

 In Silico: 3D Animation and
Simulation of Cell Biology with

Maya and MEL

Th is page intentionally left blank

In Silico: 3D Animation and
Simulation of Cell Biology with

Maya and MEL

 Jason Sharpe
 AXS Biomedical Animation Studio

 Charles John Lumsden
 University of Toronto

 Nicholas Woolridge
 University of Toronto

Acquisitions Editor: Tiff any Gasbarrini
Publishing Services Manager: George Morrison
Project Manager: Mónica González de Mendoza
Assistant Editor: Matt Cater
Cover Design: Jason Sharpe / Alisa Andreola
Cover Illustration: Jason Sharpe

Morgan Kaufmann Publishers is an imprint of Elsevier.
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

Th is book is printed on acid-free paper.

© 2008 Jason Sharpe, Charles Lumsden, Nicholas Woolridge. Published by Elsevier, Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks or
registered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim, the product
names appear in initial capital or all capital letters. All trademarks that appear or are otherwise referred to in
this work belong to their respective owners. Neither Morgan Kaufmann Publishers nor the authors and
other contributors of this work have any relationship or affi liation with such trademark owners nor do such
trademark owners confi rm, endorse or approve the contents of this work. Readers, however, should contact
the appropriate companies for more information regarding trademarks and any related registrations.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means—electronic, mechanical, photocopying, scanning, or otherwise—without prior written permission
of the publisher.

All images © the authors unless otherwise stated in the text. Certain images and materials contained in this
publication were reproduced with the permission of Autodesk, Inc. © 2007. All rights reserved. Autodesk and
Maya are registered trademarks of Autodesk, Inc., in the U.S.A. and certain other countries.

Th e information in this book and accompanying CD-ROM disk is distributed on an “as is” basis, without
warranty. Although due precaution has been taken in the preparation of this work, neither the authors nor the
publisher shall have any liability to any person or entity with respect to any loss or damage caused or alleged
to be caused directly or indirectly by the information contained in this book and accompanying CD-ROM disk,
including, without limitation, any software, whether in object code or source code format.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK:
phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier.com. You may also complete
your request online via the Elsevier homepage (http://elsevier.com), by selecting

“Support & Contact” then “Copyright and Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Sharpe, Jason.
 In Silico: 3D Animation and Simulation of Cell Biology with Maya and MEL / Jason Sharpe, Charles John
Lumsden, Nicholas Woolridge.
 p. ; cm.
 Includes bibliographical references and index.
 ISBN-13: 978-0-12-373655-0 (pbk. : alk. paper) 1. Cytology—Computer simulation. 2. Maya (Computer fi le)
3. Computer animation. 4. Computer graphics. 5. Th ree-dimensional display systems. I. Lumsden, Charles J.,
1949– II. Woolridge, Nicholas. III. Title. IV. Title: Cell biology art and science with Maya and MEL.
 [DNLM: 1. Cells—Programmed Instruction. 2. Computational Biology—Programmed Instruction.
3. Models, Biological—Programmed Instruction. 4. Motion Pictures as Topic—Programmed Instruction. 5.
Programming Languages—Programmed Instruction. QU 18.2 S532s 2008]
 QH585.5.D38S53 2008
 571.601�13—dc22
 2007053013

ISBN: 978-0-12-373655-0

For information on all Morgan Kaufmann publications,
visit our Web site at www.mkp.com or www.books.elsevier.com

08 09 10 11 12 13 10 9 8 7 6 5 4 3 2 1

Printed in China

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

 CONTENTS
 Preface xiii

 Who is this book for? xiv

 Why Maya? xiv

 What the book offers xv

 Computer hardware and software xxi

 About the authors xxii

 Acknowledgments xxiii

Part 1 Setting the stage 1

 01 Introduction 3

 The challenge 4

 Wetware for seeing 5

 Visualization in science 6

 Organizational hierarchy: Keys to biology in vivo
and in silico 8

 Enter Maya 13

 Endless possibilities 19

 References 19

 02 Computers and the organism 21

 Introduction 22

 Information and process 22

 Language and program 23

 High and low 26

 Interpret or compile? 27

 The Backus watershed 28

 Stored programs 30

vi

 Conditional control 33

 The computed organism 35

 The computational organism 36

 OOPs and agents 39

 Summary 41

 References 43

 03 Animating biology 45

Introduction 46

 Animation and fi lm perception 46

 The animator ’ s workfl ow 49

 The three-stage workfl ow 51

 Putting it all together 67

 References 67

 Part 2 A foundation in Maya 69

 04 Maya basics 71

 Getting started 72

 How Maya works (briefl y) 78

 Maya ’ s UI 82

 Summary 99

 05 Modeling geometry 101

 Introduction 102

 NURBS modeling 103

 Polygonal modeling 107

Tutorial 05.01: NURBS primitive modeling 109

Tutorial 05.02: Deform the sphere using components 117

Tutorial 05.03: Make and deform a polygon primitive 119

Tutorial 05.04: Construction history 122

CONTENTS

Tutorial 05.05: Create a NURBS “ fi ber ” 129

 Summary 134

 References 135

 06 Animation 137

 Introduction 138

 Animation 138

Tutorial 06.01: A keyframe animation 145

 Animation nodes in the Hypergraph and Attribute Editor 151

Tutorial 06.02: A simple procedural animation 151

 Summary 154

 07 Dynamics 157

Introduction 158

 The Dynamics module 160

Tutorial 07.01: Rigid body dynamics 166

Tutorial 07.02: Particles in a container 173

Tutorial 07.03: Create a playblast 184

 Summary 185

 08 Shading 187

 Introduction 188

 The Render menu set 190

 Shading 191

Tutorial 08.01: Shading 203

 Summary 214

 09 Cameras 215

 Maya Cameras 217

Tutorial 09.01: A camera on hemoglobin 222

 Summary 230

viiCONTENTS

viii

 10 Lighting 231

 Lighting 232

Tutorial 10.01: Lighting the hemoglobin scene 235

 Summary 241

 11 Action! Maya rendering 243

 Rendering 244

 Advanced rendering techniques with the mental
ray for Maya renderer 249

Tutorial 11.01: Batch rendering 252

Tutorial 11.02: Playback using fCheck 257

 Summary 259

 12 MEL scripting 261

 Introduction 262

 The origins of MEL 263

 In a word: Scripting 264

Getting started 266

 MEL syntax 269

 Values 270

 Variables 271

 Mathematical and logical expressions 277

 The MEL command 280

 Attributes in MEL 286

 Conditional statements 288

 Loops 289

 Procedures 291

 Animation expressions 292

 Putting it all together: The MEL script 301

Tutorial 12.01: Building a MEL script 302

CONTENTS

 Debugging your scripts 306

 Random number generation in Maya 308

 Summary 309

 13 Data input/output 311

Introduction 312

 Translators 313

 Reading and writing fi les with MEL 315

Tutorial 13.01: Visualizing cell migration 322

 Summary 337

Part 3 Biology in silico—Maya in action 339

 14 Building a protein 341

 Introduction 342

 Problem overview 346

Methods: Algorithm design 354

Methods: Encoding the algorithm 354

Results: Running the script 368

Results: Rendering your molecule 372

 Summary 380

 References 381

 15 Self-assembly 383

 Introduction 384

 Problem overview 385

Methods: Actin geometry 394

Methods: Diffusion and reaction events 399

Methods: Reaction rates and probabilities 403

Methods: Algorithm design 409

ixCONTENTS

x

Methods: Encoding the algorithm 412

Results: Running your simulation 437

 Summary 441

 References 442

16 Modeling a mobile cell 443

 Introduction 444

 Problem overview 445

 Model defi nition 449

Methods: Generating pseudopods 451

Methods: Algorithm design 453

Methods: A cell locomotion engine 454

Methods: Encoding the algorithm 466

Methods: Loading the script 475

Results: Running the script 476

 Summary 477

 References 477

 17 Growing an ECM scaffold 479

 Introduction 480

 Problem overview 481

 Model defi nition 483

Methods: Algorithm design 486

Methods: Encoding the algorithm 494

Methods: Grow your scaffold! 512

Results: Parameter effects 516

 Summary 517

 References 517

CONTENTS

 18 Scaffold invasions: Modeling 3D
populations of mobile cells 519

Introduction 520

 Problem overview 521

 Model defi nition 525

Methods: Model design 528

Methods: Encoding the algorithm 538

Methods: Running the simulation 565

Results: Data output 572

 Summary 573

 References 573

 19 Conclusion: A new kind of seeing 575

Explanations, simulations, speculations 576

 Maya ’ s role 578

 The path so far 578

 The future 579

 References 582

 Further reading 585

Glossary 593

 Index 607

xiCONTENTS

Th is page intentionally left blank

 Preface

Still image from a Maya simulation
model of cell migration in a
3D scaffold. The cell extends
protrusions in search of scaffold
fi bers. When it contacts a fi ber, the
protrusion adheres to it. The cell
body then contracts, pulling it in the
direction of the adhesion. Maya’s
extensive 3D modeling toolset and
programming capabilities make it
well suited to 3D visual simulations
of biological phenomena such as
cell migration.

Courtesy and © 2006 Donald Ly.

 Who is this book for?
 If, like us, you are involved with the study of cells and cell biology, or if your work
takes inspiration from the organic world, this book is for you. We have written In
Silico for the diverse creative community—scientists, artists, media designers, stu-
dents, and hobbyists—now deeply involved with the living cell as a key to unlocking
the complexity of organic matter and a gateway to powerful new understanding of
disease. In the scientifi c area, cell and molecular biologists and their research part-
ners today have little time to spare developing complex computer programs from the
ground up. High-end three-dimensional (3D) computer programs like Autodesk Maya
provide the busy scientist with a robust, fl exible development environment in which
state-of-the-art computer methods can be used to analyze, model, and visualize cell
data. Equipped with deeply customizable user and application programming inter-
faces, Maya and other top-tier 3D animation programs aff ord rapid prototyping of
data analysis and models through advanced graphics, physics, and rendering systems.
Output capability embraces both crisp numerical data and polished 3D dynamic visu-
alizations of cell physiology. Th ese tools have enough programming fl exibility that the
working researcher can concentrate on the functional aspects of the data mapping or
simulation capability they wish to create.

 In the communications fi eld are individuals and groups immersed in the burgeon-
ing marketplace of biocommunications, especially medical and scientifi c animation.
Th e telling of stories is a human universal, common to all peoples and cultures. Th e
increasingly complex world enabled by science and technology makes the accurate,
compelling telling of scientifi c stories more important than ever. Constantly, anima-
tors of medical and scientifi c subjects are called on to present ever more intricate,
unusual phenomena involved in understanding how cells work and what goes wrong
with them to cause devastating illnesses like cancer and heart disease. At the same
time, the expectations of a media-savvy public for concise, truthful, entertaining
visual stories rise even higher. Taking control of a program like Maya can empower
the media artist to better interpret and visualize wonderfully intricate cellular phe-
nomena—such as the crowded molecular landscapes of the cell interior, the cell
waves coursing through the embryo ’ s interior, or the skein of blood vessels healing a
wound—that would be impractically tedious or impossible to animate by hand.

 And too numerous to count, surely, are the artists and citizens everywhere who draw
inspiration from biology and the natural world, and who dream of imparting some
facet of organic vitality and complexity to their creative work or personal appre-
ciation of nature. Th e ideas and methods of this book will, we believe, inform and
inspire everyone with such interests. Although the focus of our applications is the
exciting realm of the living cell, those whose interests embrace other parts of liv-
ing nature will fi nd the knowledge and techniques they learn here of useful in many
diff erent ways.

 Why Maya?
 Although Maya is a top-tier product used worldwide for 3D animation in entertain-
ment, gaming, and manufacturing, this Academy Award® winning program does not
stand alone in representing the cutting edge of high-end 3D. Superb tools such as
SoftImage XSI, Maxon Cinema 4D, NewTek LightWave 3D, Autodesk 3ds Max, and

xiv PREFACE

Side Eff ects Software ’ s Houdini, stand alongside Maya to defi ne the state of the art
in 3D animation capability. Maya is our subject in this book for three reasons. First,
despite the excellence of alternative tools Maya currently enjoys a pre-eminent sta-
tus in top-end 3D animation work. Second, the Maya programming interfaces—
accessed through a C�� application toolset (the API—which we plan to deal with in
a subsequent book), via scripting in the Python language, and through Maya ’ s own
scripting language MEL, which we treat in this book—allow enormous power and fl ex-
ibility in customizing Maya for scientifi c applications. Th ird, the academic outreach
initiatives supported by Autodesk, the fi rm that makes and sells Maya, have
enabled us to test Maya and some of its predecessors (such as Alias PowerAnimator)
in demanding real-world science projects in cell and medical science. As a threesome,
we have between us accumulated roughly 40 person-years of experience across a
wide range of such applications. We fi nd Maya worthy of close attention whenever
there is a need to model and visualize 3D cell biology using a computer. Since our
origins trace back to the early days, in which such computer methods were lab-writ-
ten custom jobs in languages like Fortran, C��, and OpenGL, Maya for us means
shorter time to software completion while increasing the power of the animated
visualization.

 If you are already a user of a 3D animation package other than Maya, you will still
fi nd considerable useful material in the pages to follow. Th e book is going to show you
how to approach complex biological problems eff ectively, by means of a workfl ow in
3D visual computing. We have developed this workfl ow over the years of our medical
and biocommunications research and use it daily in our teaching and scientifi c inves-
tigation. By working through the book ’ s projects and case studies, you will be able
to adapt our workfl ow to other 3D animation products as well as take them much
further in Maya itself.

 What the book offers
 In the world of computer graphics software, Maya is a relatively complicated applica-
tion. Learning and, eventually, some degree of genuine mastery, take time, but don ’ t
despair. Page by page, the learning map we have set up will take you from one pro-
ductive result to the next. You will deal throughout with learning content that has
genuine interest and signifi cance in the world of science and cell biology. In Part 1
you will meet the key ideas and terms from scientifi c computer graphics needed to
dive into Maya while assessing its historic relevance to leading edge visualization. In
 Part 2 , you will receive a self-contained introduction to Maya and to our workfl ow
that will take you from starting the program through to a polished animation ren-
dering of a complex protein. With this foundation you are ready to meet MEL, the
programming language by which you will harness Maya ’ s ability to model and render
complex events. Th en in Part 3 , we put this all to work. You will develop a portfolio
of case studies ranging from the single biological molecule to populations of inter-
acting macromolecules, and then on to mobile cells as they move through their tis-
sue environment. As you complete each element in the portfolio, you will have taken
command of powerful new strategies for using MEL to control Maya ’ s numerical and
visual rendering activity.

 Here ’ s what you can expect in the rest of the book.

xvPREFACE

Part 1: Setting the stage

01 Introduction
 To get started, we attempt to answer the question: “ Why
visualize? ” We briefl y discuss the power of visual percep-
tion in human learning and discovery, and how we can
leverage our innate visual intelligence to advance under-
standing in science. Th e role of structural hierarchy in

biology is explored, and we take this opportunity to introduce some of the “ major
players ” at the levels of molecules, cells, and tissues. Maya is introduced, and some of
its history traced. Finally, we celebrate the advances in 3D computer animation that
have provided powerful, yet aff ordable tools for conducting visual explorations of
complex systems.

02 Computers and the organism
 Th is chapter will survey the basic idea of computation and
how it should be done automatically, by a machine. We will
see to that a core tenet of information processing, condi-
tional control , is used by both computer programs and liv-
ing organisms to regulate activity. Th is sets the stage for
understanding how computer programs can illuminate the
structures and functions of biological systems.

03 Animating biology
 In this chapter, you ’ ll explore the standard animation
workfl ow, and see how it can be adapted to the needs of
a biomedical researcher or animator. We examine the
preproduction process, where a story is developed and
refi ned, and a plan for the execution of the fi lm is made. In
the production phase, the hard work of building, textur-

ing, animating, and rendering of the story elements takes place. In postproduction, the
media developed in production are composited, edited, and packaged for delivery. Th ese
steps are applicable to most science communication contexts, and we propose a modi-
fi ed version of them to accommodate the unique requirements of biological systems
visualization.

 Part 2: A foundation in Maya

04 Maya basics
 Th is chapter will get you immediately familiar with Maya,
via a tour of the primary features of the user interface
(UI). You ’ ll learn about Maya ’ s program architecture—the
proprietary Dependency Graph and Scene Hierarchy—and
get a sense of what ’ s actually happening when you start

pressing Maya ’ s buttons. A basic understanding of “ Maya behind the scenes ” will
greatly extend what you can accomplish with the software. We ’ ll continue to develop
this understanding in the subsequent chapters.

60Å

xvi PREFACE

05 Modeling geometry
 In this chapter you will learn to make geometric models.
A discussion of diff erent model types and their components
gives an understanding of how complex surfaces are cre-
ated from relatively simple beginnings. You ’ ll also see how
models are composed of nodes and attributes—the stuff of
Maya ’ s Dependency Graph—via practical examples.

06 Animation
 With animation, you ’ ll bring your models to life. In Maya,
to animate is to change some attribute over time—be
it position, color, or speed, for example. You will see this
defi nition applied as you learn to work with the tools of
animation—keyframes and animation curves—to make

objects move around and change shape. You ’ ll wrap up the chapter with your fi rst
procedural—or algorithm-driven—animation, and a taste or what ’ s possible when
you set aside the standard UI animation tools and begin using written expressions to
simulate motion.

07 Dynamics
 One of the truly powerful features of Maya is that it ’ s a
sophisticated, built-in dynamics engine that you can use
to simulate real-world physics. It calculates forces and col-
lision dynamics for soft- and rigid-bodied objects and for
entities called particles. In this chapter you will create
animations driven entirely by Maya Dynamics, in which

objects are moved about by forces and collide with one another. Th ese ready-made
physics simulation capabilities are a boon not only to visual eff ects artists looking
to emulate real-world phenomena, but also to the computational biologist looking to
breadboard dynamic modeling scenarios before going through the eff ort and expense
of building a custom physics engine.

 With Maya, you have at your fi ngertips the same tools for rendering proteins, cells,
and tissues that professional CGI artists use to create the stunning imagery that has
revolutionized Hollywood visual eff ects. In each of the following four chapters, you ’ ll
focus on an aspect of Maya ’ s extensive rendering capabilities. Together these chapters
will take you through the process of preparing an animated scene (showing the four
subunits of the blood protein hemoglobin) for rendered output.

08 Shading
 In this, the fi rst chapter on the rendering process, you ’ ll
learn how to make and apply shading networks, or shad-
ers for short. Shaders work with the lights in a scene to
determine the appearance—color, texture, opacity, etc.—
of objects in your fi nished renderings. You ’ ll learn how
to quickly create and apply shaders to multiple objects in
preparation for rendering.

xviiPREFACE

09 Cameras
 Like a real movie camera, a Maya camera defi nes what
your audience will see. Many features are available with
a real camera are embodied in the Maya version, allowing
you to set up and record shots in virtual 3D space much
as you would in the real world. Th e Maya camera also
defi nes your view of the 3D scene as you work with it, and

is therefore an indispensable tool, whether or not you plan to make fi nished (ren-
dered) movies with Maya. By the end of this chapter, you ’ ll know how to set up and
animate a camera along a track called a motion path—much the way a movie camera
is set up on a track to move as it records the action.

10 Lighting
 If the camera is a cinematographer ’ s brush , then light is the
paint. Just like in the real world, light defi nes what is visible
in your Maya scenes, and the quality of its appearance. We ’ ll
show you how to achieve professional illumination with
minimal eff ort in order to get the most out of your images.

11 Action! Maya rendering
 In this fi nal chapter on the rendering process, you ’ ll see
how Maya integrates shaders, camera view, and lights to
produce one or more image fi les. We ’ ll explore the diff er-
ent render “ engines ” available in Maya and their relative
advantages.

12 Mel scripting
 At this point in the book, you ’ ll know your way around
the UI and be familiar with the concepts and terminology
involved in modeling, animating, and rendering in Maya.
You ’ ll be ready to depart somewhat from the standard UI
tools and start exploring Maya ’ s scripting capabilities.

Th is chapter introduces Maya ’ s scripting (or programming) language, MEL (short for
Maya Embedded Language). You ’ ll learn how to run individual MEL commands and
how to compose a script—or short computer program—out of multiple MEL state-
ments in order to automate tasks in Maya. Readers new to computer programming
will learn the basic concepts—syntax, variables, operators, fl ow control, etc.—in the
context of MEL. Th ose with previous programming experience can scan the chapter
to pick up the MEL basics. In either case, plentiful examples and a short tutorial will
have you coding Maya tasks using MEL in no time.

13 Data input/output
 Ready-made software plug-ins are available for porting
some of the more common 3D data formats to and from
Maya. However, if you ’ re working with a format for which
no plug-in exists, such as experimental data formatted in
a spread sheet, you may want to create your own importer

move -a 0 ($H/2) 0 $name1;
move -a 0 (-$H/2) 0 $name2;
$groupName = `group $name1 $name2`;

if ($j==0){

 // Create the first peptides.
 $locatorName1 = `spaceLocator -p 0 0 0`;
 move $W 0 0 $locatorName1;
 parent $locatorName1 $groupName;

 move -r $x $y $z $groupName;
 rotate -r $rx $ry $rz $groupName;

 // Increment the helix rotation.
 $rx = ($rx + $helix);

}
else { // Create the next peptide.

 // Store the translate values of the locator.
 $xyz1 = `xform -q -t -ws $locatorName1`;
 $x = $xyz1[0]; $y = $xyz1[1]; $z = $xyz1[2];

 // delete the previous locator and make a ne
 delete $locatorName1;
 $locatorName1 = `spaceLocator -p 0 0 0`;

xviii PREFACE

or exporter. Th is chapter shows you how to do just that using a suite of MEL com-
mands for reading and writing external fi les. You ’ ll also learn the MEL commands
useful for formatting the text that you read and write. In the chapter ’ s tutorial, you ’ ll
extract 3D coordinates from a cell migration data fi le, use them to visualize the mov-
ing cells, and then save out a report summarizing key migration statistics.

Part 3: Biology in silico—Maya in action
 In this part of the book, you ’ ll explore and use a workfl ow for in silico modeling and
simulation that builds on your knowledge of Maya ’ s UI and scripting capabilities. We
present fi ve tutorial-style projects, each dealing with a diff erent level of biological
organization—from a single protein up to a population of cells in a tissue matrix. In
each project we ’ ll guide you, step by step, through the composition of custom MEL
scripts that automate the model building and/or dynamic simulation. Whether you ’ re
a scientist looking to explore Maya techniques in 3D computation or an artist visual-
izing topics in cell science, you ’ ll learn a range of useful techniques that can subse-
quently be applied to your own projects.

14 Building a protein
 Th e ability to work with molecular models is essential to
any 3D in silico approach to cell (and molecular) biology. To
begin, one must fi rst be able to build models using struc-
tural data. Once built, these models can be used to study
and simulate a range of phenomena from protein folding to

shape complementarity. In this chapter, you ’ ll build a custom script to make a protein
model using an external Protein Data Bank (PDB) fi le. You ’ ll be able to use this script
to make models from other PDB fi les and revise it to suit other data formats. Moreover,
the chapter doesn ’ t end when your model is built: we ’ ll guide you through setting up
and rendering a fi nished picture worthy of a book cover or wall poster.

15 Self-assembly
 Th e self-assembly of macromolecular structures is key
to the organization and function of cells and tissues. In
this chapter you ’ ll create a dynamic model of regulated
self-assembly featuring an actin protein fi lament. You ’ ll
do this with custom MEL scripts that emulate molecular
diff usion and chemical reaction dynamics.

16 Modeling a mobile cell
 Th e study of mobile cells spans a huge range of biomedi-
cal research, from the spread of cancer to tissue regenera-
tion. In this chapter you will create a simple cell model in
Maya and make it crawl in response to a simulated chemi-
cal stimulus. By setting up parameters that control the
cell ’ s motion, including the degree to which it responds to

the stimulus, you ’ ll see how such a model could be extended to simulate and predict
diff erent modes of cell behavior.

xixPREFACE

17 Modeling an ECM scaffold
 In the body, cells live in complex 3D environments of the
various tissue types. Research in regenerative medicine
is increasingly focused on the relationships between cells
and their surroundings, with a growing awareness that
3D tissue architecture plays a key role in cell behavior.
In this project you ’ ll use our in silico workfl ow to build

a fi brous tissue matrix. A set of model parameters will let you vary the structure of
each matrix you create. You ’ ll see that, given a set of model criteria, you can leverage
MEL to create structures of a complexity that would be impractical to attempt using
the standard modeling tools available through Maya ’ s UI.

18 Scaffold invasions
 In this, the fi nal project of the book, you ’ ll model the pen-
etration of your tissue matrix by a mobile group of cells—
using only MEL and some custom methods we developed
for mapping 2D cell motion onto 3D surfaces.

 In no way does this chapter represent the limit of what ’ s
possible for modeling cell biology in Maya. On the contrary, we have only scratched
the surface! We hope that this and the projects before it will inspire you to create new
developments in this exciting fi eld of 3D in silico biology.

19 Conclusion
 In this chapter we revisit the themes and methods cov-
ered in the book and look ahead to the future of biocom-
munications and computational cell science.

Further reading
 We tour the cell biology, 3D visual computing, and Maya tools and techniques in suf-
fi cient detail to advance you quickly and effi ciently through each chapter in the book.
Nonetheless, practical constraints have made it necessary to be brief in our treatment
of many of the subjects. Where you desire more information, we encourage you to
explore the Further reading we ’ ve listed according to topic.

 Glossary
 Th is book was written for artists and scientists alike. Depending on your fi eld of work
or study, you may encounter terminology and concepts that are new to you. In the
 Glossary , we ’ ve compiled many of the key terms used throughout the book. Th ey are
listed with references to the pages on which they ’ re used.

 CD-ROM and companion Website
 Everything you need to work through the examples, tutorials, and projects—
background information, step-by-step instructions, and MEL code listings—is pro-
vided on the printed pages. In addition, we ’ ve enclosed a CD-ROM with supplemen-

xx PREFACE

tary material. It includes MEL scripts, Maya fi les, and rendered animations from
various chapters. Th e read_me.txt fi le in the root directory of the CD-ROM includes an
index of the enclosed computer fi les.

On the books’s companion Website you’ll fi nd updates and corrections (when neces-
sary) to the fi les provided on the CD-ROM.

www.insilico.book.net.

 Computer hardware and software
Th e Maya fi les and MEL scripts listed in this book and included on the CD-ROM
were created and tested on a mid-range consumer-level PC with the following
specifi cations:

Software Maya 8.5 for Windows
OS Windows XP Professional 2002 (Service Pack 2)
PC Dell Dimension 8300

CPU Pentium 4, 3.20 GHz
RAM 1 GB

Graphics adapter ATI Radeon 9800 XT, 256 MB DDR

Th e book ’ s tutorials and projects have been developed over a number of versions
of Maya, both in Windows and Mac OS. Th ey have been tested to work in Maya 8.5 for
Windows . Users of older versions of Maya may have to look around for commands whose
names have changed, but the MEL code will probably work largely unaltered. As this
book went to press, a new version was announced (Maya 2008). Although we have
not had the opportunity to test our projects against Maya 2008, we have no reason to
believe that the techniques we rely on would have altered enough to have broken them.

 Similarly, the instructions for accessing Maya menus and tools, along with references
to the Maya Help Library, are specifi c to Maya 8.5 for Windows. With a little adaptation
they can readily be applied to learning Maya in other environments, namely Mac OS
and Linux.

 If you are considering purchasing Maya, we strongly recommend you ensure its com-
patibility with your hardware and software confi guration by consulting the system
requirements and qualifi ed hardware specifi cations available via Autodesk ’ s website:

 www.autodesk.com/fo-products-maya

xxiPREFACE

 About the authors

 Jason Sharpe is a cofounder of the award-winning AXS Biomedical Animation
Studio in Toronto. Trained in mechanical engineering at Queen’s University, fi ne
arts at Emily Carr Institute of Art and Design and biomedical communications at the
University of Toronto, he has worked on a wide range of Maya-based 3D animation
projects for research, education, and entertainment.

 Charles J Lumsden is Professor of Medicine at the University of Toronto. Trained
as a theoretical physicist, he studies the mathematical logic behind illnesses such as
Alzheimer’s disease and cancer. He and his students have explored and championed
a variety of 3D graphics software as aids to biomedical discovery, including top-tier
commercial tools such as Maya and MEL.

 Nicholas Woolridge , Associate Professor of Biomedical Communications at the
University of Toronto, has played a major role in the development of the visu-
alization design fi eld in the university’s renowned Master’s Degree in Biomedical
Communications. His current research focuses on the optimization of visual media
for medical research and education.

 Acknowledgments

 Th e splendid staff at Morgan Kaufmann, our publisher, has given us essential aid—
mixed with clearheaded expertise and unquenched enthusiasm—as In Silico found its
way through the press and into your hands. Tim Cox, then a senior editor at Morgan
Kaufmann, saw sense in our idea that time was right for a richly cross-disciplinary
book exploring Maya and its programming language, MEL, as tools for adventure and
discovery in biology and medicine. Tim also got behind our conviction that such a
book would be at its best if written for a use by a diverse audience of artists, scien-
tists, and highly motivated private citizens. Morgan Kaufmann is a world leader in
producing texts that map the subtle intricacies of MEL programming; we were, and
remain, honored to have In Silico at home in this distinguished setting. Once Tim had
the project launched, our Editor, Tiff any Gasbarrini, and Assistant Editors Michele
Cronin and Matt Cater, helped us survive the twists and turns of bringing the book
to life. Th rough our publisher we benefi ted from the comments of expert readers, who
responded to drafts of In Silico either in whole or in part. Our thanks to these hard-
working colleagues for their generous allotment of time and attention: Prof. Klaus
Mueller of Stony Brook University; David F. Wiley, President and CEO of Stratovan
Corporation; Azam Khan, research scientist at Autodesk Corporation; and fi ve
anonymous reviewers. Th eir input, uniformly deft and relevant, has helped In Silico
complete its journey with enhanced strength.

 In addition, two student reviewers—Lori Waters (of the Biomedical Communications
graduate program) and Tatiana Lomasko (PhD candidate in the Institute of Medical
Science), both at the University of Toronto—completed many of the tutorials, provid-
ing valuable feedback that helped us to hone our approach.

 Th roughout their history, Maya and MEL were invented and advanced by a commu-
nity of brilliant computer graphics innovators principally located in Toronto, Canada
(with colleagues in offi ces in Paris and California). Th e software was originally devel-
oped by Alias, Inc., and is now under the banner of the Autodesk Corporation. We
cannot overstate our appreciation to Autodesk and to its staff of Maya and MEL
experts in assisting us on occasional technical questions and allowing us to present
the many illustrations in which Maya ’ s user interface is depicted. As well, In Silico
takes the view that infl uential inventions like Maya are what they are not only
through the genius of their creators, but also because they appear at a specifi c time
and place in human history. Th erefore, appreciating historic trends in computer tech-
nology, computer programming, and 3D computer animation gives us better under-
standing of Maya and MEL. Th e history of Maya and MEL has not been written up
extensively, and what sources exist we found to be occasional and widely scattered.
We are therefore most grateful to Autodesk for granting us discussions with mem-
bers of its staff , who number among the original inventors of Maya and MEL. Th ese
incredibly busy people answered our questions about origins and inspirations with
patience, grace, and good humor. We are delighted to be able to incorporate the gist of
those discussions here, by way of introducing you to the depths of Maya and MEL. In
particular we must thank Joyce Janczyn, lead designer of MEL, as well Mike Taylor,

Duncan Brinsmead, and Jos Stam for talks that opened our eyes to the inner life
Maya.

 Ravi Jagannadhan gave considerably of his own time to review and test the many
MEL scripts published here. And, during this entire time Azam Khan (research scien-
tist at Autodesk) never tired of his informal role as our advisor and principal facilita-
tor amidst the elite world of those charged with inventing the latest versions of Maya
and Maya programming.

 Since this book hopes to be useful to readers who are new to computers, computer
programming, or 3D animation—as well as an effi cient self-contained resource for
experienced science researchers and computer artists—we have used key moments
from computer history and animation history to lay newcomers a congenial path to
MEL programming. It is a pleasure to thank all the computer historians, collectors,
and archivists who helped us with information, recollections, and photographs. In
particular we must note the extended assistance generously given our history frame
by: portraitist Louis Fabian Bachrach III for his photograph of programming language
pioneer John Backus, lead inventor of the Fortran language; computer scientist John
Bennett (Sydney, Australia) for his assistance and support in presenting his early com-
puter graphic of structure pattern data for the protein myoglobin; Deirdre Bryden,
Queen ’ s University (Kingston, Ontario) archivist, and Marnee Gamble, University
of Toronto archivist, for mainframe history and photographs at these Canadian
research centers; Martin Campbell-Kelly, University of Warwick (Coventry, UK), for
early computer history and photographs, especially the EDSAC; Annette Faux, archi-
vist at Cambridge University ’ s Molecular Biology Laboratory, for early 3D models of
the myoglobin protein; PDP-8 microcomputer collector and archivist David Gesswein,
his wife Janet Walz, and their cats Khym and Py for the PDP-8 microcomputer pho-
tograph shot specially for the book; Calvin Gotlieb, University of Toronto, for access
to his archives on that institution ’ s computer center history; Bonnie Ludt, California
Institute of Technology Archives, for her help with the Linus Pauling photographs;
Dawn Stanford of the IBM Corporate Archives for assistance with IBM mainframe
history; Peter Strickland, Managing Editor of the Acta Crystallographica journals,
for his assistance with early computer visualizations of protein structure; Bjarne
Stroustrup, inventor of the universally used C�� programming language, for his
photograph; Marcia Tucker, Institute for Advanced Study Archives (Princeton, NJ)
for assistance with the John von Neumann photograph; and Martin Zwick, Portland
State University (Portland, OR), for information and photographs on key early work
in molecular computer graphics. Our photo editor, Jane Affl eck, also gave us strong
assistance in sourcing hard-to-fi nd images.

 In Silico celebrates as well creative work by many of our colleagues who advance the
visual interpretation of cell structure and dynamics through 3D computer graphics
and animation. We especially thank Drew Barry, Marc Dryer, Stephen Ellis of Ellis
Entertainment, David Goodsell, and Jenn Platt for letting us include their work here;
Eddy Xuan and Sonya Amin of AXS Studio for their tremendous support and gener-
ous contributions to the book ’ s illustrations; and Christina Jennings of Shaftesbury
Films for letting us include animation stills from her pioneering dramatic series,
Regenesis. Stunning visualizations in biology and medicine of course use technol-
ogy other than computer graphics, such as photographic microscopy and video cap-
ture. We are indebted to: Peter Friedl and Katarina Wolf, University of Würzburg,
Germany; Sylvia Papp and Michal Opas, University of Toronto; and Alexis Armour,
Hôpital Hôtel-Dieu du CHUM, Université de Montréal, for their help and consent in

ACKNOWLEDGMENTSxxiv

using their micrographs and/or video capture of cellular and tissue engineering mate-
rials. A special thanks goes to John Semple of Sunnybrook Health Sciences Centre for
his expertise and guidance in regenerative medicine that helped shape the book ’ s two
fi nal projects. John, who is both an artist and a scientist, also provided feedback at an
early stage that helped us craft the book for researchers and artists alike.

 Th is book would not exist without the support we received from NSERC, the Natural
Sciences and Engineering Research Council of Canada, in the form of a three-year
grant under NSERC ’ s Collaborative Research and Development (CRD) program. Th e
CRD program brings University-based researchers in Canada together with compa-
nies that share common interests in science and technology—in this case the idea
that a top-tier 3D animation package like Maya (itself a Canadian invention) can
be a powerful tool in the hands of biomedical scientists and teachers. Th e NSERC-
CRD initiative seeks outcomes with broad relevance to the advanced training needs
and research application requirements of citizens in Canada and indeed worldwide.
It has therefore been a special pleasure to design our work under this grant pro-
gram, through NSERC-CRD Grant Number CRD 270158-03, entitled “ Interpretive
Visualization: Understanding cell systems dynamics through computer animation ” ;
so that our fi ndings can communicated in a book for working professionals and for
trainees in both the sciences and the digital media arts. Our corporate partners, Bell
Canada Enterprises in grant year 1 via the Bell University Grants Program at the
University of Toronto, and Alias (now Autodesk) in grant years 2 and 3, were essen-
tial to the success of our CRD project and we are deeply grateful for their participa-
tion. At each step NSERC personnel at various levels—Eileen Jessop, Pamela Moss,
Anne-Marie Monteith, Sylvie Boucher, and Lise Desforges—assisted us with practical
guidance and patient advice.

 No book large or small gets done without evenings, late nights, and weekends nipped
from time otherwise owed to kith and kin. So we must end with our deepest thanks
to our families, who have put up with all the stolen hours and steadfastly supported
us throughout the book ’ s creation.

xxvACKNOWLEDGMENTS

Th is page intentionally left blank

 Part 1
 Setting the stage

Th is page intentionally left blank

01 Introduction

Still image from a
simulation model of
molecular diffusion
in Maya. The molecules
are actin protein
monomers and
fi laments which you'll
meet in Chapters 14
and 15. In the
3D model on the
left, different colors
indicate different
fi lament lengths.
Width of one actin
monomer � 60 Å.

60Å

4 PART 1: SETTING THE STAGE

 The challenge
 “ I see. ”

 With these words, human beings convey their understanding. Th is pervasive meta-
phor, of sight as the stand-in for comprehension, tells us something about the nature
of thought.

 Visual exploration is fundamental to human learning, problem-solving, and innova-
tion. A surprisingly large portion of the cerebral cortex is devoted to decoding what
we see with our eyes. So sophisticated is our visual perception that we are scarcely
aware of its activity, and the cognitive sciences are only beginning to understand its
complexity.

 Since the Renaissance, the sciences have gradually awoken to the power of images to
facilitate understanding. Andreas Vesalius ’ De Humani Corporis Fabrica (1543 C.E.) is
considered the founding text of scientifi c anatomy, but its popularity and impact—it
was serially and repeatedly plagiarized—was due to its exquisite dissection imagery.
William Playfair, the inventor of many statistical graphics, opened the eyes of 18th
century mathematicians and economists to the astonishing power of bar charts and
scatter plots to condense pages of tabular data into readily apprehensible visual form.

 Technologies of representation, reproduction, and mass communication were often fi rst
exploited for scientifi c communication. In the 18th and 19th centuries, the develop-
ment of color reproduction technologies, so common in our mass media world, was
driven by the demand of medical publication, where topics like dermatology required
the accurate rendition of color.

 Th rough the 20th century, many imaging technologies, such as electron and confocal
microscopy, CT and MRI scanning, and ultrasound, were developed to satisfy science
and medicine ’ s demand for more and better evidence.

 Now, in the 21st century, computer-generated imagery (CGI) is yet again expanding
the scope of our visual exploration. Th e power to map complex esoteric data into
images, expand and compress time and scale, and fl exibly render concepts and proc-
esses in multiple forms have made the computer an essential component of many
research endeavors. But there are gaping holes in the toolset available to researchers,
and if commercial tools are not available, modern researchers usually have to con-
template building their own. Phenomena at the cellular and molecular levels are the
principal focus of modern medical and bioscience research. At these scales, structures
and events are often diffi cult or impossible to see in the lab, in real time, as they hap-
pen: the distances are too small, the times too short, the events too unusual. Instead,
they are measured—mapped as numerical properties. But how can we envision what
the numbers mean? New tools are needed that leverage the power of computer graph-
ics (CG) to see into the complex web of structure and function in cells and tissues.

 We, and other researchers in the emerging fi eld of computational biology, are meeting
this challenge with CGI: using the computer as a visual information machine to har-
ness the brain ’ s enormous prowess for insight into the knowledge encoded in cellular
data and computer models. We call this approach in silico, since it is focused on com-
puter methods for research discovery that will complement traditional in vivo and
in vitro methods. Our approach is perhaps novel, in using tools built for another fi eld
entirely, to breadboard and simulate complex cell-scale phenomena. In this book you
are going to learn about Maya, one of the most powerful computer programs for CGI,
and how to use Maya (or tools like it) to represent, model, animate, and visualize in

 In vivo is a Latin term common
in medical research used to

refer to things, processes, or
experiments " in a living thing " ;
it is often used in opposition to

in vitro, meaning " in glass " , or, in
other words, in an experimental

apparatus.

5CHAPTER 01: INTRODUCTION

silico diverse aspects of cell biology. Th is is an exciting new area bridging the sciences
and the arts, and we have written the book with both scientists and artists vividly
in mind.

 In this chapter, we will begin by looking at why we visualize and how visualization in
science can be characterized. Th en we will approach topic of our visualization exer-
cises: a hierarchical cast of biological characters, from atoms to tissues. Finally, we
will look at the origins of our chosen tool, Maya.

 Wetware for seeing
 “ Th e drawing shows me at one glance what might be spread over ten pages in a
book. ”
 —Ivan Turgenev, Fathers and Sons6.

 Why do we so easily refer to sight when we want to express understanding? Nature
has equipped us with remarkable brains: a compact, energy-demanding organ that
contains about 100 billion neurons, each neuron densly connected with up to 10,000
other neurons. Th e most distinctive part of the human brain is its cortex: a slab of
gray matter equivalent to a sheet approximately 50 cm � 50 cm, and 2–4 cm deep,
densely folded up and packed into our skulls. Th e cortex is central to our “ higher ”
brain functions, like language and consciousness. A surprisingly large portion—
40% 1 —of the cerebral cortex is devoted to vision. Why do we need such a large pro-
portion of our brains devoted to decoding what we see with our eyes?

 Human visual perception is a pattern recognizer of extraordinary speed, power, and
discrimination. And yet, on a day to day basis, we remain scarcely aware of the aston-
ishing suite of tasks performed by visual perception. It ’ s as if we walk through the
world with an incomprehensibly powerful supercomputer behind our eyes, and as we
employ that supercomputer to navigate stairs or read the cereal box in the morning,
we remain completely oblivious to it.

 Vision is a source of deep, and paradoxically invisible , intelligence; harnessing that
intelligence is one of the goals of scientifi c visualization. A comprehensive under-
standing of vision would perhaps help us map scientifi c goals to standardized design
criteria; alas, such an understanding is as yet a work in progress. Th e mechanisms
underlying much of the process of visual perception are largely mysterious. Decades
of eff ort by cognitive psychologists and neuroscientists have begun to unravel the
mystery, but they are far from the complete story, and a comprehensive explana-
tion of vision may be tied to even more hard-won understanding (such as the elusive
nature of consciousness itself). Th e fact that computer scientists and artifi cial intelli-
gence (AI) researchers have yet to mimic vision ’ s power in even the most rudimentary
way (they have yet to create a robot that can “ see ” anywhere near as well as a human
toddler) is a testament to the diffi culty of the challenge. In the interim, we can draw
inspiration from the understanding of visual perception that currently exists and
from existing heuristics in the realms where meaning is concentrated in the form of
images: fi lm, illustration, and art.

 Let ’ s give vision ’ s computational might its due and create some images that exploit its
power, solving scientifi c problems in the process. At the very least, given the above,
the failure to take advantage of our most complex and subtle faculty, the failure to
visualize—when it would enhance our productivity or understanding—would be a
terrible waste of the processing power inside our heads.

6 PART 1: SETTING THE STAGE

 Th e quote from Turgenev is perhaps the source of the familar proverb: “ a picture is
worth a thousand words. ” It rings true, even though, as a cynic would point out, it is
hard to imagine a picture that could express the sentiment embodied in the phrase.

 In the hurly-burly of science, the potential power of visual expression occasionally
takes a back seat to the practical importance of verbal expression, especially for “ seri-
ous ” communication. Papers must be written, presentations prepared, and posters
assembled, all depending principally or exclusively on words and numbers. Th is is
understandable; as far as we can tell, language is essential to human intelligence and
is sometimes considered the “ stuff of thought ” . But if we could open up our heads and
 “ listen in ” on our thoughts, they would be far diff erent, and more confusing, than the
transcription of an “ internal conversation. ” Th e “ stuff of thought ” contains images
(or their mental counterparts!), as well as numerous other sense impressions, such as
sound, tactility, body position, and physiological state.

 We are a multimedia species. We hear repeatedly that we live in an increasingly vis-
ual, media-saturated world. New literacies are being formed around the sophisticated
media objects we consume, and science is becoming open to the idea that exploiting
such literacies will facilitate scientifi c communication and discovery.

 Th at we may take vision for granted—not just in our everyday lives, but in the process
of scientifi c understanding—should not obscure its power. Indeed, it is hard to think
of a revolution in scientifi c understanding over the past 3,000 years—astronomy,
medicine, physics, chemistry, engineering, geography, and so on—that has not relied,
in whole or in part, on a breakthrough technology for seeing the world in new ways.
CG and animation are working this transformative eff ect on modern biology and
medical science—especially in the realm of the otherwise small, invisible cells where
the fi rst steps to aging and disease are born.

 Visualization in science
 Th e verb visualize has two meanings: the conjuring up of an image in the mind ’ s eye;
and—more importantly for science—to make visible to the eye. Visualization in
science has a long history (as noted above) and has taken on numerous forms,
serving numerous purposes. A comprehensive survey of visualization in science would
include everything from classroom blackboard sketches to supercomputer renderings,
and all the problem-solving visual representations in between. Some representations
are direct mappings of perceptible phenomena (a simulation of a storm cloud) and
some are visual analogies or metaphors which aid interpretation of the phenomena
(a diagram of the “ plumbing ” of a cell-signaling pathway). Some images simplify the
phenomena and some seek to represent it in its full, empirical complexity.

 It can be helpful to think of visualization as existing within a potential “ design-
space ” , with “ level of interpretation ” along one axis, and “ level of complexity ” along
another (Figure 01.01). We don ’ t intend this scheme to be defi nitive or exhaustive, but it
can help to frame the available possibilities.

 Visualization goals may be positioned at various points within this design-space. At
the upper left of the space (high in interpretation and low in complexity), images and

7CHAPTER 01: INTRODUCTION

 FIGURE 01.01

 Above: One potential visualization
 " design-space " .

Below: Three representations of
the bacterial fl agellum and their
respective positions in the proposed
design-space.

events are simplifi ed and analogized, perhaps in order to teach, to clarify, to show
trends, or to convey an overall impression. At the lower right (high in complexity
and low in interpretation), the image is derived from an imaging method or linked
directly to data (indeed, it is usually a direct rendering of that data). While teaching
and showing trends are possible with such images, they are designed to be as accu-
rate as possible, such that it may stand as a source of measurement, evaluation, or
diagnosis.

 Valuable work can be done anywhere within the design-space, but it is
important to know the purpose of the visualization and its intended audi-
ence. Th e same phenomena can be visualized in a number of ways depend-
ing on the audience; imagine explaining bacterial self-propulsion to young

8 PART 1: SETTING THE STAGE

schoolchildren, or to undergraduate biology students, or to doctoral students in a sub-
specialty of cell biology.

 We term what we do interpretive visualization (regardless of whether the fi nal media
are bound for a lay audience or experts) since we are modeling systems invisible to
the naked eye and since we are using visual computing to represent and explore spe-
cifi c ideas about how cells work and how diseases begin with changes in cell function.
Where necessary, we simplify the representations in order to communicate most
eff ectively and, where appropriate, we take advantage of various representational
strategies to make the images more intelligible. Interpretive visualization inhab-
its most of the upper left of our design-space, leaving a small area for empirically
derived images. We don ’ t want to convey the impression, however, that “ interpretive ”
means that these visualizations are less rigorous. Across the frontier of in silico biol-
ogy, you can be involved with developing visualization models that fuel learning and
innovation.

 Th e organizational context of visualization will prove important in choices about
the methods and approaches we will explore later in this book. We will now turn our
attention to the organizational context of biology, which informs the very phenom-
ena we wish to represent.

 Organizational hierarchy: Keys to biology in vivo
and in silico
 Any suffi ciently detailed examination of the structure of living things reveals an
astonishing hierarchy of organization (see Figure 01.02). From the simplest amino acids
upwards, nature builds on the underlying structure in fascinating ways. Understanding
this organization is crucial to comprehending how living matter operates and how
those operations can be represented and visualized using computers. Indeed, in Chapter
02 we will explain some of the analogies between the hierarchical nature of computa-
tion and the functional activity of living physiology. We will sketch here some of the
more important components of this hierarchy; readers with a background in biology
may safely skip this section. Readers new to some of these ideas may wish to comple-
ment this survey with further reading in an introductory college-level biology text, or
in a popular explication such as David Goodsell ’ s Th e Machinery of Life . Complete refer-
ences are listed in the Further reading section of the book.

 Atoms and molecules
 Atoms are the base units for our consideration of living structure. Th ese particles are
the smallest unit which retain an element ’ s chemical properties. Th e chemical proper-
ties of atoms essentially defi ne whether they attract or repel other atoms and under
what conditions. Molecules form when two or more atoms form an arrangment due
to mutual chemical bonds.

 Amino acids
 Amino acids are the small molecules that are strung together, using instructions
from our DNA, into proteins. As the building blocks of all proteins, they can be con-
sidered the base of organismal hierarchy (Figure 01.02).

9CHAPTER 01: INTRODUCTION

 FIGURE 01.02

 A " cast of characters "
representative of selected levels of
organismal hierarchy.

Atom

Molecule

Protein

Oxygen Carbon

2 nm

4 nm

24 nm

8 μm

100 μm

Water Phenylalanine
(amino acid)

Insulin Actin

Multimer

Cell

Tissue

Actin filament

Mitotic cell

Collagen matrix

Microtubule

10 PART 1: SETTING THE STAGE

 Proteins
 Proteins are an amazingly diverse group of biomolecules, all composed of long chains
of amino acids folded into complex, and functional, three-dimensional (3D) shapes.
At this moment there are about 10,000 types of protein actively at work in your body:
digesting your food (pepsin); carrying oxygen in your blood (hemoglobin); clearing
a path through collagen for a migrating white blood cell (matrix metalloproteinase);
self-assembling into cell-skeletons (actin, tubulin, and vimentin); transcribing DNA
into RNA (RNA polymerase); and translating RNA into fresh proteins (the multi-
protein ribosome) to name just a few.

 Molecular arrays: Protein societies
 Proteins sometimes work on their own as single large molecules, as in the case of
soluble enzymes. More often they are part of larger, multi-part structures like cell
membranes. Many structural proteins, such as those involved in the cytoskeleton,
self-assemble into long polymers, which further join together into networks provid-
ing deformability and structural resilience to cells. You ’ ll be seeing much more of one
such protein, actin, as you work through this book.

 Other proteins link together in pairs (forming dimers), trios (trimers), or in multi-
protein complexes (multimers). Some of these structures can be very elaborate, perform
complex tasks, and exhibit strikingly machinelike behaviors. Some of these multimeric
structures in turn make up larger structures, such as the organelles we see inside cells.

 Th e bacterial fl agellum (Figure 01.03), for instance, is composed of the molecular equiv-
alents of an engine, drive-shaft, bearings, and a propeller all made of protein mol-
ecules that, with the aid of other cellular components, assemble into a complex array.
Th e result of this molecular assembly is a highly functional molecular machine that
can operate at an astonishing 200–1,000 rpm, propelling the bacteria through its
aqueous environment.

 DNA
 Although it doesn ’ t fi t neatly into our hierarchy, we should mention an essential (per-
haps the essential) molecule of life, which has its own unique structural hierarchy
and a unique information storage capacity. DNA (deoxyribonucleic acid) is a long,
polymeric nucleic acid which takes the form of two complementary strands arranged
in a double-helix. Th e two strands are linked by the bases adenine (A), thymine
(T), cytosine (C), and guanine (G). DNA is the foundation of the molecular basis of
heredity: the sequence of base pairs (A,T,C,G) forms a long serial code organized into
genes (discrete, protein encoding sequences), regulatory sequences, and regions of
unknown function. Genes code for the sequence of amino acids in a protein molecule;
the Human Genome Project has revealed that our cells contain about 25,000 genes.
Genes are translated into messenger RNA, which is transcribed into proteins by a
complex molecular machine called a ribosome.

 The whole cell
 At the level of the whole cell, various multi-molecular complexes—such as the those
composing the cell ’ s structural framework, the cytoskeleton—are large enough to be vis-
ible to light microscopy. Th e cytoskeleton is composed of actin fi laments, intermediate

11CHAPTER 01: INTRODUCTION

 FIGURE 01.03

 Illustration of the molecular
machinery comprising a bacterial
fl agellum—an elegant example of
multimeric protein organization.
Scale bar � 10 nm.

Courtesy and © David Goodsell. Used
with permission.

fi laments, and microtubules, and plays an essential role in cell structure, motility, divi-
sion, and the transport of substances within the cell.

 Th e cytoskeleton is a dynamic, hierarchical mesh (Figure 01.04). It grows and shrinks,
degrades and reassembles. Actin fi laments exemplify this activity and are vital to
cell deformation and movement, as well as muscular contraction. Actin fi laments are
0.7 nm thin polymers, made up of twinned helical, rope-like chains of F-actin.

 A startling example of the dynamic nature of cell organization is mitosis, or cell
division. In this act of cellular reproduction, many events have to carefully coordi-
nate, beginning with the duplication of the cell ’ s genetic material (so that there
is enough for each of the daughter cells). Th e envelope surrounding the DNA (the
nuclear membrane) dissolves and the duplicated DNA condenses into paired chro-
matids. Microtubules extend from anchor points within the cell to attach to the cen-
tral regions of the chromatids and then pull the newly minted chromosomes apart.
Once the genetic material has been cleanly split, two nuclear envelopes can reform.
A cleavage furrow, powered by actin and myosin (the same proteins that allow muscles
to contract), forms around the center of the elongated cell and pinches the cell
into two.

 Tissues and organs
 Some cells are lone actors, like the patrolling lymphocytes of the immune system,
which migrate throughout our bodies looking for foreign invaders. Most cells, how-
ever, aggregate by the thousands or millions into tissues, whose composition and
hierarchy serve some functional goal.

12 PART 1: SETTING THE STAGE

 For example, connective tissue is essential to the structural integrity of most mul-
ticellular organisms; it is a major component of cartilage and bones and underlies
the structural resilience of many tissues and organs, such as skin. Connective tissue,
which will form the basis for one of your Maya projects in this book (Figure 01.05), is pri-
marily composed of long polymers of various types of the protein collagen. Collagen
is deposited as structural meshes by various cell types in the body.

 Engineered connective tissue scaff olds are an area of modern research. Currently,
creating scaff olds optimized for particular research or therapeutic purposes is a
time-consuming endeavor. In some of our research work we use computational mod-
els to experiment, in silico, with variously structured virtual scaff olds. Th is approach
may one day speed the development of engineered tissues vital to future therapies in
wound-healing, spinal injuries, and more.

 Micro to macro
 As we have seen, living matter is organized via a deep structural hierarchy: amino
acids build proteins; proteins (often) build polymers; proteins and polymers build
cells; cells and cell products (e.g. extracellular matrix) build tissues and organs; and
tissues and organs build organisms. We ’ ve simplifi ed here, especially with respect to
the many other cell components (fats, carbohydrates, micronutrients) that are neces-
sary inputs to, and products of, living physiology. But this hierarchy will be our guide;
in Part 3 of the book you will build computer models that represent biology at several
of these key levels of structure: a single protein; a protein polymer; a single cell; a tis-
sue; and a cell population.

 FIGURE 01.04

 Still frame from an animation
(created in Maya) demonstrating

concepts of cytoskeleton dynamics
as put forth by Harvard cell

biologist Don Ingber.
Scale bar � 1� m.

Courtesy and © 2004, Eddy Xuan.

13CHAPTER 01: INTRODUCTION

 FIGURE 01.05

 The connective tissue scaffold you
will build using Maya in Chapter 17 .
Scale bar � 10 � m.

 Enter Maya
 Even the most amazing idea for new ways of seeing the world is powerless without
the tools and technical means of bringing the new vision into practical use. Th is
book is not about all of computational biology or even about all the important ways
cell biology is being visualized on computers. Th e science and art are already
too vast (and our expertise too limited!) to cover all of that. Instead, this book is
going to introduce you to a specifi c means of visual simulation—using modern
high-end 3D animation software to accelerate development—via a specifi c tool:
the Maya animation program. Having used many of the traditional alternatives
(Figure 01.06) in our research and teaching during the past 30 years, we are convinced
that this more recent approach and tool is an important addition to the visual com-
puting arsenal. Maya and the methods it supports are not panaceas and will not
displace key special tools already in place (or yet to be invented). As a mediator of
exploration and rapid hypothesis prototyping, however, Maya (and software like it) is
powerful and accessible to fast deployment by users from either scientifi c or artistic
backgrounds.

