its name from the Marking menu.  

or   Select Display  →  UI Elements  →  Attribute Editor. The Attribute Editor dis-
plays to the right of the modeling view.  

or   In the Hypergraph, select the object or node. From the Hypergraph menu bar, 
choose Edit  →  Attributes.  

or   Double-click an object or node icon in the Hypershade, Visor, Multilister, or 
Outliner.   

 Selecting one of the node tabs along the top displays all of the attributes for that 
node—not just the keyable ones. Attributes that are grayed-out and can ’ t be selected 
or edited are either non-keyable or locked. Th ose that are tinted orange have keys set. 
Right-clicking an attribute name brings up a Marking menu with options such as set 
key, lock, and create expression, which have to do with animation. You can also rename 
and delete existing attributes and add your own custom ones using the Attribute menu.  

  Plug-ins 
 Plug-ins are software fi les that exist separately from the Maya application. When 
activated, or  “ loaded ” , using the Plug-in Manager, a plug-in provides additional 

        Unless an item (object, camera, 
light, group, etc.) is selected, 

nothing will appear in 
the Attribute Editor when you 

open it.      
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functionality to Maya. For example, loading the plug-in, objExport.lib, allows you 
to export a Maya scene as an .obj (or Wavefront) fi le. Maya comes bundled with a 
number of plug-ins, and independent developers create their own, many of which can 
be downloaded for free or purchased on the Internet. For experienced programmers, 
the Maya Developer ’ s Toolkit includes an API which allows them to create such cus-
tom plug-ins using the C ��  programming language.

Loading Plug-ins 

 Maya Help  →  Developer Resources  →  API Guide  →  Maya API introduction  →
Loading a Plug-in         

  Summary 
 Th is chapter is a quick introduction to a deep and rich program. Maya Help refer-
ences were listed along the way for the reader wishing more information right away. 
We ’ ve covered how to set up a Maya Project and start the program. A brief discussion 
of Maya ’ s program architecture followed, highlighting it  s resemblance to biological 
organization. We then covered the primary elements of the Maya UI to provide a gen-
eral orientation. In the coming chapters, we will explore much more of the UI through 
specifi c examples in modeling, animating, rendering, and dynamics. Nor have we left 
the DG or Scene Hierarchy behind. Th ese will continue to be of relevance in the projects 
to follow.                                 

    Wavefront fi le format, denoted 
by the extension, .obj, is an ASCII 
3D scene fi le format created by 
Alias/Wavefront.    

FIGURE 04.25

The Attribute Editor displaying DG 
nodes and their attributes for a 
polygon cube.
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  Introduction 
 Now that we ’ ve covered the basic user interface ( UI ), it ’ s time to start using Maya. 
In this chapter you will learn the diff erence between NURBS, polygon, and subdi-
vision surface (sub-D) objects, and why you might choose one type over another. 
You will then learn how to create and manipulate  geometric primitives . A primitive 
object—a sphere, cone, cylinder, cone, and so on—often forms the basis for a more 
complex model such as the heart in  Figure 05.01   . Like a lump of clay, the primitive can 
be sculpted and deformed, added to, cut apart, and put back together.    

  Moreover, certain primitive geometric shapes have considerable merit on their own 
for in silico biology, without being signifi cantly altered from their basics shapes. 
Spheres and cylinders are design paradigms in nature. In other words, there are many 
structures in the natural world that are topologically equivalent to these primitive 
geometric shapes. Notable examples are shown in  Figure 05.02   . Th e projects in  Part 3  of 
this book all make extensive use of geometric primitives for approximating biological 
structures (atoms, protein fi bers, and cell bodies). 

 For those who wish to explore building more complex models, plentiful tutorials 
exist in Maya Help, in print, and online, about advanced, high-end modeling in Maya. 
We have highlighted several of our favorites, under the heading  Learning Maya  in the 
Further reading section. 

  The Create menu 
 Part of the permanent menu set, this menu is used to create geometric primitives 
and NURBS curves, along with lights, cameras, and locators. Selecting the option 

             In this chapter  " modeling "  means 
the creation 

of surfaces and curves 
in Maya.      

(b)(a)

FIGURE 05.01

A simple primitive, such as a 
polygon cube, can be subdivided 

and manipulated with modeling 
tools to create complex topologies 

like this heart model.

(a) A low polygon-count surface is 
easy to work with in a scene.

(b) The same model can be 
smoothed for better rendering 

results. Smoothing can readily be 
switched on and off.

Courtesy and copyright © 2006 AXS 
Biomedical Animation Studio.



103CHAPTER 05: MODELING GEOMETRY

box next to a menu item brings up the Create options window, allowing you to alter 
the settings. Many of the primitives can also be created by clicking the appropriate 
buttons on the Surfaces (NURBS), Polygons, and Subdivs Shelves.  

  Creation options 
 In the following menus 

    Create  →  NURBS Primitives  

  Create  →  Polygon Primitives    

 you have options called Interactive Creation and Exit on Completion. Th ey will 
be either checked or unchecked in the menu, indicating whether they ’ re on or off . 
Interactive Creation lets you choose the initial location of the created object and scale 
it interactively. When this option is turned off , Maya places newly created objects at 
the world origin by default, with a scale value of 1. You can subsequently move and 
scale an object after you ’ ve created it. With Exit on Completion turned on, Maya exits 
the Create tool after you ’ ve created one object. If the option is turned off , the Create 
tool remains active until you select another tool (e.g. the Select tool).   

  NURBS modeling 
 NURBS is an acronym for Non-Uniform Rational B-Splines and describes a class of 
mathematically defi ned curves (or  splines ) and surfaces computer graphics. Creating 
objects using these curves and surfaces in Maya is called NURBS modeling. NURBS 
modeling makes sense for smooth, organic shapes in fi lm and for industrial design. 
Also, because NURBS surfaces can be created curves, they have particular utility in 
modeling fi brous structures, as you ’ ll see later on in the chapter and again in  Chapter 
17  in  Part 3  of this book. 

  The Surfaces menu set 
 Everything you need to make and work with NURBS is available through the Surfaces 
menu set. To activate the set, use the pull-down menu at the far left of the Status 
Line ( Figure 05.03   ). Alternately you can use the hotkey,  F4 . Some of the tools housed in 
the menu set will come into play in the projects in  Part 3 , although you will access 
them using MEL (Maya Embedded Language) commands, and not through the UI.  

 FIGURE 05.02 

    Geometric primitives can be used as 
a starting point to represent various 
entities in nature:

Top row
NURBS sphere, atoms, cells, virus 
capsid;

Bottom row
NURBS cylinder, biopolymers, 
protein fi bers, blood and lymphatic 
vessels.

Cell and blood vessel images courtesy 
and copyright  ©  2006 AXS Biomedical 
Animation Studio. The virus capsid was 
created from Protein Data Bank fi le 
1K4R 1  using UCSF Chimera software 
( http://www.cgl.ucsf.edu/chimera/ ).2    
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  NURBS curves (splines) 
 A spline is essentially a line (straight or curved) composed of segments. Its path is 
defi ned by points called  control vertices  ( CVs  for short). In Maya, splines are most often 
used as motion paths to guide animation and to build NURBS surfaces, which is the 
subject of a tutorial in this chapter. However, when endowed with color and thick-
ness using Maya Paint Eff ects, splines themselves can become models. Th e fi brous 
environment shown in  Figure 05.04    was created almost entirely using splines and Paint 
Eff ects.

   Spline components 
 In Maya, the constituent parts of a curve or surface are called components. CVs and 
Edit Points ( EPs ) are the components of a spline. Depending on the mathematical 

 FIGURE 05.03 

    Spline curves were traditionally 
used in 3D modeling and animation 

to build NURBS surfaces and to 
provide directional pathways for 

animation. More recently, splines 
have become models in their own 
right, being used to recreate hair, 

fur, and plants. In the example 
shown here, medical animator 

Jen Platt used splines to create 
a visualization of the metamatrix, 
the fi brous network that extends 

through cell nuclei, cytoplasms, and 
extracellular space within living 

tissues.

Courtesy and  ©  2006
Jennifer A. Platt.    

              The term spline originated in 
shipbuilding where it described a 
thin piece of wood used to defi ne 

hull shape. The spline was bent 
into a smooth curve by metal 
weights—the control points.      

 FIGURE 05.04 

    The Surfaces menu set.    
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nature of a curve, it may or not pass through the CVs. EPs, on the other hand, always 
lie on the curve. You can change the shape of a curve by moving either its CVs or EPs.   

  NURBS surfaces 
 NURBS surfaces are mathematically described shapes connecting splines in 3D 
space.  Figure 05.05    shows a stomach model created by  lofting  between a series of splines. 
NURBS surfaces are used widely in automotive and architectural design, and in other 
disciplines where smooth, curvilinear surfaces are required. Organic objects like 
organs such as lungs, kidneys, bowels, and blood vessels are well suited to NURBS 
modeling. Maya has an extensive suite of tools for building and working with splines 
and NURBS surfaces. Th ese can be found in the Edit Curves, Surfaces, and Edit 
NURBS menus. You will explore some of them further along when you create a fi ber 
from two splines. 

 Th e smoothness of a NURBS surface is determined in part by its divisions 
attributes— sections  and  spans —which are set at creation time and can be accessed 
through its history node.  Figure 05.06a    shows two spheres, each with a diff erent
number of divisions. When Maya renders NURBS, it converts them to polygons 
through a process called  tesselation  ( Figure 05.06b ). Together, the tesselation settings for 
object and its subdivisions determine how smooth it appears when rendered. 

 With NURBS, smooth 3D surfaces can be made quickly from relatively few curves. 
Th is also means you can deform such a surface by simply altering one of its constitu-
ent curves. However, despite their advantages, NURBS can prove diffi  cult for creating 
complex topologies. Likewise, because a NURBS surface is dependent on its constitu-
ent curves, multiple surfaces cannot be combined into one continuous surface, as can 
be done with polygons. Th is can result in an undesirable seam between two pieces of 
geometry.

   NURBS surface components 
 Because a NURBS surface is built from splines, it too has CVs that can be used to 
manipulate its shape. A NURBS surface ( Figure 05.07a   ) is defi ned by curves called iso-
parms, which can be added to or deleted from a surface. Hulls are straight lines con-
necting CVs that can lie on or off  of the surface. Hulls are handy ways to quickly 
deform a NURBS object.  

    Hiding seams, so they are not 
visible to the camera, is one 
of the tricks to good NURBS 
modeling.    

 FIGURE 05.05 

    NURBS modeling is well suited to 
smooth, curvilinear surfaces. This 
stomach model was created using 
the Loft tool on a group of curves 
(or splines). Lofting interpolates a 
curved surface between curves.
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  NURBS surface normals 
 Normals are lines perpendicular to a surface ( Figure 05.08a   ). Generally speaking, nor-
mals are said to point outward from an object ’ s surface, thereby indicating its 
 direction . Reversing a surface ’ s direction makes the normals point in the opposite 

(b) NURBS tesselation (conversion to polygons)

High

Low

(a) NURBS subdivisions

Span
Section

 FIGURE 05.06 

    (a) NURBS subdivisions (measured 
in  sections  and  spans ) affect 

surface smoothness and the number 
of control points available for 

manipulating a surface. The top 
sphere has fewer subdivisions than 

the one below it. 

(b) To a large degree,  tesselation  (the 
conversion of a NURBS surface to 

polygons at render time) determines 
the surface smoothness of an object 

when it  's rendered. The top sphere 
has lower tesselation settings, 

and will therefore be coarser 
when rendered, than the one 

below it. The surface lines in this 
image demark polygons resulting 

from tesselation of NURBS spheres.

Together, subdivisions and 
tesselation settings give you control 

over the appearance of an object 
when it ' s rendered.      

CV HullSurface patch

Isoparm

(a) NURBS sphere

 FIGURE 05.07 

    A 5  �  5-division primitive sphere:

(a) The components of a NURBS 
model.

(b) The components of a polygonal 
model.

CV Face Edge

(b) Polygon sphere
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direction, or  “ inward ” . One consequence of surface direction is the way in which Maya 
Dynamics detects collisions between two or more objects. More on this in  Chapter 07 .

       NURBS modeling 

 Maya Help  →  Using Maya  →  Modeling  →  NURBS modeling      

      Polygonal modeling 
 A polygon surface is a continuous mesh comprised of many individual polygons (fac-
ets), which can be pushed, pulled, rotated, or extruded to create any conceivable 
topology. Polygon models are used widely in computer animation for entertainment 
and video game development. In these applications, polygon surfaces are preferable 
to NURBS for the detailed topology required for characters ’  faces, hands, and the 
like. Similar forms can be created with NURBS, but often require multiple surfaces to 
be joined, resulting in visible seams between them, which show up as unwanted lines 
in renderings. For example, a model of a hand may require a separate NURBS object 
for each fi nger, each joined at its base to the hand with a visible seam. In contrast, 
polygon objects can be joined to create a seamless, continuous mesh.

    Point for point, polygonal surfaces tend to be computationally lighter than NURBS, 
which can speed the interactive display of geometry. Th is is one reason why polygons 
are preferred for video game development—they allow for quick video refresh. 

 Unlike a NURBS model, the smoothness of a polygon surface is constrained by the 
number of polygons that comprise it—called its  poly count . A low poly count object is 
easier to work with but produces a coarser rendered surface than an equivalent shape 
with a high poly count. Maya ’ s smooth command, available in the Polygon menu, 

(b)

(c) (d)

(a)

 FIGURE 05.08 

    Normals are a way of indicating the 
direction of a surface.

(a) NURBS surface normals. 
(b) Polygon face normals.
(c) Polygon hard vertex normals. 
(d) Polygon soft vertex normals.          

Polygons are usually three- or 
four-sided, called  triangles  and 
quads  (short for quadrangles), 
respectively.

            In a fi lm animation workfl ow, 
where Maya is rendering images 
from a scene, NURBS surfaces 
can be slower to render than 
their polygon equivalents. This is 
due to the computation required 
for conversion of NURBS to 
polygons before they can be 
processed by Maya ’   s rendering 
engine.      
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allows you to work with a low poly count model and then subdivide the surface into 
more polygons to make it smoother for rendering. Th is was the workfl ow used with the 
heart model shown in  Figure 05.01  and the hand in  Figure 05.09   . You will use it to smooth 
the polygon model in  Tutorial 05.03: Make and deform a polygon sphere  coming up.

   The Polygons menu set 
 Hit the the hotkey,  F3 , to activate this menu set, or use the pull-down menu at the 
far left of the Status Line. Th is menu set contains the menus and tools you ’ ll use for 
building and editing polygonal surfaces. 

  Polygon components 
 Like a NURBS surface, a polygon object can be described in terms of its components 
( Figure 05.07b ): CVs (or points), faces, and edges. Each has its utility in modeling.  

  Polygon face normals 
 Like NURBS surface normals, polygon face normals indicate the direction of a sur-
face (what ’ s considered  outside  versus  inside ). Face normals project from, and run per-
pendicular to, the center of each polygon face ( Figure 05.08b ). Reversing the direction of 
a face makes its normal point in the opposite direction.  

  Polygon vertex normals 
 Vertex normals project from polygon vertices. Th ey indicate the rendering smoothness 
of a polygonal surface. When vertex normals are  hard , they run perpendicular to their 
associated faces. Consequently, Maya renders a hard edge between those faces ( Figure 
05.08c ). Soft vertex normals indicate an average perpendicular direction for their asso-
ciated face. Maya renders a smooth edge between these faces ( Figure 05.08d ).

 Polygonal modeling 

 Maya Help  →  Using Maya  →  Modeling  →  Polygonal modeling         

 FIGURE 05.09 

    Polygon modeling is used 
extensively in 3D character 

animation. Models can literally be 
drawn in 3D from 2D templates, 

the way this 3D hand model 
(center) was drawn from reference 

photographs of a real hand (left). 
The rough polygonal model (center) 
was smoothed (right) by subdividing 

its surface into smaller polygons.
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  Subdivision surfaces 
  sub-Ds  are similar to polygon surfaces, but allow you to vary the level of detail in dif-
ferent regions of the mesh. Th is way you can put in detail where you need it, while 
keeping the mesh coarse where you don ’ t. Our tutorials and projects don ’ t require 
this capability, so sub-D modeling won ’ t be discussed further. Th e Maya Help menu 
provides basic information and instruction for sub-D modeling.

 Sub-D modeling 

 Maya Help  →  Using Maya  →  Modeling  →  Subdivision Surface modeling        

  So which model type should I use? 
 When choosing a modeling approach, consider the relative merits and limitations 
mentioned above. Most important is the nature of the object you wish to model. Is it 
smooth with relatively little surface detail or does it have detailed topology? Is it cur-
vilinear or jagged? Is it composed of multiple parts. Curvilinear shapes, where seams 
between objects can be hidden or are an integral part of the design, are well suited to 
NURBS modeling—hence its popularity with industrial designers. Intricate topolo-
gies like those of a hand, a heart, or a face are best handled with polygons. In the 
world of tissues, cells, and molecules, which is our focus, the same principles apply. 
A polygon that can be sculpted into the shape of a crawling cell makes sense for the 
project in  Chapter 16. In Chapter 17 , NURBS modeling is well suited to the creation of 
the meandering collagen fi bers of the  extracellular matrix  ( ECM ). 

 One thing to bear in mind is that a NURBS object can be converted to polygons. 
Th erefore, you can begin sculpting a NURBS surface, then change it into a polygons 
when you ’ re ready to add more detailed topology, or to connect several objects into 
one (join fi ngers to a hand, for example). Polygons, on the other hand, cannot be 
converted directly to a NURBS surface. For the time being, let ’ s start with a NURBS 
primitive and see how to manipulate it in your Maya scene.   

Tutorial 05.01: NURBS primitive modeling 
 In this tutorial you will create a NURBS sphere primitive and manipulate it by chang-
ing its attributes in the Channel Box and using the transform tools. A sphere is an 
appropriate shape to begin for its utility in representing the atoms of biomolecules, 
and the form of many cells and viruses. 

  Start Maya and set up a Project 
 To begin, start Maya and create a new project. When you start Maya it opens to a 
new, untitled scene fi le. 

    1.     Double-click the Maya desktop icon or the Maya application icon in your 
Applications directory.  

  2.     Choose File  →  Project  →  New to open the Project window. The current 
project name and directory path are displayed.  
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  3.     Browse to the directory in which the project will reside. For starters, you can 
simply use Maya ' s default project folder. In Windows this would be something 
like:

    C:\Documents and Settings\User\My Documents\maya\projects     

  4.     Name the project Learning_Maya.

  5.     For the tutorials in this chapter, you will only need directories for image and 
scene fi les. Type images and scenes in the appropriate fi elds.

     This is where Maya will write your render fi les. You can always edit these 
fi elds later by choosing File  →  Project  →  Edit Current.     

  6.     Click on Accept or Cancel.    

 When you create a new project, Maya sets it as the current project. If you wish to 
switch to another, existing project, do the following: 

    1.     Choose File  →  Project  →  Set.  

  2.     Browse to fi nd the appropriate project directory.  

  3.     Click OK.    

 Chances are, when you started Maya it opened with a perspective panel view. If it 
didn ’ t, in the Panel menu set: 

    Choose Panels  →  Saved Layouts  →  Single Perspective View.     

  Activate History 
 Make sure History is active: the History icon,      in the Status Bar must be 
depressed. Th is will ensure that attribute you set when you create a model will remain 
editable as you continue to work with it.  

  Create the sphere 
    1.     Choose Create  →  NURBS Primitives.  

  2.     Turn off Interactive Creation.  

  3.     Choose Create  →  NURBS Primitives again, but this time, select Sphere     . 
This launches the NURBS Sphere Options box.  

  4.     In the Options box, choose Edit  →  Reset Settings.  

  5.     Customize the settings to match the ones in  Figure 05.10   .

     The key attributes to note here are the Radius and the Number of Sections 
and Number of Spans.     

  6.     Click Apply to create the sphere and keep the Options window open (useful for 
creating multiple objects with different dimensions).

   or Click Create to create the sphere and close the Options window.      

             Releasing your mouse over 
the  option box   symbol in 

any menu launches an  Options
window.      

  The settings you specify in an 
option box  will be applied each 
time you use that tool until you 

change the settings again using 
the  Options window .
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  Th is creates a new object called   nurbsSphere1  . Take a moment to tumble, track, and 
dolly the scene view to get a comfortable view of the object. If you can ’ t see the sphere 
at fi rst, press the hotkey,  A , to frame all objects in the scene.

    Select the sphere 
 When you create an item in Maya, it is automatically selected. By default, the most 
recently selected item is indicated with a green wireframe mesh. If multiple items are 
selected, all will be indicated by white wireframe outlines, except for the most recent 
selection, which will be green. If you click in the workspace away from the sphere, 
you will deselect it, and the wireframe mesh will disappear. To reselect it do one of 
the following: 

    LMB + click on any one of the tools in the Tool Box (Figure 05.11), then LMB+click 
on the sphere in the workspace.  

or       LMB + click on any one of the tools in the Tool Box, then LMB + drag to draw 
a bounding box selection around all or part of the sphere, then release the 
LMB. Any object lying partly within the box when you release the mouse will 
be selected.  

or       LMB + click on the Lasso Tool in the Tool Box, then LMB + drag to draw a lasso 
selection around the sphere or any part of it.  

or      LMB + click on the sphere ' s name in the Outliner.   

  When selected, the name   sphere1   (or whichever name you gave the object) appears 
at the top of the Channel Box ( Figure 05.12   ). Th is is the sphere ’ s transform node, below 
which are its attributes that can be animated:   Translate X ,  Translate Y ,  and so on (much 
more on animating attributes in the next chapter!). Below these are two headings, 

 FIGURE 05.10 

    The Create settings for a NURBS 
sphere primitive.    

            The Reset Settings or Reset Tool 
steps are precautions in case 
the settings had previously be 
changed from their defaults by 
you or another user. By starting 
with the defaults, you'  re more 
likely to get the expected results.      

            NURBS cubes are different 
from other NURBS primitives 
in that they are composed of 
six individual planes, grouped 
together. A sphere, in contrast, 
is one contiguous piece of 
geometry.      
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Shape and Inputs, under which are the names   sphere1Shape   and  NURBS sphere1  . Th ese 
are the sphere ’ s shape and history nodes, respectively. Clicking on the history node, 
 NURBS sphere1  , reveals its attributes, which are the same ones you had access to when 
you created the object using the NURBS sphere Options window:   Radius  ,   Sections , and
 Spans  .

Select Tool (Q)

Lasso Tool

Paint Selection Tool

Move Tool (W)

Rotate Tool (E)

Scale Tool (R)

Universal Manipulator (CTRL + T)

Soft Modification Tool

Show Manipulator Tool (T)

Last tool used (y)

 FIGURE 05.11 

    Transform tools are available in The 
Tool Box. Hotkeys are indicated in 

parentheses.

 FIGURE 05.12 

    The transform node attributes 
of the NURBS sphere appear in 
the Channel Box (on the right). 

This panel layout, known as the 
Four panel view displays three 

orthogonal and one perspective 
camera.
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    Rename the sphere 
 As with most actions in Maya, there are several ways to rename an object. Here are two: 

      Click on the name  nurbsSphere1  in the Channel Box and type a different name 
such as  sphere1 .

    or       Double-click  nurbsSphere1  in the Outliner and type  sphere1 , then hit Enter.    

  View the sphere with different interactive shading modes 
 Use the Shading menu (in the Panels menu) to try diff erent shading modes. When 
you ’ re done: 

    1.     Choose Shading  →  Smooth Shade All.  

  2.     Choose Wireframe on Shaded    

 Th e wireframe indicates the location of isoparms, which will enable us to see when 
the sphere is rotated about its axes.

       Translate the sphere 
 Th ere are many ways to transform objects in Maya. To do so interactively, use the 
 Transform Tools  (shown in the Tool Box in  Figure 05.11 ). With the sphere selected, acti-
vate the  Move Tool  in one of these three ways: 

     Choose Modify  →  Transformation Tools  →  Move Tool.  

or      LMB + click the Move Tool icon in the Tool Box.  

or      Hit its hotkey,  " w " .   

  Th e red, green, and blue Move Tool Manipulator handles should appear, arising from 
the center of the sphere; if they don ’ t, make sure the sphere is selected then try one 
of the above steps again. As with axis indicators in Maya, red, green, and blue corre-
spond to the X, Y, and Z directions for Manipulator handles as well. When you change 
tools you ’ ll see that the shape of the handles changes too.  Figure 05.13    shows the han-
dles corresponding to the Move (translate), Rotate, and Scale tools.

  Now practice translating the sphere freely in any direction you wish. With the sphere 
selected: 

     LMB + drag the yellow box at the center of the sphere.  

    or       MMB + drag the mouse pointer anywhere in the workspace. Because the sphere 
is selected, it will move as you move the mouse.   

  Th e manipulator handles are aligned with the local axes of the sphere and travel 
with it as it moves. If you watch the Translate attributes in the Channel Box as you 
move the sphere around, you will see them changing simultaneously because you are
 moving the sphere in all three dimensions at once while you are engaged in real 

            Names in Maya cannot contain 
spaces. The convention for 
multi-word names is to capitalize 
the fi rst letter of all but the fi rst 
word, as in  mySphere,  or to use 
underscore characters, as in 
my_sphere .      

Channel Box Tips   

For an object to show up in the 
Channel Box, it must be selected. 

 You can LMB + drag select 
multiple fi elds at once in the 
Channel Box. This is handy for 
assigning more than one fi eld the 
same value.    
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project work. Rarely, however, is this desirable in animation; it is much easier to keep 
track of the spatial relationships of items in your scene if you apply a transformation 
in one dimension at a time. You do this by clicking and dragging one manipulator 
handle (the X, Y, or Z) at a time. When active, a manipulator handle turns yellow. 
To transform the sphere in one dimension do one of the following: 

    1.     Select the sphere and hit  " w "  to activate the Move Tool.  

  2.     LMB + click on one of the three manipulator handles to make it active.  

  3.     LMB + drag on the active handle.

     or      MMB + drag anywhere in the workspace.      

    The Four panel view 
 You may have noticed that distance is diffi  cult to gauge when translating the sphere 
in the perspective view. Th is is due to the visual distortion applied by this camera. Th e 
orthographic views show space without this perspective distortion and make it easier 
to see where objects  “ really are ” , relative to one another in Maya ’ s 3D space. We fi nd the 
Four panel view (shown in  Figure 05.12 ) an eff ective layout for visualizing a scene, includ-
ing multiple biological molecules or cells moving in complex environments. Th e Four 
panel view enables you to tumble around your models in perspective view in order to 
see them from all angles, while using the front, side, and top orthographic views to 
accurately gauge 3D spatial relationships. To set the workspace to the Four panel view: 

    In the Panels menu, choose Panel  →  Saved Layouts  →  Four panel view  

or     Press the Four panel view icon,   , in the Layout shortcuts panel on the 
lower-left side of the main window.     

  Rotate the sphere 
 You can activate the Rotate Tool in the same way you did the Move Tool. Th e rotate 
manipulator handles are red, green, and blue circles corresponding to each of the X, 

             When referring to 
transformations, we use the 
terms  " dimension "  and  " axis "  

interchangeably in this book. For 
instance, a translation in the 
X-dimension is the same as a 

translation parallel to the X-axis.      

 FIGURE 05.13 

    The Manipulator handles for (from 
left to right): the Move Tool; the 

Rotate Tool; the Scale Tool.    

Rotate perpendicular
to the camera plane Handles

Move Tool Manipulator Rotate Tool Manipulator Scale Tool Manipulator

            The hotkeys  �  and  �
increase and decrease the size 

of the manipulator handles, 
respectively.      
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Y, and Z axes. In addition, there is an outer yellow circle which allows you to rotate 
the sphere in a plane perpendicular to the camera axis. To rotate the sphere freely 
about all axes: 

    LMB + drag the yellow box at the center of the sphere.  

or    MMB + drag the mouse pointer anywhere in the workspace. Because the sphere 
is selected, it will rotate as you move the mouse.    

 Note the changing Rotate X, Y, and Z attribute values in the Channel Box. To trans-
form the sphere in one dimension do one of the following: 

    1.     Select the sphere and hit the  " E "  hotkey to activate the Rotate Tool.  

  2.     LMB + click on one of the three manipulator handles to make it active.  

  3.     LMB + drag on the active handle.

or      MMB + drag anywhere in the workspace.       

 Th e manipulator axes indicate the sphere ’ s local coordinates. When you translated 
the sphere, the Move Tool handles traveled with it, but remained oriented to the 
world coordinates (global X, Y, and Z axes). When you rotated the sphere, its local 
coordinate system (axes) rotated with it, as indicated by the Rotate Tool handles, 
which changed orientation relative to world coordinates.  

  Scale the sphere 
 Th e Scale Tool works in much the same way as the Move and Rotate Tools. However, 
when you scale an object freely, it scales uniformly in all three dimensions. To scale 
the sphere freely: 

    1.     Activate the Scale Tool by hitting the  " R "  hotkey.  

  2.     LMB + drag the yellow box at the center of the sphere left to shrink the sphere 
and right to enlarge it.

or    MMB + drag the mouse pointer anywhere in the workspace, left to shrink the 
sphere and right to enlarge it. Because the sphere is selected, it will scale as 
you move the mouse.       

 Note the changing Scale X, Y, and Z attribute values in the Channel Box. To scale the 
sphere in one dimension do one of the following: 

    1.     Select the sphere and hit the  " R "  hotkey to activate the Scale Tool.  

  2.     LMB + click on one of the three manipulator handles to make it active.  

  3.     LMB + drag the active handle.

or      MMB + drag anywhere in the workspace.       

          Entering 0 for its Scale X, Y, and 
Z attributes will cause an object 
to disappear in the scene view. 
You can bring it back simply by 
entering positive values in the 
Scale attribute fi elds.      
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 Like the Move Tool Manipulator handles, those for the Scale Tool travel with the 
sphere and remain oriented to world coordinates.  

  Change the Move Tool Settings 
 Many of the tools in Maya, including the Move, Rotate, and Scale Tools, have settings 
that you can change. As an example, you ’ ll change a Move Tool setting and observe its 
eff ect. To open the Move Tool settings palette: 

    1.     Double-click the Move Tool icon in the toolbox.  

or    With the Move Tool active (i.e. selected), choose Display  →  UI Elements  →
Tool Settings.  

  2.     In the Move Tool Settings window, select Object.  

    With this setting, the Move Tool will translate objects relative to their local 
(object  ) rather than world coordinate systems.  

    You don ' t need to close the palette to apply the change. Changes are applied 
instantly in Tool Settings.    

 Now when you translate the sphere with the Move Tool, you do so along its local 
rather than world axes. If the sphere has been rotated, its local axes are no longer 
aligned with the world axes. In this case, dragging just one Move Manipulator handle 
with change all of the Translate attributes in the Channel Box. Th is is because the 
Channel Box attributes are in world, not local coordinates. Th ere are some situations 
where it ’ s desirable to set the Move Tool to translate an object along its local coordi-
nate system. For the most part, however, we recommend using World or Global set-
tings in the Tools Settings palette. To reset the Move Tool Settings: 

    1.     With the Move Tool active, open the Tool Settings window.  

  2.     Select Use Defaults.  

  3.     Close the window.   

    Transform the sphere using the Channel Box 
 Here, you ’ ll use the Channel Box to reset  nurbsSphere1  to its initial position and scale, 
then hide it from view. 

    1.     With the sphere selected, LMB+drag from the Translate X fi eld down to the 
Rotate Z fi eld. This selects multiple fi elds at once in the Channel Box, allowing 
you to assigning more than one fi eld the same value at one time.  

  2.     Enter 0 in one of the selected fi elds. Your sphere should return to the world 
origin with no rotation.  

  3.     LMB + drag from the Scale X fi eld down to the Scale Z fi eld.  

  4.     Enter 1. This returns the sphere to its original size.  

  5.     To hide the sphere, enter 0 or  " off "  in the Visibility fi eld

or      Use the hotkey, Ctrl + H.       

             When open, the Tool Settings 
palette will display settings for 

the current active tool. If no tool 
is active, the palette remains 

blank.      

          The Visibility attribute is of 
the  Boolean  data type, unlike 
Translate, Rotate, and Scale, 
which are  fl oating point  (or 
decimal number) attributes. 
Boolean data can have one of 
two values: "  on "  or  " off " . Maya 
accepts the integers 1 and 0 
for on and off Boolean values, 
respectively. We will discuss 
Maya data types in some detail 
in  Chapter 12 .      
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 Th e Visibility attribute is one of several ways you can hide an object in Maya. To show 
the sphere again: 

    1.     Enter 1 or on for Visibility in the Channel Box.

or    Use the hotkey, Ctrl + Shift + H. This shows the object that was last hidden.        

  Save your scene 
    Click in any view panel, so that hotkeys will work, then hit Ctrl + S  

or

   1.     Choose File  →  Save Scene.  

  2.     Enter a name for your scene fi le and hit Save.       

 When you save a scene, Maya defaults to the directory specifi ed in the Project 
Settings.   

  Tutorial 05.02: Deform the sphere using components 
 Before leaving your NURBS sphere behind, let ’ s change its shape by transforming its 
components.  Figure 05.14    shows the transformations you ’ ll apply to each type of compo-
nent. You will do manually what you might normally employ a Maya deformer, such 
as the  Lattice Deformer , to do. However, through moving components by hand, you will 
get a sense of how a deformer works to change the shape of an object. Furthermore, 
surface deformations of the kind you ’ re about to make are analogous to the kinds of 
shape changes cells undergo. It ’ s not too much of a stretch then to imagine how you 
might model a deformable cell in Maya. 

 FIGURE 05.14 

    A NURBS surface can be 
reshaped by moving and scaling its 
components.

(a) Moving a CV changes its curve 
(isoparm) and deforms the surface.

(b) A hull is a line that connects CVs.

(c) Scaling a hull moves has the 
effect of moving its constituent CVs 
uniformly; in this case, toward the 
center of the sphere.        

CVs    

(a)

Hull

(b)

Scale Tool

(c)
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  Move a CV 

    1.     RMB + click on the sphere in the scene view to activate the Component Marking 
menu (Figure 05.15  ).  

  2.     In the Marking menu, move the cursor over CV and release the RMB.  

  3.     Hit the  " w "  hotkey to activate the Move Tool.  

  4.     LMB + click to select one of the CVs.  

  5.     Create a spike on the sphere ' s surface by LMB + dragging the CV away from the 
sphere ' s center (Figure 05.14a).

or      LMB + dragging one of the Move Tool Manipulator handles.       

 Imagine the spike you just made is a cellular protrusion—a pseudopod—extending 
through the ECM of some tissue in the body! Next you will contract the middle of the 
sphere using a component called a  hull .  

  Scale a hull 
 A hull is a line connecting CVs that correspond to one isoparm and forming a closed 
loop ( Figure 05.14b ). Hulls are a convenient tool for deforming surfaces quickly. 

    1.     RMB + click on the sphere to bring up the Marking menu.  

  2.     In the Marking menu, move the cursor over  " Hulls "  and release the RMB.
    A Hull appears as a line connecting CVs in a loop around the sphere.     

 FIGURE 05.15 

    The NURBS component marking 
menu is revealed by an RMB  +  click 

over the object.    
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  3.     Hit the  " R "  hotkey to activate the Scale Tool.  

  4.     Click on a Hull. A color change will indicate that it ' s active.  

  5.     MMB  +  drag left on the center of the Scale Tool Manipulator to shrink the Hull 
and cause a narrowing in the sphere, as shown in  Figure 05.14b .     

  Selection modes and masks 
 If you fi nd yourself modeling extensively with components, you will want to learn 
how to use selection modes and selection masks. Th ey allow you to tailor the kinds 
of objects or components that you are able to select with your mouse. For instance, if 
you ’ re going to be selecting hulls for a while, you can set the selection mode to  select 
by component type  and the component mask to  hulls . Th is makes hulls visible for the 
objects in your scene and means you can select only them, and not other components 
or object transforms. Th ese settings are made using the selection modes and masks 
buttons in the Status Line at the top of the main window.

 Selection modes and masks 

 Help  →  Learning Resources  →  Getting Started with Maya  →  Maya Basics  →
Lesson 3 Viewing the Maya 3D scene  →  Selection modes and masks       

 Before moving on to the next tutorial, save your fi le: 

    1.     Choose File  →  Save

or      Use the key combination, Ctrl + S.         

  Tutorial 05.03: Make and deform a polygon primitive 
 Now that you ’ re familiar with basic NURBS geometry, you ’ ll create a polygon sphere 
and see how its components diff er from its NURBS cousin. Once you begin moving 
components you ’ ll notice that the form of the polygonal object lacks the smooth, 
organic form of the NURBS sphere. As a result the polygon sphere doesn ’ t appear as 
 cell-like —that is, until you apply a smoothing node to it. To get started, the select-
ing, renaming, translate, rotate, and scale exercises you went through for the NURBS 
sphere will be no diff erent for the polygon, so we don ’ t repeat the steps here. To create 
a polygon sphere: 

    1.     Choose Create  →  Polygon Primitives  

  2.     Turn off Interactive Creation.  

  3.     Choose Create  →  Polygon Primitives again, but this time, select Sphere     . 
This launches the Polygon Sphere Options box.  
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  4.     Customize the settings:

  (  a)     Radius: 2  

   (b)     Subdivisions Around Axis: 10  

   (c)     Subdivisions Along Height: 10  

   (d)     Axis: Y     

  5.     Click Create to create the sphere and close the Options window.    

 Th is makes a new polygonal object with a transform node called   pSphere1  . If the 
  pSphere1   overlaps   nurbsSphere1  , select one of the two and move it beside the other. 
Now let ’ s look at the components of   pSphere1  .  Figure 05.16    shows the results of the fol-
lowing steps. 

  Move a CV 

    1.     RMB + click on pSphere1 in the scene view to activate the component Marking 
menu.  

  2.     In the Marking menu, move the cursor over  " CVs "  and release the RMB.  

  3.     Repeat the steps you used to move a CV of the NURBS sphere.

     The effect on the shape of pSphere1 will be somewhat different from that of 
nurbsSphere1; it lacks the smoothness we saw in the NURBS object.        

  Move and scale a polygon face 
 A face is an individual polygon, with corners defi ned by CVs. 

    1.     RMB + click on pSphere1 to bring up the Marking menu.  

  2.     In the Marking menu, move the cursor over Face and release the RMB.

 FIGURE 05.16 

    Polygon surfaces can be reshaped 
by transforming individual 

components: CVs, faces, and edges.

(a) Translating a CV.

(b) Translating and scaling a face.

(c) Translating an edge.        

CVs

(a)

Faces

(b)

Face center point

(c)

Edges
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     A wireframe mesh will appear on the sphere. At the center of each face is a 
point used for selecting it.     

  3.     Hit the  " w "  hotkey to activate the Move Tool.  

  4.     Select the point at the center of a face (its  center point  ).  

  5.      LMB + drag the Move Tool Manipulator to move it away from the center of the 
sphere.  

  6.      With the face still selected, hit the  " R "  hotkey to activate the Scale Tool.  

  7.     MMB + drag the center of the Manipulator to scale the face.     

  Move an edge 
 An edge is a side of an individual polygon (or face) that spans two CVs. 

    1.     RMB + click on pSphere1 to bring up the Marking menu.  

  2.     In the Marking menu, move the cursor over Edge and release the RMB.

     A wireframe mesh will appear on the sphere indicating the polygon edges.     

  3.     Hit the  " w "  hotkey to activate the Move Tool.  

  4.     Select an edge by LMB+clicking on it.  

  5.     LMB + drag the Move Tool Manipulator to move it away from the center of the 
sphere.    

 When you move an edge or a face, you alter the edges and faces that share the same 
CVs. Furthermore, while you cannot scale or rotate an individual CV, you can scale 
and rotate a group of CVs, a face, or an edge. 

  Smooth the sphere 
 Due to the number of subdivisions you began with,   pSphere1   is rather coarse in appear-
ance. Here you ’ ll add a node that smooths the surface of   pSphere1   ( Figure 05.17   ). 

(a)

 FIGURE 05.17 

    A polySmoothFace node subdivides 
a polygonal surface. As long as 
construction history is active, 
smoothing is reversible and editable.

(a) Geometry before smoothing.

(b) Geometry after smoothing.

(c) The polySmoothFace node and 
its attributes appear in the Channel 
Box when the smoothed object is 
selected.

(b) (c)



    1.     Select pSphere1.  

  2.     Activate the Polygons menu set by pressing the hotkey, F3.  

  3.     Choose Mesh  →  Smooth. Don ' t worry about the Smooth options; with construction 
history turned on, you can edit them at any time .

  4.     Select the new smooth node, polySmoothFace1, in the Channel Box and enter 2.0 
for its Divisions attribute (see  Figure 05.17c ).    

  Figure 05.17  shows   pSphere1   before and after smoothing.  Divisions  is the number of times 
Maya subdivides the polygons in order to create a smoother appearance. At any point 
you can set this attribute to 0 to return the sphere to its pre-smoothed appearance. 
If you plan to edit the surface of a smoothed object, it is best to do so on the original 
geometry—with subdivisions set to 0. After editing, you can set  Divisions  back up to 1 
or 2 to smooth the object again. Th rough construction history, the shape changes will 
be refl ected in the smoothed version of the model.

  It ’ s easy to imagine, with the modest beginnings of your smoothed sphere, how you 
could approach modeling distinct shapes—cells or organs, for example—from primi-
tive geometry. And you haven ’ t even touched the modeling tools that are used to sub-
divide, extrude, cut, and append the constituent polygon faces! While it ’ s tempting to 
delve into specifi c examples here, we want to keep rolling toward your goal of writing 
MEL scripts to make models and drive in silico simulations. If you wish to explore 
Maya ’ s model-making capabilities further, we encourage you to look up the resources 
listed under  Learning Maya  in the  Further reading  section. In the next tutorial, we will 
explore the nodes and connections that make up  pSphere1  for a better understanding 
of what is actually going on when you create and edit geometry.

      Tutorial 05.04: Construction history 
 In this exercise, you will see how your polygon sphere is actually constructed in the 
Maya Scene Graph and how you can use those connections, through construction his-
tory, to alter the creation attributes you set. To begin, open your scene from  Tutorial 
05.03  or copy the scene fi le from the CD to your projects directory and open it in 
Maya (see fi le path below). 

 05_Modeling/scenes/tutorial_05_03_done.ma    

  The Hypergraph revisited 
 In the previous chapter we discussed the Dependency Graph ( DG  for short) and DG 
nodes, the entities that make up a Maya scene. Now that you have created some 
geometry in Maya, we can revisit DG nodes with a specifi c example. Th is section is 
less a tutorial than an exploration of what you ’ ve already created, using Maya ’ s DG 
and scene hierarchy viewer, the Hypergraph.  Figure 05.18    shows the Hypergraph UI 
Elements, some of which you ’ ll use to explore the nodes comprising your polygon 
sphere. Th e tool bar buttons are shortcuts to items located in the menus. You can 
move about the Hypergraph the same way you would in a scene view with an ortho-
graphic camera—using the dolly and track key/mouse combinations. Th e view but-
tons labeled in  Figure 05.18  become useful in more complex scenes for targeting specifi c 
nodes in a large network. 

 If you plan to edit the surface of 
a smoothed object, do so with 

smoothing Divisions set 
to 0. After making the changes 

to the object's shape, set the 
Divisions back up to 1 or 2.
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 To view   pSphere1   in the Hypergraph: 

    1.     Select pSphere1 in the Outliner or scene view.  

  2.     Choose Window  →  Hypergraph.  

  3.     In the Hypergraph Choose Graph  →  Input and Output Connections

or      Press  in the tool bar.       

 When you fi rst created pSphere1, four nodes determined what it looked like and 
where it was in space. Th ese are: 

pSphere1 the Transform node  

  polySphere1 the Creation or History node  

  pSphereShape1 the Shape or Mesh node  

InitialShadingGroup the Shading Engine node    

 You then deformed and smoothed the sphere, creating two more nodes: 

polyTweak1 the Tweak node  

polySmoothFace1 the Smooth node    

 You can select any of these nodes by clicking on it in the Hypergraph. When selected, 
a node and its attributes appear in the Channel Box and in the Attribute Editor if 
it ’ s open. Th e pink lines with arrows indicate connections between attributes. In the 
DG one node, in relation to another, can be either an  upstream  or a  downstream node , 
depending on the direction of information fl ow. Th e connection line arrows indicate 
this direction, which is typically shown left to right in the Hypergraph ( Figure 05.19   ). 
You can see which attributes are connected between two nodes by moving your mouse 
cursor over the connection line; the attribute names will pop up. 

Tip  : Popup Help will not work in 
the Hypergraph unless you make 
it the active window by clicking 
on it.      

Frame buttons
(for viewing)

Transform node

Creation node Shape node Shading engine 
node

Connection line

Scene hierarchy

Input and Output connections

Smooth nodeTweak node  FIGURE 05.18 

    The Hypergraph displays the nodes 
and connections for your polygon 
sphere.
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 Th e transform node,   pSphere1  , has no attribute connections to the other nodes. 
Instead, it has a hierarchical relationship with the shape node.   pSphereShape1   is the
child of  pSphere1  (clicking on the Scene Hierarchy button,   , will isolate the trans-
form and shape nodes). Below the transform node is   polySphere1  , the creation node. 
It holds the radius and subdivisions attributes that were set when you created the 
sphere. Placing your cursor over the connection line between   polySphere1   and the 
tweak node,   polyTweak1  , reveals the attributes that are connected between the two: 
  polySphere1 .output  and   pTweak1.inputPolymesh  . In plain language, the output of the crea-
tion node is the data that the tweak node operates on. Next   polySmoothFace1   takes the 
 tweaked  data and applies its smoothing operation. Th e  smoothed  data is then input to 
the shape node,   pSphereShape1  , which put the data into viewable form of how the sur-
face will appear. 

 To the right of pSphereShape1 is the default shading engine which is used for render-
ing the sphere. When created, all geometric primitives are connected to this default 
 render node . It helps determine the appearance of the sphere—the combined eff ects of 
color, texture, and lights—when rendered. You can see the additional nodes used in
rendering by selecting   initialShadingGroup   and clicking on   . We will explore render 
nodes in more detail in  Chapter 08 . For now, they serve as an example of how every-
thing in a Maya scene, even when it comes to rendering, is described by nodes and 
their connections. Th e Hypergraph provides a bare bones view of these nodes and 
connections, allowing you to zero in one or two at a time, or pull back and look at big-
ger chunks of the Maya Scene Graph. Other tools, such as the Attribute Editor, which 
we will explore next, provide a more detailed presentation of nodes and their 
attributes.

 The Hypergraph 

 Maya Help  →  Using Maya  →  General  →  Basics  →  Basic Windows and 
Editors  →  Hypergraph        

  The Attribute Editor 
 Th e Attribute Editor is a convenient tool for viewing, setting, creating, and delet-
ing attributes. It provides much of the functionality of the Channel Box, in terms 
of setting attributes numerically, but also allows you to make attribute connections 

             Internally, Maya considers each 
node to be of a certain  type . 

These types don ' t necessarily 
coincide with the common 
names given in Maya Help 

and employed by Maya users. 
For example, a  shape  node 

to a user is of type,  mesh  to 
Maya. Similarly, while we call 
polySphere  a  history  node, to 

Maya it is of type,  polySphere .      

upstream node downstream node
 FIGURE 05.19 

    Arrows on connection lines in the 
Hypergraph indicate the direction of 

information fl ow.    
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between attribute of diff erent items, which comes in handy when creating shading 
networks. Let ’ s open the Attribute Editor for   pSphere1   ( Figure 05.20   ): 

    1.     Select pSphere1.  

  2.     Choose Window  →  Attribute Editor

 or       Use the hotkey A.  

 or       Double-click on the pSphere1 icon in the Outliner.       

 Nodes are represented as fi le-folder-like  tabs  running along the top of the editor (see 
 Figure 05.20 ); by default, the shape node is displayed when you select an object. You can 
view each node by clicking on its tab. Th e In    and Out    Connections buttons 
reveal upstream and downstream nodes, respectively. In the next section, you will use 
the Attribute Editor to edit the polygon sphere through its history connections.

 Attribute Editor 

 Maya Help  →  Using Maya  →  General  →  Basics  →  Basic Windows and 
Editors  →  Attribute Editor        

  Construction history 
 Your polygon sphere provides a very simple and convenient example of construction 
history in Maya; it involves only one node,   polySphere1  , along with its connection to 
the shape node,   pSphereShape1  . Let ’ s change the attributes of   polySphere1   and observe 
the eff ect. You could do this through the Channel Box, in the same way you set the 
transform attributes for the NURBS sphere. Instead, let ’ s take this opportunity to 
become more familiar with the Attribute Editor. 

 FIGURE 05.20 

    The Attribute Editor is a useful tool 
for viewing attributes, setting their 
values, and making connections 
with other nodes.    
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    1.     Select pSphere1 and get a good view of it in the perspective view.  

  2.     In the Panel menu set, choose Shading  →  Smooth Shade All

or      Use the hotkey 5.     

  3.     Open the Attribute Editor.  

  4.     Click on the polySphere1 tab.  

  5.     LMB + Drag (scrub) the Radius slider and observe the effect in the scene view.  

  6.     Scrub the Subdivision Axis and Subdivisions height.

You can instantly see the effect these attributes have on surface smoothness.

  7.     When you ' re done adjusting the attributes, close or minimize the Attribute 
Editor.    

 If you select   polySphere1   in the Channel Box, you will see the attributes change there 
as you scrub the sliders in the Attribute Editor. Also, note the eff ect that changing 
  Subdivisions   has on the surface protrusions you created in the previous Tutorial—they 
tend to move around the surface as you scrub the   Subdivisions   attributes. In  Figure 05.18  
you can see that the upstream creation node   polySphere1   connects to the downstream 
tweak node   polyTweak1  , a node that was created automatically when you began manipu-
lating components. Th ose manipulations, or  tweaks , are specifi c to numbered compo-
nents of your sphere. As you change the number of CVs by increasing or decreasing 
  Subdivisions   in the creation node, the CVs themselves get renumbered. Th e tweaks fol-
low their CVs by number resulting in protrusions that change position on the sphere 
depending on the number of Subdivisions. For this reason, it is a very good idea to set-
tle on the number of Subdivisions before deforming a piece of geometry. 

 Unlike the   Subdivisions   of the creation node   polySphere1  , changing the   polySmooth-
Face1  Divisions  does not impact the location of shape tweaks on the sphere because the 
smoothing node lies downstream from the tweak node. In other words, the tweaks 
(push and pull of surface components) occur before smoothing is applied. Th is brings 
up an important fact about construction history: changes to a node can aff ect only 
itself and others that lie downstream form it, but not upstream nodes. 

 You can see how useful construction history can be for making changes to a model 
after its creation. However, history nodes add overhead to a Maya scene. Th e history 
nodes in our current example are the creation, tweak, and smooth nodes. Th ese add 
to fi le size, increasing the time it takes to save and open a fi le. More importantly, they 
slow animation playback and rendering. Th is is because history adds to the calcula-
tions Maya must make in order to determine where an object is and what it looks like 
at a given frame. Deleting history—deleting the history nodes—is one way of opti-
mizing a scene for faster playback and rendering. To delete an object ’ s construction 
history, select the object and do one of the following: 

    Choose Edit  →  Delete by Type  →  History.  

or

  Select the history nodes in the Hypergraph and hit Delete on your keyboard.    
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  If you deleted history for    pSphere1   , choose Edit   →   Undo to bring the history nodes 
back. Next, instead of deleting the nodes, you will delete the connection between 
   pSmoothFace1    and    pSphereShape1   , eff ectively cutting the sphere off  from its history. 
You will then reconnect the two nodes to learn how to make attribute connections 
using the Connection Editor. With  pSphere1  selected:  

    1.     Open the Hypergraph.  

  2.     Select the pink connection line running between polySmooth Face1 and 
pSphereShape1.  

  3.     Hit the Delete key.    

 Select   pSphere1   in the scene view or the Outliner and inspect it in the Channel Box. 
You no longer have access to the creation (  Radius  and  Subdivisions  ) and smooth-
ing (  Divisions  ) attributes. You can select   polySphere1   and   polySmoothFace1   in the 
Hypergraph and edit their attributes in the Channel Box. However, changing them 
will have no eff ect on the sphere because of the broken connection. Let ’ s fi x that by 
reconnecting the severed nodes using the Connection Editor.

  Construction History 

 Maya Help  →  Using Maya  →  General  →  Basics  →  Transforming objects  →
Maya ' s interface  →  Construction history        

  The Connection Editor 
 Th e Connection Editor is shown in  Figure 05.21   . It is used to make and break connec-
tions between attributes of two nodes. Th e left- and right-hand fi elds display the 
attributes of upstream and downstream nodes, respectively. When two attributes 
are connected, the output value of the upstream (left-hand) attribute becomes the 
input value of the downstream (right-hand) attribute. To see the Connection Editor 
in action, let ’ s use it to connect  pSphere1  to its severed history node: 

    1.     (a)  (i) In the Hypergraph, MMB + drag the icon for polySmoothFace1 over to 
of the icon for pSphereShape1.

       The icon itself won ' t move, but your cursor will change to indicating that 
your are setting up a connection.

    (ii) Release the MMB. A Connection pop-up menu will appear

     (iii) Select Other (Figure 05.22   ).  This launches the Connection Editor, with the 
attributes of both nodes displayed.

or       (b)  (i) Choose Window  →  General Editors  →  Connection Editor.  

     (ii) Select polySmoothFace1 in the Hypergraph and click Reload Left in 
the Connection Editor.  

     (iii) Select polySphereShape1 in the Hypergraph and click Reload Right 
in the Connection Editor.     

  2.     In the left fi eld, select Output. In the right fi eld, select In Mesh (Figure 05.21).    
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 Th at ’ s all it takes to connect two attributes! You can now change the   Radius   and 
  Subdivision   attributes and   pSphere1   will respond. Th e Connection Editor is a handy tool 
for making quick connections between nodes. As with other Maya techniques intro-
duced in this chapter, attribute connection will be eventually be handled with MEL 
commands. To prepare for the next section, save the current fi le if you like, and then 
start a new one.   

 FIGURE 05.21 

    The Connection Editor allows you 
to make and break connections 
between attributes of different 

nodes. Shown here is the 
connection between the attributes 
of the history and the shape nodes 

of the polygon sphere.    

 FIGURE 05.22 

    When connecting attributes in 
the Hypergraph, a choice of Other

launches the Connection Editor.    
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  Tutorial 05.05: Create a NURBS  " fi ber"   
 It is common in NURBS modeling to create a specifi c shape, called a  profi le , with a 
spline and then use it to generate a surface. In this exercise, you will extrude a 
NURBS surface, a tube, from a profi le spline, along a guide spline (see  Figure 05.23   ). Th is 
technique has implications for modeling tubular and fi brous structures—both of 
which are plentiful in biology. Tubular structures conduct fl uid (lymph and blood, for 
example) and manage forces (long bones such as the femur and humerus). Likewise, 
fi bers fi ll many roles in the tissues of living things: from axons that conduct nerve 
impulses to the rigorously aligned collagen bundles that compose tendons. Th e tech-
niques you ’ ll explore in this tutorial will apply directly to a method for modeling a 
fi ber matrix to simulate dense connective tissue in  Part 3: Chapter 17 . 

  Set up the scene view 
 When working in Maya, you have the option to constrain objects and their compo-
nents to the grid that appears in the scene views. Th is is called  “ snapping ”  and is 
common to many graphics applications. Turning on  “ Snap to grids ”  makes it easy to 
create the straight line spline you want for the axis of your tube. 

    1.     Set up a Four panel view in the workspace.  

  2.     In the Front view, make sure the grid is showing. If it isn ' t, turn it on by choosing 
Show  →  Grid in the Panel menu set.  

  3.     Set the Grid size and subdivisions:  

   (a)     Choose Display  →  Grid . This opens Grid options.  

Profile spline Guide spline Extruded surface

 FIGURE 05.23 

    A NURBS surface extruded from a 
profi le spline along a guide spline.    
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   (b)     Length and Width: 10 units  

   (c)     Grid Lines Every: 1 units  

   (d)     Subdivisions: 1  

   (e)     Hit Apply and Close.  

  4.     Press the Snap to grids button,    in the Status Line (toolbar) at the top of the 
main window.  

  5.     Make sure History is turned on: the History icon,   , must be depressed.    

    You will take advantage of History further down, when you alter the NURBS 
surface.

    Draw the guide spline 

    1.     Click in the Front view to make it active.  

  2.     Choose Create →   CV Curve Tool   .

  3.     Hit Reset Tool for the default settings.

     A Curve Degree setting of Cubic produces smooth splines, while Linear pro-
duces angular splines. A cubic value of 3 is suffi cient for this exercise.     

  4.     Hit Close.  

    Note: you can work with the Tool Settings window open or closed.  

  5.     Draw a curve in the Front view:  

    LMB + click in at least four (4) different spots to create the spline, as shown in 
Figure 05.24   .  

     Take advantage of the Snap to Grid feature to get the points in a straight line. You can 
undo a point immediately after creating it by hitting the Undo hotkey,  z .

1 2 3 4

 FIGURE 05.24 

    A spline drawn with the CV Curve 
Tool. It was drawn in the Front 

orthographic view with grid 
snapping turned on. To help you 

tell where a curve starts and ends, 
Maya uses a box (or square) to 

indicate the fi rst CV, and a  " U "  to 
indicate the second.    

             Curve degree is a measure of 
how many bends a curve can 
have between EPs. For most 

applications, a 3-degree (cubic) 
curve is suffi cient. A minimum 

of four points (degree  +  1) is 
required to make a cubic CV 

curve.      

             You can also snap to CVs, 
curves, and view planes. The 
buttons for these actions are 

located next to the Snap to Grid 
button.      
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  6.     Once you ' ve created the three points to your satisfaction, hit Enter to complete 
the spline.  

  7.     Hit the Q hotkey to turn the Select Tool on and the Curve Tool off. If you leave 
the Curve Tool on, you will create a curve point each time you click in the 
workspace.   

  By default, when you draw a spline in the Front view, it is created in an XY plane at 
Z  �  0. If you toggle the Perspective view around the curve you just made, you can see 
that all of its points lie on a plane perpendicular to, and at the origin of the Z-axis. 
Had you drawn the curve in the Perspective view, you would have gotten unpredictable 
results.

 Using the CV Curve Tool 

 Maya Help  →  Using Maya  →  General  →  Basics  →  Basic Menus  →  Create  →
CV Curve Tool        

  Create the profi le spline 

    1.     Choose Create  →  NURBS Primitives  →  Circle .      

  2.     In the Options window, select Edit  →  Reset Settings.  

  3.     Customize the settings:

    (a)     Normal Axis: X  

   (b)     Radius: 0.5     

      Note : Normal Axis determines which way the circle will face in 3D space; in this case, 
you want it to face in the X-direction for extrusion along the straight line curve.   

  4.     Hit Create. Figure 05.25    shows the result in the perspective view.     

            You can also create curves using 
the EP Curve Tool or the Pencil 
Curve Tool. With the former, 
you place EPs, rather than CVs, 
which the resulting curve will 
pass through. The Pencil Curve 
Tool allows you to draw a curve 
freehand.      

 FIGURE 05.25 

    The guide spline was drawn at 
Y �  1 in the X–Y plane (Front view), 
whereas the profi le spline (circle) 
was, by default, created at the world 
origin.
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  Snap the profi le to the guide spline 
 Whereas you created the circle at the origin, you drew the guide spline above the X–Z 
plane so that it will show up better in the illustration (and not be blocked by the Grid 
axes). It ’ s important to note that the guide and profi le splines need not be aligned to 
create a useful surface; the Extrude tool options determine location and orientation 
of the resulting surface. However, if you wish to alter the surface through its History 
by moving or deforming either of the two splines, their locations relative to one 
another do matter. Here, you ’ ll snap the profi le to the guide spline, so you can deform 
the surface predictably a little further on. 

    1.     Press the Snap to curves button,    in the Status Line at the top of the Main 
Window.  

  2.     Hit the hotkey  " w "  for the Move Tool.  

  3.     In the perspective view, select the circle and LMB + drag its pivot point (center) 
so that it overlaps the guide spline.  

  4.     MMB + drag the circle ' s pivot point along the guide spline until it snaps onto 
it. You ' ll know it has snapped when you can drag the mouse all over the 
workspace but the circle remains confi ned to the guide spline (Figure 05.26 ).   

    Extrude the surface 
 Th e Extrude tool requires that you select, in order, a profi le spline and then a guide 
spline. 

    1.     Press F4 to activate the Surfaces menu set.  

  2.     Choose Surfaces  →  Extrude  .     

  3.     Choose Edit  →  Reset Settings, then customize the Extrude options:  

  4.     Set Result Position to  At Path. This aligns the new surface with the guide path. 
The remaining attributes are okay at their default values.  

  5.     Hit  " Extrude " .    

MMB+drag the circle's pivot point
along the guide spline to snap it.

pivot point

 FIGURE 05.26 

    Objects can be made to snap to 
one another, to Grid points, or 

to view planes. In this fi gure we 
have snapped the profi le spline 

(circle) onto the guide spline. This 
allows us to align the circle's plane 

perpendicular to the spline, and 
center it on the spline.    

      Snapping to a curve can be 
tricky—patience helps. The 

key is to get the objects aligned 
visually before MMB + dragging 

to snap.      

      To snap an object to a curve 
without using the Status Line 
snap buttons, hold down the 

hotkey  " c "  then MMB-drag the 
object over top of the curve until 

it snaps to it.      
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 Th is creates a tubular surface aligned with the guide spline. If you select it, you ’ ll see 
that its pivot is located at the world origin, not the object ’ s origin. You can rectify this 
by centering the pivot: 

    Choose Modify  →  Center Pivot.     

  Alter the tube through history connections 
 Try moving the guide spline, the circle, and the tube individually. You ’ ll notice that 
moving either of the guide or circle splines moves the tube. Th is is because the tube is 
linked to both splines through construction history. You can break these links if you like 
by deleting History ( Edit  →  Delete by Type  →  History ). For now, leave history intact so you 
can see how it aff ects the surface when you transform it or its constituent splines: 

    1.     Select the guide  or  the circle spline with the tube, and move them together.    

 For every unit the spline moves, the surface moves twice as far. Th is is known as a 
 double transformation . Th rough History, the tube ’ s transform node is dependent on the 
spline ’ s transform node. However, the tube ’ s position also depends on its own transform 
node. Th erefore, when you move both the spline and the tube, you ’ re eff ectively moving 
the tube twice as much. It ’ s important to be aware of situations that result in double 
transformations since they can be the cause of unpredictable results in animations. 

    2.     Return the spline and tube to their previous positions. You can do this by hitting 
the undo hotkey, z.    

 Now you ’ ll take advantage of Construction History to alter the shape of the tube. 

    1.     Select the circle in the Outliner or the workspace.  

  2.     In the Channel Box, under INPUTS, click on makeNurbCircle1. This is the 
creation node.  

  3.     Enter 2 in the Radius fi eld.    

 Notice that the tube  “ inherits ”  the change in radius and becomes wider. Next, deform 
the guide spline by moving a CV. Before starting, reset the radius to 0.5. 

    1.     RMB + click on the guide spline and choose  " CV "  from the Marking menu.  

  2.     LMB + click on one of the CVs to select it, then drag it away from the curve as 
shown in  Figure 05.27a   .

   or      in the Channel Box, Click on  " CVs (click to show) "  and change the Y-value for 
the selected CV.       

 Th e tube will distort as you drag the CV because of the connection History connec-
tion between the curve and the tube. 

  Rebuild the curve 
 Th e angular appearance of the tube is due to the number of points (CVs) you used to 
create the guide spline; the more points, the smoother the curve. Next you ’ ll rebuild 
the guide spline to increase the tube smoothness. 
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    1.     In the Outliner, select the guide spline, curve1; this automatically selects it in 
object mode.  

  2.     Choose Edit Curves  →  Rebuild Curve       .

  3.     In the Options window, choose Edit  →  Reset Settings.  

  4.     Set Number of Spans to 2.  

  5.     Hit Rebuild.    

 A span is a length of curve between two EPs. Your original drawn spline had only one 
span. By adding another one, you improved its curvature and that of the tube ( Figure 
05.27b ). You haven ’ t seen the last of  Rebuild Curves . You will make use of it in MEL 
command form to smooth out the curves in  Chapter 17 . Save your fi le if you like. Th e 
fi nished scene fi le is included on the CD: 

 05_Modeling/scenes/tutorial_05_05_done.ma    

  Summary 
 Th is chapter introduced NURBS and polygon modeling in Maya. Th e tutorials pro-
vided examples of how to create primitive sphere models, which will form much of 
the basic geometry for the projects in  Part 3 . You learned that an object can be trans-
formed interactively with the Move, Rotate, and Scale Tools and numerically by 
changing attributes in the Channel Box. Furthermore, NURBS and polygon are made 
of diff erent components, which can be individually selected and transformed with 
the same tools used to move, rotate, and scale whole objects. Maya Deformers, which 
are used extensively in character modeling and animation (and are therefore a classic 
animation subject treated deeply by others), work on a fundamental level, by trans-
forming object components. 

 Your inspection of the Hypergraph revealed the nodes and connections that make 
up a primitive sphere, plus those that were added to tweak and smooth the surface. 
Th ose same nodes appeared in the Attribute Editor, which you used to interact with 
the sphere ’ s construction history by changing attribute values in the creation node, 
  polySphere1  . Altering these attributes aff ected the downstream shape and tweak 
nodes, and therefore the appearance of the object—its radius, subdivisions, and the 
location of surface deformations. Since the polySmoothFace node lay downstream 

 FIGURE 05.27 

    (a) Through Construction History, 
moving points on the guide curve 

deforms the NURBS surface.
(b) Rebuilding the guide spline by 

adding spans, in turn makes the 
extruded NURBS surface smoother.      (a) (b)
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from the tweak node, changing its   Divisions   attribute had no eff ect on the surface 
deformations. As long as construction history is maintained for an item, you can edit 
its creation attributes. History can be deleted by deleting individual nodes, or discon-
nected by deleting connections in the Hypergraph, as you did with   pSphere1 .  

 Attributes can be connected to each other in diff erent ways. Connections are made 
automatically when you create a new object, camera, or light in Maya. Th ey can also 
be made manually in several ways. In this chapter you used the Connection Editor 
to reconnect the   pSphere1   to its history node. In later Case Studies, you will connect 
attributes using MEL commands. 

 Finally, you learned how to create a surface from splines. Th is is the foundation of 
NURBS surface modeling, and a simple technique that you will call upon to help build 
a complex fi ber environment in silico.  
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                           Introduction 
 In the previous chapter you learned about model types in Maya (NURBS and poly-
gons) and how to create primitive objects. You saw that an object is composed of 
nodes, each with a number of attributes. Using the transform tools and the Channel 
Box, you changed certain attribute values in order to move, scale, rotate, and change 
the shape of objects. In this chapter, you will record such changes at diff erent times—
called  keyframes —on the timeline in order to create animation.         

 Th e relevant Maya windows, menus, and tools will be introduced in the upcoming 
tutorials. You will use the Hypergraph to see what happens behind the scenes when 
attributes are animated and examine how animation is stored within a node. By the 
end of this chapter you will have learned how to animate a simple object using both 
manual keyframing techniques and automated  procedural  methods. 

 As in the chapter on modeling, our goal here is to provide an introduction to concepts 
and techniques that will serve you well in the projects in  Part 3  of this book. Th is 
chapter is by no means exhaustive; as with modeling, one could easily fi ll a book or 
book series with techniques, tips, and tricks on animation with Maya. Under the head-
ing,  Learning Maya , the  Further reading  section lists helpful resources for exploring 
this topic further.  

  Animation 
 In Maya, animation is simply the change over time in the value of an attribute. 
An attribute that can be animated is said to be  keyable , in reference to the word  key-
frame  (also  key ), which is both a noun and a verb in Maya. As a noun, it means a  frame , 
or unit of animation time, at which a value has been recorded, or  set . As a verb, it 
refers to the action of setting the value. 

 While keyframes are a means of recording animation for playback, they are not nec-
essarily a requirement of animation; all that is required is for an attribute to change 
with time. Keyframes are merely a convenient way to store attribute values at diff er-
ent times, within a Maya fi le. Alternately, values may be stored in an external fi le, or 
they may not need to be stored at all. 

 Maya store keyframe data for every animated attribute in a separate animation node. 
Th e input for this node is time and its output is an attribute value. Th is data is in 
the graphical form of attribute versus time is visualized in the Graph Editor, a handy 
Animation Editor you ’ ll meet shortly. Like other nodes in Maya, you can inspect and 
edit an animation node ’ s values in the Attribute Editor. 

  Procedural versus keyframe animation 
 Generally speaking,  Procedural animation  refers to the use of computer procedures, or 
algorithms, to change attributes over time. Th e procedure can be as complicated as 
an algorithm for DNA replication or as simple as an instruction to make an attribute 
equal to a constant value; the point is that it uses an instruction or set of instructions, 
not a recorded value, to determine the attribute value. 

 Th e following example illustrates the diff erence between keyframe and procedural 
animation.  Figure 06.01    shows a cube that moves along the X-axis from point X A  at 
time T A , to point X B  at time T B . Th e animation here is the change in the Translate 
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X attribute over time. If this action were keyframed, Maya would use the current 
time, T current , to look up X current  in the animation node. If instead the action were pro-
cedural, Maya would calculate the X current  value using a source other than an anima-
tion node. Th is source could be an  animation expression  node, a MEL script, or another 
type of node, such as a  procedural texture  which calculates its output value using an 
internal algorithm. We will examine the nodes and connections used in animation 
through specifi c examples in the tutorials later in this chapter. 

 Keyframe and procedural animation need not be exclusive from one another. 
Keyframes are often used to record the outcome of procedural animation for later 
playback. Nor is procedural animation limited to the physical properties of objects. 
Procedural textures are texture nodes that use mathematical procedures to create 
interesting patterns for shading objects. Similarly, a light can have its attributes ani-
mated procedurally to produce interesting eff ects.  

  Keyframes and memory 
 Each time you set a keyframe, the relevant information is stored in RAM until you 
save the Maya fi le, at which time it is written into the fi le. Th e more keyframes you 
set, the larger your fi le. In a simulation using procedural animation, where you want 
to record animation for many objects (e.g. interacting molecules) over many time 
increments, setting keys can eat up RAM and drive your computer to use  virtual 
memory , with its associated time penalties. In  Chapter 13 , you will learn how to read 
and write attribute values to and from a text fi le. You can use these techniques to 
record animated attribute values to an external fi le rather than keyframing them in 
Maya. Such an approach keeps RAM use down, and Maya fi le size to a minimum.

  The Animation menu set 
 In addition to tools for keyframing, this menu set provides access to ones used to 
deform and rig objects. Rigging, which is widely used in character animation, is the 
practice of endowing a model with attributes that deform its shape in a controlled 
manner. A common example is the rigging of a character, the  “ skin ”,  with a jointed 
skeleton. Joints are then rotated, deforming the skin to bend limbs. A skeleton ’ s 
joints can be animated to make a character walk and talk. Deformers work like joints, 
changing an object ’ s shape by moving its components. 

x

Time = TA Time = Tcurrent Time = TB

XcurrentXA XB

Value stored
in keyframe A

Value computed in an
animation node

Value stored
in keyframe B

A B

 FIGURE 06.01 

    Animation of a cube ' s Translate 
X attribute between keyframes 
A and B.    

 Virtual memory refers to 
the practice of using a 
hard drive for storage and 
retrieval of data once RAM 
becomes full. Helpful for 
alleviating low-memory 
situations, it comes with a 
heavy time penalty—about 
an order of magnitude 
slower than RAM. 
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 For our in silico work, we have for some projects used rigging techniques to deform 
motile cells as they locomote through scaff olds ( Figure 06.02   ). You ’ ll use some of these 
techniques when you animate a crawling cell in  Chapter 16 . Another example is the 
heart model shown in Figure 05.01 in the previous chapter, which was rigged to beat 
at regular intervals. Nonetheless, since the Projects in  Part 3  don ’ t require rigging 
and deformations, we will leave their discussion to the resources listed in the Further 
 reading  section, and focus here on the menu items concerned with keyframing. 
To activate the Animation menu set, use the Status Line pull-down menu at the far 
left of the Status Line.  

  Setting keys 
 Below are a few ways to set keys for, or  keyframe , an attribute. 

 Using the Channel Box ( Figure 06.03   ) 

    1.      Select the item (object, camera, etc.) for which you want to key an attribute.  

  2.      Select the attribute(s) you wish to key, by name in the Channel Box.  

  3.      RMB  +  click over a selected attribute name. This brings up a context menu.  

  4.      Choose  Key Selected  and release the RMB. This will set a key for all selected 
attributes.    

 FIGURE 06.02 

    In this animation of a migrating 
fi broblast cell, the cell body is 

rigged to extend and retract 
appendages called pseudopodia. 

The rigging uses joints and 
deformers (inset) to deform the 

cell surface smoothly as it crawls 
through its environment. 

Scale bar �10�m.
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 FIGURE 06.03 

    Using the Channel Box to set 
a keyframe for the Translate X 
attribute.

 In the Attribute Editor: 

    1.     Select the item for which you want to key an attribute.  

  2.     Open the Attribute Editor (Ctrl�  A).  

  3.      RMB � click on the attribute name to key all attributes corresponding to 
the name (e.g. clicking on  Translate  allows you to set all three (X, Y, and Z) 
Translate values).

    or  

    RMB�click on the attribute fi eld to key only a single attribute name 
(e.g. Translate X).     

  4.     In the context menu, select  “ Set Key ”.     

 Using a hotkey: 

    1.     Select the item for which you want to key an attribute.  

  2.     Use one of the hotkeys shown in  Table 06.01    to set a keyframe.     

 Hotkey  Action 

S Set keys for all transform attributes

 Shift + W Set keys for Translate X, Y, and Z

 Shift+  E Set keys for Rotation X, Y, and Z

 Shift+R Set keys for Scale X, Y, and Z 

 TABLE 06.01 

   Hotkeys to set keyframes for 
selected objects.  
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  Auto keyframe 
 When you turn on  auto keyframing , Maya automatically sets a key every time you 
change an attribute. For example, if you were to key the position of an object at 
time 1, move the time indicator ahead to time 2, then drag the object to a new posi-
tion, Maya would set a key for the new position at time 2. Th is can certainly speed 
workfl ow in some circumstances, but it can also be dangerous because it can lead to 
setting keys accidentally. Th is can ruin a carefully arranged animation. To turn auto 
keyframing on: 

    1.      Choose Window  →  Settings/Preferences  →  Preferences. Select Settings  →
Animation.  

  2.      Under Auto Key, check Auto Key (uncheck to turn off auto keyframing)

    or

    Press the auto keyframe icon      in the bottom right corner of the UI.       

 In  Chapter 18 , you ’ ll use the MEL command setKeyframe to record animation.  

  Graphing animation 
 Maya represents animation graphically in two ways, using the  Dope Sheet  and the 
 Graph Editor . Th e Dope Sheet provides a tabular account of keyframes for a selected 
item ( Figure 06.04   ). You can use it to edit animation by selecting and moving keys along 

Dope sheet
outliner

Current time indicator

Keyframes

 FIGURE 06.04 

    The Dope Sheet provides a 
tabular view of keyframes for a 

selected object.    
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Current time
indicator

Keyframes

Animation
curve

 FIGURE 06.05 

    The Graph Editor. The blue 
curve, which represents the 
Rotate Z attribute of pCube1, 
uses spline interpolation. Its 
slope approaches zero at either 
end, making for a gradual 
increase and decrease in the 
rate of change of Rotate Z. 
The red curve represents the 
Translate X attribute and uses 
linear interpolation. Its slope 
is constant, which makes for 
an instantaneous increase and 
decrease in the rate of change of 
Translate X.    

the timeline. In a traditional animation workfl ow, the Dope Sheet is used to coordi-
nate event and sound synchronization and timing. 

 Th e Graph Editor ( Figure 06.05   ) is a 2D graph displaying  animation curves  (also called  key-
sets ). Th ese represent attribute values plotted on the vertical axis against time values 
plotted on the horizontal axis; they are the  in-between  animation spanning the keys, 
which are the plot points. Th eir interpolation through and between keys determines 
the smoothness of animation. A curve can use  linear  or  spline  (nonlinear)  interpolation , 
as shown in  Figure 06.05 . Spline curves correspond to smooth acceleration and decelera-
tion in animation. In other software applications spline interpolation is sometimes 
called  ease in  and  ease out  ( in to and  out  of a keyframe). Th is is the opposite of linear 
interpolation which makes for abrupt changes—instantaneous acceleration—in 
attribute values at keyframes. Th is is not to say that spline interpolation can ’ t gener-
ate abrupt changes in direction. 

 In addition to displaying animation curves, the Graph Editor contains tools for 
adjusting interpolation and for moving and scaling keys. For keyframe animation, we 
fi nd it to be one of the most useful tools in Maya. You will explore it further, along 
with animation curve interpolation, in the upcoming tutorial.

Dope Sheet and Graph Editor 

 Maya Help  →  Using Maya  →  Animation, Character Setup, and Deformers  →
Animation  →  Animation Windows and Editors  →  Editors 
→  Dope Sheet 
→  Graph Editor        
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  Deleting keys 
 Once keys are set, they can be deleted in one of the following ways: 

 Use the Dope Sheet or the Hypergraph to delete one or more keys for the selected 
object(s): 

     Select the keys in the Dope Sheet and hit Delete.  

or      Select the keys in the Hypergraph and hit Delete.    

 Use the Timeline to delete all keys for the selected object(s) at a specifi c frame: 

     1.     Select the red key tick mark in the Timeline.  

   2.     RMB  +click on the key and select Delete.    

 Use the Channel Box or Attribute Editor to delete all keys for the selected 
attribute(s): 

     1.     Select the attribute in the Channel Box or Attribute Editor.  

   2.     RMB+click on the attribute and select Break Connections.     

  Time units 
 In  Chapter 04 , we introduced the Timeline and Playback controls, which you will use 
to scrub and to play your animation. In addition, Maya lets you determine the work-
ing units for time, which are set to 24 frames per second (fps) by default. You can 
choose from a variety of fps settings, including broadcast standards  PAL  and  NTSC , 
and clock settings: hours, minutes, seconds, and milliseconds. A clock setting of  “ mil-
liseconds ”  is equivalent to an fps speed of 1,000. A setting of seconds is equivalent to 
one fps, and so on for minutes and hours. To access the Time settings: 

    1.     Open the Preferences Window and choose Settings.  

  2.      Under Working Units  →  Time, select an appropriate playback frame rate. 
(In North America, it is common to use NTSC (30       fps) which is a television 
video broadcast standard.)    

 Th e Time working units are as important as is the speed of the action in a rendered 
movie. For instance, if an action were to occur in one second as seen by an audience, 
then you would set the working units in Maya to match those of the viewing technol-
ogy. Suppose, for example, you were animating the  cell cycle  for a European television 
audience, and you had one second to show the  cytokinesis  phase. In Maya, you would 
set the Time working units to PAL (25       fps) (the European television broadcast stand-
ard) and animate cytokinesis within 25 frames.

 For in silico simulations, the working units are generally fl exible. Our practice is to 
use NTSC (30       fps) because we often output movies to video for a North American 
audience.  

 It is good practice to set your 
Time working units at the start 

of a project. Changing units 
midway will shuffl e keyframes 

along the timeline unless you 
have  Keep Keys at Current 

Frames  checked in the Working 
Units settings. 



  Playback settings 
 After setting the working units, you can further specify speed of playback in the 
scene view. Th is can be the speed you set in Time working units, half or twice that 
speed, or a diff erent frame rate altogether. Since this determines only how quickly 
Maya plays frames in the workspace, it does not aff ect the per-second rate of anima-
tion in your scene. 

 It is not uncommon for a scene to be too complex to play back at the specifi ed fps.
In this case, Maya skips frames to keep pace. Th is is generally fi ne for keyframed
animation, but is a major pitfall for scenes involving dynamics or procedural ani-
mation; calculations are missed in the skipped frames, leading to bogus animation 
results. To prevent this, Maya must be set to play every frame, independent of a desired
frame rate: 

    1.      Open the Preferences Window and choose Settings  →  Timeline.  

  2.     Under Playback, select Play every frame.    

 Within the Playback settings, Update View determines if Maya will redraw all win-
dows in the workspace during playback or just the active one, which requires less 
memory and processing. You can also choose whether animation is to play once or 
loop. Finally, you can skip frames for quicker playback of complex scenes by setting 
Playback by to a number other than 1; for instances a setting of 3 means Maya will 
play every third frame. For scenes involving dynamics and procedural animation, 
this setting should always remain at 1, for the reason mentioned in the previous 
paragraph.   

  Tutorial 06.01: A keyframe animation 
 Th is is a quick exercise to become familiar with setting time-dependent attribute 
values using keyframes. You will animate the Translate X value for a primitive cube. 
We ’ re starting with this very simple example in order to demonstrate the core con-
cept of animation in Maya: the change of an attribute ’ s  value  over time. Armed with 
this understanding and the fact that almost all attributes for all the nodes in a Maya 
scene can be animated, you will have at your fi ngertips enormous creative poten-
tial for simulations and visualizations of complex biological phenomena. Let ’ s get 
started. 

  Preparation 
 To start, create a polygon cube, then select it in the scene view. Next, you ’ ll set the 
Time working units, the Playback settings and the duration of the animation. 

    1.      Choose Create  →  Polygon Primitives  →  Cube. If Interactive Creation is turned 
on in this menu, you ’ ll need to click and drag in the workspace to make the cube .

  2.      Choose Window  →  Settings/Preferences  →  Preferences. Make the follow-
ing settings:  

   (a)      Settings  →  Time  →  Working Units to NTSC (30       fps).  
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   (b)      Settings  →  Animation  →  Tangents  →  Default In Tangent and Default Out 
Tangent both to Linear and check Weighted Tangents.  

   (c)      Settings  →  Timeline  →  Playback to Real-time (30       fps), and Looping to 
oscillate  (so that the animation will play back and forth continually until you press 
Stop in the Playback Controls) .

   Hit Save to close the Preferences Window.  

  3.      Set the current time to 1.0 by LMB+  clicking on 1 in the Time Slider, or by 
entering 1 in the Current Time fi eld.  

  4.      Set the Start and End times in the Range Slider to 1.0 and 90.0, respectively 
(Figure 06.06) .    

 In Step 1b you set the animation tangents to be linear. We ’ ll explain why shortly.

  Set the keyframes 
 Now use the Channel Box to record a key for the cube at frame 1. 

    1.     Select the cube.  

  2.     Select the Translate X (not its value fi eld) in the Channel Box.  

  3.     RMB+click over Translate X to bring up a context menu.  

  4.     Choose Key Selected and release the RMB.  

  5.     Repeat steps 2 through 4 for Rotate Z.   

 You have just keyed the cubes position at (0, 0, 0) and its rotation at (0, 0, 0). Next you 
will change the time, translate and rotate the cube, and set a new key. 

    1.      Enter 90 in the Current Time fi eld or click on 90 in the Timeline to move to 
frame 90.  

Time Slider Range Slider Current time Playback Controls

Playback Start Time Animation End Time

Animation Start Time Playback End Time

Buttons to
expand the Slider

 FIGURE 06.06 

    The Animation Controls.    

 Setting Playback to  Real-time
will give you three seconds 

of animation for 90 frames 
at 30       fps. This will make the 

animation easier to watch than 
would a setting of  Play every 
frame . The latter would play 

back very quickly because this 
simple animation requires very 
little computer horsepower to 

compute and draw each frame. 

 When an attribute has been 
keyed, its value fi eld in the 

Channel Box turns from white to 
orange. 
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  2.      Hit the W hotkey to activate the Move Tool and drag the cube with the X 
handle to X  =  16.

or     Enter 16 in the Translate X fi eld in the Channel Box.     

  3.     Set another key for Translate X at this new time.  

  4.     Enter -720 in the Rotate Z fi eld in the Channel Box.  

  5.     Set another key for Rotate Z.   

  Play, scrub, and stop the animation 
 Note the red key ticks in the Time Slider which indicate keyframes. To play your 
animation: 

    1.      In the Animation Controls, press the Go To Start button      to return to the 
beginning of the playback range.  

  2.      To play the animation, press the Play button      in the Animation Controls.

or     Hit the hotkey, Option�V.      

 You should see the cube roll back and forth across the scene view ( Figure 06.07   ). To scrub 
the animation: 

    LMB�drag in the Time Slider.    

 To stop playback: 

    Press the Stop button      in the Animation Controls.  

or      Hit the hotkey, Option + V.  

or      Hit the ESC key.     

  Edit the animation curves 
 Notice that during playback the reversal of motion at either end of the cube ’ s tra-
jectory appears abrupt; it appears to instantaneously change direction. Th is is the 
result of setting the keyframe interpolation to  linear  in the Animation Tangents 
Preferences. It ’ s often favorable to have linear versus nonlinear changes in motion 
when starting to animate, in order to rough in the motion. You can then refi ne the 
motion by adjusting the keyframe tangents in the Graph Editor, which is precisely 
what you will do in a few pages.

 When using procedural animation for in silico biology, we often set keys to record the 
action for later playback in a movie fi le. By adjusting the interpolation of the result-
ing animation curves you can smooth out the motion and make for a more watchable 
movie in the end. Let ’ s explore the Graph Editor and use it to change the interpola-
tion so that the cube eases into and out of motion. 

 You can also key translate values 
for individual  CVs  in the Channel 
Box, in the same way you 
would select and key transform 
attributes. The resulting 
animation curve nodes will be 
connected to the object ' s shape 
node, rather than its transform 
node. 

 In Preferences, you can change 
the display size of key ticks in the 
Time Slider. 

 The Graph editor is a good item 
to add your custom shelf. 
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    1.     Select the cube.  

  2.      Open the Graph Editor: choose Window  →  Animation Editors  →  Graph 
Editor.  

  3.     In the Graph Editor, choose View  →  Frame All.

or      Hit the hotkey, A to frame all animation curves for the selected object.       

 You should see something resembling  Figure 06.08   . Note that the curves are color-
coordinated with their corresponding attributes.  

  The Graph Editor outliner 
 Th is panel displays only selected items. Under each one is listed its animation curves 
(corresponding to its keyed attributes) by name. Th e curves for Translate X and Rotate 
Z appear under the transform node,  pCube1 . None of the other nodes that make up 
pCube1  appear here because you did not key their attributes.  

  The Graph Editor graph view 
 When an attribute is selected in the Graph Editor outliner, its animation curve 
appears in the graph view.  Table 06.02    shows hotkeys and key combinations used to 
adjust this view and work with keys. When you select a key, Bézier handles (or tangents) 
appear.  Figure 06.09    shows the common types of animation tangents in Maya. You can 
MMB � drag a tangent to modify its curve. More control can be gained by weighting 
the tangents and unlocking their weights. 

 FIGURE 06.07 

    With its translate and rotate 
attributes keyed and playback set to 
Looping: Oscillate, the cube will roll 

back and forth in the scene view.    
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    1.     Select the cube.  

  2.      In the Graph Editor, select the choose Curves  →  Weighted Tangents.  

  3.     Press the Free tangent weight button    in the toolbar.  

  4.     Drag a tangent to distort one of the curves:  

   (a)     Hit the hotkey,  “ W ”  to active the Move Tool.  

   (b)     LMB�  click on a tangent to select it.  

   (c)     MMB � drag the tangent.    

Tool bar
Menu bar

Outliner

Graph view

Attribute values

Tangent tools

attributes
Transform node

Translate X-curve
Rotate Z-curve

keyframes

Frame #
Key Stats: Attribute value

 FIGURE 06.08 

    Features of the Graph Editor. 
Because of the keyframe settings 
we used in Preferences, the cube ' s 
animation curves are linear—of 
constant slope—resulting in 
abrupt changes in direction at the 
beginning and end of the animation.    

 Hold  Drag  Hotkey  Function 

 Alt  MMB    Track view 

 Alt  LMB  +MMB    Dolly view 

 K  MMB    Move current time indicator 

   MMB    Move the selected key 

 Shift  MMB    Move the selected key, constrained to one of 
the two axes 

     A  View all 

     F  Frame selected key(s) 

Note : To move keys, you must activate one of the   Move   ,    Rotate  , or   Show Manipulator Tools   in the main   toolbox  .

 TABLE 06.02 

   Shortcuts for the Graph Editor graph 
view and the Dope Sheet.  
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 Take a moment to modify the curves using their tangents and play the animation 
back to observe the eff ect. Don ’ t hesitate to really distort them and see what happens 
to the animation—you may have to pull your camera back to see the full range of 
motion in the scene view. Below, you will use the toolbar buttons to reset the curves 
and then adjust them automatically.

Editing animation curve tangents 

 Maya Help  →  Using Maya  →  Animation, Character Setup, and Deformers  →
Animation  →  Keyframe Animation  →  Edit Tangents        

  The Graph Editor toolbar 
 Th e most commonly used curve editing tools are accessed through the Graph Editor 
toolbar buttons; several of these are also found in the menu bar. 

    1.     Select the cube.  

  2.      With one of the Select, Lasso, Move, Scale, or Rotate tools active, select 
both animation curves in the Graph Editor, the same way you would select an 
object in the scene view.  

  3.      Press the Linear tangents button      in the toolbar. This will return the curves 
to their original linear state.  

  4.     Press the Flat tangents button      in the toolbar.    

 Th e fl at tangents at the start and end of the animation cycle give smooth motion into 
and out of each translation and rotation direction change. Smooth acceleration is key 
to natural-looking animations.  

  Moving keys 
 In the Graph Editor you can select, move, or delete keys. 

    1.     Select the cube.  

  2.     Hit  “ W ”  to activate the Move Tool.  

Animation curve
Active handle

Broken tangentBroken tangent Unified (unbroken) tangent

Inactive handle

Non-weighted tangents Weighted tangents, locked Weighted tangents, free

 FIGURE 06.09 

    Different animation curve tangents 
displayed in the Graph Editor. Free, 

weighted tangents give you the 
most control when reshaping an 

animation curve.    
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  3.     In the Graph Editor, select the two keyframes at frame 90.  

  4.      Hold down the Shift key while you MMB+drag the keys left to frame 30. Then 
release the mouse.

or      Enter  “ 30 ”  in the Frame # fi eld at the top-left of the Graph Editor.       

 Because you changed only the frame number, and not the attribute values of the 
selected keys, the cube will now cover the same distance and rotate the same amount 
in 30 frames as it did previously in 90. Before you hit Play, change the Playback Range 
to span 1 to 30 frames to match the animation range, or else you ’ ll spend two seconds 
watching nothing. 

 Save your scene as you will need it for the next tutorial.   

  Animation nodes in the Hypergraph and 
Attribute Editor 
 In the previous chapter you used the Hypergraph to inspect the nodes that composed 
a simple object. Here you ’ ll employ it to look at the nodes that were created and/or 
connected when you keyed the cubes attributes. 

    1.     Select the cube and open the Hypergraph.  

  2.     Choose Graph  →  Input and Output Connections.    

  Figure 06.10    shows the nodes composing a polygon cube called pCube1. Th e transform, 
history, shape, and shading engine nodes are familiar from the last chapter. Th e two 
new nodes connecting to pCube1 are animation curve nodes that were created when 
you keyed the translate and rotate attributes. 

  Figure 06.11    shows the Translate X animation curve node represented in the Attribute 
Editor, with which you can edit key values and interpolations.  

Tutorial 06.02: A simple procedural animation 
 In this exercise, you will add custom procedural animation to the existing keyframe 
animation on the cube created in the previous tutorial. It will cause the cube to rotate 
back and forth about its Y-axis, giving the appearance of a wiggle. We ’ re getting 
slightly ahead of ourselves, as this task will require working with the  Expression  Editor 
and a touch of MEL script, before either have been formally introduced (which will 
happen in  Chapter 12 ). But it ’ s an exciting taste of what ’ s to come and will demon-
strate a strength of the Maya environment: one can make use, quickly and eff ectively, 
of procedural animation techniques, involving a host of built-in MEL commands, 
with little or no prior programming experience. 

  Animation expressions in brief 
 An animation expression is an instruction or set of instructions, usually invoked 
to control keyable attributes, that executes in coordination with Maya ’ s timeline. 
Th e instructions work much like an animation curve does, telling an attribute what 
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value to assume at a given frame. Rather than go into a lengthy explanation right 
now, we ’ ll use an example to show you what an animation expression is and what 
it can do. Th ere will be much more on this exciting topic beginning in  Chapter 12 , 
through to the end of this book. To start, open the scene fi le with the animated cube 
from the previous tutorial. If you didn ’ t create the fi le on your own, you can fi nd it 
on the CD. 

06_Animation/scenes/tutorial_06_01_done.ma     

 FIGURE 06.10 

    Maya creates an animation curve 
node for each attribute you key. 

Two such nodes are shown here in 
the Hypergraph for the animated 

polygon cube. The shape of a node 
changes from a rectangle to a 

parallelogram to indicate that it is 
animated.

 FIGURE 06.11 

    Animation nodes can be viewed 
and altered in the Attribute Editor. 
Here you can edit keyframe times 
and values as well as set the pre- 

and post-infi nity behavior of the 
animation curve—that is, how the 
curve is extended beyond the fi rst 

and fi nal keyframes.    
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  Create an animation expression 
    1.     Select the cube.  

  2.     Select its Rotate Y attribute in the Channel Box.  

  3.      RMB+click on Rotate Y in the Channel Box and select Expressions from the 
context menu. This will launch the Expression Editor ( Figure 06.12   ).  

  4.      In the Selected Obj  &  Attr fi eld, select the text pCube1.rotateY
and MMB  +drag it into the Expression fi eld below.    

 Th is  “ dot notation ”  ( pCube1  “dot ” rotateY ) is the standard notation for nodes and 
their attributes in Maya. Here you will assign the attribute the value of a built-in trig-
onometric function for the sine of an angle, which is shortened to  sin( )  in MEL as in 
most other programming languages. Trigonometric functions are often advantageous 
in computer animation because of their cyclic or periodic nature, which can be used 
to create oscillating motion. You will use  sin( )  to give the polygon cube an oscillat-
ing rotation about its Y-axis. 

 Like most functions in Maya,  sin( )  requires an argument, which is number on which 
to operate. Th e current frame number makes a suitable argument because it increases 
steadily as the animation plays. It is therefore a good stand-in for the elapsed time 
itself. As it increases or decreases,  sin( )  will oscillate predictably through a range 
of positive and negative numbers, which will in turn rotate the cube back and forth 
about Y. Th e current frame is represented by a global variable called  frame . Variables 
will be discussed much more in  Chapter 12 , but for now it ’ s enough to know that 

 FIGURE 06.12 

    The Expression Editor displaying 
an expression created to drive the 
Rotate Y attribute of the polygon 
cube. An attribute is referred to 
in an expression as a node name 
followed by a period (or dot ), 
followed by the attribute name.    
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 frame  is a value that can be queried by its name anywhere with Maya. Let ’ s complete 
the animation expression: 

    1.      In the expression fi eld of the Expression Editor, type  = sin(frame);  to the right 
of pCube1.rotateY. Your expression so far will look like:

  pCube1.rotateY  = sin(frame);      

  2.      Press the Create button. This creates a new animation expression.   

                  Th e name of the new animation expression appears in the Expression Editor under 
the heading, Selection   → Expressions. You can edit an expression at any time by 
selecting it by name in this fi eld. However, by default the fi eld shows only the expres-
sion for selected nodes. To show all expressions in a scene, 

    Choose Select Filter  →  By Expression Name.    

 Now play the animation to see the eff ect on the cube ’ s Y-rotation. You ’ ll notice 
it ’ s very subtle. To make it more pronounced, increase the amplitude of the 
 sin( )  function. 

    1.     In the lower Expression fi eld, type:

  pCube1.rotateY  = 20 * sin(frame)      

  2.     Press the Edit button to enter the expression.   

                  Now when you hit Play, the magnitude of the Y-rotation will be considerably greater 
(20 times greater, in fact). Equipped with this understanding of a simple, one-line 
animation expression, you ’ ll see shortly it ’ s not too great a leap to begin program-
ming more complex instructions to drive attributes in much more complicated mod-
els of organic structure and function. 

 Th e fi nished scene fi le for this tutorial is included on the CD: 

  06_Animation/scenes/tutorial_06_02_done.ma     

  Animation expression nodes 
 Before leaving this example, let ’ s take a quick look in the Hypergraph at the nodes 
that were created ( Figure 06.13   ). 

    1.     Select the cube and open the Hypergraph.  

  2.     Choose Graph  →  Input and Output Connections.    

 Th ere are two new nodes: an animation expression node and a time node. Th e time 
node provides the frame number to the animation expression node, which updates 
the transform node,  pCube1 .   

  Summary 
 In this chapter you learned that in Maya, animation boils down to the change over 
time in the value of an attribute. Any attribute that is  “ keyable ”  can be animated. 

 A semi-colon is used to separate 
MEL statements. While its use 
is not strictly necessary when 

working with a single statement, 
it is good programming form. 

 When an animation expression 
has been assigned to an 

attribute, the attributes value 
fi eld turns purple in the Channel 

Box. 
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Furthermore, an attribute can be animated by keyframing or using an animation 
expression. Th e latter is a type of procedural animation. 

 Keyframing creates an animation curve DG node and connects it to the attribute 
in question. An animation curve spans keyframes and returns a value, at any given 
frame number, which drives the attribute in question. Th e shape of a curve, described 
as its interpolation, is governed by its tangents, which can be manipulated by hand 
or automatically (i.e. through a procedure). Curve interpolation, in turn, is a measure
of the acceleration of animation into and out of keyframes. Th is acceleration can be 
gradual or instantaneous and determines the degree to which animation appears 
smooth or abrupt. 

 An animation expression is a DG node which contains an instruction or set of 
instructions that drive the value(s) of one or more attributes. A time node updates 
the animation expression node at each frame during playback. Th e expression may be 
a single line of script, like the example in the last tutorial, or many lines which evalu-
ate equations and use the results to drive attributes, which is the approach we use 
when simulating of behaviors of molecules and cells. 

 Th e animation examples in this chapter open the door to powerful concepts that will 
come into play all through the rest of this book. In silico simulation methods use key-
framing as a way of capturing the results of a simulation, rather than creating anima-
tion. Th e animations are thereby created procedurally using animation expressions 
and another scripting device called a procedure. 

 In the next chapter, you will be introduced to Maya Dynamics, which simulates forces 
acting on and between bodies to create animations. Dynamics is a powerful feature 
of the Maya environment and is widely used in special eff ects animation for fi lm and 
television. For in silico biology, we use dynamics in our projects to emulate random 
motion and collisions in systems of individual molecules and of whole cells.                  

 FIGURE 06.13 

    When you create an expression, you 
are creating an expression node 
and a time node, shown here in the 
Hypergraph.
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1 2

3 4
� 20 Å

 FIGURE 07.01 

    Four frames from a simulation of 
polymeric protein (actin fi lament) 
assembly. The scale bar (�20       Å) 

in frame 3 pertains to the red 
foreground protein. 

This model involved a combination 
of Maya Dynamics and custom 

procedural (mathematical) 
simulation. With very little effort, 

dynamics was used to get the 
objects diffusing and colliding so 

that we could focus our efforts on 
the mathematics of the chemical 

reactions between objects as 
the fi laments assembled and 

disassembled.

  Introduction 
 Dynamic simulations are used in productions for the entertainment industry to cre-
ate animations that would otherwise be intractable using traditional techniques. 
Th ese typically involve many objects, like particles comprising a billow of smoke, and 
complex physical interactions, like the response of fur to an animal ’ s movements. 
Common examples in Hollywood fi lms include simulations of water, explosions, hair, 
and fabric. Th e fi eld of scientifi c animation uses the full range of Maya Dynamics 
capabilities in order to emulate a wide variety of natural phenomena: molecular 
interactions ( Figure 07.01   ); fl uid dynamics  in vivo  and  in vitro  ( Figure 07.02   ); virus particles 
budding from an infected cell (Figure 07.03   ); bacterial fl agellae ( Figure 07.04   ); cell surface 
deformations ( Figure 07.05   ).

1 2

3 4

� 10 μm (� 100,000 Å)

 FIGURE 07.02 

    Four frames from an animation 
illustrating the use of a detergent to 

lyse (or dissolve) HIV-infected T-
lymphocyte cells (spherical objects). 

This process is used to collect 
viral material (RNA (red specks)) 
for study. The detergent cloud is 

modeled using Maya 2D Fluids and 
can be seen entering the top left of 

panel 1. As it washes over the cells, 
their membranes disintegrate—a 

process modeled using Maya 
particles. The viral RNA fragments 
are modeled with particles as well. 

Scale bar � 10        � m. 

Courtesy Shaftesbury Films and AXS 
Biomedical Animation Studio. Copyright 

Shaftesbury ReGenesis II Inc.     
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1 μm

 FIGURE 07.03 

    The budding of HIV virus particles 
(the red specks) from an infected 
T-lymphocyte cell was animated 
using Particle Dynamics. Scale 
bar �  1        � m. 

Courtesy Shaftesbury Films and AXS 
Biomedical Animation Studio. Copyright 
Shaftesbury ReGenesis II Inc.    

        The Dynamics module in Maya 
Unlimited includes Fur and 
Fluids simulation capabilities, 
which aren ’ t included in Maya 
Complete or Maya PLE.      

  Th is chapter provides a basic introduction to the Dynamics module, which includes 
particles, soft body, and rigid body dynamics. Th e Dynamic engine simulates the 
eff ects of physical forces on objects to make them move about, collide with, repel, and 
attract one another. Th e  force fi elds  and collision detection capabilities of the Maya 
Dynamics engine are ready-made tools that can be built on with custom scripted 
animation to approximate events in the cellular and molecular realms—the ran-
dom motion, interactions, and deformations of agents (cells, molecules, and compo-
nents of tissues). If you plan to use Maya for interpretive visualization purposes, the 
Dynamics module will be an essential tool. 

 Th e fact that you may be considering Maya as a platform for biological simulation 
warrants a comment here on the realism of Maya ’ s physical simulation capabilities. 

1 μm

 FIGURE 07.04 

    Flagellae, the swimming 
appendages employed by these 
bacteria, Bacillus cereus , were 
modeled with Maya Hair. Hair uses 
specially rigged spline curves to 
simulate dynamic effects on fi brous 
structures. Scale bar � 1       �m.

Courtesy Shaftesbury Films and AXS 
Biomedical Animation Studio Inc. 
Copyright Shaftesbury ReGenesis 
II Inc.    



Because Maya evolved as a tool for the entertainment industry, the implementation 
of dynamics focused on visual fi delity to real-world events rather than fi delity to the 
original governing equations of motion used. In some cases, successive iterations of 
the force calculations are made (behind the scenes) to generate better looking motion. 
Moreover, many attributes have been given animator-friendly names that are diffi  cult 
to trace back to their role in the original physics equations—names such as  bounci-
ness  and  goalSmoothness . It is therefore diffi  cult to directly relate attributes in Maya 
(the magnitude of a force fi eld, for example, or the friction attribute of an object) to 
coeffi  cients within the original motion equations. Th is fact presents a challenge to the 
scientist who wants to factor in a specifi c drag coeffi  cient or fl uid viscosity, for exam-
ple, because those parameters don ’ t exist in any easily accessible form in Maya. 

 Th is is not to say that Maya Dynamics cannot be used for in silico biology. In our expe-
rience, Dynamics has been tremendously helpful for rapid prototyping purposes in 
cellular and molecular simulation models ( Figure 07.01 ). Furthermore, in cases where 
you don ’ t require real-world physical parameters, but instead are looking at simulation 
events in a relative and subjective manner, Maya ’ s built-in physics engine can save you 
a great deal of time and eff ort that would other be spent writing custom code. 

 Th e fi rst tutorial in this chapter is a simple introduction to rigid body Dynamics. In 
it you ’ ll animate a sphere to move randomly within a container, while colliding with 
its walls. Th e second tutorial lets you explore Particle Dynamics, with a twist: not only 
will you make particles move in response to a force fi eld, you will also simulate colli-
sions amongst them, something which Maya was not designed to do. Since this requires 
more than the built-in particle dynamics tools, you will get a sneak peek at how to use 
a simple, custom MEL expression in collaboration with Dynamics. In the fi nal tutorial, 
you will create an animation movie fi le, called a  playblast , from the particle simulation.  

  The Dynamics module 
 Th e Dynamics module is accessed through its own menu set, which can be selected 
from the menu at the far left of the Status Line or activated using the hotkey, F4. 

 FIGURE 07.05 

    Still frames from a movie of cell 
locomotion. The amoeboid crawl of 

a lymphocyte (pictured here) was 
animated using soft body dynamics. 

Attraction forces (Newton fi elds) 
were used to extend protrusions 

(pseudopodia) from the cell 
membrane which was modeled as 

a soft body. The cell body is roughly 
10        � m in diameter.

1 2

3 4
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Th is set is used to created particle objects and to manage the dynamic behavior of 
particles and of existing objects you made using the Create menu, or the NURBS and 
polygonal modeling tools. Any surface can have dynamic behavior applied to it, by 
turning it into a  rigid body  or  soft body  object. Strictly speaking, a spline cannot be 
made into a dynamic object. Th e caveats to this are Hair and Fur which do make use 
of dynamic curves. Th e Hair and Fur modules ship only with Maya Unlimited.

Maya Hair and Fur 

 Maya Help  →  Using Maya  →  General  →  Dynamics and Effects 
→  Hair 
→  Fur       

  The Dynamics engine 
 Whereas the Dynamics module is the set of nodes, menus, and tools that let you 
perform dynamic simulations in Maya, the  Dynamics engine  is the behind-the-
scenes software that does the work; it calculates the motion of objects based on 
the attribute values you input for the various dynamics nodes in a scene; for example, 
the Intensity attribute of a force fi eld node or the Mass attribute of a particle node.  

  Forces: Collisions and fi elds 
 Forces come in two varieties in Maya: 

    Collision forces are generated when dynamic bodies contact one another. 
Fields act on objects from a distance (like gravity, for example).    

 Collision forces (or  impulses ) are calculated by the Dynamics engine using the 
masses, velocities, and accelerations of the colliding objects. Other attributes are 
also accounted for, including friction, damping, and resilience (or elasticity). You will 
get a crash course on collisions in  Tutorial 07.01: Rigid body dynamics . While collision 
forces in Maya can be thought as the forces at work when a ball bounces off  a surface 
for example, force fi elds (called simply  fi elds  in Maya) are akin to gravity, magnet-
ism, or the pressure generated by wind. Objects within the eff ective range of a fi eld 
fall under its infl uence. Furthermore, fi elds exist as nodes with attributes in a Maya 
scene, whereas collision forces are not represented discretely in the Dependency 
Graph (DG), but are calculated  on the fl y  in order infl uence objects (geometry and par-
ticles) that are part of the DG. Like many other DG items, a fi eld has a transform and 
a shape node which determine its physical location in the 3D scene and its character-
istics (strength, orientation, etc.), respectively. 

 In Maya, fi elds emanate from one or more points of origin, called an emitter. In the 
case of a gravity fi eld, for example, the origin is the location(s) toward which objects 
under its infl uence are attracted. An emitter can be the fi eld ’ s own transform node, 
the transform node of a geometric object or it control vertices (a surface emitter), 
or individual particles from a particle object (more on particles below). To infl uence 
objects or particles in a scene, a fi eld must be connected to them in the DG. Making 
these connections is simple and will be covered in the tutorials to follow. 

 Maya has nine fi elds in total: Air, Drag, Gravity, Newton, Radial, Turbulence, 
Uniform, Vortex, Volume Axis. Some of these, such as the Newton fi eld, mimic a single 



force vector, resulting in the acceleration of the aff ected object(s). Others, like the Air 
fi eld, apply a balance of force vectors, resulting in constant velocity (zero accelera-
tion). A Turbulence fi eld applies a force that changes direction randomly over time. 
Th e resulting motion is a quick stand-in for Brownian diff usion. We will explore the 
Turbulence fi eld in more detail in this chapter ’ s tutorials.

Fields 

 Maya Help  →  Using Maya  →  Dynamics and Effects  →  Dynamics  →  Fields  →
Overview of fi elds        

  Particle objects 
 Particles are perhaps the mostly widely used Dynamics feature in computer graphics 
(CG) special eff ects. Stripped to its essence, a Maya particle is a point in space with 
attributes describing its motion, including velocity and acceleration, and its static 
properties, including mass and color. Because Maya particles are points in space, and 
without shape (geometry), they can be created, destroyed, and animated by the thou-
sands quickly without large computer processing penalties. Because they are easy to 
work with in large numbers and can be made to respond to physical forces, they are 
a well suited to the many natural phenomena that can be modeled in a particulate 
fashion, such as water, smoke, clouds, rain, snow, and insect swarms.

Particles 

 Maya Help  →  Using Maya  →  Dynamics and Effects  →  Dynamics  →  Particles  →
Overview of particles       

  Particle emitters 
 When you create a particle object in Maya, you are creating a particle group node. 
Individual particles then are  “ born ”  (see  Figure 07.06   ), or temporarily created, from the 
group node. Particles are birthed from the group node either manually, using the 
Particle Tool or automatically through an emitter node, of which there are fi ve types 
( Figure 07.06 ). A Surface emitter was used to birth the red virus particles in the HIV 
animation shown in  Figure 07.03 .  

  Particle attributes 
 A particle group node has particle attributes which infl uence all particles within the 
group equally. In addition, there is a large number of attributes whose eff ects can be 
varied from one individual particle to the next. Th ese are called per particle attributes 
and will be discussed in  Tutorial 07.02  below.  

  Particle goals 
 Maya lets you assign a geometric surface (NURBS or polygon object) to particles as a 
goal object. As the particle simulation plays, particles are attracted to their goal with 
a strength that you control using attributes. Th is can be used to make a swarm of 
particles follow a geometric model around the scene or to make particles move toward 
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and then stick to a surface. Furthermore, particles themselves can be goal objects for 
other particles.  

  Rendering particles 
 Because a particle is merely a point in space, something must be done to make it vis-
ible; to make it look like water, smoke, or a bumble bee when it is rendered. How it 
ultimately appears is determined by an attribute called its particle render type, of 
which there are 10 varieties ( Figure 07.07   ). As you will see in a later chapter, Maya has 
several rendering engines which it uses to render pictures of a scene. Two of these, 
called the Hardware and Software Renderers, are used to render particles. Briefl y, the 
Hardware renderer uses your computer ’ s  graphics processor  to create images, while the 
Software renderer uses software algorithms native to Maya and your computer ’ s  CPU  
to make the images. Of the ten particle render types, seven use Hardware rendering 
and three use Software (s/w for short). Hardware particles cannot be rendered using 
the Software rendering engine and vice versa. On top of choosing a particle render 
type, you also assign a shader to a particle group, in the same way you would to a sur-
face. Th e shader determines color and lighting properties.

Rendering particles 

 Maya Help  →  Using Maya  →  Dynamics and Effects  →  Dynamics  →  Particles  →
Render particles        

  Curve fl ow 
 Curve fl ow is a particle dynamics feature that uses pre-defi ned expressions to fl ow 
particles along a spline. Attributes control the nature of the fl ow. Curve fl ow is useful 

Particle Tool(a) (b) (c)

(d) (e) (f)

 FIGURE 07.06 

    Particles are born from the Particle 
Tool (a) or from one of fi ve types of 
emitter ((b) through (f)). 

(a) The Particle Tool is used to 
place, or draw, particles in a scene. 

(b) Directional Point emitter. 

(c) Omni Point emitter. 

(d) Surface emitter. 

(e) Volume emitter. 

(f) Curve emitter.                      
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for many applications in which particle must follow a path. For example, it makes a 
snap of animating the fl ow of blood cells through a convoluted vessel.   

  Rigid bodies 
 Rigid body Dynamics treats objects as if they had rigid surfaces. Rigid bodies react 
to fi elds and friction forces, collide with, slide and roll along, and bounce off  one 
another. You can specify whether Maya calculates a rigid body ’ s physical interactions 
with the scene based on its CV-defi ned surface, or using a proxy geometric surface 
such as a cube or a sphere. Th e proxy method trades surface accuracy for computa-
tional effi  ciency; Maya can calculate collisions for a cube more quickly than for a 
detailed surface defi ned by hundreds or thousands of CVs. 

 A rigid body can be either static or dynamic, a setting determined by its  “ Dynamic ”  
attribute. When static, an object is anchored in the scene, unable to move, like a con-
crete fl oor, for example. When dynamic, it is free to move about the scene in response 
to forces and collisions. When a dynamic body collides with a static one, the latter 
does not react. We use static bodies for compartments in molecular dynamics simula-
tions for example.

Rigid bodies 

 Maya Help  →  Using Maya  →  Dynamics and Effects  →  Dynamics  →  Soft and 
Rigid bodies  →  Rigid bodies        

(e) (f) (g) (h)

(a) (b) (c) (d)

 FIGURE 07.07 

    The Particle render types. (a) 
through (g) are hardware render 

types. (h) through (j) are software 
(or s/w) render types: 

(a) MultiPoint, 

(b) MultiStreak, 

(c) Numeric, 

(d) Points, 

(e) Spheres, 

(f) Sprites, 

(g) Streak, 

(h) Blobby Surface (s/w), 

(i) Cloud (s/w), 

(j) Tube (s/w). 

The sprite render type displays a 
2D image or image sequence at the 

location of each particle.    (i) (j)
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  Soft bodies 
 Soft bodies are deformable surfaces that respond to fi elds and collisions. A soft body 
is created from a regular NURBS or polygon surface by substituting a particle for each 
CV in the original surface. Th e particles are like all particles in Maya except that they 
are connected together, forming a surface. Th ey can use the original surface as a goal 
object, which plays the same role as a particle goal object; the soft body particles try 
to conform to the surface of the goal in the face of outside forces. 

 Th e lymphocyte cell in  Figure 07.05  was modeled as a soft body. As the cell moves 
through an environment of fi brous  extracellular matrix  ( ECM ) proteins, force fi elds 
along its path pull on the cell ’ s surface as it passes by. Th is gives the appearance of the 
cell is extending protrusions in a bid to fi nd anchorage points for locomotion. When 
the cell passes out of range for a particular force fi eld, the protrusion returns to the 
cell body. Setting the soft body to collide with the fi bers, which are modeled as static 
rigid bodies, ensures that the cell protrusions don ’ t penetrate the fi bers. Th e result is 
an amoeboid crawl, with its characteristic transient contacts with ECM proteins. 

 Th e lymphocyte animation described above uses Dynamics to do what you will do 
with joints—another animation construct—in  Chapter 16 . However, caution should 
be used when rigging surfaces using Dynamics since the resulting animation can be 
very diffi  cult to control. Th is is due to the number of variables the Dynamics engine 
uses to calculating the fi nal motion. If you have a clear idea of how you want an object 
to deform as it moves in a scene, it is often better to use joints and deformers which 
you can control very deliberately. Nonetheless if you require collision detection, 
Dynamics can play a role.

Soft bodies 

 Maya Help  →  Using Maya  →  Dynamics and Effects  →  Dynamics  →  Soft and 
Rigid Bodies  →  Rigid bodies        

  Nucleus and nCloth 
 With Maya 8 Autodesk introduced a new dynamics engine called Nucleus. As of Maya 
release 8.5 one module uses the engine  nCloth , a system of dynamically linked parti-
cles available only in Maya Unlimited. Although designed to simulate the natural fl ow 
of clothing for computer-generated imagery (CGI) characters, nCloth can be used on all 
NURBS and polygon objects in Maya for the same kinds of projects you ’ d use soft bod-
ies for, including the simulation of a wide variety of deformable materials. Th e advan-
tage of nCloth objects over soft bodies is a more advanced and robust physics engine 
with better performance. Collision detection is much improved over the primary Maya 
dynamics engine that is responsible for the soft and rigid body calculations.

    Dynamic Relationships Editor 
 Th is editor ( Figure 07.08   ) allows you to make and break DG connections among 
dynamic objects and fi elds. When you select a dynamic object, its name appears 
highlighted in the outliner window of the editor; objects or fi elds to which it is con-
nected appear highlighted under the appropriate heading—Fields, Collisions, 
Emitters, or All—in the relationships window. You will use this editor to connect a 
particle object to fi eld in  Tutorial 07.02 .   
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 FIGURE 07.09 

    The setup for the rigid body 
dynamics tutorial is straightforward: 

a NURBS sphere inside a larger 
polygon cube. The surface normals 
of the cube have been reversed so 
that the sphere will collide with its 

inner surface.    

 FIGURE 07.08 

    The Dynamic Relationships Editor 
is used to display dynamic objects 

by name and to make and break 
connections between them.    

  Tutorial 07.01: Rigid body dynamics 
 Th is tutorial introduces rigid body dynamics; you ’ ll create two primitives, a NURBS 
sphere inside a polygon cube, make them into rigid bodies, and make them collide 
with one another. Th e cube is passive and the sphere active, with a Turbulence fi eld to 
push it around.  Figure 07.09    shows the setup for this scene. 



167CHAPTER 07: DYNAMICS

  Set up your scene 
    1.     Start a new scene.  

  2.      Select the Dynamics menu set from the menu at the left end of the Status Line.  

  3.     Choose Window →   Settings/Preferences  →  Preferences.  

  4.     Under Settings  →  Working Units, set Time to NTSC [30 fps].  

  5.     Under Setting  →  Timeline →    Playback, set:  

   (a)     Looping to Once.  
   (b)     Playback Speed to Play every frame.  

  6.     In the Range Slider at the bottom of the main window:  
   (a)     set the Playback Start Time to 1.  
   (b)     set the Playback End Time to 3000.  
   (c)     set the Current Time to 1.    

 At 30 fps, you ’ ll get 100 seconds of animation. With Maya set to play every frame, the 
actual playback speed depends on computer speed. On a Dell Dimension 8300 PC, 
our benchmark machine, this animation played at 150 fps, for 20 seconds.  

  Create and position the objects 
    1.     Create a polygon cube with the following settings:

    Length =   Width  =  Height  =  10.  

   Subdivisions X, Y, and Z =   2.     

  2.     Create a NURBS sphere with the following settings:

    Radius =   1.  

   Sections  =  Spans  =  5.       

 By default, and with Interactive Creation turned off , the objects should be created at 
the world origin, with the sphere inside the cube (if not, position them so).  

  Viewing the scene 
 In order to see the sphere as it bounces about inside the cube, you ’ ll want the cube to 
be somewhat transparent. With your scene view shading mode set to Wireframe, you 
will be able to see the sphere inside the cube. However, if you wish to view the sur-
faces in Smooth- or Flat-shaded mode, the cube will obscure the sphere. One solution 
is to use  X-ray  shading which makes all Flat- or Smooth-shaded objects semi-opaque. 

    In the Panel menu set, choose Shading  →  Shade Options  →  X-ray  

or      Shading  →  X-ray (depending on your Maya version)    

 Alternately, if you ’ re familiar with creating and assigning shaders, you can assign 
separate shaders to the sphere and cube, with the transparency dialed up on the latter. 
We ’ ll cover shaders in the next chapter.  

        Maya Dynamics works on both 
NURBS and polygonal geometry, 
and combinations of the two. In 
this tutorial, you could just as 
easily use two polygonal or two 
NURBS objects.      
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  Normal direction 
 In  Chapter 05 , we noted that one can tell the inside of surface form the outside by the 
way the normals point. When the Dynamics engine evaluates potential collisions for 
a surface, it looks for objects approaching from the outside, or the positive-normal 
direction (see  Figure 07.10   ). Objects approaching from the inside will be ignored and 
pass right through the surface. 

    1.      Select the cube, open the Attribute Editor, and select the shape node.  

  2.     Under Mesh Component Display, check Display Normal.  

  3.     In the Normal Size fi eld, enter 0.4.    

 By default, surface normals point outward from the center of an object; the cube sur-
face normals are facing away from the sphere. Th erefore, the sphere will approach the 
cube from the negative-normal direction and pass through it. To remedy this, you 
must reverse the Normals:

     1.     Select the cube.  

  2.     Press and hold the Space bar to activate the Hotbox.  

  3.     Choose Edit Polygons  →  Normals  →  Reverse     .  

  4.     From the Mode menu, select Reverse.  

  5.      Press the Reverse Normals button to apply the change and close the options 
window.     

        The Hotbox provides a quick way 
to access menus for software 

modules other than the one 
currently displayed in the main 

window.      

 FIGURE 07.10 

    Surface normal direction affects 
rigid body interaction. When the 

moving sphere encounters the 
positive-normal side of the plane 

surface, a collision occurs. When 
it encounters the negative-normal 

side, it passes right through the 
plane.

(a)

Direction of
movement

(b)
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  Create the rigid bodies 
 When you make an individual object into a rigid body, you can choose whether to 
make it active or passive. Alternately, if you make multiple objects dynamic all at 
once, they will be either all active or all passive. You can then alter the active/passive 
attribute for each object. 

    1.     Select the cube and the sphere.  

  2.      From the main menu, choose Soft/Rigid bodies  →  Create Active Rigid 
Body    .    

 In the options window you will see attributes for Mass, Friction, Bounciness, 
Damping, and Impulse. Leave these set to their default values and press the Create 
button. In the Channel Box, you will see a new rigidBody node for both the cube and 
the sphere, along with a long list of attribute values. 

 If you hit Play in the Animation Controls now, nothing will happen. Th is is because 
there is currently no force fi eld in the scene and because the Impulse values were set 
to 0 for both objects.  

  The rigidSolver node 
 Below the  rigidBody  node attributes and under the heading INPUTS, you will see 
another node called  rigidSolver  with its own list of attributes. A solver does the cal-
culations that determine the motion in a dynamic simulation. Its attributes provide 
high-level control over rigid body dynamics for objects to which it ’ s connected. A scene 
can have multiple rigid solvers, but only one can be the active or  “ current ”  solver. 

 Th ree rigidSolver attributes determine the balance between speed and accuracy of 
dynamics calculations. Th ese are Step Size, Collision Tolerance, and Solver Method. 
Decreasing Step Size, the time between calculations, improves simulation accuracy 
at the expense of speed. Th e smaller the Collision Tolerance value, the more accurate 
the collision detection calculations and the slower the simulation.  Table 07.01    shows the 
diff erent settings for the Method attribute and their eff ects on accuracy and speed. 
With a simple scene like the one you just created, the solver method will make little 
if any diff erence in the playback speed of the animation. It will, however, make a big 
diff erence when the number of rigid bodies begins to increase.

rigidSolver attributes 

 Maya Help  →  Using Maya  →  Dynamics and Effects  →  Dynamics  →  Dynamics 
nodes  →  Soft and Rigid Body nodes  →  rigidSolver node        

 Differential equation solver 
method 

 Description 

 Midpoint  Faster with less accuracy 

 Runge–Kutta  Medium speed and accuracy 

 Runge–Kutta adaptive  Slower speed, greater accuracy (default setting)  TABLE 07.01 

    Solver Method attribute settings.  
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  Make the cube passive 
 Since you made both objects active in the previous step, you ’ ll now make the cube 
passive, so it behaves as a stationary container for the dynamic sphere. 

    1.     Deselect both objects then select the cube on its own.  

  2.      In the Channel Box, scroll down until you locate the attribute called, Active.  

  3.     In the Active fi eld, enter 0 or off.     

  Create a Turbulence fi eld 
    1.     Select the sphere.  

  2.     In the main menu, choose Field  →  Turbulence    .  

  3.     Set Magnitude to 50 and Attenuation to 0.  

  4.     Press the Create button.    

 Magnitude controls the strength of the fi eld and Attenuation, the degree to which the 
magnitude decrease with distance from the fi eld ’ s transform. Th e fi eld has its own 
transform node, located at the world origin. Its XYZ position only matters if attenua-
tion is set to a value greater than zero.  

  Play the animation 
 When you press Play, the sphere should move about and bounce off  the walls of the 
cube. Take a few minutes to adjust the attributes in the sphere ’ s  rigidBody  node, such 
as Mass, Bounciness, and Friction, and observe the eff ects. Mass has a strong infl u-
ence on motion. As in the real world, mass impacts the inertia and momentum of 
objects in a Maya scene. In a collision between a light and a heavy object, the latter 
will prevail. 

 Note that each time the Current Time Indicator returns to the start of the playback 
range, the sphere returns to the position it was in when you fi rst created it. Th is is 
called its  Initial State  and was set to the position the sphere was in when you turned 
it into a rigid body. You can set any position to be the Initial State by selecting the 
sphere and choosing 

    Solvers  →  Initial State  →  Set for Selected.    

  cycleCheck 
 From time to time, you may get a warning such as “   Cycle on   <attribute name>   may 
not evaluate as expected  ” . Th is due to a possible  cycle  in the DG; an attribute value 
depends on a value that in turn depends on it. Th is can result in the improper eval-
uation of an attribute in a dynamic simulation, and therefore aff ect the resulting 
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        The Script Editor and MEL 
commands will be discussed in 
detail in  Chapter 12 .      

motion. You can check if an attribute is actually in a cycle by using the MEL com-
mand,  cycleCheck , as follows: 

    1.     Choose Window  →  General Editors  →  Script editor.  

  2.      In the Command Input (lower) fi eld of the Script Editor, type the following MEL 
script:

  if ( '  cycleCheck  <attribute name>'   > 0�) {   
      print(  " < attribute name> is in a cycle\n " );   

  }   

  else print  "no cycle\n ";     

  3.      Hit Enter on your keyboard ' s numeric keypad to execute the script.    

 One of the two messages,  “     <attribute name>   is in a cycle  ”  or  “  no cycle  ”  with 
appear, or  print , in the History (upper) fi eld of the Script Editor and in the Command 
Feedback fi eld of the Command Line.

  However, even if there is no cycle, you will continue to get the warning. To disable the 
warning, use the cycleCheck command to turn off  checking: 

    In the Command Input (lower) fi eld of the Script Editor, type the following:  

'     cycleCheck -e off'  ;       

  Memory caching 
 You may have noticed that scrubbing the Timeline produces strange results in this 
simulation. When you scrub backwards, nothing happens at all. Th is is because Maya 
calculates dynamic attribute data at each frame, and only in forward playback mode. 
When combining keyframed animation with dynamics, or animating a camera to fol-
low the action, it ’ s helpful to move freely along the timeline, and see your simulation 
behave predictably. You can facilitate this with  memory caching , which stores dynamic 
attributes in RAM and then disables their connection to the Dynamics engine. 
Memory caching can speed up rendering since Maya needs only to read the cached 
attributes of objects rather than calculate them anew using the Dynamics engine. To 
activate memory caching:

     1.      Select at least one of the dynamic objects you wish to cache; in this case, 
the cube or the sphere. All objects connected to the selected one, through a 
rigidSolver node will be cached.  