 Maya is a general purpose modeling, animation, and rendering application with a
sophisticated dynamics engine for simulating physical forces and collisions. Users
can import or create geometry of varying types (polygonal and spline-based surfaces),
arrange these objects in a virtual 3D world, and change their positions and deforma-
tions over time. Numerous tools are provided within a well-designed user interface (UI)

14 PART 1: SETTING THE STAGE

a

b

c
iVis

Cell Science

Problem definition

Problem definition

Problem definition

Custom code Results Very slow

Subroutine libraries Results Slow

High-end:
3D

Models

Math iVis

Cinematics Physics Math

Engines
Results Rapid

Workflow Outcome Throughput

 FIGURE 01.06

 In silico workfl ows: theoretical
advantages in throughput of using

advanced tools like Maya.

to allow for the creation of sophisticated animations, from the articulation of synthetic
characters for fi lm and television to the explosion of a dying cell.

 Maya: A brief history
 Maya was released commercially in 1998 by the CG software fi rm Alias|Wavefront
(A|W for short), which was headquartered in Toronto, Canada. As the top-tier anima-
tion and visual eff ects (VFX) package it was by no means the work of a single soft-
ware company in a single development eff ort. Maya incorporated the product lines
of Toronto ’ s Alias Research (Alias for short), Wavefront Technologies (Wavefront for
short) of Santa Barbara, and Th ompson Digital Images (TDI) of Paris, into a single
package. Interestingly, each of the three contributing companies began developing
commercial products in 1984, independent of one another. Between them they came
to dominate the global markets in computer animation, special eff ects, and indus-
trial design (ID) software—markets that the three were in fact largely responsible for
creating.

 Wavefront was founded by Mark Sylvester, Larry Barels, and Bill Kovacs. During
their fi rst year, under the production leadership of John Grower, Wavefront created
some of the earliest CGI for television—notably, opening sequences for National

 In 2003, Alias|Wavefront
became Alias Systems

Corporation. Then in 2006,
the company was bought by

Autodesk, makers of AutoCAD
drafting software and 3Ds Max,

another high-end 3D modeling
and animation package.

Autodesk continues to develop
and market the Alias Systems

product line: Studio Tools;
SketchPad; MotionBuilder; and

Maya.

15CHAPTER 01: INTRODUCTION

Geographic Explorer, BRAVO, and Showtime. Th eir fi rst commercial software off er-
ing, called Preview, was adopted by NBC Television, game developer Electronic Arts,
and NASA, among others. Subsequently, Wavefront branched into the ID and sci-
entifi c visualization fi elds with desktop software they co-developed with computer
maker Silicon Graphics Inc. (SGI). Wavefront ’ s core 3D modeling, animation, and ren-
dering package for movies and television was called Th e Advanced Visualizer (TAV).
In 1992 they released Dynamation, a sophisticated particle dynamics tool developed
by Jim Hourihan. Hourihan wrote a scripting language called Sophia that allowed
users to automate tasks in Dynamation with user-friendly computer code. Also
in 1992, Wavefront released Kinemation with SmartSkin, a sophisticated inverse
kinematics (IK) package used for character rigging and animation. In 1993, Wavefront
bought TDI for their modeling and rendering technologies. Th e combined team of
Wavefront and TDI began working on a next-generation CGI package called Cyclone
which would combine elements of TDI ’ s Explore and Wavefront ’ s TAV, Dynamation,
and Kinemation. Th e project was short-lived, however: another corporate merger
would bring more graphics technology into the mix in another next-generation
package—Maya.

 Alias Research was formed in 1984 by fi lm and animation enthusiast Stephen
Bingham, programmer Susan McKenna, CG specialist Nigel McGrath, and artist/pro-
grammer David Springer. Th eir fi rst commercial off ering was a spline-based modeling
and animation package called Alias/1 (we will explore the two cardinal surface
modeling techniques—spline-based and polygonal—in Chapter 05: Modeling geometry).
Th e Alias product line was used by TV post-production facilities for animation and
motion graphics and in manufacturing for ID. One of the fi rst and longest-standing
Alias customers was General Motors, which used Alias software to realize effi ciencies
in automotive design. Like rival company Wavefront, Alias worked closely with SGI
on the implementation and distribution of their ID product line (this relationship
would later be cemented in the merger of Alias and Wavefront under SGI). Th e
advances in modeling and rendering embodied in the Alias ID software (now Autodesk
StudioTools) have helped major manufacturers worldwide—BMW, Honda, Volvo, Ford,
Apple, GE, Sony, Kraft, Motorola, and many others—design, previsualize, and show-
case their products, while reducing the time from concept to production.

 Th e ingenuity that made Alias software so valuable to the manufacturing sector was
also turning up opportunities in Hollywood. With Alias/2 (and later PowerAnimator),
VFX artists were able to tackle problems that were previously unimaginable. In 1989,
former Alias employee Steve Williams used Alias/2 at Industrial Light and Magic
(ILM) to create the “ living water ” creature eff ects in James Cameron ’ s Th e Abyss . Th e
movie won an Oscar for Best Visual Eff ects in 1990. Another Best Visual Eff ects
Oscar followed in 1992 for James Cameron ’ s Terminator 2: Judgment Day , recogniz-
ing the chromium villain VFX which Steve Williams created using PowerAnimator.
Yet another Oscar acknowledging VFX created with PowerAnimator came in 1993
for the dinosaurs in Steven Spielberg ’ s Jurassic Park . PowerAnimator was both
the state of the art and the industry standard for CGI in Hollywood, used by most
major animation and VFX studios, including ILM, Pixar, Walt Disney, Sony Pictures
Image Works, Dream Quest Images, and Warner Brothers. Later, the developers of
PowerAnimator—John Gibson, Rob Krieger, Milan Novacek, Glen Ozymok, and Dave
Springer—were recognized for technical achievement in the 1998 Academy Awards,
as were Wavefront ’ s Bill Kovacs, Roy Hall, Jim Keating, Michael Warhman, and
Richard Hollander for the development of Advance Visualizer.

 For his role in creating
Wavefront ' s Dynamation
software Jim Hourihan received
a Scientifi c and Engineering
Award from the Academy
of Motion Picture Arts and
Sciences in 1996.

16 PART 1: SETTING THE STAGE

 Th e same year Jurassic Park dinosaurs caused a stir, Alias began work on their next-
generation animation software—code named Maya (a Sanskrit word referring to
 “ the illusion or appearance of the phenomenal world ” 2). Originally conceived as an
add-on animation module for PowerAnimator, Maya would soon become a platform
for the leading technologies in surface modeling, animation, dynamics, and render-
ing. In 1995, SGI bought strategic partners Alias and Wavefront and merged them
into a single company: Alias|Wavefront (the purchase included Wavefront-owned
TDI and its Explore software). Rather than duplicate work in separate product lines,
it was decided to combine the resources of the three development teams. Th ey were
tasked with creating a single product, one that would incorporate the best of what
PowerAnimator, TAV, Dynamation, Kinemation, and Explore had to off er, and con-
tinue to serve each of the original three customer groups. Th e new software took its
core architecture—the Dependency Graph and Scene Hierarchy (which you ’ ll meet in
 Chapter 04)—and its name from the Alias Maya project, along with a fl edgling script-
ing architecture based on Tcl and used to build the UI and to run commands. Alias
also contributed its extensive spline modeling code base to the software. Wavefront
brought its dynamics and IK engines as well as the Sophia scripting language. Sophia
replaced Tcl and was developed into MEL, the Maya Embedded Language (you ’ ll use
MEL extensively throughout the projects in Part 3 of the book). TDI contributed its
polygon modeling engine.

 Maya 1 was released in 1998, three years after its development offi cially began. It
integrated the top CG advances to date and over a decade of R & D and industry expe-
rience spanning three companies and their clients. In its early days, due to its price
tag, Maya was not widely accessible to CG artists. At a cost of about $50 K an install
of several Maya seats represented a signifi cant investment for all but the largest stu-
dios. Its price eventually came down to the level of competitors SoftImage, 3D Studio
Max, and Cinema 4D (among others), so that smaller studios and individuals could
aff ord access to Maya ’ s capabilities.

 Like its predecessors—PowerAnimator, TAV, Kinemation, and Dynamation—Maya
dominated 3D computer animation and CGI in Hollywood and earned A|W an Oscar
for Scientifi c and Technical Achievement in 2003. Since Maya evolved in the design
and entertainment industries, it ’ s not surprising that a high priority has been placed
on the visual quality of its output. Maya provides users with powerful control over
simulated lights, cameras, and textures in order to control the appearance of the fi n-
ished renderings. Th ese are important qualities not just for the development of mov-
ies and games, but also for relating scientifi c concepts and visualizing data, where
they are critical to making complex processes readily understood.

 Beyond the obvious reasons related to visual sophistication, Maya ’ s continued popu-
larity among high-end visual eff ects companies grows from its fl exibility and open-
ness. Along with its scripting language, MEL, Maya has a well-documented API
(Application Programming Interface) based in C � � for writing custom plug-ins—
software modules design to automate special, often repetitive, tasks. Maya ’ s unique
node-based Dependency Graph architecture, along with its API and scripting capabil-
ities allows for its integration into custom workfl ows—where an animation studio ’ s
 “ home-built ” tools are mated with commercial software to create solutions specifi c to
the needs of a particular project.

17CHAPTER 01: INTRODUCTION

 Maya and interpretive visualization
 In the book ’ s projects, you ’ ll use Maya to create visual interpretations of cell biol-
ogy data and phenomena. As molecular biologists and biochemist know, there exist
many special-purpose tools for the representation and manipulation of computer-
simulated biological structures, especially at the molecular level. Th ese include
excellent free software (freeware) applications. Popular molecule viewing applica-
tions like UCSF Chimera 3 and Jmol 4 make it easy to view biomolecules in a variety
of representations, including ball-and-stick, ribbon, and solvent-accessible surface.
Simulation software such as the NIH Visual Molecular Dynamics (VMD) 5 application
enables users to model molecular interactions in small numbers using structure and
reaction data. Th ese powerful tools were designed for specifi c tasks and users, and
therefore don ’ t fulfi ll a complete range of visualization needs. For instance, camera,
lighting, shading, and animation options are limited in even the most advanced mol-
ecule viewing applications, such as UCSF Chimera. However, through an integrated
workfl ow with more sophisticated visual software packages like Maya, users can
leverage the combined power of bioinformatics-driven modeling and advanced data
visualization.

 Moreover, the ease with which complex, dynamic systems of interacting objects can be
built, animated and visualized in Maya make it an eff ective tool for the rapid proto-
typing of molecular dynamics simulations like the one shown in Figure 01.07 (we ’ ll touch
on the history and conventions of molecular representation in Chapter 14).

 Biological visualization and simulation software must satisfy several requirements.
First is the ability to import structure and interaction data directly from publicly
accessible databases. Second is a physics engine that helps rapidly prototype critical
events, such as diff usion and chemical reaction inside the cell. And third is a robust
suite of visualization tools to allow the user complete control over how images are
recorded and presented. Th is last point is especially important, whether the end goal
is to demonstrate a biotechnology product or to identify a previously unknown event
in a sequence of biochemical reactions. As you will see, Maya off ers diverse strengths
in the context of these criteria.

 MEL: Maya ’ s in silico language for interpretive visualization
 Th e MEL language uses familiar programming conventions to allow control over vir-
tually every aspect of Maya ’ s operation, from its UI to model-making, from simple
translational motion to complex dynamic behaviors (Figure 01.08). At the heart of MEL,
as with most programming languages, is math. It follows that just about any struc-
ture or process that can be described mathematically—from simple molecular dif-
fusion to a complex AI scenario—can be expressed using MEL. Th is means that, in
addition to employing Maya ’ s built-in physics capabilities, you can program the rules
of cell activity relevant to a specifi c project, in essence writing your own in silico biol-
ogy engine. Parameters and equations then can be adjusted to test hypotheses or
to make predictions in silico in advance of expensive, time-consuming real-world
experimental work.

 Th ere are two important features that separate Maya from other mathematics-based
research tools such as MATLAB and Mathematica. First is its facility for physical
modeling, whereby surfaces and structures of non-trivial complexity can be created

 For more information on
biomolecular visualization
history and resources, please
refer to the Further reading
section that begins on page 585.

18 PART 1: SETTING THE STAGE

60Å

 FIGURE 01.07

 Maya provides a robust,
programmable environment in
which to prototype molecular

structures and events. Shown here
is a still from one of our Maya-based
simulations of the dynamics of actin

protein assembly. Width of one actin
monomer � 60 Å.

 FIGURE 01.08

 A simple program, or script, written
in MEL, populates a scene with the

objects on the right.

in 4D space (3D-space plus time), with a sophisticated UI for interactive exploration,
a task that is not yet possible with strictly numerical, non-visual software. Second is
Maya ’ s visual fl exibility in producing striking 4D visual representations of the under-
lying functions at work in a simulation. Th is is signifi cant both for investigators and

19CHAPTER 01: INTRODUCTION

those with whom they must communicate, since it allows researchers to tailor the
representation to best communicate their work. Th e MEL-based simulation environ-
ment can satisfy both this visual, or qualitative, requirement and the need for hard,
quantitative data.

 Endless possibilities
 Th e scientifi c study of the living cell brings countless opportunities to apply com-
puting and visualization to crucial problems, to map the cell ’ s molecular world, and
develop new treatments for disease. Th ere is now so much data on how cells work,
and so many possible paths to understanding, that only computers and mathematics,
aided by the human brain ’ s incredible ability to see, can tame the complexity. Today,
the cutting edge is the adventurous, eff ective use of the latest high-end tools for dig-
ital graphics and animation programming, as top-tier aids to achieving these goals.
In just a few short years, visual computing has become an indispensable engine of
discovery in cell biology. In order to get the most out of our time with Maya and MEL,
let us therefore take a closer look at the nature of computing and of animation to see
why tools like Maya are making such an impact.

 References
 1. Ware C : Information Visualization: Perception for Design , 2nd ed . Morgan Kaufmann ,

 San Francisco , 2004 .

 2. Soanes C , Stevenson A : Oxford Dictionary of English . Oxford University Press ,
 London , 2003 .

 3. Pettersen EF , Goddard TD , Huang CC , Couch GS , Greenblatt DM , Meng EC ,
Ferrin TE : UCSF Chimera—a visualization system for exploratory research and
analysis . Journal of Computational Chemistry 25 : 1605 – 1612 , 2004 .

 4. Jmol: An Open-Source Java Viewer for Chemical Structures in 3D. (website): http://
www.jmol.org, accessed August 2, 2007.

 5. Humphrey W , Dalke A , Schulten K : VMD—visual molecular dynamics . Journal of
Molecular Graphics 14 : 33 – 38 , 1996 .

 6. In this quote from Fathers and Sons, the character Bazarov touches on the power
of visualization to capture rich fi elds of information. Th is translation from Ivan
Turgenev’s 1861 Russian novel is by Richard Hare, in Chapter 16 of the 1948 edition
of Fathers and Sons from Hutchinson & Co., London.

Th is page intentionally left blank

02 Computers and the organism

22 PART 1: SETTING THE STAGE

 Introduction
 Terms like “ bioinformatics ” and “ computational biology, ” which we met in Chapter 01 ,
sound impressive. But what is a computer and what does one mean by computation? For
that matter, why should either matter to the scientifi c study of cells, organisms, and
the diseases affl icting them? Since this book is a meeting place for readers from many
backgrounds, where science and the visual arts come together on common frontiers,
we would be remiss in overlooking such questions before plunging into the details of
Maya, MEL, and biological simulation.

 In this chapter we are going to give you some additional background and context for
the many things you ’ ll learn about Maya and MEL as you work through the book. We
hope this will not only increase your enjoyment of the technical material, but will
strengthen your ability to apply what you will learn in exciting new ways. Inventions
like Maya and MEL are high impact breakthroughs not just because brilliant people
created them. Th ey also have the good fortune of appearing at the right time and right
place in human history. Th erefore, appreciating historic trends in computer technol-
ogy, computer programming, and 3D computer animation can enhance our grasp of
Maya and MEL. You won ’ t uncover any secrets of Maya programming in what follows.
If you are eager to press ahead into MEL coding, you can skip to the next chapter and
return here when you want to explore some of the context of in silico biology via MEL
and Maya.

 Th is context is sending ripples through the life sciences, and the waves of change are
spreading far past debates about numerical methods best suited to crunch biological
data. As we write these words, research biologists are mapping the molecular logic
that drives living matter ’ s structure and function. How is this previously hidden logic
to be decoded, understood, and applied? It turns out that ideas invented by computer
engineers to help build the 20th century ’ s information processing machines—ideas
about codes, algorithms, procedures, and so on—are revolutionizing the way biolo-
gists think about the origins and operation of living systems. And, remarkably, the
discoveries biologists are making about how cells operate and communicate are, in
turn, giving computer scientists ideas for radical new computers with unprecedented
capabilities, based on principles of information processing in living matter. Later on
in the chapter we ’ ll take a brief look at these exciting trends, in which computer engi-
neering is shaping biology and vice versa, and where they might be heading.

 Our approach will be an historical quick start, moving rapidly from crucial ideas to
the discoveries of a few major pioneers. We must, yielding to considerations of space
in the book, omit mention of many infl uential people and milestones on the path to
modern computation. Th e absence of a specifi c person, invention, or acronym from
our short account in no way implies a belief they lack historical relevance: quite the
opposite. What follows is a tightly focused sampler, meant to ground the specialized
discussion of our later chapters. Hopefully it will also whet your interest to delve
more deeply into the people and inventions that took us from the abaci and meas-
uring rods of yesteryear to the supercomputers of today. Th e readings at the end of
this chapter and in Further reading section will take you further in your historical
explorations.

 Information and process
 By a computer we mean a machine that transforms patterns of information into
other patterns of information by following a strictly defi ned procedure or algorithm.

23CHAPTER 02: COMPUTERS AND THE ORGANISM

Computable procedures are those we can write down in suffi cient detail for their cor-
rect, automatic execution and completion by a non-conscious device. Computers are
remarkable artifacts because, when supplied with power, they are capable of going
through a sequence of changes in their physical state that is equivalent to going
through the steps of an algorithm.

 In the mechanical computers of the early 1900s the state was a particular confi gura-
tion of the machine ’ s rods, cams, and gears. As the gears turned, the computer state
changed and input was transformed into output. Calculating a diff erent algorithm
meant changing the mechanical connections holding the machine together—literally
rebuilding the device. With the arrival of digital electronic circuits, the physical
state could be much more ductile patterns of electric charge in vacuum tubes or of
magnetization in solid state circuit chips. Th e early mechanical computers had to be
built with specifi c types of problems, like ballistic trajectory prediction, in mind. In
the electronic computing machines, changing algorithms was as easy as changing to
another magnetic pattern, and thus by comparison hugely versatile.

 Since computers are machines, they must obey the laws of physics. Th e digital elec-
tronic computer must be built so the fl ow of electricity through its circuits (its hard-
ware) can change a stored digital pattern in a manner equivalent to the operations of
logic, arithmetic, and storage/retrieval on the information represented by the pat-
tern (the software). For example, if addition takes place, a part of the machine must,
at just the right moment, move into a physical state capable of triggering the appear-
ance of the digital pattern for the sum in the computer ’ s circuits. We say the instruc-
tion for addition has been carried out. It does so by setting in motion the electrical
events for the sum operation in the hardware. For traditional binary digital comput-
ers, the instruction would be written as a string of 1s and 0s, each numeral specifying
the active (1) or inactive (0) state of a digital element in the instruction-sensing circuit
(called a register in certain hardware designs, see below). Th e set of instructions recog-
nized by the digital hardware is the machine language of the computer.

 Language and program
 Once coded into the instruction language of its machine hardware, the procedure fol-
lowed by the computer is called the (computer) program. People who write programs
are called computer programmers. Programmers of the earliest electronic computers
had no option to coding in machine language—a time consuming, error-prone, tedi-
ous practice that immediately motivated the development of more human-friendly
instruction sets or programming languages. To see the burdens of a workfl ow based
on coding in machine language, consider this instance of an (entirely hypothetical)
computer in which three binary digits are used to distinguish among the instructions,
and digital memory locations are allocated as bytes, or sequences of eight binary dig-
its. Our hypothetical machine therefore has a memory capable of holding 28 � 256
numbers, a capacity not out of keeping with the earliest digital machines. Again hypo-
thetically, we ’ ll suppose that setting the binary string 101 in the instruction register
triggers the addition operation, placing the results in a temporary storage location (an
arithmetic register) of the circuitry. Once loaded in the instruction register, the string
011 triggers another sequence of changes in the electrical state of the machine, which
end with the contents of the arithmetic register copied to a specifi ed location in the
computer ’ s memory and the arithmetic register cleared to zero for the next time it is
needed.

24 PART 1: SETTING THE STAGE

(word 64) R 9 S

R 9 S(word 64)

R 9 S(word 64)

A 57 S(word 64)

T 36 S(word 64)

A 58 S(word 64)

A 59 S(word 64)

A 60 S(word 64)

 FIGURE 02.01

 Instruction code for the EDSAC
computer at University of Cambridge,
from Maurice Wilkes ' 1949 program1

to solve Airy ' s differential equation
d2 y/dx 2 � xy. The equation describes
rainbows and other electromagnetic

wave phenomena in the atmosphere.
The Wilkes program is one of

the earliest science calculations
(perhaps the very fi rst) to run on

the EDSAC or any other stored
program digital electronic computer.

The program instructions are the
letter–number–letter combinations

in the center of the drawing. The
corresponding section of the paper
tape is at the right. Programs were

input to the EDSAC through its paper
tape reader. Maurice Wilkes lead

EDSAC ' s development at Cambridge
and would soon co-author the

world ' s fi rst computer programming
textbook.2

Illustration by and courtesy of Martin
Campbell-Kelly. Copyright ©1992 IEEE.

Used with permission. 1

 One of the fi rst instruction sets
to use mnemonics is Betty
Holberton ’ s C-10 language

(1949) for the BINAC (and later
UNIVAC) computer.

 At the start of our addition sequence we (somehow) know that the numbers to add
are stored in the memory locations 10011001 and 01100011. Note that these are the
locations of the numbers, not the values of the numbers stored there. We have also
(somehow) determined that their sum is best stored at memory location 01111100.
Our machine language code for the addition is then expressed by the binary string:

 1011001100101100011
 (i.e. instruction 101 acting on the values at locations 10011001 and 01100011)

 followed by the string

 0110111110000000000
 (i.e. instruction 011 acting to move the arithmetic register contents to location
01111100)

 Imagine having to code an entire video game or a complex ecological simulation this
way! With the benefi t of a half century ’ s hindsight in software history, we can see
ways to ease the programmer ’ s task. For example, we might write a machine language
program that can accept alphabetic acronyms or mnemonics for the machine code
instructions as input, along with some white space between the address bytes, then
output the packed binary strings for processing by the hardware. Aided by such a lan-
guage processor, our code snippet already looks better:

 ADD 10011001 01100011
 (which our language processor outputs as 1011001100101100011)

25CHAPTER 02: COMPUTERS AND THE ORGANISM

 MV 01111100
(output as 0110111110000000000 by the language processor)

 Suppose we next enhance our language processor with the capacity use a symbol
table, in which we tell it that certain alphanumeric character strings stand for certain
memory location bytes (call the command for that DFL, or defi ne memory location);
we can then write:

 DFL X 10011001

 DFL Y 01100011

 DFL Z 01111100

 ADD X Y

 MV Z

 which looks even better. If the language processor is made smart enough to build the
symbol table on its own, then we are relieved of the duty to fi gure out all the mem-
ory allocations manually, ahead of time. Now the machine can do that automatically,
once the program in input. All we need write is:

 ADD X Y

 MV Z

 and let the language processor take over. Language processors with this type of
capacity for acronym substitution are known as assemblers, and the languages often
referred to as assembly languages.

 FIGURE 02.02

 User interface of Professor
Campbell-Kelly ' s EDSAC simulator, a
PC program that lets you experience
what it was like to code and run
programs on a fi rst-generation
von Neumann machine 3 . See
http://edsac.net for documentation
and downloads. The circular display
at the top left visualizes the contents
of the EDSAC memory. Registers
involved in processing instructions
and arithmetic operations are
below. The tic-tac-toe pattern
visible on the memory tube is no
accident. While a Ph.D. student at
University of Cambridge, Alexander S
 " Sandy " Douglas wrote one of
the earliest computer games—an
EDSAC program that played tic-tac-
toe and used the memory tube to
visualize the game state as a 35 �
16 element bitmap.

Courtesy Martin Campbell-Kelly.

 The Initial Orders program,
developed c. 1948–1951 by David
Wheeler, Maurice Wilkes, and
Stanley Gill to process user input
to the EDSAC computer (Figure
02.01), was an early assembler.
Running the Initial Orders also
bootstrapped the machine and
loaded the assembled user code
into memory.

26 PART 1: SETTING THE STAGE

 High and low
 Although assemblers mark a big step toward a more human-friendly programming
language (Figure 02.03), some important limitations are evident. For example, every
time we need to carry out a multi-step mathematical or logical operation we must
code in the lines for the sequence. It would be helpful to have libraries of often-used
instruction sequences, say for sorting lists or evaluating common mathematical func-
tions such as the logarithm or the cosine, and to be able to refer to these sequences by
an acronym code (a macro). Th e assembler would then recognize the code, extract the
machine instruction sequence (the subroutine) from the program library, and drop it
into place in the binary instruction sequence. Modern assemblers make extensive use
of macros and subroutine libraries.

You can see, however, that despite such facilities there lingers a rather direct relation-
ship between the arrangement of the coding statements in our assembly program and
the sequence in which the machine hardware carries out its digital operations. Along
with their syntactic elegance and their semantic concision, assemblers acknowledge the
strictures of machine code. Users of computers, however, generally care about the logi-
cal structure of the problems they want to solve, and not as much about the inner work-
ings of the computer ’ s circuits. Users want high-level programming languages, whose
elements and operations target their problem-solving needs. Other, automatic pro-
grams could then translate code written in a high-level language into the low-level lan-
guage: the assembly code, or the machine code instructions of the computer ’ s hardware.

 FIGURE 02.03

 With the 1960s came minicomputers,
smaller and more affordable by

far than the mainframes. Sold by
the tens of thousands, they helped

popularize assembly language
programming and ignited progress

in computer networks and graphics.
Shown here is one of the most
famous, the diminutive PDP-8

introduced in 1965 by the Digital
Equipment Corportation (" DEC ") of
Maynard, Massachusetts. With a

core memory of 4K–32K
12-bit words, an entry price under

$20K (i.e. under $100K in 2006
dollars), assembler and compilers,

the mass-produced PDP-8 was a
runaway success. In this photo

Khym, a domestic short-hair
feline who resides with PDP-8

archivist-collector David Gesswein
(http://www.pdp8online.com),

helps us see just how compact a
PDP-8 is (compare the mainframe
setups in Figures 02.05 and 02.08).

The DEC VR14 graphics monitor
beneath Khym is driven by the

minicomputer—here a PDP-8/I—via
the multi-purpose AX08 Laboratory

Peripheral interface unit, just above
left. The VR14 rendered graphics
on its display screen as patterns

of discrete spots of variable
brightness. On the 8/I ’ s front panel
run the rows of activity lights and

rocker switches (a hallmark of
PDP-8 design) used to set register
and memory contents and control

machine activity. Arriving three
years after the original PDP-8, the

8/I was the fi rst in the series to
use integrated circuits in place of

discrete transistors.

Photograph by, courtesy of, and
copyright © 2007, David Gesswein, The
Online PDP-8 Home Page, http://www.

pdp8online.com

27CHAPTER 02: COMPUTERS AND THE ORGANISM

 For example, many of the earliest users of computers were scientists and engineers
whose problems demanded a lot of algebra and formula manipulation. If instead of:

 ADD X Y

 MV Z

 we can instead input the code line:

 Z � X � Y

 for the formula itself, we are programming the computer in a language that more
directly expresses our mathematical problem. Moreover, if X, Y, and Z are not simple
integers but more involved mathematical entities like complex numbers or arrays, the
required sequence of machine language instructions—to work out the sum of two
complex numbers or two arrays—could be quite lengthy indeed. Th ese long sequences
in machine language are “ summed up ” by the elegant statement Z � X � Y in our
high-level programming language. MEL, the programming language of Maya, is a very
high-level language. MEL of course enables you to instruct Maya in algebraic opera-
tions. But with MEL you can also invoke and operate on a diversity of elements spe-
cifi c to the needs of 3D computer graphics and animation. With a few keystrokes you
can create virtual movie cameras and set their simulated optical properties, place and
activate simulated lights and set their spectral characteristics, generate 3D shapes
and move them in complicated ways, and so on. For example, the little command:

 sphere –radius 5 –name " Cell " ;

 causes a 3D sphere labeled Cell, of radius 5, to appear in your Maya world space at the
origin. Behind the scenes, the MEL language processor embedded in Maya translates
the sphere instruction and carries it out in your computer ’ s machine language.

 Interpret or compile?
 Th e designer of high-level programming languages must deal with two linked issues.
Th e fi rst is the structure of the language itself: the problem-solving elements and
operations it will allow (such as addition of arrays or the creation of 3D spheres), the
rules by which such operations are expressed and combined, and the way in which
control of the computer circuits is passed among the various parts of the program
code. Much of our book deals with the principles of MEL language structure and their
use in designing eff ective MEL programs.

 Th e second issue confronting language designers is the manner in which programs writ-
ten according to the language ’ s rules will be processed and executed by the hardware.
Today ’ s high-level language processors usually work in one of two ways (or some mod-
ern hybrid of them). Both date from the earliest days of digital electronic computing:

 1. Th e high-level code acts as instructions to a “ virtual computer ” running as a
real-time simulation on the computer ’ s hardware. Th e high-level instructions are
thereby executed right away. Th e virtual computer, coded in machine language or
assembly (or, today, even in another high-level language), drives the hardware to
produce results consistent with the meaning of your program code. Such language
processors are known as interpreters . Maya ’ s language processor for MEL runs as
an interpreter, giving you real-time access to the execution of MEL commands and
MEL code fi les. Th e MEL interpreter is very effi cient and you will be able to watch
it operate and work with it in rapid-fi re cycles of coding and code testing.

 Early interpreters of interest
to scientists and applied
mathematicians included R. A.
Brooker ' s FLOATCODE (1952)
for the Ferranti Mark I computer
at Manchester University in
England, the Laning-Zierler
algebraic formula interpreter
(1953) for MIT ' s Whirlwind
computer, and John Backus '
Speedcoding (1953) for the IBM
701 mainframe.

28 PART 1: SETTING THE STAGE

 2. Th e high-level code is submitted as data to a language processor that translates
the high-level instructions into machine language. Th e machine language version
of the program is then placed on the hardware to execute. Language processors
that operate this way are called compilers. Maya itself runs in your computer as
a program compiled into machine code.

 To get the most out of MEL and Maya it is important to grasp the basic distinction
between interpreters and compilers. Although both types of language processor
accept high-level program code as input, their output is diff erent. Th e output of an
interpreter is the results of the executed program, e.g. data. Th e output of a compiler
is another computer program, ready for execution (and data output) on the same or
diff erent hardware.

Modern compilers operate in several steps, in which the high-level code is trans-
lated into effi ciently organized assembly language, required auxiliary programs are
brought in from subroutine libraries, symbol tables are constructed, and the fi nal
executable machine language fi le is prepared to receive control of the computer hard-
ware. Actually, current vernacular tends to limit use of the term compiler to the
actions of the fi rst of a series of programs that lead from your fi le of high-level code
to its binary machine code version running on the hardware. Compilers massage the
program into assembly language (or an equivalent) and hand off the tasks of library
fetching, address resolution, and so on to partner programs with names like linkers
and linkage editors. Th e fi nal result is an executable program ready to go, and for sim-
plicity we ’ ll use compile to refer to the whole pipeline.

 As of this writing, we are aware of no compilers for the MEL language per se. Projects
needing to blend the advantages of Maya ’ s real-time user interface with the poten-
tial effi ciencies of compiled execution can transition from an all-MEL workfl ow to
Maya ’ s C �� application programming interface (API). Th is API lets you steer Maya
with compiled C �� code. We look forward to exploring this API ’ s uses in biomedical
science in a future book.

 The Backus watershed
A common misunderstanding is that the coding rules of a high-level language (its
grammar and syntax) determine whether the language will be a compiled language
or an interpreted language. Th is is not the case. BASIC, for example, was fi rst imple-
mented as a compiled language but, with the rise of Microsoft, gained fame as a user-
friendly interpreted language. True, some languages, like Fortran, are designed with
highly effi cient compilation in mind, and others (like JavaScript) with interpretation,
but in today ’ s world of fast, big capacity hardware the selection of a compiled or an
interpreted language implementation tends to be driven by the vendor ’ s understand-
ing of user needs. Interpreters, for example, aff ord right-away execution and are
thus well tailored to quick prototyping in real-time interaction between the user, the
hardware, and the program results. On the downside, an interpreter ’ s “ virtual com-
puter ” emulation runs as code on top of the real machine ’ s hardware, and so typi-
cally execute programs less quickly than the hardware will execute a well compiled
version of the same program. Compilation, however, separates the user from the pro-
gram results by a sequence of (potentially time-consuming) steps in which the high-
level code is transformed into machine code, run, errors spotted, fi xes made, the code
re-compiled, and so on around the shakedown loop of program design.

 Early language processors
with recognizable attributes of

modern compiler pipelines were
A-0 from Grace Hopper ' s team
for the UNIVAC 1 (1952–1953),

Alick Glennie ' s AUTOCODE
(1952) for the Ferranti Mark I at

Manchester, and the Transcode
(1954) of J. Patterson Hume and
Beatrice Worsley for the Mark I

(the " FERUT ") at the University of
Toronto, Canada.

 BASIC was developed as
a novice-friendly computer

language under the direction
of John Kemeny and Thomas

Kurtz at Dartmouth College
in 1964.

29CHAPTER 02: COMPUTERS AND THE ORGANISM

 Th e “ virtual computer ” running inside an interpreter also can incorporate handy
instructions and processing abilities absent in the machine hardware. Th is can ease
the programmer ’ s task. Early digital electronic computers did integer arithmetic fast
and well, as they did juggling fractions between � 1 and � 1. Hardware circuitry for
general fl oating-point calculations and array index management, however, was not
marketed until the mid-1950s. Before that, number crunchers were obliged to fi gure
out how their problems could be scaled into the integer and fraction-arithmetic range
of the machine. Alternatively, they could run their problems on machines in which
fl oating-point math and array handling were carried in software. By the early 1950s,
time in fl oating-point subroutines accounted for a substantial fraction of processor
time, to which interpreters added little additional overhead. Th ese interpreters could
emulate computers with fl oating point and array index management right in their
instruction language. With the arrival of fl oating point and array index hardware this
edge, enjoyed for several years by programming language interpreters, was lost.

Nonetheless, professional programmers of the time remained skeptical about compilers.
It seemed unlikely that a computer program, running as a compiler, could take high-
level program code and transform it into machine code as effi cient and reliable as the
low-level code written by human specialists—let alone do this job quickly and automati-
cally, across the general range of computer programming applications. Th e doubts, while
understandable, soon disappeared. Th e breakthrough was instigated by John Backus
(Figure 02.04) and his team at IBM. It took the form of an amazing compiler for their

 FIGURE 02.04

 John Backus, lead inventor of the
Fortran programming language,
pauses for a photograph in 1997, 40
years after Fortran ' s offi cial release
in 1957. Before the ascension of
the C �� language Fortran ' s easy
learning curve, scientist-friendly
syntax, and fast compiled code kept
it unrivaled as the prime choice for
high performance number crunching
on digital computers. Photograph by
Louis Fabian Bachrach III.

Louis Fabian Bachrach © .

 We have heard it said, by
die-hard scientifi c number
crunchers, that all of
programming language history
since Backus is a series of
footnotes to Fortran and its
compiler. We would not go quite
this far ourselves.

30 PART 1: SETTING THE STAGE

 John von Neumann, b.
Hungary 1903—d. USA 1957.

Mathematician/chemical
engineer celebrated for his

fundamental work in diverse
areas of mathematics and

science, including logic and the
foundations of mathematics,

quantum physics, game theory,
mathematical economics,

computer design, and automata
theory.

 FIGURE 02.05

 The IBM 7094, one of the early
transistorized mainframes,

was a workhorse of the batch
processing environments available

to scientists and engineers in the
1960s. Introduced by IBM in 1962,

the 7094 carried 32K of 36-bit word
core memory and double-precision

(72-bit) fl oating-point arithmetic
hardware. About three million

1960s-era US dollars (roughly $50
million today) would buy you a 7094

setup (not counting the system
operators and the " glass room "

environment needed to house it).
Or if you could spare $60K or so

a month, there was a rental plan.
IBM documented a basic cycle

time of two microseconds for the
7094s operation. Here: the 7094-
II operating at the University of

Toronto (mid-1960s).

Calvin Gotlieb Personal Records
B2002–0003/001P(21), courtesy of the

University of Toronto Archives and
Records Management Services.

Fortran language specifi cation (1954–1957). Th rough a series of ingenious optimizing
steps, the Backus compiler for Fortran systematically output executable low-level code
that closely matched, or even exceeded, what expert programmers could write by hand.

A consequence was the temporary eclipse of interpreters as an effi cient medium for
processing higher-level programming languages. With compilers, there was no “ hit ”
from the overhead of the interpreter running the program. Jobs could be compiled
and fed through the bulky mainframes of the time in large batches, which kept the
pricey hardware well occupied (Figure 02.05). Users cooled their heels till the batch
holding their compiled job was fi nally done. Th e speed and capacity of today ’ s desktop
computers, however, have again made interpreters a strategic option, especially in sit-
uations where, as noted above, rapid prototyping is carried out in real-time settings.
Now most users in the sciences and the arts work with high-level languages for which
effi cient interpreters and/or compilers are available; problem coding in low-level lan-
guages like assembly and machine instruction sets has become a specialized skill for
crucial niche applications like hardware device drivers. We have carefully designed
the coding projects you will undertake in this book, to give you MEL programs that
generate interesting results in reasonable time on mid-range desktop computers. We
hope you will enjoy the brisk pace of MEL and Maya mastery this approach supports.

 Stored programs
 We have said that a computer is an algorithm-guided machine for transforming
information. As most of us encounter it, however, the computer is not just any

31CHAPTER 02: COMPUTERS AND THE ORGANISM

 When von Neumann fi rst met
them in Summer 1944, Eckert
and Mauchly were leading the
ENIAC computer project at the
University of Pennsylvania ’ s
Moore School of Electrical
Engineering. A giant of its time,
ENIAC sported as many as
17,000 vacuum tubes and 1,500
electromechanical relays in its
circuitry. Eckert and Mauchly
would go on to develop the
UNIVAC line of commercial
mainframe computers. von
Neumann was retained for a
time by IBM to advise on its
early ventures in electronic
computing.

Gears and cams

Analog circuit

Plug board

Electromechanical
relay

CU

APU

I/O

RAM

CU Control logic unit

APU Arithmetic
processing unit

RAM Random access
memory

I/O Input/output
 FIGURE 02.06

 The von Neumann machine and
some immediate ancestors.

old information-wrangling digital electronic machine. It is a device of a very spe-
cifi c kind, often called a von Neumann machine (Figure 02.06) in honor of John von
Neumann (Figure 02.07), the mathematical genius whose writings launched computer
engineering as a formal discipline grounded in the logic and mathematics of informa-
tion processing circuitry.

 von Neumann certainly did not stand alone in the 1940s rush of breakthroughs,
which began the era of modern computing. A revolutionary new architecture for
computer hardware design was “ in the air. ” Far-ranging discussions involved
von Neumann with other leaders of computer design and construction, such as
J. Presper Eckert, John W. Mauchly, Herman Goldstine, and Arthur Burks. However,
von Neumann ’ s noted passion for writing things up combined with his prodigious
insights in a set of documents, authored between 1945 and 1948, which amount to
the fi rst detailed plans for digital computer operation in recognizably modern form.

Untill the mid-1940s, machines capable of transforming information, and so calcu-
lating answers to scientifi c and engineering problems of the era, took many shapes
as engineers debated the technology best suited to replace the “ state of the art ” (i.e.,
legions of error-prone humans cranking out numbers with the aid of pencil, paper,
slide rules, logarithm tables, and adding machines). Ingenious arithmetical contrap-
tions of diverse forms—those whirling collections of gears and cams we met ear-
lier, nets of analog circuit boards, clacking banks of electric relays, simmering racks
of vacuum tubes—took a turn in the limelight. Th ese were the worthy ancestors of
today ’ s digital computers.

32 PART 1: SETTING THE STAGE

Some of these calculating engines already could run programs of sequential instruc-
tions. Th ese programs, however, typically resided outside the machine, coded as
binary patterns of holes punched on paper tape or cards, or hard-wired into their
circuitry. Th e program outside was read slowly into the machine, hole-by-hole, to
guide the calculation from beginning to end—a sensible strategy so long as the hard-
ware ’ s speed of instruction processing did not tower over the speed at which instruc-
tions could be fed in. By the 1940s, vacuum tube switching elements (transistors
and chips lay years in the future) could run instructions many times faster than
punch cards or paper tape could input them. Th e digital electronic processors were
hamstrung, so long as the computer program lay coiled up on a paper tape clunking
through an external reader. Th e solution, so obvious in hindsight, was to store the
complete program in the computer ’ s circuits before starting the calculation. Program
instructions could then run as fast as the machine hardware allowed. No more pro-
gram bottleneck.

 In the computing architecture named in von Neumann ’ s honor, program and data sit
together in high-speed memory. It is the computer as stored program machine. From
the computer hardware ’ s point of view, both the program and the data processed
are forms of input information, and thus endowed with a strong family affi nities. In
the von Neumann architecture, electronic pulses from the fast-access memory feed
program instructions to a hardware region, or logic/control unit, designed to trigger
the calculation steps done on numbers in the arithmetic unit, into and out of which
data whips from the fast-access storage locations in the memory (Figure 02.06). Arrays

 FIGURE 02.07

 John von Neumann with the IAS
computer at Princeton ' s Institute for
Advanced Study. Computer historian

William Aspray dates the picture
to 1952, perhaps at the machine ' s
offi cial dedication. The cylinders
running across the bottom front
of the machine are electrostatic

storage tubes, based on a design
by FC Williams of Manchester
University. They made up the

machine ' s fast-access memory.
Early fi rst-generation computers

adopting the IAS design had colorful
acronymal names like ILLIAC,

ORDVAC, MANIAC and JOHNNIAC.
IBM also learned from the IAS

in designing its System 701, the
company ' s fi rst all-electronic stored

program digital computer.

Photograph by Alan Richards, courtesy
of the Archives of the Institute for

Advanced Study.

 Offi cially dedicated in mid-1952
but in practical use since Spring

1951, the IAS machine (Figure
02.07) relied on some 3,000

vacuum tubes and weighed
half a ton. The arithmetic unit
could achieve around 30,000

addition operations and 1,600
division operations per second.

The IAS was not the fi rst
digital all-electronic computer

to successfully run a stored
program. Computer history

allocates that honor to machines
built in England: the Manchester

Small-Scale Experimental
Machine (the SSEM) and

Cambridge University ' s EDSAC
(Figure 02.08). SSEM ran its fi rst

stored program in mid-1948,
EDSAC by mid-1949.

33CHAPTER 02: COMPUTERS AND THE ORGANISM

 FIGURE 02.08

 The University of Cambridge
Mathematical Laboratory housed
the original EDSAC, now regarded
as the fi rst all-electronic stored
program digital computer to run
application software on a regular
basis. The imposing vacuum tube
frames, clearly visible in foreground
of the shot, implemented the
system ' s arithmetic and control
logic circuits. Memory capacity
was 1,024 words of 17 bits, stored
as vibrational patterns in liquid
mercury. The operator ' s console,
with three of the display tubes
for inspecting the memory state
(compare Figure 02.02), can be seen
in the back right.

Copyright the Computer Laboratory,
University of Cambridge. Reproduced
by permission under Creative Commons
License per http://creativecommons.
org/licenses/by/2.0/uk/legalcode

of slower storage units, culminating ultimately in the input and output units we
humans need to make sense of the digital events, keep the fast core fully primed. Th e
IAS machine, the stored program computer built by von Neumann and his team at
Princeton ’ s Institute for Advanced Study to realize these ideas, became the template
for many research and commercial designs. Serious use of analog computers would
continue for at least two decades more, and the merits of radically diff erent hardware
architectures continue to be explored, especially for problems (like artifi cial intel-
ligence) well suited to massively parallel manipulation of data. But the computer
most of us sit in front of each day is a direct descendant of the IAS architecture and
von Neumann ’ s reports. To the extent that our global civilization is a postindustrial
information economy, the engine of postindustrial commerce and innovation is the
von Neumann machine.

 Conditional control
 Th e circuits of EDSAC and its kin could be wired up to perform the basic steps of
arithmetic and of switching logic such as “ AND ” and “ NOT. ” By sequencing these
logical atoms adroitly, the power of the stored program would be limited only by the
expressive power of logic and arithmetic itself. About a decade before these break-
throughs in computer engineering, the British mathematician Alan Turing had pro-
posed that all computable information patterns could be generated as the output of
elementary operations such as these, provided the operations were carried out in
the right sequence. Turing showed the existence, in the form of a theoretical math-
ematical concept, of a computing machine (now called a Turing machine) capable
of carrying out the task with the aid of a suitable program code. Stored program

 Alan Turing, b. England 1912—d.
England 1954. British logician
and mathematician celebrated
for his contributions to the
formal theory of computation and
the foundations of mathematical
biology. Like von Neumann,
Turing died far too young.

34 PART 1: SETTING THE STAGE

machines like the EDSAC were a practical realization of Turing ’ s abstract “ universal
machine ” .

von Neumann and his colleagues realized that eff ective use of a stored program com-
puter requires a well designed machine language: some arrangements of program-
ming instructions are better than others. Th e program commands should allow exact
but fl exible routing of the hardware operations through the problem-solving task.
Th e programming language should allow the program to branch between alternative
pathways if certain conditions arise in the algorithm, and to jump or loop through
sets of instructions when cyclic progressions are needed in the data processing or
data array manipulation (Figure 02.09).

 Computer languages since EDSAC embody this vision of conditional control. Th ey
allow the program code to switch among multiple streams of activity given suit-
able triggering events and provide for jumping and looping within the instruction
sequence. Programming languages diff er, however, in the relative complexity of the
branching operations and looping types allowed by their command syntax. One of
us (CJL) is old enough to have programmed in languages—the early Fortrans—in
which conditional control was pretty much limited to IF … , looping to DO … , and the
pleasures (plus nascent disasters) of jumping to the since much maligned GO TO …
command. Following the heritage of modern high-level programming languages, the
MEL command set lets you exert a subtle diversity of control over your program ’ s fl ow
of information processing events. We will introduce these to you in Chapter 12: MEL
Scripting in Part 2 of the book, where you ’ ll meet conditional control variants like the
WHILE … and SWITCH … CASE … commands, and at once start using them to model
and visualize biological projects in Maya.

 FIGURE 02.09

 Conditional control of program
execution.

Commands for branching and
looping (L) take linear sequences
of instructions (Panel a) and join
then into more complex patterns

(Panel b) that can iterate over
cases and vary program response

if needed during a calculation.
Subroutine libraries (represented

by S1, S2, S3, S4 (in Panel (b)) make
frequently used chunks of code
available in pre-packaged form.
Panels (c) and (d) show typical

branch and loop operations.

35CHAPTER 02: COMPUTERS AND THE ORGANISM

(a) (b)

 FIGURE 02.10

 Computer-based interpretive
visualization at work.

(a) In 1952 Cambridge chemist John
(later Sir John) Kendrew (1917–1997)
and student John Bennett published
this contour map tracing structure
in the oxygen storage protein
myoglobin. 4 They programmed
the EDSAC computer to analyze
myoglobin ' s crystal diffraction
pattern and print the visualization.
This is one of the earliest computer-
generated images in the study of
large biological molecules.

(b) The original EDSAC (which was
followed by the yet more powerful
EDSAC 2) supported structure
mapping to a resolution of 6
Angstroms. Stacking the contour
maps gave the world its fi rst look at
the myoglobin molecule. Kendrew ' s
success in deciphering the
3D structure of myoglobin
would earn him a Nobel
Prize.

(a) From reference 4. Courtesy
and © the International Union of
Crystallography.

(b) Courtesy and © MRC Laboratory of
Molecular Biology, Cambridge, UK.

 The computed organism
 Th e 20th century ’ s revolutionary decades of computer and software engineering were
also years of astonishing progress in the sciences of biochemistry and cell biology.
Some of the exciting details we ’ ll explore in the chapters ahead. Here we can briefl y
consider the implications of the basic fact, now universally accepted in the scientifi c
community, that all living things—all organisms—are composed of chemicals, that
is, molecules whose complex interactions set in motion the processes of life. Th ere is
no evidence for some mysterious, supernatural “ life force ” acting alongside the chem-
istry of living matter. A deep understanding of biological molecules and their inter-
actions appears necessary and suffi cient to answer the question “ What is life? ” if by
that question we are seeking to understand the physical mechanisms sustaining bio-
logical activity.

 Civilizations equipped with powerful computers must therefore be in a position to
greatly accelerate the rate at which they gain understanding of living matter. Cells
obey the laws of chemistry and chemistry obeys the laws of physics. Th e laws of phys-
ics and chemistry are, in turn, intensely and fundamentally mathematical. One must
conclude that mathematical calculating machines—capable of large scale comput-
ing based on enormous volumes of data and information—can be used to analyze,
predict, and ultimately re-design the biochemical activity of cells and organisms
(Figure 02.10). Th e machines can do this by invoking mathematical operations to pre-
cisely represent the biochemical mechanism and calculate its properties (Figure 02.11).
Computational biology is the application of computing to explore these intricate links
of structure to function in living things. It is one of the fastest growing frontiers of
biological and medical research.

36 PART 1: SETTING THE STAGE

 FIGURE 02.11

 By the mid-1960s, mainframes and
minicomputers were harnessed
to interactive displays of protein
and nucleic acid structure. The

fi rst cutting edge was defi ned
by MIT physicist Cyrus Levinthal

(1922–1990) and his students. They
used the ESL (Electronic Systems
Laboratory) Display Console, then

known locally and ever after as
the " Kluge ", housed at MIT. Either

directly or through a DEC model
PDP-7 minicomputer, the 7094

mainframe at MIT ' s Project MAC
drove a DEC Type 330 monochrome

display in real time, producing
vector images with 1024 � 1024

addressable-point resolution. The
pipeline between the Kluge and

the mainframe ran under the 7094 ' s
CTSS (Compatible Time-Sharing

System), the fi rst operating system
to let multiple users to log on at

once via dedicated terminals.
Levinthal ' s team wrote software for

building and rendering graphical
descriptions of 3D protein structure
on the Kluge. Levinthal ' s colleague
Robert Langridge, then at Harvard,

pioneered nucleic acid visualization
on the Kluge.

(a) The DEC minicomputer and its
tape units are in the background,
teletypewriter in the middle, and
ESL graphics scope and " Globe "

3D controller in front. By twisting
the Globe, users could spin the

molecule ' s image to a different 3D
viewing angle.

(b) Close-up. The scope is showing
the carbon atom backbone of the

protein lysozyme. The Kluge ran its
own visualization software, called

GRAPHSYS, in turn authored in
AED-0, a descendent of the Algol

programming language. A core
reference for the Kluge is the 1968
report by Thornhill and his Project
MAC colleagues, which as of this

writing is archived on line at the
Bitsavers Project. See http://www.

bitsavers.org/pdf/mit/lcs/tr/MIT-
LCS-TR-056.pdf .

Photographs by and permission of
Martin Zwick.

(a) (b)

 For much of the last century there was slow progress in teasing chemical information
out of living matter. Now, exceedingly eff ective methods allow dozens or hundred or
thousands of chemical species to be mapped at once inside the living cell ’ s network of
biochemical and genetic interactions. So much information is now available that sci-
entists and health care researchers speak hopefully of grasping the systems biology
of the living cell that is the totality of its operational biophysics and biochemistry.
Computers are essential to systems biology research: there is too much data to organ-
ize, sift, and communicate by hand, and only computational biology off ers a hope for
deciphering the fundamental biochemistry these huge volumes of data encode. Each
project chapter of this book will take you on a step through the use of Maya and MEL
as exciting tools in computational and systems biology.

 The computational organism
 Th e computer pioneers were not alone in their obsessions with information and the
secrets of its many transformations. Following 1900, an astonishing range of disci-
plines appeared in rapid succession to answer the call for new methods of managing
complex events in nature and society. Each new discipline off ered a vision in which
matter, energy, and human behavior became abstract patterns of information ready
for analysis and control: systems science, cybernetics, mathematical economics, con-
trol engineering, communications design, information theory. It was a large van-
guard and a new technical vocabulary: information, control, regulation, feedback,
communication, error, stability.

 Th ose were heady times. For a while it seemed a new general science of information
and control might leap into existence, providing the matrix by which complex sys-
tems of all stripes—natural and cultural—would fall smoothly into line for rational
analysis and management. Th at an all-embracing mega-science failed to emerge is no
slight on the accomplishments of each specialized fi eld. Computational biology and
systems biology, which we met above, number among the worthy off spring of this
turbulent period. Th e paradigm of system/information/control infl uenced disciplines
then far removed from computer engineering.

37CHAPTER 02: COMPUTERS AND THE ORGANISM

 Prime case in point: reporting his discovery of biochemical control by negative feed-
back (where the product molecule of a biochemical pathway cuts down the rate of the
pathway ’ s fi rst step), Edwin Umbarger, writing in 1953 in the pages of the august
research journal Science, considered it natural to open his account with the impor-
tance of feedback loops in regulating industrial automation. No doubt the chemists
and biologists intent on Umbarger ’ s biochemical fi ndings at once grasped the anal-
ogy. A little more than a decade later, so many cases of biochemical self-regulation
by feedback had been reported that the same journal published a lengthy review.
Today, 50 years after Umbarger, we understand that the logic of conditional control
governs more than the action of computer programs and industrial assembly lines. It
organizes and regulates the self-sustaining activities of the living cell. Th is includes
branch points on diverging biochemical reaction pathways, at which conditions are
tested and alternate outcomes selected for the activities of genes and proteins; loops,
cycling the downstream eff ects of biochemical pathways to upstream feedback con-
trol points; and biochemical subroutines, triggering of entire modules of successive
reaction steps by single control inputs.

 Chemical response to other molecules provides the “ hardware ” for conditional con-
trol of cell activity. Th e biochemical hardware often acts in a binary, off /on manner.
In the classic off /on response pattern illustrated in Figure 02.12 , a small molecule called
a regulatory factor binds to a specifi c site on a protein. Th e protein recognizes the
factor. Th e recognition event triggers changes in the protein ’ s shape, in turn altering

Protein

Regulatory factor

Substrate

Concentration of regulatory factor

Activity
of protein

1 2 3
Regulatory site

Catalytic site

 FIGURE 02.12

 In the living cell, sensor regions of
large molecules such as proteins
bind other molecules acting as
regulators. The response is often
switch-like: the building block of cell
activity regulation.

38 PART 1: SETTING THE STAGE

(a)

DO {

} END DO

WHILE () {

}

(b)

(c)

Myosin

Enzyme
Regulator

Dynein

Actin

Microtubule

(d)

IF () {

}

IF () {

} ELSE IF () {

}

O P Gene

 FIGURE 02.13

 Binding of regulator factors
produces chemical effects whose

logic structure parallels familiar
commands for programming

computers.

the activity of its catalytic site. As you can see in the graph, the shape of the response
resembles an S-curve: the protein acts like a binary switching element in its reaction
to the input signal.

 By combining these binary switch-like responses across successive chemical reac-
tions, the cell can build up biochemical pathways that carry out more complex tasks
of conditional control. We have illustrated some examples in Figure 02.13 . In (a) the
binding of a regulatory factor to a protein enacts a biochemical “ IF … THEN … ” ; i.e.
IF (factor bound) THEN {increase catalytic rate}. In (b), the binding of alternative
gene regulatory factors to an operator region O of a genome causes the gene sequence
region to be read off at diff erent rates, enacting a biomolecular IF; ELSE IF … . P is
the gene ’ s promoter region, where the read-out starts. In (c), the repeated cyclic bind-
ing, release, and motion of the myosin molecular motor along an actin fi lament (as in
muscle contraction) gives a protein-encoded DO loop: DO {repeat motor cycle until
muscle cell contraction signal stops}. Elsewhere in the cell (d), a two-footed dynein
molecular motor walks along a microtubule, dragging its cargo molecule (shaded
block) from a source point in the cell to its delivery point: WHILE (no end-of-route
signal detected) {continue walking}.