  2.     Set the Current Time equal to the Playback Start Time.  

  3.     Choose Solvers  →  Memory Caching  →  Enable.  

  4.      Press Play. A cache will be created for as many frames as you allow to play.    

 Now you can scrub the Timeline and the animation will update properly using the 
cached data. With memory caching enabled, changes to dynamic attributes, such as the 
strength of a force fi eld, will have no eff ect on rigid body attributes. Disabling memory 
caching reconnects rigid bodies to the Dynamics engine, allowing their attributes to 

When your scene is ready to 
render, turning on memory 
caching can speed up rendering 
since Maya will not have to 
perform dynamic calculations 
for the cached objects. Instead, 
Maya will read the appropriate 
dynamic attribute values from 
the cache which is typically 
faster than calculating them 
on the fl y using the Dynamics 
engine.
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update. However, if you were to then re-enable memory caching, rigid body attributes 
would revert to their previously cached state. For dynamic attributes to update cor-
rectly, you must delete, then re-enable memory caching in the Solvers menu.  

  Make the cube active 
 For a little fun, you ’ ll reset the cube ’ s Active attribute to  “ 1 ”  and see how it responds 
to collisions with the sphere. Start by deleting the memory cache: 

    1.     Select the cube.  

  2.     Choose Solvers  →  Memory Caching  →  Delete.  

  3.     In the Channel Editor, enter 1 or in the Active attribute fi eld.    

 On playback the cube won ’ t move (because it ’ s not connected to the Turbulence fi eld) 
until the sphere collides with it the fi rst time. After that, it will change direction 
each time the sphere hits it. Next, let ’ s connect the cube to the Turbulence fi eld and 
observe the change in motion. 

    1.     In the main window, choose Window  →  Relationship Editors  →  Dynamic 
Relationships.

  2.     In the outliner portion of the Dynamic Relationships Editor, select the cube.  

  3.     The Selection Modes portion of the editor displays a list of fi elds in the 
scene—in this case, only one appears.  

  4.     Click on the Turbulence fi eld name in the editor to connect it to the cube.    

 Now when you press Play, the cube will be pushed about by the Turbulence fi eld in 
addition to being knocked about by the sphere. To disconnect the cube from the 
Turbulence fi eld, repeat steps 1 through 4 above. To return the cube to its role as a 
stationary container set its Active attribute to  0  or  off . One can imagine duplicating 
the sphere ten, a hundred, or a thousand times, then tailoring the rigid body, rigid 
solver, and fi eld attributes to approximate Brownian motion, for example. Add to 
this, the ability for spheres to form complexes with one another, and you have the 
makings of a molecular dynamics simulation! You ’ ll fi nd the fi nished scene fi le for 
this tutorial on the CD-ROM: 

07_Dynamics/scenes/tutorial_07_01_done.ma    

 So let ’ s get a feel for what such a step would involve by using particle dynamics to 
simulate hundreds of colliding objects within a container. Particles are much less 
expensive computationally than rigid bodies for the same number of moving bodies 
in a scene. Nonetheless, particles are only points in space, with none of the surface 
detail of rigid bodies, and are therefore not well suited to dynamic situations where 
surface interaction is essential. Where a rigid body collision will impart rotation to 
an object, based on the location of its center of mass relative to its peculiar topology, 
there is no such attribute as rotation for individual particles.   
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  Tutorial 07.02: Particles in a container 
 In this tutorial, you will get Maya to emit particles into a volume, a cylinder, and move 
them about using a Turbulence fi eld. Next, you will create a radial fi eld that the parti-
cles both emit and are repelled by simultaneously, in order to simulate inter-particle 
collisions. By defi nition, particles have no radius since they represent only points in 
space and not space-fi lling objects. A force fi eld on the other hand can have a radius—
represented by its eff ective range—much like an atom has an eff ective radius of repul-
sion, inside of which other atoms cannot approach due to the fi eld generated by its 
inner electron shells. By emitting a Maya force fi eld from the position of a zero-radius 
particle, you can therefore simulate a collision radius for the particle. Finally, you will 
use the per particle attribute  colorPP  to make colliding particles more obvious by turn-
ing them bright red when they experience forces beyond a threshold value—a sudden 
increase in force due to a close encounter with a force fi eld (i.e. another particle) or with 
the container wall. To begin, follow the setup instructions from the previous tutorial. 

  Create the container 
 Create a Polygon cylinder as follows: 

    1.     Choose Create  →  Polygon Primitives  →  Cylinder    .  

  2.     In the Polygon Cylinder Options window choose Edit  →  Reset Settings.  

  3.     Make the following changes to the default attribute settings:

    Radius: 50  

   Height: 100  

   Subdivisions Around Axis: 10  

   Subdivisions Along Height: 4     

  4.     Press the Create button.    

 Th e cylinder should be located at the world origin. If not, move it there now. Next, 
reverse the surface normals so that the particles will collide with the container: 

    1.     Select the cylinder.  

  2.     Press and hold the Space bar to activate the Hotbox.  

  3.     Choose Edit Polygons  →  Normals  →  Reverse    .  

  4.     From the Mode menu, select Reverse.  

  5.     Press the Reverse Normals button to apply the change and close the options 
window.     

  Create the particle emitter 
 When you create an emitter, Maya automatically creates a particle object and con-
nects it to the emitter. Conversely, you can create a particle group without making an 
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emitter. You can therefore emit more than one particle object from a single emitter. 
For now, you ’ ll create one emitter and one particle object. Later you ’ ll add another 
particle object to the emitter.

     1.     In the main window or the Hotbox, choose Particles  →  Create Emitter     .  

  2.     Choose Edit  →  Reset Settings.  

  3.     Under Basic Emitter Attributes, enter the following settings:

    (a)     Emitter Type: Volume  
   (b)     Rate (Particles/Sec): 1000     

  4.     Under Volume Emitter Attributes, Volume Shape, select Cube.  

  5.     Under Volume Speed Attributes, enter 50 for Away From Center.  

  6.     Press the Create button.  

  7.     Select the emitter and scale its transform node up by a factor of three using the 
Channel Box.    

 You can change the emitter type and the other creation attributes at any time in the 
Channel Box.  Figure 07.11    shows what your scene should look like so far.  

  Particle and emitter attributes 
 Before discussing the attributes that control particle behavior, let ’ s have a look at the 
simulation you ’ ve set up so far. 

    Press the Play button,      in Playback Controls.    

Poly cylinder to be a
container for particles

Volume emitter
(red cube)

 FIGURE 07.11 

    Setup for the current Tutorial. The 
cube volume emitter has been 

scaled to three times its original 
size.

        If   "Volume "  is not available in 
the Emitter Type menu, put your 
cursor in the fi eld and type,  " v " .      

        Upon creation, particle objects 
are by default connected to the 

Dynamics engine.      
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 Th e particles should appear randomly within the cube and move out from the center 
at constant speed. Th is behavior is due to the attribute settings of the emitter and the 
particle object. Below, we ’ ll take a look at some of these attributes; a complete list of 
them is beyond the scope of this book. As with other components of Maya, what can 
be done with particles and their attributes is a large topic and has been covered well 
by other writers. 

  Emitter node 
 Inspecting the emitter in the Hypergraph ( Figure 07.12   ) reveals that it is composed of 
only one node. Th is node holds the transform and shape attributes. In the Channel 
Box, you ’ ll see the Emitter Type and Rate attributes you set in the Create Emitter 
Options window. Th e Rate is the number of particles emitted per second. At 30 fps, 
your emitter births 200/30  �  7 particles/frame. Together, Direction X, Y, and Z spec-
ify a direction vector along which the Directional Speed value (near the bottom of 
the attributes) is applied. Spread and Speed apply only to directional type emitters. 
Speed Random applies to all emitter types; it specifi es a range of random variation in 
emission speed. You set Volume Shape when you made the emitter. You can change 
it here: clicking in the attribute fi elds brings up a volume shape menu. Th e Volume 
Off set attributes off set the emission in space by the specifi ed amounts. Volume Sweep 
through to Around Axis apply to diff erent volume emitter shapes. Away From Center 
controls is the main speed setting for cube and sphere volume emitters. Random 
Direction multiplies the Speed Random attribute. Directional Speed adds a speed 
component along the vector specifi ed above in Direction X, Y, and Z. Maya Help con-
tains detailed information on every emitter attribute.

Emitters 

 Maya Help  →  Using Maya  →  Dynamics and Effects  →  Dynamics  →  Particles  →
Emitters        

  Particle shape node 
 Strictly speaking, a particle has no  shape . Nonetheless, like most other items in a Maya 
scene, a particle object has a shape node which defi nes many of its properties. Just as 
particles are  born  into a scene, they can die after a fi nite lifespan. Th e second particle 
object attribute listed in the Channel Box,  Emission Volume Exit , specifi es whether a 
particle will live or die after it leaves the emitter volume. Th e next attribute,  Lifespan 
Mode , has four possible settings, which are superseded by the previous attribute. When 
set to Constant, the  Lifespan  attribute (last one on the list) determines how many 

 FIGURE 07.12 

    An emitter is represented by a 
single node. The Hypergraph does 
not reveal connections to Maya ’ s 
Dynamics Engine, since they cannot 
be modifi ed in the UI, the way other 
attributes and connections can.    



176 PART 2: A FOUNDATION IN MAYA

seconds each particle will live. Lifespan can be randomized per particle with the 
 Lifespan Random  attribute.  Expressions After Dynamics  sets the order in which Maya 
evaluates attributes. If set to  0  or  off,  Expressions will not take into account dynamic 
changes to the scene in the current frame. Th is setting can make a diff erence to simula-
tion results and should be considered carefully when evaluating results. 

 Th e Conserve attribute sets the conservation of energy; when it ’ s set to one, parti-
cles will continue moving endlessly as a result of initial velocities given them by their 
emitter. A value less than one will cause particles to eventually come to rest, unless 
kept in motion by force fi elds or collisions.  Max Count  is the maximum number of par-
ticles that can be emitted.  Start Frame  is the frame at which the fi rst particle is born; 
this is by default set to the frame that is current when you create a particle object.

     1.     Select the particle object.  

  2.     In the Channel Box, set Max Count to 200.   

  When you assign a goal object to particles, Maya creates a  Goal Weight  attribute, which 
sets the strength of attraction (0 to 1) to the goal.  Goal Smoothness  sets how smoothly 
this attraction changes with the goal weight setting. It has a profound eff ect on particle 
motion; higher values (�3) used with high goal weights (close to 1) can have the eff ect 
of making particles  “ sling shot ”  past their goal(s). Tweaking this value along with  Goal 
Weight  is often the key to smooth particle/goal motion. For the  Particle Render Type  
attribute, you have ten choices; seven use Maya ’ s Hardware Renderer and the rest, the 
Software Renderer. Examples of the diff erent render types are shown in  Figure 07.07 . Th e 
default setting is Points. Let ’ s set it to Spheres and change the default sphere radius: 

    1.     Select the particle object.  

  2.     Open the Attribute Editor and select the particle shape node tab.  

  3.     Scroll down until you fi nd the heading, Render Attributes.  

  4.     For Particle Render Type, select Spheres.  

  5.     Press the Add Attributes For Current Render Type button.  

  6.     Enter 3.0 for Radius.   

  We have skipped over many attributes listed in the Channel Box and the Attribute 
Editor. Th ese can be left at their default settings for now. Maya Help provides good 
documentation for particle object and per particle attributes:

Particle object and per particle attributes 

 Maya Help  →  Using Maya  →  General  →  MEL and Expressions  →  Particle 
expressions  →  Assign to vectors and vector arrays  →  List of particle attributes         

  Make the particles and cylinder collide 
    Press Play to see the effect of the current attribute settings.    

        A Conserve attribute value of 
less than 1 will ultimately result 
in the particles coming to a stop 

unless a fi eld keeps them in 
motion.      

        The particle attribute Start 
Frame determines when the 

fi rst particle will be born. When 
you create a particle object, 

Start Frame is set to the current 
time on the Time Slider. It can 

easily be changed later on in the 
Channel Box.      

        When the count of an emitted 
particle object equals its Max 

Count value the particle object is 
said to be  full .      

        For effi ciency, Maya doesn ’ t 
preload a particle object with 
all possible attributes. Many 
are created only as needed, 

appearing under the appropriate 
headings in the Attribute Editor.      
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 Currently when you press Play, 200 particles are created in the space of fi ve frames. 
Th ey should move outward at constant speed—governed by the attribute Away from 
Center—and pass right through the cylinder. Th at is because the cylinder has not yet 
been connected to the Dynamics engine. Maya uses a special node, a geoConnector, 
to connect a regular geometric object to the Dynamics engine, so that it can emit or 
collide with particles, or be the source of a force fi eld. Th e following steps create a 
geoConnector node for your cylinder and link it to the particle group for collisions. 
Collisions between the cylinder and particles can subsequently be turned on and off  
in the Dynamic Relationships Editor. 

    1.     Select the particle object.  

  2.     Add the cylinder to the selection by Shift�  selecting it in the scene view or 
Ctrl+selecting it in the Outliner.  

  3.     Choose Particle  →  Make Collide    .    

 Two attributes govern collisions: Resilience and Friction. By default, Resilience, the 
elastic property of a collision, is set to 1. Friction is set to 0. Th ese settings assume no 
energy is lost in a collision.  Figure 07.13    shows the results of diff erent combinations of 
Resilience and Friction for particles colliding with a polygon plane. 

    4.     Press the Create button.    

 When you play the simulation, the particles should collide with cylinder. With the 
particle object Conserve attribute set to 1, they will continue to bounce off  the walls 
until the  Playback End Time  is reached.

        When using Make Collide, it is 
important to select the particle 
object  fi rst  and the collision 
object  second . Not doing so 
will generate an error, and the 
operation won ’ t work.      

 FIGURE 07.13 

    The effects of Resilience and 
Friction attributes on particle 
collisions with a plane. 

(a) Resilience �  Friction  �  0. 
Particles contact the plane without 
bouncing and then slide along the 
plane, unimpaired by friction. 

(b) Resilience �  0; Friction  �  0.1. 
Friction slows particles to a halt 
shortly after they make contact with 
the plane. 

(c) Resilience �   1; Friction  �  0. 
Particles rebound from the plane 
with no loss of momentum in the 
vertical or horizontal directions. 

(d) Resilience �  1; Friction  �  1. 
Particles rebound from the plane 
with no loss of momentum in the 
vertical direction, but complete loss 
in the horizontal direction due to 
infi nite friction.          

(a) (b)

(c) (d)
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    Add random motion 
 Here you ’ ll create a Turbulence fi eld to randomize the particle motion and dial back 
the particle ’ s Conserve attribute to slightly dampen the turbulence eff ect. With the 
particle object selected: 

    1.     In the Channel Box, set the Conserve attribute to 0.99.  

  2.     Choose Fields  →  Turbulence    .  

  3.     Set Magnitude to 50 and Attenuation to 0.  

  4.     Press the Create button.  

  5.     Press Play to see the effect of the Turbulence fi eld.     

  Inter-particle collisions 
 In Maya, the particles of one object can be made to collide with those of another 
object. However, there is no built-in capability for one particle to collide with another 
particle from the same object. A work-around is to emulate collisions by making 
every particle within an object the source of a radial fi eld, which at the same time 
acts on the particles. Start by creating a Radial fi eld using the default settings. You 
will adjust these settings below using a Manipulator Tool. 

    1.     If anything is currently selected, clear the selection by:  

   (a)     Clicking a clear spot in the scene view 

or

   (b)     Entering select-clear in the Command Line.  

  2.     Choose  →  Fields  →  Radial    .  

  3.     Choose  →  Edit  →  Reset Settings.  

  4.     Press the Create button.    

  The Manipulator Tool 
 When emanating from each particle, we want the radial fi eld to be eff ective over 
a limited distance from the particle ’ s location, and for its strength to diminish, or 
attenuate, with distance from the particle. Th is way, the repulsive force felt by 
another approaching particle will increase as it gets nearer. Th e fi eld attribute,  Max 
Distance  sets the eff ective range, while  Attenuation  attenuates its strength within 
that range. Th e Manipulator Tool for the radial fi eld ( Figure 07.14   ) allows you to edit 
 Max Distance  and  Attenuation  interactively in the scene view. 

    1.     Select the radial fi eld in the Outliner.  

  2.     Press the W hotkey to activate the Move Tool and drag the fi eld transform 
outside the cylinder for a clearer view.  

  3.     Activate the Manipulator Tool by selecting it in the Toolbox or hitting the 
hotkey T.  
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  4.     LMB or MMB+  drag the Magnitude attribute to a value of roughly 100.  

  5.     Drag the Max Distance attribute to a value of roughly 10.    

 Once you connect the particle object to this new radial fi eld (in the next section), 
the particles will be aff ected by a repulsive force inside of (10  �  10  � ) 20 Maya units 
from one another. With  Attenuation  set to 1, this force will be nil at the 20-unit dis-
tance and grow toward full strength as the particles approach each other’s position. 
Note that the radius of your particle sphere—which is only a  visible  radius and has 
no geometric or space-fi lling meaning—is 3, while the radius (Max Distance) of the 
radial fi eld is 10. You could try setting Max Distance to 3 and attenuation to 0, mean-
ing that particles would experience the full, unattenuated Magnitude of the radial 
fi eld only when they are within (3  �  3  � ) 6 units from one another. However, this 
results in very high accelerations of particles away from each other after they  collide . 
We found out quickly by trial and error that a Max Distance of 10 and an Attenuation 
of 1 allowed particles to almost touch before being repelled away from one another. 
Th is more gradual approach kept the collision reactions smooth and in proportion to 
the speeds at which particles approach each other.

    Connect the particle object to the radial fi eld 
 In order to get particles to emit the radial fi eld, they must be connected to it in the 
Hypergraph. 

    1.     In the main window, choose Window  →  Relationship Editors  →  Dynamic 
Relationships.

  2.     Select the particle object in the outliner portion of the editor.  

  3.     In the Dynamic Relationships Editor, under Selection Modes  →  Fields, select 
the radial fi eld.    

 Th e radial fi eld won ’ t have the desired eff ect until you make the individual particles 
its source.  

  Make the particles the source of the radial fi eld 
 Normally, when you make geometry the source of a fi eld, you select the fi eld and then 
the object and Choose Fields  →  Use Selected as Source of Field. However, when working

        A radial fi eld emanates repulsion 
(for positive magnitudes) 
and attraction (for negative 
magnitudes) radially, in all 
directions, from the location 
specifi ed in its transform node.      

 FIGURE 07.14 

    The Manipulator Tool provides 
a quick way to adjust commonly 
used attributes, like the ones 
shown here for a radial force fi eld. 
The X-axis here represents the 
maximum distance at which the 
force acts. The Y-axis represents 
the force magnitude. Attenuation 
is a curve plotting the degree to 
which Magnitude drops off as Max 
Distance increases. The icon at the 
bottom left lets you cycle through 
other attributes that can be set 
interactively.    
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with particles, you must make a component selection—the components being the 
individual particles. Every particle you wish to be a source for the fi eld must be 
selected. You must therefore play the simulation until the particle count equals its 
Max Count value. You will then use a component selection mask to select the indi-
vidual particles. 

    1.     Rewind and play the simulation for at least 5 frames, until all 200 particles have 
been born.  

  2.     In the Status Line near the top of the main window, press the Select by 
component type button.  

  3.     LMB+  click on the Set by the component selection mask 
button,     .

  4.     Select All Components Off. This wipes the component selection slate clean.  

  5.     RMB+click on the Points button      and select Particles (see Figure 07.15).

  6.     Select the radial fi eld in the Outliner.    

 With  Select by component type  on, you won ’ t be able to select the fi eld ’ s transform in 
the scene view.

     7.     Activate the Move Tool or the Select Tool.  

  8.     Shift+LMB+drag a selection around  one  of the particles. You will have to select 
fi rst one, and then all of the particles at once for this technique to work (see the 
next step).

  9.     Shift+LMB+drag a selection around  all  of the particles. If the particles do not 
turn yellow, indicating a selection, you will have to repeat this step.   

        If you were to make the particle 
object the source of the radial 

fi eld instead of the individual 
particles within the group, the 

particles would not infl uence one 
another.      

Selection mode: select by object type

Selection mode: Select by component type

Object selection mask buttons

Component selection mask buttons

 FIGURE 07.15 

    Selection masks for individual 
components are created using the 
Selection mask menu items in the 

Status Line.    
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  Your selections should look similar to what ’ s shown in  Figure 07.16   . 

    10.      Choose Fields  →  Use Selected as Source of Field.  

  11.      Select the radial fi eld on its own.  

  12.       In the Channel Box, locate the attribute, Apply Per Vertex and set it to 1 or on.  

  13.       Rewind and play the simulation to see the effect of the above steps.    

 Th e particles should now repel each other within a certain range, the Max Distance of 
the radial fi eld. However, this can be diffi  cult to observe in a fast-moving simulation. 
Suppose you wanted to see the collisions occurring. In the next step, you will use a 
per particle attribute called  rgbPP  to change the color of individual particles for the 
brief instances in which they collide.   

  Per particle color 
 Th ere are many ways to report data in a simulation. For reporting dynamic events as 
they occur, color change can be eff ective. It can be used as an indicator of an individual 
particle ’ s age or its velocity, for example. Here you ’ ll use it to report when the combined 
forces acting on a particle exceed a threshold value, indicating a likely inter-particle 
collision. Th e rgbPP attribute will be linked in an expression to another per particle 
attribute called  force , which is a vector attribute that stores the sum of all external 
forces on each particle. When the force attribute approaches or exceeds a threshold 
value, the  r  (for  red ) value of rgbPP will in turn approach or exceed  1 , the full red value. 
We determined the threshold value by trial and error; it had to be large enough to fi lter 
out the small forces constantly being generated by the Turbulence fi eld, without being 
too large to cancel out the stronger forces generated by the radial fi eld.

 FIGURE 07.16 

    The particles must be selected as 
components, and the radial fi eld 
as a transform, before making the 
particles the source of the fi eld.    

        When geometry is used as the 
source of a fi eld, Apply Per 
Vertex specifi es whether the 
fi eld will emanate from the pivot 
point of the object (a setting of 0 
or  " off "  ) or the object  's vertices 
(a setting of 1 or  " on "  ). When 
a particle object is used, the 
individual particles are treated 
as vertices by the fi eld.      

        Where color is not a reliable 
indicator for simulation 
events—when color-blindness is 
a consideration, for example—
value  can be used instead. In 
color theory, value is a measure 
of light and dark. In Maya, value 
is measured from 0 to 1; 0 being 
pure black, and 1 being pure 
white.      
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   Create the rgbPP attribute 
    1.     Select the particle object, open the Attribute Editor and select the tab for the 

particle shape node.  

  2.     Scroll down to the heading, Add Dynamic Attributes and press the Color button.  

  3.     In the Particle Color editor, check the box next to Add Per Particle Attribute and 
press the Add Attribute button.     

  Create a per particle expression 
 To give you a taste of what ’ s to come, this expression involves essential program-
ming concepts including a MEL command  mag()  and variables of types vector and 
fl oat. Th ese will be explained in detail in  Chapter 12 . Th e double slashes,  // , indicate a 
comment—code that will be ignored by Maya.

     1.     Select the particle object and open the Attribute Editor.  

  2.     Locate rgbPP, under the heading, Per Particle (Array) Attributes.  

  3.     RMB+click in the fi eld next to rgbPP and select Runtime Expression After 
Dynamics.

  4.     Type the following in the Expression fi eld:

   //Query the force PP attribute.
 vector $force  = particleShape1.force;   

   //A number to scale the magnitude of the force:

float $thresholdScale = 30�0�;

     //mag() returns the scalar magnitude of a vector.   

  float $mag = mag($force)/$thresholdScale;  

 //Set the rgbPP value.

   particleShape1.rgbPP  = < < $mag, 0�, 0�>>;        

 Th e magnitude of the Turbulence fi eld fl uctuates but remains under 100. For the most 
part, particles are dark red to black. When the total force acting on a particle exceeds 
300 Maya force units in magnitude, due to a close encounter with the radial fi eld, 
it turns bright red. Th is is a quick and easy way to report visually on inter-particle 
encounters. When working with a rigid body simulation, you can use the rigid solver 
node to report on true collisions between bodies. 

    5.     Press the Create button.    

 If you get a red-highlighted error message in the Command Feedback fi eld at the bot-
tom of the main window, check that you entered the expression script exactly as it 
appears above, and press Create again. 

 Play the simulation a few times and observe the particles ’  behavior. After some trial and 
error, we set the radial fi eld ’ s Attenuate attribute to 0.5. Th is makes the force between 
particle stronger at  Max Distance , resulting in more pronounced color changes to report 
the collisions.  Figure 07.17    is a screen capture from the simulation. 

        The MEL command  mag()
calculates the magnitude of a 

vector.      
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 Save the current fi le for use in the next tutorial, in which you will create a rough-quality 
animation to watch in a movie player. You ’ ll fi nd the complete scene fi le on the CD-ROM: 

    07_Dynamics/scenes/tutorial_07_02_done.ma     

rgbPP for Software render types 
 Th e per particle attribute  rgbPP  works for hardware render type, but not for software 
render type particles. For software-rendered particles, as special node called the 
Particle Sampler Info Node allows you to alter the color of a material, using rgbPP as 
an input. With the material assigned to the particle group, the color-change eff ect 
works in a software rendering.

Using the Particle Sampler Info Node for per particle colors 

 Help  →  Maya Help  →  Using Maya  →  General  →  Tools, Menus, and Nodes  →
Nodes  →  Particle nodes  →  Particle Sampler Info Node         

  Caching particle data 
 As you did for rigid bodies in the previous tutorial, you can cache data for parti-
cles once you ’ re satisfi ed with their behavior. Th is can be done in three ways: with 
memory caching; using particle disk caching; using a particle startup cache. Caching 
stores data for specifi ed particle objects for quick playback. It temporarily disables 
their connection to the Dynamics engine, over a specifi c playback range.

Colliding particles

 FIGURE 07.17 

    Linking the rgbPP attribute to the 
per particle force attribute allows 
us to visualize colliding particles by 
changing their color from black to 
red. This technique is most effective 
when viewed in motion. We have 
included a Playblast movie of this 
simulation in the directory for this 
chapter on the book ’ s CD-ROM.    
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Working with a particle caching 

 Maya Help  →  Using Maya  →  Dynamics and Effects  →  Dynamics  →  Solvers and 
caching         

  Tutorial 07.03: Create a playblast 
 A  playblast  is a hardware-rendered animation taken straight from the active view 
panel. It provides a quick means for previewing your animation. Th e result of a 
playblast is an .avi movie fi le which can be viewed in many types of computer movie 
player software, including Apple QuickTime, Windows Media Player, and Maya ’ s own 
fCheck. In this exercise you will shorten the playback range and create a playblast of 
the particle simulation from the previous tutorial. To start, open the particle simula-
tion scene from the previous tutorial or retrieve it from the CD-ROM. 

    1.     Set up a single perspective view panel, then maneuver the camera to get a 
view of the cylinder and particles that you want to render.  

  2.     Set the Playback Start Time to 100 and the Playback End Time to 400. At 30 fps, 
this range will result in a 10-second animation.  

  3.     Move or close any windows that obscure any part of the perspective view 
panel. A Playblast is made by capturing images of the active view. Anything that 
obstructs this view can interfere with your Playblast.

  4.     RMB�click in the Timeline to bring up Marking menu.  

  5.     From the Timeline Marking menu, select Playblast     .  

  6.     In the Playblast options window, make the following settings:  

   (a)     Select a movie viewer. If you ' re unsure, choose fCheck.  

   (b)      Set Display Size to Custom and enter 640 and 480 in the left and right dimen-
sions fi elds, respectively.  

   (c)     Scale: 1.0.  

   (d)     Check Remove Temporary Files.  

   (e)     Check Save to File, if you wish to save the playblast.  

   (f)     Press the Browse button.  

   (g)      Navigate to where you want to save your movie and 
name it.  

  7.     Press Playblast.    

 While the playblast is being created, resist the temptation to click on windows or 
leave Maya to check your e-mail. To make a playblast, Maya takes screen captures 
and then puts them together in one fi le. If you cover up the scene view with another 
window, that is what you ’ ll see in the playblast. When it ’ s fi nished, the movie should 

        Particle caching saves time when 
rendering since it precalculates 

particle dynamics, thus 
removing the need for dynamics 

calculations at render time.      

        You can interrupt a Playblast at 
any time by pressing the ESC key.      
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open in the movie player that you specifi ed. If you checked  “ Save ”  in the playblast 
options window, you can locate the fi le on your computer and play it when you wish.

    Summary 
 Th is chapter introduced the Dynamics module which calculates the eff ect of physical 
forces in a scene. Forces exist as impulses and initial velocities stored as attributes 
for dynamic bodies, as contact or collision forces, and as fi elds, of which there are a 
number of diff erent types. Turbulent fi elds are useful for creating motion resembling 
the random diff usion seen in a number of natural phenomena, including molecular-
scale Brownian motion. 

 Dynamic model types include rigid bodies, soft bodies, and particles (Maya Unlimited 
ships with two additional types, Fur and Hair; we won ’ t have an opportunity to 
explore those in this book). A soft body uses particles to model deformations of geo-
metric surfaces caused by forces. Rigid bodies behave like solid objects, with fi xed dis-
tinct geometries; they tumble, bounce, roll, and slide in response to force fi elds and 
collisions but do not change shape. Unlike rigid bodies, particles are points in space. 
A particle has mass, but no shape. While this limits their usefulness for simulations 
where shape is a factor in collisions, and rotational motion matters, particles off er 
a processing speed advantage over rigid body dynamics. Furthermore, the extensive 
list of particle attributes and the variety of render types make particles an indis-
pensable tool for 3D visual eff ects.

  In the fi rst of two tutorials, you created a rigid body collision simulation involv-
ing a force fi eld and two objects, one active and the other passive. Passive objects 
are unmoved by fi elds but are implicated in collisions with active objects. Collision 
dynamics are governed by a  rigidSolver  node, which has attributes that control the 
speed and sensitivity of collision calculations. You saw that memory caching is a use-
ful way to temporarily store dynamic data and disable calculations, for predictable 
playback of your simulation. 

 In the second tutorial you learned that particle behavior is governed both by the 
emitter and by the particle object. Emitter attributes determine the birth rate, initial 
speed, and direction of particle, while particle attributes set their lifespan, maximum 
count, and responses to fi elds and collisions. Dynamic connections between particles 
and geometry are made in the scene graph by  geoConnector  nodes. By default, indi-
vidual particles within a particle object are not set up to interact with one another. 
You bypassed this limitation by emitting a force fi eld from each particle to simulate 
inter-particle collisions. You then created a per particle attribute, rgbPP and con-
nected it to another attribute, force, using a custom expression. Th is setup provided a 
simple example of real-time data visualization, and how Maya Dynamics and custom 
programming can work hand in hand. 

 Finally, you made a preview rendering of your scene using the playblast function. In 
the next chapters, you will learn how to create shaders, set up lights and cameras, and 
make fi nished renderings of your animations. Th at will complete your foundation of 
Maya basics and you ’ re ready for a well informed approach to MEL programming.                               

        Utilizing Maya ' s built-in 
dynamics capabilities where 
possible reduces the amount of 
custom physics programming 
you need to code.      
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MODEL and ANIMATE

Begin the
rendering process

once your
modeling and
animation are

complete

Produce and save
a sequence of

image filesSet up the camera
(animated or still)

Set up light and
adjust shadow

settings

Apply a shading
network

(materials and
textures)

SHADE LIGHT CAMERA RENDER!

 FIGURE 08.01 

    The rendering process. A shading 
network defi nes the various 

properties that determine how 
a surface will respond to light. 

Attributes of the shading network, 
of the lights, and of the camera are 

processed by a render engine to 
produce one or more digital image 

fi les—the  “ rendering ” .    

 Introduction 
 We saw in  Chapter 3  that rendering is the process of turning a scene into a picture or 
series of pictures (or frames) once the modeling and animation is completed. It is the 
fi nal stage in the 3D computer graphics production workfl ow, before postproduction 
steps like compositing (the process of compiling rendered footage and adding special 
eff ects to produce a fi nished video). Rendering involves a shading network, lights, a 
camera, and one of Maya ’ s rendering engines (or  renderers ).  Figure 08.01    shows the ren-
dering process in schematic form. Because Maya was developed for the entertainment 
industry, where image quality is paramount, the software has extensive capabilities 
for each stage of the rendering process, allowing you to achieve a wide range of visual 
eff ects in your projects. However, the many options available are only advantageous 
if used smartly and with purpose. It is easy to become bogged down experiment-
ing with countless attributes and observing their eff ects on the rendered image. We 
suggest you always begin with an idea of what you would like the rendering to look 
like—its visual style—and work with the tools to achieve that look, or something 
close to it. 

 In this chapter we ’ ll tour the big topic of rendering so as you complete each in silico 
project you ’ ll be ready to give them a polished professional look. In the tutorials you 
will learn how to create a shading network, set up lights and a camera, and render 
a short (three seconds) animation using the Software Renderer and the Hardware 
Render Buff er. Don ’ t be fooled by the amount of material we ’ ve collected in these 
pages, though—this is just an introduction to the subject! But we will equip you with 
the essentials, so that you ’ ll know how to shade, light, and render your projects at an 
introductory level. Once you ’ ve mastered this content, we invite you to check out the 
titles listed under the heading  Rendering  in the  Further reading  section for additional 
tips and techniques. As well, the Help references listed throughout the chapter will 
point you to more detailed, topical information in Maya ’ s Help Library. 
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  A matter of style 
 Rendering is based on Maya ’ s computer model of how light will interact with each 
surface, particle, or volume in the scene, as observed from the camera ’ s position. 
Represented mathematically as rays and beams of illumination, the rendering algo-
rithm works out the color and illumination falling onto each pixel of the simulated 
camera image. Since you can tune many of the parameters defi ning the interaction of 
light and surface, such as the color of the inbound light, the color absorption properties 
of the surface, and so on, you have enormous fl exibility in crafting the rendered image. 

 Choosing an appropriate rendering style often depends on the end use of the image(s). 
For example, animation used in a television broadcast science program might call 
for a certain degree of photorealism in the renderings ( Figure 08.02   ); an increasingly 
sophisticated lay public has come to expect a high level of verisimilitude in synthetic 
portrayals of biology. On the other hand, a rendering of a protein dynamics simula-
tion for an audience of biochemists might leverage the benefi ts of  non-photorealis-
tic rendering  ( NPR ) in order to reduce visual clutter and stress specifi c data. A hybrid 
style—which leverages the didactic advantages of NPR and the esthetic familiarity 
of photorealism—could well be used in animations designed to instruct students in 
biochemistry ( Figure 08.03   ) or explain to patients how a drug treats disease. However, 
these stylistic suggestions are merely a few possibilities for you. Ultimately, the choice 
of rendering style depends on the interests and goals of the individual artist, and the 
communication requirements of each of your projects. Th e process of creating eff ec-
tive visual communications has yet to be distilled down to a set of hard, fast rules 
(thank goodness!).  

 The economy of rendering 
Th e choice of rendering style is also a matter of economy. Generally, greater visual com-
plexity means longer rendering times, which is a hindrance in almost any production 

10 Å

 FIGURE 08.02 

    For this rendering of the protein 
kinase CSrc, animator Eddy Xuan 
created the illusion of translucence 
using a feature called subsurface
scattering  and the  mental ray for 
Maya  renderer.

Courtesy and copyright  ©  2006 Eddy 
Xuan.     
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environment—be it a laboratory or a commercial studio—where time is money and 
where money must be expended to secure access to the computer resources needed to 
compute the render frame by frame through the animation. Your goal with rendering is 
to realize a balance between speed and quality that is economical for the given project. 
A factor in the speed/quality equation is the choice of rendering technology.  Hardware 
rendering , in which calculations are performed on the graphics processor of your com-
puter ’ s video card, is generally quicker than  software rendering , which uses software 
algorithms that are processed on your main computer processor. Th e caveat to this is 
that software rendering in Maya can create many eff ects that aren ’ t yet possible with 
hardware rendering. However, this is starting to change. Th ere has been considerable 
research of late into ways to better leverage video graphics processing power. With each 
new release, Maya ’ s hardware rendering capabilities improve. A rule of thumb is: if 
hardware rendering will suffi  ce, use it.

 The Render menu set 
Like other menu sets, this one can be selected from the menu at the far left of the 
Status Line. Th e Render menu set includes Lighting/Shading, Texturing, Render, Toon, 
and Paint Eff ects. Many of the functions in these menus can also be accessed using 
buttons in the Render shelf, through the  Hypershade  editor, which is used to create and 
edit shading networks, and in the  Render View  window, which we use often to make 
preview renderings (more on that shortly). Th e Render menu set and other UI features 
you ’ ll deploy in the rendering process are labeled in  Figure 08.04   .

 FIGURE 08.03 

    NPR cartoon outlines were used 
to highlight key structures in this 
animation depicting cross-linked 

structural proteins (actin fi laments) 
within a cell. One fi lament is 

approximately 1 nm in diameter.

Courtesy and copyright  ©  2006 
Eddy Xuan.    

        Graphics processors make use 
of parallelism, whereby multiple 

processing tasks are divided and 
handled concurrently, rather 

than sequentially, the way single 
CPUs deal with them. Software 

developers are increasingly 
looking for ways to exploit this 
capability for tasks other than 

image processing.      

 The Render menu set for Maya 
Unlimited includes Hair and Fur. 

        The Hypershade is a good item 
to have in your custom shelf 

for quick access. If you plan on 
rendering your projects, you will 

use it a lot.      
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  Shading 
 Usually, the fi rst step in the rendering process is  shading , in which you assign colors 
and textures to items in your scene. You do this by creating  shading networks —groups 
of connected  render nodes  which determine surface properties of your models ’  inter-
action with light, including color, transparency, and relief (or bumpiness)—and con-
necting them to geometry and other entities, like particles. Shading networks are like 
little recipes for how to transform incoming lighting to outgoing lighting.  Figure 08.05a    
shows a typical shading network displayed in the Hypershade and in  Figure 08.05b , we 
see the rendered view of that shader applied to a sphere, making it appear randomly 
bumpy. A basic shading network is automatically set up when you create a material 

Batch render

Create lights

Create camera

Create shaders

Show shading group
Attribute editor

Cancel batch render

Show batch render

Render current frame

IPR render current frame

Render settings

Render diagnostics

Rendering menu set

 FIGURE 08.04 

    Maya user interface items specifi c 
to rendering.    

 FIGURE 08.05 

    (a) The Hypershade view of a 
typical shading network involving 
a material, a bump map, and a 
displacement map. 

(b) A NURBS sphere rendered using 
the shading network from (a).      

Material

2D bump
node

Displacement
shader

Bump/
displacement
texture node

(a) (b)
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and assign (or connect) it to an object in your scene. As with other features in Maya, it 
is possible to work with materials and textures without being aware of the underlying 
architecture of nodes in the shader network and their connected attributes. However, 
an understanding of how to  build  shading networks will enable you to create sophis-
ticated visual eff ects easily. Maya makes it convenient to work with shading nodes 
directly, using the Hypershade. 

  The Hypershade 
 Th e Hypershade will soon be one of your best friends in the Maya world. Like the 
Hypergraph, it displays dependency relationships—not just for render nodes, but 
for any item in the scene graph. Its major features are labeled in  Figure 08.06   . We will 
explore them further in the fi rst tutorial. To open the Hypershade: 

    Choose Window  →  Rendering Editors → Hypershade     

  Render nodes 
 Render nodes are DG nodes that can be interconnected to create diverse visual 
eff ects. One of the advantages of Maya ’ s Dependency Graph architecture is its fl exi-
bility. Render nodes can be connected to other types of nodes to drive their attributes 
and vice versa. For example, a texture pattern (from a render node) could be used to 
control particle emission and particle age could, in turn, drive the color of a surface!  

Node
categories

Create Bar
panel

Hypershade tabs

Work area
(where shading networks are constructed)

Menu bar
Tool bar

Materials (shaders)

 FIGURE 08.06 

    The Hypershade is Maya's tool 
for creating and editing shading 

networks.
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  Materials 
 We have seen that rendering in Maya is a kind of simulated photography. As in real pho-
tography, there will be no image unless simulated light from your Maya world reaches 
the simulated lens of your simulated camera. So there will be no image unless you sup-
ply simulated light to scatter from the objects in your scene, as well as simulated 
physical surfaces on each model for the light to bounce off  or radiate from. Materials 
are Maya ’ s computer model of these light-scattering properties of each object ’ s surface. 

 All materials native to Maya are of three types: surface, volumetric, displacement. 
Surface materials apply to any NURBS or polygonal surface in a scene. Volumetric 
materials determine the appearance of 3D volumes rather than surfaces. Fog and 
cloud type particles are examples of such volumetric entities in Maya. Finally, dis-
placement materials change the topography of rendered objects to produce surface 
relief (as in  Figure 08.05b ). By default, Maya has one displacement shader, to which you 
connect other nodes to drive its attributes. Th ere are many more material types, 
which are for use only with the mental ray for Maya renderer. Th ey are described in 
the mental ray Shaders Guide. 

 A  material node  contains basic appearance attributes that are common to all materi-
als. Th ese include color, transparency, and incandescence, among others. Additional 
attributes exist which are unique to specifi c shaders. For example, not all materials 
have attributes to control surface  specularity  or  shininess .  Table 08.01    lists fi ve of the 
more commonly used Maya material types, with rendered examples. 

 Material  Description  Sample rendering 

 Anisotropic  Used to render refl ective surfaces with fi ne 
grooves, such as satin fabric or brushed metal. 
Attributes control the direction of grooves. 

 Blinn  Used for simulating metal or glass surfaces, 
it produces high-quality, isotropic specular 
highlights. Named for Jim Blinn who originally 
developed the shading algorithm.         

 Lambert  Used for matte surfaces with no specular 
highlight. Named in honor of the German physicist 
Johann Lambert (1728–1777). 

 Phong  Used to represent glossy surfaces, such as hard 
plastic, with isotropic specular highlights. Provides 
less control over highlights than the Blinn material 
but is quicker to render. Named for Phong 
Bui-tuong. 

        

 Ramp  Color gradients are used to control common 
material attributes such as color and 
transparency. Specular highlights are optional. 

        
TABLE 08.01 

  Commonly used Maya materials.  
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 You can create a material node in the Hypershade in one of three ways: 

    1.     Select the appropriate swatch in one of the Surface, Volumetric, or Displacement 
panels under the Create Bar (see Figure 08.06 )

or         2.     Use the Create Render Node window as follows:

   (a)  In the Hypershade menu bar, choose Create  →  Create Render Node.  
  (b)  Click on the Materials tab and open the Surface, Volumetric, or 

Displacement Materials panel  
  (c) Press the button of the material you want to create.  

   or         3.     Select the material by name in the Create menu.   

    Materials 

 Maya Help  →  Using Maya  →  Rendering and Render Setup  →  Shading →   About 
shading and texturing surfaces  →  Maya materials  →  Surface, displacement, 
volumetric      

    mental ray Shaders Guide 

 Maya Help  →  Using Maya  →  mental ray  →  mental ray Shaders Guide        

  Texture nodes 
 To Maya, a texture is an  image  that defi nes some property of a surface, such as a 
color or transparency pattern, or relief (elevations and depressions).  Texture mapping  
describes how the texture image relates spatially to the surface: how a point in the 
texture relates to a point on the surface. When you map a texture, you connect its 
output—a color or  alpha channel —to a  channel  (or attribute) of a material. In compu-
ter graphics literature, checker patterns are commonly used to illustrate how textures 
might be applied to geometry, as shown in  Figure 08.07   . For the purpose of rendering, 
texture mapping determines how a texture image will be oriented in relation to, and 
deformed with, a surface. In addition to defi ning rendering properties like color and 
transparency, textures are also used to control events on a surface, such as particle 
emission rate, as shown in  Figure 08.08   .

    Common texture maps 

 Maya Help  →  Using Maya  →  Rendering and Render Setup  →  Shading  →  About 
shading and texturing surfaces  →  Mapping and positioning textures  →  Texture 
mapping      

    Use a texture to scale particle emission rate 

 Maya Help  →  Using Maya  →  Dynamics and Effects  →  Dynamics  →  Particles  →
Work with emitters →   Use a texture to color emission or scale the rate       
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 FIGURE 08.07 

    A checker texture node (a) mapped 
to a material ' s (b) color channel, 
(c) transparency channel, and 
(d) the shading group node ’ s 
displacement channel.          

(a) (b)

(c) (d)

(a)

 FIGURE 08.08 (Left) 

    A texture mapped to a surface can 
be used to drive attributes such 
as particle emission rate (pictured 
here). The emission rate spans a 
range of 0 (particles per second), 
where the texture is black, to 1000, 
where it is white.    

(b)

 FIGURE 08.09 (Right) 

    The resolution of a bitmap image 
used in a fi le texture impacts the 
quality of the fi nished rendering. 
In this example, a bitmap image 
was used in the color channel of 
a lambert material. In (a) we used 
a low resolution, 256 �  256 pixel 
image. The image used in (b) was 
higher resolution: 1024 �  1024 
pixels.
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 Th ere are four types of Maya texture nodes, called 2D, 3D, Environment, and Layered 
textures. 2D textures map onto two-dimensional surfaces, like wrapping paper on 
a parcel, whereas a 3D texture fi lls a volume, projecting through an object like veins 
through marble. Environment textures are used for backgrounds or to create refl ec-
tions. Layered texture nodes are used to combine the eff ects of two or more 2D 
textures. 

 Most 2D, and all 3D, textures in Maya are procedural. A  procedural texture  is a 2D or 
3D plot of a mathematical function, and is therefore  resolution-independent , mean-
ing that the image it computes is always at the correct resolution for the distance of 
the textured object from the camera. In contrast, a  fi le texture  is a 2D texture node 
that references a bitmap image fi le of fi nite size into Maya. A fi le texture could be a 
scan of a photograph or illustration, a digital photograph, or a digital illustration or 
painting. Th e size of a bitmap, often described by its width and height in pixels, is 
called its  resolution , and impacts the quality and speed of rendering. You want a fi le 
texture bitmap image to have as low a resolution as possible, for fast processing, but 
not so low as to cause blurring or  pixelation —the visibility of blockiness or pixels on 
the surfaces of your objects.  Figure 08.09    shows the diff erence between high- and low-
resolution bitmaps used in a fi le texture. 

Procedural textures are generally used to create regular and abstract patterns, 
whereas fi le textures are used when specifi c details are necessary. Take a model air-
plane, for example. Camoufl age markings could be created with a procedural texture, 
whereas the decals—letters, numbers, and illustrations—would require a fi le tex-
ture. Because procedural texture images must be calculated, they will impact render-
ing times. It is sometimes desirable, therefore, to convert procedural textures into fi le 
textures which are generally faster to render.

 Because a procedural texture is controlled by attributes (acting as the variables of the 
relevant mathematical function in the Maya rendering software), it can be made to 
change over time by animating those attributes. Furthermore, many attributes can 
be connected to, and therefore driven by, other texture nodes, be they fi le textures 
or procedural textures. Such texture networking lets you to achieve compound proce-
dural eff ects with textures.

    Understanding and working with Maya texture nodes 

 Maya Help  →  Using Maya  →  Rendering and Render Setup  →  Shading  →
About shading and texturing surfaces  →  Shading networks  →  About shading 
networks       

 A fi le texture can be animated as well, but requires a bitmap image for each frame of 
animation. An animated fi le texture was mapped onto particle sprites to create the 
animation of HIV particles (or  virions ) shown in  Figure 08.10   . One virion was modeled 
and animated through a full rotation and rendered out in 210 frames (seven seconds 
of animation). Th e frames were then loaded into a fi le texture which was assigned to 
the particle object. Rendering the textured, fl at sprites was considerably faster than 
rendering a scene full of geometry. With sprites, Maya doesn ’ t need to compute the 
interaction of light with the topography of hundreds of separate 3D virus models. For 
this camera distance, one sprite fi ts all!

        Sprites, a hardware-rendered 
particle type, are 2D squares that 

always face the camera and act 
as placeholders for a fi le texture.      
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    Assign an animated fi le texture to sprites 

 Maya Help  →  Using Maya →   Dynamics  →  Particles  →  Work with advanced 
dynamics  →  Assign image sequences to sprites        

  Ramps 
 A ramp is a color or  grayscale  gradient. Th e gradient has one or more component(s), 
each defi ned by a position value between zero and one, and a color or grayscale value 
( Figure 08.11   ). A ramp can be either a  “ U ”  or a  “ V ”  ramp, referring to its direction when 
applied to a surface (we take a closer look at the UV coordinate system below). Ramps 
and their components can be connected to other nodes to drive attributes using color. 
Conversely, other nodes can be used to drive ramp colors. 

 Maya has a  texture ramp  node and a  ramp material  node which are use to apply 
gradients to object colors and other rendering attributes like transparency and 
incandescence.

    Ramp texture 

 Maya Help  →  Using Maya  →  Rendering and Render Setup  →  Shading  →  Shading 
Nodes  →  Texture nodes  →  2D textures  →  Ramp      

1 μm

 FIGURE 08.10 

    Rather than generating many small 
virions as geometry, an animated 
fi le texture was mapped to particle 
sprites (fl at planes that always face 
the camera), creating the illusion of 
hundreds of tumbling HIV viruses in 
this animation showing infection of 
a white blood cell (T-lymphocyte).

Courtesy and  ©  2007 AXS Biomedical 
Animation Studio.    



198 PART 2: A FOUNDATION IN MAYA

    Ramp material 

 Maya Help  →  Using Maya  →  Rendering and Render Setup  →  Shading  →
Shading Nodes →   Material nodes—Maya Software  →  Surface Materials  →
Ramp shader        

  Bump and displacement maps 
Bump maps and displacement maps ( Figure 08.12   ) use grayscale procedural or bitmap 
textures to create surface relief at render time. Th is allows you to make alterations 
to surface topography that would be diffi  cult if not impossible to model via conven-
tional NURBS or polygon tools. Bump maps create the illusion of relief by altering 
the directions of surface normals, and therefore changing the way the light interacts 
with a surface. In contrast, a displacement map actually changes the topography at 
render time by adding depressions and elevations. Where necessary, you can adjust 
the  tessellation —the degree to which a surface gets subdivided upon rendering—of 
an object, creating enough additional polygons to properly model the relief.

 Bump maps are best for shallow relief, such as the small undulations on the surface of 
a cell. Because a bump map displaces normals, and not actual polygons, it cannot pro-
duce relief along the edge, or profi le of an object, a fact that can be seen in  Figure 08.12 . 
Displacement maps are best for deep relief and when displacement of an object ’ s 
profi le is desired such as with the extension of cell processes like pseudopodia. Both 
bump and displacement maps can be animated to make surface topography change 
over time. Finally, bump maps render faster than displacement maps. Deep, detailed 
displacements can dramatically increase rendering times.

    Bump maps and displacement maps 

 Maya Help  →  Using Maya  →  Rendering and Render Setup  →  Shading  →  Surface 
relief  →  About surface relief        

Click to connect a texture

Select the ramp's direction and shape

Drag to adjust component's position 

Color component handle
(click and drag to adjust

its position)

Click to edit the color
component

Select the ramp's interpolation 

Click to delete this component

The ramp

 FIGURE 08.11 

    Ramps are color and grayscale 
gradients that can be used to drive 

rendering and other attributes.    

        Because bump and displacement 
maps are applied at render 

time, they don ' t slow down your 
interaction with the Maya scene 

as you work on it.      
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  Black and white 
 When working with textures, the color value range between black and white corre-
sponds to a numerical range between 0 and 1. In a transparency map, black is zero 
transparency (or opaque), white is fully transparent, and gray values are semi-opaque. 
In bump and displacement maps, black is even-ground, and white, the maximum 
elevation.  

  UV coordinates: life on the surface 
 In addition to the XYZ local and world coordinates, Maya has a 2D coordinate system 
that it uses to map textures onto surfaces. U and V are analogous to X and Y on a 
fl at surface, except that the U and V axes wrap around and deform with an object ’ s 
surface. When you assign a texture to a surface (through a material channel such as 
 Color ) it automatically maps to the surface ’ s UVs; every location in a 2D texture image 
has a corresponding UV location. 

 When you create a primitive model, Maya automatically generates UV coordinates 
for the surface. Maya has an extensive toolset, available through the  UV Texture Editor  
( UTE ), to edit the way textures map to complex surfaces.  Figure 08.13    shows the UTE 
displaying a fi le texture applied to a polygonal object. UV control points (or simply 
 “ UVs ” ) can be manipulated individually or in groups. When you move a UV, it main-
tains its original position relative to its surface geometry, but changes position rel-
ative to the mapped texture. Th e net eff ect is that the texture changes position or 
shape relative to the surface geometry.  Figure 08.13  illustrates the eff ect on texture 
placement of manipulating UVs. 

(a)

(b)

 FIGURE 08.12 

    Bump and displacement maps allow 
you to alter surface topography at 
render time. The same grayscale 
procedural noise texture (a) was 
used to create relief with (b) a bump 
map and (c) a displacement map. 
Note that displacement alters the 
profi le contour, whereas the bump 
map does not.        

(c)
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 Texture mapping (or  UV mapping ) is an important step in the character animation 
workfl ow for gaming and movies. It defi nes how elements like clothing, skin, and 
facial features appear on models when they are rendered. In biomedical and in silico 
animation, the default mapping is often suffi  cient for abstract procedural textures. 
Th ere are, however, occasions in cellular and molecular animation that call for repeat-
ing patterns—fi brous proteins, for example—in which case editing texture place-
ment becomes important.

    The UTE 

 Maya Help  →  Using Maya  →  Modeling  →  Mapping UVs  →  UVs windows and 
editors reference  →  UV Texture Editor reference        

  Texture placement nodes 
 When you assign a texture to an object, Maya creates a texture placement node, 
which maps the texture to the object ’ s UVs. Th is node gives high-level control over 
the mapping, allowing you to tile, rotate, and mirror the texture on the surface.

    Working with texture placement nodes 

 Maya Help  →  Using Maya  →  Rendering and Render Setup  →  Shading  →
Mapping and positioning textures →   2D and 3D texture positioning        

 FIGURE 08.13 

    The position of UVs, relative to a 
texture image, determines how the 
image will appear on 3D geometry. 

Pictures (a) and (c) show the 
workspace of the UTE.

(a) UVs (green dots) in their default 
positions relative to the texture 

image.

(b) A rendering made with the 
default UV placement.

(c) UVs transformed relative to the 
texture image.

(d) A rendering made with the 
transformed UV placement.          

(a) (b)

(c) (d)
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  Shading engine nodes 
 All render nodes in a shading network—textures, placement nodes, displacement and 
bump map nodes, and materials—converge to a  shading engine node  (also called a  shad-
ing group , or  SG node  for short). An SG node evaluates the other render nodes, along 
with lights and surface topography, to determine the rendered appearance of the sur-
faces to which it ’ s attached. For any surface to be rendered, it must be connected to 
an SG node. However, you need not create and connect an SG node manually; it is 
done for you when you assign a material to an object.  

  Preconfi gured Maya shading networks 
 In addition to building a custom shading network, you can load a preconfi gured net-
work which was created by a third party developer, or which came bundled with Maya 
in the  Shader Network Library . To load a shading network from (a) a third party or (b) 
from the Maya Shader Network Library: 

    1.     (a) Download or copy the shader network fi le (a Maya binary or Maya bitmap 
fi le) to your local drive. Place it in directory where you can easily locate it such 
as the Textures directory for your current Maya project.

    (b) Locate the directory in which the Shader Network Library was installed (if 
it wasn ’ t installed with the main Maya installation, install it now). Within that 
directory, navigate to the shader network fi le (a Maya binary or Maya bitmap 
fi le) that you wish to load and copy it to a directory where you can easily locate 
it such as the Textures directory of your current Maya project.  

   If no Textures directory exists, you can create one by choosing File →   Project 
→  Edit Current, and then entering a directory name in the Textures fi eld, 
followed by hitting Accept.      

   Installing the Maya Shader Network Library 

 Maya Help  →  Using Maya  →  General  →  Installation and Licensing  →  Installing 
the Shader Library  →  Installing the Maya Shader Library       

    2.     Start Maya and open the Hypershade.  
  3.     In the Hypershade, choose File  →  Import, then navigate to and select the 

shader network fi le you wish to load—either the third party shader fi le or the 
one from the Maya Shader Network Library.  

  4.     Press the Import button.     

  Maya Paint Effects 
 Paint Eff ects is an FX and texturing painting module that allows you to draw 
strokes (colored line and patterns) in either 2D or 3D. You can use it to apply cus-
tom patterns and particle eff ects to geometry and curves in a 3D scene. Invented by 
Autodesk developer and computer graphics guru Duncan Brinsmead, Paint Eff ects is 
used widely in FX workfl ows for fi lm and television to create organic elements such 
as trees, grass, and fl owers, which can be animated to simulate growth. Biomedical 
Animator Drew Berry pioneered the creative use of Paint Eff ects in molecular 
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interpretive visualization. He was named a Maya Master by Alias in 2005 for visuali-
zations of DNA ( Figure 08.14   ) that he created for a major multi-national project marking 
the 50th anniversary of the discovery of the  DNA double helix. 

    Paint Effects overview 

 Help  →  Maya Help  →  Using Maya  →  General  →  Paint Effects and 3D Paint  →
Maya Paint Effects  →  What is Paint Effects?        

  Render View 
 Th e Render View is a window used to make preview renderings of single frames.  Figure
08.15    shows the main UI Elements of the Render View window. Th e toolbar buttons 
are shortcuts to items available through the menus. 

  Previewing with IPR 
  IPR  ( Interactive Photorealistic Rendering ) is an interactive rendering mode, used to  pre-
visualize  your scene. It works in the Render View to update the rendered image auto-
matically as you make changes to lights and materials. IPR is available when using 
the Software or mental ray for Maya renderer. While it doesn ’ t support all of their 
features, it ’ s a handy tool for tweaking your scene in preparation for a fi nal rendering. 
You will use IPR for feedback on light positions in  Chapter 10 .

    Render previewing with IPR 

 Maya Help  →  Using Maya  →  Rendering and Render Setup  →  Rendering  →
Visualize and render images →   Rendering methods  →  Interactive Photorealistic 
Rendering (IPR)        

20 Å

 FIGURE 08.14 

    Animator Drew Berry used Paint 
Effects and particles to create 
striking visualizations of DNA 

replication and other biomolecular 
subjects. By painting particles 

onto globular models of proteins 
and DNA, he was able to achieve 

a high level of atomic detail and 
give a sense of thermal vibrations 
of molecules. Building, animating, 

and rendering at this level of detail 
using geometry instead of particles 

are computationally intractable with 
current desktop computers.

DNA Replication by Drew Berry, The 
Walter and Eliza Hall Institute.    
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  Keeping and removing images in the Render View 
 Th e  Keep Image in Render View  menu command (or  Keep Image  button) stores the 
current render preview in memory. When multiple images are stored, you can switch 
between them using the slider bar at the bottom of the Render View. You can also add 
a text comment to a stored frame in order to keep track of Render Settings. To add a 
comment: 

    RMB � click on the Keep Image button and choose Keep Image with Comment    

 Keeping images is a great way to see the eff ects of changes you make to your scene and 
it works for all renderers, unlike IPR which works only for Maya Software and men-
tal ray for Maya. Th e  Remove Image  button (or  Remove Image in Render View  menu 
command) deletes from memory the image that is currently displayed.

    Render View rendering 

 Maya Help  →  Using Maya  →  Rendering and Render Setup  →  Rendering  →
Visualize and render images  →  Rendering methods  →  Render View rendering          

  Tutorial 08.01: Shading 
 In this tutorial, you will create four basic shading networks, each with a diff erent 
material color, and assign each one to a piece of polygonal geometry in a ready-made 

Menu bar
Tool bar

Rendered image

Information about the current rendering

Redo render
Render marquee region

Sanpshot
Redo IPR render

Refresh IPR
Render settings

RGB channels
Alpha channel

Exact pixel resolution

Store image
Remove image(s)

Diagnostics

Renderer
Current render layer

Pause IPR
Close IPR

 FIGURE 08.15 

    The Render View is an interactive 
rendering window. It is primarily 
for previewing, but can be used to 
make and save fi nal single-frame 
renderings as well.    
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scene.  Figure 08.16    shows the rendered result. To start, copy the scene we ’ ve created for 
you from the CD-ROM to your scenes directory: 

 08_Shading/scenes/tutorial_08_01.ma

 Next, start Maya, set your project if necessary, and set your working units to 30       fps, 
Playback Speed to Real-time (30       fps), and Looping to Once. Open the scene fi le, 
 tutorial_08_01.ma . Th is is a simple animation of the four subunits of  hemoglobin —
the oxygen-transport molecule found in red blood cells—coming together to form 
the complete molecule. A complete hemoglobin molecule contains amino acids, along 
with four atoms of iron which give blood its red hue. Our animation is not meant to 
be a realistic depiction of hemoglobin formation, which is a complex ballet of protein 
folding and bonding, but rather a simple visual scenario that highlights the mol-
ecule ’ s overall shape and its subunit organization. A discussion of diff erent types of 
molecular models follows in  Part 3 ,  Chapter 14 . 

 Create a surface material: A lambert shader 
Th e fi le  tutorial_08_01.ma  opens with a perspective view of the scene. Th e hemo-
globin subunits are polygonal models named  chain1 ,  chain2 ,  chain3 , and  chain4 . Th ey 
are gray, the color of the default shader,  lambert1 . You can scrub the timeline to see 
the animation. Your fi rst step is to create a shading network. We will then duplicate 
it three times and change the material color for each duplicate. Th e colors will help 
diff erentiate the subunits.

10 Å

 FIGURE 08.16 

    A fi nal rendering of the scene 
you will shade in Tutorial 08.01. A 

lambert shader was applied to each 
object. The objects are the four 

 chains , or subunits of a hemoglobin 
molecule. We modeled them using 

the UCSF Chimera package from 
the Resource for Biocomputing, 
Visualization, and Informatics at 
the University of California, San 

Francisco (supported by NIH P41 
RR-01081).1 The molecular structure 

data fi le used, 1buw.pdb, was 
procured free of charge from the 

RSCG Protein Data Bank.2

        We will explore molecular 
modeling and visualization and 

Protein Data Bank structure data 
fi les in more depth in  Chapter 14  .      

        The word "  chain "  here refers 
to a  polypeptide  subunit of 

the complete hemoglobin 
molecule. For more information 

on biomolecules and their 
components, refer to the 

Further  reading section under 
the heading  Cell Science, 

Fundamentals .      
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    1.     Choose Window  →  Rendering Editors  →  Hypershade.  

  2.      Click on lambert swatch       in the Surface panel under the Create Bar. 
This creates a new shader called lambert2. (Refer to the labeled diagram of the 
Hypershade in Figure 08.06 .)

  3.      Make sure both the top and bottom tabs are showing. If not, press the Show Top 
and Bottom Tab button      .  

  4.      Select the new shader in either the Materials (top tab) or Work Area (bottom 
tab) palette in the Hypershade and press  the     button to view the input and 
output connections.  

  5.     If the render nodes are not visible in the Work Area, click in the Work Area and 
press the Show All hotkey, A.    

So far, the only node  lambert2  is connected to the SG node,  lambert2SG . Each time 
you create a material using the method described above, Maya automatically creates 
an SG node and connects the material to it.

  Common material attributes 
 Next, set the material ’ s Color and other attributes. Th e settings we suggest are values 
chosen after experimenting with the fi nal look. Feel free to experiment with them. 

    1.     Select the material, lambert2, by clicking on its icon in the Work Area or Mate-
rial palette in the Hypershade.  

  2.     Hit Ctrl � A or double � click lambert2 to launch the Attribute Editor.    

  Color 
 Th is is the base color of the material. 

    3.     Under Common Material Attributes, click on the swatch for the Color channel 
(attribute). This launches the Color Chooser window ( Figure 08.17   ).    

 Th e default color system in the Color Chooser is  HSV  ( Hue ,  Saturation , and  Value ). Th is 
color model allows you to vary the color by altering the essential tint (hue), inten-
sity (saturation), and relative lightness or darkness (value). You can change this to 
the RGB (red, green, blue) color model if you like by selecting it from the menu in the 
bottom left corner of the Color Chooser. For now, leave it set to HSV. 

    4.     Make the following settings using the sliders or by entering them in the H, S, 
and V fi elds:

    H: 350.0  

   S: 1.0  

   V: 0.8     

  5.     Press the Accept button to close the Color Chooser.   

  Using the Color Chooser 

  Maya Help  →  Using Maya  →  General→   Basics  →  Basics windows and 
editors →   Color editor        

        You can navigate (zoom and 
pan) the Hypershade view 
panels using the same key and 
mouse combinations you use to 
navigate Maya ' s scene view.      
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  Transparency 
 For the  Transparency  channel, black is equivalent to opaque and white to fully 
transparent.  

  Ambient Color 
 At its default setting of 0,  Ambient Color  has no eff ect on the material. If you increase 
its value toward one, its  Ambient Color  gets blended with the Color channel. Its contri-
bution to the fi nal color is infl uenced by the presence of  Ambient  lights in your scene.  

  Incandescence 
  Incandescence  is self-emitted light. With non-zero incandescence values, it is possible 
to render a scene entirely without lights, using only the self-illuminated geometry. 
Incandescence aff ects only the object to which it ’ s assigned. It doesn ’ t cast light on 
other geometry in the scene.  

  Bump 
 Th e  Bump  channel uses a texture node to create the illusion of surface elevations and 
depressions at render time. Our geometry is quite bumpy to begin with, so we won ’ t 
create a bump channel in this project.  

 FIGURE 08.17 

    The Color Chooser allows you to 
specify colors in HSV or RGB mode.    

        The changes you make in the 
Color Chooser apply instantly. 

You don't need to hit Accept 
to implement them. The Color 

Chooser is like other windows in 
Maya; it displays content for the 

active item. If you select another 
color-type attribute, such as 

Transparency, the Color Chooser 
will load its current color setting.      
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  Diffuse 
 Th e  Diffuse  channel controls a material ’ s tendency to scatter light. In practical terms, 
it amounts to a brightness control. By default, it is set to 0.8.  

  Translucence 
  Translucence  is the tendency of a material to absorb and scatter light beneath its sur-
face. Skin, leaves, and wax are real-world materials that demonstrate this property. 
 Translucence  only works with a shadow-casting light and when raytraced shadows are 
turned on. In this exercise we ’ re using depth map shadows instead, in order to keep 
render times down, so  Translucence  will have no eff ect. 

 Th e remaining lambert material attributes can be left at their defaults as well for now.

 Attribute descriptions for all Maya surface materials 

 Maya Help  →  Using Maya  →  Rendering and Render Setup →   Shading  →
Shading Nodes  →  Material nodes—Maya Software  →  Common surface material 
attributes         

  Assign the shading group to chain1 
 Below are two common ways to assign a shading group to an object. Th e simplest is to 
use the  material marking menu  in the Hypershade as follows: 

    1.     (a)  Select chain1 by clicking on it in the scene view or on its name in the Out-
liner.  

   (b)  With the Material palette visible in the Hypershade, RMB � click on the 
material you just set up, lambert2.  

   (c)  From the material marking menu, choose Assign Material to Selection (see 
Figure 08.18a   ).  

or

   2.     (a)  Position and/or resize the Hypershade so that both the Materials palette and 
chain1, in the scene view, are visible at once.     

   (b)  MMB � drag the icon for lambert2 onto chain1 in the scene view and then 
release the mouse button (see Figure 08.18b ).

 Th e last step connects chain1 to the shading group node,  lambert2SG . View your scene 
in smooth shaded mode (type  “ 5 ” ) to see the color applied to  chain1 .  

  Make and assign the remaining shaders 
 For this project, we want each hemoglobin subunit to have a diff erent color. Th e audi-
ence then can see which is which after they ’ ve bound together. You have the choice 
of creating three new shaders from scratch, the way you did with  lambert2 , or dupli-
cating  lambert2  and with it any attribute settings you ’ ve already set up. Naturally, 
you will have to change the color attribute for each duplicate. Before you begin 
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duplicating or creating render nodes, let ’ s consider the implications of how the nodes 
will be named. 

  Naming your render nodes 

When you duplicate a shader (by selecting the SG node and choosing  Edit   →   Duplicate   →   
Shading Network ) all connected render nodes are duplicated. New node names are 
duplicates of the old, but incremented numerically. For instance,  lambert2SG  becomes 
 lambert2SG1 , then  lambert2SG2 , and so on. Likewise, the material name  lambert2  
becomes  lambert3 . Th is default naming system can lead to confusion because the 
shading group name is diff erent from the material name, which is completely dif-
ferent from the object you intend to shade. When working with many shaders, often 
the quickest way to select a render node according to the object it shades is to locate 
its tab in the object ’ s Attribute Editor. However, being able to select render nodes by 
name in the Hypershade is preferable, since that is where you will be building and 
editing shading networks. For this reason, we fi nd that setting up a logical scheme 
for node naming is a smart workfl ow decision. We suggest you avoid the default nam-
ing routine for all but the very simplest projects.

 Renaming a shading network correctly requires renaming both the material ’ s trans-
form node and the SG node. To rename the render nodes you created: 

    1.     Open the Attribute Editor for lambert2 by double-clicking on its icon in the 
Hypershade.

  2.     Enter lambert_chain1 in the name (lambert) fi eld.  

        When you rename a material, 
the name of its shape node will 

update automatically, but not 
that of the shading group node—

it must be renamed separately 
in the Channel Box or Attribute 

Editor.

        You may need to dolly and 
pan to adjust your view in the 

Hypergraph in order to read 
the names on the shading 

group swatches. If Popup Help 
is enabled in Preferences, a 

shading group name will appear 
when you place your mouse over 

its swatch.      

(a)

Hypershade

Workspace

 FIGURE 08.18 

    Two ways to assign a shading 
network to an object.

(a) Select the object, then use 
the material marking menu in the 

Hypershade.

(b) MMB � drag the material icon 
onto the object in the scene view.      

(b)

MMB+drag

Hypershade

Workspace
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  3.     In the Attribute Editor, press the Output Connections button      to reveal the 
lambert2SG tab.  

  4.     Enter lambertSG_chain1 in the name (Shading Engine) fi eld.    

 Th e names we ’ re using will take advantage of Maya ’ s automatic naming strategy; as 
you duplicate nodes, their names will refl ect the number of the hemoglobin chain 
they are to shade (i.e. chain2, chain3, and chain4).  

  Duplicate the shading network 
 It is advantageous to duplicate a shading network instead of creating it from scratch 
if you have made attribute settings for the original and you want them carried over 
to the new network. In the Hypershade: 

    1.     Choose the Shading Groups tab and select lambertSG_chain1.  

  2.     Choose Edit  →  Duplicate  →  Shading Network.  

  3.     Repeat step 2 two more times to create networks for chains 3 and 4.     

  Adjust the color attributes 
 At this point all shaders have the same values in their color channels. We suggest 
you set these color settings, then experiment further once you ’ ve seen the fi nal 
rendering:

 lambert_chain2  lambert_chain3  lambert_chain4 

 H: 200.0  H: 20.0  H: 200.0 

 S: 1.0  S: 0.5  V: 1.0 

 V: 0.7  V: 1.0  V: 0.9 

 Apply the new shaders to the remaining three objects the same way you did for 
 chain1 . In smooth shaded mode, your scene view should look similar to  Figure 08.19    
(shown at frame 50 of the animation).   

  Add a textured background plane 
 In the next chapter and tutorial, you ’ ll add shadow-casting lights to the scene. Cast 
shadows help greatly in the perception of spatial relationships. Currently there is no 
background to catch shadows in the scene, so let ’ s add a polygon plane to do the job. 
To the plane, you can then add a repeating grid texture that gives a frame of reference 
for the viewer. Without it, there is nothing in the scene to indicate what, if anything, 
is standing still relative to the camera and geometry. 

  Create and position the plane 

    1.     Choose Create  →  Polygon Primitives  →  Plane     . Turn off Interactive Creation if it 
isn ’ t already off.
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  2.     Enter the following attributes:
    Width: 1200  
   Height: 1200  
   Subdivisions Along Width/Height: 10  
   Axis: Y     

  3.     Press Create.    

 Th is makes a polygonal object called  pPlane1 . Next, move  pPlane1  below the other 
geometry to avoid intersections, and backwards in Z so that more of it is visible to 
 camera1 . 

    4.     Select the plane in the Outliner.  

  5.     Enter the following attribute value in the Channel Box:

    Translate Y:  - 100        

 Assign a material to the plane 
 Th e plane was just assigned the default shader when created, so add a new lambert 
material at this step in your project ’ s workfl ow. 

    6.     Choose Window  →  Rendering Editors  →  Hypershade.  

  7.     Click on lambert swatch       in the Surface materials panel.  

 FIGURE 08.19 

    The scene at frame 50, after shaders 
have been assigned to each piece 

of geometry.    
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   8.     Open the Attribute Editor.  

   9.     Rename the material: lambert_plane.  

  10.     Set Diffuse to 0.9.  

  11.     Press the output connections button      to bring up the shading group node 
and rename it: lambertSG_plane.    

 You can leave the Color attribute alone; in the next step you will assign a texture to it. 

   12.     Adjust the Hypershade so that the plane is visible beside it.  

  13.     MMB � drag the lambert_plane material swatch from the Hypershade over top 
of the plane in the scene view and release the mouse button.   

  Create the grid texture 
 When creating a shading network, you have the option of building it in the Hypershade, 
before assigning it to an object, or constructing it on the fl y—adding to it after it ’ s been 
assigned. Here you ’ ll do the latter, connecting a procedural texture to the Color chan-
nel of lambert_plane, which is already connected to  pPlane1 . Th e texture is a grid pat-
tern and one of the ready-made Maya procedural textures. 

   1.     In the Hypershade, choose Create  →  2D Textures  →  Grid

or       Click on the grid texture swatch      in the 2D Textures panel under the 
Create Bar. This creates a new node called grid1.     

  2.     Select grid1 in the Hypershade and hit Ctrl � A to open the Attribute Editor.   

 Th e objective here is to create a subtle pattern—enough to provide a frame of refer-
ence for the viewer without being distracting. 

    3.     Enter the following attribute values:   

            Line Color     H: 0  
        S: 0  
        V: 1.0 (white)  

   Filler Color     H: 0  
        S: 0  
        V: 0.8 (light gray)  

   U Width     0.01 (for thin lines)  
   V Width     0.01      

    4.     Click on UV coordinates.  

  5.     Click on the input connections button       to bring up the 2D texture placement 
node.

  6.     Enter 40 in both of the Repeat UV fi elds.    

        The quickest way to add a 
texture to a channel is by 
pressing the Create Render 
Node button      next to

the channel in the Attribute 
Editor. This launches the 
Create Render Node editor. If 
you then select a node, it gets 
automatically connected to the 
channel in question. We used 
a lengthier method to connect 
grid1 to lambert_plane in order 
to demonstrate how to make 
attribute connections in the 
Hypershade.      
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 Increasing the Repeat attributes results in a fi ner grid (or more lines). Even with 
Hardware Texturing turned on in your scene view, you won ’ t get a decent preview of 
the grid. Th e best way to see results is with a software rendering using the Render 
View. You ’ ll get to that shortly.  

  Connect the texture to the material node 
 Th e fi rst step here is to get the swatches for the two nodes,  lambert_plane  and  grid1 , 
lined up and visible in the Work Area of the Hypershade. After that, you will make 
the connection using marking menus that are accessed through output and input 
connections buttons on the node swatches. 

    1.     Shift � select lambert_plane and grid1 in the Work Area or in the Materials and 
Textures tabs, respectively.  

  2.     Press the Graph Input and Output Connections button      .

      The Rearrange Graph button      can be used to tidy up the graph view in the 
Work Area of the Hypershade.     

  3.     Rearrange the nodes to somewhat resemble the setup in Figure 08.20   .  

  4.     RMB �  or LMB � click the output connections button      at the bottom right 
of grid1 and select outColor →  outColor from the marking menu. Hold the 
mouse button down. A leader line now will follow your mouse pointer as you 
move it.  

1. LMB+click here,
select outColor.

2. LMB+click here, 
select color

2D texture
placement node 2D texture node Material node Shading group node

 FIGURE 08.20 

    Attribute connections are made 
in the Hypershade by making a 

selection fi rst in the output marking 
menu of one node and then in the 

input marking menu of a second 
node.

        In the Hypershade, render node 
input and output connection 

arrows are either hollow 

to indicate that no connections 

exist, or solid      when 

at least one attribute has a 
connection to another node.      
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  5.     RMB �or  LMB � click anywhere on the lambert_plane swatch and select Color 
from the marking menu then release the mouse button (Figure 08.19 ).    

 Now graph the complete shading network ( Figure 08.21   ) to see the connections you have 
made since creating the material lambert_plane: 

    1.     In the Hypershade, select the lambert_plane material and press the Graph Input 
and Output Connections button     .  

  2.     Select lambertSG_plane and press     .      

  Make a preview render 
 Before adding lights and a rendering camera, you can use the Render View to pre-
view the eff ect of the shaders you created. Start by setting the render resolution in 
the Render Settings.

     1.      Choose Window  →  Rendering Editors →   Render Settings (Render Globals in 
releases prior to Maya 7.0).

or      Press the Render Settings button      in the Status Line of the main window.     

  2.     Press the Common tab and choose Presets  →  640  ×  480, under Image Size.  

2D texture
placement node

2D texture node Material node

Shading group
node

Shape node

 FIGURE 08.21 

    The fi nished shading network for 
the plane. The shading group (SG) 
node evaluates the other render 
nodes, along with lights and surface 
topography (via the pPlaneShape1 
node), to determine the rendered 
appearance of the plane.    

        We will take a closer 
look at the Render Settings in 
Tutorial 11.01: Rendering.      
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  3.     Press the Maya Software tab. If it isn ’ t visible, select Maya Software from the 
Render Using menu.  

  4.     Choose Quality  →  Production Quality, under Anti-aliasing Quality.  

  5.     Press the Close button.  

  6.     Move the Time Slider to a frame that you want to preview and adjust your 
scene view to a view you want to render.  

  7.     Press the Render current frame button     . This launches the Render View and 
starts a preview rendering.    

 Th e result is a rendering of your scene using the default light and perspective camera. 
If you are not getting the results you want, you can compare your scene fi le with the 
completed tutorial fi le on the CD-ROM: 

 08_Shading/tutorial_08_01_done.ma

 If you ’ re at all like us, by this point in a project you can ’ t wait to see a fi nal complete 
render at production quality. For this you ’ ll need to place the lights and camera of 
your virtual fi lm studio before we can shout,  “ Action! ”  Let ’ s get those set up!   

  Summary 
 In Maya, shading is the creation of a network of render nodes. From a user ’ s point of 
view, it is the application of colors, textures, and other surface attributes to elements 
in a scene. Render nodes include materials, textures, bump and displacement nodes, 
and texture placement nodes. Th e Hypershade is the primary tool in Maya for creating, 
applying, and editing shading networks. A shading engine (or group) node takes various 
render nodes for input, along with geometry and lights to calculate the fi nal rendered 
appearance of a surface. Th e variety of materials and textures, along with options for 
photorealistic and NPR techniques, make Maya ’ s shading capabilities extremely well 
suited to interpretive visualization challenges in biology. You have at your fi ngertips a 
wealth of techniques and familiar visual conventions—drawn from photography and 
illustration—for presenting dynamic graphical information.                         
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  Introduction  
 We have often heard the Hollywood refrain  “ Lights! Camera! Action! ”  Real life for the 
cinema pros, however, is a little diff erent: that  “ Camera! ” , when it is all said and done, 
is to alert the camera operator to start the fi lm running through the movie camera. 
Once it ’ s rolling, the actors can get down to business. Before any of this can happen, 
though, the fi lm ’ s director must make a series of crucial decisions about where the 
camera is to be positioned for the shot and how it will move during the shot, along 
with lens eff ects such as  depth of fi eld  and  fi eld of view . Th e camera supplies the audi-
ence its cinematic eye or the action; this eye must gaze adroitly if the audience is 
to experience the fi lm ’ s narrative and respond emotionally to the action. So really 
the refrain should be at least  “ Camera! Lights! Camera! Action! ”  Once the camera is 
planned for the shot, the cinematographer can decide how the scene is to be lit in 
order to achieve the visual style established for the shot. 

 As we have noted, Maya, like other high-end 3D animation packages, uses the simu-
lacrum of virtual photography to let you approach your visual story using the language 
of cinema. All the choices a live action director confronts about camera placement, 
lenses, and lighting you must make too. Th ere are now whole texts devoted to cin-
ematography in live action and virtual (3D animation) worlds. Our objective in this 
chapter and the next one is to introduce you to the fascinating techniques and art-
istry of Maya cameras and Maya lighting. By the end of this chapter you will know 
what a Maya (virtual) camera is and how to set its basic properties. You will then apply 
this knowledge to replace Maya ’ s default camera—which you used to preview the 
hemoglobin molecule in the last chapter—with a custom camera of your own design. 
We will guide you in its initial settings and placement, but you will quickly see the 
cinematic eff ects available to you as a Maya-based fi lmmaker. Unencumbered by 
gravity or physical risks, your Maya camera can move unconstrained by the limits 
within which live action cinematographers have to work. Since the properties of your 
cameras and lights are open to you through MEL for automated action, they become 
an essential part of your  in silico  visualization language as you formulate complex 
models: your cameras are your roving eyes on the results and predictions of your sim-
ulations, expressed in the universal language of cinema. Lighting is the other essential 
creative dimension of approaching your MEL simulation in cinematic terms. Having 
mastered the basics of the Maya camera in this chapter, you ’ ll advance to custom light 
your hemoglobin in the next chapter. 

 Although you are free to experiment with camera placements and lighting arrange-
ments using Maya as your prototyping environment, most of us fi nd that—given 
the time, eff ort, and expense of designing and rendering 3D animation shots—many 
key decisions about cameras and lighting are best made in the preproduction stage 
of the visualization. From  Chapter 03  you ’ ll recall that the storyboarding proc-
ess of the preproduction stage allows you to plan your view of the 3D action shot 
by shot and establish in detail how you want the camera to move and the light-
ing design to apply to the scene. Unfortunately the art of cinema storyboarding 
is beyond the scope of this book, although two of us (CJL and NW) have a book on 
the subject in development for science fi lmmakers, based on our years of teaching 
(and using) the method with biomedical communications. In the meantime there 
are excellent texts available that will take you further with the art of storyboarding 
for fi lm  . 



217CHAPTER 09: CAMERAS

  Maya Cameras 
 Like a real camera, a Maya camera defi nes the visible region of a scene—what will 
be captured in a rendering—and any image distortion due to the type of simulated 
lens used. You are by now no doubt familiar with maneuvering the default perspec-
tive camera, persp, to view a scene. Persp and the other default cameras—the ortho-
graphic front, top, and side—have all the same attributes as a camera you would 
create, and therefore can be used to render. It is advisable, however, to use the default 
cameras to view your scene as you set it up and create additional cameras specifi cally 
for rendering, that is, for  “ shooting ”  the virtual fi lm of your Maya scene as estab-
lished in your preproduction storyboarding plan, or its equivalent in your workfl ow. 
Th is will help you avoid accidentally moving a render camera, after setting it up, in 
order to view the scene.

          A perspective camera is like a real camera, with an aperture, focal length, and angle of 
view, but is more fl exible. Far more fl exible, as we hinted at above. Its simulated aper-
ture can be of any size and aspect ratio (width : height), and works with a wide range 
of simulated focal length: 2.5–3500 mm. An orthographic camera has no distortion 
due to perspective; an object close the camera appears the same size as one that is 
far away. By default, an orthographic camera is locked to one of the major axis planes 
(XY, XZ, or YZ). You can unlock it using the Tumble Tool in order to tumble it to any 
point of view, as shown in  Figure 09.01b   .

          You have three options when creating a perspective camera. Th ese are Camera, Camera 
and Aim, and Camera, Aim, and Up, shown in  Figure 09.02   . Th e camera is the same in each 

  Essentially there is only one type 
of camera in Maya. When its 
Orthographic attribute is set to 
 " 1 "  or  " yes "  a camera becomes an 
orthographic camera. When a 
camera ' s Orthographic attribute 
is set to  " 0 "  or  " no "  we call it a 
perspective camera.  

        To avoid image artifacts 
related to depth perception, it 
is recommended that you use 
an orthographic rather than 
perspective camera for focal 
lengths greater than 400       mm.  

(a) (b)

(c) (d)

 FIGURE 09.01 

    Different camera views of a 
polygon cube. 

(a) A default orthographic 
camera view. 

(b) When unlocked (using 
the Tumble Tool options), an 
orthographic view can be tumbled 
just like a perspective camera. 

Camera attributes, Angle of View
and Focal Length , control the 
viewable area and the degree of 
perspective distortion. The two 
are reciprocal; the longer the focal 
length, the narrower the view angle, 
and vice versa. For the images in 
(c) and (d), the camera remained 
in the same location; only the focal 
length (and angle of view) changed. 

(c) A narrow angle of view and 
low distortion result from a focal 
length of 70       mm. 

(d) A short focal length, 20       mm, 
gives a wide Angle of View, 
distorting the image.          
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case, but is constrained to locators, or null objects, in the latter two. Th e locators act 
as handles that drive the camera ’ s     rotate     attributes. You aim a perspective camera 
interactively by tumbling, tracking, and dollying, or by transforming it using manip-
ulator handles. With  Camera and Aim , the camera will always point at the camera_aim
 locator, no matter where you translate it. As well, it will always be vertically upright, 
unable to tilt left or right (or rotate about its Z-axis). Th e additional locator with 
 Camera, Aim, and Up  is used to tilt the camera. At any time, you can change a camera 
from one type to another using the Attribute Editor. To create a camera: 

    Choose Create →   Cameras →   Camera
     or Camera and Aim  
    or Camera, Aim, and Up       

 Th e create options for a camera can be left at their default settings and edited later in 
the Attribute Editor or Channel Box. 

  Camera Attribute Editor 
 Cameras clearly are essential to interacting with and rendering Maya scenes. Th ey are 
the eyes you give your audience on what is happening in our model! Because of their 
importance we will discuss their attributes in depth. 

  Camera Attributes 
 Th e fi rst camera attribute listed in the Camera Attribute Editor, Controls, allows
you to switch between the diff erent camera types listed above (regular, Aim, and 

 FIGURE 09.02 

    Maya ' s cameras all use the same 
transform and shape nodes but 

have different attribute or constraint 
settings. The different camera 

types are: 

(a) Orthographic camera. 

(b) Perspective camera. 

(c) Perspective camera and Aim. 

(d) Perspective camera, Aim, 
and Up.          

Aim vector control

(c)

Aim vector control

Up vector control

(d)

(b)(a)
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Aim and Up).  Angle of View and  Focal Length are inversely related. Th ey control the 
relative width and lens distortion of the view. Th e greater the  Angle of View  value, 
the shorter the focal length and the greater the perspective distortion  (Figure 09.01c and 
d)  corresponding to a wide angle lens in conventional photography. Increasing Camera 
 Scale  has the eff ect of increasing the focal length—making images appear larger and 
decreasing the angle of view—and vice versa. Clip (or clipping) planes determine the vis-
ible range, perpendicular to the camera. If near or distant objects aren ’ t visible in your 
scene, try decreasing the near clipping plane or increasing the far clipping plane.

            Film Back 
 Th e Film Back attributes are used when you bring live action footage into Maya. 
Unless you are matching animation to live action, you can leave these settings at 
their default values.  

  mental ray 
 Th e mental ray attributes are for assigning shaders to your camera for special eff ects 
when rendering with the mental ray for Maya renderer.  

  Depth of Field 
 When activated, the  Depth of Field  attribute varies the focus of a rendering with dis-
tance from the camera  (Figure 09.03)   . Because it mimics a familiar photographic eff ect—
the blurring of objects outside of the focal range of the camera—depth of fi eld 
can add the illusion of realism to renderings. However, this eff ect comes with a 

        The Camera Attribute Editor is 
simply the name given to the 
regular Maya Attribute Editor 
when a camera is selected.  

 FIGURE 09.03 

    The depth-of-fi eld effect varies 
the focus of a rendering based 
on the distance from the camera. 
This rendering is from a dynamic 
simulation of assembling actin 
protein fi laments. The focal distance 
is set close to the camera in (a) and 
at the outer range of the simulation 
in (b). Depth of fi eld can be useful 
device for directing the attention of 
your audience.

(a) (b)
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signifi cant rendering time penalty. If you have access to a compositing program such 
as Adobe After Eff ects for animation or Adobe Photoshop for still images, you ’ re bet-
ter off  rendering with  Depth of Field  turned off  and then building the eff ect in the 
compositing stage using a Maya-rendered depth channel which contains the same 
depth data used to calculate depth of fi eld. A depth channel is a bitmap image that 
represents distance from the camera using a grayscale value: the closest objects are 
white and furthest ones are black. Creating the depth-of-fi eld eff ect in the composit-
ing stage has the added benefi t of allowing you to quickly fi ne-tune the degree of blur. 
In contrast, depth of fi eld cannot be adjusted when it ’ s been rendered into the pri-
mary footage. Regardless of the method used, depth of fi eld is a powerful tool for iso-
lating important visual information because the eye is naturally drawn to the point 
of sharpest focus. In crowded simulations of molecules or cells, it is one of our tools 
for directing the eye of the viewer.

              Output Settings 
 Th e Output Settings determine which standard channels will be rendered. When 
Renderable  is checked, the camera will appear on the list of renderable cameras in the 
Render Settings.  Image  refers to the  RGB  color channels,  Mask  to the alpha channel, and 
 Depth  to the depth channel. Th ese channels are illustrated in  Figure 09.04   . Alpha chan-
nels are used in compositing to mask out unwanted parts of an image so that other 
images can show through from behind. Black areas are masked out while white por-
tions remain visible. A depth channel is used in the compositing stage of animation 
production to apply depth-of-fi eld eff ects, and to achieve real-world distance eff ects, 
such as color saturation that decreases with distance from the viewer.

Red
Green

Blue

Alpha
Depth

Composite image

Color channels

Mask channels

 FIGURE 09.04 

    The rendering output channels 
are added together to create the 
fi nal composite image. Channels 

are turned on or off in the camera 
Attribute Editor or in the Render 

Settings.

        Depth-of-fi eld effects are often 
created in the compositing stage 
of production using Maya ' s depth 

data channel, rather than in the 
actual Maya rendering. Depth of 

fi eld is much quicker to render 
and easier to edit when applied 

in postproduction. 

            Prior to Maya release 7.0, Render 
Settings was called Render 

Globals.      
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Resolution Gate

Safe Action

Safe Title

 FIGURE 09.05 

    Camera Display Options. The Film 
Gate and Field Chart are not visible 
in this fi gure.    

    Environment 
 Th e Environment attributes determine the background, or what will appear in 
the spaces between the objects in your scene, once they ’ re rendered in a fl at image. 
 Background Color  sets a uniform fl at color for the background.  Image Plane  lets you 
load bitmap image fi les or a procedural texture for the background. An image plane 
can be a template picture to use when building a model, or live footage to match ani-
mation to, as is often done in special eff ects work. In the image plane attributes, you 
can choose between an image fi le and a texture.  

  Display Options 
 Th e Display Options are labeled in  Figure 09.05   , with the exception of Field Chart which 
is a grid covering the renderable portion of the view.  Film  Gate shows the camera ’ s 
aperture and applies to matching live footage.  Resolution  is the portion of the view 
that will be rendered.  Safe Action  and  Safe Title  apply if you plan to show your 
rendering on a television screen. Safe Action is 90% of the resolution region and is 
what will be fully visible on NTSC TV screen. On-screen type and logos should be kept 
within Safe Title, which is 80% of the resolution region. Overscan determines the 
viewable area outside of the renderable (resolution) region. It allows you to see what ’ s 
just beyond the edges of your camera view.  

  Movement Options 
 Under Movement Options, Undoable Movements adds camera movements to the reg-
ular undo and redo commands that you access through the hotkeys Z and Shift � Z, 



222 PART 2: A FOUNDATION IN MAYA

respectively. Center of  Interest  and  Tumble Pivot  set the pivot about which the cam-
era tumbles. A camera can be set to tumble about itself, a defi ned Center of Interest, 
or a user-defi ned Tumble Pivot. You set which one is used in the Tumble Pivot Tool 
Options window. It uses the values specifi ed for Center of Interest and Tumble Pivot 
defi ned in the Attribute Editor. To set the Tumble Tool options: 

    1.     Choose View →   Camera Tools →   Tumble Tools     .  

  2.     Check one of Center of Interest  or  Tumble Pivot.    

 If you check  Tumble on   Object , the camera will tumble about whichever object the 
tumble icon      is over when you begin to tumble. Th e remaining tumble settings con-
trol the maneuverability of an orthographic view. With  Locked  unchecked, you can 
tumble an orthographic camera the way you would a perspective one.  

  Orthographic Views 
  Orthographic  turns a perspective camera into an orthographic gaze.  Orthographic 
Width  is related directly to the distance of the camera from its origin plane (XY, XZ, 
or YZ). When you dolly an orthographic camera, you don ’ t actually move it in the
Z-direction, but rather increase or decrease its  Width  attribute. 

 Th e remaining camera attributes are common to all shape nodes and won ’ t be covered 
here.

Camera Attributes 

 Maya Help →   Using Maya →   Rendering and Render Setup →   Rendering →
Rendering menus →   Panel menus →   View →   View > Camera Attribute Editor          

  Tutorial 09.01: A camera on hemoglobin 
 One of the joys of working in 3D computer animation is composing shots using a vir-
tual camera. You can mimic the techniques of experienced cinematographers seen 
in movies and on television. Well-executed cinematography, like good fi lm editing, 
often goes unnoticed by the audience because it appears natural. Th rough CGI camera 
work, audiences are even becoming accustomed to quite unnatural, but striking view-
ing experiences. Examples include high-speed roller-coaster-like rides through cities 
and landscapes, and tours of tight, often microscopic spaces—all of which would be 
impossible with present-day photographic equipment. Th ree-dimensional  in silico  
biology provides a host of opportunities for innovative camera work. Motion path 
animation, in which a camera animates along a track, can be used to move a camera 
on a complex trajectory through a scene dense with reacting molecules, for example. 
Likewise, a camera can be programmed to track specifi c events within a simulation. 
Such an  “ intelligent ”  camera could potentially remove much of the labor required in 
conventional camera setup techniques. 

 Th is exercise builds on our hemoglobin scene from the last chapter. Let ’ s create a 
camera that sweeps around the animated hemoglobin subunits on a motion path. It ’ s 
worth recalling that we chose to set up the camera before lighting the scene because 
what the camera sees will inform your lighting decisions. To start, you can either use 
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the scene you modifi ed in  Tutorial 08.01  from the previous chapter or copy the follow-
ing fi le from the CD-ROM to your scenes directory.

09_Cameras/tutorial_09_01.ma       

 Whether you got the fi le from the CD-ROM or from your progress from the previ-
ous tutorial, the fi le preferences already will be set—Maya stores settings, such as 
Working Units and Playback Speed in the scene fi le. You ’ re working with a short ani-
mation of the four subunits of hemoglobin—the oxygen-transport molecule found in 
red blood cells—coming together to form the complete molecule. Each subunit has a 
shader applied to it and the intended renderer is Maya Software. 

  Create a camera 
 Th e fi rst step is to create the render camera. It doesn ’ t matter from the standpoint of 
options which camera type you choose at fi rst because the creation options are the 
same for each, and you can change the type at any time using the Camera Attribute 
Editor so your options will stay fl exible. Nor do you need to bother with the creation 
options since they can all be set in the Attribute Editor. 

    1.     Choose Create  →  Cameras →   Camera     .

  2.     Press the Create button.

or

  3.     Press the Camera button      on the Rendering shelf.    

 Leave the default settings as is, including the name,  camera1 . In projects like these, 
involving an overview of a potentially exotic object, we often set the  Focal Length  
from 35 to 50       mm in order to get perspective familiar to that of the human eye. In 
this case, however, you want to enhance the illusion of perspective slightly for a more 
interesting view, so you ’ ll leave it at 35       mm. Try to fi nd time to come back and experi-
ment with diff erent settings. For instance, what would be the eff ect of locating a cam-
era with an extreme wide angle lens close to the subunits of this molecule? 

 Next, you ’ ll scale the camera in order to make it visible relative to the much larger 
polygonal objects in the scene. Scaling a camera using its transform node has no 
eff ect on the view it provides or the fi les it renders—it just makes it easier to see in 
the workspace. 

    4.     Select camera1 in the Outliner.  

  5.     In the Channel Box, enter 20 in the Scale X, Y, and Z attributes.     

  Set up a two-panel view 
 We fi nd it helpful to use two scene views when setting up a camera  (Figure 09.06)   . On 
the left is the default persp view, with which you ’ ll navigate the scene. On the right is 
the render camera  (camera1)  view, in order to see what it sees. Diff erent panel setups 
suit diff erent workfl ows. For example, when working with keyframe animation rather 
than MEL simulation events, it ’ s useful to dedicate at least one panel to the Graph 
Editor in order to have easy access to animation curves. Some users prefer to keep the 
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 FIGURE 09.06 

    A two-panel layout is a good way 
to view your scene while setting 

up a render camera. In this image, 
the current time indicator is at 

frame 60—the point at which the 
hemoglobin subunits come together.    

             The cousin to Frame All is Frame 
Selection, which adjusts the 

active view to show one or more 
selected objects. It is accessed 
through the View menu or with 
the hotkey  " F " . If no objects are 

selected,  " F "  also frames all.      

Outliner embedded as a panel for quick access. For the present exercise, you ’ ll fi nd it 
most effi  cient to allocate two panels to camera views and launch other elements, like 
the Outliner, as separate, fl oating windows. 

    1.     Choose Panels →   Layouts →   Two Panes Side by Side.  

  2.     In the left-hand panel, choose Panels →   Perspective →   persp.  

  3.      In the right-hand panel, choose Panels →   Perspective →   camera1.    

 If you haven ’ t yet moved camera1, it will be positioned at the world origin, facing in 
the negative Z-direction. Depending on which frame the time indicator is at, the cam-
era may be inside one of the models, in which case you will see nothing recognizable. 
A quick way to get a view of your whole scene through the active panel is to choose 
Frame All, as follows: 

    1.      Click anywhere in the right (camera1) view panel to make it active.  

  2.     Choose View →   Frame All  

or

   Hit the hotkey  “ A ” .    

 Take a minute to tumble, dolly, and pan camera1 to get a good view of the four hemo-
globin subunits. Th en do the same with  persp  so that you can see the geometry and 
camera1 together.
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    Adjust the camera attributes and Render Settings 
 Here you will add an aim locator, set the camera aperture (renderable width and 
height), and display the  resolution gate . An  aim  is a target that the camera is con-
strained to look at. You will use this to keep the camera pointed at the world origin. 
Th e aperture will, by default, match the aspect ratio you set with Image Size in the 
Render Settings. Th e resolution gate shows you the renderable area of the camera. 

  Add the aim locator 

    1.     Select camera1 and open the Attribute Editor.  

  2.     Under Camera Attributes, choose Control  →  Camera and Aim.    

 Th is parents camera1 under a new transform node called camera1_group, along with 
camera1_aim, the locator node. Selecting camera1 now, you will see that the Rotate X, 
Y, and Z attribute fi elds are colored blue to indicate that they are constrained to the 
aim locator. 

 Unless the locator is constrained to a position, it will move as you pan the camera. 
You want it locked to the origin in this example so that the camera will always point 
at the center of your scene. Th is will keep the hemoglobin molecule centered up as 
you fl y around it. 

    3.     Select camera1_aim in the Outliner.  

  4.     In the Channel Box, enter 0 for Translate X, Y, and Z.  

  5.     Select Translate X, Y, and Z by name in the Channel Box.  

  6.      RMB + click to bring up the Channel Box Marking menu and select Lock 
Selected.    

 Th e aim locator is now locked to the origin. If you pan camera1, it will snap back to its 
previous position, centered on the locator at the world origin.  

  Set the Image Size 

    1.      Choose Window →   Rendering Editors →   Render Settings (Render Globals in 
releases prior to Maya 7.0).

or   Press the Render Settings button      in the Status Line of the main window.     

  2.      Press the Common tab and choose Presets →   320  x  240, under Image Size.  

  3.     Press the Close button.    

 You ’ re using half the regular default resolution of 640  �  480 pixels for faster test 
rendering.  

  Display the resolution gate 
 Th e image size determines the resolution aspect ratio—1.333:1—which sets the shape 
of the resolution gate. Commonly used image formats are listed in  Table 09.01   . 

            Unlike computer-image pixels, 
which are always square, high-
end video formats often use the 
unintuitive notion of non-square 
pixels. As you can see in  Table 
09.01 , standard defi nition NTSC 
video has pixels that are taller 
than they are wide, at a ratio of 
0.9:1. This allows the video frame 
to fi t into the 4:3 aspect ratio 
of NTSC video, even though its 
pixel dimensions (720  �  486) 
don ' t resolve to 4:3.      
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 Format  Resolution 
(pixels) 

 Device Aspect 
Ratio (width:
height) 

 Pixel Aspect 
Ratio (width:
height) 

 CCIR 601|Quantel NTSC 
(North American video) 

 720  �  486  4:3(  �  1.333)  0.9:1 

 CCIR PAL|Quantel PAL 
(European video) 

 720 � 576  4:3(  �  1.333)  1.066:1 

 HD 1080 (High Defi nition)  1920  �  1080  16:9 (   �   1.777)  1:1 

 TABLE 09.01 

    Common rendering image sizes and 
the corresponding aspect ratios. 

The Device Aspect Ratio is the 
image width to height ratio in terms 

of the number  of pixels. The Pixel 
Aspect Ratio (or PAR) is the width to 
height ratio of individual rectangular 

pixels. A PAR of 1 corresponds to 
square pixels.  

 FIGURE 09.07 

    Overscan scales the resolution gate 
(white line) relative to the scene 

view, but doesn ' t alter the renderable 
image within the resolution gate.

(a) Overscan �  1.0; the render-able 
image fi lls the view in one dimension 

with the resolution gate. 

(b) Overscan �  1.3; a value greater 
than 1 scales the gate down so that 
more of the scene is visible around 

the edges.      

(a) (b)

             In most cases, you can leave 
the Film Back attributes at 

their default values. Setting Fit 
Resolution Gate to Overscan will 
ensure that the renderable area 

is visible in the view panel.       

    1.      In the camera1 view panel, choose View →   Camera Settings →   Resolution 
Gate.  

or  (a) Select camera1 and open the Attribute Editor.  

   (b) Under Display Options, select Display Resolution.    

 Because the camera1 view panel is tall and narrow—what we call a  “ vertical layout ” —
it cuts off  the sides of the resolution gate. To fi x this, you will adjust the size of the 
resolution gate relative to the fi lm gate. 

    2.     Choose View →   Camera Settings →   Overscan.  

or   (a) Select camera1 and open the Attribute Editor.  

   (b) Under Film Back, select Fit Resolution Gate →   Overscan.  

  3.     In the Attribute Editor, enter 1.1 for the Overscan attribute.   

 Overscan controls how much of the scene you can see outside of the resolution gate. 
Values greater than 1 result in the view panel showing more of the scene than just 
what will render within the resolution gate.  Figure 09.07    shows the results of diff erent 
Overscan settings. 
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       Note  : By default, the camera ' s 
overscan attribute is visible 
in the Attribute Editor but not 
the Channel Box. You can add 
overscan to the Channel Box 
attributes using the Channel 
Control Editor, available through 
the Channels menu at the top of 
the Channel Box.      

     Animate camera1 on a path 
 A motion path is a spline curve used to guide the animation of an item ’ s transform 
node. Th is can be anything in Maya with a transform node. Using a motion path for 
a Maya camera is similar to using a track to guide a real-world movie camera—it ’ s 
a good way to get smooth, predictable movement of your viewpoint through a scene. 
Unlike the real world, however, in Maya a camera setup isn ’ t restricted by the laws of 
physics and construction budgets; you can create elaborate roller-coaster-like trajecto-
ries, gravity-ignoring 3D orbits, and fi lm a scene from any conceivable vantage point 
without concern for the complexities and cost of an equivalent real-world scenario.

   Create the motion path 
 Your fi rst step is to create the path, for which you ’ ll use a circle to make the cam-
era follow a smooth, horizontal arc around the moving geometry. So both the hemo-
globin subunits and your camera will be moving. 

    1.      Choose Create →   NURBS Primitives. If Interactive Creation is checked, 
select it to turn it off.  

  2.     Choose Create →   NURBS Primitives →   Circle     .

  3.     Set Normal Axis to Y and Radius to 150.  

  4.     Press Create.    

 Th is makes a spline called  circle1  that is centered at the world origin. 

    5.     Hit the hotkey to bring up the Animation menu set.  

  6.     Select camera1 and then circle1.  

  7.      Choose →   Animate →   Motion Paths →   Attach to Motion Paths         .    

 Th e  Time  Range attribute determines the start and end times for the motion path 
animation. Leave this set to  Time Slider . Th is makes the start time equal to frame 
1 and the end time equal to frame 120 (provided you haven ’ t altered the start and 
end frames in the Timeline). Th e remaining attributes are fi ne at their default values 
except for  Follow , which makes a connection involving the camera ’ s rotation 
attributes. It must be unchecked, otherwise it will generate an error because the 
rotate attributes are already constrained to the aim locator. 

    8.     Uncheck Follow then press the Attach button.   

    Edit the animation 
 camera1 will automatically be set to begin its motion at the start of the curve and fi n-
ish moving at its end. Th e beginning and end of a motion path are marked by objects 
called  position markers . Each marks a normalized (between 0 and 1) position along 
the curve. Th is position is displayed in the Channel Box when the marker is selected, 
under the attribute name Local Position X. For a circle, both markers appear to lie at 
the same point because the start and end of a circle are coincident. However, a glance 
at the  Local  Position  X attribute for each will show that they lay at positions 0 and 1,

      The  follow  attribute for a 
motion path determines how 
the attached object changes 
orientation as it follows the path.      
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respectively. You can drag a marker using the Move Tool to change its position on the 
curve and use the Attribute Editor to change its frame number. In this exercise you 
don ’ t want a fast 360	 rotation around the scene, but rather a slow 45	 arc, with the 
camera facing primarily in the negative Z-direction. Th ese choices are somewhat arbi-
trary and purely for the purpose of demonstration. Please take them further! 

      9.     Hit the hotkey  “ W ”  to activate the Move Tool.  

  10.      One at a time, select a position marker by clicking on its number beside the 
circle. If doesn ’ t matter which one you grab fi rst.  

  11.     Drag positionMarker1 (with frame label  “ 1 ” ) to roughly 0.375.

    Drag positionMarker2 (with frame label  “ 120 ” ) to 0.625.  

    You can watch the Local Position X attribute update in the Channel Box until 
you ’ re in the right spot.      

   Figure 09.08    shows the position markers before and after being moved. Play the anima-
tion to make sure the camera is working as it should. With the persp window active 
during playback you will see camera1 tracking along the motion path between frames 
1 and 120.

Path animation

 Maya Help →   Using Maya →   Animation, Character Setup, and Deformers →
Animation →   Path Animation         

             It is diffi cult to select one 
position marker over another 

when the two overlap. It is 
easiest to take whichever one 

you are able to select and move 
it to the side so that you can grab 

the other one.      

 FIGURE 09.08 

    Motion path position markers:

(a) Positioned by default at the start 
and end of the motion path curve 

(top of the circle).

(b) Repositioned using the
Move Tool.

These images were captured using 
the Top camera at frame 40, or 

one-third of the way through the 
hemoglobin animation.      

(a)

Motion path

Camera aim vector
Camera aim locator

Motion path position markers

(b)

Motion path position markers
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  Adjust the camera 
 Currently, your camera is horizontally aligned with the origin. At this orientation, it 
doesn ’ t see much of the plane you just created and neither will it see much of the cast 
shadows. Moving camera1 up will force it to look down toward its aim and therefore 
see more of the plane and shadows. Th is is done simply by translating  circle1  in the 
Y-direction. 

    12.     Select circle1 in the scene view or the Outliner.  

  13.     In the Channel Box, enter 120 for the Translate Y attribute.    

 Your scene should now resemble  Figure 09.09a    when viewed from below the origin with 
the persp camera.  Figure 09.09b  shows the view through camera1. Make the camera1 view 
active and press Play to preview the animation from this new vantage point. While 
you haven ’ t added a light or rendered a single frame, you now have a pretty good idea 
of how the action will appear when you render it. If you are unable to get relatively 
smooth playback in the scene view with the Playback Speed set to Real-time (30 fps), 
a playblast is a good idea at this point. Playblast preview renderings were discussed in 
 Chapter 06 .

Creating a playblast 

 Maya Help →   Using Maya →   Animation, Character Setup, and Deformers →
Animation →   Animation Basics →   Playback animation →   Playblast animation       

(a) (b)

 FIGURE 09.09 

    A view of the scene after translating 
the motion path: 
(a) from the default perspective 
camera, persp. 
(b) From camera1.  
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 Th e fi nished Maya scene fi le for this tutorial can be found on the CD-ROM:

    09_Cameras/tutorial_09_01_done.ma       

 You ’ re now ready to light your scene to bring out the information you want the audi-
ence following.   

  Summary 
 A Maya camera has many properties in common with a real-world movie camera but 
is more fl exible. It can be of two types, orthographic or perspective. Th e latter is typi-
cally used for rendering since it emulates the perspective distortion we are used to 
seeing as a result of eyes and cameras with limited focal length (an orthographic cam-
era is essentially a perspective camera with infi nite focal length). In addition to its 
many shape attributes which control the image and special eff ects, like depth of fi eld, 
a Maya camera can be animated to move and tumble using its transform node. Th is 
enables you to follow important action in a scene, much like a real camera on a track, 
dolly, or moving tripod. Th is in turn has signifi cant implications for in silico simula-
tion work: the inability to see inside and move around tiny, dynamic structures and 
systems continues to be a limiting factor with in vivo and in vitro methods of investi-
gation. In contrast, 3D in silico methods potentially allow complete spatio-temporal 
transparency, and with it, new opportunities for discovery.                  



10                 Lighting             
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  Lighting 
 With your scene shaded and camera set, the natural next step is to add lights. Th e 
range of  “ looks ”  and visual styles you can achieve with lighting is nothing short of 
remarkable. You might set one project to be fi lled with even, mid-day illumination 
typical of a wildlife documentary. In another, you might fi ll your Maya scene with 
deep shadows and knife-edged pools of illumination to enhance a dramatic mes-
sage or tightly focus your viewer ’ s attention. As with camera work, cinema lighting is 
an art form in its own right and there are inspirational texts that will take you 
beyond the starting point we can accommodate here as we set the foundation for your 
explorations in MEL. 

 Lights come in six varieties in Maya. Th ese are shown in  Table 10.01   , along with ren-
dered examples. Before you add lights to your scene, Maya creates a directional light 
at render time, which illuminates objects evenly from the upper left and then deletes 
the light after rendering. Th is temporary light is suffi  cient for quick shader tests, 
but cannot be edited and should therefore be replaced by a custom lighting setup as 
soon as you ’ re ready to start rendering. Custom lights are invoked through the Create 
menu or via the Hypershade. 

 Your scene will also contain a  default light  to make objects visible to your in Shaded 
display modes in the scene view. If you have created other lights, you can choose to 
use all of them or just select ones for scene view shading. Do this by selecting the 
appropriate light(s) in the scene view Lighting menu ( Figure 10.01   ). 

 Master cinematographers spend their lifetimes perfecting their lighting artistry. 
Nonetheless, a good, basic lighting setup is well within your reach. In this chapter ’ s 
tutorial, you will create a classic setup that uses three Point lights to illuminate 
objects in the scene in a way that accentuates their three-dimensional form. Maya 
Help provides general information on lighting concepts and basic instruction for 
working with lights in a Maya scene.

Lighting in Maya 

 Maya Help →   Using Maya  →  Rendering and Render Setup →   Lighting  →  Basics 
of lighting  →  Light and shadow in the real world       

  Shadows 
 In the natural world, cast shadows tell us a lot about the spatial relationships of objects. 
When used correctly, they can do the same in 3D computer renderings. In Maya, 
a shadow is the lack of illumination on a surface or volume, caused by an object that 
blocks a shadow-casting light source. Surfaces facing away from the light are considered 
 not illuminated  versus being in shadow. You can specify whether or not an object casts 
and/or receives shadows under Render Stats in the Attribute Editor for its shape node. 

 When you create a light, by default it is set not to cast shadows. Th is saves process-
ing time when the scene is rendered. Of the two shadow options available,  depth map  
and  raytraced shadows , the former is less accurate, but much quicker to render than 
the latter and usually suffi  cient. Th e two things raytraced shadows can do that depth 
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 Light  Description  Sample rendering 

 Simulates a combination of direct 
light (from its location) and diffuse 
light from all direction in the 
scene. This light does not cast 
depth map shadows. 

 Simulates a rectangular light source 
such as a window. The size (scale) 
of this light affects its intensity. 
Area lights can take longer to render 
than other types, but can generate 
higher-quality light and shadows. 

 Simulates a very distant light 
source, such as the sun. The light 
rays are parallel and run one 
direction. This light is useful for 
lighting many objects in a scene 
evenly from a single source. 

 Simulates light emanating in all 
directions from a point in space. 
Point lights are quick to set up 
because their effect is independent 
of direction and scale. 

 Simulates light emanating from 
a cone. The edges of the cone 
can be hard or soft, a feature 
controlled by the light ’ s Penumbra 
attribute. 

 Simulates light originating from 
a point and confi ned to a volume. 
The falloff of light from the point to 
the volume boundary is controlled 
by a color ramp. 

Area

Ambient

Directional

Point

Spot

Volume

 TABLE 10.01 

    Maya lights.  

Area

Ambient

Directional

Point

Spot

Volume

Area

Ambient

Directional

Point

Spot

Volume

Area

Ambient

Directional

Point

Spot

Volume
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map shadows cannot are cast shadows on the inside surfaces of transparent objects 
and produce soft shadows that are more physically realistic.  Figure 10.02    shows the dif-
ference between depth map and raytraced shadows for the same objects, using the 
same light source. 

 Raytraced shadows and, to a lesser degree, depth map shadows increase render times, 
so discretion is warranted when deciding which lights will cast shadows and which 
objects will be aff ected. It is advisable to use depth map shadows whenever possible, 
cast from a single light, and to turn off  Receive Shadows (in the Attribute Editor  →  
Render Stats) on all objects for which shadows are unnecessary.

Shadows 

 Maya Help →   Using Maya →   Rendering and Render Setup  →  Lighting →   Basics 
of lighting →   Shadow  →  Shadow in Maya         

(a)

 FIGURE 10.02 

    Depth map shadows (a) are fast to 
render but lack some of the realism 

possible with raytracing (b); namely, 
internal shadowing on transparent 

objects and edge blurring that 
progresses with distance from the 

source of the shadow.      
(b)

 FIGURE 10.01 

    The Lighting menu in the Panel 
menus allows you to choose which 

light(s) will be used in Shaded mode 
in the scene view.    
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  Tutorial 10.01: Lighting the hemoglobin scene 
 Now that the rendering camera is ready, you can set up lights knowing where they 
need to be to provide proper illumination for the shot as the molecules move and 
your camera orbits through the 3D environment. In this tutorial, we want you to cre-
ate a standard stationary  3-point lighting rig  ( Figure 10.03   ). Th is involves a  key light , sup-
plying the main source of illumination, a  fi ll light  to balance the dark spots missed by 
the key, and a  back light , to help separate the edges of objects from the background. A 
back light is useful at times, but is not always essential; its eff ect can be quite subtle. 
A fi ll light, on the other hand, contributes greatly to the illusion of 3D form.  Figure 10.04    

Key lighting

(a)

Back lighting

Fill lighting

Key lighting

(b)

 FIGURE 10.04 

    Multiple lights can be used to create 
naturally-occurring illumination 
effects such as lighting along the 
contour of an object and refl ected 
(or fi ll) light. Such effects contribute 
to the illusion of 3D form and help to 
visually separate objects from one 
another and from the background. 
Notice how, without the back and 
fi ll lights, the sphere in (a) blends in 
with the dark background.

(a) Using a single key light.

(b) Using key, back, and fi ll lights.      

 FIGURE 10.03 

    A standard 3-point lighting rig 
involves a key, a fi ll, and a back 
light. We used spot lights for 
this illustration to emphasize the 
directional nature of the illumination. 

(a) Side view.

(b) Top view.      
(a)

Key light

Back light

Fill light

Camera
Subject

(b)

Key light

Camera

Fill light

Back light

Subject
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illustrates the contribution of back and fi ll lights to the basic illumination of a key 
light. 

 Lighting doesn ’ t just defi ne form; it also sets the mood and atmosphere of a picture or 
fi lm. Lighting can be used to impart a sense of calm or urgency. It can reveal secrets 
and enhance mystery. A convention that you will use in this tutorial is to light from 
the upper left—a common practice in commercial photography and illustration. 

To begin, start Maya and open the scene you created in the previous tutorial or copy 
the ready-made scene fi le from the CD-ROM.

10_Lighting/tutorial_10_01.ma    

  Create the lights 
 You will create three Point lights for this exercise and convert one to an Area light 
for the back lighting. Point lights are easy to use and their eff ects highly predict-
able, which makes them attractive choices for standard lighting setups. An Area 
light, which emits from a plane instead of a point, is more eff ective for back lighting 
because it illuminates a greater proportion of the geometry than a Point light, when 
shone from behind. 

    1.     (a) Choose Create  →  Lights →   Point light.
    (b)  Hit the repeat last action hotkey G twice to create two more lights.     

  2.     Rename the lights key_light, fi ll_light, and back_light.  

  3.     Select fi ll_light. In the Channel Box, enter 0.5 for Intensity.  

  4.     Select back_light and open the Attribute Editor.  

  5.     Choose Point light Attributes →   Type  →  Area Light to change the light type.  

  6.     Set the following attribute values:
    Intensity: 0.5  
   Scale X: 200  
   Scale Y: 100  
   Scale Z: 50       

 Th e length and width (X and Y) of an Area light determine its region of illumination. 
An Area light has a normal, much like a surface normal, that indicates the direction 
in which it shines. Increasing the Scale Z value simply makes the light normal big-
ger, and therefore easier to see (to you; it does not appear in the rendered scene!), but 
doesn ’ t aff ect illumination. 

    7.     In the camera1 view panel:  
   (a) choose Shading  →  Smooth Shade All.  
   (b) choose Lighting  →  Use All Lights.    

 Th e settings you made in step 7 will provide a rough preview of the lighting situation 
in the scene. With all lights in the same position, the scene will appear over-lit, or 
 “ blown out ” . Th is will be fi xed when you move the lights to their proper positions.  

        In some cases it may be 
desirable to animate your lights 

to compensate for a moving 
camera and/or geometry.      
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  Place the lights 
 Since the Point lights are multidirectional, you need only be concerned with their 
 Translate  values and not their  Rotations . In contrast, the orientation of the Area light 
has everything to do with its illumination; it emits light in the direction of its nor-
mal. Furthermore, because in this project we have decided that the lights are station-
ary and the camera moves, the illumination will look diff erent from diff erent camera 
angles. In a rendering, this fact will enhance the illusion of 3D form and give the 
sense that the camera is moving relative to the objects. Th is also means that the 
lighting must be eff ective for the range of camera motion. We must therefore pick a 
representative frame at which to set up the lighting rig; we chose the half-way point 
in the animation, frame 60. Your goal is to get the lights working well at frame 60 and 
then make minor adjustments if needed at frames 1 and 120. 

    1.     Move the current time indicator to frame 60 (half-way through the animation).  

  2.     Hit the hotkey to activate the Move Tool.  

  3.     In the persp view:  
   (a)      Select key_light in the scene view or the Outliner and drag it to a position 

above and to the left of camera1.  
   (b)      Select fi ll_light and drag it to a position below and to the right of camera1.  
   (c)      Select back_light and drag it to a position behind the polygon models, rela-

tive to camera1.  
   (d)      Rotate back_light so that its normal points toward the polygon models.    

  Figure 10.05a    shows approximately where the three lights should be placed. Temporarily 
increase the Intensity for each light to 2 or 3 in order to observe its eff ect in the 
scene, as shown in  Figure 10.05b . Fine-tuning of the lights will be done after you make 
the shadow settings.  

Key light

Fill light

Back light

(a)

 FIGURE 10.05 

    (a) The placement of lights prior to 
tweaking with IPR.

(b) Increasing the Intensity of the fi ll 
light makes its effect more obvious 
in the scene view, which makes the 
light easier to position.      

(b)
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  Turn on shadows 
 Shadow casting is controlled by attributes in a light ’ s shape node. It is, by default, turned 
off  when you create a light. In this tutorial raytraced shadows are unnecessary since you 
have no need for shadows within transparent objects and you ’ re not rendering translu-
cent eff ects. Depth map shadows will be more than adequate. As well, you will designate 
the key light as the only shadow-caster, to keep shadow calculation time to a minimum. 

    1.     Select key_light and open the Attribute Editor.  

  2.     Under Shadows → Depth Map Shadow Attributes, check Use Depth Map 
Shadows.

  3.     Enter 3 for the Filter Size.    

 Depth map Filter Size controls the softness of shadow edges. A value of 0 gives hard 
edges. As the number increases, so does edge softness. Th e other shadow map attributes 
are okay at their default settings. You can preview shadows in the scene view as follows. 
In the Panel menus: 

    1.     Choose Renderer  →  High Quality Rendering.  

  2.     Choose Lighting  →  Use All Lights.  

  3.     Choose Lighting  →  Shadows.    

 However, keep in mind that scene view shadows are extremely taxing on your compu-
ter system and will slow down interactivity considerably.  

  Light Linking 
When you create a light, it automatically illuminates all visible objects in a scene. 
Conversely, when you add a new object to a scene, it receives illumination from all of 
the lights. With Light Linking you can specify which lights interact with which sur-
faces. In the real physical world, a cinematographer would have a diffi  cult time achiev-
ing such a specifi c interaction between given lights and selected elements of the shot!

 In the present scene, you want only the key light to illuminate and cast shadows on 
the plane. Th e fi ll and back lights are meant for the hemoglobin subunits and not for 
the plane, so you will use Light Linking to disconnect them from the latter. 

    1.     Hit the hotkey F6 to activate the Render menu set.  

  2.     Choose Lighting/Shading  →  Light Linking Editor →   Object Centric. This 
launches the Light Linking window (Figure 10.06   ).

  3.     In the Illuminated Objects panel, select the polygon plane pPlane1.  

  4.     The lights to which pPlane1 is linked are highlighted in the Light Sources 
panel.

  5.     LMB + click on fi ll_light and back_light in the Light Sources panel to unlink 
them from pPlane1. Figure 10.06  shows what the Light Linker should look like 
after you ’ ve taken this action.     

        When using Render Layers, 
we avoid Light Linking. In our 

experience, the two features do 
not work well together.      
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  Previewing with IPR 
 Th e roughly lit preview you see in the view panel for  camera1  is actually hardware-
rendered by your computer ’ s graphics card. Interactive software previewing can be 
done using IPR, which renders a low-resolution image that updates automatically as 
you edit lights and shaders. Unlike your scene view, however, the IPR image will not 
update geometry or camera movements. You must therefore create a diff erent IPR 
image for each point along the timeline you wish to preview. Let ’ s start at frame 60, 
since that is your benchmark frame for lighting. 

    1.     Move the current time indicator to frame 60 and make the camera1 view active.  

  2.     Press the IPR button      in the Status Line to launch the Render View and start 
an IPR preview.    

 Th is creates a group of temporary IPR render fi les. When you set up your Project, if you 
specifi ed no directory for IPR images, they will be saved loosely in the Project directory. 
After the preview appears, which could take several seconds, a message appears at the 
bottom of the Render View window telling you to  Select a region to begin tuning . By doing 
so, you tell Maya what region it should update as you adjust lights and shaders. 

    3.     LMB + Drag a selection box around the region you wish to see update (see our 
suggestion in Figure 10.07   ).  

  4.     Press the Keep Image button      to cache the current image for comparison 
later on with the edited lighting rig.  

  5.     Take a few minutes to move the three lights around, adjust their Intensity 
values, and observe the effect in the Render View IPR preview. When you ’ re 
satisfi ed with how the scene looks at frame 60, cache the most recent image 
using the Keep Image button.    

 FIGURE 10.06 

    Light Linking is the practice of 
specifying which lights illuminate 
which objects in a scene. By 
default, all lights are linked to all 
objects. To unlink a light from an 
object, select the object in the 
left-hand pane, then click on a light 
in the right-hand pane; when it is 
unhighlighted, it is unlinked. In this 
example, fill_light  and back_
 light  have been unlinked from the 
plane, pPlane1. Light Linking will 
only show up in a rendered view, not 
in the interactive scene display.    

        Back in  Chapter 09 , you set the 
Image Size to 320  �  240, or half-
NTSC. This was done to make 
preview rendering fast—about 
one-quarter the time a 640  �  480 
image takes. However, the 
smaller image size can make it 
diffi cult to see the subtleties of 
the lighting adjustments you ' re 
making. If this is indeed the case, 
set the Image Size to 640  �  480 
in the Render Settings and see if 
the increase in preview render 
time is tolerable.      
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Before moving on to frames 1 and 120, make a software renderer preview to update 
the shaders and see what the fi nal rendering will look like at this frame.

    6.     In the Render view, press the Redo Previous Render button     .    

 If you are satisfi ed with the result at frame 60, it ’ s time to see how things look at 
frames 1 and 120. Again, the goal is to get one lighting situation that works reasona-
bly well from three vantage points. Repeat steps 1 through 5, above, with the current 
time indicator at frame 1 and then at frame 120.  Figure 10.08    shows the fi nal lighting 
setup we arrived at, software-rendered at frames 30, 60, and 120 (we omitted frame 
1 because very little geometry is visible at that point). Th e light intensity values we 
used in the end were: 

    key_light: 1.25  
  fi ll_light: 0.5  
  back_light: 0.25     

  The right lights? 
 Because  camera1  moves a considerable distance relative to the geometry, your standard 
3-point lighting rig, which was set to work best at frame 60, is being stretched a little. 
Every scene requires some specialization of the lighting. Let 3-point lighting serves as 
a starting point for your own experiments with cinematic lighting principles; the key 
light provides the main source of directional illumination; the fi ll brings back some of 
the shadowy areas and really helps accentuate 3D—particularly curvilinear—form; the 

Direction of
image refresh

 FIGURE 10.07 

    An IPR preview rendering. The 
red box indicates the  " tuning "  

region—the area that gets updated 
each time you alter a light or shader. 

In this fi gure, the image is half-way 
refreshed after the back_light

intensity was increased.    
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back light helps separate foreground geometry from the background and helps defi ne 
contour. 

 Th ere are several important aspects of shading, lighting, cameras, and rendering that 
we have intentionally skipped here. Th ey are better left to later chapters where they can 
be discussed in the context of our MEL projects. Some notable mentions are shader 
 specularity  and  toon  (or  NPR) rendering  techniques. You ’ ll work with them later in this 
book. 