 Cells therefore may be chemical engines, but they are also information processing
machines self-assembled from complex organic molecules. Th e cell ’ s DNA molecule
encodes its genetic information. Th e activity of its biochemical network encodes

39CHAPTER 02: COMPUTERS AND THE ORGANISM

 FIGURE 02.14

 Bjarne Stroustrup, the inventor
of C �� .

Courtesy Bjarne Stroustrup. Used with
permission.

metabolic and behavioral information. Nature and computer engineers, working with
vastly diff erent materials and at very diff erent size scales, have converged on com-
mon strategies for managing information fl ow. von Neumann, with key mysteries of
computer design solved and new interests calling, was by the late 1940s at work on
a new mathematical theory of self-reproducing machines. Th e treatment would have
placed the living cell ’ s puzzling ability to duplicate itself in the clarifying light of
mathematical logic. To history ’ s loss, a fatal cancer took von Neumann in the midst of
his new project, leaving just partially completed notes for others to carry on. One can
only wonder what computers and computational biology would today be like if this
remarkable polymath had lived on, into the era of the DNA double helix, the genetic
code, the Human Genome Project, and integrative systems biology.

 OOPs and agents
 In some applications the computing process is used to change one pattern of informa-
tion (the input) into another (the output). Th e output might be a set of numbers (in a
scientifi c calculation) or a string of text (as it will be in the automated typesetting of
this book). Th e output from Maya is a sequence of number arrays, each array defi ning
the grid of pixel colors that make up one digital image from your computed 3D ani-
mation sequence.

In other instances the process of information change is more transactional, as for exam-
ple in a video game or in an airline ticket reservation system. In these transactional

40 PART 1: SETTING THE STAGE

systems many patterns of information are changing all the time. Each transaction
may be thought of as an event in which some part of an overall system-wide informa-
tion store is updated or changed. Although formally each event has an input and an
output, designers of transactional procedures are very concerned with the accurate
and effi cient orchestration of the overall fl ow of information among the events. Th e
idea of computation as transactions among automated parcels of computer code is
the heart of object-oriented programming (OOP), an infl uential movement in mod-
ern approaches to software design.

 A moment ’ s refl ection tells us that the OOP viewpoint is also well suited to describing
how information is processed in living systems. Th e organs and tissues of our bodies
are built from cells that coordinate their activity by exchanging chemical and electri-
cal signals. Within the cell, the living material is composed of intricate chemical net-
works whose pathways signal each other. In all these cases, one ’ s description of the
biology is based on observable units (cells, modules of reaction pathways) interacting
with each other in a transactional manner. High-level languages designed for OOP,
like C �� , are therefore a popular choice in computational biology. Although MEL is
not designed as an OOP language, its command structure gives you immediate access
to the huge diversity of software objects and methods comprising Maya. MEL ’ s vector
and array data types allow you to map the structure and interactions of cells and bio-
chemical reactions without resorting to OOP conventions. For projects demanding an
OOP coding practice, you can assess Maya ’ s C �� API.

It is interesting to speculate that, under the impetus of new applications like those
you ’ ll carry out here, future versions of MEL will deploy expressly object-oriented
capabilities—let us call this future language for Maya programming MEL �� . Time
will tell. Meanwhile, current MEL has serious capability for computational modeling
in biology. We are going to show you how to harness that power by factoring MEL ’ s
command structure against an OOP-inspired breakdown of your biology problem
according to its functional transactions and the entities interacting through these
signals and messages. Th e resulting workfl ow, you will see, is an effi cient means of
organizing the complex data you must handle in any biology project (Figure 02.15).

 As you progress, we will have you take this approach a step further. Th e transactional
paradigm behind OOP lacks a natural vocabulary for situations in which the objects
not only signal one another, but move around, explore, and modify their environ-
ment while doing so. Such objects behave more like mobile agents—self-directed
robots—than like fi xed nodes in a communication network. Th is is of great biologi-
cal relevance. Important types of cells, such as immune cells, blood cells, and can-
cer cells, are highly mobile within your body. Th ey are not fi xed in one place. Maya
and MEL, with their diverse tools for describing and simulating 3D motion, are well
suited to computational problems based around mobile agents. Doing the projects
in this book will help you develop an agent-oriented approach to assessing and solv-
ing problems in computational biology, and will assist you in understanding when an
agent-oriented programming (AOP) workfl ow is to be preferred. As this book goes
to press, AOP is one of the hot frontiers in software design and program language
development.

 The Simula-67 high-level
language (Ole-Johan Dahl and

Kristen Nygaard, 1967, Norway)
for discrete event simulation

introduced programmers to key
OOP constructs such as the

object and the class. Smalltalk
(Alan Kay team, Xerox PARC,

1971–1972) is considered the fi rst
(and perhaps only) pure OOP

language.

 The current lingua franca
of hard-core higher-level

programming, C �� (Bjarne
Stroustrup, Bell Labs, 1983

(Figure 02.14)) accommodates
both procedural (sequential

command) and object-oriented
code design.

41CHAPTER 02: COMPUTERS AND THE ORGANISM

 Summary
 Computers are information processing machines, as are living cells. Despite the
diff erences in their size, construction materials, and power sources, computers
and cells use some similar strategies to control their information processing activ-
ities. But while the development of computers has already advanced to the level of
high-level programming languages, our understanding of the cell as an information
machine is much more primitive. Cell science provides some glimpses of the cell ’ s
 “ machine code ” —the low-level nuts-and-bolts of the genetic code and of signal trans-
duction through individual biochemical pathways and chemical reactions—but so
far no hints at all on the mystery of the cell ’ s “ high-level programming language ” , its
properties, and even whether one can speak accurately about the design of living mat-
ter in this way. Th ese are among the exciting scientifi c problems to be studied with
the aid of the methods you will learn about in this book. In order to step into the
Maya user interface and so into the world of MEL programming, we must turn to the
basic concepts and vocabulary of 3D animation and computer graphics. Let us now
do that and then, via Maya and MEL, see where the scientifi c path leads (Figures 02.16
and 02.17).

 FIGURE 02.15

 Some of the protein–protein
interactions active in a living
cell ' s molecular program for self-
destruction. The self-destruct
program can be triggered by
excessive cell damage or certain
disease states. Compared to von
Neumann machines with their
deterministic linear chains of
instruction fetch-execute steps,
cells organize their information
transduction actions into dense
stochastic clusters carried out in
parallel.

These protein networks were set
up and visualized using the Human
Interactome database and browser
toolset public bioinformatics resource
(http://www.himap.org) of Rhodes,
Chinnaiyan, et al 5 at the University of
Michigan.

42 PART 1: SETTING THE STAGE

Biological problem

Numerical
methods

HypothesesData History

Physical
principles

Chemical
principles

Outcome
needs

Visualization
procedures

Biophysics
algorithm

Visualization
model

Mathematical
model

Visualization
ideas

Mathematical
ideas

Visualization
methods

Visual
simulation

code

World
model

Procedural
animation
libraries

Lighting and
rendering

3D models

Render

Mining

Analysis

Prediction

Education

 FIGURE 02.16

 The in silico biology workfl ow.

43CHAPTER 02: COMPUTERS AND THE ORGANISM

 References
 1. Campbell-Kelly M : Th e Airy tape: An early chapter in the history of debugging . IEEE

Annals of the History of Computing 14 : 16 – 26 , 1992 .

 2. Wilkes MV , Wheeler DJ , Gill S : Th e Preparation of Programs for an Electronic Digital
Computer: with Special Reference to the EDSAC and the Use of a Library of Subroutines .
 Addison-Wesley Press , Cambridge, MA , 1951 .

 3. Croarken MG : Th e emergence of computing science research and teaching at
Cambridge, 1936–1949 . IEEE Annals of the History of Computing 14 : 10 – 15 , 1992 .

 4. Bennett JM , Kendrew JC : Th e computation of Fourier syntheses with a digital elec-
tronic calculating machine . Acta Crystallographica 5 : 109 – 116 , 1952 .

 5. Rhodes DR , Tomlins SA , Varambally S , Mahavisno V , Barrette T , Kalyana-Sundaram S ,
 Ghosh D , Pandey A , Chinnaiyan AM : Probabilistic model of the human protein–pro-
tein interaction network . Nature Biotechnology 23 : 951 – 959 , 2005 .

 FIGURE 02.17

 Modern desktop systems are von
Neumann computing machines
many times more powerful that the
early mainframes. Here, the authors
(left CJL, middle NW, right JS)
discuss MEL code for a Maya-based
model of cell motion.

Courtesy and copyright © 2008 Eddy
Xuan.

Th is page intentionally left blank

03 Animating biology

3D model of DNA
molecules.

46 PART 1: SETTING THE STAGE

 Introduction
 We have been introduced to the need for dynamic visualization in science, considered
a basic framework of biological organization, and explored the relationship between
biology and computation. How then do we integrate these science-inspired notions
with the art of computer animation using Maya? And what is animation, anyway?

 To animate is to give life to an otherwise inanimate object. 1 For our purposes in 3D
computing, the verb refers to a change over time in a property of a given item, rendered
into a succession of still images, or frames. Somehow, our visual system is able to view
this succession and create, in our minds, the perception of motion and behavior in the
depicted objects. So we will begin this chapter with a brief look at how we see and how
we perceive motion in animated images. You ’ ll then meet some of the lexicon and meth-
ods of animation, and how and why they might be adapted to scientifi c visualization.
A 3D computer animation workfl ow will be laid out to give us the roadmap to learning
Maya and MEL, placing them in the overall process of 3D animation production.

 Since Maya is designed for animation, its eff ective use follows the workfl ow you ’ d fi nd
in a professional animation studio. Th is workfl ow, which we ’ ll explore in this chapter,
applies terminology and conventions that draw (pardon the pun) on modes of prac-
tice honed over decades in the ateliers of animation pioneers like Walt Disney and
the Fleischer Brothers. Th ese terms and conventions may seem strange, at fi rst, if you
are coming to Maya from a science or engineering fi eld. But we hope to show you that
there are benefi ts to the co-option of cinema-oriented animation practices by scien-
tists ’ intent on understanding biological phenomena.

 Experienced animators may encounter some familiar topics in this chapter, but will
still benefi t from the connections drawn between the animator ’ s and the bioscientist ’ s
workfl ow. By the end of this chapter you should be able to see how animator ’ s tech-
niques can potentially apply to the science discovery process, and have a broadened
appreciation for the experimental and expressive power of modern digital animation
tools.

 Animation and fi lm perception
 In fi lm and video, there is no motion, there is only a succession of still images, rapidly
displayed. Yet we perceive motion. How is this possible?

 Seeing, in brief
 Th e early, “ anatomical ” stages of vision are fairly well known; we will sketch them
below as means of explaining the raw processing power that vision brings to the
world. Th e sensory impulses originating in the retina are ultimately transformed
into a skein of neuronal activity in the brain that presents to our consciousness an
integrated picture of the world. Th is latter process—how biochemical fl uxes turn into
meaning—is the hard part, and a something we can ’ t hope to address here.

 Five crucial events make up the initial stages of vision (the structures described
below are illustrated in Figure 03.01):

 1. Light originating from the sun or some other source scatters through the environ-
ment, bouncing off various objects. A small fraction of this light happens to pass
through the pupil of your eye (a distensible hole that varies in diameter between 2
and 6 mm and is analogous to a camera ’ s aperture).

47CHAPTER 03: ANIMATING BIOLOGY

 2. Th e light is refracted by the lens in your eye (as well as the cornea and the refractive
gels that fi ll the eyeball) to focus a high-resolution two-dimensional (2D) image on our
retina, a complex nine-layered tissue comprised of photoreceptors, blood vessels, and
multiple layers of neurons. Th ese neurons form the earliest stage of visual processing:
they take the light pattern detected by the photoreceptors and perform various tasks,
such as enhancing the contrast at edges, and suppressing jittery motion.

 3. Impulses derived from the photoreceptors, and modulated by those early neurons,
are relayed to the optic nerve. Th e optic nerve passes through the back of the eye
(creating the blind spot), and after passing through the optic chiasm (a “ neural
traffi c interchange ” where the left and right visual fi elds from each eye are united
and sent to the appropriate hemisphere), the signals are sent to the lateral genic-
ulate nucleus in the thalamus (a deep brain structure). Early stages of color and
motion processing occur here.

 4. From the lateral geniculate nucleus, the nerve impulses are passed to an area near
the base of the occipital lobe known as V1 (visual area 1). Th e cortical processing
of vision occupies about 40% of the gray matter of our brain, and V1 is the fi rst
station in that process.

 5. From V1, the neural activity is distributed to brain regions V2, V3, V4, V5, and
onward. In a feat of massively parallel processing, an astonishing array of features
are rapidly extracted from the 2D image received on the retina: edges are detected,
objects are separated from the background, depth is assessed through multiple
concurrent cues, the direction and magnitude of motion is appraised, faces are
recognized, and various salient object features (orientation, size, color, and tex-
ture, among others) of the scene are assessed. In addition, remarkable feats of
 “ mental construction ” are accomplished, as 3D stereoscopic depth is created from
the divergent images originating from each eye, and partially represented (or, in
the case of some visual illusions, even non-existent!) objects are built from frag-
mentary evidence in the scene.

 Less than one-fi fth of a second has elapsed since the light wave reached the retina at
the back of the eye.

 A neuron is a cell type essential
to the operation of our nerves
and brains. Neurons are
electrically excitable, and
conduct signals from one part of
our body to another.

 FIGURE 03.01

 The anatomy of vision. Light enters
the eye and is focused upon the
retina, where it is transduced into
electrochemical signals by the
photoreceptors. The signals travel
via the optic nerve, through the
lateral geniculate nucleus, to the
primary visual cortex in the occipital
lobe of the brain. Here the signals
are rapidly dispatched in a parallel
fashion to various processing
centers (V1, V2, etc.) where salient
features of the scene are extracted,
and ultimately integrated into a
coherent internal representation of
the scene.

48 PART 1: SETTING THE STAGE

 In the moments that follow, your brain integrates this initial decoding of the visual
scene with other elements of your conscious awareness, calling on the power of your
memories, reason, and emotions to interpret it. How astonishing that so much com-
plicated processing occurs so quickly, and with so little deliberate eff ort!
 Th e fact that vision requires so much active (if unconscious) creation on the part of
the viewer helps to explain how we end up imparting so much meaning to cinematic
stories; we will see another aspect of the “ creative ” abilities of visual perception in
the next section.

 Seeing motion and animation
 It may be hard to believe, but the nature of motion perception is still under active
investigation.
 Many fi lm theory textbooks still claim that the basis for motion perception in fi lm is
a phenomenon known as persistence of vision, where the image falling on the retina
persists biochemically over some interval until it is replaced by succeeding images;
this overlap allows the images to blend, retinally, into “ motion ” . While some biochem-
ical truth lies behind this idea—photoreceptors in the eye do continue to signal for
some time after the stimulus has passed—the idea of persistence of vision has largely
been replaced by a more comprehensive understanding of mechanisms of motion
perception. 2 Newer accounts of motion perception call for a more active engagement
from the viewer, and rely on multiple, overlapping mechanisms.
 Two of those mechanisms—fl icker fusion and short range apparent motion—are
worth spending some time on, as they relate rather directly to the standard frame
rates that animators use in the production of their fi lms.
 Film has a frame rate of 24 frames per second (fps), but each individual frame is actu-
ally fl ashed onto the screen two or three times in succession, leading to a fl icker rate of
48–72 Hz (times per second). Why is this? It turns out that in order to present the
sensation of viewing a continuously illuminated screen, the projector must fl ash
on-and-off rapidly enough to achieve fl icker fusion. Th is is a phenomenon whereby
a fl ickering source of illumination will, at some frequency, fuse into the perception
of continuous illumination. If you watch a strobe light fl ashing at an increasing rate,
at some point the discrete fl ashes will fuse into what seems like a light that is simply
 “ on ” . Th e rate required for fl icker fusion varies depending on a number of factors (e.g.
whether the fl icker is present in central or peripheral vision, the brightness of the
illumination, the fatigue of the viewer) but is usually in the range of 50–60 Hz for
fi lm and television applications.
Th is helps explain how frame rates for fi lm and video were determined: if each frame of
a 24 fps fi lm were shown only once, the image would “ strobe ” in a way that would make
it very diffi cult to watch, so each frame is projected more than once. In North American
video (NTSC), which is nominally 30 fps (actually 29.97 fps), each frame is composed of
two interlaced sub-frames displayed in sequence, leading to a 60 Hz fl icker rate.
 Does fl icker fusion explain motion perception? No, it simply explains how many
projection and display technologies can appear to present a continuous image, rather
than one that is strobing. It is worth noting that most newer fl at panel display
technologies, such as LCDs, do not fl icker, since they are continuously illuminated by
their back lights. Any digital display, however, has a refresh rate, separate from the
potential fl icker rate of the display, that is determined by how often the displayed
image is updated by the underlying graphics circuitry.

 European (PAL) video is 25 fps,
leading to a 50 Hz fl icker rate.

49CHAPTER 03: ANIMATING BIOLOGY

 Apparent motion is the term for several distinct phenomena, initially discovered
by vision researchers in the early 20th century, in which certain confi gurations of
rapidly displayed still images could precipitate a perception of motion. Short range
apparent motion requires fi ne-grained changes between successive images, as is the
case with most fi lm and video.

 Th e perceptual mechanisms underlying short range apparent motion appear to be
identical to those active in perceiving real-world motion. Clinical evidence for this
comes from the cases of unfortunate individuals who have experienced damage to the
part of the brain that allows them to perceive the shape of still objects; these patients
cannot recognize, or even see, objects that are not moving. Once an object moves,
however, it pops into existence in their preceptual world. Fascinatingly, these indi-
viduals can also perceive moving objects in television and fi lm, despite the fact that,
of course, they are really seeing a sequence of still images. Th is demonstrates that, in
these subjects, and probably people in general, the mechanisms of fi lm perception are
the same as, or very similar to, that of general motion perception.

 So, the mystery of fi lm motion perception is starting to yield to scientifi c study:
animated representations of motion are similar enough to real-world stimuli that
they engage the same perceptual mechanisms that real-world motion does. Two of
those mechanisms—fl icker fusion, which in some media makes still images appear
as continuous, and short range apparent motion—help to explain why animation is
usually crafted as sequences of 24–30 still images-per-second, with relatively small
diff erences between individual frames. Later in this chapter we will look at anima-
tion frame rates, and in which contexts it might be advisable (or not) to vary them.

 The animator ’ s workfl ow

 Story: The workfl ow ’ s driving force
 Th e animator ’ s workfl ow (Figure 03.02) is a time-tested approach to the highly eco-
nomical depiction of an idea expressed in a fi nished scene or in the completed fi lm.
 “ Economical ” is not used here in a fi nancial sense, but in terms of effi ciency: anima-
tion is generally so labor intensive—even when powerful computers and software are
used—that many benefi ts accrue to animators who do what they need to, but no more
than is necessary; spending weeks diligently animating a scene that is ultimately
left out of the fi lm is a painful, costly experience. Th us the necessity of an organized
approach to the animation process. Th is is a process of experimentation and refi ne-
ment, and it is very much a part of the computer animator ’ s approach as well, where
modern digital tools can somewhat speed the iterations shown in Figure 03.02 .

 Many scientists experience similar cycles as they refi ne experimental protocols,
improving results and explanatory models (Figure 03.03). At the heart of science is
humanity ’ s yearning to make sense of the world, in a way we are all free to understand
and to evaluate in a logical, testable manner. Th is notion of making sense, of arrang-
ing objects and concepts in plausible causal chains, is also at the heart of storytelling.

 Th e broad range of stories—those limited only by the teller ’ s imagination—encompass
a much larger range of possibilities beyond the narratives of reality told by science.
Science, of course, is concerned with what is, with actuality and truth. But like the
great novels, plays, and myths, important works of fi ctive cinema—animated and
otherwise—also illuminate truth.

50 PART 1: SETTING THE STAGE

 FIGURE 03.02

 A typical workfl ow for computer
animation production.

51CHAPTER 03: ANIMATING BIOLOGY

 When discussing storytelling in
the Hollywood style, we forego
for the moment movements in art
and literature, such as Dadaism,
that have sought to undermine
conventional storytelling
requirements.

Experiencing fi ctional worlds helps us make sense of human existence, its glory,
and its foibles. Filmmaking of the “ Hollywood style ” , for example, is all about tell-
ing “ readable ” stories—the struggles and confl icts of exciting imaginary charac-
ters—written, shot, and edited in ways that allow them to be easily interpreted. Th is
ease of interpretation is partially a result of the set of production heuristics that have
evolved over the history of fi lmmaking.

 Since these established animation production workfl ows support fi lmmaking economy,
as well as fi lm “ readability ” , we can adapt them to support the needs of thoroughly
actuality-driven enterprises like science research and scientifi c communication.

 The three-stage workfl ow
 Th e animator ’ s initial task is to critically formulate the story idea to be communi-
cated and then explore and refi ne potential approaches to its expression. Th is stage
is known as preproduction. At the end of this stage, the animator has a solid plan for
the execution of the project. Preproduction leads to the production stage. Here the
animator implements the plan generated in preproduction and creates the resources
necessary to complete the fi lm. Th is is generally the longest and most labor-intensive
part of the process. Postproduction follows, where the media developed in production
are assembled (edited together) and refi ned into a form suitable for fi nal delivery.
Th is usually takes the form of a fi lm or fi lm segment intended for theatrical release,
for television broadcast, release via the web or podcast, presentation at a scientifi c
meeting, or a video game cut scene.

 Let ’ s explore this workfl ow.

 Workfl ow stage 1: Preproduction
 Animation is one of the least direct of the visual arts: the animator works at the
drawing table or computer screen, preparing countless images, intending that the

 FIGURE 03.03

 A typical science animation/
simulation workfl ow. We will be
adapting this approach and using it
in combination with the traditional
animation workfl ow illustrated in
Figure 03.02.

Define hypothesis to be explored
(objects/agents, attributes, behaviors,

interactions, data)

Develop logic (flowchart)

Encode

Build
Test and iterate

Execute (run simulation)

Visualize (render) data

52 PART 1: SETTING THE STAGE

arrangement of those images in time will evoke the sense of life that is sought.
Preproduction involves all the project initiation steps, as well as the development of
a coherent plan for the completion of the fi lm. Eff ective preproduction helps assure
that suitable animations are produced in the fewest possible steps of execution and
revision. Th e key elements of eff ective preproduction are the defi ning your anima-
tion ’ s visual style or “ look ” , the treatment and the script, the storyboard, and the 2D
 animatic .

 The animation ’ s “ look ”
 A cancer animation that depicts the deadly cells as whimsical, anthropomorphic car-
toon characters might work well for an audience of young children. However, it might
also leave an audience of investment bankers ready to fund a new cancer drug less
than impressed. Such qualities of overall visual appearance are often referred to as
your fi lm ’ s “ look ” , a subject demanding careful attention right at the start of your
project. Th e message or point of a fi lm can be misunderstood, or lost entirely, if poor
decisions are made about its appearance or look.

 Let ’ s consider three of the most popular looks for cell science animation. Th e list is by
no means exhaustive; indeed, one of the benefi ts of working with a 3D program is the
possibility of creating entirely new, never-seen-before representations.

 1. The photorealistic look . Photorealism is a term from art criticism which refers to
pictures which attempt to emulate the qualities of photographs. As a movement in
20th century painting, it has been associated with the work of artists like Chuck
Close and Mary Pratt. Photorealism consciously imitates the eff ects of optical lenses
and adheres closely to the rules of vanishing point perspective, creating solid, believ-
able images. In addition to the surface qualities of light and texture familiar to us
from our experience of the real world, photorealism often includes artifacts of the
photographic process, such as depth-of-fi eld eff ects, motion blur related to shut-
ter speed, compressed dynamic range, and lens fl are. One version of the history of
computer graphics research would see it as a progressive march toward the goal of
seamless, true photo-like rendering (which has, arguably, recently been achieved with
unbiased, light simulator-style rendering engines like Maxwell, from Next-Limit
Technologies). A broader look at computer graphics would see computer-generated
imagery (CGI) encompassing a number of representational styles.

 2. The micrographic look . A sub-style of photorealism, devoted to emulating microg-
raphy, has emerged over the past several years: this is the micrographic look
(the appearance of objects as seen or photographed through microscopes). At the
present time in human history, photorealism is a near-universal strategy for depicting
the events of our everyday lives in the entertainment and news media. Th e camera ’ s
 “ eye ” is ubiquitous. Th e conventions of photorealistic depiction have therefore been
adapted by artists and scientists to reveal objects and events too large (as in astron-
omy) or too small (as in cellular medicine) to be seen with the unaided eye. Sometimes,
although objects are small, they are still big enough to defl ect light rays. Most intact
cells are big enough to do this, so with special lenses and other imaging technologies
(microscopes) we can magnify their images and take their picture. Other subjects
require more exotic preparations and techniques; for instance, researchers have begun
to use small fl uorescent proteins (such as green fl uorescent protein, derived from a jel-
lyfi sh) to “ tag ” cellular components they wish to observe. Th e resulting micrographs
are often hauntingly beautiful (Figure 03.04).

53CHAPTER 03: ANIMATING BIOLOGY

 A popular approach for animators working at the cellular and molecular level there-
fore is to render their models in a style of micrographic photorealism. Th ese can
include light microscopy, scanning electron microscopy (SEM) (simulated in Figure
03.05), phase-contrast microscopy (simulated in Figure 03.06), confocal micros-
copy (Figure 03.04), and transmission electron microscopy (TEM). Each of these
approaches produces a signature visual texture, which is imitable in a 3D program
like Maya.

 3. Non-photorealistic looks . At the molecular level (see Chapter 01), the objects of bio-
logical interest are at or below the dimensions of the wavelengths of ordinary vis-
ible light; ordinary cameras don ’ t work in this world. Here, our everyday intuitions
about the nature of light and form break down. We could try to (and scientists do!)
use illuminations of shorter wavelength to diff ract from those small structures, as
in X-ray crystallography and electron microscopy. Th e resulting photographs hover at
the threshold where our sense of visual comprehension departs from the everyday
experience. Once we reach the molecules and atoms of biological structure, we are
on the doorstep of atomic physics. Th is is the quantum realm, where matter seems at
once wave like and particle like—traits that do not have anything like a photorealis-
tic depiction. Nevertheless, photorealism has, as we shall see in a later project, been
used for depicting certain properties of atoms and molecules. Th ese properties are
both essential to biological function and well described in terms of the mathematics
of NURBS surfaces. But that is just a start: as a result, animation at the cellular and
molecular level is ripe for various kinds of interpretive rendering, which can draw
even further on photorealistic eff ects, or mix them with other non-photorealistic
approaches to represent the molecular fabric of living matter for maximum impact
and interpretability.

 FIGURE 03.04

 Cell micrographs can often be
appreciated for their intrinsic
beauty, quite apart from their
obvious utility as scientifi c objects.
This image shows cardiomyocytes
(or heart muscle cells) that have
been specially stained to make the
cellular proteins actin (red) and
calreticulin (blue) visible to the
microscope under special lighting
conditions.

Scale bar � 10 �m

Images courtesy and copyright ©
2006 Sylvia Papp, Institute of Medical
Science, University of Toronto and
Michal Opas, Department of Laboratory
Medicine and Pathobiology, University
of Toronto. From research supported
by the Canadian Institutes of Health
Research (CIHR).

 FIGURE 03.06

 A Maya rendering of a lymph node,
composited in Adobe After Effects

to stimulate the appearance of
phase-contrast microscopy.

Scale bar � 2 mm

Courtesy and © 2006 Marc Dryer. Used
with permission.

54 PART 1: SETTING THE STAGE

(a)

 FIGURE 03.05

 The appearance of objects in a
SEM—with their characteristic

bright edges and darkened
centers—is often emulated in

illustrated depictions of cells and
molecules. Such a look can be

created in Maya using the Ramp
shader (a), as was done for the

rendering of bacteria
(C. diffi cile) in (b).

Scale bar � 10 �m
(b) Courtesy Shaftesbury Films

and AXS Biomedical Animation Studio.

Copyright Shaftesbury ReGenesis III Inc.
(b)

 Th e term non-photorealistic rendering (often abbreviated to NPR) refers to computer-
generated images that either emulate traditional artistic styles (hand-drawn,
painted, engraved, etc.), or otherwise represent images in a non-photoreal way
(see Figure 03.07). As noted above, research in computer graphics, for its fi rst few
decades, was consumed primarily with the goal of creating photorealistic images.
Before that goal was even accomplished, many questioned why photorealism should
be the default end goal of rendering systems 3,4 —after all, artists have, for millennia,
made compelling and informative images without cameras (or computers), and there
must be something of use in the variety of visual styles toward which they have grav-
itated. In response, over the last decade or so numerous graphics researchers have
explored stylized depiction; the result has been a discipline named (unfortunately)
for what it is not, rather than what it is. 5

 Why choose an NPR style to defi ne the look of your animation or fi lm? Th ere are sev-
eral possible reasons:

 • A number of studies 6,7 have shown that non-photorealistic representation (espe-
cially well-constructed line drawings) is often easier for people to interpret than
photographs or continuous tone images. Th e reason for this has not been fully
elucidated, but it may have to do with the necessary simplifi cation of line draw-
ings, their elimination of extraneous detail, and the pre-segmented nature of the
objects in a line drawing. It is worth noting that, despite the ease of acquiring
photographs, line drawings are still very common in technical documentation.

 • Photorealistic rendering approaches can be convincing enough that viewers of an
animation might mistake what they are looking at as empirical imagery, rather
than a simulation, reconstruction, or interpretation. In some cases, this misat-
tribution of veridicality to animated sequences could be problematic. One could
argue that NPR-rendered sequences will usually be understood by viewers as
interpretations, and would be far less likely to be mistaken for “ reality ” as cap-
tured by a camera.

 • NPR approaches tend to communicate the “ provisional ” or contingent nature
of what is being represented, and therefore may be more appropriate when the

55CHAPTER 03: ANIMATING BIOLOGY

 FIGURE 03.07

 A 3D model rendered using left: a
typical “ photorealistic ” adaptive
scanline render; middle: a pen-
and-ink style “ non-photorealistic ”
(NPR for short) render; and right: an
engraving style NPR render.

56 PART 1: SETTING THE STAGE

animation is highly simplifi ed, or when the particular structures or processes
being represented are not fully characterized.

 • NPR can be used for purely aesthetic reasons. Also, digital pen-and-ink is far less
messy than its real-world counterpart, and potentially easier to learn.

 Th ere has been an explosion of interest during the last few years in stylized depic-
tion, with attendant research groups, conferences, and commercial development.
Interestingly, the diffi culty of deriving a good line-drawn representation of a 3D
model, for instance, has emphasized how little science grasps about the psychology
of picture perception. In that sense, many NPR researchers may be helping, from the
algorithm upwards, to build models of human visual perception.

 As you work through the book, we will guide through projects that create a distinctive
look for each fi nal animation produced by Maya and your MEL programming. You will
also see many images that showcase the looks chosen for other projects. We think
this will help build your experience in creating visual styles— “ looks ” —well suited to
the needs of your future endeavors. But regardless which visual style you select, keep
in mind that look of your fi lm is no more subjective than any other facet of scientifi c
communication; it is the result of a series of reasoned decisions about how an anima-
tion is meant to be interpreted, and is thus of crucial importance.

 The treatment and the script
 A fi lm treatment is a short, narrative description of what the viewer of the proposed
fi lm would see. It is less about the “ back story ” of the animation and more about what
the experience of watching the fi lm would be like. Treatments are often the fi rst step
in the fi lmmaking process and are often used to gain initial approval and fi nancing
for a project.

 A script is also a written document, but a far more detailed one which formalizes the
proposed fi lm in terms of sequences, scenes, shots, dialog or narration, sound eff ects,
and production notes. Th ere are several standard formats for scripts, which use spe-
cial text formatting to distinguish these diff erent elements (see Figure 03.08).

 FIGURE 03.08

 Examples of script formatting styles:
from left to right: BBC, color-coded,

and tombstone.

57CHAPTER 03: ANIMATING BIOLOGY

 If the fi lm is a live action one, the script is often the fi nal required preproduction
document created before shooting can begin. Animation, however, requires a more
intensive preproduction phase, and two more elements are usually required before
production starts.

 The storyboard
 A storyboard (Figure 03.09) takes the production script and breaks it down, shot for
shot, into visual form. Salient frames from each shot are rendered in thumbnail form
and assembled in sequence. Narration or other scripted elements are often included
below or to the side of the rendered frames. Storyboards are a presentation medium
and are the focal point of the “ pitch ” , where team members are lead through a pro-
posed fi lm sequence.

 Th e storyboard images refl ect what the camera would see. Graphic devices, such as
arrows and superimposed rectangles, are used to indicate intended camera motion
or change in focal length. Th e rendering approach used to make storyboard frames
should not be “ careful ” or “ fi nished ” since a storyboard is meant to be a working
document that, in a successful project, will see numerous revisions as sequences are
reworked, new camera angles and movements tested, and shots added or eliminated.

 In classical (i.e. Disney-style) animation preproduction, the storyboard can be the
principal arena for the defi nition of the overall narrative, supplanting the script as
the source of the story.

 The 2D animatic
 Th e 2D animatic is a more recent innovation. It usually involves the transformation
of the static storyboard into a piece of motion media, complete with test soundtrack.

Video: fl ash to — live cancer
cell footage; a diseased cell
— and back to …

Audio: underwater sounds

Video: … in vitro pack of crawling
fibroblasts

Audio: underwater sounds

Video: crash zoom on GCI crawling cell

Audio: sudden increase in music tempo
and energy

Video: pass through cell wall into the
super-crowded cytoplasm. Large
proteins jostle about. The scene
is frenetic. Cut to …

Audio: high-energy music

Video: … montage of cell
videomicroscopy

Audio: high-energy music

Video: multi-screen drawings, equation
footage

Audio: high-energy music, several
pencils scratching

 FIGURE 03.09

 Plans for animation, storytelling, and
science unite in this storyboard for
a fi lm about cancer cell migration. A
storyboard is an essential tool in the
computer animation workfl ow.

58 PART 1: SETTING THE STAGE

Storyboard frames are scanned and assembled in an editing, compositing, or motion
graphics software package like Adobe After Eff ects. Th ese programs allow for the ani-
mation of 2D elements over time; thus object and camera movement can be simulated
and synchronized with audio. Th e storyboard images are sometimes separated into
foreground, midground, and background elements, to better facilitate the creation of
object motion and parallax eff ects. Th e animatic allows the fi lm director to test story
fl ow and timing; since the result is a rudimentary fi lm, it is the fi rst working version
of the project. In some studios, an animatic is called a story reel . In the earliest years
of hand-drawn animation, story reels were known as pencil tests since the animators ’
penciled drawings were put on a camera stand and photographed, one by one, as fi lm
frames to be projected for review and criticism of the animation.

 Workfl ow stage 2: Production
 In the production stage, the plan developed in the preproduction phase is imple-
mented. Ideally, at this point the story is well defi ned, and no further narrative
changes are anticipated. In most studio settings, animated scenes and fi lms are
the creative work of teams of artists and technical specialists who work together in
the preproduction, production, or postproduction stages of the workfl ow. One artist
would not normally undertake all of the numerous steps and stages alone. One
advantage of this book is that you will gain experience in all of these principal roles
and functions. We believe this will strengthen your ability to undertake, from start
to fi nish, self-assigned projects on your own, and to function well as a member of
these large, diverse teams. Animation production in Maya and similar top-tier prod-
ucts for 3D computer animation will require your attention to the following elements
of the production workfl ow.

 The 3D scene: Your digital stage
 Th e term scene has two meanings for animators. Traditionally, it refers to a sequence of
events that comprise a distinct element in a story. In Maya, on the other hand, a scene
is the 3D environment, including models and animation, contained in one computer
fi le. It is essentially a stage for digital action. Several Maya scenes may be developed to
create a single traditional one, or one Maya scene may contain the models, action, cam-
eras, and lights needed to create an entire story comprised of many traditional scenes.
In this book we ’ ll use the Maya defi nition of a scene: one 3D environment embodied in
a fi le computer—Maya scene—fi le.

 For a scientist, this notion of the word scene might seem a hazy or foreign concept.
Perhaps the best way to think about it is as a model world, or, more specifi cally, a spe-
cialized apparatus for running an experiment. Just as the cell biologist might have
a bank of Petri dishes, each growing a diff erent variety of bacteria, the Maya-using
researcher might have a range of scene fi les, comprising various projects, tests, and
iterations of particular experimental approaches.

 Geometry modeling
 Th e creation of objects and environments in digital 3D space is called modeling. Objects
in computer animation are typically modeled as shells with no solid, or volumetric,
form to them. Th ere are two main surface types that make up these shells. Th ese are
polygonal surfaces, comprised of many interconnected fl at polygons and spline surfaces,

59CHAPTER 03: ANIMATING BIOLOGY

also called NURBS, that are described by mathematical curves (Figure 03.10). NURBS
modeling generally produces smoother surfaces with geometries limited by the curve
properties, whereas polygonal models, comprised of many small facets, can appear
coarser but can be built in any conceivable shape, unencumbered by topological limi-
tations. Th e choice of model type depends on the purpose and desired qualities of the
fi nished model, but often comes down to personal preference.

 Modeling and animation applications typically off er a suite of tools for model crea-
tion and manipulation in addition to a collection of primitives—ready-made models
like spheres, cubes, cylinders, cones, and tori that are often the starting point for
more complex geometries. Maya has a range of polygon and spline primitives as well
as tools for working with both types of model. We will discuss Maya ’ s model-making
capabilities in some detail in the second part of the book. Once you understand how
models are created and manipulated using the standard tools, you can tackle proce-
dural modeling, using a computer program to automate the modeling for you and to
simulate the dynamics of their interaction.

 As you work on your geometry models in Maya, you may fi nd it necessary to adjust
the fi delity of the display to the source geometry (Figure 03.11). Several preset levels of
detail and shading are available, such as smooth shaded, wireframe, point mode, and
box. Th ese trade off visual quality for display speed. When models and scenes become
complex, it is also handy to be able to selectively hide or reduce detail on specifi c
objects, so your workspace becomes less cluttered.

 Volumetric modeling
 Mention should be made of volumetric models, which use an approach very diff er-
ent from most commercial 3D modeling applications. Surface models, such as those
discussed above, are shells possessing no inherent solidity. Volumetric models, on
the other hand, are composed of arrays of cubes inhabiting 3D space called voxels
(a word derived from vo lume pi xels), or densely sampled point clouds. Voxels encode
for some spatially distributed variable, such as luminance, color, temperature, or
density. Volumetric models can be derived from serial imaging technologies, like CT,
MRI, and confocal microscopy, or produced by computational models of dynamic sys-
tems (as in modeling of storm systems). One famous example of volumetric modeling

 FIGURE 03.10

 Common surface model types:

(a) Polygonal surface: composed of
interconnected three- or four-sided
polygons.

(b) NURBS surface: described by
parametric curves known as splines .

(a)

Polygon

(b)

Spline

60 PART 1: SETTING THE STAGE

is the Visible Human Project, 8 a freely available database of sectional anatomy.
In this project, sponsored by the US National Library of Medicine, researchers froze
and thin-sliced male and female cadavers taking detailed photographs of the end
blocks. Th is huge serial image database (along with calibrated MRI and CT scans done
before the slicing started) can be reconstructed into a highly detailed volumetric model,
with the voxels deriving their color from the pixels in the 2D images. Th is volumet-
ric model is then amenable to various representational approaches (arbitrary slices,
selective transparency) that allow for an unprecedented look into the human body.

 While voxels are generally arranged in a rectilinear grid, point clouds can be freely
arranged, with more densely packed points concentrated at points of detail or inter-
est. Like voxels, point clouds can have color or some other property at each sample
location, and can build up interestingly representative displays that are less computa-
tionally demanding than voxels.

 Maya contains some volumetric tools, in the form of Maya Fluid Eff ects, and, to some
extent, particle tools and Maya Paint Eff ects. But generally speaking, volumetric
modeling comes at some computational cost, and the tools available for the manipu-
lation and de novo creation of volumetric models have yet to approach the sophis-
tication of those available for surface models. For this reason, we will concentrate
primarily on surface models in this book. As tools and algorithms evolve, volumet-
ric animation and simulation approaches will surely move into the mainstream, and
therefore developments in the fi eld bear watching.

 Procedural modeling
 Procedural modeling is the generation of geometry in a 3D program by algorithmic
means. Many natural structures, such as plants, landscapes, and circulatory trees,
exhibit qualities that are tedious to model by hand but which are amenable scripted
or programmed modeling approaches. Some of these qualities include randomness,
high detail, and self-similarity at a number of scales. Th e key benefi t of this approach
is that, with a small amount of input (simple equations or formulas, initial param-
eters), a huge amount of output can be derived (complex models of forests, coastlines,
mountains, arteries, and veins).

 Th ere are numerous procedural modeling approaches, several of which are built in to
Maya. You will be exploring the use of procedural modeling when you build a protein
model in Chapter 14 and a tissue matrix in Chapter 17 .

(a) (b) (c) (d)

 FIGURE 03.11

 3D scenes can often be visualized
using different display modes.

Shown here from least to most
computer intensive are: (a) box;
(b) points; (c) wireframe; and (d)

smooth shaded.

61CHAPTER 03: ANIMATING BIOLOGY

 The frame rate
 It ’ s important to note that, when using 3D software for a simulation, the work doesn ’ t
necessarily end when the simulation has run its course. Th e stunning imagery that
makes a program like Maya so attractive to use must be rendered out. Once produced,
the fi nal images are played back at a specifi ed rate of display, in fps . For example, a 30-
frame animation will produce one second of motion when played back at 30 fps. Th e
frame rate determines the quality of perceived motion and varies depending on the
requirements of the viewing medium. Th e slower the frame rate, the less convincing
the illusion becomes. Nonetheless, there are practical considerations that may war-
rant a slower frame rate. Rendering fi nished frames is a time-intensive, and therefore
expensive, endeavor. A slower frame rate is therefore often a cost-saving measure
used by animation studios resulting in a trade-off between quality and effi ciency.
In the case of animations produced for Internet viewing, a slower frame rate may be
used to conform to limited data transfer rates, resulting in uninterrupted viewing
but with relatively poor visual persistence.

 Th e intended rate of display should be determined before you begin animating items
in a scene. A walking fi gure animated for 30 fps playback will appear in slight slow
motion if projected at 24 fps. When using a 3D application for simulation, the frame
rate acquires an additional meaning; it becomes the rate at which simulation events
are evaluated. In the cell migration project in Chapter 18 , we equate one Maya frame
with approximately 200 seconds of “ real ” cell time. Th erefore, when you play a ren-
dering of the simulation at the typical NTSC 30 fps, one second of playback equates
to roughly 100 minutes of cell movement! Were you to set the frame rate to 15 fps,
one second of playback would represent only 50 minutes of migration. Th is distinc-
tion is important when presenting simulation results to your audience.

 Animation
 Animation, we ’ ve seen, is the art of taking otherwise static images and objects and
imparting a sense of motion, and life, to them. Th e property being animated (called
an attribute in Maya) could be position, scale, shape, or color among others. For exam-
ple, consider depicting a defl ating balloon with a sequence of still images (see Figure
03.12). As air rushes out, we make the balloon careen in all directions and gradually
shrink, so it winds up looking fl atter, less bright and more opaque frame by frame.
To achieve this, we have animated, over time, the balloon ’ s position (or translation in
Maya), scale, shape, and its color and transparency.

 Animation software like Maya generally takes two diff erent approaches to creat-
ing these changes: key-framed animation and procedural animation . Th e concept of
animation is inseparable from that of time. Th e smallest unit of time in fi lm anima-
tion is the frame (many physically based calculations within a 3D application can
rely on arbitrarily divided sub-frames for precision, however). Animators use a
timeline, a linear scale divided into equal measures of seconds or frames, to locate
key moments in the action. Frames containing these key moments are called key
frames , for which values are assigned by the animator or by a script to the attribute(s)
being animated.

 Disney-style animation exemplifi es the key frame approach taken to a highly refi ned
stage of drawing and action timing: the term key frame comes from hand-drawn ani-
mation, where a senior, or “ lead ” , animator would draw only those frames considered
 “ key ” to the action being represented—the most dramatically intense moments of

62 PART 1: SETTING THE STAGE

the action. Less experienced animators known as animation assistants and (below
them) “ in-betweeners ” would fi ll in the frames between those key frames.

 In the digital era, the computer acts as our in-betweener, interpolating object qual-
ities from key frame to key frame. Th e interpolation is represented as an animation
curve , a 2D plot of the attribute in question versus time. In the case of translation
through space, the animation curve is a velocity graph. Some applications, including
Maya, give animators complete control over the shape of these curves and, there-
fore, over the nature of the in-between action. Th e velocity curve, for example, can be
manipulated to give a desired acceleration throughout a translation.

 Procedural animation is a term for animation that is driven algorithmically, not
unlike its cousin procedural modeling. It is far more similar to simulation than
animation per se; the animator sets the initial parameters for the objects and then
watches to see how the animation evolves over time. In a procedural animation, the
animation curves are produced by your computer model. We will examine animation
curves, both key framed and simulation generated, in detail later in the book.

 Dynamics
 Many 3D applications have dynamic simulation capabilities that utilize a built-in
 physics engine . In this case natural laws of motion can be applied to a model, which
has assigned physical properties, to emulate the eff ects of various forces acting on
it. A simple example is that of a bouncing ball. A gravitational force applied to a ball
on a sloped surface makes it roll, drop off the edge, and bounce when it strikes the
ground below. Attributes such as mass, elasticity, and friction are input by the user
and the physics engine does the rest. A useful time saver for animators, the robust

 FIGURE 03.12

 A defl ating balloon represents the
concept of animated attributes.

Not only do the balloon ' s position
and rotation change over time, but

so do its size (scale), and surface
appearance (opacity).

1 2 3

4 5 6

63CHAPTER 03: ANIMATING BIOLOGY

onboard dynamics capabilities of a program like Maya can prove useful in the type of
predictive scientifi c modeling that we ’ re interested in exploring in this book. Where
the modeling requirements go beyond the capabilities of the onboard engines, Maya ’ s
programming tools let you develop the model to meet your needs.

 Lights
 Like a real stage, a digital stage is dark until you add lights. Most 3D applications off er
a suite of available lights that mimic those found on a movie set or in a photographer ’ s
studio. Th ese include spotlights, area lights, point lights, and infi nite lights among oth-
ers, but vary in actual name from application to application. For instance, a light bulb
is a point light in Maya but an omni light in Cinema 4D (another robust 3D animation
package developed by MAXON Computer GmbH of Germany). Th ere is usually a default
light to provide general illumination before you begin adding lights to a scene. Once
lights are added, the default is switched off . You may add as many or as few lights as you
wish, as you will see, and place them throughout the 3D space to best illuminate your
models to be seen from a given viewpoint. Lights can be colored and assigned a number
of attributes that produce special eff ects such as dappling or a visible beam of light.

 Shadows cast by lighted objects in a scene can be a very useful device for conveying
realism and for emphasizing spatial relationships within a scene. CGI shadows may
have hard or soft edges (as do real-world shadows) and are typically set and adjusted
within the controls for a given light.

 Good lighting is an art in itself, but a beginner can achieve a reasonably good eff ect
with the standard three-point lighting setup pictured in Figure 03.13 . Th is confi gura-
tion, often a starting point for photographers, involves a key light for primary illu-
mination, a fi ll light to “ fi ll in ” the potentially harsh shadows created by the key light ,
and a back light to add a highlit rim to the upper edges of objects and emphasize their
contours. Later on in the book you will set up and apply a three-point scheme in a
protein modeling project.

Key light

Back light

Fill light
(a)

SubjectCamera

Key light

Back light

Fill light

Subject

Camera(b)

 FIGURE 03.13

 A standard three-point lighting rig
involves a key , a fi ll , and a back light.
(a) Side view.
(b) Top view.

64 PART 1: SETTING THE STAGE

 Cameras
 In everyday life we use cameras to view and record models and action in our 3D envi-
ronment. Maya, like many other 3D animation tools, implements the same idea to
help you plan how you will depict the events of your 3D virtual world. When you
create a new scene in Maya, a default camera provides the view that you see. As you
maneuver in the space to get a desired view of the scene, you are actually translat-
ing, rotating, and perhaps zooming the Maya virtual camera through which you ’ re
looking. 3D cameras provide orthogonal and perspective views and have many of the
attributes of real cameras, such as exposure settings, lens angle, and focal length.
Th ese attributes, along with the camera ’ s translation and rotation, can be animated
and keyed for narrative purposes.

 Shading
In 3D CGI, shading refers to the combined eff ects of lighting, surface color, surface
texture, and geometry, determining the fi nal rendered appearance of your models.
When a Maya object is fi rst created it is assigned a default shader (also called a mate-
rial in Maya) with appearance attributes including color, opacity, and surface char-
acteristics like texture or a geometric pattern. Shaders can be created and applied to
objects in a number of ways to emulate real-world surfaces and, in some cases, vol-
umes such as glass or fog. Some approaches to shading focus on non-realistic appear-
ances, such as a pen and ink or cartoon (or toon) style (Figure 03.07).

 Rendering
 Th e production of images from a 3D scene is called rendering, a complex subject
which combines the eff ects of lights, cameras, and shading. Th e images are saved
as individual picture fi les or as a group in one movie fi le and can then be displayed
in succession using a viewing application or passed along for postproduction work.
Collectively, rendered images are often referred to as footage, borrowing from fi lm
terminology. Th e image format and pixel resolution of the footage are assigned in the
render settings of the 3D application, having been determined by the end purpose of
the animation. For example, you would usually require a diff erent format and reso-
lution for a small movie destined to be viewed in an Internet browser, compared to
a feature fi lm on a large screen. It is important to know the requirements prior to
setting up cameras and rendering, particularly if you ’ re creating an animation for an
established format such as NTSC or an existing web page. 3D applications provide a
range of standard formats and resolutions to choose from as well as custom settings.

 Render engines support a number of photorealism eff ects that may be of use in devel-
oping a look for your animation projects, including:

 • Sub-surface scattering , in which light penetrates a surface, scatters, and re-emerges
(as in real-world translucent materials such as skin and wax). Th is can create the
impression of translucent, gel-like substances.

 • Ambient occlusion , which models the decrease of ambient light where surfaces come
close together. Th is is a computationally inexpensive way to add a sense of real-
world light interaction and solidity to an object.

 • Global illumination , which is a computationally expensive way to model real-world
illumination, where light bounces diff usely around a scene and the color of one

 In recent years computer
graphics cards have improved

to the point where, in certain
cases, their output is suffi cient

for fi nal quality renders.
Programs like Maya have

embraced this possibility with
the option to render scenes using
the hardware renderer. Enabling
this option uses the power of the

hardware in modern graphics
cards (sometimes called GPUs,

for Graphics Processing Units) to
create the fi nal images, often in

a fraction of the time a software-
based render would take.

65CHAPTER 03: ANIMATING BIOLOGY

object can “ bleed ” onto another one nearby. One global illumination algorithm is
 radiosity .

 A simple approach to creating a photorealistic look of SEM in Maya, for example, is to
apply a material called a Ramp shader, that is controlled by the camera direction. Th is
technique was used to create the image in Figure 03.05b . You will meet the Ramp shader,
as well as shaders for the other eff ects discussed here, in Chapter 08 .

 Th ere are currently numerous rendering algorithms available to assist you in creating
non-photorealistic looks for your animations. Th ese NPR tools are available commer-
cial options (built in to production renderers like mental ray; see Chapter 11) and as
do-it-yourself shader techniques. Many NPR algorithms are designed to emulate tra-
ditional cel-based animation (which consisted of pen drawings on transparent acetate
 “ cels ” , with fl at or simply shaded color painted on the back) and are therefore referred
to as toon shader (from cartoon) or cel shader techniques.

 Whatever approach you choose in terms of the look of your fi lm, you will need an
effi cient strategy for producing your fi nal renders. Th is strategy should have two
components:

 1. Compositing plan . A computer animation scene, like the ones you see in fi lms and
on television, is rarely rendered as a single entity. Usually an individual frame is com-
posed of layers, numbering anywhere from two to tens (or even hundreds) of sepa-
rately rendered images. Sometimes the passes are composed of diff erent image planes
(e.g. foreground, midground, and background), sometimes they are of diff erent “ char-
acters ” (e.g. interacting proteins), and sometimes they are of individual image com-
ponents (e.g. texture color, shadow, and highlight passes). Th ere are very practical
reasons for this: some eff ects are too diffi cult or compute intensive to render directly
(e.g. depth-of-fi eld eff ects) and relatively easy to add at the compositing stage; and
changes are easier to make when only one component of a scene needs be re-rendered
rather than the whole scene. Also, by rendering elements like lights and shadows in
separate passes, they can be easily tweaked for maximum eff ect. While aff ording fl ex-
ibility, rendering multiple passes can be more time consuming than rendering just
one. Th e choice, therefore, will depend on available time, and the end use.

 2. Data management plan . Given the huge number of render fi les generated by the
typical animation project and the general practicality of rendering in multiple passes
(which can multiply the number of render fi les many times), it is essential to main-
tain a sane data management strategy. Th is has a number of components:

 • Project directory hierarchies are used to organize fi les by type. For example, Maya
will, by default, save rendered image fi les to the Images directory within your cur-
rent Maya Project folder (more on this in the next chapter).

 • File naming conventions help you keep track of your work and are important for
tracking fi le versions (e.g. myScene_001 , myScene_002 , and so on). Naming conven-
tions are especially helpful on larger projects where multiple users are sharing
fi les.

 • Multiple backups of essential fi les: the most important fi les in the production
phase are your Maya animation scene fi les and the fi les on which they depend (tex-
tures, ASCII data, embedded reference fi les); these should be redundantly backed
up, preferably with an off -site option. Final renderings are also important, but in a
crunch, they can be re-rendered from the scene fi les. In the postproduction phase,

66 PART 1: SETTING THE STAGE

your editing/compositing application project fi les are most important. Losing your
footage (render) fi les means re-rendering lost scenes; annoying and time consum-
ing, but not tragic. But losing your Maya scene and editing/compositing project
fi les would mean recreating the project from scratch.

Rendering can tax your computer system enormously, with a single frame taking
from as little as a few seconds to as long as 30 minutes or more to produce. Th e time
taken is a function of scene complexity, image resolution, available memory (RAM) ,
and processor speed among other factors. Commercial animation studios typically
employ an array of computers, called a render farm , to produce renderings more effi -
ciently. Imagine a 90 minute animated feature created at 30 fps, with each frame
taking an average of 10 minutes to render. Th is translates to 27,000 hours, or 1,125
days on a single computer! Th at ’ s over 3 years of non-stop computing, assuming there
are no errors and, therefore, a need to re-render some portion. It ’ s easy to see why
RAM and processors are at a premium when it comes to producing animated footage.
Don ’ t be discouraged, however. We routinely produce high-end rendered animations
on modestly powerful desktop PCs and Macs. Th roughout the book we will explore
diff erent rendering modalities that span a range of aesthetic and time-effi cient
possibilities.

 The 3D animatic or layout
 In some 3D animation production workfl ows, a further refi nement of the 2D animatic
is completed as an early stage of production. Th is is called the layout stage, or the 3D
animatic. Draft versions of key object geometry and sets are constructed in 3D and
camera movement and simple object motions are choreographed. Draft quality ren-
derings are set to a “ scratch ” (draft) soundtrack. Th e result off ers another opportu-
nity to confi rm the choices made in the earlier stages, or to refi ne the narrative fl ow
further. An added benefi t to the animator is the knowledge of exactly where cameras
are to be placed in each scene and the economy that can be realized by only build-
ing and refi ning things that will be seen by those cameras. Th ere is no use building a
whole street when you are only going to shoot one side of it.

 Th e 3D animatic is considered part of production since much of the work, especially the
camera positioning and animation, will survive in the fi nal version, even though the
sets and objects are usually substantially refi ned or completely replaced.

 Workfl ow stage 3: Postproduction
It is rare that an animation is in fi nal form when rendered from a program like Maya.
More often lengths of footage are produced and combined in an editing application
where other elements like sound and titles are added. It is here, in the postprocess-
ing (or just post) stage, that special eff ects usually are produced. In our workfl ow,
for example, we regularly use Adobe After Eff ects to composite and enhance the
appearance of our footage, and to add special eff ects, titles, narration, and music.
Compositing applications like Adobe After Eff ects, Discreet ’ s Combustion, and
Apple ’ s Shake are well suited to compositing and special eff ects work for short fi lms
and for individual shots within longer fi lms. While also a competent compositor, an
application like Apple ’ s Final Cut Pro is more oriented to editing and is well suited to
longer fi lms. It is not uncommon to use After Eff ects to produce segments of eff ects-
heavy footage and then composite all footage in an editor like Final Cut Pro to create
the assembled fi lm.