 At this point your molecular actors are in place and their script—their animated 
activity—is set, your camera is in position, and your lights are showing off  the spa-
tial dance of molecules and lens to striking eff ect. It ’ s time to shoot some virtual fi lm 
footage. You ’ ll fi nd the fi nished Maya scene fi le for this tutorial on the CD-ROM: 

  10_Lighting/tutorial_10_01_done.ma      

  Summary 
 In this chapter we have discussed the manipulation of light and shadow in Maya. When 
used well, light and shadow in a 3D scene defi ne form and spatial relationships the way 
they do in the real world; you can even amplify these eff ects in ways that are physi-
cally impossible outside of the computer. Th ere are several types of light in Maya, each 
suited to a particular mode of real-world lighting. Th ough we haven ’ t touched on it in 
this chapter, it should be mentioned that lights can also be assigned colors, which can 
further their expressive range. Th ree-point lighting is a technique used by studio pho-
tographers to defi ne form and contour. It is easily emulated in Maya using two Point 
lights and an Area light, and makes a great departure point for your work with Maya 
cameras and lights.              

 FIGURE 10.08 

    After tweaking the lights with the 
aid of IPR previewing, we arrived at 
a point where the key, fi ll, and back 
lights were all working well together 
to defi ne 3D form. These images 
were rendered at (from left to right) 
frames 30, 60, and 120. We have 
enlarged frames 60 and 120 to make 
the geometry more visible on the 
printed page.    
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       Rendering 
 On a live-action fi lm set, a shot is fi nally set in all its specifi cs of actors, action, cos-
tumes, camera, and lighting. Someone says,  “ Action! ”  and fi lm rolls through the 
motion picture camera. (Or if it is a digital motion picture camera, the digital cinema 
frames are downloaded quickly from the camera to large-capacity disk storage.) Th e 
exposed fi lm is sent to the processing lab where it is developed, color corrected, and 
printed, then returned to the studio for a look. Your production workfl ow in Maya has 
a step equivalent to the fi lm ’ s exposure and developing; it is called rendering. When 
you have rendered your animation, Maya has produced the digital fi lm frames (2D 
image fi les) of your computer animation at fi nal quality. Your material can then at 
once be viewed and prepared for the postproduction steps like editing scenes together 
into a longer, complex fi lm report of your work.     

 Maya creates 2D image fi les using a program called a  render engine , or  renderer . As 
of release Maya 8.5, Maya includes four  renderers . Th ese are  Maya Software ,  Maya 
Hardware ,  Maya Vector , and  mental ray for Maya . Th e fi rst two are native to Maya and 
load automatically when you start the program. Th e last two are bundled with Maya 
as Plug-ins and are loaded by default when you fi rst start Maya. If either of them is 
not included in the list of available renderers in the Render Settings editor, you can 
load it as follows: 

    1.     Choose Window  →  Settings/Preferences →  Plug-in Manager.  

  2.     To load mental ray for Maya, check  " loaded "  next to Mayatomr.mll. To load 
the Maya Vector renderer, check  " loaded "  next to VectorRender.mll.  

  3.     Check auto load next to either Plug-in if you want it to load when you start 
Maya.    

  Render Settings 
 Th e Render Settings (part of which is shown in  Figure 11.01   ) is an editor used to select a 
renderer and customize the output of rendered fi les. It displays two or more tabs, one 
for attributes that are common to all renderers and one for the active renderer. We 
will explore Render Settings in the upcoming tutorial.  

  Batch rendering 
  Batch rendering  is done by an application external to Maya, enabling you to continue 
working on your project while images are created behind the scenes. You can batch 
render a still frame or an animation. If you start a batch render from within Maya, it 
uses the renderer and settings currently specifi ed in the Render Settings. 

 A  command line render  is a batch render started by executing the render command 
from either the Command Line or the Script Editor in Maya, or from a  command 
prompt  external to Maya. A command line render external to Maya will use the Render 
Settings (including the specifi ed renderer) saved in the fi le you ’ re rendering and the 
Project settings that were saved the last time you closed Maya. Alternately you can 
type in  fl ags , or special instructions, with the render command in the Command Line 
in order to override the saved Render Settings. 

244 PART 2: A FOUNDATION IN MAYA



 Although you can execute a render while continuing to work in Maya proper, doing so 
will result in slower than normal performance due to the allocation of system resources 
to the render engine. Th e real advantage to the stand-alone batch renderer is the exter-
nal, command line rendering capability; it allows you to execute renders without 
having to open the Maya application, which uses valuable memory. In general, batch 
renders that are executed from the Command Line run faster when Maya is closed.

    Batch rendering 

 Maya Help  →  Using Maya  →  Rendering and Render Setup  →  Rendering  →
Rendering menus  →  Render menu set  →  Render →   Render  →  Batch Render      

    Command line renderer 

 Maya Help  →  Using Maya  →  Rendering and Render Setup  →  Rendering Utilities 
→  Command line renderer  →  Command line renderer        

  The Maya Software renderer 
Th is is the default renderer in Maya and is capable of both  scan-line rendering  and 
 raytracing . Th e scan-line technique renders a scene in rows based on the intersection of 
a scan line with the scene geometry. It is faster than raytracing, which is a more accu-
rate physical simulation that calculates the illumination of objects, their shadows,
and refl ections, based on the paths of imaginary photons emitted from light sources 
in the scene (it actually works backwards, emitting  “ reverse photons ”  from the scene 

(a) (b)

 FIGURE 11.01 

    The Render Settings editor is used 
to select a renderer and to specify 
image size and quality. The Common 
tab (a) contains attributes common 
to all Maya renderers. Each 
renderer has its own tab (b) with 
settings unique to it.    

            Each operating system has 
its own name for the system 
Command Line (external to 
Maya). In Windows, it is known 
as the Command Prompt, In Mac 
OS, the Terminal Window, and in 
Linux, the Shell.      

The name  " Maya "  precedes the 
native renderers to distinguish 
them from third-party renderers 
like mental ray for Maya.
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viewpoint). Raytracing can create certain eff ects not available in a scan-line render. 
Th ese include shadow casting inside transparent objects, physically realistic shadows, 
refractive distortions in transparent materials of diff erent densities, and  caustics , the 
illumination patterns created when light refl ects from and refracts through objects. 
Raytracing is not turned on by default; it must be activated in the Render Settings.       

 Th e software renderer must be used to render eff ects created by Maya ’ s 3D painting 
tool, Paint Eff ects. 

  Multi-processor support 
 Th e Maya Software renderer supports  multithreading , meaning it can be set to use more 
than one CPU on a  multi-processor  machine. Th is feature can literally half the time 
required to render a scene. Maya automatically attempts to exploit hyperthreading 
as long as  "Use All Available CPUs "  is checked in the Multi Processing section of the 
Maya Software tab in the Render Settings.   

  The Maya Hardware renderer 
 Th e Maya Hardware renderer uses your computer ’ s video graphics card to render 
images faster than the software renderer. Due to the way it processes images, the 
hardware renderer does not support raytracing or Paint Eff ects. Nonetheless it works 
with a wide variety of Maya shaders and lighting eff ects, including transparency and 
shadows. Furthermore, a person skilled in compositing can do a lot to create sophis-
ticated visual eff ects using only hardware-rendered animation. Because compositing 
involves 2D footage rather than 3D scenes, it is often much faster to create visual 
eff ects in the compositing rather than 3D rendering stage. For example, depth-of-
fi eld eff ects are, in our opinion, best left for compositing. 

 Your computer must have a Maya-compatible graphics card in order to hardware 
render scenes. On the offi  cial Maya website, you will fi nd links to lists of qualifi ed 
hardware for each release of Maya. If your card is unable to handle Maya Hardware 
rendering, you may get the following message: 

     // Error: Graphics card capabilities are insufficient for rendering. 
Render aborted      

 The Hardware Render Buffer 
Before the Maya Hardware renderer was brought up to current level of sophistication, 
we usually relied on the  Hardware Render Buffer  ( HRB  for short) to make fast hardware 
renders. Th e fact that it doesn ’ t match the hardware renderer proper for image quality 
and eff ects capabilities makes it a less attractive choice for fi nal renders. Nonetheless, 
it is still a regular item in our tool set. One advantage it off ers over the other render-
ers is the ability to view an animation while it ’ s being rendered. In contrast, when you 
render an animation (as opposed to a still frame) using one of the other four render-
ers, you can ’ t see the images as they ’ re created.

  The Maya Vector renderer 
 A 2D picture on a computer screen is either a raster graphics image or a  vector graph-
ics  image. A  raster graphics  image is a rectangular grid of pixels, each with its own 
color value. As you enlarge a raster image, the pixels become visible. Vector graphics 
images, on the other hand, are drawn using mathematical curves and polygons whose 

     The Hardware Render Buffer 
is a handy item to add to your 

custom shelf.    
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shapes are defi ned by directed line segments, or vectors running between points in 
space. Th ey are resolution-independent and will always look sharp when enlarged. 

 Th e subject of vector graphics will be familiar to users of illustration and drafting 
applications like Adobe Illustrator  , Autodesk   AutoCAD  , and that ubiquitous 2D 
animation and web design software, Adobe Flash   (formerly by Macromedia). Vector 
images are characterized by fi lls and  strokes. Fills are solid colors or gradients applied 
to enclosed areas. Strokes are colored lines that follow the boundary curves that 
defi ne those areas. When you render with the Maya Vector renderer, the eff ects of 
lights and shaders in your scene are converted to strokes and fi lls. In Render Settings 
you will fi nd options for how fi lls and strokes are rendered and for the output fi le 
format. If you choose one of the vector fi le formats, like  .swf  or  .eps , Maya will output 
a resolution-independent vector fi le. If you select a raster fi le format, such as .tga or 
.tif, the strokes and fi lls will be converted back into pixels and saved in a raster fi le. 
Most render fi le formats produce individual image fi les. To be viewed as animation, 
the images must be opened in a movie player like fCheck or QuickTime. In contrast 
a  .swf  fi le is a self-contained Flash movie that can be opened and played directly in 
 Flash Player  software which is available free of charge from Adobe ’ s Website:  http://
www.adobe.com/products/flashplayer/ .  

 Th e Maya Vector renderer is the obvious choice if you want to output fi les for use in a 
vector graphics program like Flash or Illustrator. It also makes it very easy to get NPR 
toon shading features (see  Figure 11.02   ) without the need for custom shading networks 
or Maya Paint Eff ects. You can specify fi ll and stroke colors, and stroke weights, for 
diff erent materials in your scene. Th is feature supports one of the key strengths of 
 toon shading  for scientifi c interpretive visualization: the use of line weight and color 
to highlight diff erent properties of data visually. If you wish to draw on this strength 

 FIGURE 11.02 

    The Maya Vector renderer creates 
vector images that are defi ned by 
colored strokes and fi lls. This image, 
from a simulation of actin protein 
fi lament (or polymer) assembly, 
uses different shaders for different 
sub-populations of molecule: pre-
existing polymers (mauve), newly 
added polymer subunits (purple), 
and unassociated monomers (red) 
(the individual building blocks of a 
polymer).
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in your projects but also want the smooth-shaded appearance of software rendering, 
an approach using either a custom mental ray shading network or Maya Paint Eff ects 
is preferable to vector rendering. 

  Loading the Vector renderer plug-in 
 If Maya Vector does not appear on the list of available renderers in the Render Using 
menu of the Render Settings, you can load it using the Plug-in Manager as follows: 

    1.     Choose Window  →  Settings/Preferences  →    Plug-in Manager.  

  2.     Check the loaded box beside VectorRender.mll, the Maya Vector plug-in.  

  3.     Check auto load if you want the plug-in to load each time you start Maya.      

  The mental ray for Maya renderer 
  mental ray for Maya  is a third-party renderer which uses  raytracing , a physical simula-
tion that calculates the illumination of objects, their shadows, and refl ections, based 
on the paths of imaginary photons emitted from light sources in the scene. Th e devel-
opers have improved the integration of mental ray with each subsequent release of 
Maya. Th e result, in addition to making mental ray easier to use, is that some shading 
and rendering techniques that are used in recent versions of Maya may have to be 
approached diff erently in earlier versions of the software. 

 Maya includes a host of render nodes specifi c to mental ray for Maya. As DG nodes, 
they connect one to another to form shading networks in the same way as Maya 
render nodes. mental ray nodes greatly extend Maya ’ s rendering eff ects capabili-
ties, with features like  subsurface scattering  which is an advanced simulation of 
translucence ( Figure 11.03   ). Unfortunately the documentation on mental ray for Maya 
isn ’ t nearly as extensive as that for the other Maya renderers. For this reason, we
recommend getting comfortable with Maya shading networks and the Maya Software 
renderer fi rst before diving into mental ray. To list the mental ray render nodes: 

    1.     In the Hypershade:  

  (a) RMB+click on the Create Bar.  

  (b) From the Marking menu, select mental ray nodes.  

or

   2.     In the Create Render Node window:     

  (a)  In the Hypershade menu bar, choose Create  →  Create Render Node.  

  (b) Click on the mental ray tab.  

or

   3.      Open the Create menu. The mental ray nodes are listed by category under the 
regular Maya render nodes.       

 Like the Maya Vector renderer, mental ray for Maya is a plug-in. By default it is auto-
loaded when you start Maya. If it does not appear on the list of available renderers in 
the Render Settings window, you can load it by checking  load  next to  Mayatomr.mll  in 
the Plug-in Manager.
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    Descriptions of the different renderers 

 Maya Help  →  Using Maya  →  Rendering and Render Setup  →  Rendering  →
About rendering and renderers  →  Renderers  →    Maya Software renderer 

   Maya Hardware render 
   mental ray for Maya renderer 
   Maya Vector renderer      

    Renderer Settings for the Maya Software, Hardware, and Vector renderers 

 Maya Help  →  Using Maya  →  Rendering and Render Setup  →  Rendering  →
Rendering Windows and Editors  →  Render Settings  →
  Render Settings: Maya Software tab 
  Render Settings: mental ray tab 
  Render Settings: Maya Hardware tab 
  Render Settings: Maya Vector tab         

  Advanced rendering techniques with 
the mental ray for Maya renderer 
 Th e developers of mental ray for Maya have incorporated numerous advances in 3D 
rendering that mimic real-world lighting and material situations. While these can 
improve the photorealism of a rendering, they can add substantially to your render 
times.  Figure 11.04    shows examples of several of these rendering features. 

 FIGURE 11.03 

    mental ray for Maya extends Maya ' s 
rendering effects capabilities with 
features like subsurface scattering 
(pictured here), which simulates the 
absorption and scattering of light 
beneath the surface of an object.

Courtesy Ellis Entertainment and AXS 
Biomedical Animation Studio. Copyright 
 ©  2006 Ellis Entertainment.    
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  Caustics 
  Caustics  refers to the light patterns created by specular refraction through materials 
such as glass and water, or refl ection from materials like chrome. See the example in 
 Figure 11.04a .

    Caustics 

 Maya Help  →  Using Maya  →  Rendering and Render Setup  →  Lighting  →  mental 
ray for Maya lighting  →  Global illumination and caustics  →  Caustics        

 Subsurface scattering 
Th e absorption and scattering of light beneath an object ’ s surface is a property of 
many real-world materials, including organic tissues like skin. Maya can simulate 
this phenomenon with two mental ray for Maya  subsurface scattering  shading net-
works: a fast, non-physically correct one ( Figure 11.04b ) and a slow, physically accurate 
one. Subsurface scattering is available in Maya 6.0 (mental ray 3.3) and later.

    Subsurface scattering (Maya 6.0 or later)

 Help  →  Maya Help  →  Using Maya  →  mental ray →   mental ray Shaders Guide  →
Subsurface Scattering Shaders      

(a) (b)

(c) (d)

FIGURE 11.04 

   Examples of advance rendering 
techniques using the mental ray 

for Maya renderer. The molecule 
pictured here is hemoglobin.

(a) Caustics.

(b) Subsurface scattering.

(c) Global illumination.

(d) Ambient occlusion.

Courtesy of Eddy Xuan.          

              Translucence  is an attribute 
common to all Maya material 

nodes. It is the same in principle 
as subsurface scattering but 

works with the Maya Software 
renderer rather than mental ray 
for Maya. The choice between 
Translucence and subsurface 
scattering depends on which 

renderer you use.      
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  Global illumination 
  Global illumination  ( GI ) ( Figure 11.04c ) simulates real-world lighting by accounting for the 
indirect light that has been refl ected off  of all objects in a scene. Th is technique can 
make for long rendering times, so it should be used selectively when rendering ani-
mations. However, it is well suited to creating realistic lighting eff ects in still images, 
where the wait time is less of a concern than for animations where hundreds or thou-
sands of images are often rendered.

    Global illumination 

 Maya Help →   Using Maya  →  Rendering and Render Setup  →  Lighting  →  mental 
ray for Maya lighting  →  Global illumination and caustics  →  Global illumination        

  Ambient occlusion 
  Ambient occlusion  ( AO ) ( Figure 11.04d ) is similar to GI but quicker to render and cruder. 
It calculates the attenuation of indirect light by nearby objects, in order to produce 
the realistic shadow eff ects resulting from even, ambient light. Th e resulting image 
is typically monotone and used in compositing to enhance the illusion of 3D. Since 
Maya 7, ambient occlusion has been incorporated into Render Layers (more on this 
shortly) as a Preset called  occlusion.  When activated, occlusion creates a mental ray 
for Maya shading network using the  mib_amb_occlusion  node, and connects it to the 
geometry in the layer.

    Render Layer presets: occlusion 

 Maya Help  →  Using Maya  →  Rendering and Render Setup  →  Rendering  →
Visualize and render images  →  Visualize scenes and render images  →  Work 
with Render Layers  →  Work with layer presets      

    mental ray for Maya mib_amb_occlusion node 

 Maya Help  →  Using Maya  →  mental ray  →  mental ray Shaders Guide  →  Base 
Shaders  →  Illumination 

Search:  mib_amb_occlusion  on the Illumination Help page

  Image-based lighting 
  Image-based lighting  ( IBL ) uses an image fi le as a source of illumination or refl ection 
in order to create natural-looking lighting conditions in a scene. Traditionally, the 
image is applied to a sphere which encloses the scene. However, this technique is slow 
to render because the sphere geometry is factored into the raytracing calculations. A 
more effi  cient approach, introduced Maya 7.0, uses a special  IBL  node, which controls 
IBL with attributes and eliminates the need for geometry. 

 IBL works best with  high dynamic range imaging  ( HDRI ) fi les. In addition to color data, 
each pixel in an HDRI image stores a luminance value. IBL uses both the color and 
luminance data to calculate the lighting situation in a scene.
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    IBL 

 Maya Help  →  Using Maya  →  Rendering and Render Setup  →  Lighting  →  mental 
ray for Maya lighting  →  Final gather and HDRI  →  Image-based lighting (sky-like 
illumination)      

    HDRI 

 Maya Help  →  Using Maya  →  Rendering and Render Setup  →  Lighting  →  mental 
ray for Maya lighting  →  Final gather and HDRI  →  High dynamic range imaging 
(HDRI)        

 Realism about photorealism 
 Before using one or more of these photorealistic techniques, you may want to ask if 
this sort of  realism  is a worthwhile rendering goal. Certainly, on cellular and molecu-
lar scales, photorealism has no meaning other than a projection of macro-world ideas 
about light and materials onto micro- and nano-world entities. We ’ re not suggesting 
that you dismiss Maya ’ s capabilities for photography-like rendering complex real-
world lighting scenarios. Instead, we propose that they be considered for their merits 
in relation to the communication goals of each project. 

 For example, caustics could be used to give a gel-like appearance to the cytoplasm of 
a cell; not because we think the cytoplasm would appear to distort and refl ect light in 
such a way, but because the visual association of caustics with macro-scale gelatinous 
materials could help suggest the mechanical properties of the cytoplasm, which is 
a gelatinous combination of water and protein. Similarly, ambient occlusion may 
lend itself well to visualizing an intricate nano-structure, such as a bioengineering 
scaff old. Again, not because it gives a  realistic  picture of nano-scale light and shadow, 
but it gives a beautiful sense of 3D form. 

  Render Layers 
 Maya ’ s Render Layers features let you organize items in your scene (objects, cam-
eras, lights, even shaders) into diff erent groups or layers. Each layer is then rendered 
individually. Render Layers have a number of presets such as ambient occlusion (dis-
cussed above), specular, and shadow with which you can render those eff ects individ-
ually as well.

    Render Layers 

 Using Maya  →  Rendering and Render Setup  →  Rendering  →  Visualize and ren-
der images  →  Layers and passes  →  Render Layer overview         

  Tutorial 11.01: Batch rendering 
 Batch rendering is used to render an animation into a sequence of image fi les. In this 
tutorial, you will adjust the Render Settings and then batch render the hemoglobin 
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animation using the Maya Software renderer. Begin by opening the scene you created 
in the last chapter or copy the ready-made scene fi le from the CD-ROM. 

 11_Rendering/scenes/tutorial_11_01.ma    

 In the next two sections we ’ ll explore the Render Settings window: 

    1.     Choose Window  →  Rendering Editors  →  Render Settings.  

  2.      From the Render Using menu, choose Maya Software and make the Common 
tab active.    

  Common Render Settings 
 Th e following attributes are common to all renderers, including mental ray for Maya. 

 Image File Output 
 In this section, you will specify the fi le name, image format, and rendering frame 
(or time) range. When you render an image sequence, the fi le names must include an 
image number so that the fi les will be recognized as a sequence by a movie player or 
editing application, and be read in the correct order.  Figure 11.05    shows a sequence of 
image fi le names and labels their components, which you will set below. 

    3.     Make the following settings:

    File Name Prefi x             hemoTest  

   Frame/Animation Ext      name.#.ext       

 Th is last setting,    name.#.ext   , determines the order of fi le name components. Th e  name  
component will be assigned your entry for  File Name  Prefi x:  hemoTest . Th e  # compo-
nent will be assigned the number of the frame being rendered. And fi nally, the  ext  
component will be assigned the appropriate fi le extension,  .tif  for a TIFF fi le, for the 
fi le format, which you will specify in step 4 below. 

 Maya supports a large number of image fi le formats. Th e one you choose will depend 
on how you plan to use the images. Most compositing applications used in the 
postproduction phase support a wide range of fi le types too. If you ’ re creating an ani-
mation for an online journal publication or for broadcast at a conference, the pub-
lisher or media coordinator may request a specifi c fi le type. 

 Furthermore, there are functional diff erences between certain image formats. For 
example, Wavefront RLA (fi le extension .rla) supports fi ve image channels: R, G, B, 
alpha, and depth all in one image fi le. Targa (fi le extension .tga) format, which is 
popular in production for television and movies, produces two separate fi les for each 

File Name Prefix

Frame number, # (Frame Padding = 4)

Image Format, ext (file extension)

hemoTest. 0039 .tif
hemoTest. 0040 .tif
hemoTest. 0041 .tif
hemoTest. 0042 .tif
hemoTest. 0043 .tif
hemoTest. 0045 .tif

FIGURE 11.05

Render fi le naming.
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animation frame: one containing the R, G, B, and alpha channels, and the other the 
depth channel. Th e popular TIFF format has R, G, B, and alpha, but no depth channel. 
Maya has its own native format, IFF, which is popular with commercial animation 
studios. Nonetheless, we tend to avoid IFF fi les due to compatibility issues with the 
compositing software we use. As a general rule, we render RLA fi les when we need the 
depth channel for compositing (depth-of-fi eld eff ects), and TIFF fi les when depth is 
unnecessary. In this tutorial you will render a TIFF image sequence, which you will 
then view using Maya ’ s movie player fCheck. 

    4.     Enter the following settings:

    Image Format TIFF (.tif)  
   Start Frame 1.000  
   End Frame 120.000  
   By Frame 1.0  
   Frame Padding 4  
   Camera camera1  
   RGB Channel (Color)  ✓
   Alpha Channel (Mask)  ✓

You can leave Depth Channel unchecked since it won ’ t be rendered in the TIFF for-
mat. Frame Padding sets the number of decimal places reserved for the frame 
number. A setting of 4 is good for sequences less than 10,000 frames in length. You 
have no need presently for  Custom File Extension or Renumber Frames,  so you can 
skip those sections.

  Image Size 
 Th ere are a number of standard video formats you can choose from in the Preset 
menu. When producing animation for video playback on a television, it is important 
to render in the required broadcast format. Widely used formats are NTSC for video 
in North America and PAL in Europe. DV (for Digital Video) format, which applies 
to miniDV video and DVD-Video, uses non-square pixels. In this case, when a frame 
is rendered, each pixel in the image is compressed to 90% of its width. On playback, 
it is stretched back to its original square shape. Non-square pixels are denoted in 
the Render Settings by a Pixel Aspect Ratio of 0.9. When you choose one of the non-
square Image Size presets, this ratio is automatically set. 

 If your animation is likely only to be seen on a computer screen, you can avoid the 
broadcast presets and choose a standard format like 640  �  480. Th e fi rst time you 
render this animation you may want to use a small image size for quicker results. On 
our benchmark computer system, a single frame rendered as follows, for three diff er-
ent image sizes: 

   Small (1 × ) 320  ×  240 px: 2 seconds  
  Medium (2 × ) 640  ×  480 px: 7 seconds  
  Large (3 × ) 1280  ×  960 px: 24 seconds   

 You can see that, for this example, the increase in rendering time is roughly in direct 
proportion to the increase in image dimensions. Guided by these results, you can 
forecast that your batch render of 120 frames will take approximately 14 minutes 
for a 640  �  480 px rendering versus 4 minutes for one that ’ s 320  �  240 px in size. 
It ’ s much quicker to render the smaller size, which can be helpful if you discover 

     A depth channel can be rendered 
in a separate TIFF fi le when using 
Render Layers. Render Layers are 

used to produce separate image 
passes, such as color, depth, and 

shadow. When you render the 
depth pass, it will render as a 

separate single-channel fi le, not 
as a channel in a multichannel fi le.    

             The shorthand,  " px " , denotes 
 " pixels ".       
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problems with your rendered animation that you wish to fi x. Assuming that you ’ re 
using the smaller render size: 

   5.     Enter the following settings:

    Presets 320  �  240  
   Size Units pixels  
   Resolution 72  
   Resolution Units pixels/inch             

 Th e Pixel and Device Aspect Ratios can be left as is. Th e former is set by Width and 
Height and the latter by the Preset choice; 320  �  240 is a square pixel preset, there-
fore the ratio will be 1. If you are rendering for print and know the image resolution 
requirements, you can choose units other than pixels, including inches and cen-
timeters, and specify a resolution in pixels per unit. For example, suppose a journal 
requested that you supply a single frame from your animation as a 4 inch  �  6 inch 
picture at 300  dpi  (for  dots per inch ). In Maya, you would set Width and Height to 
4 and 6, respectively, set Size Units to inches, and resolution to 300. 

 Th e remaining settings—those under Render Options—don ’ t apply to this exercise 
and can be ignored for the time being.   

  Maya Software Render Settings 
 Most of the settings particular to the Maya Software renderer will be fi ne at their 
default values for this exercise. We will focus on those that most aff ect image quality. 

    1.      Click on the Maya Software tab in the Render Settings to make it active.    

  Anti-aliasing Quality 
 Anti-aliasing diminishes unwanted visual artifacts typical of low-resolution com-
puter displays. One type of artifact that it resolves is edge aliasing ( Figure 11.06   ), 
also known as the  “ jaggies ” . Quality is an over-arching setting that infl uences the 
remaining attributes in this section. Until you desire a more in-depth understanding 

When you choose a preset, the 
Width and Height fi elds are set 
automatically.

(a) (b)

FIGURE 11.06 

   Edge aliasing (or  " jaggies " ) is one 
of the rendering artifacts affected 
by the anti-aliasing attributes in 
the Render Settings. Without anti-
aliasing, edges appear jagged.

(a) Without edge anti-aliasing.

(b) With edge anti-aliasing.      

255CHAPTER 11: ACTION! MAYA RENDERING



of these attributes, the Quality settings of Preview and Production will suit your 
requirements for fast, low-quality and slower, high-quality renderings, respectively. 
Th e Quality setting automatically adjusts Edge Anti-aliasing. 

    2.     Choose Quality  →  Production Quality.    

 Leave the Render Settings window open for the time being. For a complete descrip-
tion of Render Settings for any of the renderers, see the Maya Help section on the 
Render Settings window.

    Render Settings 

 Maya Help  →  Using Maya  →  Rendering and Render Setup  →  Rendering  →
Rendering Windows and Editors  →  Render Settings  →  Render Settings window         

  Hit Render!
 Wait! Before you hit Render, check to make sure the render fi les will go where you 
want them to in your fi le system. If you haven ’ t set your project as described back in 
 Chapter 04 , do so now. Th e render fi le destination directory (usually called  “ images ” ) 
is displayed at the top of the Render Settings window ( Figure 11.07   ). You may have to 
widen the window to see the path name on one line. 

 Now you can hit  Render : 

    1.     (a)  With the Render menu set active, choose Render  →  Batch Render     .

FIGURE 11.07

The render fi le path is displayed 
along the top of the Common tab in 

the Render Settings.
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   (b)  If you are rendering on a multi-processor machine, check Use All Available 
Processors. If not, leave the box unchecked.  

   (c) Press Batch Render.  

or

  2.     (a) Activate the Render shelf.

    (b) Press the Batch Render button      in the Render shelf.       

 Information about the render will appear in the result fi eld of the Command Line ( Figure 
11.08   ). Th is tells you what frame is currently being rendered, the percentage of the frame 
that is done rendering, and the path to the directory where it ’ s being saved. When ren-
dering is complete, the Command Line will display the following text: 

     Result: Rendering Completed. See mayaRenderLog.txt for information.     

 Th e  Render Log  is a text fi le to which Maya writes information such as the time taken 
to render each frame. Th e fi le is named  mayaRenderLog.txt  and is located in your 
Maya user account directory. 

 On the CD-ROM, we have included a copy of the completed scene fi le, along with the 
rendered sequence of rendered TIFF fi les. 

 11_Rendering/scenes/tutorial_11_01_done.ma  

 11_Rendering/images/hemoTest.0001.tif  etc.

  Software versus hardware rendering 
 Th e hemoglobin scene you ’ ve been working on is considered  light  in the world of Maya 
scene fi les. In other words, it didn ’ t tax your system resources heavily and was well suited 
to rendering with the Maya Software renderer. As the complexity of your work in Maya 
increases, it is worthwhile becoming familiar with the Maya Hardware renderer. In many
cases, it delivers results as good as the software renderer but in a fraction of the time.   

Tutorial 11.02: Playback using fCheck 
 Now, after all that work—shading, camera setup, lighting, and render settings—
comes the moment you ’ ve been waiting for: seeing your rendered animation in 
action. In this tutorial, you will view the rendering of hemoglobin, using Maya ’ s own 
 fCheck  (short for  “ fi le check ” ) previewing application. fCheck was installed when you 
installed Maya. In Windows, a shortcut was placed in the Start menu. Th e application 
itself is located in Maya(version)/extras/bin within your applications directory. If you 
did  not  render the animation sequence in the previous tutorial, copy the 120 TIFF 
fi les from the CD-ROM to the image directory within your Project directory. 

FIGURE 11.08

The Command Line at the bottom 
of the main window displays 
information about each frame as it's 
being rendered.
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 11_Rendering/images/hemoTest.0001.tif etc.

  Playback in fCheck 
    1.     Launch fCheck by locating it on your hard drive and

    (a) double-clicking its icon  

or      (b) RMB+click on its icon or name and selecting Open.     

  2.     In the fCheck menu bar, choose File  →  Open Animation.  

  3.     Navigate to the image fi le sequence in your <project>/images directory.  

  4.     Select the fi rst fi le in the list, hemoTest.0001.tif.  

  5.     Press Open.  

  6.     Enter  " 30 "  in the FPS fi eld.    

 Playback will likely be slow until all frames have been loaded, at which point it will 
speed up. Basic playback controls are available in the Control Bar for the fCheck win-
dow ( Figure 11.09   ). Additional control over playback and to adjust the display (zoom, 
channels, etc.) and image (luminance, saturation, etc.), are available through hotkeys 
and mouse controls. You can enter any FPS rate you like in order to see your anima-
tion playback at slower- and fast-than-normal speeds. Th e actual playback rate is dis-
played in red type at the top of the Playback window. If your computer is unable to 
play the animation at the rate you specify, hitting the hotkey  “ T ”  forces to fCheck to 
skip frames in order to meet the prescribed rate. Another handy fCheck feature is the 

Playback window

Playback controls

FIGURE 11.09

fCheck is an application external 
to Maya that is used for viewing 

rendered animations and still 
images. It has an extensive suite 

of functions for adjusting and 
resizing the displayed image and 

for controlling animation playback. 
Many of these are accessed 

through hotkeys.
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ability to scrub back and forth through the animation interactively by LMB � dragging 
in the Playback window.  

  Saving from fCheck 
 If you make image adjustments in fCheck, you can save your animation under a dif-
ferent name and the changes will be saved as well. If you ’ re using Maya in Mac OS X 
you have the option to save out a self-contained QuickTime movie fi le. In either case, 
to save out of fCheck: 

    1.     Choose File  →  Save Animation.  

  2.      In the Save As window, navigate to an appropriate directory or create a 
new one.  

  3.     Enter a fi le name and select the Image type.  

  4.     Press Save.     

  Third-party applications 
 It is often desirable to produce a self-contained movie fi le of an animation sequence. 
Unless you ’ re using Maya for Mac OS X—in which case you can export a QuickTime 
fi le from fCheck—you can use a third-party application such as Apple QuickTime 
Pro or Adobe After Eff ects to save out your image sequence in a popular video for-
mat like QuickTime (fi le extension  .mov ), Windows Media Player (fi le extension  .wmv ), 
or Audio Video Interleave (fi le extension  .avi ). Such formats can be viewed using free 
movie player applications like Apple QuickTime Player and Windows Media Player, 
making it feasible to distribute your movies to colleagues, clients, or students over 
the Internet or on portable media, such as CD-ROM/DVD-ROM.   

  Summary 
 Rendering is the creation of image fi les from a Maya scene. It is the fi nal stage in the 
3D production workfl ow and includes a series of creative steps covered in the last four 
chapters: 

     •      Shade/texture  

   •      Camera setup  

   •      Lighting  

   •      Rendering    

 Th e fi nal step of the rendering workfl ow involves customizing the Render Settings 
and then batch rendering your animation. Th e choice of renderer is usually made 
early on, before making Render View previews to test shaders, lights, and camera 
setup. A batch render can be started from within Maya, which allows you to continue 
working on a scene while rendering happens in the background. Alternately, you 
can  execute  a batch render from your computer ’ s Command Line, without opening 
Maya. We concluded our discussion of rendering with a brief summary of some of the 
advanced rendering techniques available through mental ray for Maya. 
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 Th e hemoglobin tutorials let you try out these workfl ow steps on a small but meaning-
ful project. Eff ective visualization of big, complex biomolecules is a frequently requested 
deliverable in computational cell biology. Th e hemoglobin scene presented a challenge 
typical of rendering in silico cellular environments: how to light and shade multiple, 
simultaneously moving objects for a moving camera view. You learned that materials 
can be easily created, applied, and edited using the Hypershade and the Attribute Editor. 

 In  Chapter 09 , you saw that a camera to view the virtual molecule can be animated in 
the same way as the molecule ’ s geometry. Motion paths, which are commonly used 
to control the animation of geometry, are an easy way to animate a camera along 
a predictable trajectory. With the camera animation set,  in Chapter 10  you lit the 
scene with a classic 3-point lighting rig. IPR previewing in the Render View helped 
you adjust the lights for optimal eff ect at the beginning, middle, and end of the ani-
mation. When you were happy with the lighting, in this chapter you adjusted the 
Render Settings to prepare for batch rendering the animation. In the Common render 
attributes, which apply to all Maya renderers, you set the fi le name, frame range, 
and image size. Each renderer has its own tab in the Render Settings. You used the 
Maya Software tab to set the image quality. When the settings were done, you batch-
rendered the animation to the image folder in your current project. 

 In this chapter ’ s second tutorial, you used the stand-alone application, fCheck, to pre-
view your fi nished animation. If you work in Maya for Mac OS X, you may have also 
used fCheck to export a self-contained QuickTime movie fi le. 

 Rendering is an essential part of the in silico workfl ow. If you ’ re producing an anima-
tion for a client, the rendering is what you deliver; it ’ s the product. If you ’ re using 
Maya to run simulations and generate data, rendering is how you report your results 
as visual images. While not everyone has access to Maya in order to open and review 
your scene fi le, anyone with a computer and an Internet connection can view a ren-
dering of your scene fi le using freely available software. 

 Th e rendering needs of a biomedical communicator creating content for a big-budget 
pharmaceutical video may diff er substantially from those of a scientist publishing 
results on a Maya-based protein folding simulation. Your new skills with materials, 
cameras, lights, and renderers equip you for initial projects and, we hope, will set you 
on an exciting journey to learn more. Th e learning resources available on the subject 
are substantial. Further exploration will no doubt guide you to the tools and tech-
niques suited to your specifi c needs, and enable you to innovate further in the visu-
alization of molecules, cells, and tissues. 

 Astonishingly, most of the attributes involved in Maya materials, cameras, and lights 
are open to automated control through the MEL language, just as MEL enables access 
to the geometry, dynamics, and physics of your scene elements. Now that you have 
established a foundation in Maya, it is time to take command of your virtual world 
with MEL.               
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              12 MEL scripting

This model of a 
“nano-trellis”
composed of self-
assembling peptides 
was built and 
animated entirely 
using MEL. 

Image courtesy 
Shaftesbury Films 
and AXS Biomedical 
Animation Studio. 
Copyright Shaftesbury 
ReGenesis III Inc.
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Maya Command
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User Interface
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update
the scene

MEL script

User Interface
Menus

 FIGURE 12.01 

    Maya ' s command architecture 
receives MEL commands from 
UI menu selections and tools, 

and from user input via the MEL
interpreter . The result is a change 

to the DG, the Scene Hierarchy, 
or both. The compiled commands 

in the Command Architecture, 
were written in the C ��

programming language. Users 
can add custom commands to the 

command architecture using the 
application programming interface 

(API ) available through Maya ' s 
Developer ' s Toolkit. Furthermore, 

although MEL is used to implement 
much of Maya ' s functionality, 

including the UI, MEL is not the 
source of the commands per se. 

Therefore, the role of MEL in Maya 
could conceivably be fi lled by 

another language that can interact 
with Maya ' s command architecture 

via its own interpreter. Early in the 
development of Maya, this role was 

fi lled by the Tcl scripting language—
before MEL came into being.    

        If you ' re new to programming, 
some of the terminology in this 
section may sound foreign. Not 

to worry: terms like variables, 
function arguments, strings, and 

back quotes will be explained 
shortly.      

  Introduction 
 Up to this point in this book, you ’ ve done most things in Maya using menus and tools 
available through the user interface ( UI ). In this chapter you will learn about Maya ’ s 
powerful built-in scripting language called MEL (for Maya Embedded Language). 
With MEL you can perform just about any task in Maya using computer code (typed 
instructions) that you would otherwise do through the UI. Such tasks range from 
one-off  actions such as creating a polygon or NURBS primitive using a MEL com-
mand, right up to procedural animations in which MEL code is used to animate 
attributes, producing complex results that would be diffi  cult or impossible with 
keyframing alone. It ’ s in this latter role that MEL scripting shines as powerful tool 
for in silico biology.

  MEL scripting is not another layer of functionality built  on top  of Maya ’ s core 
modeling, animation, and rendering systems. It is integral to the program ’ s opera-
tion. When you create an object, set a keyframe or change the color of a shader 
through the UI, Maya executes a  MEL statement  (a command and text that modi-
fi es it) to do the job. In fact, the UI itself is constructed by MEL scripts each time 
you start Maya. A MEL script is a computer program composed of MEL commands 
and other supporting information.  Figure 12.01    illustrates how MEL fi ts into Maya ’ s 
program architecture. 
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 Th e developers of Maya made its inner workings easy to see and interact with via 
MEL. Many of the statements you execute through UI tools are echoed (displayed 
as they are executed) in the Script Editor as MEL statements. As well, dependency 
and scene hierarchy relationships are plainly displayed in the Hypergraph. Th e abil-
ity to see what goes on behind the scenes when you select a menu item or use a tool 
is a tremendous advantage in learning how to script in Maya: you can see the state-
ments Maya runs in response to actions you perform through the UI and then use 
those statements to build a script. You can subsequently enter the script to perform 
a number of tasks at once, saving the time you would otherwise spend working with 
menus and tools. If the tasks involve a repetitive action—such as building and dis-
tributing many similar objects throughout your scene—using a MEL script can be 
a signifi cant time saver. You ’ ll see examples of this shortly as you work through the 
chapter. Th e projects in  Part 03  of this book take advantage of MEL scripting to build 
complex models and to automate animation. 

 In this chapter you will learn how to work with MEL commands and scripts. Even 
if you are brand new to computer programming, set your worries aside. MEL is an 
elegant, powerful language and you ’ ll quickly meet the basics in preparation for the 
projects in  Part 03 . By the end of this chapter you ’ ll know how to create objects and 
animate attributes without relying on the common UI menus and tools.  

  The origins of MEL 
 Early in the development of Maya, prior to the Alias|Wavefront merger, it was deemed 
that the program ’ s command architecture was to be integrated with the Dependency 
Graph ( DG ) through a scripting interface. Th is would allow users to execute com-
mands and customize the Maya UI via typed instructions. Th e development team at 
Alias Research surveyed a number of scripting languages for the job, including PERL, 
Scheme, Tcl, and Python (which was still in early development). Tcl was used at fi rst, 
in order to leverage its similarity to the Unix shell scripting language for the ben-
efi t of users; at the time, PowerAnimator (one of Maya ’ s predecessors) ran on SGI 
computers, for which users had varying degrees of familiarity with the  Unix shell  
scripting interface. In the 1995 merger under SGI, Wavefront Technologies brought 
with it Sophia, the scripting language embedded in Dynamation (see page    15  in  
Chapter 01 ).

  Originally written in 1990–1991 by Jim Hourihan—then of Santa Barbara Studios 
and, as of this writing, co-founder and R & D Director at Tweak Films studios—
Sophia had many of the features the Maya developers were looking for in a scripting 
language: it was simple to use and fast to execute—a must for computer-generated 
imagery ( CGI ) artists; it was by design suited to 3D algebra and UI development; 
and it resembled Unix shell scripting. Sophia began its transformation into MEL at 
the hands of Alias|Wavefront programmer and IBM alumnus Joyce Janczyn. As it 
evolved, MEL took on certain traits of shell scripting languages, including dollar 
signs ($) before variable names and back quotes to call functions. Nonetheless, MEL 
retained many of the original Dynamation Sophia constructs like noise functions, 
vector algebra, and string manipulation. 

 Since the release of Maya 1 in 1998, there have been numerous additions to Maya ’ s 
capabilities, but little has changed with MEL—save for the obvious addition of new 
commands. Th e syntax and data structures have remained steady in order to sup-
port customer workfl ows built on MEL. Remarkably, despite its supposed simplicity, 

        In the Unix operating system 
(OS ) , the  " shell "  is a scripting 
interface allowing users to 
interact with the OS through 
typed instructions.      
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animators and  technical directors  continually use MEL to achieve sophisticated results 
in Maya that far exceed what MEL ’ s developers originally had in mind for the lan-
guage.  “ We intended MEL to enable users to script basic tasks and customize the 
UI in Maya ”  says Janczyn.  “ I ’ ve been surprised and delighted to see how users have 
embraced MEL and used it to do things in Maya we never imagined. 1”   

  In a word:  Scripting
 You ’ ll notice we ’ re saying  “ MEL scripting ”  at this point, not  “ MEL programming ” . 
We ’ ve even used  “ MEL scripting ”  as our chapter ’ s title! Th is deserves a short comment 
on terminology before we look closely at the nut-and-bolts of MEL ’ s elegant syntax 
and command structure. 

 You may have encountered the verb  “ script ”  in other software books and come across 
it in on-line forums. Occasionally you might even have seen  “  script  ”  and  “ scripting ”  
used as put-downs among people with diff erent attitudes about what makes a good 
programming language. In this book, we intend no such negative connotation. In fact 
you will see that we use the terms  “ scripting ”  and  “ programming ”  interchangeably—
deliberately so, to make clear that scripting is a practice of software authoring capa-
ble of delivering sophisticated code for complex applications. 

 Th e modern notion of scripting is based on the insight that there are at least two 
interesting ways to get a computer to give you the outcomes you want. Th e fi rst way 
is to write a program and let the computer run it. Th e second is to take control of 
the programs already running on the machine and somehow direct their operation 
to achieve the ends you seek. Th is insight is not new and dates from the early years 
of computer programming, when the fi rst programming language compilers and 
language interpreters were developed. We noted in  Chapter 02  that interpreters for 
processing higher-level languages, such as IBM ’ s Speedcoding, actually predated the 
invention of effi  cient compilers and the rise of Fortran, COBOL, and their peers in 
software history. 

  Chapter 02  also introduced the notion that an interpreter is a program simulating a 
 “ virtual computer ” , which runs as software inside the hardware of the actual physi-
cal machine. Th e interpreter ’ s virtual computer is useful because it is not limited to 
the instruction set and operations wired into the hardware. It can go beyond them 
to include anything an ingenious programmer can devise. Th e MEL interpreter run-
ning inside Maya takes commands in the MEL language, which by comparison with 
modern-day assembly languages is very high level. With a single MEL command you 
can invoke entire math operations (like vector cross products) and computer graphics 
procedures. 

 In a program written in or compiled to machine code, you can with some accuracy say 
your software is running the hardware, since the hardware circuits are wired to react 
automatically to each machine language instruction in just the right way. When you 
are inputting code to an interpreter, however, you are not intervening on the machine 
hardware in quite the same way. Your software fi le—your MEL script—is directing 
the activity of the interpreter to produce the results we need.

  With humble origins in the early interpreters and the job control commands of the 
early operating systems,  “ scripting ”  has come to mean writing software that organizes 
or modifi es the activity of other, pre-existing computer programs. A  “ script ” , then, 
is a program that modifi es or guides the activity of another program or programs. 

         " Scripting " , when deployed as 
a put-down, is used to hint that 
a piece of software is facile or 

trivial compared to what the 
critic imagines it could have 

been, if only a  " real "  programming 
language had been used—one 

loaded with an ultimate range of 
data types—from booleans to 

objects, trees, and beyond—and 
packed with low-level operations 

to peek and poke the hardware. 
Languages with a trimmer range 

of data types, or with little to 
say about pokes or pointers, 

need not apply. Attitudes that 
champion this false dichotomy 

are semantic trash—dim echoes 
of the earliest debates over the 

merits of writing software in 
anything but machine language. 
As we saw in  Chapter 02 , these 
debates were in full swing long 
ago, in the 1950s following the 

appearance of the fi rst popular 
languages with human-friendly 

design, like Fortran and COBOL.      
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Th at is why script programs are sometimes called  “ glue ”  programs: they bring 
together existing processes.  “ Scripting ”  is the creative act of programming in the lan-
guage understood by an interpreter that runs as part of the target program. Th ese 
programming languages are usually referred to as scripting languages. 

 One interesting trait of modern scripting languages is concision: it is not unusual to 
see a script that is just a fraction of the length (and is written in a fraction of the 
time) of a fi le for the same job written in a general-purpose language like C �  � . 
Scripting languages achieve their concision by drawing on the pre-existing tools and 
resources of the application program they direct. Th us while the creation of a specifi c 
3D pattern of noisy driving forces for an animation might take many lines of math-
ematics and fl ow control expressions in C or C �  � , a single MEL command call to the 
Maya physics engine invokes an entire toolset of such procedures.

  Trends to concision are nothing new to the evolution of programming languages. We 
saw in C hapter 02  that while the earliest assemblers did little more that transcribe 
abstruse binary instructions on a 1-for-1 basis, they were quickly enhanced by assem-
bler macro commands, which unrolled into whole sets of machine instructions or 
triggered an entire subroutine to automatically load from a library. Compilers took 
this a step further with parsers that unpacked scientist-friendly expressions like
 y(k+j) = log(x(k)) + sin(x(k)*x(j))  into the lengthy list of assembly instructions 
needed to drive the math through the processor circuitry. Scripting languages, in 
their turn, transform objects, methods, and procedures of their host application into 
building blocks for task automation. 

 Th e scripting language programmer is also the happy benefi ciary of everything 
learned so far from the mistakes and oversights of the earlier language designers, 
on whose shoulders we stand. Since scripting languages are in vogue, you have many 
fl avors of command syntax, data type, and program fl ow control to explore as your 
skills and application needs develop—sometimes even for the same host application 
program! For example, as this book goes to press Autodesk has announced that, start-
ing with Version 8.5, Maya can be scripted not only with MEL but also with Python, 
a general-purpose, object-oriented language ( http://www.python.org ) with legions of 
admirers. Since MEL remains the language of the Maya UI and the bedrock of Maya 
procedural animation we shall have just a little to say about Python in this book. 

 MEL is a beautiful instance of a  domain-oriented programming language . Since it lever-
ages on the high-level objects of its host application, Maya, it has a special aptitude 
for certain kinds of problems. Th us in addition to its general-purpose facilities for 
arithmetic, string manipulation, and fi le input/output, MEL has a huge vocabulary 
of commands for 3D computer graphics and animation operations. It is designed 
expressly for solving problems in the domain of 3D animation.

  A language like C �  � , by comparison to a domain-oriented language like MEL, cer-
tainly will provide you general-purpose facilities—very powerful general-purpose 
facilities supporting diverse data constructs and multiple styles of programming. 
Th e domain orientation you build yourself with the aid of whatever libraries you fi nd 
helpful. A domain-general language doesn ’ t nudge you in one application direction or 
another. You could sit down with C �  �  to write a tax accounting program as read-
ily as you would write to a game engine or a 3D modeling application. But it ’ s your 
responsibility to build the domain-relevant tools and capabilities for your applica-
tion. Th e general-purpose language defi nition does not supply them from the get-go. 

        The quest for concision is 
of course not the private 
territory of scripting codes. 
This is an exciting era in which 
programming language designers 
of all stripes are fi nding ways to 
let you write correct software, 
in the fewest possible lines of 
crystal-clear code, making the 
fewest mistakes along 
the way.      

        The diversity of software 
equipped with scripting 
languages and interpreters 
today is truly impressive: 
web browsers, image and 
video editing and compositing 
software, computer games, 
spreadsheets, operating systems 
(the  " shell scripting "  patois of 
Unix has been hugely infl uential), 
and of course 3D computer 
modeling and animation 
packages like Maya with its MEL 
language and MEL interpreter.      
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 MEL also is (for now at least) tied to the application Maya; it is a case par excel-
lence of an  application-oriented programming language : a scripting language intended 
to be used in association with particular application software. For the time 
being, there is no sign that other top-tier software packages for 3D modeling and 
animation will swing to MEL as a de facto scripting standard. Th ey have their own 
scripting language tools. MEL is likely to remain at home in its established Maya envi-
ronment. Fortunately most programming languages—including those invented for 
scripting—have strong family resemblances. Th at is because all, ultimately, are about 
letting you micro-manage the activity of von Neumann-style computer hardware (see 
page  32   in  Chapter 02 ). Th e benefi t of this common foundation is that experience you 
get from MEL and Maya will accelerate your progress with other learning curves. 

 With this comparative vocabulary in place we can begin to explore MEL in depth, 
recognizing it as a modern, domain-oriented, application-specifi c programming lan-
guage for scripting the Maya animation package. Let ’ s get started!  

  Getting started 

  Prepare your scene fi le 
 As you learn MEL, you ’ ll be typing statements and sending them to Maya for process-
ing. For this you ’ ll want to have Maya running. 

    1.     Start Maya.  

  2.     Choose Window  →  Settings/Preferences  →  Preferences.  

  3.     Choose Categories  →  Settings and make the following settings:  
   Under Working Units   →  Linear:  centimeter.
      →  Angular:  degrees.
     →  Time:  NTSC.     

  4.     Choose Categories  →  Timeline and make the following settings:  
   Under Timeline            →   Playback Start: 1 .
      →  Playback End:  300.

→     Time, select  NTSC.

   Under Playback           →  Looping:  once.
      →  Playback Speed:  Play every frame.
     →  Playback by  1 .     

  5.     Press the Save button to set your preferences.  

  6.      Select the Perspective view of your scene by pressing the      button in the 
Toolbox.     

  MEL input 
 Th ere are three primary ways to enter MEL statements and scripts in Maya: 

    1.     Through the  Command Line.

  2.     Through the Script Editor.

  3.     By  sourcing  a MEL script.    
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  The Command Line 
 For entering single MEL statements, the Command Line ( Figure 12.02   ) comes in handy. 
A statement is entered by typing it in the input fi eld and then pressing Enter on your 
numeric keypad.  

  The Script Editor 
 Th e Script Editor ( Figure 12.03   ) is used both for single statements and multiple lines 
of MEL script. Launch the Script Editor in one of two ways: 

    1.     Choose Window  →  General Editors → Script Editor.

or

  2.     Press the      icon at the far right of the Command Line.    

 Because the Script Editor behaves in some ways like a text editing application, you 
can use it to compose MEL scripts. However, we recommend writing your MEL scripts 
in a text editor external to Maya and saving them as plain text fi les separate from 
your Maya scene fi le. On page  302  we ’ ve listed several text editors that work well for 
composing computer code. 

 We use the Script Editor for running and  tracing  (reporting the goings-on of a script 
at run-time) externally written MEL scripts and for testing short bits of MEL code 
that don ’ t necessarily warrant creating an external text fi le. Tracing refers to the 
process of displaying certain script results in the history panel of the Script Editor to 
help you  d ebug (locate and fi x errors within) your code. 

 When composing MEL statements and scripts in an external text editor, you can get 
the code into Maya by copying and pasting it into the command input panel of the 
Script Editor. After the code has been pasted, pressing Enter  runs  (or executes) it in 
Maya. Th e two Enter keys on your keyboard perform diff erent functions in the Script 
Editor. Th e alphanumeric Enter key (located next to the letter and punctuation keys) 
causes a line break in the command input panel; it doesn ’ t send any code to Maya. Th e 
numeric keypad Enter key executes the code in the command input panel. From here 
on, when you see an instruction to  enter  a command or script in the Script Editor, 
it means type or paste the code into the input panel and press the numeric keypad 
Enter key. When you select code within the input panel and press Enter, only the 
selected text is sent to Maya for processing. When Maya is fi nished, the selected text 
remains in the input panel. You can delete text in the input panel by selecting it and 
pressing Delete on your keyboard.

Script Editor buttonCommand Line Command Line results  FIGURE 12.02 

    The Command Line is useful for 
entering single MEL commands. 
It also displays the result of the 
most recent scripting action—
in this example, the creation of 
a NURBS sphere object. The 
button at the far right of the 
Command Line launches the 
Script Editor.    
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  Th e History panel in the Script Editor automatically logs MEL command results. You 
can clear the History or command input panel at any time as follows: 

    From the Script Editor menu bar, choose Edit  →  Clear History
     or →   Clear Input       

 We will explore other features of the Script Editor as they pertain to specifi c examples 
in the chapter. Th e Maya Help Library is a good one-stop source of additional infor-
mation as you work along:

The Script Editor 

 Maya Help  →  Using Maya  →  General  →  Basics  →  Basic Windows and Editors  →
Script Editor        

  Sourcing an external MEL script 
 When you  source  a script, you are loading it from a text fi le that is external to your 
Maya scene. You can source a script through the Script Editor as follows: 

    1.     Choose Window  →  General Editors  →  Script Editor.  

  2.     From the Script Editor menu bar, choose File  →  Source Script.  

  3.      In the Source Script window, navigate to your script fi le, select it, and press 
Open.

      This automatically loads the script into memory. If it contains errors, Maya will display 
error messages in the History panel of the Script Editor and in the Results fi eld next to 
the Command Line.        

Command
input panel

History panel

Menu bar
Tool bar

MEL and 
Python tabs

Open; source; save; and save-script-to-shelf
Clear panels

Show panels

Echo all commands
Show line numbers

Search
Goto

Execute

 FIGURE 12.03 

    The Script Editor is an essential tool 
for testing, sourcing, and debugging 

MEL commands and scripts. Code 
that is selected (highlighted in blue) 

remains in the command input panel 
after you hit Enter to run it.    

        Depending on the settings/
preferences in your text editor, a 

long line of text may refl ow to the 
following line when it exceeds 

the page margins. Maya ignores 
these  " line feeds " . Carriage 

returns or  " line breaks "  (pressing 
Enter), however, are not ignored; 

each line ending in a carriage 
return must be terminated with 
a semi-colon before Maya will 

accept it.      



269CHAPTER 12: MEL SCRIPTING

 You can also source a script using the MEL command, source. For example, you might 
enter the following line of code in the Command Line to load a MEL script you ’ d 
created and saved in a fi le called myFirstScript.mel. 

             source myFirstScript.mel          

 However, for this to work, your script fi le must be located on Maya ’ s  search path  and 
be listed in the  search path contents .   

  Maya ' s search path 
 When you installed Maya on your computer, a default  Scripts directory  was created for 
your user account. Th e path to this directory is Maya ’ s search path. Every time you 
start Maya, the program queries the contents (fi le names) of its search path. When 
you use the source command, Maya scans its search path contents for the fi le. If the 
fi le exists on the search path, Maya sources it (loads it into memory). If you add fi les 
to the Scripts directory when Maya is running, you will have to refresh the search 
path contents using the rehash command in order to have access to those fi les and 
their contents. 

    To refresh the search path contents, enter the following in the Script Editor:   

            rehash;          

 You can get the search path by querying Maya ’ s internal variables as follows: 

    Enter the following in the Script Editor:   

            internalVar -userScriptDir;          

 Th e result displayed in the Script Editor should look something like:

             // Result: C:/Documents and Settings/User/My Documents/maya/8.5/
 scripts/ //          

 We ’ ll return to sourcing scripts toward the end of the chapter. For now, you will run 
MEL commands and short scripts by entering them directly in the command input 
panel of the Script Editor.

     MEL syntax 
 Before dealing with MEL commands explicitly, let ’ s look at some of the elements that 
are fundamental to writing MEL scripts in Maya. 

  Terminate your MEL statements; 
 For our purposes in this chapter, a MEL statement is a single instruction to be exe-
cuted by Maya. Th is may be a MEL command to return the value of an attribute or a 
declaration of a variable used to store a number. Regardless of its purpose, each MEL 
statement must be terminated with a semi-colon. Th is tells Maya where one instruc-
tion ends and the next one begins. Strictly speaking, when only one MEL statement 
is executed on its own, it doesn ’ t require a semi-colon. However, when more that one 
statement is passed to Maya at a time, it is essential to end each with a semi-colon. 
Th ere is one notable exception: between the  “ if  ”  and  “ else ”  components in a  conditional 
statement —which we ’ ll discuss later in the chapter.  

        From this point on, when you 
see an instruction to   enter  a 
command or script in the Script 
editor, it means type or paste 
the code into the input panel 
and press the numeric keypad 
Enter  key.      
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  Not all  “ quotation marks”   are  " the same "  
 Th ere will be many occasions where your MEL statements use double quotation marks 
( " ) to enclose character  strings . As in other computer programming languages, Maya will 
accept only  straight  ("  " ) and not curved (   “   ” ) or slanted quotation marks (or quotes). Th e lat-
ter will generate an error in Maya. When you type code in Maya ’ s Script Editor, the double 
quotes are straight. However, when you compose a MEL script in an external text editing 
application, you may have to set the application to use straight quotes instead of curved 
quotes (which are sometimes called  smart quotes ); consult the documentation of your text 
editing program for instructions on how to specify the type of quotation marks used.  

  MEL is CASE sensitive 
 To Maya, the following two statements are distinct from one another 

    1.    ScriptEditor;   

  2.    scriptEditor;     

 #1 will launch Maya ’ s Script Editor whereas #2 will generate an error message because 
there is no such command as  scriptEditor . To your computer, upper and lower case 
versions of the same letter are distinct characters, and Maya treats them as such.  

  Comments 
 Comments are statements used to document your code. Th ey are ignored by Maya 
during the execution of a script. Commenting your code is an important part of 
scripting because it communicates information about variables and other elements of 
your script in plain language. Such communication is helpful not just for other users 
who are trying to understand your code but also for keeping track yourself of what 
does what. Single line comments are denoted with two forward slashes, //, and ended 
with a line break (by pressing the Return key), as in the following example:

             print  "This line will print in the Script editor. ";
   //print  "This line will NOT print in the Script editor. "  
(press Enter here)          

 Multi-line, or  block comments , are denoted with a forward slash and asterisk, as follows:
             /* Commenting your code is an important part of scripting because
 it communicates information about variables and other elements of 
 your script in plain language. */            

  Values 
 A value is what is stored in an attribute or a variable. Th e number 11 and the word 
 “ eleven ”  are values. Much of what a MEL script does is manipulate values. Every value 
in Maya has a specifi c type. For example, the transform attributes (translate, rotate, 
and scale) of a typical transform node all use  fl oating point , or  decimal  values. Th e dif-
ferent value (or data) types in Maya are as follows:

Data type      Example

integer   5

floating point (float) 5.25

string     "Henry, Alex, Aaron ", "3.14"

boolean "yes ", "no ", 1, 0�

 Within a MEL script, values are often stored in variables, which we ’ ll discuss next.  

        The MEL command  print  has 
nothing to do with creating a 
paper (  " hard copy "  ) output. It 

instructs Maya to display a value 
on your computer screen in the 
Script editor and the Command 

Line. In the next chapter we will 
discuss the important topic of 

moving data between your Maya 
models and your computer ' s fi le 

system (data input/output).      
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  Variables 
 A variable is a container for data in a computer program. After being created—or 
 “ declared ” —a variable exists for the duration of the program although its value typi-
cally  “ varies ” , that is takes on diff erent values as the program runs. For example, you 
may create a variable to store a chemical concentration, a force, or the speed of a 
crawling cell. As the program executes, changes in the concentration, force, or speed 
are refl ected in the changing value of the variable. In MEL, variables store one of the 
four types of data listed above. In addition to single-value variables, MEL supports 
compound variables in the form of vectors, arrays, and matrices.  Table 12.01    lists the 
diff erent variable types available in MEL and examples of their use. 

 Th e variable types listed in  Table 12.01  also apply to node attributes. Th at is to say, every 
attribute has a particular data type. In fact, variables and attributes are very similar, in 
that they both store values and the same types of data structure (vectors, arrays, and 
matrices). Th e diff erence is that attributes belong to nodes in the Hypergraph whereas 
variables are not connected in any permanent way to the scene—each time you start 
Maya, a variable must be  declared  and assigned a value before being used. In contrast, 
an attribute and its value is saved within your Maya scene fi le. 

  Naming variables 
 Every variable name must begin with the dollar sign ($) symbol, followed immedi-
ately by a letter or an underscore (_), but not a number. Th e remaining characters 
can be any combination of numbers, letters, and underscores and can be as long or as 
short as you like. Th e following are examples of variable name  “ dos ”  and  “ don ’ ts ” :

$position     Correct

$position5 Correct

  $position_5 Correct

$5position     Incorrect  (a number cannot immediately follow $)  

$_5position     Correct

 If you leave the $ off  the front a variable name—“position” ,  for instance—Maya will 
interpret the word as a procedure. If it can ’ t locate a procedure named “position”   it 
will generate an error message. In addition to proper syntax, it is good practice to 
give your variables intuitive names that relate to their functions within a script. Th is 
will not only benefi t others who use your scripts, but will help you recall how your 
code works when you haven ’ t seen it for a while.  

  Declaring and assigning variables 
 A variable must be  declared  before being used. Th e following statement declares  $title  
as a variable of type, string.

             string $title;          

  Assigning  a variable means storing a value in it. Continuing on, the following state-
ment assigns a value to  $title: 

             $title  =  " cellInvasions";         

 Variable declarations for the diff erent data types, along with sample assignments, are 
shown in  Table 12.01 . Note that an array is not declared as “  array ”  but rather according to 
the type of values it stores. 



272 PART 2: A FOUNDATION IN MAYA

 If you use a variable before declaring it, the MEL interpreter will generate an error. 
Th e following code attempts to perform an operation with the variable  $edition  which 
hasn ’ t yet been declared.

             string $title; 
   string $filmName; 

   $title =    "cellInvasions";
   $filmName =   $title  + $edition; 

   // Error: $filmName =   $title + $edition; // 
   // Error:  "$edition" is an undeclared variable. //         

  To conserve space in your scripts, you can declare multiple variables of the same type 
together on the same line, as follows:

             int $counter1, $counter2, $counter3, $counter4; 
   float $cellx, $cellY, $cellZ;           

 Variable type  Declaration  Assignment 

int   int $myInt; $myInt = 20�;

fl oat   float $myFlt; $myFlt = 3.14159265; 

vector   vector $myVct; $myVct = << 5.5, 1.1, 6.6 >>; 

string   string $myStr; $myStr = "henry"; 

vector array   vector $myVctArray[];   $myVctArray = {<< 1, 0�, 0� >>, 

   <<  0�, 1, 0� >>, << 0�, 0�, 1 >>}; 

   or   

  vector $myVectArray[0�] = << 1, 0�, 0� >>; 

  vector $myVectArray[1] = << 0�, 1, 0� >>; 

  vector $myVectArray[2] = << 0�, 0�, 1 >>; 

fl oat array   float $myFltArray[];   $myFltArray = { 4.5, 12, 6.2 }; 

   or   

  $myFltArray[0�] = 4.5; 

$myFltArray[1] = 12; 

  $myFltArray[2] = 6.2; 

matrix   matrix $myMatr[2][2];   matrix $myMatr2[2][3] 

   = <<  4.5, 12, 6.2; 5.4, 21, 2.6 >>; 

   or   

  float $myMatr[0�][0�] = 4.5; 

float $myMatr[0�][1] = 12; 

  float $myMatr[0�][2] = 6.2; 

float $myMatr[1][0�] = 5.4; 

  float $myMatr[1][1] = 2.1; 

float $myMatr[1][2] = 2.6; 

 TABLE 12.01 

   Variable types. An array can be of 
type integer, fl oat, vector, or string. 

All matrices are of type fl oat. The 
size of a matrix must be declared 
explicitly and, unlike an array, the 

size of a matrix cannot change once 
it's been declared.  

              In addition to alphabetic 
characters, a string variable can 

contain numbers.      
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  Dynamic typing 
 MEL is a  dynamically typed  language, meaning you can assign a value to a vari-
able without explicitly declaring its data type. For example, the following variable 
assignment:

             $myVar =  "cellInvasions";         

 is interpreted the same as the explicitly typed statement:

             string $myVar = "  cellInvasions ";         

 MEL ’ s author and long-time Maya developer Joyce Janczyn incorporated dynamic 
typing for the sake of 3D artists who, early in the development of Maya, rallied 
against excessive formality in its scripting language. Although dynamic typing 
demands less attention to detail than does requiring users to explicitly type every 
variable, Janczyn cautions that  “ explicit typing helps you stay organized and get bet-
ter diagnostics when there are bugs in your script.1 ”  When scanning your MEL code, 
you can tell at a glance the data type of each variable. 

 So, you can assign a value to a variable either when you declare it or afterward, as in 
the following example:

             string $myStr; 
   $myStr =  "cellInvasions";

or

      string $myStr = "  cellInvasions"  ;             

 Th e choice is one of organizational style; for the MEL scripts in this book we separate 
variable declaration and assignment—as in the fi rst example above—because we fi nd 
the code clearer to follow this way.  

  Data conversion 
 If you attempt to assign a value of one type to a variable of another type, Maya will 
convert the value in order to complete the assignment. When assigning a string value 
to an integer or fl oat variable, Maya behaves as shown in the following examples:

             string $str = "  Hello world."  ; 
   int $int  = $str; 
   // Warning: line 3: Converting string " Hello" to an int value of 0�. // 
   // Result: 0� // 

   float $flt =   $str; 
   // Warning: line 1: Converting string  "Hello" to a float value 
 of 0�. // 
   // Result: 0� // 

   $str =  "3.1459";
   $int = $str; 
   // Warning: line 2: Converting string  "3.1459" to an int value 
 of 3. // 
   // Result: 3 // 

   $flt =   $str; 
   // Result: 3.1459 //          
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 Maya applies diff erent rules depending on what type of data mismatch you give it. 
Th e Maya Help Library contains information on data type conversion:

Data type conversion in Maya 

 Maya Help  →  Using Maya  →  General  →  MEL and Expressions  →  Advanced  →
Advanced programming topics  →  Automatic type conversion 

 Maya Help  →  Using Maya  →  General  →  MEL and Expressions  →  Advanced  →
Advanced animation expressions topics  →  Data type conversions        

  Type casting 
 In certain instances it ’ s desirable to cast data from one type to another. In the follow-
ing example, dividing one integer by another returns a somewhat unexpected result:

             int $a = 1; 
   float $b = $a/5; 
   // Result: 0� //          

 While $b was declared a fl oat, dividing an integer by an integer returns an integer. To 
get the desired result, cast the value of $a to type fl oat as follows:

             int $a =   1; 
   float $b  = (float) $a/5; 
   // Result: 0�.2 //          

 You will use this technique in the next chapter to convert data before assigning it to 
variables.  

  Strings 
 Certain characters perform special functions when used with character strings in 
Maya ( Table 12.02   ). Th ey apply to string variables and to the MEL commands, print 
and expression.  

  Vectors 
 Vectors are triple fl oating point variables or attributes, and are used often in Maya to 
describe 3D transform values and RGB colors. Vectors are denoted by angled brackets 
and must be assigned all three elements at once, as follows:

             $myVect  = <<   2.3, 4.6, 7.5 >>;          

 Although they must all be  assigned  at once, individual elements can be  queried  one at 
a time using the .x, .y, and .z  accessors , as in the example below:

             float $x, $y, $z; 

   $x =   $myVect.x; // Result: 2.3 // 
   $y =   $myVect.y; // Result: 4.6 // 
   $z =   $myVect.z; // Result: 7.5 //           



275CHAPTER 12: MEL SCRIPTING

 Character  Description  Sample use 

\ "     Quotation mark 
character

  $myStr = " She said \ "eureka!\ "";

  // Result: She said " eureka! " //

\ t      Tab   $myStr =  "She\tsaid\t\ "eureka!\ "";

  // Result: She said  "eureka! " //

\n        New line   $myStr =  "She said:\neureka! ";

  // Result: She said: 

  eureka! //

\ r        Carriage return   $myStr =  "She said:\reureka! ";

  // Result: She said: 

  eureka! //

\\ Back slash 
character

$myVar =  "Escape characters with a back 

 slash: \\ ";

// Result: Escape characters with a back 

 slash: \ //

 TABLE 12.02 

   Special characters are used 
to modify strings in Maya. The 
backslash character  “ escapes ”  
the following character so that it 
will be included in the string and 
not treated as computer code. The 
Script Editor treats line breaks (\n) 
and carriage returns (\r) the same.  

  Arrays 
 An array is a list of integers, fl oats, strings, or vectors. Square brackets following a 
variable name mark it as an array. Arrays are declared according to the types of values 
they contain.

             float $myFirstArray[ ]; // Size =  0�  

   float $mySecondArray[ ]  = {5.1, 6.2, 7.3, 8.4}; // Declaring size 
 is optional. 

   string $myThirdArray[ ]  = {"  cell1"  ,  "cell2", "cell3" }; 

   float $myFourthArray[4]; // Size  = 4. // Allocate memory for 
 4 values. 

   int $myFifthArray[4]  = {5, 9, 2, 12}; // The size (4) is redundant 
 here.          

 Th e size of an array is the number of elements it contains. You can set the size explicitly 
when you declare an array. Alternately, you can leave it blank (a  “ zero-element ”  array) 
and let Maya increase it automatically as you add elements. Th e fi rst three arrays in 
the example above are declared as zero-element arrays. Th e fourth and fi fth arrays are 
declared each with a size of 4. 
 Th e term  index  is used to refer to a specifi c element of an array. In Maya, indices start 
at zero. Th erefore a four-element array has indices numbering from 0 to 3. Th is is 
important to remember when you begin using arrays in your MEL scripts since it ’ s 
easy to confuse the fi rst element of an array with index #1, when in fact the fi rst 
element corresponds to index #0.

             float $myVar  = $mySecondArray[1]; // Result: 6.2 //          
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 You can assign array elements together, using curly brackets, or individually using 
index numbers within the square brackets as follows:

             float $myFirstArray[]  = {5.1, 6.2, 7.3, 8.4};

or

   float $myFirstArray[]; 
   $myFirstArray[0�] =   5.1; 
   $myFirstArray[1] =   6.2; // etc.          

 Arrays of vectors come in handy for storing position data in the migrating cell simula-
tions you ’ ll undertake in  Part 03  of this book. A vector array is declared and assigned 
as follows:

             vector $myVectArray[] =  { << 5.1, 6.2, 7.3 >>, <<   1.5, 2.6, 3.7 >> };

or  

   vector $myVectArray[]; 
   $myVectArray[0�] = <<   5.1, 6.2, 7.3 >>; 
   $myVectArray[1]  = <<   1.5, 2.6, 3.7 >>;          

  Matrices 
 A matrix is a 2D array of fl oating point values. Th e size of a matrix variable—the 
number of rows and columns—must be stated explicitly when it is declared. Like 1D 
arrays, matrices use square brackets. Furthermore, once you ’ ve declared a matrix, as 
in the following example, its size cannot be changed.     

matrix $myMatrix[3][2] = << 5.1, 6.2; 7.3, 1.5; 2.6, 3.7 >>;

rows columns

 Th e fi rst square-bracketed index specifi es the number of rows and the second to columns. 
In conventional mathematical notation, the matrix above would be written as follows:     

5 1 6 2

7 3 1 5

2 6 3 7

. .

. .

. .

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

rows

 columns

 To query or set a specifi c element in an array, use its row and column numbers, as 
follows:

             float $tmpFlt  = $myMatrix[1][0�];
   // Result: 7.3 // 

   $myMatrix[1][0�] = 75; 
   // Result: 75 //            

  Global variables 
 A variable is either local or global, refl ecting its  scope  in Maya. A local variable oper-
ates only within the animation expression or procedure in which it ’ s declared. In 
contrast, a global variable can be declared and assigned in one procedure, and then 
queried and reassigned in any other procedure or expression available to your Maya 
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scene. Th e signifi cance of a variable ’ s scope will become apparent as we explore the 
scripting structures, procedures and expressions, later in this chapter. 
 All variables declared in the Script Editor—that is, entered via the Command input 
panel—are automatically global variables. However, this does not apply to variables 
contained within procedures or animation expressions that are in turn entered via 
the Script Editor. In procedures and animation expressions, variables can be either 
global or local. A variable is local if declared as follows:

             string $myString;          

 A variable is declared global by preceding it with the word  “ global ” :

             global string $yourString;          

 A global variable need only be assigned once, but it must be declared within each 
procedure or expression that uses it. 

  You cannot re-type a global variable 
 Once you declare a global variable, you cannot change its data type until you restart 
Maya. For example, enter the following code in the Script Editor:

             string $myStr =  "cellInvasions";
   $myStr  = "tumor progression"  ; // Okay. 
   int $myStr  = 5; // Declare $myStr as a different type. 

   // Error: int $myStr  = 5; // 
   // Error: Invalid redeclaration of variable  "$myStr" as a different 
 type. //          

 You made $myStr  global  by entering it in the Script Editor. Th e code then attempts to 
retype it as an integer. You cannot use the name  $myStr  with a diff erent variable type 
until you quit and restart Maya.

Global variables 

 Maya Help  →  Using Maya  →  General  →  MEL and Expressions  →  Debugging, opti-
mizing, and troubleshooting  →  Troubleshooting  →  Accessing global variables      

Values and variables in Maya 
 Maya Help  →  Using Maya  →  General  →  MEL and Expressions  →  Values and 
variables      

Arrays, vectors, and matrices 

 Maya Help  →  Using Maya  →  General  →  MEL and Expressions  →  Arrays, vec-
tors, and matrices          

  Mathematical and logical expressions 
 Th e word expression refers to two things in Maya. Th e fi rst is a mathematical or logi-
cal statement composed of one or more  operands  (or values) and one or more  operators . 
For example:

             5  + 6

or
      size($someArrayVariable)             
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 Expressions may contain MEL commands, as in the second example above ( size  is a 
MEL command), and MEL command statements may contain expressions as follows:

             float $var1  = 5.5; 
   setAttr mySphere.translateX ($var1 +  6);          

  setAttr  is a MEL command used to set the value of an attribute. 

  Blocks 
 A block is several expressions grouped together in curly brackets. Blocks are used fre-
quently in conditional statements—a programming structure you ’ ll meet more for-
mally shortly. For example:

             float $x, $y; 
   $x = 5; 
   $y  = 4; 
   if ($x > $y) 
   {

  float $biggest  = $x; 
    string $message  = "\n$x is bigger than $y\n ";
   print $message;     
   }          

 For legibility, blocks are usually indented (as shown above). Also, each statement 
within a block must end with a semi-colon (an uncommon requirement in many pro-
gramming languages). However, the end of a block—the second curly bracket—does 
not require a semi-colon. 

 Th e second type of expression in Maya is an  animation expression , which is a statement 
or script that you typically attach to an attribute to animate it. We will explore ani-
mation expressions in detail beginning on page 292   .

    Operators 
 Operators are used in arithmetic and logical expressions and in conditional statements. 
 Table 12.03    lists the operators available for use in MEL. Th e order in which they are 
evaluated in an expression—their order of precedence—is as follows:

 Highest  () [ ] 
   ! +  + --
    *  / % ^
    + -

  < <= > >=
    &  &
   ||
   ? :

 Lowest =   +=    -  =   *  =  / =

 Operators on the same row of the above list have equal precedence. When operators 
from the same row are used together, the left-most one in the expression is evaluated 
fi rst. Th e following two expressions demonstrate how operator precedence causes two 

        Local variables declared within 
a block operate only inside 

that block. In other words, the 
variable ' s scope is limited to the 

block. For example, moving 
the print  $message  command 

outside the code block to 
the right generates an error 

message.      
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 Operator  Name or meaning  Sample use 

 Arithmetic operators     

  ()  Round brackets  $var1  = 2 * (2  + 3); // Result: 10. 

  []  Square brackets  $var1  = $array1[4]; // 5th element of 
$array1. 

  ! Not  if ($var ! = 0) // If $var not equal to 0, 
follow with a function or a command. 

   ++ ,    --   Increment, Decrement 
by 1 

 $var1  ++   ; // Increases the value of $var 
by 1. 

  * Multiply  $var1  = 2 * 5; // Result: 10 

  / Divide  $var2  = (float) 2/5; // Result: 0.4 (float) 
forces 2/5 to return a floating point 
value. 

  % Modulo  $mod  = 8% 3; // Result: 2 

 ̂  Vector cross product  $vect  = <<   1, 3, 5>> ^  <<    -2, 4, -5>>; 
// Result: <<  -35, -5, 10>> 

    +  ,   -  Plus, minus  $var2  = $var2  + 5 – $var1; // Result:  -4.6 

 Logical operators     

   <   Less than  if ( $var1  < 5 ) …

   <  =   Less than or equal 

to 

 if ( $var1 <   =  5 ) …

  > Greater than  if ( $var1 > 5 )  …

  >  =   Greater than or 

equal to 

if ( $var1 > = 5 ) …

 ==   Equal to  if ( $var1  ==    5)  …

 ! =  Not equal to  if ( $var1 ! = 5 ) …

   &  &   Logical AND  if ( $var1  ==    5  && $var2  ==    6 )  …

  ||  Logical OR  if ( $var1 ==   5 || $var2  ==    6 )  …

  ? :  If-else shorthand  ($var2  < 0) ? $var2 : $var2/2; // If 
$var2 <  0, return its value, else return 
its value divided by 2. 

 TABLE 12.03 

   MEL operators listed in order of 
precedence from the highest at the 
top of the table to the lowest at the 
bottom.

similar expressions to evaluate diff erently due to the order in which the operators are 
applied.

             float $myFloat =   3 + 6  * 2; 

   // Result: 15 //

        In some programming languages 
the circumfl ex ( ̂  ) character 
is used for the exponentiation 
operation. Still other languages 
use a double asterisk ( *  * ) for the 
same operation. In Maya, this 
operation is performed with the 
pow(a,n)  command, where  a  is 
the base and  n , the exponent.      
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     float $myFloat = 2  * 3 +   6; 

    // Result: 12 //            

Expressions and operators 

 Maya Help  →  Using Maya  →  General  →  MEL and Expressions  →  Syntax  →
Expressions, operators and statements        

  Operator overloading 
 In a programming language with operator overloading, certain operator symbols 
can have more than one meaning. A familiar example is the use of the symbol  � . It 
would not be unusual to write code today in which the  “ plus ”  sign could be invoked 
legitimately to  “ add ”  together pairs of data of diverse kinds: pairs of integers, or pairs 
of decimal numbers, or two strings or vectors or matrices—all with one little  “ plus ”  
sign. (To get a feel for the old days, just try this in a vintage language of the 1950s or 
1960s, like Fortran!)

  Operator overloading can bring signifi cant concision to your coding. Why use a pleth-
ora of symbols or procedure invocations when the right one can be triggered in con-
text with just one symbol? Be careful though: a downside to overloading, and it can 
become a signifi cant issue as the size and complexity of your program grows, is the 
problem future readers of your code (including yourself) may have deciphering what 
you intend the overloaded operator to do at each place it is used in your code. For 
example, seeing what you mean by two integers added may be clear, but what might a 
reader make of a line in which your plus sign links an integer and a decimal number, 
or a decimal number and a string? Error or genius? Good coding style in an over-
loaded programming language demands very careful attention to how the compiler or 
interpreter handles all the possible permutations of data types you could throw at it.   

  The MEL command 
 Let ’ s look at a MEL command that runs when you choose a typical menu item in 
Maya. You ’ ll then use that command to perform the same action without making the 
menu selection. 

    1.     Type the following in the Command Line and press Enter:

     ScriptEditor;        

 You ’ ve just run a MEL command! 

    2.      Adjust the Script Editor so that you can see both the history and command input 
panels. You can change the relative size of the panels by LMB + dragging the 
horizontal bar dividing them.  

  3.     From the Script Editor menu bar, choose Edit → Clear All.  

  4.      From the main window menu bar choose Create → Polygon Primitives →
Sphere ❒    .  

  5.     In the Polygon Sphere Options window choose Edit  →  Reset Settings.  

  6.     Press Create.    
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 As you may have expected, your actions above created a sphere centered at the world 
origin of your scene. Now let ’ s look at the two lines that appeared in the Script editor 
History panel immediately after you pressed  Create. 

             polySphere -r 1 -sx 20� -sy 20� -ax 0� 1 0� -tx 1 -ch 1; 
   // Result: pSphere1 polySphere1 //          

 Th e fi rst line is a statement containing the MEL command and various modifi ers. 
Th e second line states the  return value  of the command: the names of the transform 
node ( pSphere1 ) and the creation (or history) node (polySphere1 ). By default, the 
shape node name is not reported. Th e forward slash  “ // ”  characters indicate non-
executable (commented) code—that is, information intended only for the user and 
not for Maya to process in any way. Let ’ s take a closer look at the fi rst line:     

 polySphere -r 1 -sx 20� -sy 20� -ax 0� 1 0� -tx 1  -ch 1;

MEL command flag    fl ag argument

 Th e MEL command performs a task—manipulates the UI or the scene graph in some 
way. In the above example, the  polySphere  command creates a polygonal sphere. A fl ag 
is preceded with a hyphen (or dash) and modifi es the MEL command according to the 
fl ag arguments given to it. Th e arguments are values of a certain type: fl oat, integer, 
string, and so on. Flags often correspond to attribute settings. Th e fi rst fl ag, -r, specifi es 
the sphere ’ s radius: the default argument value for this fl ag is 1. When Maya traces a 
command to the Script Editor, it displays the short names for the fl ags:   “ -r ”   is short for
  “ -radius”  . You can use long or short names when you type MEL commands. 

 Next you ’ ll create another sphere by reusing the statement that Maya traced in the 
History panel of the Script Editor. 

    1.     Select the following line in the history panel of the Script Editor:

     polySphere -r 1 -sx 20� -sy 20� -ax 0� 1 0� -tx 1 -ch 1;      

  2.     LMB + drag the selection from the history panel to the command input panel.  

  3.     With the text still selected (highlighted), hit Enter on your numeric keypad.    

 Th is should create a second sphere, automatically named  pSphere2 . 

  Flags and default tool settings 
 Specifying fl ags and arguments is essential if you want a command to do something other 
than what its default settings dictate. By extension, you need only to include fl ags whose 
values you wish to alter from the default settings; those that aren ’ t specifi ed in your MEL 
command line will be used at their default values. For example, let ’ s create a third poly-
gon sphere with the same dimensions and other basic settings, but with a unique name: 

    1.     Type the following line into the Script Editor:

  polySphere -name mySphere;      

  2.     Press Enter.    

 If you take a minute to inspect the sphere in your perspective scene view and look 
at its nodes and attribute settings in the Attribute Editor, you ’ ll see that it is the 
same as the previous two spheres except for its name, which is   “ mySphere ”   instead of
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 pSphere3 . Th e other fl ags—radius,  subdivisionsX, subdivisionsY, and so on—were 
taken at their saved settings since you didn ’ t specify alternate values.  

  MEL command mode: Create, edit, and query 
 In the examples above, you used the polySphere command in its default  create mode . 
Here you ’ ll explore the other two MEL command modes:  edit  mode  query . Edit mode 
makes changes to the attributes of an existing item. For example, change the radius 
of mySphere as follows: 

    1.     From the Script Editor menu bar, choose Edit → Clear All.  

  2.     Type the following code in the input panel and press Enter:

     polySphere -edit -radius 5 mySphere;        

 Th e  -edit  fl ag specifi es the command mode and requires no arguments. Th e 
 -radius  fl ag sets the sphere ’ s radius to the fl ag argument value of 5. Th e fi nal term in 
the statement,  mySphere , is a  command argument ; it has no fl ag and tells the 
 polySphere command what is being edited.

  Query mode is used to query information about a node whose name is specifi ed by 
the command argument. For example, suppose you wanted to know if mySphere has 
construction history: 

    1.     From the Script Editor menu bar, choose Edit  →  Clear All.  

  2.     Type the following code in the input panel and press Enter:

     polySphere -query -ch mySphere;        

 Th e fl ag,  -ch, is short for the rather cumbersome word: -constructionHistory . After 
entering the command, you should see the following result in the History panel of 
the Script Editor:

             // Result: 1 //          

 Th e return value in this case is  boolean : 1 corresponds to  “ yes ”  and 0 to  “ no ” . 
Th erefore the sphere does indeed have construction history. Naturally, a quick way 
to query an attribute value is to select the item in question and inspect the Channel 
Box or the Attribute Editor. However, when you begin using MEL scripts to build 
complex models and run simulations, you ’ ll need to query attribute values for mul-
tiple objects in rapid succession—the position and orientation of colliding molecules 
for example. You ’ ll learn additional methods for querying and setting attributes 
shortly.  

  MEL command syntax 

  Imperative and function syntax 
 Th e MEL command example above ( polySphere -query -ch mySphere; ) is written in 
 imperative syntax  which is used in Unix shell and DOS commands. Maya also supports 

        If you highlight text (by selecting 
it) before entering it in the 

Script editor, it will remain in the 
command input panel, ready to 

be run again. On the other hand, 
if you enter a statement without 

selecting it fi rst, it will run, but 
the text will be deleted from the 

command input line.      
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 function syntax , in which commands resemble a standard function call in computer 
language. Th e following statements do exactly the same thing when executed in Maya: 

    1.     Imperative syntax:  polySphere -name mySphere;

  2.     Function syntax:  polySphere ( "-name", "mySphere");

 In #2 the fl ag and fl ag arguments are passed as  function arguments  to the command 
polySphere. Note that the arguments must be enclosed in quotation marks, unlike 
with imperative syntax, for which quotation marks around character strings (e.g. 
 " mySphere " ) are optional. 

 As you work with MEL, occasions will arise in which you want to pass the return 
value of a MEL command to an attribute or to a variable. In the following example, 
$rad is an empty variable used to store the radius attribute value for a polygon sphere 
named  mySphere . 

    1.     Imperative syntax:  float $rad =   '  polySphere -query -radius mySphere ';
    // Result: 5 //

  2.     Function syntax:   float $rad =   polySphere ( "-query", "-radius",

 "mySphere ");

      // Result: 5 //

 When imperative syntax is used, the command has no return value unless you force 
one by surrounding the command in back quotes as shown in #1 above. Function syn-
tax returns a value without the need for modifying characters. With few exceptions, 
we use imperative syntax throughout this book. It generally requires fewer characters 
than function syntax and is therefore easier to  debug  (analyze and correct for errors).   

  Blank spaces and lines 
 Blank spaces in MEL statements are, for the most part, ignored by the MEL inter-
preter. Th e following two lines of code are interpreted in the same way:

             vector $myVect=<<1.2,2.3,3.4>>+<<2.1,3.2,4.3>>; 
   // Result: <<    3.3, 5.5, 7.7>> // 

   vector $myVect = << 1.2, 2.3, 3.4 >> + << 2.1, 3.2, 4.3 >>; 
   // Result: <<3.3, 5.5, 7.7>> //          

 Used wisely, blank space can improve the legibility of your MEL code. Similarly blank 
lines are ignored and can therefore enhance legibility.  

  Functions 
 Functions are MEL commands used with values and variables. Most functions per-
form mathematical operations as in the following example featuring the trigonomet-
ric (periodic) function, cosine:

             float $pi =  3.14159265; 
   float $y  = ' cos $pi';
   // Result: -1 //          
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 Functions can be written using imperative or function syntax. For example, the 
cosine function above could also be written as:

             float $y  = cos($pi); 
   // Result: -1 //          

 Maya has over 50 functions which are well documented in the Help Library:

MEL functions 

 Maya Help  →  Using Maya  →  General  →  MEL and Expressions  →
Useful functions        

  MEL command reference library 
 As of Maya release 8.5 there were several thousand MEL commands spanning a broad 
range of functionality in Maya—from system utilities to modeling. In this book we 
will introduce many of the commands relevant to learning the in silico biology Maya 
workfl ow. A complete list of MEL commands, their fl ags, and arguments is available 
in the MEL command reference in the Maya Help Library.

MEL command reference 

 Maya Help  →  Commands        

  MEL commands we know and love 
 When asked to relate best practices for MEL scripting, Joyce Janczyn (MEL ’ s author) 
stressed the importance of learning the commands so that you ’ ll be able to use them 
quickly and effi  ciently.1  Table 12.04    lists our 10 most frequently used MEL commands 
and the ones we have committed to memory.  

  Make a shelf button from a MEL command 
 Shelf buttons are handy for launching windows and editors. What a button actually 
does when you press it is run a MEL statement or script. You can attach any script 
you like to a button; each time you press the button, the script executes. Th e follow-
ing example demonstrates how to capture a script from the Script Editor and turn 
it into a button. Th e script in this case is a single MEL command used to launch the 
Expression Editor. 

    1.     Enter the following text in the Command Line:  

  ExpressionEditor;   

  2.     If your shelves are not visible, choose Display  →  UI Element  →  Shelves.  

  3.      Click on your Custom shelf tab. If you do not have a custom shelf, create one 
now:

   (a)     Window  →  Settings/Preferences  →  Shelves.  

   (b)      Under the Shelves tab press the New Shelf button and name it  " Custom "   
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   (c)     Press the Save All Shelves button.  

   (d)     Select your Custom shelf tab.  

  4.     Open the Script Editor and select the command in the History fi eld:

  ExpressionEditor;      

  5.      LMB +  or MMB + drag the command to your Custom shelf and release the mouse 
button.

  6.     Open the Shelf editor: choose Window  →  Settings/Preferences  →  Shelves.  

  7.      Choose the Shelf Contents tab, then locate and select the newly added 
Expression Editor  command.  

  8.      In the Icon Name fi eld at the bottom of the editor, type the short name 
EE  ( Figure 12.04).

  9.     Press the Save All Shelves button.    

 MEL command  Sample use  Result 

Select select mySphere;  Selects the object called mySphere. 

getAttr getAttr mySphere.

translateX; 

 Returns the value of the specifi ed 
attribute, translateX. 

setAttr setAttr polySphere1.radius 5;  Sets the value of the specifi ed 
attribute. 

connectAttr connectAttr myGlobe.tx 

myCube.rz; 

 Connects the output value of the 
fi rst attribute to the input of the 
second. 

addAttr addAttr -longName newAttr 

myGlobe; 

 Adds a custom attribute called 
 " newAttr "  to the object myGlobe. 

rand  rand 0 1;  Returns a pseudorandom number 
between 0 and 1. 

  ls  $var =    'ls-transforms 

"poly *"' ; 

 Returns the names of items in your 
scene—in this example, objects 
with a transform node name 
starting with  " poly " . 

size  size $var;  Returns the length of an array. 

clear  clear $var;  Clears the memory being used by 
an array variable and resets the 
array length to zero. 

print  print  "Hello world ";  Prints the argument (  " hello world "  ) 
to the Script Editor and Command 
Line Result fi eld. 

 TABLE 12.04 

   Our  MEL Top 10 : MEL commands 
that we use most regularly in our 
Maya-based in silico biology work. 
The commands are displayed in 
imperative syntax.  
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 Now anytime you want to launch the Expression Editor you can do so easily by press-
ing the EE button on your Custom shelf.   

  Attributes in MEL 
 You have done a lot with attributes in the previous chapters—reading and setting 
their values in the Channel Box and Attribute Editor. When used in MEL statements, 
attribute names are slightly diff erent than they appear in the Channel Box and 
Attribute Editor; they use  dot notation  as follows:

             objectName.attributeName          

  Getting, setting, and connecting attributes 
 By now you ’ ve learned that working in Maya boils down to manipulating attribute 
values; models, shaders, and animation are all characterized by attributes. Of the 
thousands of MEL commands, arguably the most useful are those that query, set, 
and connect attributes because they directly aff ect the DG, modifying and animat-
ing your models. Th e following code listing demonstrates these three important com-
mand types. Note our use of comments to document each step.

             // Create a polygonal sphere. 
   polySphere -name myGlobe;    

     // Set translateY to a random value less than or equal to 20�.
   setAttr myGlobe.translateY '  rand 20�' ;    

     // Create a polygonal cube. 
   polyCube -name myCube;    

 FIGURE 12.04 

    Use the Shelf Editor to arrange and 
rename shelf buttons.    
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     // Get the translateY value of myGlobe and store it in a variable. 
   float $transY =  ̀  getAttr myGlobe.translateY`  ;    

     // Set the translateY value of myCube using the variable $transY. 
   setAttr myCube.translateY $transY;    

     // Use the sphere 's X position to drive the cube 's Z rotation. 
   connectAttr myGlobe.translateX myCube.rotateZ;          

 In the example above, dot notation was used for attribute names. Note the diff erence 
between the following two statements. In the fi rst, the  rotateY  attribute is written as 
it appears in the Channel Box. Th e second statement uses the correct dot notation to 
refer to the attribute and executes without error.

setAttr myGlobe Rotate Y 45;

// Error: line 1: No attribute was specified. //

 (incorrect) 

setAttr myGlobe.rotateY 45; (correct)

 Like variables, each attribute in Maya has data type.  Table 12.05    lists attribute data 
types with examples of each.  

  Setting attributes with the  " type "  fl ag 
 Unlike single-value, numerical attributes—like translateX, visibility, and so on—some 
attributes must be set using the type  fl ag and an appropriate argument. Two common 
examples include compound transform and string attributes:

             setAttr myGlobe.translate -type double3 5 10� 15; 

   setAttr someObject.customAttribute -type  "string" "someValue";         

 String attributes are rare in Maya and usually take the form of a custom attribute 
in which you want to store textual information. Unlike numerical attributes like 
translate  and scale , string attributes cannot be keyframed.   

 Attribute type  Sample attribute  Sample data 

fl oat  mySphere.translateX  3.14159265 

boolean  mySphere.visibility   " yes "  or  " no " ; 1 or 0 

vector  mySphere.translate   <<    5.5, 1.1, 6.6 >> 

int  polySphere1.subdivisionsX  20 

string  polySphere1.customAttribute   " concentration "  

vector array  swarmShape.rgbPP  {  <<    1, 0, 0 >>,  <<    0, 1, 0 >>,    <<    0, 
0, 1 >> } 

fl oat array  swarmShape.mass  { 4.5, 12, 6.2 } 

 TABLE 12.05 

   Attribute data types. The last 
two types pertain to per particle 
attributes , for which each element 
pertains to a specifi c particle within 
a particle object.  
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  Conditional statements 
 Conditional statements choose a course of action in a computer program by testing 
one or more conditions and take the following basic form: 

    if (some condition is met)  

   do something  

  else if (some other condition is met)  

   do something else    

 Maya has two types of conditional statement:  if … else  and  switch … case . Th e following 
is an example of a typical  if …else  statement. It tests a random number against sev-
eral conditions then assigns a variable and prints a message base on the result.

             string $myColor; 
   float $rnd  = '  rand 9'  ; // Pick a random number between 0� and 9. 

   if ($rnd <=   3) {
     $myColor =    "red";
    print  "Win!";    
   } 
   else if ($rnd > 3  & &  $rnd <=   6) {
     $myColor  = "blue";
    print  "Lose!";    
   } 
   else {
     $myColor =  "green";
    print  "Draw!";    
   }          

 Th e fi nal  else  statement is a catch-all if none of the previous conditions are met. 
Curly brackets are used to enclose the contents of each  if, else …if , and else  state-
ment. Note that semi-colons are not used to terminate the statements. If the con-
tents of a condition statement don ’ t exceed one line, you can omit the curly brackets 
and shorten each statement to a single line, as in the following example:

             float $rnd  = 'rand 3' ; 
   if ($rnd  <= 1) print "Win!";
   else if ($rnd > 1  & &  $rnd <=   2) print "  Lose! ";
   else print  "Draw!";         

 Th e  switch …case  statement evaluates an expression against several predetermined 
cases. When it matches the expression to the value of a case it executes the corre-
sponding code. A break  statement exits the switch …case  statement once a condition 
has been met.  switch …case  looks for an  equality  between an expression and a case and 
cannot match them based on an  inequality  as we did in the  if …else  examples above. 
In the following example the  ceil  (short for ceiling) function is used to return next 
highest integer value above the randomly generated number.

             int $rnd2  = ceil(` rand 3`  ); // Function syntax wrapping imperative 
 syntax. 
   switch ($rnd2){

     case 1:
       print "  Win!"  ; 
      break;        

        The  ceil  function returns the 
next highest integer above its 

argument—a fl oat value.      
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    case 2:
    print  "Lose!" ; 
   break;     
  default:
    print  "Draw!";
      break;     

   }          

 Note that the imperative command, 'rand 3' , is wrapped within function syntax, 
ceil() . Th e expression could be written as it appears above or as:

             int $rnd2  = ceil(rand(3)) // Function syntax.          

 but not as:

             int $rnd2  = '    ceil '    rand 3 '' ; // Imperative syntax wrapping imperative 
 syntax. 

   // Error: int $rnd2 = ' ceil '    rand 3'  '    ; // 
   // Error: Line 1.23: Syntax error //          

  Indenting lines 
 Indenting lines of code is not a syntactic requirement of MEL but is a style choice that 
makes your scripts easier for humans to read. We highly recommend it. We typically 
indent lines using tab characters, which are ignored by the MEL interpreter. Many 
text editors designed for computer coding indent lines automatically.   

  Loops 
 A loop is a block of code that repeats for as long as some condition is met. Loops are 
essential to in silico simulations involving multiple objects like cells and molecules, and 
for constructing models out of repeated subunits like the ones you ’ ll build beginning in 
 Chapter 14 . MEL supports four kinds of loop: for,for-in,while , and  do …while . 

  The for  loop 
 Th e following is a typical example of a for  loop, involving a counter integer used to 
increment through the code block.

             int $i; 
   for ($i  = 1; $i <=   5; $i++   ) {
     print $i; 
    print  "\n";    
   }         

  Th e fi rst term within the brackets states the starting condition, the second term 
states the ending condition, and the third increments the counter by 1. Upon run-
ning the above  for  loop, the printed result in the Script Editor is:

             1 
   2 
   3 
   4 
   5          



290 PART 2: A FOUNDATION IN MAYA

 Note the use of the  “ new line ”  notation, “  \n ”  , to print each new value of $i on a sepa-
rate line. Th e above  for  loop could also be written more concisely as:

             for ( $i =   1; $i  <=   5; $i++     ) print( $i  + "\n" );           

  The for-in  loop 
 Th e  for-in  loop is a tidy way to increment through the elements of an array, as in the 
following example:

             string $cell; 
   string $cellType[]  = { "tCell", "fibroblast", "keratinocyte",
"monocyte"};

   for ( $cell in $cellType ) print( $cell  + "\n" );          

 Th e printed result in the Script Editor is:

             tCell 
   fibroblast 
   keratinocyte 
   monocyte           

  The  while  loop 
 A  while  loop executes for a long as the condition in brackets is true. For example:

             int $i  = 0�;
   while ( $i  <=   10� ) {

      $i +=   2; // The +=     assignment operator adds 2 to the current 
 value of $i. 

    print( $i  + "\n" );     
   }          

 Th e printed result in the Script Editor is:

             2 
   4 
   6 
   8 
   10�  
   12           

  The  do …while loop 
 A do …while statement evaluates the condition at the  end  of the code block rather than 
the beginning like the while  loop. Th e code is executed as long as the condition is true.

             int $i  = 0�;
   do  {

      $i +=   2; // The +=     assignment operator adds 2 to the current 
 value of $i. 

    print( $i  + "\n" );     
   } 
   while ( $i  <=   10� );          
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 Th e printed result in the Script Editor is the same for the code above as for the  while  
loop. Use caution with  while  and  do …while  statements; a simple error in the code can put 
your computer into an infi nite loop, from which the only recovery is to force-quit Maya. 

 Th e Maya Help Library is an excellent source of information and examples about 
statements that control the logical fl ow of your MEL scripts:

MEL script fl ow control 

 Maya Help  →  General  →  MEL and Expressions  →  Controlling the fl ow of a script         

  Procedures 
 A procedure is a user-defi ned, self-contained set of MEL statements that carries out 
specifi c operations or actions. A procedure is executed (or  called ) with a single com-
mand: its name. Procedures are similar to pre-defi ned MEL functions like  cos  or  rand ; 
they take arguments, make calculations, and then return results. Procedures have 
three things in common with variables: 

    1.      Procedures have data types (or  return types ) which are the same as the data 
types available for variables in Maya.  

  2.     A procedure must be declared before it is used.  

  3.      Procedures can be either local or global. A local procedure is available only 
within the script or expression in which it resides. A global procedure, on the 
other, is available at any time (after being declared), to any script or expression 
within the Maya environment.    

 A procedure declaration takes the following basic form:

             global proc returnType procedureName (arguments) {
     // MEL statement. 
    // MEL statement. 
    // MEL statement. 
    // etc …     
   }          

 Omit the word  global  for local procedures. Arguments must be declared by type as 
you ’ ll see in the following sample procedure which prints a message in the Script Editor. 

    1.     Open the Script Editor.  

  2.     Type the following in the command input panel:   

            global proc string headBump(int $monkeyNum, string $location) { 

  // Declare and assign variables. 
  string $little  = "   little monkeys jumping on the  ";
  string $verse  = $monkeyNum +   $little  + $location +   "  ! ";

  // Assign the return value. 
  return $verse; 

  }          

    3.      Press Enter. This declares the procedure—it is now loaded in memory and can be 
called at any time using the procedure name, headBump. headBump will be cleared 

        In some programming languages 
procedures are known as 
subroutines or functions.      
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from memory when you quit Maya, so it must be re-declared when you restart Maya if 
you wish to use it again.

  4.     In the Script Editor choose Edit  →  Clear All.  

  5.      Call the procedure using its name and arguments: type the following into the 
Script Editor or Command Line and hit Enter.
  string $story = headBump(5, "bed");       

 Maya displays the procedure result (its return value) in the Script Editor and the 
Command Line:

             5 little monkeys jumping on the bed!          

 Of course, you ’ ll be using procedures for more than building nursery rhymes; pro-
cedures are a highly useful tool in the in silico biology workfl ow. Th ey allow you to 
package sets of instructions that can be called only when needed. As your work with 
procedural techniques in Maya advances, and your MEL scripts get longer and more 
complex, procedures are good way to keep your code organized.

   Sourcing procedures 
 For the example above, entering the procedure into the Script Editor is a simple way to 
declare it and is a good way to declare short procedures in general. When you compose 
a longer procedure in an external text editor, you can copy and paste it in the Script 
Editor then press Enter to declare it. However, this can get tedious, particularly when 
you need to declare several procedures so that they ’ ll all be available to Maya at once; 
locating and opening the text fi les, then copying and pasting the code each time you 
start Maya takes up valuable time. For this reason we recommend you take advantage 
of Maya ’ s built-in script sourcing capabilities via the MEL script search path. When 
you call an undeclared procedure (e.g.  myProcedure() )—for instance, by typing its 
name in the Script Editor—Maya scans its search path contents list for a MEL script 
fi le of the same root name (e.g. myProcedure.mel ). If the fi le exists, Maya loads it into 
memory, thereby declaring any procedures the fi le contains. 

  One fi le—one procedure 
 While it may be tempting to gang up multiple procedures within a single MEL script 
(text) fi le, it ’ s not advisable according to veteran Maya developer Mike Taylor. He rec-
ommends saving each procedure out in its own fi le.  “ Maya knows how to automati-
cally load the script that defi nes a global procedure  as long as the fi le name matches the 
procedure name . If you include multiple global procedures in a single MEL fi le, then 
you loose that benefi t and you add the overhead of making sure your global procedure 
is defi ned before you call it. ”  Th roughout the projects in  Part 03  of this book we rec-
ommend you to take Mike ’ s advice and save each global procedure in a distinct text 
fi le that is named appropriately. For instance, a procedure called  rule1()  should be 
saved in a fi le called  rule1.mel  within your Maya Scripts directory.    2

  Animation expressions 
  Animation expressions  are the engines of procedural animation in Maya. Generally 
speaking, an animation expression ( expression  for short) is a set of instructions used 
to animate one or more attribute. Typically, an expression evaluates every time the 
Maya frame number changes, meaning that the instructions are processed in regular 

        Remember that If you add fi les 
to the Scripts directory when 

Maya is running, you will have 
to refresh the search path 

contents, using the  rehash
command, in order to have 

access to those fi les and their 
contents.      

        Mike Taylor has been a member 
of the Maya developers team 

since 1995, prior to the launch of 
Maya version 1.      
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time increments when Maya is in playback mode. In the following example you ’ ll 
make a sphere and an expression to animate its  translateX  attribute. 

    1.     Start a new Maya scene: choose File  →  New Scene.  

  2.      Open the Script Editor: type  ScriptEditor in the Command Line and press Enter 
( remember that MEL is case sensitive ).  

  3.     Use a MEL command to set the playback options for your scene:

      playbackOptions -playbackSpeed 1 -loop continuous -min 1 -max 150�;     

  4.     Create the sphere. Enter the following in the Script Editor:

     polySphere -r 1 -n mySphere;      

  5.     With the sphere selected, highlight its Translate X attribute in the Channel Box.  

 FIGURE 12.05 

    The expression Editor is where 
you ' ll typically interact with 
animation expressions in Maya.    

        The playbackSpeed fl ag sets the 
scene view playback speed to 
a multiple of the frame rate. To 
alter the frame rate (say, from 24 
fps (fi lm) to 30 fps (NTSC)) you 
must open up Preferences and 
make the change under Settings 
→ Time.      
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   6.      RMB + click on Translate X and choose Expressions.  This launches the Expres-
sion Editor with the attribute highlighted in the Selected Object  &  Attribute 
fi eld.

   7.      Select  mySphere.translateX  in the Selected Object  &  Attribute fi eld, and then 
LMB+drag the text into the Expression text fi eld.  

   8.     Create the expression shown in  Figure 12.05 by adding  "  = frame - 1; "  to the text.  

   9.     Press the Create button to fi nish.   

  Maya will assign a default name to your expression which is displayed in the 
Expression Name Field of the Expression Editor. 

    10.     In the timeline controls of the main window, press the Play button.   

  As the frame number increases, so does the X position of your sphere due to the 
expression. Th e result is a simple procedural animation similar to the one you made 
back in  Chapter 06 . From this, you can see how MEL can be used in place of the UI 
tools (Move, Rotate, and so on) to animate attributes. Next, let ’ s take a look at what ’ s 
going on behind the scenes when you use an animation expression. 

  The animation expression node 
 An animation expression is itself a type of  DG node . It has attributes and is part of 
the  DG , with direct access to all other nodes and their attributes.  Figure 12.06    shows an 
expression represented in the Connection Editor: in the left panel are the expression 

 FIGURE 12.06 

    The Connection Editor showing the 
connection between an expression 

node and the attribute it controls. 
The settings under the Left 

Display and Right Display menus 
dictate what types of attributes 

will be shown (e.g. keyable or 
non-keyable  attributes). In most 

cases, you ' ll interact with relatively 
few of the attributes displayed 

in the Connection Editor, such as 
the  Translate    attributes shown 

for mySphere in the right panel. 
Attributes that are connected (or 

driven ) are displayed in italics 
(oblique text).    



295CHAPTER 12: MEL SCRIPTING

attributes; in the right panel are the attributes of mySphere.  expression1.output  drives 
 mySphere.translateX . Another way to visualize this relationship is in the Hypergraph 
( Figure 12.07   ) where you can also see that Maya ’ s time node drives the expression.  

  The Expression Editor 
 Although you can create and edit expressions using the MEL command expression, 
it is often more convenient to do so using the Expression Editor ( Figure 12.05 ). We ’ ll 
cover a few of this important editor ’ s key features here. Th e  Select Filter  menu lets you 
choose how items are listed: 

    1.      By Expression Name:

    for example, expression1

  2.      By Object/Attribute Name:

    displays attributes and expressions (if any exist) for selected objects     

  3.  By Script Node Name

  ( a Script Node is a DG node which stores a MEL script )

  Th e Editor menu lets you choose to edit your expressions in the Expression Editor or 
in a default text editor on your system. For more information on using this feature, 
refer to Maya ’ s Help Library:

Linking an external text editor to Maya ' s Expression Editor 

 Maya Help  →  General  →  MEL and Expressions  →  Animation expressions  →
Edit an animation expression with a text editor       

Expression node

Time node

Expression drives an attribute of 
the connected transform node

Transform node sends the state of its 
driven attribute to the Expression

 FIGURE 12.07 

    An expression node is driven by 
Maya ' s time node and in turn drives 
the attributes to which 
it ' s connected.    
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  Converting units 
 When Maya assigns and queries an attribute or internal variable whose value is a meas-
urement unit—distance, playback speed, or an angle—the program does so using its 
default internal units of centimeters, 24 fps, and radians, respectively. If you alter any 
of these default working units in Preferences, Maya converts the attribute values that 
you specify to its default working units behind the scenes. For example, suppose you 
changed the Angular working units from radians to degrees—like you did back on page 
 266   . When you assign a Rotation attribute value for an object, Maya will convert that 
value from degrees to radians for storage in the object ’ s transform node. Th e attribute 
value will still be displayed in degrees in the Channel Box (and other UI editors, such as 
the Attribute Editor), but Maya will work with its equivalent value in radians for any cal-
culations it makes in order to animate the rotation of the object. 

 Th e Convert Units settings in the Expression Editor tell Maya whether or not to con-
vert  All  three types of unit,  None  of the three, or  Angular  (units) only . When you spec-
ify  None , Maya will treat all distance units as centimeters and all angles as radians, 
regardless of the working units you specifi ed in Preferences. When you specify All or 
Angular only, and set the default working units in Preferences, Maya will not convert 
units. In other words, unit conversion in animation expressions only happens when 
you ’ re using non-default working units (set in Preferences) and specify unit conver-
sion other than None in the Expression Editor. 

 Converting from non-default units adds extra computation steps and can there-
fore slow down the execution of an animation expression. For optimal speed, it ’ s 
best to set working units in Preferences to their default values of centimeters, 
24 fps, and radians. However, this is not always practical: you may fi nd it more intuitive 
to work with angles in degrees rather than radians, and your project may call for 
distance units other than centimeters. Th erefore, the choice of working units comes 
down to a trade-off  between convenience and speed.  

  The Create and Edit buttons 
 Maya won ’ t create or update an expression node until you press either the Create or 
Edit buttons at the bottom of the Expression Editor. Because of this requirement for 
manual intervention, via the UI it is easy to lose changes you ’ ve made while editing 
an expression. Th e Reload button reloads from memory the version of the expression 
that was stored last time you pressed the Edit button; it allows you to undo changes 
to an expression before pressing Edit. 

 You will get to know the Expression Editor quite well as you work through this book. 
For complete documentation, refer to the Help Library:

The Expression Editor 

 Maya Help  →  General  →  MEL and Expressions  →  MEL Windows and Editors  →
Expression Editor         

  Animation expression syntax 
 Expression syntax diff ers in two ways from the syntax of MEL statements that you 
enter through the Script Editor or use in procedures. First, you can query, assign, and 



297CHAPTER 12: MEL SCRIPTING

connect attribute values directly in an expression, whereas you must use the MEL 
commands,  getAttr, setAttr , and connectAttr  in a MEL script to do the same. In 
the following example, we set our sphere ’ s translateY attribute to 5. Th e fi rst line is 
something you might enter in the Script Editor or Command Line but will  also  work 
in the Expression Editor. Th e second line is proper expression syntax but will fail if 
entered as a MEL statement in the Script Editor.

             setAttr mySphere.translateY 5; // Standard MEL syntax. 

   mySphere.translateY =   5; // Expression syntax.          

 Secondly, expressions have two native variables,  frame  and  time , that are set automat-
ically through an input connection from the  time  node. Th ese variables are not availa-
ble to scripts outside of an expression. If you want to query the frame number outside 
of an expression, use the currentTime  MEL command as in the following example:

             // Incorrect: 
   int $myVar  = frame; 
   // Error: int $myVar  = frame; // 
   // Error: Line 1.19: Invalid use of Maya object  "frame". //    

     // Correct: 
   int $myVar  = '  currentTime -query';
   // Result: 44 //           

  The expression  command 
 When you press Create to make a new expression in the Expression Editor, Maya exe-
cutes a MEL command—as it does with most other actions you perform in the UI. 
To demonstrate the  expression  command, let ’ s recreate  expression1  for mySphere , as 
follows: 

    1.     Open the Script Editor and choose Edit  →  Clear All.  

  2.      Open the Expression Editor: choose Window → Animation Editors →
Expression Editor.  

  3.     Choose Select Filter → By Expression Name.  

  4.      Select  expression1  in the Expressions fi eld and press the Delete button.  This
deletes the expression node from the DG and the expression code from the 
Expression Editor.

  5.     Enter the following statement in Expression Editor text fi eld, then press Create:

mySphere.translateX =   frame - 1;

  6.      Inspect the History fi eld of the Script Editor. You should see the following MEL 
statement:

 expression -s " mySphere.translateX =  frame - 1;"  -o "   " -ae 1 -uc all ;   

  // Result: expression1 //

 Th e fi rst fl ag,  -s , indicates the expression  “ string ”  which holds the contents of 
the expression. Th e second fl ag,  -o , is short for  “ object ” —the default object for the 
expression. In this case, since you set the selection fi lter to Expression Name instead 
of Object/Attribute Name, the expression has no default object associated with it, 

        The commands  getAttr  and 
setAttr  can be used in animation 
expressions but are unnecessary 
in many cases since you can 
directly assign attribute values 
using the  " equals "  operator ( � ).      
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hence the empty quotation marks. Th e fl ag  -ae  is short for alwaysEvaluate . When this 
is set to  1 , or  true , the expression will evaluate each time the frame number changes. 
Finally, -uc  is short for  unitConversion . Its setting of  all  ensures that all times, 
distances, and angles will be converted to standard working units (frames, centim-
eters, and radians) for the purpose of making calculations, even if you specifi ed 
diff erent units in Preferences (see  Converting units  on page 296    ). Since  -object, 
-alwaysEvaluate , and  -unitConversion  are set to their default values they could be 
omitted without any eff ect on the expression.

  Next, let ’ s use the expression statement that Maya produced in order to make a new 
expression. With the Expression Editor still open, 

    1.     Open the Script Editor and choose Edit → Clear All.  

  2.     Open the Expression Editor and choose Select Filter → By Expression Name.  

  3.     Select expression1 in the Expressions fi eld and press the Delete button.  

  4.      Enter the following statement in the Script Editor:

      expression -s  "mySphere.translateX =   frame - 1; " -name 

 myFirstExpression;      

  5.      You should see the following result displayed in the History Panel: 

     // Result: myFirstExpression //

 You ’ ve just created your fi rst expression using MEL! Its name will appear in the 
Selection → Expressions fi eld of the Expression Editor. When you select it by name, it 
can be edited in the Expression text fi eld.

    Stand-alone animation expressions 
 Despite the emphasis we ’ ve put on the role of expressions in animating attributes, an 
expression can stand alone without any connections to objects and their attributes. 
For instance, an expression may be used only to make calculations and update global 
variables. In this role, the expression is a computer program that runs every time the 
frame number in your scene changes. By including a loop (do … while, for…  in, and so 
on) in the  “ program ”  can run multiple times for each frame. For in silico modeling 
work, we use expressions both to make important calculations for the scene and to 
update attributes based on those calculations. Let ’ s look at a simple example of this 
kind of use: an expression that moves a sphere around the scene randomly and dis-
plays its location in the Script Editor. 

    1.     Create a new scene: choose File → New Scene.  

  2.     Open the Script Editor.  

  3.     Use a MEL command to set the playback options for your scene:

playbackOptions -playbackSpeed 1 -loop continuous -min 1 -max 150�;

   4.     Create a sphere. Enter the following in the Script Editor:        

    polySphere -r 1 -n mySphere;

   5.     Press your custom shelf button, EE, to launch the Expression Editor.  

  6.     Choose Select Filter → By Expression Name.  

        Unlike a procedure, each 
time you run the  expression

command, Maya creates a new 
animation expression—it does 
not replace a previous version 

of it. It is good practice to delete 
redundant animation expressions 

in the Expression Editor since 
they may give unpredictable 

results.      
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  7.      Enter the following in the Expression text fi eld (Figure 12.08) to control the 
translateX (tx) and translateZ (tz) attributes:      

             if (frame <= 1) mySphere.tx  = mySphere.tz =  0�;
   else { 

  // Move the sphere randomly in the XZ plane. 
  mySphere.tx  +=    '  rand -1 1'  ; 
  mySphere.tz  +=    '  rand -1 1'  ; 
  // Print its coordinates to the Script editor. 
   print ( "(x, z) = ( " + mySphere.translateX + " , " +  mySphere.
 translateZ  + " )\n");

   }          

 Note the conditional  if  statement which is used to reset the sphere to the world 
origin each time the playhead returns to frame 0 or 1. 

    8.     Press the Create button.  

  9.     In the Expression Name fi eld, type: randomSphere.

  10.      Open the Script Editor, then re-size and position it such that you can clearly see 
the History fi eld and a view of the sphere in the scene view.  

  11.     In the timeline controls of the main window, press the Play button.    

 Because your expression is, by default, set to evaluate  “ always ”  it will run once for 
each frame as your scene plays. Th e result is a random walk of the sphere in the XZ 
plane, with the accompanying coordinates displayed in the Script Editor. Notice in 
the Channel Box, that the Translate X fi eld for the sphere is colored purple ( Figure
12.09   a); this indicates a connection to an expression node.  

 FIGURE 12.08 

    In the Expression Editor, attributes 
can be directly assigned values 
using the equal ( � ) operator.    

        The print command can print 
multiple values at once, as long 
as they are enclosed in curved 
brackets. The contents of the 
brackets are added together as a 
string and then printed.      
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  Line breaks in animation expressions 
 In the example above you entered the multi-line expression directly into the 
Expression Editor. However, if you wish to enter it via the  expression  MEL command, 
you must instruct Maya to ignore the internal quotation marks (i.e. those associated 
with the print command). Otherwise, Maya will take the second quotation mark it 
encounters to mean the end of the expression command string. Instead you want 
Maya to interpret only the fi rst and last quotation marks as defi ning the expression 
string, while internal quotes are read in as part of the string. To accomplish this, 
you ’ ll type a back slash character,  \, before every quotation mark you want Maya to 
ignore. In this usage, we say the back slash  escapes  the quotation mark. 

 As well, because the expression command requires a continous string of characters, 
you must also escape line breaks (or  carriage returns ), using the character combina-
tion of  \n\ . Here is a simple example intended to make an expression that prints a 
message to the Script Editor.

             expression -s  "print("This is frame: "    + frame +   "\n")" -n myExpr; 

   // Error: expression -s  "print(" This is frame:  " +  frame  +   "\n")"
 -n myExpr; // 
   // Error: Line 1.36: Syntax error //          

 In the above statement, the quotation marks aren ’ t escaped and Maya interprets 
the expression string as "  print( ", which is followed by indecipherable code. Properly 
escaped, the above statement should look like this:

             expression -s  "print(\"This is frame: \ " +   frame +   \ "\\n\")" -n
 myExpr;          

 FIGURE 12.09 

    When connected to an animation 
expression node, attributes are 

colored purple in (a) the Channel 
Box and (b) the Attribute Editor. 

Note the Inputs listed in the Channel 
Box. randomSphere  is the name of 

an expression to which Maya ' s time 
node is connected. polySphere1

is the history node for the polygon 
geometry.      

(a) (b)



301CHAPTER 12: MEL SCRIPTING

 Note that even the line break, \n, must be escaped by placing a back slash in front of 
it; otherwise Maya will read the lone \ and escape the n instead of \n together. Th e 
only quotation marks that aren ’ t escaped are those enclosing the entire expression 
string. Entered as a MEL command the  randomSphere  expression you created on page 
299 would be entered as follows:

             expression -s  "\n\
     if (frame <=   1) mySphere.tx =   mySphere.tz = 0�;\n\
    else {\n\
    // Move the sphere randomly in the XZ plane.\n\ 
   mySphere.tx +=  '  rand -1 1';\n\
   mySphere.tz  +=    '  rand -1 1' ;\n\ 
   // Print its coordinates to the Script editor.\n\ 
    print (\ "(x, z) = (\ " + mySphere.tx + \ ", \ " + mySphere.

 tz  + \ ")\\n\");\
n\       

  }\n\ 
    "  -name randomSphere;         

  You can imagine that once an expression script grows past a several lines, escap-
ing quotes and line breaks can become a genuine nuisance and a potential source of 
errors. For this reason we generally avoid the expression command. Instead we enter 
expressions either directly in the Expression Editor or compose them in an external 
text editor, then copy and paste them into the Expression Editor. Th e latter approach 
will be used throughout the remainder of this book.   

  Putting it all together: The MEL script 
 Now that you ’ re familiar with the components of scripting in Maya, let ’ s see how they 
can work together in a complete script. Because MEL is so completely integrated in 
Maya, we encourage you to use it whenever possible in order to work more effi  ciently—
for example, by making shelf buttons to automate common tasks that might otherwise 
take longer to do through menu selections. However, where MEL truly shines is in the 
form of scripts to do things that would be diffi  cult and tedious, if not impossible using 
the UI menus and tools: build complex models and run procedural animations. 
 A MEL script can take the form of a procedure, an animation expression, or a set of 
MEL instructions that executes when sourced from a text document with the fi le 
extension .mel . Some MEL scripts create custom UI windows that provide access to 
modeling tools. Other MEL scripts create animation expressions and load procedures 
into memory. Th ere are even MEL scripts that build custom shading networks. Since 
Maya version 1 hit the market, thousands of scripts have been written for various 
purposes. Many of these are integral to custom workfl ows in animation studios, 
while others have been made freely available on 3D animation community websites. 
In the  Further reading  section we have listed a few of these community websites. 
 In the following tutorial you ’ ll explore the structure of a typical script, and how the 
components we ’ ve described in this chapter—variables, attributes, commands, loops, 
conditional statements, etc.—fi t together. 

  Text editors for writing computer code 
 For the rest of this book, the tutorials and projects involve scripts that are suffi  ciently long 
to warrant composing them in an external text editing program—preferably one that 
is designed for editing computer code—a  programmer ' s editor —with automatic tabbing, 

        A simple attribute (like 
translateZ) cannot have more 
than one input. Therefore, 
an attribute controlled by an 
animation expression cannot 
have keyframes assigned to it 
as well.      
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line numbering, and highlighting of special structures like strings. Below we ’ ve listed four 
text editors that are available for Windows either free of charge or for a nominal fee. 

jedit
   http://www.jedit.org/   

Microsoft Visual Studio Express
   http://msdn2.microsoft.com/en-us/express/

TextPad
   http://www.textpad.com/   

UltraEdit
   http://www.ultraedit.com/    

    Presentation of the MEL scripts in this book 
 Much of what follows in this book is concerned with building complete MEL scripts 
to visualize and simulate phenomena in cell biology. In each tutorial and project, we 
present scripts in their entirety, interspersed with instructions and explanations. All 
MEL code is indented from the left page margin and set in the following typeface to 
make it easy to recognize.

             // This is MEL code.          

 Th e beginning and end of a script will be clearly indicated in the explanatory text. 
Furthermore, when a script ends, you ’ ll see a comment such as:

             // End procedure.          

Occasionally, the number of letters and symbols in a MEL statement will exceed the para-
graph width of our book. To show the statement to you, we will have to break the state-
ment at a convenient point and continue it on the next line of our book’s text. When 
this happens, we will indent that next line (and, as needed, any subsequent lines) to 
mark the continuation. You, however, should type the code statement as one unbroken 
string! If, via your text editor, you were to put line feeds and carriage return commands 
in the middle of a MEL statement, the Maya will not be able to parse the statement cor-
rectly and you will get error messages. So far example in typing the MEL statement 

             setAttr ($name  + ".inPosition") -type double3 ($pos.x) ($pos.y)     
 ($pos.z);          

you, in typing up that statement yourself, would not hit your ‘Enter’ key between typ-
ing “($pos.y)” and “($pos.z)”.

 As you follow along, you can build each script yourself in a text editor or simply test 
individual pieces of code by entering them in Maya ’ s Script Editor or Expression 
Editor. Th e complete scripts are included on the accompanying CD-ROM within 
appropriate directories. For example:

18_Cell_Migration/MEL/cRule.mel         

  Tutorial 12.01: Building a MEL script 
 Other than using correct syntax and ensuring that information fl ows logically, there 
are no fi rm rules for building a script—just ideas and hard-won practical insights 
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about style and form. As we mentioned earlier, MEL was designed with artists in 
mind and is therefore quite relaxed in its requirements for structure. What follows is 
a description of the form that scripts in this book take.  Figure 12.10    outlines this form 
and shows how the script fi le relates to the search path vis-a-vis sourcing through the 
Script Editor. 
 In this tutorial you ’ ll build a procedure that creates spheres and distributes them ran-
domly within a cube of user-specifi ed dimensions ( Figure 12.11   ). Th e ability to quickly 
make and distribute objects in space is essential to 3D in silico biology simulations, 
which usually involve multiple interacting agents such as cells and molecules, and 
for structural models composed of many parts like the molecules and tissue scaff olds 
you ’ ll make in  Chapters 14  and  17 , respectively. 