 Much of our rendering work
to date has been done on PCs

equipped with Pentium 4 or AMD
Athlon XP2700 processors and

typically 1 GB of RAM.

 At the time this book was
published, Apple Shake was

available for Mac OS X
and Linux systems only and

Adobe After Effects supported
Mac OS X and Windows

systems.

67CHAPTER 03: ANIMATING BIOLOGY

 Moreover, it is also common to render components of 3D animated scenes, such as the
background and foreground elements, in separate passes to be composited in post.
By rendering elements like lights and shadows in separate passes, they can be eas-
ily tweaked for maximum eff ect. If, however, they are rendered together in one pass,
they can only be adjusted within the 3D application and then re-rendered. While fl ex-
ible, rendering multiple passes is more time consuming than just one, and requires
competent fi le organization and management. Th e choice, therefore, will depend on
available time, and the end use.

 Regardless of the approach taken, your fi nal animation must be output from the edit-
ing application as a sequence of image fi les or as a self-contained movie fi le. Since
there is considerably less computer processing involved at this stage, the output or
 “ fi nal render ” from the editing or compositing stage (not to be confused with the 3D
animation rendering discussed above!) takes far less time than an average render
from a 3D application.

 Putting it all together
 Now that you have a sense of the computer animation workfl ow, it ’ s time to start
Maya and have a closer look at how crucial workfl ow steps like modeling, animation,
and rendering are tackled. Th e next part of the book will introduce you to Maya. We ’ ll
then have you writing MEL code and rendering your own animations. Onward!

 References
 1. Kerlow IV : Th e Art of 3D: Computer Animation and Eff ects, 3rd ed . John Wiley ,

 Hoboken, NJ , 2003 .

 2. Anderson J , Anderson B : Th e myth of persistence of vision revisited . Journal of Film
and Video 45 : 3 – 12 , 1993 .

 3. Winkenbach G, Salesin DH: Computer-generated pen-and-ink illustration. Proceedings
of the 21st Annual Conference on Computer Graphics and Interactive Techniques .
In Computer Graphics; Annual Conference Series, 28: 91–100, 1994.

 4. Saito T , Takahashi T : Comprehensible rendering of 3-D shapes . ACM SIGGRAPH
Computer Graphics Archive 24 : 197 – 206 , 1990 .

 5. Gooch B , Gooch A : Non-photorealistic Rendering. AK Peters , Natick , 2001 .

 6. Ryan TA , Schwartz CB : Speed of perception as a function of mode of representa-
tion . American Journal of Psychology 69 (60) , 1956 .

 7. Newman RM, Bussard N, Richards CJ: Integrating interactive 3-D diagrams into
hypermedia documentation. Proceedings of the 20th Annual International Conference
on Computer Documentation (SIGDOC 2002) , ACM Press, 2002, 122–126.

 8. Th e Visible Human Project (website): http://www.nlm.nih.gov/research/visible/
visible_human.html , accessed October 14, 2007.

Th is page intentionally left blank

Part 2
A foundation in Maya

Th is page intentionally left blank

04 Maya basics

72 PART 2: A FOUNDATION IN MAYA

 We wanted this book to be self-contained without just repeating what others have
communicated so well. Th e material in this part of this book is therefore intentionally
brief. Th ere are many excellent resources available for learning Maya, including the
Help library that comes with the software. Also, we encourage you to take advantage
of the resources listed in the Further reading section under the heading, Learning Maya .
 Getting started
 Th is chapter will get you started in Maya. We ’ ll begin with a quick description of
the diff erent Maya packages, followed by where to look for help and a listing of sys-
tem requirements, and then a description of Maya scene fi les and projects. Next we
provide a brief discussion of how Maya works behind the scenes. With these basics
out of the way, you ’ ll be ready to explore the user interface (UI), which we introduce
throughout the rest of the chapter.

 Maya Complete
 Maya Complete is the name given to the software package which contains the basic
modeling, animation, dynamics, and rendering functionality. It is also programmable
via the Maya Embedded Language (MEL) and Python scripting interface and the C � �
developer application programming interface (API).

 Maya Unlimited
 Maya Unlimited includes all of the Maya Complete functionality, with the addition of
software modules that enhance specifi c areas of the computer animation workfl ow. With
the release of Maya 2008, the following modules were included: hair; fl uid; fur; live; and
nCloth. Descriptions of these are available on Autodesk ’ s website and within Maya Help.

 Maya Personal Learning Edition
 Autodesk, the makers of Maya, provide a limited version of the software free-of-charge
for non-commercial use. Maya Personal Learning Edition (PLE) can be downloaded
from the Autodesk website at the following URL (current February 2008):

 http://usa.autodesk.com/adsk/servlet/index?siteID = 123112 & id = 7639525

 With this version of Maya you can be up and running in a matter of minutes. For a
list of limitations and restrictions to Maya PLE, follow the Questions & Answers link
on the above Web page. Among these limitations, the following should be noted with
regards to the material presented in this book:

 • Maya PLE uses a diff erent fi le type (.mp) than the commercial version of Maya
(.ma and .mb).

 • Maya PLE fi les cannot be opened in the commercial version of Maya.

 • Images rendered from Maya PLE bear a watermark.

 • Vector image formats cannot be rendered from Maya PLE.

 • Certain MEL commands cannot be run in Maya PLE. Th ose worth noting here are
 fopen and fwrite .

 • Certain fi le translators (for importing and exporting non-Maya fi le formats) are
not supported in Maya PLE.

73CHAPTER 04: MAYA BASICS

 System requirements
 Check the documentation accompanying the version of Maya you ’ re using for sys-
tem requirements. Autodesk provides information on their website regarding Maya-
qualifi ed hardware:

 http://www.autodesk.com/qual-charts

 The mouse
 We recommend using a 3-button mouse and have written instructions throughout
this book accordingly. In the text, we use the following abbreviations:

 LMB = left mouse button

 MMB = middle mouse button

 RMB = right mouse button

 The terms click and Double-click apply to the LMB.

 Monitors
If your budget and desk space allow, dual monitors are a good idea. Editing windows
can be placed on one screen, allowing you to maximize the view of your scene in the
main window on the other.

 Help and instructions
 As you learn to use the software, Maya ’ s Help Library (Figure 04.01) will be your single
greatest resource. It provides information, and often examples, for most of the pro-
gram ’ s features and functions. Frequently in the text, we will set down a Maya Help
reference where you can pick up more information on the current topic, with arrow
characters (→) separating links or titles as follows:

Maya Help → Using Maya → Tools, Menus, and Nodes → Main Window

 To launch Maya Help:

 Choose Help → Maya Help

 or

 press F1

You may also fi nd the Popup Help feature useful as you feel your way around the UI; it
is enabled by default the fi rst time you start Maya and will display a short description
of each tool and button that you pause over with your mouse.

 Th rough this and the subsequent chapters, we have written step-by-step instructions
as follows:

 1. Choose Create → Polygon Primitives → Cube .

 Figure 04.02 shows the menu selection corresponding to the above instruction. Th e
result is the creation of a polygonal cube model.

 Consult the Qualifi ed Hardware
lists on the Autodesk Maya
support website if you are
considering using Maya with a
small display. Some laptop and
tablet displays are too small
(smaller than 1280 � 1024) for
Maya and limit its usability.

 To enable or disable Popup
Tooltips , choose Help →Popup
Help . Popup Tooltips work only
on the active window. You make
a window (or editor) active by
clicking on it.

74 PART 2: A FOUNDATION IN MAYA

 Release notes
 You may encounter strange limitations in Maya ’ s performance, including UI oddi-
ties that are peculiar to a specifi c operating system. Th e Maya developers at Autodesk
often are aware of these problems before the software package is published and
include a list of known limitations along with suggested solutions (or work-arounds):

Release Notes

 Maya Help → Using Maya → General → Release Notes

 Hotkeys
 A hotkey , also known as a keyboard shortcut , performs a task with a single keystroke
or combination of keystrokes. Th is saves the time otherwise spent locating an item
with your mouse pointer. Useful hotkeys will be mentioned where appropriate. You
can create a custom hotkey for just about any operation in Maya, including the execu-
tion of MEL commands and whole scripts.

 In Windows, Linux, and IRIX, key combinations involve either the Ctrl or Alt key. Th e
Mac OS equivalents are the Command (or Apple) key and Option key, respectively.
Th e Shift key is common to all systems. For effi ciency, we use the Windows key nota-
tion throughout this book.

FIGURE 04.01

Maya Help can be accessed
using the F1 hotkey. References
throughout the text of this book

indicate the links to click on in the
Contents section. Keyword searches

return links in two categories:
Information and Tutorial.

75CHAPTER 04: MAYA BASICS

Hotkeys

 Maya Help → Using Maya → General → Basics → Basic Tools → Hotkeys

 User profi les
 Maya, when installed, automatically creates a profi le for each user account on the
computer. Figure 04.03 shows the directories and several of the fi les that make up a
user profi le, where Maya, by default, stores and retrieves fi les, including user prefer-
ences. Th e advantage to this setup is that users don ’ t require system administrator ’ s
access to use Maya and organize their fi les, and each user can have their own settings
for Maya.

 Start Maya
 To start Maya, do one of the following:

 Double-click the Maya desktop icon or the Maya application icon in your
program (or applications) directory.

or Type maya at a command prompt.

or In Windows, choose: Start → All Programs → Autodesk → Maya (version #)
→ Maya (Complete, Unlimited, or PLE, and version #).

FIGURE 04.02

Menu selections in Maya are
written as follows in the text:

Choose Create → Polygon
Primitives → Cube .

76 PART 2: A FOUNDATION IN MAYA

 The scene fi le
 In Maya, a scene is the 3D environment, including models, animation, lights, and
cameras, contained in one fi le. When you open a fi le in Maya, you open a scene. Scene
fi les are of two types:

1. Maya ASCII, denoted by the fi le extension .ma as in myNewScene.ma. A Maya
ASCII fi le, which is written in MEL script, can be opened and edited in a text
editing application. Th is comes in handy if a Scene fi le becomes corrupted
and will not open in Maya; it is often possible to track down and delete or
correct the off ending bit of code in a text editor, then resave the fi le and
attempt to open it again in Maya .

2. Maya Binary, denoted by the extension, .mb, as in myNewScene.mb. Binary fi les
are written in computer machine code and therefore cannot be easily edited
in a text application, the way ASCII fi les can. However, .mb fi les are generally
smaller than .ma fi les, so they take up less storage space on your hard drive,
and take less time to open, save, and render than .ma fi les do. We usually
work with Maya binary fi les but save backups in Maya ASCII format because
of the security the latter provides against corrupt fi les .

 Figure 04.04 shows excerpts from .ma and .mb versions of the same fi le.

 The Maya project
 Maya saves scene and related fi les in a projects directory on your hard disc. It is the
directory that Maya defaults to when saving or retrieving fi les. Multiple projects
directories can exist, but Maya will refer only to the one that has been specifi ed, either
by default the fi rst time you launch Maya, or by you as described below. Within the
projects directory, you have the option to create subdirectories to organize diff erent
fi le types that may be associated with your main Scene fi le. To create a new Project:

 1. Choose File → Project → New. This will open the Project window.

 2. Enter a name for your Project in the Name fi eld.

FIGURE 04.03

A user profi le consists of directories
and fi les specifi c to Maya for a

given user.

We recommend saving frequent
incremental backup versions of

a scene fi le as you work on it.
If the current version becomes

corrupted or you made a change
to the scene that you wish to

undo but can ’ t, you can simply
open the previous version of the

fi le and continue working.

77CHAPTER 04: MAYA BASICS

 3. Click Use Defaults to create default subdirectories

or Enter names only in the fi elds for which you want subdirectories created.

 For the projects and tutorials in this book, the confi guration shown in Figure
04.05 will suffi ce. You won ’ t require directories for the fi elds that have been
left blank because you won ’ t generate or read in the types of data typically
stored in those fi elds—at least with respect to the exercises in this book.

 Th e new project is created in the default Maya projects directory unless you navigate
to a preferred location using the Browse button before hitting Accept. By creating a

FIGURE 04.05

The New Project window. The
names in the text fi elds will be used
to create the directories in which
Maya writes and looks up fi les.

 FIGURE 04.04

 Excerpt from a Maya scene viewed
in a text editor:

(a) Maya ASCII format,

(b) Maya Binary format, and

(c) as seen in Maya.

(a) (b) (c)
FOR4[•šÈMayaFOR4[][¤HEADVERS[][]
ef[][MADE[][]undef[][CHNG[][]Wed,[A
:11:00[PM[][ICON[][]undef[][INFO[][]u
undef[][INCL[][]undef([]LUNI[][]cm[]T
[][]deg[FINF[][]application[maya[][]FI
t[Maya[Unlimited[7.0[]FINF[][version

icrosoft[Windows[XP[Service[Pack[2[
n[]PLUG[][]Mayatomr[7.0.1.14m[-[3.4
4[][¨XFRMCREA[][]persp[]DBL3[][]t[]¿ç

è[][DBL3[][]rp[]<Ð[][][]<[][][][<À[][][]D

spShape[persp[][FLGS[][]v[][DBLE[][]r

//Maya ASCII 8.5 scene
//Name: mayaCodeSample.ma
//Last modified: Sat, Nov 10, 2007 12:1
//Codeset: 1252
requires maya “8.5”;
currentUnit -l centimeter -a degree -t
fileInfo “application” “maya”;
fileInfo “product” “Maya Unlimited 8.5
fileInfo “version” “8.5”;
fileInfo “cutIdentifier” “200612162224-
fileInfo “osv” “Microsoft Windows XP S
createNode transform -s -n “persp”;

setAttr “.v” no;
setAttr “.t” -type “double3” 239 179

78 PART 2: A FOUNDATION IN MAYA

project, you have already begun exploring Maya ’ s UI. Th e next section puts the UI in
the context of how Maya works behind the scenes.

 How Maya works (briefl y)
 Th ough deep, Maya is designed to be remarkably transparent; its inner workings are
exposed for those who wish to explore beyond the basic UI tools. Our discussion of the
program architecture will lay the foundation for such an exploration and help you under-
stand what ’ s actually happening—with the models, cameras, lights, animation, and so
on—when you start pressing Maya ’ s buttons. While much of what follows here may seem
rather abstract to the Maya beginner, this is nonetheless the place to discuss it since it
concerns the foundation on which everything you will do in Maya is based. You may wish
to skim this section at fi rst, then come back to it after covering the rest of Part 02 .

 The Maya program architecture
 Th e underlying architecture of Maya is what sets it apart from other high-end 3D com-
puter graphics applications. It is arguably infi nitely fl exible and expandable, which is
a primary reason for choosing Maya as a platform for in silico biology. However, it is
possible to use Maya extensively without ever being aware of what ’ s going on beneath
the surface. Th is is a testament to Maya ’ s ease of use. Nonetheless, a basic knowledge
of the underlying structure will make your experience with Maya more meaningful,
and can pave the way to more advanced work with the program, including the develop-
ment of custom tools called plug-ins.

 The Dependency Graph and DG nodes
 In Maya, scene elements are represented by nodes connected to one another. Th e com-
plete network of nodes and their connections is called the Dependency Graph (DG, for
short), and the nodes themselves, DG nodes . Th e term dependency refers to the interde-
pendency of elements in the Maya scene. For example, the location of a moving cube
 depends on an input connection from an animation node which calculates its position.
Th e animation node in turn depends on a Time node in order to calculate its value(s).

 Th e DG essentially is the Maya scene. Most users interact with the DG using the win-
dows, menus, and tools of the UI. Figure 04.06 is a schematic illustration of the DG and
UI working together. When you perform an action through the UI, it is relayed as a
MEL command to the DG, where either a DG node is created and/or connected to
another.

 A DG node stores, sends, and receives information (or data) about an item in a Maya
scene. Data is stored in attributes which can be connected to the attributes of other
nodes in order to send or receive information. Th ere are many types of attributes,
each storing specifi c information, such as the color of an object or the brightness of
a light. In many cases, a node performs calculations on the data it receives (through
input attributes) to produce the data it sends (through output attributes). Figure 04.07
is a schematic representation of a simple DG node. Maya allows great fl exibility for
viewing and interacting with the DG nodes and their attributes. Figure 04.08 shows
three UI windows with diff erent views of the same node and its attributes.

From the software engineer ’ s point of view, working in Maya might be said to
boil down to creating nodes, then setting and interconnecting their attributes.
For example, Figure 04.09 shows the DG nodes that are created and connected when you

79CHAPTER 04: MAYA BASICS

Windows
Menus
Tools

MEL script
MEL command

engine

Plug-ins
Changes to the DG are

reflected in the UI

User Interface Dependency
Graph

DG
node

FIGURE 04.06

The Maya UI translates user input
through MEL commands to the
DG. Updates to the DG are in turn
refl ected in the UI.

DG node

Attribute A

Function

Data In
(upstream)

Attribute B

Attribute D

Data Out
(downstream)

Attribute C

FIGURE 04.07

Schematic representation of
a simple DG node. Attributes
store data. Functions calculate
new data. Data coming into a
node is commonly referred to
as “upstream”. Data leaving is
“downstream”.

(a) (b) (c)

FIGURE 04.08

One node, as represented by:

(a) the Hypergraph

(b) the Attribute Editor

(c) the Connection Editor.

80 PART 2: A FOUNDATION IN MAYA

make a sphere model in Maya. Most items in a scene, including the sphere, are repre-
sented by at least two nodes, called the transform and shape nodes. Th ere is only one
type of transform node, which is used by all objects, cameras, and lights in a scene.
Transform node attributes store the position (or translation), rotation, scale, and
visibility of an item. In contrast, there are many types of shape node, each of which
stores attributes peculiar to the entity it represents. Figure 04.10 shows the transform
and shape nodes of a camera, as represented in the Attribute Editor, a tool you will
use a lot for working with nodes in Maya. Note the translation, rotation, scale, and
visibility attributes of the transform node. Th is shape node contains attributes
unique to a camera, such as Focal Length and Camera Aperture.

 Construction history
 When combined, any number of nodes used to create an object—the sphere from
 Figure 04.09 , for example—make up that object ’ s construction history. As long as
this network of history nodes remains intact, their attributes can be edited to
change some feature of the sphere. Th e node called polySphere1 contains creation
attributes—those that you set when you made the sphere. As long as polySphere1

FIGURE 04.09

The DG nodes that represent a
polygon sphere are displayed in
the Hypergraph as boxes. When

selected, a node turns yellow, as is
the case for pSphere1.

The Attribute Editor is one
of many editors that allow

interaction with the elements of
a Maya scene. You ’ ll see more of

it in the next section.

FIGURE 04.10

 The Transform node (left) and
Shape node (right) of a camera, as

displayed in the Attribute Editor.

81CHAPTER 04: MAYA BASICS

remains connected to the shape node, pSphereShape1, you can change the radius of
the sphere, for example. As soon as that connection is broken, by deleting history for
the sphere, you can no longer edit the radius. Construction history is a powerful fea-
ture of Maya ’ s architecture: you can alter any node in the history network, and the
object updates automatically.

 As you work in Maya, you will become familiar with nodes and how to set and con-
nect their attributes. You can work with nodes through the standard UI tools, through
MEL scripting, or directly in the Hypergraph. We will explore the DG a little further in
 Chapter 05 , using a graphical representation called the Hypergraph (Figure 04.09).

The DG

 Maya Help → Using Maya → General → Basics → Nodes and attributes →
Dependency Graph

 Scene hierarchy and the DAG
In addition to the DG, which maps the interdependency of nodes and their attributes,
Maya uses a system of connections among transform nodes called the scene hierarchy .
Th ere are two types of relationship in the hierarchy. Th ese are parent/child and group
relationships, and they aff ect how items in your scene relate spatially to one another.
An example of these hierarchical relationships is shown in Figure 04.11 . pSphere1 (short
for polygon sphere 1) is a child of pCube1, and pCube1 is the parent of pSphere1. Both
pCube1 and pCube2 are “ grouped ” together under group1. It can also be said that the
cubes are children of group1. Th e scene hierarchy is represented graphically by the
 Directed Acyclic Graph (DAG), which is viewed through the Hypergraph (Figure 04.11).

 When a parent is transformed (translated, rotated, or scaled), so are its children.
A child may also be transformed relative to the transform of its parent. Th ese features
of parent/child relationships are used extensively in computer animation, enabling
the build up of complex relative motion. One everyday example of parent/child hier-
archy concerns a wristwatch. Th e hands, which are children of the watch move rela-
tive to it. Th e watch in turn is a child of the wrist of its wearer, which is a child of the
wearer ’ s body. As the wearer walks down the street, the motion of the hands rela-
tive to the ground is considerably complex—a formidable kinematics problem—but

In 3D computer graphics, the
term parenting refers to making
one item the child of another.

(a) (b)

 FIGURE 04.11

 Scene hierarchy (parent/child and
group relationships) is displayed
graphically in both the

(a) Outliner, and

(b) as the DAG in the Hypergraph.

82 PART 2: A FOUNDATION IN MAYA

this motion was brought about by simple hierarchical relationships. We will exploit
parenting in the upcoming tutorials and projects.

Scene hierarchy

 Maya Help → Using Maya → General → Basics → Nodes and attributes →
Scene hierarchy

 The DG, DAG, and biology
 It has not escaped our notice that the DG bears striking similarities to biochemical reac-
tion pathway diagrams familiar to biochemists, both visibly and conceptually (Figure
04.12). In the latter, nodes represent specifi c molecules and the connecting lines, poten-
tial reactions between molecules. Similarly, processes in cell development and inter-
action, can be mapped as interconnected nodes. Parallels can also be drawn between
Maya ’ s transform hierarchy and hierarchical organization in biology. For example, the
compartmentalization of functional groups of molecules within cells and the arrange-
ment of cells into tissues bears resemblance to the parent/child and group relationships
in a Maya scene (Figure 04.11). It is with these ideas in mind that we are exploring the
application of Maya ’ s programmable architecture to problems in cell biology.

 Maya ’ s UI
 A logical way to start exploring Maya is with a tour of the graphical UI. Its main ele-
ments are labeled in Figure 04.13 . In addition to a view of the 3D digital stage, which
Maya calls the workspace, you have access to many menus, tools, and controls. Th e
items that are labeled will be introduced below, while others will be described only as

FIGURE 04.12

Molecular interaction and reaction
pathway diagrams share visual and

conceptual similarities with the
underlying organization of a scene

in Maya.

(a) A scene represented in the
Hypergraph.

(b) Molecular interaction pathways
involved in the regulation of the
actin cytoskeleton. Detail from

“Regulation of actin cytoskeleton”
KEGG Pathway Database: http://

www.genome.jp/kegg/pathway/hsa/
hsa04810.html. Accessed January
20, 2008. Kanehisa Laboratories in

the Bioinformatics Center of Kyoto
University and the Human Genome

Center of the University of Tokyo.
Used with permission.

© Copyright and courtesy
Bioinformatics Center, Institute

for Chemical Research, Kyoto
University.

(a) (b)

83CHAPTER 04: MAYA BASICS

needed as they arise in the tutorials and projects. Furthermore, the UI may be cus-
tomized in a number of ways to suit specifi c requirements. UI customization is dis-
cussed briefl y in the Hotbox, Toolbox, and Preferences sections.

 If a UI Element in Figure 04.13 was not visible after you started Maya, it may have been
hidden the last time Maya was used. You can hide and display an element in the fol-
lowing way:

 1. In the Main menu bar, choose Display → UI Elements.

 2. Select the item you wish to hide or display. A check mark appears next to
ones that are already displayed.

 Alternately, you can hide or show all UI Elements or restore the default UI display by
selecting Hide UI Elements, Show UI Elements, or Restore UI Elements, respectively.

 Title bar
 Th e fi le name and the path as well as the name of the currently selected item are dis-
played in this space.

 Main menu bar
 As you work in Maya, you will encounter many tools and editors . Tools let you transform
and otherwise manipulate items in a scene, while editors give you access to tool set-
tings, item attributes, and software functionality. All of Maya ’ s tools and editors can be
accessed through the UI ’ s pull-down menus. Th e icons arranged around the UI simply
off er quicker access to many of the tools and actions represented in the menus. Th ere

Main menu
bar

Workspace
(panel)

Panel menus

Time SliderRange Slider

Playback controls

Status line

Shelves

Toolbox

Command
Line

Preferences button
Script Editor button

Channel Box

Layer Editor
Layout shortcuts

Grid

Help Line
FIGURE 04.13

The Maya UI.

84 PART 2: A FOUNDATION IN MAYA

are four main menu sets (more if you purchased extra modules or the Unlimited version
of Maya) which are displayed, one at a time, along the Main Menu bar at the top of the
interface. Th ey are Animation, Polygons, Surfaces, Dynamics, and Rendering, and each
corresponds to a specifi c software module, or more generally, to a collection of like tasks.

 Th ere are seven pull-down menus (File, Edit, Modify, Create, Display, Window, and
Help) that are common to all menu sets, while the remaining pull-down menus con-
tain items specifi c to each set. To switch between menu sets, say from Animation to
Modeling, use the menu at the far left of the Status Line.

 Alternately you can use a hotkey to bring up each set:

 F2 for Animation

 F3 for Polygons

 F4 for Surfaces

 F5 for Dynamics

 (The Rendering menu set does not have a default hotkey)

Hotkey Editor

 Maya Help → Using Maya → General → Basics → Basic Windows and Editors
→ Hotkey Editor

 Each time you launch Maya, it loads all of the licensed software modules. Each mod-
ule takes up memory (RAM) on your computer. You can disable any of these modules
(e.g. Dynamics, Hair, or Fur) so that it doesn ’ t load automatically on Maya startup,
and therefore saves memory. To disable a software module:

 1. Choose Window → Settings/Preferences → Preferences.

 2. Under Categories → Modules → Load on Startup, uncheck the box next to
the module you wish to disable. To enable a module, check its box.

 Working with menus
 Menus are critical to how tools and actions are accessed in Maya. Th e following descrip-
tions will help you take advantage of built features that enhance menu usability.

 Tear Off menus
 Many individual menus in Maya can be “ torn off ” so that they remain open, with
their contents easily accessible, and can be positioned anywhere on the screen. Th e
Tear Off option is indicated at the top of the menu by a double line in Windows and a
dotted line in Mac OS.

 Marking menus
 Th ese are customizable menus that can be accessed from anywhere in the interface.
In addition to accessing Maya ’ s built-in tools and actions, you can tailor the Marking
menus to execute custom scripts. Th is can be useful in a modeling application in
which you use a script to execute a series of repetitive tasks. With a custom Marking
menu you could, for example, execute the script easily from wherever your mouse
pointer happened to be.

85CHAPTER 04: MAYA BASICS

Marking menus

 Maya Help → Using Maya → General → Basics → Interface overview →
Maya ’ s Interface → Marking menus

 Hotbox
 Th e Hotbox (Figure 04.14) can display all of Maya ’ s menus at once, giving you access to
every tool and editor. To access it, press and hold the space bar. It will pop up wher-
ever your mouse cursor happens to be. You can load the Hotbox with as many or as
few menus, standard and custom, as you like. When you ’ re comfortable with it, you
can hide most of the standard UI Elements (such as tool and menu bars) to reduce
screen clutter and increase your visible workspace, using only the Hotbox to access
the menus. To hide or show UI Elements:

 1. Choose Display → UI Elements.

 2. Elements that are currently displayed have check marks beside them.
Choosing an element changes its status from displayed to hidden or vice
versa.

 To customize the Hotbox contents:

 1. Press and hold the space bar to bring up the Hotbox.

 2. Move your mouse pointer over Hotbox Controls.

 3. Choose from the many display/hide options.

FIGURE 04.14

The Hotbox provides access to all
menus available through the UI. It is
activated by pressing the space bar
and appears wherever the cursor is.

86 PART 2: A FOUNDATION IN MAYA

To customize the Hotbox

 Maya Help → Using Maya → General → Basics → Preferences and customiza-
tion → Customize Marking menus and the Hotbox → Customize the Hotbox

 Option boxes
 Many menu items are followed by the option box symbol, . When chosen, this
launches a window containing options for the selected tool or command. When it is not
chosen, Maya applies the options that were most recently set—often the default values.

 Status Line
 Th e Status Line provides easy access to a variety of controls for the interface, for man-
aging your scene, and for modeling and rendering. Th ese items, as with most in the
UI, can also be accessed through the pull-down menus and the Hotbox. In the Status
Line, they are arranged in groups that can be collapsed and expanded by clicking on
the vertical bars. At the far left of the Status Line is the menu with which you choose
a software module: Animation, Dynamics, Polygons, Surfaces, or Rendering.

 Shelves
 Shelves are a means of organizing tools and actions for quick access. Maya comes
with a number of prestocked shelves to which you can add more items. For exam-
ple, the Surfaces shelf displays buttons used to create each of the NURBS geometry
primitives—sphere, cube cylinder, cone, plane, and torus—along with tools to edit
and manipulate these surfaces. You can also create your own custom shelves for easy
access to menus, palettes, tools, and actions that you use frequently. In the following
example you will create a custom shelf to which you ’ ll add the Outliner, a window
that you will use often in Maya.

 1. By default, Shelves will be displayed in the UI (Figure 04.13). If they are not vis-
ible, choose Display → UI Elements → Shelf.

 2. Choose Window → Settings/Preferences → Shelf Editor.

FIGURE 04.15

(a) Creating a custom shelf and

(b) adding an Outliner button to it.
(a) (b)

87CHAPTER 04: MAYA BASICS

 3. In the Shelves editor, select the Shelves tab. Click on New Shelf (Figure 04.15a)
and type Custom in the Name fi eld. A new empty shelf called Custom should
appear alongside the existing ones. Notice that you can rename or delete any
Shelf using this palette.

 4. Click on Save All Shelves.

 5. Click on the tab for the new Custom Shelf in the main window to make it the
active shelf.

 6. Press and hold Ctrl+Shift while you choose Window → Outliner (Figure 04.15b).
Release the mouse button, then the keys.

 This adds the Outliner to your Shelf—a new icon will appear.

 Follow the same procedure to add any menu item to a Shelf. In Chapter 12 , you ’ ll
create a shelf button to execute specifi c a MEL.

 7. Click on the icon at any time to bring up the Outliner palette.

Working with Shelves

 Maya Help → Using Maya → General → Basics → Preferences and customiza-
tion → Customize Marking menus and the Hotbox → Customize shelves

 Outliner
 Th e Outliner is one the most commonly used windows in the Maya UI. It lists the
objects, cameras, and lights in your Maya scene and enables you to easily select and
organize them into hierarchies. While not a default UI Element, you will benefi t from
having the Outliner (Figure 04.16) close at hand—which is why you added it to your cus-
tom shelf. To open it, do one of the following:

 Click on the icon as described above in your Custom shelf.

or From the Main menu bar, choose Window → Outliner.

 Unless you ’ ve added any objects to your new scene, the Outliner will only contain the
default cameras, light set, and object set. We will use the Outliner and explain hierar-
chies in one of the upcoming tutorials.

FIGURE 04.16

The Outliner lists the objects, lights
and cameras in a scene.

88 PART 2: A FOUNDATION IN MAYA

Outliner

 Maya Help → Using Maya → General → Basics → Basics Windows and Editors
→ Outliner

 Workspace and the Panel menus
 Th e workspace is the part of the UI that displays the 3D scene (Figure 04.17). Within it
you view and manipulate objects, cameras, lights, and other elements of a scene. It
contains one or more panels . A panel can contain a view of your scene through a cam-
era—which we call a scene view —or any one of Maya ’ s many windows and editors.

 The active panel
Within the workspace, the active panel is the one with a blue box around it (e.g. top-
right panel in Figure 04.17). Only the active panel responds when you move the scene
view by tumbling the camera. You make a panel active by clicking anywhere inside it,
or on its menu bar. You can toggle between a multi-panel arrangement, like that in
 Figure 04.17 , and a full-workspace view of a single panel. To toggle between views:

 Move your mouse pointer over top of the view you want to toggle and hit the
Space bar.

 Panel menus
 Th ese menus, at the top-left of the workspace, contain a number of settings that
determine what is shown in the workspace, including options for cameras and

 Hotkeys will only work
if a panel is active.

The Workspace

panels

FIGURE 04.17

The workspace with four panels
displayed. A blue outline indicates

the active panel (upper right).

89CHAPTER 04: MAYA BASICS

lights, and for the way that Maya displays various items. Below we describe the more
commonly used items from the Shading, Lighting, and View menus. We will discuss
the remaining functions and menus only as they are needed to assist you with the
book ’ s tutorials and projects.

Panel menus

 Maya Help → Using Maya → General → Basics → Basics menus → Panel
menus

 Shading menu
Th is menu (Figure 04.18a) is used to set the type of interactive shading used;
in other words, how objects will appear as you interact with them in the workspace.
Your selection here has no eff ect on how objects will appear when rendered , but
can impact the speed with which you work as it relates to the video refresh limita-
tions of your computer. In general, it takes more graphics computing power to dis-
play smooth shading and color than it does to display wireframe, bounding boxes,
or points. It is common practice to switch between modes regularly as your needs
change during a work session. Th e fi rst eight Shading menu items are the most
relevant presently and are explained below. Th e remaining items are explained in the
Help Library:

 Wireframe displays polygon edges for polygonal objects and isoparametric curves
(or isoparms) for NURBS objects. For navigating in complex scenes, this mode
allows considerably faster interaction than smooth shading.

FIGURE 04.18

The Panel menus:

(a) Shading menu,

(b) Lighting menu,

(c) Panels menu.
(a)

(b)

(c)

Wireframe mode hotkey: 4

90 PART 2: A FOUNDATION IN MAYA

 Smooth Shade All shows objects closer to how they ’ ll appear when rendered, with
surface color and tone.

 Smooth Shade Selected Items same as above for selected items only.

 Flat Shade All displays surface color but lacks the smooth surface appearance of
smooth shading and therefore is faster to refresh than smooth shading.

 Flat Shade Selected Items same as above for selected items only.

 Bounding Box represents each item in a scene with a wireframe box defi ned by
the item ’ s bounding volume. It is very quick to redraw and therefore useful when
navigating in complex scenes.

 Points diplays the surface vertices of an object. Th is mode is second only to
Bounding Box mode for speed.

 Hardware Texturing displays textures applied to objects, that would otherwise
appear only when the scene is rendered. Th is is useful for orienting the place-
ment of a texture on a surface in the scene view.

 Figure 04.19 shows a model of a torus, viewed with each of the eight interactive shading
modes.

 Lighting menu
 Th ere is one item on this menu (Figure 04.18b) that we use regularly:

 Use All Lights shows the eff ect, on objects, of lights that you have added to a scene.
It can be used in conjunction with Smooth Shade, Flat Shade, and Hardware
Texturing from the Shading menu.

 Panels menu
 Th e fi rst three items on this menu (Figure 04.18c) let you select a camera through which
to view your scene.

 Hardware texturing hotkey: 6

 The hotkey 7 toggles between
Use Default Lighting and Use All

Lights.

Smooth shade mode hotkey: 5

FIGURE 04.19

A polygon torus as displayed in the
eight interactive shading modes:

(a) Wireframe

(b) Smooth Shade

(c) Smooth Shade with High Quality
Rendering enabled

(d) Flat Shade

(e) Bounding Box

(f) Points

(g) Hardware Texturing with Use
Default Lighting enabled. The

previous modes didn’t display the
assigned texture, a checkered

pattern.

(h) Hardware Texturing with Use All
Lights enabled.

(a) (b) (c) (d)

(e) (f) (g) (h)

91CHAPTER 04: MAYA BASICS

 Perspective cameras display your scene with a visual distortion similar to that
which we see through a camera or the naked eye. Th e degree of distortion is
determined by the focal length of the camera specifi ed in the camera settings.
Th e default Perspective camera is called persp .

 Orthographic cameras show no distortion due to perspective. We often use mul-
tiple orthographic views to position objects precisely in 3D space. Th e default
orthographic cameras are called front, side , and top . Th e default side view is called
 Right Side , with the camera pointed in the negative X-direction.

 Look Through Selected creates a perspective view along the Z-axis (described below)
of the currently selected item (not necessarily a camera). Th is feature is handy
when you need one item to point at another, such as a spot light to shine on a
model; by viewing the scene through the light, you can center it on the model.

 Th e remaining Panel menu items allow you to set panel contents to an item other
than a camera view, and to confi gure panel layouts.

 Panel lets you choose an editor or window to display in the current panel.

 Hypergraph panel displays the Hypergraph—showing either DG relationships or
scene hierarchy.

 Layouts lists the possible arrangements of panels (called panes in the menu). Th e
layout in Figure 04.17 has four panels: a perspective camera (top right); a top-view
orthogonal camera; a front-view orthographic camera; and the Graph Editor,
which will be described subsequently.

 Saved Layouts contains preset arrangements of camera views, editors, and other
windows. Several of these layouts can also be accessed using the Layout shortcut
buttons in the toolbox (Figure 04.13) .

 Tear Off detaches the scene panel from the rest of the Maya interface.

 Tear Off Copy creates a free-fl oating copy of the scene panel. Th e panel that was
copied remains intergrated with the rest of the UI.

 Panel Editor allows you to create new panels and customize layouts.

 Th e space bar is a hotkey for toggling between single- and multi-panel layouts. With a
multi-panel view displayed, placing your cursor over a single panel and quickly strik-
ing the space bar will enlarge just that panel. Striking it again will return the multi-
panel layout. Th is is a useful way to quickly enlarge the display to get a closer look at
an object in a particular view.

 The XYZ coordinate system and vectors
 In Maya, every object is located in 3D space according to its distance along the
 X-, Y-, and Z-axis , with its position described by a vector, using the notation, (X, Y, Z).
Th e vector (0, 0, 0) is called the world origin , which is represented in the workspace by
the centre of the grid in your scene (Figure 04.20). Th ree-dimensional vectors are used to
describe translation, rotation, and scale of objects, as well as RGB (for the Red, Green,

 To select other orthographic
views, such as Left Side and
Bottom, or to reset a view to its
default settings, choose View →
Predefi ned Bookmarks → , then
make your selection.

 While you ’ re getting used to
Maya, we recommend using the
default four panes layout. As
we go along, we ’ ll show you our
favorite layouts for biomolecular
and cellular work.

92 PART 2: A FOUNDATION IN MAYA

and Blue color system) colors in Maya. Much of what Maya does behind the scenes to
transform objects relative to one another is performed by vector mathematics.

 Th ere are two coordinate systems in Maya, called world coordinates and local coordi-
nates. Th ere is only one set of world coordinates , centered at the world origin , whereas
every item in a scene has its own local coordinate system, centered at the origin of the
item in question—like the hands of the wristwatch in our example on page 81. When
an item, such as a sphere, is translated or rotated, so to are its local coordinates; they
move with it. Th e world coordinates remain fi xed to the origin of the scene but appear
to move as you move the view around. Th is is because you are moving the camera,
through which the scene is viewed, relative to the world coordinates .

 The Up axis
 Coordinates in Maya can use either a Y or a Z Up axis , indicating which axis corre-
sponds to the vertical direction. In 3D modeling programs, animators typically use
Y Up, whereas those involved in industrial and engineering design, and medical
imaging generally work with Z Up . When using Y Up, the Z-axis represents depth.
Conversely, when using Z Up, the Y-axis represents depth. In both cases, the X-axis
corresponds to the horizontal direction. To change between the two, choose :

 1. Window → Settings/Preferences → Preferences → Settings.

 2. Under World Coordinate System, select Y or Z.

 Axis indicators
 World coordinates are represented by global axes indicators. Th ese can be displayed at
the bottom left corner of the scene view, where they ’ re called the View Axis , or at the
world origin, where they ’ re called the Origin Axis . Local coordinates are represented

Local Axes

Origin Axes

View Axes

FIGURE 04.20

Local and world coordinates in
Maya are represented by axis

indicators. Red, green, and blue are
used throughout Maya for the X-, Y-,

and Z-axis, respectively.

 Maya creates new objects as if
they were Y Up, regardless of the
Up Axis settings. In a Z Up world,

a new objects is essentially
rotated so that its Y-axis is

horizontal.

93CHAPTER 04: MAYA BASICS

by the Local Axis . Th ese indicators will help you stay oriented as you move objects and
navigate with your camera through 3D space.

 UV coordinates
 Maya uses another coordinate system for locating textures and materials on surfaces.
Th is is the 2D UV system, which maps out an object ’ s surface. In character modeling
for the entertainment industry, an understanding of UVs is important. However, the
in silico workfl ow requires a minimal working knowledge of them. UVs will be intro-
duced in Chapter 11 Rendering .

 Navigation: Viewing the scene through a camera
 When you start Maya, you ’ re shown a view of the scene through the default perspec-
tive (or persp) camera. In order to look around the scene, you move the camera. You
can move a camera in several ways. Th e most natural and spontaneous is to tumble,
track, and dolly the camera using your mouse (Figure 04.21). To tumble is to rotate about
the vertical and horizontal axes. To track is to move the camera up and down and side
to side. Dollying moves the camera toward or away from its subject, along its Z-axis
(or Y-axis if you are using Z Up coordinates). Table 04.01 lists the keyboard/mouse com-
binations used for these camera movements.

Tumble
(rotate about y- or z-axis)

Track
(translate along y- or z-axis)

Dolly
(translate along x-axis)

FIGURE 04.21

3D camera movements.

 Hold Drag Camera move

 Alt LMB Tumble (will not work for orthographic views unless you
uncheck Locked in the Tumble Tool settings)

 Alt MMB Track

 Alt RMB Dolly

 Alt LMB �MMB Dolly

Ctrl � Alt LMB Bounding box dolly draws a marquee (rectangular
lasso) around the area in your scene that you wish to
dolly in to or out from. This has a similar effect to “zoom”
tools in other graphics software.

TABLE 04.01

Keyboard/mouse combinations used
to view a scene through a camera.

94 PART 2: A FOUNDATION IN MAYA

Time Slider Range Slider

Command Line

Current time Playback Controls

Command entry field Results field Show Script
Editor button

FIGURE 04.23

Time Slider, Range Slider, Playback
controls, and Command Line. The

current time is indicated by the
black bar in the Time Slider. Vertical

red lines indicate keyframes. The
Command Line has three parts to

it. The left fi eld is for entering MEL
commands, the right is where Maya

reports results and messages, and
the button on the far launches the

Script Editor.

Select Tool (Q)

Lasso Tool

Pain Selection Tool

Move Tool (W)

Rotate Tool (E)

Scale Tool (R)

Universal Manipulator (CTRL + T)

Soft Modification Tool

Show Manipulator Tool (T)

Last tool used (y)

FIGURE 04.22

Transform tools are available in the
Toolbox. Hotkeys are indicated in

parentheses.

 Toolbox
 In addition to the Quick Layout buttons mentioned above, the toolbox (Figure 04.22)
contains tools commonly used for selecting and transforming items in your scene.
You will use each of the tools in Tutorial 1 .

 Time Slider, Range Slider, and Playback controls
 Th ese items are used to control the timing and playback of animation in your
scene. Th e Time Slider (Figure 04.23) displays the timeline, measured in frames, the
current time, and the playback (or transport) controls. You can manually move along
the timeline in one of the following ways:

 Enter the desired frame number it in the current time box.

or LMB + click anywhere along the timeline—the current time indicator will
jump to that spot.

or LMB + drag or MMB+drag the current time indicator.

95CHAPTER 04: MAYA BASICS

 Th e Range Slider is used to set the playback range that is displayed in the Time Slider.
It is with the Range Slider that you set the animation start time and end time and the
playback range that is displayed in the Time Slider. For example, when creating a three
second animation at 30 fps (i.e. 90 frames), you would input 1 for the animation start
time and 90 for the end time. To focus on only the fi rst 30 frames, input 1 for the play-
back start time and 30 for the playback end time, or just drag the ends of the Range
Slider bar to these values. Now when you scrub the timeline (see side-bar, this page) or
use the playback controls you will be confi ned to the fi rst 30 frames of your animation.
To widen your playback range, simply drag the Range Slider bar ends or input a larger
playback end time.

Th e playback controls (Table 04.02) are for playing and for stepping through an anima-
tion, and work much like the controls on a home DVD player. Th ey are active within
the range set in the Range Slider .

 The Command Line and the Script Editor
 You can enter single lines of MEL code in the left half of the Command Line (Figure
04.23). Th e right half displays system responses, warnings, and error messages. To
scroll through previously entered lines, use the up and down arrow keys.

 A more eff ective way to deal with multiple lines of MEL code is through the Script
Editor. It can be launched with the icon at the far right of the Command Line, or
by choosing :

 Window → General editors → Script Editor

 We will cover the Script Editor in some detail in Chapter 12 .

 Preferences
 Maya stores UI and general application settings in a fi le called userPrefs.mel. Th e
application reads this fi le each time you start the software and rewrites it when
you click Save in the Preferences Window. Certain preference settings allow you
to customize the UI to suit your requirements. Th ese include the option to turn UI
Elements on and off and to specify how certain ones are displayed. For example, we
fi nd it preferable to have Maya open the Attribute Editor and Tool Settings (both of
which are described subsequently) in separate windows rather than embedding them
in the main Maya Window, which is the default action. An embedded window causes

 Unlike a clock which starts
at zero seconds, animations
typically start at frame 1. A
project that began at frame 0
and ended at frame 90 , would
actually contain 91 frames —
more than the three seconds
of animation you intended to
create.

Button Function

Jump to the start or end of the playback range

Step backward or forward one frame at a time

Step backward or forward one keyframe

Play forward or backward. ESC key will stop the playback

Stop playback (replaces play button during playback)

 TABLE 04.02

 Playback controls.

 Dragging the current time
indicator along the timeline
is commonly referred to as
scrubbing . You can scrub the
timeline to see how an animation
looks in the scene view.

96 PART 2: A FOUNDATION IN MAYA

undesirable resizing of the workspace each time it is launched. To set the Attribute
Editor and Tools Settings to open in windows separate from the main one:

 1. Choose Window → Settings/Preferences → Preferences.

or LMB + click the icon at the bottom right of the interface.

 2. Under Categories, choose Interface.

 3. For Open Attribute Editor, click the radio button for In Separate Window.

 4. Do the same for Open Tool Settings.

 Before clicking Save or Cancel, take a look at the other options available under UI
Elements. Th ey enable you to show or hide certain elements in the UI. Notice that
Attribute Editor and Tool Settings are turned off and Channel Box/Layer Editor is on
by default. Maya will let you select only one of these three windows. Th is just means
that the other two won ’ t be displayed until called upon, which is a way to reduce desk-
top clutter. UI Elements can also be displayed or hidden as follows:

 1. Select UI elements.

 2. Check or uncheck the box next to the item you want to show or hide,
respectively.

 Under UI elements, you ’ ll also fi nd Panel Confi gurations. Th ese settings determine
how the workspace panels are laid out when you start Maya and open a new fi le.

 Under Display, you ’ ll see Performance and View options, including ones that deter-
mine how specifi c items are displayed. Under the heading, Settings, you will set one
option for now:

 1. Choose Undo from the Categories list.

 2. Beside Undo, click the On button (if it ’ s not already selected).

 3. Beside Queue, click the Infi nite button. Infi nite undos can potentially use a
lot of memory. In most cases this won ’ t be problem and the extra undos can
come in handy. However, you may want to set the Queue back to Finite when
running a memory intensive animation.

 Finally, under Modules you can tell Maya what to load on startup. Loading modules
ties up RAM and can increase startup time. Disabling ones that you don ’ t plan to use
alleviates this.

 When you are satisfi ed with the Preferences settings, hit Save. You can, at any time,
open Preferences and change the settings. We will cover additional preferences as
they are needed throughout the book. For more information, refer to:

Using Preferences

 Maya Help → Using Maya → General → Basics → Basic Windows and Editors
→ Preferences

 Layer editors
 Layers provide a way of organizing items that is independent of the scene hierarchy.
Once a group of objects is added to a layer, they can be hidden by turning it off . Th ere

97CHAPTER 04: MAYA BASICS

are two types of layer: Display and Render . Display layers can be viewed in normal,
template (T), or reference (R) mode. Template mode displays objects using wire-
frame shading and protects them from being selected or modifi ed in the scene view.
Reference also protects objects from being modifi ed, but displays them in the regu-
lar scene view shading mode. Figure 04.24 shows the result of setting a Display layer to
Template mode.

 Render layers are used to organize lights, cameras, objects, and shaders into separate
rendering passes, for later assembly in a compositing program.

Display Layer Editor

 Maya Help → Using Maya → General → Basics → Basic Windows and Editors
→ Display Layer Editor

Render Layer Editor

 Maya Help → Using Maya → Rendering and Render Setup → Rendering →
Rendering Windows and Editors → Render Layer Editor

 Channel Box
 In animation, a channel is an attribute that can be animated. Th e Channel Box
(Figure 04.24) displays many of the keyable attributes for a selected item (object, camera,
light, etc.). Th e attributes in the Channel Box are listed under the nodes to which they
belong. You can use the Channel Box to easily set attribute values and keyframes. By
default, when you create an item in Maya some attributes are set to be keyable and

Channel Box

Layer Editor

Template mode

Keyable attributes for
the selected object

FIGURE 04.24

The Channel Box and the Layer
Editor. The colored fi elds in the
Channel Box indicate attributes that
have connections to other nodes.

98 PART 2: A FOUNDATION IN MAYA

some, non-keyable. Th e former will be visible in the Channel Box while the latter will
not be listed.

 Channel Control editor
 Th e Channel Control editor determines what is and isn ’ t visible in the Channel Box. It
is used to make non-keyable attributes keyable, and vice versa, and to lock and unlock
attributes in order to prevent or permit their adjustment. For example, once you have
a camera placed to your satisfaction, you may wish to lock its attributes to prevent it
from accidentally being moved. To open the Channel Control editor:

 1. In the Channel Box, choose Channels menu → Channel Control

or 2. In the main window, choose Window → General Editors → Channel
Control

Channel Control

 Maya Help → Using Maya → Animation, Character Setup, and Deformers →
Animation → Animation Windows and Editors → Editors → Channel Control editor

 Attribute Editor
 While the Attribute Editor (Figure 04.25) is not a default UI Element, it is used exten-
sively in the Maya workfl ow, and therefore deserves special mention here. It enables
you to view, set, create, and delete attributes, which are arranged by DG node. To
open the Attribute Editor:

 Choose Window → Attribute Editor.

or Press Ctrl + A in the workspace.

or Click the Show or hide the Attribute Editor button on the Status Line.

or RMB-click the object in the scene view, or its node in the Hypergraph, and
select its name from the Marking menu.

or Select Display → UI Elements → Attribute Editor. The Attribute Editor dis-
plays to the right of the modeling view.

or In the Hypergraph, select the object or node. From the Hypergraph menu bar,
choose Edit → Attributes.

or Double-click an object or node icon in the Hypershade, Visor, Multilister, or
Outliner.

 Selecting one of the node tabs along the top displays all of the attributes for that
node—not just the keyable ones. Attributes that are grayed-out and can ’ t be selected
or edited are either non-keyable or locked. Th ose that are tinted orange have keys set.
Right-clicking an attribute name brings up a Marking menu with options such as set
key, lock, and create expression, which have to do with animation. You can also rename
and delete existing attributes and add your own custom ones using the Attribute menu.

 Plug-ins
 Plug-ins are software fi les that exist separately from the Maya application. When
activated, or “ loaded ” , using the Plug-in Manager, a plug-in provides additional

 Unless an item (object, camera,
light, group, etc.) is selected,

nothing will appear in
the Attribute Editor when you

open it.

99CHAPTER 04: MAYA BASICS

functionality to Maya. For example, loading the plug-in, objExport.lib, allows you
to export a Maya scene as an .obj (or Wavefront) fi le. Maya comes bundled with a
number of plug-ins, and independent developers create their own, many of which can
be downloaded for free or purchased on the Internet. For experienced programmers,
the Maya Developer ’ s Toolkit includes an API which allows them to create such cus-
tom plug-ins using the C �� programming language.

Loading Plug-ins

 Maya Help → Developer Resources → API Guide → Maya API introduction →
Loading a Plug-in

 Summary
 Th is chapter is a quick introduction to a deep and rich program. Maya Help refer-
ences were listed along the way for the reader wishing more information right away.
We ’ ve covered how to set up a Maya Project and start the program. A brief discussion
of Maya ’ s program architecture followed, highlighting it s resemblance to biological
organization. We then covered the primary elements of the Maya UI to provide a gen-
eral orientation. In the coming chapters, we will explore much more of the UI through
specifi c examples in modeling, animating, rendering, and dynamics. Nor have we left
the DG or Scene Hierarchy behind. Th ese will continue to be of relevance in the projects
to follow.

 Wavefront fi le format, denoted
by the extension, .obj, is an ASCII
3D scene fi le format created by
Alias/Wavefront.

FIGURE 04.25

The Attribute Editor displaying DG
nodes and their attributes for a
polygon cube.

Th is page intentionally left blank

05 Modeling geometry

102 PART 2: A FOUNDATION IN MAYA

 Introduction
 Now that we ’ ve covered the basic user interface (UI), it ’ s time to start using Maya.
In this chapter you will learn the diff erence between NURBS, polygon, and subdi-
vision surface (sub-D) objects, and why you might choose one type over another.
You will then learn how to create and manipulate geometric primitives . A primitive
object—a sphere, cone, cylinder, cone, and so on—often forms the basis for a more
complex model such as the heart in Figure 05.01 . Like a lump of clay, the primitive can
be sculpted and deformed, added to, cut apart, and put back together.

 Moreover, certain primitive geometric shapes have considerable merit on their own
for in silico biology, without being signifi cantly altered from their basics shapes.
Spheres and cylinders are design paradigms in nature. In other words, there are many
structures in the natural world that are topologically equivalent to these primitive
geometric shapes. Notable examples are shown in Figure 05.02 . Th e projects in Part 3 of
this book all make extensive use of geometric primitives for approximating biological
structures (atoms, protein fi bers, and cell bodies).

 For those who wish to explore building more complex models, plentiful tutorials
exist in Maya Help, in print, and online, about advanced, high-end modeling in Maya.
We have highlighted several of our favorites, under the heading Learning Maya in the
Further reading section.

 The Create menu
 Part of the permanent menu set, this menu is used to create geometric primitives
and NURBS curves, along with lights, cameras, and locators. Selecting the option

 In this chapter " modeling " means
the creation

of surfaces and curves
in Maya.

(b)(a)

FIGURE 05.01

A simple primitive, such as a
polygon cube, can be subdivided

and manipulated with modeling
tools to create complex topologies

like this heart model.

(a) A low polygon-count surface is
easy to work with in a scene.

(b) The same model can be
smoothed for better rendering

results. Smoothing can readily be
switched on and off.

Courtesy and copyright © 2006 AXS
Biomedical Animation Studio.

103CHAPTER 05: MODELING GEOMETRY

box next to a menu item brings up the Create options window, allowing you to alter
the settings. Many of the primitives can also be created by clicking the appropriate
buttons on the Surfaces (NURBS), Polygons, and Subdivs Shelves.

 Creation options
 In the following menus

 Create → NURBS Primitives

 Create → Polygon Primitives

 you have options called Interactive Creation and Exit on Completion. Th ey will
be either checked or unchecked in the menu, indicating whether they ’ re on or off .
Interactive Creation lets you choose the initial location of the created object and scale
it interactively. When this option is turned off , Maya places newly created objects at
the world origin by default, with a scale value of 1. You can subsequently move and
scale an object after you ’ ve created it. With Exit on Completion turned on, Maya exits
the Create tool after you ’ ve created one object. If the option is turned off , the Create
tool remains active until you select another tool (e.g. the Select tool).

 NURBS modeling
 NURBS is an acronym for Non-Uniform Rational B-Splines and describes a class of
mathematically defi ned curves (or splines) and surfaces computer graphics. Creating
objects using these curves and surfaces in Maya is called NURBS modeling. NURBS
modeling makes sense for smooth, organic shapes in fi lm and for industrial design.
Also, because NURBS surfaces can be created curves, they have particular utility in
modeling fi brous structures, as you ’ ll see later on in the chapter and again in Chapter
17 in Part 3 of this book.

 The Surfaces menu set
 Everything you need to make and work with NURBS is available through the Surfaces
menu set. To activate the set, use the pull-down menu at the far left of the Status
Line (Figure 05.03). Alternately you can use the hotkey, F4 . Some of the tools housed in
the menu set will come into play in the projects in Part 3 , although you will access
them using MEL (Maya Embedded Language) commands, and not through the UI.

 FIGURE 05.02

 Geometric primitives can be used as
a starting point to represent various
entities in nature:

Top row
NURBS sphere, atoms, cells, virus
capsid;

Bottom row
NURBS cylinder, biopolymers,
protein fi bers, blood and lymphatic
vessels.

Cell and blood vessel images courtesy
and copyright © 2006 AXS Biomedical
Animation Studio. The virus capsid was
created from Protein Data Bank fi le
1K4R 1 using UCSF Chimera software
(http://www.cgl.ucsf.edu/chimera/).2

104 PART 2: A FOUNDATION IN MAYA

 NURBS curves (splines)
 A spline is essentially a line (straight or curved) composed of segments. Its path is
defi ned by points called control vertices (CVs for short). In Maya, splines are most often
used as motion paths to guide animation and to build NURBS surfaces, which is the
subject of a tutorial in this chapter. However, when endowed with color and thick-
ness using Maya Paint Eff ects, splines themselves can become models. Th e fi brous
environment shown in Figure 05.04 was created almost entirely using splines and Paint
Eff ects.

 Spline components
 In Maya, the constituent parts of a curve or surface are called components. CVs and
Edit Points (EPs) are the components of a spline. Depending on the mathematical

 FIGURE 05.03

 Spline curves were traditionally
used in 3D modeling and animation

to build NURBS surfaces and to
provide directional pathways for

animation. More recently, splines
have become models in their own
right, being used to recreate hair,

fur, and plants. In the example
shown here, medical animator

Jen Platt used splines to create
a visualization of the metamatrix,
the fi brous network that extends

through cell nuclei, cytoplasms, and
extracellular space within living

tissues.

Courtesy and © 2006
Jennifer A. Platt.

 The term spline originated in
shipbuilding where it described a
thin piece of wood used to defi ne

hull shape. The spline was bent
into a smooth curve by metal
weights—the control points.

 FIGURE 05.04

 The Surfaces menu set.

105CHAPTER 05: MODELING GEOMETRY

nature of a curve, it may or not pass through the CVs. EPs, on the other hand, always
lie on the curve. You can change the shape of a curve by moving either its CVs or EPs.

 NURBS surfaces
 NURBS surfaces are mathematically described shapes connecting splines in 3D
space. Figure 05.05 shows a stomach model created by lofting between a series of splines.
NURBS surfaces are used widely in automotive and architectural design, and in other
disciplines where smooth, curvilinear surfaces are required. Organic objects like
organs such as lungs, kidneys, bowels, and blood vessels are well suited to NURBS
modeling. Maya has an extensive suite of tools for building and working with splines
and NURBS surfaces. Th ese can be found in the Edit Curves, Surfaces, and Edit
NURBS menus. You will explore some of them further along when you create a fi ber
from two splines.

 Th e smoothness of a NURBS surface is determined in part by its divisions
attributes— sections and spans —which are set at creation time and can be accessed
through its history node. Figure 05.06a shows two spheres, each with a diff erent
number of divisions. When Maya renders NURBS, it converts them to polygons
through a process called tesselation (Figure 05.06b). Together, the tesselation settings for
object and its subdivisions determine how smooth it appears when rendered.

 With NURBS, smooth 3D surfaces can be made quickly from relatively few curves.
Th is also means you can deform such a surface by simply altering one of its constitu-
ent curves. However, despite their advantages, NURBS can prove diffi cult for creating
complex topologies. Likewise, because a NURBS surface is dependent on its constitu-
ent curves, multiple surfaces cannot be combined into one continuous surface, as can
be done with polygons. Th is can result in an undesirable seam between two pieces of
geometry.

 NURBS surface components
 Because a NURBS surface is built from splines, it too has CVs that can be used to
manipulate its shape. A NURBS surface (Figure 05.07a) is defi ned by curves called iso-
parms, which can be added to or deleted from a surface. Hulls are straight lines con-
necting CVs that can lie on or off of the surface. Hulls are handy ways to quickly
deform a NURBS object.

 Hiding seams, so they are not
visible to the camera, is one
of the tricks to good NURBS
modeling.

 FIGURE 05.05

 NURBS modeling is well suited to
smooth, curvilinear surfaces. This
stomach model was created using
the Loft tool on a group of curves
(or splines). Lofting interpolates a
curved surface between curves.

106 PART 2: A FOUNDATION IN MAYA

 NURBS surface normals
 Normals are lines perpendicular to a surface (Figure 05.08a). Generally speaking, nor-
mals are said to point outward from an object ’ s surface, thereby indicating its
 direction . Reversing a surface ’ s direction makes the normals point in the opposite

(b) NURBS tesselation (conversion to polygons)

High

Low

(a) NURBS subdivisions

Span
Section

 FIGURE 05.06

 (a) NURBS subdivisions (measured
in sections and spans) affect

surface smoothness and the number
of control points available for

manipulating a surface. The top
sphere has fewer subdivisions than

the one below it.

(b) To a large degree, tesselation (the
conversion of a NURBS surface to

polygons at render time) determines
the surface smoothness of an object

when it 's rendered. The top sphere
has lower tesselation settings,

and will therefore be coarser
when rendered, than the one

below it. The surface lines in this
image demark polygons resulting

from tesselation of NURBS spheres.

Together, subdivisions and
tesselation settings give you control

over the appearance of an object
when it ' s rendered.

CV HullSurface patch

Isoparm

(a) NURBS sphere

 FIGURE 05.07

 A 5 � 5-division primitive sphere:

(a) The components of a NURBS
model.

(b) The components of a polygonal
model.

CV Face Edge

(b) Polygon sphere

107CHAPTER 05: MODELING GEOMETRY

direction, or “ inward ” . One consequence of surface direction is the way in which Maya
Dynamics detects collisions between two or more objects. More on this in Chapter 07 .

 NURBS modeling

 Maya Help → Using Maya → Modeling → NURBS modeling

 Polygonal modeling
 A polygon surface is a continuous mesh comprised of many individual polygons (fac-
ets), which can be pushed, pulled, rotated, or extruded to create any conceivable
topology. Polygon models are used widely in computer animation for entertainment
and video game development. In these applications, polygon surfaces are preferable
to NURBS for the detailed topology required for characters ’ faces, hands, and the
like. Similar forms can be created with NURBS, but often require multiple surfaces to
be joined, resulting in visible seams between them, which show up as unwanted lines
in renderings. For example, a model of a hand may require a separate NURBS object
for each fi nger, each joined at its base to the hand with a visible seam. In contrast,
polygon objects can be joined to create a seamless, continuous mesh.

 Point for point, polygonal surfaces tend to be computationally lighter than NURBS,
which can speed the interactive display of geometry. Th is is one reason why polygons
are preferred for video game development—they allow for quick video refresh.

 Unlike a NURBS model, the smoothness of a polygon surface is constrained by the
number of polygons that comprise it—called its poly count . A low poly count object is
easier to work with but produces a coarser rendered surface than an equivalent shape
with a high poly count. Maya ’ s smooth command, available in the Polygon menu,

(b)

(c) (d)

(a)

 FIGURE 05.08

 Normals are a way of indicating the
direction of a surface.

(a) NURBS surface normals.
(b) Polygon face normals.
(c) Polygon hard vertex normals.
(d) Polygon soft vertex normals.

Polygons are usually three- or
four-sided, called triangles and
quads (short for quadrangles),
respectively.

 In a fi lm animation workfl ow,
where Maya is rendering images
from a scene, NURBS surfaces
can be slower to render than
their polygon equivalents. This is
due to the computation required
for conversion of NURBS to
polygons before they can be
processed by Maya ’ s rendering
engine.

108 PART 2: A FOUNDATION IN MAYA

allows you to work with a low poly count model and then subdivide the surface into
more polygons to make it smoother for rendering. Th is was the workfl ow used with the
heart model shown in Figure 05.01 and the hand in Figure 05.09 . You will use it to smooth
the polygon model in Tutorial 05.03: Make and deform a polygon sphere coming up.

 The Polygons menu set
 Hit the the hotkey, F3 , to activate this menu set, or use the pull-down menu at the
far left of the Status Line. Th is menu set contains the menus and tools you ’ ll use for
building and editing polygonal surfaces.

 Polygon components
 Like a NURBS surface, a polygon object can be described in terms of its components
(Figure 05.07b): CVs (or points), faces, and edges. Each has its utility in modeling.

 Polygon face normals
 Like NURBS surface normals, polygon face normals indicate the direction of a sur-
face (what ’ s considered outside versus inside). Face normals project from, and run per-
pendicular to, the center of each polygon face (Figure 05.08b). Reversing the direction of
a face makes its normal point in the opposite direction.

 Polygon vertex normals
 Vertex normals project from polygon vertices. Th ey indicate the rendering smoothness
of a polygonal surface. When vertex normals are hard , they run perpendicular to their
associated faces. Consequently, Maya renders a hard edge between those faces (Figure
05.08c). Soft vertex normals indicate an average perpendicular direction for their asso-
ciated face. Maya renders a smooth edge between these faces (Figure 05.08d).

 Polygonal modeling

 Maya Help → Using Maya → Modeling → Polygonal modeling

 FIGURE 05.09

 Polygon modeling is used
extensively in 3D character

animation. Models can literally be
drawn in 3D from 2D templates,

the way this 3D hand model
(center) was drawn from reference

photographs of a real hand (left).
The rough polygonal model (center)
was smoothed (right) by subdividing

its surface into smaller polygons.

109CHAPTER 05: MODELING GEOMETRY

 Subdivision surfaces
 sub-Ds are similar to polygon surfaces, but allow you to vary the level of detail in dif-
ferent regions of the mesh. Th is way you can put in detail where you need it, while
keeping the mesh coarse where you don ’ t. Our tutorials and projects don ’ t require
this capability, so sub-D modeling won ’ t be discussed further. Th e Maya Help menu
provides basic information and instruction for sub-D modeling.

 Sub-D modeling

 Maya Help → Using Maya → Modeling → Subdivision Surface modeling

 So which model type should I use?
 When choosing a modeling approach, consider the relative merits and limitations
mentioned above. Most important is the nature of the object you wish to model. Is it
smooth with relatively little surface detail or does it have detailed topology? Is it cur-
vilinear or jagged? Is it composed of multiple parts. Curvilinear shapes, where seams
between objects can be hidden or are an integral part of the design, are well suited to
NURBS modeling—hence its popularity with industrial designers. Intricate topolo-
gies like those of a hand, a heart, or a face are best handled with polygons. In the
world of tissues, cells, and molecules, which is our focus, the same principles apply.
A polygon that can be sculpted into the shape of a crawling cell makes sense for the
project in Chapter 16. In Chapter 17 , NURBS modeling is well suited to the creation of
the meandering collagen fi bers of the extracellular matrix (ECM).

 One thing to bear in mind is that a NURBS object can be converted to polygons.
Th erefore, you can begin sculpting a NURBS surface, then change it into a polygons
when you ’ re ready to add more detailed topology, or to connect several objects into
one (join fi ngers to a hand, for example). Polygons, on the other hand, cannot be
converted directly to a NURBS surface. For the time being, let ’ s start with a NURBS
primitive and see how to manipulate it in your Maya scene.

Tutorial 05.01: NURBS primitive modeling
 In this tutorial you will create a NURBS sphere primitive and manipulate it by chang-
ing its attributes in the Channel Box and using the transform tools. A sphere is an
appropriate shape to begin for its utility in representing the atoms of biomolecules,
and the form of many cells and viruses.

 Start Maya and set up a Project
 To begin, start Maya and create a new project. When you start Maya it opens to a
new, untitled scene fi le.

 1. Double-click the Maya desktop icon or the Maya application icon in your
Applications directory.

 2. Choose File → Project → New to open the Project window. The current
project name and directory path are displayed.

110 PART 2: A FOUNDATION IN MAYA

 3. Browse to the directory in which the project will reside. For starters, you can
simply use Maya ' s default project folder. In Windows this would be something
like:

 C:\Documents and Settings\User\My Documents\maya\projects

 4. Name the project Learning_Maya.

 5. For the tutorials in this chapter, you will only need directories for image and
scene fi les. Type images and scenes in the appropriate fi elds.

 This is where Maya will write your render fi les. You can always edit these
fi elds later by choosing File → Project → Edit Current.

 6. Click on Accept or Cancel.

 When you create a new project, Maya sets it as the current project. If you wish to
switch to another, existing project, do the following:

 1. Choose File → Project → Set.

 2. Browse to fi nd the appropriate project directory.

 3. Click OK.

 Chances are, when you started Maya it opened with a perspective panel view. If it
didn ’ t, in the Panel menu set:

 Choose Panels → Saved Layouts → Single Perspective View.

 Activate History
 Make sure History is active: the History icon, in the Status Bar must be
depressed. Th is will ensure that attribute you set when you create a model will remain
editable as you continue to work with it.

 Create the sphere
 1. Choose Create → NURBS Primitives.

 2. Turn off Interactive Creation.

 3. Choose Create → NURBS Primitives again, but this time, select Sphere .
This launches the NURBS Sphere Options box.

 4. In the Options box, choose Edit → Reset Settings.

 5. Customize the settings to match the ones in Figure 05.10 .

 The key attributes to note here are the Radius and the Number of Sections
and Number of Spans.

 6. Click Apply to create the sphere and keep the Options window open (useful for
creating multiple objects with different dimensions).

 or Click Create to create the sphere and close the Options window.

 Releasing your mouse over
the option box symbol in

any menu launches an Options
window.

 The settings you specify in an
option box will be applied each
time you use that tool until you

change the settings again using
the Options window .

111CHAPTER 05: MODELING GEOMETRY

 Th is creates a new object called nurbsSphere1 . Take a moment to tumble, track, and
dolly the scene view to get a comfortable view of the object. If you can ’ t see the sphere
at fi rst, press the hotkey, A , to frame all objects in the scene.

 Select the sphere
 When you create an item in Maya, it is automatically selected. By default, the most
recently selected item is indicated with a green wireframe mesh. If multiple items are
selected, all will be indicated by white wireframe outlines, except for the most recent
selection, which will be green. If you click in the workspace away from the sphere,
you will deselect it, and the wireframe mesh will disappear. To reselect it do one of
the following:

 LMB + click on any one of the tools in the Tool Box (Figure 05.11), then LMB+click
on the sphere in the workspace.

or LMB + click on any one of the tools in the Tool Box, then LMB + drag to draw
a bounding box selection around all or part of the sphere, then release the
LMB. Any object lying partly within the box when you release the mouse will
be selected.

or LMB + click on the Lasso Tool in the Tool Box, then LMB + drag to draw a lasso
selection around the sphere or any part of it.

or LMB + click on the sphere ' s name in the Outliner.

 When selected, the name sphere1 (or whichever name you gave the object) appears
at the top of the Channel Box (Figure 05.12). Th is is the sphere ’ s transform node, below
which are its attributes that can be animated: Translate X , Translate Y , and so on (much
more on animating attributes in the next chapter!). Below these are two headings,

 FIGURE 05.10

 The Create settings for a NURBS
sphere primitive.

 The Reset Settings or Reset Tool
steps are precautions in case
the settings had previously be
changed from their defaults by
you or another user. By starting
with the defaults, you' re more
likely to get the expected results.

 NURBS cubes are different
from other NURBS primitives
in that they are composed of
six individual planes, grouped
together. A sphere, in contrast,
is one contiguous piece of
geometry.

112 PART 2: A FOUNDATION IN MAYA

Shape and Inputs, under which are the names sphere1Shape and NURBS sphere1 . Th ese
are the sphere ’ s shape and history nodes, respectively. Clicking on the history node,
 NURBS sphere1 , reveals its attributes, which are the same ones you had access to when
you created the object using the NURBS sphere Options window: Radius , Sections , and
 Spans .

Select Tool (Q)

Lasso Tool

Paint Selection Tool

Move Tool (W)

Rotate Tool (E)

Scale Tool (R)

Universal Manipulator (CTRL + T)

Soft Modification Tool

Show Manipulator Tool (T)

Last tool used (y)

 FIGURE 05.11

 Transform tools are available in The
Tool Box. Hotkeys are indicated in

parentheses.

 FIGURE 05.12

 The transform node attributes
of the NURBS sphere appear in
the Channel Box (on the right).

This panel layout, known as the
Four panel view displays three

orthogonal and one perspective
camera.

113CHAPTER 05: MODELING GEOMETRY

 Rename the sphere
 As with most actions in Maya, there are several ways to rename an object. Here are two:

 Click on the name nurbsSphere1 in the Channel Box and type a different name
such as sphere1 .

 or Double-click nurbsSphere1 in the Outliner and type sphere1 , then hit Enter.

 View the sphere with different interactive shading modes
 Use the Shading menu (in the Panels menu) to try diff erent shading modes. When
you ’ re done:

 1. Choose Shading → Smooth Shade All.

 2. Choose Wireframe on Shaded

 Th e wireframe indicates the location of isoparms, which will enable us to see when
the sphere is rotated about its axes.

 Translate the sphere
 Th ere are many ways to transform objects in Maya. To do so interactively, use the
 Transform Tools (shown in the Tool Box in Figure 05.11). With the sphere selected, acti-
vate the Move Tool in one of these three ways:

 Choose Modify → Transformation Tools → Move Tool.

or LMB + click the Move Tool icon in the Tool Box.

or Hit its hotkey, " w " .

 Th e red, green, and blue Move Tool Manipulator handles should appear, arising from
the center of the sphere; if they don ’ t, make sure the sphere is selected then try one
of the above steps again. As with axis indicators in Maya, red, green, and blue corre-
spond to the X, Y, and Z directions for Manipulator handles as well. When you change
tools you ’ ll see that the shape of the handles changes too. Figure 05.13 shows the han-
dles corresponding to the Move (translate), Rotate, and Scale tools.

 Now practice translating the sphere freely in any direction you wish. With the sphere
selected:

 LMB + drag the yellow box at the center of the sphere.

 or MMB + drag the mouse pointer anywhere in the workspace. Because the sphere
is selected, it will move as you move the mouse.

 Th e manipulator handles are aligned with the local axes of the sphere and travel
with it as it moves. If you watch the Translate attributes in the Channel Box as you
move the sphere around, you will see them changing simultaneously because you are
 moving the sphere in all three dimensions at once while you are engaged in real

 Names in Maya cannot contain
spaces. The convention for
multi-word names is to capitalize
the fi rst letter of all but the fi rst
word, as in mySphere, or to use
underscore characters, as in
my_sphere .

Channel Box Tips

For an object to show up in the
Channel Box, it must be selected.

 You can LMB + drag select
multiple fi elds at once in the
Channel Box. This is handy for
assigning more than one fi eld the
same value.

114 PART 2: A FOUNDATION IN MAYA

project work. Rarely, however, is this desirable in animation; it is much easier to keep
track of the spatial relationships of items in your scene if you apply a transformation
in one dimension at a time. You do this by clicking and dragging one manipulator
handle (the X, Y, or Z) at a time. When active, a manipulator handle turns yellow.
To transform the sphere in one dimension do one of the following:

 1. Select the sphere and hit " w " to activate the Move Tool.

 2. LMB + click on one of the three manipulator handles to make it active.

 3. LMB + drag on the active handle.

 or MMB + drag anywhere in the workspace.

 The Four panel view
 You may have noticed that distance is diffi cult to gauge when translating the sphere
in the perspective view. Th is is due to the visual distortion applied by this camera. Th e
orthographic views show space without this perspective distortion and make it easier
to see where objects “ really are ” , relative to one another in Maya ’ s 3D space. We fi nd the
Four panel view (shown in Figure 05.12) an eff ective layout for visualizing a scene, includ-
ing multiple biological molecules or cells moving in complex environments. Th e Four
panel view enables you to tumble around your models in perspective view in order to
see them from all angles, while using the front, side, and top orthographic views to
accurately gauge 3D spatial relationships. To set the workspace to the Four panel view:

 In the Panels menu, choose Panel → Saved Layouts → Four panel view

or Press the Four panel view icon, , in the Layout shortcuts panel on the
lower-left side of the main window.

 Rotate the sphere
 You can activate the Rotate Tool in the same way you did the Move Tool. Th e rotate
manipulator handles are red, green, and blue circles corresponding to each of the X,

 When referring to
transformations, we use the
terms " dimension " and " axis "

interchangeably in this book. For
instance, a translation in the
X-dimension is the same as a

translation parallel to the X-axis.

 FIGURE 05.13

 The Manipulator handles for (from
left to right): the Move Tool; the

Rotate Tool; the Scale Tool.

Rotate perpendicular
to the camera plane Handles

Move Tool Manipulator Rotate Tool Manipulator Scale Tool Manipulator

 The hotkeys � and �
increase and decrease the size

of the manipulator handles,
respectively.

115CHAPTER 05: MODELING GEOMETRY

Y, and Z axes. In addition, there is an outer yellow circle which allows you to rotate
the sphere in a plane perpendicular to the camera axis. To rotate the sphere freely
about all axes:

 LMB + drag the yellow box at the center of the sphere.

or MMB + drag the mouse pointer anywhere in the workspace. Because the sphere
is selected, it will rotate as you move the mouse.

 Note the changing Rotate X, Y, and Z attribute values in the Channel Box. To trans-
form the sphere in one dimension do one of the following:

 1. Select the sphere and hit the " E " hotkey to activate the Rotate Tool.

 2. LMB + click on one of the three manipulator handles to make it active.

 3. LMB + drag on the active handle.

or MMB + drag anywhere in the workspace.

 Th e manipulator axes indicate the sphere ’ s local coordinates. When you translated
the sphere, the Move Tool handles traveled with it, but remained oriented to the
world coordinates (global X, Y, and Z axes). When you rotated the sphere, its local
coordinate system (axes) rotated with it, as indicated by the Rotate Tool handles,
which changed orientation relative to world coordinates.

 Scale the sphere
 Th e Scale Tool works in much the same way as the Move and Rotate Tools. However,
when you scale an object freely, it scales uniformly in all three dimensions. To scale
the sphere freely:

 1. Activate the Scale Tool by hitting the " R " hotkey.

 2. LMB + drag the yellow box at the center of the sphere left to shrink the sphere
and right to enlarge it.

or MMB + drag the mouse pointer anywhere in the workspace, left to shrink the
sphere and right to enlarge it. Because the sphere is selected, it will scale as
you move the mouse.

 Note the changing Scale X, Y, and Z attribute values in the Channel Box. To scale the
sphere in one dimension do one of the following:

 1. Select the sphere and hit the " R " hotkey to activate the Scale Tool.

 2. LMB + click on one of the three manipulator handles to make it active.

 3. LMB + drag the active handle.

or MMB + drag anywhere in the workspace.

 Entering 0 for its Scale X, Y, and
Z attributes will cause an object
to disappear in the scene view.
You can bring it back simply by
entering positive values in the
Scale attribute fi elds.

116 PART 2: A FOUNDATION IN MAYA

 Like the Move Tool Manipulator handles, those for the Scale Tool travel with the
sphere and remain oriented to world coordinates.

 Change the Move Tool Settings
 Many of the tools in Maya, including the Move, Rotate, and Scale Tools, have settings
that you can change. As an example, you ’ ll change a Move Tool setting and observe its
eff ect. To open the Move Tool settings palette:

 1. Double-click the Move Tool icon in the toolbox.

or With the Move Tool active (i.e. selected), choose Display → UI Elements →
Tool Settings.

 2. In the Move Tool Settings window, select Object.

 With this setting, the Move Tool will translate objects relative to their local
(object) rather than world coordinate systems.

 You don ' t need to close the palette to apply the change. Changes are applied
instantly in Tool Settings.

 Now when you translate the sphere with the Move Tool, you do so along its local
rather than world axes. If the sphere has been rotated, its local axes are no longer
aligned with the world axes. In this case, dragging just one Move Manipulator handle
with change all of the Translate attributes in the Channel Box. Th is is because the
Channel Box attributes are in world, not local coordinates. Th ere are some situations
where it ’ s desirable to set the Move Tool to translate an object along its local coordi-
nate system. For the most part, however, we recommend using World or Global set-
tings in the Tools Settings palette. To reset the Move Tool Settings:

 1. With the Move Tool active, open the Tool Settings window.

 2. Select Use Defaults.

 3. Close the window.

 Transform the sphere using the Channel Box
 Here, you ’ ll use the Channel Box to reset nurbsSphere1 to its initial position and scale,
then hide it from view.

 1. With the sphere selected, LMB+drag from the Translate X fi eld down to the
Rotate Z fi eld. This selects multiple fi elds at once in the Channel Box, allowing
you to assigning more than one fi eld the same value at one time.

 2. Enter 0 in one of the selected fi elds. Your sphere should return to the world
origin with no rotation.

 3. LMB + drag from the Scale X fi eld down to the Scale Z fi eld.

 4. Enter 1. This returns the sphere to its original size.

 5. To hide the sphere, enter 0 or " off " in the Visibility fi eld

or Use the hotkey, Ctrl + H.

 When open, the Tool Settings
palette will display settings for

the current active tool. If no tool
is active, the palette remains

blank.

 The Visibility attribute is of
the Boolean data type, unlike
Translate, Rotate, and Scale,
which are fl oating point (or
decimal number) attributes.
Boolean data can have one of
two values: " on " or " off " . Maya
accepts the integers 1 and 0
for on and off Boolean values,
respectively. We will discuss
Maya data types in some detail
in Chapter 12 .

117CHAPTER 05: MODELING GEOMETRY

 Th e Visibility attribute is one of several ways you can hide an object in Maya. To show
the sphere again:

 1. Enter 1 or on for Visibility in the Channel Box.

or Use the hotkey, Ctrl + Shift + H. This shows the object that was last hidden.

 Save your scene
 Click in any view panel, so that hotkeys will work, then hit Ctrl + S

or

 1. Choose File → Save Scene.

 2. Enter a name for your scene fi le and hit Save.

 When you save a scene, Maya defaults to the directory specifi ed in the Project
Settings.

 Tutorial 05.02: Deform the sphere using components
 Before leaving your NURBS sphere behind, let ’ s change its shape by transforming its
components. Figure 05.14 shows the transformations you ’ ll apply to each type of compo-
nent. You will do manually what you might normally employ a Maya deformer, such
as the Lattice Deformer , to do. However, through moving components by hand, you will
get a sense of how a deformer works to change the shape of an object. Furthermore,
surface deformations of the kind you ’ re about to make are analogous to the kinds of
shape changes cells undergo. It ’ s not too much of a stretch then to imagine how you
might model a deformable cell in Maya.

 FIGURE 05.14

 A NURBS surface can be
reshaped by moving and scaling its
components.

(a) Moving a CV changes its curve
(isoparm) and deforms the surface.

(b) A hull is a line that connects CVs.

(c) Scaling a hull moves has the
effect of moving its constituent CVs
uniformly; in this case, toward the
center of the sphere.

CVs

(a)

Hull

(b)

Scale Tool

(c)

118 PART 2: A FOUNDATION IN MAYA

 Move a CV

 1. RMB + click on the sphere in the scene view to activate the Component Marking
menu (Figure 05.15).

 2. In the Marking menu, move the cursor over CV and release the RMB.

 3. Hit the " w " hotkey to activate the Move Tool.

 4. LMB + click to select one of the CVs.

 5. Create a spike on the sphere ' s surface by LMB + dragging the CV away from the
sphere ' s center (Figure 05.14a).

or LMB + dragging one of the Move Tool Manipulator handles.

 Imagine the spike you just made is a cellular protrusion—a pseudopod—extending
through the ECM of some tissue in the body! Next you will contract the middle of the
sphere using a component called a hull .

 Scale a hull
 A hull is a line connecting CVs that correspond to one isoparm and forming a closed
loop (Figure 05.14b). Hulls are a convenient tool for deforming surfaces quickly.

 1. RMB + click on the sphere to bring up the Marking menu.

 2. In the Marking menu, move the cursor over " Hulls " and release the RMB.
 A Hull appears as a line connecting CVs in a loop around the sphere.

 FIGURE 05.15

 The NURBS component marking
menu is revealed by an RMB + click

over the object.

119CHAPTER 05: MODELING GEOMETRY

 3. Hit the " R " hotkey to activate the Scale Tool.

 4. Click on a Hull. A color change will indicate that it ' s active.

 5. MMB + drag left on the center of the Scale Tool Manipulator to shrink the Hull
and cause a narrowing in the sphere, as shown in Figure 05.14b .

 Selection modes and masks
 If you fi nd yourself modeling extensively with components, you will want to learn
how to use selection modes and selection masks. Th ey allow you to tailor the kinds
of objects or components that you are able to select with your mouse. For instance, if
you ’ re going to be selecting hulls for a while, you can set the selection mode to select
by component type and the component mask to hulls . Th is makes hulls visible for the
objects in your scene and means you can select only them, and not other components
or object transforms. Th ese settings are made using the selection modes and masks
buttons in the Status Line at the top of the main window.

 Selection modes and masks

 Help → Learning Resources → Getting Started with Maya → Maya Basics →
Lesson 3 Viewing the Maya 3D scene → Selection modes and masks

 Before moving on to the next tutorial, save your fi le:

 1. Choose File → Save

or Use the key combination, Ctrl + S.

 Tutorial 05.03: Make and deform a polygon primitive
 Now that you ’ re familiar with basic NURBS geometry, you ’ ll create a polygon sphere
and see how its components diff er from its NURBS cousin. Once you begin moving
components you ’ ll notice that the form of the polygonal object lacks the smooth,
organic form of the NURBS sphere. As a result the polygon sphere doesn ’ t appear as
 cell-like —that is, until you apply a smoothing node to it. To get started, the select-
ing, renaming, translate, rotate, and scale exercises you went through for the NURBS
sphere will be no diff erent for the polygon, so we don ’ t repeat the steps here. To create
a polygon sphere:

 1. Choose Create → Polygon Primitives

 2. Turn off Interactive Creation.

 3. Choose Create → Polygon Primitives again, but this time, select Sphere .
This launches the Polygon Sphere Options box.

120 PART 2: A FOUNDATION IN MAYA

 4. Customize the settings:

 (a) Radius: 2

 (b) Subdivisions Around Axis: 10

 (c) Subdivisions Along Height: 10

 (d) Axis: Y

 5. Click Create to create the sphere and close the Options window.

 Th is makes a new polygonal object with a transform node called pSphere1 . If the
 pSphere1 overlaps nurbsSphere1 , select one of the two and move it beside the other.
Now let ’ s look at the components of pSphere1 . Figure 05.16 shows the results of the fol-
lowing steps.

 Move a CV

 1. RMB + click on pSphere1 in the scene view to activate the component Marking
menu.

 2. In the Marking menu, move the cursor over " CVs " and release the RMB.

 3. Repeat the steps you used to move a CV of the NURBS sphere.

 The effect on the shape of pSphere1 will be somewhat different from that of
nurbsSphere1; it lacks the smoothness we saw in the NURBS object.

 Move and scale a polygon face
 A face is an individual polygon, with corners defi ned by CVs.

 1. RMB + click on pSphere1 to bring up the Marking menu.

 2. In the Marking menu, move the cursor over Face and release the RMB.

 FIGURE 05.16

 Polygon surfaces can be reshaped
by transforming individual

components: CVs, faces, and edges.

(a) Translating a CV.

(b) Translating and scaling a face.

(c) Translating an edge.

CVs

(a)

Faces

(b)

Face center point

(c)

Edges

121CHAPTER 05: MODELING GEOMETRY

 A wireframe mesh will appear on the sphere. At the center of each face is a
point used for selecting it.

 3. Hit the " w " hotkey to activate the Move Tool.

 4. Select the point at the center of a face (its center point).

 5. LMB + drag the Move Tool Manipulator to move it away from the center of the
sphere.

 6. With the face still selected, hit the " R " hotkey to activate the Scale Tool.

 7. MMB + drag the center of the Manipulator to scale the face.

 Move an edge
 An edge is a side of an individual polygon (or face) that spans two CVs.

 1. RMB + click on pSphere1 to bring up the Marking menu.

 2. In the Marking menu, move the cursor over Edge and release the RMB.

 A wireframe mesh will appear on the sphere indicating the polygon edges.

 3. Hit the " w " hotkey to activate the Move Tool.

 4. Select an edge by LMB+clicking on it.

 5. LMB + drag the Move Tool Manipulator to move it away from the center of the
sphere.

 When you move an edge or a face, you alter the edges and faces that share the same
CVs. Furthermore, while you cannot scale or rotate an individual CV, you can scale
and rotate a group of CVs, a face, or an edge.

 Smooth the sphere
 Due to the number of subdivisions you began with, pSphere1 is rather coarse in appear-
ance. Here you ’ ll add a node that smooths the surface of pSphere1 (Figure 05.17).

(a)

 FIGURE 05.17

 A polySmoothFace node subdivides
a polygonal surface. As long as
construction history is active,
smoothing is reversible and editable.

(a) Geometry before smoothing.

(b) Geometry after smoothing.

(c) The polySmoothFace node and
its attributes appear in the Channel
Box when the smoothed object is
selected.

(b) (c)

 1. Select pSphere1.

 2. Activate the Polygons menu set by pressing the hotkey, F3.

 3. Choose Mesh → Smooth. Don ' t worry about the Smooth options; with construction
history turned on, you can edit them at any time .

 4. Select the new smooth node, polySmoothFace1, in the Channel Box and enter 2.0
for its Divisions attribute (see Figure 05.17c).

 Figure 05.17 shows pSphere1 before and after smoothing. Divisions is the number of times
Maya subdivides the polygons in order to create a smoother appearance. At any point
you can set this attribute to 0 to return the sphere to its pre-smoothed appearance.
If you plan to edit the surface of a smoothed object, it is best to do so on the original
geometry—with subdivisions set to 0. After editing, you can set Divisions back up to 1
or 2 to smooth the object again. Th rough construction history, the shape changes will
be refl ected in the smoothed version of the model.

 It ’ s easy to imagine, with the modest beginnings of your smoothed sphere, how you
could approach modeling distinct shapes—cells or organs, for example—from primi-
tive geometry. And you haven ’ t even touched the modeling tools that are used to sub-
divide, extrude, cut, and append the constituent polygon faces! While it ’ s tempting to
delve into specifi c examples here, we want to keep rolling toward your goal of writing
MEL scripts to make models and drive in silico simulations. If you wish to explore
Maya ’ s model-making capabilities further, we encourage you to look up the resources
listed under Learning Maya in the Further reading section. In the next tutorial, we will
explore the nodes and connections that make up pSphere1 for a better understanding
of what is actually going on when you create and edit geometry.

 Tutorial 05.04: Construction history
 In this exercise, you will see how your polygon sphere is actually constructed in the
Maya Scene Graph and how you can use those connections, through construction his-
tory, to alter the creation attributes you set. To begin, open your scene from Tutorial
05.03 or copy the scene fi le from the CD to your projects directory and open it in
Maya (see fi le path below).

 05_Modeling/scenes/tutorial_05_03_done.ma

 The Hypergraph revisited
 In the previous chapter we discussed the Dependency Graph (DG for short) and DG
nodes, the entities that make up a Maya scene. Now that you have created some
geometry in Maya, we can revisit DG nodes with a specifi c example. Th is section is
less a tutorial than an exploration of what you ’ ve already created, using Maya ’ s DG
and scene hierarchy viewer, the Hypergraph. Figure 05.18 shows the Hypergraph UI
Elements, some of which you ’ ll use to explore the nodes comprising your polygon
sphere. Th e tool bar buttons are shortcuts to items located in the menus. You can
move about the Hypergraph the same way you would in a scene view with an ortho-
graphic camera—using the dolly and track key/mouse combinations. Th e view but-
tons labeled in Figure 05.18 become useful in more complex scenes for targeting specifi c
nodes in a large network.

 If you plan to edit the surface of
a smoothed object, do so with

smoothing Divisions set
to 0. After making the changes

to the object's shape, set the
Divisions back up to 1 or 2.

122 PART 2: A FOUNDATION IN MAYA

123CHAPTER 05: MODELING GEOMETRY

 To view pSphere1 in the Hypergraph:

 1. Select pSphere1 in the Outliner or scene view.

 2. Choose Window → Hypergraph.

 3. In the Hypergraph Choose Graph → Input and Output Connections

or Press in the tool bar.

 When you fi rst created pSphere1, four nodes determined what it looked like and
where it was in space. Th ese are:

pSphere1 the Transform node

 polySphere1 the Creation or History node

 pSphereShape1 the Shape or Mesh node

InitialShadingGroup the Shading Engine node

 You then deformed and smoothed the sphere, creating two more nodes:

polyTweak1 the Tweak node

polySmoothFace1 the Smooth node

 You can select any of these nodes by clicking on it in the Hypergraph. When selected,
a node and its attributes appear in the Channel Box and in the Attribute Editor if
it ’ s open. Th e pink lines with arrows indicate connections between attributes. In the
DG one node, in relation to another, can be either an upstream or a downstream node ,
depending on the direction of information fl ow. Th e connection line arrows indicate
this direction, which is typically shown left to right in the Hypergraph (Figure 05.19).
You can see which attributes are connected between two nodes by moving your mouse
cursor over the connection line; the attribute names will pop up.

Tip : Popup Help will not work in
the Hypergraph unless you make
it the active window by clicking
on it.

Frame buttons
(for viewing)

Transform node

Creation node Shape node Shading engine
node

Connection line

Scene hierarchy

Input and Output connections

Smooth nodeTweak node FIGURE 05.18

 The Hypergraph displays the nodes
and connections for your polygon
sphere.

124 PART 2: A FOUNDATION IN MAYA

 Th e transform node, pSphere1 , has no attribute connections to the other nodes.
Instead, it has a hierarchical relationship with the shape node. pSphereShape1 is the
child of pSphere1 (clicking on the Scene Hierarchy button, , will isolate the trans-
form and shape nodes). Below the transform node is polySphere1 , the creation node.
It holds the radius and subdivisions attributes that were set when you created the
sphere. Placing your cursor over the connection line between polySphere1 and the
tweak node, polyTweak1 , reveals the attributes that are connected between the two:
 polySphere1 .output and pTweak1.inputPolymesh . In plain language, the output of the crea-
tion node is the data that the tweak node operates on. Next polySmoothFace1 takes the
 tweaked data and applies its smoothing operation. Th e smoothed data is then input to
the shape node, pSphereShape1 , which put the data into viewable form of how the sur-
face will appear.

 To the right of pSphereShape1 is the default shading engine which is used for render-
ing the sphere. When created, all geometric primitives are connected to this default
 render node . It helps determine the appearance of the sphere—the combined eff ects of
color, texture, and lights—when rendered. You can see the additional nodes used in
rendering by selecting initialShadingGroup and clicking on . We will explore render
nodes in more detail in Chapter 08 . For now, they serve as an example of how every-
thing in a Maya scene, even when it comes to rendering, is described by nodes and
their connections. Th e Hypergraph provides a bare bones view of these nodes and
connections, allowing you to zero in one or two at a time, or pull back and look at big-
ger chunks of the Maya Scene Graph. Other tools, such as the Attribute Editor, which
we will explore next, provide a more detailed presentation of nodes and their
attributes.

 The Hypergraph

 Maya Help → Using Maya → General → Basics → Basic Windows and
Editors → Hypergraph

 The Attribute Editor
 Th e Attribute Editor is a convenient tool for viewing, setting, creating, and delet-
ing attributes. It provides much of the functionality of the Channel Box, in terms
of setting attributes numerically, but also allows you to make attribute connections

 Internally, Maya considers each
node to be of a certain type .

These types don ' t necessarily
coincide with the common
names given in Maya Help

and employed by Maya users.
For example, a shape node

to a user is of type, mesh to
Maya. Similarly, while we call
polySphere a history node, to

Maya it is of type, polySphere .

upstream node downstream node
 FIGURE 05.19

 Arrows on connection lines in the
Hypergraph indicate the direction of

information fl ow.

125CHAPTER 05: MODELING GEOMETRY

between attribute of diff erent items, which comes in handy when creating shading
networks. Let ’ s open the Attribute Editor for pSphere1 (Figure 05.20):

 1. Select pSphere1.

 2. Choose Window → Attribute Editor

 or Use the hotkey A.

 or Double-click on the pSphere1 icon in the Outliner.

 Nodes are represented as fi le-folder-like tabs running along the top of the editor (see
 Figure 05.20); by default, the shape node is displayed when you select an object. You can
view each node by clicking on its tab. Th e In and Out Connections buttons
reveal upstream and downstream nodes, respectively. In the next section, you will use
the Attribute Editor to edit the polygon sphere through its history connections.

 Attribute Editor

 Maya Help → Using Maya → General → Basics → Basic Windows and
Editors → Attribute Editor

 Construction history
 Your polygon sphere provides a very simple and convenient example of construction
history in Maya; it involves only one node, polySphere1 , along with its connection to
the shape node, pSphereShape1 . Let ’ s change the attributes of polySphere1 and observe
the eff ect. You could do this through the Channel Box, in the same way you set the
transform attributes for the NURBS sphere. Instead, let ’ s take this opportunity to
become more familiar with the Attribute Editor.

 FIGURE 05.20

 The Attribute Editor is a useful tool
for viewing attributes, setting their
values, and making connections
with other nodes.

126 PART 2: A FOUNDATION IN MAYA

 1. Select pSphere1 and get a good view of it in the perspective view.

 2. In the Panel menu set, choose Shading → Smooth Shade All

or Use the hotkey 5.

 3. Open the Attribute Editor.

 4. Click on the polySphere1 tab.

 5. LMB + Drag (scrub) the Radius slider and observe the effect in the scene view.

 6. Scrub the Subdivision Axis and Subdivisions height.

You can instantly see the effect these attributes have on surface smoothness.

 7. When you ' re done adjusting the attributes, close or minimize the Attribute
Editor.

 If you select polySphere1 in the Channel Box, you will see the attributes change there
as you scrub the sliders in the Attribute Editor. Also, note the eff ect that changing
 Subdivisions has on the surface protrusions you created in the previous Tutorial—they
tend to move around the surface as you scrub the Subdivisions attributes. In Figure 05.18
you can see that the upstream creation node polySphere1 connects to the downstream
tweak node polyTweak1 , a node that was created automatically when you began manipu-
lating components. Th ose manipulations, or tweaks , are specifi c to numbered compo-
nents of your sphere. As you change the number of CVs by increasing or decreasing
 Subdivisions in the creation node, the CVs themselves get renumbered. Th e tweaks fol-
low their CVs by number resulting in protrusions that change position on the sphere
depending on the number of Subdivisions. For this reason, it is a very good idea to set-
tle on the number of Subdivisions before deforming a piece of geometry.

 Unlike the Subdivisions of the creation node polySphere1 , changing the polySmooth-
Face1 Divisions does not impact the location of shape tweaks on the sphere because the
smoothing node lies downstream from the tweak node. In other words, the tweaks
(push and pull of surface components) occur before smoothing is applied. Th is brings
up an important fact about construction history: changes to a node can aff ect only
itself and others that lie downstream form it, but not upstream nodes.

 You can see how useful construction history can be for making changes to a model
after its creation. However, history nodes add overhead to a Maya scene. Th e history
nodes in our current example are the creation, tweak, and smooth nodes. Th ese add
to fi le size, increasing the time it takes to save and open a fi le. More importantly, they
slow animation playback and rendering. Th is is because history adds to the calcula-
tions Maya must make in order to determine where an object is and what it looks like
at a given frame. Deleting history—deleting the history nodes—is one way of opti-
mizing a scene for faster playback and rendering. To delete an object ’ s construction
history, select the object and do one of the following:

 Choose Edit → Delete by Type → History.

or

 Select the history nodes in the Hypergraph and hit Delete on your keyboard.

127CHAPTER 05: MODELING GEOMETRY

 If you deleted history for pSphere1 , choose Edit → Undo to bring the history nodes
back. Next, instead of deleting the nodes, you will delete the connection between
 pSmoothFace1 and pSphereShape1 , eff ectively cutting the sphere off from its history.
You will then reconnect the two nodes to learn how to make attribute connections
using the Connection Editor. With pSphere1 selected:

 1. Open the Hypergraph.

 2. Select the pink connection line running between polySmooth Face1 and
pSphereShape1.

 3. Hit the Delete key.

 Select pSphere1 in the scene view or the Outliner and inspect it in the Channel Box.
You no longer have access to the creation (Radius and Subdivisions) and smooth-
ing (Divisions) attributes. You can select polySphere1 and polySmoothFace1 in the
Hypergraph and edit their attributes in the Channel Box. However, changing them
will have no eff ect on the sphere because of the broken connection. Let ’ s fi x that by
reconnecting the severed nodes using the Connection Editor.

 Construction History

 Maya Help → Using Maya → General → Basics → Transforming objects →
Maya ' s interface → Construction history

 The Connection Editor
 Th e Connection Editor is shown in Figure 05.21 . It is used to make and break connec-
tions between attributes of two nodes. Th e left- and right-hand fi elds display the
attributes of upstream and downstream nodes, respectively. When two attributes
are connected, the output value of the upstream (left-hand) attribute becomes the
input value of the downstream (right-hand) attribute. To see the Connection Editor
in action, let ’ s use it to connect pSphere1 to its severed history node:

 1. (a) (i) In the Hypergraph, MMB + drag the icon for polySmoothFace1 over to
of the icon for pSphereShape1.

 The icon itself won ' t move, but your cursor will change to indicating that
your are setting up a connection.

 (ii) Release the MMB. A Connection pop-up menu will appear

 (iii) Select Other (Figure 05.22). This launches the Connection Editor, with the
attributes of both nodes displayed.

or (b) (i) Choose Window → General Editors → Connection Editor.

 (ii) Select polySmoothFace1 in the Hypergraph and click Reload Left in
the Connection Editor.

 (iii) Select polySphereShape1 in the Hypergraph and click Reload Right
in the Connection Editor.

 2. In the left fi eld, select Output. In the right fi eld, select In Mesh (Figure 05.21).

128 PART 2: A FOUNDATION IN MAYA

 Th at ’ s all it takes to connect two attributes! You can now change the Radius and
 Subdivision attributes and pSphere1 will respond. Th e Connection Editor is a handy tool
for making quick connections between nodes. As with other Maya techniques intro-
duced in this chapter, attribute connection will be eventually be handled with MEL
commands. To prepare for the next section, save the current fi le if you like, and then
start a new one.

 FIGURE 05.21

 The Connection Editor allows you
to make and break connections
between attributes of different

nodes. Shown here is the
connection between the attributes
of the history and the shape nodes

of the polygon sphere.

 FIGURE 05.22

 When connecting attributes in
the Hypergraph, a choice of Other

launches the Connection Editor.

129CHAPTER 05: MODELING GEOMETRY

 Tutorial 05.05: Create a NURBS " fi ber"
 It is common in NURBS modeling to create a specifi c shape, called a profi le , with a
spline and then use it to generate a surface. In this exercise, you will extrude a
NURBS surface, a tube, from a profi le spline, along a guide spline (see Figure 05.23). Th is
technique has implications for modeling tubular and fi brous structures—both of
which are plentiful in biology. Tubular structures conduct fl uid (lymph and blood, for
example) and manage forces (long bones such as the femur and humerus). Likewise,
fi bers fi ll many roles in the tissues of living things: from axons that conduct nerve
impulses to the rigorously aligned collagen bundles that compose tendons. Th e tech-
niques you ’ ll explore in this tutorial will apply directly to a method for modeling a
fi ber matrix to simulate dense connective tissue in Part 3: Chapter 17 .

 Set up the scene view
 When working in Maya, you have the option to constrain objects and their compo-
nents to the grid that appears in the scene views. Th is is called “ snapping ” and is
common to many graphics applications. Turning on “ Snap to grids ” makes it easy to
create the straight line spline you want for the axis of your tube.

 1. Set up a Four panel view in the workspace.

 2. In the Front view, make sure the grid is showing. If it isn ' t, turn it on by choosing
Show → Grid in the Panel menu set.

 3. Set the Grid size and subdivisions:

 (a) Choose Display → Grid . This opens Grid options.

Profile spline Guide spline Extruded surface

 FIGURE 05.23

 A NURBS surface extruded from a
profi le spline along a guide spline.

130 PART 2: A FOUNDATION IN MAYA

 (b) Length and Width: 10 units

 (c) Grid Lines Every: 1 units

 (d) Subdivisions: 1

 (e) Hit Apply and Close.

 4. Press the Snap to grids button, in the Status Line (toolbar) at the top of the
main window.

 5. Make sure History is turned on: the History icon, , must be depressed.

 You will take advantage of History further down, when you alter the NURBS
surface.

 Draw the guide spline

 1. Click in the Front view to make it active.

 2. Choose Create → CV Curve Tool .

 3. Hit Reset Tool for the default settings.

 A Curve Degree setting of Cubic produces smooth splines, while Linear pro-
duces angular splines. A cubic value of 3 is suffi cient for this exercise.

 4. Hit Close.

 Note: you can work with the Tool Settings window open or closed.

 5. Draw a curve in the Front view:

 LMB + click in at least four (4) different spots to create the spline, as shown in
Figure 05.24 .

 Take advantage of the Snap to Grid feature to get the points in a straight line. You can
undo a point immediately after creating it by hitting the Undo hotkey, z .

1 2 3 4

 FIGURE 05.24

 A spline drawn with the CV Curve
Tool. It was drawn in the Front

orthographic view with grid
snapping turned on. To help you

tell where a curve starts and ends,
Maya uses a box (or square) to

indicate the fi rst CV, and a " U " to
indicate the second.

 Curve degree is a measure of
how many bends a curve can
have between EPs. For most

applications, a 3-degree (cubic)
curve is suffi cient. A minimum

of four points (degree + 1) is
required to make a cubic CV

curve.

 You can also snap to CVs,
curves, and view planes. The
buttons for these actions are

located next to the Snap to Grid
button.

131CHAPTER 05: MODELING GEOMETRY

 6. Once you ' ve created the three points to your satisfaction, hit Enter to complete
the spline.

 7. Hit the Q hotkey to turn the Select Tool on and the Curve Tool off. If you leave
the Curve Tool on, you will create a curve point each time you click in the
workspace.

 By default, when you draw a spline in the Front view, it is created in an XY plane at
Z � 0. If you toggle the Perspective view around the curve you just made, you can see
that all of its points lie on a plane perpendicular to, and at the origin of the Z-axis.
Had you drawn the curve in the Perspective view, you would have gotten unpredictable
results.

 Using the CV Curve Tool

 Maya Help → Using Maya → General → Basics → Basic Menus → Create →
CV Curve Tool

 Create the profi le spline

 1. Choose Create → NURBS Primitives → Circle .

 2. In the Options window, select Edit → Reset Settings.

 3. Customize the settings:

 (a) Normal Axis: X

 (b) Radius: 0.5

 Note : Normal Axis determines which way the circle will face in 3D space; in this case,
you want it to face in the X-direction for extrusion along the straight line curve.

 4. Hit Create. Figure 05.25 shows the result in the perspective view.

 You can also create curves using
the EP Curve Tool or the Pencil
Curve Tool. With the former,
you place EPs, rather than CVs,
which the resulting curve will
pass through. The Pencil Curve
Tool allows you to draw a curve
freehand.

 FIGURE 05.25

 The guide spline was drawn at
Y � 1 in the X–Y plane (Front view),
whereas the profi le spline (circle)
was, by default, created at the world
origin.

132 PART 2: A FOUNDATION IN MAYA

 Snap the profi le to the guide spline
 Whereas you created the circle at the origin, you drew the guide spline above the X–Z
plane so that it will show up better in the illustration (and not be blocked by the Grid
axes). It ’ s important to note that the guide and profi le splines need not be aligned to
create a useful surface; the Extrude tool options determine location and orientation
of the resulting surface. However, if you wish to alter the surface through its History
by moving or deforming either of the two splines, their locations relative to one
another do matter. Here, you ’ ll snap the profi le to the guide spline, so you can deform
the surface predictably a little further on.

 1. Press the Snap to curves button, in the Status Line at the top of the Main
Window.

 2. Hit the hotkey " w " for the Move Tool.

 3. In the perspective view, select the circle and LMB + drag its pivot point (center)
so that it overlaps the guide spline.

 4. MMB + drag the circle ' s pivot point along the guide spline until it snaps onto
it. You ' ll know it has snapped when you can drag the mouse all over the
workspace but the circle remains confi ned to the guide spline (Figure 05.26).

 Extrude the surface
 Th e Extrude tool requires that you select, in order, a profi le spline and then a guide
spline.

 1. Press F4 to activate the Surfaces menu set.

 2. Choose Surfaces → Extrude .

 3. Choose Edit → Reset Settings, then customize the Extrude options:

 4. Set Result Position to At Path. This aligns the new surface with the guide path.
The remaining attributes are okay at their default values.

 5. Hit " Extrude " .

MMB+drag the circle's pivot point
along the guide spline to snap it.

pivot point

 FIGURE 05.26

 Objects can be made to snap to
one another, to Grid points, or

to view planes. In this fi gure we
have snapped the profi le spline

(circle) onto the guide spline. This
allows us to align the circle's plane

perpendicular to the spline, and
center it on the spline.

 Snapping to a curve can be
tricky—patience helps. The

key is to get the objects aligned
visually before MMB + dragging

to snap.

 To snap an object to a curve
without using the Status Line
snap buttons, hold down the

hotkey " c " then MMB-drag the
object over top of the curve until

it snaps to it.

133CHAPTER 05: MODELING GEOMETRY

 Th is creates a tubular surface aligned with the guide spline. If you select it, you ’ ll see
that its pivot is located at the world origin, not the object ’ s origin. You can rectify this
by centering the pivot:

 Choose Modify → Center Pivot.

 Alter the tube through history connections
 Try moving the guide spline, the circle, and the tube individually. You ’ ll notice that
moving either of the guide or circle splines moves the tube. Th is is because the tube is
linked to both splines through construction history. You can break these links if you like
by deleting History (Edit → Delete by Type → History). For now, leave history intact so you
can see how it aff ects the surface when you transform it or its constituent splines:

 1. Select the guide or the circle spline with the tube, and move them together.

 For every unit the spline moves, the surface moves twice as far. Th is is known as a
 double transformation . Th rough History, the tube ’ s transform node is dependent on the
spline ’ s transform node. However, the tube ’ s position also depends on its own transform
node. Th erefore, when you move both the spline and the tube, you ’ re eff ectively moving
the tube twice as much. It ’ s important to be aware of situations that result in double
transformations since they can be the cause of unpredictable results in animations.

 2. Return the spline and tube to their previous positions. You can do this by hitting
the undo hotkey, z.

 Now you ’ ll take advantage of Construction History to alter the shape of the tube.

 1. Select the circle in the Outliner or the workspace.

 2. In the Channel Box, under INPUTS, click on makeNurbCircle1. This is the
creation node.

 3. Enter 2 in the Radius fi eld.

 Notice that the tube “ inherits ” the change in radius and becomes wider. Next, deform
the guide spline by moving a CV. Before starting, reset the radius to 0.5.

 1. RMB + click on the guide spline and choose " CV " from the Marking menu.

 2. LMB + click on one of the CVs to select it, then drag it away from the curve as
shown in Figure 05.27a .

 or in the Channel Box, Click on " CVs (click to show) " and change the Y-value for
the selected CV.

 Th e tube will distort as you drag the CV because of the connection History connec-
tion between the curve and the tube.

 Rebuild the curve
 Th e angular appearance of the tube is due to the number of points (CVs) you used to
create the guide spline; the more points, the smoother the curve. Next you ’ ll rebuild
the guide spline to increase the tube smoothness.

134 PART 2: A FOUNDATION IN MAYA

 1. In the Outliner, select the guide spline, curve1; this automatically selects it in
object mode.

 2. Choose Edit Curves → Rebuild Curve .

 3. In the Options window, choose Edit → Reset Settings.

 4. Set Number of Spans to 2.

 5. Hit Rebuild.

 A span is a length of curve between two EPs. Your original drawn spline had only one
span. By adding another one, you improved its curvature and that of the tube (Figure
05.27b). You haven ’ t seen the last of Rebuild Curves . You will make use of it in MEL
command form to smooth out the curves in Chapter 17 . Save your fi le if you like. Th e
fi nished scene fi le is included on the CD:

 05_Modeling/scenes/tutorial_05_05_done.ma

 Summary
 Th is chapter introduced NURBS and polygon modeling in Maya. Th e tutorials pro-
vided examples of how to create primitive sphere models, which will form much of
the basic geometry for the projects in Part 3 . You learned that an object can be trans-
formed interactively with the Move, Rotate, and Scale Tools and numerically by
changing attributes in the Channel Box. Furthermore, NURBS and polygon are made
of diff erent components, which can be individually selected and transformed with
the same tools used to move, rotate, and scale whole objects. Maya Deformers, which
are used extensively in character modeling and animation (and are therefore a classic
animation subject treated deeply by others), work on a fundamental level, by trans-
forming object components.