  Getting started 
 Open a text editor that is external to Maya and start a new fi le. As you work through 
this tutorial, enter the code in the text fi le in the order it ’ s presented. Save the fi le 
under the name  makeSpheres.mel  within your Maya Scripts directory. If you don ’ t 
know the path to this directory, open up Maya and run the following statement by 
entering it in the Command Line:

             internalVar -userScriptDir;          

  FIGURE 12.10 

    (a) The format used for MEL scripts 
in this book. (b) A typical MEL script 
search path for Maya. (c) You can 
load a script into Maya using the 
source  command. First typing the 
rehash  command refreshes the 
search path contents list.         

File header 
(non-executing information about 
the MEL script)

START

Declare variables

Initialize variables

Evaluate expressions
• mathematics 

and logic

Assign values to attributes 
in order to update Maya's 
Dependency Graph and Scene 
Hierarchy

END

myScript.mel

(a) 

(b) 

(c) 

MEL script search path 

the Script editor
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 Save your fi le periodically as you work. When you ’ re done, you ’ ll source your MEL 
script in Maya. If you wish to work with a ready-made fi le, we ’ ve included the com-
plete MEL script on the CD-ROM:

12_MEL_Scripting/MEL/makeSpheres.mel       

  The fi le header 
 Th e fi le header is commented documentation. It usually includes: title; author 
name(s); creation and modifi cation dates; a brief description of what the script does 
and how to run it in Maya. Here ’ s the header for our sample procedure:

             / * *  *  *  *  FILE HEADER * *  *  *  * /
   / *  
   makeSpheres.mel 
   Created 0�1 September 20�0�7. 
   Modified 27 September 20�0�7. 
   Modified 21 October 20�0�7. 
   Authors: Jason Sharpe, Charles Lumsden, Nick Woolridge    

 Description: 
 This procedure makes polygon spheres and distributes them 
throughout a cube. The procedure arguments are as follows:

  $count  The number of spheres to make. 
  $radius The sphere radius. 

  $cubeSize  The dimensions of the cube. 

 To use this script: 

Save this entire script in a text file, using the .mel extension, in 
your Maya Scripts directory, then source it through Maya' s Script 
Editor. Alternately, you can copy and paste the entire script into 
Maya's Script Editor. 
  * /       

  Declare the procedure 
 Th is step is unique to procedures in Maya and wouldn ’ t be taken for an expression. 
Following the bracketed procedure arguments, the procedure ’ s contents are enclosed 
in curly brackets. Indenting the contents helps to distinguish them from the proce-
dure command itself.

             global proc makeSpheres (int $count, float $radius, float
 $cubeSize) {            

  Declare your variables 
 According to Maya ’ s syntax rules, a variable needs only to be declared immediately 
before it ’ s used. Nonetheless, grouping and declaring variables together makes them 
easier to keep track of, especially as your scripts begin to grow in length; it ’ s much 
easier to refer back to one spot in your script to check the type and meaning of a 
certain variable than to hunt for it throughout your procedure. It is also helpful to 
others who use your scripts, and a good reminder for yourself, to provide some docu-
mentation describing what variables do.
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            / * *  *  *  *  DECLARE THE VARIABLES * *  *  *  * /

  / *   
  $half Half the cubesize: used to position the cube. 
  $x, $y, and $z Used to position each sphere. 
  $d The separation between evenly distributed 

spheres. 
     * /
  float $half, $x, $y, $z, $d; 

  / *   

  $cubeName[] The return value of the polyCube command: 

   the transform node name. 

  $cubeShaderName The return value of the shadingNode command: 

   the cube shader name. 

  $sphereName[] The return value of the polySphere command: 

   the transform node name. 
     * /
  string $cubeName[], $cubeShaderName, $sphereName[]; 

  / *   
   $i A counting index. 

     * /
  int $i;           

  Initialize your variables 
 If variables require initial values before being used, this is the place to assign them.

            / * *  *  *  *  INITIALIZE THE VARIABLES * *  *  *  * /
  $half  = $cubeSize/2;           

  Main body of the script 
 Th e main body or your script is where you use MEL commands and expressions to 
create objects and determine their attribute settings.

                  / * *  *  *  *  MAIN BODY * *  *  *  * /

    // Make a cube to visualize the volume. 
    $cubeName  = '  polyCube -w $cubeSize -h $cubeSize -d $cubeSize'  ; 

    // Move the cube so that its corner lies at the world origin. 
    move $half $half $half $cubeName[0�];

    // Create a new Lambert shader. 
     $cubeShaderName  = '  shadingNode -asShader -shared lambert -name 

 cubeShader'  ; 

    // Set the color to white and make the shader transparent. 
    setAttr ($cubeShaderName  + "  .color ") 1 1 1; 
    setAttr ($cubeShaderName  + ".transparency") 0�.7 0�.7 0�.7;

    // Assign the shader to the cube. 
    select $cubeName[0�];
    hyperShade -assign cubeShader; 

    // Make and position the spheres. 
     for ($i = 0�; $i < $count; $i ++  ) { // Loop once for every sphere.

        Content enclosed by the /  *  and 
 * / characters is commented 
out and won ' t be executed by 
Maya. We use the character 
string,  *  *  *  *  to highlight section 
headings in the code.      
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    // Make the sphere. 
   $sphereName  = 'polySphere -r $radius'  ; 

   // Get a random value within the boundaries of the cube. 
   $x  = '  rand $radius ($cubeSize - $radius)'  ; 
   $y  = '  rand $radius ($cubeSize - $radius)'  ; 
   $z  = '  rand $radius ($cubeSize - $radius)';

   // Position the sphere. 
   move $x $y $z $sphereName[0�];       

  } 

   } // End procedure.         

    Source your MEL script 
 Before you can use your procedure you must fi rst declare it. As we mentioned previ-
ously, there are several ways to do this. Here, you ’ ll take advantage of Maya ’ s auto-
matic search capabilities and simply call the procedure using its name and arguments. 
Since the procedure hasn ’ t been declared and therefore doesn ’ t exist in memory, Maya 
will scan its search path contents for a fi le of the same root name as the procedure: 
 makeSpheres  (the fi le extension .mel  is optional). 

    1.      Start Maya. If Maya was already running when you started composing your 
script fi le, run the rehash command in the Command Line to refresh the search 
path contents:

   rehash;      

  2.     Open the Script Editor and enter the following code:

makeSpheres(20�, 1, 10�);

 Within a second or two you should see a cube and 20 spheres appear in your scene view 
( Figure 12.11 ). If this doesn ’ t happen, chances are you either have errors in your code and 
need to debug it, or Maya was unable to locate your MEL script fi le on its search path. In 
the latter case, you will see the following message in the Command Line:

             Error: line 1: Cannot find procedure  "makeSpheres".         

 In this case, double-check that your fi le is named correctly (it ’ s  makeSpheres.mel ) and 
that it is located in Maya ’ s scripts directory, the path that you can query with the 
 internalVar  command as demonstrated on page  269. Alternately, you may need to 
refresh Maya ’ s search path using the rehash command. 

 Once your script does execute, there will likely be some overlapping/intersecting of 
spheres. Th is is due to their random placement and the fact that the procedure has 
no contingency for intersections. On the CD-ROM we ’ ve included a version of the
 makeSpheres()  procedure called makeSpheresAvoid() which includes a simple collision 
avoidance algorithm to space spheres apart from one another. We will explore similar 
approaches to collision avoidance in subsequent chapters.

12_MEL_Scripting/MEL/makeSpheresAvoid.mel         

  Debugging your scripts 
 Finding and correcting errors is an almost unavoidable part of writing computer code, 
and MEL scripting is no exception. Rarely will you create a script and enter it in Maya 
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without some complaint from Maya about incorrect syntax, such as an undeclared vari-
able or an incorrect use of a MEL command. Syntax errors are relatively easy to debug 
when compared to logic errors. Logic errors are problems with the way your script 
executes that are not detected by Maya and can lead to incorrect results; they are often 
tricky to detect. 

  Syntax errors 
 Syntax error messages appear in the Command Line and Script Editor. Line and col-
umn numbers point you to the error location in the script. For example, the following 
error was caused by a mis-typed variable name,  $X  instead of  $x .

             // Error: move $X $y $z $sphereName[0�];
   // 
   // Error: Line 62.12:  "$X" is an undeclared variable. //          

 Th e mistake can be found and corrected in the original MEL script fi le using the line 
number  62  and column number  12  provided in the error message. To display line num-
bers in error messages: 

    In the Script Editor, choose History → Line numbers in errors.    

 Below are some common syntax errors to watch out for: 

     •       typographer’s quotation marks ( “   ” ) used instead of straight marks ( "  "  ) 
( can occur when sourcing code from an external text editor )  

   •       within an expression statement, quotation marks have not been escaped using 
the back slash character (\ " ).  

   •      unterminated MEL statement (;)  

   •      missing $ at the start of a variable name  

   •      code comments not preceded with // or surround by / *  and  * /     

  Logic errors 
 Logic errors can be dealt with in two ways. Th e fi rst, and quickest, is to compare your 
script, line for line, with the corresponding fi le we ’ ve included on the CD-ROM, and 

 FIGURE 12.11 

    The MEL procedure in Tutorial 12.01 
makes spheres and distributes them 
randomly in a cube.    

   Maya supports third-party 
debugger  software to debug 
plug-ins that you write but has no 
built-in mechanism for debugging 
MEL scripts; they must be 
debugged manually by correcting 
syntax errors and analyzing the 
outcome of logical statements. 
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look for discrepancies. Th e second, and more informative, is to print to the Script 
Editor, variables from the part of the script that you suspect is causing the trouble. 
Th is will help you to see the diff erence between what you  think  Maya is doing and 
what is actually happening. You do this using the  print  command. For example:

             for ($i = 0�; $i < $count; $i ++  ) { // Evaluate once for every sphere:
     $sphereName  = '  polySphere -r $radius'; // Make the sphere. 
    print ( "making a sphere called: " + $sphereName[0�] + "\n");
    etc …     
   }          

 Th e example above reports the variable  $sphereName  in the Script Editor, for each 
sphere created. Tracing values in this way can help locate mistakes in variable assign-
ment that may be causing logic errors. For more information on managing errors in 
Maya, refer to the Help Library.

Error handling in Maya 

 Maya Help  →  General  →  MEL and Expressions  →  Debugging, optimizing, and 
troubleshooting  →  MEL debugging features         

  Random number generation in Maya 
 By now you ’ ve seen Maya ’ s rand() function used several times. Here we ’ ll elaborate on 
random number generation and the relevant MEL functions. Essential to modeling 
events and processes that depend on probability are methods that simulate uncer-
tainly within the otherwise deterministic working of the computer ’ s digital circuitry. 
Although various ways of doing this have found favor over the years—such as stor-
ing tables of numbers drawn from unpredictable (random) natural events like fl ips 
of a coin or rolls of dice—modern techniques use a remarkable discovery: once suit-
ably processed, certain successive permutations, multiplications, and rearrangements 
of the numbers stored in a computer ’ s CPU register can mimic—often with high 
fi delity—successive draws from a random process. Because the number stream 
is not completely and exactly random, but rather a deterministic mimic of a 
random number sequence, it is conventional to call such computer-generated digits 
 pseudorandom numbers . Eventually, a pseudorandom sequence will unmask its deter-
mined nature by repeating itself, again and again as the number of calls to it exceeds 
its period. Th e initial digit used by the computer, to start its process of giving you 
back a pseudorandom number each time you ask for one, is called quite naturally 
the  “ seed ” . An important feature of pseudorandom number generators is repeatabil-
ity—the ability to generate the same stream of numbers over and over again for a 
given seed. Change the seed, and a diff erent—but repeatable—number stream is 
generated. 

 Modern programming languages off er commands letting you mimic the act of pick-
ing random numbers from specifi c probability distributions. Very popular is the use 
of the uniform probability distribution on the unit interval. Th is command mimics 
the act of drawing a number between zero and one with equal likelihood you will 
fetch back a value anywhere between the bottom value of zero and the top value of 

        In fact there is a whole 
fi eld within the subject of 

computational methods 
devoted to the invention 

and study of pseudorandom 
number generation and quality 

testing. If you are interested 
in exploring the topic more 

fully as you work through this 
book (we will often invoke 

MEL ' s pseudorandom number 
facilities), a superb starting 

point is the chapter on random 
numbers in the famous text 

Numerical Recipes  by William 
Press and his colleagues. As we 
go to press, this classic has just 

been released in its Third Edition 
(2007). Please see our  Further 
reading  section at the back of 

this book for further details. 
(Long at home in theoretical 
astrophysics at Harvard, Bill 

Press currently holds the 
Warren J. and Viola M. Raymer 

Chair in Computer Sciences 
and Integrative Biology at the 
University of Texas at Austin.)      
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one. In Maya, this is accomplished with the rand() command. Other pseudorandom 
number functions in Maya include sphrand(), noise(), and gauss() which you ’ ll use in 
 Chapter 15  to pick numbers from a Gaussian distribution in order to simulate molecu-
lar diff usion.  

  Summary 
 Just about anything you can do via the Maya UI can be done using coded MEL you 
write. A MEL script can take the form of single line or multiple lines of code that 
execute when entered or sourced through the Script Editor. Procedures are scripts 
that execute when called by name and are useful for organizing scripting tasks. 
Th ey are typically stored in text fi les external to your Maya scene fi les. Animation 
expressions are scripts that are embedded in scene fi les and execute in relation to the 
timeline—often once every time the frame number changes.  Figure 12.12    illustrates 
how an animation expression and procedures work together in a typical in silico biol-
ogy model like the ones you ’ ll explore later in this book, beginning with  Chapter 15 . 

 In this chapter we explored the basics of programming in Maya—syntax, variables, 
MEL commands, expressions and operators, conditional statements and loops—and 
how they fi t together to make a MEL statement or a script. Tutorial12.01  demon-
strated a simple approach to quickly populating a scene with multiple objects using a 
procedure—a hint of what ’ s to come in our explorations of 3D in silico molecules and 
cells in  Part 3  of this book. 

 An oft-cited strength of MEL is the ability it gives users to construct custom user 
interface elements. While we don ’ t have space here to elaborate on this topic, the 
Maya Help Library is a good source of information on this topic of creating interfaces 
using MEL. As well, we ’ ve listed literary references under  Building Custom UIs  in the 
 Further reading  section at the end of this book.

Animation expression

Finished?

yes

no

Procedure

Procedure

Procedure

Increment the time step:
frame += 1

Start

End

 FIGURE 12.12 

    Flowchart of a typical in silico model 
combining an animation expression 
and procedures. You ' ll put this 
design into practice in Chapters 15, 
17, and 18 .    
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Creating custom UIs with MEL 

 Maya Help  →  General  →  MEL and Expressions  →  Creating interfaces       

 In the next and fi nal chapter of  Part 2 , you ’ ll build on your MEL scripting skills and 
knowledge as you learn methods for writing and reading attribute values to and from 
external data fi les.
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 FIGURE 13.01 

    The many uses for Maya 
call for importing and exporting 

different data types, some 
of which are represented here.    

  Introduction 
 Th is chapter deals with moving alphanumerical data into and out of your Maya 
scenes. Th e data itself can take many forms ( Figure 13.01   ). Th ree-Dimensional model-
ers and animators, for instance, routinely work with polygon vertex coordinates 
and with motion capture (or  Mocap ) data imported from various software packages. A 
research scientist, on the other hand, may deal with chemical concentrations, meas-
urements of force, material properties, or, in the case of our own work, parameters of 
cellular and biomolecular behavior. If you ’ re working with a widely used 3D data for-
mat, chances are that an import/export plug-in exists that will make your job easier. 
Th e next section introduces the plug-ins that come bundled with Maya. Still others 
are available through third-party suppliers. If, however, your data requirements are 
not served by a ready-made plug-in, you may have to code your own. For such a prob-
lem, advanced Maya programmers will typically code plug-ins through Maya ’ s C �  �  
API. However, for novice and intermediate users, MEL off ers some handy commands 
that we ’ ll show you how to use in order to read and write external data fi les. 

 In this chapter ’ s tutorial you ’ ll import and visualize trajectory data recorded for live 
mobile cells. In the second tutorial, you will generate a textual report summarizing 
key parameters of the cell ’ s motion. 
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  Set up your scene 
 To work through the examples and tutorial in this chapter, you ’ ll need to have Maya 
running and the Project directory set up. 

    1.     Start Maya. If Maya is already running, start a new scene fi le.  

  2.     From the main menu bar, choose File   → Project →  New.  

  3.     Enter DataInOut_Project in the Name fi eld.  

  4.      For Location, browse to your projects directory or another location on your hard 
drive where you ' d like to save this project.  

  5.      Enter scenes, images, MEL, and FBX in the appropriate text fi elds.  FBX is a fi le 
type you ' ll work with in the next example .    

Note the headings  Project Data Locations  and  Data Transfer Locations , under which are 
listed the standard fi le types used in Maya workfl ows. Th ere is no fi eld for  “ custom ”  
data fi les, so you ’ ll need to create a custom data directory outside of Maya.

    6.     Press Accept to create the project and close the New Project window.  

  7.      Leave Maya and navigate in Windows to the  DataInOut_Project directory you 
created above then make a new directory (folder) called customData. The direc-
tory path should look something like the following:   

             ...\My Documents\maya\projects\DataInOut_Project\customData          

 Return to Maya and set the preferences for your scene. 

    8.     Choose Window  →  Settings/Preferences  →  Preferences.   

  9.     Choose Categories  →  Settings and make the following settings:  

   Under Working Units  →  Linear:  centimeter.

      →  Time: NTSC.       

 Any settings that aren ’ t specifi ed above can be left at their default values for now. 

    10.     Press the Save button to set your preferences.  

  11.      Select the Perspective view of your scene by pressing the  button in the 
    Layouts panel at the bottom-left of the main window.      

  Translators 
 At the time this book went to press, Maya 2008 shipped with  translators  for import-
ing and exporting many widely used 3D data formats. In order to allow Maya to start 

        FBX is an open-standard, 
platform-independent 3D fi le 
format. FBX fi les can be shared 
(via plug-ins) amongst users 
of Maya, Autodesk 3ds Max, 
Autodesk VIZ, and Autodesk 
MotionBuilder.      

        The plug-in fi le extension in 
Maya for Windows is .mll (short 
for  m aya  l ink  l ibrary).      
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quickly and to save memory, many of these plug-ins are not loaded by default when 
you launch Maya and must be loaded via the Plug-in Manager prior to use. We have 
included a sample FBX fi le on the CD-ROM which you ’ ll import into Maya in the fol-
lowing example.

File translators 

 Maya Help  →  Using Maya → Translators and Exporters       

 Th e model you ’ ll import is of a buckyBall ( Figure 13.02   )—a carbon nanostructure com-
posed of carbon and named for architect Buckminster Fuller. 

    1.      Copy the following fi le from the CD-ROM to the customData directory that you 
created inside your Maya Project directory.   

       13_DataInOut/FBX/ buckyBall.fbx

   2.     Start Maya. If Maya is already running, start a new scene fi le.  

  3.     Choose File  →  Import. This launches the Import window.  

  4.      Navigate to your  customData  directory, select  buckyBall.fbx  and press the Import 
button.

 If you get an error message stating:  “Unrecognized File Type ” or “Error reading 

file ”  it ’ s because the FBX translator plug-in was not automatically loaded when you 
start Maya. You can load it using the Plug-in Manager, as follows: 

    1.     Choose →   Window  →  Settings/Preferences  →  Plug-in Manager.    

 At the top of the Plug-in Manager you ’ ll see the plug-ins directory path—the location 
to place any plug-ins you wish to add to Maya. Below the path name is a list of about 

        A buckminsterfullerene 
(sometimes referred to as a 

buckyBall) is a carbon molecule 
composed of 60 atoms (thus its 

chemical name C60), arranged in 
a spherical conformation. They 

were discovered in the mid-
1980s by Harold Kroto, Robert 
Curl, and Richard Smalley, for 

which they won the Nobel Prize 
in Chemistry in 1996. They 

resemble the geodesic domes 
of famed inventor Richard 

Buckminster Fuller, for whom 
they were named. They have 

been investigated for their 
potential use in a number of 

medical applications, including 
the encapsulation and delivery of 
specialized antimicrobial agents.      

 FIGURE 13.02 

    Plug-ins called translators and 
exporters let you import and export 

models in formats other than Maya ' s 
native one. This model of a carbon 

buckyBall was saved in FBX format 
then imported into Maya via the 

fbxmaya.mll  plug-in.    
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50 plug-ins. Only those with  “ Loaded ”  or  “ Auto load ”  checked are current available to 
your scene. When Auto load is checked, the plug-in will be loaded automatically when 
you start Maya. 

    2.     Check the box next to fbxmaya.mll.

  3.     Press the Close button.    

 Repeat steps 3 and 4 above to import buckyBall.fbx now that the plug-in is loaded.  

  Reading and writing fi les with MEL 
  Table 13.01    lists the MEL commands designated for reading and writing external data 
fi les. To help you try out these commands, we ’ ve included a sample text fi le on the 
CD-ROM which you ’ ll reference in this section ’ s examples. Start by copying it from 
the CD-ROM to your new customData directory. 

 MEL 
command 

 Sample use  Result 

   fopen      $fi leID  =   `fopen` $fi leName "r"`;    Opens the fi le, $fi leName, for reading. 

   fclose      fclose $fi leID;    Closes the fi le. 

   feof      feof $fi leID;    Returns  1  if the end of the fi le has been 
reached, and  0  otherwise. 

   fgetline      string $line  = ` fgetline $fi leID`;    Returns the next line of $fi leName, then 
increments the line pointer. 

   fgetword      string $word  =  `fgetline $fi leID`;    Returns the next word of $fi leName, then 
increments the word pointer. 

   fread      $char  =   ̀  fread $fi leID $str`   ;    Returns the next set of bytes until either 
a null character or the end of the fi le is 
reached. Its type is specifi ed by its second 
argument, a dummy variable. 

   frewind      frewind $fi leID;    Returns the reading pointer to the start of 
the fi le. 

   fprint      fprint $fi leID "Hello World";    Prints the argument to the fi le specifi ed by 
$fi leID. 

   fwrite      fwrite $fi leID "Hello World";    Prints the argument to the fi le specifi ed by 
$fi leID. Null characters are added to the 
ends of new lines. 

   ffl ush      ffl ush $fi leID;    The results of fprint and fwrite are not 
immediately written to the fi le, but are 
stored in a software buffer. ffl ush fl ushes 
the data to the fi le and clears the buffer. 

 TABLE 13.01 

    MEL commands used for reading 
and writing external data fi les.  
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    1.     Start a new scene in Maya.  

  2.      Copy the following fi le from the CD-ROM to your DataInOut_Project/customData
directory.

               13_DataInOut/customData/ helloWorld.txt

  The fi le path 
 In order to read from and write to a fi le you must fi rst be able to locate it on your 
hard drive from within Maya. You can do so using Maya ’ s  workspace  command and 
the relative path name,  customData.  Maya uses the forward slash character to sepa-
rate directories.

             string $fileName  = '  workspace -q -fullName'  +   "/customData/
helloWorld.txt";         

 When working in Windows, you can use the back slash character (Windows NT nota-
tion) to separate directories. However, you must remember to escape each back slash 
so that it will remain part of the string. For example:

             // INCORRECT (not escaped): 
   string $fileName =      'workspace -q  -fullName ' +   " \customData\

helloWorld.txt";
   // Result: C:/  ... DataInOut_ProjectcustomDatahelloWorld.txt //    

     // CORRECT (escaped): 
   string $fileName =  'workspace -q - fullName '   + "\\customData\\

helloWorld.txt";
   // Result: C:/  ... DataInOut_Project\customData\helloWorld.txt //          

  fi letest command 
 Maya ’ s filetest command is used to query information about a fi le. Th e -r fl ag tests if 
the fi le exists and is readable. filetest can be used together with the error command 
to halt a script and warn the user if a fi le cannot be located.

             if (!'  filetest -r $fileName'  ) error  "No such file exists " ;
   else print  "File located successfully. " ;           

  Opening and closing the fi le 
 Before reading or writing a fi le, you must open it for Maya with the fopen command 
which takes two arguments. Th e fi rst is the fi le name and path. Th e second tells Maya 
whether the fi le is to be opened in read (r), write (w), or append (a) mode. Adding  �  to 
the mode letter (r+  or w+  ) opens the fi le for both reading and writing. fopen returns 
a fi le handle (identifi cation number) which is used subsequently to refer to the fi le 
by number when using any of the fi le read/write commands. When you open a fi le 
in write or read/write mode, any data you write to the fi le from within Maya over-
writes the fi le ’ s previous data. Use the append mode if you wish to add to a fi le with-
out deleting its existing contents.

             // Open the file in read and write mode. 
   int $fileID =   'fopen $fileName "r+ "'   ;          
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 If no fi le by the specifi ed name exists, fopen creates a new one. When you ’ re done 
reading or writing the fi le you must close it using the  fclose  command, as follows:

             fclose $fileID;          

  The fi le browser 
 When you can ’ t be sure of the directory in which a fi le resides, you can use the 
 fileBrowserDialog  command to launch a browser window ( Figure 13.03   ). Th e user 
can then navigate to the desired fi le, select, and load it at the push of a button.  
fileBrowserDialog  executes a command (or procedure) defi ned by the - fileCommand  fl ag and 
sends that command into two arguments: the fi le name and type. Below, we ’ ve defi ned a 
custom procedure named  fopenFile  that will be called by  fileBrowserDialog. fopenFile  
is declared with two arguments:  $fileName  and $type, corresponding to the arguments to 
be sent by  fileBrowserDialog.  Th e second argument, $type, is not used by  fopenFile  but 
must be declared nonetheless since  fileBrowserDialog  returns two arguments. Th e vari-
able $fileID has been defi ned globally so that it will be accessible outside of fopenFile. 
To try out the following code, enter it in the Script Editor in the order it appears below.

             global proc fopenFile(string $fileName, string $type) { 
   global int $fileID; 
   // Open the file for reading. 
   $fileID = 'fopen $fileName "r"' ; 

   }    

     fileBrowserDialog -mode 0� -fileCommand "fopenFile" -fileType " " 
 -actionName           " Open_File" ;          

 FIGURE 13.03 

    The fi le browser window launched 
by Maya  's  fi lebrowserdialog
command.
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 For the -mode fl ag, a value of 0 opens the browser window in  read  mode. Th ere is 
no  “ text ”  or  “ txt ”  fi le type defi ned for this command so we ’ ve left the  -fileType  argument 
empty ( " " ). Th is will invoke the default  “ Best Guess ”  option in the  “ Files of type ”  menu 
of the browser window. Th e argument passed to  -actionName  is the text that appears on 
the browser  “ action ”  button (e.g.  Open ,  Save , and so on). For a complete list of fl ags for 
the  fileBrowserDialog  command, refer to the MEL command reference in Maya ’ s Help 
Library.   

  Reading data 
 You can read data one textual line, word, or character at a time using the MEL 
commands fgetline, fgetword, and fread, respectively. For the examples below to 
work properly, you must fi rst complete the examples in the previous section which 
open and prepare for reading the fi le  helloWorld.txt.  

  The fgetline and frewind commands  
             // Use fgetline to get each line of text in helloWorld.txt. 
   // When the file end is reached, fgetline will assign the integer 0�
 to $line;    

     string $line; $line = '  fgetline $fileID'  ; 
   while ('size $line' > 0�) {

      $line = '  fgetline $fileID'    ; 
     print $line;     

   }          

 Th e printed result:

          " The scientific study of the living cell brings countless 
opportunities to apply computing and visualization to crucial 
problems, to map the cell 's molecular world and develop new 
treatments for disease. "       

Each time  fgetline  executes, Maya advances to the next new line in the text fi le. 
Th erefore, if you were to run the above 6 lines of code again nothing would print. 
Instead,  $line  would be assigned null values since there are no lines 4, 5, and 6 in the 
text fi le. To return to the start of the text fi le use the frewind  command, as follows:

             int $i; 
   for ($i = 0�; $i < 3; $i++) {

      frewind $fileID; 
     $line  �  '  fgetline $fileID'  ; print $line;     

   }         

 Th e printed result:

              " The scientific study of the living cell brings countless 
 opportunities to 
    " The scientific study of the living cell brings countless 
 opportunities to 
    " The scientific study of the living cell brings countless 
 opportunities to          

 Th e above result is obviously not very useful but it illustrates the function of 
frewind well.  

        When referring to strings, a 
null  value corresponds to the 
absence of content, which is 

sometimes denoted as an empty 
string:  "   " . A null string value is 

not the same as the integer zero. 
However, if you were to assign 

an integer variable the value of a 
null string, Maya would convert 

the null string value to a zero 
integer value. In the example 
below, $str is automatically 

assigned a null value when 
declared. Upon assigning its 

value to $int, Maya converts 
null  to zero.      

             string $str; 
   int $int  �  $str; 

   // Result: 0�//        
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  The fgetword command 
 fgetword reads a string of characters separated from other strings by blank spaces or 
tabs. Each time fgetword executes, Maya advances to the next word in the fi le.

             // Use fgetword read the first six words in helloWorld.txt. 
   frewind $fileID; 
   string $word; 
   for ($i = 0�; $i < 6; $i++) {

      $word = 'fgetword $fileID';
     print ($word +  "\n");    

   }          

 Th e printed result is the fi rst six words of helloWorld.txt:

              " The
   scientific 
   study 
   of 
   the 
   living          

 You can specify a custom separator by passing fgetword a second argument. In the 
following example,  “ words ”  (strings of characters) are not separated according to 
blank spaces but rather by the presence of a  “ new line ”  character  "\n " .

             frewind $fileID; 
   for ($i = 0�; $i < 3; $i++) {

      $word = 'fgetword $fileID "\n"' ; 
     print $word;     

   }          

 Th e result is that each line is treated as a single word:

             " The scientific study of the living cell brings countless 
opportunities to apply computing and visualization to crucial 
problems, to map the cell     's molecular world and develop new 
treatments for disease.    "         

  The fread command 
fread reads an entire set of bytes (to a maximum of 1024 on strings) until either a 
null character or the end of the fi le is reached. fread casts the data to the type 
specifi ed by a dummy variable (int, fl oat, string, or vector). Th e dummy variable is 
 $tmpStr  in the following example.

             frewind $fileID; 
   string $tmpStr, $textChars; 
   $textChars = '  fread $fileID $tmpStr'  ;          

 Since your fi le helloworld.txt contains no null characters and is less than 1024 bytes 
long, fread reads the entire text string and returns the following result in the Script 
Editor:

      "        The scientific study of the living cell brings countless 
opportunities to apply computing and visualization to crucial 
problems, to map the cell      '  s molecular world and develop new 
treatments for disease.      "          



320 PART 2: A FOUNDATION IN MAYA

  The feof command 
feof is short for  “ fi le end-of-fi le ” . It returns a value 1 if the end of the data fi le has 
been reached, and a value of 0 otherwise. In the following example, each word in the 
text fi le is read and stored in an array variable.

             int $i  �  0�;
   string $wordArray[]; 
   // Clear the variable to a null value. 
   clear $wordArray; 
   frewind $fileID;    

     while (!'  feof $fileID'    ) {
      $wordArray[$i]  �  '    fgetword $fileID'    ; 
     $i +  + ;     

   } 
   print $wordArray;          

 Th e following gets printed to the Script Editor:

              " The
   scientific 
   study 
   of 
   the 
   living 
   cell    

     etc.            ..

 To make convenient examples, we ’ ve focused on textual instead of numerical data 
so far. However, you ’ ll see shortly how numbers are handled by the same set of MEL 
commands.   

  Writing data 
 To write data from Maya into an external text fi le, you ’ ll use either of the fprint or 
fwrite commands. fprint writes its argument as a string to the fi le, whereas fwrite 
does so as binary data, terminating strings with null characters. 

  fprint 
 In this example, you ’ ll create a new fi le in and write text to it. You ’ ll save the new fi le 
in your customData directory.

             string $fileName =  '  workspace -q -fullName'   +  "/customData/
myDataOut.txt";

   // Open the file in write mode. 
   int $fileID = '  fopen $fileName  "w"';
   string $content =  "For all their mystery and beauty, ";
   fprint $fileID $content; 
   fclose $fileID;          

 Th e workspace command with the  fullName  fl ag returns your current projects 
directory  (DataInOut_Project/)  to which you added  customData/  and the fi le name, 
 myDataOut.txt.  Leave Maya and browse to your customData directory. Open your new 
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fi le,  myDataOut.txt,  in a text editor. You should see the text:   “ For all their mystery 
and beauty,”   

  fwrite 
 Here you ’ ll open myDataOut.txt in  append  mode and add a couple lines of text to it.

             // Open the file in write mode. 
   int $fileID = 'fopen $fileName "a"' ; 
   string $content =   " \nthe body 's cells do not live or work in 

isolation.";    
fwrite $fileID $content; 
   string $content =   " \nEach organ and tissue is an intricate     society 

of    cellular specialists. ";
   fwrite $fileID $content; 
   // Close the file. 
   fclose $fileID;          

 Enter the above script in the Script Editor, then open the appended fi le,  myDataOut.txt,  
in your text editor. Note the null characters that fwrite added to the end of the new 
lines. Diff erent text editors represent null characters in diff erent ways. You may see 
something like:

             For all their mystery and beauty, 
   the body 's cells do not live or work in isolation.      �
   Each organ and tissue is an intricate society of cellular 
 specialists.�              

 When you read the fi le back into Maya using fgetline or fgetword, the null charac-
ters get dropped. In the case of fread, only the characters up to each null character 
are read each time fread is called. In the following example, fread reads up to the 
fi rst null character:

             // Open the file for reading. 
   int $fileID = 'fopen $fileName "r"';
   string $tmpStr; string $textChars; 
   $textChars = 'fread $fileID $tmpStr '; // $tmpStr is a dummy variable.           

  The ffl ush command 
 Th e commands fprint and fwrite store data in a software buff er. Th ey don ’ t actually 
write the data to your hard drive until you close the fi le with the fclose command. 
You can, however, force the data to be written while the fi le is still open by fl ushing 
the buff er with the  fflush  command, as in the following example:

             string $fileName =  'workspace -q -fullName' + "/customData/
myDataOut.txt";

   // Open the file in write mode. The existing data will be
 overwritten. 
   int $fileID = 'fopen $fileName "w" ';
   string $content =  "For all their mystery and beauty, ";
   fprint $fileID $content; 
   fflush $fileID;          
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 Now browse to your Maya Scripts directory and open  myDataOut.txt  in your text edi-
tor application. It should contain the single line, “For all their mystery and beauty,” 
which was written to the fi le when you fl ushed the software buff er using fflush. Close 
the fi le in your text editor. With the fi le still open in Maya, add two more lines of 
text to it:

             string $content =   " \nthe body 's cells do not live or work in 
isolation.";

   $content +=   " \nEach organ and tissue is an intricate society of 
cellular  specialists. ";     

   fprint $fileID $content; 
   fclose $fileID; // Close the file.          

 You can view the updated contents of  myDataOut.txt  by reading the fi le back 
into Maya.

             int $fileID = '  fopen $fileName  "r"'  ; // Open the file in read mode. 
   string $tmpStr; 
   print ( "\n" � '   fread $fileID $tmpStr'  );
   fclose $fileID; // Close the file.          

 Th at ’ s it for the commands used to read and write external fi les from within Maya. 
In the following tutorial you ’ ll bring several of the techniques and commands you ’ ve 
learned to bear on a case study involving data for living cells.

Reading and writing fi les 

 Maya Help  →  Using Maya  →  General  →  MEL and Expressions  →  I/O and inter-
action  →  Reading and writing fi les          

  Tutorial 13.01: Visualizing cell migration 
 In this tutorial you will build a short MEL script to read in position data for live, 
migrating cells and use it to visualize the their trajectories ( Figure 13.03 ). Th e script will 
also analyze the data and prepares a summary report of key migration statistics. 

  The cell migration data fi le 
Th e data—recorded for  CD4 lymphocytes  (white blood cells)—was generously pro-
vided by Prof. Peter Friedl of the Rudolf-Virchow Center, University of Würzburg, 
Germany. Dr. Friedl is a pioneer in the study of cancer cell migration in 3D envi-
ronments (you ’ ll explore 3D cell migration in  Chapter 18 ). Th e data—for six cells 
undergoing planar (2D) motion—is saved in a tab-delimited fi le on the CD-ROM. 
Other common formats for numerical data include space- and comma-delimited 
(CSV), which can be interpreted by spreadsheet applications such as Microsoft Excel 
and Corel Quattro Pro, and by mathematics and statistics programs like MATLAB 
(Th e MathWorks). Below is an excerpt from the fi le you ’ ll use in this tutorial, 
cellData.txt.                                           
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TABLE 13.02

 An excerpt from the cellData
.txt fi le. To produce their cell 
migration data, Peter Friedl 
and colleagues used a special 
videomicroscopy apparatus to 
make timelapse videos of cells. 
They then subjected the video 
to analysis by cell tracking 
software to produce the data 
featured in this tutorial.

Cell trajectory data provided 
by Peter Friedl, Rudolf-Virchow 
Center, University of Würzburg, 
Germany. Used with permission. 

Time

Cell0� Cell1        Cell2        Cell3        Cell4

x    z    x    z    x    z    x    z    x    z

1 40�0� 268    335    384    592 40�6 483    184    326 50�1

2 40�0�.89 268.1    335.64    384.64    588 40�5 483    184    328    499

3 40�1.29 267.7    335.79    384.79    587 40�5 483    184    335    498

4 40�1.7 267.29    335.95    384.95    585.5 40�6.83 483    184    338.5    499

5 40�2.1 266.89    336.1    385.1    583.5 40�8.16 483    184    341    499

6 40�2 266    336.25    385.25    581 40�9 482    187    346 50�1

7 etc. 40�2 266    336.39    385.39    578    412    481    184    352    499.5

 Th e fi rst two rows contain labels for each of the data columns. Th e fi rst column lists time 
increments of 40 seconds each. Th e remaining columns list X and Z coordinates, in video 
pixel units, for each of four cells. Th e fi le you ’ ll use contains positions for six cells over a 
period of 230 time increments. Copy the fi le from the CD-ROM to your hard drive: 

    Copy the following fi le from the CD-ROM to your DataInOut_Project/customData
directory. If you haven ' t created this directory, do so now.   

13_DataInOut/customData/cellData.txt        

  Spatial and temporal scales 
 In the XZ coordinate data, each pixel corresponds to 1.4 micrometers (μm for short). 
For simplicity, let ’ s treat 1 Maya unit as being equal to 1 μm. Th erefore each X and Z 
position value stored in cellData.txt will be multiplied by 1.4 to give an equivalent 
value in Maya units. 

 Each time step in cellData.txt represents 40 seconds of real cell migration time. 
Th erefore, a 230 frame animation that shows the total displacement of the six 
cells in fact represents (230  �  40  
  60  � ) 153 minutes of real time. Furthermore, 
if the animation plays back at 30 fps, one second of viewing time corresponds to 
(153  
  30)  �  5 minutes of real time.  

  Visualizing the data 
 Visualizing the data in Maya using 3D objects in place of living cells gives you a time-
lapse view of the migration dynamics. You ’ ll represent each cell with a NURBS sphere 
of diameter  �  10 Maya units (or 10  � m—the approximate size of a lymphocyte). 
You ’ ll animate their positions, using an animation expression called moveCells, to 
match the migration data as your scene plays from frame 1 to 230. Furthermore, 
rather than read the position data in at each frame, you ’ ll read it in only once and 
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store it in a global array variable. Updating the positions of your cell models then 
becomes a matter of querying this array and setting the translate attribute values. 

 In addition to moving your cell models, your script will trace their trajectories using 
NURBS curves and assign Maya Paint Eff ects strokes to the curves so that they can 
be rendered along with the cells.  Figure 13.04    shows the scene view at the end of an ani-
mation run.  

  Plan your visualization algorithm 
 In order to get clear picture of what you require make this visualization happen, let ’ s 
look at a fl owchart—or logical diagram—of the steps to be taken in Maya ( Figure 13.05   ). 
From the fl owchart, you will build an algorithm in the form of a MEL script. Flowcharts 
are often used to plan and illustrate the logical fl ow of a computer program. If you ’ re 
unfamiliar with fl owchart conventions refer, to the legend in  Figure 13.06   .  

  Plan your summary report 
 During animation playback, you ’ ll calculate the cell migration parameters, net dis-
placement (Dnet), the total distance traveled (L), and the directedness coeffi  cient (D c ): 

1.     Directedness coeffi cient, Dc   �  Dnet/L

 When the animation has fi nished (i.e. at frame 230) you ’ ll write DC to a summary text 
fi le, using the layout shown in  Figure 13.08   . As we ’ ve written the code here, the sum-
mary data will be tab-delimited. However, tab characters can easily be replaced by 
commas or blank spaces if either format is better suited to an established spreadsheet 
workfl ow you ’ re using. 

 FIGURE 13.04 

    A rendering of cell (purple spheres) 
positions at frame 230 (the fi nal time 

step). Spline curves are used to 
trace trajectory paths and are made 

visible in the rendering by Maya 
Paint Effects strokes (in white). 

Cell trajectory data provided by 
Peter Friedl, Rudolf-Virchow Center, 

University of Würzburg, Germany. Used 
with permission.    
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 We ’ ll take a closer look at ways in which cell migration is quantifi ed and qualifi ed in 
 Chapters 16  and  18 . For now it ’ s useful to know that the  “ directedness ”  of cells, their 
tendency to move in a directed rather than random fashion, is a key cell behavior 
parameter that is implicated in many normal and pathological processes within the 
body, including embryonic development, tissue regeneration, and cancer.   

• Read cellData.txt and store the data in a matrix
• Prepare the NURBS spheres (cells) 

and curves (cell trajectories)
• Clear the statistics variables for L and Dnet

no

frame = 1
?

yes

no

• Move the cells
• Add a point to the trajectory curve
• Calculate and store Dnet

• Calculate L and Dc for each cell
• Calculate the average value for all cells of Dnet, L,

and Dc
•  Compose a data output string called $dataOut using

Dnet,L, and Dc
•  Open a new file and fprint $dataOut to it.

frame = 
230 ?

yes

Stop playback

(frame += 1)

Start

End

on press Play

 FIGURE 13.05 

    Flowchart for Tutorial 13.01.    
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  Encoding the algorithm 
 Now it’s time to take the algorithm plan outlined in  Figure 13.05  and turn it into a MEL 
script to make it happen. Below we present the entire moveCells expression, inter-
spersed with explanations where necessary. We ’ ve included the fi nished script on the 
CD-ROM. You ’ ll fi nd it useful for checking your work or for seeing moveCells in action 
right away!

  13_DataInOut\MEL\moveCells.txt       

  Composing the script fi le 
 We recommend building your MEL script in a text editor like one of those we suggested 
on page 302. Ensure that the editor is set to use straight, not curly, quotes. You can 
type the script in as you follow along with the instructions below. Th at way you can 
save it as plain text (.txt) fi le in your Maya Scripts directory periodically. You can query 
the path to your Scripts directory in Maya using the internalVar command, as follows:

            internalVar -userScriptDir;          

 In Windows, internalVar will return a path like:

            Result:  C:/Documents and Settings/User/My Documents/maya/8.5/
scripts/         

Parallelogram

Rectangle

Diamond

Flow arrow

Indicates the start or end of a program.

Indicates the direction of information flow in the
program.

Indicates an input or output operation. For instance, a
user may be required to locate and select input data to be
read by the program. Likewise, the program may output
results to a computer file, the screen, or paper.

Indicates a decision or branching point in the program.
This is manifest in the computer code as a conditional
statement or a loop.

Indicates a process or collection of processes to be
executed. For example, a mathematical operation
performed on a set of variables.

Ellipse

 FIGURE 13.06 

    Conventional shapes used to build 
fl owcharts.    
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 Give your fi le the name  moveCells.txt.  Since it ’ s to be an expression and therefore 
uses slightly diff erent syntax for assigning attributes, the script won ’ t execute prop-
erly if you source it through the Script Editor. Giving your fi le the extension  .txt  
instead of  .mel  will avoid confusion with scripts that are meant to be sourced through 
the Script Editor or loaded by procedure calls. 

 When you want to try out bits of code in Maya, simply copy and paste them from your 
text editor into Maya ’ s Script Editor. When your MEL script is complete you will copy 
and paste it into Maya ’ s Expression Editor to create the moveCells expression.   

  moveCells.txt 
 Let ’ s begin with a short header to document the script:

             /***** moveCells.txt *****/ 
   /* 
   Date: 
   Authors: Donald Ly and Jason Sharpe.    

 Description: 
 This expression reads in cell migration data from an external text 
file and uses it to move objects called "cell1", "cell2", etc. The 
cells are created if they don 't already exist in the scene file. 
This expression also calculates L, Dnet, and Dc for the cells and 
prints the results to a text file. 

 To use this script: 
 Start a new Maya scene, then copy and paste this entire script into 
Maya's Expression Editor and press the Create button. Locate and 
load the data file when prompted by the file browser. Press play to 
animate the cells and generate the summary report. 
 */       

 Now declare and assign your variables. Th is is necessary on frame 1 only—doing 
so on every frame would be redundant and eat up processing cycles—so you ’ ll start 
with a conditional statement to test the current frame number. You ’ ll be using the 
 fileBrowserDialog  command and a custom procedure called  fopenFile( )  (as previ-
ously described on page 317  ) to load the data fi le. Th erefore, you ’ ll need to make the 
 $fileID  variable global so that it can be used outside of the procedure. Cell positions 
will be stored in a matrix called  $cellPos[ ][ ] . Using a matrix allows you to store the 
data for all cells over the 230 time steps in one variable. However, unlike an array, a 
matrix cannot change size once it ’ s been declared, nor can its dimensions be set using 
variables. Th erefore you must give  $cellPos[ ][ ]  enough elements to store all of the 
position data: 230 rows and 16 columns (8 cells � 2 coordinates). 

 Th e following comments describe briefl y what each of the variables is for.

             /***** DECLARE THE VARIABLES *****/    

     /*   
            $fileName      The name of the open data file, cellData.txt. 

At frame 230� it will be used to store the name 
of your summary report file.   

   $coord      A temporary holder for the X and Z coordinate 
values.  

   $line     The result of the fgetline command.   
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   $name     The current cell or curve name.   
   $Lstring      The $L values for writing to the summary file.   
   dNetString     The $dNet values for the summary file.   
   $DcString     The Dc values for the summary file.       
     */ 
   string $fileName, $coords[], $line, $name, $Lstring, $dNetString,
 $DcString;    

     /*   
            $dataOut      A single string containing all of the information 

to be written to your summary file.       
     */ 
   global string $dataOut; 

   /*   
            $cellPos[][]      The XZ coordinates of the cells for all time 

steps.       
     */ 
   global matrix $cellPos[230�][12];   

     /*   
            $fileID     The data file handle and is assigned by fopen.   
   $cellCount     The number of cells, 6.       
     */ 
   global int $fileID, $cellCount;    

     /*   
            $L[]     The total distance by each cell.   
   $dNet[]     The net displacement of each cell.   
   $Dc[]     The directedness coefficient of each cell.       
     */ 
   global float $L[], $dNet[], $Dc[];    

     /*   
            $dNetSum     Used to calculate the average $dNet value.   
   $Lsum     Used to calculate the average $Lsum value.   
   $scale      The spatial scale of the simulation: 1.4 m

per video pixel.   
   $x     A Temporary holder for the cell X coordinate.   
   $z     A Temporary holder for the cell Z coordinate.       
     */ 
   float $dNetSum, $Lsum, $scale, $x, $z;    

     /*   
            $newPos      The position of the current cell in the current 

frame.   
   $oldPos      The position of the current cell in the 

previous frame.   
         The above values are used to calculate the 

distance traveled by the cell in one time 
step.       

     */ 
   vector $newPos, $newPos;   
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            /*         
   $i     A counter for matrix rows.   
   $j     A counter for matrix columns.       
     */ 
   int $i, $j;                  

 Only a few variables need to be assigned up front. Th e others will be assigned at 
appropriate points throughout the script. Th e playbackOptions command is used to 
set a playback range corresponding to the number of time steps in the data set: 230. 
Maya must play every frame in order for the expression to execute properly. After 
that you ’ ll declare the fopenFile procedure we demonstrated back on page 317.

 if (frame == 1) {

         /***** INITIALIZE THE VARIABLES *****/ 
   $cellCount = 6; 
   $scale = 1.4; 
   $dNetSum = $Lsum = 0�;   

     /***** MAIN BODY *****/    

     // Set the playback speed (0� = play every frame) and range. 
   playbackOptions -playbackSpeed 0� -loop once -min 1 -max 230�;   

     // Define a procedure to fopen the data file. 
   global proc fopenFile(string $mode, string $fileName, string 
 $type) {

      global int $fileID; 
     $fileID = 'fopen $fileName $mode '; // Open the file for reading.     

   }          

  Read and store the data 
 Next, you ’ ll read  cellData.txt  line by line using  fgetline  and store the X and Z posi-
tions in  $cellPos[][] . Th e fi le will be accessed and read using the combination of  file-
BrowserDialog  and the  fopenFile  procedure. In order to break each line into separate 
strings, you ’ ll use the  tokenizeList  command.  tokenizeList  collects elements (or 
tokens) of a string that are separated by white spaces or commas, and assigns them to 
a string array.

            /***** LOAD THE DATA *****/    

     /* Check if the data has already been loaded. If it has, the 
 file ID   will not be 0�. */ 

    if (!$fileID) { 

   // Open a file browser and send the  "r" mode argument to 
 fopenFile. 
    fileBrowserDialog -m 0� -fc ( "fopenFile" + " \ "r\" ") -ft " "            
 -an  "Open_File";         

 It ’ s possible that you or another user will press Escape or close the browser window 
without selecting a fi le. In this case, you ’ ll want to halt the expression and print a 
message in the Script Editor using the error command.
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             // Stop the expression if the user doesn'  t select a file. 
   if ($fileID == 0�) {

      error  "No file chosen ";    
   }    

     /* Run fgetline twice to increment to the start of the
 numerical data   (past two lines of header text). */ 
   fgetline $fileID;    
     fgetline $fileID;    

     $i  �  0� ; // The row counter. 
   $line  � 'fgetline $fileID'  ;    

     while (!'  feof $fileID') {// feof returns 1 at the file end. 

   // Break $line into tokens and store them in $cellNames. 
   tokenizeList ($line, $coord);          

 When assigning values to  $cellPos [][] using variables to specify the elements, 
remember that X and Z reside in alternating columns. Th e column element expres-
sions $j*2 and $j*2+1 for X and Z, respectively, ensure that X values occupy odd num-
bered columns (1, 3, 5, and so on) and Z values occupy even numbered columns (2, 4, 
6, etc.) for every value of $j. Furthermore, because the XZ values in the fi rst row of 
$coord[][] are all integers (refer to page 323), you ’ ll type cast $coord[] by prefacing 
it with (float). Without (float), Maya will interpret the data in $coord[][] as integers, 
based on the numbers in the fi rst row. When those integers are in turn assigned to 
 $cellPos [][] (whose type is not set by the matrix declaration—remember, a matrix 
is declared on as type  “ matrix ” ) Maya will set  $cellPos [][] to type: integer. After that 
any values assigned to  $cellPos [][] will be automatically converted to integers, which 
you don ’ t want. Th e (fl oat) preface avoids this problem by ensuring Maya interprets 
the numbers as fl oat values.

                        for ($j = 0�; $j < $cellCount; $j++) {// The column
 counter.

      $cellPos[$i][$j*2] = (float) $coord[$j*2+1] * $scale; 
     $cellPos[$i][$j*2+1] = (float) $coord[$j*2+2] * $scale; 

     }     

  $line = '  fgetline $fileID'  ; // Get the next line of data. 
  $i++; // Increment the row counter.     

     } // End while loop.     

   } // End if (!$fileID) statement.           

  Prepare the geometric models 
 Th ere are three scenarios to consider when this expression executes at frame 1. In 
the fi rst, you ’ re running this project for the very fi rst time: no spheres and no curves 
(which trace the cell trajectories) exist yet. In the second, you ’ ve reopened the scene 
after saving it with the spheres and, possibly, the curves in place. In the third, you ’ ve 
just rewound the timeline and need to reposition the spheres to their starting posi-
tions and delete the curves so that new ones can be created the next time you press 
Play. Th e following code covers all three scenarios by fi rst deleting existing curves, 
then checking for existing spheres. If none exist, new ones are created. Next, the 

        You ' ll recall from Chapter 12 that 
type casting coverts a value 
to the data type specifi ed in 

brackets.      
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spheres are moved into position according to the coordinates stored in  $cellPos [][] 
and new curves are started at the center of each cell. You need only delete the curves 
once, whereas creating and/or positioning a sphere and starting a new curve must 
occur six times—once for each of your cells.

             /***** PREPARE THE SPHERES AND CURVES *****/ 
   // Sphere represent the cells, and the curves,the cell paths. 
   // Delete existing curves. 
   string $tmpStr [ ]; 
   $tmpStr = 'ls -tr "curve*" ' ; // Make a list of curves.          

 If the size of the $tmpStr array is greater than 0, then curves exist. Th e following if 
statement checks this condition. If it ’ s true, the curves are deleted.

             if ('  size $tmpStr'> 0�) delete $tmpStr; // Delete the curves.          

 Next, the expression deletes Paint Eff ects strokes and brushes that may exist in the 
scene from a previous animation run. You ’ ll see how these nodes are created and what 
they do shortly. To check if strokes or brushes exist in your scene you can simply test 
the $tmpStr array for a zero or non-zero value with a Boolean  if  statement—rather 
than explicitly comparing the size of $tmpStr to zero, as you did for the curves above. 
If $tmpStr is of size zero, the  if  statement returns zero or  false , and doesn ’ t execute 
the next command. Conversely, if $tmpStr has a non-zero size, the  if  statement 
returns  true , and executes the next command.

             // Delete existing Paint Effects strokes. 
   $tmpStr = '  ls -tr  "stroke*"' ; // Make a list of strokes. 
   if (`  size $tmpStr`  ) delete $tmpStr; // Delete the strokes.    

     // Delete existing Paint Effects brushes. 
   $tmpStr = '  ls -tr  "brush*"'  ; // Make a list of brushes. 
   if ('  size $tmpStr'  ) delete $tmpStr; // Delete the brushes.    

     // Make and/or position the spheres, and make the curves. 
   for ($i = 0�; $i < $cellCount; $i++) {          

 Since the animation starts at frame 1 and the index of the fi rst row of  $cellPos [][] is 
 “ 0 ” , you ’ ll need to subtract 1 from Maya ’ s internal frame variable in order to it as an 
index in  $cellPos [][]. Furthermore, frame is of type, fl oat, not int. Th erefore, to use 
frame as an index variable for an array or matrix, you must preface it with (int) in 
order to explicitly type its value to an integer.

            // Store the cell coordinates in the variables $x and $z. 
  $x = $cellPos[(int)(frame-1)][$i*2]; 
  $z = $cellPos[(int)(frame-1)][$i*2+1];          

 Th e variable  $name  is used to store the name of the current cell. Below you ’ ll assign 
this variable and use it to check if the cell exists in the scene already. If it doesn ’ t 
exist, you ’ ll create a sphere called  $name. 

     $name =  "cell" + $i; // $name is the cell name. 
    // Make a sphere if one doesn 't already exist. 
    if (!'  objExists $name'  ) sphere -r 5 -n $name; 

    // Move the sphere into position. 
    move -absolute $x 0� $z $name; 

        The  objExists  command checks 
the existence of an object in 
your scene. If the object does 
exist, objExists returns  1 , if not, 
it returns  0 .      
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    // Make the curve. 
    // The curve command doesn 't require a -name flag in 

create mode. 
    curve -point $x 0� $z -name ( "curve" + $i);   

  }    

  Reset variables 
 Frame 1 is also the place to clear variables that should be reset each time you play the 
animation. If these variables are not cleared, future assignments will simply add to 
their current values rather than replace them.

            // Clear the migration statistics variables. 
  clear $L; clear $dNet; clear $Dc; 
  $dataOut = $Lstring = $dNetString = $DcString =  "  " ;         

 Now close the outer if statement that checked if Maya is at frame 1. Th e rest of the 
expression will execute for every frame greater than 1.

            } // End if (frame == 1) statement.           

  The main loop 
 Th is next section executes for every frame after frame 1, up to the end of the run at 
frame 230. It positions the cells and calculates incremental values for L ($L).

            else { // frame > 1
     // Position the cells. 
    for ($i = 0�; $i < $cellCount; $i++) {     

// Store the cell coordinates in the variables $x and $z. 
 $x = $cellPos[(int)(frame-1)][$i*2]; 
 $z = $cellPos[(int)(frame-1)][$i*2+1]; 

   $name =  "cell" + $i; 
   move -absolute $x 0� $z $name;          

 You won ’ t be using the cell name again in this loop, so you can reuse the variable 
$name to store the name of the curve that will trace out the trajectory of the current 
cell (cell $i).

  // Add to each cell 's trajectory curve. 
  $name =  "curve" + $i; 
   // The -append flag tells the curve command to add to an 
 existing curve. 
  curve -append -point $x 0� $z $name; 

  $newPos = <<$x, 0�, $z >>;

  $x = $cellPos[(int)(frame-2)][$i*2]; 
  $z = $cellPos[(int)(frame-2)][$i*2+1]; 
  $oldPos = <<$x, 0�, $z>>  ; 

  // Calculate the displacement, L, for cell $i. 
  $L[$i] += 'mag ($newPos - $oldPos)';
  // mag returns the scalar length of the vector.
     }

     }          
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  Create the Paint Effect strokes 
 Here you make the cell trajectory paths renderable by converting each NURBS 
curve to a Paint Eff ects stroke ( Figure 13.07   ). By frame 4, each cell path curve has 
4 CVs—the requisite number for a stroke to properly adhere to its curve. A brush is 
a Paint Eff ects node that controls the apprearance of a stroke. You can simplify your 
task of setting attributes for all six strokes by forcing them to use the same brush 
node via the shareOneBrush command.

             if (frame == 4) {// Add a Paint Effects stroke to each curve.

      // Make the Paint Effects strokes. 
     select  ' ls -tr  "curve*"' ; 
     AttachBrushToCurves; 
     convertCurvesToStrokes; 
     string $strokes[] =  ' ls -tr  "stroke*"' ; 
     select $strokes; 
     ShareOneBrush;             

 Next, you ’ ll set the  sampleDensity  and  useNormal  attributes of the strokes ’  shape 
nodes. Sample density determines the smoothness of the stroke—the higher the 
sampling, the smoother the curve. Use normal alignes the stroke with the curve nor-
mals so that it doesn ’ t twist and cause constrictions. To see the eff ect of useNormal 
turn it on and off  manual in the Channel Box and see what happens to your strokes.

            string $name; 
  for ($name in $strokes) {

Paint Effects stroke with a
brush applied to it

NURBS curve

Cell  (NURBS sphere)

 FIGURE 13.07 

    A Maya Paint Effects stroke is 
attached to a NURBS curve that 
traces out the trajectory of the cell 
(purple sphere).    
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      string $tmp[] = '  listRelatives -children $name'  ; 
     setAttr ($tmp[0�] + ".sampleDensity") 50� ;
     setAttr ($tmp[0�] + ".useNormal") 1;     

  }          

 Query the name of the brush node and use it to set the color and brushWidth 
attributes. You can set these manually in the Channel Box or Attribute editor to tune 
the stroke appearance once the nodes have been created.

             string $list[] = '  listConnections strokeShape1'  ; 
   // Make the stroke white. 
   setAttr ($list[0�] + ".color1") -type double3 1 1 1; 
   setAttr ($list[0�] + ".brushWidth") 0�.2; // Set the brush width. 

   } // End if (frame == 4).           

  You ' ve reached the end! 
 Upon reaching the fi nal frame, 230, you ’ ll need to make some summary calculations 
and then write the statistics out to a fi le. An easy way to test if playback has stopped 
is to run  playbackOptions  in query mode. If  playbackOptions  returns a value of 1 then 
playback has stopped.

             if (frame == '  playbackOptions -query -maxTime'  ) {

      /* 
      Calculate the net displacement, Dnet, and the average values for 
 $N,     $L, and $D. 
     */ 

     for ($i = 0�; $i < 6; $i++) {     

 //   Net displacement. 

$x = $cellPos[(int)(frame-1)][$i*2]; 
   $z = $cellPos[(int)(frame-1)][$i*2 +1];
$newPos = <<$x, 0�, $z>>; 

 $x = $cellPos[(int)0�][$i*2];
$z = $cellPos[(int)0�][$i*2+1];
$oldPos = <<$x, 0�, $z>>; 

 $dNet[$i] = '  mag ($newPos—$oldPos)'  ; 
 $dNetSum += $dNet[$i]; // Sum the net displacement for all 
 eight cells. 

  $Lsum += $L[$i]; // Sum the total distance traveled for all 
 cells. 

    $Dc[$i] = $dNet[$i]/$L[$i]; // Calculate the directedness 
  ratio.
   } 

    $dNet[6] = $dNetSum/6; // Average net displacement for all cells. 
   $L[6] = $Lsum/6; // Average distance traveled for all cells. 
    $Dc[6] = $dNet[6]/$L[6]; // Average directedness ratio for all
 cells. 
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   /* 
    Put $N, $D, and $L arrays into single-value strings to print to 
the text file. The first character in each string identifies 
the variable: L, Dnet, or Dc. Tab characters are used to 
separate each array element. 
   */ 
   for ($i = 0�; $i < 7; $i++){ 

  $Lstring = $Lstring + "\t " + $L[$i]; 
  $dNetString = $dNetString +  "\t" + $dNet[$i]; 
  $DcString = $DcString +  "\t" + $Dc[$i]; 

   }          

 One way to write the data out to a fi le is in the form of a single, long string with tab 
(\t) and new line (\n) characters used where appropriate. Th is allows you precom-
pose your output data and send it to the fi le with a single  fprint  command. To 
make the following line of code more legible we broke the variable assignment into 
several statements, each time adding a new chunk to the existing string.  Figure 13.08  
shows what the output fi le will look like when viewed in a text editor or spreadsheet 
application.

             // Compose the summary report for printing. 
   $dataOut =  "Title: Cell Migration Summary Data\n ";
   $dataOut =  $dataOut +  "Author: Your Name\n ";
   $dataOut = $dataOut + "************************************\n\n";
   $dataOut = $dataOut +  "***** Directedness Coefficient *****\n ";
   $dataOut = $dataOut +  "Cell:\t0�\t1\t2\t3\t4\t5\tAvg.\n";
   $dataOut = $dataOut +  "L" + $Lstring + "\n ";
   $dataOut = $dataOut +  "N" + $dNetString + "\n";
   $dataOut = $dataOut +  "D" + $DcString;          

 Th e following procedure is very similar to the one you used to open cellData.txt at the 
beginning of this expression. Th e diff erence with this procedure is that it opens (cre-
ates) a new fi le and then uses fprint to print the long string value you have stored in 
$dataOut to it. You will be prompted to provide a fi le name by the fi le browser which 
opens in  “ write ”  (1) mode.

                  // Define a procedure to fopen and fprint the data file. 
     global proc fprintFile(string $mode, string $fileName, string 
 $type) {     

Title: Cell Migration Summary Data
Author: Your Name
********************************

***** Directedness Coefficient *****
Cell 0 1 2 3 4 5 Average
L 424.370 260.083 243.172 1141.795 1040.529 490.636 600.098
Dnet 100.810 62.922 110.635 513.991 412.584 71.386 212.055
Dc 0.237 0.242 0.455 0.450 0.396 0.145 0.353

 FIGURE 13.08 

    The summary report fi le as it 
should appear in a text editor 
or spreadsheet application. It 
contains the migration statistics net 
displacement (Dnet), total distance 
traveled (L), and the directedness 
coeffi cient (Dc).
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  // Open the file for reading. 
  $fileID = '  fopen $fileName $mode'  ; 
  // Print the data string and close the file. 
  fprint $fileID $dataOut; 
  fclose $fileID;

     } 

     // Open a file browser and send the  "w" mode argument to 
 fprintFile. 
     fileBrowserDialog -m 1 -fc ( "fprintFile" + " \ "w\" ") -ft " " 
 -an             " Save_File";    

   }          

 Th at ’ s it for your animation expression. Be sure to save your fi le. Now it ’ s time to 
watch the  “ cells ”  move and check out your summary report.   

  Running the script 
 Before you create the expression, make sure that there are no external fi les currently 
open in Maya—you may have inadvertently left one or more open while testing out bits 
of code throughout this chapter. Enter the following code in the Script Editor. It will close
up to 10 open fi les. If you like, you can save this to your custom shelf for easy access.

             int $i; 
   global int $fileID; 
   for ($i = 0�; $i < 10; $i++) fclose $i;          

 Before anything can happen in your scene, you must create an expression from your 
script. 

    1.      Open  moveCells.txt  (either the fi le you just created or the one on the CD-ROM) in 
your text editor.  

  2.     Select and copy the entire script.  

  3.      In Maya, open the Expression Editor by entering the following command in the 
Command Line or Script Editor.

  ExpressionEditor;     

  4.     Press the New Expression button.  

  5.     LMB  +  click in the Expression text fi eld.  

  6.     Press Ctrl  +  V to paste your copied script into the text fi eld.  

  7.     Press the Create button at the bottom of the Expression Editor.  

  8.      In the Expression Name Field, replace the default name with  moveCells and 
press Enter.    

 If Maya accepts your script without displaying error messages, the fi le browser should 
open and prompt you to locate and select a fi le. 

    9.     Browse  cellData.txt , select it, and press Open_File.    
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 Th e default perspective camera settings won ’ t show enough area in your scene to view 
all of the cells and their paths at once. To remedy this, increase the far clipping plane: 

    10.     Enter the following in the Script Editor or Command Line:

setAttr "perspShape.farClipPlane” 30�0�0�0� ;

  11.     Manipulate your scene view so that all cells are visible.  

  12.     Press the Play button to start the animation.     

  Debug if necessary 
 If Maya generates one or more errors when you created the animation expression, 
you will need to debug your script: open the Script Editor to view the specifi c error 
messages and to read the line number(s) that generated them. If your text editor can 
display line numbers, use this feature to cross-reference the error messages to the 
off ending lines in your script. If you are unable to resolve the errors, you can compare 
your script to the version of  moveCells.txt  included on the book ’ s CD-ROM.  

  Play your animation 
 After you ’ ve successfully created the moveCells expression and loaded  cellData.txt , 
press the Play button to see the results. When the animation reaches frame 230, the 
fi le browser will prompt you to enter a name and choose a location on your hard drive 
for the summary fi le. After saving this fi le, open and inspect it in your text editor. 
If the columns do not line up properly, you can adjust the placement of tabs in the 
application so that there is enough width between each to facilitate the data. You 
may wish to open or import your fi le into a spreadsheet program to test how the tab-
delimited strings are parsed into spreadsheet cells. 

 Th e way you ’ ve crafted moveCells, you can rewind and play the animation as many 
times as you like. You may also want to make a quick movie of your animation using 
Maya ’ s playblast feature. For a reminder on how to do this, refer back to page  184    in 
 Chapter 7 .   

  Summary 
 Maya ’ s ability to interact with your computer ’ s fi le system makes it easy to import and 
export custom data—a feature that makes the program extensible to a wide range of 
data visualization and in silico biology simulation applications. In the tutorial above 
you read the cell migration coordinates into a variable in single step. For large data 
sets it may be more desirable to import values only as they are needed rather than all 
together which can use up valuable memory. Conversely, when running a simulation 
that calculates a large number of attribute values—say, for a population of migrat-
ing cells or a large number of interacting molecules—you can write the values out to 
a fi le periodically rather than storing them in variables or keyframing them. Until 
a scene is saved, keyframe values are stored in RAM. When RAM is used up, virtu-
ally memory takes over, which can slow a simulation considerably because it involves 
writing the keyframe information to your hard drive and then fetching it back again, 
every time the CPU needs it. Likewise, if values are stored in variables and those vari-
ables meet or exceed you computer ’ s memory limitations, your simulation can fail in 
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midstream. A safer alternative to ever-growing sets of variables and keyframes is to 
write attribute values to a fi le, frame by frame, using the ffl  ush command. Doing so 
gives the added protection of keeping a permanent record of your results as they ’ re 
produced. In the unlikely event of a Maya abort or a computer crash, your simulation 
results will be safely stored in a fi le up to the time of the crash. 

 In the next chapter, the fi rst of the case study projects in  Part 3  of the book, you ’ ll use 
Maya ’ s fi le reading commands ( fopen, fgetline, and so on) to work with a diff erent 
kind of data: the atomic coordinates stored in a protein structure fi le. You ’ ll learn a 
practical workfl ow for building biomolecules—and the fi rst step in modeling living 
systems in Maya.                       



   Part 3 
 Biology in silico
Maya in action 
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    14 Building a protein             



  Introduction 
 In this chapter you will create a 3D model of a protein using data stored in a molecu-
lar structure fi le. Th is is a natural spot to begin both because of the place of single 
molecules in the organization in biological systems and because it involves simple 
geometry and texturing in Maya. It also takes us into a very practical application of 
MEL scripting: to automate a modeling task that would be tedious if done 100% man-
ually. By the end of this chapter you know how to import data from a fi le in  Protein 
Data Bank (PDB)  format into Maya and how to use it to create surface models of a bio-
molecules similar to the one in  Figure 14.02d . Models like this are the basic elements of 
the universal visual language scientists use to describe the structure of living matter.

          Research Collaboratory for Structural Bioinformatics (RCSB)
Protein Data Bank (PDB) website:  

    http://www.pdb.org/           

  Visualizing macromolecules: A very brief history 
 Since the early models of John Dalton—who in 1808 proposed that all matter is 
made of atoms—scientists have created 3D depictions of molecules in order to 
understand their structure. Structure in turn elucidates function; how a molecule 
works as it performs its duties inside the cell. A knowledge of the function of bio-
molecules, notably nucleic acids (DNA, RNA, etc.) and proteins, ultimately leads the 
devel opment of therapies, cures, and strategies for prevention of disease. 3D mod-
els were essential to James Watson and Francis Crick as they solved the geometric 
structure of DNA. 1  In turn, the arrangement they uncovered of nucleotide bases in 
opposite pairs revealed the mechanism for copying genetic material. Th is is just one 
of many examples of the vital role played by visualization in the discovery process
in biology. 

 Moreover, while Watson and Crick, and their contemporaries, labored over large, 
handmade models, advances in computing have made creating 3D molecular models 
from structural data a relatively simple task. Maps showing the positions of atoms 
in a molecule were once transcribed by hand into 3D models by innovators such as 
Linus Pauling and Robert Corey ( Figure 14.01   ). Software now exists to convert these 
maps into letters and numbers describing the element (carbon, oxygen, etc.) and loca-
tion in space of each individual atom in a given dataset, and then turn them into 3D 
computer visualizations.

     Further reading → iVis in Action: Molecules, cells, and tissues →Interpretive 
visualization (iVis)        

  Wires, ribbons, and surfaces 
 Computer algorithms enable us to represent biomolecules in diff erent visual styles, 
each of which has its historic roots and utility. Several widely used styles are shown 
for a lysozyme molecule in  Figure 14.02   . Surface models, similar to those shown 
in  Figure 14.02d, e, and f , are used in many applications including the visu alization of 

             The PDB was founded in 1971 by 
Brookhaven National Laboratory. 

Currently administered by 
the Research Collaboratory 

for Structural Bioinformatics 
(RCSB), it is a key worldwide 

resource in structural biology. As 
of January 2008, it housed over 

48,000 structures.

The PDB data fi le format is a 
global standard for macro-

molecular structure data derived 
from X-ray diffraction and NMR 

crystallography studies.      
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 FIGURE 14.01 

    Linus Pauling and Robert Corey with 
some of their signature space-fi lling 
molecular models (c. 1951).

Courtesy of the Archives, California 
Institute of Technology.    

shape complementarity between molecules, which plays an important role in the 
drug discovery process. Simply put, candidates for a new drug are molecules which 
bind to and enhance or inhibit the activity of a certain biomolecule imp licated 
in a disease. Just as a key fi ts a lock, these molecules of complementary shape 
can recognize on another and so activate their functions in the cell. A well-designed 
drug can target this recognition event to enhance its eff ects or, if it ’ s dangerous,
block it. 
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  FIGURE 14.02 

    The structure of the digestive 
enzyme lysozyme (14.3        kDa; 1001 

atoms) was solved in 1965 by David 
Chilton Phillips. With it, he went on 

to explain how enzyme function 
relates to structure. Scale bar  �  10       Å

(a) wire backbone

(b) ball and stick

(c) ribbon

(d) CPK surface

(e) contact surface

(f) low-resolution surface.

We modeled these structures using 
the UCSF Chimera package from 
the Resource for Biocomputing, 
Visualization, and Informatics at 
the University of California, San 

Francisco (supported by NIH
P41 RR-01081).

(Petterson EF et al.: UCSF Chimera –
A visualization system for 

exploratory research and analysis. 
J. Computational Chemistry 25:
1605–1612, 2004). For molecular 

structure, we used PDB entry 2LYZ 
(Diamond R, Phillips DC, Blake CCF, 
North ACT: Real-space refi nement 

of the structure of hen egg-white 
lysozyme. J. Molecular Biology 82: 

371–391, 1974).     
        The Dalton (Da) is a unit of atom 

mass. One Dalton is 1/12 the 
mass of one Carbon-12 atom. A 

kilodalton (or kDa) is equal to 
1000 Da.      

        The Angstrom (Å) is a unit 
of length used for atomic 

dimensions and light 
wavelengths. It is equal to 

1 �  10 � 10  meters, or 0.1 nm.      

(f)(e)

(d)(c)

(b)(a)
10Å

Understanding how molecules interface with one another—their shape complemen-
tarity—accelerates the search for potential matches.

 In this chapter you will create a surface model of an  actin  molecule in a style reminis-
cent of the  CPK  models produced by Harvard Apparatus, USA. Th e CPK style, named 
for chemists Robert  C orey, Linus  P auling, and Walter  K oltun uses a colored sphere to 
represent the  van der Waals  (vdW)  radius  of each atom in a molecule (see  Figure 14.02d ). 
With Maya and MEL tools in hand for a basic surface model, you ’ ll be ready to tackle 
more advanced structures such as ball and stick, wireframe, and ribbon models of 
molecules using the data embedded in PDB fi les.  

  Level of detail 
  Figure 14.02d, e, and f , are all depictions of the surface of a lysozyme molecule
but they diff er in the level of detail ( LOD  from here on) shown. Another term that is 
sometimes used interchangeably with LOD is  resolution ; high LOD corresponds to high 
resolution and vice versa. Th ere are two factors to take into account when consider-
ing LOD for a given model. Th e fi rst is the need for eff ective visual communication. 

   Putting molecular scale in 
perspective: 

  100 meter (m)  →  a dog  

  10 � 2  meter (cm)  →  a tooth  

  10 � 3  meter (mm)  →  a pin head  

  10 � 6  meter (μm)  →  a cell  

  10 � 9  meter (nm)  →  a molecule  

10 � 10  meter (Å)  →  an atom
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For instance, how much surface detail is important to what you ’ re trying to show? 
Th e individual colored atoms in a CPK model become superfl uous when the point is 
to depict the general globular shape of a protein, and will likely even interfere with 
the perception of that shape. Th e second factor has to do computer processing. Th e 
more detail that must be calculated and drawn on a computer display, the greater the 
demand on processing speed and power. For example, a molecular dynamics simu-
lation shown as highly detail CPK models like the one in  Figure 14.02d  would likely be 
much slower to run than the same simulation containing the low-resolution surfaces 
shown in  Figure 14.02f .

 In this project, you are going to create a detailed space-fi lling model for purpose of 
rendering the atomic structure of an actin protein. In the next chapter we will intro-
duce a low LOD actin model.  

  Visualization freeware 
 Th e 1990s saw an explosion of molecular visualization (a visualization process some-
times described as  MolVis ) and modeling software applications, many of which are 
available to use free of charge. A group of these applications derive from computer 
scientist Roger Sayle ’ s RasMol 2  program for which he generously made the C source 
code freely available. While we don ’ t describe this software here, we do encourage you 
to become familiar with one or more of the key  freeware  applications listed below. 
Th ey provide a quick, interactive way to view molecular structures in diff erent styles. 
One can therefore preview diff erent structures before choosing which one to import 
into Maya. Th is is often helpful since there may be multiple PDB entries for a given 
molecule, each with features peculiar to the circumstances under which the data was 
collected.

Molecular visualization freeware 

UCSF Chimera   http://www.cgl.ucsf.edu/chimera/  

JMol   http://jmol.sourceforge.net/  

VMD   http://www.ks.uiuc.edu/Research/vmd/        

USCF Chimera is a MolVis freeware application with particular utility in our current 
in silico modeling workfl ow (see  Figure 14.03   ). With it, you can generate and export a sin-
gle polygonal object which is representative of a given molecule ’ s surface and can be 
subsequently imported into Maya. Furthermore, Chimera lets us preprocess the raw 
molecule data into varying levels of detail for the surface. Th e low-resolution actin 
model used in the next chapter was created using a Chimera-to-Maya workfl ow and is 
provided in a Maya ASCII fi le in the CD-ROM supplement for  Case study 2 . To date, we 
fi nd Chimera the best suited of the MolVis freeware programs to a MolVis/Maya sur-
face modeling workfl ow. Chimera is relatively intuitive to use and, most importantly, 
produces well-constructed 3D surface models that are easily edited in Maya.

 Th is discussion of MolVis software perhaps begs the question, with all of this molec-
ular modeling and visualization software freely available, why use Maya? Maya ’ s 
capabilities for editing, shading, animating, and rendering molecules are far more 
extensive and fl exible than those of any MolVis freeware application currently avail-
able. Maya has unmatched built-in scripting and dynamic simulation features which 

  The van der Waals atomic radius 
(vdW for short) is named for 
Johannes Diderik van der Waals, 
b. 1837, d. 1923. It corresponds to 
the distance between two atoms 
when they are  "  just touching " , 
that is when they are packed 
side by side but have negligible 
chemical bonding interaction. 
The interior of a crystal, where 
atoms can be eased together 
cheek by jowl, has been a 
favorite hunting ground for 
chemists' pursuit of van der 
Waals' radii, which in turn are 
used by structural chemists to 
represent an idealized  " contact 
surface "  for each atom when 
they push together but do not 
embrace through the added 
force of a chemical bond.

Freeware  is a term given 
to software applications made 
available to the public free of 
charge, often over the World 
Wide Web.
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are not rivaled in any current MolVis program. Maya was developed to create stun-
ning visual eff ects: the lighting, shading, and rendering capabilities of MolVis appli-
cations don ’ t even come close to Maya ’ s. To create a basic still image of a molecule 
for journal publication or classroom teaching, a program like Chimera may be all you 
need. But to go further, Maya ’ s capabilities open a world of possibilities for molecu-
lar simulation and visualization. In this case study, you won ’ t be using a MolVis pro-
gram. Instead, we want you to work with all the steps, from raw protein coordinates 
to fi nal polished model, so you will import protein structure data directly into Maya 
to build an actin model. You will automate the process using a custom MEL script and 
then light and render the model to create an image that no MolVis program can rival.   

  Problem overview 
 Your objective is to prepare a MEL script that creates a CPK surface model of a mol-
ecule using structure data contained in a PDB fi le. Th is model will be static, intended 
for structure visualization, so there is no need to rig it for dynamic behaviors. You 
will use the MEL script fi rst to create a small adenosine triphosphate ( ATP ) molecule 
( Figure 14.04   ). Th is makes a great learning exercise. You ’ ll follow that up with the big, 
complex actin protein. Finally you will make a production–quality rendering of the 
actin. 

  ATP: The energy currency of life 
 Th e  nucleotide , ATP, is a source of energy for many metabolic processes in living 
organisms. It is a small molecule, weighing 0.5 kDa, with only 31 atoms (excluding 
hydrogen) and therefore makes good data with which to try out your script since the 
PDB fi le can be loaded and modeled quickly; if there is an error in your script, you 
won ’ t have to wait long to fi nd out!  

  Actin 
 Actin is 43 kDa  structural protein  that is plentiful in  eukaryotic  organisms and criti-
cal to many biological functions including cell movement and muscle contraction. 

Mol Vis
app.

Mol Vis
app.

Molecule
data files

Data file
preprocessing Maya

Rendering,
postprocessing

Maya-ready
visualization
construct

Maya FIGURE 14.03 

    A workfl ow that leverages molecule 
surface modeling capabilities in 

MolVis freeware applications for 
advanced visualization in Maya. We 

have found the 3D models created in 
UCSF Chimera (versus other MolVis 
freeware programs) to be the most 

compatible with Maya.    
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1 Å

 FIGURE 14.04 

    The nucleotide, ATP, is a vital 
source of energy for a large number 
of metabolic processes within cells. 
It is a small molecule and has a 
distinct shape, making it an ideal 
test subject for building your fi rst 
molecule in Maya.    

Relative to ATP, actin is fairly large, comprised of some 2,880 atoms. It is a typical 
polypeptide—a chain of amino acids, folded in upon itself to produce a higher-order 
functional unit. 

 Under the right conditions, actin polypeptides form regular chain-like polymers called 
actin fi laments. An individual actin chain is called a  subunit  within a fi lament and a 
 monomer  when in the unpolymerized state. Actin fi laments are a major component 
of the protein scaff olding, or  cytoskeleton , that give a cell its shape.  Figure 14.05a    shows 
actin fi laments (stained red) comprising the cytoskeleton in a fi broblast, a kind of con-
nective tissue cell. It is the assembly and disassembly of actin fi laments that enable 
cells to change shape and move in their surroundings. In muscle cells, contraction 
is caused by motor proteins, called myosin, ratcheting along actin fi laments.  Figure 
14.05b  shows actin fi laments arranged in contractile fi bers, called myofi brils, within 
cardiomyocytes. 

 Th e distinctive shape of the actin monomer ( Figure 14.06   ) determines its orientation rel-
ative to other subunits in a fi lament and, ultimately, the shape and physical and chem-
ical properties of the fi lament itself. Th e actin monomer has two recognition regions 
on its surface; their properties give actin a fundamental polarity in the polymerized 
state. Th ese are commonly referred to as  “ barbed ”  and  “ pointed ”  or  “ plus ”  and  “ minus ”  
ends of the actin fi lament. An obvious cleft between the two peaks of the pointed end 
reveals the binding site for a nucleotide—one of ATP or its de-energized form, ADP 
(adenosine diphosphate), which is ATP less one phosphate group. 

 Its many roles make actin one of the most widely studied of all biomolecules. Th ere is 
plentiful literature of science journal articles devoted to its structure and function. 
As well, actin fi lament assembly has been the subject of numerous computational 
modeling eff orts. Th erefore, you have much material to draw upon when using actin 
as a test subject around which to build 3D animation-based strategies for modeling 
biology.  
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Pointed (minus) end

Barbed (plus) end

monomer
= subunit filament

(polymer)

10 Å

10 Å

 FIGURE 14.06 

    Actin momomer and fi lament. The 
monomer is shown as a contact 

surface model with its bound 
nucleotide (ADP) represented as 
a CPK model. The actin fi lament 
is depicted using low-resolution 
surfaces of the monomers. The 

surfaces were generated by USCF 
Chimera then modifi ed and rendered 

in Maya.    

(b)(a)

  FIGURE 14.05 

    Actin fi laments labeled with 
phalloidin conjugated to a red 

fl uorescent dye.

(a) The actin cytoskeleton of a 
cultured fi broblast cell.

(b) The actin component of 
myofi brils within a cultured 

cardiomyocyte.

Images courtesy and copyright © 
2006 Sylvia Papp and Michal Opas,  

Institute of Medical Science, University 
of Toronto. From research supported 
by the Canadian Institutes of Health 

Research (CIHR).     

 The CPK look 

 What ' s in a look? 
 Atoms and molecules are much smaller than the wavelength of visible light (5,000–
7,000 Å). Th is makes them completely invisible to the naked eye. Even stranger is 
the fact that atoms and their building blocks, the atomic nuclei which center atoms 
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and give them most of their weight as well as the electrons that make atoms stick 
together by whizzing round them in smeared-out orbits, don ’ t move the same way 
baseballs or satellites do. Physicists have determined that electrons play by diff erent 
rules—the rules of atomic physics, which makes them very stealthy: unlike a base-
ball or the space shuttle, there is at no one moment any place an electron is  “ at ” , even 
though its action glues atoms together in molecules. Like fi ckle friends, electrons and 
nuclei have only places they are  likely  to be found ( Figure 14.07   ). 

Molecules, including the big molecules comprising living cells, are eff ectively fl ocks 
of electrons in motion through the space rendered by the centers of the atoms (the 
atomic nuclei) of the molecules. Since the electrons are not only too miniscule for the 
eye to see if they could be pinned down—but in fact  can ’ t  be pinned down—atoms and 
molecules do not have a  visual appearance  in the sense we usually apply that term to 
the look of a friend ’ s face or a gorgeous sunset. Th e pictures of atoms and molecules we 
see throughout today ’ s media are therefore not a true-life rendering of a visual appear-
ance we would all see if only the molecule could be expanded to the size of a baseball. 
Th ese pictures are visual interpretations that artists, working with scientists, have 
made about certain vital properties of these molecules, which have a natural spatial 
interpretation. Two of these are very important for you to keep in mind in working 
with PDB and other molecular structure data. First, atomic nuclei, being a lot heavier 
than their fl ightier cousins the electrons, are more settled. Th ey are more likely by far 
to frequent rather small regions (compared to the typical  “ size ”  of the atom, which 
we ’ ll get to next) of space. Th e PDB coordinate you see for an atom ’ s location is a mea-
surement that says where the center of this preferred hang-out region is located.

Th e space-fi lling molecular models don ’ t simply show where the atomic nuclei are, 
however. Compared to the size of an atom, the atomic nuclei are just specks. What 
is the space-fi lling substance portrayed in these evocative, often beautiful visual 
constructions? It all comes back to the electrons and their duties as the  “ glue ”  that 
bonds atoms together into molecular frameworks. Backing up the electrons that 

10 Å
12 inches

  FIGURE 14.07 

    (a) A plastic CPK model
of DNA, built circa 1972
and photographed by
us in 2006; scale:
The ruler is 12 inches long.

(b) A computer-generated CPK 
model of DNA; scale bar �  10 Å      . 
Note the absence of hydrogen 
atoms (white spheres) in the 
computer model.

Plastic DNA model courtesy of Dr. 
Laurence A. Moran, Department of 
Biochemistry, University of Toronto, 
Canada. Computer model created in 
Maya using data from PDB entry 1A36 
(Stewart L, Redinbo MR, Qiu X, Hol 
WG, Champoux JJ, A model for the 
mechanism of human topoisomerase I. 
Science  279: 1534–1541, 1998).     

  The plastic CPK models 
manufactured by Harvard 
Apparatus (originally by Ealing 
Scientifi c Ltd.) use the color 
black to represent carbon. 
The convention in computer 
graphics is to use grey instead—
presumably because black tends 
to fl atten rather than accentuate 
form in print or display graphics, 
and because black objects are 
diffi cult to see against dark 
backgrounds.
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join the glue is an electron pack which prefers the space closer to the atomic nucleus, 
between the boundary electrons and the nucleus. Th is intermediate region of space 
is their turf and so on and they resist having it invaded: if you try to push two atoms 
together, you quickly fi nd the inner electrons pushing back. Th e atoms bounce apart, 
or at least back to the distance they settle into under the joint infl uence of the gluing 
action of the outer electrons and the turf defense mounted by the inner electrons. 
Using the equations of atomic physics, chemists can map out how far from the atomic 
center or nucleus it is to the edge of this turf zone. So equipped, they can then meas-
ure this distance for specifi c atoms. So although atoms and molecules are jaw-drop-
pingly strange and complicated when thought about scientifi cally—in terms of atomic 
physics and its esoteric math—atoms can behave toward on another in impressively 
simple ways: if they get too close, they act (thanks to the turf defense mounted by the 
inner electrons) rather like hard balls. Th e diameter of the hard balls is an estimate 
of the spatial turf over which the inner electrons resist intrusion, reduced a bit by 
any gluing action of outer electrons extending  their  turf into the space of neighbor 
atoms. Th e van der Waal ’ s (vdW) radius is the name given to this turf size, in honor of 
an early investigator of atomic collisions. So, the inspiration of the space-fi lling 
molecular model is to ask not how the molecule would look to us if we made it bigger 
(though to atomic math it has no such  “ look ” ), but how as artists we might instead 
visualize how the atom looks to another atom or molecule. As you work with the CPK 
and other visual languages then, keep in mind you are modeling visual analogues 
of rather abstract things—the edges of quantum turfs that let molecules sense one 
another!

  Atoms as spheres 
 CPK models represent each atom as a solid sphere of radius equal to the atom ’ s vdW 
radius.  Table 14.01    lists the vdW radii for the atoms that make up ATP and actin. Th ese 
spheres are large compared to those used in a ball-and-stick model, and obscure the 
bonds between atoms. For convenience, we will deem one Maya unit equal to 1       Å. You 
will model each CPK sphere with a NURBS sphere, using the MEL command,  sphere , 
as follows:

             sphere -r $radius -n $atomName;           

  While many publications and 
MolVis applications agree on 

colors for the most common 
elements (gray for carbon, white 
for hydrogen, red for oxygen and 

so on), they lack consistency in 
their RGB values. For instance, 

the blue used for nitrogen in 
one application may look quite 
different from the blue used in 

the next.

 Element  C  H  N  O  P  S 

 vdW radius (Å) 1.70    1.20    1.55    1.40    1.90    1.85

 CPK color   

gray    white    blue    red    orange    yellow

 RGB values 
(normalized 
from 0 to 1)

R: 0.7
G: 0.7
B: 0.7

R: 1.0
G: 1.0
B: 1.0

 R: 0.0 
 G: 0.5 
 B: 1.0 

 R: 1.0 
 G: 0.0 
 B: 0.0 

R: 1.0
G: 0.5
B: 0.0

R: 1.0
G: 1.0
B: 0.0

 TABLE 14.01 

   The vdW radii and CPK colors 
for the elements that occur in ATP 

and actin.

vdW radius data from: Pauling L. 
The nature of the chemical bond and 

the structure of molecules and crystals,
Cornell University Press, Ithaca, 

NY, 1960.  
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 Color and material 
  Table 14.01  shows the CPK colors for the elements that comprise ATP and actin. By 
assigning a shader to each group of elements (all of the carbon atoms, for example), 
you will be able to easily adjust the colors after the model is built. 

 Th e semi-gloss quality of the material assigned to the spheres in  Table 14.01  is typi-
cal of computer-generated CPK models and recalls the original plastic CPK models 
manufactured by Harvard Apparatus, Massachusetts, USA ( www.harvardapparatus.
com ). Th is look can be achieved in Maya using Blinn shaders, which you can make 
and assign to atoms either during or after the creation of the model. You will do the 
former, automating the creation and assignment of the shaders within the main MEL 
script, using the following command:

             shadingNode -asShader -shared blinn -name $shaderName          

What creates the appearance of  “ semi-gloss ”  is a diff use specular highlight from the 
main light source. Th e Blinn shader attributes  Eccentricity  and  Specular Roll Off  
control the size of the highlight and the distance over which its intensity fades to 
zero. Th ese attributes can be adjusted after the model and shaders have been created 
by the MEL script.

  Data 
 You will use two PDB fi les in this project. Th e fi rst,  atp.pdb , is located on the book ’ s 
CD-ROM and contains atomic coordinates (xyz positions) for the atoms in an ATP 
molecule. You ’ ll download the second fi le,  1j6z.pdb , from the RCSB PDB website.  1j6z.
pdb  contains the atomic coordinates for an actin protein monomer. 3

 Start by creating new project directory called CPK_Project on you harddrive, and 
within it, a directory called PDB. Th e resulting fi le path should look something like:

             \My Documents\maya\projects\CPK_Project\PDB          

 Copy the fi le called  atp.pdb  from the CD-ROM to the PDB directory you created.

            14_Protein/PDB/atp.pdb          

 In a Web browser, navigate to the following website: 

     http://www.pdb.org/pdb/explore.do?structureId � 1J6Z     

 Under the heading  Download Files , click on  PDB text . When prompted, browse to your 
PDB directory and press Save. Th is download/save process may vary slightly from 
one Web browser to another. What matters is saving the fi le  1j6z.pdb  to the new PDB 
directory on your computer. Next, open and inspect  1j6z.pdb  in a text editor. 

  PDB fi le format 
  Figure 14.08    shows a several lines taken from the middle of the actin fi le  1j6z.pdb . It 
describes how data is to be organized in rows and columns within a text fi le. Each 
record occupies a row, while columns are reserved for specifi c data types. For this 

  The  -shared  fl ag for the 
createNode  command is 
important. It ensures that the 
node will only be created if one 
of that name doesn ' t already 
exist. Use it when you want to 
create only one of each type of 
shader. For instance, once the 
fi rst carbon atom is created, a 
carbon shader is made. When a 
second carbon atom is created, 
you ' ll want to assign it the 
existing shader rather than 
create a new one.
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project, you ’ re interested in the Cartesian coordinates of individual atoms, which are 
stored in record entries of types ATOM and HETATM. HETATM records are for water 
molecules and for  heterogens —entries that are not part of amino or nucleic acids, 
such as inhibitors, solvent molecules, and ions. Your actin model will not include het-
erogens, but they are listed in the PDB fi le nonetheless.

          Descriptions of the PDB format for ATOM entries  

   http://www.wwpdb.org/documentation/format23/sect9.html           

A column in the PDB format is one character wide. Th erefore one data type will often 
occupy several columns. For example, columns 1 through 6 are reserved for the record 
name (ATOM or HETATM, for instance). Columns 7 through 11 are reserved for 
data called  “ Atom serial number ” , and so on. Th ere are 16 data types in all reserved 
for ATOM and HETAM entries. However, real PDB fi les rarely contain all types ( Figure 
14.08  is a fairly typical example). Th is results in blank or empty columns, which is not 
a problem as long as your program that reads and interprets the fi le counts charac-
ters (including blank spaces) correctly and therefore knows exactly when it arrives 
at a particular data type. If, on the other hand, the program reads in data word-by-
word instead of character by character, it may mistakenly attribute data to the wrong 
column.

 Maya falls into this latter category; it reads  word-by-word  using the  fgetword  com-
mand. We therefore urge you always to preview the PDB fi le in a text browser to 
determine which columns Maya needs to locate the appropriate data. From here on, 
we will use the Maya interpretation of a column, as shown in  Figure 14.08  .

record name
atom #

atom name
residue name (amino acid)

chain ID
residue sequence #

x-coordinate
y-coordinate

z-coordinate
occupancy

temperature   
factor

element

ATOM    501       CG     GLU  A 72 3.875          -4.227       32.802 1.00     15.62 C
ATOM    502       CD     GLU  A 72 3.736          -4.655       34.246 1.00     17.66  C
ATOM    503       OE1   GLU  A 72 2.721          -5.280       34.611 1.00     20.39 O
HETATM  504       N       HIC  A 73 3.185          - 5.256      29.261 1.00     15.85   N
HETATM  505       CA     HIC  A 73 4.005          -6.030      28.341 1.00     19.07 C

 FIGURE 14.08 

    Excerpt from the PDB fi le, 1j6z.
pdb3 for the crystal structure of 

uncomplexed rabbit actin. Note that 
each row corresponds to a unique 
atom and that the columns contain 

data specifi c to that atom. These are 
the column entries commonly found 
in PDB fi les. Those that you ' ll use in 
your MEL script are printed in black.    

  In most PDB fi les, hydrogen 
atoms are absent because they 

are too small for the resolution of 
X-ray diffraction crystallography. 

In contrast, hydrogen atoms are 
present in data derived by NMR 

crystallography.

  Important note on PDB fi le 
column numbers: Since Maya 
reads fi les word-by-word and 

not character by character, 
one can truly be sure which 

columns certain data appear in 
only by opening and inspecting 

a given PDB fi le in a text editing 
application such as Wordpad in 

Windows or TextEdit in Mac OS.
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 To create a vdW surface model, the columns we are interested in are: 

     record name   
  Th is identifi es the type of data to follow in the row. For the present example, 
we ’ re interested only in ATOM records. HET or HETATM records include hydro-
gen and oxygen atoms belonging to water molecules and heterogens. Th e record 
name enables us to fi lter out these and other unwanted entries.  

   chain ID   
  It is worth noting that  atp.pdb  and  1j6z.pdb  have only one chain each, but you ’ ll 
want your solution to accommodate other PDB fi les, many of which contain two 
or more chains. Th at way you can use the same script to handle any PDB entry, 
regardless of the number of chain it contains.  

   x-coordinate y-coordinate z-coordinate   
  Orthogonal coordinates in angstrom (Å) units, relative to the reference origin 
chosen by the fi le authors.  

   element   
  Th e one- or two-digit shorthand for the chemical element.    

 Th e remaining columns don ’ t concern us for this project and won ’ t be dealt with here. 
For more information on these and other PDB fi le format specifi cations, visit the fol-
lowing link:

          PDB fi le format specifi cations  

   http://www.rcsb.org/pdb/fi le_formats/pdb/             

  Naming your models 
 Assigning unique names to objects is essential to the way Maya operates. It fol-
lows that your script must create uniquely named objects as it builds a molecule. 
Furthermore, it is often helpful to have hierarchical groupings of objects for easy 
selection. For instance, if all carbon atoms are in one group, you can quickly assign a 
new shader to them or by assigning it to the group. Likewise, if you wish to transform 
a molecule, you can do so by transforming the molecule group node. Th is strategy is 
consistent with Maya ’ s scene hierarchy which maps transformations and deforma-
tions through parent/child relationships. We will use the following naming conven-
tion for a molecule, its chains, and their atoms. To remain consistent with Maya ’ s 
default naming strategy, numbering will begin at zero (0). 

    molecule0 (the fi rst molecule created in the scene)  

    →  chain_A0 (chain A belonging to the fi rst molecule)  

      →  elementGroupA0 (a group of like atoms within chain A)  

     →  element (an individual atom; e.g.  " carbon " )    

 Unique  molecule ,  chain , and  group  names will allow you to build hierarchical relation-
ships without encountering naming confl icts. Since individual atoms have no children, 
you won ’ t need to select them by name in order to parent objects underneath them. 
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Th erefore atoms don ’ t require unique names. You ’ ll let Maya assign default names to 
atoms in order to make them unique only within their parent  atomGroup  nodes.   

  Methods: Algorithm design 
 Simply stated, your solution in Maya must do the following:       

Read data Create, position, and color
spheres

User input PDB file
information

 Due to the repetitive nature of creating, positioning, and coloring almost 3,000 
atoms, this problem is well suited to procedural modeling using a MEL script. After 
Maya creates and shades the models, you can then light and render your scene using 
the techniques described in  Chapters 10 and 11 . 

  Flowchart 
 Now let ’ s make a plan by identifying the necessary steps and fl ow control for your 
molecule-building procedure. In the fl owchart show in  Figure 14.09   , the steps in rectan-
gles will become MEL commands, while those in diamonds will become conditional 
statements and loops in your script. You will build the script in two parts. One proce-
dure will read and store data. A second procedure will use the data to create, position, 
and shade the atoms.   

  Methods: Encoding the algorithm 
 You ’ ll now turn each element in our fl owchart into a form that Maya understands: 
the MEL script. Your script will take the form of a procedure (a user-defi ned func-
tion in MEL). Essentially, the procedure function,  proc , wraps many separate instruc-
tions into a single global command, specifi ed by the procedure name, that you can call 
any number of times from anywhere in the Maya environment. Let ’ s build the code 
in pieces, parceled by command or logical task, with a brief explanation for each. To 
work as a procedure in Maya, all lines of code must be entered together, in the same 
sequence that they appear in the text. Th e complete MEL script can be found on the 
book ’ s CD-ROM. You ’ ll fi nd it useful for checking your work or, if you want a very fast 
results, seeing  cpk.mel  in action right away!

                  14_protein/MEL/cpk.mel          

  Composing the MEL script 
 We recommend building your MEL script in a text editor that is well suited to script-
ing (see page  302    in  Chapter 12 ). You can type it in as you follow along with the 
instructions below. Th at way you can save a script fi le periodically. Save it in your 
 Maya Scripts directory  which, in Windows, will be something like: 

    C:\Documents and Settings\User\My Documents\maya\8.5\scripts    

 Use the following fi le name: 

    cpk.mel
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go to
next
line

read & store record:
• chain ID
• x, y, z coordinates
• element

open PDB file

is record
of type

"ATOM"?

yes

no

end
of file?

yes

no

START

END

make, position,
and shade spheres

read record type

procedure #1
cpk()

procedure #2
vanDerSphere()

 FIGURE 14.09 

    Flowchart for the cpk.mel script to 
read data from a PDB fi le and then 
create a CPK model in Maya.    

 When you want to try out bits of code in Maya, simply copy and paste them from 
your text editor into Maya ’ s Script Editor. When your MEL script is complete you can 
load it into Maya in one step by sourcing the text fi le. We don ’ t recommend compos-
ing anything longer than a few lines of code in the Script Editor. Its editing capabili-
ties are elementary and if Maya crashes, you will lose anything you typed in that you 
didn ’ t explicitly save out.   
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  cpk() Procedure 
 Th e script starts with the procedure command proc. Your procedure, cpk(), is going to 
take three variables for arguments. As procedure  “ arguments ” , these variables are 
declared within the brackets next to the proc command (below).

             /***** cpk.mel *****/ 
   /* 
   Date: created February 0�1 20�0�6; modified August 15 20�0�7.
   Authors: Jason Sharpe, Charles Lumsden, Nick Woolridge.    

 Description: 
 This procedure reads ATOM entries from a PDB file. It calls a 
second procedure to make and shade a sphere to represent each atom 
according to its element (oxygen, carbon, etc). The end result is 
a CPK-style model built from sphere representing the van der Waals 
radii of the constituent atoms. 

 The procedure arguments are as follows:
            $chaincol     The pdb file column in which the chain letters reside.   
   $xcol      The column in which the x-coordinates reside 

(starting with 1).   
   $elemcol     The column in which the element (atom) names reside.       

 To use this script: 
 Save the entire script in a text file, using the .mel extension, in 
your Maya Scripts directory, then source it through Maya's Script 
Editor. Alternately, you can copy and paste the entire script into 
Maya's Script Editor. 
 */ 

     global proc cpk(int $chainCol, int $xCol, int $elemCol) {

     // Start of cpk()...             

Next you ’ ll declare all variables and clear those whose values should be reset each 
time the script is run. Defi nitions of key variables are commented in the code below. 
Th e others will be explained as they are used in the script.

             /***** DECLARE THE VARIABLES *****/ 
   /*   
            $filename      A string that stores the name of the PDB file 

being read.   
   $molNames[]     A list of objects named  "molecule* ".  
   $chains[]     The chain name for each line of the PDB file.   
   $chain     A single array element within $chains[].   
   $atom     The name of the current atom.   
   $elements[]     The element name for each PDB file line.   
   $element     A single array element within $elements[].   
   $word     The return value of the fgetword command.   
   $letters[]     A list of letters: A, B, C, etc.   
   $letter     Each element in the array $letters[].   
   $group      The node name for a group of like elements 

belonging to a given chain if that node exists.   
           For example: $group  = "oxygenGroupA ".  

Reminder:  small and capital 
versions of the same letter are 

different characters as far as 
MEL is concerned. Keep this in 

mind when you name, assign, 
and query variables.

You need not specify the 
Y- and Z-coordinate columns in 

the procedure call since they 
always follow the X-coordinate. 
For instance, if $xcol  =  7, we can 

count on the Y and Z columns 
being 8 and 9, respectively.

We have not closed the curly 
brackets  "  {  "  here because  cpk()

continues below.
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   $groupName     The name of a group node yet to be created.   
   $newNodeName     An empty transform node used to group all chains.       
     */ 
   string $filename,  $molNames[], $chains[], $chain, $atom,

$elements[];
   string $element,  $word, $letters[], $letter, $group[],

$groupName, $newNodeName;    

     /*   
            $xyz[]     The XYZ coordinates for each PDB file line.       
     */ 
   vector $xyz[] ;    

     /*   
            $x, $y, and $z     Coordinate values read from the PDB file.   
   $rad     The van der Waal's radius a given element.   
   $cpkColor[]      RGB color values used to set the element 

shader colors.   

   $xyzArray[]     Stores the vector $xyz as an array.       
     */ 
   float $x, $y, $z, $rad, $cpkColor[], $xyzArray[];    

     /*   
            $molNum      The size of $molNames--the number of objects 

named  "molecule* " in your scene.   
   $fileId      The index number of the file opened by the 

fopen command.   
   $i and $j     Counters.       
    $lineNumIndex for the variable arrays including $xyz[]. 
   */ 
   int $molNum, $fileId, $i, $j, $lineNum;    

     /*   
            $molNumStr      The number of existing nodes called molecule 

converted to a string for the purpose of 
naming objects.       

     */ 
   global string $molNumStr;         

 Th e  clear  command (below) empties an array, setting its size to zero. Th is is good 
practice if you plan to run the script in succession for diff erent molecules. Setting the 
counters  $i  and  $j  equal to zero is good form, although not entirely necessary since 
they will be initialized when they are used subsequently.

             /***** INITIALIZE THE VARIABLES *****/ 
   $i  = $j = $lineNum = 0� ; 
   clear $xyz; 
   clear $elements; 
   clear $chains;           

 Check for other molecules in the scene 
Before querying the PDB fi le, the script will take quick stock of what items, if any, 
are in the current Maya scene. Th e requirement for unique node names can lead to 
trouble if you run  cpk.mel  more than once in one scene fi le. As the script creates and 
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First execution Second execution Third execution

molecule0 molecule1 molecule2
chain_A0 chain_A1 chain_A2

carbonGroupA0 carbonGroupA1 carbonGroupA2
carbon carbon carbon
carbon1 carbon2 carbon3

hydrogenGroupA0 hydrogenGroupA1 hydrogenGroupA2
hydrogen hydrogen hydrogen
hydrogen1 hydrogen6 hydrogen11
hydrogen2 hydrogen7 hydrogen12
hydrogen3 hydrogen8 hydrogen13
hydrogen4 hydrogen9 hydrogen14
hydrogen5 hydrogen10 hydrogen15

oxygenGroupA0 oxygenGroupA1 oxygenGroupA2
oxygen oxygen oxygen

 FIGURE 14.10 

    Objects must have unique names 
to allow for multiple molecules to 

be created in one scene fi le. In this 
example, the fi nished MEL script 

was run three consecutive times in 
a single Maya scene. It called the 
same data fi le each time: ethanol 

(C2 H 6 O).

groups objects, it could encounter more than one Maya node with the same name, 
then falter. To prevent this, the script must account for existing objects and take 
appropriate action. Counting the number of existing  molecules  (the top node in the 
hierarchy created by  cpk.mel ) at the start of the script allows you to specify the 
 number  of the  molecule  being created in the current execution. Th is number will in 
fact be equal the number of existing molecules because we begin counting at 0. For 
example, if no molecules currently exist in the scene, the script will create a node 
called  molecule0�  .  Figure 14.10    shows your hierarchical naming structure applied to three 
molecules that were created with subsequent executions of  cpk.mel  within one scene 
fi le. To count the number of  molecules  in the scene, you will use the ls command to 
list objects named  molecule*  and then count the number of objects in the list using 
the size command. Th at count is then converted to a string and stored in  $molNumStr  
for the purpose of naming the  molecule , chain, and  elementGroup  nodes later on.

             // Get a list of objects called molecule*. 
   $molNames  = '    ls -tr  "molecule*"  '      ; 
   $molNum  = size($molNames); 
   // convert $molNum to a string. 
   $molNumStr  = $molNum;         

  Open the PDB fi le 
 In  Chapter 13  we introduced a group of MEL commands used to read and write fi les. 
Here you ’ ll use the  fileDialog  command to open a window and allow the user to 
browse for a fi le.

             // Open the PDB file. 
   $filename  = '     fileDialog -directoryMask  "*.pdb"'      ;          

 Th e  directoryMask  fl ag allows you to specify the directory and must contain a fi le-type 
specifi er such as  "  pdb  " . Th e asterisk (*) on its own will return all fi le types residing 

Reminder:  When used with the 
ls  command, an asterisk,  * , 

indicates  " beginning or ending 
with this " . For example, a list of 

comprised of  " atom* "  will return 
all Maya nodes whose name 

begins with  " atom " . Alternately 
a list of  " *atom "  will return all 

nodes ending in  " atom " .
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in the directory. If no directory is specifi ed the current directory will be used. Th e 
 fopen  command returns an integer we ’ ll call  $fileId,  which you will use subsequently 
to query data from the PDB fi le. Th e next line of code is:

             /* 
   fopen opens the file for Maya to read. The command returns an 
index number to $fileId which you 'll use subsequently to refer 
to the file within Maya. 
   */ 
   $fileId = '       fopen $filename "r"'       ;           

  Error checking 
 Th ere is always a chance that a user will choose  Cancel  in the fi le browser window 
after executing  cpk() . Without a contingency for this event, Maya will attempt to exe-
cute the rest of the script and wind up in a infi nite loop, from which the only recovery 
is to force quit the application—not a good option because it means crashing Maya 
and losing unsaved work. Th erefore, in the event that the user hits  Cancel , you can 
use the error command to stop the execution of a script—in this case, the balance of 
 cpk.mel.  When called, error displays a message in the Command Line and the Script 
Editor, and returns control of the Maya scene to the user. It can be embedded in a 
conditional statement so that it ’ s called upon when a problematic situation arises.

             // Stop the script if no file is selected. 
   if ($filename = = " " ) error "No file selected. Please run cpk()
 again ";         

 After hitting  Cancel  in the fi le browser, the user would simply run  cpk()  again if they 
wished to continue building a molecule.  

  Main loop 
 Now let ’ s create the loop that reads and stores the essential data. Th e condition for 
remaining in the loop is not having reached the end of the PDB fi le. Th erefore, you ’ ll 
use the  feof  command to check each time through the loop whether the fi le end has 
been reached. If  feof  returns 1, the fi le end has been reached. If it returns 0, the fi le 
end has not been reached.

             /***** MAIN LOOP *****/ 
   while ( '     feof $fileId '        = =  0�) {
      // A non-zero '    feof $fileId'     value means the file end has 

 been reached.              

 Record type 
As long as you haven ’ t reached the end of the fi le, it ’ s okay to read the fi rst word of the 
current line in the fi le. Th e  fgetword  command reads words, that is, strings of charac-
ters separated by space or tab characters. You will store the return value of  fgetword  in 
a string variable called  $word . Each time the command is used, Maya advances to the 
next word in the fi le. Th e fi rst time  fgetword  is used on each new line in the PDB fi le, it 
returns the fi rst word—the record type. If the record is  “ ATOM ”  then the script should 
proceed to read and store the data. Th e following lines begin the  while  loop you opened.

            $word  = '      fgetword $fileId '      ; 
  if ( $word = = "ATOM") {

      // Ready to read and store the PDB record...            

The variable  $word  is used 
frequently during this part of 
the script, which is responsible 
for reading the PDB fi le data. 
$word is a container used to 
temporarily hold each string 
returned by the  fgetword
command.
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  Read the record 
 Here you read in the chain, x-, y-, and z-coordinate, plus the element for the ATOM 
entry. Th e column in which each data appears is stored in the variables,  $chainCol, 
$xCol,  and  $elemCol,  which were supplied by the user as arguments in the procedure 
call. In preparing the code, don ’ t lose track of the rule that on each line of a PDB-
formatted fi le, each column is represented by a word. You will use  fgetword  to incre-
ment from word to word (i.e. from column to column) until you reach the column 
corresponding to the number stored in  $chainCol, $xCol,  or  $elemCol . At that point, 
you will store the value of  fgetword  in the temporary holder  $word , which is in turn 
used to assign  $chain, $x, or $element.  

 Note that, although you know the column numbers for the entries we ’ re interested 
in, you don ’ t explicitly know their order from left to right. Th ese can vary from one 
PDB fi le to another. Th ree columns give you six cases for possible orders (show in  Table 
14.02   ). Th erefore you must test for each case, and read in the data accordingly. 

 Th e fl owchart in  Figure 14.11    shows the steps you ’ ll take in determining the order of 
data columns and then reading the data into your three array variables,  $chains[], 
$xyz[] , and  $elements[]  (via the variables  $word, $chain, $x, and $element ). Let ’ s 
look at the MEL code for Case 1, which immediately follows the  if    ($word=="ATOM ")  
statement above.

             // Determine order of columns and read in data. 

   // CASE 1. 
   if ($chainCol  < $xCol & &  $xCol < $elemCol) { // CASE 1.
          // Chain column. 

     for ($i  = 1; $i < $chainCol; $i + + ) {

     // This increments fgetword until the chain column is 
 reached. 

   $word  = '      fgetword $fileId '     ;     
    } 
    $chain  = $word; 

 Case  Column 1  Column 2  Column 3 

1 A    X    E

2 A      E    X

3 X    A    E

4 X    E    A

5 E    A  X 

6 E  X A

  A  =  chain; X  =  x-coordinate; E  =  element.  

 TABLE 14.02 

   Cases for the possible order of 
chain, x-coordinate, and element
columns in a PDB data fi le. These 

cases must be considered when 
reading data into variables in your 

MEL script.  

             For concision, the code for 
Cases 2 through 6 are not 

included here in the text. You ' ll 
fi nd the entire code listing in 

the MEL script,  cpk.mel  on the 
CD-ROM.      

360 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION



Store coordinates together in 
one vector array.

Case 1?

yes

no Case 2? no

 $chains[$lineNum] = 
fgetword

$x = fgetword
– advance one column –

$y = fgetword
– advance one column –

$z = fgetword

 $xyz[$lineNum] = 
$x, $y, $z

Use fgetword to increment 
to the element column.

 $elements[$lineNum] = 
fgetword

repeat these 
steps for every 

"ATOM" record in 
the PDB file

($lineNum += 1)    

Use fgetword to increment 
to the x-coord column.

Use fgetword to increment 
to the chain column.

etc...

yes

etc...

record is of type 
"ATOM"

make, position, and 
shade spheres

 FIGURE 14.11 

    The steps involved in reading a 
line from a PDB fi le using Maya ' s 
fi le-reading commands. There are 
six possible cases for the order in 
which the data columns for chain
ID, x-coordinate , and  element
appear.    
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  $j  = $i; // Continue column counter where it left off. 

  // X column. 
    for ($i  = $j; $i < $xCol; $i + + ) {
      $word = '   fgetword $fileId ' ;     

  } 
  $x  = $word; 
  $y  = '  fgetword $fileId'  ; $i  + =  1; 
  $z  = 'fgetword $fileId'; $i + =  1; 

  $j  = $i; 

  // Element column. 
  for ($i  = $j; $i < $elemCol; $i + + ) {

          $word = '      fgetword $fileId '     ;     
   } 
     $element  = $word;     

   } // End CASE 1 if statement.          

 Th e same approach applies to the remaining fi ve cases, the only diff erence being the 
order in which the variables,  $chain, ($x , $y and $z), and  $element  are assigned. 

 Now let ’ s assign values to the array variables  $chains[] ,  $elements[] , and  $xyz[]  for 
the current line in the PDB fi le. When you assign string data to a numerical type vari-
able, Maya converts the data into numerical values. Th is feature allows us to turn the 
string data stored in $x, $y, and $z into fl oating point numbers to use for positioning 
the atoms. Furthermore, since  $xyz[]  is a vector array, we must pass it the $x, $y, and 
$z values in vector form, using the  <<   >>  characters.

            // Chain ID. 
  $chains[$lineNum]  = $chain; // String. 

  // X, Y, Z coordinates. 
  $xyz[$lineNum]  = < < $x, $y, $z >>; // Vector. 

  // Element name. 
  $elements[$lineNum]  = $element ; // String.          

 Next, we increment the  $lineNum  counter, close the if  “ ATOM ”  statement, update the 
 $fileEnd  variable, and close the main  while loop .

                       // Only count lines starting with  "ATOM " .
   $lineNum + =  1;       

  } // End if ($word  = = "ATOM " ).

  // Advance to the next line in the PDB file. 
  fgetline $fileId;

      } // End while loop.              

  Create the atoms 
Here is where you will make, position, and shade the spheres which represent 
atoms in your CPK model. Th e fl owchart in  Figure 14.12    illustrates the steps involved. 
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Th e script increments through the entries in the  $elements[]  array using a  for...in  
loop. Within this loop, a series of nested  if...else  statements query the element type. 
Th e type of element in turn determines the atom ’ s radius and color. Th e radius, color, 
element, chain ID, and XYZ coordinates are used as arguments to call the second pro-
cedure in your script,  vanDerSphere(). vanDerSphere()  makes a sphere and a shader, 
positions the sphere, assigns the shader to the sphere, and groups the sphere with 
like atoms. Parceling these tasks in a second procedure, or subroutine, means they 
need only be included once in the main body of the script rather than in every place 
they ’ re needed. Th e code below continues the main script, following the previous code 
line which closed the  while  loop.

         // initialize $i, the counter in the following loop. 
   $i  = 0�;

   for ($atom in $elements) { 
  // Put the xyz vector into an array for use below. 
  $xyzArray  = $xyz[$i]; 
  $chain  = $chains[$i];    

            // CARBON. 
    if ($atom  = = "C") {

         $rad  = 1.70�; // van der Waals radius for carbon. 
      $cpkColor = {0�.35, 0�.35, 0�.35}; // Gray, the CPK color for

 carbon. 
      // Call procedure. 
    vanDerSphere("carbon", $chain, $rad, $cpkColor, $xyzArray[0�],

               $xyzArray[1], $xyzArray[2]);

For the current atom, 
determine the element 
and assign appropriate 

values to $rad (radius) and 
$cpkColor (color) variablesfor every entry 

in $elements,
repeat

make a shader and assign it a 
color using $cpkColor

call vanDerSphere()
procedure with the following 

arguments:
$atomName, $chainId, 

$radius, $color[], $x, $y, $z

make a sphere using $rad 
and position it using $xyz [ ]

assign the shader 
to the sphere

group this sphere with like 
elementsgroup element groups 

by chain

read and store record

vanDerSphere()

 FIGURE 14.12 

    The steps involved in making the 
atoms from the PDB fi le data.    

  You may recall from  Chapter 12 , 
that for. . .  in loops cycle through 
elements in an array. The  "  for "  
part is a holder for the element 
value, while the  " in "  part is the 
array itself.
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        } 
       // HYDROGEN. 
       else if ($atom  = = "H") {
      $rad  = 1.20�;
    $cpkColor  = {1.0�, 1.0�, 1.0�}; // White. 
     vanDerSphere( "hydrogen", $chain, $rad, $cpkColor, 

 $xyzArray[0�],          $xyzArray[1], $xyzArray[2]);              

     } 
     // NITROGEN. 
     else if ($atom  = = "N") {
      $rad  = 1.55; 
    $cpkColor  = {0�.0�, 0�.5, 1.0�}; // Blue. 
     vanDerSphere( "nitrogen", $chain, $rad, $cpkColor, 

 $xyzArray[0�],          $xyzArray[1], $xyzArray[2]);     

     } 
    // OXYGEN. 

   else if ($atom  = = "O") {
   $rad  = 1.52; 

    $cpkColor  = {1.0�, 0�.0�, 0�.0�}; // Red. 
     vanDerSphere( "oxygen", $chain, $rad, $cpkColor, 

 $xyzArray[0�],          $xyzArray[1], $xyzArray[2]);     

     } 
     // PHOSPHORUS. 
     else if ($atom  = = "P") {
      $rad  = 1.80� ;
    $color  = {1.0�, 0�.5, 0�.0�}; // Orange. 
     vanDerSphere( "phosphorus", $chain, $rad, $color, 

 $xyzArray[0�],          $xyzArray[1], $xyzArray[2]);     

     } 
    // SULFUR. 
     else if ($atom  = = "S") {
      $rad  = 1.80� ;
    $cpkColor  = {1.0�, 1.0�, 0�.0�}; // Yellow. 
     vanDerSphere("sulfur", $chain, $rad, $cpkColor, 

 $xyzArray[0�],          $xyzArray[1], $xyzArray[2]);     

     } 

     // Add more elements if you like. 

     // increment the for...in loop counter. 
     $i  + =  1; 

  } // End for loop.         

 In the script excerpt above, we have accounted for the fi ve elements which occur in 
chain A of the actin data. Th e fi le on CD-ROM,  cpk.mel,  includes  else ...if statements 
for additional elements that occur in many proteins: chlorine, fl uorine, iron, phos-
phorus. More elements can easily be added. If your script is missing an element that 
is present in a PDB fi le you ’ re reading, those atoms simply won ’ t be created when you 
run  cpk() . 

 Because  vanDerSphere()  is a separate procedure, you ’ ll want to wrap up your main 
 cpk()  procedure before moving onto this atom-building subroutine.  
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  Organize the scene hierarchy 
 cpk()  ends with a  for ...in  loop that organizes the models into the hierarchy described 
back on page 358  . It collects like elements together under group nodes called  chain_
A*, chain_B* , etc., and then collects these chains under a group node called  molecule* . 
In the Maya scene hierarchy, group nodes are parents and group members, their chil-
dren. In the code that follows, you will use the string array variable,  $group[]  to hold a 
lists of node names for groups of like elements within a given chain. Th ese groups will 
have been created in  vanDerSphere()  which you will see in a minute. As an example, 
the data fi le  1j6z.pdb , produces the groups  carbonGroupA, hydrogenGroupA, nitrogen-
GroupA,  and  oxygenGroupA .

            // Group atoms by chain ID (add more letters for more chains). 
  $letters[]  = { "A", "B", "C", "D", "E", "F", "G", "H"};

  for ($letter in $letters) {

    // Ensure $group is empty at the start of each loop. 
  clear ($group); 

  // Create a list of element groups within the current molecule. 
       string $tmpStr  = "*Group" + $letter + $molNumStr; 

  // $molNumStr is the number of the current molecule. 
  $group = '  ls -transforms $tmpStr'  ; // e.g. carbonGroupA, etc... 

       if ($group[0�] ! = " " ) {
   // $group is not empty, therefore this chain exists. 

 $groupName  = "chain_" + $letter + $molNumStr; // E.g. 
   chain_A1. 

 createNode transform -shared -name $groupName;               

 Starting with  "  |  "  ensures that the element group gets parented to the newly created 
group node and not to an existing one that is parented under a molecule ($group-
Name) that already exists in your scene.

        parent $group ( " | "     +  $groupName); 
       } // End if. 

    } // End for. 

    // Parent all chains under a group node called molecule*. 
    $tmpstr  = " | chain*" + $molNumStr; 
    $group  = ` ls -transforms $tmpstr`  ; // a list of nodes called 

 chain*. 

    if ($group[0�] ! = " " ) // There exists at least one chain*. 
    {
          $newNodeName  = '  createNode transform -name ( "molecule" +

 $molNumStr)'    ; 
       // parent chain* nodes to molecule*; 
      parent $group $groupName;     
    } 

   } // End cpk() procedure.   

  The script checks to see if there 
exists at least one  chain  in your 
scene, using the statement, 

if ($group[0�] ! =   "") .

It does this before using the chain 
object in parenting (grouping) 
operations. It ' s necessary to 
check because some PDB fi les do 
not include chain IDs.
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 Th at wraps up the main procedure. Now let ’ s have a look at the code that creates and 
positions the atoms, which are represented as NURBS spheres:  

  vanDerSphere() procedure 
 Th is procedure takes seven arguments and has no return value. It follows the steps 
outlined in  Figure 14.12 . Up to this point, you have created shaders and assigned them 
to models using the Hypergraph, as described back in  Chapter 8 . In this procedure 
you will use the MEL command  shadingNode  to make a shader and then the  hyper-
Shade  command with its  -assign flag  to connect the shader to the appropriate geom-
etry. You ’ ll use Blinn shaders to achieve the semi-gloss appearance of the traditional 
hard plastic CPK models. 

 You ’ ll build this procedure in a new fi le, separate from  cpk.mel,  and save it under the 
name vanDerSphere.mel (capital letters are optional for fi le names).

             /***** vanDerSphere.mel *****/ 
   /* 
   Created: February 20�0�6, modified August 20�0�7 . 
   Authors: Jason Sharpe, Charles Lumsden, Nick Woolridge.    

 Description: 
 This procedure creates and shades a sphere to represent the van der 
Waals contanct surface of a particular element (oxygen, carbon, 
etc.), based on arguments send to it from the cpk() procedure. 

 The procedure arguments are as follows:
            $atomName      The name of the current atom. For example: carbon1.   
   $chainId      The PDB file chain letter (A, B, C, etc.) and is 

used in naming the group node to which the atom will 
belong.  

   $radius     The vdW radius of the atom.   
   $color[]      The name of the shader node to be assigned to the 

atom.  
   $x, $y, and $z     The world space coordinates for the atom.       

 To use this script: 
Save the script in a text file, using the .mel extension, in your 
Maya Scripts directory, then source it through Maya 's Script Editor. 
 */ 

 global proc vanDerSphere (string $atomName, string $chainId,
 float $radius,     float $color[], float $x, float $y, float $z) { 

    /***** DECLARE THE VARIABLES *****/    

    /*   
           $molNumStr      Was assigned in the cpk() procedure and is used 

for naming when more than one whole molecule 
exists in your scene.       

    */ 
  global string $molNumStr;    
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    /*   
           $shaderName      The name of the shader to be assigned to the 

current atom.   
  $groupName      The name of the element group to which the 

current atom will be parented.   
  $newNodeName      The transform node name of the shader, 

$shaderName.  
  $atomNodeName[]      The transform and history node names 

returned by the sphere command.       
    */ 
  string $shaderName, $groupName, $newNodeName, $atomNodeName[]; 

  /***** INITIALIZE THE VARIABLES *****/ 

  $shaderName  = $atomName + "Shader";
  $groupName  = $atomName + "Group" + $chainId + $molNumStr;          

 Below, the  shadingNode  command is used with the -shared fl ag to ensure that only 
one shader is created for each element. We set the shader diffuse value to 0.9 to 
brighten it up slightly from the default setting of 0.8. After your model is built you 
can try diff erent RGB and diff use settings for each of the shaders.

             // Create a shader and store its name in $newNodeName. 
   $newNodeName  = '  shadingNode -asShader -shared blinn -name
 $shaderName'  ; 

   // Set the shader's color and diffuse attributes. 
   setAttr ($newNodeName + ".color") $color[0�] $color[1] $color[2]; 
   setAttr ($newNodeName  + ".diffuse") 0�.9;         

 Next you ’ ll make and position the NURBS sphere. Th e sphere command returns 
a string array of size 2, the fi rst element (index 0) of which is the transform node 
name. After the sphere is made, it remains selected. Th e hyperShade command then 
assigns it the appropriate shader.

             $atomNodeName  = '  sphere -r $radius -n $atomName'  ; 
   // Position the sphere. 
   move -worldSpace $x $y $z $atomNodeName[0�];

   // Assign the shader. 
   hyperShade -assign $shaderName ;          

 Again, you ’ ll use the -shared fl ag, but this time with the  createNode  command to 
ensure that only one group node is created corresponding to this type of element, 
chain ID, and molecule.

                // Create a group node to hold this type of atom. 
   createNode transform -shared -name $groupName;; 
   parent $atomNodeName[0�] $groupName; 

   } // End procedure.          

 Save the entire script—including both procedures—under the name  cpk.mel  in the 
Maya Scripts directory on your hard drive.   
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  Results: Running the script 

  The ATP model 
 Now let ’ s try out the script on ATP ( Figure 14.13   ) .

  Source the script 

    1.     Open the Script Editor  

  2.     Choose File  →  Source Script  

  3.     In the fi le browser, navigate to and select your script fi le, cpk.mel .

  4.     Press Open.    

 Th is loads cpk.mel into memory so that the procedures  cpk()  and  vanDerSphere()  can 
be called from within Maya.  

 Examine the PDB fi le 
Next, open the PDB fi le  atp.pdb  in your text editor and examine an ATOM entry (see 
below). Th e column numbers corresponding to  chain ,  X-coordinate , and  element  are 
5, 7, and 12, respectively. Th erefore, these will be the arguments sent to the main pro-
cedure,  cpk() .

  The character in column 3 is the 
Atom Name, a data type that 
is distinct from the Element, 

displayed in column 12. For ATP 
they happed to be the same 

character. This is not usually 
the case; Atom Names are often 

2 to 3 character long, whereas 
Elements are always 1 character 

in length. Atom Names are 
used by MolVis applications 
in determining connectivity 

between atoms.

 FIGURE 14.13 

    The cpk() procedure was run three 
times to create these CPK models of 

an ATP molecule.    

chain X-coordinate element

Column: 1 2 3  4 5 6 7 8 9 10 11 12

Data: ATOM 10� C ATP A 1 0�.291 -2.472 -5.311 1.0�0� 0�.0�0� C
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 Run the script 

    1.     Enter  cpk(5, 7, 12); in the Command Line or Script Editor.  

  2.      When the fi le browser window appears, locate  atp.pdb  fi le in your project PDB 
directory (CPK_Project/PDB/atp.pdb).    

 Given the small size of  atp.pdb,  the script should execute quickly. When it ’ s done, 
have a look at the various elements in your scene, including the shaders you cre-
ated. Note that the organization of elements into groups makes it ease to assign a 
diff erent shader to carbon, for example, by assigning the shader to the entire group. 
Alternately, you could change the color attribute in the carbon shader, which is 
already connected to all the carbon atoms in the scene.  

  Make a Shelf button 
 Placing the procedure call,  cpk(5, 7, 12) , on your Custom Shelf enables you to execute 
the script at the push of a button. Th e button will work as long Maya can  locate  a pro-
cedure called cpk, which will happen under one or both of the following conditions: 

    A.      Since starting Maya you have loaded the procedure by sourcing its parent 
script cpk.mel, or by copy>paste>Entering cpk() in the Script Editor.  

  B.      The script cpk.mel has been placed in a directory that is listed in Maya ' s 
Scripts path; notably, the default Scripts directory, which by default in 
Windows is:

    C:\Documents and Settings\User \My Documents\maya\8.5 \scripts       

 When you  call  a procedure, if it isn ’ t currently in memory, Maya will search the  .mel 
files  within its Scripts path until it locates a procedure named cpk. Furthermore, 
when the procedure  vanDerSphere()  is called from within cpk(), Maya will again auto-
matically search for and load it. To create the  cpk()  button: 

    1.      Make sure Shelves are displayed and that you have created a custom shelf 
already (see page 86    in  Chapter 04: Maya basics ).

  2.     Type cpk(5, 7, 12) in the Script Editor.  

  3.      Select the text  cpk(5, 7, 12)  then MMB+Drag it to your Custom shelf ( Figure 14.14a   ). 
A new MEL icon will appear.  

  4.      Choose Window  →  Settings/Preferences  →  Shelves, and click the Shelves 
tab. This opens the Shelves Editor.  

  5.      Under the Shelf Contents tab, select  cpk(5, 7, 12) . In the Icon fi eld, type cpk
( Figure 14.14b ).

  6.     Hit Save All Shelves.    

 You can now execute  cpk(5, 7, 12)  simply by pressing the cpk Shelf button. Keep in 
mind that this button will only work with PDB fi les that have the  “ 5, 7, 12 ”  column 
arrangement. For fi les with diff erent arrangements, you can source cpk.mel, and then 
enter appropriate arguments in the  cpk()  procedure call.  
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  Create an actin protein model 
 Now at last you ’ re ready. Use the  cpk  Shelf button created above to make your actin 
model. If you wish, save your ATP and create a new scene, although this is not necessary 
since the script facilitates multiple molecules within one scene. To create the actin model: 

    1.     Press the  cpk  button that you created in your Custom Shelf.  

  2.     When the browser window appears locate the fi le  1j6z.pdb  and hit Enter.    

 Th at ’ s it! With nearly 100 �  more atoms, actin will naturally take longer to build than 
the ATP model. While the script is running, Maya will be unresponsive to any other 
commands, menu selections, or view changes. It will seem as if the application has 
crashed—but it hasn ’ t, it ’ s just busy. Unfortunately there is by default no ticking 
clock or scroll bar to indicate progress, you just have to be patient.  Figure 14.15    shows 
the completed CPK actin model in the scene view.  

  Applying the script to other molecules 
 You may now want to try out  cpk.mel  on other molecules. PDB fi les for tens of thou-
sands of biomolecules can be downloaded from the RSCG PDB website free of charge: 

      http://www.pdb.org/pdb/

 Use of the PDB archive is subject to conditions listed at: 

http://    www.rcsb.org/pdb/static.do?p=general_information/about_pdb/pdb_advisory.
html

 Please keep in mind, however, not all PDB lay their data out exactly alike. Th e number 
of columns and their order can be inconsistent from fi le to fi le. Before running
 cpk.mel  on a PDB fi le, remember to open the fi le in a text editor and determine the 
column numbers for the chain, the x-coordinate, and the element; then enter those 
column numbers as arguments in the  cpk()  procedure. Strange results, or none at all, 
usually indicate a misinterpretation of the column numbers.  

(a)

 FIGURE 14.14 

    (a) Drag the procedure call, cpk(5, 
7, 12) to your custom shelf to make 

it a button.

(b) Locate cpk() in the Shelves Editor 
and give it an Icon Name so that you 
can easily recognize it on the Shelf.      

(b)

370 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION



  Debugging the script 
 In the unlikely event that you encountered no errors when you sourced and ran 
the script, skip this section. If, on the other had, you transcribed the code piece by 
piece from this chapter or rewrote it yourself by following the written instructions, 
chances are you encountered syntax errors at some point. 

  Syntax errors 
 Syntax errors will appear as usual in the Command Line and Script Editor. Line and 
column numbers will point you to the error location in the script fi le  cpk.mel.  For 
example, the following error was caused by a mistyped variable name, $xYz instead of 
$xyz. Th e  clear  command empties an array variable, setting its size to zero.

             // Error: clear $xYz; // 
   // Error: Line 70�.11: "$xYz" is an undeclared variable. //          

 Th e mistake can be found and corrected in the original script fi le using the line 
number, 70�, and column number, 11, provided in the error message.  

  Logic errors 
 Logic errors can be dealt with in two ways. Th e fi rst, and quickest, is to compare
your script, line for line, with the fi le,  cpk.mel,  included on the CD-ROM, and look for 
discrepancies. Th e second, and more informative, is to print to the Script Editor, vari-
ables from the part(s) of the script that you suspect is causing the trouble. Th is will 

10Å  FIGURE 14.15 

    Finished CPK model of actin. Note 
the group hierarchy in the Outliner. 
Scale bar �  10       Å.    
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help you to see the diff erence between what you think Maya is doing and what is 
actually happening. You do this using the print command.

             int $i; 
   for ($i  = 0� ; $i <3; $i + + ) {
     string $name  = "molecule" + $i;
     print ( "$i = " + $i + ", $name = " + $name + "\n");     
   }          

 Th e example above reports the variables, $i and $name, in the Script Editor, as 
follows.

             $i  = 0�, $name = molecule0�
   $i  = 1, $name = molecule1 
   $i  = 2, $name = molecule2          

 Tracing values in this way can help locate mistakes in variable assignment that may 
be causing logic errors.    

  Results: Rendering your molecule 
 In visualization, it ’ s the look that counts. To conclude this project, let ’ s create a ren-
dering of the actin molecule as it appears on the title page of this chapter. You ’ ll start 
by repositioning the model, then add a camera and lights, and fi nally render it using 
the Maya Software Renderer. 

  Reposition the model 
 If you select the parent node,  molecule0� , in the Outliner and show its move, rotate, 
or scale handles, you ’ ll see that its origin is at the world origin (0, 0, 0) and not at the 
model ’ s center. A centered origin will make positioning the model for rendering easier 
and more intuitive. Also, for other work you may need to position multiple molecules 
relative one another in order to make them interact dynamically, as in  Case Study 3  
just ahead. In this case it helps to have the default rotation values (0, 0, 0) correspond 
to a preferred orientation for the model. In other words it may be helpful to consider 
the model in terms of a convenient  “ right side up ”  and  “ front and back ” . Any required 
deviation from this could be handled as a change from rotation values of 0, 0, 0. 

 Actin has a distinct shape, which is closely linked to its function ( Figure 14.05 ). 
For didactic purposes, actin is often illustrated with its pointed end up and one of the 
wide faces toward the viewer. 

 To center the origin and reorient the model: 

    1.     Select  molecule0� in the Outliner.  

  2.     Choose Modify  →  Center Pivot.  

  3.     Hit  " E "  to show the rotation handles.  

  4.      Rotate the molecule in the three orthographic views to look somewhat like 
the model in Figure 14.16   . That is, pointed end up and wide face perpendicular to 
the positive z-axis.  
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  5.      Turn on  " Snap to grids "       and use the Move Tool to drag the model to the world 
origin.  

  6.     Turn off  " Snap to grids " .  

  7.      Choose Modify  →  Freeze Transformations. This will set all transform values 
to 0.    

 Th e model is now  “ zeroed ”  in its default position.  

  Set up the camera 
   1.     Choose Create  →  Cameras  →  Camera  

  2.     Select the new camera and open the Attribute Editor.  

  3.     Set the camera ' s focal length to 50 (this is reasonably close to human vision).  

  4.     Click on the transform node tab and rename your camera  " renderCam " .  

  5.     From the Panel menu set, choose Panels  →  Look Through Selected.  

  6.      Manipulate the camera using alt  +  mouse button (rotate, track, and dolly) to get 
a view you ' re satisfi ed with.  

 FIGURE 14.16 

    We used the default orthographic 
scene view to position and orient 
the actin model for rendering.    

373CHAPTER 14: BUILDING A PROTEIN



  7.      Fix the renderCam ' s position by locking its transform attributes, so that you 
don ' t accidentally move it ( Figure 14.17   ):  

   (a)     Select renderCam if it ' s not already selected.  

   (b)      In the Channel Editor: highlight the transform attributes; RMB to bring up 
the context-sensitive menu.  

   (c)     Choose Lock Selected.  

     Note : If you want to move the camera again, repeat steps (a) and (b), then 
choose Unlock Selected.   

  Background 
 Set the background color in the Camera settings: 

    1.     Select renderCam.  

  2.     Open the Attribute Editor and select the shape node tab, e.g. renderCamShape.  

  3.      Choose Environment, then click on the Background Color palette to launch the 
Color Chooser.  

  4.     Adjust the color then hit Accept.      

  Set up the workspace 
 It is helpful to have more than one view of the workspace when setting up a scene like 
this one.  Figure 14.18    shows the two-panel view introduced on page 223 in  Chapter 09 . 
Th e left panel shows the persp view and the right,  renderCam 's  view.

Adjusting view panels 

 Maya Help  →  Using Maya  →  General  →  Basics  →  Basic menus  →  Panel menus  →
Panels        

 FIGURE 14.17 

    Once you are happy with 
the camera, lock its transforms so 

that you don ' t accidentally move it.    
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  Set up the lights 
 Here we ’ d like you to explore the 3-point lighting setup we described in  Chapter 10 . 
Back then you used two Point lights and an Area light. Here you ’ ll use Spotlights 
instead in order to get some practice setting up lights that have a directional bias (not 
to be confused with Directional lights). 

   1.     Choose Create  →  Lights  →  Spotlight. This will be your key light.  

  2.     Select the light and open the Attribute Editor (ctrl + A).  

  3.     Rename the light as  " keyLight " .  

  4.      The Cone and Penumbra Angles are used together control the edges of a spotlight. 
In this project you don ' t want the edge of the light to be visible. Instead you want 
to light the model all over for a smooth, even effect: 

 Set the Cone Angle to 90º or greater.  

  5.      In the persp workspace panel, choose Panels  →  Look Through Selected. This 
creates a non-rendering camera that is connected to the light, enabling you to 
interactively position the light.  

  6.      Manipulate the light view, using the navigation controls (rotate, track, and 
dolly), to light the model from the upper-front-left direction.  

  7.     Create two more lights and name them, fi llLight, and backLight, respectively.  

  8.     Set the fi llLight Intensity Attribute to 0.5 to decrease the amount of light it emits.  

  9.     Position fi llLight and backLight as described in steps 4 and 5 above.   

 FIGURE 14.18 

    Multiple workspace panels are 
helpful when setting up a scene for 
rendering.

  Tip: We increased the size of our 
lights and camera by increasing 
their scaleX, scaleY, and scaleZ 
attribute values. This makes 
their wireframe icons easier to 
see in the scene view, without 
changing their functionality.
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 In the next section, you will tune the positions and intensities of the three lights to 
get a pleasing result.  Figure 14.19    shows the lighting rig we started with. 

  IPR preview 
Now use IPR (for Interactive Photorealistic Rendering) to tune the light positions and 
intensities.

    1.      Open the Render View: choose Windows  →  Rendering Editors  →  Render 
View.  

  2.      In the Render View, choose  →  IPR  →  IPR Render. Select the camera you want 
to render from. After a pause a message will appear at the bottom of the Render 
View, prompting you to  " Select a region to begin tuning " .  

  3.      LMB + drag to select the entire picture ( Figure 14.20   ). Maya will take a few sec-
onds to load the pixels.  

  4.      One by one adjust the positions, orientation, and intensities of your lights until 
the IPR image is satisfactory.     

 Er  …  make that a 6-point lighting rig 
For some rendering situations three lights just won ’ t cut it and you have to add more. 
After IPR previewing the lights, we decided to add two more spotlights, each with an 
 Intensity  of 0.5 in order to round out the back lighting. As well, because the preview 
was too dark overall, we added an ambient light, with an  Intensity  of 1.0 to brighten 
the scene up evenly. Our fi nal lighting setup is shown in  Figure 14.21   .

keyLight
Intensity: 1

fillLight
Intensity: 0.5

backLight
Intensity: 0.5

renderCam
Focal Length: 50

 FIGURE 14.19 

    The lighting setup we started 
with.

  In addition to lighting changes, 
changes to shader colors are 

updated in the IPR preview as 
well.
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 FIGURE 14.20 

    After choosing IPR, use your cursor 
to select the region that you want 
to update in the Render View as you 
tune lights and shaders.    

keyLight
Intensity: 1
Shadows: on

fillLight
Intensity: 0.5
Shadows: off

backLight2
Intensity: 0.5
Shadows: on

renderCam
Focal Length: 50

backLight1
Intensity: 0.5
Shadows: on

backLight3
Intensity: 0.5
Shadows: on

ambientLight
Intensity: 1
Shadows: on

 FIGURE 14.21 

    The fi nal lighting setup that we used 
to render the title page image for this 
chapter.    
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  Color your lights 
 Colored lights can enhance the atmosphere of a rendering and aid the perception of 
depth. In very general terms, warm colors—toward the top-right of the color wheel 
shown in  Figure 14.22   —in a picture appear to advance and cool colors to recede. In com-
bination, warm and cool lighting can set up a visual tension between warm and cool, 
foreground and background, in order accentuate the illusion of 3D space and add a 
dramatic edge to a rendering. Th e eff ect can be bold or subtle. We opted for the latter, 
just to give a hint of color to edges of the atoms that make up our actin molecule. Th e 
following are the HSV values we used to color our back and fi ll lights.

 backLight Color  fi llLight Color 

 H: 22.0  H: 180.0 

 S: 0.35  S: 0.2 

 V: 1.0  V: 1.0 

  Add Depth Map Shadows 
Although we now have a nicely lit picture of a lot of individual atoms, the image in 
 Figure 14.20  portrays little of the molecule ’ s striking variations in depth. Th is is because 
every atom is receiving the same amount of light. If, on the other hand, some atoms 
block light from hitting others, you ’ ll get a better picture of how all the atoms relate 
to one another in space. Th is is a basic consequence of the interplay between light and 
shadow in nature.

 By default, the lights you created are set not to cast shadows. By turning on Use 
Depth Map Shadows and adjusting a few attributes you get the image shown in  Figure 
14.23b   . Th is provides a much better sense of the 3D form of the actin molecule than 
 Figure 14.23a . Here are the steps we followed to activate the shadows: 

    1.     Select keyLight and open the Attribute Editor.  

  2.     Under Shadows, check Use Depth Map Shadows.  

  3.     Set Filter Size to 3, but leave all other settings at their default values.    

  We deal only with Depth 
Map Shadows here. They are 

generally less accurate than ray 
traced shadows but quicker to 
render. Maya Help covers ray 

traced shadows.

 FIGURE 14.22 

    A color wheel is a circular plot of 
the spectrum of visible light. Plots 

like this are often employed in 
computer graphics programs for the 
purpose of choosing colors to apply 

to objects. Artists often discuss 
colors in terms of warm versus 

cool, which correlate to locations 
on the color wheel proximal to the 

red and blue ends of the spectrum, 
respectively (think fi re and ice). (a) (b)
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 Depth Map Filter Size aff ects shadow softness: Th e greater the fi lter size, the softer 
the shadow. We turned on Depth Map Shadows for the back lights, but left them off  
for the fi ll light. We wanted the back light to help separate the edges of the molecule 
from the dark background. Th e fi ll light, on the other hand, helped defi ne the forms 
of the atoms that lie in the shadow of the key light. In our experience, good use of 
lights and shadows is often a matter of trial and error; start with a standard 3-point 
setup, then experiment to get the best results for a given purpose.

Shadows 

 Maya Help  →  Using Maya  →  Rendering and Render Setup  →  Lighting  →  Basics 
of Lighting  →  Shadow  →  Shadow in Maya         

  Set up the rendering 
 You will make the image using the Maya Software Renderer, which we introduced 
back in  Chapter 11 . IPR will help you tune the lights. First, adjust the Render Settings. 

  Render Settings 

    1.     Choose Rendering Editors  →  Render Settings.  

  2.     Make sure  " Render Using "  is set to Maya Software.  

  3.     Under the Common tab, set the fi le name, images format, and so on. Below are 
the settings we used:

    Common tab  

    Image File Output      

              File Name Prefi x      cpk_model
      Frame/Animation Ext      name.ext (Single Frame)
      Image Format      Tiff (tif)

    Camera      renderCam

(a) (b)

 FIGURE 14.23 

  IPR preview renderings with: 
(a) No shadows.

(b) Depth Map Shadows turned on.
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      Image Size   

               Preset      640x480       

     Maya Software tab  

    Anti-aliasing Quality   

                     Quality     Production Quality
         Edge Anti-aliasing     Highest Quality      

    4.     Hit Close.     

  Hit Render! 
 When you ’ re happy with the lighting and colors, render your scene and save out an 
image fi le: 

    1.     In the Render View, choose  →  Render  →  renderCam.  

  2.     When Maya has fi nished rendering, choose  →  File  →  Save Image.  

  3.      Enter a fi le name, choose a fi le type, and select or create a directory in which to 
save the image.  

  4.     Save your scene fi le.    

 We ’ ve included a render-ready scene fi le on the CD-ROM:

            14_Protein/scenes/actin_render.ma             

  Summary 
 In this chapter you took a logical fi rst step in the modeling of living systems. Proteins 
are a core component in what molecular biologist David Goodsell calls the  machinery 
of life . 4  You now have a MEL script you can use to model virtually any protein you lay 
your hands on in PDB format. Moreover, you ’ re not limited to proteins; PDB fi les are 
available for the other types of molecules manufactured by living cells: nucleic acids, 
polysaccharides, and lipids. 

 You saw that molecular representation can take several forms. CPK models help us to 
visualize the overall 3D form of a molecule and are useful in shape complementary 
studies. Scientists also routinely use ball and stick and ribbon models to study molec-
ular structure. MolVis applications create these models from information contained 
within PDB fi les, such as the HELIX, SHEET, and TURN records. You may wish to build 
on your eff orts in this chapter to explore the PDB format further and develop additional 
modeling tools using MEL. 

 Next we ’ ll move from the atomic-level detail of a single protein to the next level of 
biological organization: multi-protein self-assembly.  

Remember: the higher the 
Antialiasing quality, the longer 

the render time.
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  Introduction 
 Within the living cell, proteins do not exist in point-like isolation, fl oating alone in 
the aqueous cytoplasm of the cell interior. Quite the opposite: proteins are highly 
gregarious molecules, though choosy about the chemical company they keep. 
Th rough the action of inter-atomic forces, which allow proteins to sense and react to 
one another in specifi c ways, proteins like to join together and assemble with non-
protein molecules such as sugars and nucleic acids. Th is makes the cell interior 
a crowded place, with proteins jostled into 1D arrays (fi laments and polymers, the 
structural  “ bones ”  of the cell), into 2D groupings (such as ion pumps and receptor 
channels on the cell membrane), and 3D, multi-protein machines (like the ribosome, 
the gigantically intricate multi-protein  “ jig ”  on which nucleic acid tapes of genetic 
information are decoded and the matching protein built from amino acids). Small 
regulatory factors like calcium and phosphorous bind to many proteins and modify 
their affi  nity for interaction, so these 1D, 2D, and 3D protein arrays essentially build 
themselves from their component protein subunits. Th is is called self-assembly and is 
at times assisted by assembly supervisors, chaperone proteins that help the subunits 
fi nd the folding pattern best suited to interaction with other building blocks of the 
macromolecular array. 

 In this chapter you will use Maya to step into this remarkable world of macromolecu-
lar self-assembly. It will be exciting (and challenging!) enough to tackle the case of 
the 1D protein array. As we noted above, such polymers or fi laments are enormously 
important in cell biology because they form the basic structural  “ bones ”  of the liv-
ing cell—the cytoskeleton defi ning the cell ’ s characteristic shape and capacities for 
movement. Diverse kinds of cytoskeleton polymers and polymer building blocks 
function within the cell, and their subtle activity is regulated by an intricate web of 
chemical factors that seed, cap, cut, reinforce, and cross-link the polymer fi laments. 
Exploring the chemical facts and biological details of even a small corner of this vast 

 FIGURE 15.01 

    Computer models of dense, complex 
biomaterials can be explored 

interactively, using simulations 
to  " fl y "  into the 3D meshwork. 

Pictured here is a joystick-operated 
simulation in the authors '  lab. Inset: 

Detail from an actin assembly 
simulation.
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web would take us far beyond the scope and space constraints of this book. In this 
chapter you will take the fi rst step by modeling essential ideas of fi lament layout and 
assembly organization in the presence of small regulatory factors that modify the 
rates, or kinetics, of the self-assembly steps. Th is strategy of regulated self-assembly 
is a universal motif of cell behavior and so makes a great departure point for your 
Maya explorations above the level of the single protein. 

 Rest assured: we are not going to leave behind what we have learned about proteins 
in Maya. In this chapter you will develop your model around key facts about one of 
the essential cytoskeleton building blocks: the actin protein molecule, which you met 
and worked with in the last chapter. You will discover how such a model can incor-
porate the core data on actin fi lament assembly and structure in silico. Th e regula-
tion of growth and shrinkage of actin fi laments is central to important cell activities 
like locomotion and endocytosis. In the detailed project steps, we guide you through 
the methodology and MEL code for a simulation model that provides a striking visual 
demonstration of actin fi lament dynamics. 

 It will be evident how our approach lets you link, step by step as needed, further reac-
tions and regulatory pathways into the basic model. By the end of this chapter, there-
fore, you will have learned Maya methods and modeling strategies you can extend 
and modify for larger, more complex systems biochemistry applications than we 
can accommodate here. It will also be clear that you can apply similar techniques to 
Maya projects in which the self-assembly events engage 2D and 3D arrays of self-
assembled macromolecules, not only the 1D structures of fi lamentary fame. Th e 
chapter ’ s references will take you further afi eld in the rich biochemistry of actin fi la-
ments, cytoskeleton structure and control, and macromolecular self-assembly.  

  Problem overview 
 Traditionally mathematical models of chemical systems have often used diff erential 
calculus to compute the changing concentrations of the various reactants. Th is  deter-
ministic  approach neglects the eff ects that random spatial diff usion of the individual 
reactants has on the behavior of the system. As you ’ ll see in this and future chapters, 
we favor a  stochastic  approach in which both spatial diff usion and the eff ects of uncer-
tainty play a role in determining the outcome of a simulation model. Moreover, this 
stochastic approach presents an intriguing challenge for the medical artist or scientist 
who wishes to at once simulate the chemistry involved and visualize its essence in a 
meaningful way. Th e challenge arises from the fact that the time intervals between 
signifi cant diff usion events (see below) and the time intervals between chemical reac-
tions are vastly diff erent. In other words, if one wishes to observe the stepwise wan-
dering of actin molecules as they jostle about in the cytoplasm, one would have to wait 
a very long time (on average) before a reaction between two molecules was likely to 
occur. Th is is not because the molecules wouldn ’ t encounter one another but because, 
given an encounter, a reaction is not a certainty—there is merely a probability that the 
reaction will occur. Conversely, to observe chemical reactions with relative frequency, 
one would forgo watching—and perhaps modeling—molecular diff usion. 

 In this chapter we wish to model and visualize a small but important bit of biopoly-
mer chemistry—the steady-state turnover of a fi lament by the balanced addition and 
removal of fi lament subunits. Th is process is often referred to as  treadmilling  because 
it involves the fl ux of subunits from addition at one end of the fi lament to removal 
at the other. In one treadmilling cycle, a given subunit travels from the plus to the 
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minus end of the fi lament. Th is treadmilling property of actin is central to cell loco-
motion and shape change. In order to capture the essence of steady-state treadmill-
ing, your model will incorporate both time-dependent and spatial diff usion eff ects. 
However, before addressing the modeling and visualization challenge of our diff erent 
time scales—for diff usion and reactions—let ’ s look at the physics involved. 

 You ’ ll recall from the last chapter that the lone actin protein, before it associates with 
an actin fi lament, is often denoted G-actin by biochemists. An actin fi lament, on the 
other hand, is referred to as F-actin. A G-actin protein is a subunit of the fi lament 
F-actin array when we think of it as coming into contact with, recognizing, and bind-
ing to the fi lament. Textbooks sometimes make F-actin formation look like an easy 
problem in procedural animation, involving the regular hopping of monomers on to 
and off  from an F-actin fi lament. Th ink of railroad cars being added to a freight train 
in a nice steady order.          

Hop

F-actin

G-actin

Hop

Hop

 Th ere are several problems with this interpretive visualization view, however, which 
make it a very limited model of fi lament formation and destruction: 

    1.     First, the G-actin monomers need not at fi rst be close to the F-actin fi lament; 
monomer and fi lament have to  “ fi nd ”  one another within the cell.          

F

G

  2.     Th e second problem is that neither the F-actin nor the G-actin are equipped with 
long-range sensors to assist this fi nding operation. G-actin is not like a dolphin 
zeroing in on a school of tuna, using echolocation (the dolphin ’ s sensor) to detect 
its target from far away through the water! Th e  “ sensor ”  parts of proteins are 
specialized regions of the protein surface, in which the amino acids are folded in 
very specifi c spatial arrangements. Th is lets the regions match up to other protein 
surfaces with complementary patterns of shape or electric charge—the regions 
fi t together rather like a key fi ts a lock. Because water molecules very eff ectively 
screen the partial charges of amino acid side chains, recognition can take place 
only over very short range: at about the van der Walls collision distances for 
molecular contact we discussed in the last chapter. So the monomer has to wan-
der about in the cell interior until it chances to collide with the docking end of an 
F-actin fi lament. (Not just any location on the F-actin will do; the bare end of the 
F fi lament has  “ sweet spot ”  where the G can hook up.)  
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  3.     Th e approach of F and G comprises wandering with a vengeance. In cell biology, 
the packed interior of the cell jostles all the cytoplasm ’ s molecules, which cannot 
approach one another in the smooth manner of a space shuttle orbiting in to dock 
at the International Space Station. Th is is much more like the mosh pit of a fren-
zied rock concert. Every 10  � 15  seconds or so, every cytoplasmic molecule is hap-
hazardly bumped by others around it; all the molecules are obliged to make their 
way through the cytoplasmic crowd by moving in a random walk manner.        

F

G

   A little math, which we needn ’ t bother to reproduce here, shows that F and G will 
eventually fi nd one another this way. Indeed a remarkable trait of this 3D  “ diff u-
sion ”  in the cell is how quickly it lets macromolecules encounter on another.     

  4.     Getting there, however, is just a fraction of the fun. Before F and G bind together, 
both must rotate around in space to the extent their sensor regions can detect the 
 “ lock–key ”  fi t, letting G bind to the growing end of F. Again we have to be careful 
about the mental pictures painted by our choice of words.  “ Rotate ” , at least for us, 
suggests a smooth spinning action, like an ice skater twirling round or the majestic 
turn of those donut-shaped space stations popular in Sci-fi  movies of the 1950s  .        

Axis

Sensor

Spin

   As with translational movement in the cell, the diff usional jostling destroys any 
hope of such a nice smooth turning match-up. G and F are kicked through small 
bits of topsy-turvy spins by their collisions with other molecules.             

                 

G

Axis

Non-uniform spin
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  5.     We must think not just about F and G, but about the small regulating molecules 
that will interact with them and modify the probable outcome of an F–G collision. 
Some physics math, which we again leave to the thermodynamics texts, does tell 
us that, over equivalent intervals of time, the distance staggered by these lighter, 
smaller molecules is considerably greater than what F and G cover. You will use 
this observation soon.  

  6.     Th ough we have cartooned them as solid, concrete-looking lumps, F, G, and the 
other reactants of our model exist in the cell as molecules, that is, as  “ societies ”  of 
chemically bonded atoms replete with all the intricate internal patterns of atomic 
and molecular motion. Certainly, protein chemists assure us that the recognition 
of protein by protein can trigger shifts—called conformational changes—in these 
internal patterns of molecular motion, which enhance the likelihood that the G 
and F will remain together for a useful period of time—that the key stays in the 
lock, as it were.    

 And we must not overlook the plain fact that atomic physics is a world of likelihoods, 
not certainties. Just because two sensor regions are aligned does not make their 
chemical binding a certainty. Th e atomic forces determine a probability that the well-
oriented regions will lock and G bind to F. Laboratory chemists refer to this as the 
 “ rate ”  of the reaction given the favored alignment of the molecules. 

 Enough complexity! Th ink of all of this, and more, transpiring in every meaningful 
event between molecules within the cell. To set up our game plan, we will start from 
a fascinating and very convenient property of astrobiology: although life evolved in 
crowded aqueous environments on our planet, the forces of gravity, electromagnet-
ism, and atomic packing density are not so high as to scramble together all the seven 
or so classes of events we just discussed. Th us, for example, the cell is not so crowded 
and the molecular jostle not so highly energetic that the movement of G to F strips 
atoms right off  G (and F) and so changes their reaction likelihoods once they are 
together and lined up. Similarly, the intermolecular forces are so short ranged that 
we can, at least to start, not worry about the eff ects of sensor–sensor interaction on 
molecular rotation rate in the rotational diff usion. We can therefore impose some 
helpful simplifi cations: 

    1.     Th e time scales of intramolecular rotation and vibration are very short compared 
to those of interest. We ignore them, and so are concerned with  “ average ”  behav-
ior seen on the time scale of cell physiology.  

  2.     Th e time a protein needs to change its shape is very fast on the time scales of 
interest to actin treadmilling, and may be treated as instantaneous.  

  3.     Using steps 1 and 2 we treat the monomers as stable  “ lumps ”  which approximate 
atomic force surfaces. Such a coarse-grained view of the actin molecule is well 
suited to simulating the interaction of cell volumes in which hundreds or thou-
sands of monomers are present, which is the direction we want you to start with 
this project. When atomic events inside the protein molecules are important, cur-
rent supercomputers can rack up impressive results with model fi laments in which 
a half million or more atoms (about a dozen actin subunits) are monitored at once 
using specialized software for molecular dynamics simulation.  

  4.     Th e regulating molecules are small and low molecular weight, diff using through 
large distances over the relevant time scales. We therefore treat them as a uniform 
chemical background against which the F–G interactions take place.  
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  5.     Th e macromolecules translate (diff use) through space by a 3D random walk. Th e 
statistical properties of the walk embody the resultant impacts of those myriad 
small jostlings taking place too fast for any single one, on the average to impact 
cell events. You ’ ll use a small set of MEL commands to conveniently generate ran-
dom spatial movement that is consistent with the statistical properties of molecu-
lar diff usion.  

  6.     Similarly for rotation.  

  7.     When F–G sensor surfaces are aligned, a reaction probability determines the sto-
chastic outcome of each simulated binding encounter. Th e mathematical prob-
lem of predicting such reaction probabilities from the fi rst principles of quantum 
physics is unsolved (and likely unsolvable) in general and is certainly impractical 
for F–G, at least with current methods and technology. In place of fundamental 
theorems, models can use estimates based on chemical reaction data. You will 
develop the model along these latter lines.    

 Let ’ s therefore look more closely at the molecules and chemistry your model will 
cover. 

  The structure of F-actin 
 Like the monomers themselves, the F-actin polymer ( Figure 15.02   ) is a polar structure 
with a  barbed  and a  pointed  end—terms coined from an early observation of how fi l-
aments appeared in electron micrographs when bound to another protein, myosin. 
Under physiological conditions, fi laments grow more rapidly at their barbed than

Plus (barbed) end

gRotation ~ 166°

gLength ~ 27.7 nm

Minus (pointed) end

fLength

~

~

 FIGURE 15.02 

    Moving lengthwise along the F-actin 
fi lament, each subunit is rotated by 
166° and shifted 27.7       Å relative to its 
neighbor.    
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at their pointed ends, a feature that led to the terms  plus  and  minus end  which are 
used interchangeably with  barbed  and  pointed , respectively. 

 Th e F-actin fi lament can be described both as a right-hand double helix of proto-
fi laments and as a single helix of subunits 1  that are rotated relative to one another 
about the longitudinal axis of the fi lament. Using the latter description, as we move 
from the fi lament minus end toward the plus end, each subunit is rotated by 166	 in 
a clockwise direction relative to the one immediately preceding it. Th ere are 370 sub-
units per  � m along the length of a fi lament, which equates to a distance of  �  27.7       Å 
from the center of one subunit to the next.  

  Actin reactions 
 Intracellular actin chemistry is a rich mixture of processes including fi lament nucle-
ation, growth, shrinkage, capping, branching, and cross-linking, each consisting of 
one or more chemical reactions. Th e cell regulates these processes via accessory (or 
helper) molecules which infl uence the chemical reaction rates. Any number of these 
reactions can be incorporated into a model of regulated self-assembly. In this project 
we ’ ll focus on the following: 

    1.      Plus-end association: the addition of actin monomers to a fi lament.
    G  +  F i →   F i + 1

  2.      The  hydrolysis  of each F-actin subunit ’ s bound nucleotide molecule and the 
subsequent release of inorganic phosphate.

    ATP  →  ADP•Pi →   ADP  +  Pi     

  3.      Minus-end dissociation: the removal of actin monomers from a fi lament.
    F i →  F i�1   +  G       

 Th ese steps are illustrated in  Figure 15.03   . 

  Actin ’ s bound nucleotide: ATP, ADP • Pi, or ADP 
 An important factor in actin chemistry is the  nucleotide  that is bound deep in a 
cleft in the center of G-actin monomers and F-actin subunits. Th e nucleotide takes 
the form of ATP (adenosine triphosphate) or its de-energized state ADP (adenosine 
diphosphate). Although the mechanism of action remains unclear, the type of bound 
nucleotide has been linked to actin binding affi  nities and is therefore a regulatory 
factor in fi lament dynamics. Some time after a G-actin monomer binds to a fi lament, 
its ATP releases energy through the breaking of one of its three phosphate bonds—
a process called  hydrolysis —becoming ADP•Pi (ADP with an associated inorganic 
phosphate): 

ATP  →  ADP•Pi

 It is currently unclear whether or not this reaction stabilizes the subunit on the 
fi lament—that is, increases the binding affi  nity. Th erefore reactions involving ATP-actin 
and ADP•Pi-actin molecules are often treated with the same reaction parameters. In 
other words, an ATP-actin subunit is as likely to dissociate from a fi lament as a subunit
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whose ADP has been hydrolyzed to ADP•Pi. After a period of time, however, Pi dissoci-
ates from ADP: 

ADP•Pi  →  ADP � Pi

 Th is ADP-actin subunit becomes more tightly bound and is therefore much less likely 
to dissociate from the fi lament than its ATP or ADP•Pi relatives. Th e relative eff ects 
of the actin bound nucleotides on fi lament dynamics are refl ected in their  reaction 
rate constants —empirically derived numbers used to make predictions about chemi-
cal reactions.  

  Reaction rates 
 Th e chemical reaction 

Fi → Fi�1 � G    [Reaction 15.1]

 in which a G-actin monomer leaves a fi lament can be described mathematically using 
a reaction rate constant (k  �   in units of seconds  � 1 ) to yield the number of reactions 
that can occur in a time interval  � t. Let N represent the number of G molecules that 
will leave a fi lament during this interval: 

N � k� � �t    [Equation 15.1]

 Likewise, the monomer binding reaction 

Fi � G → Fi�1
    [Reaction 15.2]

Rotational and
translational
diffusion G•ATP� F•ATP

F•ATP� F•ADP•Pi

F•ADP•Pi � F•ADP + Pi 

F•ADP� G•ADP

G•ATP

G•ADP

G•ADP� G•ATP

1

2

3
 FIGURE 15.03 

    The diffusion and reaction events 
modeled in your simulation.    
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 can be described using the reaction rate constant k  �   (in units of  � M  � 1  s  � 1 ) and the 
concentrations (denoted with square brackets) of either reacting species, for example: 

N � k� � �t � [G]    [Equation 15.2]

 where N is the number of monomers that bind the fi lament in time  � t. 

 Empirical studies of actin in vitro have yielded rate constants (k  �   and k  �   values) that 
can serve as a guide in constructing your actin simulation in silico. One must use cau-
tion when adapting such numbers to a stochastic model in which both reaction  and  dif-
fusion are considered. Reaction rates are thermodynamic statistical averages derived 
for largely homogeneous solutions of reactants. Research is showing that the widely 
accepted rate constants for actin don ’ t apply without modifi cation to the heterogeneous 
mixture within living cells. Furthermore, studies into the roles of actin accessory mol-
ecules such as profi lin, ADF (or actin depolymerizing factor), and formin to name a few, 
interact in complex ways with actin to provide tight control over reaction rates in vivo. 
Th erefore, we ’ ll use the established rate constants as a point of departure for choosing 
parameter values to use in silico. Equally important in choosing these values are the sci-
entifi c and didactic objectives of the model you ’ re building. We ’ ll come to these shortly.   

  Pairing reaction and diffusion: A visualization challenge 
 As stated earlier, if your model is to capture the essence of dynamic actin fi lament turn-
over, it will incorporate both time-dependent reactions and spatial diff usion eff ects. 

  Reaction timing 
 Ignoring diff usion for a moment, you could describe the association and dissociation 
reaction events in terms of Equations (15.1) and (15.2) above. Adapting rate con-
stants from the actin science literature and choosing a reasonable concentration of 
G-ATP-actin you could quickly determine the number of reactions occurring in each 
time step  � t. By carefully choosing the number of Maya frames per  � t, you could set 
up a nice simulated visualization of actin treadmilling. For example, let ’ s say: 

    1.      k  +    =  11.6  μ M –  1  s –   1 , the established in vitro G-ATP plus end association rate 
constant.  

  2.      [G-ATP]  =  0.1  μ M, the accepted in vitro critical concentration for 
G-ATP-actin.  

  3.     Rearranging Equation 15.2 to solve for  � t gives:

     Δ t  =  N/([G-ATP]  �  k  +  )     

        The time interval required for one association reaction per fi lament is 
therefore

     Δ t  =  1/(0.1   � 11.6) s  =  0.862 seconds      

  Suppose you wish to represent an association reaction in your Maya model on aver-
age once every second. A frame rate of 30 fps gives a reaction rate of 1/30 reactions 
per frame. 

        The critical concentration (C c ) 
is the minimum concentration of 

units needed before a polymer 
will form. It can be expressed 

mathematically as the ratio 
of off and on rate constants: 

Cc   �  k � /k� .      



393CHAPTER 15: SELF-ASSEMBLY

    4.     We can now express Maya frames in terms of reaction time:    

 1 Maya frame � 1/30 reactions � 0.862 seconds/reaction
  � 0.029 seconds

 Th e reaction rates for hydrolysis and dissociation follow similar logic with the excep-
tion that they depend only on time and not concentration. So far so good. We have a 
comfortable time increment of 0.04       seconds per Maya frame—set by the reaction rate 
constant and a reasonable G-actin concentration—that allows us to observe about 1 
association reaction per animation second (at 30 fps).  

  Diffusion timing 
 Within a cell, macromolecules such as G-actin undergo random walks due to col-
lisions with other macromolecules, small molecules, and water. For time steps that 
are large compared to those between intermolecular collisions, these random walks 
result in diff usive motion. For their ChemCell4 program, Steven J. Plimpton and 
Alex Slepoy derived the following equation to calculate the distance, r, that a macro-
molecule with a diff usion coeffi  cient, D, diff uses in time, �t:   

 r � 4(D � �t/�)1/2  [Equation 15.3]4

 Plimpton and Slepoy’s approach maps the eff ect of intermolecular jostling to times 
and distances relevant to events we ’ re interested in for this model: chemical reac-
tions between macromolecules. Calculating an approximate value for D or choosing 
one from the literature, we can set r to reasonable fraction of the diameter of G-actin, 
and then calculate the corresponding time step  � t. For example: 

    1.     r  =  1       nm (1/5 the approximate diameter of G-actin)  

  2.     D  =  1.65   � 10  – 12  m 2 /s  

  3.     Rearranging equation 15.3 to solve for  � t gives   

�t � �r2/(16D)
     � (3.14)(10�9)2/(16 � 1.65 � 10�12)s
     � 1.19 � 10�7 s

  Now, suppose we let one Maya frame equal 1.19  �   10 �7  seconds—in order to visual-
ize and animate the eff ects of reasonable diff usion step sizes—and use our k  �   and 
concentration values from above. In this case you ’ ll be waiting some 0.862 s/reaction / 
(1.19  �   10  � 7 s/frame)  �  7.25 million   frames (or � 3 days at 30 fps!) between asso-
ciation reactions. Th is is clearly not a good outcome if the purpose of your model is 
to both simulate  and  visualize actin steady-state treadmilling. After your monomer 
associated with its fi lament, you ’ d then have to wait another 3 days times the number 
of subunits in your fi lament for one treadmilling cycle to fi nish! 

 Th erefore, in order to represent actin treadmilling behavior within reasonable 
observer time scales you ’ ll take a novel, yet straightforward approach to simulation 
and interpretive visualization.   

  Model conditions 
 Before leaving the problem overview behind, let ’ s state some initial conditions 
that will help you get your Maya model up and running as quickly as possible. Rest 

        A value of r on the order of 
a few Angstroms would be 
appropriate when steric effects 
on interaction are considered. 
In the present model, however, 
nanometer diffusion step sizes 
work nicely with the temporal 
and spatial scales used.      

        ChemCell4 is a computer 
program that uses particles to 
simulate the protein chemistry 
of biological cells (www.sandia.
gov/�sjplimp/cell.html). It 
was developed by Steven 
Plimpton and Alex Slepoy at 
the Computation, Computer, 
Information and Mathematics 
Center at Sandia National 
Laboratories.      
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assured, the modular approach we ’ re taking will allow you to increase the model ’ s 
complexity if you wish to explore actin dynamics further. 

    1.     Association reactions occur at the fi lament plus end only. Th is models the dis-
covery that, in vivo, G-actin is associated with helper proteins, such as profi lin, 
that inhibit it interaction with fi lament minus ends. In contrast, profi lin bound 
G-actin has a high affi  nity for the plus end of fi laments. While you won ’ t model 
profi lin explicitly, its eff ects are implicit in this condition for the model.  

  2.     Th e environment created by additional helper proteins, such as formin, at the 
plus end, inhibits the off  rates there in comparison with the on rates and with the 
helper protein stimulated off  rates at the minus end (ADF/cofi lin).  

  3.     Th e model features one fi lament and a small number of G-actin monomers. Since 
you ’ re considering G-actin binding at the fi lament plus end only, the monomers 
are shown (for clarity) to move within a bounding region (the  concentration vol-
ume ) centered at the plus end. Th e monomer number and their concentration vol-
ume determine the G-actin concentration.  

  4.     It ’ s diffi  cult to make out treadmilling activity when fi laments are themselves 
buff eted about by diff usion. Th erefore, in this model you ’ ll limit diff usive motion 
G-actin monomers, keeping the fi lament aligned with a major axis and stationary. 
In this way, the fi lament ’ s local axes serve as the frame of reference for observing 
subunit fl ux.  

  5.     Th e only G-actin is G-ATP-actin. Physiologic concentrations of ATP are much 
higher than ADP and any free G-ADP-actin is quickly changed to ATP-G-actin.  

  6.     Once G-ADP dissociates from the fi lament minus end, its ADP is thus exchanged 
for ATP almost immediately and it rejoins the pool of G-ATP-actin. Th is allows 
you to maintain a constant supply of G-ATP-actin ready for association at the fi la-
ment plus end. As well, due to the action of sequestering proteins and the fact that 
G-ADP has a very low association affi  nity for F-actin, there is no practical reason 
you should be consider free G-ADP-actin in your model at this time.    

 Conditions like the ones above are common to mathematical modeling of complex 
systems. Th ey set reasonable boundaries within which you can get things working. 
Once you ’ re satisfi ed the model is working well under the current conditions you can 
explore diff erent sets of assumptions, relaxing as many of these conditions as you 
wish to model actin fi lament dynamics in the test tube or in the cell.   

  Methods: Actin geometry 
 Th ere are several possible approaches to simulating molecules diff using in a 
Maya scene, including particle systems and rigid body dynamics, both of which 
we ’ ve explored in our research. For this project we favor an intuitive approach that 
uses polygon models to represent the atomic contact surfaces of actin molecules, 
combined with diff usion and collision engines you ’ ll code in MEL. While this 
approach foregoes some of the effi  ciencies of Maya ’ s particle systems and the collision 
detection capabilities built into Maya ’ s rigid body dynamics, it also bypasses their 
shortcomings and ultimately lessens the amount of MEL code required to implement 
this model. 
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  The G-actin template model 
 Individual ’ s G-actin monomers and an F-actin subunits were created by instancing a 
template model ( Figure 15.04   ) created from molecular structure data—the same data you 
applied in the previous chapter to build the CPK model of actin. However, unlike a 
space-fi lling CPK model, in which every atom is instanced with a sphere, your camera 
distance in this scene is great enough that you won ’ t need the exact location of every 
atom—recall it ’ s the complementarity of surface shapes that ’ s key to protein–protein 
recognition. Your template model will be a low level-of-detail (LOD) polygonal sur-
face expressing this surface shape idea (the concept of level-of-detail was discussed in 
the previous chapter, beginning on page 344). For the CPK model, we were interested 
in representing the location and species of the individual atoms (nearly 3000 in total) 
that comprised the actin molecule. 

 A low-LOD surface model of a molecule is a geometric object that captures the general 
features of a molecule ’ s surface—it ’ s lobes and clefts—with a minimal number of pol-
ygons. A high-LOD model, in contrast, captures surface characteristics in more detail 
using a greater number of polygons. When you choose a low-LOD over a high-LOD 
model you gain processing speed in favor of structural detail. A lower degree of sur-
face detail can also benefi t your viewers. Th ere is a point, which you must judge for each 
of your projects, beyond which additional surface detail no longer aids understand-
ing, and can even interfere with a grasp of the subject being illustrated. In a particu-
larly complex visual scene, with many moving and interacting objects—such as your 
G-/F-actin scene—low-LOD surfaces can make it easier for the viewer to tell objects 
apart. Th is principle applies equally to still and animated images and is illustrated in
 Figure 15.05   , which compares two versions of the same Maya scene at diff erent LOD.

 FIGURE 15.04 

    The G-actin template is a low level-
of-detail (LOD) model comprised of 
520 polygons. It was created with 
UCSF Chimera, using Protein Data 
Bank fi le 1j6z.pdb.    2
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  To help you focus on the MEL development, we have prebuilt the actin template model 
and included it in the book ’ s companion CD-ROM. Th e model was created using the 
Multiscale Models tool in UCSF Chimera software, which can be downloaded from 
 http://www.cgl.ucsf.edu /chimera / and used free of charge for a variety of structural 
modeling purposes (UCSF Chimera was introduced in the previous chapter). Th e 
model is based on a Protein Data Bank fi le for the actin monomer,  1j6z.pdb . 2  Th e origi-
nal PDB fi le can be found by searching 1j6z on the Protein Data Bank at www.pdb.org. 
You ’ ll fi nd our low-LOD actin model saved in a Maya scene fi le on the CD-ROM:

15_Self_Assembly/scenes/actinTemplate.ma       

 We created the template model with enough surface detail to capture the general 
morphology of the G-actin (or F-actin subunit) molecule—its characteristic shape 
( Figure 15.04 ). Th is lower-LOD surface model also satisfi es our desire for a low polygon
count (520 polygons) relative to a van der Waals surface model of actin at atomic res-
olution ( � 33,000 polygons). You could easily go lower than 500 polygons, but your 
actin model would begin to look blocky. 

 Th e template model was correctly oriented relative to the fi lament axes—which is 
aligned with the Y-axis in Maya—and off set its pivot point so that it can be dupli-
cated and positioned properly on a growing fi ber simply by rotating it 166	 and mov-
ing it lengthwise by 28       Å relative to the preceding subunit. Th e degree of off set and 
the rotational orientation of the model were determined by comparison with the 
Holmes/Lorenz model of F-actin. 3  

(b)(a)

 FIGURE 15.05 

    Too much surface detail can make 
an image diffi cult to read. Both (a) 
and (b) show the same 250 G-actin 

monomers, however (a) depicts the 
van der Waals surfaces at atomic-

radius resolution, whereas (b) 
shows the low poly-count surfaces 

that average over this fi ne, atom-
scale detail—using the template 

surface model we provided on the 
CD-ROM. In (a) it is diffi cult to tell 
one actin molecule from another, 

whereas the individual objects can 
be clearly distinguished in (b).    

        At the time this book was 
published, the Maya developers 
had yet to incorporate tools (like 

those embedded in UCSF
 Chimera) for making a polygonal 

surface model from a cloud of
 points like the atomic coordinates

 in a PDB fi le.      
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  One surface model for all species of actin? 
 Th e diff erent types (or species) of actin we ’ re considering, G•ATP, F•ATP, F•ADP•Pi, 
and F•ADP are almost identical to one another in overall shape but—and this is cru-
cial to the biological signifi cance of your model—have diff erent chemical properties. 
Th e conformational (shape) changes in the monomers and subunits associated with 
binding and nucleotide events, while small relative to the overall size and shape of 
actin, help trigger changes in those chemical properties. For instance, the release of 
the inorganic phosphate molecule (Pi) from ADP•Pi in an F-actin subunit induces a 
shape change that increases its binding affi  nity for its neighbors. However, the eff ects 
of these conformational changes are encompassed nicely in the reaction probabili-
ties. As a result, such subtle structural changes need not be considered in this model. 
Instead the diff erences between actin states can be more eff ectively represented 
through naming, shaders, and custom attribute values.   

  The F-actin model 
  Table 15.01    lists the Maya components that make up the F-actin model. Th ey are shown 
in context in  Figure 15.06   . Th e collision surface of the fi lament is a NURBS cylinder with 

 Item  What the item looks 
like in Maya 

 Description 

 F_0  F-actin fi lament (NURBS cylinder) 

 G_# *   G-actin monomer (instance of template model) 

 GF_group†  NA  Group of all F-actin subunits within a fi lament 

 Plus  Plus end locator 

 Minus  Minus end locator 

 pmGroup  NA  Group of plus and minus locators within the 
fi lament 

 plusConcVol  Plus end concentration volume 

plus RxnVol   Plus end reaction volume 

   * The # symbol represents an actual number such as 1, 2, 3, etc.   
† F-actin subunits are grouped (parented) under a null transform node GF-group prior to parenting under the 
F-actin model. 
This makes it easy to shift all GF models at once to make room for a new binding subunit in the dynamic 
simulation.  

 TABLE 15.01 

   Nomenclature used in the actin 
simulation model.  
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its Visibility attribute set to off  or 0. Its 7       nm diameter defi nes the approximate 
cross-sectional area of an actin fi lament. Th ink of the cylinder as an invisible shell 
surrounding the constituent subunits. It grows in length as monomers are added to 
it. What you ’ ll  see  of the fi lament in the scene are its subunits, which are visible dupli-
cates of the G-actin template model. Every time the fi lament reacts with a mono-
mer it lengthens and the monomer changes status to a  subunit  and becomes a child of 
the fi lament. Th e subunit then no longer diff uses—its movement instead dictated by 
the motion of its parent fi lament which (in the present model) is stationary relative 
to the viewer. 

 Plus and minus ends of the fi lament are represented by locators—non-rendering 
Maya objects that show up as cross-hairs in your scene view. When each locator is 
positioned the distance of one-half subunit (1/2  �   27  �   13.5       Å) beyond its fi lament 
end and rotated another 166	, it conveniently marks the location where the next 
reacting G-actin will be placed when it becomes a subunit. A minus end locator is 
included in case you wish to extend your model to incorporate minus end association 
reactions. We ’ ll address the concentration and reaction volumes shortly. 

 Maya ’ s Scene Hierarchy lends itself conveniently to modeling the nested relationships 
of biomolecular structure.  Figure 15.07    shows how the molecular relationships within an 
F-actin fi lament can be modeled using transform nodes in Maya. Th ese relationships 
diff er from those we ’ ve discussed in previous chapters, where they involved attribute 
connections between nodes; the connections were the domain of the Dependency 
Graph. Instead, parent–child relationships belong to Maya ’ s Scene Hierarchy which 
can be viewed in the Outliner ( Figure 15.07a ) and in the Hypergraph ( Figure 15.07b ). 

F-actin collision surface
F_0

G-actin monomer
G_20

Plus end reaction volume
plusRxnVol

Plus end concentration volume
plusConcVol

F-actin subunit
G_14

Plus end locator
plus

 FIGURE 15.06 

    The initial setup for the actin 
treadmilling model contains a ready-

made fi lament and fi ve 
G-actin monomers. The translucent 

cylinder surrounding the fi lament 
subunits is used both as the fi lament 

transform node and its collision 
surface.
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(a)

 FIGURE 15.07 

    An F-actin model in the Maya ' s 
Scene Hierarchy. It is composed of 
fi ve F-actin subunits. 

(a) Viewed in the Hypergraph.

(b) Viewed in the Outliner.      
(b)

 To save your time—and keep the printed code listings to a minimum here—we ’ ve 
included a ready-made actin scene fi le on the CD-ROM (called  treadmilling.ma ), with 
which to begin building your simulation model. In living cells, actin never exists as 
either entirely monomeric or entirely fi lamentous—a balance exists between the 
two. Th e simulation fi le on the CD-ROM is therefore set up with a fi lament model 
composed of 20 subunits and fi ve G-actin monomers. Th e monomer and subunit mod-
els are instances of the G-actin template model discussed in the previous section. 
Spheres have been parented to the fi lament plus end as a visual cue for the G-actin 
concentration and reaction volumes (more on this second volume shortly):

    15_Self_Assembly/scenes/treadmilling.ma       

 Now you ’ re set for a strategy to let fi laments grow and also change their nucleotide 
profi les according to the events outlined in  Figure 15.03 .   

  Methods: Diffusion and reaction events 
 Th is section is divided into the diff erent diff usion and reaction events that together 
create treadmilling behavior. 

  Diffusion 
 In mathematical terms 3D Brownian diff usion can be conveniently described as the 
product of three Gaussian random number distributions. 4  As a result, the stepwise 
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x, y, and z displacements of your G-actin monomer can be obtained by sampling a 
Gaussian number generator with standard deviation 

� � (2DT �t)1/2 (Ref. 4)

 where D T  is the translational diff usion constant and  � t, the time increment, both of 
which were introduced earlier in this chapter. Maya ’ s gauss command takes standard 
deviation as an argument and returns a random number from Gaussian distribution, 
with mean value  �   0. You will therefore generate your translational diff usion vector 
in MEL as follows:

         float $tD, $t, $stdDevTrans, $x, $y, $z; 
 vector $trans; 

 $tD  =  1.65 x  pow(10�,  –12); // m^2/s;

 $t  =  1.19  x  pow(10�, –7); // seconds. 

 $stdDevTrans  =  sqrt(2.0� * $tD * $t) * pow(10�, 9); 

 $x  =   ' gauss $stdDevTrans ' ; 

 $y  =   ' gauss $stdDevTrans ' ; 

 $z  =   ' gauss $stdDevTrans ' ; 

 $trans  = <<  $x, $y, $z >>;       

 Th e standard deviation, $std Dev-Trans, was multiplied by 109 to scale from meters 
to nanometers—our Maya model’s working units. Rotational diff usion is handled in 
a similar fashion to translation, with a rotational diff usion constant D R   �  2  �   10 5 

 rad2/s. Both translational and rotational diff usion will be calculated in a MEL proce-
dure called diffuse().  

  Collisions 
 Collisions between G-actin models will be detected by testing their proximity of their 
pivot points against a threshold value (5.4       nm  �  G-actin diameter). If molecule A is 
within the threshold distance of molecule B, A will take a step away from B in the 
direction of the vector that separates A and B from one another. Likewise, B will step 
away from A in the opposite direction. Th e magnitude of this step can be set to any 
value you wish. For starters, you ’ ll use 1.4       nm ( �  1/4 G-actin diameter). 

 Collisions between a monomer and the F-actin fi lament will be detected by test-
ing the distance from the monomer ’ s pivot point to the closest point on the F-actin 
NURBS cylinder. You ’ ll use a special node called  closestPointOnSurface  (cpos in 
our book for short) to perform this test. cpos is connected to the cylinder through 
Maya ’ s Hypergraph. When assigned an input vector value (G-actin ’ s pivot location), 
cpos returns (via its position attribute) a vector that is the closest surface point to 
the input vector. If our monomer is within a threshold distance from the fi lament, 
the G-actin model will take a step (again 1.4       nm in magnitude) away from the fi lament. 

 Given the viscosity of the cytoplasm and the diff usion time steps being considered, 
you can treat the motion of your actin monomers as highly damped. You can there-
fore neglect the eff ects of momentum imparted by collisions. Once two molecules 
have collided and moved apart they are free to continue diff using without any physi-
cal memory of the recent collision. Th is is certainly a simplifi ed collision algorithm, 
but is suffi  cient for the current model. 

 All collisions will be evaluated and converted to avoidance vectors ( “ steps away ” ) in a 
procedure called  collide ().  
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  Reaction 1:  Association 
  Figure 15.08    shows two G-actin monomers colliding with F-actin in the time interval of 
one frame. For a chemical reaction to happen—the binding of G-actin to F-actin—the 
collision must occur at the plus end of the fi lament (at least in the present model). To 
qualify as being  “ at the plus end ”  the monomer must breach a spherical reaction vol-
ume. We will discuss the reasoning behind this approach shortly in the section entitled 
 Association reaction rate . A monomer that enters this reaction volume reacts with the 
fi lament and is added to the fi lament ’ s current group of subunits. A monomer that col-
lides with the fi lament outside of the reaction volume—that is, not at the fi lament plus 
end—defl ects off  the fi lament and continues diff using. 

 In order to add an associating monomer to the fi lament, your simulation model must 
be able to query the location of the plus end relative to Maya ’ s world space. Th is func-
tionality is provided by the plus end locator. For an association reaction, your MEL 
code will update the G- and F-actin Maya models in a series of steps to refl ect their 
new status: 

    1.      Translate the G-actin model to the position of the fi lament ’ s plus-end locator.  

  2.      Rotate the G-actin into its correct orientation relative to its neighboring F-
actin subunit.  

  3.     Parent G-actin to F-actin.  

  4.      Increase the length of F-actin (the NURBS collision surface) by one subunit.  

  5.      Reposition the plus or minus-end locator to account for the increased fi la-
ment length.  

  6.      Update custom attributes that store the fi lament ’ s subunits count and length.    

 Association reactions will be evaluated in a procedure called associate().  

 FIGURE 15.08 

    Collisions between F- and G-actin 
result in association reaction if two 
conditions are met: 

(1) The collision occurs proximal to 
the fi lament plus-end.

(2) The probability of the reaction 
is greater than a randomly drawn 
number.    

G-actin

F-actin

Reaction volume

Plus end locator

A reaction
occurs

Minus end locator

The plus end locator moves to
mark the location where the
next monomer will associate.

No reaction occurs and the
monomer continues diffusing.
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  Reactions 2 and 3: Hydrolysis and phosphate release 
 Th e nucleotide profi le for F-actin—the distribution of F•ATP, F•ADP•Pi, and F•ADP-
actin subunits along a fi lament—has been widely studied for its implications in the 
regulation of F-actin length and subunit turnover (treadmilling). By building into 
the F-actin subunit and G-actin monomer models the ability for each to change the 
state of its nucleotide, you will have the fl exibility to simulate and visualize diff er-
ent hypotheses about the role of the nucleotide profi le in fi lament regulation, should 
you wish to explore the simulation model further. To set up the model, you need only 
assign an initial nucleotide state to each F-actin subunit and G-actin monomer. To 
emulate actin fi lament conditions encountered in vivo, your Maya fi lament starts out 
with a plus end  “ cap ”  of ADP•Pi subunits, with the remaining subunits in the ADP 
state. Each G-actin monomer is assigned an ATP state. Th ese nucleotide states are 
tracked using a custom state attribute and a unique shader ( Table 15.02   ). To assess the 
nucleotide profi le of a given F-actin fi lament, you need only query the state attributes 
of its constituent subunit molecules. 

 Hydrolysis and phosphate release are not directly dependent on molecular concentra-
tions the way G-actin association reactions are. Instead these nucleotide reactions 
depend on time and rate constants. Based on the rate constant, a probability is cal-
culated and tested against a random number at every time step  � t which you ’ ll treat 
as one Maya animation frame. Th e rate constants for each reaction will be discussed 
below.  

Reaction 4: Dissociation 
 In vivo, there are diff erent mechanisms by which actin fi laments disassemble and a 
complete picture of these mechanisms has not yet emerged. Your model treats one of 
these: the dissociation of G•ADP-actin from the minus end of the fi lament. When the 
monomer/subunit dissociates, the following steps are taken: 

    1.      Move the newly G-actin monomer (former F-actin subunit) away from the fi la-
ment minus-end.  

  2.      Decrease the length of the F-actin NURBS collision object by one subunit.  

  3.      Reposition the plus and minus-end locators to account for the decreased fi la-
ment length.  

  4.      Create and assign a temporary shader to the G-actin model.    

 Actin species  State 
attribute 
value 

 Shader name  Normalized RGB 
color values (R, 
G, B)

 Color 

 G • ATP  0 
 ATP_shader    1, 1, 0.8   

 F • ATP  1 

 F • ADP • Pi  2  ADPpi_shader  0.65, 0.75, 1   

 F • ADP  3  ADP_shader  1, 0.7, 0.5   

 TABLE 15.02 

   Actin bound nucleotides are 
indicated in the model by a custom 

state attribute and a unique shader.  
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 Th e shader assigned in step 4 will allow you to fade out the G-actin model over a spec-
ifi ed number of frames. When it ’ s transparent, your MEL code will move the mono-
mer into the fi lament ’ s plus end concentration volume and assign it the ATP_shader. 
At this point the monomer has joined the pool of ATP-G-actin and is ready to bind 
the fi lament should the opportunity arise. 

 You ’ ll build a procedure called dissociate() to evaluate and execute all dissociation 
reactions.   

Methods: Reaction rates and probabilities 
 In this section we ’ ll be working quickly through the chemistry math needed to set 
up the animation events in your MEL code. If you would prefer to move directly to 
MEL coding, you can take those parameters as established, go to the next section, 
and return to this section at a later reading. 

 We ’ ll now address the dual scientifi c and interpretive visualization requirements of 
your model: 

    1.     Simulate both the reaction and diff usion events that give rise to self-assembly and 
treadmilling behavior.  

  2.     Do the above in a way that permits the important events to be appreciated during 
the animation. Th e disparate time scales for relevant diff usion and reaction events 
enhance, as we ’ ve seen, the challenge of designing an eff ective visualization.    

 You ’ ll follow a workfl ow in which you establish the visualization requirements of 
your model and let the reaction rate constants and corresponding probabilities follow 
naturally from those requirements. Let ’ s derive the numbers to simulate treadmilling 
behavior in a timely and visually striking fashion. 

  Visualization requirements of the model 
 You want to record a 30 second clip of your model in action. Half a minute is long 
enough to present detail but short enough not to bore viewers. 

 A frame rate of 30 fps gives you 900 frames to work with. Next, let ’ s say you are asked 
to show an average of fi ve complete treadmilling cycles per simulation run—being a 
stochastic model, this number will of course vary from run to run. Five cycles give 
your audience several opportunities to see the cycle and its components in action. 

 One cycle would therefore last approximately 

    900 frames/run ÷   5 cycles per run  =  180 frames   

  Your actin fi lament in this project is 20 subunits long. One cycle represents the jour-
ney of any given subunit from the plus to the minus end of the fi lament. You there-
fore have a fi lament fl ux rate 

    subunit fl ux rate  =  20 subunits per 180 frames  =  1/9 subunits per frame    

 At this fl ux rate, you can expect a subunit to travel the length of the fi lament in 
roughly 180 frames, or six seconds of animation playback time. 

        Bear in mind that for the purpose 
of seeing treadmilling up close 
you ' re using a much shorter 
fi lament than one would typically 
encounter within a cell.      
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  Smoothing the fl ow from G-ADP to G-ATP-actin 
 You ’ ll recall from Model Condition #6 on page 394 that newly dissociated 
G-ADP-actin monomers are to rejoin the pool of ATP-G-actin at the fi lament plus 
end, ready for reassociation with the fi lament. Rather than moving these transition-
ing molecules instantly—which makes the molecules appear as if they ’ re popping out 
of and into existence—let ’ s take an approach that is less jarring visually, and there-
fore less distracting from the main action: treadmilling and diff usion. With this 
approach, you ’ ll fade out each recently dissociated G-actin monomer over several 
frames, move it to the fi lament plus end, and then fade it back in to join the pool of 
association-ready molecules.   

  Association reaction rate 
 In steady-state treadmilling, the above subunit fl ux rate is the same as both your 
association and dissociation reaction rates. Since only whole monomers (not frac-
tions) can bind the fi lament, there must be a probability, 

P� � 1/9 � 0.11

 that one monomer will associate during each Maya frame to provide the animation 
pace you need. In your dynamic model, this probability is a function of diff usion as 
well as chemical reaction. An innovative way to handle this probability was developed 
by Steven J. Plimpton and Alex Slepoy for their ChemCell program. 4  Implemented in 
our Maya simulation, their approach involves a  reaction volume  centered at the fi lament 
plus end ( Figures 15.09 and 15.10     ). Any monomer entering this volume has a probability of 

RR
Reaction

volumeRC

Concentration
volume

 FIGURE 15.09 

    A concentration volume (light gray 
sphere) defi ned by radius R C  lets you 
calculate the G-actin concentration 

and contain the monomers to the 
useful space around the fi lament 
plus-end. The red sphere defi nes 

the association reaction volume of 
radius R R .    
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binding to F-actin that is naturally dependent on the size of the reaction volume. To 
derive this probability, let ’ s start by setting the G-actin concentration and calculating 
the appropriate rate constant. Th e subsequent use of subscript and superscript letters 
is outlined in  Table 15.03   . Let

 [G]  be the micromolar concentration of G-ATP monomer ( � M). 

 Rate  �    be the association rate in monomers per second. 

 k  �    be the association rate constant in monomers per micromolar second 
( � M  � 1  s  � 1 ). 

 V C   be the spherical volume in liters of radius R C  used to determine [G] 
( Figure 15.10 ). 

 N  be the number of G-actin monomers in solution. 

 A V   be Avogadro ’ s number  �   6.022  �   10 23 . 

 You fi rst set R C  and N to any values you like. For starters, we chose: 

R nm meters), N monomers.C � � ��15 15 10 59(

 Th is gives 

V / R liters.C C� � � �4 3 1 4 103 20� .

G-actin
monomer

Reaction
volume

 FIGURE 15.10 

    The red sphere represents the plus-
end reaction volume V R  (a sphere 
of radius R R ). A reaction occurs with 
probability P when the surface of 
a G-actin monomer penetrates this 
volume.
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[ ]G N/(V A ) M. (the free G-actin concentration)C V� � � �10 5906

 Next we ’ ll calculate the reaction rate and derive k  �  :

Rate ( / monomers/frame)/ s/frame monomer� �� � � �1 9 1 19 10 9 26 107 5. . ss/s.

k R / G ( monomers)/s/ M M s� � � �� � � � � � �[ ] . . .9 34 10 590 1 59 105 3 1 1

  Th is k  �   value should (in theory!) yield the desired number of association reactions 
per Maya frame—an average of one every nine frames. What is needed now is a way 
to relate this rate constant to the bustling diff usion about the fi lament plus end. 
Plimpton and Slepoy provide an elegant approach in the following equation. It relates 
the binding probability of a two-reactant chemical reaction to the reaction volume V R  
and incorporates the eff ect of translational diff usion and the reaction rate constant k  �  .
Th e radius R R  of this volume is the maximum separation between the monomer and 
fi lament surfaces for which a reaction is considered probable ( Figure 15.10 ). Th e prob-
ability P  �   of this reaction is expressed as 

P k t/(A V )V R
�� �

 where V R   �  4/3 �  RR
3 (V R  units are liters, R R  units are meters) 

 Th erefore P  �    �  k � t/(A V 4/3 � RR
3) 

 Rearranging this equation, setting P  �    �   1, and solving for R R  yields the desired reac-
tion radius 

 R R    �  4.23       nm 

        Typical reaction rates for in 
vitro actin preparations are 

on the order of 10 4  association 
reactions per second (for k�  �   

12 � M  – 1  s  – 1  and [G-ATP]  �
0.1  � M). 5  While in vivo G-ATP 

concentrations have been 
measured in the neighborhood of 
0.1  � M, in vivo rate constants are 
a source of ongoing investigation 

and debate in the cell biology 
community.      

 Subscript/
superscript 

 Meaning  Example 

�   of the fi lament plus end k  �

 C  of the concentration volume  V C

 V  Avogadro ’ s number  A V

 F  of the F-actin fi lament  R F

 G  of G-actin monomers  R G

 R  of the plus end reaction volume  R R

'  the distance between object centers  R R�

 D  of the ATP  →  ADP • Pi hydrolysis reaction  k D

 PI  of the ADP • Pi→   ADP  �  Pi reaction  k PI

 TABLE 15.03 

   Subscript and superscript notation 
used in the derivation of reaction 

rates and probabilities.  
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 In other words, if the surface of a G-actin monomer comes within a distance R R  of the 
fi lament plus end surface, there is a probability of 1 (a certainty!) that the ensuing 
chemical events at the top will bind the monomer to the fi lament. Let 

    R G   �  2.7       nm be the approximate radius of a G-actin monomer, and  

  RF    �  3.5       nm be the approximate radius of an F-actin fi lament.    

 Th en the distance R�  R between the G-actin center and F-actin plus end center is given by

R R R R nmR R G F
� � � � � � � �4 2 2 7 3 5 10 4. . . .

  Th is value can now serve as the key parameter in your model to evaluate association reac-
tions resulting from diff usive motion. R � R will be represented by the variable $RrPrime in 
your model. To visualize the reaction volume, the model uses a sphere of radius: 

R R nmR F� � 7 7.

 When a monomer ’ s surface breaches the surface of this volume, it is considered for an 
association reaction. Let ’ s now look at the time-dependent reactions and derive their 
rate constants.  

  Hydrolysis and phosphate release rates 
 Within the cytoplasm, hydrolysis of ATP-F-actin and the subsequent release of the 
cleaved inorganic phosphate molecule are closely linked to the activity of profi lin and 
formin at fi lament plus ends. You ’ ll recall that profi lin acts as a chaperone, catalyzing 
association reactions at the fi lament plus end while inhibiting them at the minus end. 
Recent empirical evidence suggests that a fi lament whose two terminal plus end sub-
units are profi lin-ATP-actin can ’ t grow until ATP has been hydrolyzed and Pi released 
from the penultimate subunit. 6  Th is evidence suggests that rapid hydrolysis and Pi 
release may be essential for rapid fi lament growth in the cell where actin dynamics 
is supervised by a myriad of helper proteins. It also provides you with another degree 
of control over plus end association reactions in your animation. Each association 
reaction will be contingent upon phosphate release from the penultimate plus end 
subunit. 

 Th e state of a bound nucleotide also aff ects the likelihood of a subunit dissociating 
from the fi lament. Widely cited minus end dissociation rate constants for in vitro 
actin solutions 

k F F+G-ATP Pi s
k F F+ -ADP s

1

1

� �

� �

( ) .
( ) .

→
→

• ≈
≈

0 8
0 3G

 suggest that phosphate release slows depolymerization, thereby stabilizing fi laments. 
Given the above numbers, if a subunit were to make it to the minus end without releas-
ing its phosphate, it would be almost three times more likely to dissociate than if it had 
lost its phosphate molecule. Th is property can lead to catastrophic depolymerization in 
a short fi lament like the one in your model if you set the phosphate release rate low 
enough that ADP•Pi subunits are somewhat likely to reach the minus end. 

 However, since in this project you are interested in emulating actin dynamics as they 
exist in vivo rather than in vitro—and since there is evidence implying that phosphate 

        For the G-actin radius we 
averaged the largest ( � 6.8       nm) 
and smallest ( � 4       nm) 
dimensions, and divided by 2 to 
get 2.7       nm.      
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release is necessary for plus end growth in the presence of plus end helper molecules—
you will set your nucleotide reaction rates in accordance with your association rate. 
Th erefore, given your associate rate 

Rate ( / monomers/frame)/1.19 s/frame monomer� �� � � �1 9 10 9 34 107 5. ss/s.

 and the requirement that the terminal subunit must hydrolyze its ATP and release its 
phosphate before it becomes the third subunit from the plus end (i.e. in two steps), 
let ’ s calculate the hydrolysis and phosphate release reaction rate constants (k D  and 
k PI ). Combined both reactions must occur within 9 frames. In other words, each reac-
tion must occur in 4.5 frames. Let Rate D  and Rate PI  be the reaction rates in mono-
mers per frame, then 

Rate Rate / subunits/frame

Rate k t, Rate k t
D PI

D D PI PI

� �

� �

( . )1 4 5

� � ..

 Th erefore 

(k k ) t 2( / ) k k / / tD PI D PI� � � �� �1 4 5 4 9. ( )→

 Th e typical in vitro ratio of hydrolysis and phosphate release rate is 

k k / 115D PI � �0 3 0 0026. .

 Since you have nine, and not 115, frames in which to perform both reactions, you ’ ll 
have to alter this in vitro ratio. For starters, let ’ s go with 

k k / k kD PI D PI � �2 1 2→

 Th erefore 

k k k t k / / t sD PI PI PI� � � � � � �3 4 9 4 27 1 25 106 1/( ) ( ) .� �→

k k sD PI� � � �2 2 50 106 1.

 Expressing these rate constants in terms of reaction probability (P D  and P PI ) per Maya 
frame gives 

P k t s s
P k t s

D D

PI PI

� � � � �

� � �

� ��
�

( . )( . ) .
( .
2 5 10 1 19 10 0 296
1 25 10

5 1 7

5 �� �� �1 71 19 10 0 148)( . ) .s

 When added together, 

P P 444 ( / )D PI� � �0 4 9.

 which is of course equal to the desired reaction rate in subunits per Maya frame. Now 
let ’ s look at the minus end dissociation rate.  

  Dissociation reaction rate 
 In order to produce steady-state treadmilling behavior in the model, your dissocia-
tion rate must balance the plus end association rate—the net subunit count should 
remain more or less constant throughout the simulation. Given the brisk pace of the 
nucleotide reactions estimated above we can expect that all subunits reaching the 
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minus end will be G-ADP-actin. For generality, however, you ’ ll build into the model 
the ability to handle dissociation reactions for both types of subunit, in case you wish 
to experiment with the nucleotide rates. Let RateD be the dissociation rate of G-ADP 
in subunits per frame:

Rate Rate ( / monomers/frame )/ 1.19  s/frameD
� � �� � �

� �
1 9 10

9 34

7

. 1105 monomers/s.

  Like the nucleotide reactions, dissociation is time-dependent and therefore its rate 
constant is equal to the reaction rate: 

k sD
� �� �9 34 105 1.

 Th e probability of minus end dissociation in any one Maya frame is given by 

P k t s sD D
� � � �� � � � �� ( . )( . ) .9 34 10 1 19 10 0 1115 1 7

 Now, let ’ s consider the improbable (but not impossible!) dissociation of an ADP•Pi 
subunit. Going to the published rate constants for in vitro actin preparations gives us 
the ratio 

k /k /PI D
� � � �0 8 0 3 2 7. . .

 Th erefore 

k s sPI
� � �� � � �2 7 9 34 10 2 49 105 1 6 1. ( . ) .

 Th erefore the probability of an ADP•Pi subunit dissociating—provided the minus end 
terminal subunit is ADP•Pi—is given by 

P k t s sPI PI
� � � �� � � � �� ( . )( . ) .2 49 10 1 19 10 0 2966 1 7

 Expressing the probability of any reaction as a function of the rate constant k pro-
vides some fl exibility in your model. You could skip the step of deriving k –  and simply 
enter the P values in your MEL code as fl oating point numbers (as opposed to calcu-
lating P using k and  � t). However, building in the extra step of deriving P allows you 
to explore the relationship between reaction probabilities, rate constants, and time. 
Since biochemical systems are often characterized in terms of rate constants and 
concentrations, having a k parameter in your model provides a valuable link between 
your in silico Maya laboratory and the world of empirically based experimental 
science. 

 With the numbers in place (Table 15.04), let ’ s start building the model.   

  Methods: Algorithm design 
 In the previous chapter you used a procedure to build your atomic-detail G-actin 
model. Here we introduce a method that combines animation expressions (which 
you met back in  Chapter 13 ) and procedures. You ’ ll use this method in the remaining 
chapters to create dynamic simulations. Since Maya, by default, evaluates animation 
expressions (just  expressions  from here on) once per frame, they allow you to update 
your model in a stepwise fashion while Maya displays the changes in the scene view. 
Th e algorithm fl owchart in  Figure 15.11    shows two expressions, fi ve procedures, and the 

        By building the rate constants 
into your model as variables 
you ' ll be able to alter them as you 
like to test their relative effects 
on treadmilling behavior.      
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 Reaction  Description  Rate constant  Probability 

 G • ATP  �  F → F  Association  1.59  �  10 3   � M � 1  s � 1   1 

 F • ATP → F • ADP • Pi  Hydrolysis  2.5  �  10 5  seconds � 1   0.296 

 F • ADP • Pi → F • ADP  �  Pi  Phosphate release  1.25  �  10 5  seconds � 1   0.148 

 F • ADP → G•ADP  Dissociation  9.34  �  10 5  seconds � 1   0.111 

 F • ADP • Pi → G • ADP • Pi  Dissociation  2.49  �  10 6  seconds � 1   0.296 

 TABLE 15.04 

   Initial reaction rate constants and 
probabilities for each reaction in 

the model. Probabilities are the 
likelihood a reaction will occur in 

one Maya frame.  

fl ow of information between them. Th ese are the MEL code elements of your tread-
milling model. As you work through the code listings below, it may help to refer back 
to  Figure 15.11  when you want an overview of how the diff erent pieces of your algorithm 
fi t together. 

 To begin, let ’ s state clearly what your algorithm should do: 

    Using ready-made geometric models of G- and F-actin, simulate diffusion and reac-
tion events implicated in biopolymer steady-state treadmilling behavior. The model 
parameters will be updated at the start of each simulation run. The specifi c events 
to simulate are:

   1.      Translational and rotational diffusion within a concentration volume. 
Diffusing molecules must respond to collisions with one another and with the 
fi lament.  

  2.     Plus end association of G-actin monomers to the fi lament.  

  3.     Hydrolysis of bound ATP on fi lament subunits.  

  4.     Release of inorganic phosphate from fi lament subunits.  

  5.     Minus-end dissociation of subunits from the fi lament.       

 Th e fi rst element in  Figure 15.11  is reset, an expression that executes only on frame 1 
and resets your model to its initial conditions. It ’ s within this expression that you ’ ll 
specify the parameters such as the time increment and the treadmilling cycle. Below 
reset is  selfAssembly,  the command-and-control center of the simulation. It gets 
run by Maya once per frame and calls the various diff usion and reaction procedures 
in order to query and then update the state of the model. Within  selfAssembly  is a 
loop that cycles through the G-actin models (named G_#), evaluating boundary con-
ditions, association reactions, diff usion, and collisions. Th e latter three are each 
handled by a separate procedure. You ’ ll use a fourth procedure called faderShader() 
to meet the project objective of smoothing the transition from newly dissociated 
G-ADP-actin to association-ready G-ATP-actin. 

 Once done with the G-actin models,  selfAssembly  calls the dissociate() procedure, 
which draws a random number and compares it to the dissociation probability to 
determine if the minus end terminal subunit will dissociate from the fi lament. 
Finally  selfAssembly  draws random numbers for comparison with the nucleotide 
reaction probabilities.  
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reset expression

•  Return models to their initial 
states

•  Initialize global variables (   t, 
reaction probabilities, etc.)

selfAssembly expression

•  For every G-actin:
•  Evaluate boundary conditions
•  If G-actin is within the plus-

end reaction volume call 
associate() procedure

•  If G-actin is recently 
dissociated from the filament, 
call the faderShader()
procedure

•  Call the diffuse() procedure
•  Call the collide() procedure 

to react to collisions

•  Call the dissociate() procedure

•  For every F-actin subunit, test 
the probability of:
•  Nucleotide hydrolysis
•  Phosphate release 

diffuse()
•  Calculate and return 

the diffusion values

associate()
•  Test the probability 

of a reaction
•  If the reaction 

is successful, 
associate the 
G-actin model with 
the filament

collide()
•  Test for collisions 

and return an 
"avoidance" vector

dissociate()
•  Test the probability 

of a reaction
•  If successful, 

dissociate the 
subunit from the 
filament and assign 
it a "faderShader" 

faderShader()
•  Depending on 

how recent the 
dissociation:
•  Fade out G-actin
•  Move G-actin to 

join the plus-end 
monomers

•  Fade in G-actin

yes

no

yes

no

end of
playback
range?

frame = 1
?

Start

End

and stop on press Play

 FIGURE 15.11 

    Algorithm fl owchart for the 
treadmilling model. For model 
nomenclature refer to Table 15.01.    
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Methods: Encoding the algorithm 
 As we ’ ve done in previous projects, let ’ s build code in pieces relating to the steps out-
lined in the fl owcharts. You ’ ll recall that for the MEL procedures to work in Maya, all 
lines of code must be entered together, in the same sequence that they appear in the 
text. Likewise, the animation expression must be entered whole in Maya ’ s Expression 
Editor. You can fi nd the complete procedure and expression fi les on the CD-ROM 
along with a ready-made scene fi le. You ’ ll fi nd these useful for checking your work or, 
if you want a very fast results, seeing the model in action right away!

15_Self_Assembly\mel\associate.mel 

      \collide.mel 

      \diffuse.mel 

      \dissociate.mel 

      \ faderShader.mel 

      \ reset.txt 

      \selfAssembly.txt       

  The reset expression 
 As usual, we recommend building your MEL script in a text editor other than Maya ’ s 
Script Editor and saving it often as you follow along with the project steps below. Save 
the fi le in your Maya Scripts directory under the following name: 

    reset.txt    

 Since this expression is to run only when Maya returns to frame 1, begin with a con-
ditional  “ if  ”  statement to this eff ect.

         / * Description: 
 This animation expression restores F-actin, subunit, and G-actin 
models to their original conditions. 
  * /

     if (frame  = =  1) { 

   / * *  *  *  *  DECLARE THE VARIABLES * *  *  *  * /

   / *   
            $fName     The name of the filament model.   
   $gNames     A list of G-actin model names.   
   $tracer      The name of the first G-actin monomer to bind 

the filament.   
   $gfGroup      The name of the group node holding the filament 

subunits.  
   $pName     The name of the plus-end locator.   
   $mName     The name of the minus-end locator.       

      * /
   global string $fName, $gNames[], $tracer, $gfGroup, $pName, $mName; 

        You may recall from  
Chapter 13  that we recommend 

using the fi le extension  " .txt "  for 
animation expression fi les and 
 " .mel "  for procedures. We will 

continue to use this convention 
throughout this book.      

        To save space, we ' ve foregone 
the usual fi le header information 

such as  authors ,  creation date , 
and so on.      
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   / *   
            $subTrans     The distance separating adjacent subunits.   
   $subRot      The relative rotation of adjacent subunits 

about the filament 's long axis.   
   $Rg     The effective radius of G-actin  �  2.7 
 nanometers.   
   $Rf     The approximate filament radius.   
   $Rc     The plus-end concentration volume radius.   
   $Rr     The plus-end reaction volume radius.   
   $Av      Avogadro 's number which is used to calculate 

chemical concentrations.   
   $t     The simulation time increment in seconds.   
   $r     The average diffusion distance for G-actin.   
   $stdDevTrans      Standard deviation used with Maya 's gauss 

command to calculate translational diffusion.   
   $std   DevRot    Standard deviation used with Maya'  s gauss 

command to calculate rotational diffusion.   
   $kpATP_For    Plus-end association reaction rate of ATP-G-actin.   
   $kmADPpi_Rev      Minus-end dissociation rate constant of 

ADP•Pi-G-actin.  
   $kmADP_Rev      Minus-end dissociation rate constant of 

ADP-G-actin.  
   $kADP     Hydrolysis reaction rate.   
   $kpi     Pi release reaction rate.   
  $pATP_ForProb    Plus-end association probability of ATP-G-actin.   
   $mADPpi_RevProb      Minus-end dissociation probability of 

ADP•Pi-G-actin.  

   $mADP_RevProb     Minus-end dissociation probability of ADP-G-actin.   
   $adpProb     Hydrolysis reaction rate.   
   $piProb     Pi release reaction rate.       
      * /
   global float $subTrans, $subRot, $Rg, $Rf, $Rc, $Rr, $Av, $t, $r; 
   global float $stdDevTrans, $stdDevRot, $kpATP_For, $kmADPpi_Rev, 
 $kmADP_Rev, $kADP, $kpi; 
   global float $pATP_ForProb, $mADPpi_RevProb, $mADP_RevProb, 
 $adpProb, $piProb; 

   / *   
            $totalOn     Counts association (on) reactions.   
   $totalOff     Counts dissociation (off) reactions.   
   $fadeSteps      The number of frames taken to fade out a 

dissociated subunit before it rejoins the 
plus-end pool of G-actin.       

      * /
   global int $totalOn, $totalOff, $fadeSteps; 

   / *   
            $name     The element in a list of names.   
   $parent      Used to determine if G-actin is a subunit of 

F-actin.  
   $origParent      Used to rejoin dissociated subunits with the 

filament when you reset the simulation.   
   $currentParent     Used with $origParent (above).   

   $shadeGrp     A shading group node name.   
   $relatives      A list of filament children, namely subunits, 

group nodes, and plus/minus-end locators.   
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   $child     An element of the list $relatives.       
      * /
   string $name, $parent, $origParent, $currentParent, $shadeGrp, 
 $relatives[], $child; 

   / *   
            $trans     Translation vector.   
   $rot     Rotation vector.       
      * /
   vector $trans, $rot; 

   / *   
            $fLength     The starting length of the F-actin filament.   
   $yPos      The absolute value of the Y-position of the plus- 

and minus-end locators relative to the filament.   
   $tD     The translation diffusion constant.   
   $rD     The rotation diffusion constant.   
   $pi     The trigonometric constant pi.   
   $Vc     The plus-end concentration volume.   
   $Vr      The spherical reaction volume centered at the 

plus-end.  
   $c      The concentration of free G-actin, that is, the 

time for one subunit to flux through the filament.   
   $ratio      The ratio of the in vitro reaction rate constants 

$kmADPpi_Rev and $kmATP_Rev.   
   $fluxRate      The flux rate per frame of subunits through the 

filament.       
     * /
   float $fLength, $yPos, $tD, $rD, $pi, $Vc, $Vr, $c, $ratio, 
 $fluxRate; 

   / *   
            $cycle      The average number of frames for one treadmilling 

cycle.   
   $state      The value of the G-actin state attribute. 

 = 0� for free G-actin 
 = 1 for F-ATP-actin 
 = 2 for F-ADP•Pi-actin 
 = 3 for F-ADP-actin   

   $fNum      The filament number. In the present model there is 
one filament, with $fNum == 0�.  

   $gCount     The number of G-actin models.   
   $subunits     The number of F-actin subunits.       
      * /
   int $cycle, $state, $fNum, $gCount, $subunits;          

 In the next section, you ’ ll set the values used in diff usion, collision, and reaction 
probability calculations. All distances are given in nanometers and converted to 
meters where necessary. To simulate collisions in your model, you can treat G-actin as 
more or less spherical. Below, we assign this “spherical” G-actin an eff ective collision 
radius, Rg, of 2.7 nm. If you change this value, be sure to update the reaction radius val-
ues as well (see page 407). Th e F-actin radius R F  is used throughout the simulation to 
change the length of the fi lament via the NURBS cylinder  heightRatio  attribute. You ’ ll 
set the  $totalOn  and  $totalOff  variables to count reaction through each simulation 
run. Th is will tell you how close your model is performing to the specifi cations we out-
lined earlier in this chapter.
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             / * *  *  *  *  INITIALIZE THE VARIABLES * *  *  *  * /

   $fName  =   " F_0� " ;

   $gNames  =   ' ls  –tr "G_*" ' ; 

   $tracer  =   " ";

   $gfGroup  =  $fName  + "|" + "gfGroup";

   $pName  =  $fName  + "|" + "pmGroup" + "|" + "plus";

   $mName  =  $fName  + "|" + "pmGroup" + "|" + "minus";

   $subTrans  =  2.8; // Nanometers. 

   $subRot  = – 166; // Degrees. 

   $Rg  =  2.7; // Nanometers. 

   $Rf  =  3.5; // Nanometers. 

   $Rc  =  15; // Nanometers. 

   $Rr  =  4.2; // Nanometers. 

   $Av  =  6.0�22 * ' pow 10� 23 ' ; 

   $r  =  1.0�; // Average diffusion distance. 

   $totalOn  =  $totalOff  =  0�;

   $fadeSteps  =  10�;

   $tD  =  1.65  * pow(10�, –12);

   $rD  =  1.98  * pow(10�, 5); 

   $pi  =  3.14159265; 

   $Vc = 4.0�  / 3.0� * $pi * pow(($Rc *pow(10�,–9)), 3) * 10�0�0�.0�   ; // Litres. 

   $Vr = 4.0�  / 3.0� * $pi * pow(($Rr *pow(10�,–9)), 3) * 10�0�0�.0�  ; // Litres. 

   $cycle  =  180�;

   $subunits  =   ' getAttr ($fName  + ".subunitsOrig")' ; 

   $gCount  =   ' size $gNames '  - $subunits; 

   // Time and distance. 

   float $tmp  =  $r  * pow(10�, –9); // $r in meters. 

   $t  =  $pi  * pow($tmp, 2) / (16 * $tD); 

   $fluxRate  =  (float) $subunits/$cycle; // Subunits per second. 

   // Concentration. 

   $c  =  $gCount / $Vc / $Av  * pow(10�,6); // Micromolar 

   // Diffusion. 

   $stdDevTrans  =  sqrt(2.0� * $tD * $t) * pow(10�, 9); 

   $stdDevRot  =  sqrt(2.0� * $rD * $t); 
   // Convert from radians to degrees. 

   $stdDevRot  =  $stdDevRot  * 360� /(2 * $pi);         

  Th e following rate constant and probability calculations are the MEL code version of 
the derivations we presented earlier in this chapter.

             / * *  *  *  *  REACTION PROBABILITIES * *  *  *  * /

   // Plus-end reaction rate constant. 
   $kpATP_For  = $fluxRate / $t / $c; // Molecules per Micromolar 
 second. 

   // Plus-end association probability for monomer entering 
 reaction volume. 
   $pATP_ForProb  = $kpATP_For * $t / ($Av * $Vr) / pow(10�, –6);

   // Minus-end reaction rate constants. 
   $kmADP_Rev  = $fluxRate / $t; // Molecules per second. 

        Recall from  Chapter 12  that 
placing  (fl oat)  in front of a value 
forces it to be of type fl oat. This 
is called  explicit typing  and is 
often necessary if you want 
a fl oating point value as the 
result of an expression involving 
integers.      
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   $ratio  = 0�.8 / 0�.3;
   $kmADPpi_Rev  = $fluxRate / $t * $ratio; 

   // Minus-end dissociation probabilities. 
   $mADPpi_RevProb  = $kmADPpi_Rev * $t; 
   $mADP_RevProb  = $kmADP_Rev * $t; 

   // Hydrolysis reaction rate probabilities. 
   $kADP  = 2.5 * pow(10�,6);
   $adpProb  = $kADP * $t; 
   $kpi  = 1.25 * pow(10�,6);
   $piProb  = $kpi * $t;          

 We fi nd it helpful to have the key parameters at hand when running a simulation 
model in Maya. Th e next lines print to the History panel of the Script Editor at the 
start of each simulation run.

             // Print model parameters. 
   print  "\n\n* *  *  *  *  RESETTING * *  *  *  * \n\n";
   print ( "gCount = " + $gCount + "\n");
   print ( "conc = " + $c + "\n");
   print ( "concVol = " + $Vc + "\n");
   print ( "fluxRate = " + $fluxRate + "\n");
   print ( "rxnRad = " + $Rr + "\n");
   print ( "rxnVol = " + $Vr + "\n");
   print ( "t = " + $t + "\n");
   print ( "diffusion step stdDev = " + $stdDevTrans + "\n");
   print ( "diffusion rotation stdDev = " + $stdDevRot + "\n\n");
   print  "\n* *  *  Probabilities * *  * \n\n";
   print  ("$kpATP_For = " + $kpATP_For + "\t\t$pATP_ForProb =

 " + $pATP_ForProb + "\n");
   print  ("$kmADPpi_Rev = " + $kmADPpi_Rev + "\t$mADPpi_RevProb =

" + $mADPpi_RevProb + "\n");
   print  ("$kmADP_Rev = " + $kmADP_Rev + "\t$mADP_RevProb = " +

 $mADP_RevProb  + "\n");
   print ( "$adpProb = " + $adpProb + "\n");
   print ( "$piProb = " + $piProb + "\n");        

  Your fi lament and G-actin models have been assigned custom attributes which are 
listed in  Table 15.05   . Th e  “ Orig ”  attributes are used below to reset the transform and 
custom attributes to their starting values. Th e .state attribute tracks the nucle-
otide state of each G-actin model (G_#). Th e fi lament model ’ s .heightRatio attribute 
is connect to and drives the .heightRatio attribute belonging to the NURBS cylin-
der creation node. As your F-actin model grows and shrinks, your MEL code sets the 
.heightRatio value on F_0�, which in turn drives the cylinder height.

             / * *  *  *  *  RESET THE FILAMENT MODEL * *  *  *  * /

   $gCount  = ' size $gNames ' ; // A list of all G-actin and subunits. 

   // Center the filament 's pivot point. 
   xform -centerPivots ($fName  + "|gfGroup.translate");

        Remember that the  "   \n  "  string 
causes a line break in the printed 

information.      

        The vertical bar  " | "  is used to 
construct path names within 

Maya. 

The following command selects 
a list of all G-actin models in your 

scene: select ls -tr  " G_ *  " ; 

Substituting the following inside 
the quotes will select only 

those that are parented to the 
F-actin fi lament (i.e. subunits):  

 " F_0|gfGroup|G_ *  "       
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   // Reset the subunit group node. 
   setAttr ($fName  + "|gfGroup.translate") 0� 0� 0�;

   // Reset the subunits attribute to its original value. 
   setAttr ($fName  + ".subunits") $subunits; 

 Model  Attribute  Initial value  Description 

 F_0  transOrigX 
 transOrigY 
 transOrigZ 

 0 
 0 
 0 

 Initial translate values 

 rotOrigX 
 rotOrigY 
 rotOrigZ 

 0 
 0 
 0 

 Initial rotate values 

 Subunits  20  Shows you the number of fi lament 
subunits at a glance 

 subunitsOrig  20  Initial number of subunits 

 heightRatio  16.914  Ratio of F-actin length to radius (used 
to drive the height of the NURBS 
cylinder model which is the F-actin 
collision surface) 

 G_#  transOrigX 
 transOrigY 
 transOrigZ 

 Varies  Initial translate values 

 rotOrigX 
 rotOrigY 
 rotOrigZ 

 Varies  Initial rotate values 

 State 
stateOrig 

   Nucleotide state 

 0  Free G-actin 

 1  ATP-F-actin 

 2  F-ADP • Pi-actin 

 3  F-ADP-actin 

 fi lOrig _ 1  Initially a free G-actin monomer 

 0  Initially an F-actin subunit belonging 
to F_0 

 TABLE 15.05 

   Custom attributes.  
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   / *  
   Reset the NURBS cylinder length. Length is connected to the 
heightRatio attribute of the actin model 's history node. The 
length of F-actin = 2.8       nm per subunit  * (original number of 
subunits -1). Adding 6       nm to enclose the distal subunits gives a 
starting length of 59       nm for 20� subunits. 
    * /
   $fLength  = (float) 6.0� + $subTrans * ($subunits - 1); 
   setAttr ($fName  + ".heightRatio") ($fLength/$Rf); 

   // Reset plus- and minus-end locators. 
   $yPos  = (float)($subunits + 1)/2 *$subTrans;
   setAttr ($fName  + "|pmGroup|plus.ty") ($yPos); 
   setAttr ($fName  + "|pmGroup|minus.ty") (-$yPos); 
   setAttr ($fName + "|pmGroup|plus.ry") ($subRot *($subunits + 1)/2); 
   setAttr ($fName + "|pmGroup|minus.ry") (-$subRot *($subunits + 1)/2); 

   // Reset the F-actin model to its starting position. 
   $trans  = ' getAttr ($fName  + ".transOrig")' ; 
   setAttr ($fName  + ".translate") -type double3 ($trans.x)
 ($trans.y) ($trans.z); 

   select -clear; // Clear the current selection. 

   / * *  *  *  *  RESET THE G-ACTIN AND SUBUNIT MODELS * *  *  *  * /

   for ($name in $gNames) { // G-actin and F-actin subunits. 

   // Get the state of the current molecule. 
   $state  = ' getAttr ($name  + ".stateOrig")' ; 

   if ($state  = =  0�) { // The current model was a G-actin 
 monomer to begin.

     $parent  = ' firstParentOf $name ' ; 
    if ($parent ! = " " ) {

      / *  
     The model currently has a parent and was therefore 
incorporated into a filament during the previous 
simulation run. Now parent G-actin to world space. 
      * /
     parent -world $name;     

    } 
    // Set the shading group.     
   $shadeGrp  = "ATP_shaderSG";

   } 
   else { // The current model was originally an F-actin 
 subunit.

     / * Parent the model to its F-actin filament if it
 became dissociated during the last run.  */
    $currentParent  = ' firstParentOf $name ' ; 
    $fNum  = ' getAttr ($name  + ".filOrig")' ; 
    $origParent  = "|F_" + $fNum + "|gfGroup";

        Parenting an object to world 
space (parent-world) removes it 
from the hierarchy of its current 

parent.      
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    if ($fNum > -1  & &  $origParent ! = $currentParent) {
      parent $name $origParent;     

    } 

    // Determine the appropriate shader for this model. 
    if ($state  = =  1) {

      // The current model was an F-actin ATP subunit. 
     // Set the shading group. 
     $shadeGrp  = "ATP_shaderSG";    

    } 
    else if ($state  = =  2) $shadeGrp = "ADPpi_shaderSG";
    else if ($state  = =  3) $shadeGrp = "ADP_shaderSG";    

  } // End else. 

  // Reset the G-actin model to its starting position. 
  $trans  = ' getAttr ($name  + ".transOrig")' ; 
  setAttr ($name + ".translate") -type double3 ($trans.x) 

  ($trans.y) ($trans.z); 

  // Reset the G-actin model to its starting rotation. 
  $rot  = ' getAttr ($name  + ".rotOrig")' ; 
  setAttr ($name  + ".rotate") -type double3 ($rot.x) ($rot.y) 

  ($rot.z); 

  // Reset G-actin custom state attribute. 
  setAttr ($name  + ".state") $state; 

  // Put the G-actin in the appropriate shading group. 
  sets -e -forceElement $shadeGrp $name; 

  // Clear the current selection. 
  select -clear; 

  } // End  "for ($name in $gNames) ".        

  Th is next bit of code uses Maya ’ s reorder command to put the subunit model in alpha-
numeric order within the fi lament cylinder model. Th is is not essential for the simu-
lation to function, but keeps your objects tidy in the Outliner.

             // Put F-actin subunits in their proper alphanumeric order. 
   $relatives  = sort( ' listRelatives -path ($fName  + "|gfGroup")' ); 
   for ($child in $relatives) reorder -back $child;          

 Finally, delete any temporary  “ faderShader ”  that were in use when the simulation run 
stopped.

                   // Delete faderShaders. 
     delete  ' ls  "faderShader*" ' ;     

   } // End if (frame  = =  1). 
   // End expression.          

 Save your text fi le and start a new one for the next animation expression.  

        The  " select -clear "  statement 
makes it so that the fi nal G-
actin to be reset doesn ' t remain 
selected when this expression 
fi nishes.      
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  The selfAssembly expression 
 Save this fi le in your Maya Scripts directory under the following name: 

        selfAssembly.txt    

 Unlike reset, this expression must run once every frame greater than frame 1. Again, 
this condition can be tested with an  “ if  ”  statement.

             / * Description: 
   This is a runtime animation expression that updates the actin 
assembly simulation. Diffusion, collision avoidance, and reactions 
are parcelled off as procedures that are called when needed from 
this expression. 
    * /

   if (frame > 1) {

      / * *  *  *  *  DECLARE THE VARIABLES * *  *  *  * /

     global string $fName, $gNames[], $tracer, $pName; 
     global float $Rg, $Rf, $Rc, $Rr, $adpProb, $piProb; 
     global int $totalOn; 

     / *  
     $plusSubunit   The current plus-end subunit. 

    $minusSubunit  The current minus-end subunit. 
     * /
     string $plusSubunit, $minusSubunit, $name, $gName,

 $relatives[]; 

    / *      
            $gTrans     Current position of the current G-actin molecule.   

   $gRot    Current rotation of the current G-actin molecule.   

   $pTrans     Current position of the plus-end locator.   

   $separation       The vector separating G-actin and the filament 

plus-end.  

   $trans      The sum of diffusion, collision, and bounding 

vectors.  

   $rot     The diffusional rotation vector.   

   $bounding      Nudges the G-actin back inside the reaction 

volume.  

   $diffusion     The return value of the diffuse() procedure.   

   $collision     The return value of the collide() procedure.       

      * /
   vector $gTrans,  $gRot, $pTrans, $separation, $trans, $rot, 

$bounding, $diffusion[], $collision; 

   / *    

            $dist     The scalar distance of the vector $separation.   

   $RrPrime      The distance used to test if G-actin lies within 

the association reaction volume.   

   $rnd     A random number between 0� and 1.       

           * /
     float $dist, $RrPrime, $rnd; 

     / *  
     $bindThisFrame Set to 1 if an association reaction has 

occurred in the current frame, 0� if not. 

        Reminder: variables that have 
been described previously will 
not be given a description here 

or with subsequent occurrences.      
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     $bindThisMonomer Set to 1 if the current G-actin has associated 
with F-actin, 0� if not. 

    The above values are set in the associate() procedure. 
    $mState      The nucleotide state of the minus-end subunit. 
     * /
     int $bindThisFrame, $bindThisMonomer, $mState, $state,

 $subunits; 

    / * *  *  *  *  INITIALIZE THE VARIABLES * *  *  *  * /

    $state  = 0�;
    $bindThisFrame  = 0�;
    $bindThisMonomer  = 0�;

    / *  
    Query the coordinates of the plus- and minus-end locators. 
    xform queries the world matrix for the specified object. 
     * /
    $pTrans  = ' xform -query -worldSpace -translation $pName ' ; 

    // Refresh the list of G-actin monomers. 
    $gNames  = ' ls -tr  "|G_*" ' ;            

  Here, your expression will assess bounding, association reactions, diff usion, and 
collisions for every free G-actin monomer. You ’ ll use the  “ for in ”  conditional state-
ment to loop through a list of G-actin names. If a given monomer associates with the 
fi lament, you need not calculate its diff usion or check for collisions. Th erefore you ’ ll 
track the  “ recently associated ”  status of the monomer using the variable  $bindThis-
Monomer . Its value will be set to 1 if an association reaction occurs and 0 if not. A simi-
lar variable  $bindThisFrame  tracks whether an association reaction has occurred yet 
during the present frame. If one has,  $bindThisFrame   �  1 prevents the expression 
from evaluating any more binding opportunities. Th is limits the model to binding a 
maximum of one monomer per frame. Note the totalOn variable which has 1 added 
to its value each time a successful association reaction occurs. 

 Bounding, diff usion, and collision each produce a vector (with direction and magni-
tude) ( Figure 15.12   ). After all three have been evaluated, their eff ects are combined (vec-
tors added) and used to update the transform of the G-actin model.

            / * *  *  *  *  G-ACTIN BOUNDING, REACTION, AND DIFFUSION * *  *  *  * /
  for ($name in $gNames) {

      // Zero the bounding vector for this G-actin. 
     $bounding  = <<0�, 0�, 0�>>;
     $bindThisMonomer  = 0�;    

   // Query the position and state of monomer $name. 
  $gTrans  = ' getAttr ($name  + ".t")' ; 
  $state  = ' getAttr ($name  + ".state")' ; 

  if ($state  = =  0�) { // This G-actin is ready for binding. 

   // Calculate the distance between G-actin and the 
 plus-end. 

    $separation  = $pTrans – $gTrans; 
  $dist  = mag($separation); 

        The fi rst time you see a command 
used in the code listings here 
(e.g.  xform  ) the long fl ag names 
will be used. Subsequently, the 
short names will be used.      
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   // The distance between the G-actin and reaction volume 
 surfaces. 
  $RrPrime  = $Rr + $Rf + $Rg; 

   // Determine if G-actin is outside the concentration 
 volume. 
   if ($dist > ($Rc - $Rg)) {

     // Calculate a vector to nudge G-actin back inside. 
    $bounding  = unit($separation) * $Rg;     

   } 
   else if ($dist  < =  $RrPrime & &  $bindThisFrame = =  0�) {

     / * The monomer can associate with the filament. 
    Call the association reaction procedure. 
     * /    
       $bindThisFrame  = associate($name); 

    if ($bindThisFrame) { // 1 if yes, 0� if no.     
   // Increment the  "on" reaction counter. 
   $totalOn + + ;
   / *  
   The current G-actin has bound the filament 
and will not be considered for diffusion, 
collisions, and bounding below. 
    * /
   $bindThisMonomer  = 1;

     }     
  } 

   } 
   else { 

gTrans

pTrans

Bounding 5
unit(separation) * Rg

Rg (G-actin radius)

G-actin

Actin j

Actin i

F-actin

trans �
bounding � diffusion � collision

Diffusion Collision

Concentration
volume

Separation

 FIGURE 15.12 

    Bounding, diffusion, and 
collision evaluations each 

result in a displacement 
vector. The three vectors 

are summed and used 

        The 
if( $bindThisFrame ) 

notation evaluates 
$bindThisFrame  as if 

it were of type Boolean 
with two possible 

values: 1 (yes) and 0 (no). If 
the variable being tested has 

only 0 and 1 as possible values, 
this notation does the same 

thing in fewer characters than 
if( $bindThisFrame   =   =  1).

The opposite of 
if( $bindThisFrame ) is 
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   / *  
   This is a recently dissociated G-actin and is in the 
process of fading in or out. Call the faderShader() 
procedure.
    * /
   faderShader($name, $state); 

   }         

  If the current G-actin model ’ s state is not 0, then it must have recently dissociated 
and is either fading out (state  �  0) near the fi lament minus end or fading back in 
(state � 0) near the plus end. In either case, the faderShader() procedure is called to 
fade out, fade in, or move G-actin to the fi lament plus end region. We ’ ll explore this 
procedure a little later in this chapter. Provided no association reaction occurred, the 
next bit of code calls the diffusion() and  collision () procedures. Th eir results are 
added to the  $bounding  vector from above to make a new vector called  $trans. $trans  
is then used to update the G-actin model.

             / *  
   If $name did not associate with the filament, calculate its 
diffusion, avoidance and bounding vectors. 
    * /
   if ($bindThisMonomer  = =  0�) { // No binding occurred.

      // Call the diffusion procedure. 
     $diffusion  = diffuse(); 

     // Call the collision avoidance procedure. 
     $collision  = collide($name); 

     // Total the motion for the G-actin molecule. 
     $trans  = $diffusion[0�] + $collision + $bounding; 
     $rot  = $diffusion[1]; 

     / *  
     Query the current translation and rotation of the 
molecule. Since faderShader() may have moved the 
G-actin to the filament plus-end, it 's essential to 
query G-actin 's translate attribute again here.       
           * /
     $gTrans  = ' getAttr ($name  + ".translate")' ; 
     $gRot  = ' getAttr ($name  + ".rotate")' ; 

     / * Add the current translation and rotation values to 
 the $trans and $rot vectors.  */
     $trans  = $trans + $gTrans; 
     $rot  = $rot + $gRot; 

     // Set the molecule 's new translation and rotation values. 
     setAttr ($name  + ".translate") -type double3 ($trans.x) 
 ($trans.y) ($trans.z); 
     setAttr ($name  + ".rotate") -type double3 ($rot.x) 
 ($rot.y) ($rot.z);     

   } 
   } // End for ($name in $gNames).          

 Here you ’ ll use the ls command to get a list of F-actin subunits and count its size. Th e 
list begins with the name of the minus end subunit and ends with that of the plus end 
subunit. In other words, in the array ( $relatives[] ) used to store this list, element 0 is 
the minus end subunit and element [ $subunits ] is the plus end subunit.
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              / * *  *  *  *  INTRA-FILAMENT REACTIONS * *  *  *  *  " ;

  // Get a list of F-actin subunits and count its size. 
  $relatives  = ' listRelatives -path ($fName  + "|gfGroup")' ; 
  $subunits  = ' size $relatives ' ; 
  $minusSubunit  = $relatives[0�];

  // Get the nucleotide state of the minus-end subunit. 
  $mState  = ' getAttr ($minusSubunit  + ".state")' ;          

 Actin oligomers of two subunits are highly unstable, meaning they are quite likely 
to dissociate into G-actin monomers. However, once a third subunit is added, the 
structure—now called a  nucleus —is much more likely to remain stable and grow into 
a fi lament. Th erefore, we ’ ll set minimum stable fi lament size to three subunits and 
not allow further dissociation reactions if your fi lament happens to reach the three-
subunit size. We ’ ll present the dissociate procedure() later in this chapter.

            // The minimum filament size is 3 subunits. 
  if ($subunits > 3) { 

  // Call the dissociate() procedure. 
  dissociate($minusSubunit, $mState); 

  } 

  for ($gName in $relatives) { 

   // Get the state of the current molecule. 
   $state  = ' getAttr ($gName  + ".state")' ; 
    // Generate a random number with which to test reaction
 probabilities. 
   $rnd  = ' rand 1 ' ; 
   if ($state  = =  1) { // ATP subunits.

     if ($rnd  < $adpProb) { // A reaction occurs.
      // Change state and set the shading group. 
     setAttr ($gName  + ".state") 2; 
      / * If the current G-actin is not the tracer, 
 assign the ADP•PI shader.  */
      if ($tracer ! = $gName) sets -e -fe "ADPpi_
 shaderSG " $gName;     

    }     
   } 
   else if ($state  = =  2) { // ADP•Pi subunits.

   if ($rnd  < $piProb) { // A reaction occurs.     
   // Change state and set the shading group. 
   setAttr ($gName  + ".state") 3; 
    / * If the current G-actin is not the tracer, assign
 the ADP shader.  */
    if ($tracer ! = $gName) sets -e -fe "ADP_
 shaderSG " $gName;

     }     
   }    

           } 

        The sets command -fe fl ag is 
short for -forceElement which 
forces the addition of the item 

($gName) to the set (the shading 
group node) if it currently 

belongs to another set.      
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     // Clear the current selection.     
   select -clear; 

   } // End if (frame > 1). 
   // End expression.         

  Next we ’ ll cover the fi ve procedures in the order they ’ re called by selfAssembly. 

  The associate() procedure 
 Th is procedure is called only if a G-actin monomer breaches the reaction volume cen-
tered at the fi lament plus end. It takes the monomer name ( $gName ) as its only argu-
ment. Th e test for this  “ breach ”  is carried out in the selfAssembly expression. Since 
we calculated the size of the reaction volume to correspond to a binding probability of 
one, each call to associate() will result in a binding reaction—at least for now. If you 
choose later to vary the reaction volume and probability, the probability test you ’ ll build 
into the model below will come in handy. Note that this procedure is of type int, which 
means it will return an integer to  selfAssembly : 1 if a reaction is successful, 0 if not.

             / * Description: 
   This procedure assesses the probability for binding G-actin to 
F-actin If a reaction occurs, G-actin is parented to F-actin and 
both models are updated. 
    * /

   global proc int associate(string $gName) { 

  / * *  *  *  *  DECLARE THE VARIABLES * *  *  *  * /

  global float $subTrans, $subRot, $pATP_ForProb, $Rf; 
  global string $fName, $tracer, $gfGroup, $pName, $mName; 

  / *  
   $second The name of the second subunit from the plus-end. 
    * /
   string $second; 

   / *   
            $plusTy     The plus-end translateY value.   
   $minusTy     The minus-end translateY value.   
   $plusRy     The plus-end rotateY value.   
   $minusRy     The minus-end rotateY value.       
     The above variables are used to reposition the plus and minus-
ends after a binding event. 
    * /

   float $plusTy, $minusTy, $plusRy, $minusRy, $rnd; 

   / *   
            $bound     Set to 1 if a successful reaction occurs and 0� if not.   
   $sState     The nucleotide state of the second subunit from the 

plus-end. This must be state 3 for an association 
reaction to be possible.       

      * /
   int $bound, $sState, $subunits;          

 Below you ’ ll set $bound to 0 and call a random number to test the reaction probabil-
ity, and query the name and state of the penultimate plus end subunit. Its state must 
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be 3, indicating an ADP subunit, for a monomer to bind the fi lament (for a reminder 
of the rationale for this condition, refer back to page 407).

             / * *  *  *  *  INITIALIZE THE VARIABLES * *  *  *  * /

   $bound  = 0�;
   $rnd  = ' rand 1.0� ' ; 
   $relatives  = ' listRelatives -path ($fName  + "|gfGroup")' ; 
   $subunits  = ' size $relatives ' ; 
   // Get the state of the penultimate plus-end subunit. 
   $second  = $relatives[($subunits - 2)]; 
   $sState  = ' getAttr ($second  + ".state")' ; 

   // Print a message to the Script Editor. 
   print ( "\nInside associate(), $sState = " + $sState + "\n");         

 Th e rand() command generates a random number between limits specifi ed by its 
arguments. If only one argument is provided, as we ’ ve done above, the other limit 
is zero by default. Th e result of the above statement is therefore a decimal number 
between zero and one, which is the range of probabilities for an event to occur. Below 
you ’ ll compare $rnd to the probability for G-ATP binding,  $pATP_ForProb . Since we ’ ve 
set the probability for this reaction to one, the following condition will be met and 
the step below it will proceed.

             / * *  *  *  *  TEST THE BINDING PROBABILITY * *  *  *  * /
   if ($rnd  < $pATP_ForProb & &  $sState = =  3) {

      // G-actin will bind to the Plus end of the filament, 
 therefore 
     $bound  = 1; 

     print $gName; 
     print  "will associate with the filament\n ";

      // Adjust the plus- and minus-end locators for the next 
 reaction. 
     $plusTy  = ' getAttr ($pName  + ".ty")' ; 
     $minusTy  = ' getAttr ($mName  + ".ty")' ;             

 Shift the plus and minus end locators by half the subunit spacing 
($subTrans  �  2.8       nm) to account for the addition of a new subunit.

             setAttr ($pName  + ".ty") ($plusTy + $subTrans/2); 
   setAttr ($mName  + ".ty") ($minusTy - $subTrans/2); 
   $plusRy  = ' getAttr ($pName  + ".ry")' ; 
   setAttr ($pName  + ".ry") ($plusRy + $subRot);          

 Here, you ’ ll put the G-actin at the world origin to zero its translate and rotate 
attributes. Next, you ’ ll put the G-actin into a new group node that you ’ ll connect to 
the F-actin translate and rotate attributes. Finally, move the G-actin to its proper 
position and rotation  relative  to the fi lament origin, ungroup the G-actin and delete 
the group. Th e net result of these steps is that the G-actin translate and rotate 
attributes will represent the subunit ’ s position and orientation relative to its parent 
fi lament ’ s transform node. Th e translate and rotate values are far simpler to inter-
pret when treated this way when compared to the equivalent values in world space. 
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 Figure 15.13    describes the parenting and shifting of nodes to accommodate the new sub-
unit that follows below.

             / * *  *  *  *  PUT A G-ACTIN INTO THE FILAMENT * *  *  *  * /

   // Locate the G-actin model at the world origin. 
   setAttr ($gName  + ".translate") 0� 0� 0�;
   setAttr ($gName  + ".rotate") 0� 0� 0�;

   // Create a new empty (-em) group to hold the G-actin. 
   group -n group1 -em; 
   // Parent the newly bound G-actin to group1. 
   parent $gName group1; 

   // Connect the new group 's transform node to the F-actin 
 transform. 
   connectAttr -force ($fName  + ".translate") group1.
 translate; 
   connectAttr -f ($fName  + ".rotate") group1.rotate; 

   / *  
   Rotate and move the G-actin relative to its parent, group1, 
using the plus-end locator rotate and translate values. 
    * /
   rotate -r -os 0� $plusRy 0� $gName; 
   move -r -os -wd 0� $plusTy 0� $gName; 

   / *  
   Parent G-actin to gfGroup so that it moves with the other 
subunits when the next G-actin monomer is added on. 
    * /
   parent $gName $gfGroup; 
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 FIGURE 15.13 

    The plus end binding of a monomer 
into the Maya fi lament model is 
executed as a series of steps within 
the association() procedure. 

Step 1: Move the plus- and minus-
end locators relative to the fi lament 
(F_0) by 1/2 the subunit spacing 
(1/2 subTrans). 
Step 2: Parent the G-actin model 
(G_#) to the gfGroup which is a child 
of F_0. Lengthen F_0 by 1/2 
subTrans. 

Step 3: Move gfGroup toward 
the minus end to center gfGroup 
vertically in F_0.

Step 4: Move F_0 in world space by 
subTrans toward its plus-end. In the 
end the fi lament minus-end winds 
up in the same spot it began, the 
fi lament is longer by one subunit, 
and the locators indicate the new 
binding locations.    
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  / *  
   Center the gfGroup 's pivot point, now that you 've added 
another subunit to it. 
   * /
  xform -cp $gfGroup; 

  // Delete group1 since it 's no longer needed. 
     delete group1; 

   // Shift gfGroup by half a subunit height to center it 
 within F-actin. 
  move -r -os -wd 0� (-$subTrans/2) 0� $gfGroup; 

  // Move the filament by half a subunit to reflect its 
  increase in length. 

  move -r -os -wd 0� ($subTrans/2) 0� $fName; 

  // Update the F-actin 's .subunits and .heightRatio attributes. 
   string $tmpStr  = $fName + ".subunits";
  int $tmp  = ' getAttr $tmpStr ' ; 
  setAttr $tmpStr ($tmp  + 1); 
  setAttr ($fName  + ".heightRatio") (((float) 6.0� + $subTrans 

   * ($tmp)) /$Rf); 

  // Update the G-actin 's .state attribute. 
    setAttr ($gName  + ".state") 1;          

 To visualize the fl ux of a subunit through the fi lament, you can assign a unique 
shader to one subunit per treadmilling cycle. We ’ ll call this subunit the  “ tracer ”  and 
connect it to a blinking shader called tracer_shader.  $tracer  is a global variable that 
stores that name of the G-actin tracer model. tracer_shader exists prebuilt in the 
 treadmilling.ma  scene fi le. Once a subunit becomes the tracer, it remains so until it 
dissociates from the fi lament, at which point the very next subunit to associate at the 
plus end become the new tracer. Th e fi rst tracer will be the fi rst monomer to join the 
fi lament once the simulation begins.

                  /* If no tracer object exists make this subunit the tracer 
and assign it the tracer_shader. */
    if ($tracer  = = " " ) {

     $tracer  = $gName; 
    sets -e -forceElement tracer_shaderSG $gName;     

     }     
     } else {     

   print $gName; 
   print  "will not associate with the filament\n ";

      } 

     // Send a return value back to the expression that called this
 procedure. 
     return $bound;     

   } // End procedure.          

 If you decide to vary the association binding probability, the print statement above 
reports failed binding attempts in the Script Editor History panel. Save this proce-
dure in text fi le in your Maya Scripts directory under the following name: 

    associate.mel     
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  The faderShader() procedure 
 After a subunit dissociates from the fi lament it transitions from the G-ADP state to 
the G-ATP state and joins the group of diff usion monomers near the fi lament plus 
end ( Figure 15.14   ). Th e purpose of this procedure is to ease these transitions visually, 
which is in keeping with our interpretive visualization goals of this project. You can 
set the number of transition steps via the  $fadeSteps  variable in the reset expres-
sion. Setting its value to 1 causes a dissociated G-actin to join the plus end group one 
frame after it dissociates, without fading out and back in.

             / * Description: 
   This procedure fades out newly dissociated monomers, moves them to the 
plus end of the filament, then fades them back in. 
    * /

   global proc faderShader(string $gName, int $state) {

      / * *  *  *  *  DECLARE THE VARIABLES * *  *  *  * /

     global float $Rc; 
     global string $fName, $pName; 
     global int $fadeSteps; 

     / *  
     $transp The transparency attribute value for the 

faderShader.       
     $newTrans The new position of G-actin after being 

transported to plus-end. 
    * /
   vector $transp, $newTrans, $pTrans; 

F-actin

Minus end

Plus end

2. The monomer is then 
moved to within the 
concentration volume at 
the filament plus end

      and joins the pool of 
G•ATP-actin, ready to 
associtate with the 
filament.

1. Upon dissociation from the 
filament, G•ADP-actin

      begins diffusing. It fades
      (gains transparency) a
      specified amount within
      each time step until it is 

completely transparent.

Concentration
volume

 FIGURE 15.14 

    The transition of a monomer from 
newly dissociated ADP-actin 
subunit to ATP-actin ready to bind 
the plus-end of the fi lament is 
governed by the faderShader()
procedure. The purpose is to 
smooth the transition visually.    
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   / *  
   $increment The incremental increase or decrease in 

transparency.
    * /
   float $increment; 

   / *  
   $shaderName The name of the faderShader for the current 

G-actin.
    * /
   string $shaderName;          

 Each  faderShader  will be unique to the monomer for which it was created. Th is makes 
it possible to fade multiple monomers at once, each at a diff erent stage in its transi-
tion to the plus end. Th e shader name will therefore include the name of its mono-
mer. When the monomer has faded back in and joined the other diff using plus end 
monomers, it will be assigned the default ATP shader, at which point its custom  fad-
erShader  can be deleted from the scene.

             / * *  *  *  *  INITIALIZE THE VARIABLES * *  *  *  * /

   $increment  = 1.0� / $fadeSteps; 
   $shaderName  = "faderShader" + $gName; 

   / * *  *  *  *  TEST THE MONOMER 'S STATE * *  *  *  * /

   if ($state  < -1) { // Fade out.
      $transp  = ' getAttr ($shaderName + " .transparency")' ; 
     $transp  = $transp + < < $increment, $increment, $increment>>; 
     setAttr ($shaderName  + ".transparency") -type double3 
 ($transp.x)            ($transp.y) ($transp.z); 
     setAttr ($gName  + ".state") ($state + 1);     

   }          

 Once the G-actin ’ s state attribute has incremented to –1, it ’ s time to move it to a new 
location near the fi lament plus end. Rather than picking a location anywhere within 
the concentration bounding volume—which could likely land it within the reaction 
volume—let ’ s introduce it to the plus end region as if it had wandered in from afar. 
To do this, you can take advantage of Maya ’ s sphrand command. sphrand generates 
random numbers (single numbers and vectors) that lie within a spherical volume of 
radius R, where R is the command ’ s argument.

             else if ($state  = =  -1) { // Move to the plus-end.