 Your inspection of the Hypergraph revealed the nodes and connections that make
up a primitive sphere, plus those that were added to tweak and smooth the surface.
Th ose same nodes appeared in the Attribute Editor, which you used to interact with
the sphere ’ s construction history by changing attribute values in the creation node,
 polySphere1 . Altering these attributes aff ected the downstream shape and tweak
nodes, and therefore the appearance of the object—its radius, subdivisions, and the
location of surface deformations. Since the polySmoothFace node lay downstream

 FIGURE 05.27

 (a) Through Construction History,
moving points on the guide curve

deforms the NURBS surface.
(b) Rebuilding the guide spline by

adding spans, in turn makes the
extruded NURBS surface smoother. (a) (b)

135CHAPTER 05: MODELING GEOMETRY

from the tweak node, changing its Divisions attribute had no eff ect on the surface
deformations. As long as construction history is maintained for an item, you can edit
its creation attributes. History can be deleted by deleting individual nodes, or discon-
nected by deleting connections in the Hypergraph, as you did with pSphere1 .

 Attributes can be connected to each other in diff erent ways. Connections are made
automatically when you create a new object, camera, or light in Maya. Th ey can also
be made manually in several ways. In this chapter you used the Connection Editor
to reconnect the pSphere1 to its history node. In later Case Studies, you will connect
attributes using MEL commands.

 Finally, you learned how to create a surface from splines. Th is is the foundation of
NURBS surface modeling, and a simple technique that you will call upon to help build
a complex fi ber environment in silico.

 References
 1. Kuhn R, Zhang W, Rossmann M, Pletnev S, Corver J, Lenches E, Jones C,

Mukhopadhyay S, Chipman P, Strauss E: Structure of dengue virus: Implications for
fl avivirus organization, maturation, and fusion . Cell 108(5) : 717 – 725 , 2002 .

2. Petterson EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin
TE: UCSF Chimera – A visualization system for exploratory research and analysis.
J. computational Chemistry 25: 1605–1612, 2004.

Th is page intentionally left blank

06 Animation

138 PART 2: A FOUNDATION IN MAYA

 Introduction
 In the previous chapter you learned about model types in Maya (NURBS and poly-
gons) and how to create primitive objects. You saw that an object is composed of
nodes, each with a number of attributes. Using the transform tools and the Channel
Box, you changed certain attribute values in order to move, scale, rotate, and change
the shape of objects. In this chapter, you will record such changes at diff erent times—
called keyframes —on the timeline in order to create animation.

 Th e relevant Maya windows, menus, and tools will be introduced in the upcoming
tutorials. You will use the Hypergraph to see what happens behind the scenes when
attributes are animated and examine how animation is stored within a node. By the
end of this chapter you will have learned how to animate a simple object using both
manual keyframing techniques and automated procedural methods.

 As in the chapter on modeling, our goal here is to provide an introduction to concepts
and techniques that will serve you well in the projects in Part 3 of this book. Th is
chapter is by no means exhaustive; as with modeling, one could easily fi ll a book or
book series with techniques, tips, and tricks on animation with Maya. Under the head-
ing, Learning Maya , the Further reading section lists helpful resources for exploring
this topic further.

 Animation
 In Maya, animation is simply the change over time in the value of an attribute.
An attribute that can be animated is said to be keyable , in reference to the word key-
frame (also key), which is both a noun and a verb in Maya. As a noun, it means a frame ,
or unit of animation time, at which a value has been recorded, or set . As a verb, it
refers to the action of setting the value.

 While keyframes are a means of recording animation for playback, they are not nec-
essarily a requirement of animation; all that is required is for an attribute to change
with time. Keyframes are merely a convenient way to store attribute values at diff er-
ent times, within a Maya fi le. Alternately, values may be stored in an external fi le, or
they may not need to be stored at all.

 Maya store keyframe data for every animated attribute in a separate animation node.
Th e input for this node is time and its output is an attribute value. Th is data is in
the graphical form of attribute versus time is visualized in the Graph Editor, a handy
Animation Editor you ’ ll meet shortly. Like other nodes in Maya, you can inspect and
edit an animation node ’ s values in the Attribute Editor.

 Procedural versus keyframe animation
 Generally speaking, Procedural animation refers to the use of computer procedures, or
algorithms, to change attributes over time. Th e procedure can be as complicated as
an algorithm for DNA replication or as simple as an instruction to make an attribute
equal to a constant value; the point is that it uses an instruction or set of instructions,
not a recorded value, to determine the attribute value.

 Th e following example illustrates the diff erence between keyframe and procedural
animation. Figure 06.01 shows a cube that moves along the X-axis from point X A at
time T A , to point X B at time T B . Th e animation here is the change in the Translate

139CHAPTER 06: ANIMATION

X attribute over time. If this action were keyframed, Maya would use the current
time, T current , to look up X current in the animation node. If instead the action were pro-
cedural, Maya would calculate the X current value using a source other than an anima-
tion node. Th is source could be an animation expression node, a MEL script, or another
type of node, such as a procedural texture which calculates its output value using an
internal algorithm. We will examine the nodes and connections used in animation
through specifi c examples in the tutorials later in this chapter.

 Keyframe and procedural animation need not be exclusive from one another.
Keyframes are often used to record the outcome of procedural animation for later
playback. Nor is procedural animation limited to the physical properties of objects.
Procedural textures are texture nodes that use mathematical procedures to create
interesting patterns for shading objects. Similarly, a light can have its attributes ani-
mated procedurally to produce interesting eff ects.

 Keyframes and memory
 Each time you set a keyframe, the relevant information is stored in RAM until you
save the Maya fi le, at which time it is written into the fi le. Th e more keyframes you
set, the larger your fi le. In a simulation using procedural animation, where you want
to record animation for many objects (e.g. interacting molecules) over many time
increments, setting keys can eat up RAM and drive your computer to use virtual
memory , with its associated time penalties. In Chapter 13 , you will learn how to read
and write attribute values to and from a text fi le. You can use these techniques to
record animated attribute values to an external fi le rather than keyframing them in
Maya. Such an approach keeps RAM use down, and Maya fi le size to a minimum.

 The Animation menu set
 In addition to tools for keyframing, this menu set provides access to ones used to
deform and rig objects. Rigging, which is widely used in character animation, is the
practice of endowing a model with attributes that deform its shape in a controlled
manner. A common example is the rigging of a character, the “ skin ”, with a jointed
skeleton. Joints are then rotated, deforming the skin to bend limbs. A skeleton ’ s
joints can be animated to make a character walk and talk. Deformers work like joints,
changing an object ’ s shape by moving its components.

x

Time = TA Time = Tcurrent Time = TB

XcurrentXA XB

Value stored
in keyframe A

Value computed in an
animation node

Value stored
in keyframe B

A B

 FIGURE 06.01

 Animation of a cube ' s Translate
X attribute between keyframes
A and B.

 Virtual memory refers to
the practice of using a
hard drive for storage and
retrieval of data once RAM
becomes full. Helpful for
alleviating low-memory
situations, it comes with a
heavy time penalty—about
an order of magnitude
slower than RAM.

140 PART 2: A FOUNDATION IN MAYA

 For our in silico work, we have for some projects used rigging techniques to deform
motile cells as they locomote through scaff olds (Figure 06.02). You ’ ll use some of these
techniques when you animate a crawling cell in Chapter 16 . Another example is the
heart model shown in Figure 05.01 in the previous chapter, which was rigged to beat
at regular intervals. Nonetheless, since the Projects in Part 3 don ’ t require rigging
and deformations, we will leave their discussion to the resources listed in the Further
 reading section, and focus here on the menu items concerned with keyframing.
To activate the Animation menu set, use the Status Line pull-down menu at the far
left of the Status Line.

 Setting keys
 Below are a few ways to set keys for, or keyframe , an attribute.

 Using the Channel Box (Figure 06.03)

 1. Select the item (object, camera, etc.) for which you want to key an attribute.

 2. Select the attribute(s) you wish to key, by name in the Channel Box.

 3. RMB + click over a selected attribute name. This brings up a context menu.

 4. Choose Key Selected and release the RMB. This will set a key for all selected
attributes.

 FIGURE 06.02

 In this animation of a migrating
fi broblast cell, the cell body is

rigged to extend and retract
appendages called pseudopodia.

The rigging uses joints and
deformers (inset) to deform the

cell surface smoothly as it crawls
through its environment.

Scale bar �10�m.

141CHAPTER 06: ANIMATION

 FIGURE 06.03

 Using the Channel Box to set
a keyframe for the Translate X
attribute.

 In the Attribute Editor:

 1. Select the item for which you want to key an attribute.

 2. Open the Attribute Editor (Ctrl� A).

 3. RMB � click on the attribute name to key all attributes corresponding to
the name (e.g. clicking on Translate allows you to set all three (X, Y, and Z)
Translate values).

 or

 RMB�click on the attribute fi eld to key only a single attribute name
(e.g. Translate X).

 4. In the context menu, select “ Set Key ”.

 Using a hotkey:

 1. Select the item for which you want to key an attribute.

 2. Use one of the hotkeys shown in Table 06.01 to set a keyframe.

 Hotkey Action

S Set keys for all transform attributes

 Shift + W Set keys for Translate X, Y, and Z

 Shift+ E Set keys for Rotation X, Y, and Z

 Shift+R Set keys for Scale X, Y, and Z

 TABLE 06.01

 Hotkeys to set keyframes for
selected objects.

142 PART 2: A FOUNDATION IN MAYA

 Auto keyframe
 When you turn on auto keyframing , Maya automatically sets a key every time you
change an attribute. For example, if you were to key the position of an object at
time 1, move the time indicator ahead to time 2, then drag the object to a new posi-
tion, Maya would set a key for the new position at time 2. Th is can certainly speed
workfl ow in some circumstances, but it can also be dangerous because it can lead to
setting keys accidentally. Th is can ruin a carefully arranged animation. To turn auto
keyframing on:

 1. Choose Window → Settings/Preferences → Preferences. Select Settings →
Animation.

 2. Under Auto Key, check Auto Key (uncheck to turn off auto keyframing)

 or

 Press the auto keyframe icon in the bottom right corner of the UI.

 In Chapter 18 , you ’ ll use the MEL command setKeyframe to record animation.

 Graphing animation
 Maya represents animation graphically in two ways, using the Dope Sheet and the
 Graph Editor . Th e Dope Sheet provides a tabular account of keyframes for a selected
item (Figure 06.04). You can use it to edit animation by selecting and moving keys along

Dope sheet
outliner

Current time indicator

Keyframes

 FIGURE 06.04

 The Dope Sheet provides a
tabular view of keyframes for a

selected object.

143CHAPTER 06: ANIMATION

Current time
indicator

Keyframes

Animation
curve

 FIGURE 06.05

 The Graph Editor. The blue
curve, which represents the
Rotate Z attribute of pCube1,
uses spline interpolation. Its
slope approaches zero at either
end, making for a gradual
increase and decrease in the
rate of change of Rotate Z.
The red curve represents the
Translate X attribute and uses
linear interpolation. Its slope
is constant, which makes for
an instantaneous increase and
decrease in the rate of change of
Translate X.

the timeline. In a traditional animation workfl ow, the Dope Sheet is used to coordi-
nate event and sound synchronization and timing.

 Th e Graph Editor (Figure 06.05) is a 2D graph displaying animation curves (also called key-
sets). Th ese represent attribute values plotted on the vertical axis against time values
plotted on the horizontal axis; they are the in-between animation spanning the keys,
which are the plot points. Th eir interpolation through and between keys determines
the smoothness of animation. A curve can use linear or spline (nonlinear) interpolation ,
as shown in Figure 06.05 . Spline curves correspond to smooth acceleration and decelera-
tion in animation. In other software applications spline interpolation is sometimes
called ease in and ease out (in to and out of a keyframe). Th is is the opposite of linear
interpolation which makes for abrupt changes—instantaneous acceleration—in
attribute values at keyframes. Th is is not to say that spline interpolation can ’ t gener-
ate abrupt changes in direction.

 In addition to displaying animation curves, the Graph Editor contains tools for
adjusting interpolation and for moving and scaling keys. For keyframe animation, we
fi nd it to be one of the most useful tools in Maya. You will explore it further, along
with animation curve interpolation, in the upcoming tutorial.

Dope Sheet and Graph Editor

 Maya Help → Using Maya → Animation, Character Setup, and Deformers →
Animation → Animation Windows and Editors → Editors
→ Dope Sheet
→ Graph Editor

144 PART 2: A FOUNDATION IN MAYA

 Deleting keys
 Once keys are set, they can be deleted in one of the following ways:

 Use the Dope Sheet or the Hypergraph to delete one or more keys for the selected
object(s):

 Select the keys in the Dope Sheet and hit Delete.

or Select the keys in the Hypergraph and hit Delete.

 Use the Timeline to delete all keys for the selected object(s) at a specifi c frame:

 1. Select the red key tick mark in the Timeline.

 2. RMB +click on the key and select Delete.

 Use the Channel Box or Attribute Editor to delete all keys for the selected
attribute(s):

 1. Select the attribute in the Channel Box or Attribute Editor.

 2. RMB+click on the attribute and select Break Connections.

 Time units
 In Chapter 04 , we introduced the Timeline and Playback controls, which you will use
to scrub and to play your animation. In addition, Maya lets you determine the work-
ing units for time, which are set to 24 frames per second (fps) by default. You can
choose from a variety of fps settings, including broadcast standards PAL and NTSC ,
and clock settings: hours, minutes, seconds, and milliseconds. A clock setting of “ mil-
liseconds ” is equivalent to an fps speed of 1,000. A setting of seconds is equivalent to
one fps, and so on for minutes and hours. To access the Time settings:

 1. Open the Preferences Window and choose Settings.

 2. Under Working Units → Time, select an appropriate playback frame rate.
(In North America, it is common to use NTSC (30 fps) which is a television
video broadcast standard.)

 Th e Time working units are as important as is the speed of the action in a rendered
movie. For instance, if an action were to occur in one second as seen by an audience,
then you would set the working units in Maya to match those of the viewing technol-
ogy. Suppose, for example, you were animating the cell cycle for a European television
audience, and you had one second to show the cytokinesis phase. In Maya, you would
set the Time working units to PAL (25 fps) (the European television broadcast stand-
ard) and animate cytokinesis within 25 frames.

 For in silico simulations, the working units are generally fl exible. Our practice is to
use NTSC (30 fps) because we often output movies to video for a North American
audience.

 It is good practice to set your
Time working units at the start

of a project. Changing units
midway will shuffl e keyframes

along the timeline unless you
have Keep Keys at Current

Frames checked in the Working
Units settings.

 Playback settings
 After setting the working units, you can further specify speed of playback in the
scene view. Th is can be the speed you set in Time working units, half or twice that
speed, or a diff erent frame rate altogether. Since this determines only how quickly
Maya plays frames in the workspace, it does not aff ect the per-second rate of anima-
tion in your scene.

 It is not uncommon for a scene to be too complex to play back at the specifi ed fps.
In this case, Maya skips frames to keep pace. Th is is generally fi ne for keyframed
animation, but is a major pitfall for scenes involving dynamics or procedural ani-
mation; calculations are missed in the skipped frames, leading to bogus animation
results. To prevent this, Maya must be set to play every frame, independent of a desired
frame rate:

 1. Open the Preferences Window and choose Settings → Timeline.

 2. Under Playback, select Play every frame.

 Within the Playback settings, Update View determines if Maya will redraw all win-
dows in the workspace during playback or just the active one, which requires less
memory and processing. You can also choose whether animation is to play once or
loop. Finally, you can skip frames for quicker playback of complex scenes by setting
Playback by to a number other than 1; for instances a setting of 3 means Maya will
play every third frame. For scenes involving dynamics and procedural animation,
this setting should always remain at 1, for the reason mentioned in the previous
paragraph.

 Tutorial 06.01: A keyframe animation
 Th is is a quick exercise to become familiar with setting time-dependent attribute
values using keyframes. You will animate the Translate X value for a primitive cube.
We ’ re starting with this very simple example in order to demonstrate the core con-
cept of animation in Maya: the change of an attribute ’ s value over time. Armed with
this understanding and the fact that almost all attributes for all the nodes in a Maya
scene can be animated, you will have at your fi ngertips enormous creative poten-
tial for simulations and visualizations of complex biological phenomena. Let ’ s get
started.

 Preparation
 To start, create a polygon cube, then select it in the scene view. Next, you ’ ll set the
Time working units, the Playback settings and the duration of the animation.

 1. Choose Create → Polygon Primitives → Cube. If Interactive Creation is turned
on in this menu, you ’ ll need to click and drag in the workspace to make the cube .

 2. Choose Window → Settings/Preferences → Preferences. Make the follow-
ing settings:

 (a) Settings → Time → Working Units to NTSC (30 fps).

CHAPTER 06: ANIMATION 145

146 PART 2: A FOUNDATION IN MAYA

 (b) Settings → Animation → Tangents → Default In Tangent and Default Out
Tangent both to Linear and check Weighted Tangents.

 (c) Settings → Timeline → Playback to Real-time (30 fps), and Looping to
oscillate (so that the animation will play back and forth continually until you press
Stop in the Playback Controls) .

 Hit Save to close the Preferences Window.

 3. Set the current time to 1.0 by LMB+ clicking on 1 in the Time Slider, or by
entering 1 in the Current Time fi eld.

 4. Set the Start and End times in the Range Slider to 1.0 and 90.0, respectively
(Figure 06.06) .

 In Step 1b you set the animation tangents to be linear. We ’ ll explain why shortly.

 Set the keyframes
 Now use the Channel Box to record a key for the cube at frame 1.

 1. Select the cube.

 2. Select the Translate X (not its value fi eld) in the Channel Box.

 3. RMB+click over Translate X to bring up a context menu.

 4. Choose Key Selected and release the RMB.

 5. Repeat steps 2 through 4 for Rotate Z.

 You have just keyed the cubes position at (0, 0, 0) and its rotation at (0, 0, 0). Next you
will change the time, translate and rotate the cube, and set a new key.

 1. Enter 90 in the Current Time fi eld or click on 90 in the Timeline to move to
frame 90.

Time Slider Range Slider Current time Playback Controls

Playback Start Time Animation End Time

Animation Start Time Playback End Time

Buttons to
expand the Slider

 FIGURE 06.06

 The Animation Controls.

 Setting Playback to Real-time
will give you three seconds

of animation for 90 frames
at 30 fps. This will make the

animation easier to watch than
would a setting of Play every
frame . The latter would play

back very quickly because this
simple animation requires very
little computer horsepower to

compute and draw each frame.

 When an attribute has been
keyed, its value fi eld in the

Channel Box turns from white to
orange.

147CHAPTER 06: ANIMATION

 2. Hit the W hotkey to activate the Move Tool and drag the cube with the X
handle to X = 16.

or Enter 16 in the Translate X fi eld in the Channel Box.

 3. Set another key for Translate X at this new time.

 4. Enter -720 in the Rotate Z fi eld in the Channel Box.

 5. Set another key for Rotate Z.

 Play, scrub, and stop the animation
 Note the red key ticks in the Time Slider which indicate keyframes. To play your
animation:

 1. In the Animation Controls, press the Go To Start button to return to the
beginning of the playback range.

 2. To play the animation, press the Play button in the Animation Controls.

or Hit the hotkey, Option�V.

 You should see the cube roll back and forth across the scene view (Figure 06.07). To scrub
the animation:

 LMB�drag in the Time Slider.

 To stop playback:

 Press the Stop button in the Animation Controls.

or Hit the hotkey, Option + V.

or Hit the ESC key.

 Edit the animation curves
 Notice that during playback the reversal of motion at either end of the cube ’ s tra-
jectory appears abrupt; it appears to instantaneously change direction. Th is is the
result of setting the keyframe interpolation to linear in the Animation Tangents
Preferences. It ’ s often favorable to have linear versus nonlinear changes in motion
when starting to animate, in order to rough in the motion. You can then refi ne the
motion by adjusting the keyframe tangents in the Graph Editor, which is precisely
what you will do in a few pages.

 When using procedural animation for in silico biology, we often set keys to record the
action for later playback in a movie fi le. By adjusting the interpolation of the result-
ing animation curves you can smooth out the motion and make for a more watchable
movie in the end. Let ’ s explore the Graph Editor and use it to change the interpola-
tion so that the cube eases into and out of motion.

 You can also key translate values
for individual CVs in the Channel
Box, in the same way you
would select and key transform
attributes. The resulting
animation curve nodes will be
connected to the object ' s shape
node, rather than its transform
node.

 In Preferences, you can change
the display size of key ticks in the
Time Slider.

 The Graph editor is a good item
to add your custom shelf.

148 PART 2: A FOUNDATION IN MAYA

 1. Select the cube.

 2. Open the Graph Editor: choose Window → Animation Editors → Graph
Editor.

 3. In the Graph Editor, choose View → Frame All.

or Hit the hotkey, A to frame all animation curves for the selected object.

 You should see something resembling Figure 06.08 . Note that the curves are color-
coordinated with their corresponding attributes.

 The Graph Editor outliner
 Th is panel displays only selected items. Under each one is listed its animation curves
(corresponding to its keyed attributes) by name. Th e curves for Translate X and Rotate
Z appear under the transform node, pCube1 . None of the other nodes that make up
pCube1 appear here because you did not key their attributes.

 The Graph Editor graph view
 When an attribute is selected in the Graph Editor outliner, its animation curve
appears in the graph view. Table 06.02 shows hotkeys and key combinations used to
adjust this view and work with keys. When you select a key, Bézier handles (or tangents)
appear. Figure 06.09 shows the common types of animation tangents in Maya. You can
MMB � drag a tangent to modify its curve. More control can be gained by weighting
the tangents and unlocking their weights.

 FIGURE 06.07

 With its translate and rotate
attributes keyed and playback set to
Looping: Oscillate, the cube will roll

back and forth in the scene view.

149CHAPTER 06: ANIMATION

 1. Select the cube.

 2. In the Graph Editor, select the choose Curves → Weighted Tangents.

 3. Press the Free tangent weight button in the toolbar.

 4. Drag a tangent to distort one of the curves:

 (a) Hit the hotkey, “ W ” to active the Move Tool.

 (b) LMB� click on a tangent to select it.

 (c) MMB � drag the tangent.

Tool bar
Menu bar

Outliner

Graph view

Attribute values

Tangent tools

attributes
Transform node

Translate X-curve
Rotate Z-curve

keyframes

Frame #
Key Stats: Attribute value

 FIGURE 06.08

 Features of the Graph Editor.
Because of the keyframe settings
we used in Preferences, the cube ' s
animation curves are linear—of
constant slope—resulting in
abrupt changes in direction at the
beginning and end of the animation.

 Hold Drag Hotkey Function

 Alt MMB Track view

 Alt LMB +MMB Dolly view

 K MMB Move current time indicator

 MMB Move the selected key

 Shift MMB Move the selected key, constrained to one of
the two axes

 A View all

 F Frame selected key(s)

Note : To move keys, you must activate one of the Move , Rotate , or Show Manipulator Tools in the main toolbox .

 TABLE 06.02

 Shortcuts for the Graph Editor graph
view and the Dope Sheet.

150 PART 2: A FOUNDATION IN MAYA

 Take a moment to modify the curves using their tangents and play the animation
back to observe the eff ect. Don ’ t hesitate to really distort them and see what happens
to the animation—you may have to pull your camera back to see the full range of
motion in the scene view. Below, you will use the toolbar buttons to reset the curves
and then adjust them automatically.

Editing animation curve tangents

 Maya Help → Using Maya → Animation, Character Setup, and Deformers →
Animation → Keyframe Animation → Edit Tangents

 The Graph Editor toolbar
 Th e most commonly used curve editing tools are accessed through the Graph Editor
toolbar buttons; several of these are also found in the menu bar.

 1. Select the cube.

 2. With one of the Select, Lasso, Move, Scale, or Rotate tools active, select
both animation curves in the Graph Editor, the same way you would select an
object in the scene view.

 3. Press the Linear tangents button in the toolbar. This will return the curves
to their original linear state.

 4. Press the Flat tangents button in the toolbar.

 Th e fl at tangents at the start and end of the animation cycle give smooth motion into
and out of each translation and rotation direction change. Smooth acceleration is key
to natural-looking animations.

 Moving keys
 In the Graph Editor you can select, move, or delete keys.

 1. Select the cube.

 2. Hit “ W ” to activate the Move Tool.

Animation curve
Active handle

Broken tangentBroken tangent Unified (unbroken) tangent

Inactive handle

Non-weighted tangents Weighted tangents, locked Weighted tangents, free

 FIGURE 06.09

 Different animation curve tangents
displayed in the Graph Editor. Free,

weighted tangents give you the
most control when reshaping an

animation curve.

151CHAPTER 06: ANIMATION

 3. In the Graph Editor, select the two keyframes at frame 90.

 4. Hold down the Shift key while you MMB+drag the keys left to frame 30. Then
release the mouse.

or Enter “ 30 ” in the Frame # fi eld at the top-left of the Graph Editor.

 Because you changed only the frame number, and not the attribute values of the
selected keys, the cube will now cover the same distance and rotate the same amount
in 30 frames as it did previously in 90. Before you hit Play, change the Playback Range
to span 1 to 30 frames to match the animation range, or else you ’ ll spend two seconds
watching nothing.

 Save your scene as you will need it for the next tutorial.

 Animation nodes in the Hypergraph and
Attribute Editor
 In the previous chapter you used the Hypergraph to inspect the nodes that composed
a simple object. Here you ’ ll employ it to look at the nodes that were created and/or
connected when you keyed the cubes attributes.

 1. Select the cube and open the Hypergraph.

 2. Choose Graph → Input and Output Connections.

 Figure 06.10 shows the nodes composing a polygon cube called pCube1. Th e transform,
history, shape, and shading engine nodes are familiar from the last chapter. Th e two
new nodes connecting to pCube1 are animation curve nodes that were created when
you keyed the translate and rotate attributes.

 Figure 06.11 shows the Translate X animation curve node represented in the Attribute
Editor, with which you can edit key values and interpolations.

Tutorial 06.02: A simple procedural animation
 In this exercise, you will add custom procedural animation to the existing keyframe
animation on the cube created in the previous tutorial. It will cause the cube to rotate
back and forth about its Y-axis, giving the appearance of a wiggle. We ’ re getting
slightly ahead of ourselves, as this task will require working with the Expression Editor
and a touch of MEL script, before either have been formally introduced (which will
happen in Chapter 12). But it ’ s an exciting taste of what ’ s to come and will demon-
strate a strength of the Maya environment: one can make use, quickly and eff ectively,
of procedural animation techniques, involving a host of built-in MEL commands,
with little or no prior programming experience.

 Animation expressions in brief
 An animation expression is an instruction or set of instructions, usually invoked
to control keyable attributes, that executes in coordination with Maya ’ s timeline.
Th e instructions work much like an animation curve does, telling an attribute what

152 PART 2: A FOUNDATION IN MAYA

value to assume at a given frame. Rather than go into a lengthy explanation right
now, we ’ ll use an example to show you what an animation expression is and what
it can do. Th ere will be much more on this exciting topic beginning in Chapter 12 ,
through to the end of this book. To start, open the scene fi le with the animated cube
from the previous tutorial. If you didn ’ t create the fi le on your own, you can fi nd it
on the CD.

06_Animation/scenes/tutorial_06_01_done.ma

 FIGURE 06.10

 Maya creates an animation curve
node for each attribute you key.

Two such nodes are shown here in
the Hypergraph for the animated

polygon cube. The shape of a node
changes from a rectangle to a

parallelogram to indicate that it is
animated.

 FIGURE 06.11

 Animation nodes can be viewed
and altered in the Attribute Editor.
Here you can edit keyframe times
and values as well as set the pre-

and post-infi nity behavior of the
animation curve—that is, how the
curve is extended beyond the fi rst

and fi nal keyframes.

153CHAPTER 06: ANIMATION

 Create an animation expression
 1. Select the cube.

 2. Select its Rotate Y attribute in the Channel Box.

 3. RMB+click on Rotate Y in the Channel Box and select Expressions from the
context menu. This will launch the Expression Editor (Figure 06.12).

 4. In the Selected Obj & Attr fi eld, select the text pCube1.rotateY
and MMB +drag it into the Expression fi eld below.

 Th is “ dot notation ” (pCube1 “dot ” rotateY) is the standard notation for nodes and
their attributes in Maya. Here you will assign the attribute the value of a built-in trig-
onometric function for the sine of an angle, which is shortened to sin() in MEL as in
most other programming languages. Trigonometric functions are often advantageous
in computer animation because of their cyclic or periodic nature, which can be used
to create oscillating motion. You will use sin() to give the polygon cube an oscillat-
ing rotation about its Y-axis.

 Like most functions in Maya, sin() requires an argument, which is number on which
to operate. Th e current frame number makes a suitable argument because it increases
steadily as the animation plays. It is therefore a good stand-in for the elapsed time
itself. As it increases or decreases, sin() will oscillate predictably through a range
of positive and negative numbers, which will in turn rotate the cube back and forth
about Y. Th e current frame is represented by a global variable called frame . Variables
will be discussed much more in Chapter 12 , but for now it ’ s enough to know that

 FIGURE 06.12

 The Expression Editor displaying
an expression created to drive the
Rotate Y attribute of the polygon
cube. An attribute is referred to
in an expression as a node name
followed by a period (or dot),
followed by the attribute name.

154 PART 2: A FOUNDATION IN MAYA

 frame is a value that can be queried by its name anywhere with Maya. Let ’ s complete
the animation expression:

 1. In the expression fi eld of the Expression Editor, type = sin(frame); to the right
of pCube1.rotateY. Your expression so far will look like:

 pCube1.rotateY = sin(frame);

 2. Press the Create button. This creates a new animation expression.

 Th e name of the new animation expression appears in the Expression Editor under
the heading, Selection → Expressions. You can edit an expression at any time by
selecting it by name in this fi eld. However, by default the fi eld shows only the expres-
sion for selected nodes. To show all expressions in a scene,

 Choose Select Filter → By Expression Name.

 Now play the animation to see the eff ect on the cube ’ s Y-rotation. You ’ ll notice
it ’ s very subtle. To make it more pronounced, increase the amplitude of the
 sin() function.

 1. In the lower Expression fi eld, type:

 pCube1.rotateY = 20 * sin(frame)

 2. Press the Edit button to enter the expression.

 Now when you hit Play, the magnitude of the Y-rotation will be considerably greater
(20 times greater, in fact). Equipped with this understanding of a simple, one-line
animation expression, you ’ ll see shortly it ’ s not too great a leap to begin program-
ming more complex instructions to drive attributes in much more complicated mod-
els of organic structure and function.

 Th e fi nished scene fi le for this tutorial is included on the CD:

 06_Animation/scenes/tutorial_06_02_done.ma

 Animation expression nodes
 Before leaving this example, let ’ s take a quick look in the Hypergraph at the nodes
that were created (Figure 06.13).

 1. Select the cube and open the Hypergraph.

 2. Choose Graph → Input and Output Connections.

 Th ere are two new nodes: an animation expression node and a time node. Th e time
node provides the frame number to the animation expression node, which updates
the transform node, pCube1 .

 Summary
 In this chapter you learned that in Maya, animation boils down to the change over
time in the value of an attribute. Any attribute that is “ keyable ” can be animated.

 A semi-colon is used to separate
MEL statements. While its use
is not strictly necessary when

working with a single statement,
it is good programming form.

 When an animation expression
has been assigned to an

attribute, the attributes value
fi eld turns purple in the Channel

Box.

155CHAPTER 06: ANIMATION

Furthermore, an attribute can be animated by keyframing or using an animation
expression. Th e latter is a type of procedural animation.

 Keyframing creates an animation curve DG node and connects it to the attribute
in question. An animation curve spans keyframes and returns a value, at any given
frame number, which drives the attribute in question. Th e shape of a curve, described
as its interpolation, is governed by its tangents, which can be manipulated by hand
or automatically (i.e. through a procedure). Curve interpolation, in turn, is a measure
of the acceleration of animation into and out of keyframes. Th is acceleration can be
gradual or instantaneous and determines the degree to which animation appears
smooth or abrupt.

 An animation expression is a DG node which contains an instruction or set of
instructions that drive the value(s) of one or more attributes. A time node updates
the animation expression node at each frame during playback. Th e expression may be
a single line of script, like the example in the last tutorial, or many lines which evalu-
ate equations and use the results to drive attributes, which is the approach we use
when simulating of behaviors of molecules and cells.

 Th e animation examples in this chapter open the door to powerful concepts that will
come into play all through the rest of this book. In silico simulation methods use key-
framing as a way of capturing the results of a simulation, rather than creating anima-
tion. Th e animations are thereby created procedurally using animation expressions
and another scripting device called a procedure.

 In the next chapter, you will be introduced to Maya Dynamics, which simulates forces
acting on and between bodies to create animations. Dynamics is a powerful feature
of the Maya environment and is widely used in special eff ects animation for fi lm and
television. For in silico biology, we use dynamics in our projects to emulate random
motion and collisions in systems of individual molecules and of whole cells.

 FIGURE 06.13

 When you create an expression, you
are creating an expression node
and a time node, shown here in the
Hypergraph.

Th is page intentionally left blank

07 Dynamics

158 PART 2: A FOUNDATION IN MAYA

1 2

3 4
� 20 Å

 FIGURE 07.01

 Four frames from a simulation of
polymeric protein (actin fi lament)
assembly. The scale bar (�20 Å)

in frame 3 pertains to the red
foreground protein.

This model involved a combination
of Maya Dynamics and custom

procedural (mathematical)
simulation. With very little effort,

dynamics was used to get the
objects diffusing and colliding so

that we could focus our efforts on
the mathematics of the chemical

reactions between objects as
the fi laments assembled and

disassembled.

 Introduction
 Dynamic simulations are used in productions for the entertainment industry to cre-
ate animations that would otherwise be intractable using traditional techniques.
Th ese typically involve many objects, like particles comprising a billow of smoke, and
complex physical interactions, like the response of fur to an animal ’ s movements.
Common examples in Hollywood fi lms include simulations of water, explosions, hair,
and fabric. Th e fi eld of scientifi c animation uses the full range of Maya Dynamics
capabilities in order to emulate a wide variety of natural phenomena: molecular
interactions (Figure 07.01); fl uid dynamics in vivo and in vitro (Figure 07.02); virus particles
budding from an infected cell (Figure 07.03); bacterial fl agellae (Figure 07.04); cell surface
deformations (Figure 07.05).

1 2

3 4

� 10 μm (� 100,000 Å)

 FIGURE 07.02

 Four frames from an animation
illustrating the use of a detergent to

lyse (or dissolve) HIV-infected T-
lymphocyte cells (spherical objects).

This process is used to collect
viral material (RNA (red specks))
for study. The detergent cloud is

modeled using Maya 2D Fluids and
can be seen entering the top left of

panel 1. As it washes over the cells,
their membranes disintegrate—a

process modeled using Maya
particles. The viral RNA fragments
are modeled with particles as well.

Scale bar � 10 � m.

Courtesy Shaftesbury Films and AXS
Biomedical Animation Studio. Copyright

Shaftesbury ReGenesis II Inc.

159CHAPTER 07: DYNAMICS

1 μm

 FIGURE 07.03

 The budding of HIV virus particles
(the red specks) from an infected
T-lymphocyte cell was animated
using Particle Dynamics. Scale
bar � 1 � m.

Courtesy Shaftesbury Films and AXS
Biomedical Animation Studio. Copyright
Shaftesbury ReGenesis II Inc.

 The Dynamics module in Maya
Unlimited includes Fur and
Fluids simulation capabilities,
which aren ’ t included in Maya
Complete or Maya PLE.

 Th is chapter provides a basic introduction to the Dynamics module, which includes
particles, soft body, and rigid body dynamics. Th e Dynamic engine simulates the
eff ects of physical forces on objects to make them move about, collide with, repel, and
attract one another. Th e force fi elds and collision detection capabilities of the Maya
Dynamics engine are ready-made tools that can be built on with custom scripted
animation to approximate events in the cellular and molecular realms—the ran-
dom motion, interactions, and deformations of agents (cells, molecules, and compo-
nents of tissues). If you plan to use Maya for interpretive visualization purposes, the
Dynamics module will be an essential tool.

 Th e fact that you may be considering Maya as a platform for biological simulation
warrants a comment here on the realism of Maya ’ s physical simulation capabilities.

1 μm

 FIGURE 07.04

 Flagellae, the swimming
appendages employed by these
bacteria, Bacillus cereus , were
modeled with Maya Hair. Hair uses
specially rigged spline curves to
simulate dynamic effects on fi brous
structures. Scale bar � 1 �m.

Courtesy Shaftesbury Films and AXS
Biomedical Animation Studio Inc.
Copyright Shaftesbury ReGenesis
II Inc.

Because Maya evolved as a tool for the entertainment industry, the implementation
of dynamics focused on visual fi delity to real-world events rather than fi delity to the
original governing equations of motion used. In some cases, successive iterations of
the force calculations are made (behind the scenes) to generate better looking motion.
Moreover, many attributes have been given animator-friendly names that are diffi cult
to trace back to their role in the original physics equations—names such as bounci-
ness and goalSmoothness . It is therefore diffi cult to directly relate attributes in Maya
(the magnitude of a force fi eld, for example, or the friction attribute of an object) to
coeffi cients within the original motion equations. Th is fact presents a challenge to the
scientist who wants to factor in a specifi c drag coeffi cient or fl uid viscosity, for exam-
ple, because those parameters don ’ t exist in any easily accessible form in Maya.

 Th is is not to say that Maya Dynamics cannot be used for in silico biology. In our expe-
rience, Dynamics has been tremendously helpful for rapid prototyping purposes in
cellular and molecular simulation models (Figure 07.01). Furthermore, in cases where
you don ’ t require real-world physical parameters, but instead are looking at simulation
events in a relative and subjective manner, Maya ’ s built-in physics engine can save you
a great deal of time and eff ort that would other be spent writing custom code.

 Th e fi rst tutorial in this chapter is a simple introduction to rigid body Dynamics. In
it you ’ ll animate a sphere to move randomly within a container, while colliding with
its walls. Th e second tutorial lets you explore Particle Dynamics, with a twist: not only
will you make particles move in response to a force fi eld, you will also simulate colli-
sions amongst them, something which Maya was not designed to do. Since this requires
more than the built-in particle dynamics tools, you will get a sneak peek at how to use
a simple, custom MEL expression in collaboration with Dynamics. In the fi nal tutorial,
you will create an animation movie fi le, called a playblast , from the particle simulation.

 The Dynamics module
 Th e Dynamics module is accessed through its own menu set, which can be selected
from the menu at the far left of the Status Line or activated using the hotkey, F4.

 FIGURE 07.05

 Still frames from a movie of cell
locomotion. The amoeboid crawl of

a lymphocyte (pictured here) was
animated using soft body dynamics.

Attraction forces (Newton fi elds)
were used to extend protrusions

(pseudopodia) from the cell
membrane which was modeled as

a soft body. The cell body is roughly
10 � m in diameter.

1 2

3 4

PART 2: A FOUNDATION IN MAYA160

161CHAPTER 07: DYNAMICS

Th is set is used to created particle objects and to manage the dynamic behavior of
particles and of existing objects you made using the Create menu, or the NURBS and
polygonal modeling tools. Any surface can have dynamic behavior applied to it, by
turning it into a rigid body or soft body object. Strictly speaking, a spline cannot be
made into a dynamic object. Th e caveats to this are Hair and Fur which do make use
of dynamic curves. Th e Hair and Fur modules ship only with Maya Unlimited.

Maya Hair and Fur

 Maya Help → Using Maya → General → Dynamics and Effects
→ Hair
→ Fur

 The Dynamics engine
 Whereas the Dynamics module is the set of nodes, menus, and tools that let you
perform dynamic simulations in Maya, the Dynamics engine is the behind-the-
scenes software that does the work; it calculates the motion of objects based on
the attribute values you input for the various dynamics nodes in a scene; for example,
the Intensity attribute of a force fi eld node or the Mass attribute of a particle node.

 Forces: Collisions and fi elds
 Forces come in two varieties in Maya:

 Collision forces are generated when dynamic bodies contact one another.
Fields act on objects from a distance (like gravity, for example).

 Collision forces (or impulses) are calculated by the Dynamics engine using the
masses, velocities, and accelerations of the colliding objects. Other attributes are
also accounted for, including friction, damping, and resilience (or elasticity). You will
get a crash course on collisions in Tutorial 07.01: Rigid body dynamics . While collision
forces in Maya can be thought as the forces at work when a ball bounces off a surface
for example, force fi elds (called simply fi elds in Maya) are akin to gravity, magnet-
ism, or the pressure generated by wind. Objects within the eff ective range of a fi eld
fall under its infl uence. Furthermore, fi elds exist as nodes with attributes in a Maya
scene, whereas collision forces are not represented discretely in the Dependency
Graph (DG), but are calculated on the fl y in order infl uence objects (geometry and par-
ticles) that are part of the DG. Like many other DG items, a fi eld has a transform and
a shape node which determine its physical location in the 3D scene and its character-
istics (strength, orientation, etc.), respectively.

 In Maya, fi elds emanate from one or more points of origin, called an emitter. In the
case of a gravity fi eld, for example, the origin is the location(s) toward which objects
under its infl uence are attracted. An emitter can be the fi eld ’ s own transform node,
the transform node of a geometric object or it control vertices (a surface emitter),
or individual particles from a particle object (more on particles below). To infl uence
objects or particles in a scene, a fi eld must be connected to them in the DG. Making
these connections is simple and will be covered in the tutorials to follow.

 Maya has nine fi elds in total: Air, Drag, Gravity, Newton, Radial, Turbulence,
Uniform, Vortex, Volume Axis. Some of these, such as the Newton fi eld, mimic a single

force vector, resulting in the acceleration of the aff ected object(s). Others, like the Air
fi eld, apply a balance of force vectors, resulting in constant velocity (zero accelera-
tion). A Turbulence fi eld applies a force that changes direction randomly over time.
Th e resulting motion is a quick stand-in for Brownian diff usion. We will explore the
Turbulence fi eld in more detail in this chapter ’ s tutorials.

Fields

 Maya Help → Using Maya → Dynamics and Effects → Dynamics → Fields →
Overview of fi elds

 Particle objects
 Particles are perhaps the mostly widely used Dynamics feature in computer graphics
(CG) special eff ects. Stripped to its essence, a Maya particle is a point in space with
attributes describing its motion, including velocity and acceleration, and its static
properties, including mass and color. Because Maya particles are points in space, and
without shape (geometry), they can be created, destroyed, and animated by the thou-
sands quickly without large computer processing penalties. Because they are easy to
work with in large numbers and can be made to respond to physical forces, they are
a well suited to the many natural phenomena that can be modeled in a particulate
fashion, such as water, smoke, clouds, rain, snow, and insect swarms.

Particles

 Maya Help → Using Maya → Dynamics and Effects → Dynamics → Particles →
Overview of particles

 Particle emitters
 When you create a particle object in Maya, you are creating a particle group node.
Individual particles then are “ born ” (see Figure 07.06), or temporarily created, from the
group node. Particles are birthed from the group node either manually, using the
Particle Tool or automatically through an emitter node, of which there are fi ve types
(Figure 07.06). A Surface emitter was used to birth the red virus particles in the HIV
animation shown in Figure 07.03 .

 Particle attributes
 A particle group node has particle attributes which infl uence all particles within the
group equally. In addition, there is a large number of attributes whose eff ects can be
varied from one individual particle to the next. Th ese are called per particle attributes
and will be discussed in Tutorial 07.02 below.

 Particle goals
 Maya lets you assign a geometric surface (NURBS or polygon object) to particles as a
goal object. As the particle simulation plays, particles are attracted to their goal with
a strength that you control using attributes. Th is can be used to make a swarm of
particles follow a geometric model around the scene or to make particles move toward

162 PART 2: A FOUNDATION IN MAYA

and then stick to a surface. Furthermore, particles themselves can be goal objects for
other particles.

 Rendering particles
 Because a particle is merely a point in space, something must be done to make it vis-
ible; to make it look like water, smoke, or a bumble bee when it is rendered. How it
ultimately appears is determined by an attribute called its particle render type, of
which there are 10 varieties (Figure 07.07). As you will see in a later chapter, Maya has
several rendering engines which it uses to render pictures of a scene. Two of these,
called the Hardware and Software Renderers, are used to render particles. Briefl y, the
Hardware renderer uses your computer ’ s graphics processor to create images, while the
Software renderer uses software algorithms native to Maya and your computer ’ s CPU
to make the images. Of the ten particle render types, seven use Hardware rendering
and three use Software (s/w for short). Hardware particles cannot be rendered using
the Software rendering engine and vice versa. On top of choosing a particle render
type, you also assign a shader to a particle group, in the same way you would to a sur-
face. Th e shader determines color and lighting properties.

Rendering particles

 Maya Help → Using Maya → Dynamics and Effects → Dynamics → Particles →
Render particles

 Curve fl ow
 Curve fl ow is a particle dynamics feature that uses pre-defi ned expressions to fl ow
particles along a spline. Attributes control the nature of the fl ow. Curve fl ow is useful

Particle Tool(a) (b) (c)

(d) (e) (f)

 FIGURE 07.06

 Particles are born from the Particle
Tool (a) or from one of fi ve types of
emitter ((b) through (f)).

(a) The Particle Tool is used to
place, or draw, particles in a scene.

(b) Directional Point emitter.

(c) Omni Point emitter.

(d) Surface emitter.

(e) Volume emitter.

(f) Curve emitter.

163CHAPTER 07: DYNAMICS

164 PART 2: A FOUNDATION IN MAYA

for many applications in which particle must follow a path. For example, it makes a
snap of animating the fl ow of blood cells through a convoluted vessel.

 Rigid bodies
 Rigid body Dynamics treats objects as if they had rigid surfaces. Rigid bodies react
to fi elds and friction forces, collide with, slide and roll along, and bounce off one
another. You can specify whether Maya calculates a rigid body ’ s physical interactions
with the scene based on its CV-defi ned surface, or using a proxy geometric surface
such as a cube or a sphere. Th e proxy method trades surface accuracy for computa-
tional effi ciency; Maya can calculate collisions for a cube more quickly than for a
detailed surface defi ned by hundreds or thousands of CVs.

 A rigid body can be either static or dynamic, a setting determined by its “ Dynamic ”
attribute. When static, an object is anchored in the scene, unable to move, like a con-
crete fl oor, for example. When dynamic, it is free to move about the scene in response
to forces and collisions. When a dynamic body collides with a static one, the latter
does not react. We use static bodies for compartments in molecular dynamics simula-
tions for example.

Rigid bodies

 Maya Help → Using Maya → Dynamics and Effects → Dynamics → Soft and
Rigid bodies → Rigid bodies

(e) (f) (g) (h)

(a) (b) (c) (d)

 FIGURE 07.07

 The Particle render types. (a)
through (g) are hardware render

types. (h) through (j) are software
(or s/w) render types:

(a) MultiPoint,

(b) MultiStreak,

(c) Numeric,

(d) Points,

(e) Spheres,

(f) Sprites,

(g) Streak,

(h) Blobby Surface (s/w),

(i) Cloud (s/w),

(j) Tube (s/w).

The sprite render type displays a
2D image or image sequence at the

location of each particle. (i) (j)

165CHAPTER 07: DYNAMICS

 Soft bodies
 Soft bodies are deformable surfaces that respond to fi elds and collisions. A soft body
is created from a regular NURBS or polygon surface by substituting a particle for each
CV in the original surface. Th e particles are like all particles in Maya except that they
are connected together, forming a surface. Th ey can use the original surface as a goal
object, which plays the same role as a particle goal object; the soft body particles try
to conform to the surface of the goal in the face of outside forces.

 Th e lymphocyte cell in Figure 07.05 was modeled as a soft body. As the cell moves
through an environment of fi brous extracellular matrix (ECM) proteins, force fi elds
along its path pull on the cell ’ s surface as it passes by. Th is gives the appearance of the
cell is extending protrusions in a bid to fi nd anchorage points for locomotion. When
the cell passes out of range for a particular force fi eld, the protrusion returns to the
cell body. Setting the soft body to collide with the fi bers, which are modeled as static
rigid bodies, ensures that the cell protrusions don ’ t penetrate the fi bers. Th e result is
an amoeboid crawl, with its characteristic transient contacts with ECM proteins.

 Th e lymphocyte animation described above uses Dynamics to do what you will do
with joints—another animation construct—in Chapter 16 . However, caution should
be used when rigging surfaces using Dynamics since the resulting animation can be
very diffi cult to control. Th is is due to the number of variables the Dynamics engine
uses to calculating the fi nal motion. If you have a clear idea of how you want an object
to deform as it moves in a scene, it is often better to use joints and deformers which
you can control very deliberately. Nonetheless if you require collision detection,
Dynamics can play a role.

Soft bodies

 Maya Help → Using Maya → Dynamics and Effects → Dynamics → Soft and
Rigid Bodies → Rigid bodies

 Nucleus and nCloth
 With Maya 8 Autodesk introduced a new dynamics engine called Nucleus. As of Maya
release 8.5 one module uses the engine nCloth , a system of dynamically linked parti-
cles available only in Maya Unlimited. Although designed to simulate the natural fl ow
of clothing for computer-generated imagery (CGI) characters, nCloth can be used on all
NURBS and polygon objects in Maya for the same kinds of projects you ’ d use soft bod-
ies for, including the simulation of a wide variety of deformable materials. Th e advan-
tage of nCloth objects over soft bodies is a more advanced and robust physics engine
with better performance. Collision detection is much improved over the primary Maya
dynamics engine that is responsible for the soft and rigid body calculations.

 Dynamic Relationships Editor
 Th is editor (Figure 07.08) allows you to make and break DG connections among
dynamic objects and fi elds. When you select a dynamic object, its name appears
highlighted in the outliner window of the editor; objects or fi elds to which it is con-
nected appear highlighted under the appropriate heading—Fields, Collisions,
Emitters, or All—in the relationships window. You will use this editor to connect a
particle object to fi eld in Tutorial 07.02 .

166 PART 2: A FOUNDATION IN MAYA

 FIGURE 07.09

 The setup for the rigid body
dynamics tutorial is straightforward:

a NURBS sphere inside a larger
polygon cube. The surface normals
of the cube have been reversed so
that the sphere will collide with its

inner surface.

 FIGURE 07.08

 The Dynamic Relationships Editor
is used to display dynamic objects

by name and to make and break
connections between them.

 Tutorial 07.01: Rigid body dynamics
 Th is tutorial introduces rigid body dynamics; you ’ ll create two primitives, a NURBS
sphere inside a polygon cube, make them into rigid bodies, and make them collide
with one another. Th e cube is passive and the sphere active, with a Turbulence fi eld to
push it around. Figure 07.09 shows the setup for this scene.

167CHAPTER 07: DYNAMICS

 Set up your scene
 1. Start a new scene.

 2. Select the Dynamics menu set from the menu at the left end of the Status Line.

 3. Choose Window → Settings/Preferences → Preferences.

 4. Under Settings → Working Units, set Time to NTSC [30 fps].

 5. Under Setting → Timeline → Playback, set:

 (a) Looping to Once.
 (b) Playback Speed to Play every frame.

 6. In the Range Slider at the bottom of the main window:
 (a) set the Playback Start Time to 1.
 (b) set the Playback End Time to 3000.
 (c) set the Current Time to 1.

 At 30 fps, you ’ ll get 100 seconds of animation. With Maya set to play every frame, the
actual playback speed depends on computer speed. On a Dell Dimension 8300 PC,
our benchmark machine, this animation played at 150 fps, for 20 seconds.

 Create and position the objects
 1. Create a polygon cube with the following settings:

 Length = Width = Height = 10.

 Subdivisions X, Y, and Z = 2.

 2. Create a NURBS sphere with the following settings:

 Radius = 1.

 Sections = Spans = 5.

 By default, and with Interactive Creation turned off , the objects should be created at
the world origin, with the sphere inside the cube (if not, position them so).

 Viewing the scene
 In order to see the sphere as it bounces about inside the cube, you ’ ll want the cube to
be somewhat transparent. With your scene view shading mode set to Wireframe, you
will be able to see the sphere inside the cube. However, if you wish to view the sur-
faces in Smooth- or Flat-shaded mode, the cube will obscure the sphere. One solution
is to use X-ray shading which makes all Flat- or Smooth-shaded objects semi-opaque.

 In the Panel menu set, choose Shading → Shade Options → X-ray

or Shading → X-ray (depending on your Maya version)

 Alternately, if you ’ re familiar with creating and assigning shaders, you can assign
separate shaders to the sphere and cube, with the transparency dialed up on the latter.
We ’ ll cover shaders in the next chapter.

 Maya Dynamics works on both
NURBS and polygonal geometry,
and combinations of the two. In
this tutorial, you could just as
easily use two polygonal or two
NURBS objects.

168 PART 2: A FOUNDATION IN MAYA

 Normal direction
 In Chapter 05 , we noted that one can tell the inside of surface form the outside by the
way the normals point. When the Dynamics engine evaluates potential collisions for
a surface, it looks for objects approaching from the outside, or the positive-normal
direction (see Figure 07.10). Objects approaching from the inside will be ignored and
pass right through the surface.

 1. Select the cube, open the Attribute Editor, and select the shape node.

 2. Under Mesh Component Display, check Display Normal.

 3. In the Normal Size fi eld, enter 0.4.

 By default, surface normals point outward from the center of an object; the cube sur-
face normals are facing away from the sphere. Th erefore, the sphere will approach the
cube from the negative-normal direction and pass through it. To remedy this, you
must reverse the Normals:

 1. Select the cube.

 2. Press and hold the Space bar to activate the Hotbox.

 3. Choose Edit Polygons → Normals → Reverse .

 4. From the Mode menu, select Reverse.

 5. Press the Reverse Normals button to apply the change and close the options
window.

 The Hotbox provides a quick way
to access menus for software

modules other than the one
currently displayed in the main

window.

 FIGURE 07.10

 Surface normal direction affects
rigid body interaction. When the

moving sphere encounters the
positive-normal side of the plane

surface, a collision occurs. When
it encounters the negative-normal

side, it passes right through the
plane.

(a)

Direction of
movement

(b)

169CHAPTER 07: DYNAMICS

 Create the rigid bodies
 When you make an individual object into a rigid body, you can choose whether to
make it active or passive. Alternately, if you make multiple objects dynamic all at
once, they will be either all active or all passive. You can then alter the active/passive
attribute for each object.

 1. Select the cube and the sphere.

 2. From the main menu, choose Soft/Rigid bodies → Create Active Rigid
Body .

 In the options window you will see attributes for Mass, Friction, Bounciness,
Damping, and Impulse. Leave these set to their default values and press the Create
button. In the Channel Box, you will see a new rigidBody node for both the cube and
the sphere, along with a long list of attribute values.

 If you hit Play in the Animation Controls now, nothing will happen. Th is is because
there is currently no force fi eld in the scene and because the Impulse values were set
to 0 for both objects.

 The rigidSolver node
 Below the rigidBody node attributes and under the heading INPUTS, you will see
another node called rigidSolver with its own list of attributes. A solver does the cal-
culations that determine the motion in a dynamic simulation. Its attributes provide
high-level control over rigid body dynamics for objects to which it ’ s connected. A scene
can have multiple rigid solvers, but only one can be the active or “ current ” solver.

 Th ree rigidSolver attributes determine the balance between speed and accuracy of
dynamics calculations. Th ese are Step Size, Collision Tolerance, and Solver Method.
Decreasing Step Size, the time between calculations, improves simulation accuracy
at the expense of speed. Th e smaller the Collision Tolerance value, the more accurate
the collision detection calculations and the slower the simulation. Table 07.01 shows the
diff erent settings for the Method attribute and their eff ects on accuracy and speed.
With a simple scene like the one you just created, the solver method will make little
if any diff erence in the playback speed of the animation. It will, however, make a big
diff erence when the number of rigid bodies begins to increase.

rigidSolver attributes

 Maya Help → Using Maya → Dynamics and Effects → Dynamics → Dynamics
nodes → Soft and Rigid Body nodes → rigidSolver node

 Differential equation solver
method

 Description

 Midpoint Faster with less accuracy

 Runge–Kutta Medium speed and accuracy

 Runge–Kutta adaptive Slower speed, greater accuracy (default setting) TABLE 07.01

 Solver Method attribute settings.

170 PART 2: A FOUNDATION IN MAYA

 Make the cube passive
 Since you made both objects active in the previous step, you ’ ll now make the cube
passive, so it behaves as a stationary container for the dynamic sphere.

 1. Deselect both objects then select the cube on its own.

 2. In the Channel Box, scroll down until you locate the attribute called, Active.

 3. In the Active fi eld, enter 0 or off.

 Create a Turbulence fi eld
 1. Select the sphere.

 2. In the main menu, choose Field → Turbulence .

 3. Set Magnitude to 50 and Attenuation to 0.

 4. Press the Create button.

 Magnitude controls the strength of the fi eld and Attenuation, the degree to which the
magnitude decrease with distance from the fi eld ’ s transform. Th e fi eld has its own
transform node, located at the world origin. Its XYZ position only matters if attenua-
tion is set to a value greater than zero.

 Play the animation
 When you press Play, the sphere should move about and bounce off the walls of the
cube. Take a few minutes to adjust the attributes in the sphere ’ s rigidBody node, such
as Mass, Bounciness, and Friction, and observe the eff ects. Mass has a strong infl u-
ence on motion. As in the real world, mass impacts the inertia and momentum of
objects in a Maya scene. In a collision between a light and a heavy object, the latter
will prevail.

 Note that each time the Current Time Indicator returns to the start of the playback
range, the sphere returns to the position it was in when you fi rst created it. Th is is
called its Initial State and was set to the position the sphere was in when you turned
it into a rigid body. You can set any position to be the Initial State by selecting the
sphere and choosing

 Solvers → Initial State → Set for Selected.

 cycleCheck
 From time to time, you may get a warning such as “ Cycle on <attribute name> may
not evaluate as expected ” . Th is due to a possible cycle in the DG; an attribute value
depends on a value that in turn depends on it. Th is can result in the improper eval-
uation of an attribute in a dynamic simulation, and therefore aff ect the resulting

171CHAPTER 07: DYNAMICS

 The Script Editor and MEL
commands will be discussed in
detail in Chapter 12 .

motion. You can check if an attribute is actually in a cycle by using the MEL com-
mand, cycleCheck , as follows:

 1. Choose Window → General Editors → Script editor.

 2. In the Command Input (lower) fi eld of the Script Editor, type the following MEL
script:

 if (' cycleCheck <attribute name>' > 0�) {
 print(" < attribute name> is in a cycle\n ");

 }

 else print "no cycle\n ";

 3. Hit Enter on your keyboard ' s numeric keypad to execute the script.

 One of the two messages, “ <attribute name> is in a cycle ” or “ no cycle ” with
appear, or print , in the History (upper) fi eld of the Script Editor and in the Command
Feedback fi eld of the Command Line.

 However, even if there is no cycle, you will continue to get the warning. To disable the
warning, use the cycleCheck command to turn off checking:

 In the Command Input (lower) fi eld of the Script Editor, type the following:

' cycleCheck -e off' ;

 Memory caching
 You may have noticed that scrubbing the Timeline produces strange results in this
simulation. When you scrub backwards, nothing happens at all. Th is is because Maya
calculates dynamic attribute data at each frame, and only in forward playback mode.
When combining keyframed animation with dynamics, or animating a camera to fol-
low the action, it ’ s helpful to move freely along the timeline, and see your simulation
behave predictably. You can facilitate this with memory caching , which stores dynamic
attributes in RAM and then disables their connection to the Dynamics engine.
Memory caching can speed up rendering since Maya needs only to read the cached
attributes of objects rather than calculate them anew using the Dynamics engine. To
activate memory caching:

 1. Select at least one of the dynamic objects you wish to cache; in this case,
the cube or the sphere. All objects connected to the selected one, through a
rigidSolver node will be cached.

 2. Set the Current Time equal to the Playback Start Time.

 3. Choose Solvers → Memory Caching → Enable.

 4. Press Play. A cache will be created for as many frames as you allow to play.

 Now you can scrub the Timeline and the animation will update properly using the
cached data. With memory caching enabled, changes to dynamic attributes, such as the
strength of a force fi eld, will have no eff ect on rigid body attributes. Disabling memory
caching reconnects rigid bodies to the Dynamics engine, allowing their attributes to

When your scene is ready to
render, turning on memory
caching can speed up rendering
since Maya will not have to
perform dynamic calculations
for the cached objects. Instead,
Maya will read the appropriate
dynamic attribute values from
the cache which is typically
faster than calculating them
on the fl y using the Dynamics
engine.

172 PART 2: A FOUNDATION IN MAYA

update. However, if you were to then re-enable memory caching, rigid body attributes
would revert to their previously cached state. For dynamic attributes to update cor-
rectly, you must delete, then re-enable memory caching in the Solvers menu.

 Make the cube active
 For a little fun, you ’ ll reset the cube ’ s Active attribute to “ 1 ” and see how it responds
to collisions with the sphere. Start by deleting the memory cache:

 1. Select the cube.

 2. Choose Solvers → Memory Caching → Delete.

 3. In the Channel Editor, enter 1 or in the Active attribute fi eld.

 On playback the cube won ’ t move (because it ’ s not connected to the Turbulence fi eld)
until the sphere collides with it the fi rst time. After that, it will change direction
each time the sphere hits it. Next, let ’ s connect the cube to the Turbulence fi eld and
observe the change in motion.

 1. In the main window, choose Window → Relationship Editors → Dynamic
Relationships.

 2. In the outliner portion of the Dynamic Relationships Editor, select the cube.

 3. The Selection Modes portion of the editor displays a list of fi elds in the
scene—in this case, only one appears.

 4. Click on the Turbulence fi eld name in the editor to connect it to the cube.

 Now when you press Play, the cube will be pushed about by the Turbulence fi eld in
addition to being knocked about by the sphere. To disconnect the cube from the
Turbulence fi eld, repeat steps 1 through 4 above. To return the cube to its role as a
stationary container set its Active attribute to 0 or off . One can imagine duplicating
the sphere ten, a hundred, or a thousand times, then tailoring the rigid body, rigid
solver, and fi eld attributes to approximate Brownian motion, for example. Add to
this, the ability for spheres to form complexes with one another, and you have the
makings of a molecular dynamics simulation! You ’ ll fi nd the fi nished scene fi le for
this tutorial on the CD-ROM:

07_Dynamics/scenes/tutorial_07_01_done.ma

 So let ’ s get a feel for what such a step would involve by using particle dynamics to
simulate hundreds of colliding objects within a container. Particles are much less
expensive computationally than rigid bodies for the same number of moving bodies
in a scene. Nonetheless, particles are only points in space, with none of the surface
detail of rigid bodies, and are therefore not well suited to dynamic situations where
surface interaction is essential. Where a rigid body collision will impart rotation to
an object, based on the location of its center of mass relative to its peculiar topology,
there is no such attribute as rotation for individual particles.

173CHAPTER 07: DYNAMICS

 Tutorial 07.02: Particles in a container
 In this tutorial, you will get Maya to emit particles into a volume, a cylinder, and move
them about using a Turbulence fi eld. Next, you will create a radial fi eld that the parti-
cles both emit and are repelled by simultaneously, in order to simulate inter-particle
collisions. By defi nition, particles have no radius since they represent only points in
space and not space-fi lling objects. A force fi eld on the other hand can have a radius—
represented by its eff ective range—much like an atom has an eff ective radius of repul-
sion, inside of which other atoms cannot approach due to the fi eld generated by its
inner electron shells. By emitting a Maya force fi eld from the position of a zero-radius
particle, you can therefore simulate a collision radius for the particle. Finally, you will
use the per particle attribute colorPP to make colliding particles more obvious by turn-
ing them bright red when they experience forces beyond a threshold value—a sudden
increase in force due to a close encounter with a force fi eld (i.e. another particle) or with
the container wall. To begin, follow the setup instructions from the previous tutorial.

 Create the container
 Create a Polygon cylinder as follows:

 1. Choose Create → Polygon Primitives → Cylinder .

 2. In the Polygon Cylinder Options window choose Edit → Reset Settings.

 3. Make the following changes to the default attribute settings:

 Radius: 50

 Height: 100

 Subdivisions Around Axis: 10

 Subdivisions Along Height: 4

 4. Press the Create button.

 Th e cylinder should be located at the world origin. If not, move it there now. Next,
reverse the surface normals so that the particles will collide with the container:

 1. Select the cylinder.

 2. Press and hold the Space bar to activate the Hotbox.

 3. Choose Edit Polygons → Normals → Reverse .

 4. From the Mode menu, select Reverse.

 5. Press the Reverse Normals button to apply the change and close the options
window.

 Create the particle emitter
 When you create an emitter, Maya automatically creates a particle object and con-
nects it to the emitter. Conversely, you can create a particle group without making an

174 PART 2: A FOUNDATION IN MAYA

emitter. You can therefore emit more than one particle object from a single emitter.
For now, you ’ ll create one emitter and one particle object. Later you ’ ll add another
particle object to the emitter.

 1. In the main window or the Hotbox, choose Particles → Create Emitter .

 2. Choose Edit → Reset Settings.

 3. Under Basic Emitter Attributes, enter the following settings:

 (a) Emitter Type: Volume
 (b) Rate (Particles/Sec): 1000

 4. Under Volume Emitter Attributes, Volume Shape, select Cube.

 5. Under Volume Speed Attributes, enter 50 for Away From Center.

 6. Press the Create button.

 7. Select the emitter and scale its transform node up by a factor of three using the
Channel Box.

 You can change the emitter type and the other creation attributes at any time in the
Channel Box. Figure 07.11 shows what your scene should look like so far.

 Particle and emitter attributes
 Before discussing the attributes that control particle behavior, let ’ s have a look at the
simulation you ’ ve set up so far.

 Press the Play button, in Playback Controls.

Poly cylinder to be a
container for particles

Volume emitter
(red cube)

 FIGURE 07.11

 Setup for the current Tutorial. The
cube volume emitter has been

scaled to three times its original
size.

 If "Volume " is not available in
the Emitter Type menu, put your
cursor in the fi eld and type, " v " .

 Upon creation, particle objects
are by default connected to the

Dynamics engine.

175CHAPTER 07: DYNAMICS

 Th e particles should appear randomly within the cube and move out from the center
at constant speed. Th is behavior is due to the attribute settings of the emitter and the
particle object. Below, we ’ ll take a look at some of these attributes; a complete list of
them is beyond the scope of this book. As with other components of Maya, what can
be done with particles and their attributes is a large topic and has been covered well
by other writers.

 Emitter node
 Inspecting the emitter in the Hypergraph (Figure 07.12) reveals that it is composed of
only one node. Th is node holds the transform and shape attributes. In the Channel
Box, you ’ ll see the Emitter Type and Rate attributes you set in the Create Emitter
Options window. Th e Rate is the number of particles emitted per second. At 30 fps,
your emitter births 200/30 � 7 particles/frame. Together, Direction X, Y, and Z spec-
ify a direction vector along which the Directional Speed value (near the bottom of
the attributes) is applied. Spread and Speed apply only to directional type emitters.
Speed Random applies to all emitter types; it specifi es a range of random variation in
emission speed. You set Volume Shape when you made the emitter. You can change
it here: clicking in the attribute fi elds brings up a volume shape menu. Th e Volume
Off set attributes off set the emission in space by the specifi ed amounts. Volume Sweep
through to Around Axis apply to diff erent volume emitter shapes. Away From Center
controls is the main speed setting for cube and sphere volume emitters. Random
Direction multiplies the Speed Random attribute. Directional Speed adds a speed
component along the vector specifi ed above in Direction X, Y, and Z. Maya Help con-
tains detailed information on every emitter attribute.

Emitters

 Maya Help → Using Maya → Dynamics and Effects → Dynamics → Particles →
Emitters

 Particle shape node
 Strictly speaking, a particle has no shape . Nonetheless, like most other items in a Maya
scene, a particle object has a shape node which defi nes many of its properties. Just as
particles are born into a scene, they can die after a fi nite lifespan. Th e second particle
object attribute listed in the Channel Box, Emission Volume Exit , specifi es whether a
particle will live or die after it leaves the emitter volume. Th e next attribute, Lifespan
Mode , has four possible settings, which are superseded by the previous attribute. When
set to Constant, the Lifespan attribute (last one on the list) determines how many

 FIGURE 07.12

 An emitter is represented by a
single node. The Hypergraph does
not reveal connections to Maya ’ s
Dynamics Engine, since they cannot
be modifi ed in the UI, the way other
attributes and connections can.

176 PART 2: A FOUNDATION IN MAYA

seconds each particle will live. Lifespan can be randomized per particle with the
 Lifespan Random attribute. Expressions After Dynamics sets the order in which Maya
evaluates attributes. If set to 0 or off, Expressions will not take into account dynamic
changes to the scene in the current frame. Th is setting can make a diff erence to simula-
tion results and should be considered carefully when evaluating results.

 Th e Conserve attribute sets the conservation of energy; when it ’ s set to one, parti-
cles will continue moving endlessly as a result of initial velocities given them by their
emitter. A value less than one will cause particles to eventually come to rest, unless
kept in motion by force fi elds or collisions. Max Count is the maximum number of par-
ticles that can be emitted. Start Frame is the frame at which the fi rst particle is born;
this is by default set to the frame that is current when you create a particle object.

 1. Select the particle object.

 2. In the Channel Box, set Max Count to 200.

 When you assign a goal object to particles, Maya creates a Goal Weight attribute, which
sets the strength of attraction (0 to 1) to the goal. Goal Smoothness sets how smoothly
this attraction changes with the goal weight setting. It has a profound eff ect on particle
motion; higher values (�3) used with high goal weights (close to 1) can have the eff ect
of making particles “ sling shot ” past their goal(s). Tweaking this value along with Goal
Weight is often the key to smooth particle/goal motion. For the Particle Render Type
attribute, you have ten choices; seven use Maya ’ s Hardware Renderer and the rest, the
Software Renderer. Examples of the diff erent render types are shown in Figure 07.07 . Th e
default setting is Points. Let ’ s set it to Spheres and change the default sphere radius:

 1. Select the particle object.

 2. Open the Attribute Editor and select the particle shape node tab.

 3. Scroll down until you fi nd the heading, Render Attributes.

 4. For Particle Render Type, select Spheres.

 5. Press the Add Attributes For Current Render Type button.

 6. Enter 3.0 for Radius.

 We have skipped over many attributes listed in the Channel Box and the Attribute
Editor. Th ese can be left at their default settings for now. Maya Help provides good
documentation for particle object and per particle attributes:

Particle object and per particle attributes

 Maya Help → Using Maya → General → MEL and Expressions → Particle
expressions → Assign to vectors and vector arrays → List of particle attributes

 Make the particles and cylinder collide
 Press Play to see the effect of the current attribute settings.

 A Conserve attribute value of
less than 1 will ultimately result
in the particles coming to a stop

unless a fi eld keeps them in
motion.

 The particle attribute Start
Frame determines when the

fi rst particle will be born. When
you create a particle object,

Start Frame is set to the current
time on the Time Slider. It can

easily be changed later on in the
Channel Box.

 When the count of an emitted
particle object equals its Max

Count value the particle object is
said to be full .

 For effi ciency, Maya doesn ’ t
preload a particle object with
all possible attributes. Many
are created only as needed,

appearing under the appropriate
headings in the Attribute Editor.

177CHAPTER 07: DYNAMICS

 Currently when you press Play, 200 particles are created in the space of fi ve frames.
Th ey should move outward at constant speed—governed by the attribute Away from
Center—and pass right through the cylinder. Th at is because the cylinder has not yet
been connected to the Dynamics engine. Maya uses a special node, a geoConnector,
to connect a regular geometric object to the Dynamics engine, so that it can emit or
collide with particles, or be the source of a force fi eld. Th e following steps create a
geoConnector node for your cylinder and link it to the particle group for collisions.
Collisions between the cylinder and particles can subsequently be turned on and off
in the Dynamic Relationships Editor.

 1. Select the particle object.

 2. Add the cylinder to the selection by Shift� selecting it in the scene view or
Ctrl+selecting it in the Outliner.

 3. Choose Particle → Make Collide .

 Two attributes govern collisions: Resilience and Friction. By default, Resilience, the
elastic property of a collision, is set to 1. Friction is set to 0. Th ese settings assume no
energy is lost in a collision. Figure 07.13 shows the results of diff erent combinations of
Resilience and Friction for particles colliding with a polygon plane.

 4. Press the Create button.

 When you play the simulation, the particles should collide with cylinder. With the
particle object Conserve attribute set to 1, they will continue to bounce off the walls
until the Playback End Time is reached.

 When using Make Collide, it is
important to select the particle
object fi rst and the collision
object second . Not doing so
will generate an error, and the
operation won ’ t work.

 FIGURE 07.13

 The effects of Resilience and
Friction attributes on particle
collisions with a plane.

(a) Resilience � Friction � 0.
Particles contact the plane without
bouncing and then slide along the
plane, unimpaired by friction.

(b) Resilience � 0; Friction � 0.1.
Friction slows particles to a halt
shortly after they make contact with
the plane.

(c) Resilience � 1; Friction � 0.
Particles rebound from the plane
with no loss of momentum in the
vertical or horizontal directions.

(d) Resilience � 1; Friction � 1.
Particles rebound from the plane
with no loss of momentum in the
vertical direction, but complete loss
in the horizontal direction due to
infi nite friction.

(a) (b)

(c) (d)

178 PART 2: A FOUNDATION IN MAYA

 Add random motion
 Here you ’ ll create a Turbulence fi eld to randomize the particle motion and dial back
the particle ’ s Conserve attribute to slightly dampen the turbulence eff ect. With the
particle object selected:

 1. In the Channel Box, set the Conserve attribute to 0.99.

 2. Choose Fields → Turbulence .

 3. Set Magnitude to 50 and Attenuation to 0.

 4. Press the Create button.

 5. Press Play to see the effect of the Turbulence fi eld.

 Inter-particle collisions
 In Maya, the particles of one object can be made to collide with those of another
object. However, there is no built-in capability for one particle to collide with another
particle from the same object. A work-around is to emulate collisions by making
every particle within an object the source of a radial fi eld, which at the same time
acts on the particles. Start by creating a Radial fi eld using the default settings. You
will adjust these settings below using a Manipulator Tool.

 1. If anything is currently selected, clear the selection by:

 (a) Clicking a clear spot in the scene view

or

 (b) Entering select-clear in the Command Line.

 2. Choose → Fields → Radial .

 3. Choose → Edit → Reset Settings.

 4. Press the Create button.

 The Manipulator Tool
 When emanating from each particle, we want the radial fi eld to be eff ective over
a limited distance from the particle ’ s location, and for its strength to diminish, or
attenuate, with distance from the particle. Th is way, the repulsive force felt by
another approaching particle will increase as it gets nearer. Th e fi eld attribute, Max
Distance sets the eff ective range, while Attenuation attenuates its strength within
that range. Th e Manipulator Tool for the radial fi eld (Figure 07.14) allows you to edit
 Max Distance and Attenuation interactively in the scene view.

 1. Select the radial fi eld in the Outliner.

 2. Press the W hotkey to activate the Move Tool and drag the fi eld transform
outside the cylinder for a clearer view.

 3. Activate the Manipulator Tool by selecting it in the Toolbox or hitting the
hotkey T.

179CHAPTER 07: DYNAMICS

 4. LMB or MMB+ drag the Magnitude attribute to a value of roughly 100.

 5. Drag the Max Distance attribute to a value of roughly 10.

 Once you connect the particle object to this new radial fi eld (in the next section),
the particles will be aff ected by a repulsive force inside of (10 � 10 �) 20 Maya units
from one another. With Attenuation set to 1, this force will be nil at the 20-unit dis-
tance and grow toward full strength as the particles approach each other’s position.
Note that the radius of your particle sphere—which is only a visible radius and has
no geometric or space-fi lling meaning—is 3, while the radius (Max Distance) of the
radial fi eld is 10. You could try setting Max Distance to 3 and attenuation to 0, mean-
ing that particles would experience the full, unattenuated Magnitude of the radial
fi eld only when they are within (3 � 3 �) 6 units from one another. However, this
results in very high accelerations of particles away from each other after they collide .
We found out quickly by trial and error that a Max Distance of 10 and an Attenuation
of 1 allowed particles to almost touch before being repelled away from one another.
Th is more gradual approach kept the collision reactions smooth and in proportion to
the speeds at which particles approach each other.

 Connect the particle object to the radial fi eld
 In order to get particles to emit the radial fi eld, they must be connected to it in the
Hypergraph.

 1. In the main window, choose Window → Relationship Editors → Dynamic
Relationships.

 2. Select the particle object in the outliner portion of the editor.

 3. In the Dynamic Relationships Editor, under Selection Modes → Fields, select
the radial fi eld.

 Th e radial fi eld won ’ t have the desired eff ect until you make the individual particles
its source.

 Make the particles the source of the radial fi eld
 Normally, when you make geometry the source of a fi eld, you select the fi eld and then
the object and Choose Fields → Use Selected as Source of Field. However, when working

 A radial fi eld emanates repulsion
(for positive magnitudes)
and attraction (for negative
magnitudes) radially, in all
directions, from the location
specifi ed in its transform node.

 FIGURE 07.14

 The Manipulator Tool provides
a quick way to adjust commonly
used attributes, like the ones
shown here for a radial force fi eld.
The X-axis here represents the
maximum distance at which the
force acts. The Y-axis represents
the force magnitude. Attenuation
is a curve plotting the degree to
which Magnitude drops off as Max
Distance increases. The icon at the
bottom left lets you cycle through
other attributes that can be set
interactively.

180 PART 2: A FOUNDATION IN MAYA

with particles, you must make a component selection—the components being the
individual particles. Every particle you wish to be a source for the fi eld must be
selected. You must therefore play the simulation until the particle count equals its
Max Count value. You will then use a component selection mask to select the indi-
vidual particles.

 1. Rewind and play the simulation for at least 5 frames, until all 200 particles have
been born.

 2. In the Status Line near the top of the main window, press the Select by
component type button.

 3. LMB+ click on the Set by the component selection mask
button, .

 4. Select All Components Off. This wipes the component selection slate clean.

 5. RMB+click on the Points button and select Particles (see Figure 07.15).

 6. Select the radial fi eld in the Outliner.

 With Select by component type on, you won ’ t be able to select the fi eld ’ s transform in
the scene view.

 7. Activate the Move Tool or the Select Tool.

 8. Shift+LMB+drag a selection around one of the particles. You will have to select
fi rst one, and then all of the particles at once for this technique to work (see the
next step).

 9. Shift+LMB+drag a selection around all of the particles. If the particles do not
turn yellow, indicating a selection, you will have to repeat this step.

 If you were to make the particle
object the source of the radial

fi eld instead of the individual
particles within the group, the

particles would not infl uence one
another.

Selection mode: select by object type

Selection mode: Select by component type

Object selection mask buttons

Component selection mask buttons

 FIGURE 07.15

 Selection masks for individual
components are created using the
Selection mask menu items in the

Status Line.

181CHAPTER 07: DYNAMICS

 Your selections should look similar to what ’ s shown in Figure 07.16 .

 10. Choose Fields → Use Selected as Source of Field.

 11. Select the radial fi eld on its own.

 12. In the Channel Box, locate the attribute, Apply Per Vertex and set it to 1 or on.

 13. Rewind and play the simulation to see the effect of the above steps.

 Th e particles should now repel each other within a certain range, the Max Distance of
the radial fi eld. However, this can be diffi cult to observe in a fast-moving simulation.
Suppose you wanted to see the collisions occurring. In the next step, you will use a
per particle attribute called rgbPP to change the color of individual particles for the
brief instances in which they collide.

 Per particle color
 Th ere are many ways to report data in a simulation. For reporting dynamic events as
they occur, color change can be eff ective. It can be used as an indicator of an individual
particle ’ s age or its velocity, for example. Here you ’ ll use it to report when the combined
forces acting on a particle exceed a threshold value, indicating a likely inter-particle
collision. Th e rgbPP attribute will be linked in an expression to another per particle
attribute called force , which is a vector attribute that stores the sum of all external
forces on each particle. When the force attribute approaches or exceeds a threshold
value, the r (for red) value of rgbPP will in turn approach or exceed 1 , the full red value.
We determined the threshold value by trial and error; it had to be large enough to fi lter
out the small forces constantly being generated by the Turbulence fi eld, without being
too large to cancel out the stronger forces generated by the radial fi eld.

 FIGURE 07.16

 The particles must be selected as
components, and the radial fi eld
as a transform, before making the
particles the source of the fi eld.

 When geometry is used as the
source of a fi eld, Apply Per
Vertex specifi es whether the
fi eld will emanate from the pivot
point of the object (a setting of 0
or " off ") or the object 's vertices
(a setting of 1 or " on "). When
a particle object is used, the
individual particles are treated
as vertices by the fi eld.

 Where color is not a reliable
indicator for simulation
events—when color-blindness is
a consideration, for example—
value can be used instead. In
color theory, value is a measure
of light and dark. In Maya, value
is measured from 0 to 1; 0 being
pure black, and 1 being pure
white.

182 PART 2: A FOUNDATION IN MAYA

 Create the rgbPP attribute
 1. Select the particle object, open the Attribute Editor and select the tab for the

particle shape node.

 2. Scroll down to the heading, Add Dynamic Attributes and press the Color button.

 3. In the Particle Color editor, check the box next to Add Per Particle Attribute and
press the Add Attribute button.

 Create a per particle expression
 To give you a taste of what ’ s to come, this expression involves essential program-
ming concepts including a MEL command mag() and variables of types vector and
fl oat. Th ese will be explained in detail in Chapter 12 . Th e double slashes, // , indicate a
comment—code that will be ignored by Maya.

 1. Select the particle object and open the Attribute Editor.

 2. Locate rgbPP, under the heading, Per Particle (Array) Attributes.

 3. RMB+click in the fi eld next to rgbPP and select Runtime Expression After
Dynamics.

 4. Type the following in the Expression fi eld:

 //Query the force PP attribute.
 vector $force = particleShape1.force;

 //A number to scale the magnitude of the force:

float $thresholdScale = 30�0�;

 //mag() returns the scalar magnitude of a vector.

 float $mag = mag($force)/$thresholdScale;

 //Set the rgbPP value.

 particleShape1.rgbPP = < < $mag, 0�, 0�>>;

 Th e magnitude of the Turbulence fi eld fl uctuates but remains under 100. For the most
part, particles are dark red to black. When the total force acting on a particle exceeds
300 Maya force units in magnitude, due to a close encounter with the radial fi eld,
it turns bright red. Th is is a quick and easy way to report visually on inter-particle
encounters. When working with a rigid body simulation, you can use the rigid solver
node to report on true collisions between bodies.

 5. Press the Create button.

 If you get a red-highlighted error message in the Command Feedback fi eld at the bot-
tom of the main window, check that you entered the expression script exactly as it
appears above, and press Create again.

 Play the simulation a few times and observe the particles ’ behavior. After some trial and
error, we set the radial fi eld ’ s Attenuate attribute to 0.5. Th is makes the force between
particle stronger at Max Distance , resulting in more pronounced color changes to report
the collisions. Figure 07.17 is a screen capture from the simulation.

 The MEL command mag()
calculates the magnitude of a

vector.

183CHAPTER 07: DYNAMICS

 Save the current fi le for use in the next tutorial, in which you will create a rough-quality
animation to watch in a movie player. You ’ ll fi nd the complete scene fi le on the CD-ROM:

 07_Dynamics/scenes/tutorial_07_02_done.ma

rgbPP for Software render types
 Th e per particle attribute rgbPP works for hardware render type, but not for software
render type particles. For software-rendered particles, as special node called the
Particle Sampler Info Node allows you to alter the color of a material, using rgbPP as
an input. With the material assigned to the particle group, the color-change eff ect
works in a software rendering.

Using the Particle Sampler Info Node for per particle colors

 Help → Maya Help → Using Maya → General → Tools, Menus, and Nodes →
Nodes → Particle nodes → Particle Sampler Info Node

 Caching particle data
 As you did for rigid bodies in the previous tutorial, you can cache data for parti-
cles once you ’ re satisfi ed with their behavior. Th is can be done in three ways: with
memory caching; using particle disk caching; using a particle startup cache. Caching
stores data for specifi ed particle objects for quick playback. It temporarily disables
their connection to the Dynamics engine, over a specifi c playback range.

Colliding particles

 FIGURE 07.17

 Linking the rgbPP attribute to the
per particle force attribute allows
us to visualize colliding particles by
changing their color from black to
red. This technique is most effective
when viewed in motion. We have
included a Playblast movie of this
simulation in the directory for this
chapter on the book ’ s CD-ROM.

184 PART 2: A FOUNDATION IN MAYA

Working with a particle caching

 Maya Help → Using Maya → Dynamics and Effects → Dynamics → Solvers and
caching

 Tutorial 07.03: Create a playblast
 A playblast is a hardware-rendered animation taken straight from the active view
panel. It provides a quick means for previewing your animation. Th e result of a
playblast is an .avi movie fi le which can be viewed in many types of computer movie
player software, including Apple QuickTime, Windows Media Player, and Maya ’ s own
fCheck. In this exercise you will shorten the playback range and create a playblast of
the particle simulation from the previous tutorial. To start, open the particle simula-
tion scene from the previous tutorial or retrieve it from the CD-ROM.

 1. Set up a single perspective view panel, then maneuver the camera to get a
view of the cylinder and particles that you want to render.

 2. Set the Playback Start Time to 100 and the Playback End Time to 400. At 30 fps,
this range will result in a 10-second animation.

 3. Move or close any windows that obscure any part of the perspective view
panel. A Playblast is made by capturing images of the active view. Anything that
obstructs this view can interfere with your Playblast.

 4. RMB�click in the Timeline to bring up Marking menu.

 5. From the Timeline Marking menu, select Playblast .

 6. In the Playblast options window, make the following settings:

 (a) Select a movie viewer. If you ' re unsure, choose fCheck.

 (b) Set Display Size to Custom and enter 640 and 480 in the left and right dimen-
sions fi elds, respectively.

 (c) Scale: 1.0.

 (d) Check Remove Temporary Files.

 (e) Check Save to File, if you wish to save the playblast.

 (f) Press the Browse button.

 (g) Navigate to where you want to save your movie and
name it.

 7. Press Playblast.

 While the playblast is being created, resist the temptation to click on windows or
leave Maya to check your e-mail. To make a playblast, Maya takes screen captures
and then puts them together in one fi le. If you cover up the scene view with another
window, that is what you ’ ll see in the playblast. When it ’ s fi nished, the movie should

 Particle caching saves time when
rendering since it precalculates

particle dynamics, thus
removing the need for dynamics

calculations at render time.

 You can interrupt a Playblast at
any time by pressing the ESC key.

185CHAPTER 07: DYNAMICS

open in the movie player that you specifi ed. If you checked “ Save ” in the playblast
options window, you can locate the fi le on your computer and play it when you wish.

 Summary
 Th is chapter introduced the Dynamics module which calculates the eff ect of physical
forces in a scene. Forces exist as impulses and initial velocities stored as attributes
for dynamic bodies, as contact or collision forces, and as fi elds, of which there are a
number of diff erent types. Turbulent fi elds are useful for creating motion resembling
the random diff usion seen in a number of natural phenomena, including molecular-
scale Brownian motion.

 Dynamic model types include rigid bodies, soft bodies, and particles (Maya Unlimited
ships with two additional types, Fur and Hair; we won ’ t have an opportunity to
explore those in this book). A soft body uses particles to model deformations of geo-
metric surfaces caused by forces. Rigid bodies behave like solid objects, with fi xed dis-
tinct geometries; they tumble, bounce, roll, and slide in response to force fi elds and
collisions but do not change shape. Unlike rigid bodies, particles are points in space.
A particle has mass, but no shape. While this limits their usefulness for simulations
where shape is a factor in collisions, and rotational motion matters, particles off er
a processing speed advantage over rigid body dynamics. Furthermore, the extensive
list of particle attributes and the variety of render types make particles an indis-
pensable tool for 3D visual eff ects.

 In the fi rst of two tutorials, you created a rigid body collision simulation involv-
ing a force fi eld and two objects, one active and the other passive. Passive objects
are unmoved by fi elds but are implicated in collisions with active objects. Collision
dynamics are governed by a rigidSolver node, which has attributes that control the
speed and sensitivity of collision calculations. You saw that memory caching is a use-
ful way to temporarily store dynamic data and disable calculations, for predictable
playback of your simulation.

 In the second tutorial you learned that particle behavior is governed both by the
emitter and by the particle object. Emitter attributes determine the birth rate, initial
speed, and direction of particle, while particle attributes set their lifespan, maximum
count, and responses to fi elds and collisions. Dynamic connections between particles
and geometry are made in the scene graph by geoConnector nodes. By default, indi-
vidual particles within a particle object are not set up to interact with one another.
You bypassed this limitation by emitting a force fi eld from each particle to simulate
inter-particle collisions. You then created a per particle attribute, rgbPP and con-
nected it to another attribute, force, using a custom expression. Th is setup provided a
simple example of real-time data visualization, and how Maya Dynamics and custom
programming can work hand in hand.

 Finally, you made a preview rendering of your scene using the playblast function. In
the next chapters, you will learn how to create shaders, set up lights and cameras, and
make fi nished renderings of your animations. Th at will complete your foundation of
Maya basics and you ’ re ready for a well informed approach to MEL programming.

 Utilizing Maya ' s built-in
dynamics capabilities where
possible reduces the amount of
custom physics programming
you need to code.

Th is page intentionally left blank

 08 Shading

188 PART 2: A FOUNDATION IN MAYA

MODEL and ANIMATE

Begin the
rendering process

once your
modeling and
animation are

complete

Produce and save
a sequence of

image filesSet up the camera
(animated or still)

Set up light and
adjust shadow

settings

Apply a shading
network

(materials and
textures)

SHADE LIGHT CAMERA RENDER!

 FIGURE 08.01

 The rendering process. A shading
network defi nes the various

properties that determine how
a surface will respond to light.

Attributes of the shading network,
of the lights, and of the camera are

processed by a render engine to
produce one or more digital image

fi les—the “ rendering ” .

 Introduction
 We saw in Chapter 3 that rendering is the process of turning a scene into a picture or
series of pictures (or frames) once the modeling and animation is completed. It is the
fi nal stage in the 3D computer graphics production workfl ow, before postproduction
steps like compositing (the process of compiling rendered footage and adding special
eff ects to produce a fi nished video). Rendering involves a shading network, lights, a
camera, and one of Maya ’ s rendering engines (or renderers). Figure 08.01 shows the ren-
dering process in schematic form. Because Maya was developed for the entertainment
industry, where image quality is paramount, the software has extensive capabilities
for each stage of the rendering process, allowing you to achieve a wide range of visual
eff ects in your projects. However, the many options available are only advantageous
if used smartly and with purpose. It is easy to become bogged down experiment-
ing with countless attributes and observing their eff ects on the rendered image. We
suggest you always begin with an idea of what you would like the rendering to look
like—its visual style—and work with the tools to achieve that look, or something
close to it.

 In this chapter we ’ ll tour the big topic of rendering so as you complete each in silico
project you ’ ll be ready to give them a polished professional look. In the tutorials you
will learn how to create a shading network, set up lights and a camera, and render
a short (three seconds) animation using the Software Renderer and the Hardware
Render Buff er. Don ’ t be fooled by the amount of material we ’ ve collected in these
pages, though—this is just an introduction to the subject! But we will equip you with
the essentials, so that you ’ ll know how to shade, light, and render your projects at an
introductory level. Once you ’ ve mastered this content, we invite you to check out the
titles listed under the heading Rendering in the Further reading section for additional
tips and techniques. As well, the Help references listed throughout the chapter will
point you to more detailed, topical information in Maya ’ s Help Library.

189CHAPTER 08: SHADING

 A matter of style
 Rendering is based on Maya ’ s computer model of how light will interact with each
surface, particle, or volume in the scene, as observed from the camera ’ s position.
Represented mathematically as rays and beams of illumination, the rendering algo-
rithm works out the color and illumination falling onto each pixel of the simulated
camera image. Since you can tune many of the parameters defi ning the interaction of
light and surface, such as the color of the inbound light, the color absorption properties
of the surface, and so on, you have enormous fl exibility in crafting the rendered image.

 Choosing an appropriate rendering style often depends on the end use of the image(s).
For example, animation used in a television broadcast science program might call
for a certain degree of photorealism in the renderings (Figure 08.02); an increasingly
sophisticated lay public has come to expect a high level of verisimilitude in synthetic
portrayals of biology. On the other hand, a rendering of a protein dynamics simula-
tion for an audience of biochemists might leverage the benefi ts of non-photorealis-
tic rendering (NPR) in order to reduce visual clutter and stress specifi c data. A hybrid
style—which leverages the didactic advantages of NPR and the esthetic familiarity
of photorealism—could well be used in animations designed to instruct students in
biochemistry (Figure 08.03) or explain to patients how a drug treats disease. However,
these stylistic suggestions are merely a few possibilities for you. Ultimately, the choice
of rendering style depends on the interests and goals of the individual artist, and the
communication requirements of each of your projects. Th e process of creating eff ec-
tive visual communications has yet to be distilled down to a set of hard, fast rules
(thank goodness!).

 The economy of rendering
Th e choice of rendering style is also a matter of economy. Generally, greater visual com-
plexity means longer rendering times, which is a hindrance in almost any production

10 Å

 FIGURE 08.02

 For this rendering of the protein
kinase CSrc, animator Eddy Xuan
created the illusion of translucence
using a feature called subsurface
scattering and the mental ray for
Maya renderer.

Courtesy and copyright © 2006 Eddy
Xuan.

190 PART 2: A FOUNDATION IN MAYA

environment—be it a laboratory or a commercial studio—where time is money and
where money must be expended to secure access to the computer resources needed to
compute the render frame by frame through the animation. Your goal with rendering is
to realize a balance between speed and quality that is economical for the given project.
A factor in the speed/quality equation is the choice of rendering technology. Hardware
rendering , in which calculations are performed on the graphics processor of your com-
puter ’ s video card, is generally quicker than software rendering , which uses software
algorithms that are processed on your main computer processor. Th e caveat to this is
that software rendering in Maya can create many eff ects that aren ’ t yet possible with
hardware rendering. However, this is starting to change. Th ere has been considerable
research of late into ways to better leverage video graphics processing power. With each
new release, Maya ’ s hardware rendering capabilities improve. A rule of thumb is: if
hardware rendering will suffi ce, use it.

 The Render menu set
Like other menu sets, this one can be selected from the menu at the far left of the
Status Line. Th e Render menu set includes Lighting/Shading, Texturing, Render, Toon,
and Paint Eff ects. Many of the functions in these menus can also be accessed using
buttons in the Render shelf, through the Hypershade editor, which is used to create and
edit shading networks, and in the Render View window, which we use often to make
preview renderings (more on that shortly). Th e Render menu set and other UI features
you ’ ll deploy in the rendering process are labeled in Figure 08.04 .

 FIGURE 08.03

 NPR cartoon outlines were used
to highlight key structures in this
animation depicting cross-linked

structural proteins (actin fi laments)
within a cell. One fi lament is

approximately 1 nm in diameter.

Courtesy and copyright © 2006
Eddy Xuan.

 Graphics processors make use
of parallelism, whereby multiple

processing tasks are divided and
handled concurrently, rather

than sequentially, the way single
CPUs deal with them. Software

developers are increasingly
looking for ways to exploit this
capability for tasks other than

image processing.

 The Render menu set for Maya
Unlimited includes Hair and Fur.

 The Hypershade is a good item
to have in your custom shelf

for quick access. If you plan on
rendering your projects, you will

use it a lot.

191CHAPTER 08: SHADING

 Shading
 Usually, the fi rst step in the rendering process is shading , in which you assign colors
and textures to items in your scene. You do this by creating shading networks —groups
of connected render nodes which determine surface properties of your models ’ inter-
action with light, including color, transparency, and relief (or bumpiness)—and con-
necting them to geometry and other entities, like particles. Shading networks are like
little recipes for how to transform incoming lighting to outgoing lighting. Figure 08.05a
shows a typical shading network displayed in the Hypershade and in Figure 08.05b , we
see the rendered view of that shader applied to a sphere, making it appear randomly
bumpy. A basic shading network is automatically set up when you create a material

Batch render

Create lights

Create camera

Create shaders

Show shading group
Attribute editor

Cancel batch render

Show batch render

Render current frame

IPR render current frame

Render settings

Render diagnostics

Rendering menu set

 FIGURE 08.04

 Maya user interface items specifi c
to rendering.

 FIGURE 08.05

 (a) The Hypershade view of a
typical shading network involving
a material, a bump map, and a
displacement map.

(b) A NURBS sphere rendered using
the shading network from (a).

Material

2D bump
node

Displacement
shader

Bump/
displacement
texture node

(a) (b)

192 PART 2: A FOUNDATION IN MAYA

and assign (or connect) it to an object in your scene. As with other features in Maya, it
is possible to work with materials and textures without being aware of the underlying
architecture of nodes in the shader network and their connected attributes. However,
an understanding of how to build shading networks will enable you to create sophis-
ticated visual eff ects easily. Maya makes it convenient to work with shading nodes
directly, using the Hypershade.

 The Hypershade
 Th e Hypershade will soon be one of your best friends in the Maya world. Like the
Hypergraph, it displays dependency relationships—not just for render nodes, but
for any item in the scene graph. Its major features are labeled in Figure 08.06 . We will
explore them further in the fi rst tutorial. To open the Hypershade:

 Choose Window → Rendering Editors → Hypershade

 Render nodes
 Render nodes are DG nodes that can be interconnected to create diverse visual
eff ects. One of the advantages of Maya ’ s Dependency Graph architecture is its fl exi-
bility. Render nodes can be connected to other types of nodes to drive their attributes
and vice versa. For example, a texture pattern (from a render node) could be used to
control particle emission and particle age could, in turn, drive the color of a surface!

Node
categories

Create Bar
panel

Hypershade tabs

Work area
(where shading networks are constructed)

Menu bar
Tool bar

Materials (shaders)

 FIGURE 08.06

 The Hypershade is Maya's tool
for creating and editing shading

networks.

193CHAPTER 08: SHADING

 Materials
 We have seen that rendering in Maya is a kind of simulated photography. As in real pho-
tography, there will be no image unless simulated light from your Maya world reaches
the simulated lens of your simulated camera. So there will be no image unless you sup-
ply simulated light to scatter from the objects in your scene, as well as simulated
physical surfaces on each model for the light to bounce off or radiate from. Materials
are Maya ’ s computer model of these light-scattering properties of each object ’ s surface.

 All materials native to Maya are of three types: surface, volumetric, displacement.
Surface materials apply to any NURBS or polygonal surface in a scene. Volumetric
materials determine the appearance of 3D volumes rather than surfaces. Fog and
cloud type particles are examples of such volumetric entities in Maya. Finally, dis-
placement materials change the topography of rendered objects to produce surface
relief (as in Figure 08.05b). By default, Maya has one displacement shader, to which you
connect other nodes to drive its attributes. Th ere are many more material types,
which are for use only with the mental ray for Maya renderer. Th ey are described in
the mental ray Shaders Guide.

 A material node contains basic appearance attributes that are common to all materi-
als. Th ese include color, transparency, and incandescence, among others. Additional
attributes exist which are unique to specifi c shaders. For example, not all materials
have attributes to control surface specularity or shininess . Table 08.01 lists fi ve of the
more commonly used Maya material types, with rendered examples.

 Material Description Sample rendering

 Anisotropic Used to render refl ective surfaces with fi ne
grooves, such as satin fabric or brushed metal.
Attributes control the direction of grooves.

 Blinn Used for simulating metal or glass surfaces,
it produces high-quality, isotropic specular
highlights. Named for Jim Blinn who originally
developed the shading algorithm.

 Lambert Used for matte surfaces with no specular
highlight. Named in honor of the German physicist
Johann Lambert (1728–1777).

 Phong Used to represent glossy surfaces, such as hard
plastic, with isotropic specular highlights. Provides
less control over highlights than the Blinn material
but is quicker to render. Named for Phong
Bui-tuong.

 Ramp Color gradients are used to control common
material attributes such as color and
transparency. Specular highlights are optional.

TABLE 08.01

 Commonly used Maya materials.

194 PART 2: A FOUNDATION IN MAYA

 You can create a material node in the Hypershade in one of three ways:

 1. Select the appropriate swatch in one of the Surface, Volumetric, or Displacement
panels under the Create Bar (see Figure 08.06)

or 2. Use the Create Render Node window as follows:

 (a) In the Hypershade menu bar, choose Create → Create Render Node.
 (b) Click on the Materials tab and open the Surface, Volumetric, or

Displacement Materials panel
 (c) Press the button of the material you want to create.

 or 3. Select the material by name in the Create menu.

 Materials

 Maya Help → Using Maya → Rendering and Render Setup → Shading → About
shading and texturing surfaces → Maya materials → Surface, displacement,
volumetric

 mental ray Shaders Guide

 Maya Help → Using Maya → mental ray → mental ray Shaders Guide

 Texture nodes
 To Maya, a texture is an image that defi nes some property of a surface, such as a
color or transparency pattern, or relief (elevations and depressions). Texture mapping
describes how the texture image relates spatially to the surface: how a point in the
texture relates to a point on the surface. When you map a texture, you connect its
output—a color or alpha channel —to a channel (or attribute) of a material. In compu-
ter graphics literature, checker patterns are commonly used to illustrate how textures
might be applied to geometry, as shown in Figure 08.07 . For the purpose of rendering,
texture mapping determines how a texture image will be oriented in relation to, and
deformed with, a surface. In addition to defi ning rendering properties like color and
transparency, textures are also used to control events on a surface, such as particle
emission rate, as shown in Figure 08.08 .

 Common texture maps

 Maya Help → Using Maya → Rendering and Render Setup → Shading → About
shading and texturing surfaces → Mapping and positioning textures → Texture
mapping

 Use a texture to scale particle emission rate

 Maya Help → Using Maya → Dynamics and Effects → Dynamics → Particles →
Work with emitters → Use a texture to color emission or scale the rate

195CHAPTER 08: SHADING

 FIGURE 08.07

 A checker texture node (a) mapped
to a material ' s (b) color channel,
(c) transparency channel, and
(d) the shading group node ’ s
displacement channel.

(a) (b)

(c) (d)

(a)

 FIGURE 08.08 (Left)

 A texture mapped to a surface can
be used to drive attributes such
as particle emission rate (pictured
here). The emission rate spans a
range of 0 (particles per second),
where the texture is black, to 1000,
where it is white.

(b)

 FIGURE 08.09 (Right)

 The resolution of a bitmap image
used in a fi le texture impacts the
quality of the fi nished rendering.
In this example, a bitmap image
was used in the color channel of
a lambert material. In (a) we used
a low resolution, 256 � 256 pixel
image. The image used in (b) was
higher resolution: 1024 � 1024
pixels.

196 PART 2: A FOUNDATION IN MAYA

 Th ere are four types of Maya texture nodes, called 2D, 3D, Environment, and Layered
textures. 2D textures map onto two-dimensional surfaces, like wrapping paper on
a parcel, whereas a 3D texture fi lls a volume, projecting through an object like veins
through marble. Environment textures are used for backgrounds or to create refl ec-
tions. Layered texture nodes are used to combine the eff ects of two or more 2D
textures.

 Most 2D, and all 3D, textures in Maya are procedural. A procedural texture is a 2D or
3D plot of a mathematical function, and is therefore resolution-independent , mean-
ing that the image it computes is always at the correct resolution for the distance of
the textured object from the camera. In contrast, a fi le texture is a 2D texture node
that references a bitmap image fi le of fi nite size into Maya. A fi le texture could be a
scan of a photograph or illustration, a digital photograph, or a digital illustration or
painting. Th e size of a bitmap, often described by its width and height in pixels, is
called its resolution , and impacts the quality and speed of rendering. You want a fi le
texture bitmap image to have as low a resolution as possible, for fast processing, but
not so low as to cause blurring or pixelation —the visibility of blockiness or pixels on
the surfaces of your objects. Figure 08.09 shows the diff erence between high- and low-
resolution bitmaps used in a fi le texture.

Procedural textures are generally used to create regular and abstract patterns,
whereas fi le textures are used when specifi c details are necessary. Take a model air-
plane, for example. Camoufl age markings could be created with a procedural texture,
whereas the decals—letters, numbers, and illustrations—would require a fi le tex-
ture. Because procedural texture images must be calculated, they will impact render-
ing times. It is sometimes desirable, therefore, to convert procedural textures into fi le
textures which are generally faster to render.

 Because a procedural texture is controlled by attributes (acting as the variables of the
relevant mathematical function in the Maya rendering software), it can be made to
change over time by animating those attributes. Furthermore, many attributes can
be connected to, and therefore driven by, other texture nodes, be they fi le textures
or procedural textures. Such texture networking lets you to achieve compound proce-
dural eff ects with textures.

 Understanding and working with Maya texture nodes

 Maya Help → Using Maya → Rendering and Render Setup → Shading →
About shading and texturing surfaces → Shading networks → About shading
networks

 A fi le texture can be animated as well, but requires a bitmap image for each frame of
animation. An animated fi le texture was mapped onto particle sprites to create the
animation of HIV particles (or virions) shown in Figure 08.10 . One virion was modeled
and animated through a full rotation and rendered out in 210 frames (seven seconds
of animation). Th e frames were then loaded into a fi le texture which was assigned to
the particle object. Rendering the textured, fl at sprites was considerably faster than
rendering a scene full of geometry. With sprites, Maya doesn ’ t need to compute the
interaction of light with the topography of hundreds of separate 3D virus models. For
this camera distance, one sprite fi ts all!

 Sprites, a hardware-rendered
particle type, are 2D squares that

always face the camera and act
as placeholders for a fi le texture.

197CHAPTER 08: SHADING

 Assign an animated fi le texture to sprites

 Maya Help → Using Maya → Dynamics → Particles → Work with advanced
dynamics → Assign image sequences to sprites

 Ramps
 A ramp is a color or grayscale gradient. Th e gradient has one or more component(s),
each defi ned by a position value between zero and one, and a color or grayscale value
(Figure 08.11). A ramp can be either a “ U ” or a “ V ” ramp, referring to its direction when
applied to a surface (we take a closer look at the UV coordinate system below). Ramps
and their components can be connected to other nodes to drive attributes using color.
Conversely, other nodes can be used to drive ramp colors.

 Maya has a texture ramp node and a ramp material node which are use to apply
gradients to object colors and other rendering attributes like transparency and
incandescence.

 Ramp texture

 Maya Help → Using Maya → Rendering and Render Setup → Shading → Shading
Nodes → Texture nodes → 2D textures → Ramp

1 μm

 FIGURE 08.10

 Rather than generating many small
virions as geometry, an animated
fi le texture was mapped to particle
sprites (fl at planes that always face
the camera), creating the illusion of
hundreds of tumbling HIV viruses in
this animation showing infection of
a white blood cell (T-lymphocyte).

Courtesy and © 2007 AXS Biomedical
Animation Studio.

198 PART 2: A FOUNDATION IN MAYA

 Ramp material

 Maya Help → Using Maya → Rendering and Render Setup → Shading →
Shading Nodes → Material nodes—Maya Software → Surface Materials →
Ramp shader

 Bump and displacement maps
Bump maps and displacement maps (Figure 08.12) use grayscale procedural or bitmap
textures to create surface relief at render time. Th is allows you to make alterations
to surface topography that would be diffi cult if not impossible to model via conven-
tional NURBS or polygon tools. Bump maps create the illusion of relief by altering
the directions of surface normals, and therefore changing the way the light interacts
with a surface. In contrast, a displacement map actually changes the topography at
render time by adding depressions and elevations. Where necessary, you can adjust
the tessellation —the degree to which a surface gets subdivided upon rendering—of
an object, creating enough additional polygons to properly model the relief.

 Bump maps are best for shallow relief, such as the small undulations on the surface of
a cell. Because a bump map displaces normals, and not actual polygons, it cannot pro-
duce relief along the edge, or profi le of an object, a fact that can be seen in Figure 08.12 .
Displacement maps are best for deep relief and when displacement of an object ’ s
profi le is desired such as with the extension of cell processes like pseudopodia. Both
bump and displacement maps can be animated to make surface topography change
over time. Finally, bump maps render faster than displacement maps. Deep, detailed
displacements can dramatically increase rendering times.

 Bump maps and displacement maps

 Maya Help → Using Maya → Rendering and Render Setup → Shading → Surface
relief → About surface relief

Click to connect a texture

Select the ramp's direction and shape

Drag to adjust component's position

Color component handle
(click and drag to adjust

its position)

Click to edit the color
component

Select the ramp's interpolation

Click to delete this component

The ramp

 FIGURE 08.11

 Ramps are color and grayscale
gradients that can be used to drive

rendering and other attributes.

 Because bump and displacement
maps are applied at render

time, they don ' t slow down your
interaction with the Maya scene

as you work on it.

199CHAPTER 08: SHADING

 Black and white
 When working with textures, the color value range between black and white corre-
sponds to a numerical range between 0 and 1. In a transparency map, black is zero
transparency (or opaque), white is fully transparent, and gray values are semi-opaque.
In bump and displacement maps, black is even-ground, and white, the maximum
elevation.

 UV coordinates: life on the surface
 In addition to the XYZ local and world coordinates, Maya has a 2D coordinate system
that it uses to map textures onto surfaces. U and V are analogous to X and Y on a
fl at surface, except that the U and V axes wrap around and deform with an object ’ s
surface. When you assign a texture to a surface (through a material channel such as
 Color) it automatically maps to the surface ’ s UVs; every location in a 2D texture image
has a corresponding UV location.

 When you create a primitive model, Maya automatically generates UV coordinates
for the surface. Maya has an extensive toolset, available through the UV Texture Editor
(UTE), to edit the way textures map to complex surfaces. Figure 08.13 shows the UTE
displaying a fi le texture applied to a polygonal object. UV control points (or simply
 “ UVs ”) can be manipulated individually or in groups. When you move a UV, it main-
tains its original position relative to its surface geometry, but changes position rel-
ative to the mapped texture. Th e net eff ect is that the texture changes position or
shape relative to the surface geometry. Figure 08.13 illustrates the eff ect on texture
placement of manipulating UVs.

(a)

(b)

 FIGURE 08.12

 Bump and displacement maps allow
you to alter surface topography at
render time. The same grayscale
procedural noise texture (a) was
used to create relief with (b) a bump
map and (c) a displacement map.
Note that displacement alters the
profi le contour, whereas the bump
map does not.

(c)

200 PART 2: A FOUNDATION IN MAYA

 Texture mapping (or UV mapping) is an important step in the character animation
workfl ow for gaming and movies. It defi nes how elements like clothing, skin, and
facial features appear on models when they are rendered. In biomedical and in silico
animation, the default mapping is often suffi cient for abstract procedural textures.
Th ere are, however, occasions in cellular and molecular animation that call for repeat-
ing patterns—fi brous proteins, for example—in which case editing texture place-
ment becomes important.

 The UTE

 Maya Help → Using Maya → Modeling → Mapping UVs → UVs windows and
editors reference → UV Texture Editor reference

 Texture placement nodes
 When you assign a texture to an object, Maya creates a texture placement node,
which maps the texture to the object ’ s UVs. Th is node gives high-level control over
the mapping, allowing you to tile, rotate, and mirror the texture on the surface.

 Working with texture placement nodes

 Maya Help → Using Maya → Rendering and Render Setup → Shading →
Mapping and positioning textures → 2D and 3D texture positioning

 FIGURE 08.13

 The position of UVs, relative to a
texture image, determines how the
image will appear on 3D geometry.

Pictures (a) and (c) show the
workspace of the UTE.

(a) UVs (green dots) in their default
positions relative to the texture

image.

(b) A rendering made with the
default UV placement.

(c) UVs transformed relative to the
texture image.

(d) A rendering made with the
transformed UV placement.

(a) (b)

(c) (d)

201CHAPTER 08: SHADING

 Shading engine nodes
 All render nodes in a shading network—textures, placement nodes, displacement and
bump map nodes, and materials—converge to a shading engine node (also called a shad-
ing group , or SG node for short). An SG node evaluates the other render nodes, along
with lights and surface topography, to determine the rendered appearance of the sur-
faces to which it ’ s attached. For any surface to be rendered, it must be connected to
an SG node. However, you need not create and connect an SG node manually; it is
done for you when you assign a material to an object.

 Preconfi gured Maya shading networks
 In addition to building a custom shading network, you can load a preconfi gured net-
work which was created by a third party developer, or which came bundled with Maya
in the Shader Network Library . To load a shading network from (a) a third party or (b)
from the Maya Shader Network Library:

 1. (a) Download or copy the shader network fi le (a Maya binary or Maya bitmap
fi le) to your local drive. Place it in directory where you can easily locate it such
as the Textures directory for your current Maya project.

 (b) Locate the directory in which the Shader Network Library was installed (if
it wasn ’ t installed with the main Maya installation, install it now). Within that
directory, navigate to the shader network fi le (a Maya binary or Maya bitmap
fi le) that you wish to load and copy it to a directory where you can easily locate
it such as the Textures directory of your current Maya project.