      // Query the location of the plus-end locator. 
     $pTrans  = ' getAttr ($pName + " .worldPosition")' ; 
     // Generate a random vector within the concentration
 sphere. 
     $newTrans  = sphrand($Rc); 
     // Move the vector 's origin to the plus-end. 
     $newTrans  = $newTrans +$pTrans;    

   // Move the monomer and set its .state attribute. 
   setAttr  ($gName + ".translate") -type double3 ($newTrans.x) 

   ($newTrans.y) ($newTrans.z); 
   setAttr ($gName  + ".state") ($fadeSteps + 1); 

        Free G-actin with a state 
attribute value other than 0 is 

either fading out (state  � �1), 
transferring to the fi lament plus 
end (state �� �1), or fading in 

(state  �  0).      
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   // Set the shader colour to match the ATP_shader. 
   setAttr ($shaderName  + ".color") 1 1 0�.8;

   } 
   else if ($state > 1) { // Fade in. 

   $transp  = ' getAttr ($shaderName + " .transparency")' ; 
   $transp  = $transp - < < $increment, $increment, $increment>>; 
   setAttr ($shaderName  + ".transparency") -type double3 
 ($transp.x) ($transp.y) ($transp.z); 
   setAttr ($gName  + ".state") ($state - 1); 

   }          

 Once the monomer has faded back in, assign it the default ATP shader and set its 
state attribute to 0. Th e latter step makes this G-actin once again a candidate for 
association reactions.

               // Swap shaders and set G-actin 's state to 0�.
     else if ($state  = =  1) {

      // Replace faderShader with ATP_shader and set .state
 attribute to 0�.
     sets -e -forceElement ATP_shaderSG $gName; 
     setAttr ($gName + " .state") 0�;
     delete $shaderName; // No longer needed.     

     }     
   } // End procedure.          

 Save this procedure in text fi le in your Maya Scripts directory under the following name: 

    faderShader.mel     

  The diffuse() procedure 
 Th is procedure is called for every G-actin monomer in the simulation and returns 
a translation and a rotation vector. It employs the method described starting on 
page 399 to query random diff usion values via Maya ’ s gauss command. Th e argu-
ments passed to gauss were calculated using  � t and the diff usion coeffi  cients,  
$stdDevTrans and $stdDevRot,  which were initialized in the reset expression. Unlike 
the associate() procedure this one returns an array of vectors:  $trans  and  $rot. 

         / * Description: 
 This procedure returns translation and rotation diffusion vectors 
via Maya 's gauss command. 
  * /

     global proc vector[] diffuse() {

      / * *  *  *  *  DECLARE THE VARIABLES * *  *  *  * /

     global float $stdDevTrans, $stdDevRot; 

     / *      
            $trans     The translational diffusion vector.   

   $rot     The rotational diffusion vector.   

   $both[]      An array used to return $trans and $rot to the 

selfAssembly expression.       
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           * /
     vector $trans, $rot, $both[]; 

     / *      

            $x      Stores the x-component of the $trans and $rot 

vectors.   

   $y     Same as above for the y-component.   

   $z     Same as above for the z-component.       

      * /
   float $x, $y, $z; 

   / * *  *  *  *  TRANSLATIONAL DIFFUSION * *  *  *  * /

   $x  = ' gauss $stdDevTrans ' ; 
   $y  = ' gauss $stdDevTrans ' ; 
   $z  = ' gauss $stdDevTrans ' ; 
   $trans  = < < $x, $y, $z>>; 

   / * *  *  *  *  ROTATIONAL DIFFUSION * *  *  *  * /

   $x  = ' gauss $stdDevRot ' ; 
   $y  = ' gauss $stdDevRot ' ; 
   $z  = ' gauss $stdDevRot ' ; 
   $rot  = < < $x, $y, $z>>; 

   // Store both vectors $both, then return $both to the
 selfAssembly expression. 
   $both  = {$trans, $rot}; 
   return $both;

      } // End diffuse.             

 Save this procedure in text fi le in your Maya Scripts directory under the following name: 

    diffuse.mel     

  The collide() procedure 
 Th is procedure returns a single vector  $collide  which represents the sum total steps 
taken by the current G-actin in response to collisions with neighboring monomers 
and the fi lament. As we stated earlier, the purpose here is not to emulate the true 
dynamics of intermolecular collisions but rather to embody their net eff ects. 

 Moreover, while there exist more sophisticated collision detection and avoidance algo-
rithms, the approach used here is intuitive to grasp, straightforward to implement, and 
runs quickly for the present model. Nonetheless it has shortcomings which will become 
apparent when you study the simulation carefully. In particular, it assesses collisions 
for each monomer only once per time step. As a result, the net response of a monomer 
to its current collisions can at times cause it to intersect another model with which it 
was not previously in contact. If you ’ re interested, we encourage you to explore addi-
tional collision avoidance strategies and compare their merits and limitations.

             / * Description: 
   This procedure detects collisions and moves monomers accordingly. 
    * /

   global proc vector collide(string $gName) {
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      / * *  *  *  *  DECLARE THE VARIABLES * *  *  *  * /

     global string $gNames[]; 
     global float $Rg; 
     string $name; 

     / *      
            $otherTrans      The position of a G-actin being considered for 

collision with the current G-actin.   
   $separation     The vector separating two G-actins.   

   $collide      The vector used to avoid a collision between two 
G-actins.       

      * /
   vector $otherTrans, $separation, $collide, $gTrans; 

   / *   
            $dist     The scalar magnitude of $separation.   
   $contactRange      The range within which molecules are considered 

in contact.   
   $collideScale     Used to scale the unit collision vector.       
      * /
   float $dist, $contactRange, $collideScale; 

   / * *  *  *  *  INITIALIZE THE VARIABLES * *  *  *  * /

   $gTrans  = ' getAttr ($gName  +   " .translate")' ; 
   $collide  = < < 0�, 0�, 0� >>;
   $dist  = 0�;
   $contactRange  = $Rg *2.0�;
   $collideScale  = $Rg/2.0�;

   / * *  *  *  *  CHECK FOR COLLISIONS * *  *  *  * /

   // Check the proximity of $gName to every other G-actin. 
   for ($name in $gNames) { 

  if ($name ! = $gName) { // Test all but the current G-actin.

      // Get the other cell 's translate value. 
     $otherTrans  = ' getAttr ($name  +  " .translate")' ; 

     $separation  = $gTrans — $otherTrans; 
     $dist  = mag($separation); 

     // Determine if $dist is less than the $contactRange
 value. 
     if ($dist  < $contactRange) { // $gName is in contact 
 with $name. 

     // The unit separation vector. 
     vector $tmp  = unit($separation) * $collideScale; 

     // The return value will be the sum total of
 collision steps. 
     $collide  = $collide + $tmp; 
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     // Move $name away from $gName. 
     $tmp = $otherTrans— <<($tmp.x), ($tmp.y), ($tmp.z)>>; 
     setAttr ($name  + ".translate") ($tmp.x) ($tmp.y)
 ($tmp.z);     

  } 
   } 

   } // End for ($name in $gNames).          

 To detect collisions with the fi lament model, you ’ ll use the  closestPointOnSurface  
node we presented on page 400. Th is node was made and connected to the F-actin 
NURBS cylinder model in the  treadmilling.ma  scene fi le on the CD-ROM.

             // Check for a collision with the filament. 
   $cposName  = "F_0�_cpos";

   setAttr ($cposName + " .inPosition") -type double3 ($gTrans.x)
 $gTrans.y)          ($gTrans.z); 
   $otherTrans  = ' getAttr ($cposName  +  " .position")' ; 

   $separation  = $gTrans — $otherTrans; 
   $dist  = mag($separation); 

   if ($dist  < $Rg) { // $gName is in contact with the filament.

    vector $tmp  = unit($separation) * $collideScale * 2; 
  $tmp  = < < ($tmp.x), ($tmp.y), ($tmp.z)  >>  ; 

  // Add $tmp to the total collision vector. 
  $collide  = $collide + $tmp;

      } 
     // Return the collision avoidance vector to the selfAssembly
 expression. 
     return $collide. 

     } // End procedure.             

 Save this procedure in a text fi le in your Maya Scripts directory under the following 
name: 

    collide.mel

    The dissociate() procedure 
 Th is is the fi fth and fi nal procedure for the project. You can think of it essentially as 
the reverse of associate(), with the exception that two reactions are under consid-
eration, not just one. Th e procedure arguments are the name and state of the subunit 
being considered for reaction. You ’ ll see some print statements as well. Th ese provide 
helpful information about the outcome of the probability test.

             / * Description: 
   This procedure dissociates G-actin molecules from F-actin
filaments.
    * /

   global proc dissociate(string $subunit, int $state) {

   closestPointOnSurface (cpos 
for short) is an example of an 

underworld node , a type of 
DG node associated with the 

parameter space of NURBS 
objects. Underworld nodes 

that are used to query points 
on curves and surfaces (such 

as cpos) cannot be grouped or 
parented, and therefore must be 
named uniquely. Other examples 

of underworld nodes include: 

pointOnCurve

pointOnCurveInfo

pointOnSurface

pointOnSurfaceInfo

 You ' ll get experience with a few 
of these later in this book.      
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      / * *  *  *  *  DECLARE THE VARIABLES * *  *  *  * /

     global float $subTrans, $gRot, $Rf; 
     global float $mADPpi_RevProb, $mADP_RevProb; 
     global string $fName, $tracer, $gfGroup, $pName, $mName; 
     global int $totalOff, $fadeSteps; 
     float $rnd, $plusTy, $minusTy, $plusRy, $minusRy; 

     / *  
     $shaderGroup   Used to create the faderShader group node. 
      * /
     string $shaderGroup[], $gName, $gfGroup, $shaderName[]; 

     / *  
     $react Set to 1 if a reaction occurs, 0� if not. 
      * /
     int $react; 

     / * *  *  *  *  TEST THE REACTION PROBABILITY * *  *  *  * /      

     $rnd  = ' rand 1.0� ' ; 
   print ( "\nInside dissociate(), STATE: " + $state +  " \n");

   if ($state  = =  3) { // An ADP subunit.
      print ( "$mADP_RevProb = " + $mADP_RevProb + ", $rnd =
" + $rnd + "\n");

     if ($rnd  < $mADP_RevProb) {
     $react  = 1; 
    print $subunit; 
    print ( ", an ADP subunit will dissociate from the
 filament.\n ");    

     }     
   } 
   else { // An ADP-Pi subunit.

      print  ("$mADPpi_RevProb = " + $mADPpi_RevProb + ", $rnd =
" + $rnd       + "\n");    

     if ($rnd  < $mADPpi_RevProb) {
     $react  = 1; 
    print $subunit; 
    print ( ", an ADP •Pi subunit will dissociate from the 
 Minus-end       of     the filament.\n ");    

     }     
   }          

 Th e $react variable here serves a similar purpose to $bound in the associate() proce-
dure; it stores the outcome of the reaction probability test: 1 if successful, 0 if not. In 
the latter case the following code will be skipped.

             / * *  *  *  *  UPDATE THE MODELS * *  *  *  * /

   if ($react  = =  1) { // A reaction occurred at the Minus-end.          

 Th e following steps are similar to but achieve the opposite results to those outlined in 
 Figure 15.13 . Th e fi rst statement below un-parents the subunit from F-actin and moves 
it to a random location just below the fi lament minus end. After that, you ’ ll reset the 
various F-actin model elements and update its custom attributes.
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             // Move G-actin and parent it to world space. 
   move -r -os ($subTrans/2 *rand(-1,1)) (-$subTrans * 1.5)       
  ($subTrans/2 *rand(-1,1)) $subunit; 

   parent -world $subunit; 

   // Rotate the Minus end locator into position for the next
 bind. 
   $minusRy  = ' getAttr ($mName  + " .ry")' ; 
   setAttr ($mName  + ".ry") ($minusRy + $gRot); 

   / * Shift gfGroup by half a monomer height within F to 
account for the subunit loss. */
   move -r -os -wd 0� (-$subTrans/2) 0� $gfGroup; 
   // Move the filament by half a subunit spacing. 
   move -r -os -wd 0� ($subTrans/2) 0� $fName; 

   // Query the local Plus and Minus end coordinates. 
   $plusTy  = ' getAttr ($pName  + ".ty")' ; 
   $minusTy  = ' getAttr ($mName  + ".ty")' ; 

   // Reposition the Plus and Minus ends. 
   setAttr ($pName  + ".ty") ($plusTy - $subTrans/2); 
   setAttr ($mName  + ".ty") ($minusTy + $subTrans/2); 

   // Update the F-actin 's .subunits and .heightRatio attributes. 
   string $tmpStr  = $fName + ".subunits";
   int $tmp  = ' getAttr $tmpStr ' ; 
   setAttr $tmpStr ($tmp—1); 
   setAttr ($fName  + ".heightRatio") (((float) 6.0� +
 $subTrans  *          ($tmp-2))/$Rf);          

 Next, you ’ ll set the state attribute equal to  $fadeSteps   �   � 1. Th is marks the mono-
mer for consideration by the  faderShader()  procedure. Next, you ’ ll create the fad-
erShader and assign it to the monomer. faderShader is made by duplicating of 
ADP_shaderSG. When the –ic (short for  inputConnections ) fl ag is used, the upstream 
shader node is duplicated as well. Duplicating an existing shader rather than creating 
one from scratch saves you the hassle of setting attribute values for the new shader—
the attributes are duplicated along with the node.

             // Update the G-actin 's .state attribute. 
   setAttr ($subunit + " .state") (-$fadeSteps); 

   // Create a fader_shader. 
   $shaderGroup  = ' duplicate -un -ic -name

       ( "faderShader" + $subunit+ " SG") ADP_shaderSG ' ;             

 Naming the duplicated shading group node does not give a corresponding unique 
name to the shader node (Maya simply adds an integer to the end of the original 
shader name). Let ’ s name the new shader distinctly as faderShader—so you can pick 
it out easily in the Hypergraph. To rename the shader you must fi rst get its current 
name. Do this using the listConnections command as follows:

             // Rename the upstream shader node. 
   $shaderName  = listConnections ($shaderGroup[0�] +
".surfaceShader");

   rename $shaderName[0�] ( "faderShader" + $subunit); 
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   // Assign the shader to the newly dissociated monomer. 
   sets -e -forceElement $shaderGroup[0�] $subunit;          

 Finally, check if this subunit is the fl ux tracer. If it is, clear the $tracer variable so 
that a new tracer can be assigned when the next plus end association reaction occurs. 
 Like $totalOn, $totalOff  counts reactions so you can check your treadmilling rate at 
the end of a simulation run.

         // If this subunit was the firstBind subunit, reset $tracer. 
  if ($tracer  = =  $subunit) $tracer = " " ;

  // Increment the  "off" reaction counter. 
  $totalOff + + ;

      } // End if ($react  = =  1). 

     else {     
  print $subunit; 
  print  "will not dissociate.\n ";

      }     

   } // End procedure.          

 Save this procedure in text fi le in your Maya Scripts directory under the following name: 

    dissociate.mel    

 Th at ’ s it! Your code is complete. Make sure you saved each procedure in your 
Maya ’ s Scripts directory with appropriate names. Now it ’ s time to get your model 
running!    

  Results: Running your simulation 

  Prepare your scene fi le 
    1.     Start Maya.  

  2.     Choose Window  →  Settings/Preferences  →  Preferences.  

  3.      Choose Categories  →   Settings and make the following settings:  
   Under Working Units  →  Linear:  centimeter .

    →  Angular:  degrees.

     →  Time:  NTSC .

  4.      Choose Categories  →   Timeline and make the following settings:  
   Under Timeline     →  Playback Start:  1 .

    →  Playback End:  900 .

    →  Time, select  NTSC.
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   Under Playback    →  Looping:  once.

    →  Playback Speed: Play every frame .

    →  Playback by  1 .

  5.     Press the Save button to set your preferences.    

 Open the  treadmilling.ma  scene fi le included on the book ’ s CD-ROM: 

    1.      Copy the scene fi le from the CD-ROM to your Maya Scenes directory   

                 15_Self_Assembly/scenes/treadmilling.ma          

    2.     In Maya, choose File →   Open Scene  

  3.      Browse to your Maya Scenes directory and choose treadmilling.ma .    

 Take a moment to inspect the scene. Explore the hierarchy relationships in the 
Outliner and check out the shaders in the Hypergraph. Notice that we ’ ve created a 
camera for you called camera1. Its attributes are locked—to prevent accidental move-
ment—and its translateY attribute is connected to the F-actin model ’ s translateY 
attribute. Next, set up a panel layout that uses both camera1 and the default persp 
camera ( Figure 15.15   ). Use persp to move around your scene and camera1 to capture a 
consisted view of the model ’ s behavior each time you run the simulation. 

    4.      Choose Window  →  View Arrangement  →  Two Panes Side by Side  

  5.      In the left-hand view panel choose Panels  →  Perspective  →  persp  

  6.      In the right-hand view panel choose Panels →   Perspective  →  camera1    

 Your scene is now ready for the custom expressions and procedures.  

 FIGURE 15.15 

    A two-panel view of the scene. 
The persp camera on the left is 

used to move around within your 
scene. camera1 on the right travels 
vertically with the actin fi lament as 

it treadmills.    
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  Load the script fi les 

  Create the expressions 
 First you ’ ll create the reset and selfAssembly expressions. If you didn ’ t build the 
expression scripts earlier in this chapter, copy them from the CD-ROM to your Maya 
Scripts directory:

15_Self_Assembly/MEL/ reset.txt

     /selfAssembly.txt

     1.      Open  reset.txt  (either the fi le you created or the one on the CD-ROM) in the 
text editor of your choice.  

   2.      Ensure that the text editor is set to not use typographer ’ s quotation marks.  

   3.     Select and copy the entire script to the clipboard.  

   4.      In Maya, enter ExpressionEditor  in the Command Line to launch the 
Expression Editor, or select it from the menu Windows →  Animation Editors 
→   Expression Editor.  

   5.     Press the New Expression button.  

   6.     LMB  +  click in the Expression text fi eld.  

   7.     Press Ctrl  +  V to paste your expression into the text fi eld.  

   8.      Press the Create button at the bottom of the Expression Editor.  

   9.      In the Expression Name fi eld, replace the default name with  reset and press 
Enter.  

  10.      Repeat steps 5 through 9 for the selfAssembly expression, but name it 
selfAssembly in the Expression Name fi eld.    

 If Maya generates one or more errors when you press the Create button, you will need 
to debug the expression: open the Script Editor to view the specifi c error messages 
and to read the line number(s) that generated the error(s). If your text editor can 
display line numbers, use this feature to cross-reference the error messages to the 
off ending lines in your expression. If you are unable to resolve the errors, you can 
compare your script to the appropriate fi le ( reset.txt  or  selfAssembly.txt ) included on 
the CD-ROM. 

    11.     Press Ctrl  +  S to save your scene with the expressions in it.     

  Prepare the procedures 
 In the previous chapter, you loaded the  cpk.mel  procedure by  “ sourcing ”  it through 
the Script Editor. In this project you ’ ll let Maya search for and load the procedures 
automatically when they ’ re called by the  selfAssembly  expression. In order for this 
method to work, it ’ s essential that your fi ve procedures are each contained within a 
separate fi le and saved in your default Maya Scripts directory. For example, the asso-
ciate() procedure must reside within a fi le named  associate.mel.  You can query 
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the name of your Maya Scripts directory by entering the following statement in the 
Script Editor:

             internalVar -userScriptDir;          

 You may recall from  Chapter 12  that Maya only creates the contents list (fi le names) of 
its search path at startup. If you add fi les to the Scripts directory when Maya is run-
ning, you will have to refresh the search path contents, using the rehash command, 
in order to have access to those fi les and their contents. 

    Refresh the search path contents. In the Script Editor, enter:  

   rehash;       

  Running and debugging your simulation 
 When you ’ re ready to run the simulation, press the Play button in Maya ’ s timeline 
controls. 

  Errors 
 Unless you ’ ve already tested your procedures for syntax errors and corrected them, 
chances are you ’ ll get error messages when you go to run the simulation for the 
fi rst time. If this happens, we recommend sourcing one procedure script at a time 
through the Script Editor and fi xing the bugs as they ’ re fl agged by Maya. After you ’ ve 
debugged syntax errors you may discover that your expressions and procedures con-
tain runtime errors—errors that appear only upon execution—that didn ’ t appear 
when you loaded or sourced the scripts. You can tackle these by reading the error 
description in the Script Editor and then tracking down the sources one at a time. 
Alternately you can compare your scripts line-by-line with those we ’ ve included on 
the CD-ROM and search for discrepancies:

                  15_Self_Assembly/MEL/ reset.txt

    /selfAssembly.txt

      / associate().mel

        /collide().mel

       / diffuse().mel

   / dissociate().mel

       / faderShader().mel

 One common runtime error occurs when Maya is unable to locate a procedure that 
has been called. If you get an error such as

             // Error: line 62: Cannot find procedure  "associate". //          

 It means that Maya is unable to locate your  associate().mel fi le —or that you 
misnamed the procedure either in the MEL script fi le itself or in the procedure call 
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within  selfAssembly . It may also be that you added the fi le containing the procedure 
to your Scripts directory while Maya was already running. In this case, executing the 
rehash command refreshes Maya ’ s search path contents. 

 When your scripts are error free, you ’ ll be able to play and stop the simulation 
as you like. Each time you rewind to frame 1, your model should reset to its original 
state.    

  Summary 
  Figure 15.16    shows four frames from a simulation we ran using the current model. After 
each run, we entered the following code in the Script Editor to see how many on and 
off  reactions occurred:

             print ( "$totalOn: " + $totalOn + "\n$totalOff: " + $totalOff + "\n");          

 Th e average results were:

             $totalOn: 10�7

   $totalOff: 10�6         

 which are well within range of our target number: 

Number of reactions � P� � Frames � (1/9) (900) � 100

 We encourage you to vary the model ’ s parameters and observe their eff ects on tread-
milling behavior. Th ere are many ways you could take the model further, includ-
ing the incorporation of plus end dissociation and minus end association.  Figure
15.17    shows a still from one of our multi-fi lament simulations in which both the 
G- and F-actin diff use through space. 

 Th e regulated self-assembly of actin molecules you ’ ve emulated in this project is central 
to cell locomotion—the growth and shrinkage of actin fi laments pushing and retract-
ing the cell membrane extensions called pseudopodia. In the next chapter you ’ ll take a 
natural next step and explore some of the principles of cell locomotion via Maya.  

 FIGURE 15.16 

    Four frames from a simulation run 
(approxmiately 10 frames apart).    
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 FIGURE 15.17 

    Still from one of our multi-fi lament 
actin assembly simulations. The 
fi laments diffuse along with the 
G-actin molecules. Free G-actin 

and recently bound subunits are 
red. This image was rendered using 

Maya ' s 3D motion blur to give the 
impression of movement in a still 

image.
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 FIGURE 16.01 

    Through innovations in experimental 
techniques and imaging technology, 

in vitro and in vivo cell studies will 
increasingly enter the realm of 3D. 
Shown here is a migrating cancer 
cell captured on video within a 3D 

scaffold of collagen fi bers. 1

Courtesy of Katarina Wolf and Peter 
Friedl, University of Würzburg, 

Germany.    

Introduction 
 In previous chapters we have focused on the atomic, nano, molecular, macromolecu-
lar, and multimer levels of biological organization, using both hemoglobin and actin 
as working examples. Among other roles in cell structure and function, dynamic cycles 
of actin polymerization and depolymerization, and of actin fi lament bending, are now 
widely accepted as the engine that drives cell locomotion. Th is self-propelled trans-
location of a whole cell is implicated in both normal physiological and disease proc-
esses. Notable examples include fertilization, embryonic development, wound healing, 
and the spread of cancer cells  (Figure 16.01)   . Th ere are several primary mechanisms that 
drive cell locomotion: spinning fl agella, which propel human sperm cells (a 3D compu-
ter model of a sperm cell is shown in  Figure 16.02   ) and many species of bacteria; beating 
cilia, also responsible for propulsion in many types of single-cell organism; and crawl-
ing, which is the mechanism commonly employed by mobile cells in animals. 

 In this chapter we will introduce you to a method we created for the purpose of pro-
cedurally animating the crawling movement of a cell. You will build the cell behav-
ior simulator using a very powerful Maya construct: character rigging, by which 3D 
CGI animation models are induced to change their spatial confi guration over time. In 
conventional character rigging (think of the animated behavior of your favorite 3D 
CGI character) joint deformers are bound to the deformable surface mesh before ani-
mation takes place; the relationship between the deformers and the surface doesn ’ t 
change once the animation begins. In contrast, our rig is created  during  the anima-
tion—on the fl y—not before it. Th e deformers are continually destroyed and rec-
reated by the MEL script, in new positions relative to the mesh in order to deform 
the cell in any required direction; the cell deformations are not limited to the initial 
placement of the deformers. 
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 Your model will consist of a single cell crawling over a surface, in a combination of ran-
dom and directed movement. Th e surface might be a plane of tissue in a developing 
embryo or part of a blood vessel into which cancer cells will escape and invade distant 
organs. Th e plane might be the glass slide in a microscope through which a cell biolo-
gist is tracking and measuring migration paths. All are interesting and important cases 
of cell motion. In the next chapter we will look at what it takes to begin modeling the 
even more complex world of the 3D tissue environments in which cells move when they 
are not zeroing in on surface motion. Presently, your cell is free to move about the plane 
without needing to work around collisions with other cells or objects. Th is is the simplest 
scenario that a cell could face and makes an excellent point from which to begin simulat-
ing cell locomotion. In the subsequent chapters we will explore collision detection strate-
gies that allow us to locomote cells in response to, not in spite of, their environment. 

 In this chapter you will fi rst create a scene fi le which includes the cell geometry. Th en 
you will build a Maya expression to animate the cell during playback of the scene. 
If you wish to dive right into the model, you can skip ahead to the  Model Defi nition  
on page 449. Th e next section provides background on the fascinating world of cell 
locomotion and why it ’ s suited to computer modeling. By the end of this chapter you 
will have created a prototype cell locomotion model. Along the way you ’ ll learn how 
to rig and deform a character model, both with the Maya UI tools, and procedurally 
using MEL commands. You can then apply these tools and techniques to your own 
cell behavior modeling tasks.  

 Problem overview 

  Crawling in context 
 In this section we are going to take a closer look at cell crawling, which is of central 
importance in the cell biology of both health and disease. To see why, think of your 
body as a society of about 100 trillion cells, all of which have descended from the fer-
tilized ovum at the beginning of your life. Like members of any cooperative society, 
there is a complex division of labor by which those cells are organized to perform spe-
cifi c tasks: nerve cells transmit and process information, gut cells transport nutri-
ents from digested food to the blood stream, kidney cells fi lter waste products from 
the circulation, and so on. Most of these cellular specialists are immobile: their lives 

5 μm  FIGURE 16.02 

    A 3D computer model of a human 
sperm cell.
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are spent at or near to the spot where cell division splits them from their progeni-
tor cells. Th e developing embryo, from which those more sessile descendents fi nally 
arise, attains its form as successive generations of progenitor cells divide and move, 
by cell crawling, into the 3D confi gurations that become working brains, kidneys, 
and the other familiar organs and tissues of our bodies. While many of the cell types 
comprising the developed tissues have minimal inclination to move around, several 
groups of highly mobile specialists are crucial to our health: wriggling sperm  (Figure 
16.02)  seek unfertilized ova; red blood cells, passively adrift in the fl owing blood, carry 
life-giving oxygen to the tissues and carry off  poisonous carbon dioxide metabolic 
waste; cells of the immune system crawl through the tissues, patrolling for invad-
ing viruses and bacteria; traction specialists called fi broblasts activate in wounds 
and contract, helping pull the regenerating tissue shut. Crawling cells can, by disrup-
tions in their motility control, also become deadly threats as cancerous mutations 
change otherwise sessile specialists into determined movers unable to cease an end-
less cycle of division and invasion: the growing tumor edging into healthy parts of 
the body.  

  Crawls and walks 
 Th e project you ’ ll undertake in this chapter is to create an interesting initial model of 
a cell crawling behavior. Th e science and the MEL you ’ ll explore in carrying out this 
project will draw on a remarkable discovery: despite the impressive complexity of the 
biochemistry behind cell crawling, and its seemingly endless web of chemical detail, 
the resulting behavior the crawling of the cell has simple, beautiful mathematical prop-
erties. When biologists watch through microscopes and trace the pattern of crawling 
cell movement as demarcated, say, by the position of the cell center or the cell surface, 
the meanders traced out by cell crawling in two and three dimensions have the traits of 
random walks! 

 Th e details of the biochemistry behind this random walk behavior are intricate and not 
yet fully worked out. If you fi nd the subject intriguing, this chapter ’ s References will 
take you beyond the capsule survey we have room for here. And while questions remain, 
the basics of the cell crawl mechanism are well understood  (Figure 16.03)   : actin fi laments 
like the one you dealt with in the last chapter begin to grow just beneath the cell sur-
face, shifting a balance of chemical and mechanical forces so that the cell surface pro-
trudes, and may ultimately elongate in the direction of the fi lament-rich protrusion. In 
the latter stage of the cycle, the cell shifts the bulk of its mass in the direction of that 
protrusion and prepares to repeat the cycle. Repeated over and over as the cell thrusts 
protrusions out in numerous directions and follows their advance, the cell slides along 
in a stochastic meander. 

 Th e motion of your model cell certainly will be simpler than observed in real cells. Cell 
crawling often belongs to the very interesting class of persistent random walks 6–10,  
which are probabilistic wanders in which the mover carries on rather longer in one 
direction, once movement begins, than we would expect based on an acquaintance 
with the Brownian motion random walks of chemical diff usion  (Figure 16.04)   . Th is chap-
ter ’ s project will not embrace all these mathematical subtleties, but will get you started 
with a method you can easily refi ne and extend. In fact you ’ ll be doing some of this 
in later chapters, when you let the cells escape from two into three dimensions. And 
while acknowledging the role of actin and other proteins in the chemistry behind the 
crawl, we ’ ll focus on the resulting behavior itself—the repeating cycles of protrusion, 
traction, and advance. 
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 Your model will incorporate an additional element from chemistry that makes them 
aware of their environment. Sensor molecules in the cellular wanderers let them 
detect chemical concentration gradients. Detection can trigger changes in the prob-
ability characteristics of the cell crawling, causing their random walk to become 
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 FIGURE 16.03 

    The stages of cell locomotion on a 
fl at substrate.    
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 FIGURE 16.04 

    Random motion can be 
characterized as (a) Brownian and 
(b) persistent.    
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biased in spatial orientation. Th e crawling cell can then navigate along these chemical 
gradients. 

 Navigation steps produced by chemically oriented cell crawling are thought to be 
essential to the normal formation of tissues and organs. Th ey may also be keys to 
understanding how a few cancer cells can mobilize into an eff ective invading force, 
tracking outside their place of origin and mounting a deadly threat to the entire body. 
Your model will include the cell ’ s navigation response to chemical signals.  

  Fast and slow movers 
 Diff erent body cell types adapt diff erent strategies for crawling locomotion based on 
their makeup and that of their surrounding tissues. For example, fi broblasts (connec-
tive tissue cells) and some tumor cells abundantly express proteins of the integrin fam-
ily which enable the cells to make strong adhesions with the  extracellular matrix  ( ECM ), 
the  “ glue ”  holding cells together in ordered patterns of healthy tissue. Th ese cells are 
relatively large and slow moving ( � 0.01        � m/s), and rely on constant reorganization of 
the actin cytoskeleton for locomotion. Endothelial cells are another cell type that rely 
on integrin-mediated locomotion to do their job during  angiogenesis , the growth of new 
capillaries. In contrast, lymphocytes and neutrophils, both white blood cell types, are 
smaller and express much lower integrin levels. Th eir locomotion is characterized by 
shorter-lived integrin-independent contacts with the ECM and the ability to adapt cell 
shape to pre-formed cytoskeleton architecture rather than having to constantly reor-
ganize it. As a result, lymphocytes can move relatively quickly ( � 0.1        � m/s) compared 
with their larger, integrin-dependent cousins like fi broblasts.  

  Protrusion nomenclature 
 For both fast and slow movers, those membrane protrusions observed in the fi rst 
stage of the crawl cycle are often called  pseudopodia  and adhere to the substrate via 
adhesion molecules such as integrins. On a fl at substrate, cells tend to send out fl at 
protrusions. Th ese are often called  lamellopodia , in place of pseudopodia, in reference 
to their fl attened shape. Furthermore, in the scientifi c literature on lymphocyte cell 
migration, rearward membrane projections are sometimes called  uropodia  rather than 
pseudopodia. In this book we ’ ll simply use of the words pseudopod and pseudopo-
dia to refer to motility-related projections of the cell surface involved in movement 
behavior. In the next stage the cell body translocates toward the front-end adhesion: 
that process termed  traction . 

 As the body moves, it leaves behind rearward protrusions, also called pseudopodia. 
In the fi nal stage, de-adhesion and  retraction , the rearward adhesions are released and 
the rear pseudopodia retract to rejoin the cell body. All three motility processes—
 protrusion, traction , and  retraction —involve the actin cytoskeleton. Th ere is arguably a 
fourth stage of locomotion which involves no locomotion at all! Th is is when the cell 
has no pseudopods extended yet.  

 Navigation nomenclature 
 We saw that cells move in response to chemical signals. When this movement is non-
directional, or random, the process is called  chemokinesis . When the motion is direc-
tional, we call the process  chemotaxis . Chemotaxis is the mechanism employed during 
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embryonic development as cells migrate to diff erent regions and become specialized 
for specifi c tissues. Similarly, chemotaxis is believed to be largely responsible for the 
migration of fi broblast cells into a wound environment in order to begin healing. As 
well, cell-cell signaling among cancer cells creates a chemotactic environment for 
metastasis. Your cell model in this chapter will undergo random motility on a homo-
geneous substrate, but with a chemotactic stimulus to provide a directional bias to its 
movement. 

Cells don ’ t need the stimulus of chemical gradients to set them in motion. Cells also 
move in response to contact with a substrate, a process called  haptotaxis . Haptotaxis 
can be a random process (in which cells wander aimlessly), or a directed one, depend-
ing on the organization of the substrate. In the absence of external chemical stim-
uli, cells on a homogeneous substrate such as a smooth coverslip will tend to wander 
aimlessly. Conversely, a non-homogeneous substrate—on which there is a directional 
pattern to the surface-bound chemicals which they can detect—cells can be infl u-
enced to migrate in specifi c directions.

  Model defi nition 

  The cell model 
 Your goal is to make a model of a crawling cell that migrates on a fl at substrate via 
random motility and under the infl uence of a chemotactic signal, or  chemoattractant . 
Th e cell is inclined to move from a lower to a higher concentration of chemoattract-
ants, or signaling molecule. To account for the probability eff ects involved in cell loco-
motion, you will build randomness into the speed and direction calculations for your 
cell. Th erefore as your cell crawls up the chemoattractant gradient, it won ’ t necessar-
ily do so in a straight line. 

 Like a living cell beginning its migration on a coverslip, your cell will start off  as a 
10        � m spheroid that has been fl attened around the edges. You could call it a lym-
phocyte, but it could just as easily be another type of motile cell that crawls using the 
three-stage mechanism shown in  Figure 16.03 . For simplicity, the cell will produce a sin-
gle pseudopod at the start of each locomotion cycle and retract a single one at end of 
the cycle. We will introduce the technique shortly for setting up your cell to deform. 
Th is will be the key Maya technique you ’ ll learn and apply in this chapter. Below is a 
list of parameters you ’ ll build into the model: 

    1.     Leading pseudopod protrusion rate.  

  2.     Traction (cell center translocation) rate.  

  3.     Trailing pseudopod retraction rate.  

  4.     Wait time—the time spent sitting still between crawl cycles.    

 From these four parameters, a fi fth will emerge: 

    5.     Linear migration speed of the whole cell.    

 Without adhering to the substrate, a cell cannot generate the traction required to 
move. We can represent cell-substrate adhesions in Maya by fi xing the location of dif-
ferent portions of the cell surface—by fi xing the joints—at appropriate times during 

        A  ligand  is any molecule that 
binds to another. In biochemistry 
the term usually refers to a small 
molecule that binds to a receptor 
or other kind of protein. In cell 
migration it is the binding of 
membrane receptor molecules 
to ECM ligands—small side-
chains of large ECM molecules 
like collagen—that enable a cell 
to generate a traction force by 
contracting its cytoskeleton.      
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the crawl cycle. Finally, to make the cell center clearly visible as it moves about the 
scene, you will couple a smaller sphere—the nucleus—to the cell body.  

  Cell behavior 
 Your cell will start its journey at the Maya world origin, decide on a direction and 
incremental distance to move, and then execute a crawl cycle that encompasses the 
diff erent stages shown in  Figure 16.03 . A living, motile cell has no defi nite front and 
back, or left and right. When it changes direction, it does so by sending out a pseudo-
pod in the new direction, not by turning its body around. It has the ability to extend 
processes in  any  direction meaning that any location on the cell surface may become 
the new cell  “ front ” . Th is is an important characteristic of living cells and therefore 
one we want to build into the model. 

 Furthermore, to make the model fl exible, you ’ ll want the ability to easily adjust the 
rates of the diff erent motility stages: protrusion; traction, and retraction. Th is will 
allow you to tailor the model with experimental data on unique motility characteris-
tics for diff erent cell types and locomotion scenarios. 

 For the determination of random motility, the calculation of direction, which is 
denoted by the angle alpha ( � ), and the distance to be traveled, which we ’ ll call reach 
(for the reach of a pseudopod) should vary randomly from crawl cycle to crawl cycle. 
Th e specifi c numbers involved in this random variability are not important at this 
stage; they can be tailored in later, more advanced stages of the model—if you wish 
to take it further—in order to test diff erent hypotheses about cell locomotion.  

  The chemotactic signal 
 You ’ re including in the model a chemotactic infl uence, or  chemoattractant  gradient, 
to bias the random motility of the cell. Th is can be characterized as an angle, theta 
( � ), to represent the gradient orientation (see  Figure 16.05   ), and a magnitude, c, to rep-
resent its strength. Th ese two parameters will be used to bias the cell ’ s direction 
by altering its motility angle, alpha.  

  The substrate 
 Using a fl at (horizontal) substrate allows you to limit the complexity of the model 
to two dimensions in Maya: X and Z. Such a substrate can be modeled implicitly by 
limiting all Y-translation values to zero throughout the locomotion simulation. If you 
like, you can place a geometric plane object (NURBS or polygon) on the view plane 
made by the XZ world axes to depict the substrate plane explicitly and receive cast 
shadows from the cell when you render the scene. Furthermore, as with an in vitro 
study of locomotion, you will need a point of reference on the substrate from which 
all distance measurements will be made. Th e Maya world origin makes for a logical 
reference point.  

  The cellular scale 
 When working with the actin model in the previous two chapters, you set 1 Maya unit 
equivalent to 1       Å or 0.1       nm. In moving from the scale of individual molecules to that 
of a whole cell, we make a 1,000-fold leap in scale; whereas one G-actin monomer is 
approximately 7       nm across, a motile lymphocyte cell, for example, is about 10,000       nm 
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(or 10        � m) in diameter. For simplicity, let ’ s make 1 Maya unit represent 1        � m for this 
project. As for time scale, we know that a eukaryotic fast mover like a lymphocyte 
cell migrates at an average speed of 0.1        � m/s. What you call a Maya frame in terms 
cell migration time will depend on the speed parameters you set for the cell. In other 
words, once the model is functioning, you can work backwards to determine how 
many seconds of cell time is represented by 1 frame on the Maya timeline.   

Methods: Generating pseudopods 
 A principle creative element of your project is the way your cell changes shape, 
extruding and retracting pseudopodia, as it moves. Th is cycle of deformations and 
shape dynamics gives your model enhanced realism as a simulation of real cell activ-
ity. It also sets the stage for more advanced applications, such as the MEL code that 
links the mechanical properties of the cell and the locomotion forces to exact predic-
tions of protrusion size and shape. 

 But how to coax such smooth biomorphic deformations and extrusions out of Maya 
geometry models? In this chapter you will learn about and apply a powerful approach 
to this problem based on the concept of the rig and its atomic constituents, bones and 
joints. 

  Animation using joints 
 Underlying the movements of animated characters—the articulated CG actors you 
see in fi lms and on television—are what animators refer to as character rigs. A rig is 
a set of deformers and other tools that an animator uses to control everything from 

 Z axis

X axis

Direction (  ) of increasing 
chemoattractant concentration

High concentration

Low concentration

 FIGURE 16.05 

    Chemotaxis occurs in the 
presence of a gradient of signaling 
molecules, a chemoattractant 
or chemorepellant, which is 
represented here by the color ramp. 
You will represent such a gradient 
in Maya using an angle, theta , for 
its orientation and a magnitude, c,
which will bias the random motility 
angle, alpha , chosen by the cell.    
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facial expression to gait, and all gestures in between. A common type of character rig 
involves a skin that is bound to a skeleton (animation curves provide the muscle). Th e 
skin is the surface mesh to be animated. Th e skeleton is comprised of joints which are 
connected by bones, much like a real animal skeleton. Th e joints do the actual deform-
ing, while the bones locate the joints relative to one another and constrain their move-
ment in space. When you bind a skin to a skeleton, you are putting the mesh control 
vertices (CVs) under the infl uence of the nearby joints. Th e total infl uence on all CVs 
is distributed among all the joints in the skeleton. When it comes time to animate, 
the animator rotates the joints to position a limb, for example, and the skin deforms 
accordingly.  Figure 16.06    shows a simple skeleton rig applied to a polygon primitive cylin-
der in Maya; in your hands for a biomedical project, the mesh could just an easily be an 
arm or a leg, or a chain of amino acids folding to form a protein! 

 When you build a skeleton the traditional way, joints are related to one another through 
the Scene Hierarchy via parent/child relationships with bones. Like bones in the human 
body, a Maya bone is rigid and of a fi xed length. While these characteristics are essen-
tial to creating a typical character animation rig, they can be a hindrance when ani-
mating models that need to change size and shape continually, such as cells in dynamic 
simulation models. 

 Your cell will need to alter its rigging  “ on the fl y ”  to accommodate diff erent pseudo-
pods advancing in diff erent directions. When rigging the cell, therefore, you will take 
advantage of the fact that joints can be used independently of bones, existing all at the 
same level in the Scene Hierarchy; in other words, transforming one joint has no infl u-
ence on the other joints since none of them are related by parent/child relationships. 

Polygonal
cylinder

Bone

Joint

Joint
rotation
handles

 FIGURE 16.06 

    A skeleton rig applied to a polygonal 
cylinder. The surface CVs are 

under the infl uence of the joints. 
As the joints rotate, the surface 
deforms. Bones relate the joints 

to one another throughout the 
Scene Hierarchy and constrain the 

locations of joints in space.    
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What this leaves you, the animator, with is a collection of joints that can be moved 
independently about the scene, while exerting a distributed infl uence in their target 
geometry—in this case a cell. Th is type of rig (shown in  Figure 16.07   ) is well suited to 
procedural control of a surface since the deformations are related directly to the trans-
lation values of the joints and are therefore predictable and easy to manage. You will 
see just how useful this simple rig can be for a cell model shortly.   

Methods: Algorithm design 
  Figure 16.08    shows the Maya elements comprising your cell locomotion model. 
Assuming these pieces are in place (which they will be shortly!) let ’ s design an algo-
rithm to make the cell crawl. Following our in silico workfl ow, let ’ s fi rst lay out the 
algorithm in fl owchart form and then encode the fl owchart into a Maya expression. 
You will fi nd it helpful to state clearly and succinctly the goal of this algorithm: 

    Make a polygonal object deform, frame by frame during Maya playback, to 
resemble a crawling cell. Th e direction and magnitude of the joint-induced 
deformations are to be calculated using pseudorandom numbers to emu-
late the required probabilities, taking into account a chemotactic angle and 
magnitude.    

 Th e fl owchart in  Figure 16.09    expands this statement into a series of steps describing 
one complete crawl cycle.  Figure 16.10    shows a diagrammatic translation of the fl owchart 
and  Table 16.01    lists the nomenclature you ’ ll use to name and refer to the various ele-
ments of your model. Now that we have a step-by-step plan to simulate and visualize 
the crawl, let ’ s build your cell model!  

 FIGURE 16.07 

    When joints are used without 
bones to deform a surface, they 
can be moved about in space, 
unconstrained by the hierarchical 
relationships imposed by bones 
in a typical skeleton rig. This 
boneless skeleton is useful for 
rigging amorphous surfaces like the 
crawling cell model shown here. 
The large picture is a still from a 
Maya simulation of cell motility in 
a 3D tissue environment. The inset 
shows the cell model polygonal 
mesh along with joints used to 
animate it. 

Image courtesy and copyright 2006 
Donald Ly, University of Toronto.    
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  Methods: A cell locomotion engine 
 In this section you will set up your Maya scene fi le, make the cell geometry, and build 
a Maya expression to animate it. If you wish to begin experimenting with the model 
right away, you can open the complete Maya scene fi le for this chapter. It is located on 
the accompanying CD-ROM:

 16_Mobile_Cell/scenes/cellCrawl.ma       

 Please note that there are two versions of the scene: one tested for Windows and 
one tested for Max OS X 10.4 (Tiger). If you ’ re using Maya for Mac OS X, refer to 
the readMe.txt fi le, which is in the same directory as the Maya scene fi le, for a brief 
description of the diff erences between the two scene fi le versions. If you ’ re building 
the scene from scratch, you ’ ll fi nd a small modifi cation described at the end of this 
section that will enable the scene fi le to be opened in Maya for Mac OS X. 

 Prepare your scene fi le 
 Start Maya and make the following settings. If Maya is already running, save your 
work and start a new scene fi le. 

   1.     Choose Window  →  Settings/Preferences  →  Preferences.  

  2.     Choose Categories  →  Settings and make the following settings:  
   Under Working Units  →  Linear:  centimeter .
    →  Angular:  degrees .
    →  Time:  NTSC .

cell surfacenucleus

pod1cellCenterpod2

XY plane

 FIGURE 16.08 

    The crawling cell model in terms of 
its Maya components: a polygonal 

mesh for the cell surface, two 
joints (pod1 and pod2) bound to the 
mesh. The pod1 and pod2 will draw 

out the membrane protrusions, 
or pseudopodia. A third joint 

represents the cell center. The XZ 
plane represents a fl at substrate for 

the cell to crawl on.    
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Reset the cell
model

• reset $i to 0

• delete existing
 cell rig elements:
 joints,
 skinCluster, and
 bindPose nodes
• move the
 cellCenter joint 
 and the cell to the
 origin
• bind the cell to
 the cellCenter
 joint, creating
 skinCluster  and
 bindPose nodes

frame � 1
?

frame � 1
?

frame � 1
&&

$i �� 0
?

frame � 3
&&

$i �� 0
?

yes

no

Set up the next
crawl cycle

• calculate the
 random motility
 direction, $alpha,
 and distance,
 $reach
• add the effect of
 chemotattractant
 direction, $theta,
 and magnitude, $c
• calculate the
 location for
 the pseudopod
 joints pod1 and
 pod2, and for the
 destination of pod1
• create and position 
 pod1 and pod2

• add pod1
 and pod2 to
 the existing
 skinCluster node
• calculate the step
 sizes (�m/frame)
 for each stage of
 the crawl
• calculate the
 waiting time
 between this and
 the next crawl cycle

yes
yes

yes

Increment the
crawl cycle

Depending on which
crawl stage the cell
is in, increment the
position of one of the
following:
• pod1

• cellCenter

• pod2

$i �� 1

Prepare for the 
next crawl cycle

• delete pod1 and
 pod2

• unbind cell from
 skinCluster node

no

no

frame �� 1

no

Start and Stop on press Play

 FIGURE 16.09 

    Flowchart for the cell crawl model. 
The variable $i is the number of 
frames left in the current crawl 
cycle. Because the algorithm runs 
as an expression, it starts and stops 
when the Play button is pressed.    
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X axis

cellRadius

Z axis

pod1Vect

ligand position

Cell membrane  pod2 joint
 pod1 joint

 ligandVect (resultant
 cell motility
 vector)

Cell nucleus

Direction of increasing
chemoattractant
concentration (θ)

Randomly chosen
cell direction (α)

cellCenter joint

ligand
position
(pseudopod destination)

(resultant cell direction)

centerVect

STAGE 1 Protrusion

Frame = 1 Frame > 1 (setup)

STAGE 2 Traction

pod2Vect

next ligandVect

next cell
direction

local cell 
coordinates

STAGE 3 Retraction

α α
γ γ

θ θ

θ

α�

α�

α�

γ � α � θ

α� � α � γ � c

 FIGURE 16.10 

    A diagrammatic version of the cell 
crawl algorithm.    
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 Name  What it looks 
like in Maya 

 Description 

cell
 The cell body (polygonal mesh). In our rig it gets 
coupled to the joints below through a  skinCluster
node. 

cellCenter

 This joint anchors the membrane, proximal to the cell 
center, to the substrate during leading-end protrusion 
and rear-end retraction. During the traction stage, 
this joint moves the bulk of the cell body forward. 

pod1

 This joint deforms the cell to create the leading 
pseudopod. After the extension of the pseudopod, 
this joint adheres it to the substratum during the 
traction and retraction stages of locomotion. 
Theoretically,  pod1  provides the anchor against 
which the traction force is generated. 

pod2

 This joint anchors the rear of the cell to the 
substratum, creating the trailing pseudopod as the 
cell body advances during the traction stage. In the 
retraction stage,  pod2  returns to the periphery of the 
cell body, bringing with it the deformed cell surface. 

nucleus  The cell nucleus (squashed NURBS sphere). 
 TABLE 16.01 

   Nomenclature used in our cell 
locomotion model.  

   3.     Choose Categories  →  Timeline and make the following settings:

    Under Timeline  →  Playback Start:  1 .
     →  Playback End:  1000 .
     →  Time, select  NTSC .

   Under Playback  →  Looping:  once.
     →  Playback Speed:  Play every frame .
     →  Playback by  1 .

   4.     Press Save.  

  5.     Select a Four-View of your scene by pressing the      button in the Toolbox.            

  Build the geometric model 
 Here you ’ ll create a polygon cube and then smooth it to turn it into a sphere. Th is 
technique is handy for making spherical surfaces with roughly equal sized polygons. 
 Figure 16.11    compares a Maya primitive polygon sphere with one created by the smooth-
ing a cube. Quite a diff erence! Th e CVs are more evenly distributed on the latter, mak-
ing surface deformations more predictable and easier to control, and also making it 
easier to map textures onto the surface. 

        Because you ’ re dealing with 
an expression that is evaluated 
at each frame, it is especially 
important to set  Playback Speed
to  Play every frame.       
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 Up until this point in this book you have relied on the Maya UI menus to access many 
of the tools, commands, and settings. At this point, we will begin introducing MEL 
commands in place of menu selections. To economize on words in the step-by-step 
instructions, we will write simply  Enter  in place of saying  Enter the following in the 
Command Line entry fi eld or the Script Editor input pane . We ’ ll also from here on refrain 
from elaborating on the MEL commands and their many fl ags here in the text with 
the provision that such details are well documented and easily accessed in Maya ’ s 
Help Library. In general we will use the long name for a fl ag the fi rst time it appears 
and then employ its short name for subsequent uses. Let ’ s begin using MEL com-
mands in the following steps which will take you through creating the cell geometry 
model. 

  Make the cube 
 First, you ’ ll use the  polyCube  command to make an 11        � m cube which will shrink 
slightly to make a 10        � m diameter cell after smoothing. 

    Enter:

   polyCube -width 11 -h 11 -d 11 -subdivisionsX 1 -sy 1 -sz 1 -n cell;      

  Smooth the cube 
 Th e  polySmooth  command will subdivide the cube (a hexahedron) into a polyhedron 
with  n  sides according to the following internal Maya formula: 

     n  =  6  �  2 exp(2  �  d)     

 where  d  is the value of the polySmooth node divisions attribute. In practical terms, a 
 divisions  setting of  2  gives us  96  sides (or quadrilateral polygons), which is suffi  cient 
detail for the deformations required of this initial model. 

polySphere polyCube + polySmooth

 FIGURE 16.11 

    Two types of polygonal sphere 
model in Maya. On the left is a 

primitive sphere created with the 
polySphere  command. On the right 

is a polyCube  (with width, height, 
and depth subdivisions all set to 1) 

with a polySmooth  node applied. 
Note that the CVs are more 

evenly distributed over the surface 
of the smoothed cube.    
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    Enter:
   polySmooth -continuity 1 -divisions 2 cell;      

  Create and apply a shader 
 Here you ’ ll make a blue, translucent Phong shader called  cellShader  and apply it to 
the cell. Th e translucence will allow you to see the nucleus through the cell ’ s outer 
membrane (or surface). You can make the shader in the Hypershade and set its color 
and transparency in the Attribute Editor if you like. Otherwise, you can create and 
apply the shader by entering the following lines of code in the Script Editor:

             shadingNode -asShader phong -n cellShader; 
   setAttr  "cellShader.color" -type double3 0�.5 0�.5 1; 
   setAttr  "cellShader.transparency" -type double3 0�.5 0�.5 0�.5;
   select cell; 
   hyperShade -assign cellShader;           

  Shape the cell with a Lattice Deformer 
 Lattice Deformers are powerful tools for shaping polygonal and NURBS surfaces and 
clusters of particles in Maya. Here you ’ ll use a Lattice Deformer to fl atten the cell bot-
tom and spread out its edges. 

    Enter:
   lattice -divisions 2 5 2 -objectCentered true -ldivisions 2 2 2;     

  Figure 16.12    shows the lattice and cell together and the subsequent steps you ’ ll take, 
manipulating  lattice points  to deform the cell. A lattice is like a hexahedron and its 
points like CVs: as you translate, scale, or rotate them, you change the shape of the 
lattice. Th is in turn deforms the object under the infl uence of the lattice. Th e follow-
ing steps are guidelines only. In all likelihood your lattice-deformed cell will look a bit 
diff erent than ours. 

    1.     Press the hotkey, W, to activate the Move Tool.  

  2.     RMB + click over a portion of the lattice and choose Lattice Points.  

  3.      Select, move, and scale groups of lattice points to fl are and fl atten the bottom of 
the cell as shown in Figure 16.12 .    

 Th is just gives you a taste of what lattices are capable of. To learn more about the 
nodes that comprise a Lattice Deformer and its various uses, refer to Maya Help:

 Lattice Deformers 

 Maya Help  →  Using Maya  →  Animation, Character Setup, and Deformers  →
Deformers  →  Lattice Deformer        

  Delete history 
 When you are satisfi ed with the shape of your cell, delete its history to remove the 
lattice nodes and make permanent the surface deformations that give the cell its 
default  “ resting ”  shape. You want the Dependency Graph ( DG ) cleared of any nodes 
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(a) Select the lower eight 
lattice points.

(b) Use the Move tool to move 
the lattice points up.

(c) Select the bottom four 
lattice points.

(d) Move the lattice points up 
to flatten the bottom of 

(e) Select the lower eight lattice 
points and use the Scale tool 
to splay them apart.

(f) Select the bottom four points 
and continue to spread the cell 
bottom using the Scale tool.

your cell model. 

 FIGURE 16.12 

    Step by step deformation of the 
sphere, by moving and scaling the 

lattice points, in order to create the 
basic cell geometry. Using the Scale 

tool doesn ’ t scale the lattice points 
themselves, but scales the distance 

between selected points. To scale 
uniformly in X, Y, and Z, click on the 

central manipulator (yellow) cube 
and MMB-drag your mouse.    
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that aren ’ t essential to the cell crawl cycle in order to minimize the number of steps 
needed in the expression to make the cell deform predictably. 

    Enter:
   delete -constructionHistory cell      

  Reset the cell ’ s position 
 Depending on how much you moved the lattice points, your cell may be intersecting 
the XZ plane, which represents the fl at substrate on which you want the cell to crawl. 
If this is the case, take the following steps  (Figure 16.13)   : 

    1.     Activate a side or front orthographic view.  

  2.     Select the cell and hit the hotkey, W, to activate the Move Tool.  

  3.      LMB + click the Y manipulator handle and drag it in the positive Y direction 
until the cell surface clears the XZ plane ( Figure 16.13 b ).

 Next, freeze the translate values so that the cell ’ s current position will be its zero 
position. 

    Enter:
   makeIdentity -apply true -translate 1 cell;    

 Freeze Transformations 

 Help  →  Using Maya  →  Tools, Menus, and Nodes  →  Menus  →  Modify  →
Modify > Reset Transformations, Freeze Transformations        

  Rig the cell 
 Initially, your model requires only one joint, which we ’ ve been calling  cellCenter . 
Th e other, pod1 and pod2, will be created by the expression which you will soon build. 
You can make the  cellCenter  joint easily using the MEL command, joint, which makes 
a joint and places it at the world origin—right where you want  cellCenter  to start off . 

After lattice deformation
but before translation.

After translation.

(a) (b) 

 FIGURE 16.13 

    The XZ plane represents a fl at 
substrate for your cell. After 
deforming the geometry with a 
Lattice Deformer, you may need 
to translate it in Y so that it sits on 
or slightly above the XZ plane and 
doesn ’ t intersect it.    
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However, we believe it would be useful for you to create cellCenter  and two other 
joints using Maya ’ s  Joint tool  in the UI and then bind them to the cell mesh in order to 
experience manually what your expression script will be doing many times per sec-
ond automatically. Th ink of these next steps as building a prototype by hand to see 
what your rig is capable of before setting it loose through an expression. Th is will help 
you better understand the expression as you build it.  

  Make the joints 

     1.      Activate the orthographic top view of your scene and adjust your view to 
appear similar to that in Figure 16.14   .  

   2.     Press the F2 hotkey to activate the Animation menu set.  

   3.     Choose Skeleton  →  Joint Tool     .  

   4.     In the Joint tool options:  

   (a)     Press Reset Tool.  
   (b)      Under Bone Radius Settings  →  Short Bone Radius, enter 2.
   (c)     Press the Close button.    

 Your cursor will change to cross hairs to indicate that the Joint tool is enabled. Th e 
Short Bone Radius setting determines how large the joints you make will  appear  in 
the scene view—it has no bearing on a joint ’ s functional properties. 

    5.     While holding down the  X  key (to constrain the joint to a point on the grid) click
 at the world origin to make the cellCenter joint.  

   6.      Press Enter on your numeric key pad to complete the joint creation and disable 
the Joint tool.  

   7.     In the Channel Box, rename the joint  cellCenter .

 FIGURE 16.14 

    A top view of the cell geometry as 
joints are created. With the Joint 

tool active, a joint is created each 
time you LMB � click in the scene 

view. Hold down the X key when you 
click to constrain the joint to a point 

on the scene grid. Press Enter on 
your numeric keypad after each joint 

click to deactivate the joint tool—
otherwise subsequent joints will be 
parented to the fi rst. (a) Click at the 
world origin to make the cellCenter 

joint then press Enter. (b) and (c) 
Click at the perimeter of the cell to 

make the pseudopod joints, pressing 
Enter between each click.        

Cell center joint

(a) (b)

Psuedopod joint

(c)
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    8.     Adjust the Joint Display Scale:  

   (a)      From the main menu set choose Display  →  Joint Size  →  Custom.  
   (b)     Enter 5 and then close the Joint Display Scale window.  

    9.     Press the repeatLast hotkey,  G, to re-enable the Joint tool.  

  10.     While holding down the  X  key click somewhere near the cell perimeter.  

  11.     Press Enter on your numeric key pad.  

  12.     In the Channel Box, rename the joint  pod 1 .

  13.     Press G to re-enable the Joint tool.  

  14.     While holding down the  X  key click near the cell perimeter opposite to pod1.  

  15.     Press Enter on your numeric key pad.  

  16.     In the Channel Box, rename the joint  pod 2 .

  Bind the skin to the joints 
 A skin can be bound to a skeleton in one of two ways: a smooth bind and a rigid bind. 
In smooth binding, the infl uence over a given set of mesh CVs is shared among proxi-
mal joints. Th is type of binding is great for smooth, organic-looking deformations of 
the kind we ’ re after to represent cell surfaces. In rigid binding each CV is infl uence 
by only one joint. Th is produces mechanistic-looking deformations, useful for articu-
lated limbs that are rigid, such as those found on a striding robot or a crustacean for 
example, where you don ’ t want the surface mesh stretching and bending like an elas-
tic membrane. 

 When applied, the  Smooth Bind tool  executes the  skinCluster  MEL command behind 
the scenes. Th is in turn creates a  skinCluster  node, which stores information on how 
joint infl uences are distributed throughout the mesh. In the expression you ’ ll build 
shortly, you will use the  skinCluster  command to smooth bind the cell to its joints. 
At this point, however, just use the Smooth Bind tool: 

    1.      Select the cell and the three joints you made. The selection order isn ’ t impor-
tant for the Smooth Bind tool.  

  2.     In the Animation menu set, choose Skin  →  Smooth Bind     .  

  3.     In the Smooth Bind options window, choose Edit  →  Reset Settings.  

  4.     Press the Bind Skin button.    

 If Maya generates an error, make sure that all four objects are selected and repeat 
steps 2–4.  

  Deform the cell 
 Your cell is now rigged! Take a minute or two to move each of the joints around using 
the Move Tool and observe the resulting changes to the cell surface (Figure 16.15 ). 

        If you don ’ t press Enter after 
clicking to make a joint, the Joint 
tool remains active. If you click 
again to make a second joint, 
Maya automatically creates 
a bone linking the fi rst and 
second joint through the Scene 
Hierarchy (the second joint 
becomes a child of the fi rst). 
Pressing Enter after the fi rst joint 
disables the Joint tool: if you 
then re-enable it and click again, 
the second joint will have no 
relationship to the fi rst, which is 
the scenario we want for the cell 
animation rig.      
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Note that each joint has keyable transform attributes which are displayed in the 
Channel Box. Your cell crawl expression will set those attribute values (but not key 
them) according to the numbers it computes for the random walk, the chemotactic 
infl uence, and the duration of each stage—protrusion, traction, and retraction—of 
the cell crawl cycle.  

  Reset the cell 
 Before moving on to building the expression reset your cell by returning the three 
joints to their original locations and unbinding (or detaching) the cell from the joints 
and then deleting pod1 and pod2: 

    1.     Select the three joints.  

  2.     Choose Skin  →  Go To Bind Pose.  

  3.     Select the cell.  

  4.     Choose Skin  →  Detach Skin     .  

  5.     In the Detach Skin options window choose Edit  →  Reset Settings.  

  6.     Press the Detach button.  

  7.     Select and pod1 and pod2. Press the Delete key on your keyboard.     

  Add custom attributes 
Now you ’ ll add six custom attributes to the cell transform node. Th ey will be a means 
for quickly entering key expression variables rather than having to search for them 
in the Expression Editor. All you ’ ll have to do to assign the variables is select the cell 

 FIGURE 16.15 

    Once you ’ ve rigged your cell by 
binding the mesh to the joints, select 
and move each joint using the Move 

Tool to see the deformation effects 
on the surface. The centerCell joint 

is selected in this picture.    



465CHAPTER 16: MODELING A MOBILE CELL

in the Scene View or Outliner and enter values in the appropriate attribute fi elds in 
the Channel Box. Note the  minimum (min)  and  maximum (max)  values. Th ese are used 
to prevent the user from entering values that would result in errors, such as a zero 
speed value for one of the joints.

    Enter the following lines in the Script Editor:   

             addAttr -longName pod1Speed -attributeType double -min 1 -max 10� 
 -dv 2 |cell;
   setAttr -edit -keyable true  |cell.pod1Speed;
   addAttr -ln centerSpeed -at double -min 1 -max 10� -dv 1 |cell;
   setAttr -e -keyable true  |cell.centerSpeed;
   addAttr -ln pod2Speed -at double -min 1 -max 10� -dv 2 |cell;
   setAttr -e -keyable true  |cell.pod2Speed;
   addAttr -ln waitFactor -at double -min 0�.1 -max 10� -dv 1 |cell;
   setAttr -e -keyable true  |cell.waitFactor;
   addAttr -ln chemoMagnitude -at double -min 0� -max 10� -dv 5 |cell;  
   setAttr -e -keyable true  |cell.chemoMagnitude;
   addAttr -ln chemoTheta -at double -min 0� -max 360� -dv 0� |cell;
   setAttr -e -keyable true  |cell.chemoTheta;         

 You can change the minimum and maximum limits on these attributes by using the 
addAttr command with the edit fl ag. For example: 

        addAttr -edit -min 3 -max 6 cell.pod1Speed; // Change the min and
 max limits.     

  Add the cell nucleus 
 For the cell nucleus, create, scale, and position a NURBS sphere so that it fi ts comfort-
ably within the cell model (Figure 16.16 ). 

    1.     Enter the following line in the Script Editor:
  sphere -radius 5 -axis 0� 1 0� -name nucleus;      

  2.      Press W to activate the Move Tool then drag the nucleus in the positive 
Y-direction until it ’ s mostly inside the cell.  

  3.      Press R to activate the Scale tool then scale the nucleus in the Y-axis so that it 
fi ts within the boundaries of the cell.    

To make the nucleus move as the cell does, connect its translate attribute to that of 
the cellCenter  joint.

    4.     Enter the following line in the Script Editor:
      connectAttr cellCenter.translate  | nucleus.translate;connectAttr cellCenter.translate |nucleus.translate;                

 Now that your cell geometry is ready—complete with custom attributes—save your 
scene. You will use it again shortly. First you ’ ll apply your knowledge of rigging and 
animating with joints to the cell crawl expression.     

        -dv is short for defaultValue. You 
can later change the values of 
these attributes in the Channel 
Box.      
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  Methods: Encoding the algorithm 
 Before beginning, you may wish to refer back to  Figures 16.09 and 16.10 , the fl owchart 
and schematic illustration for a quick refresher on the steps you ’ re about to encode. 
Unlike the earlier projects you will not use procedures here, but rather create one 
expression that calculates the crawl parameters and makes, moves, and destroys 
the pieces needed to make your cell crawl, on a frame by frame basis. Th at ’ s not to 
say the code in your expression couldn ’ t be broken out into several subroutines that 
are then called when needed. However, this script is suffi  ciently concise that we fi nd 
it simpler to manage in one chunk. 

  The cellCrawl expression 
 As you saw back in  Chapter 12 , an expression can be made in one of two ways. 
Th e fi rst uses the MEL command expression and a single line of code. If the code 
is suffi  ciently long, you can break it up into multiple lines as long as you use the 
escape line break notation,  \n , at the end of each line. In longer expressions, escap-
ing line breaks becomes tedious and can lead to errors when you add new lines to 
the code and forget to escape them. For this project we recommend the second way 
to make an expression: compose it in multiple lines—as you would a procedure—
then copy/paste it into Maya ’ s Expression Editor and press Create. Making an 
expression this way avoids the errors associated with the extra step of building it as 
a single MEL statement. As in previous chapters, we also suggest that you compose 
your expression in a text editor (other than Maya ’ s Script Editor), saving it periodi-
cally as you follow along with the instructions below. When you want to test bits 
of code in Maya, just copy and paste them from your text editor into Maya ’ s Script 
Editor. 

 Some header information will be helpful when you refer back to this expression at a 
later date and to help others understand your code.

(a)

 FIGURE 16.16 

    After creating the nucleus model 
using the sphere  command: 

(a) Move the nucleus into position 
within the cell model. (b) Scale the 

nucleus so that it fi ts within the 
boundaries of the cell surface.      

(b)



467CHAPTER 16: MODELING A MOBILE CELL

         /***** cellCrawl.txt *****/ 
 /* 
 Date: April 20�0�6.
 Authors: Jason Sharpe, Charles Lumsden, Nick Woolridge. 

 Description: 
 This expression animates a crawling cell. 

 To use this script: 
 Your Maya scene must contain a NURBS or polgon model called cell
and a joint called cellcenter, both located at the world origin. 
The cell model must have the following attributes (sample default
values are given): 
 pod1Speed  �  2; centerSpeed  �  1; pod2Speed  �  2; waitFactor  �  1, 
chemoMagnitude �  5; chemoTheta  � 0�.
  Note : All angles are in degrees, measured CCW from the positive 
z-axis.
 Copy and paste this entire script into Maya's Expression Editor and
press the Create button. Press play to animate the cell. 
 */       

Next, declare the main variables. You ’ ll use global variables for the parameters that 
are set at the start of a cycle and then must be read at each frame in the cycle. Being 
global, once these variables are set, they can be read at any time and anywhere in the 
Maya environment (i.e. in an expression, a procedure, or in the Script Editor).

             /***** DECLARE THE VARIABLES *****/ 
   /*   
            $pod1Pos     XYZ position of the leading pseudopod joint, pod1.   
   $pod2Pos      XYZ position of the trailing pseudopod 

joint, pod2.   
   $centerPos     XYZ position of the cell center joint.   
   $ligandPos     Location where the leading pseudopod binds to the 
 substrate.       
     */ 
   global vector $pod1Pos, $pod2Pos, $centerPos, $ligandPos; 

   /*   
            $theta     Chemoattractant direction (an angle in degrees).   
   $c     Magnitude of the chemoattractant concentration.   
   $alpha     Random motility direction (an angle).   
   $gamma     Difference between $alpha and $theta.   
   $alphaPrime      Final motility direction, accounting for both 

random motility and chemotaxis.   
   $cellRadius     Radius of the flattened cell (˜10�          m).   
   $reach     Distance travelled the cell in a given cycle.   
   $waitAverage      The average time, in frames, the cell waits before

moving.  
   $wait     A random wait time.       
     */ 
   float $theta, $c, $alpha, $gamma, $alphaPrime, $cellRadius, $reach; 
   float $waitAverage, $wait; 

   /* 
            $minDist     Minimum possible value of $reach.   
   $maxDist     Maximum possible value of $reach.   
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   $pod1Speed     Rate of protrusion in   m/frame.   
   $pod2Speed     Rate of retraction in   m/frame.   
   $waitFactor     Multiplier to scale the waiting time.   
   $stateZero     Number of frames spent waiting.       
     */ 
   float $minDist, $maxDist, $pod1Speed, $pod2Speed, $waitFactor,
 $stateZero; 

   /*   
            $pod1Vect      Vector added to the position of pod1 for each 

step in a crawl cycle.   
   $pod2Vect     Same as above for pod2.   
   $centerSpeed     Rate of cell center translocation in   m/frame.   
   $centerVect      Vector added to the position of cellCenter for 

each step in a crawl cycle.       
     */ 
   vector $pod1Vect, $pod2Vect, $centerSpeed, $centerVect; 

   /*   
            $pod1Steps     Number of frames needed for protrusion.   
   $centerSteps     Number of frames needed for translocation.   
   $pod2Steps     Number of frames needed for retraction.       
     */ 
   global int $pod1Steps, $centerSteps, $pod2Steps; 

   /*   
            $clusterNames[]     A list of skinCluster node names.   
   $bindPoseNames[]     A list of bindPose node names. 
   $podNames[]     A list of pods names.       
     */ 
   string $clusterNames[], $bindPoseNames[], $podNames[]; 

   /*   
            $i     Counts the steps in a crawl cycle       
     */ 
   int $i;         

  Initialize the variables 
 At this point, the expression uses the getAtt r  command to read the custom attribute 
values you assigned to the cell transform node.

         /***** INITIALIZE THE VARIABLES *****/ 

 $theta  = ' getAttr cell.chemoTheta'  ; 
 $c  = '  getAttr cell.chemoMagnitude  ' ; 
 $pod1Speed  = ' getAttr cell.pod1Speed  ' ; 
 $pod2Speed  = ' getAttr cell.pod2Speed  ' ; 
 $centerSpeed  = ' g etAttr cell.centerSpeed  ' ; 
 $waitFactor  = ' g etAttr cell.waitFactor ';  
 $cellRadius  = 10�;
 $minDist  = 20�;
 $maxDist  = 40�;       

        A bindPose node is created 
when you bind a skin (surface) to 
a joint. It stores the joint ’ s world 
matrix (translation and rotation) 

at the time of binding.      
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  Reset the cell model 
 Each time you set the current time indicator to frame 1 the cell should return to 
the world origin and prepare for the next sequence of crawl cycles. Th is preparation 
includes deleting the skinCluster, bindPose, and pseudopod joint nodes. To do this 
you ’ ll use a string array to store a list (using the ls command) of each type of node 
by name and then delete the array contents. Th is is a safer technique than deleting 
items by name, as in delete pod1. If no item named pod1 exists, Maya will gener-
ate an error and halt the expression. On the other hand, if the array of objects called 
pod1* is empty and you delete the array contents, Maya will only issue a warning, 

        Warning: Nothing is selected. Select objects or components to
 delete.    

 and will continue to execute the expression (do not enter the above line as part of the 
expression).

             /***** RESET THE CELL MODEL *****/ 

   if (frame  ==   1) { 

   // Reset the crawl step counter. 
   $i  = 0�;

   // Delect existing skinCluster nodes when you return to frame 1. 
   $clusterNames  = '  ls -long  "skinCluster*"' ; 
   delete $clusterNames; 

   // Delect existing bindPose nodes when you return to frame 1. 
   $bindPoseNames  = '  l s -long "bindPose*" ' ; 
   delete $bindPoseNames; 

   // Delect existing pod objects when you return to frame 1. 
   $podNames  = '  ls -tr  "pod*"' ; 
   delete $podNames; 

   // Center the cell center joint. 
   $centerPos  =  <<  0�, 0�, 0�>>;
   setAttr cellCenter.translate ($centerPos.x) ($centerPos.y)
 ($centerPos.z);          

 If you delete a  skinCluster  node when it is connected to an object, Maya locks 
the object ’ s connected attributes. Th e following lines unlock the cell ’ s transform 
attributes, ensuring they are free to be connected to a new  skinCluster  node.

     // Unlock the cell 's transform attributes. 
   setAttr -lock 0� "cell.tx";
   setAttr -lock 0� "cell.ty";
   setAttr -lock 0� "cell.tz";
   setAttr -lock 0� "cell.rx";
   setAttr -lock 0� "cell.ry";
   setAttr -lock 0� "cell.rz";
   setAttr -lock 0� "cell.sx";
   setAttr -lock 0� "cell.sy";
   setAttr -lock 0� "cell.sz";

   // Center the cell. 
   setAttr cell.translate ($centerPos.x) ($centerPos.y) 
 ($centerPos.z); 
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   // Bind the cell to the cell center joint. 
   print  "Cell is set to go!\n ";

   $clusterName1  = ' skinCluster cellCenter cell ' ; 

   // Select the cell to make its attributes available in the
 channel box. 
   select cell; 

   } // End if (frame  ==   1). Cell is reset.     

  Figure 16.17    shows the eff ect of the above section of code on the DG for the cell.  

  Print commands 
 As you learned in  Chapter 12 , the print command in the above code section sends a 
message to the Command Line and the Script Editor telling you that this part of the 
expression executed and the cell is now ready to crawl. Printing information about an 
expression or MEL script can be very helpful when debugging code. Printing allows 
you to see if variables and attribute values are being assigned the values that you 
think they are. We will continue to use print throughout the code. When the expres-
sion is done and you run the cell crawl simulation, the Script Editor will display a 
running report of what ’ s going on behind the scenes.  

  Set up the next crawl cycle 
 In this section of code you will calculate the values necessary to move the cell, includ-
ing the random motility direction, the eff ect of the chemoattractant, and the step 

 FIGURE 16.17 

    These images of the Hypergraph 
show the DG nodes of the cell model 

in different stages of operation: (a) 
At the start of each crawl cycle, 

the joint nodes pod1 and pod2 are 
made. They remain in existence 
during the cycle. (b) After each 

cycle is completed, and at frame 
1 when the cell is reset, pod1 and 

pod2 are deleted and the cell is 
bound only to the cellCenter joint.      

(a)

(b)
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sizes for each of the three motility stages: protrusion, traction, and retraction. In 
order to execute this code, the following conditions must exist: 

    1.     The cell must be at the beginning of a crawl cycle, i.e. $i  ==    0.  

  2.      The frame number must be > 1 (we ’ re reserving frame 1 for resetting the model).  

  3.      The variable skinCluster[0] must have an assigned value, the name of the 
existing skinCluster node. If it doesn ’ t, it ’ s because the scene fi le has just been 
opened and hasn ’ t been reset to frame 1 yet, or you edited the expression after 
stopping the cell in mid-crawl. In such cases, checking if a skinCluster node 
exists prevents an execution error.    

 You ’ ll use Maya ’ s rand() function to generate the random motility angle,  $alpha  and 
pseudopod protrusion distance. Feel free to experiment with more complex probabil-
ity models once you have the basic code up and running, for example a Gaussian (bell-
curve) form. Th e chemoattractant angle $theta  and magnitude $c were read in from 
the cell attribute  chemoMagnitude  when you initialized variables. We have given the 
name  $gamma  to the diff erence between  $alpha  and  $theta .  $gamma  will be used with 
$c to calculate  $alphaPrime , the cell direction that accounts for both random motility 
and chemotaxis (see  Figures 16.05 and 16.10 ). Th ere are four possible cases we must con-
sider for the value of the angle $gamma which are shown in  Figure 16.18   .

             /***** SET UP THE NEXT CRAWL CYCLE *****/ 
   if ($i  == 0� & &  frame > 1 & & '  objExists $clusterNames[0�]' ) { 

   // Calculate the random angle $alpha. 
   $alpha  = rand(0�,360�);

Case A
0 � γ � 180

 Z axis

X axis

Case B
0 � γ � �180

Case C
γ � 180

Case D
γ � �180

α

γ
θ

α

γ
θ

α

γ

θ

α

γ

θ

γ � α � θ

α� � α � γ � c
c � chemoattractant strength

(0.1 � c � 1) 

 FIGURE 16.18 

    Four cases to consider for the 
angle  ( �   =  �   –   � ) when calculating 
alphaPrime, the direction resulting 
from both random motility and 
chemotaxis.
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   float $gamma  = $alpha - $theta; 
   print ( "\nStarting new crawl\n$gamma = " + $gamma + "\n");

   // CASE A. 
   if ($gamma > 0� & &  $gamma < =  180�){
    $alphaPrime  = $alpha - $gamma*$c/10�; print "CASE A\n ";
   } 
   // CASE B. 
   else if ($gamma  < 0� & &  $gamma > = -180�){
    $alphaPrime  = $alpha - $gamma*$c/10�; print "CASE B\n ";
   } 
   // CASE C. 
   else if ($gamma > 180�){
    $alphaPrime  = $alpha + (360� - $gamma)*$c/10�; print "CASE C\n ";
   } 
   // CASE D. 
   else if ($gamma  < -180�){
    $alphaPrime  = (360� + $alpha) - (360� + $gamma)*$c/10�; print 

 " CASE D\n ";
   } 

         // Calculate the pseudopod reach. 
     $reach  = rand($minDist, $maxDist); 
     print ( "$alpha = " + $alpha); 
     print ( ", $alphaPrime = " + $alphaPrime + ", $reach = " +
 $reach  + "\n");

     // cellCenter position. 
     $centerPos  = '  getAttr cellCenter.translate  ' ; 

     // pod1 position. 
     $tmpX  = $centerPos.x + $cellRadius * sin(deg_to_
 rad($alphaPrime)); 
     $tmpZ  = $centerPos.z + $cellRadius * cos(deg_to_
 rad($alphaPrime)); 
     $pod1Pos  = <<  $tmpX, 0�, $tmpZ>>; 

     // pod1 position. 
     $tmpX  = $centerPos.x + $reach * sin(deg_to_rad($alphaPrime)); 
     $tmpZ  = $centerPos.z + $reach * cos(deg_to_rad($alphaPrime)); 
     $ligandPos  = <<  $tmpX, 0�, $tmpZ>>; 

     // pod1 position. 
     $tmpX  = $centerPos.x + $cellRadius * sin(deg_to_rad 
 ($alphaPrime  �  180�));
     $tmpZ  = $centerPos.z + $cellRadius * cos(deg_to_rad 
 ($alphaPrime  + 180�));
     $pod2Pos  = <<  $tmpX, 0�, $tmpZ>>; 

     /* Delete existing pseudopod joints. This is a safeguard for 
when the file is saved in mid-crawl, and then reopened and 
played.*/
     string $podNames[]  = ' ls -tr  "pod*" ' ; 
     delete $podNames; 

     // Make the pseudopod joints. 
     select -clear;             
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 If a joint happens to be selected when you use the joint tool or joint command, Maya 
will automatically create a bone and parent the second joint to the fi rst, which is not 
what we want to happen. Clearing the selection before making a new joint ensures no 
bone is created and the joint remains unparented. Th e short name for the -clear fl ag 
is -cl, which we ' ll use from now on. 

        joint -p ($pod1Pos.x) ($pod1Pos.y) ($pod1Pos.z) -n pod1; select -cl; 
      joint -p ($pod2Pos.x) ($pod2Pos.y) ($pod2Pos.z) -n pod2; select -cl;    

 Th e use of brackets around $pod1Pos.x, etc. forces Maya to return the value of the 
attribute. Below, the skinCluster command is used with the edit and addInfluence 
fl ags to  add  the joints pod1 and pod2 to the existing  skinCluster  node. Th e - dropof-
fRate  attribute fl ag determines how a joint ’ s infl uence on the bound skin decreases, 
or drops off , with increased distance from the skin. Th e higher the value, the quicker 
the dropoff . Th e default value is  4 .

         // Add pod1 and pod2 to the existing skinCluster1. 
skinCluster -edit -dropoffRate 4 -addInfluence pod1 $clusterNames[0�]; 
skinCluster -edit -dropoffRate 4 -addInfluence pod2 $clusterNames[0�]; 

// $tmpVect is the vector that translates each of the cell 's joints. 
 vector $tmpVect  = $ligandPos - $pod1Pos; 
 // $mag is the scalar distance the cell will travel. 
 float $mag  = mag($tmpVect); 

 // pod1 step size; the protrusion distance per frame. 
 $pod1Steps  = $mag/$pod1Speed; 
 $pod1Vect  = $tmpVect/$pod1Steps; 

 // cellCenter step size; the traction distance per frame. 
 $centerSteps  = $mag/$centerSpeed; 
 $centerVect  = $tmpVect/$centerSteps; 

 // pod2 step size; the retraction distance per frame. 
 $pod2Steps  = $mag/$pod2Speed; 
 $pod2Vect  = $tmpVect/$pod2Steps; 

 print ( "$pod1Steps = " + $pod1Steps + ", $centerSteps = ");
 print ($centerSteps  + ", $pod2Steps = " + $pod2Steps + "\n");      

 Next, the expression calculates the wait time between locomotive excursions. For 
starters, you ’ ll make the average wait time value one half the crawl cycle time for the 
cell ( time  here refers to  frames ). You ’ ll then use this average value,  $waitAverge , to 
randomize the wait time,  $wait  according to the following formula 11 : 

        $wait  =  $waitAverage*log(1/$rnd)*$waitFactor;    

 Where $rnd is a random number between 0 and 1 and  $waitFactor  is a multiplier 
that was assigned the value of the cell ’ s custom  waitFactor  attribute. By changing 
the value for $waitFactor in the Channel Box you can then easily scale the wait time 
up or down.
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         /* In state zero, the cell waits before another excursion. Here 
you' ll generate a random wait time of average value:$waitAverage 
frames. */ 
 $waitAverage  = ($pod1Steps + $pod2Steps + $centerSteps)/2; 
 float $rnd  = rand(0�,1);
 $wait  = $waitAverage*log(1/$rnd)*$waitFactor; 

 $stateZero  = ceil($wait); 
 // ceil (for  "ceiling") rounds $wait up to the nearest integer. 
 print ( "$waitAverage = " + $waitAverage + ", stateZero = "
+ $stateZero + "\n");      

 Th e crawl cycle counter is then set to the sum of the pod1,  cellCenter , pod2, and 
stateZero steps sizes.

         // Set the crawl cycle counter. 
   $i  = $pod1Steps + $pod2Steps + $centerSteps + $stateZero; 
   print ( "$i = " �  $i  + "\n");

   } // End if. 
   // The crawl cycle is now set up.           

  Increment the crawl cycle 
 Th e following section of code is executed at every frame for which the crawl cycle 
counter, $i, is greater then zero. Its function is to move fi rst pod1 through each of its 
steps, then  cellCenter , followed by pod2. Th e time remaining in each stage is given 
by $i minus the time for the remaining stages. When the cell has fi nished moving—
when the retraction stage is fi nished and pod2 has returned to its default position rel-
ative to  cellCenter —the cell remains in state zero until $i has counted down to zero. 
At this point the  cell  is detached from its skeleton (the three joints), pod1 and pod2 
are deleted, then the cell is rebound to  cellCenter  using the  skinCluster  command.

             /***** Increment the crawl cycle.*****/ 
   if (frame > 1){

    // Increment pod1 toward ligandPos. 
   if ($i > ($pod2Steps  + $centerSteps + $stateZero)) {

  // Move the pseudopod, pod1.        
 $pod1Pos  = $pod1Pos + $pod1Vect; 
  setAttr pod1.translate ($pod1Pos.x) ($pod1Pos.y) ($pod1Pos.z); 

   } 
   else if ($i <�  ($pod2Steps  + $centerSteps + $stateZero) & &  $i >    

 $pod2Steps  + $stateZero) { 

 // Move cellCenter. 
 $centerPos  = $centerPos + $centerVect; 
  setAttr cellCenter.translate ($centerPos.x) ($centerPos.y)

       ($centerPos.z); 
  } 
  else if ($i  < =  ($pod2Steps = $stateZero) & &  $i > $stateZero) { 

  // Move the tail, pod2. 
 $pod2Pos  = $pod2Pos + $pod2Vect; 
  setAttr pod2.translate ($pod2Pos.x) ($pod2Pos.y)
 ($pod2Pos.z); 

  } 
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  // Increment the counter. 
  $i - � 1; 
  print ( "$i � " �  $i  � "\n");

  // If cell has completed a crawl step ...  
  if ($i  ==   0� & &  frame > 3) { 

  // Unbind the cell skin. 
   print  "*************** DETACHING SKIN ******************\
 n\n ";
  skinCluster -edit -unbind cellShape; 

  // Delete the pseudopod joints 
  $podNames  �   ' ls -tr  "pod*"' ; 
  delete $podNames;          

 When you detach the cell from its rigging, it snaps back to the world origin since its 
translate values never changed from 0,0,0 (only its CVs were moved by the joints). 
You must therefore move it to the location of  cellCenter  before rebinding it using the 
 skinCluster  command.

                       // Move the cell to the location of cellCenter. 
  setAttr cell.translate ($centerPos.x) ($centerPos.y) 
 ($centerPos.z); 

 // Rebind the cell to the center joint. 
 skinCluster cellCenter cell;        

   } // End if ($i  ==   0� & &  frame > 3) 
   } // End if (frame > 1). 

   // End cell crawl expression.          

 Th at ’ s it for the coding. It ’ s now time to enter the expression in Maya and get your cell 
crawling.    

  Methods: Loading the script 
 With your script now complete, turn it into an expression within the cell geometry 
scene fi le you created earlier in this chapter. 

    1.      Start Maya, open your cell geometry cell fi le, and set the current time indicator 
to frame 1.  

  2.     Select and copy the expression entire script in your text editor.  

  3.      In Maya, enter ExpressionEditor in the Command Line to launch the 
Expression editor, or select it from the menu Windows  →  Animation Editors →
Expression Editor.  

  4.     LMB  +  click in the Expression text fi eld.  
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  5.     Press Ctrl  +  V to paste your expression.  

  6.     Press the Create button at the bottom of the Expression Editor.    

 If Maya accepts your script, the Command Line will display the following line: 

    // Result: expression1 //    

 You can rename the expression by entering text in the Expression Name fi eld at the 
top of the Expression Editor. 

 If, however, Maya detects an error in your script, it may or may not create an 
expression depending on the type of error. In either case, you ’ ll need to debug the 
script: open the Script Editor and look for error notices that point to specifi c lines 
in your script. If your text editor supports line numbers, you can then track and fi x 
errors line by line. You can also compare your script directly with the complete script 
we ’ ve included on the CD-ROM:

 16_Mobile_Cell/MEL/cellCrawl.txt        

  Results: Running the script 
 When you have successfully created the expression, you need only press Play to set 
your cell crawling. Each time you press Rewind the cell should return to the world 
origin, ready for another excursion. Try varying the cell ’ s custom attribute values in 
the Channel Box to observe their eff ects. If you included the various print commands 
listed in the code above, you can get an ongoing report of what the cell crawl algo-
rithm is doing behind the scenes: open the Script Editor and observe the data that 
displays as the simulation plays. 

  Data I/O 
 If you wish to try out the Data I/O methods described in  Chapter 13 , this crawling cell 
model makes a good test subject. You can export the cell ’ s trajectory as a list of XYZ 
coordinates and analyze it using the statistics software of your choice. In the  Further 
reading  section we have listed resources concerning cell migration modeling many of 
which provide information on the statistics of cell migration.  

  Troubleshooting 
 We found this scene fi le to be unstable in Maya for Mac OS X; the application crashed 
every time we attempted to open the fi le. Th is is due to a problem with the way Maya 
evaluates the cell crawl expression when it opens the fi le. An easy workaround for this 
problem is to use a safety check that disables the expression unless a condition is met. 
For example, enclose the entire expression within a conditional statement, as follows:

             global int $safety; 
   if ($safety  ==   1) {

     // ENTIRE EXPRESSION SCRIPT.     

   };          
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 When you start Maya and/or open the scene in Maya for Mac OS X, the default value 
of safety is zero, therefore the expression won ’ t evaluate and Maya won ’ t crash. 
Once the scene fi le loads, Maya is stable, and you can enter the following line in the 
Command Line to  unlock  the expression before playing the animation:

             global int $safety  �  1;          

 Another peculiarity in Maya for Mac OS X is the behavior of the Evaluation setting in 
the Expression Editor. We fi nd it reverts to  On Demand  no matter how many times we 
set it to  Always , which should be its default setting. If your Expression Editor is set to 
On Demand, the cell crawl expression will not evaluate properly and cell will not move. 
We found that setting Evaluation to Always once fi xed the problem even though the 
Evaluation setting  indicator  in the Expression Editor reverted to  On Demand .   

  Summary 
 With the 2-pod model up and running you are ready for explorations that will take 
you further into the science of cell locomotion. Real cells, for example, may have a 
number of pseudopods extended at any one time, from which a  “ winner ”  seems 
to emerge that points the direction for the cell ’ s next migratory step. How could a 
many-pod version of your current model be created? On a planar surface, the lead-
ing pseudopod has a dynamic anatomy that includes not only extension by an intri-
cate, delicate fl attening and ruffl  ing of the leading edge. Moreover, your cell model 
is a behavioral  “ container ”  that invites you to equip it with chemistry, such as the 
turnover of actin fi laments and intracellular signal ligands, to drive the deforma-
tion biophysics. Th ese are all exciting problems at the frontier of current research. In 
the next two chapters we turn to another amazing frontier, which is the world of cell 
behavior when locomotion is released from 2D wide open planes and the cells moved 
into crowded 3D jungles of tangled fi bers—matrix worlds like those holding your 
body together!  
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  Introduction 
 For all their mystery and beauty, the body ’ s cells do not live or work in isolation. Each 
organ and tissue is an intricate society of cellular specialists, whose chemical and 
mechanical activities assure health. In the brain, for example, information is pro-
cessed and transmitted by electrically linked cells called neurons, which in turn are 
cradled in nests of supporting cells (the glia) and fed oxygen and chemical energy by 
the blood cell ’ s of the brain ’ s circulation. In the heart, specialized nerve cell circuits 
time-out the rhythm of the cardiac beat, triggering the heart muscle cells to contract 
in wave-like patterns. 

 Tissue architecture thus varies widely throughout the body and is highly specialized 
for diff erent functions; the microscopic composition and dynamic properties of heart 
muscle, we see, are decidedly diff erent from that of bone, brain, kidney, skin, and 
so on. Th e approaches taken to modeling activity in these cellular societies can like-
wise vary from one tissue to the next. Nonetheless, there are characteristics—design 
parameters, if you will—that recur through bodily tissues and serve as powerful 
organizing themes. For instance, tissues generally are composed of cells and  extracel-
lular matrix  ( ECM  or  matrix  for short). Look through a microscope at a tissue and you 
will see arrays of cells embedded within ECM, the long interweaving ECM fi ber mol-
ecules (protein and carbohydrate polymers) making a pliant 3D scaff old to which the 
cells adhere. 

 While cells perform localized functions such as information processing (e.g. brain), 
protein synthesis and secretion (e.g. bone), and contraction (e.g. muscle), the ECM 

Epidermis

Dermis

 FIGURE 17.01 

    Although tissue structure and 
function vary widely throughout 

the body, all tissues are composed 
of cells and ECM. Connective 

tissues—like the dermal layer of 
skin shown here—are composed 

mostly of ECM, with relatively few 
cells. For other tissues—like the 
epidermis—the opposite is true: 

many cells, with relatively little ECM 
(by volume) connecting them.
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provides support for these activities to work together. When modeling a tissue, one 
therefore is modeling cells and ECM in silico.  

  Problem overview 

 The dermis: A model tissue 
 In this chapter, you will build an idealized ECM model comprised of structural pro-
tein fi bers like those found in connective tissue such as the dermis, a deep layer of 
the skin. Cell-matrix interactions have been deemed highly important in the progres-
sion and treatment of disease. Notable examples include tumor metastasis, genera-
tive disorders of the brain (including Alzheimer ’ s disease), wound healing, and tissue 
regeneration. Th e fi elds of tissue engineering and regenerative medicine are con-
cerned with problems in wound repair and tissue transplantation. Connective tissue 
makes an excellent 3D in silico model tissue because it has both geometric  and  physi-
cal properties that impact normal physiology and disease (Figure 17.0 2). 

 Your project will focus on the dermis, the connective tissue layer of skin that is rich 
in collagen and elastin proteins, and provides much of the skin ’ s structural integrity. 
 Figure 17.01    shows the dermis in relation to other components of the skin. Th e dermis 
is crucial to both health and disease. In the treatment of deep burns, diabetic ulcers, 
and large wounds requiring skin replacement, missing or damaged dermis is often 
damaged and must be surgically replaced with substitute scaff olds to promote the 
skin ’ s natural regeneration. Th e success or failure of a tissue replacement depends on 
several factors including its ability to provide a suitable structural and mechanical 
environment for the patient ’ s own cells (called host cells). Indeed, a critical issue in 
the surgical repair of wounds is the ability of host cells to eff ectively infi ltrate—by 
cell migration—the substitute dermis, after which they begin synthesizing a new, 
autologous dermal ECM scaff old of collagen, elastin, and proteoglycans. Th e fi brous 
ECM molecules become the foundation for regenerated skin. It is now understood 
that fi broblast cells (the cell type largely responsible for dermal wound repair) are 
highly sensitive to the 3D architecture of dermal collagen fi ber bundles, and tissue 
 morphometry  is therefore a focus of much work in regenerative medicine. Cells are also 
sensitive to mechanical traits such as ECM tension and compliance. If you wish to 
learn more about the role of the ECM in regulating cell behavior and gene expression, 
the chapter ’ s references 1–3 will take you beyond the brief discussion we have time 
for here. 

In this project you will deal with the challenges of the scaff old geometry. Th e size and 
arrangement of the dermal scaff old bundles, including the negative space between 
them, presents cells with an array of structural information that can at once pro-
mote, inhibit, and guide their migratory behavior. It is with this in mind that you will 
embark on the project: modeling a 3D ECM scaff old that embodies general morpho-
metric properties of the dermal collagen scaff old and can be used to study patterns of 
migration for simulated cells.

  Parameters of the dermis 
  Figure 17.03    shows dermis samples at three levels of magnifi cation. In the human body, 
the dermis varies in thickness from 0.3 mm on the eyelid to 3 mm on the back. 

Fibers and bundles:  There 
appears to be no consensus 
among authors regarding the 
defi nitions of  fi ber  and  fi ber 
bundle  in reference to collagen. 
The terms  fi bril  and  fasciculus , 
used in different ways by 
different authors, further confuse 
the issue. In dermis, collagen is 
arranged in bundles of various 
diameters and there appears 
to be no practical distinction 
between what constitutes a 
fi ber and what does a bundle. For 
clarity, we use the term  fi ber  to 
refer to a collection of individual 
collagen molecules that forms a 
structural unit in the dermis—be 
it a  " fi ber "  or a  " fi ber bundle"  . For 
our purposes a  fi ber  ranges from 
1 to 50  � m in diameter.      
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You will use 0.1 mm (100  � m)—a thickness one-fi fth that of modern, surgically 
implanted dermal substitutes  (Figures 17.03a and b ). Starting with a relatively small scaf-
fold will allow you to see results quickly. When the model is working to your satisfac-
tion, you can easily change a few parameters and output larger scaff olds. 

 Dermal microstructure is characterized by discrete collagen fi ber bundles ( Figure
17.03c ) whose average diameter, cross-sectional shape, and directional orientation 
vary in relation to their depth from the skin surface. Collagen fi ber bundles are gen-
erally arranged parallel to the plane of the skin surface but their orientation about 
the other two major axes is random, apparently to manage tensile forces on the skin 
from multiple directions. Th is random orientation stands in stark contrast to the 
arrangement of collagen in another tissue, tendon, in which fi bers are aligned for 
maximum tensile strength in (most often) one direction. Collagen bundles in the 
dermis cross-link with one another, forming complex meshworks and presenting cells 
with an array of opportunities for, and obstacles to, migration. 

 Five characteristics of this complex 3D pattern provide a material starting point. Th ey 
are listed in  Table 17.01   . By treating them as variables when you construct the modeling 
algorithm, you can subsequently adjust them and test their downstream eff ect on the 
migration behavior of your simulated cell population (next chapter!). Th e macroscopic 
dimensions of the dermis are also parameters you ’ ll incorporate into the model; unlike 
living skin which is continuous over the entire body, your Maya model will capture a 
small, cubic sample of tissue matrix. By building the dimensions into the model as vari-
ables, you can create scaff olds of diff erent sizes and length/width/height ratios. 

 An advantage to creating the scaff old model in Maya geometry—NURBS curves and 
surfaces—is that later you can build in the physical matrix properties in the form 

 FIGURE 17.02 

    Scaffold models: 

(a) A procedural model of the 
collagen component of dermis, 
similar to the one you ' ll build in 
this project. In this example, a 

procedural texture was used to give 
the ribbed appearance of many 

small collagen fi brils that make up 
the larger fi bers. 

A procedural model of 
cancellous bone, an ECM structure 

widely studied for its role in surgical 
bone graft implantation.

(b) Courtesy and copyright  ©  2006 
Eddy Xuan.      

10 μm(a) 500 μm(b)
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of deformations and custom attributes, and perhaps even dynamics, if you choose to 
develop this model further.   

  Model defi nition 
 Th e goal of this project is to make a geometric model that embodies key characteris-
tics of a dermal collagen scaff old, can be generated in relevant clinical dimensions 2,  
and can be used subsequently as a substrate in an in silico model of cell migration. 
Th e model will involve dozens of individual fi bers. We will explain shortly how we 
estimate the number of fi bers in a given scaff old volume. Building these using stand-
ard Maya UI tools—that is, making and shaping individual wavy collagen fi bers while 
minimizing their interpenetrations with one another—is a highly impractical task. 
You want automatic control, through Maya, over the scaff old ’ s structure via param-
eters like fi ber defl ection (waviness) and packing density. Th erefore, in addition to 
satisfying the scaff old design parameters, you are also faced with the challenge of 
getting such a complex tangle of geometry build on the fl y in Maya. 

1 cm(a) 500 μm(b)

50 μm(c)

 FIGURE 17.03 

    The collagen component of the 
dermis (Ref. 2). 

(a) Photograph of a dermal graft 
similar to those used in surgical 
procedures. Here it ’ s shown 
being held for the camera by a 
surgeon ' s gloved hands. The tissue 
was rendered white by chemical 
processing that removes cells 
debris that may cause an adverse 
immune response in the patient 
receiving the graft. 

(b) Light micrograph of the dermal 
layer of the skin. This slide was 
made from a sample similar to that 
shown in (a). 

(c) SEM of the cut edge of a dermis 
sample similar to that shown in (b). 
Note the appearance of distinct 
collagen fi ber bundles. 

(d) High-magnifi cation SEM showing 
fi broblast cells seeded on the 
surface of a dermal graft sample 
similar to that shown in (a). The 
fi broblasts have been artifi cially 
colored blue for easy identifi cation.

All images courtesy and copyright  ©  
2006 Alexis Armour, MD, University of 
Toronto. Used with permission.          

10 μm(d)
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  Scaffold dimensions 
 Th e scaff old shape will be a rectangular prism 100  � m deep (or thick)  �  100  � m 
wide  �  150  � m long. Th e eff ective volume for the cell migration model in the next 
chapter is 100  � m cubed. You ’ re making the scaff old longer than it is deep or wide 
to accommodate boundary conditions for the migrating cells; they tend to move 
more freely lengthwise along the fi bers than width- or depth-wise between parallel-
running fi bers.  

  Fiber size, packing density, and shape 
 Table 17.02    gives you an idea of how fi ber sizes are distributed throughout the dermis. 
Let ’ s call this the  fi ber size distribution . A statistical histogram of the size distribution 
is shown in  Figure 17.04   . If the long axes of fi bers are aligned on average with a major 
axis (the Z-axis in this model)—their meandering paths will provide the overall 
multidirectional orientation that characterizes dermal collagen—you can estimate 
the appropriate number of fi bers for a given volume from the number that intersect 
the plane perpendicular to this major axis. We tested a number of diff erent densities 
in Maya and arrived at a range of values that were both practical time-wise for Maya 

 Parameter  Example 

 Diameter 

d
d

d

 Cross-sectional geometry 

 Directional orientation 

θ

 Defl ection (waviness) 

γ

 Packing density 

versus

 TABLE 17.01 

   Scaffold parameters.  
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and functioned well in the cell migration project. In a (100  � m) 3  cube these density 
values equate to 20, 40, and 60 fi bers. In this project, you ’ ll fi ll the scaff old with 40 
fi bers.

 Th e model fi ber circular fi ber cross-sections let us simplify the process of scaff old 
generation. As you saw back in  Chapter 05 , you can make fi ber models in Maya easily, 
by extruding a cross-sectional shape along a spline curve (the fi ber axis). With this 
approach, you may later choose to randomize the cross-sectional shape of the fi bers 
to refl ect the irregular shapes seen in cut views of dermal collagen. 

  Fiber orientation and intersections 
 By defl ecting each fi ber along its length, you can capture in the model the character-
istic waviness and random orientation of dermal collagen seen in scanning electron 
micrograph (SEM) data. As well, while dermal fi ber bundles do split apart and also 
form cross-links with one another, they do not interpenetrate. It follows that your 
Maya fi bers must also avoid interpenetrations—a considerable challenge given their 
wavy paths and tight packing!    
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 FIGURE 17.04 

    Size distribution of collagen fi ber 
bundles measured from published 
scanning electron micrographs 3     .

   Fiber diameter bins         

   1  2  3  4  5 

 Diameter ( � m)  3 and under   6   9  12  18 and over 

 Size distribution (%)  30  29  18   8  15 

 TABLE 17.02 

   Fiber sizes and size distribution from 
measurements of published SEM of 
dermal collagen.  

  From electron micrograph 
measurements made by the authors and  
reported in reference 3.  

        Forty fi bers accord nicely with 
the range of 750–1500 fi bers 
reported for real lab specimens 3.       
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  Methods: Algorithm design 
 Now that we ’ ve covered the essential morphometric parameters of the model, it ’ s 
time to design an algorithm to build ECM scaff olds procedurally—that is, using MEL 
and Maya ’ s built-in functions to make the model under algorithmic control. Here 
then is the mission statement: 

    Take a number of input parameters (scaffold dimensions, fi ber size distribution, 
etc.) and build a scaffold of randomly oriented cylindrical surfaces.    

 Let ’ s take a close look at the Maya elements that will make up the model and discuss a 
strategy for equipping the fi ber orientation with the appropriate statistical properties. 
 Figure 17.05    shows the diff erent fi ber model elements that are discussed below. 

  The fi ber axis 
 In  Chapter 05  you created a fi ber model—an extruded tube—by fi rst making a spline 
curve for the fi ber axis using the  CV Curve  tool, then making a circular profi le spline, 
and fi nally extruding the circle along the axis using the  Extrude  tool. In this project, 
you will use the same approach but, rather than placing the axis  curve  points manu-
ally, you ’ ll do so using the  curve  command from within an expression. Th e profi le cir-
cle will of course have the diameter of the fi ber (or tube) it creates.  

  NURBS spheres called seeds
 Here we ’ ll introduce an abstraction that helps in the design and visualization of 
the modeling process. You ’ ll use an object—which happens to be a NURBS sphere, 

Fiber profile spline

Fiber origin

Fiber axis curve

Curve point

Fiber surface 
created using the 
extrude command

“Seed” (NURBS sphere)

Maya Timeline (frames)

Z-axis

Y-
ax

is

0 5 10 15
 FIGURE 17.05 

    The elements of a single fi ber 
model. Curve defl ections are shown 

for the Y-axis only, but also occur 
along the X-axis.    
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but doesn ’ t have to be—to represent the leading point of every fi ber axis. Rules of 
motion—in the form of a random walk, collision avoidance, and adherence to scaff old 
boundaries—govern the motion of these objects. As each object moves, it lays down a 
spline curve in its path, which in the end is a fi ber axis. We call these objects  seeds  in 
reference to their role in  growing  fi bers. Th e diameter of each seed is the same as the 
diameter of the fi ber it represents. 

 Th e next four sections outline the modeling strategy. As you read them, trace along 
the fl owchart in  Figure 17.11  to see how the diff erent pieces of this in silico procedure 
relate to one another.  

  Modeling with the timeline 
 In the previous chapter, you used an animation expression to animate the crawl-
ing cell (remember: an animation expression is a script that Maya typically executes 
each time the frame number changes on the timeline). In this project you ’ ll use an 
expression actually to build the 3D scaff old model. Called  moveSeeds , this expression 
repositions each seed according a set of rules, which we ’ ll discuss shortly, and adds a 
new CV point to the corresponding fi ber axis curve ( Figure 17.04 ). As  moveSeeds  builds 
the axes, the frame number is used as an incrementing variable, so that the model 
evolves as the scene plays back. Using an expression to build your model, instead of 
a MEL script that executes entirely at a single frame, allows you to watch the model 
 grow  before your eyes. If you wish, you can even make a rough playblast animation to 
keep a visual record of the scaff old fi bers being created.  

  A rule-based design 
Th is project uses a rule-based design in order to move the seeds that determine the 
fi ber paths. Th ere are three rules, each parceled in a procedure called rule1(), rule2(), 
and rule3(), respectively. Th ey are shown schematically in  Figure 17.06   . Each procedure 
is called from the  moveSeeds  expression at every frame during playback and for every 
seed in your scene. Each rule returns a vector: $v1, $v2, and $v3. Th ese vectors are 
added together and then added to the current position of the seed in order to move it 
( Figure 17.07   ). By parceling rules of motion into separate procedures instead of putting 
them all in one you can easily turn off  individual rules or add new ones in a modular 
fashion.

  rule1()  provides the random element to the seed motion using a biased random 
walk algorithm—a variation on the random motility generated for the crawling cell 
in the previous chapter—which is largely responsible for the meandering nature of 
the fi ber paths.  rule2()  uses collision avoidance to keep seeds (and by extension, the 
axes) from approaching one another too closely in order to minimize fi ber interpen-
etrations. By issuing standard MEL commands that query Maya ’ s internal geometry 
engine, you can check for collisions very concisely, without having to formulate large 
amounts of your own custom code. Finally,  rule3()  constrains the seeds within the 
prescribed scaff old boundaries, which we ’ ll call the bounding box. Let ’ s take a quick 
look at the methods used in each rule.  

  rule1(): The random walk 
To generate the meandering fi ber paths, you ’ ll employ a basic random walk algorithm. 
It uses Maya ’ s random number generator (the rand( ) MEL function) to select one of 

        Rule-based strategies are 
common in agent-oriented 
programming (AOP) approaches 
to in silico biology.      
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 FIGURE 17.07 

    The vectors returned by rule1(), 
rule2(), and rule3() are added 

together to produce the stepwise 
displacement $vTotal for 

each seed.    
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 FIGURE 17.06 

    Three rules are responsible for the 
meandering fi ber paths, collision 

avoidance, and keeping the fi bers 
within the prescribed scaffold 

volume.
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nine possible vectors (dx, dy) relative to a seed ’ s current position (see  Figure 17.08   ). We ’ ll 
call the incremental Z-distance traveled by each seed, dz. Together, dx, dy, and dz 
make the 3D random walk vector (dx, dy, dz). At each time step (one frame of scene 
playback) the seed may either continue along its current course or change direction, 
depending on a parameter we call  persistence . Persistence here means the same thing 
it did in the last chapter when it was applied to cell migration: the tendency to con-
tinue on the present course. When a seed ceases to persist, it selects a new direction 
and a new persistence value. It then persists in the new direction for the prescribed 
time until once again it selects a new direction and new persistence value. Th is proc-
ess is shown schematically in  Figure 17.08 .

 So that you can take a straightforward approach to collision avoidance, all seeds will 
advance uniformly in the Z-direction, resulting in a  biased  random walk.  

  rule2(): Collision avoidance 
  rule2 () evaluates the separation between a given seed (seed A in  Figure 17.09   ) and every 
other seed in the scene (represented by seeds B and C in  Figure 17.09 ). If another seed 
lies within a critical distance of seed A then an avoidance vector is calculated and 
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 FIGURE 17.08 

    In this random walk algorithm, a 
seed selects one of nine possible 
vectors (including (0, 0)) in the XY 
plane relative to its local (versus 
global) position. dz is the seed '  s 
displacement in the Z-direction. 
If the seed is persisting, it moves 
in the same direction it did in the 
previous frame.    

        Non-uniform movement in the 
Z-direction would certainly 
be desirable in some tissue 
design applications. This would 
be achieved by varying the 
incremental step in Z on a per-
seed basis, and would require a 
modifi ed approach to collision 
detection and avoidance. This is 
a good follow-up project!      
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added to a master avoidance vector called $ avoid , which is the return value of  rule2 () 
and determines the  “ avoidance ”  component of seed A ’ s motion. 

 Th e method used here is a simple approach to collision avoidance but is not fl awless—
the resulting scaff olds contain some interpenetrating fi bers. Collision avoidance in 
crowded environments is by no means a trivial problem. More robust (and more com-
plex) solutions exist and we encourage you to explore the topic further if your in silico 
modeling projects require absolute avoidance of collision between objects.  

  rule3(): Bounding box 
  rule3 () checks each seed to see if it lies outside of the bounding box. If so, the procedure 
returns a vector called $ bound  to the  moveSeeds  expression which is used to nudge the 
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 FIGURE 17.09 

    rule2() returns a vector, $avoid, that 
is the sum of all avoidance vectors 

between the current seed (seed 
A in the illustration) and all other 

seeds in the scene (B and C). The 
procedure then performs the same 
calculations on each of seed B and 

C. The net result is a tendency for all 
seeds to avoid one another, which 
in turn minimizes the intersections 

between fi ber surfaces once 
the scaffold is built. The names 

of vectors and scalars in this 
illustration (e.g. $surfaceSep) are 

the ones you ' ll use when composing 
your MEL code. The vector math 

functions for calculating magnitude 
and unit vectors are denoted here 
with the MEL commands mag and 

unit, respectively.    
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seed in question back into the bounding box within the current frame. Th e strength of 
the  “ nudge ”  varies exponentially with the distance of the seed outside the box, in order 
to smooth the motion.  Figure 17.10    shows this rule in schematic form.  

  Randomizing the fi bers at the start 
 Th e fi rst thing you ’ ll do before building the expressions and the rule procedures is 
code a procedure called  makeSeeds()  that creates the seeds (one for every fi ber) and 
positions them randomly in the XY plane at Z  �  0. In the beginning, the seeds mark 
the starting points of the fi ber axes. Th eir random placement will likely result in 
overlapping of seeds. Th erefore, the  moveSeeds  expression will spend the fi rst several 
frames of playback calling rules 1 and 2, to space the seeds out while keeping them 
within the bounding box. We dubbed this process  untangling  and found through trial 
and error that, for the packing densities you ’ re interested in with this project, the 
seeds untangle by frame 20. Beginning at frame 20  moveSeeds  calls all three rules to 
move the seeds and grow the scaff old.  

  Resetting the seeds 
 After building a whole or partial scaff old, you may want to scrap it and start again. 
You may also want to build a new model using diff erent parameters—without having 
to create and untangle a new batch of seeds. To accommodate these situations, you ’ ll 
write a short expression call  resetSeeds  that executes only at frame 1—that is, when 
you rewind the playhead (current time indicator) to the start of the playback range.  

New
course

New
course

Z

X or Y
Current frame Current frame

$outside

$bound = $boundScale 
 × $outside

Present
course

Present
course

Inside bounding box

Outside bounding box

Before bounding After bounding

Previous frame Next frame Next frame  FIGURE 17.10 

    A vector called $ bound  is used to 
nudge errant seeds back into the 
bounding box of the scaffold. $ bound
varies exponentially with distance of 
the seed outside the box in order to 
smooth the motion.    
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  The fi ber surfaces 
 Th e fi ber axes of your scaff old are complete once the seeds have traveled the length you 
specify up front: 150  � m. At this point playback is halted from within the  moveSeeds  
expression and the motion rule procedures are no longer called. Th e next step then is 
to make and position a profi le spline—a circle of the appropriate diameter—at the fi rst 
CV of every curve. Th e  extrude  command is then called to make the fi ber surfaces. 

 To your migrating cells in the next chapter, each NURBS tube represents the adhesion 
contact surface of a collagen fi ber bundle. Subsequently, any point on a fi ber surface 
can be queried for its position in 3D worldspace (X,Y,Z coordinates) and therefore 
used to position a cell. In addition to the NURBS tube representing the fi ber surface 
(which can be used to locate cells while providing a visual representation of this con-
tact surface) you can also query Maya for the 3D worldspace position of a point on 
the axis curve and use it to position a cell. Th is saves a lot of coding. Th e bottom line 
is that within each axis curve and its fi ber surface lies all the spatial information 
needed to position and move cells within the scaff old.  

  Algorithm summary 
 To make things crystal clear before building the algorithm, let ’ s sum up the script ele-
ments (procedures and expressions) and the procedural modeling steps. 

    1.      makeSeeds()  procedure
    (a)     Create NURBS spheres called seeds.  
   (b)      Position the seeds randomly in a 100  x  100 μm plane parallel to the XY plane 

at Z  =  0.     

  2.      moveSeeds  expression
    (a)      For frames 2 to 20, untangle the seeds using rule1() and keep them bound 

with rule3().  
   (b)      At frame 20, start a curve for every fi ber axis, at the position of the corre-

sponding seed.  
   (c)      After frame 20, call rule1(), rule2(), and rule3() to move the seeds as the 

scene plays.  
   (d)      Add a CV to each fi ber axis at the position of the corresponding seed.     

  3.      rule1( )  procedure
     Calculate the random walk component of seed motion, biased in the positive 

Z-direction.

  4.      rule2( )  procedure
    Calculate the collision avoidance component of seed motion.     

  5.      rule3( )  procedure
    Calculate the bounding box component of seed motion.     

  6.      resetSeeds  expression
   R  eset the seeds to their untangled starting positions when the playhead is 

rewound to frame 1.       

 Th e fl owchart in  Figure 17.11    shows how the procedures and expressions link together. 
In the next section you will build them in the order we ’ ve listed above.   
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    Flowchart for the scaffold algorithm.    
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  Methods: Encoding the algorithm 
 Unlike the previous project, in which the cellCrawl algorithm operated on a prebuilt 
geometry model, this project requires no initial fi le setup. Everything to grow the 
fi ber scaff old model in silico is contained in the scripts you ’ re about to build. We rec-
ommend composing them as you did the scripts in previous chapters: in an external 
text editor, with each element (procedure or expression) saved in a separate text fi le 
within your Maya Scripts directory on your hard drive. When your code ’ s done, you 
can simply load the elements into a new Maya scene and make the scaff old. You may 
wish to have Maya open as you follow along with the material below so that you can 
test out certain commands or bits of code. You may also wish to test each script in its 
entirety before moving on to the next one. Th is will save you from debugging all fi ve 
scripts at once at the end of this chapter. 

 If you want to begin growing scaff olds right away, you can open and play the ready-
made Maya scene fi le entitled  scaffold.ma  which is located on the CD-ROM. Th is 
scene contains the resetSeeds and moveSeeds expressions and a group of seeds ready 
to go. To grow the scaff old, you ’ ll need to source the three rule procedures which are 
also on the CD-ROM.

    17_ECM_Scaffold/scenes/scaffold.ma (Maya scene fi le)      

    17_ECM_Scaffold/MEL/rule1.mel 

       /rule2.mel 

      /rule3.mel       

  The makeSeeds() procedure 
 To save space we ’ ve foregone the usual  “ author, date, etc. ”  header information.

             /* Description: 
   Run this procedure first when making a fiber scaffold. It creates
NURBS spheres called seeds, which are used in a subsequent
expression called moveSeeds that creates the fiber axes. 

   The procedure arguments are as follows:   
            $cubeSize     The length of one side of the scaffold cube.   
   $seedNum      The number of seeds (and therefore fibers) to 

be made.   
   $three–$twentyfour     The percentages of each of the fiber diameters.     
       */ 

   global proc makeSeeds(float $cubeSize, int $seedNum, float $three,  
    float $six, float $nine, float $twelve, float $eighteen) {

     /***** DECLARE THE VARIABLES. *****/ 

    /*      
           $values[]      An array of initial values for the widget 

attributes.   
  $bins[]     An array of diameter bin sizes.   
  $binSize     The number of seeds in the current bin.   
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$diameter[]     The six fiber diameters, one value for each bin.   
  $dia    The diameter of a given seed.   

  $radius    The radius of a given seed.   

  $x, $y, $z      Position the seeds randomly in the XY plane at 

Z �  0� .    
      */ 
  float $values[],  $bins[], $binSize, $diameter[], $dia, $radius, 

$x, $y, $z; 

  /*   
           $attributes[]     Custom attributes to be added to the widget.   

  $name     The name of the current seed.     
      */ 
  string $attributes[], $name; 

  /*   
           $arraySize     The size of $attributes[];   

  $i and $j     Counters.     
      */ 
  int $i, $j;          

Next you ’ ll initialize the variables, make a locator object called widget, and assign it 
custom attributes. Th ese attributes will store parameters that aff ect scaff old design. 
Th ey will be queried in the moveSeeds expression and the three rule procedures. Unlike 
a variable value which gets erased when Maya is closed, an attribute value gets written 
into the scene fi le. Th erefore the parameter values will be ready and waiting. Th at way 
you won ’ t have to enter them by hand each time you restart Maya and open an exist-
ing scaff old scene fi le. Th e initial attribute values are specifi ed in $values. Th ese are the 
numbers we recommend you start with. You can change them at any time by selecting 
the widget and entering new values in the Channel Box.

            /***** INITIALIZE THE VARIABLES. *****/ 

  $attributes = { "cubeSize", "maxSpan", "minSpan", "dx", "dy", "dz",   
    " persistMax", "persistMin", "sizeBias", "spacingMin",

 " avoidScale", "boundScale"};     
  $values  = {$cubeSize, 40�, 20�, 1, 1, 1, 10�, 0�, 0�.0�5, 2, 2, 1}; 
  $arraySize  = size($attributes); 
  $bins  = {$three, $six, $nine, $twelve, $eighteen}; 
  $diameter  = {3, 6, 9, 12, 18}; 

  /***** MAIN BODY *****/ 

  // Make a locator called widget to store scaffold design 
  parameters. 

  spaceLocator -p 0� 0� 0� -name "widget";

  for ($i  = 0� ; $i < $arraySize; $i + + ) {

    // Add and set values for the custom attributes. 
  addAttr -ln $attributes[$i] -dv 0� widget; 
  string $tmpStr  = "widget." + $attributes[$i]; 
  setAttr -e -keyable true $tmpStr; 

     setAttr $tmpStr $values[$i];     

  }         

        The name  widget  is arbitrary. It 
doesn ' t refer to a specifi c Maya 
construct.      
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  Make the seeds 
 Next you ’ ll make two for loops, one nested inside the other, to create the seeds. Th e 
outer loop cycles through the seed size (i.e. fi ber diameter) distribution variables, 
$three, $six, and so on. Th e inner loop makes and positions the seeds for each size. 
Th e  rand()  command is used to generate random X and Y position values that lie 
within the scaff old boundaries.

             // Make the seeds. $i counts the array index in $diameter; 
  for ($i  = 0�; $i < 5; $i + + ) {

     $binSize  = (float) $bins[$i]/10�0� * $seedNum; 

    for ($j  = 0�; $j < =  $binSize ; $j + + ) {

    $dia  = $diameter[$i]; 
 $radius  = $dia/2; 

 // Set random start positions 
 $x  = rand((0� + $radius), ($cubeSize - $radius)); 
 $y  = rand((0� + $radius), ($cubeSize - $radius)); 
 $z  = 0� ;

 // Create a name for the current seed. 
 $name  = (  "  seed "  + $dia + "_" + $j);                

 Create the fi rst seed of each size (diameter) bin (see  Table 17.02 ) using the  sphere  com-
mand. Th e radius is set to 0.5, giving a starting diameter of 1. Th e seed is then scaled 
to the appropriate fi ber diameter (3, 9, etc.).  Scale  is a compound attribute, composed 
of  scaleX ,  scaleY , and  scaleZ , therefore, it must be set using the - type   double3  fl ag with 
the  setAttr  command. Subsequent seeds of the same size can then be duplicated from 
the fi rst. You ’ ll ensure only one  “ fi rst ”  seed is created, and the rest duplicated from it, 
by checking if the fi rst exists with an  “ if not objExists ”  expression below (where  “ not ”  
is expressed by the character ! in MEL). If the sphere does not exist, the expression 
returns 1 and the code in the curly brackets executes. On the other hand, if the sphere 
does exist, the expression returns 0, and the fi rst seed is duplicated.

            // Make and position the sphere. 
  if (!'objExists seed3_0� ') {

    // Create a new NURBS sphere. 
  sphere -r 0�.5 -n $name;             

 With this next bit of code, you ’ ll add a custom compound attribute called posInit 
to the seed ’ s transform node and use it to store the seed ’ s initial position. Th is 
attribute ’ s values will be used in the resetSeeds expression to return the seeds to 
their starting points when the frame number is reset to 1.

                 // Add custom attributes. 
  addAttr -longName posInit -attributeType double3 

     $name; 
  addAttr -ln posInitX -at double -parent posInit 

     $name; 
  addAttr -ln posInitY -at double -p posInit $name; 
  addAttr -ln posInitZ -at double -p posInit $name; 

  // Make the attributes keyable. 
  setAttr -e -keyable true ($name  + ".posInit");
  setAttr -e -keyable true ($name  + ".posInitX");
  setAttr -e -keyable true ($name  + ".posInitY");

        The  parent  fl ag in the addAttr 
command indicates the attribute 

that is to be the new attribute ' s 
parent; in this case:  posInit .      
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    setAttr -e -keyable true ($name  + ".posInitZ");    
  } 
  else duplicate -n $name seed3_0� ;

  // Scale the sphere to the proper diameter. 
  setAttr ($name  + ".scale") -type double3 $dia $dia $dia; 

  // Set the custom vector attribute values. 
  setAttr -type double3 ($name  + ".posInit") $x $y $z; 

  // Move the sphere to $x $y $z. 
  move $x $y $z $name;

     }     
  }           

  Conclude the procedure 
 In this last bit of code, you ’ ll group the seeds (to keep the Outliner window manage-
able) and then send a message to the Maya user (most likely yourself) stating that the 
procedure is complete. Next, you ’ ll set the current time indicator to frame 1 in order 
to force the resetSeeds expression to evaluate and thereby initialize key global vari-
ables. Finally, close the procedure using a curly bracket. It is often helpful to print a 
sample procedure call to the Script Editor and Command Line. You can cut, paste, and 
execute the sample code after loading the procedure.

                  // Group the seeds. 
    group -n  "groupSeeds" 'ls -tr "seed*" ';

   // Print user feedback in the Script editor. 
    print  "  \nThe seeds are ready to go! ";

    // Set the current time to 1. 
    currentTime 1;     

   } // End makeSeeds procedure. 

   // Print user instructions in the Script editor. 
   print   "  Enter: makeSeeds(10�0�, 40�, 30�, 29, 18, 8, 15) ";         

 Th at ’ s all for this procedure. You can enter and run it now if you like, or wait until 
you ’ ve composed the remaining scripts. Th e next script is the  resetSeeds  expression.   

  The resetSeeds expression 
 After creating a group of seeds, you may want to make several scaff olds with it, testing 
the eff ects of diff erent random walk parameters. Th is expression initializes the global 
variables and snaps the seeds back to their starting positions whenever the current time 
changes to frame 1 from another frame or when you press the Edit button in the 
Expression Editor at frame 1. It is also in this expression that you will set the random walk 
parameters. Th e random walk proper will be coded in the rule1() procedure, and called from 
the animation expression named  moveSeeds . You ’ ll build  moveSeeds  in the next section. 

 For clarity we ’ ll present this expression without the escape line break notation,  /n , 
that would allow you to enter it using the  expression  command. As mentioned in 
 Chapter 12 , we fi nd all but the simplest one-line expressions easier to manage when 
composed with line breaks, and then copied and pasted directly into the Expression 
Editor, without regard for the restrictions imposed by the  expression  command. 
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 Start the script with a test of the frame number. Since this expression needs to exe-
cute only at frame 1, open with a conditional statement that prevents Maya from 
wasting time reading variable declarations at other frames. Th e  currentTime  com-
mand is used to set or, in this case, query the current time in the timeline.

             /* Description: 
   This expression resets spheres called  "seeds" to starting positions 
and declares key variables. These variables are used in the rule 
procedures to calculate the motion of seeds, and therefore the 
paths of scaffold fibers. This expression executes only at frame 1. 
   */ 

   if ('currentTime -query' = =  1) 
   {

     /***** DECLARE THE VARIABLES. *****/ 

    /*      
           $seedPos[]     A string array of seed positions.   
  $v1_old[]      This stores the motion rule vectors and is used 

for persistence.     
      */ 
  global vector $seedPos[], $v1_old[]; 

  /*   
           $seedNames[]     A list of seed names.     

      */ 
  global string $seedNames[]; 

  /*   
           $cubeSize     The X and Y dimensions of the scaffold.   
  $dx, $dy, $dz     Incremental displacements used in rule1().   
  $length[]     Tracks the length of each fiber.     
      */ 
  global float $cubeSize, $dx, $dy, $dz, $length[]; 

  /*   
           $end      1 if seeds have reached the scaffold end, 

0�  if not.   
  $seedCount     The number of seeds in the scene.   
  $persistence[]     An array of persistence times for all seeds.   
  $persistMin      The minimum persistence time which is stored 

in the widget's persistMin attribute.   
  $persistMax     The maximum persistence time.     

      */ 
  global int $end, $seedCount, $persistence[], $persistMin, 

  $persistMax; 

  /*   
           $trans      The translate attribute values for the current 

seed.     

      */ 
  vector $trans; 

  /*   
           $name     The name of the current seed.     
      */ 

        Remember that global variables 
must be declared within each 

script that uses them.      
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  string $name; 
  int $i;         

  Initialize the variables 

 Here you ’ ll clear the global array variables and set the random walk displacement 
variables, $dx, $dy, and $dz to good starting values (we found them by experimenting 
with the procedure). When you begin making scaff old models, try varying $dx, $dy, 
and $dz yourself, and study their eff ect on scaff old architecture.

             /***** INITIALIZE THE VARIABLES. *****/ 

   clear ($seedPos); 
   clear ($v1_old); 
   $seedNames  = 'ls -transforms "seed*" ';
   $seedCount  = size($seedNames); 
   clear ($persistence); 
   clear ($length); 
   $end  = 0� ;
   $cubeSize  = 'getAttr widget.cubeSize';
   $dx  = 'getAttr widget.dx';
   $dy  = 'getAttr widget.dy';
   $dz  = 'getAttr widget.dz';
   $persistMin  = 'getAttr widget.persistMin';
   $persistMax  = 'getAttr widget.persistMax';
   $i  = 0� ;
   // Set playback to loop only once. 
   playbackOptions -l  "once";          

  Reset seeds to their initial positions 
 Th is next bit of code resets every seed to its starting position at Z  �  0 using the posInit 
attribute of each seed ’ s transform node. Th is vector attribute is in the form     << x, y, z >> 
and cannot be used directly in the  setAttr  command. An intermediate step is required: 
assign posInit to a temporary vector, then use the latter to set the attribute.

             /***** MAIN BODY *****/ 

   // Set seed positions equal to their initial positions. 
   for ($name in $seedNames) 
   {

     // Query the initial seed position and move it there. 
    $trans  = 'getAttr ($name + ".posInit")';
    setAttr ($name +  ".translate") ($trans.x) ($trans.y) 
  ($trans.z);             

 Now store the initial seed positions in the variable $ seedPos[]  for use in the moveSeeds 
expression.

                  // Assign the position vector to the global variable 
  $seedPos[]. 
    $seedPos[$i]  = < < $trans.x, $trans.y, $trans.z>>; 

    // At frame 1 $oldPosition equals $seedPos. 
    $oldPosition[$i]  = $seedPos[$i]; 

    // increment the counter. 
    $i++;     
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   } // End seed name loop. 

   // Provide user feedback. 
   print  "resetSeeds expression has finished. ";         

 Th e next four lines are optional. Th ey delete any existing fi ber axis curves, profi le splines 
(circles), and fi ber surfaces. Th is is handy when you ’ re testing scaff old parameters (those 
stored in the custom widget attributes) but can lead you to accidentally delete a scaff old 
you wanted to keep, just by returning the seen to frame 1 (which executes this expres-
sion). When you want to make scaff olds to keep, comment these lines out or delete them.

                  // Delete fiber elements on rewind. 
    if ('objExists groupFibers') delete groupFibers; 
    if ('objExists fiberAxis3_0� ') delete 'ls -tr "fiberAxis*" ';
    if ('objExists nurbsCircle1') delete 'ls -tr "nurbsCircle*" ';
    if ('objExists fiberSurface3_0� ') delete 'ls -tr "fiberSurface*" ';

     // Select the widget so the scaffold parameters appear in the
 channel box.        select widget;     

   } // End resetSeeds expression.            

  The moveSeeds expression 
 Th is expression calls the procedures, rule1, rule2, and rule3, in order to update the 
position of each seed. Each procedure requires as an argument the current seed 
number, which is stored in the variable $i. Each procedure then returns a vector 
called $v1, $v2, and $v3, respectively. Th ese vectors are added to the current position 
vector, stored in $ seedPos[$i] , which is in turn used to set the translate X, Y, and Z 
attributes for  seed[$i] . Once the seed has been moved, a new curve point is added to 
the corresponding fi ber axis curve. 

 Since this expression is intended to be read after, but not at, frame 1, let ’ s start with a 
conditional statement similar to that used in  resetSeeds .

             /* Description: 
   This expression moves spheres called  "seeds" one step in the Z-
direction each time the frame increments, while building splines 
that follow the seed paths. 

   The rules of motion are contained in three procedures: 
   rule1() Returns $v1, a biased random walk vector. 
   rule2() Returns $v2, a collision avoidance vector. 
   rule3() Returns $v3, a bounding vector. 
   */ 

   if ('currentTime -query' > 1) 
   {

     /***** DECLARE THE VARIABLES. *****/ 

    global vector $seedPos[], $v1_old[]; 
    global float $length[], $dx, $dy, $dz, $cubeSize; 
    int $i; 

    /* 
    $curveNames[] A list of fiber axis curves. 
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    */ 
    global string $curveNames[], $seedNames[]; 

    /*      
           $frameCheck      Used to send the current frame number to the rule 

procedures. A global variable must be used since 
the Maya variable  " frame "  cannot be queried outside 
of its scope: this expression.     

      */ 
  global int $frameCheck, $seedCount, $end; 

  /*   
           $seed     The current seed.   
  $index[]    Stores the return strings from the tokenize command.   

  $curve     The current fiber axis (NURBS curve).   
  $circle     The current fiber profile (NURBS circle).   
  $surface     The current fiber surface (extruded NURBS tube).   
  $cpos     The closestPointOnSurface node.   
  $posi     The pointOnSurfaceInfo node.   
  $fiberGroup     A group containing $curve, $circle, and $surface.     
      */ 
    string $seed, $index[], $curve, $circle, $surface, $cpos, $posi; 
  string $fiberGroup; 

  /*   
           $v1     The return vectors from rule1() procedure.   
  $v2     The return vectors from rule2() procedure.   
  $v3     The return vectors from rule3() procedure.   
  $vTotal     The sum of $v1, $v2, and $v3.   
  $oldPos     The seed position prior to calling rules 1, 2, 

  and 3.   
  $cStart     The axis curve ’s starting point.     
      */ 
  vector $v1, $v2, $v3, $vTotal, $oldPos, $cStart, $trans; 

  /*   
           $z     The Z-position of the first seed (seed0� ).  
  $maxSpan      The number of curve spans corresponding to the 

smallest diameter fiber. Spans are curve sections 
between edit points.   

  $minSpan      The number of curve spans corresponding to the 
largest diameter fiber.   

  $span     The number of spans for the current fiber curve.   
  $maxD     The largest seed diameter.   
  $minD     The smallest seed diameter.     
      */ 
  float $z, $maxSpan, $minSpan, $span, $maxD, $minD, $diameter; 

  /***** INITIALIZE THE VARIABLES. *****/ 

  // Set the global variable $frameCheck for use in the 
 procedures. 

  $frameCheck  = frame; 
  $maxD  = 18; 
  $minD  = 3; 
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          Check if the seed journey is complete 
 Th e fi rst thing the expression must do is check if the seeds have completed their jour-
ney.  $end  is used as a Boolean variable (although it ’ s declared as an integer), with 0 equal 
to  false  and 1 equal to  true . Also, since all seeds move uniformly in the Z-direction, you 
need to only query the translateZ value of the fi rst seed to know whether all seeds have 
reached their destination and therefore whether to set  $end  equal to 1.

             /***** MAIN BODY *****/ 

   // Check if the seeds have reached the scaffold end. 
   $z  = 'getAttr ($seedNames[0� ] +  "  .tz ")';
   if ($z > = $cubeSize * 1.5) $end = 1; 

   if ($end  == 0� ) { // Seeds are still traveling           

  Main loop 
 Th is is a for loop that increments for every seed in the scene, calls the rule proce-
dures, and builds the axis curves. Because $seedCount is a global variable and was 
initialized in  resetSeeds , you needn ’ t set its value in this expression. From frame 2 
to 20, only rule2() and rule3() are called in order to space out the seeds while keep-
ing them inside the bounding box (see  Figure 17.12   ). At frame 20 the curves are started. 
After frame 20 all three rules are called.

            // Loop for every seed. 
  for ($i  = 0� ; $i < $seedCount; $i + + ) {

     // Get the seed position at the end of the previous 
  frame. 
    $oldPos  = $seedPos[$i]; 

    /***** RULES OF MOTION *****/ 

    if (frame  < =  20� ) {     

 // Call the avoid and bounding procedures. 
 $v1  = <<0� , 0� , 0� >>;
 $v2  = 'rule2($i)';
 $v3  = 'rule3($i)';

     } 

 FIGURE 17.12 

    This front view shows the seeds at 
the start (a) and the end (b) of the 

fi rst 19 frames of a modeling run. In 
the interim, rule2() and rule3()

were called each frame to eliminate 
seed intersections and keep them 

within the bounding box 
(gray square).    

(a) (b)
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    else { // frame > 20� .    

 // Call the random walk (rule1) as well. 
 $v1  = 'rule1($i)';
 $v2  = 'rule2($i)';
 $v3  = 'rule3($i)';

     }              

 Update the seed position 
Now the rule vectors are added to the seed ’ s current position to determine its new 
position.  $vTotal  is shown graphically in  Figure 17.07 .  $v1_old[]  stores components of 
the seed ’ s current motion that you ’ ll use in rule1() as the seed ’ s persistence vector. 
Th is vector incorporates the full random walk component and half of each of the 
avoidance and bounding components of motion.

             // Update the position array for seed $i. 
   $vTotal  = $v1 + $v2 + $v3; 
   $seedPos[$i]  + =  $vTotal; 

   /* Store the previous seed direction for persistence. 
This vector is used in rule 1. */ 
   $v1_old[$i]  = $v1 + ($v2 + $v3)/2; 

   // Set the translate attribute for seed $i. 
   $seed  = $seedNames[$i]; 
   $trans  = $seedPos[$i]; 
   setAttr ($seed +  ".translate") ($trans.x) ($trans.y)
 ($trans.z);         

  Build the fi ber axis curves 
 At frame 20, after the seeds have untangled, a curve object is created for every seed. 
Each curve is given a unique name and a custom attribute called  diameter . Both fea-
tures will be used in the next project to locate cells on the fi ber surfaces.

             /***** MAKE OR UPDATE THE FIBER CURVES *****/ 

   /* 
   Create the name of the fiber curve. Begin by tokenizing 
the seed name at the split character "d". E.g. "seed3_7"
gets split into "seed" and "3_7";
   */ 
   tokenize $seed  "d" $index; 
   $curve  = "fiberAxis" + $index[1]; 
   $diameter  = 'getAttr ($seed + ".scaleX")';

   if (frame  = =  20� ) {

     // Make a fiber curve. 
    curve -point ($trans.x) ($trans.y) ($trans.z) -n 
  $curve; 

        The degree to which the 
avoidance and bounding vectors 
contribute to persistence is yet 
another degree of control you 
have over scaffold shape. When 
determining how to calculate 
$v1_old[] —the random walk 
persistence vector—we found 
that including the full avoidance 
and bounding vectors caused 
seeds to intersect more than 
we ' d like. However, excluding 
avoidance and bounding vectors 
from persistence altogether 
resulted in seed paths (or fi ber 
axes) too angular and lacking the 
smooth curvature seen in natural 
ECM scaffolds. A happy medium 
was found using half of the 
avoidance and collision vectors. 
Incorporating these values into 
persistence achieves good 
curvature without overtly forcing 
seeds to intersect.      
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     /* Add a custom diameter attribute and set it to 
match the diameter of the corresponding seed. */ 

    addAttr -ln diameter -at double -min 0�  -max 48 -dv 0�
  $curve; 
    setAttr -e -keyable true ($curve  + ".diameter");
    setAttr ($curve  �   ".diameter") $diameter;     

  }          

 After frame 20, a CV is added to the curve at each frame using the append fl ag with 
the curve command.

                        else if (frame > 20� ) {

    // Append an edit point to the curve. 
  curve -append -p ($trans.x) ($trans.y) ($trans.z) 
  $curve; 

   // Increment length of the fiber. 
   $length[$i] += mag($trans - $oldPos);           

     }
     } // End loop for every seed.     

   } // End if ($end == 0� ).         

 Next, you ’ ll rebuild the curve, reducing its spans to the number specifi ed in the 
 maxSpan  and  minSpan  attributes of your control widget. Reducing the spans smoothed 
the fi ber axis curve by eliminating CVs. However, if too few spans exist and the curve 
has frequent defl ections, the resulting surface may not maintain a cylindrical shape 
along its length. Furthermore, the number of spans will be scaled according to fi ber 
diameter. A small diameter fi ber requires more CVs to maintain a consistent cross-
section than does a large diameter fi ber. Th e widget attributes maxSpan and minSpan 
store the values corresponding to the 3 and 18  � m fi ber diameters, respectively. Th e 
intermediate span values will be calculated in the code below, assuming a linear rela-
tionship between spans and diameter. 

 Th e rebuildCurve command has a fl ag called  keepRange  fl ag which you ’ ll set to 0 in 
order to reparameterize the curves to a range of 0–1. Th is allows you to query a point 
on a curve using the  pointOnCurve  command and a parameter value between 0 and 1; 
0 corresponds to the start of the curve and 1 to the end.

             /***** BUILD THE FIBER SURFACES *****/ 
   if ($end  = =  1) { 

  // Stop playback. 
  play -state off; 

  // Change $end so that this code will be called only once. 
  $end  = 2; 

  // Loop for every curve. 
  $curveNames  = 'ls -transforms "fiberAxis*" ';
  $i  = 0� ;
  for ($curve in $curveNames) { 

 $diameter  = 'getAttr ($seedNames[$i] + ".scaleX")';

 // Rebuild the curve. 
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  $maxSpan  = 'getAttr widget.maxSpan';
  $minSpan  = 'getAttr widget.minSpan';
   $span = (($minSpan - $maxSpan)*$diameter + ($maxD*$maxSpan     
 -$minD*$minSpan))/($maxD - $minD); 
  rebuildCurve -keepRange 0�  -spans $span $curve; 

  // Tokenize $curve to get its index number. 
  tokenize $curve  "s" $index; 

  // Make the NURBS profile circle. 
  $circle  = "nurbsCircle" + $index[1]; 
  circle -center 0� 0� 0� -normal 0� 0� 1 -radius ($diameter/2)      
 -n $circle; 

  // Query the curve's starting point. 
  $cStart  = 'pointOnCurve -parameter 0� -position $curve';

  // Move the circle to the start of the curve. 
  move -relative ($cStart.x) ($cStart.y) ($cStart.z) $circle;          

 Note that you ’ re creating the NURBS circle at the Maya world origin (0 0 0) and then 
moving it to the starting point of the curve. Why not just create the circle at this sec-
ond location in the fi rst place? If you do, the circle Translate attributes will be 0 0 0
even though the object center is not at the world origin. Because of the way the 
extrude algorithm works, Maya will double transform the resultant surface, plac-
ing the fi ber surface nowhere near the axis curve. Making the circle at the origin and 
then moving it with the  move  command to the axis curve origin avoids the double 
transformation, placing the surface at its proper location along the fi ber axis. 

Th ere are three key fl ags to be aware of for the extrude command:  extrudeType , 
 fixedPath , and  useProfileNormal . An  extrudeType  value of 2 specifi es a  tube . If true 
(a Boolean value),  fixedPath  positions the extruded surface relative to the axis curve 
as opposed to the profi le curve (see  Figure 17.13    for the diff erence between a true and 
false setting for this fl ag). If  useProfileNormal  is true then the surface will follow the 
profi le normal direction as it extrudes along the path of the fi ber curve, allowing the 
surface to accurately refl ect the curvature of the path.

             // Extrude the NURBS surface. 
   $surface  = "fiberSurface" + $index[1]; 
   extrude -extrudeType 2 -fixedPath 1 -useProfileNormal 
 1 -n      $surface $circle $curve; 

   // Add a custom length attribute to the surface. 
   addAttr -ln length -at double -dv 0� $surface; 
   setAttr -e -keyable true ($surface  + ".length")
 $length[$i]; 

   // Add a custom diameter attribute to the surface. 
   addAttr -ln diameter -at double -dv 0�  $surface; 
   setAttr -e -keyable true ($surface  + ".diameter")
 $diameter; 

   // Create closestPointOnSurface node and connect it to
 the surface. 
   $cpos  = "cpos" + $index[1]; 
   createNode closestPointOnSurface -n $cpos; 
   connectAttr -force ($surface  + ".worldSpace[0� ]")   
 ($cpos  + ".inputSurface");

   // Add a diameter attribute to cpos. 
   addAttr -ln  "diameter" -at double -dv $diameter $cpos; 
   setAttr -e -keyable true ($cpos  + ".diameter");

Note  : In earlier versions of Maya, 
the - name  fl ag in the extrude 
command didn't work and the 
resulting object was given a 
default name. If you ' re using a 
version of Maya earlier than 8, 
you may have to name each fi ber 
surface immediately after it's 
created by using the  rename
command.      
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   // Create pointOnSurfaceInfo node and connect it to the
 surface. 
   $posi  = "posi" + $index[1]; 
   createNode pointOnSurfaceInfo -n $posi; 
   connectAttr -force ($surface  + ".worldSpace[0� ]")
  ($posi  + ".inputSurface");

   // Group together each fiber ’s curve, circle, and
 surface nodes. 
   $fiberGroup  = "fiberGroup" + $index[1]; 
   group -n $fiberGroup $curve $circle $surface; 

   // Increment the counter. 
   $i + + ;

 } // End loop for every curve. 

 // Group all of the fibers together. 
 group -n  "groupFibers" 'ls -tr "fiberGroup*" ';

  // Select the widget so scaffold parameters appear in the 
 channel box.     select widget;

     } // End if ($end  = =  1).     
   } // End moveSeeds expression.         

 Th at ’ s it for the moveSeeds expression. Next let ’ s give it something to call: the rule 
procedures.   

nurbsCircle

fiberAxis

fiberSurface

a

b
 FIGURE 17.13 

    Setting the fi xedPath fl ag to  " 1 "  in 
the extrude command positions the 

extruded surface relative to the fi ber 
axis path (a) rather than the profi le 

curve (b).    
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  rule1(): The random walk 
rule1() calculates the random walk we described starting on page 487. Let ’ s start 
with the header information. Again, to save space, we ’ ll include only the description.

             /* Description: 
   This procedure moves seeds randomly in the xy plane and positively
in the z-direction. To "run" is to continue in the same direction.
Between persistence runs, a seed picks a new direction. This
procedure is called from the moveSeeds expression. 
   */          

 Note that this procedure is of type  “ vector ”  and therefore returns a vector value to 
 moveSeeds . It requires a single argument, $i, which is the current seed number.

             global proc vector rule1(int $i) {

     /***** DECLARE THE VARIABLES. *****/ 

    global vector $v1_old[]; 
    global string $seedNames[]; 
    global float $dx, $dy, $dz; 
    global int $persistence[], $persistMin, $persistMax; 

    /*      
           $randomWalk     The return value of this procedure.     
      */ 
  vector $randomWalk, $trans; 

  /*   
           $xDir     The X-component of the random walk.   

  $yDir     The Y-component of the random walk.   
  $diameter     The diameter of the current seed.   
  $sizeBias      Used to scale the random walk steps according to 

fiber (or seed) diameter.   
  $base     Used to calculate $sizeBias.   
  $exponent     Used with $base to calculate $sizeBias.     
      */ 
  float $xDir, $yDir, $diameter, $sizeBias, $base, $exponent;          

 Th e  persistence[]  variable stores the time, in frames, to the next direction change 
in the random walk. It was set to 0 for every seed in the  resetSeeds  expression using 
the  clear  command. Before this procedure calculates new directions for the current 
seed, it must check to see if it ’ s  persisting .

             /***** MAIN BODY *****/ 

   // Has this seed ceased persisting? 
   if ($persistence[$i]  < 1){

    // Pick a new direction. 
  $xDir  = floor(rand(-1,2)) * $dx; 
  $yDir  = floor(rand(-1,2)) * $dy; 

    // Pick a new $persistence. 
    $persistence[$i]  = rand($persistMin, $persistMax);     

    }          
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 Th e  floor  command returns the largest integer that is still less than the argument 
given to it. For example,  floor(-0.09)  returns -1 and  floor(0.09)  returns 0. When used 
with the  rand()  command it allows you to generate random integers. If  persistence[]  
for the current seed is >1, the seed will continue on its present course using the
  $v1_old[]  stepwise displacement vector from the previous frame. Th en  persistence[$i]  
is decremented by 1.

            else {

      // The seed is persisting and takes the same step it did
 last time. 

    $trans  = $v1_old[$i]; 
    $xDir  = $trans.x; 
    $yDir  = $trans.y; 

  // Decrement $persistence By 1 frame. 
    $persistence[$i] - �  1;     

  }          

 With less cross-sectional rigidity, smaller fi bers will tend to show more directional 
defl ection over a given distance than larger ones. Th e next segment of the code scales the 
random walk result for diff erent fi ber sizes, and therefore has a large impact on scaff old 
architecture. Th e  $bias  variable queries the  widget sizeBias  attribute, and is used as the 
exponent with the MEL  pow()  function. For a  sizeBias  value of 1, the random walk is 
scaled down for all fi bers by a factor of 3/ $diameter . Th is means that 3  � m fi bers will get the 
full eff ect of the random walk vector calculated above, while 18  � m fi bers will get 3/18  �  
the eff ect of the random walk. Higher  sizeBias  values result in smaller defl ections for 
all fi bers with a diameter �3. We recommend starting with a  sizeBias  value of 0.05 and 
then increasing it with each successive modeling run as you tune your scaff old design.

            // Scale the random walk according to fiber diameter. 
  $diameter  = 'getAttr ($seedNames[$i] + ".scaleX")';
  $exponent  = ('getAttr widget.sizeBias');
  $base  = 3/$diameter; 
  $sizeBias  = pow($base, $exponent); 
  $xDir  = $xDir * $sizeBias; 
  $yDir  = $yDir * $sizeBias;          

 Th e last step returns the result of this procedure to the expression that called it, 
moveSeeds.

                  // Return the random walk vector to the moveSeeds expression. 
    $randomWalk  = < < $xDir, $yDir, $dz>>; 
    return $randomWalk;     

   } // End procedure.           

  rule2(): Collision avoidance 
 Here you ’ ll use a strategy similar described starting on page 489 and in  Figure 17.08 . 
Like  rule1()  this procedure takes the current seed, $i, as its argument and returns a 
vector to the  moveSeeds  expression.
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             /* Description: 
   This procedure moves seeds apart if they come within a critical
distance of one another. It is called from the moveSeeds expression. 
   */ 

   global proc vector rule2 (int $i) {

     /***** DECLARE THE VARIABLES. *****/ 

    global vector $seedPos[]; 
    global string $seedNames[]; 
    global int $seedCount; 
    int $i, $j; 

    /*      
           $avoid     The vector returned from this procedure.   
  $sepUnit     The unit vector (of magnitude 1) for $centerSep.     
      */ 
  vector $avoid, $sepUnit; 

  /*   
           $CenterSep      The distance between the centers of seeds $i 

and $j.   
  $surfaceSep      The distance between the surfaces of seeds $i 

and $j.  
  $iDiameter     The diameter of seeds $i.   
  $jDiameter     The diameter of seeds $j.   
  $spacingMin      The minimum tolerated surface separation between 

seeds $i and $j.   
  $avoidScale     Scales the avoid vector.     
      */ 
   float $CenterSep, $surfaceSep, $iDiameter, $jDiameter,
 $spacingMin; 
  float $avoidScale; 

  /***** INITIALIZE THE VARIABLES. *****/ 

  $avoid  = <<0� ,0� ,0� >>;
  $spacingMin  = 'getAttr widget.spacingMin';
  $avoidScale  = 'getAttr widget.avoidScale';
  $iDiameter =   'getAttr ($seedNames[$i] + ".scaleX")';         

 Th is procedure evaluates the separation,  $surfaceSep , between the current seed and 
every other seed in the scene, one at a time. If  $surfaceSep  is less than a critical value, 
 $spacingMin , then a vector is added to the return avoidance vector,  $avoid . After all 
seeds have been considered,  $avoid  is the sum total of every step the current seed 
must take to avoid colliding with the others.

            /***** MAIN BODY *****/ 

  // Loop for every seed in the scene. 
  for ($j  = 0� ; $j < $seedCount; $j + + ) {

      // The current seed can't collide with itself. Therefore: 
  if ($j ! = $i) {

     // How far apart are seed $i and $j centers? 
  $centerSep  = mag($seedPos[$i] - $seedPos[$j]); 
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    // How far apart are their surfaces? 
    $jDiameter  = 'getAttr ($seedNames[$j] + ".scaleX"  )';
    $surfaceSep  = $centerSep - ($iDiameter + $jDiameter)/2; 

    if ($surfaceSep  < $spacingMin) {

    // The seeds are too close to one another. 
   $sepUnit  = unit ($seedPos[$i] - $seedPos[$j]); 
   $avoid += ($avoidScale * $sepUnit);     
    }     
    }     

  } 

  // Zero the Z-component of $avoid.
     $avoid  = < <  $avoid.x, $avoid.y, 0�  >>; 
     // Return the collision avoidance vector to the moveSeeds

 expression. 
    return $avoid;     

   } // End procedure.          

 Th at ’ s it for  rule2!  You have just one more short procedure to complete and you ’ ll be 
ready to build your fi rst scaff old.  

  rule3(): Bounding
 Like rule1() and rule2(), this procedure takes the current seed, $i, as its argument 
and returns a vector to the moveSeeds expression.

             /* Description: 
   This  procedure  constrains seeds to the scaffold bounding box. The 
bounding box depth and width dimensions are stored in the cubeSize 
attribute of the widget. 
   */ 

   global proc vector rule3 (int $i) {

     /***** DECLARE THE VARIABLES. *****/ 

    global vector $seedPos[]; 
    global float $cubeSize; 
    global string $seedNames[]; 
    int $i; 

    /*      
           $bound     The return vector for this procedure.     
      */ 
  vector $bound, $trans; 

  /* 
  $radiusSeed radius.   
           $outside      The distance from the seed surface to a 

corresponding side of the bounding box.   
  $boundScale     A multiplier to scale the X   
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  $pushX      The X-distance by which the seed will be pushed 
back inside the bounding box.   

  $pushY      The Y-distance by which the seed will be pushed 
back inside the bounding box.     

      */ 
  float $pushX, $pushY, $outside, $radius, $boundScale; 

  /***** INITIALIZE THE VARIABLES. *****/ 

 $boundScale  = 'getAttr widget.boundScale';
  $trans  = $seedPos[$i]; 
  $radius  �  'getAttr ($seedNames[$i] � ".scaleX")'/2;         

 Determine if the seed is outside of the bounding box in the X-direction.

            /***** MAIN BODY *****/ 

  // Check bounding in the X-direction. 
  if (($trans.x - $radius)  < 0� ) {

     // The seed is outside the bounding box in the negative 
 X-direction. 
  $outside  = 0�  - ($trans.x - $radius); 
  $pushX  �  $boundScale*sqrt($outside);     

  }          

 Using the square root of $outside gently pushes the seed back toward the bounding box 
(note the smooth curvatures of fi ber paths that leave and then re-enter the bounding 
box in  Figure 17.14   ). A linear or exponential push (exponent � 1) tends to launch the seed 
back into the bounding box, causing large loops in fi ber paths and collisions between 
seeds.

              else if (($trans.x  + $radius) > $cubeSize) {

     // The seed is outside the bounding box in the positive
 X-direction. 
  $outside  = ($trans.x + $radius) - $cubeSize; 
  $pushX  = -$boundScale*sqrt($outside);     

  } 

FIGURE 17.14 

   This Front view shows the seeds 
and fi ber axes (a) half-way through 
and (b) at the end of a modeling 
run. This view demonstrates how 
rule2() and rule3() keep the seeds 
(and therefore the fi ber axes) largely 
free of intersections and within the 
bounding box (red square).    

(a) (b)
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  else { // The seed is in the box.
    $pushX =   0� ;    
  }          

 Determine if the seed is outside of the bounding box in the Y-direction.

                  // Check bounding in the Y-direction. 
    if (($trans.y - $radius)  < 0� ) {

   // The seed is below the bounding box. 
 $outside  = 0�  - ($trans.y - $radius); 
 $pushY =   $boundScale*sqrt($outside);        

  } 
  else if (($trans.y  + $radius) > $cubeSize) {

    // The seed is above the bounding box. 
 $outside  = ($trans.y + $radius) - $cubeSize; 
 $pushY  = -$boundScale*sqrt($outside);     

  } 
  else { // The seed is in the box.
   $pushY =   0� ;    
  } 

  // Return the bounding vector to the moveSeeds expression. 
  $bound  = < < $pushX, $pushY, 0� >>;
  return $bound; 

   } // End procedure.          

 Th is concludes the three rule procedures. With the rule-based program architecture, 
you can add additional rules of motion if you wish by encoding them in procedures 
and plugging them in to the main  moveSeeds  expression. Now let ’ s load the diff erent 
script elements and build a scaff old!   

  Methods: Grow your scaffold! 

  Prepare your Maya scene 
 Start Maya or, it ’ s already running, start a new scene. Create a new Maya Project 
directory to use for the scaff old model and for the cell migration model you ’ ll build in 
the next chapter: 

    1.     From the main menu bar, choose File  →  Project →   New.  

  2.      Enter  cellMigrationProject  in the Name fi eld.  

  3.      For Location, browse to your Maya Projects directory or another location on 
your hard drive where you ' d like to save this project.  

  4.      Enter  scenes  and  images  in the appropriate text fi elds and then press the Accept 
button.

  Source the script elements 
 If you haven ’ t done so already, save your  makeSeeds  and  rule  procedure fi les in your 
Maya Scripts directory. Make sure the fi le names match the respective procedures. 
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For instance, the procedure called  rule1  should be saved in a fi le called  rule1.mel . 
You may have tested your procedures by entering them in the Script Editor as you cre-
ated them. Likewise for expressions in the Expression Editor. If you haven ’ t yet tested 
your scripts, there ’ s a chance they may contain errors. If this is the case, we recom-
mend sourcing one script at a time fi xing the bugs as they ’ re fl agged by Maya. You can 
check your scripts against our working copies which you ’ ll fi nd on the CD-ROM:

    17_ECM_Scaffold/MEL/makeSeeds.mel 
       /moveSeeds.txt 
       /resetSeeds.txt 
       /rule1.mel 
       /rule2.mel 
       /rule3.mel       

 Now source the procedures: 

    1.     Refresh the search path contents. In the Script editor, enter:

  rehash;      

  2.     Source the script fi les. In the Script editor, enter:

     source  "makeSeeds.mel ";  

  source  "rule1.mel ";  

  source  "rule2.mel ";  

  source  "rule3.mel ";        

  Make the seeds 
 Your fi rst step in building the scaff old is to make those little pathfi nders, the seeds. 
Begin with the parameters outlined earlier in the chapter: 

     •       100  μm thick ×  100  μm wide × 150 μm long.  

   •       40  seeds (for 40 fi bers).  

   •       a size distribution of  30% , 29% ,  18% ,  8% , and  15%  for the 3, 6, 9, 12, and 18 μm 
diameter fi bers, respectively.    

 To call the procedure: 

 Enter the following in the Command Line or Script Editor: 

  makeSeeds(100, 40, 30, 29, 18, 8, 15)  

 Th e speed of execution will vary depending on computing power and memory, but 
should take no more than a few seconds in any case. When the procedure is done, 
you ’ ll see in the Command Line, the message you sent yourself:

             The seeds are ready to go!           

  Create the expressions 
Here you ’ ll create the  resetSeeds  and  moveSeeds  expressions. If you didn ’ t build the 
expression scripts earlier in the chapter, copy them from the CD-ROM to your Maya 
Scripts directory.
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     1.      Open  resetSeeds.txt  (either the fi le you created or the one on the CD-ROM) in the 
text editor of your choice.  

   2.     Ensure that the text editor is set to  not  use typographer ’ s quotation marks.  

   3.     Select and copy the entire script to the clipboard.  

   4.      In Maya, enter ExpressionEditor in the Command Line to launch the Expression 
Editor, or select it from the menu Windows  →  Animation Editors  →  Expression 
Editor.  

   5.     Choose Select Filter →   By Expression Name.  

   6.     Press the New Expression button.  

   7.     LMB  +  click in the Expression text fi eld.  

   8.     Press Ctrl  +  V to paste your expression into the text fi eld.  

   9.     Press the Create button at the bottom of the Expression Editor.  

  10.     In the Expression Name fi eld, replace the default name with  resetSeeds  and 
press Enter.  

  11.     Repeat steps 6 through 10 for the  moveSeeds  expression, but name it  moveSeeds
in the Expression Name fi eld.  

  12.     Press Ctrl  +  S to save your scene with the expressions in it.     

  Prepare the scene 

  Adjust the view 
 If you move around your scene a little, you may see some of the seeds disappearing. Th is 
is due to the default clipping plane settings ( Near Clip Plane: 0.10; Far Clip Plane: 
1000.0 ) of the  persp  camera; the array of seeds is large enough that it intersects the 
clipping planes as you move the camera back and forth. To remedy this, set the Far Clip 
Plane to a suffi  ciently large value (say, 20,000). While you ’ re at it, you may as well set 
the Far Clip Planes for all cameras once to save having to do it individually as needed. 

        Enter the following four code lines in the Script editor:  

       setAttr perspShape.farClipPlane 20� 0� 0� 0� ;  
       setAttr topShape.farClipPlane 20� 0� 0� 0� ;  
       setAttr frontShape.farClipPlane 20� 0� 0� 0� ;  
       setAttr sideShape.farClipPlane 20� 0� 0� 0� ;     

  Preload resetSeeds 
 Th anks to the eff ort you put into the expressions and procedures, all you do to build a 
scaff old model is press Play. However, the fi rst time you do this, it ’ s important to ensure 
the procedure  resetSeeds  has evaluated in order to load the key global variables. 

    1.      In the Expression Editor → Selections →  Expressions fi eld, select  resetSeeds
and press the Edit button.     

        Reminder: To Maya typographers 
quotation marks ( “   ” ) are 

unknown characters and will 
generate errors when used 

in MEL scripts and animation 
expression.      
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  Set the Playback range 
 A 150  � m long scaff old will take 150  
  $dz  �  20  �  170 frames to complete its self-
build. Give yourself a little extra room and set the Playback range from 1 to 180.   

  Inspect the scaffold parameters 
 Take a moment to look at the custom attributes of the widget object you made in 
the  makeSeeds()  procedure. Relative to the seeds, the widget may be hard to see in 
the scene, so use the Outliner to select it. In the Channel Box you ’ ll see the custom 
attributes listed under the  transform (widget)  node, with the values you set using the 
 makeSeeds() . By adjusting these parameters in the Channel Box at the start of each 
model making run, you can vary the outcome of each scaff old. We ’ ve explored these 
values in our own research on ECM and cell migration, but much remains to be seen 
about how diff erent combinations of values aff ect the model. Th e parameters shown 
in  Table 17.03    were used to generate the scaff olds shown in  Figure 17.15   .  

  Press Play! 
 All that ’ s left to do is … 

    1.     Adjust your perspective view to get a comfortable view of the scene.  

  2.     Press the Play button in the Playback controls.  

  3.     Sit back, relax, and enjoy the show.    

Scaffold

Parameter Figure 17.15a Figure 17.15b Figure 17.15c Figure 17.15d

cubeSize 100 100 100 100

maxSpan 40 40 80 60

minSpan 20 20 40 40

dx 1 3 1 1

dy 1 3 1 1

dz 1 1 0.5 1

persistMax 10 10 10 30

persistMin 0 0 0 20

sizeBias 0.05 0.05 0.05 0.05

spacingMin 2 2 2 2

avoidScale 2 2 2 2

boundScale 1 1 1 1

 TABLE 17.03 

 These are the parameter values 
we used to generate the scaffolds 
shown in Figure 17.15. The 
parameters most responsible for the 
differences between scaffolds are 
highlighted in the Table.
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 Once your model is complete you have two options for how to proceed: 

    A.       Save the fi le at the current frame to preserve your scaffold model.  You may wish 
to delete both the resetSeeds and makeSeeds expressions in the Expression Edi-
tor to prevent yourself (or someone else) from accidentally deleting your model 
by rewinding the scene to frame 1.  

     Note that you can also select and export the fi ber axes and surfaces to a new 
fi le—using Export Selected, located under the main File menu—and then reset 
your scene (see below).   

  B.       Press the rewind button to reset the scene.  If you included the set of  " delete "  
lines at the end of resetSeeds, then your fi ber axis curves, surfaces, and profi le 
splines will be eliminated from the scene, leaving only the seeds you began 
with.

 If you chose option B, you can simply hit Play again to make another model with the 
current set of seeds. If you want to vary the seed number, scaff old size, and or fi ber 
size distribution, then you simply select and delete the group of seeds and the  widget , 
and then run  makeSeeds()  again with a new set of parameters. You won ’ t have to rec-
reate the expressions since they already exist in the scene, although you ’ ll want to 
press Edit in the Expression Editor to evaluate resetSeeds for the new set of seeds.   

  Results: Parameter effects 
  Figure 17.15  shows a sampling of scaff olds that we built, varying the design parameters. 
Worth noting is the eff ect that the displacement variables  $dx, $dy , and  $dz  have 
on collision avoidance  (rule2) . Small values (1–2 units) allow the  rule2()  to work with 

(a) (b)

(c) (d)

 FIGURE 17.15 

    Four scaffold we built by varying 
key model parameters (see Table 

17.03). The box dimensions are 
100 �  100  �  150  � m.
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reasonable eff ectiveness. As the values were increased—upwards of 3 or more units—
the resolution for collision detection became coarser and fi ber paths intersected ( Figure 
17.15b ).  Figure 17.15c  illustrates the eff ect of dz—the smaller its value, relative to dx and 
dy, the wavier the fi bers. Finally, higher persistence values result in greater fi ber defl ec-
tion ( Figure 17.15d ). For each modeling run we tuned the  maxSpan  and  minSpan  values to 
achieve fi bers whose diameters remained reasonably constant along their lengths. 

 If time permits, play around with the various settings of the model. You made this 
process easy by listing the model parameters as attributes of the widget object. 

  Playblast your scene 
 Depending on the processing speed and RAM of your computer, watching a scaff old 
evolve from many seeds can be a bit like watching paint dry (although slightly more 
interesting) because it happens so slowly. If you want to capture a dynamic view of 
your scaff olds as they evolve, you can set up your camera and then make a playblast 
rendering while you make plans for your next in silico project.  

  Save your scene 
 You will use your scaff old model as the substrate for a migrating cell population in 
the next chapter. When you are satisfi ed with the model, delete the  resetSeeds  and 
 moveSeeds  expressions, then save your scene as a Maya ASCII fi le under the name 
 scaffold.ma .   

  Summary 
 Th e ECM of living tissues are intricate 3D tapestries in which many kinds of fi brous 
molecules intertwine and cross react. Th e methods we ’ ve introduced to you here will 
get you started with Maya as a window on this little seen, poorly explored world. 
Alone, however, even the most exacting ECM is like a stadium without the baseball 
team and the spectators—an empty arena awaiting action. Let ’ s fi ll it.  

   References  
      1.          Nelson     CM  ,   Bissell     MJ         :      Of extracellular matrix, scaff olds, and signaling: Tissue 

architecture regulates development, homeostasis, and cancer    .      Annual Review of Cell 
and Developmental Biology         22         :  287  –       309      ,  2006   .        

      2.          Armour     AD  ,   Fish     JS  ,     Woodhouse     KA,  Semple     JL          :      A comparison of human and por-
cine acellularized dermis: Interactions with human fi broblasts in vitro    .      Plastic and 
Reconstructive Surgery         117         (3):  845  –       856      ,  2006   .        

      3.         Sharpe J, Lumsden CJ, Semple JL, Woolridge N: Fibroblast behavior in human dermal 
substitutes: A computer simulation model, I—3d collagen matrix model structure and 
visualization, International Tissue Engineering Society Conference, Orlando, 2003.                              



Th is page intentionally left blank



18     Scaffold invasions
 Modeling 3D populations of mobile cells   



520 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

  Introduction 
 In  Chapter 16  you modeled a single cell as an agent that behaves according to certain 
rules of motion. Th en in  Chapter 17  you modeled agents called  “ seeds ”  whose tra-
jectories became longitudinal axes for the extracellular matrix ( ECM ) collagen fi ber 
bundles that composed your tissue scaff old. Like the single cell, the seeds moved 
in response to a set of rules. In the scaff old modeling MEL script, you parceled the 
motion rules into discrete software procedures called  rule1() ,  rule2() , and  rule3() . 
Th ese rules were in turn  “ plugged in ”  to the main software component of the script—
the  moveSeeds  expression—making for a modular software algorithm that can be 
modifi ed by adding or removing rules. 

 In this project you will build on your progress modeling individual agents and on the 
cell biology concepts presented in the previous two chapters. Th e objective is to make 
a simulation involving a population of cells that migrate throughout the Maya tis-
sue scaff old you built in  Chapter 17 . In  Chapter 16  you treated explicitly the stages of 
cell locomotion—protrusion, traction, and retraction. In the current project you will 
treat them collectively, and from one level up on the ladder of organizational hierar-
chy, by modeling the stepwise displacement of the cell center, a process that encom-
passes the individual crawling stages in a single event ( Figure 18.01   ). 

 When your MEL script for this project is fi nished and working, you will have a tool 
for rapidly deploying a group of mobile cells in a scaff old model. Th e rules of motion 
depend on various parameters which you can change—as you did with the scaff old 
script—in order to observe their eff ects on migration behavior. Moreover, the rules 
themselves can be modifi ed or removed altogether and new ones constructed and 

 FIGURE 18.01 

    In this project you will build a cell 
migration algorithm that treats the 

three primary stages of locomotion 
as a collective event: the stepwise 

displacement of the cell center.    
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then added to the algorithm to test diff erent hypotheses about the behavior of cell 
groups.  

  Problem overview 

  Cell migration as an emergent behavior 
 Th e change in state over time of a migrating cell population is a property that emerges 
from the minutia of cell mobility events beginning at the molecular level with signal-
ing events and cytoskeleton turnover. Th e  state  could be any quantifi able property 
of the cell population such as the pattern of dispersion—the spatial arrangement of 
migrated cells. In  Chapter 16  you saw the single cell changing state—position and 
translocation speed—as a result of mobility events at the level of physical cell proc-
esses: protrusion, traction, and retraction. Th e cell ’ s position and speed  emerged  from 
the rules governing the physical processes. 

  Mobile cell populations 
 Animal cells that are specialized for active mobility—and therefore lend themselves 
especially well to 3D agent-based models—include patrolling immune cells like lym-
phocytes and wound-healers like fi broblasts, keratinocytes, and endothelial cells 
( Figure 18.02   ). When cancer strikes, otherwise sessile cells can become specialized mov-
ers as well and aggressively invade adjacent tissues, disrupting normal bodily func-
tions. Th rough intercellular signaling and by physically altering their ECM, many 

 FIGURE 18.02 

    Collective cell migration is an 
essential feature of wound healing 
in the skin. Wound healing begins 
with an infl ammatory response 
that includes leukocytes (white 
blood cells). In the skin'  s dermal 
layer fi broblasts migrate into a 
temporary scaffold of fi brin (the 
blood clot) then degrade the fi brin 
and synthesize and remodel a new 
scaffold of collagen. Endothelial 
cells migrate through the dermis, 
building new capillaries to provide a 
blood supply. In the epidermal layer, 
keratinocytes migrate as a confl uent 
sheet to seal the wound.    
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individual cells can act as a coordinated front to accomplish a physiological goal. Th e 
overall movement of a group of cells is a behavior that emerges from the minutia of 
locomotion events on the level of individual cells.  

  Cells, scaffolds, and regenerative medicine 
 To researchers and practitioners in regenerative medicine, the ways in which cells 
infi ltrate and interact with tissue scaff olds can be of great importance. Regenerative 
medicine aims to replace, or assist in the regeneration of, cells and tissues when the 
body is unable to do so itself. Such interventions cover a broad range of subspecial-
ties and tissue types. Once such specialty involves the application of skin grafts to 
replace lost or damaged dermis in cases of severe burns and other situations involv-
ing deep trauma or disease of the skin. Currently, the gold standard for a skin replace-
ment is skin itself—usually derived from a cadaveric donor and treated chemically 
to remove cellular tissue and soluble proteins that could elicit an immune response 
in the graft recipient, or host. Th e remaining tissue is largely composed of collagen 
fi ber bundles which facilitate cell infi ltration and mitigate scar formation. It is cur-
rently thought that the relative success of cadaveric skin grafts over alternatives is 
due to the positive response of host fi broblast cells to the natural architecture of the 
collagen scaff old. A key study that supports this view demonstrated a high degree 
of scaff old infi ltration in cadaver grafts when compared with a potential alterna-
tive1. However, this success comes with a price—quite literally—since donor skin is 
rare and therefore costly. For less expensive and more plentiful alternatives such as 
synthetic or animal-derived tissues to be clinically viable—that is to facilitate nor-
mal wound healing—it must elicit a positive response from host cells and promote 
normal wound healing behavior. While there are numerous factors involved in such 
a response, the 3D tissue architecture itself has been identifi ed as a key one, and the 
relationship between this architecture and cell migration fl agged as an important 
area of research in regenerative medicine.  

  Emergence in a cell migration model 
 We can frame the infi ltration of a tissue scaff old by cells—be they healing fi broblasts 
or invading cancer cells—as a population-level response to individual cell-scaff old 
and cell-cell interaction events. Th ese include the cell crawling events associated 
with haptotaxis and chemotaxis that we looked at in  Chapter 16 . In our agent-based 
approach we treat each event as the outcome of a  rule —like the rules you encoded 
in procedures in the previous chapter. Th e model evaluates the current state of each 
cell, applies the rules of migration, then updates the cell states ( Figure 18.03   )—a proc-
ess that occurs at each time increment. As time progresses, the rules are applied, and 
the cell states changed, a pattern of migration for the entire population will emerge.  

  Parameters of cell migration 
 With an individual-based model you can study cell migration behaviors, or param-
eters, that emerge at diff erent levels of detail. By modeling the stepwise translo-
cation of each cell body in this project, you can evaluate parameters to quantify 
single cell locomotion (such as the mean squared displacement, mean speed, and 
directional persistence) and derive coeffi  cients that characterize migration for 
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whole populations: random motility coeffi  cient, chemotaxis/haptotaxis index, and 
chemokenesis/haptokenesis coeffi  cient.   

  Cell migration in scaffolds 
 We can see that a cell makes chemical bonds called  adhesions  with its substrate in 
order to generate the traction force needed to move. Much attention in cell migration 
research has been given to adhesion molecules and ways in which they ’ re regulated 
and, in turn, regulate cell locomotion events. For a moment, let ’ s take for granted 
that the mechanism for adhesion is present—the cell has its components (integrins) 
and so does the ECM ( ligands )—and consider other variables in the cell-ECM 
relationship that impact locomotion. 

 Many variables are at play in the complex relationship between cells and a scaff old 
environment—all of which contribute in some way to the emergent behavior of the cell 
population. In this project you will focus on a manageable piece of puzzle: the process 
of haptotaxis through which scaff old fi bers serve as a substrate for cell crawling and
a conduit for movement throughout the scaff old ( Figure 18.04   ). 

 We ’ ll deliberately omit some of the refi nements such as the deformability of the 
moving cells, the way they can work with other cells to digest and remodel the matrix, 
and the arrival and departure of nutrients and waste products via surrounding blood 
vessels. Th is will let you focus on the fi rst core problem of 3D cell group motion in the 
ECM, which you can then refi ne and extend as your interests develop. With 3D compu-
tational cell and tissue modeling still in its infancy, exciting opportunities abound for 
addressing factors like perfusion, cell deformation, and scaff old remodeling.  

Current state

• Location
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and speed
• Proximity of 

neighboring cells
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    Outline for a cell population 
migration model.    
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  Cell migration nomenclature 
 Let ’ s look briefl y at the two key cell migration parameters that you ’ ll model in this 
project. 

  Haptotaxis 
 Th e cell movement facilitated by contact with the substratum can be random in 
nature, directed, or both. A non-homogeneous substratum like the scaff old model 
you made in the previous chapter is bound to introduce bias into the motion of 
 “ randomly ”  moving cells by virtue of the fact that cells can travel only where the 
scaff old fi bers go.  

  Chemotaxis 
 Chemotactic signals may originate from cells within the study population, from an 
external source such as the extracellular concentration of an ion like calcium in the 
tissue, or from another population of cells such as the immune cells involved in the 
infl ammatory response to injury. Whatever the source—and it may in fact be a com-
bination of infl uences—a spatial gradient of molecules that elicit a motility response 
in a cell biases the direction of its movement.  

  Cell-cell signaling 
 Chemically or physically mediated communication between cells is essential to many 
physiological and disease processes. Notable examples include the immune response, 
endocrine (hormone) function, and the growth and spread of cancer. Chemical 

(b)(a)

  FIGURE 18.04 

    A migrating cell's progress from 
point A to point B can be both 
facilitated (a) and impeded (b) 

by the organization of ECM 
structures. This illustration depicts 

collagen fi ber bundles as the 
conduits and obstacles to cell 

movement.
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signals are a way for one cell to receive information from another. Going back to our 
Maya Hypergraph/biology network analogy from  Chapter 04 (page 82) , you could 
think of a cell as a DG node and the signal as a connection between that node and 
another (the other cell). What the cell does in response to receiving the signal (often 
via membrane-bound receptor molecules) is analogous to a Maya node processing its 
input to calculate a result. 

 Furthermore, signaling between cells needn ’ t be long range—like the passing of a 
hormone from an endocrine cell to its target far away in another part of the body. 
Th e fact that epithelial and mucosal cells (which line external and internal surfaces 
of the body) replicate and migrate to close defects in otherwise continuous cell sheets 
suggests that cells have a physical and chemical awareness of contact between each 
other. Th is ability to sense other cells at close range may help explain why solitary 
cells like fi broblasts or patrolling lymphocytes don ’ t, under normal physiological 
conditions, bunch up or overlap one another. In contrast, they generally avoid 
contact with one another. 

 Now that we ’ ve established a vocabulary for discussing living cells engaged in 
migration—random and directed haptotaxis; biased movement due to chemotactic gra-
dients; and contact avoidance—let ’ s apply it in a defi nition of the model you ’ re about to 
build.    

  Model defi nition 
 Th is project realizes the scenario we described above: mobile cells that infi ltrate an 
ECM scaff old via haptotaxis and chemotaxis. In your model, a population of cells 
will begin on the bottom surface of the scaff old you modeled in the previous chap-
ter and migrate upwards through the scaff old. Each cell is then driven by rules for 
cell-matrix interaction (which incorporate both chemical and haptic cell responses) 
and cell-cell signaling. To develop the model you will build upon programming struc-
tures introduced in earlier chapters along with a novel technique for attaching the 
moving cells to the complex, 3D surfaces of the fi ber scaff old. 

  Cell behavior 
 In order to simulate haptotaxis, you require a method to calculate a random walk 
(or crawl) over the surface of the fi ber to which it ’ s presently attached. We will refer 
to this method as the  cell crawling algorithm . Biasing the random walk will introduce 
directed haptotaxis—in addition to that which we noted earlier is inherent in a 
non-homogeneous substrate. Th is bias can be built into the algorithm by manipulating
the probabilities that govern the cell ’ s choice of direction. 

 Each cell must also have the ability to sense contact with other fi bers and then to 
decide whether or not to detach from its current fi ber and transfer to another. We will 
call this property  transferring . By giving cells a preference for transferring to fi bers 
that allow them to move through the scaff old in a given direction—again by manipu-
lating the probabilities that govern the cell ’ s choices—you will eff ect a gradient of 
chemoattractant in the model; the preferred direction is the vector of chemotaxis 
and the probability for choosing that direction over any other is the magnitude of 
the chemoattractant. In your model, you will begin with a chemotaxis vector of 
  �  0,1,0 �  and a magnitude of 0.9 out of 1, thus setting up strong bias for cells to 
transfer to fi bers above them (i.e., in the positive Y-direction) in the scaff old.  
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  Cell-cell signaling 
 To prevent clustering, overlapping and interpenetration of cells, you will endow them 
with contact sensitivity and a mechanism for avoiding contact. Th is is the kind of 
close range signaling we mentioned above. Once your model is built you may wish 
to incorporate longer range signaling such as the ability for cells to broadcast their 
progress to others—a mechanism used by invading cancer cells.  

  The cell geometry 
 Your cell crawling algorithm will determine the direction and distance traveled 
in each time interval in a way that bundles the minutia of locomotion—molecular 
events, membrane protrusion, traction, and retraction—as a translocation step of 
the cell center. At the same time, each cell in your model requires a space-fi lling man-
ifestation in the scene. Th is represents its boundaries both for the purpose of making 
it visible to you and for the detection of contacts between the cell and surrounding 
matrix fi bers and other cells. A sphere primitive fulfi lls these requirements in an ele-
gantly simple Maya object: the sphere has a center (its transform node) to displace 
each time the cell moves; it has a uniform contact radius represented by its surface; 
and a sphere can readily be discerned visually from the intertwining mass of the scaf-
fold. Once you have this up and running, you can build on your progress to extend 
the simulation to include cells of more complex, changing shape. 

 We ’ ll use the term  seeding density  to refer to the number of cells per unit area of the 
scaff old surface at the start of your simulation run. With cells that use close range 
signaling to communicate, it can be interesting to vary the seeding density and watch 
its eff ect on population behavior. You ’ ll begin with 10 cells, a high density relative to 
clinical studies of cell-scaff old interaction in dermal regeneration 1  but necessary to 
get interesting cell-cell contact interaction eff ects in your small test scaff old.  

  The sutbstrate 
 To control the movement of your cells on a substrate it must be composed of objects 
whose surfaces can be surveyed for positions in Maya world space. You fulfi lled this 
requirement in  Chapter 17  by constructing a scaff old out of parametric surfaces 
(NURBS); parameter values can be used to determine the world space position of any 
point on a NURBS surface, along with the corresponding surface normal which comes 
in handy when attaching a cell to the surface. 

 Using a relatively small, medium density scaff old—namely the one you made in the 
previous chapter—will allow you get reasonably quick simulation results on a com-
puter of similar processing and memory attributes as our benchmark system 
(described on page  xxi in the Preface   ) we used to develop and test this project.  
Figure 18.05    shows a scaff old like the one you made in  Chapter 17 , with its dimensions 
and  active volume  indicated. Th e active volume is the region of the scaff old in which this 
model ’ s cells migrate. Th ey are restricted to the active volume by the  boundary conditions  
described below. In theory the size (length, width, height, and fi ber packing density) 
of scaff old you use and, by extension, the number of cells in the simulation is limited 
only by the processing power and memory capacity of your computer, and by time con-
straints (i.e. how many minutes, hours, or days you can dedicate to a single simula-
tion). Th e parameter values we ’ ve suggested will give you interesting simulation results 
quickly (less than 1 hour simulation time on our benchmark system).  
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  Boundary conditions 
 Ideally your scaff old would be long and wide enough, relative to the cells, to present 
them with an essentially infi nite sheet of tissue to migrate in. Th is would emulate the 
experience of microscopic cells in a surgical tissue graft measuring even a few cen-
timeters across. For the reasons mentioned above, your model will be of more modest 
proportions. When dealing with a fi nite substrate, your model will require boundary 
conditions to prevent cells from running to the ends of fi bers and jeopardizing the 
simulation when they can no longer move in a certain direction. Boundary conditions 
for this model can be handled in several ways. One straightforward method, and a 
good place to start, is to limit migration to a given region along the length (longi-
tudinal axis) of the fi bers. When a cell steps outside of this region (the Z-dimension 
of the active volume; see  Figure 18.05 ), its random walk is biased to  push  it back inside. 
Natural boundaries exist for the depth of the scaff old, since cells begin their journeys 
on the bottom surface (and can ’ t go any lower) and complete it upon reaching the top. 
Similarly, cells that reach either side of the scaff old width-wise will have nowhere to 
go but up, down, or back toward the center of the scaff old.  

  Spatial and temporal scales 
 You defi ned the spatial scale for this project back when you built your scaff old model: 
1 Maya unit  �  1  � m. Temporal scale is a little trickier. It equates one time increment 
(a frame) in Maya simulation time to a given number of seconds, minutes, or hours of 
living cell time. By basing the incremental displacements of the cell random walk on 
data from living cells, you can calculate what a time step is in Maya relative to a time 
step in vivo or in vitro (see  Figure 18.06   ).   
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 FIGURE 18.05 

    The model scaffold that will serve 
as the substrate for cell migration in 
this project. Cell locations and their 
contact radii are represented by the 
blue spheres. The active volume is 
the region in which cells can move 
and is limited along the 
Z-axis by the buffer regions.    
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  Methods: Model design 
 Th e previous section outlined the diff erent elements of this project and what it must 
do. Here we ’ ll describe methods to make those elements and behaviors come to life 
in Maya. Let ’ s start with the cell crawling algorithm which generates the random 
haptotaxis, which we ’ ll call  haptotaxis 1 . 

  Haptotaxis 1: The random walk 
 To calculate the frame by frame displacement of a cell, you ’ ll adapt a mathemati-
cal description of locomotion that was developed in a seminal study of migrating 
lymphocytes 2  on a 2D surface. Lymphocytes are highly motile white blood cells that 
play an important role in immunity. Th e authors of the infl uential study, Peter Noble 
and Martin Levine (N  &  L from here on) discovered that, in the absence of a chemoat-
tractant, the motion of their lymphocytes closely resembled an unbiased random walk. 
Th ey fi t this observed behavior to a mathematical model called a  5-state Markov pro-
cess  (named for Russian mathematician Andrey Andreyevich Markov; 1856–1922). A 
Markov process is a stochastic process for which the probability of future states for an 
item depends only on its present state and not its history 3 . In the case of a migrating 
cell, the 5 states are 5 possible choices for the cell ’ s next position ( Figure 18.07   ) which are 
based solely on its current position. Each state has a probability associated with it and 
varying those probabilities biases the random walk. N  &  L also recorded persistence 
times for each of the 5 states. You may recall that persistence is a cell migration term 
applied to the time duration between signifi cant changes in direction. 

�t � 20 s

d

�t � 1 frame

d

The living cell position is
recorded once every

20 seconds

The in silico cell position is
recorded once for every

Maya frame

Therefore:
1 frame � 20 seconds
in silico cell time  living cell time

Next, given that the fibroblast cells move roughly 1/10 the speed of
lymphocytes (the source of living cell data):
1 frame � 20 � 10 � 200 seconds
in silico fibroblast time  living cell time

 FIGURE 18.06 

    This diagram shows how we 
estimated the equivalence of a 

simulation time increment in Maya 
(1 frame) to the experimental 20 

second increment in an in vitro cell 
migration study 2 . In the absence 
of appropriate data for fi broblast 

cells, we used an available dataset 
for lymphocytes. The lymphocyte 

migration time step was scaled to 
approximate an equivalence for the 

slower-moving fi broblasts.    
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  State change probabilities 
 In their study, N  &  L recorded the displacement of cell center points at regular 20 
second time intervals and then determined the probabilities associated with moving 
from any of the 5 states to any other state. A moving cell would either continue on 
its present course, that is, remain in its current state, or change its course, that is, 
change to a new state. Th ese probabilities are presented in  Table 18.01   , in a form we call 
the  state change probability matrix . Th e data show a distinct trend: if a cell in state 0 
decides to change course, it has an approximately equal (25%) chance of choosing any 
of the other 4 states. However, if the cell is in one of states 1 through 4 and decides to 
change course, there is roughly an 80% chance that it will choose state 0 and between 
a 6% and 7% chance of choosing any of the remaining 3 states. Th e way that the 
Markov process describes the migration behavior, when a cell changes state, the cell 
must choose a state  other  than the one it ’ s currently in.  

  Biasing the random walk 
 By adjusting the probability matrix you can favor motion in one direction over 
another—the modeling equivalent of a chemoattractant. For example, biasing 
motion for states one and three versus two and four in  Figure 18.07  will aff ect the time 
that a cell spends moving in a vertical rather than a horizontal direction. In this 
project model, you ’ ll bias the cell walks in terms of longitudinal versus circumferen-
tial motion on the cylindrical fi bers.

    Persistence time 
 Th e persistence, P, for a single mobile cell tells us how long a cell will persist in its 
current state (or continue on its present course). N  &  L measured P in intervals 
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    (a) The 5 states of the Markov 
process used by Noble and Levine 
(Ref. 3) to characterize the migration 
of lymphocyte cells. The original N 
 &  L Markov states (inset) have been 
rotated 90 degrees CCW to align 
with UV axes on NURBS surfaces 
in Maya.

(b) The 5 states are manifest as the 
displacement of the cell center.       
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20 seconds long. Th eir data show a mean persistence time of roughly one interval 
(or 20 seconds) for states one through four, and two intervals (or 40 seconds) for 
state 0—or standing still. Th eir statistical analysis found an exponential distribution 
of the recorded persistence times. To use the N  &  L persistence time data in your 
model, you ’ ll therefore need an algorithm that simulates random draws from an 
exponential probability distribution. Here we ’ ll use the formulation developed by 
the research physicist Daniel Gillespie as part of a more comprehensive theory of 
stochastic chemical reactions 4 . Th e full  “ Gillespie algorithm ” , though developed in the 
mid-1970s, has in the past few years come into its own as an essential tool of compu-
tational biologists. In the case of cell migration persistence time, the events would be 
changes in state—a start, a stop, or a change in direction. Gillespie ’ s notation for the 
waiting time to each of those events is as follows: 

      tau = (1/a)ln(1/r1)

  where   tau is the waiting time to the next event, measured in appropriate time incre-
ments such as 20 second frames.  

1/a is the mean value of the exponential distribution of waiting times.  

     r1 is a random number drawn from the uniform distribution in the unit 
interval (i.e. between 0 and 1). You ’ ll use Maya ’ s rand() function to gen-
erate this.  

ln(1/r1) is the natural logarithm of 1/r1 .

 For this project we ’ ll call  tau  the persistence time spent in the current state and 1/a 
the mean persistence time for that state. 

  Figure 18.08    shows our Markov process fl owchart for the cell migration described by N 
 &  L. Th is will form the basis for your random walk algorithm.  

  Adapting for cell type 
 Since Nobel and Levine studied lymphocytes, you ’ ll need to make a few adjustments 
with regards to the cell type in this project, that is: scale the lymphocyte time interval 
and mean persistence times to values more suitable to the slower-moving fi broblast 
cells in your model. Given that lymphocytes move roughly an order of magnitude 

 State  0  1  2  3  4 

 0  0  0.800 �   0.046  0.837  �  0.054  0.841 � 0.052  0.801  �  0.042 

 1  0.254 � 0.032  0  0.057  �  0.017  0.046 �   0.013  0.060  �  0.037 

 2  0.223 �   0.024  0.101  �  0.021  0  0.057 �   0.017  0.056  �  0.015 

 3  0.266 �   0.038  0.051  �  0.016  0.064 �   0.017  0  0.081 � 0.015 

 4  0.254 � 0.029  0.046 � 0.024  0.039 � 0.019  0.055  �  0.036  0 

TABLE 18.01

   The state change 
probability matrix for the 
5-state Markov process.  

Source : Reproduced from 
Noble and Levine 2 .

        In addition to Daniel Gillespie ’ s 
seminal paper on stochastic 

chemical reactions 4 , we 
also encourage you to see 

his book Markov Processes: 
 An Introduction for Physical 

Scientists  which we ' ve listed in 
the  Further reading  section.      
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 FIGURE 18.08 

    Flowchart for a Markov process 
describing cell migration.    
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faster than fi broblasts, you can begin by multiplying both the time interval and mean 
persistence times by 10 as shown in  Table 18.02   . While these conversions are a gross 
simplifi cation, they give you a starting point from which to incorporate living cell 
data into your in silico model. Moreover, although the mean speeds of the two cell 
types can be compared—allowing you to estimate the speed of one cell type based 
on the speed of another—there exists (at the time this book went to press) no analy-
sis of state change probabilities and waiting times for fi broblasts comparable to the 
extremely thorough one published by N  &  L for lymphocytes at the level of single cell 
behavior. In the absence of such quantitative data you can reasonably make the mod-
eler ’ s assumption that a fi broblast would fi t a Markov approximation of motion as 
well as a Noble and Levine lymphocyte does, that is, until it ’ s proven otherwise.  

  Model-data time equivalence 
 Th e resolution of N  &  L ’ s model is 20 seconds, meaning that no data exists in their 
compilation for time increments shorter than 20 seconds. It makes sense therefore to 
equate one frame (the unit time interval in Maya) with the 20 second unit time inter-
val from N  &  L. Th e far right column in  Table 18.02  lists the Maya frame equivalents 
you ’ ll use in this project.   

  Leaving fl atland: Moving from planes to fi bers 
 Despite the gap between the worlds of 2D and 3D cell research, the movement of 
cells in a complex 3D environment can be thought of in some projects as building 
on 2D behavior. Th at is to say that the interactions between cell and substrate are 
essentially surface interactions ( Figure 18.09   ). Th e fact that the substrate twists and 
turns throughout three dimensions only means that the emergent cell trajectory will 
be truly 3D. Th e degree to which we can treat 3D scaff olds as 2D surfaces depends 
of course on the tissue being modeled. An in vitro tissue preparation of fi ne colla-
gen fi brils—which forms the substrate for many cell migration studies—for example, 
would not be amenable to such treatment. For projects involving scaff old structures 
such as dermis and cancellous bone that are large relative to the cells however, you 
can eff ectively treat the 3D environment as a construct built from 2D surfaces. 

 Such a treatment of course allows you to readily adapt the mathematics of 2D cell 
migration, such as the Noble and Levine methods described above, to a 3D scaff old 
model composed of surfaces. Th ere still remains the interesting question of how to 
take 2D position data—like that generated by the random walk algorithm—and 
map it onto the 3D model surfaces, as shown in  Figure 18.09 . After all, we ’ re not talking 
about simple planar motion like that generated by the single cell model in  Chapter 16 . 

 Th e solution to this problem lies in querying the 2D surface coordinates of the fi ber 
object. We ’ ve mentioned the term  parameter  several times now with respect to 
NURBS curves and surfaces. Parameters are values in UV coordinate space that lie 
on a NURBS surface. For a Maya extrude node, which is the fi ber surface geometry 
node, the U-axis corresponds the circumferential direction and the V-axis to the lon-
gitudinal direction.  Normalized  parameters have fl oating point values between 0 and 1, 
meaning you can query any point on a surface using a vector whose components span 
the range 0–1. For example, the parameter vector   �  � 0�  , 0�.5 �  �  is a point on the fi ber 
surface seam (u � 0�) and half-way (v � 0�.5) along the length of the fi ber ( Figure 18.10   ). 
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 With the help of two key nodes, you can fi nd the world space location of a param-
eter vector on a given fi ber surface. In contrast to a procedure you might code your-
self, starting only from data on cell positions, sizes, and fi ber axes and diameters, 
the MEL code you ’ ll write to produce this essential information will be extremely 
concise. Th ese nodes are the  closestPointOnSurface  (cpos for short) node and the 
 pointOnSurfaceInfo  (posi for short) node that were created and connected to each 
of the extrude  (fiberSurface)  nodes in the previous project. cpos and posi are rep-
resented schematically in  Figure 18.10 .  Figure 18.11a and 11b    shows them represented in 
the Attribute Editor. cpos takes as input connections the name of a surface in your 
scene and an XYZ point in world space ( Figure 18.10 ). It returns the UV parameter 
values and the corresponding world space XYZ position lying on the input surface 
that is closest in distance to the input point. posi also takes a surface name as an 
input connection, along with U and V parameter values. It returns the world space 
position, the  unit surface normal  vector, and the tangent vectors of the input surface 
that correspond to the input UVs. 

y

v
x

Cell path

start

start

u

 FIGURE 18.09 

    When fi ber bundles are large 
relative to cells, fi bers can be 
treated as 2D surfaces that meander 
through 3D space. A displacement 
generated by a 2D random walk 
algorithm can therefore be mapped 
onto a 3D surface as shown here. 
Every step in the XY plane has a 
corresponding step in the UV space 
of the fi ber'  s surface.    

       Cell type   

 Lymphocyte  Fibroblast 

 Units  seconds  Seconds  Maya frames 

 Time interval  20  200  1 

 Persistence 
(state 0)  40  400  2 

 Persistence 
(states 1–4)  20  200  1 

TABLE 18.02

   Extrapolating data from a study of 
lymphocyte locomotion (Ref. 3) 
to slower-moving fi broblast cells, and 
the equivalent times in Maya frames.  
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 By describing the location of a cell in terms of the UV coordinates of the fi ber to 
which it ’ s  attached , you can query its world space position using the posi node and 
use that position to set the cell ’ s translate attributes so that it ’ s eff ectively  attached  
to the fi ber ( Figure 18.10 ). Th e surface normal vector at the point of attachment is used 
to determine the cell ’ s position perpendicular to the fi ber surface. When the cell 
changes position as a result of the random walk algorithm (Markov process) and con-
tact avoidance, the movement will be expressed as a change in the UV coordinates. 
Again, using the posi node, you will set the cell ’ s translate attributes so that the cell 
moves to the appropriate world space position. In the next section, you ’ ll see how to 
detect cell-fi ber contacts and execute fi ber transfers using the cpos node.  

  Haptotaxis 2: Transferring between fi bers 
 Th e cpos nodes in your scaff old model can be queried after each time increment to 
determine if a cell is in contact with any of the fi bers, that is other than the fi ber 
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    Parameters describe a point on 
the surface of a Maya object 

like the cylinder (fi berSurface) 
pictured here. The closest point 
on the fi berSurface to the cell'  s 
position is determined using the 

closestPointOnSurface (cpos) node. 
The world space (XYZ) position of 
the surface point is then given by 

the pointOnSurfaceInfo (posi) node 
and used to  " attach"   the cell to the 

surface.
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to which the cell is currently attached. Th e cell ’ s current translate X, Y, and Z values 
provide the input position for a given cpos node and the node returns the world space 
position of a point, the  return point , on the corresponding fi ber that is closer to the 
input than all other points on the fi ber. If the distance (a scalar value) between the 
input position and the return point is less than the cell ’ s contact radius, then the cell 
is in contact with the fi ber surface. Th e decision to transfer is determined probabalis-
tically by using Maya ’ s rand() function ( Figure 18.12   ). If the cell is in contact with more 
than one  new  fi ber, then the contact points on these fi bers are compared with one 
another based on the probability of choosing a contact point that lies in one direction 
relative to the cell, say positive Y, over a contact point in another direction. Once a 
cell has evaluated a potential transfer, it waits for a period of time (several frames at 
least) before checking again for a transfer. Th is prevents the cell from bouncing back 
and forth between two or more fi bers with which it ’ s in contact. 

 While we ’ re discussing surface coordinates as  two -element vectors (i.e.   �  u, v � ), it ’ s 
important to note that vector notation in Maya is always in the form of a  three -element 
vector (i.e.  �   x, y, z � ). If you enter two components for a vector, Maya will add a 
Z-element of zero value and return a three-element vector, as in the following example:

            vector $tmpVect = <<1, 2>>; 

  // Result: <<1, 2, 0� >> //          

 To avoid confusion and possible errors when building the script for this project, UV 
vectors are written as   �  u, v, 0 �  in the text.  

Chemotaxis: A directional bias 
 Setting the directional probabilities for the inter-fi ber transfer rules also lets you 
simulate the eff ects of a chemoattractant gradient. For example, suppose you want 
to simulate a gradient of chemoattractants that increases in strength in the positive 
X direction. When evaluating contacts with other fi bers, you could then set a high 
probability (say 0.9 out of 1) so your cell will transfer when in contact with a point on 

(a)

 FIGURE 18.11 

    The Attribute Editor displays input 
and return attributes of

(a) the closesPointOnSurface node 
and

(b) the pointOnSurfaceInfo node.      
(b)
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a fi ber that has an X-value greater than the cell ’ s  translateX  value. Conversely a prob-
ability of 0.1 for transferring in the opposite direction makes it very unlikely that 
cells will move to fi bers in the negative X-direction. In this project, you ’ ll simulate 
a chemoattractant gradient to infl uence migration in the positive Y-direction, in 
order to promote infi ltration of the scaff old by the cells which begin on its bottom (or 
inferior) surface. 

 Another way to eff ect chemoattraction in your model is to set the Markov state prob-
abilities so that with each random walk step the cells tend in the direction of increas-
ing chemoattractant concentration. We have not included such an eff ect in this 
project in order to keep the mathematics simple and the code concise. Nonetheless, 
we encourage you to explore the eff ects of biasing the Markov process one you have 
the basic model functioning.  

  Cell-cell signaling: Contact avoidance 
 For contact avoidance between cells you ’ ll re-employ the method used to keep your 
fi ber-axis seeds from colliding in the scaff old modeling algorithm. After every time 
increment, the world space position of each cell will be compared with that of every 
other cell in the scene. If the separation distance for a given pair of cells is less than 
a threshold value, an avoidance vector will be calculated and added to the UV fi ber 
surface position of the fi rst cell, eff ectively moving it away from its neighbor. To 
keep the calculations simple, the avoidance vector will eff ect a change in only the 
V-component of the cell ’ s position on its fi ber ( Figure 18.13   ). You can extend this method 
later, if you wish, to include the U-component as well. 

 Before a model cell ’ s MEL rules evaluate opportunities to transfer between fi bers, the 
results of the other migration events—random walk, collision avoidance, and boundary 
conditions—are summed in a vector called  $deltaUVs,  which represent both the 

New fiber

Contact
$rnd=rand(0,1)
if ($rnd<0.9)
{transfer}

Old fiber

 FIGURE 18.12 

    Regulating the probability of 
transferring between fi bers based 

on direction is one way to model the 
effect of a chemoattractant gradient. 

In this example, the cell has a 90% 
probability of transferring to a fi ber 

above it. The outcome is determined 
by drawing a random number ($rnd) 

and comparing it to the transfer 
probability.    
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cell ’ s current heading and its speed (displacement over one time step, or frame). 
Th e contribution of the random walk algorithm to  $deltaUVs  is a unit vector, hav-
ing a magnitude of 1        � m in this initial model no matter what its direction (refer back 
to  Figure 18.07 . So far we ’ ve been concerned only with which direction a cell chooses, 
but not the actual magnitude of its displacement per unit time. Likewise, the N  &  L 
process is concerned with direction and persistence, but not distance (explicitly). 
In your model, a 1        � m step in 200 seconds (see  Table 18.02 ) equates to an instantane-
ous cell speed of 0.3        � m/min, which is well within the observed range of speeds for 
fi broblast cells. However, given that your cell will not be in constant motion due 
to periods in state 0, its mean speed over the course of a simulation run is bound 
to be much slower than 0.3        � m/min. Multiplying the random walk unit vector 
 ($deltaUVs)  by a scaling factor  ($vScale)  lets you set the incremental displacement, 
which in eff ect is the instantaneous speed of the cells. By using a custom attribute on 
the control widget (which was used to make the scaff old geometry) to set  $vScale,  you 
can easily scale the incremental displacement of the Markov process in the Channel 
Box—even while the simulation runs. For starters you ’ ll set  $vScale  to a constant 
value but you can easily randomize it later on so that a cell moves at diff erent speeds 
throughout its journey. Determining the mean speed of a cell is a matter for statisti-
cal analysis of its entire trajectory over the course of the simulation.  

  Summing the parts 
  Figure 18.14    shows how the diff erent migration events work together to translocate a 
cell in one time increment. We ’ ve discussed methods for handling these events. 
Next you ’ ll organize those methods logically into expressions and procedures, and 
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    Cells avoid contact with one another 
by moving apart in the fi ber surface 
V direction when they ' re within a 
threshold distance of one another.    
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then encode them for Maya. Ultimately, you ’ re aiming for a cell migration simula-
tion that is entirely created and driven by MEL scripts. You fulfi lled the fi rst require-
ment by building the scaff old model entirely using MEL. Now it ’ s time to encode the 
migration model.   

  Methods: Encoding the algorithm 
 Since the state of each cell is to be updated at regular time increments, the update 
process—reading the current state of a cell and its surroundings, evaluating the 
rules, and then updating the cell state—is well suited to the expression structure in 
Maya. You saw a similar process at work in the previous chapter, where an expression 
named  moveSeeds  updated the position of one fi ber seed at a time. As well, the modu-
lar design, in which rules are parceled out as procedures to be called when needed 
by the main expression, makes for an extensible model that you can easily mod-
ify with additional procedures.  Figure 18.15    illustrates how you ’ ll implement the 
simulation model using expressions and procedures. If you wish to start using the 
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    The translocation of cell i in one 
time step is the result of up to four 

locomotion events (labeled A, B, C, 
and D) in sequence. When the time 

step increments, the four events 
are evaluated again, and so on. The 
effect of boundary conditions (C) is 
shown here for cell j, a neighbor of 

cell i.     



539CHAPTER 18: SCAFFOLD INVASIONS

end of 
playback

range?

createCells procedure
user inputs:
• cell count
• cell radius
• length of boundary zone 

(buffer)

resetCells expression

• return cells to their 
initial positions 

• initialize global variables

moveCells expression

• call rule 1
• call rule 2
• update the cell's position
• if the cell is has strayed out 

of the scaffold's active area, 
nudge it back inside

• call rule 3
• update the cell's position
• if recording the simulation for 

playback, keyframe the cell's 
position

rule 2
avoid contact with other 
cells

rule 1
random walk
(5 state Markov process)

rule 3
transfer from one fiber 
to another

yes

no

frame = 1
?

yes

no

Start

End  FIGURE 18.15 

    Flowchart for the cell migration 
model.



540 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

ready-made model, you can skip forward to the section entitled  Load the script fi les  
on page 568  . On the CD-ROM we ’ ve included a scene fi le containing the scaff old and 
cells along with the  resetCells  and  moveCells  expressions. You ’ ll need only to source 
the three-rule procedure fi les to begin the simulation.

           18_Cell_Migration/scenes/cellMigration.ma         

           18_Cell_Migration/MEL   /cRule1.mel  
      /cRule2.mel  
      /cRule3.mel          

 As in previous chapters, we recommend that you compose your MEL scripts in a text 
editor (other than Maya ’ s Script Editor), saving them periodically as you follow along 
with the instructions below. When you want to test bits of code in Maya, just copy 
and paste them from your text editor into Maya ’ s Script Editor (for procedures) or 
Expression Editor (for expressions). You will save each procedure and expression in a 
separate text fi le (e.g.  makeCells.mel ) within your Maya Scripts directory. 

  The makeCells() procedure 
 Th is procedure makes the cell objects and positions them randomly on the bottom 
surface of the scaff old. You may want to open your scaff old scene fi le in Maya in order 
to test and debug this procedure as you build it. A ready-made scene fi le is available 
on the CD-ROM:

           18_Cell_Migration/scenes/scaffold.ma          

 Some header information will be helpful when you refer back to this expression at a 
later date and to help others understand your code.

         /* Description: 
 This procedure makes nurbs spheres called cells and initializes 
their positions within a scene having a prebuilt NURBS fiber 
scaffold for the cells to migrate in. 

 The procedure arguments are as follows:

            $cellCount     The number of cells to be made.   
   $cellRadius     The radius, in micrometers, of each cell.   
   $buffer      The length, in Z, of the buffer zones used to 

contain the cells within the active area.       
 */ 

 global proc makeCells(float $cellCount, float $cellRadius, float
 $buffer) {       

 Next, declare and initialize the main variables. Th e global variables are ones that will 
be used by diff erent expressions and procedures in the simulation.

             /*****DECLARE THE VARIABLES*****/ 

   /*   
            $cubeSize     The length, in Z, of the active scaffold volume.       
     */ 
   global float $cubeSize; 

        A commented description of 
each variable will be given only 
the fi rst time it appears here in 

the text.      
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   /*   
            $cposNames[]     An array of closestPointOnSurface node names.   
   $posiNames[]     An array of pointOnSurfaceInfo node names.       
     */ 
   global string $cposNames[], $posiNames[]; 

   /*   
            $x, $y, $z     Vector components used to position the cell.   
   $dist     Used in detecting the closest fiber to the cell.   
   $shortestDist     Same as above.   
   $u, $v     Fiber surface parameter values.   
   $offsetDist      The distance each cell center is offset from its 

fiber.  
   $offset      The percentage of cell radius by which the cell 

center is offset from its fiber surface.       

     */ 
   float $x, $y, $z, $dist, $shortestDist, $u, $v, $offsetDist,
 $offset; 

   /*   
            $pos     A cell 's current position.   
   $cpos      The closestPointOnSurface position attribute

value.  
   $unitNorm     The unit surface normal vector.   
   $offsetVect      A vector used to offset the cell from the fiber 

surface.       
     */ 
   vector $pos, $cpos, $unitNorm, $offsetVect; 

  /*   
            $cellName     Used to name each cell.       
     */ 
   string $cellName; 

   /*   
            $fiberCount     The number of fibers in the scene.       
     $i, $j, and $k Counters. 
   */ 
   int $fiberCount, $i, $j, $k; 

   /***** INITIALIZE THE VARIABLES *****/ 

   $cubeSize =  '  getAttr widget.cubeSize '  ; 
   $buffer = 25; 
   $cposNames ='  ls -long  "cpos*"'  ;   
   $fiberCount = size($cposNames); 
   $posiNames = '  ls -l  "posi*"'  ;   
   $offset = '  getAttr widget.offset '  ; // A percentage of the cell
 radius.          

 As a precaution, delete the expressions from the scaff old model if they ’ re still in your scaf-
fold scene. If they ’ re left in the scene, they will interfere with the migration simulation.

             /***** MAIN BODY *****/ 
   // Delete resetSeeds and moveSeeds if they exist. 
   if (  '  objExists  "resetSeeds"  '  ) delete resetSeeds; 
   if (  '  objExists  "moveSeeds"  '  ) delete moveSeeds;          
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  Make the cells 
 Next you ’ ll make a for loop to create the cells. In the case of the fi rst cell you ’ ll use 
the sphere command with its default settings except for the radius. Here ’ s the fi rst 
part of the for loop.

             // Create the cells. 
   for ($i=0�; $i <$cellCount; $i++) {

    if ($i == 0�){

   $cellName =  "cell_" + $i; 

  // Create a nurbs sphere using default settings except
 for radius. 
 sphere -r $cellRadius -n $cellName;                

 Add three custom attributes to the cell to store its initial position, the index number 
of its initial fi ber (which is called  surfaceInit  and will be determined subsequently), 
and the index of its current fi ber, called  closestSurface . At the start of the simula-
tion (frame 1)  closestSurface  and  surfaceInit  are equal and will remain so until 
the cell transfers to another fi ber. Remember that when adding a vector attribute to 
a Maya node, you must explicitly add the vector elements (X, Y, and Z) using the par-
ent fl ag. Th e attributes  surfaceInit  and  closestSurface  are used to store integers and 
are therefore created with the  -attributeType  fl ag with a value of  long , which indicates 
a 32-bit integer. Using the surface index number will let you query any of the related 
nodes:  fiberSurface; closestPointOnSuface;  pointOnSurface Info;  or fiber Axis. 

                  // Add a custom attribute to store the cell 's initial 
   position. 
    addAttr -longName posInit -attributeType double3 
   $cellName; 
    addAttr -ln posInitX -at double -parent posInit $cellName; 
    addAttr -ln posInitY -at double -p posInit $cellName; 
    addAttr -ln posInitZ -at double -p posInit $cellName; 

    // Make posInit keyable. 
    setAttr -e -keyable true ($cellName +  ".posInit");
    setAttr -e -keyable true ($cellName +  ".posInitX");
    setAttr -e -keyable true ($cellName +  ".posInitY");
    setAttr -e -keyable true ($cellName +  ".posInitZ");

    // Add a custom attribute called surfaceInit. 
    addAttr -longName surfaceInit -attributeType long 
   $cellName; 
    setAttr -e -keyable true ($cellName +  ".surfaceInit");

    // Add a custom attribute called closestSurface. 
    addAttr -longName closestSurface -at long $cellName; 
    setAttr -e -keyable true ($cellName + ".closestSurface");     

   } // End if.          

 For subsequent cells, you ’ ll use the duplicate command, so that only one sphere shape 
node is added to your scene.

             else {
    $cellName =  "cell_" + $i; 
     duplicate cell_0�;    

   }          
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 Next you ’ ll position the cell in a plane on the bottom surface of the scaff old using the 
move command. Refer back to  Figure 18.05  for the size and location of the plane.

             // Position the cell. 
   $x = rand(0�, $cubeSize); 
   $y = 0�; // At the scaffold base. 
   $z = rand($buffer, $buffer + $cubeSize); 
   move $x $y $z $cellName; 
   $pos = <<$x, $y, $z>>;           

  Find the closest fi ber 
 Th e following code fi nds the closest point on all of the fi bers to the cell ’ s position. Th is 
is the fi rst instance where you ’ ll employ the  closestPointOnSurface  nodes. A  for  loop 
is used to narrow down candidates for closest point. Each time through the loop the 
distance  ($dist)  from the cell to the current fi ber ’ s closest point (stored in  $cpos ) is 
compared to the value of  $shortestDist . If  $dist  is less than  $shortestDist , then 
 $shortestDist  is assigned the value of  $dist  and the loop increments. Each time 
 $shortestDist  is updated,  $k stores the index number of the corresponding fi ber. At 
the end of the loop,  $k  will be the number assigned to the cell attributes  surfaceInit
and closestSurface .

             /* 
   Find the nearest fiber to the cell 's position. Set 
$shortestDist high      enough to include all of fibers in the 
first round of testing. 
   */ 
   $dist = 0�;
   $shortestDist = 10�0�0�0�;
   $k = 0�;

   for ($j = 0�; $j < $fiberCount; $j++) {

      // Get the closestPointOnSurface position for fiber $j. 
  setAttr ($cposNames[$j] + ".inPosition") -type double3 

    $x $y $z; 
    $cpos =  '  getAttr ($cposNames[$j] +  ".position")'  ; 

  $dist = mag($cpos - $pos); 

  // Is $dist the new $shortestDist? 
  if ($dist < $shortestDist) {

   // Fiber $j is currently the closest surface. 
    $closestSurface[$i] = $cposNames[$j]; 

 $shortestDist =   $dist; 

     // Store the closest fiber index in $k. 
 $k = $j;     

     }     
   } // End for loop. 
   // $k is the index for the closest fiber to cell $i.         

    Position the cell on the fi ber 
 Next, the cpos and posi nodes will be used together to fi nd the normal vector for the 
surface at the closest point to the cell. Th e cell will be positioned at the closest point 
and then off set from the fi ber using the normal vector and the $offset value.

             // Query the u and v surface coordinates from the cpos node. 
   $u =  ' getAttr ($cposNames[$k] +  ".parameterU") '  ; 
   $v =  ' getAttr ($cposNames[$k] +  ".parameterV") '  ;   

        Reminder: 

cpos  is our shorthand notation 
for a  closestPointOnSurface
node. Given an input XYZ 
position, cpos returns the point 
in 3D space closest to the input 
that also lies on the surface in 
question. 

posi  is our shorthand notation 
for a  pointOnSurfaceInfo  node. It 
takes the point returned by cpos 
and itself returns information 
(surface normal vector, and so 
on) about that point.      
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   // Input the parameters to the pointOnSurfaceInfo node. 
   setAttr ($posiNames[$k] +  ".parameterU") $u; 
   setAttr ($posiNames[$k] +  ".parameterV") $v; 

   // Query the surface normal vector. 
   $unitNorm =  ' getAttr ($posiNames[$k] +  ".normal") '  ; 

   // Calculate the magnitude of the offset. 
   $offsetDist = $offset/10�0� * $cellRadius;          

 A minimum value for off set, 0%, would see the cell center positioned  on  the fi ber sur-
face. A maximum value of 100% would place the cell center at a distance equal to its 
radius away from the fi ber surface ( Figure 18.16   ).  $offset  takes its value from the off set 
attribute of the control widget, which you ’ ll create later in this chapter.

             // Calculate the offset vector. 
   $offsetVect = $unitNorm * $offsetDist; 

   // Calculate the vector to position the cell. 
   $cpos =  '  getAttr ($cposNames[$k] +  ".position") '  ; 
   $pos = $cpos + $offsetVect;           

  Set the custom attributes 
 Here you ’ ll set the cell ’ s custom attributes which you ’ ll query during the simulation. 
Vector attributes must be set with the -type  double3 flag. 

                   // Set the cell 's attributes. 
      setAttr ($cellName + ".translate") -type double3 ($pos.x) 
 ($pos.y)     ($pos.z); 
     setAttr ($cellName + ".posInit") -type double3 ($pos.x) 
 ($pos.y)            ($pos.z); 

     setAttr ($cellName +  ".surfaceInit") $k; 
     setAttr ($cellName +  ".closestSurface") $k;     

offset A = 50% × DD

<u,v>

A

B

offset B = 0% × D
 FIGURE 18.16 

    Offsetting the cell center from the 
fi ber surface approximates cell 

spreading. The more a cell spreads 
on the surface, the shorter its reach 

perpendicular to the surface and 
therefore, the less likely it is to 

contact other fi bers by chance. In 
this example, cell A has an offset 

equal to 50% of its diameter. Cell B 
is fully spread on the fi ber, with an 

offset of 0.    
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  } // End the cell loop. 

   } // End procedure 

   // Print command line instructions for the user. 
   print  "Call the procedure: makeCells(10�, 5, 25) ";          

  Save your fi le 
 Save your procedure as a fi le in your Maya Scripts directory. 

    1.      Query Maya ’ s search path for the Scripts directory using the internalVar com-
mand. Enter the following in the Script Editor:

     internalVar -userScriptDir   

   In Windows, it will return a path such as:  

    /Users/yourName/Library/Preferences/Autodesk/maya/8.0�/scripts/

  2.     Save your fi le under the name  makeCells.mel .

  The resetCells expression 
 You made an expression similar to this one in each of the previous two chapters. Its 
purpose here is to declare and initialize global variables, return cells to their starting 
positions, and to reset the cells ’   closestSurface  attributes. Once again, we ’ ll recom-
mend building the expression as it appears here rather than as one long string follow-
ing the expression MEL command. If you prefer to do the latter, remember to escape all 
quotation marks and line breaks with the backward slash character,  “  \ ” . Because this 
expression is to execute only at frame 1, it starts with a conditional time check. Th e 
 currentTime  command returns the same value as would a query of the global variable 
 frame .

             /* Description: 
   This is an animation expression that initializes global variables 
and resets cells to their starting positions. 
   */ 

   if ( '  currentTime -query '   == 1) {

      /***** DECLARE THE VARIABLES *****/ 

     /*      
            $sProb[5][5]      The state change probability matrix for the 

5-state Markov process.       
           */ 
     global matrix $sProb[5][5]; 

     /*      
            $cellPos[]     An array of current cell positions.   
   $UVs[]      The current surface parameter position (UV) of 

every cell.   
   $deltaUVs[]      The last step taken by each cell in UV surface 

coordinates.       
           */ 
     global vector, $cellPos[], $UVs[], $deltaUVs[]; 

        Unlike an array, whose length 
(the number of elements it 
contains) can be set to different 
values, a matrix must be declared 
with an explicit length and width 
which cannot change once 
declared.      
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     /*      
            $cellNames[]     A list of cell names.   
         $surfaceNames[]     A list of scaffold fibers.   
$cpos Names[]       A list of closestPointOnSurface node names.
   $posiNames[]     A list of pointOnSurfaceInfo node names.       
           */ 
      global string $cell Names[], $surfaceNames[], $cposNames[],
 $posiNames[]; 

     /* 
     $cDiameter Cell diameter.      
            $probUp      The probability that a cell will transfer to 

a fiber above it.   
$minBound        The lower Z-coordinate value of the migration 

boundary.
   $maxBound      The upper Z-coordinate value of the migration 

boundary.       
           */ 
     global float $cDiameter, $probUp, $minBound, $maxBound; 

     /*      
            $cellCount     The number of cells in the scene.   
$crntState[]       The current Markov state for every cell.
$persist[]       The persistence time in the current state.
   $transWait[]      The frame numbers at which corresponding 

cells will once again checking for a possible 
fiber transfer.       

           */ 
     global int $cellCount, $crntState[], $persist[], $transWait[]; 

     /*      
            $cellPosName      The current closestPointOnSurface node name.      
           */ 
     string $cellPosName; 

     /*      
            $pos      Used to store single vectors from $cellPos[].       
           */ 
     vector $pos; 

     /*      
            $closest      The number of the fiber to which the current 

cell is attached.   
   $i and $k     Counters.       
           */ 
     int $closest, $i, $k; 
     float $u, $v; 

     /***** INITIALIZE THE VARIABLES *****/ 

     clear ($cellPos); 
     clear ($crntState); 
     clear ($persist); 
     clear ($transWait); 
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     clear ($UVs); 
     clear ($deltaUVs); 
     $cellNames =  '  ls -transforms  "cell*"  '      ; 
     $cellCount =  ' size $cellNames  '      ; 
     $surfaceNames =  '  ls -transforms  "fiberSurface*"  '      ; 
     $cposNames =  '  ls -long  "cpos*"  '      ; 
     $posiNames =  '  ls -long  "posi*" '      ;   
     $minBound = 25;    
     $maxBound = $minBound  + '  getAttr widget.cubeSize '  ; 
     $cDiameter =  '  getAttr widget.cDiameter  '  ;            

   The state change probability matrix 
 Th e state probability matrix regulates the directional choices in each cell ’ s random 
walk. You ’ ll initialize this matrix (represented by the variable  $sProb ) with values 
similar to those recorded by Noble and Levine 2  but with less weighting on the 0 state. 
Less time spent in state 0 means more time spent migrating, which allows you to see 
more movement in the model. Naturally the cells will travel farther in the scaff old 
over the course of a simulation if they spent less time standing still! Nonetheless, 
waiting time (time spent in state 0) is a natural component of cell migration and 
therefore one we chose to include in this version of the model.  Table 18.03    shows the 
$sProb values in tabular form so that you can see how the columns and rows relate to 
the matrix notation below.

             // Initialize the markov process state change probability matrix. 
   $sProb = <<0�, 0�.25, 0�.25, 0�.25, 0�.25; 0�.7, 0�, 0�.10�, 0�.10�, 0�.10�;      
 0�.7, 0�  .10�, 0�, 0�.10�, 0�.10�; 0�.7, 0�.10�, 0�.10�, 0�, 0�.10�; 0�.7, 0�.10�,
 0�.10�, 0�.10�, 0�>>;          

  The chemoattractant 
 Th e probability value stored in $probUp is the analog of a chemoattractant gradient 
along the world space Y-axis. A $probUp value of 0 equates to no attraction. A value 
of 1 equates to a strong attraction. $probUp will be used in cRule 3 to evaluate fi ber 
transferring.

             // Set the chemotactic bias. 
   $probUp =  0�.9;          

 State  0  1  2  3  4 

 0  0  0.7  0.7  0.7  0.7 

 1  0.25  0  0.1  0.1  0.1 

 2  0.25  0.1  0  0.1  0.1 

 3  0.25  0.1  0.1  0  0.1 

 4  0.25  0.1  0.1  0.1  0 

TABLE 18.03

   The state change probability matrix, 
$sProb, for the 5 state Markov 
process.
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  Reset the cell ’ s position and update its attributes 
 Th e for loop will cycle through the following set of instructions for each of the cells. 
$cCount stores the total number of cells in you scene.

             /***** MAIN BODY *****/ 

   for ($i=  0� ; $i < $cellCount; $i++) {

      // Set the cell to its initial position using its posInit 
 attribute. 

    $pos =  '  getAttr ($cellNames[$i] +  ".posInit") '  ;   
    setAttr ($cellNames[$i] + ".translate") -type double3 ($pos.x)       
     ($pos.y) ($pos.z); 

    // Set keys to record cell position. 
    setKeyframe -at "translateX" $cellNames[$i]; 
    setKeyframe -at "translateY" $cellNames[$i]; 
    setKeyframe -at "translateZ" $cellNames[$i]; 

    // Get the index number of the cell 's initial surface. 
    $closest =   '   getAttr ($cellNames[$i] + ".surfaceInit ")'  ; 
    $cellPosName = $cposNames[$closest]; 

    // Get the initial surface uv values. 
    setAttr ($cellPosName + ".inPosition") -type double3 ($pos.x)
       ($pos.y) ($pos.z); 
    $u =   '   getAttr ($cellPosName + ".parameterU ")'  ; 
    $v =   '   getAttr ($cellPosName + ".parameterV ")'  ; 

    // Initialize the global arrays. 
    $cellPos[$i] = $pos; 
    $UVs[$i] = <<$u, $v, 0� >>; 

    // Set the cell 's closestSurface attribute. 
    setAttr ($cellNames[$i] + ".closestSurface") $closest;     
   } 

   // Select the widget so the model parameters appear in the
 channel box. 
   select widget; 

   } // End expression.           

  Save your fi le 
 In its present form this expression cannot be sourced like a MEL script. Instead, you 
will copy and paste it into Maya ’ s Expression Editor. For this reason we recommend 
not using the .mel fi le extension in order to avoid confusion with fi les that qualify 
as stand-alone MEL scripts. Save resetCells in a plain text fi le called resetCells.txt 
within your Maya Scripts directory.   

  The moveCells() expression 
 Th is expression is the workhorse of the model. It calls the migration rule procedures 
and updates the state of each cell—UV and world space positions and the current fi ber 
surface to which the cell is attached—each time the Maya scene enters a new frame.
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             /* Description: 
   This is an animation expression that updates cell positions using 
vectors $v1, $v2, and $v3. The vectors are derived from the rule 
procedures cRule1, cRule2, and cRule3. 
   */ 

   // Execute this expression only if the frame is greater than 1. 
   if (  ' currentTime -query  '   > 1) { 

   /***** DECLARE THE VARIABLES *****/ 

   global vector $cellPos[], $UVs[], $deltaUVs[]; 
   global string $cellNames[]; 
   global float $cDiameter, $minBound, $maxBound; 

   /* 
   $frameCheckUsed to send the current frame number to the rule
 procedures. 
   */ 
   global int $frameCheck, $cellCount, $transWait[]; 

   /*   
  $surfacePos  The point of cell attachment on a fiber surface. 
  $unitNorm  The unit vector of the surface normal at the 

point of attachment. 
  $v1  The vector returned from the random walk 

procedure, rule1(). 

  $v2  The vector returned from the contact avoidance 
procedure, rule2(). 

  $uvVect  The UV coordinates of the current cell. 
  $newPos  The cell ’s new position after all three rules 

and boundary conditions have been accounted for. 

          */ 
    vector $surfacePos, $unitNorm, $v1, $v2, $uvVect, $newPos; 

    /*      
$posiName    The current pointOnSurfaceInfo node.
$surfaceName    The current fiber surface.
$v3[]    The array array returned by the fiber transfer 

procedure, rule3().
         */ 
    string $posiName, $surfaceName, $v3[]; 

    /*      
$vScale    Scales the cell ’s random walk step size.
$bound    U parameter element of the vector used to nudge 

cells back into the active region of the scaffold.

          */ 
    float $vScale, $bound, $cRadius, $u, $v, $offset, $offsetDist; 
    int $closest, $i;             

 Multiplying the cell migration unit vector  $deltaUVs  by the scaling factor  $vScale  
lets you set the incremental displacement, which in eff ect is the instantaneous speed of 
the cells.

        Remember that a global variable 
must be declared within each 
expression or procedure that 
uses it.      
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             /***** INITIALIZE THE VARIABLES *****/ 

   $vScale =    '   getAttr widget.vScale    '   ; 
   $offset =    '   getAttr widget.offset    '   ; 
   $cRadius = $cDiameter/2; 
   $frameCheck = frame; 
   $buffer = 25; 
   $bound = 0�;        

   Begin the main loop 
 Th e following code increments once for every cell in the population.

             /***** MAIN BODY *****/ 

   for ($i=0�; $i < $cellCount; $i++) {

       // Get the pointOnSurfaceInfo (posi) and extrude (surface)
 node names. 
      $closest =    '   getAttr ($cellNames[$i] +  ".closestSurface")  '   ;
 // e.g.  "12".
     $posiName = $posiNames[$closest]; // e.g.  "posi6_12".
      $surfaceName = $surfaceNames[$closest]; // e.g.
 fiberSurface6_12.              

  Invoke the fi rst two rules of behavior 
 Continuing on in the main program loop, you ’ ll now call rules 1 and 2 to calculate the 
results of the Markov process and contact avoidance, respectively.

             /***** RULE 1 *****/ 
   $v1 = (cRule1($i, $vScale, $surfaceName)); 
   // cRule1 returns the uv coordinates of the random walk step. 

   /***** RULE 2 *****/ 
   $v2 = (cRule2($i, $vScale, $surfaceName)); 
   /* $cRule2 returns the V-component of the unit contact 
avoidance vector, multiplied by scaling factor $vScale. */          

 Next, you ’ ll update the vector array  $deltaUVs[]  with the cell displacement as a result 
of rules 1 and 2. Let contact avoidance override the random walk. In other words, if the 
current cell is too close to another cell, its avoidance step (along the fi ber ’ s long axis) will 
override the V-component of its random walk. Th is prevents the cell from stepping away 
from its neighbor, only to step back toward it with a random walk step. Likewise, the cell 
will not take a double step if avoidance and the random walk are in the same direction.

             // Update the $deltaUVs array with the results of rules 1
 and 2. 
   if ($v2.y != 0�) { 

   /* The V-component of avoidance is non-zero, therefore 
the cell displacement will consist of the U-component of 
$v1 and the V-component of $v2. Because surface vectors 
are 2D, the third (Z) component in $uvVect will be 0�. */ 
   $uvVect = <<$v1.x, $v2.y, 0� >>;
   $deltaUVs[$i] = <<$v1.x, $v2.y, 0� >>;

   } 
   else { 

    // There is no collision avoidance vector ($v2 = <<0�,
 0�, 0� >>). 
   $deltaUVs[$i] = $v1; 

   } 

        Reminder: U and V surface 
components are represented 

by .x and .y components, 
respectively, in vector notation. 

There is no third component 
in UV space, so the .z vector 

component is given a default 
value of 0.      
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   // Add $deltaUVs[$i] to the cell 's current position on the
 fiber surface. 
   $UVs[$i] += $deltaUVs[$i]; 

   // Query the UV position for cell $i. 
   $uvVect = $UVs[$i];          

 Because fi ber parameter values are normalized (spanning zero to one) you must 
adjust U-values that would otherwise move the cell past the fi ber U-origin. For exam-
ple, a U-value of 1.25 must be adjusted to 0.25 ( Figure 18.17   ). In normalized parameter 
space, values above 1 and below 0 are taken to be 1 and 0, respectively.

             // Correct for circumferencial movement past the U-origin. 
   $u = $uvVect.x; 
   if ($u > 1) $u = $u - 1; 
   else if ($u < 0�) $u = $u + 1;         

    Evaluate the boundary conditions 
 Now fi nd out where the cell ’ s new surface position lies in world space in order to test 
if the cell has stepped out of the imaginary bounding box shown in  Figure 18.05 .

             // Get the worldspace coordinates of the attachment point. 
   setAttr ($posiName +  ".parameterU") ($uvVect.x); 
   setAttr ($posiName +  ".parameterV") ($uvVect.y); 
   $surfacePos = ' getAttr ($posiName +  ".position") ' ; 
   // This is the temporary new position of the cell. 

   /***** BOUNDARY CONDITIONS *****/ 

   if ($surfacePos.z < $minBound || $surfacePos.z > $maxBound) { 

   // Get the length of the cell 's fiber. 
   $length =  '  getAttr ($surfaceName +  ".length")  ' ;   

   /* Calculate the step size in uv parameter space for a 
step back in the migration boundary. $bound will be double 
the random walk step size in order to not only halt the 
cell's progress outside of the box, but reverse it.*/ 
   $bound = 1.5 * $vScale / $length; 

        The   ||     operator stands for the 
logical  " or " .      

NURBS
seam

u = 0.25

u = 0.25

u = 1.25

u = 0, 1

 FIGURE 18.17 

    The seam of a NURBS object is both 
the origin and terminus of the U-axis. 
When a U-value is less than 0 or 
greater than 1, it must be normalized 
to a value that corresponds to an 
equivalent circumferential position 
on the fi ber. In this example the 
U-value is 1.25. Its normalized 
equivalent value is 0.25.    
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   // For a negative step. 
   if ($surfacePos.z > $maxBound) $bound = -$bound; 
   // Else, $bound will remain positive. 

   // Update the $v component of $deltaUVs[$i]. 
   $deltaUVs[$i] += << 0�, $bound, 0� >>; 
   // The u value (X-component of the vector) remains
 unchanged. 

   // Update $UVs[$i] and store it in a vector. 
   $UVs[$i] += << 0�, $bound, 0� >>; 
   $uvVect = $UVs[$i]; 

   // Get the worldspace coordinates the attachment point. 
   setAttr ($posiName +  ".parameterU") ($uvVect.x); 
   setAttr ($posiName +  ".parameterV") ($uvVect.y); 
   $surfacePos =    '   getAttr ($posiName +  ".position")'  ; 

   }         

    The temporary world space position 
 Before calling  cRule3  for fi ber transferring, we ’ ll update the world space cell position 
stored in  $cellPos[$i]  without actually moving the cell. You will move the cell after 
evaluating fi ber transfers.

             // Get the surface normal vector using posi. 

   $unitNorm =    '   getAttr ($posiName +  " .normal ")'  ; 

   // Determine the cell/fiber offset. 
   float $tmpFloat = $offset/10�0� * $cRadius; 
   $offsetVect = $unitNorm * $tmpFloat; 

   // Set the new cell position, offset from the new surface 
 position. 
   $cellPos[$i] = $surfacePos + $offsetVect; 
   // This is the new position of the cell unless it tranfers
 fibers.           

  Invoke the third rule of behavior 
 Now check to see the cell has an opportunity to transfer from its current fi ber to a 
new one, given its new world space position,  $cellPos[$i] . Th e condition for calling 
the  cRule3  procedure is that the cell ’ s $transWait time has expired and it is therefore 
free to check for potential transfers. After evaluating  cRule3 , a new  $transWait[$i]  is 
set within the procedure.

             /***** RULE 3 ***** 
   Call the fiber transfer procedure, rule 3, only if the 
cell has waited      long enough since it last checked for a 
transfer.
   */ 
   if (frame > $transWait[$i]) {

      $v3 = (cRule3($i)); 
     /* 
     cRule3 returns the array: 
      { "yes or no ", "closestSurface", "<<$x, $y, $z>> ",
"<<$u, $y, 0� >>"}.

      If no transition occurs, cRule3 will return  "no" and
 null values for $closestSurface and the two vectors.       
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           */ 
     if ($v3[0�] == "yes") { // A transfer has occurred.

     // Update variables with the new information from 
 rule3. 

   // The fiber 's number: 
   $closest = (int) $v3[1]; 

   // Update the cell 's closestSurface attribute. 
   setAttr ($cellNames[$i] + ".closestSurface") $closest; 

   // The cell attachment position in world space: 
   $surfacePos = $v3[2]; 
   // The cell attachment position in uv space: 
   $UVs[$i] = $v3[3]; 

   // Get the new posi node. 
   $posiName = $posiNames[$closest]; 

   // Get the surface normal vector using posi. 
   $uvVect = $UVs[$i]; 
   setAttr ($posiName +  ".parameterU") ($uvVect.x); 
   setAttr ($posiName +  ".parameterV") ($uvVect.y); 
   $unitNorm =    '   getAttr ($posiName +  ".normal") '  ;   

   // Determine the cell/fiber offset. 
   $offsetDist = $offset/10�0� * $cRadius; 
   $offsetVect = $unitNorm * $offsetDist; 

   // Set the new cell position. 
   $cellPos[$i] = $v3[2]  + $offsetVect;        

   } // End if ($v3[0�] == "yes").

      } // End if (frame > $transWait[$i]).              

  Move the cell into position 
 Until now, the expression has dealt with position data stored in attributes and arrays, 
but has not physically moved the cell within the scaff old—i.e. Maya ’ s scene graph has 
not changed. Use the familiar  setAttr  command to set the cell ’ s transform attributes 
and thereby place it where it belongs in world space.

             // Set the cell 's attributes. 
   $newPos = $cellPos[$i]; 
   setAttr ($cellNames[$i] +  " .translate " ) -type double3
 ($newPos.x) ($newPos.y) ($newPos.z);           

  Keyframe the cell ’ s position 
 Th e following lines set keyframes for the cell ’ s translate attributes. Th e code is com-
mented out (using the  “ // ”  notation) for now. When your model is functioning to your 
satisfaction and you wish to make a record of a simulation, remove the comments.

               /*  Set keys to record cell position. Remove the forward 
slashes to make these commands active. */ 

    // setKeyframe -at translateX $cellNames[$i]; 
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    // setKeyframe -at translateY $cellNames[$i]; 
    // setKeyframe -at translateZ $cellNames[$i];     

     } // End the main loop.     
   } // End the expression.           

  Save your fi le 
 Save  moveCells  in a plain text fi le called mov eCells. txt within your Maya Scripts 
directory. Next, you ’ ll compose the three-rule procedures.   

cRule1(): The random walk 
 Th is procedure returns a vector in UV space—the result of the 5-state Markov 
process—and calculates the persistence time until the next state change. Th e state 
change probabilities are defi ned by the  $sProb  matrix in the expression called  reset-
Cells.  Th is procedure takes three arguments: the current cell index,  $i;  the fl oat 
 $vScale , which is used to scale the magnitude of the random walk step size; and the 
name of the surface,  $surfaceName,  to which cell $i is currently attached.

             /* Description: 
   This procedure calculates a random walk based on a 5-state 
Markov process and corresponding in-state waiting times. 

   The procedure arguments are as follows:   
$i    The index number of the current cell.
$vScale    Scales the cell 's random walk step size.
$surfaceName    The surface to which the current cell is 

attached.
     */ 

   global proc vector cRule1 (int $i, float $vScale, string
 $surfaceName) {

      /***** DECLARE THE VARIABLES *****/ 

    global matrix $sProb[5][5]; 
    global vector $UVs[], $deltaUVs[]; 
    global int $crntState[], $frameCheck, $persist[]; 

    /*      
$states[]    The unit vector equivalents of the 5 Markov 

states.
          */ 
    vector $states[], $surfacePos, $v1; 

    /*      
$length    The length of the fiber, $surfaceName.
$pi    The ratio of the circumference of a circle to 

its diameter.
$fDiameter    The diameter of the fiber $surfaceNam  e.
$u and $v    The cell 's stepwise displacements in UV 

parameter space.
$rnd    A number returned by Maya 's rand() function.
$pAvg    The average persistence time in frames.
$tau    The new persistence time calculated using the 

Gillespie equation.
          */ 
    float $length, $pi, $fDiameter, $u, $v, $rnd, $pAvg, $tau; 
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    /***** INITIALIZE THE VARIABLES *****/ 

     $states = {<<0�,0�,0� >>, <<0�,1,0� >>, <<1,0�,0� >>, <<0�,-1,0� >>, 
 <<-1,0�,0� >>}; 

    $length =  ' getAttr ($surfaceName +  ".length")'  ; 
    $fDiameter =  '  getAttr ($surfaceName +  ".diameter") '  ;   
    $pi = 3.14159;             

  State change probabilities 
 In this next section, you ’ ll simulate a random draw from a probability distribution and 
use it to determine the new state of the cell. Because the probabilities vary depending 
on which state the cell is currently in, a separate conditional (if) statement will handle 
the evaluation for each of the fi ve states. Enable the probability as follows: draw a pseu-
dorandom number on the unit interval (i.e. between 0 and 1) using MEL ’ s rand() func-
tion and compare it with the probability for each state ( Figure 18.18   ). To conserve space, 
we have listed the conditional statements for states 0, 1, and 2 below. By applying the 
logic outlined in  Figure 18.18 , you can write the code for the remaining three states.

             /***** MAIN BODY *****/ 

   /* Determine the new state of the cell by comparing the 
random number, $rnd with the state change probability matrix 
$sProb[5][5] that was initialized in moveseeds. */ 

   if ($persist[$i] <= $frameCheck) { // time to pick a new state.

       // Pick a pseudorandom number on the unit interval (0� to 1). 
     $rnd = rand(0�,1);

    // STATE 0�.
    if ($crntState[$i] == 0�) {       

         // Pick any of states 1 through 4. 

     if (($rnd > 0�) & &  ($rnd <= $sProb[0�][1])) {     
  // Pick state 1. 
  $crntState[$i] = 1; $v1 = $states[1];

State change probabilities 
for a cell in State 2

$sProb0[0] = 0.7
$sProb1[0] = 0.1
$sProb3[0] = 0.1
$sProb4[0] = 0.1
___________

Total = 1.0

Pseudorandom number 
generator

$rnd = rand(0, 1)
e.g. $rnd = 0.784...

0 0.7 0.8 0.9 1.0

State 0 (s0) s1 s3 s4

 FIGURE 18.18 

    The unit interval is broken into 
segments that refl ect the state 
change probabilities (shown here for 
a current cell waking state 
of 2). The segment into which the 
pseudorandom number, $rnd, falls 
determines which new state the cell 
chooses—state 1 in this example.    

        Because the algorithm of 
rand() and functions like it do 
not perfectly reproduce all the 
properties of randomness, the 
numbers they generate often are 
called  pseudorandom numbers
instead of random numbers.      
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       } 

      else if (($rnd > $sProb[0�][1]) & &  ($rnd <= ($sProb[1][0�]     +  
  $sProb[0�][2]))) {     
    // Pick state 2. 
    $crntState[$i] = 2; $v1 = $states[2];
     }
      else if (($rnd > ($sProb[0�][1] + $sProb[0�][2])) & &  ($rnd <=       
       (1 - $sProb[0�][4]))) {     
    // Pick state 3. 
    $crntState[$i] = 3; $v1 = $states[3];
     }
      else if (($rnd > (1 - $sProb[0�][4])) & &  ($rnd <= 1)) {     
    // Pick state 4. 
    $crntState[$i] = 4; $v1 = $states[4];
     }     
   }    

     // STATE 1. 
   else if ($crntState[$i] == 1) {

     // Pick one of states 0�, 2, 3, OR 4. 

    if (($rnd > 0�) & &  ($rnd <= $sProb[1][0�])) { 
    // Pick state 0�.
    $crntState[$i] = 0�; $v1 = $states[0�];
    } 
   else if (($rnd > $sProb[1][0�]) & &  ($rnd <= ($sProb[1][0�]          + 
  $sProb[1][2]))) { 
    // Pick state 2. 
    $crntState[$i] = 2; $v1 = $states[2]; 
    } 
    else if (($rnd > ($sProb[1][0�] + $sProb[1][2])) & &  ($rnd <=       
       (1 - $sProb[1][4]))) { 
    // Pick state 3. 
    $crntState[$i] = 3; $v1 = $states[3]; 
    } 
    else if (($rnd > (1 - $sProb[1][4]))  & &  ($rnd <= 1)) {   

 // Pick state 4. 
    $crntState[$i] = 4; $v1 = $states[4]; 
    }     
   }    

     // STATE 2. 
   else if ($crntState[$i] ==  2) {

     // Pick one of states 0�, 1, 3, OR 4. 

    if (($rnd > 0�) & &  ($rnd <= $sProb[2][0�])) { 
    // Pick state 0�.
   $crntState[$i] = 0�; $v1 = $states[0�];
    } 
    else if (($rnd > $sProb[2][0�]) & &  ($rnd <= ($sProb[2][0�] +      
   $sProb[2][1]))) { 
    // Pick state 1. 
    $crntState[$i] = 1; $v1 = $states[1]; 
    } 
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    else if (($rnd > ($sProb[2][0�] + $sProb[2][1])) & &  ($rnd <=       
       (1 - $sProb[2][4]))) { 
   // Pick state 3. 
  $crntState[$i] = 3; $v1 = $states[3]; 
    } 
    else if (($rnd > (1 - $sProb[2][4]))  & &  ($rnd <= 1)) {    
  // Pick state 4. 
    $crntState[$i] = 4; $v1 = $states[4]; 
    }     
   }          

 Remember to complete the code for current states 3 and 4! All states are represented 
in fi nished fi le on the CD-ROM:

18_Cell_Migration/MEL/cRule1.mel         

    Persistence time 
 Next you ’ ll calculate the time,  $persist[$i],  that the cell will persist in its new state, 
via Daniel Gillespie ’ s formulation described on page 530  . Run many times, the formula 
will return values, $tau, distributed exponentially about the average persistence 
time,  $pAvg  for each cell state. You will store  $pAvg  values within attributes of the con-
trol widget later in the chapter.

             // Calculate the persistence time. 
   $rnd = rand(0�,1);

   if ($crntState[$i] == 0�) { // State 0�.

     $pAvg =    '   getAttr widget.persistState0�    '   ; 
    $tau = $pAvg*log(1/$rnd);     
   } 
   else if ($crntState[$i] == 1 || $crntState[$i] == 3) { // State 
 1 or 3
     $pAvg =    '   getAttr widget.persistState13    '   ; 
    $tau = ($pAvg)*log(1/$rnd);     
   } 
   else { // State 2 or 4.
     $pAvg =    '   getAttr widget.persistState24    '   ; 
    $tau = ($pAvg)*log(1/$rnd);     
   }          

 Th e new  $persist[$i]  is determined by adding  $tau  to the current frame number 
which is stored in the global variable  $frameCheck . Th e ceil function return the next 
highest integer to the value of  $tau. $persist[]  is a global variable; the value assigned 
to it here is available the next time cell this procedure is called from the moveCells 
expression.

             $persist[$i] = $frameCheck + ceil($tau);           

  The return value 
 Th e state vector  $v1  must be converted from a unit vector (i.e. of magnitude 1) to a 
vector in fi ber parameter space. Th e parameter U-component is calculated by dividing 
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the unit vector U-component  ($v1.x)  by the fi ber circumference ($pi × $fDiameter). 
Th e parameter V-component is calculated by dividing the unit vector V-component 
 ($v1.y)  by the fi ber length  ($length). 

                    // Calulate the random walk vector. 

      // Convert the return vector to parameter space. 
      $u = (1 / ($pi * $fDiameter)) * $v1.x; 
      $v = (1 / $length) * $v1.y; 

      // Scale $v1 by the magnitude $vScale. 
      $v1 = $vScale * << $u, $v, 0� >>;     

   } // End if ($persist[$i] <= $frameCheck).          

 If the cell did not transfer fi bers, it will persist on its current heading which is stored 
in  $deltaUVs 

                  else $v1 = $deltaUVs[$i]; // The cell continues in its previous 
 state. 

   // Return the random walk vector to the moveCells expression. 
   return $v1; 

   } // End cRule1 procedure.           

  Save your fi le 
 Save  cRule1()  in a fi le called  cRule1.mel  within your Maya Scripts directory.   

  cRule2(): Contact avoidance 
 Th is procedure embodies the cell-cell signaling component of the model. It returns a 
vector that is used in the main  moveCells  expression to nudge the current cell away 
from neighbors that are too close according to a threshold value you ’ ll set below.

             /* Description: 
   This procedure moves the current cell $i away from a neighboring 
cell if the two are within a threshold distance of one another. 
   The procedure arguments are the same as those used in cRule1(). 
   */ 

   global proc vector cRule2 (int $i, float $vScale, string
 $surfaceName) {

     /***** DECLARE THE VARIABLES *****/ 

    global vector $cellPos[]; 
    global string $cellNames[]; 
    global float $cDiameter; 
    global int $cellCount; 

    /*      
$separation    The vector separating the cell centers.
$totalSep    The total of the separation vectors for all 

neighbors too close to cell $i.
$unitSep    The unit vector of $totalSep.
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          */ 
    vector $neighborPos, $separation, $totalSep, $unitSep, $v2; 

    /*      
$dist    The magnitude of $separation.
$contactRange    The tolerable distance between cells.
$v    The V component of the return vector, $v2.

          */ 
    float $dist, $contactRange, $v, $length; 

    /*      
$name    An index used to increment through the cell 

name array, $cellNames[].

          */ 
    string $name; 

    /*      
$j    The index number of the neighboring cell.

          */ 
    int $j; 

    /***** INITIALIZE THE VARIABLES *****/ 

    $dist = 0�;

     $contactRange =    '   getAttr widget.contactRange   '    / 10�0� *
 $cDiameter; 

    $totalSep = <<0�, 0�, 0�>>;

    $length =    '   getAttr ($surfaceName +  " .length ")   '   ; 
    $v2 = << 0�, 0�, 0� >>; 
    $j = 0�;            

  Main loop 
 A for loop is used to increment through the cell population.

             /***** MAIN BODY *****/ 

   for ($j = 0�; $j < $cellCount; $j++) {

     // Test all but the current cell. 
    if ($j != $i) {

     $separation =   $cellPos[$i] - $cellPos[$j]; 
    $dist = mag($separation); 

    // Are the cells too close to one another? 
    if ($dist < $contactRange) {

    // cell $j is too close to cell $i. 
   $totalSep += $separation;           
     }
     }     
   } // End the cell name loop.           



560 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

  The return value 
 Th e return vector is the Z-component of the unit total separation vector,  $unitSep.  
Multiplying  $unitSep.z by $vScale  scales the return value in terms of the univer-
sal step size for the simulation. Dividing the scaled  $unitSep.z  by the fi ber length 
 ($length)  converts it to a parameter value in fi ber surface UV space.

                     // Calculate the contact avoidance vector. 
   if ($totalSep.z  < 0�) $v = -1; 
   else if ($totalSep.z > 0�) $v = 1; 
   $v = $vScale * $v / $length; 
   $v2 = << 0�, $v, 0� >>; 

   // Return the contact avoidance vector to the moveCells
 expression. 
   return $v2; 

   } // End procedure.          

 Without too much trouble, you can repurpose this procedure to get cells to move 
toward one another or to follow certain  “ leaders ”  based on their positions within the 
scaff old.  

  Save your fi le 
 Save  cRule2()  in a fi le called  cRule2.mel  within your Maya Scripts directory.   

 FIGURE 18.19 

    When the matrix is hidden, cell 
trajectories show clearly where 
cells have transferred between 

fi bers. You can apply the technique 
described in Chapter 13 to generate 

trajectory paths using Maya Paint 
Effects.
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        While variables can be defi ned 
as vector arrays in Maya (e.g. 
vector $myVect[];), the same is 
not true for procedures. 
A procedure cannot return a 
vector array. It can, however, 
return a string array, which is a 
convenient way to return several 
values from a single procedure to 
the script that called it.      

  cRule3(): Transferring between fi bers 
 Unlike the previous two procedures, this one returns a string array. Th e fi rst element 
of the array will be either  “ yes ”  or  “ no ” , refl ecting whether or not the cell will transfer 
fi bers     . If the fi rst element is  “ yes ”  then: 

    (a)     Th e second element will hold the index number of the fi ber to which the cell will 
transfer.  

  (b)     Th e third element holds the  closestPointOnSurface  position value for the new 
fi ber.  

  (c)     Th e fourth element stores the vector representing the U and V attributes of the 
 closestPointOnSurface  (or cpos) node.    

 On the other hand, if the fi rst element is  “ no”   then the remaining  $v3[]  elements will 
be assigned null values. Th is procedure has one argument: the current cell index,  $i. 

             /* Description: 
   This procedure determines if the cell will transfer from its current 
fiber to another fiber with which the cell is in contact. 
   */

      global proc string[] cRule3 (int $i) { 

    /***** DECLARE THE VARIABLES *****/ 

    global vector $cellPos[]; 
    global string $cellNames[], $cposNames[], $closestSurface[]; 
    global string $surfaceNames[]; 
    global float $cDiameter, $probUp; 
    global int $frameCheck, $transWait[]; 

    /*      
$cpos    The closestPointOnSurface position attribute 

value for the cell 's current fiber.
$newCpos    The closestPointOnSurface position attribute 

value for the cell 's new fiber.
          */ 
    vector $cpos, $newCpos, $pos; 

    /*      
$dist    The distance between the cell center and the 

closestPointOnSurface position for the fiber 
currently under scrutiny.

$threshold    The critical distance between the cell and a new 
fiber, below which the cell will consider a transfer.

$prob    The probability of a transfer. Its value is 
either the same as $probUp, or the inverse 
probability: 1 - $probUp.

       */ 
  float $dist, $threshold, $prob, $u, $v, $rnd; 

  /*   
$current    The cell 's closest surface number (the one to 

which it 's attached).
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$closest    The cell 's new closest surface number (the one to 
which it may transfer).

$wait    The time in frames the cell must wait before 
checking for a transfer opportunity.

$willTrans    The result of the cell 's decision to transfer or not.
          */ 
    int $current, $closest, $wait, $willTrans, $closest, $j; 

    /*      
$v3[]    The return string for this procedure.
$currentCpos    The cpos node corresponding the cell ’s current fiber.
        */ 
   string $v3[], $currentCpos, $name; 

         For the initial  $threshold  value, use the cell ’ s contact radius which is given by 
$cDiameter/2. You can vary this value or the cell diameter later on to adjust the sensi-
tivity of the cell ’ s reach.

             /***** INITIALIZE THE VARIABLES *****/ 

   $pos = $cellPos[$i]; 
   $dist = 0�;
   $threshold = $cDiameter/2; // The cell 's radius. 
   $current =  ' getAttr ($cellNames[$i] +  ".closestSurface")';
   $currentCpos = $cposNames[$current]; 
   $wait = 5; 
   $j = 0�;        

   Main loop 
 A for loop is used to increment through the scaff old fi bers. Each fi ber is evaluated via 
its cpos node for proximity  ($dist)  to the cell. If  $dist  is less than $threshold then 
the procedure moves on to test the probability of transferring to that fi ber. If not, 
then that fi ber is discarded and the proximity to the next one is checked, and so on.

             /***** MAIN BODY *****/ 

   for ($name in $cposNames) { 

  // Test all but the cell 's current fiber. 
  if ($name != $currentCpos) {

     // Get the closest point on the surface to the cell 's
 position. 

    setAttr ($name +  ".inPosition") -type double3 ($pos.x)
  ($pos.y)           ($pos.z); 

   $cpos =  'getAttr ($name + ".position")';
   $dist = mag($cpos - $pos); 

   // Determine if $dist is less than the $threshold value. 
   if ($dist < $threshold) {              
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  The transfer probability 
 In this next section you ’ ll determine the probability of transferring to the contacted 
fi ber. Th e variable  $probUp  specifi es the likelihood that the cell will transfer to a fi ber 
for which the closest point in its surface is higher (in Y) than the cell ’ s center. In other 
words, the cpos.position Y-component is greater than the cell ’ s  translateY  attribute. 
 $probUp  was set to 0.9 (or 90%) in the  resetCells  expression, a value that will help bias 
migration in the positive Y-direction. If the  $cellPos Y-component is less than the cell ’ s 
 translateY  value, then the probability for transferring is given by: 1 -  $probUp   �  0.1 (or 
10%). Since it can be diffi  cult to see fi ber transfers when they occur during a simulation 
run, it ’ s sometimes helpful to print messages in the Script Editor when these events 
occur. Below, you ’ ll start by assembling a message which you ’ ll print a little further on.

            // Assemble a message to print in the Script editor. 

  string $tmpStr =  "\n" + $cellNames[$i] + " is in contact   
      with  " + $name; 

  // Test if new contact is above or below the cell 's center. 
  if (($cpos.y) > ($pos.y)) {
    $prob = $probUp; 

  // Add to the Script editor message. 
  $tmpStr  +=  " ABOVE it.\n ";    

  } 
  else {
    $prob = (1 - $probUp); 

  $tmpStr +=  " BELOW it.\n ";    
  } 
  // Print the message. 
  print $tmpStr;          

 To determine the outcome, again draw a random number on the unit interval and 
compare it to the probability.

                         // Test the probability of a transfer. 
    $rnd = rand(0�, 1); 
    if ($rnd < $prob) { 

    // The cell will transfer to a new fiber. 
    $willTrans = 1; 
    $newCpos = $cpos; 
    $closest = $j; 
    } 
    else $willTrans = 0�; // The cell will not transfer. 

    // Calculate the new waiting time. 
    $transWait[$i] = $frameCheck + $wait ;     
   }     
    } 

    // Increment the surface index number. 
    $j++;     

   } // End the cposName loop.           
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  Calculate the waiting time 
 Whether or not the cell transfers between fi bers, it must now wait before check-
ing for another opportunity to transfer. Th is prevents the cell from bouncing back 
and forth between two or more fi bers with which it is in contact. Th e wait time is given 
by $wait, which you set to 5 frames earlier in this procedure. You can vary this number 
to govern the frequency with which a cell can actively detect contact with fi bers. In 
this way  $wait  off ers yet another point of control for your future enhancements of 
this initial migration model. If you wish, you can add a custom attribute to the control 
widget to store and easily change (via the Channel Box) the value for  $wait. 

            // Determine the new waiting time. 
  $transWait[$i] = $frameCheck + $wait;           

  The return value 
 Now you ’ ll build the string array  $v3[]  and return it to the expression that called it. 
Th e vectors representing the cpos position and UV values are constructed as strings 
so they can be packaged in  $v3[]. 

                  // Assign the return values for this procedure. 
    if ($willTrans == 1) { // The cell will transfer fibers.

     // Query the u and v surface coordinates from the cpos node. 

   $name = $cposNames[$closest]; 
   $u =  ' getAttr ($name +  ".parameterU") ';
   $v =  ' getAttr ($name +  ".parameterV") ';

   // Compose the return array. 
   // The cell will transfer, therefore 
   $v3[0�] = "yes";
   // The surface it will transfer to is 
   $v3[1] = $closest; 

   // The cell attachment position in world space: 
   $v3[2] = ( "<<" + ($newCpos.x) + "," + ($newCpos.y) + ","
       +   ($newCpos.z) +  ">>");    
   // The cell attachment position in parameter space: 
   $v3[3] = ( "<<" + ($u) + ","+ ($v) + ","+ (0�) + ">>");

   // Announce the transfer in the Script editor. 
    $tmpStr = $cellNames[$i] +  " transferred from " + 
  $surfaceNames[$current]        + " to " + $surfaceNames[$closest] 
   +  "\n";
   print $tmpStr;     
    } 
     else $v3 = {  "no", "null", "null", "null" }; // The cell won 't

 transfer. 

    // Return the fiber transfer array to the moveSeeds expression. 
    return $v3;     

   } // End procedure.           

  Save your fi le 
 Save  cRule3( )  in a fi le called  cRule3.mel  within your Maya Scripts directory. 
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 Th at concludes the scripting portion of this project. Next you ’ ll open the scaff old 
model and source and debug the script fi les.    

  Methods: Running the simulation 

  Prepare your scene fi le 
 Start Maya. If it ’ s already running, save your work. Set your project directory to the 
one you created at the end of  Chapter 17.  

    1.     From the main menu bar, choose File → Project → New.  

  2.     Navigate to  cellMigrationProject  and press Choose.    

 Open the scene fi le you created in the previous project. 

    3.     (a) Choose File → Open Scene

    (b) Navigate to your scene fi le,  scaffold.ma , and press Open.       

 Th e cell migration simulation will execute properly on a scaff old model that is built 
to the specifi cations we outlined in the previous chapter. Most importantly, the  clos-
estPointOnSurface  node, the  pointOnSurfaceInfo  node, and the control widget must 
possess the attributes that are queried in the current project. We have provided a fi n-
ished scaff old scene fi le on the CD-ROM:

            18_Cell_Migration/scenes/scaffold.ma          

 Next, set the scene preferences: 

    4.     Choose Window  →  Settings/Preferences →  Preferences.  

  5.     Choose Categories  →  Settings and make the following settings:  

   Under Working Units  →  Linear:  centimeter .

    →  Angular:  degrees .

    →  Time:  NTSC.

  6.     Choose Categories  →  Timeline and make the following settings:  

   Under Timeline  →  Playback Start:  1 .

     →  Playback End:  500 .

     →  Time, select  NTSC .

   Under Playback   →  Looping:  once .

     →  Playback Speed:  Play every frame .

     →  Playback by 1.

  7.     Press Save.  

  8.      Select the Perspective view of your scene by pressing the  button in the 
    Toolbox.    
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  Repurpose the control widget 
 While building the above scripts you ’ ve used the  getAttr  command several times to 
query control widget custom attributes. You ’ ve then used the results to set various 
parameters for the model. Here you ’ ll add those custom attributes after deleting the 
ones not needed for this project: 

    1.      Select the widget in the Outliner and then press Ctrl+A to open the Attribute 
Editor.  

  2.      In the Attribute Editor, click on the left-most tab to select the widget transform 
node.

  3.     From the Attribute Editor menu bar, choose Attributes → Delete Attributes.  

  4.      In the Delete Attribute window, hold down the Shift key while selecting the 
following attributes:

      avoidScale, boundScale, dx, dy, dz, minSpan, maxSpan, persistMin, persistMax, size-
Bias, and spacingMin.

  5.     Press the Delete button then the Close button.    

 Now you ’ ll create the new attributes and set their default values. You can do this 
manually, through the Attribute Editor, or by entering the following script in the 
Script Editor. Th e attributes called  persistState13  and  persistState24  are the aver-
age persistence values for states 1 and 3, and states 2 and 4, respectively. States 1 
and 3 pertain to movement on the fi bers that is circumferential, and states 2 and 4 to 
longitudinal movement.

             /* Description: 
   This adds custom attributes to the scaffold widget object. The 
attributes are used in the cell migration simulation. 
 */ 

   // Make an array of custom attribute names you want to add to the
 widget. 
   $attributes = { "cDiameter", "offset", "vScale", "probUp",

 " contactRange", "persistState0� " , "persistState13",
 " persistState24"};

   /* Make an array of initial attribute values. The second  "float"
ensures all values are typed as floating point numbers, not 
integers. */ 
   float $values[] = float {10�, 50�, 10�, 0�.9, 125, 1, 2, 2}; 

   // Add and set the custom attributes. 
   for ($i = 0�; $i < ' size $attributes ' ; $i++) {

     addAttr -ln $attributes[$i] -at double -dv $values[$i] widget; 
    setAttr -e -keyable true ( "widget." + $attributes[$i]);     

   }          

 Th e initial attribute values listed above are what we recommend starting with. Once your 
model is running error-free, you can vary these values within the ranges listed in  Table 
18.04    (and beyond!). Th e exception is of course cDiameter, which should only be changed 
when you change the diameter of the spheres that represent cell contact radius. 
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 Parameter name  Description  Location in your 
scene 

 Recommended 
value range 

 $cDiameter  The cell diameter 
value used in contact 
avoidance and fi ber 
transferring. 

 widget.cDiameter 10

 $offset  The distance of the 
cell center from the 
surface of its fi ber, as 
a percentage of cell 
radius. 

 widget.offset 0–100

 $vScale  Scales the unit 
locomotion step size. 

 widget.vScale 1–10

 $probUp   Specifi es the 
likelihood of a cell 
transferring to a 
higher fi ber with 
which it’s in contact. 

 widget.probUp 0–1

 $contactRange  The range within 
which cells take 
steps to avoid contact 
with one another, as 
a percentage of cell 
diameter. 

 widget.
contactRange 

100–300

 $persistState0  The average 
persistence time in 
frames of a cell in 
state 0 

 widget.
persistState0 

1–10

 $persistState13  The average 
persistence time in 
frames of a cell in 
states 1 or 3. 

 widget.
persistState13 

1–10

 $persistState24  The average 
persistence time in 
frames of a cell in 
states 2 or 4. 

 widget.
persistState24 

1–10

 $sProb  The state change 
probability matrix. 

 resetCells   Sum of the values 
in each matrix 
column must 
equal 1.  

TABLE 18.04

   Model parameters to experiment 
with and their recommended value 
ranges.
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 Th is script can be found on the CD-ROM:

            18_Cell_Migration/MEL/widgetAttributes.mel

  Save your scene 
 Save your scene fi le under a new name in your cellMigrationProject directory: 

    1.     From the main menu bar, choose File → Save Scene As.  

  2.     Enter  cellMigration.ma  in the Save As fi eld and then press the Save button.    

 Now you ’ re ready to load your script fi les in preparation for a simulation run.  

  Load the script fi les 

  Create the expressions 
 First you ’ ll create the resetCells and moveCells expressions. If you didn ’ t build the 
expression scripts earlier in the chapter, you can fi nd them in the following fi les on 
the CD-ROM:

            18_Cell_Migration/MEL/ resetCells.txt

        / moveCells.txt

     1.      Open resetCells.mel (either the fi le you created or the one on the CD-ROM) in 
the text editor of your choice.  

  2.     Ensure that the text editor is set to not use typographers ’  quotation marks.  

  3.     Select and copy the entire script.  

  4.      In Maya, enter  ExpressionEditor  in the Command Line to launch the Expres-
sion Editor, or select it from the menu Windows → Animation Editors →
Expression Editor.  

  5.     Press the New Expression button.  

  6.     LMB+click in the Expression text fi eld.  

  7.     Press Ctrl+V to paste your expression into the text fi eld.  

  8.     Press the Create button at the bottom of the Expression Editor.  

  9.      In the Expression Name fi eld, replace the default name with  resetCells  and 
press Enter.  

  10.      Repeat steps 5 through 9 for the  moveCells  expression, but name it  moveCells  in 
the Expression Name fi eld.          

 If Maya generates one or more errors when you press the Create button, you will need 
to debug the expression: open the Script Editor to view the specifi c error messages and 
to read the line number(s) that generated the error(s). If your text editor can display 
line numbers, use this feature to cross-reference the error messages to the off ending 
lines in your script. If you are unable to resolve the errors, you can compare your script 
to the appropriate fi le ( resetCells.txt  or  moveCells.txt ) included on the CD-ROM. 

    11.     Press Ctrl+S to save your scene with the expressions in it.     
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  Source makeCells() and the rule procedures 
 Source the procedures one at a time and debug them as necessary. 

    1.     Refresh the search path contents. In the Script Editor, enter:

rehash;

  2.     Source the script fi les. In the Script Editor, enter:

source "makeCells.mel";

    source "cRule1.mel";

    source "cRule2.mel" ;

    source "cRule3.mel";

 If Maya generates errors, debug the off ending procedure(s) accordingly. You can cross-
reference your scripts with those we ’ ve included on the CD-ROM:

            18_Cell_Migration/MEL/makeCells.mel  

         /cRule1.mel

         /cRule2.mel

         /cRule3.mel

  Create the cells 
 One you ’ ve successfully entered the two expressions in the Expression Editor and 
declared the four procedures without generating error messages, you ’ re ready to create 

10 �m

Intersecting 
cells

 FIGURE 18.20 

    When you fi rst make the cells, some 
of them may intersect each other 
due to their initial random placement 
on the bottom of the scaffold. 
The grey lines defi ne the scaffold 
boundaries. The red lines defi ne the 
active simulation volume. A Blue 
shader was applied to the cells to 
make them easy to see.    
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the cell population and begin the migration! Start with 10 cells of radius 5        � m and 
specify a scaff old buff er length of 25        � m. 

    1.     Set the current time indicator (play head) to frame 1.  

  2.     Enter the procedure call in the Expression Editor or the Command Line:
     makeCells(10�, 5, 25);

 Some cells may overlap one another due to the random nature of their initial place-
ment ( Figure 18.20   ). Th e contact avoidance procedure will sort out the overlapping.  

  Run the simulation 
 Before pressing the Play button to start the simulation, run the  resetCells  expres-
sion to initialize the global variables. 

    1.     Open the Expression Editor and choose Select Filter → By Expression Name.  

  2.      LMB+click on  resetCells in the Expression fi eld to make it the active 
expression.

  3.     Press the Create button at the bottom of the Expression Editor.  

  4.     Close the Expression Editor.  

  5.     Press the Play button to start the simulation.    

 On frame 2, the  moveCells  expression calls all three-rule procedures. If any of them 
is missing or contains errors, Maya will generate an error message in the feedback 
fi eld of the Command Line as well as the Script Editor. If you get an error message, 
read it carefully to determine the source: it could be in one of the rule procedures or 
in moveCells itself. If you are unable to locate and correct the source of an error mes-
sage, compare your script fi les to the ones we included on the CD-ROM. We have also 
included a Maya scene fi le called  cellMigration.ma,  which contains the scaff old, con-
trol widget, cell models, and the expressions. To run the simulation using  cellMigra-
tion.ma,  you will need to copy the accompanying rule fi les into your Scripts directory 
and run the rehash command to add them to Maya ’ s search path ( Figure 18.21   ).

            18_Cell_Migration/scenes/ cellMigration.ma

        /MEL/ cRule1.mel

        / cRule2.mel

        / cRule3.mel

 If Maya generates no error messages when you press Play, then your cells should 
begin crawling about on the fi bers as the playhead progresses along the timeline. You 
can stop and rewind the simulation at any time using the Playback control buttons.  

  Vary the model parameters 
 Th is is the fun part! Trying varying the parameters listed in  Table 18.04 —at fi rst one 
at a time and then in combination—in order to observe their relative eff ects on the 
behavior of the model. Th is brings us full-circle to our discussion of individual-based 
modeling and emergent behavior at the beginning of the chapter. Th e motion of each 
cell is a stochastic process that emerges from the behavior rules and their parameters. 
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Th e distribution pattern of cells in the scaff old during a simulation run is not 
the result of equations governing the population as a whole—as in a  deterministic  
model—but rather the novel consequence of choices made one cell at a time accord-
ing to individual rules of behavior, including cell-cell and cell-matrix interactions. In 
this way, your Maya cell population is not unlike a fl ock of birds or a school of fi sh in 
that its spatial arrangement at any moment in time is the result of decisions made by 
the group ’ s members. 

 After you ’ ve put the model through its paces, choose a set of parameters for which 
you want to make a recording of the simulation.  

  Record the simulation 
 When you set keyframes Maya records the simulation run in the form of animation 
curve nodes in the DG. A recorded simulation can be played back repeatedly using 
the Playback controls or by scrubbing the timeline. To keyframe your simulation, 
remove the comments from the code in the  moveCells  expression that sets the trans-
late attribute keyframes, as follows: 

    Change:

             // setKeyframe -at translateX $cellNames[$i]; 
   // setKeyframe -at translateY $cellNames[$i]; 
   // setKeyframe -at translateZ $cellNames[$i];          

 FIGURE 18.21 

    Four stages of the cell 
migration simulation at:

(a) frame 15.

(b) frame 175.

(c) frame 330.

(d) frame 500.

The fi bers are 
transparent so that cells 
can be seen through the 
scaffold. Note that half 
cells found their way 
into the upper part of the 
scaffold while the rest 
remained essentially 
stuck at the bottom. 
This discrepancy is due 
the random nature of 
the migration rules and 
the opportunities for 
 " climbing "  that the cells 
encounter during their 
journey.          

(a) (b)

(c) (d)
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    To:   

             setKeyframe -at translateX $cellNames[$i]; 
   setKeyframe -at translateY $cellNames[$i]; 
   setKeyframe -at translateZ $cellNames[$i];          

 When the playhead reaches the end of the playback range, you will need to either 
delete or disable moveCells so that it doesn ’ t override the cell translation keyframes 
when you play the recorded simulation back. To disable  moveCells,  set the frame 
number in its opening conditional statement to a number high enough that your 
scene is unlikely to ever reach it: 

    In the moveCells expression, change:  

   if ('  currentTime -query '  > 1) {   

  To:  

  if ( ' currentTime -query '  > 10�0�0�0�) {    

 Th e resetCells expression will take care of positioning the cells correctly on frame 
1 by using their respective posInit attributes. Alternately, you can uncomment the 
setKeyframe  statements in  resetCells  to record keys at frame 1. We included a key-
framed simulation run on the CD-ROM:

            18_Cell_Migration/scenes/cellMigration_keyed.ma

  Results: Data output 
 You ’ ll want to export the cells ’  trajectories as a matrix of XYZ coordinates in a  tab-
delimited  fi le. Th is fi le can then be used via your favorite statistical analysis software 
to further study the properties of your simulated cell motions. For example, do the 
paths behave as simple random walks or are they more complex tracks of the kind 
reported in laboratory studies of real cells. Are the paths simple geometric form, or do 
they show complicated recursive features like those of fractal meanders? Questions 
like these bring you to the frontier of cell migration modeling and research! 

  The dataOutput expression 
 Here you ’ ll use an expression called  dataOutput  to write the cell positions to an exter-
nal text fi le. Th e expression is included ready-made on the CD-ROM:

            18_Cell_Migration/MEL/dataOutput.txt

    1.     Copy  dataOutput.txt  to the MEL directory of your current Maya Project.  

  2.     In Maya, set the current time indicator to frame 1.  

  3.     Open  dataOutput.txt in your text editor application.  

  4.      In the variable initialization section, change the value of $end- Frame to match 
the fi nal frame number for your simulation.  

  5.      Copy and paste the script into a new expression in Maya ’ s Expression Editor 
the same way you did with resetCells and makeCells expressions.  

  6.     Name this new expression  dataOutput .    
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 You can record the data while  moveCells  is active—rather than from a keyframed 
recording of the simulation. However, for this to work you ’ ll need to ensure that 
 dataOutput  follows  moveCells  in the list of expressions in the Expression Editor. 
Otherwise, dataOutput will execute fi rst and you ’ ll wind up recording cell positions 
before they ’ re updated by  moveCells  each frame. 

    7.     Press the Play button to playback the simulation and record the data.  

  8.      When the last frame of your simulation is reached, the dataOutput expression 
will open a fi le dialog window. Name your data fi le and browse the location on 
your hard drive where you ’ d like to save the fi le.  

  9.      Open the fi le in a spreadsheet application such as Microsoft Excel that accepts 
tab-delimited data.    

 Th is fi le is small relative to your Maya scene fi le and therefore an effi  cient way to 
store a record of your simulation. A slight rejig of your  moveCells  expression from 
 Chapter 13  will allow you to read the data fi le you just wrote in to Maya and use it to 
reproduce the migration simulation results. If you do this, remember to disable the 
 resetCells  and  moveCells  expressions so they don ’ t clash with  dataInput  for control 
over the cell geometry.   

  Summary 
 In this chapter you saw how to create a multi-agent simulation from a few straight-
forward rules of motion. Handy MEL constructs including the  closestPointOnSurface  
and  pointOnSurfaceInfo  nodes allowed you to quickly adapt available data on 2D cell 
motion to the complex geometry of a 3D scaff old. Much more can be said about this ini-
tial model and its potential role in understanding mobile population behavior than we 
have space for here. Whether you ’ re interested in multi-agent simulation for research 
purposes or for developing procedural eff ects in biomedical communications projects, 
we hope you ’ ll continue to build on the methods and tools we ’ ve introduced here.  
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19  Conclusion 
A new kind of seeing



   “Computers are useless. Th ey can only give you answers.”  

 —Attributed to Pablo Picasso   18

 Anton van Leeuwenhoek was a Dutch tradesman, living in 16th century Amsterdam, 
with no formal scientifi c education. Despite his lack of training and the demands of 
his business, he ardently pursued his passion: a new kind of seeing. He was fascinated 
with optics and worked to refi ne the microscope, then a recently developed device. 
His technical improvements, and his dogged curiosity, opened up a broad vista of 
sight-based evidence to science. He was the fi rst to see and describe mobile single-
celled organisms in pond water, human blood cells, and the wriggling of sperm cells. 
van Leeuwenhoek ’ s new kind of seeing lead to countless scientifi c discoveries over 
the centuries that followed, discoveries that resulted from new questions: questions 
that could not even be conceived of before the microscope revealed fresh mysteries to 
inquisitive eyes. Looking beyond van Leeuwenhoek toward the present, we are hard 
pressed to name any revolutions in the sciences, the arts, and in practical engineer-
ing that have not been triggered by new ways of seeing the world. 

 Now, in the early years of the 21st century, radical new kinds of seeing are once again 
front page news as artists and scientists harness the computer as an engine for visu-
alizing the unknown. Th ese new kinds of seeing empower us to understand the sci-
ences of life and health as never before. Making things visible, we have seen in this 
book, is vastly more than the subtle art of making dull facts palatable for the time-
stressed, the uninformed, or the bored who fi nd themselves obliged to regurgitate 
time-honored answers to time-honored questions. Interpretive visualization begins 
in the surprise of unexpected—yet immediately graspable—results that allow fresh 
new questions to be asked. And more than fi nding answers, asking new questions is 
the heart of the sciences and the arts in the human journey. 

 So in this sense Pablo Picasso, protean genius of the radically visual, was fl at wrong: 
as a gateway to interpretive visualization, computers fuel new questions sustained by 
unanticipated dreams and possibilities. Th ey will give you much more than answers. 

  Explanations, simulations, speculations 
 We have seen that Maya and MEL, in combination with knowledge from the domains 
of molecular and cell biology in science, can be exciting tools for the simulation and 
visualization of cell systems, from molecules to polymers, cells, and populations. 
Th ey are part of a postmodern visual language of asking and answering questions 
about the previously unseeable. Th ey empower you to create moving images that 
can be explanations, simulations, or (in a more exploratory vein) speculations about 
answers to compelling new questions. Th ese results can be put to use in research, in 
education, and in much-needed debates about where science is taking us: 

     •       Explanations : fulfi lling a growing need for advanced visual tools in the research commu-
nication, professional education, and public information realms. Education in science 
and science literacy are areas of growing need for visual explanations (Figure 19.01).  

   •       Simulations : drawing on established databases of biomolecule structure, reaction 
dynamics, and other experimentally derived data about cell structure and func-
tion, tools like Maya and MEL can be used to recreate and interrogate lifelike situ-
ations, which would otherwise be remote or unavailable to researchers.  

   •       Speculations : in the best tradition of scientifi c inquiry, dynamic models can 
be used to ask the  “ What if? ”  questions that drive innovation in areas like drug 
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 FIGURE 19.01 

    Nobel laureate chemist Linus 
Pauling championed interpretive 
visualization, set out in the form of 
striking illustrations and models, for 
the pursuit of scientifi c knowledge. 
On this page dated September 
21, 1932, Pauling explains how 
visualizing 3D form of molecules 
could help students of chemistry. 
Eight decades later Pauling ’ s 
argument is still fresh, capturing 
the essence of why interpretive 
visualization is so important in all 
areas of science.

Courtesy of the Archives, California 
Institute of Technology.  
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discovery and biomaterials development. What if we could make an artifi cial tis-
sue matrix of unprecedented strength? What if we could alter crucial signaling 
mechanisms in dying or cancerous cells? What if we could bioengineer our human 
bodies to thrive for 500 years, rather than our traditional four score and seven? 
Speculative responses to questions like these don ’ t necessarily provide defi nitive 
answers right away; but they give clues about which of the many avenues of pos-
sible exploration may prove most fruitful.     

  Maya ’ s role 
 Maya was designed as a general-purpose 3D modeling, animation, and render-
ing application. Maya is not a tool where specialized capabilities in cellular science 
and medicine are built-in. At present these must be created by you as computable 
models. Your models express the relations of cause and eff ect, structure and func-
tion, you deem essential to your project and then are coded by you in one of Maya ’ s 
programming languages. Th e benefi ts of a Maya-based workfl ow compared to writing 
all your own software from scratch is that many other capabilities—all the graphi-
cal user interface effi  ciencies, geometry modeling functions, dynamics, interac-
tive display, and sophisticated rendering capabilities—are already present, robustly 
built, and tested in the world ’ s most demanding professional 3D visual production 
situations. 

 Most of the advantages we have cited for Maya and MEL also apply to other script-
able high-end packages for 3D animation and rendering. To a greater or lesser degree, 
packages such as Autodesk 3ds Max 1 , Maxon ’ s Cinema 4D 2 , Softimage XSI 3 , Side 
Eff ects Software ’ s Houdini 4 , and Newtek ’ s Lightwave 5  (forgive us if we have missed 
other deserving products) possess excellent modeling, animation, scripting, ren-
dering, and dynamics capabilities. Th e general approaches we have outlined should, 
with the appropriate eff ort on your part, translate to these packages, though the 
details of implementation and performance may diff er considerably. And while our 
emphasis has been on commercial top-tier packages, we must not leave this point 
without stressing the exciting potential—still largely unexplored in molecular and 
cellular iVis as we go to press—of lower cost, shareware, or freeware packages such as 
Blender 6 , the Visualization Toolkit 7 , and the Torque Game Engine 8 . Fueled by the cre-
ative energies of the open source and personal computation movements worldwide, 
these tools of visual discovery can deliver impressive quality within their design 
envelope. We encourage you to investigate them, together with the packages like 
VMD 9  written specifi cally for jobs in molecular and cellular modeling and visualiza-
tion, and readily available over the Internet. When the needs of your project fi t inside 
the style and capabilities of these existing bioscience tools, you may fi nd them the 
fast track to productivity and successful results. If your needs push outside the enve-
lope, packages such as Maya and MEL will let you cut your own path. In all of these 
situations, we hope that you will fi nd yourself well served by the methodologies of 
problem defi nition, analysis, and 3D iVis workfl ow planning and execution you have 
learned in this book through Maya and MEL.  

  The path so far 
  Part 1  of this book was devoted to setting the appropriate biological and technologi-
cal background for the rest of the book. Th e Introduction revealed the book ’ s major 
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themes, briefl y looking at the power of vision, the hierarchical structure of life, 
and the history of our tool of choice, Maya. With the help of Chapter 02 ’     s historical 
perspective, we probed how computers work and how computer programs func-
tion; even if we opened the book as newcomers to computing or programming or 
3D graphics, this allowed us to understand what it means to say MEL—our book ’ s 
computational focus—is in essence an imperatively structured scripting language 
for 3D animation on von Neumann machines. We also saw intriguing commonalities 
between the strategies of information processing in computers and those used in liv-
ing cells. Far from being a poor fi t between the organic freedom of life and the rigid 
binary world of the computer, there are good reasons to explore biology specifi cally in 
terms of its computational nature. Th ese features of biology make it especially ame-
nable to meaningful computer-based simulation. In  Chapter 03  we looked at the tra-
ditional history of animation and discussed the lexicon and workfl ow animators use. 
We then explored how these aspects of traditional animation are adapted for use in 
digital animation in general, and biological animation in particular. 

 After  Part 1  had set the stage, the chapters of  Part 2  brought you hands-on with the 
technology platform—Maya—that delivers the visual computing power of MEL to 
your desktop. Th e interface of Maya was introduced, and a series of chapters explored 
the specifi cs of modeling, lighting, camera setup, shading, animating, and render-
ing in virtual worlds. In other chapters we began to lay the technical groundwork for
our later explorations by introducing the ability to use dynamic simulations, the 
ability to write MEL scripts, and basic approaches for importing or exporting user-
defi ned data. 

 In  Part 3  you embarked on a series of directed projects, which built on your growing 
base of Maya knowledge and let you plan and execute MEL applications at the fron-
tiers of biology. Building a protein gave an opportunity to build one of the big organic 
polymers that sustain cell structure and catalyze its chemical reactions.  Chapter 15  
described how to simulate actin self-assembly, from the single protein to fi lamen-
tary protein arrays comprising the cell ’ s dynamic skeleton.  Chapter 16  revealed an 
approach to the basic cycle of amoeboid-type cell movement, fundamental to nor-
mal tissue development, immune responses, and cancer. Growing an extracellular 
matrix (ECM) scaff old explored creating an example of the fi brous ECM, the support 
framework for the cells of almost every tissue in the body. Finally, simulating 3D cell 
migration showed how to simulate populations of migrating cells as they invade and 
occupy an ECM fi ber matrix. 

 Th ese projects build around initial models that showcase Maya tools and techniques, 
useful approaches that you can expand, refi ne, and improve upon in your own explo-
rations. Th e models and MEL code are fi rst steps to help power your continued 
learning.  

  The future 
 Th ere are many opportunities for extending, expanding, and improving on the work 
you have undertaken in these projects. Th ere are numerous problems in molecular, cell, 
and tissue biology that will benefi t from computational visualization. We have only 
touched on the possibility of coding more performance-dependent simulations in C�� 
rather than MEL, or in the Python scripting interface for Maya released as our book 
was nearing completion. Th e C�� API also provides a potential link to specialized 
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packages for cell and molecular simulation (such as VMD 9  and E-Cell 10 ) and to bio-
informatic databases; in some situations, researchers may choose to run simulations 
in such custom software and then import those results to Maya via a C�� plug-in, 
so leveraging the advanced visualization tools off ered by Maya. And the growing pop-
ularity of Python for general-purpose scripting eases the entry into Maya program-
ming for many new users. 

 Much work remains in defi ning new methods and setting best practices in cell and 
molecular visualization. Current methods of graphical display and numerical process-
ing will soon prove inadequate to the task of manipulating and exploring the extraor-
dinarily intricate and dynamic simulations enabled by increasingly complex software 
and powerful new hardware. Is computer technology up to the challenge? We think so.
Indeed the future looks very bright for computational biology 11–16 , as it does for in 
silico visual simulation as a key tool for biomedical research and discovery. Both are 
riding a faster-than-exponential growth curve in the pace of computer technology, 
which we ’ ve illustrated schematically in  Figure 19.02    alongside a few of the remarkable 
advances in biology, computers, and visual computing over the last 150 years. During 
that time the computing power of calculating machines has increased astonishingly 
in both its capacity and its effi  ciency. Many measures of each are in use and each has 
its own loudly outspoken bands of advocates, opponents, pundits, and critics. 

 In the fi gure we have used one of the simplest and most traditional measures, which 
brings together a wide range of historical data by estimating KIPS, the thousands 
(kilo-, K) of instructions per second (IPS) the device can execute per thousand dollars 
(kiloBuck) of machine cost, corrected to 2006 currency values 17 . Th is interpretive vis-
ualization of computing history gives one specifi c glimpse—crude and provisional, 
but the same general point is made by all the competing measures—of the upward 
surge in progress over a time in history that embraces the early mechanical and elec-
tromechanical devices (black dots), the fi rst von Neumann stored program machines 
like the EDSAC (green dots), the vintage mainframes and minicomputers of the 
1950s and 1960s (orange dots), and on into the streamlined microcomputer architec-
tures and cluster-based supercomputers of today. Th e modest capacity of the human 
brain for deliberated, rote pencil-and-paper calculating is marked by the pink dot 
(and reference line) at the bottom left just before the year 1900, a time when  “ compu-
ter ”  meant a person employed to do such arithmetic. 

 Note that the vertical scale in our diagram is logarithmic, so as we trace computing 
over the last century we see a surge of over a billion, billion times increase in the 
capacity delivered per dollar, with roughly another factor of a billion forecast—if cur-
rent trends are sustained!—by the time scientists anticipate the fi rst simulations, in 
silico, of complete living cells that track the position and actions of each and every 
molecule in the cell. 

 Compared to biology and computer engineering, the practices of 3D computer ani-
mation and computational biology are relative newcomers with accelerating innova-
tion trends of their own. Once a domain restricted to the privileged elite, who access 
the most powerful and expensive computers and graphics software, interpretive 
visualization in silico is now open—via aff ordable technology—to the expanding
community of media artists, research scientists, and mathematicians dedicated to 
the frontiers of molecular and cellular biology.  Imagine the new possibilities, and the 
new questions, you will uncover in the years ahead.
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1859 Charles Darwin and evolution
1865 Gregor Mendel and genetics

1869 DNA discovered

1885 Cathode Ray Tube (CRT)

1902 Gene concept: Walter Sutton
1905 Gene regulation: Bateson and Punnett

1911 Monroe Calculator
1919 IBM tabulator

1926 Gene theory of inheritance: Thomas Hunt Morgan

1936 Turing machine: launch of computer science

1944 Genes = DNA: Avery, MacLeod, McCarty

1945 von Neumann machine architecture

1952 First computer simulations of cell chemistry pattern formation: Alan Turing

1953 DNA double helix: Watson and Crick

1954 Fortran: John Backus

1959 Jacob-Monod “operon” theory of control 

1960 DEC PDP-1 minicomputer

1962 CPK molecular models; US patent 3170246 filed
1964 Birth of molecular computer graphics, MIT Kluge: Cyrus Levinthal

1961–68 Triplet genetic code cracked: Nirenberg, Matthaei, Ochoa, Khorana

1971 Gouraud shading algorithm

1972 Recombinant DNA

1996 Dolly the sheep cloned
2001 Human genome draft completed

1990 Human Genome Project launches

1975 Phong shading algorithm
1975 Bill Gates launches Microsoft

1976 First molecular dynamics simulation of proteins:
Karplus and McCammon

1993 RasMol molecular graphics: Roger Sayle

2006 First all-atom simulation of a simple
life form; satellite tobacco mosaic virus:
Freddolino et al

2030–60 Forecast date for first
all-molecule simulation of a
complete living cell

1981 IBM PC
1983 Alias founded; Bill Reeves and particle systems (Lucasfilm)

1988 Pixar RenderMan patent
1989 mental ray  renderer launches

2007 Intel teraFLOPS chip

1972 C programming language: Dennis Ritchie

1949 EDSAC computer
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 FIGURE 19.02 

    The explosive growth in computing power during modern times, visualized amidst some of the key events 
in computer engineering, computer graphics and animation, and in research biology. Note that the vertical 
scale is logarithmic, based on successive multiplications of factors of 10.    
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  Further reading 



  Why? 
         Perhaps you are a creative artist bent on producing the next revolution in interpretive 
visualization. Or maybe you are a curiosity-driven science trainee exploring the myster-
ies of cells and other forms of living matter. You might be a teacher immersed in the chal-
lenges of communicating science or other novel subjects to a modern audience. Or, like 
many of us, you might be a private citizen who simply wants to increase your knowledge, 
appreciation, and capability in realms crucial to scientifi c discovery and artistic expres-
sion. All these wonderful activities set you on a path of lifelong learning that takes you 
across the frontiers of many subjects. In this part of the book we ’ ve listed resources to 
help you further the experiences you ’ ve had with our material—taking you deeper into 
the foundations, theory, and practical methods of the subjects we have explored. 

        What ’ s here 
     Arranged to parallel the order in which the topics unfold in our book, these
are titles we use in our own research and teaching, and have found to be informative 
and inspiring. Of course our list assays just a tiny fraction of  what is available. Th ere 
are many, many fi ne learning resources from excellent, hard working authors in each 
of the areas our list touches. If you do not see a favorite title named here, it is no 
indication we consider it unimportant. Th ese are vast, rapidly growing topics, so as 
you go even further with Maya and MEL you will discover a wide variety of learning 
materials written in diverse styles by authors each with their own unique slant on 
your favorite subjects.      

         We therefore encourage you to read widely: if a resource we name does not quite fi t 
your learning style or specifi c interests, chances are you can quickly fi nd material 
that does aided by our list and the search tools available to you over the World Wide 
Web and at your local library. We do apologize to colleagues in these wide-ranging 
subjects for the limitations of time, space—not to mention our own knowledge—that 
have precluded inclusion of their work here. Wherever possible we have documented 
material published recently to assure a useful degree of timeliness and availability. 
But there are also a few classics from yesteryear—some still in print after decades of 
inspiring learning and discovery—that we could not in good faith omit, and therefore 
recommend to you most heartily. 

        Mostly books 
     We have focused mostly on books in compiling this    section, rather than on maga-
zine articles or web-based presentations. Th roughout In Silico you will fi nd many 
references to articles and websites we consider vitally interesting to your command 
of Maya, MEL, and cell science. Despite the convenience of URLs and the tempting 
brevity of magazine articles, well written, peer-reviewed books will continue to give 
you a rich medium you can carry, jot in, mark up, fl ip through, stack, dog ear, and 
otherwise fi t to your learning needs as you explore further, in depth. To supplement 
these book-based resources, near the end of this section you ’ ll fi nd our current  “ Top 
10 ”  must-see URLs for your web-based explorations.      

         Also, we give you fair caution: while the listed readings will give you next words on 
many of In Silico ’ s topics, they will not give you the last word on any of them. You 
live amidst revolutionary times in the arts, the sciences, and the high technologies, 
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with discoveries and innovations racing past one another at an astonishing pace. 
Compared to the very latest research, information in the books we list will be some-
what dated, perhaps even obsolete, by the time our book reaches you. Th is is an 
inevitable consequence of the hyper-progressive times in which we live. If you wish 
to advance from additional basic knowledge yet onward, toward the bleeding edge of 
innovation and discovery, you will eventually need access to state-of-the-art jour-
nals and periodicals in visual computing, interpretive visualization, and the sciences. 
Unfortunately, access to these media often is more restricted, and more costly, for 
the individual learner than single core texts, but those of you satisfi ed with nothing 
short of the absolute frontier will fi nd this section ends with URLs to some of the 
very highest impact sources, where you can follow the latest developments. We rec-
ommend you discuss your interests in accessing such specialized materials with the 
reference staff  of your community library or your local college or university library.

         And  …  
                A fi nal note: If you are browsing this section before commencing your reading and 
work with the main text and project material in our book, please remember this is 
a Further Reading section. It is not a list of the things we expect you to know before 
you can dive in to In Silico. Quite the opposite! We have structured the book to be 
robustly self-contained once it is in your hands. Th e sources listed in this part of the 
book will let you go further still once your core in silico skills are in place—indeed as 
far as your goals and your imagination beckon.

         Interpretive visualization (iVis)

iVis: Fundamentals 
     Card SK, Mackinlay JD, Shneiderman B, editors:  Readings in Information Visualization: 
Using Vision to Th ink.  Morgan Kaufmann, San Francisco, 1999.      

    Tufte     ER         :      Envisioning Information       .     Graphics Press      ,  Cheshire, CT      ,  1991   .        
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Laboratory Press      ,  Cold Spring Harbor, NY      ,  2004   .        

              Baigrie BS, editor:  Picturing Knowledge: Historical and Philosophical Problems Concerning 
the Use of Art in Science.  University of Toronto Press, Toronto, 1996.      

    Gamwell     L         :      Exploring the Invisible: Art, Science, and the Spiritual       .     Princeton University 
Press      ,  Princeton, NJ      ,  2002   .        

587FURTHER READING



         Kemp     M         :      Seen/Unseen: Art, Science, and Intuition from Leonardo to the Hubble Telescope       . 
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        actin     Actin is an essential structural protein (~45 kD) that polym-
erizes into actin microfi laments, part of the cytoskeleton of 
most eukaryotic cells.  

  adenosine   ADP results from one of adenosine triphosphate ’ s (ATP)
diphosphate  three phosphate groups leaving ATP, a chemical reaction that
(ADP) results in the release of energy useful in cellular metabolism.  

  adenosine   ATP is a small molecule which acts as the fundamental unit
triphosphate  of energy transport in the cell. It is produced during photo-
(ATP)  synthesis (in plants) and cellular respiration (in animals).  

  alpha channel    An alpha channel is a grayscale image channel in some image 
and animation fi les, which acts as an indicator of image 
transparency. Usually the light part of the alpha indicates 
opacity and the dark parts transparency. Adding an alpha 
channel is a rendering option that adds fl exibility in the edit-
ing and compositing process.  

  ambient occlusion    Ambient occlusion is a shader eff ect that simulates the atten-
uation of light (from ambient sources) on a surface where it 
comes close to another surface. Th is eff ect can increase render
times, but will often make lighting appear more photorealistic.
Acronym: AO  

  angiogenesis    Angiogenesis is the process of new blood vessel formation. It 
is a focus of interest in cancer research, since growing tumors 
require angiogenesis to supply them with blood.  

  angle of view    Also known as fi eld of view, this term refers to the angular 
extent of an image received by a camera.  

  animatic    An animatic is a preproduction fi lm composed of animated 
storyboard frames or simple 3D elements arranged and mov-
ing as they will in the completed fi nal shot. It is used to iron 
out timing and camera movement issues before fi nal anima-
tion begins. Sometimes also known as the layout stage or a 
story reel.  

  animation    Animation is the process of bringing inanimate or synthetic 
objects to life in the medium of fi lm or television by depict-
ing their movement.  

  animation curve    An animation curve is a graphical representation of the 
change of some attribute over time. Manipulation of the shape 
of an animation curve can signifi cantly change the perceived 
quality of an animated object or eff ect.  

  animation   A set of instructions used to animate one or more attributes. 
expression   Maya ’ s expression language is, for the most part, the same as 

MEL. Typically, an expression evaluates every time the Maya 
frame number changes, meaning that the instructions are 
processed in regular time increments.  

  aperture    Th e aperture is the width of the opening through which light 
enters a camera. In 3D graphics (in which there is, of course, 

GLOSSARY



595GLOSSARY

no real aperture) this setting is relevant to the synthesis of 
depth of fi eld and motion blur eff ects.  

  .avi    Th e Audio Video Interleave video format fi le extension: 
fi leName.avi. Th is is an older, but still common, Windows 
video fi le format.  

  back light    In a typical 3-point light setup, a back light is positioned 
above and behind the subject, causing a fringe of edge illu-
mination on the subject that helps to distinguish it from the 
background.  

  Bezier handle    Bezier handles are common in vector illustration programs 
like Adobe Illustrator and consist of the edit points for Bezier 
splines that do not reside on the curve itself. Bezier han-
dles are similar to the second and third control vertices in a 
NURBS curve span in Maya.  

  boolean modeling    A boolean operation in modeling allows one shape to modify 
another by means of union (one shape plus the other shape), 
diff erence (one shape minus the other shape) and intersec-
tion (the volume common to both shapes).  

  boolean values    Boolean values are logical operators in MEL that refer to true 
(1) and false (0) values.  

  bump map    A bump map is a grayscale image map that is used to simu-
late a textured surface in a surface shader. Bump maps do 
not distort the underlying geometry; rather, they perturb 
the surface normals of the underlying object at each pixel in 
order to create their eff ect.  

  breadboard    Breadboard is a term derived from electronic circuit design, 
where physical breadboards are special generic circuit boards 
that allow for the quick assembly and connection of electronic 
components. In software engineering it is generally used to 
describe preliminary versions of code that are designed to be 
fl eshed out into fully working prototypes.  

  cancellous bone    Cancellous bone is the low-density spongy or trabecular bone 
that occupies the central portions of many medium- and 
large-size bones.  

  caustic    Th e word caustic, when used in optic or computer graph-
ics contexts, refers to the patterns created by refl ected and 
refracted light; for example, the patterns of light on the bot-
tom of a swimming pool.  

  CD4 lymphocyte    A CD4 lymphocyte is a type of white blood cell essential to 
immune function; they are also known as helper T cells.  

  cel    A cel—an artifact of traditional animation—is a trans-
parent sheet upon which individual frames of animated 
activity are drawn. Multiple cels can be layered together 
over an unchanging background to effi  ciently partition 
the work involved in making hand-drawn animation of a 
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complex scene in which multiple characters and special eff ects 
appear.  

  cell    A cell is the basic functional unit of life, usually comprising a 
cell wall or membrane enclosing an aqueous gel of organelles, 
proteins, and genetic material.  

  cell cycle    Th e cell cycle refers to the normal sequence of events in a 
replicating cell.  

  central   Th e CPU is the circuitry that controls and executes software
processing unit  instructions; it is the  “ brain ”  of the computer.  
(CPU)

  CG    Acronym for computer graphics.  

  CGI    Acronym for computer-generated imagery.  

  channel    A channel is one part of a digital image fi le, usually com-
prising either the red, green, or blue components of a color 
image. Other channels can be added to an image fi le, such 
as an alpha channel (a grayscale channel which codes for 
transparency) or a depth channel (a grayscale channel 
that represents distant objects as dark and near objects as
light).  

  chemoattractant      Chemoattractant   is a general term for any one of a number 
of intercellular and extracellular messenger molecules that 
serve to attract particular mobile cells.  

  chemotaxis    Chemotaxis is the motion of mobile cells along a concentra-
tion gradient (increasing or decreasing) of a chemoattractant 
substance.  

  clipping plane    Th e clipping plane is an arbitrary plane close to and perpen-
dicular to the camera; objects or parts of objects between the 
camera and the clipping plane will not display or render.  

  control vertex   A CV is a point that helps defi ne a NURBS curve in Maya. 
(CV)   Generally, a minimum of four CVs are required to create a 

NURBS curve: the fi rst and last sit on the curve itself, and 
the middle two infl uence its curvature.  

  CPK    Acronym for the Corey–Pauling–Koltun specifi cation for 
space-fi lling molecular models.  

  cytokinesis    Cytokinesis is the fi nal stage of mitosis (cell division) or mei-
osis (where the parent cell splits into two daughter cells).  

  cytoskeleton    Th e cytoskeleton is a dynamic scaff old of long, fi brous pro-
tein molecules stretching through the interior of eukaryotic 
cells, allowing them to maintain shape and change it when 
necessary. Composed of actin fi laments, intermediate fi la-
ments, and microtubules, the cytoskeleton is also essential 
for numerous other cellular processes, from cell movement 
and the transport of metabolic products within the cell, to 
apoptosis (programmed cell death).  
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  DAG    Acronym for the Directed Acyclic Graph of a Maya scene, 
which is Maya ’ s way of effi  ciently representing the hierarchy 
of elements in a scene.  

  debug     “ To debug ”  refers to the process of fi nding and removing or 
correcting errors in software code. One etymology of the 
term fi nds it dating from the earliest years of computer engi-
neering, when insects fl uttered or crawled into the warm, 
bulky circuitry.  

  Dependency   A graphical view in Maya (in the Hypergraph window) that 
Graph (DG)   represents the data fl ow model of scene elements (or nodes) 

in terms of outputs on one node connecting to inputs on 
another.  

  depth map    A depth map is a grayscale-rendered image in which untex-
tured scene objects emerge from a black background and 
become whiter as they get closer to the camera. Depth maps 
can be used for various postproduction eff ects, such as fog 
and depth of fi eld.  

  depth of fi eld   DOF refers to the range of distances from the camera where
(DOF)  objects appear to be in focus; if a scene has a  “ shallow DOF ” , 

then objects outside a narrow plane of focus will appear 
blurry. In conventional photography, lens variables—such 
as aperture (f-stop) and focal length—can be manipulated
to create shallow or deep DOF eff ects. A shallow DOF eff ect 
is often simulated in CG (either as part of the 3D ren-
dering process or as a post eff ect), either to increase the 
photorealism of the image or to selectively focus the viewer ’ s 
attention within the 3D scene.  

  deterministic    Deterministic processes are those in which each unique proc-
ess can be robustly predicted based on its initial conditions and 
on known inputs to the process as it changes through time (its 
so-called boundary condition); contrast this with stochastic 
process (see below) in which, at most, the probability envelope 
for a whole spectrum of possible outcomes can be predicted.  

  diffusion    Diff usion is a spontaneous process of particle motion from 
an area of high concentration to an area of low concentra-
tion. It results from the moment-by-moment buff eting of 
each molecule by collisions with its neighbors.  

  displacement map    Displacement maps are texture images used to deform sur-
face geometry in a 3D program; usually, light areas of a dis-
placement map push the geometry outwards (in the direction 
of surface normals), and dark areas inwards.  

  dot notation    A common form of notation in computer programming 
where spaces are replaced by periods, for example, 
objectName.attributeName.  

  emergent behavior    Refers to complex, adaptive behavior produced in a system by 
the cumulative eff ects of many simple interactions.  



598 GLOSSARY

  emitter    An object in a 3D program that serves as a source position for 
the emission of particles.  

  endocytosis    Th e process in which a cell absorbs molecules from the outside 
by forming an endocytotic vesicle from its cell membrane.  

  .eps    File extension for the Encapsulated PostScript vector fi le 
format.  

  eukaryote    One of the two main lineages of living cell (the other being 
prokaryotes). Eukaryotic cells have an internal organiza-
tion characterized by membrane bound organelles, the most 
prominent being the cell ’ s nucleus.  

  expression    Th e word expression refers to two things in Maya. Th e fi rst is 
a mathematical or logical statement composed of one or more 
operands (or values) and one or more operators. Th e second is 
an animation expression (see above).  

  extracellular   ECM is a vital structural component of animal tissues. It is a 
matrix (ECM)  3D web of fi brous molecules running outside of and between 

cells (thus extracellular). Th e ECM is primarily composed of 
collagen.  

  fi eld    Abbreviated name for a force fi eld in Maya Dynamics.  

  fi eld of view    See angle of view.  

  fi le texture    A texture for application to a 3D object that is derived from 
an image fi le, such as a TIFF or Photoshop fi le.  

  fl oating point    A string of digits that represents a real or decimal number; in 
other words, a number where the decimal point can be placed 
(fl oat to) anywhere in the string.  

  focal length    A term from photography and cinematography which refers 
to the optical power of a lens system. A short focal length 
lens will have a wide fi eld of view (wide angle) and a long 
focal length lens will have a narrow fi eld of view (zoomed in).  

  force fi eld    A Maya scene object that exerts some sort of infl uence (such 
as gravity or wind) upon distant objects in a dynamic simula-
tion; they can be local or global in their infl uence.  

  frames per    Th e standard term for the rate at which individual fi lm or
second (fps)  video images (frames) are displayed.  

  function syntax    MEL commands can be formatted in function syntax or 
imperative (command) syntax. Function syntax takes the 
form:

 $myVariable = functionName (parameter1, parameter2);   

  geometric   Primitives are basic geometric objects, such as spheres, 
primitive   cones, and cubes, which are part of a default set of simple 

objects that are often used to build more complex objects.  

  global   An approach to representing realistic direct and diff use
illumination (GI)  lighting in a computer-generated scene. Any one of a number 
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of algorithms, or combinations of algorithms, may be used 
to generate GI, but its hallmark is the representation of the 
diff use inter-surface refl ection of light characteristic of real-
world scenes.  

  global variable    A variable that is global in scope, meaning it ’ s available to all 
procedures and animation expressions within a Maya scene. 
Any variables not explicitly declared as global will be avail-
able only within the procedure or expression in which they 
are declared; in other words, they are local variables.  

  graphics processor    Modern computers use graphics processors (sometimes 
referred to as graphics cards or GPUs for Graphics Processing 
Units) to accelerate the process of drawing 2D and 3D images 
on the display device using special hardware circuitry.  

  haptotaxis    Th e directional migration of living cells, guided by the physi-
cal nature of the substrate on which they are moving (typi-
cally the substrate ’ s adhesivity for the cells).  

  hardware   Rendering performed by the graphics processor. Hardware
render(ing)  rendering can be very fast, but not all textures and eff ects 

can be hardware rendered.  

  High-dynamic   HDRI refers to computer graphics formats and imaging
range imaging methods that allow for the capture of real-world light 
(HDRI)   intensity range and the use of that range in computer 

graphics applications. Conventional computer-based images 
(such as 24-bit TIFF fi les) have a very limited intensity range,  
while the real world has light intensity contrast range of 
60,000:1 or higher. HDRI technologies allow for storing and 
processing images in that much larger real-world range.  

  hotkey    A hotkey is simply a key on the computer keyboard assigned 
to execute a particular function when it is pressed.  

  HSV    Acronym for the hue, saturation, value color model which, 
along with RGB, is one of the default color models in Maya.  

  hull    Line drawn between control vertices of a NURBS curve or 
surface. Hulls do not sit on the NURBS curve or surface, but 
can be selected and manipulated to infl uence the shape of the 
curve or surface.  

  hydrolysis    A chemical reaction involving water; it is a type of reaction 
that occurs when polymers are broken down.  

  Hypergraph    A window in Maya which displays a graphical view of 
your scene in one of two ways: as a scene hierarchy or as a 
Dependency Graph.  

  Hypershade    A window in Maya that provides access to materials, tex-
tures, lights, and special eff ects.  

  hyperthreading    Hyperthreading is a technique used on some microproces-
sors that emulates the presence of a second processor, speed-
ing some threaded operations like rendering.  
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  ID    Acronym for industrial design.  

  IK    Acronym for inverse kinematics.  

  imperative syntax    MEL commands can be formatted in function syntax or imper-
ative (command) syntax; imperative syntax takes the form:

  functionName parameter1 parameter2.   

  in vivo    A term from Latin meaning  “ in life ” ; used in science to indi-
cate phenomena observed in a living organism.  

  in vitro    A term from Latin meaning  “ in glass ” ; used in science to indi-
cate phenomena observed in a test tube, Petri dish, or other 
experimental apparatus.  

  in silico    A term derived by analogy to in vitro and in vivo to refer to 
biological processes simulated in computers. Most current 
computers use silicon-based materials in their hardware 
circuitry.  

  interactive   A rendering mode in Maya that allows for a part of the scene
photorealistic to re-render each time changes are made, speeding the process
rendering (IPR) of fi ne-tuning materials and lights.  

  interpretive   iVis is the research discipline that deals with the formulation
visualization and investigation of new models of pictorial representation
(iVis)  in science. Th e goal of iVis is making visible the principal, rel-

evant elements of organization and change within a model 
system or data set. iVis is informed by principles of physical 
theory, computer graphics, human perception, and informa-
tion design, among other disciplines.  

  inverse   An software approach for determining the correct confi gura-
kinematics (IK)  tion of a jointed structure given the joint constraints and the 

position of a terminal joint or eff ector.  

  isoparametric   A curve component of a NURBS surface (defi ned by the 
curve (isoparm)  control vertices), defi ning the shape of the surface in either 

the U- or V-direction.  

  keyboard shortcut    See hotkey.  

  keyframe    In traditional animation, a keyframe is a drawing by the anima-
tor of an important or extreme part of an object ’ s movement; 
frames between the keyframes are drawn by secondary ani-
mators known as  “ inbetweeners ” . In computer graphics, a key-
frame is a point on the timeline where the animator sets object 
parameters such as location, rotation, or scale; the computer 
interpolates the changing parameters between keyframes.  

  key light    In a typical 3-point light setup, a key light is positioned above 
and to the camera ’ s left of the subject, providing the princi-
pal source of illumination.  

  keyset    Another name for a Maya animation curve.  

  level of detail (LOD)    Th e complexity of the displayed representation of a scene or 
object in a 3D application; often the LOD of the interactive
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workspace is reduced to allow for speedy display, and increased 
at render time for the creation of fi nal-quality images.  

  ligand    A molecule which binds (usually through a non-covalent 
bond) to another, usually much larger, molecule.  

  local coordinates    A coordinate system measured relative to the transform node 
of a particular object. World coordinates are measured from 
the world origin.  

  lofting    A method for creating a NURBS surface composed of a series 
of discrete NURBS curves linked in sequence, much like the 
hull of a ship is defi ned by its ribs.  

  Markov process    A stochastic process in which future changes depend on the 
system ’ s current state, rather than any past states.  

  Maya ASCII (ma)    A Maya scene fi le format written in ASCII code via MEL 
(Maya Embedded Language) script. A Maya ASCII fi le can be 
opened and edited in a text editor, independent of the Maya 
application.  

  Maya binary (mb)    A Maya scene fi le format written in binary, or computer 
machine code. Maya binary fi les are smaller than Maya ASCII 
fi les but cannot be edited in a text editor.  

  Maya Embedded   A C-like interpreted scripting language built in to Maya.  
Language (MEL)

  memory caching    A method of writing memory intensive operations (such as 
dynamic simulations or particle positions) to disk in order to 
reduce the resource demands during rendering.  

  MolVis    A short form for molecular visualization.  

  monomer    A single molecule that can be joined by chemical bonds to 
identical or related molecules to form a polymer.  

  morphometry    Th e process of measuring the dimensions and shape of an 
object.  

  motion capture   An animation method based on recording the motion of 
(Mocap)   real-world organisms or objects and applying that motion 

data to objects in a 3D program.  

  .mov   Th e QuickTime video format fi le extension: fi leName.mov.  

  non-photorealistic   A catch-all term for rendering approaches which do not seek 
rendering (NPR)   to emulate photographic images of reality; sometimes used to 

refer to one particular NPR approach: toon rendering, which 
is meant to look like traditional cel animation.  

  NTSC    Th e analog broadcast television format for North America 
(as well as parts of South America and Asia). NTSC stands for 
the National Television System Committee.  

  NURBS    NURBS stands for Non-Uniform Rational B-Splines, a class 
of mathematically defi ned geometric models used widely in 
computer graphics.  
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  NURBS curve    NURBS curves (or splines) are resolution-independent, math-
ematically defi ned curves. Th ey are often used as animation 
paths, function curves, and as the basis for the construction 
of surface geometry.  

  PAL    Th e analog broadcast television format for most of Europe, 
Asia, Australia, Africa, and South America. PAL stands for 
Phase Alternating Line.  

  parallax    Th e apparent motion of objects created by the motion of the 
observer.  

  parenting    Th e process of creating organized and functional scene hier-
archies by making some objects subordinate to others within 
a scene hierarchy.  

  particle systems    A dynamic system used in a 3D program to simulate phenom-
ena (such as smoke, dust, fi re, or fl uids) that are composed of 
great numbers of small particles whose behavior is governed 
by the infl uence of forces like gravity and wind.  

  pencil test    Another term for the animatic. Th is term is more often 
encountered in traditional, pencil-and-paper hand-drawn 
animation workfl ows.  

  pixelation    Th e appearance of individual pixels in a bitmap image result-
ing from the image being displayed at size larger than its 
intended resolution.  

  photorealism    Images created to evoke various photographic eff ects (high-
lights, depth of fi eld, realistic shading, and so on) such that 
they appear as if they could have been produced by a real-
world camera.  

  physics engine    A software component that allows for the simulation of phys-
ical forces and their eff ects on an object ’ s shape and motion, 
taking into account factors such as mass, gravity, friction, 
and air resistance.  

  playblast    A screen-resolution, hardware-rendered preview of an ani-
mation created in Maya.  

  PLE    Acronym for the Maya Personal Learning Edition.  

  poly count    Th e number of polygons comprising an object or scene. 
Reducing poly count can lower memory usage and/or 
decrease the render time of a scene.  

  polypeptide    An alternate term for proteins, which are composed of multi-
ple peptides (amino acid polymers).  

  post effect    An image or visualization eff ect that is added after the ren-
dering stage in an editing or compositing program like After 
Eff ects.  

  previsualization    A preproduction technique in fi lmmaking where complex 
scenes are choreographed as computer animation before 
shooting begins.  
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  procedural   Animation that is generated algorithmically, as opposed to
animation being keyframed.  

  procedural texture    Textures that are generated algorithmically, as opposed to 
being derived from an image fi le.  

  pseudopod (pl.    A dynamic cytoplasmic protrusion on a living cell, often used
pseudopodia)  for locomotion, sensing the environment, or engulfi ng 

foreign matter.  

  pseudorandom   A number generated by a computer algorithm—called a
number  pseudorandom number generator (PRNG for short)—that 

approximates the properties of a true random number. 
Because it was determined by a mathematical formula, a 
pseudorandom number cannot be truly random, but can be 
repeated predictably. Maya ’ s PRNG, the rand() function, gen-
erates numbers from the uniform probability distribution.  

  radiosity    One of a number of algorithms used to generate global illu-
mination renderings.  

  ramp    A color gradient.  

  raster graphics    Computer graphics images composed of pixels.  

  reaction rate    Th e speed at which a chemical reaction takes place, given the 
concentration of reactants and environmental constraints 
such as temperature and pressure.  

  render layer    In a Maya scene, diff erent elements—mainly models, eff ects, 
and lights—can be partitioned into diff erent  “ render layers ” . 
Each layer is rendered separately so that the resulting image 
depicts only those elements assigned to the layer. Th e layers 
are subsequently combined in a compositing program, where 
special eff ects can be applied to individual layers. A render 
layer can also be used to produce a specifi c  “ channel ”  such as 
color, alpha, shadow, or specular, to name a few. In this latter 
context, a render layer is sometimes referred to as a  “ pass ” .  

  regenerative   A branch of medical and biomedical engineering research
medicine  concerned with the potential to repair or restore tissues, 

organs, and limbs via the use of stem cells, engineered tis-
sues, and genetic engineering.  

  render engine    A render engine refers to a software component of a 3D ani-
mation system, designed to produce fi nished images from 
geometry and animation data. Maya, for instance, has four 
built-in render engines: the Maya Software, Maya Hardware, 
mental ray, and Maya Vector renderers.  

  render farm    A render farm is a collection of multiple computers confi g-
ured to cooperatively render 3D scenes, thus accelerating the 
rendering process.  

  rigid body    A dynamics simulation object that behaves as if it were made 
from a rigid material like hard plastic or steel.  
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  scene    In Maya, a scene is the 3D environment, including models, 
animation, lights, and cameras, contained in one computer 
fi le.  

  scene hierarchy    A view in Maya ’ s Hypergraph window which visually repre-
sents the ranking of scene objects within nested parent-child 
relationships, depicted as an outline-like ordering of object 
node boxes. Parent objects control various parameters of 
their child objects, and child objects themselves can be par-
ents of other objects.  

  scope    Th e domain in which a variable operates: local variables oper-
ate only within the procedure or expression in which they are 
declared; global variables are global in scope, meaning they ’ re 
accessible to all procedures and expressions operating within 
a Maya scene.  

  search path    Th e directory path or paths that Maya looks to for executable 
MEL scripts; directories can be defi ned as part of the search 
path in the Maya.env fi le.  

  soft body    A dynamics simulation object in Maya which behaves as if it 
were made from a fl exible material like cloth or gelatin.  

  spline    See NURBS curve. Th e term spline originated in shipbuild-
ing where it described a thin piece of wood used to defi ne 
hull shape. Th e spline was bent into a smooth curve by metal 
weights—the equivalent of control points on a Maya spline.  

  stochastic    A process that displays random or probabilistic behavior.  

  story reel    In some studios an animatic is called a story reel.  

  sub-surface   Sub-surface scattering is the name for a shading eff ect that
scattering  simulates the penetration, scattering, and re-emission of 

light in semi-transparent or translucent surfaces. Its use can 
increase the realism of depiction of surfaces such as wax, 
milk, or skin.  

  tangent    Another name for a Bezier handle in Maya.  

  tessellation    In CG, tessellation refers the pattern of polygons created 
(as the result of a modeling operation) in order to specify a 
renderable surface. In Maya, for example, NURBS models 
are ultimately tessellated for rendering, and changes to the 
tessellation settings can aff ect the quality of the rendered 
result.  

  texture mapping    Texture mapping refers to the application of 2D images or 
procedural textures to the surface of a model to change its 
appearance when rendered.  

  three-point   A traditional photographic approach to lighting, consisting 
(3-point) lighting   of a  “ key ”  light (to provide the main source of illumination), 

a  “ fi ll ”  light (to reduce the harsh shadows created by the key 
light), and a  “ back ”  light (to create edge illumination on the 
object of interest).  
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  toon rendering    Toon rendering (which is a contraction of  “ cartoon ”  render-
ing) is a non-photorealistic rendering approach that mim-
ics the linear outline and fl at color fi lls of traditional cel 
animation.  

  treadmilling    Treadmilling is a term for a dynamic behavior of cytoskeletal 
elements (such as actin fi laments). In treadmilling, the fi la-
ment appears to be constant in length; in reality, actin mon-
omers are disassociating from the minus-end, and attaching 
to the plus-end.  

  van der Waals   A radius that defi nes the  “ contact surface ”  of an atom. For
radius  instance, the van der Waals radius of a carbon atom is 1.7       Å. 

Acronym: vdW radius.  

  vector    A 1D data array, specifying direction and magnitude.  

  vector graphics    Images that are comprised of resolution-independent vector 
descriptions of graphical objects.  

  virion    A whole virus particle.  

  virtual memory    An operating system technique that uses part of the hard 
disk to simulate the presence of additional random access 
memory (RAM). Virtual memory allows the eff ective expan-
sion of the usable amount of memory over the amount of 
RAM hardware circuitry installed in the computer.  

  visualization    Th e act of creating a clear visual impression or representation 
of something, whether in the mind or in some form of exter-
nal visual media.  

  .wmv    Th e Windows Media Player video format fi le extension: 
 fileName.wmv.   

  world coordinates    A coordinate system as measured from the world origin. 
Local coordinates are relative to the transform node of a 
particular object.  

  world origin    Th e center of the virtual world in Maya, where the value on 
all three spatial axes is 0, 0, 0.        



Th is page intentionally left blank



    Index
    “ .mel ”  fi le extension  ,   412   
 .state attribute  ,   416, 430   
  “ .txt ”  fi le extension  ,   412  

 for animation expression fi les  ,   412    
  “ \n ” , new line character  ,   319, 335   
 \n break notation  ,   466   
 1j6z.pdb  ,   351, 352, 396   
 2D animatic  ,   57–8   
 2D cell research  ,   532, 533   
 2D protein array  ,   384   
 2D texture  ,   196 

 see also   Procedural texture   
 3-point lighting rig  ,   235, 240   
 3D animatic  ,   66   
 3D Brownian diff usion  ,   399   
 3D camera  ,   64  

 movements of  ,   93    
 3D cell research  ,   532, 533   
 3D protein arrays  ,   384   
 3D scene  ,   58, 60   
 3D Studio Max  ,   16   
 3D texture  ,   196 

 see also   Procedural texture   
 5-state Markov process  ,   528, 529   

  Abyss, Th e   ,   15   
 Actin  ,   346–8  

 F-actin  ,   386, 389–90, 402   
 G-actin  ,   386, 395–7, 422   
 model  ,   370, 371, 373    

 Actin depolymerizing factor (ADF)  ,   392   
 Actin fi laments  ,   11, 347, 348, 385, 390, 

402   
 Actin geometry  ,   394  

 F-actin model  ,   397–9   
 G-actin template model  ,   395–7    

 Actin protein model  ,   370, 371   
 Actin reactions:  

 bound nucleotides  ,   390-1   
 reaction rates  ,   391–2    

 Active panel  ,   88   
  AddAttr  command  ,   465, 496   
 Adenosine diphosphate (ADP)  ,   

390–1   

 Adenosine triphosphate (ATP)  ,   346, 347, 
390  

 CPK model of  ,   368–9    
 Adobe After Eff ects  ,   66, 259   
 Advanced rendering techniques:  

 with mental ray, for Maya renderer  , 
  249  

 ambient occlusion  ,   250, 251   
 caustics  ,   250   
 global illumination  ,   250, 251   
 image-based lighting  ,   251–2   
 realism about photorealism  ,   252   
 Render Layers  ,   252   
 subsurface scattering  ,   250     

 Agent-oriented programming (AOP)  ,   40   
 Aim locator  ,   225   
 Airy ’ s diff erential equation  ,   24   
 Alias|Wavefront (A|W)  ,   14   
 Alias Research  ,   14, 15   
 Alpha channels  ,   194, 220   
  Ambient Color,      206   
 Ambient occlusion (AO)  ,   64, 250, 251   
 Amino acids  ,   8   
Angle of View,    217, 219   
 Animation  ,   61, 138 

  animator ’ s workfl ow  ,   49  
 postproduction  ,   66–7   
 preproduction  ,   51–8   
 production  ,   58–66    

 and fi lm perception  ,   46–9    
  deleting keys  ,   144   
 and fi lm perception  ,   46–9   
 graphing  ,   142–3   
 keyframe animation  ,   145–51  

 vs. procedural animation  ,   138–9    
 menu set  ,   139–40   
 micrographic look  ,   52–3   
 nodes:  

 in Hypergraph and Attribute 
Editor  ,   151    

 non-photorealistic looks  ,   53, 55–6   
 photorealistic look  ,   52   
 playback settings  ,   145   
 procedural animation  ,   151–4   



 Animation   (contd.)   
 setting keys  ,   140–1   
 time units  ,   144    

 Animation assistants  ,   62   
 Animation controls  ,   146, 147   
 Animation curve  ,   62, 143, 155  

 editing  ,   147–8, 149  
 see also   Interpolation   

 Animation expression  ,   151–2, 278, 292, 309  
 creation  ,   153–4   
  expression  command  ,   297–8   
 Expression Editor  ,   295  

 converting units  ,   296   
 Create and Edit buttons  ,   296    

 expression node  ,   139, 154, 294–5   
 expression syntax  ,   296–7   
 line breaks in  ,   300–1   
 stand-alone animation expressions  , 

  298–300    
 Animation nodes  ,   151, 152   
 Animator ’ s workfl ow:  

    postproduction  ,   66–7   
 preproduction  ,   51–8   
 production  ,   58–66     

 Apparent motion  ,   48, 49   
     Apple  ,   15, 66   
 Apple key  , see   Command key   
 Application-oriented programming 

language  ,   266   
 Application Programming Interface (API)  , 

  16, 72, 262   
 Area light  ,   236, 237   
 Array index management  ,   29   
 Arrays  ,   275–6  

 molecular arrays  ,   10    
 Assemblers  ,   25, 26   
 Assembly languages  ,   25, 28   
 associate() procedure  ,   425–8   
 Association reaction  ,   392, 401, 407, 421   
 Association reaction rate  ,   404–7   
 ATOM  ,   352, 359, 360   
 Atoms  ,   8, 348–9  

 creation, in CPK model  ,   362–4   
 as spheres  ,   350    

 Attribute data types  ,   287   
 Attribute Editor  ,   79, 80, 96, 98, 99, 124–6, 

144, 151, 535 
 see also   Camera Attribute Editor   

 Attributes, in MEL:  
 getting, setting, and connecting  ,   286–7   
 string attributes  ,   287   
  type  fl ag  ,   287    

 Auto keyframing  ,   142   
 Autodesk  ,   14, 72   
 Autodesk 3ds Max  ,   313, 578   
 Autodesk MotionBuilder  ,   313   

 Autodesk StudioTools  ,   15   
 Autodesk VIZ  ,   313   
 Avoidance vectors  ,   400, 190, 536   
 Axis indicators  ,   93   

 Back light  ,   63, 235, 236, 238   
 Backslash character  ,   275, 300, 316   
 Backus, John  ,   29   
     Bacterial fl agellum  ,   10, 11   
 Barbed end  ,   347, 389–90   
 BASIC  ,   28   
 Batch Rendering  ,   244–5, 252  

 common Render Settings  ,   253–5   
 Maya Software Render Settings  ,   

255–6   
 Render  ,   256–7   
 software vs. hardware rendering  ,   257    

 Berry, Drew  ,   201   
 Bézier handles  ,   148   
 Binary digit  ,   23   
 Binary string  ,   25   
 Binary switching  ,   38   
b indPose node  ,   468   
 Blank lines  ,   283   
 Blank spaces  ,   283, 319   
 Blender  ,   578   
 Blocks  ,   278   
   Boolean  ,   116   
 Bounding Box  ,   90, 490–1   
 Bounding vector  ,   422, 423, 503   
   Brinsmead, Duncan  ,   201   
 Brownian motion  ,   172   
 Brownian random walks  ,   393   
 Brushes  ,   331, 333   
 Buckminsterfullerene  ,   314   
 BuckyBall  ,   314   
  bump  channel  ,   206   
 Bump maps  ,   198, 199   

 C �  �  Application programming interface 
(C �  �  API)  ,   28, 40, 312, 579   

 C �  �  plug-in  ,   580  
 Camera attributes  ,   217, 218–19, 222  
 Camera Display Options  ,   221   
 Camera movements:  

 Dolly  ,   93   
 keyboard/mouse combinations  ,   93   
 tracking  ,   93   
 tumbling  ,   93    

   Cameras  ,   64, 216, 217  
creation ,   223  
 two-panel view set up  ,   223–4  

 Camera Attribute Editor:  
 camera attributes  ,   218–19   
  Depth of Field  attribute  ,   219–20   
 Display Options  ,   221   
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 Environment attributes  ,   221   
 Film Back attributes  ,   219   
 mental ray attributes  ,   219   
 Movement Options  ,   221–2   
 orthographic views  ,   222   
 Output Settings  ,   220    
    Cast shadows  ,   209, 232, 234   

 Caustics  ,   246, 250, 252   
 CD4 lymphocytes  ,   322   
ceil() function  ,   288–9   
 Cell shader technique  ,   65   
 Cell-cell signaling  ,   449, 524–5, 526, 

536–8   
 Cell crawling  ,   445–6, 454, 455, 456  

 algorithm  ,   453, 525, 526, 528   
 fast and slow movers  ,   448   
 model defi nition:  

 cell behavior  ,   450   
 cell model  ,   449–50   
 cellular scale  ,   450–1   
 chemotactic signal  ,   450   
 substrate  ,   450    

 navigation nomenclature  ,   448–9   
 protrusion nomenclature  ,   448   
 pseudopod generation  ,   451–3   
 retraction  ,   448 
 and walks  ,   446–8    

 Cell locomotion model:  
 algorithm design  ,   453, 455, 456, 457  
 algorithm encoding:  

cellCrawl expression  ,   466–75    
 cell crawling  ,   445–6  

 and walks  ,   446–8    
data I/O ,  476
     geometry  ,   457  

 cell deformation  ,   463–4   
 cell resetting  ,   464   
 cell rigging  ,   461–2   
 cell shaping, with Lattice Deformer  , 

  459, 460   
 cell ’ s position, resetting of  ,   461   
   custom attributes addition  ,   464–5   
 history deletion  ,   459, 461   
 joints  ,   462–3   
 joints to skin, binding  ,   463   
 shader, creation and application  ,   

459   
  smoothening  ,   458–9  

    model defi nition:  
 cell behavior  ,   450   
 cell model  ,   449–50   
 cellular scale  ,   450–1   
 chemotactic signal  ,   450   
 substrate  ,   450    

 navigation nomenclature  ,   448–9   
 protrusion nomenclature  ,   448   

 pseudopod generation:  
 animation, using joints  ,   451–3    

            troubleshooting  ,   476–7   
    Cell micrographs  ,   53   
 Cell migration:  

 as emergent behavior  ,   521–3   
 model defi nition:  

 boundary conditions  ,   527   
 cell behavior  ,   525   
 cell-cell signaling  ,   526   
 cell geometry  ,   526   
 spatial and temporal scale  , 

  527, 528   
 substrate  ,   526, 527    

 model design  ,   528–38   
 nomenclature  ,   524–5   
 in scaff olds  ,   523   
 simulation model  ,   539    

 Cell migration data  ,   322–3  
 visualization  ,   325  

 algorithm encoding  ,   326–7   
 algorithm planning  ,   324, 326   
 animation, playing  ,   337   
 data fi le  ,   322–3   
   data visualization  ,   323–4   
 debugging  ,   337   
 moveCells.txt  ,   327–36   
 script running  ,   336–7   
 spatial and temporal 

scales  ,   323   
 summary report  ,   324–6, 335     

 Cell organization  ,   10–11   
 CellCenter  ,   461–2, 474   
cellCrawl expression  ,   466  

 cell model, resetting  ,   469–70   
 crawl cycle increment  ,   474–5   
 crawl cycle setup  ,   470–4   
 print commands  ,   470   
 variables initialization  ,   468   

 Cellular scale  ,   450–1  
 Channel box  ,   97–8, 113, 144  

 and sphere 
transformation  ,   116–17    

 Channel Control editor  ,   98   
 Character rig  ,   444, 451–2   
 Checker texture node  ,   194, 195   
 Chemoattractant  ,   449, 547   
 Chemokinesis  ,   448   
 Chemotactic signal  ,   450   
 Chemotaxis  ,   448–9, 451, 524, 535–6   
 Cinema 4D  ,   16, 578   
-clear fl ag (-cl)  ,   472   
 Clip planes  ,   219   
  closestPointOnSurface  (cpos) node  ,   400, 

434, 533, 534   
  closestSurface   ,   542   
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collide() procedure  ,   400, 432–4   
 Collision forces  ,   161   
 Collision vector  ,   421, 422   
 Color Chooser  ,   205, 206   
 Color wheel  ,   378   
 Colored lights  ,   378   
colorPP attribute  ,   173   
 Command argument  ,   282   
 Command key  ,   74   
 Command Line  ,   94, 95, 266, 267   
 Command line render  ,   244, 245   
 Comments  ,   270, 327–9   
 Compatible Time-Sharing System 

(CTSS)  ,   36   
 Compiler  ,   28, 29–30   
 Compositing plan  ,   65   
 Computational biology  ,   22, 35  

compiler ,   27–8, 30  
     conditional control  ,   33–4   
 high level programming languages  ,   

26–7   
 information and process  ,   22–3   
 interpreter  ,   27–8   
 language and program  ,   23–5   
 low level programming languages  ,   

26–7   
    OOPs and agents  ,   39–40    
 stored programs  ,   30–3 

   Computer-based interpretive visualization  , 
  35   

 Computer-generated CPK model  ,   349, 351   
 Computer-generated imagery (CGI)  ,   4, 14, 

15, 263   
 Computer graphics (CG)  ,   4   
       Concentration volume  ,   394, 404   
   Conditional control, of program execution  , 

  33–4   
 Conditional statements  ,   288–9   
 Confocal microscopy  ,   53   
 Conformational changes  ,   388, 397   
  connectAttr   ,   297   
 Connection Editor  ,   79, 127–8   
 Construction history  ,   80–1  

 geometry modeling  ,   122–8    
 Container, particles in:  

 attributes  ,   174–5   
 collision, between particle and cylinder  , 

  176–7   
 container creation  ,   173   
 emitter node  ,   175   
 inter-particle collisions  ,   178–81   
 particle data caching  ,   183–4   
 particle emitter creation  ,   173–4   
 particle motion  ,   178   
 particle shape node  ,   175–6   
 per particle color  ,   181–3    

 Control vertex (CV)  ,   104, 452  
 and polygon primitive deformation  ,   120   
 and sphere deformation  ,   118    

 CPK models  ,   344, 345, 348–51, 368–72, 
371, 395,   

cpk() procedure  ,   356–7, 368   
 Create button  ,   296   
 Create menu  ,   102–3   
 Creation options  ,   103   
 Critical concentration (C c )  ,   392   
 cRule1()  ,   554–8   
 cRule2()  ,   558–60   
 cRule3()  ,   552, 561–4   
 Curl, Robert  ,   314   
 CurrentTime MEL command  ,   297   
 Curve degree  ,   130   
 Curve fl ow  ,   163–4   
cycleCheck  ,   170–1   
 Cytoskeleton  ,   10–11, 12, 347, 348, 384   

 Dalton (DA)  ,   344   
 Dalton, John  ,   342   
 Data conversion  ,   273–4   
 Data input/output  ,   312  

 cell migration visualization:  
 algorithm encoding  ,   326–7   
 algorithm visualization  ,   324–5   
 animation, playing  ,   337   
 data fi le  ,   322–3   
 data visualization  ,   323–4   
 debugging  ,   337   
moveCells.txt ,   327–36   
 script running  ,   336–7   
 spatial and temporal scales  ,   323   
 summary report planning  ,   

324–6, 335    
 MEL, for reading and writing fi les  ,   315  

 data reading  ,   318–20   
 data writing  ,   320–2   
 fi le, opening and closing  ,   316–18   
 fi le path  ,   316    

 translators  ,   313–15    
 Data management plan  ,   65–6   
 Data reading, using MEL commands:  

  feof  command  ,   320   
  fgetline  command  ,   318   
  fgetword  command  ,   319   
  fread  command  ,   319   
  frewind  command  ,   318    

 Data visualization  ,   323–4   
 Data writing, using MEL commands:  

 fflush command  ,   321–2   
 fprint  ,   320–1   
 fwrite  ,   321    

  dataOutput  expression  ,   572–3   
  De Humani corporis Fabrica   ,   4   
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 Debugging  ,   267, 306–8, 371–2, 440–1   
 Default light  ,   63, 90, 232   
 DefaultValue  ,   465   
Deoxyribonucleic acid, see DNA
 Dependency Graph (DG)  ,   16, 161, 192, 

263, 459  
 and biology  ,   82   
 and DG nodes  ,   78–81    

 Depth channel  ,   220, 254   
 Depth Map Shadows  ,   234, 378–9   
  Depth of Field  attribute  ,   219–20   
 Dermal ECM scaff old  ,   481  

 model defi nition  ,   483  
 fi ber orientation and 

intersections  ,   485   
 fi ber size distribution  ,   484–5   
 scaff old dimensions  ,   484     

 Design-space  ,   6, 7   
 Device Aspect Ratio  ,   226   
 DG nodes  ,   78–80, 99   
  Diffuse  channel  ,   207   
diffuse() procedure  ,   400, 431–2   
 Diff usion vector  ,   400, 422   
 Diff usive motion  ,   393   
 Digital Equipment Corporation (DEC)  ,   26   
 Directed Acyclic Graph (DAG)  ,   81  

 and biology  ,   82    
 Directedness coeffi  cient (D c )  ,   324, 335   
Disney, Walt, 15, 46
   Disney-style animation  ,   57, 61   
 Displacement maps  ,   198, 199   
 Displacement materials  ,   193   
 Display layer  ,   97   
 Display Options  ,   221   
dissociate() procedure  ,   403, 410, 434–7   
 Dissociation reaction  ,   392   
 Dissociation reaction rate  ,   408–9   
 DNA  ,   10, 11, 342  

 computer-generated CPK model of  ,   349   
 plastic CPK models of  ,   349    

  do …while  loop  ,   290–1   
 Dolly, and camera movement  ,   93   
 Domain-oriented programming language  , 

  265   
 Dope Sheet  ,   142–3, 144   
 Dot notation  ,   153, 286   
 Double transformation  ,   133, 505   
 Downstream node  ,   79, 123, 127   
 Dream Quest Images  ,   15   
   Dynamation  ,   15, 16   
 Dynamic Relationships Editor  ,   165, 166   
 Dynamic simulations  , see   Dynamics   
 Dynamic typing  ,   273   
 Dynamics  ,   158, 160  

 collision forces  ,   161   
 container, particles in  ,   173–84   

 Dynamic Relationship Editor  ,   165, 166   
 Dynamics engine  ,   161   
 fi elds  ,   161–2   
nCloth  ,   165   
 Nucleus  ,   165   
 particle objects  ,   162–4  

 attributes  ,   162   
 curve fl ow  ,   163–4   
 emitters  ,   162, 163   
 goals  ,   162–3   
 rendering  ,   163, 164    

   rigid bodies  ,   164, 166–72   
 soft bodies  ,   165    

 E-Cell  ,   579   
 Ease in, spline interpolation  ,   143   
 Ease out, spline interpolation  ,   143   
   ECM scaff old growing  ,   480  

 algorithm design  ,   492, 493  
 fi ber axis  ,   486   
 fi ber surfaces  ,   492   
 fi bers randomization  ,   491   
 NURBES spheres  ,   486–7   
 rule-based design  ,   487–91   
 seeds resetting  ,   491   
 timeline, modeling with  ,   487    

 algorithm encoding:  
makeSeeds() procedure  ,   494–7   
 moveSeeds expression  ,   500–6   
 resetSeeds expression  ,   497–500   
 rule procedures  ,   507–12    

 dermis:  
 fi ber orientation and intersections  ,   485   
 fi ber size, packing density, shape  , 

  484–5   
 parameters of  ,   481–3   
 scaff old dimensions  ,   484    

 expressions creation  ,   513–14   
 Maya scene preparation  ,   512   
 model playing  ,   515–16   
 parameter eff ects  ,   517–18   
 scaff old parameters inspection  ,   515, 516   
 scene preparation  ,   514–15   
 script elements sourcing  ,   512–13   
 seeds making  ,   513    

 Edit button  ,   296   
 Edit mode  ,   282   
 Edit Points (EPs)  ,   104–5   
 EDSAC  ,   24, 25, 33, 34, 35   
 Electronic Systems Laboratory (ESL)  ,   36   
 Emitter  ,   161, 162, 163, 175   
 Endocytosis  ,   385   
 Endothelial cells  ,   448   
 Environment textures  ,   196   
 EP Curve Tool  ,   131   
 Exit on Completion  ,   103   
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 Explanations  ,   576   
 Explicit typing  ,   273, 415   
  expression  command  ,   297–8   
 Expression Editor  ,   151, 153, 293, 295–6   
 Expression node  ,   139, 154, 294–5   
 Expression syntax  ,   296–7   
 Extracellular matrix (ECM) proteins  ,   165   
 Extrude tool  ,   132, 486   

 F-actin  ,   386, 402  
 model  ,   397–9   
 reactions  ,   390–2   
 structure of  ,   389–90  
 see also   Actin   

 Fade in  ,   423   
 Fade out  ,   423   
faderShader() procedure  ,   410, 429–31   
 Far Clip Plane  ,   514   
     FBX  ,   313   
 fCheck  ,   257  

 playback in  ,   258–9   
 saving from  ,   259    

  fclose  command  ,   321   
  fgetline   ,   318   
  fgetword   ,   318, 319, 359   
 Fields, in Maya  ,   161–2  

 radial fi eld:  
 Manipulator Tool for  ,   178–9   
 particle object, connection with  ,   179   
 particles, as source  ,   179–81    

 Turbulence fi eld  ,   170, 172, 178    
 File opening and closing  ,   316–17   
 File browser  ,   317–18   
  “ File end-of-fi le ”  (feof) command  ,   320   
 File header  ,   304   
 File path, for reading and writing  ,   316   
 File Texture  ,   196–7   
  fileBrowserDialog  command  ,   317   
  fileDialog  command  ,   358   
  fileTest  command  ,   316   
 Fill light  ,   63, 235–6, 237   
 Fills  ,   247   
 Film Back attributes  ,   219   
 Filmmaking  ,   51  

 script treatment in  ,   56–7    
 Final Cut Pro  ,   66   
 Flags:  

 and default tool settings  ,   281–2   
 for extrude command  ,   505    

 Flash Player  ,   247   
 Flat Shade All  ,   90   
 Flat Shade Selected Items  ,   90   
 Flicker fusion  ,   48, 49   
 Floating point  ,   116, 270   
  Focal Length   ,   217, 219   
 Footage  ,   64, 66   
  fopen  command  ,   316, 317, 327   

  for-in  loop  ,   289, 290   
  for  loop  ,   289–90   
 Force attribute  ,   181   
 -forceElement (-fe) command  ,   424   
   Fortran  ,   28, 29, 90   
 Four panel view  ,   112, 114   
fprint  ,   320–1   
 Frame All  ,   224   
 Frame rate  ,   61   
 Frame Selection  ,   224   
  frame  variable  ,   153, 297   
  fread   ,   318, 319   
  frewind   ,   318   
 Function syntax  ,   282–3   
 Future of Maya  ,   579–82   
 fwrite  ,   320, 321   

 G-actin protein  ,   386   
 G-actin template model  ,   395–7   
      gauss  command  ,   400   
   GeoConnector node  ,   177   
 Geometric primitives  ,   102–3   
 Geometry modeling  ,   58–9   
getAttr command  ,   297   
   Gillespie algorithm    ,   530   
 Global illumination (GI)  ,   64–5, 

250, 251   
 Global procedure  ,   292   
 Global variable  ,   276–7, 498   
   Glue   program  ,   265   
   Graph Editor  ,   142, 143, 147–8  

 graph view  ,   148–50   
 keys, for move and deletion  ,   150–1   
 outliner  ,   148   
 toolbar  ,   150    

 Graphics Processing Units (GPUs)  ,   64   
 Graphics processor  ,   163, 190   
 Guide spline:  

 drawing  ,   130–1   
 profi le snap  ,   132    

 Haptotaxis  ,   449, 524–35   
 Hardware Render Buff er (HRB)  ,   246   
 Hardware renderers  ,   163, 176, 246   
 Hardware rendering  ,   190  

 vs. software rendering  ,   246    
 Hardware Texturing  ,   90   
    heightRatio  attribute  ,   414, 416, 417   
 Help Library  ,   73, 74, 89–90, 268, 274, 284, 

291, 295, 309–10, 458   
 Hemoglobin, 204     
   High dynamic range imaging (HDRI)  ,   251, 

252   
 High-level programming languages  ,   26–7   
 High-LOD model  ,   395   
   History icon  ,   110   
 Holmes/Lorenz model  ,   396   
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   Home-built   tools  ,   16   
   Hotbox  ,   85–6, 168   
 Hotkey  ,   74–5   
 Hourihan, Jim  ,   15   
 HSV (Hue, Saturation, and Value)  ,   205   
 Hulls  ,   105  

 scaling  ,   118–19    
 Human sperm cell, 3D computer 

model of  ,   445   
 Hydrolysis  ,   390  

 and phosphate release rates  ,   402, 407–8    
 Hypergraph panel  ,   91   
 Hypershade  ,   190, 192   
 Hyperthreading  ,   246   

 In silico approach  ,   4, 14, 42, 309   
 In silico biology  ,   42, 147, 155, 160, 222   
 In vitro methods  ,   4   
 In vivo methods  ,   4   
 IBM  ,   7094, 30   
  if …else  statement  ,   288   
  if  statement  ,   331, 420   
 Image-based lighting (IBL)  ,   251–2   
 Image File Output  ,   253–4   
  Image Plane   ,   221   
 Image Size  ,   254–5   
 Imperative syntax  ,   282, 283   
 Impulses  , see   Collision forces   
 Incandescence  ,   206   
 Industrial Light and Magic (ILM)  ,   15   
 Initial State  ,   170   
   Interactive Creation  ,   103   
 Interactive Photorealistic Rendering (IPR)  , 

  202, 239–40, 376   
  internalVar  command  ,   326   
     Inter-particle collisions  ,   178–81   
 Interpolation  ,   62, 143   
 Interpreter  ,   27, 264  

 vs. compiler  ,   28    
 Interpretive visualization (iVis)  ,   8, 17–19   
   Isoparms  ,   105   

 Jaggies  ,   255   
 Janczyn, Joyce  ,   273, 284   
 Jmol  ,   17   
 Joint tool  ,   462   
  Jurassic Park   ,   15   

  Keep Image   ,   203   
   Key-framed animation  ,   61–2   
 Key light  ,   63, 235   
 Keyboard/mouse combinations  ,   93   
 Keyboard shortcut  , see   Hotkey   
 Keyframe animation  

 curves editing  ,   147–8   
 Graph Editor graph view  ,   

148–50   

 Graph Editor outliner  ,   148   
 Graph Editor toolbar  ,   150   
 keyframe setting  ,   146–7   
 keys setting  ,   140–1   
 moving keys  ,   150–1   
 play, scrub, and stop  ,   147   
 preparation  ,   145–6   
 vs. procedural animation  ,   138–9    

 Keyframes  ,   61, 138  
 and memory  ,   139    

 Keysets  , see   Animation curve   
 Kinemation  ,   15, 16   
   Kroto, Harold  ,   314   

 Lambert shader  ,   204–5   
  Lamellopodia   ,   448   
 Lattice Deformer  ,   117, 459   
 Lattice points  ,   459, 460   
 Layer Editors  ,   96–7   
 Layered texture node  ,   196   
 Layouts  ,   91   
 Level of detail (LOD)  ,   344–5, 395   
 Ligand  ,   449   
 Light linking  ,   238, 239   
 Lighting  ,   232, 233, 234  

 for hemoglobin scene  ,   235  
 IPR, previewing with  ,   239–40   
 Light linking  ,   238, 239   
 lights creation  ,   236   
 lights placement  ,   237, 240–1   
 shadow casting  ,   238    

 shadows  ,   232, 234    
 Lighting menu  ,   89, 90, 234   
 Lights, for animation:  

 back light  ,   63, 235, 236   
 fi ll light  ,   63, 235–6   
 key light  ,   63, 235    

 Lightwave  ,   578   
 Line breaks, in animation expressions  ,   268, 

300–1   
 Linear interpolation  ,   143   
 Local axis  ,   93   
 Local coordinates  ,   92–3   
 Lofting  ,   105   
 Logic errors  ,   307–8, 371–2   
  “ Look ” , for cell science animation:  

 micrographic look  ,   52–3, 54   
 non-photorealistic looks  ,   53, 55–6   
 photorealistic look  ,   52    

 Look Th rough Selected  ,   91   
 Loops  ,   289  

  do …while  loop  ,   290–1   
  for  loop  ,   289–90   
  for-in  loop  ,   290   
  while  loop  ,   290    

 Low-level programming languages  ,   26–7   
ls command  ,   358, 423   
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 Lymphocytes  ,   165, 448   
 Lysozyme, structure of  ,   344   

 Mac OS equivalents  ,   74   
 Mac OS X  ,   259, 454, 476–7   
 Machine language  ,   23   
 Macromolecular self-assembly  , 

see   Self-assembly, of macromolecules   
 Main Menu bar  ,   83–4   
makeCells() procedure  ,   540–5   
 makeSeeds() procedure  ,   491, 494–7   
 Manipulator Tool  ,   178–9   
 Marking menus  ,   84–5   
 Markov process  ,   528, 529, 530, 531   
 Material marking menu  ,   207   
 Material node  ,   193–4   
 Mathematical and logical expressions  ,   277  

 blocks  ,   278   
 operators  ,   278–80    

        Maya  ,   1, 13, 16, 263, 578  
  construction history  ,   80–1   
 dependency graph and DG nodes  ,

   78–80   
 DG, DAG, and biology  ,   82   
  explanations  ,   576, 577   
 future  ,   579–82   
 getting started  ,   72  

 Help and instructions  ,   73, 74, 75   
 hotkeys  ,   74–5   
 Maya Complete  ,   72   
 Maya Personal Learning Edition  ,   72   
 Maya project  ,   76–8   
 Maya Unlimited  ,   72   
 Release notes  ,   74   
 scene fi le  ,   76   
 start Maya  ,   75   
 system requirements  ,   73   
 user profi le  ,   75, 76    

     history  ,   14–16   
 and interpretive visualization  ,   17   
 program architecture  ,   78  
  MEL  ,   17–19   
 scene hierarchy and DAG  ,   81–2 
 simulations  ,   576   
     user interface (UI)  ,   82  

 Attribute Editor  ,   98   
 Channel Box  ,   97–8   
 Channel Control editor  ,   98   
 Command Line and Script Editor  ,   95   
 Layer Editors  ,   96–7   
 Main Menu bar  ,   83–4   
 menus, working with  ,   84–6   
 Outliner  ,   87–8   
 playback controls  ,   95   
 Plug-ins  ,   98–9   

 Preferences  ,   95–6   
 Range slider  ,   94, 95   
 scene viewing, through camera  ,   

93–4   
 shelves  ,   86–7   
 Status Line  ,   86   
 Time Slider  ,   94, 95   
 title bar  ,   83   
 workspace and panel menus  ,   

88–91   
 XYZ coordinate system and vectors  , 

  91–3    
 workfl ow  ,   14  

 Maya  ,   2008, 72, 313  
 Maya ASCII  ,   76, 77   
 Maya-based workfl ow  ,   578   
 Maya Binary  ,   76, 77   
 Maya cameras  , see   Cameras   
 Maya Complete  ,   72   
 Maya Dynamics  , see   Dynamics  
 Maya Embedded Language (MEL)  ,   16, 72, 

262, 301–2 
 animation expressions  ,   292  

  expression  command  ,   297–8   
 Expression Editor  ,   295–6   
 expression node  ,   294–5   
 expression syntax  ,   296–7   
 line breaks in  ,   300–1   
 stand-alone animation expressions  , 

  298–300   
 attributes in  ,   286–7   
 building  ,   302–6   
 conditional statements  ,   288–9   
commands, 315
 debugging  ,   306  

 logic errors  ,   307–8   
 syntax errors  ,   307    

 loops:  
  do …while  loop  ,   290–1   
  for  loop  ,   289–90   
  for-in  loop  ,   290   
  while  loop  ,   290    

 mathematical and logical expressions  ,   
277  

 blocks  ,   278   
 operators  ,   278–80    

 Maya ’ s search path  ,   269   
    MEL, see Maya Embedded Language 

(MEL)
 MEL command  ,   280  

 blank lines  ,   283   
 blank spaces  ,   283   
 command modes  ,   282   
 fl ags and default tool settings  ,   281–2   
 function syntax  ,   283   
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 functions  ,   283–4   
 imperative syntax  ,   282, 283   
 reference library  ,   284   
 shelf button from  ,   284–6   
 top 10 commands  ,   284, 285    

 MEL input:  
 Command Line  ,   266, 267   
 Script Editor  ,   267–8   
 sourcing  ,   268–9    

 origins  ,   263–4   
 procedures  ,   291–2   
       syntax:  

 CASE sensitivity  ,   270   
 comments  ,   270   
 quotation marks  ,   270   
 statement termination  ,   269    

 terminology  ,   264–6   
 values  ,   270   
 variables:  

 arrays  ,   275–6   
 data conversion  ,   273–4   
 declaration and assigning  ,   271–2   
 dynamic typing  ,   273   
 global variables  ,   276–7   
 matrices  ,   276   
 naming  ,   271   
 strings  ,   274, 275   
 type casting  ,   274   
 vectors  ,   274    

MEL interpreter ,   27, 262 
 MEL statement  ,  262

 Maya Hardware renderer, 244, 246, 257   
 Maya link library (.mll)  ,   313   
 Maya materials  ,   193–4   
 Maya Personal Learning Edition (PLE)  ,   72   
 Maya program architecture  ,   78   
 Maya project  ,   76–8   
 Maya scene  ,   58, 77, 78, 512   
 Maya Software renderer  ,   244, 245–6, 372  

 anti-aliasing quality  ,   255–6    
 Maya Unlimited  ,   72   
 Maya Vector renderer  ,   244, 246–8   
         Memory caching  ,   171–2   
 mental ray, for Maya renderer  ,   244, 248–9  

 advanced rendering techniques with  ,   
249  

 ambient occlusion  ,   251   
 caustics  ,   250   
 global illumination  ,   251   
 image-based lighting  ,   251–2   
 realism about photorealism  ,   252   
 Render Layers  ,   252   
 subsurface scattering  ,   250     

 Micrographic look, for cell science 
animation  ,   52–3   

 Minicomputers  ,   26, 36   
       Minus end  ,   390, 398   
   Mobile cell populations  ,   521–2   
   Model type  ,   59, 109   
 Modeling geometry  ,   102  

 construction history  ,   125–7  
 Attribute Editor  ,   124–5   
 Connection Editor  ,   127–8   
 Hypergraph revisiting  ,   122–4    

   NURBS modeling:  
 NURBS curves (splines)  ,   104–5   
NURBS  “ fi ber ” , see NURBS  “ fi ber ”  

creation
 NURBS surfaces  ,   105–7   
 surface menu set  ,   103, 104    

 NURBS primitive modeling  ,   109–17   
 polygon primitive 

deformation  ,   119–22   
 polygonal modeling  ,   107  

 menu set  ,   108   
 subdivision surfaces  ,   109    

 sphere deformation  ,   117–19    
 Molecular arrays  ,   10   
 Molecular visualization (MolVis)  ,   

345–6   
 Molecules  ,   8   
 Motion capture (Mocap)  ,   312   
 Motion path  ,   227–8, 227, 228, 260   
 Motion perception  ,   48–9   
     Move Tool  ,   116   
 Move Tool Manipulator handles  ,   113–14  
moveCells() expression, 548 –54
moveCells.txt, 237
  moveSeeds   ,   487, 490–1, 500–6  
 Multiscale Models tool  ,   396   
 Myosin  ,   11, 347  

      National Television System Committee 
(NTSC)  ,   48, 144   

 Navigation nomenclature  ,   448–9   
     nCloth objects  ,   165   
     Neuron  ,   47, 480   
 Non-photorealistic looks  ,   53, 55–6   
 Non-photorealistic rendering (NPR)  ,   

55–6, 189, 190   
 Non-Uniform Rational B-Splines 

(NURBS) modeling  ,   59  
 NURBS surfaces:  

 components  ,   105–6   
 normals  ,   106–7    

 splines:  
 components  ,   104–5    

 surface menu set  ,   103, 104    
     Nucleus  ,   165, 424, 465   
 NURBS curves  , see   Splines   
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 NURBS  “ fi ber ”  creation:  
 guide spline:  

 and profi le snapping  ,   132   
 drawing  ,   130–1    

 profi le spline creation  ,   131   
 scene view set up  ,   129–30   
 surface extrusion  ,   132–3   
 tube alteration, through history 

connections  ,   133–4    
 NURBS primitive modeling:  

   sphere:  
 creation  ,   110–11   
 deformation  ,   117–19   
 Four panel view  ,   114   
 Move Tool settings  ,   116   
 renaming  ,   113   
 rotation  ,   114–15   
 scaling  ,   115–16   
 selection  ,   111–12   
 transformation, using channel 

box  ,   116–17   
 translation  ,   113–14     

 NURBS surface  ,   59, 105–7     

objExists command  ,   331   
 Occlusion  ,   251   
 Omni light, in Cinema 4D  ,   63   
   Operator overloading  ,   280   
 Operators  ,   278–80   
 Option boxes  ,   86, 110   
 Option key  ,   74   
 Organizational hierarchy:  

 amino acids  ,   8, 9   
 atoms and molecules  ,   8   
 cell organization  ,   10–11, 12   
 DNA  ,   10   
 micro to macro  ,   12   
 molecular arrays  ,   10, 11   
 proteins  ,   10   
 tissues and organs  ,   11–12, 13    

       Origin Axis  ,   92   
 Orthographic camera  ,   91, 217, 218   
 Orthographic views  ,   114, 222   
 Outliner  ,   81, 87–8, 398   
 Output Settings  ,   220   
 Overscan  ,   221, 226  

 Paint eff ects  ,   201–2 
 Pairing reaction and diff usion:  

 diff usion time  ,   393   
 reaction time  ,   392–3   

 PAL  ,   144, 254   
 Panel  ,   91   
 Panel Editor  ,   91   
 Panel menus  ,   88–9   
 Panels menu  ,   89, 90–1   

 Parameters  ,   532  
 of cell migration  ,   522–3   
 of dermis  ,   481–3   
 eff ects  ,   516–17   
 model variations  ,   570–1    

 Particle attributes  ,   162   
 Particle data caching  ,   183–4   
 Particle emitters  ,   162, 163  

 creation  ,   173–4    
 Particle shape node  ,   175–6   
 Particles  ,   162–4, 165  

 attributes  ,   162   
 in container  ,   173  

 attribute settings  ,   174–5   
 collision with cylinder  ,   176–7   
 emitter node  ,   175   
 inter-particle collisions  ,   178–81   
 motion randomization  ,   178   
 data caching  ,   183–4   
 emitter creation  ,   173–4   
 per particle color  ,   181–3   
 shape node  ,   175–6    

 curve fl ow  ,   163–4   
 emitters  ,   162, 163   
 goals  ,   162–3   
 rendering  ,   163, 164    

       Pencil Curve Tool  ,   131   
 Pencil tests  ,   58   
 Per particle attributes  ,   162, 176, 287   
 Per particle color  ,   181–3   
 Per particle expression  ,   182–3   
 Persistence of vision  ,   48   
 Perspective camera  ,   91, 217–18, 229,

337, 438   
 Phase-contrast microscopy  ,   53, 54   
 Photorealism  ,   52, 64–5, 252   
 Photorealistic look  ,   52   
 Physics engine  ,   17, 62   
 Pixar  ,   15   
 Pixelation  ,   196   
     Play every frame  ,   145, 146, 457   
 Playback:  

 settings  ,   145   
 using fCheck  ,   257–9    

 Playback control  ,   95, 258   
 Playback Speed  ,   457   
  playbackOptions  command  ,   329, 334   
 Playblast  ,   160, 517  

 creation  ,   184–5, 229    
   Playfair, William  ,   4   
 Plug-ins  ,   78, 98–9, 312, 314   
 Point light  ,   63, 236   
 Pointed end  ,   389–90   
  pointOnCurve   ,   434, 504   
 pointOnCurveInfo  ,   434   
  pointOnSurface   ,   434, 565   
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  pointOnSurfaceInfo  node  ,   434, 533, 535, 
543, 565, 573   

 Points  ,   90   
 Poly count  ,   107   
  polyCube   ,   458   
 Polygon menu set  ,   108   
 Polygon primitive deformation  ,   119  

 control vertex, moving  ,   120   
 edge, moving  ,   121  

 sphere, smoothening  ,   121–2    
 polygon face, moving and scaling  ,   120–1    

 Polygon sphere  ,   106 
 construction history: 
 creation  ,   119–20   

 Polygon surface  ,   15, 58, 107, 120   
 Polygonal modeling  ,   107  

 menu set  ,   108   
 subdivision surfaces  ,   109    

 Polygonal surface model  ,   396   
  polySmooth   ,   458   
  polySmoothFace node   ,   121, 134   
  polySphere   ,   124, 281, 282, 458   
    polyTweak   ,   124, 126   
  Popup Help   ,   73, 208   
 posi  , see pointOnSurfaceInfo node   
 Position markers  ,   227–8   
 Postproduction stage, in animator ’ s 

workfl ow  ,   66–7   
 PowerAnimator  ,   15, 16, 263   
 Preconfi gured shading network  ,   201   
  pPlane1   ,   210, 211   
 Preferences settings  ,   95–6   
 Preproduction stage, in animator ’ s 

workfl ow  ,   51  
 2D animatic  ,   57–8   
 animation ’ s  “ look ”   ,   52  

 micrographic look  ,   52–3   
 non-photorealistic looks  ,   53, 55–6   
 photorealistic look  ,   52    

 storyboard  ,   57   
 treatment and script  ,   56–7    

  print  command  ,   299, 300, 308, 372, 
470   

 Procedural animation  ,   61, 62  
 expression  ,   151–2  

 creation  ,   153–4   
 nodes  ,   153    

 vs. keyframe animation  ,   138–9    
 Procedural modeling  ,   60   
 Procedural texture  ,   139, 196   
 Procedures, of MEL statements  ,   291–2  

 sourcing  ,   292    
 Production stage, in animator ’ s workfl ow:  

 3D animation  ,   66   
 3D scene  ,   58   
 animation  ,   61–2   

 cameras  ,   64   
 dynamics  ,   62–3   
 frame rate  ,   61 
   geometry modeling  ,   58–9   
 lights  ,   63   
 procedural modeling  ,   60   
 rendering  ,   64–6   
 shading  ,   64   
 volumetric modeling  ,   59–60    

   Profi le spline creation  ,   131   
 Profi lin  ,   392, 394, 407   
 Program:  

 and language  ,   23–5, 26–7    
 Protein building:  

 algorithm design  ,   354   
 algorithm encoding:  

 atoms creation  ,   362–4   
 cpk() procedure  ,   356–7   
 error checking  ,   359   
 main loop  ,   359   
 MEL script composing  ,   354–5   
 molecule check  ,   357–8   
 PDB fi le opening  ,   358–9   
 record reading  ,   360–2   
 record type  ,   359   
 scene hierarchy organization  ,   

365–6   
vanDerSphere() procedure  ,   366–7    

 level of detail  ,   344–5   
 macromolecules visualization  ,   342   
 MEL script preparation:  

 actin  ,   346–8   
 ATP  ,   346   
 CPK look  ,   348–51   
 data  ,   351–3   
 models, naming  ,   353–4    

 molecule rendering  ,   372–80   
 script running, on ATP  ,   368–72   
 visualization freeware  ,   345–6   
 wires, ribbons, and surfaces  ,   342–4    

 Protein Data Bank (PDB)  ,   342, 395, 396  
 atoms creation  ,   362–4   
   fi le format  ,   351–3   
 fi le opening  ,   358–9  

 fi le examination  ,   368    
 record reading  ,   360–2    

 Proteins  ,   10  
 Pseudopodia see Pseudopods
Pseudopods, 140, 441, 448

generation of, 451–3      
       Pull-down menus  ,   83–4   
 Python scripting interface  ,   72   

 Query mode  ,   282   
 Quick Layout buttons  ,   94   
 Quotation marks, and Maya  ,   270, 514     
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 Radial fi eld:  
 Manipulation Tool for  ,   178–9   
 particle object connection to  ,   179   
 particles, as source  ,   179–81    

 Radiosity  , see   Global illumination   
 Ramp material node  ,   197, 198   
 Ramp shader  ,   65   
 Ramps  ,   197–8   
rand() function  ,   308, 426, 471, 487, 496, 

508, 535, 555  
Random number generation, in 

Maya ,   308–9 
  Range Slider  ,   94, 95   
 Raster graphics image  ,   246   
 Raytraced shadows  ,   232, 234   
 Raytracing  ,   234, 245, 246, 248   
 Reaction events:  

 and diff usion  ,   399  
 association  ,   401   
 dissociation  ,   402–3   
 hydrolysis and phosphate release  ,   

402     
 Reaction rates  ,   391–2  

 and probabilities:  
 association reaction rate  ,   404–7   
 dissociation reaction rate  ,   

408–9, 410   
 hydrolysis and phosphate release 

rates  ,   407–8   
 visualization requirements  ,   403–4     

 Reaction volume  ,   404, 405   
   Realism:  

 about photorealism  ,   252    
  rebuildCurve  command  ,   504   
 Receive shadows  ,   234   
 Regenerative medicine  ,   522   
 Regulatory factor  ,   37, 38, 384, 385   
  rehash  command  ,   269, 292, 303, 306, 440, 

441, 570   
 Release notes  ,   74   
 Reload button  ,   296   
  Remove Image   ,   203   
 Render engine  ,   64, 244   
 Render farm  ,   66   
 Render fi le naming  ,   253   
     Render Layer  ,   97, 251, 252   
 Render Log  ,   257   
 Render menu set  ,   190, 191   
 Render nodes  ,   124, 191, 192  

 naming  ,   208–9    
 Render Settings  ,   213–14, 220, 244, 245, 

379  
 camera attributes, adjusting  ,   225–6   
 image fi le Output  ,   253–4   
 image size  ,   254–5   
 Maya Software Render Settings  ,   255–6    

 Render View  ,   190, 260  
 images, keeping and removing  ,   203   
 IPR, previewing with  ,   202    

 Renderers  ,   188, 244   
 Rendering  ,   64–6, 163, 188, 244  

 batch rendering  ,   244–5, 252  
 common Render Settings  ,   253–5   
 Maya Software Render Settings  ,   255–6   
   software vs. hardware rendering  ,   257    

 Hardware Render Buff er  ,   246   
 Maya Hardware renderer  ,   246   
 Maya Software renderer  ,   245–6   
 Maya Vector renderer  ,   246–8   
 mental ray for Maya renderer  ,   248–9  

 advanced techniques  ,   249–52    
 playback using fcheck  ,   257–9   
 Render Settings  ,   244   
 economy of  ,   189–90   
 Render menu set  ,   190   
 rendering style  ,   189   
 shading  ,   191  

 black and white  ,   199   
 bump maps  ,   198, 199   
 displacement maps  ,   198, 199   
 Hypershade  ,   192   
 materials  ,   193–4   
 Maya Paint Eff ects  ,   201–2   
 preconfi gured Maya shading 

networks  ,   201   
 ramps  ,   197–8   
 render nodes  ,   192   
 render settings  ,   213–14   
 Render View  ,   202–3   
 shaders, making and assigning  , 

  207–9   
 shading engine nodes  ,   201   
 shading group node, assigning to 

object  ,   207, 208   
 texture nodes  ,   194–7   
 texture placement nodes  ,   200   
 textured background plane  ,   209–13   
 UV coordinates, life on surface  , 

  199–200     
reorder command  ,   419   
 Research Collaboratory for Structural 

Bioinformatics (RCSB)  ,   342   
resetCells expression  ,   545–8, 554, 570   
 resetSeeds expression  ,   497–500   
 Resolution gate  ,   225–6   
   rgbPP attribute  ,   181  

 creation  ,   182   
 for software render types  ,   183    

 Rigging technique  ,   139, 140   
 Rigid binding  ,   463   
 Rigid body dynamics  ,   164, 166–72  

 active  ,   172 
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 animation playing  ,   170–1   
 creation  ,   169   
   memory caching  ,   171–2   
 normal direction  ,   168   
 objects, creation and positioning  ,   

167   
  passive  ,   170  
 rigidSolver node  ,   169   
     Turbulence fi eld creation  ,   170    

 RigidSolver attributes  ,   169   
 Root mean square (rms)  ,   393   
 Rotate Tool Manipulator  ,   114–15   
 Rotational diff usion  ,   388, 400   
 Rule-based design, for ECM scaff olds:  

 rule1() ,   487, 488, 489   
 rule2()  ,   487, 489–90   
 rule3()  ,   487, 490–1    

 Saved Layouts  ,   91   
 Scaff old model  ,   520  

 algorithm encoding  ,   538  
cRule1()  ,   554–8   
 cRule2()  ,   558–60   
 cRule3()  ,   561–5   
 makeCells() procedure  ,   540–5   
moveCells() expression  ,   548–54   
 resetCells() expression  ,   545–8    

 cell migration:  
 as emergent behavior  ,   521–3   
 nomenclature  ,   524–5   
 in scaff olds  ,   523    

 dataOutput expression  ,   572–3   
 model defi nition:  

 boundary conditions  ,   527   
 cell behavior  ,   525   
 cell-cell signaling  ,   526   
 cell geometry  ,   526   
 spatial and temporal scales  ,   

527, 528   
 as substrate, for cell migration  ,   526, 

527    
 model design:  

 cell-cell signaling  ,   536–8   
 haptotaxis  ,   528–36    

 simulation, running  ,   565–72    
 Scale Tool Manipulator  ,   114, 115–16   
 Scan-line rendering  ,   245   
 Scanning electron microscopy (SEM)  ,   53, 54, 

483, 485   
 Scene fi le:  

 Maya ASCII  ,   76   
 Maya Binary  ,   76   
 preparation  ,   266–7, 437–8, 454, 457, 565    

 Scene hierarchy  ,   81–2  
 organization  ,   365–6    

 Scene view  ,   88  

 setting up  ,   129–30   
 through camera  ,   93  
 see also   Workspace   

 Script Editor  ,   95, 267–8, 317, 327, 355, 412, 
439, 459, 470, 566, 568, 570   

 Script Editor History panel  ,   428   
 Script formatting, in fi lmmaking  ,   56–7   
 Script loading  ,   475–6   
 Script running:  

 Data I/O  ,   476   
 troubleshoot  ,   476–7    

 Script sourcing  ,   268–9   
 Scripting    ,   264–6 

 see also   Maya Embedded Language (MEL) 
scripting   

 Scripting languages  ,   265   
 Scrubbing  ,   95   
 Search path  ,   269, 306, 441, 570   
 Seeding density  ,   526   
 Seeing  ,   46–8, 576  

 motion and animation  ,   48–9   
 wetware for  ,   5–6    

select -clear statement  ,   419   
 Selection modes:  

 and masks  ,   119, 180    
 Self-assembly, of macromolecules  ,   384  

 actin geometry  ,   394  
 F-actin model  ,   397–9   
 G-actin template model  ,   395–7    

 algorithm design  ,   409–11   
 algorithm, encoding of:  

 reset expression  ,   412–19   
selfAssembly expression  ,   420    

 collisions  ,   400   
 diff usion  ,   399–400   
 F-actin, structure of  ,   389–90   
 problem overview  ,   385  

 actin reactions  ,   390–2   
 model conditions  ,   393–4   
 pairing reaction and diff usion  ,   392–3    

 reaction events:  
 association  ,   401   
   dissociation  ,   402–3   
 hydrolysis and phosphate release  ,   402    

 reaction rates and probabilities:  
 association reaction rate  ,   404–7   
 dissociation reaction rate  ,   408–9, 

410   
 hydrolysis and phosphate release rates  , 

  407–8   
 visualization requirements  ,   403–4    

 simulation, running of:  
 and debugging  ,   440–1   
 scene fi le preparation  ,   437–8   
 script fi les loading  ,   439–40     

selfAssembly expression  ,   420–5   
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 Sensor-sensor interaction  ,   388   
 Sensory impulses  ,   46   
  setAttr   ,   278, 297, 496, 499, 553   
 Setting Keys:  

 in Attribute Editor  ,   141   
 using channel box  ,   140   
 using hotkey  ,   141    

 SG node  , see   Shading engine nodes   
 Shader Network Library  ,   201   
 Shading  ,   64, 188, 191, 203  

 black and white  ,   199   
 bump maps  ,   198, 199   
 common material attributes:  

 Ambient Color  ,   206   
 bump channel  ,   206   
 color  ,   205, 206   
 Diff use channel  ,   207   
 Incandescence  ,   206   
 Translucence  ,   207   
 Transparency  ,   206    

 displacement maps  ,   198, 199   
 Hypershade  ,   192   
 materials  ,   193–4   
 Maya Paint Eff ects  ,   201–2   
 preconfi gured Maya shading networks  , 

  201   
 ramps  ,   197–8   
 render nodes  ,   192   
 render settings  ,   213–14   
 Render View:  

 images, keeping and removing  ,   203   
 previewing, with IPR  ,   202    

 shaders, making and assigning  ,   207  
 color attributes adjustment  ,   209   
 duplication  ,   209   
 render nodes, naming  ,   208–9    

 shading engine nodes  ,   201   
 shading network to object, assigning 

ways  ,   207, 208   
 surface material creation  ,   204–5   
 texture nodes  ,   194–7   
 texture placement nodes  ,   200   
 textured background plane  ,   209–13   
 UV coordinates, life on surface  ,  

 199–200  
 see also   Rendering   

 Shading engine nodes  ,   201   
 Shading menu  ,   89–90   
 Shading networks  ,   191–2, 201  

 duplication  ,   209    
  shadingNode  command  ,   366, 367   
 Shadows, in Maya  ,   232, 234, 235, 238   
 Shape node  ,   80, 175   
  shareOneBrush  command  ,   333   
 Shelf button  ,   284–6, 369, 370   
 Shelves  ,   86–7   

 Shift key  ,   75   
 Short Bone Radius  ,   462   
 Short range apparent motion  ,   48, 49   
 Showtime  ,   15   
 Side Eff ects Software ’ s Houdini  ,   578   
 Silicon Graphics Inc. (SGI)  ,   15, 16, 263   
 Simulations  ,   576  

 running  ,   570  
 cells creation  ,   569–70   
 control widget, repurposing  ,   

566–7   
 error debugging  ,   440–1   
 model parameters variation  ,   570–1   
 recording  ,   571–2   
 scene fi le preparation  ,   437–8, 564–5   
 scene saving  ,   568   
 script fi les, loading  ,   439–40, 568–9     

sin() function  ,   153, 154   
 Skeleton animation  ,   452   
  skinCluster  command  ,   463, 473   
   Smalley, Richard  ,   314   
 Smooth bind tool  ,   463   
 Smooth binding  ,   463   
 Smooth Shade All  ,   90   
 Smooth Shade Selected Items  ,   90   
   Snap to grids    ,   129   
 Snapping  ,   129   
 Soft bodies  ,   160, 165   
 SoftImage  ,   16   
 Softimage XSI  ,   578   
 Software renderer  ,   163, 176, 245–6   
 Software rendering  ,   190  

 vs. hardware rendering  ,   257    
         Sophia  ,   15, 16, 263   
 Space bar  ,   91   
     Spatial scale:  

 and temporal scales  ,   323, 527    
  Specular Roll Off    ,   351   
  Specularity   ,   193, 241   
     Sphere:  

 atoms as  ,   350   
 deformation  ,   117  

 control vertex, moving  ,   118   
 hull, scaling  ,   118–19   
 selection modes and masks  ,   119    

 NURBS primitive modeling:  
 creation  ,   110–11   
 four panel view  ,   114   
 Move Tool settings  ,   116   
 renaming  ,   113   
 rotation  ,   114–15   
 scaling  ,   115–16   
 scene saving  ,   117   
 selection  ,   111–12   
 transformation, using channel box  , 

  116–17   
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 translation  ,   113–14    
 smoothening  ,   121–2    

  sphere command   ,   367, 466, 496, 542  
  sphrand command   ,   308, 430  
 Spline-based modeling  ,   15   
 Spline curves  ,   104, 324   
 Spline interpolation  ,   143   
 Splines  ,   59, 103  

 components of  ,   104–5    
 Stand-alone animation expressions  , 

  298–300   
  Start Frame   ,   176   
 Start Maya  ,   75  

 project, setting up  ,   109–10    
 State change probabilities  ,   554, 555–7   
 State change probability matrix  ,   529, 530, 

547   
 Status Line  ,   86   
 Stochastic approach  ,   385   
 Stored programs  ,   30–3   
 Story reel  ,   58   
 Storyboard  ,   57, 58   
 Strings  ,   274, 275   
 Strokes  ,   247   
 Subdivision surface (sub-D)  ,   109   
 Subscript notation  ,   406   
 Subsurface scattering  ,   64, 189, 248, 249, 250   
 Superscript notation  ,   406   
 Surface emitter  ,   162, 163   
 Surface index number  ,   542   
 Surface materials  ,   193  

 creation  ,   204–5    
       Surfaces menu set  ,   103, 104   
 swf fi le  ,   247   
  switch …case  statement  ,   288   
 Syntax errors  ,   307, 371   
 System requirements:  

 monitors  ,   73   
 mouse  ,   73    

 Tangents  ,   148   
 Targa format  ,   253–4   
 Taylor, Mike  ,   292   
 Tcl  ,   16, 263   
 Tear Off   ,   84, 91   
 Tear Off  Copy  ,   91   
  Terminator 2:Judgment Day   ,   15   
 Tessellation  ,   105, 106, 198   
 Text editors, for computer code writing  ,   302   
 Texture mapping  ,   194, 200   
 Texture nodes  ,   194–7   
 Texture placement nodes  ,   200   
 Texture ramp node  ,   197   
 Textured background plane:  

 creation and positioning  ,   209–10   
 grid texture creation  ,   211–12   

 material assignment  ,   210–11   
 material node, texture connection  , 

  212–13    
 Th e Advanced Visualizer (TAV)  ,   15   
 Th ird-party applications  ,   259   
 Th ompson Digital Images (TDI)  ,   14, 15, 16   
 Time node  ,   154, 155, 295   
  Time Range  attribute  ,   227   
 Time Slider  ,   93–4   
  Time  variable  ,   297   
 Time working units  ,   144   
 Timeline  ,   61, 94, 95, 144, 171  

 modeling  ,   487    
 Tissue architecture  ,   480   
 Tissue morphometry  ,   481   
 Tissues and organs  ,   11–12, 13   
 Title bar  ,   83   
  tokenizeList  command  ,   329   
 Toolbox  ,   94   
 Tools Settings  ,   96, 116   
 Toon rendering technique  ,   241   
 Toon shading  ,   65, 247   
 Torque Game Engine  ,   578   
     Tracing  ,   267   
 Tracking, camera movement  ,   93   
 Traction  ,   448   
 Transferring  ,   525   
 Transform node  ,   80, 111, 124, 398   
 Transform tools  ,   94, 112, 113   
 Translational diff usion constant  ,   400   
 Translational movement  ,   387   
 Translators  ,   313–15   
  Translucence   ,   207, 250   
 Transmission electron microscopy 

(TEM)  ,   53   
  Transparency  channel  ,   206   
 Treadmilling  ,   385–6  

 fl owchart  ,   411   
 ready-made fi le  ,   399    

 Tumble, and camera movement  ,   93   
 Tuning region  ,   240   
 Turbulence fi eld  ,   162, 170, 172, 178   
 Turing, Alan  ,   33   
 Turing machine  ,   33   
 Tweak node  ,   124, 126, 134   
 Type casting  ,   274     

 UCSF Chimera  ,   17, 344, 395, 396   
 underworld node  ,   434   
 Unix shell scripting  ,   263, 282   
 Up axis  ,   92   
 Update View  ,   145   
 Upstream node  ,   79, 123, 127   
  Uropodia   ,   448   
 USCF Chimera  ,   345   
 Use All Lights  ,   90   
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 User interface (UI)  ,   13, 16, 25, 41, 72, 82, 
102, 191, 262  

 Attribute Editor  ,   98, 99   
 Channel Box  ,   97–8   
 Channel Control editor  ,   98   
 Command Line  ,   95   
 Layer Editors  ,   96–7   
 Main Menu bar  ,   83–4   
 menus, working with:  

 Hotbox  ,   85–6   
 Marking menus  ,   84–5   
 option boxes  ,   86   
 Tear Off  menus  ,   84    

 Outliner  ,   87–8   
 playback controls  ,   95   
 Plug-ins  ,   98–9   
 Preferences  ,   95–6   
 Range Slider  ,   94, 95   
 scene viewing, through camera  ,   93–4   
 Script Editor  ,   95   
 shelves  ,   86–7   
 Status Line  ,   86   
 Time Slider  ,   94   
 Title bar  ,   83   
 workspace and panels:  

 active panel  ,   88   
 Lighting menu  ,   89, 90   
 Panel menus  ,   88–9   
 Panels menu  ,   89, 90–1   
 Shading menu  ,   89–90    

 XYZ coordinate system and 
vectors  ,   91  

 axis indicators  ,   92–3   
 Up axis  ,   92   
 UV coordinates  ,   93     

 User profi le  ,   75, 76   
 userPrefs.mel fi le  ,   95   
 UV coordinates  ,   93, 199–200   
 UV mapping  , see   Texture mapping   
 UV Texture Editor (UTE)  ,   199, 200   

 Values, in Maya  ,   270   
 Van der Waals (vdW) radius  ,   344, 345, 350, 

353, 356   
 Van der Waals collision  ,   386   
 Van Leeuwenhoek, Anton  ,   576   
 vanDerSphere() ,   363, 364, 369  

 procedure  ,   366–7    
 Variables:  

 arrays  ,   275–6   
 data conversion  ,   273–4   
 declaration and assigning  ,   271–2   
 dynamic typing  ,   273   
 global variables  ,   276–7   
 initialization  ,   499   
 matrices  ,   276   
 naming  ,   271   

 strings  ,   274, 275   
 type casting  ,   274   
 types  ,   272   
 vectors  ,   274    

 Vector array  ,   276   
 Vector graphics image  ,   246–7   
 Vector renderer plug-in  ,   248   
 Vectors  ,   274   
 Velocity curve  ,   62   
 VFX studios  ,   15   
 View Axis  ,   92   
 Vintage mainframes  ,   580   
 Virtual computer  ,   27, 28, 29, 264   
 Virtual memory  ,   139   
 Visible Human Project  ,   60   
 Vision, anatomy of  ,   47   
 Visual exploration  ,   4   
 Visual Molecular Dynamics (VMD)  ,   17, 

578, 579   
 Visual perception  ,   5   
 Visualization:  

 algorithm, planning  ,   324   
 challenge  ,   392–4   
 of macromolecules  ,   342   
 model requirements  ,   403   
 in science  ,   6–8    

 Visualization freeware  ,   345–6   
 Visualization Toolkit  ,   578   
 Volumetric materials  ,   193   
 Volumetric modeling  ,   59–60   
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