 If no Textures directory exists, you can create one by choosing File → Project
→ Edit Current, and then entering a directory name in the Textures fi eld,
followed by hitting Accept.

 Installing the Maya Shader Network Library

 Maya Help → Using Maya → General → Installation and Licensing → Installing
the Shader Library → Installing the Maya Shader Library

 2. Start Maya and open the Hypershade.
 3. In the Hypershade, choose File → Import, then navigate to and select the

shader network fi le you wish to load—either the third party shader fi le or the
one from the Maya Shader Network Library.

 4. Press the Import button.

 Maya Paint Effects
 Paint Eff ects is an FX and texturing painting module that allows you to draw
strokes (colored line and patterns) in either 2D or 3D. You can use it to apply cus-
tom patterns and particle eff ects to geometry and curves in a 3D scene. Invented by
Autodesk developer and computer graphics guru Duncan Brinsmead, Paint Eff ects is
used widely in FX workfl ows for fi lm and television to create organic elements such
as trees, grass, and fl owers, which can be animated to simulate growth. Biomedical
Animator Drew Berry pioneered the creative use of Paint Eff ects in molecular

202 PART 2: A FOUNDATION IN MAYA

interpretive visualization. He was named a Maya Master by Alias in 2005 for visuali-
zations of DNA (Figure 08.14) that he created for a major multi-national project marking
the 50th anniversary of the discovery of the DNA double helix.

 Paint Effects overview

 Help → Maya Help → Using Maya → General → Paint Effects and 3D Paint →
Maya Paint Effects → What is Paint Effects?

 Render View
 Th e Render View is a window used to make preview renderings of single frames. Figure
08.15 shows the main UI Elements of the Render View window. Th e toolbar buttons
are shortcuts to items available through the menus.

 Previewing with IPR
 IPR (Interactive Photorealistic Rendering) is an interactive rendering mode, used to pre-
visualize your scene. It works in the Render View to update the rendered image auto-
matically as you make changes to lights and materials. IPR is available when using
the Software or mental ray for Maya renderer. While it doesn ’ t support all of their
features, it ’ s a handy tool for tweaking your scene in preparation for a fi nal rendering.
You will use IPR for feedback on light positions in Chapter 10 .

 Render previewing with IPR

 Maya Help → Using Maya → Rendering and Render Setup → Rendering →
Visualize and render images → Rendering methods → Interactive Photorealistic
Rendering (IPR)

20 Å

 FIGURE 08.14

 Animator Drew Berry used Paint
Effects and particles to create
striking visualizations of DNA

replication and other biomolecular
subjects. By painting particles

onto globular models of proteins
and DNA, he was able to achieve

a high level of atomic detail and
give a sense of thermal vibrations
of molecules. Building, animating,

and rendering at this level of detail
using geometry instead of particles

are computationally intractable with
current desktop computers.

DNA Replication by Drew Berry, The
Walter and Eliza Hall Institute.

203CHAPTER 08: SHADING

 Keeping and removing images in the Render View
 Th e Keep Image in Render View menu command (or Keep Image button) stores the
current render preview in memory. When multiple images are stored, you can switch
between them using the slider bar at the bottom of the Render View. You can also add
a text comment to a stored frame in order to keep track of Render Settings. To add a
comment:

 RMB � click on the Keep Image button and choose Keep Image with Comment

 Keeping images is a great way to see the eff ects of changes you make to your scene and
it works for all renderers, unlike IPR which works only for Maya Software and men-
tal ray for Maya. Th e Remove Image button (or Remove Image in Render View menu
command) deletes from memory the image that is currently displayed.

 Render View rendering

 Maya Help → Using Maya → Rendering and Render Setup → Rendering →
Visualize and render images → Rendering methods → Render View rendering

 Tutorial 08.01: Shading
 In this tutorial, you will create four basic shading networks, each with a diff erent
material color, and assign each one to a piece of polygonal geometry in a ready-made

Menu bar
Tool bar

Rendered image

Information about the current rendering

Redo render
Render marquee region

Sanpshot
Redo IPR render

Refresh IPR
Render settings

RGB channels
Alpha channel

Exact pixel resolution

Store image
Remove image(s)

Diagnostics

Renderer
Current render layer

Pause IPR
Close IPR

 FIGURE 08.15

 The Render View is an interactive
rendering window. It is primarily
for previewing, but can be used to
make and save fi nal single-frame
renderings as well.

204 PART 2: A FOUNDATION IN MAYA

scene. Figure 08.16 shows the rendered result. To start, copy the scene we ’ ve created for
you from the CD-ROM to your scenes directory:

 08_Shading/scenes/tutorial_08_01.ma

 Next, start Maya, set your project if necessary, and set your working units to 30 fps,
Playback Speed to Real-time (30 fps), and Looping to Once. Open the scene fi le,
 tutorial_08_01.ma . Th is is a simple animation of the four subunits of hemoglobin —
the oxygen-transport molecule found in red blood cells—coming together to form
the complete molecule. A complete hemoglobin molecule contains amino acids, along
with four atoms of iron which give blood its red hue. Our animation is not meant to
be a realistic depiction of hemoglobin formation, which is a complex ballet of protein
folding and bonding, but rather a simple visual scenario that highlights the mol-
ecule ’ s overall shape and its subunit organization. A discussion of diff erent types of
molecular models follows in Part 3 , Chapter 14 .

 Create a surface material: A lambert shader
Th e fi le tutorial_08_01.ma opens with a perspective view of the scene. Th e hemo-
globin subunits are polygonal models named chain1 , chain2 , chain3 , and chain4 . Th ey
are gray, the color of the default shader, lambert1 . You can scrub the timeline to see
the animation. Your fi rst step is to create a shading network. We will then duplicate
it three times and change the material color for each duplicate. Th e colors will help
diff erentiate the subunits.

10 Å

 FIGURE 08.16

 A fi nal rendering of the scene
you will shade in Tutorial 08.01. A

lambert shader was applied to each
object. The objects are the four

 chains , or subunits of a hemoglobin
molecule. We modeled them using

the UCSF Chimera package from
the Resource for Biocomputing,
Visualization, and Informatics at
the University of California, San

Francisco (supported by NIH P41
RR-01081).1 The molecular structure

data fi le used, 1buw.pdb, was
procured free of charge from the

RSCG Protein Data Bank.2

 We will explore molecular
modeling and visualization and

Protein Data Bank structure data
fi les in more depth in Chapter 14 .

 The word " chain " here refers
to a polypeptide subunit of

the complete hemoglobin
molecule. For more information

on biomolecules and their
components, refer to the

Further reading section under
the heading Cell Science,

Fundamentals .

205CHAPTER 08: SHADING

 1. Choose Window → Rendering Editors → Hypershade.

 2. Click on lambert swatch in the Surface panel under the Create Bar.
This creates a new shader called lambert2. (Refer to the labeled diagram of the
Hypershade in Figure 08.06 .)

 3. Make sure both the top and bottom tabs are showing. If not, press the Show Top
and Bottom Tab button .

 4. Select the new shader in either the Materials (top tab) or Work Area (bottom
tab) palette in the Hypershade and press the button to view the input and
output connections.

 5. If the render nodes are not visible in the Work Area, click in the Work Area and
press the Show All hotkey, A.

So far, the only node lambert2 is connected to the SG node, lambert2SG . Each time
you create a material using the method described above, Maya automatically creates
an SG node and connects the material to it.

 Common material attributes
 Next, set the material ’ s Color and other attributes. Th e settings we suggest are values
chosen after experimenting with the fi nal look. Feel free to experiment with them.

 1. Select the material, lambert2, by clicking on its icon in the Work Area or Mate-
rial palette in the Hypershade.

 2. Hit Ctrl � A or double � click lambert2 to launch the Attribute Editor.

 Color
 Th is is the base color of the material.

 3. Under Common Material Attributes, click on the swatch for the Color channel
(attribute). This launches the Color Chooser window (Figure 08.17).

 Th e default color system in the Color Chooser is HSV (Hue , Saturation , and Value). Th is
color model allows you to vary the color by altering the essential tint (hue), inten-
sity (saturation), and relative lightness or darkness (value). You can change this to
the RGB (red, green, blue) color model if you like by selecting it from the menu in the
bottom left corner of the Color Chooser. For now, leave it set to HSV.

 4. Make the following settings using the sliders or by entering them in the H, S,
and V fi elds:

 H: 350.0

 S: 1.0

 V: 0.8

 5. Press the Accept button to close the Color Chooser.

 Using the Color Chooser

 Maya Help → Using Maya → General→ Basics → Basics windows and
editors → Color editor

 You can navigate (zoom and
pan) the Hypershade view
panels using the same key and
mouse combinations you use to
navigate Maya ' s scene view.

206 PART 2: A FOUNDATION IN MAYA

 Transparency
 For the Transparency channel, black is equivalent to opaque and white to fully
transparent.

 Ambient Color
 At its default setting of 0, Ambient Color has no eff ect on the material. If you increase
its value toward one, its Ambient Color gets blended with the Color channel. Its contri-
bution to the fi nal color is infl uenced by the presence of Ambient lights in your scene.

 Incandescence
 Incandescence is self-emitted light. With non-zero incandescence values, it is possible
to render a scene entirely without lights, using only the self-illuminated geometry.
Incandescence aff ects only the object to which it ’ s assigned. It doesn ’ t cast light on
other geometry in the scene.

 Bump
 Th e Bump channel uses a texture node to create the illusion of surface elevations and
depressions at render time. Our geometry is quite bumpy to begin with, so we won ’ t
create a bump channel in this project.

 FIGURE 08.17

 The Color Chooser allows you to
specify colors in HSV or RGB mode.

 The changes you make in the
Color Chooser apply instantly.

You don't need to hit Accept
to implement them. The Color

Chooser is like other windows in
Maya; it displays content for the

active item. If you select another
color-type attribute, such as

Transparency, the Color Chooser
will load its current color setting.

207CHAPTER 08: SHADING

 Diffuse
 Th e Diffuse channel controls a material ’ s tendency to scatter light. In practical terms,
it amounts to a brightness control. By default, it is set to 0.8.

 Translucence
 Translucence is the tendency of a material to absorb and scatter light beneath its sur-
face. Skin, leaves, and wax are real-world materials that demonstrate this property.
 Translucence only works with a shadow-casting light and when raytraced shadows are
turned on. In this exercise we ’ re using depth map shadows instead, in order to keep
render times down, so Translucence will have no eff ect.

 Th e remaining lambert material attributes can be left at their defaults as well for now.

 Attribute descriptions for all Maya surface materials

 Maya Help → Using Maya → Rendering and Render Setup → Shading →
Shading Nodes → Material nodes—Maya Software → Common surface material
attributes

 Assign the shading group to chain1
 Below are two common ways to assign a shading group to an object. Th e simplest is to
use the material marking menu in the Hypershade as follows:

 1. (a) Select chain1 by clicking on it in the scene view or on its name in the Out-
liner.

 (b) With the Material palette visible in the Hypershade, RMB � click on the
material you just set up, lambert2.

 (c) From the material marking menu, choose Assign Material to Selection (see
Figure 08.18a).

or

 2. (a) Position and/or resize the Hypershade so that both the Materials palette and
chain1, in the scene view, are visible at once.

 (b) MMB � drag the icon for lambert2 onto chain1 in the scene view and then
release the mouse button (see Figure 08.18b).

 Th e last step connects chain1 to the shading group node, lambert2SG . View your scene
in smooth shaded mode (type “ 5 ”) to see the color applied to chain1 .

 Make and assign the remaining shaders
 For this project, we want each hemoglobin subunit to have a diff erent color. Th e audi-
ence then can see which is which after they ’ ve bound together. You have the choice
of creating three new shaders from scratch, the way you did with lambert2 , or dupli-
cating lambert2 and with it any attribute settings you ’ ve already set up. Naturally,
you will have to change the color attribute for each duplicate. Before you begin

208 PART 2: A FOUNDATION IN MAYA

duplicating or creating render nodes, let ’ s consider the implications of how the nodes
will be named.

 Naming your render nodes

When you duplicate a shader (by selecting the SG node and choosing Edit → Duplicate →
Shading Network) all connected render nodes are duplicated. New node names are
duplicates of the old, but incremented numerically. For instance, lambert2SG becomes
 lambert2SG1 , then lambert2SG2 , and so on. Likewise, the material name lambert2
becomes lambert3 . Th is default naming system can lead to confusion because the
shading group name is diff erent from the material name, which is completely dif-
ferent from the object you intend to shade. When working with many shaders, often
the quickest way to select a render node according to the object it shades is to locate
its tab in the object ’ s Attribute Editor. However, being able to select render nodes by
name in the Hypershade is preferable, since that is where you will be building and
editing shading networks. For this reason, we fi nd that setting up a logical scheme
for node naming is a smart workfl ow decision. We suggest you avoid the default nam-
ing routine for all but the very simplest projects.

 Renaming a shading network correctly requires renaming both the material ’ s trans-
form node and the SG node. To rename the render nodes you created:

 1. Open the Attribute Editor for lambert2 by double-clicking on its icon in the
Hypershade.

 2. Enter lambert_chain1 in the name (lambert) fi eld.

 When you rename a material,
the name of its shape node will

update automatically, but not
that of the shading group node—

it must be renamed separately
in the Channel Box or Attribute

Editor.

 You may need to dolly and
pan to adjust your view in the

Hypergraph in order to read
the names on the shading

group swatches. If Popup Help
is enabled in Preferences, a

shading group name will appear
when you place your mouse over

its swatch.

(a)

Hypershade

Workspace

 FIGURE 08.18

 Two ways to assign a shading
network to an object.

(a) Select the object, then use
the material marking menu in the

Hypershade.

(b) MMB � drag the material icon
onto the object in the scene view.

(b)

MMB+drag

Hypershade

Workspace

209CHAPTER 08: SHADING

 3. In the Attribute Editor, press the Output Connections button to reveal the
lambert2SG tab.

 4. Enter lambertSG_chain1 in the name (Shading Engine) fi eld.

 Th e names we ’ re using will take advantage of Maya ’ s automatic naming strategy; as
you duplicate nodes, their names will refl ect the number of the hemoglobin chain
they are to shade (i.e. chain2, chain3, and chain4).

 Duplicate the shading network
 It is advantageous to duplicate a shading network instead of creating it from scratch
if you have made attribute settings for the original and you want them carried over
to the new network. In the Hypershade:

 1. Choose the Shading Groups tab and select lambertSG_chain1.

 2. Choose Edit → Duplicate → Shading Network.

 3. Repeat step 2 two more times to create networks for chains 3 and 4.

 Adjust the color attributes
 At this point all shaders have the same values in their color channels. We suggest
you set these color settings, then experiment further once you ’ ve seen the fi nal
rendering:

 lambert_chain2 lambert_chain3 lambert_chain4

 H: 200.0 H: 20.0 H: 200.0

 S: 1.0 S: 0.5 V: 1.0

 V: 0.7 V: 1.0 V: 0.9

 Apply the new shaders to the remaining three objects the same way you did for
 chain1 . In smooth shaded mode, your scene view should look similar to Figure 08.19
(shown at frame 50 of the animation).

 Add a textured background plane
 In the next chapter and tutorial, you ’ ll add shadow-casting lights to the scene. Cast
shadows help greatly in the perception of spatial relationships. Currently there is no
background to catch shadows in the scene, so let ’ s add a polygon plane to do the job.
To the plane, you can then add a repeating grid texture that gives a frame of reference
for the viewer. Without it, there is nothing in the scene to indicate what, if anything,
is standing still relative to the camera and geometry.

 Create and position the plane

 1. Choose Create → Polygon Primitives → Plane . Turn off Interactive Creation if it
isn ’ t already off.

210 PART 2: A FOUNDATION IN MAYA

 2. Enter the following attributes:
 Width: 1200
 Height: 1200
 Subdivisions Along Width/Height: 10
 Axis: Y

 3. Press Create.

 Th is makes a polygonal object called pPlane1 . Next, move pPlane1 below the other
geometry to avoid intersections, and backwards in Z so that more of it is visible to
 camera1 .

 4. Select the plane in the Outliner.

 5. Enter the following attribute value in the Channel Box:

 Translate Y: - 100

 Assign a material to the plane
 Th e plane was just assigned the default shader when created, so add a new lambert
material at this step in your project ’ s workfl ow.

 6. Choose Window → Rendering Editors → Hypershade.

 7. Click on lambert swatch in the Surface materials panel.

 FIGURE 08.19

 The scene at frame 50, after shaders
have been assigned to each piece

of geometry.

211CHAPTER 08: SHADING

 8. Open the Attribute Editor.

 9. Rename the material: lambert_plane.

 10. Set Diffuse to 0.9.

 11. Press the output connections button to bring up the shading group node
and rename it: lambertSG_plane.

 You can leave the Color attribute alone; in the next step you will assign a texture to it.

 12. Adjust the Hypershade so that the plane is visible beside it.

 13. MMB � drag the lambert_plane material swatch from the Hypershade over top
of the plane in the scene view and release the mouse button.

 Create the grid texture
 When creating a shading network, you have the option of building it in the Hypershade,
before assigning it to an object, or constructing it on the fl y—adding to it after it ’ s been
assigned. Here you ’ ll do the latter, connecting a procedural texture to the Color chan-
nel of lambert_plane, which is already connected to pPlane1 . Th e texture is a grid pat-
tern and one of the ready-made Maya procedural textures.

 1. In the Hypershade, choose Create → 2D Textures → Grid

or Click on the grid texture swatch in the 2D Textures panel under the
Create Bar. This creates a new node called grid1.

 2. Select grid1 in the Hypershade and hit Ctrl � A to open the Attribute Editor.

 Th e objective here is to create a subtle pattern—enough to provide a frame of refer-
ence for the viewer without being distracting.

 3. Enter the following attribute values:

 Line Color H: 0
 S: 0
 V: 1.0 (white)

 Filler Color H: 0
 S: 0
 V: 0.8 (light gray)

 U Width 0.01 (for thin lines)
 V Width 0.01

 4. Click on UV coordinates.

 5. Click on the input connections button to bring up the 2D texture placement
node.

 6. Enter 40 in both of the Repeat UV fi elds.

 The quickest way to add a
texture to a channel is by
pressing the Create Render
Node button next to

the channel in the Attribute
Editor. This launches the
Create Render Node editor. If
you then select a node, it gets
automatically connected to the
channel in question. We used
a lengthier method to connect
grid1 to lambert_plane in order
to demonstrate how to make
attribute connections in the
Hypershade.

212 PART 2: A FOUNDATION IN MAYA

 Increasing the Repeat attributes results in a fi ner grid (or more lines). Even with
Hardware Texturing turned on in your scene view, you won ’ t get a decent preview of
the grid. Th e best way to see results is with a software rendering using the Render
View. You ’ ll get to that shortly.

 Connect the texture to the material node
 Th e fi rst step here is to get the swatches for the two nodes, lambert_plane and grid1 ,
lined up and visible in the Work Area of the Hypershade. After that, you will make
the connection using marking menus that are accessed through output and input
connections buttons on the node swatches.

 1. Shift � select lambert_plane and grid1 in the Work Area or in the Materials and
Textures tabs, respectively.

 2. Press the Graph Input and Output Connections button .

 The Rearrange Graph button can be used to tidy up the graph view in the
Work Area of the Hypershade.

 3. Rearrange the nodes to somewhat resemble the setup in Figure 08.20 .

 4. RMB � or LMB � click the output connections button at the bottom right
of grid1 and select outColor → outColor from the marking menu. Hold the
mouse button down. A leader line now will follow your mouse pointer as you
move it.

1. LMB+click here,
select outColor.

2. LMB+click here,
select color

2D texture
placement node 2D texture node Material node Shading group node

 FIGURE 08.20

 Attribute connections are made
in the Hypershade by making a

selection fi rst in the output marking
menu of one node and then in the

input marking menu of a second
node.

 In the Hypershade, render node
input and output connection

arrows are either hollow

to indicate that no connections

exist, or solid when

at least one attribute has a
connection to another node.

213CHAPTER 08: SHADING

 5. RMB �or LMB � click anywhere on the lambert_plane swatch and select Color
from the marking menu then release the mouse button (Figure 08.19).

 Now graph the complete shading network (Figure 08.21) to see the connections you have
made since creating the material lambert_plane:

 1. In the Hypershade, select the lambert_plane material and press the Graph Input
and Output Connections button .

 2. Select lambertSG_plane and press .

 Make a preview render
 Before adding lights and a rendering camera, you can use the Render View to pre-
view the eff ect of the shaders you created. Start by setting the render resolution in
the Render Settings.

 1. Choose Window → Rendering Editors → Render Settings (Render Globals in
releases prior to Maya 7.0).

or Press the Render Settings button in the Status Line of the main window.

 2. Press the Common tab and choose Presets → 640 × 480, under Image Size.

2D texture
placement node

2D texture node Material node

Shading group
node

Shape node

 FIGURE 08.21

 The fi nished shading network for
the plane. The shading group (SG)
node evaluates the other render
nodes, along with lights and surface
topography (via the pPlaneShape1
node), to determine the rendered
appearance of the plane.

 We will take a closer
look at the Render Settings in
Tutorial 11.01: Rendering.

214 PART 2: A FOUNDATION IN MAYA

 3. Press the Maya Software tab. If it isn ’ t visible, select Maya Software from the
Render Using menu.

 4. Choose Quality → Production Quality, under Anti-aliasing Quality.

 5. Press the Close button.

 6. Move the Time Slider to a frame that you want to preview and adjust your
scene view to a view you want to render.

 7. Press the Render current frame button . This launches the Render View and
starts a preview rendering.

 Th e result is a rendering of your scene using the default light and perspective camera.
If you are not getting the results you want, you can compare your scene fi le with the
completed tutorial fi le on the CD-ROM:

 08_Shading/tutorial_08_01_done.ma

 If you ’ re at all like us, by this point in a project you can ’ t wait to see a fi nal complete
render at production quality. For this you ’ ll need to place the lights and camera of
your virtual fi lm studio before we can shout, “ Action! ” Let ’ s get those set up!

 Summary
 In Maya, shading is the creation of a network of render nodes. From a user ’ s point of
view, it is the application of colors, textures, and other surface attributes to elements
in a scene. Render nodes include materials, textures, bump and displacement nodes,
and texture placement nodes. Th e Hypershade is the primary tool in Maya for creating,
applying, and editing shading networks. A shading engine (or group) node takes various
render nodes for input, along with geometry and lights to calculate the fi nal rendered
appearance of a surface. Th e variety of materials and textures, along with options for
photorealistic and NPR techniques, make Maya ’ s shading capabilities extremely well
suited to interpretive visualization challenges in biology. You have at your fi ngertips a
wealth of techniques and familiar visual conventions—drawn from photography and
illustration—for presenting dynamic graphical information.

 References
 1. Petterson EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin

TE: UCSF Chimera – A visualization system for exploratory research and analysis.
Journal of Computational Chemistry 25: 1605–1612, 2004.

 2. Chan NL, Rogers PH, Arnone A: Crystal structure of the S-nitroso form of liganded
human hemoglobin. Biochemistry 37: 16459–16464, 1998.

09 Cameras

216 PART 2: A FOUNDATION IN MAYA

 Introduction
 We have often heard the Hollywood refrain “ Lights! Camera! Action! ” Real life for the
cinema pros, however, is a little diff erent: that “ Camera! ” , when it is all said and done,
is to alert the camera operator to start the fi lm running through the movie camera.
Once it ’ s rolling, the actors can get down to business. Before any of this can happen,
though, the fi lm ’ s director must make a series of crucial decisions about where the
camera is to be positioned for the shot and how it will move during the shot, along
with lens eff ects such as depth of fi eld and fi eld of view . Th e camera supplies the audi-
ence its cinematic eye or the action; this eye must gaze adroitly if the audience is
to experience the fi lm ’ s narrative and respond emotionally to the action. So really
the refrain should be at least “ Camera! Lights! Camera! Action! ” Once the camera is
planned for the shot, the cinematographer can decide how the scene is to be lit in
order to achieve the visual style established for the shot.

 As we have noted, Maya, like other high-end 3D animation packages, uses the simu-
lacrum of virtual photography to let you approach your visual story using the language
of cinema. All the choices a live action director confronts about camera placement,
lenses, and lighting you must make too. Th ere are now whole texts devoted to cin-
ematography in live action and virtual (3D animation) worlds. Our objective in this
chapter and the next one is to introduce you to the fascinating techniques and art-
istry of Maya cameras and Maya lighting. By the end of this chapter you will know
what a Maya (virtual) camera is and how to set its basic properties. You will then apply
this knowledge to replace Maya ’ s default camera—which you used to preview the
hemoglobin molecule in the last chapter—with a custom camera of your own design.
We will guide you in its initial settings and placement, but you will quickly see the
cinematic eff ects available to you as a Maya-based fi lmmaker. Unencumbered by
gravity or physical risks, your Maya camera can move unconstrained by the limits
within which live action cinematographers have to work. Since the properties of your
cameras and lights are open to you through MEL for automated action, they become
an essential part of your in silico visualization language as you formulate complex
models: your cameras are your roving eyes on the results and predictions of your sim-
ulations, expressed in the universal language of cinema. Lighting is the other essential
creative dimension of approaching your MEL simulation in cinematic terms. Having
mastered the basics of the Maya camera in this chapter, you ’ ll advance to custom light
your hemoglobin in the next chapter.

 Although you are free to experiment with camera placements and lighting arrange-
ments using Maya as your prototyping environment, most of us fi nd that—given
the time, eff ort, and expense of designing and rendering 3D animation shots—many
key decisions about cameras and lighting are best made in the preproduction stage
of the visualization. From Chapter 03 you ’ ll recall that the storyboarding proc-
ess of the preproduction stage allows you to plan your view of the 3D action shot
by shot and establish in detail how you want the camera to move and the light-
ing design to apply to the scene. Unfortunately the art of cinema storyboarding
is beyond the scope of this book, although two of us (CJL and NW) have a book on
the subject in development for science fi lmmakers, based on our years of teaching
(and using) the method with biomedical communications. In the meantime there
are excellent texts available that will take you further with the art of storyboarding
for fi lm .

217CHAPTER 09: CAMERAS

 Maya Cameras
 Like a real camera, a Maya camera defi nes the visible region of a scene—what will
be captured in a rendering—and any image distortion due to the type of simulated
lens used. You are by now no doubt familiar with maneuvering the default perspec-
tive camera, persp, to view a scene. Persp and the other default cameras—the ortho-
graphic front, top, and side—have all the same attributes as a camera you would
create, and therefore can be used to render. It is advisable, however, to use the default
cameras to view your scene as you set it up and create additional cameras specifi cally
for rendering, that is, for “ shooting ” the virtual fi lm of your Maya scene as estab-
lished in your preproduction storyboarding plan, or its equivalent in your workfl ow.
Th is will help you avoid accidentally moving a render camera, after setting it up, in
order to view the scene.

 A perspective camera is like a real camera, with an aperture, focal length, and angle of
view, but is more fl exible. Far more fl exible, as we hinted at above. Its simulated aper-
ture can be of any size and aspect ratio (width : height), and works with a wide range
of simulated focal length: 2.5–3500 mm. An orthographic camera has no distortion
due to perspective; an object close the camera appears the same size as one that is
far away. By default, an orthographic camera is locked to one of the major axis planes
(XY, XZ, or YZ). You can unlock it using the Tumble Tool in order to tumble it to any
point of view, as shown in Figure 09.01b .

 You have three options when creating a perspective camera. Th ese are Camera, Camera
and Aim, and Camera, Aim, and Up, shown in Figure 09.02 . Th e camera is the same in each

 Essentially there is only one type
of camera in Maya. When its
Orthographic attribute is set to
 " 1 " or " yes " a camera becomes an
orthographic camera. When a
camera ' s Orthographic attribute
is set to " 0 " or " no " we call it a
perspective camera.

 To avoid image artifacts
related to depth perception, it
is recommended that you use
an orthographic rather than
perspective camera for focal
lengths greater than 400 mm.

(a) (b)

(c) (d)

 FIGURE 09.01

 Different camera views of a
polygon cube.

(a) A default orthographic
camera view.

(b) When unlocked (using
the Tumble Tool options), an
orthographic view can be tumbled
just like a perspective camera.

Camera attributes, Angle of View
and Focal Length , control the
viewable area and the degree of
perspective distortion. The two
are reciprocal; the longer the focal
length, the narrower the view angle,
and vice versa. For the images in
(c) and (d), the camera remained
in the same location; only the focal
length (and angle of view) changed.

(c) A narrow angle of view and
low distortion result from a focal
length of 70 mm.

(d) A short focal length, 20 mm,
gives a wide Angle of View,
distorting the image.

218 PART 2: A FOUNDATION IN MAYA

case, but is constrained to locators, or null objects, in the latter two. Th e locators act
as handles that drive the camera ’ s rotate attributes. You aim a perspective camera
interactively by tumbling, tracking, and dollying, or by transforming it using manip-
ulator handles. With Camera and Aim , the camera will always point at the camera_aim
 locator, no matter where you translate it. As well, it will always be vertically upright,
unable to tilt left or right (or rotate about its Z-axis). Th e additional locator with
 Camera, Aim, and Up is used to tilt the camera. At any time, you can change a camera
from one type to another using the Attribute Editor. To create a camera:

 Choose Create → Cameras → Camera
 or Camera and Aim
 or Camera, Aim, and Up

 Th e create options for a camera can be left at their default settings and edited later in
the Attribute Editor or Channel Box.

 Camera Attribute Editor
 Cameras clearly are essential to interacting with and rendering Maya scenes. Th ey are
the eyes you give your audience on what is happening in our model! Because of their
importance we will discuss their attributes in depth.

 Camera Attributes
 Th e fi rst camera attribute listed in the Camera Attribute Editor, Controls, allows
you to switch between the diff erent camera types listed above (regular, Aim, and

 FIGURE 09.02

 Maya ' s cameras all use the same
transform and shape nodes but

have different attribute or constraint
settings. The different camera

types are:

(a) Orthographic camera.

(b) Perspective camera.

(c) Perspective camera and Aim.

(d) Perspective camera, Aim,
and Up.

Aim vector control

(c)

Aim vector control

Up vector control

(d)

(b)(a)

219CHAPTER 09: CAMERAS

Aim and Up). Angle of View and Focal Length are inversely related. Th ey control the
relative width and lens distortion of the view. Th e greater the Angle of View value,
the shorter the focal length and the greater the perspective distortion (Figure 09.01c and
d) corresponding to a wide angle lens in conventional photography. Increasing Camera
 Scale has the eff ect of increasing the focal length—making images appear larger and
decreasing the angle of view—and vice versa. Clip (or clipping) planes determine the vis-
ible range, perpendicular to the camera. If near or distant objects aren ’ t visible in your
scene, try decreasing the near clipping plane or increasing the far clipping plane.

 Film Back
 Th e Film Back attributes are used when you bring live action footage into Maya.
Unless you are matching animation to live action, you can leave these settings at
their default values.

 mental ray
 Th e mental ray attributes are for assigning shaders to your camera for special eff ects
when rendering with the mental ray for Maya renderer.

 Depth of Field
 When activated, the Depth of Field attribute varies the focus of a rendering with dis-
tance from the camera (Figure 09.03) . Because it mimics a familiar photographic eff ect—
the blurring of objects outside of the focal range of the camera—depth of fi eld
can add the illusion of realism to renderings. However, this eff ect comes with a

 The Camera Attribute Editor is
simply the name given to the
regular Maya Attribute Editor
when a camera is selected.

 FIGURE 09.03

 The depth-of-fi eld effect varies
the focus of a rendering based
on the distance from the camera.
This rendering is from a dynamic
simulation of assembling actin
protein fi laments. The focal distance
is set close to the camera in (a) and
at the outer range of the simulation
in (b). Depth of fi eld can be useful
device for directing the attention of
your audience.

(a) (b)

220 PART 2: A FOUNDATION IN MAYA

signifi cant rendering time penalty. If you have access to a compositing program such
as Adobe After Eff ects for animation or Adobe Photoshop for still images, you ’ re bet-
ter off rendering with Depth of Field turned off and then building the eff ect in the
compositing stage using a Maya-rendered depth channel which contains the same
depth data used to calculate depth of fi eld. A depth channel is a bitmap image that
represents distance from the camera using a grayscale value: the closest objects are
white and furthest ones are black. Creating the depth-of-fi eld eff ect in the composit-
ing stage has the added benefi t of allowing you to quickly fi ne-tune the degree of blur.
In contrast, depth of fi eld cannot be adjusted when it ’ s been rendered into the pri-
mary footage. Regardless of the method used, depth of fi eld is a powerful tool for iso-
lating important visual information because the eye is naturally drawn to the point
of sharpest focus. In crowded simulations of molecules or cells, it is one of our tools
for directing the eye of the viewer.

 Output Settings
 Th e Output Settings determine which standard channels will be rendered. When
Renderable is checked, the camera will appear on the list of renderable cameras in the
Render Settings. Image refers to the RGB color channels, Mask to the alpha channel, and
 Depth to the depth channel. Th ese channels are illustrated in Figure 09.04 . Alpha chan-
nels are used in compositing to mask out unwanted parts of an image so that other
images can show through from behind. Black areas are masked out while white por-
tions remain visible. A depth channel is used in the compositing stage of animation
production to apply depth-of-fi eld eff ects, and to achieve real-world distance eff ects,
such as color saturation that decreases with distance from the viewer.

Red
Green

Blue

Alpha
Depth

Composite image

Color channels

Mask channels

 FIGURE 09.04

 The rendering output channels
are added together to create the
fi nal composite image. Channels

are turned on or off in the camera
Attribute Editor or in the Render

Settings.

 Depth-of-fi eld effects are often
created in the compositing stage
of production using Maya ' s depth

data channel, rather than in the
actual Maya rendering. Depth of

fi eld is much quicker to render
and easier to edit when applied

in postproduction.

 Prior to Maya release 7.0, Render
Settings was called Render

Globals.

221CHAPTER 09: CAMERAS

Resolution Gate

Safe Action

Safe Title

 FIGURE 09.05

 Camera Display Options. The Film
Gate and Field Chart are not visible
in this fi gure.

 Environment
 Th e Environment attributes determine the background, or what will appear in
the spaces between the objects in your scene, once they ’ re rendered in a fl at image.
 Background Color sets a uniform fl at color for the background. Image Plane lets you
load bitmap image fi les or a procedural texture for the background. An image plane
can be a template picture to use when building a model, or live footage to match ani-
mation to, as is often done in special eff ects work. In the image plane attributes, you
can choose between an image fi le and a texture.

 Display Options
 Th e Display Options are labeled in Figure 09.05 , with the exception of Field Chart which
is a grid covering the renderable portion of the view. Film Gate shows the camera ’ s
aperture and applies to matching live footage. Resolution is the portion of the view
that will be rendered. Safe Action and Safe Title apply if you plan to show your
rendering on a television screen. Safe Action is 90% of the resolution region and is
what will be fully visible on NTSC TV screen. On-screen type and logos should be kept
within Safe Title, which is 80% of the resolution region. Overscan determines the
viewable area outside of the renderable (resolution) region. It allows you to see what ’ s
just beyond the edges of your camera view.

 Movement Options
 Under Movement Options, Undoable Movements adds camera movements to the reg-
ular undo and redo commands that you access through the hotkeys Z and Shift � Z,

222 PART 2: A FOUNDATION IN MAYA

respectively. Center of Interest and Tumble Pivot set the pivot about which the cam-
era tumbles. A camera can be set to tumble about itself, a defi ned Center of Interest,
or a user-defi ned Tumble Pivot. You set which one is used in the Tumble Pivot Tool
Options window. It uses the values specifi ed for Center of Interest and Tumble Pivot
defi ned in the Attribute Editor. To set the Tumble Tool options:

 1. Choose View → Camera Tools → Tumble Tools .

 2. Check one of Center of Interest or Tumble Pivot.

 If you check Tumble on Object , the camera will tumble about whichever object the
tumble icon is over when you begin to tumble. Th e remaining tumble settings con-
trol the maneuverability of an orthographic view. With Locked unchecked, you can
tumble an orthographic camera the way you would a perspective one.

 Orthographic Views
 Orthographic turns a perspective camera into an orthographic gaze. Orthographic
Width is related directly to the distance of the camera from its origin plane (XY, XZ,
or YZ). When you dolly an orthographic camera, you don ’ t actually move it in the
Z-direction, but rather increase or decrease its Width attribute.

 Th e remaining camera attributes are common to all shape nodes and won ’ t be covered
here.

Camera Attributes

 Maya Help → Using Maya → Rendering and Render Setup → Rendering →
Rendering menus → Panel menus → View → View > Camera Attribute Editor

 Tutorial 09.01: A camera on hemoglobin
 One of the joys of working in 3D computer animation is composing shots using a vir-
tual camera. You can mimic the techniques of experienced cinematographers seen
in movies and on television. Well-executed cinematography, like good fi lm editing,
often goes unnoticed by the audience because it appears natural. Th rough CGI camera
work, audiences are even becoming accustomed to quite unnatural, but striking view-
ing experiences. Examples include high-speed roller-coaster-like rides through cities
and landscapes, and tours of tight, often microscopic spaces—all of which would be
impossible with present-day photographic equipment. Th ree-dimensional in silico
biology provides a host of opportunities for innovative camera work. Motion path
animation, in which a camera animates along a track, can be used to move a camera
on a complex trajectory through a scene dense with reacting molecules, for example.
Likewise, a camera can be programmed to track specifi c events within a simulation.
Such an “ intelligent ” camera could potentially remove much of the labor required in
conventional camera setup techniques.

 Th is exercise builds on our hemoglobin scene from the last chapter. Let ’ s create a
camera that sweeps around the animated hemoglobin subunits on a motion path. It ’ s
worth recalling that we chose to set up the camera before lighting the scene because
what the camera sees will inform your lighting decisions. To start, you can either use

223CHAPTER 09: CAMERAS

the scene you modifi ed in Tutorial 08.01 from the previous chapter or copy the follow-
ing fi le from the CD-ROM to your scenes directory.

09_Cameras/tutorial_09_01.ma

 Whether you got the fi le from the CD-ROM or from your progress from the previ-
ous tutorial, the fi le preferences already will be set—Maya stores settings, such as
Working Units and Playback Speed in the scene fi le. You ’ re working with a short ani-
mation of the four subunits of hemoglobin—the oxygen-transport molecule found in
red blood cells—coming together to form the complete molecule. Each subunit has a
shader applied to it and the intended renderer is Maya Software.

 Create a camera
 Th e fi rst step is to create the render camera. It doesn ’ t matter from the standpoint of
options which camera type you choose at fi rst because the creation options are the
same for each, and you can change the type at any time using the Camera Attribute
Editor so your options will stay fl exible. Nor do you need to bother with the creation
options since they can all be set in the Attribute Editor.

 1. Choose Create → Cameras → Camera .

 2. Press the Create button.

or

 3. Press the Camera button on the Rendering shelf.

 Leave the default settings as is, including the name, camera1 . In projects like these,
involving an overview of a potentially exotic object, we often set the Focal Length
from 35 to 50 mm in order to get perspective familiar to that of the human eye. In
this case, however, you want to enhance the illusion of perspective slightly for a more
interesting view, so you ’ ll leave it at 35 mm. Try to fi nd time to come back and experi-
ment with diff erent settings. For instance, what would be the eff ect of locating a cam-
era with an extreme wide angle lens close to the subunits of this molecule?

 Next, you ’ ll scale the camera in order to make it visible relative to the much larger
polygonal objects in the scene. Scaling a camera using its transform node has no
eff ect on the view it provides or the fi les it renders—it just makes it easier to see in
the workspace.

 4. Select camera1 in the Outliner.

 5. In the Channel Box, enter 20 in the Scale X, Y, and Z attributes.

 Set up a two-panel view
 We fi nd it helpful to use two scene views when setting up a camera (Figure 09.06) . On
the left is the default persp view, with which you ’ ll navigate the scene. On the right is
the render camera (camera1) view, in order to see what it sees. Diff erent panel setups
suit diff erent workfl ows. For example, when working with keyframe animation rather
than MEL simulation events, it ’ s useful to dedicate at least one panel to the Graph
Editor in order to have easy access to animation curves. Some users prefer to keep the

224 PART 2: A FOUNDATION IN MAYA

 FIGURE 09.06

 A two-panel layout is a good way
to view your scene while setting

up a render camera. In this image,
the current time indicator is at

frame 60—the point at which the
hemoglobin subunits come together.

 The cousin to Frame All is Frame
Selection, which adjusts the

active view to show one or more
selected objects. It is accessed
through the View menu or with
the hotkey " F " . If no objects are

selected, " F " also frames all.

Outliner embedded as a panel for quick access. For the present exercise, you ’ ll fi nd it
most effi cient to allocate two panels to camera views and launch other elements, like
the Outliner, as separate, fl oating windows.

 1. Choose Panels → Layouts → Two Panes Side by Side.

 2. In the left-hand panel, choose Panels → Perspective → persp.

 3. In the right-hand panel, choose Panels → Perspective → camera1.

 If you haven ’ t yet moved camera1, it will be positioned at the world origin, facing in
the negative Z-direction. Depending on which frame the time indicator is at, the cam-
era may be inside one of the models, in which case you will see nothing recognizable.
A quick way to get a view of your whole scene through the active panel is to choose
Frame All, as follows:

 1. Click anywhere in the right (camera1) view panel to make it active.

 2. Choose View → Frame All

or

 Hit the hotkey “ A ” .

 Take a minute to tumble, dolly, and pan camera1 to get a good view of the four hemo-
globin subunits. Th en do the same with persp so that you can see the geometry and
camera1 together.

225CHAPTER 09: CAMERAS

 Adjust the camera attributes and Render Settings
 Here you will add an aim locator, set the camera aperture (renderable width and
height), and display the resolution gate . An aim is a target that the camera is con-
strained to look at. You will use this to keep the camera pointed at the world origin.
Th e aperture will, by default, match the aspect ratio you set with Image Size in the
Render Settings. Th e resolution gate shows you the renderable area of the camera.

 Add the aim locator

 1. Select camera1 and open the Attribute Editor.

 2. Under Camera Attributes, choose Control → Camera and Aim.

 Th is parents camera1 under a new transform node called camera1_group, along with
camera1_aim, the locator node. Selecting camera1 now, you will see that the Rotate X,
Y, and Z attribute fi elds are colored blue to indicate that they are constrained to the
aim locator.

 Unless the locator is constrained to a position, it will move as you pan the camera.
You want it locked to the origin in this example so that the camera will always point
at the center of your scene. Th is will keep the hemoglobin molecule centered up as
you fl y around it.

 3. Select camera1_aim in the Outliner.

 4. In the Channel Box, enter 0 for Translate X, Y, and Z.

 5. Select Translate X, Y, and Z by name in the Channel Box.

 6. RMB + click to bring up the Channel Box Marking menu and select Lock
Selected.

 Th e aim locator is now locked to the origin. If you pan camera1, it will snap back to its
previous position, centered on the locator at the world origin.

 Set the Image Size

 1. Choose Window → Rendering Editors → Render Settings (Render Globals in
releases prior to Maya 7.0).

or Press the Render Settings button in the Status Line of the main window.

 2. Press the Common tab and choose Presets → 320 x 240, under Image Size.

 3. Press the Close button.

 You ’ re using half the regular default resolution of 640 � 480 pixels for faster test
rendering.

 Display the resolution gate
 Th e image size determines the resolution aspect ratio—1.333:1—which sets the shape
of the resolution gate. Commonly used image formats are listed in Table 09.01 .

 Unlike computer-image pixels,
which are always square, high-
end video formats often use the
unintuitive notion of non-square
pixels. As you can see in Table
09.01 , standard defi nition NTSC
video has pixels that are taller
than they are wide, at a ratio of
0.9:1. This allows the video frame
to fi t into the 4:3 aspect ratio
of NTSC video, even though its
pixel dimensions (720 � 486)
don ' t resolve to 4:3.

226 PART 2: A FOUNDATION IN MAYA

 Format Resolution
(pixels)

 Device Aspect
Ratio (width:
height)

 Pixel Aspect
Ratio (width:
height)

 CCIR 601|Quantel NTSC
(North American video)

 720 � 486 4:3(� 1.333) 0.9:1

 CCIR PAL|Quantel PAL
(European video)

 720 � 576 4:3(� 1.333) 1.066:1

 HD 1080 (High Defi nition) 1920 � 1080 16:9 (� 1.777) 1:1

 TABLE 09.01

 Common rendering image sizes and
the corresponding aspect ratios.

The Device Aspect Ratio is the
image width to height ratio in terms

of the number of pixels. The Pixel
Aspect Ratio (or PAR) is the width to
height ratio of individual rectangular

pixels. A PAR of 1 corresponds to
square pixels.

 FIGURE 09.07

 Overscan scales the resolution gate
(white line) relative to the scene

view, but doesn ' t alter the renderable
image within the resolution gate.

(a) Overscan � 1.0; the render-able
image fi lls the view in one dimension

with the resolution gate.

(b) Overscan � 1.3; a value greater
than 1 scales the gate down so that
more of the scene is visible around

the edges.

(a) (b)

 In most cases, you can leave
the Film Back attributes at

their default values. Setting Fit
Resolution Gate to Overscan will
ensure that the renderable area

is visible in the view panel.

 1. In the camera1 view panel, choose View → Camera Settings → Resolution
Gate.

or (a) Select camera1 and open the Attribute Editor.

 (b) Under Display Options, select Display Resolution.

 Because the camera1 view panel is tall and narrow—what we call a “ vertical layout ” —
it cuts off the sides of the resolution gate. To fi x this, you will adjust the size of the
resolution gate relative to the fi lm gate.

 2. Choose View → Camera Settings → Overscan.

or (a) Select camera1 and open the Attribute Editor.

 (b) Under Film Back, select Fit Resolution Gate → Overscan.

 3. In the Attribute Editor, enter 1.1 for the Overscan attribute.

 Overscan controls how much of the scene you can see outside of the resolution gate.
Values greater than 1 result in the view panel showing more of the scene than just
what will render within the resolution gate. Figure 09.07 shows the results of diff erent
Overscan settings.

227CHAPTER 09: CAMERAS

 Note : By default, the camera ' s
overscan attribute is visible
in the Attribute Editor but not
the Channel Box. You can add
overscan to the Channel Box
attributes using the Channel
Control Editor, available through
the Channels menu at the top of
the Channel Box.

 Animate camera1 on a path
 A motion path is a spline curve used to guide the animation of an item ’ s transform
node. Th is can be anything in Maya with a transform node. Using a motion path for
a Maya camera is similar to using a track to guide a real-world movie camera—it ’ s
a good way to get smooth, predictable movement of your viewpoint through a scene.
Unlike the real world, however, in Maya a camera setup isn ’ t restricted by the laws of
physics and construction budgets; you can create elaborate roller-coaster-like trajecto-
ries, gravity-ignoring 3D orbits, and fi lm a scene from any conceivable vantage point
without concern for the complexities and cost of an equivalent real-world scenario.

 Create the motion path
 Your fi rst step is to create the path, for which you ’ ll use a circle to make the cam-
era follow a smooth, horizontal arc around the moving geometry. So both the hemo-
globin subunits and your camera will be moving.

 1. Choose Create → NURBS Primitives. If Interactive Creation is checked,
select it to turn it off.

 2. Choose Create → NURBS Primitives → Circle .

 3. Set Normal Axis to Y and Radius to 150.

 4. Press Create.

 Th is makes a spline called circle1 that is centered at the world origin.

 5. Hit the hotkey to bring up the Animation menu set.

 6. Select camera1 and then circle1.

 7. Choose → Animate → Motion Paths → Attach to Motion Paths .

 Th e Time Range attribute determines the start and end times for the motion path
animation. Leave this set to Time Slider . Th is makes the start time equal to frame
1 and the end time equal to frame 120 (provided you haven ’ t altered the start and
end frames in the Timeline). Th e remaining attributes are fi ne at their default values
except for Follow , which makes a connection involving the camera ’ s rotation
attributes. It must be unchecked, otherwise it will generate an error because the
rotate attributes are already constrained to the aim locator.

 8. Uncheck Follow then press the Attach button.

 Edit the animation
 camera1 will automatically be set to begin its motion at the start of the curve and fi n-
ish moving at its end. Th e beginning and end of a motion path are marked by objects
called position markers . Each marks a normalized (between 0 and 1) position along
the curve. Th is position is displayed in the Channel Box when the marker is selected,
under the attribute name Local Position X. For a circle, both markers appear to lie at
the same point because the start and end of a circle are coincident. However, a glance
at the Local Position X attribute for each will show that they lay at positions 0 and 1,

 The follow attribute for a
motion path determines how
the attached object changes
orientation as it follows the path.

228 PART 2: A FOUNDATION IN MAYA

respectively. You can drag a marker using the Move Tool to change its position on the
curve and use the Attribute Editor to change its frame number. In this exercise you
don ’ t want a fast 360	 rotation around the scene, but rather a slow 45	 arc, with the
camera facing primarily in the negative Z-direction. Th ese choices are somewhat arbi-
trary and purely for the purpose of demonstration. Please take them further!

 9. Hit the hotkey “ W ” to activate the Move Tool.

 10. One at a time, select a position marker by clicking on its number beside the
circle. If doesn ’ t matter which one you grab fi rst.

 11. Drag positionMarker1 (with frame label “ 1 ”) to roughly 0.375.

 Drag positionMarker2 (with frame label “ 120 ”) to 0.625.

 You can watch the Local Position X attribute update in the Channel Box until
you ’ re in the right spot.

 Figure 09.08 shows the position markers before and after being moved. Play the anima-
tion to make sure the camera is working as it should. With the persp window active
during playback you will see camera1 tracking along the motion path between frames
1 and 120.

Path animation

 Maya Help → Using Maya → Animation, Character Setup, and Deformers →
Animation → Path Animation

 It is diffi cult to select one
position marker over another

when the two overlap. It is
easiest to take whichever one

you are able to select and move
it to the side so that you can grab

the other one.

 FIGURE 09.08

 Motion path position markers:

(a) Positioned by default at the start
and end of the motion path curve

(top of the circle).

(b) Repositioned using the
Move Tool.

These images were captured using
the Top camera at frame 40, or

one-third of the way through the
hemoglobin animation.

(a)

Motion path

Camera aim vector
Camera aim locator

Motion path position markers

(b)

Motion path position markers

229CHAPTER 09: CAMERAS

 Adjust the camera
 Currently, your camera is horizontally aligned with the origin. At this orientation, it
doesn ’ t see much of the plane you just created and neither will it see much of the cast
shadows. Moving camera1 up will force it to look down toward its aim and therefore
see more of the plane and shadows. Th is is done simply by translating circle1 in the
Y-direction.

 12. Select circle1 in the scene view or the Outliner.

 13. In the Channel Box, enter 120 for the Translate Y attribute.

 Your scene should now resemble Figure 09.09a when viewed from below the origin with
the persp camera. Figure 09.09b shows the view through camera1. Make the camera1 view
active and press Play to preview the animation from this new vantage point. While
you haven ’ t added a light or rendered a single frame, you now have a pretty good idea
of how the action will appear when you render it. If you are unable to get relatively
smooth playback in the scene view with the Playback Speed set to Real-time (30 fps),
a playblast is a good idea at this point. Playblast preview renderings were discussed in
 Chapter 06 .

Creating a playblast

 Maya Help → Using Maya → Animation, Character Setup, and Deformers →
Animation → Animation Basics → Playback animation → Playblast animation

(a) (b)

 FIGURE 09.09

 A view of the scene after translating
the motion path:
(a) from the default perspective
camera, persp.
(b) From camera1.

230 PART 2: A FOUNDATION IN MAYA

 Th e fi nished Maya scene fi le for this tutorial can be found on the CD-ROM:

 09_Cameras/tutorial_09_01_done.ma

 You ’ re now ready to light your scene to bring out the information you want the audi-
ence following.

 Summary
 A Maya camera has many properties in common with a real-world movie camera but
is more fl exible. It can be of two types, orthographic or perspective. Th e latter is typi-
cally used for rendering since it emulates the perspective distortion we are used to
seeing as a result of eyes and cameras with limited focal length (an orthographic cam-
era is essentially a perspective camera with infi nite focal length). In addition to its
many shape attributes which control the image and special eff ects, like depth of fi eld,
a Maya camera can be animated to move and tumble using its transform node. Th is
enables you to follow important action in a scene, much like a real camera on a track,
dolly, or moving tripod. Th is in turn has signifi cant implications for in silico simula-
tion work: the inability to see inside and move around tiny, dynamic structures and
systems continues to be a limiting factor with in vivo and in vitro methods of investi-
gation. In contrast, 3D in silico methods potentially allow complete spatio-temporal
transparency, and with it, new opportunities for discovery.

10 Lighting

232 PART 2: A FOUNDATION IN MAYA

 Lighting
 With your scene shaded and camera set, the natural next step is to add lights. Th e
range of “ looks ” and visual styles you can achieve with lighting is nothing short of
remarkable. You might set one project to be fi lled with even, mid-day illumination
typical of a wildlife documentary. In another, you might fi ll your Maya scene with
deep shadows and knife-edged pools of illumination to enhance a dramatic mes-
sage or tightly focus your viewer ’ s attention. As with camera work, cinema lighting is
an art form in its own right and there are inspirational texts that will take you
beyond the starting point we can accommodate here as we set the foundation for your
explorations in MEL.

 Lights come in six varieties in Maya. Th ese are shown in Table 10.01 , along with ren-
dered examples. Before you add lights to your scene, Maya creates a directional light
at render time, which illuminates objects evenly from the upper left and then deletes
the light after rendering. Th is temporary light is suffi cient for quick shader tests,
but cannot be edited and should therefore be replaced by a custom lighting setup as
soon as you ’ re ready to start rendering. Custom lights are invoked through the Create
menu or via the Hypershade.

 Your scene will also contain a default light to make objects visible to your in Shaded
display modes in the scene view. If you have created other lights, you can choose to
use all of them or just select ones for scene view shading. Do this by selecting the
appropriate light(s) in the scene view Lighting menu (Figure 10.01).

 Master cinematographers spend their lifetimes perfecting their lighting artistry.
Nonetheless, a good, basic lighting setup is well within your reach. In this chapter ’ s
tutorial, you will create a classic setup that uses three Point lights to illuminate
objects in the scene in a way that accentuates their three-dimensional form. Maya
Help provides general information on lighting concepts and basic instruction for
working with lights in a Maya scene.

Lighting in Maya

 Maya Help → Using Maya → Rendering and Render Setup → Lighting → Basics
of lighting → Light and shadow in the real world

 Shadows
 In the natural world, cast shadows tell us a lot about the spatial relationships of objects.
When used correctly, they can do the same in 3D computer renderings. In Maya,
a shadow is the lack of illumination on a surface or volume, caused by an object that
blocks a shadow-casting light source. Surfaces facing away from the light are considered
 not illuminated versus being in shadow. You can specify whether or not an object casts
and/or receives shadows under Render Stats in the Attribute Editor for its shape node.

 When you create a light, by default it is set not to cast shadows. Th is saves process-
ing time when the scene is rendered. Of the two shadow options available, depth map
and raytraced shadows , the former is less accurate, but much quicker to render than
the latter and usually suffi cient. Th e two things raytraced shadows can do that depth

233CHAPTER 10: LIGHTING

 Light Description Sample rendering

 Simulates a combination of direct
light (from its location) and diffuse
light from all direction in the
scene. This light does not cast
depth map shadows.

 Simulates a rectangular light source
such as a window. The size (scale)
of this light affects its intensity.
Area lights can take longer to render
than other types, but can generate
higher-quality light and shadows.

 Simulates a very distant light
source, such as the sun. The light
rays are parallel and run one
direction. This light is useful for
lighting many objects in a scene
evenly from a single source.

 Simulates light emanating in all
directions from a point in space.
Point lights are quick to set up
because their effect is independent
of direction and scale.

 Simulates light emanating from
a cone. The edges of the cone
can be hard or soft, a feature
controlled by the light ’ s Penumbra
attribute.

 Simulates light originating from
a point and confi ned to a volume.
The falloff of light from the point to
the volume boundary is controlled
by a color ramp.

Area

Ambient

Directional

Point

Spot

Volume

 TABLE 10.01

 Maya lights.

Area

Ambient

Directional

Point

Spot

Volume

Area

Ambient

Directional

Point

Spot

Volume

Area

Ambient

Directional

Point

Spot

Volume

234 PART 2: A FOUNDATION IN MAYA

map shadows cannot are cast shadows on the inside surfaces of transparent objects
and produce soft shadows that are more physically realistic. Figure 10.02 shows the dif-
ference between depth map and raytraced shadows for the same objects, using the
same light source.

 Raytraced shadows and, to a lesser degree, depth map shadows increase render times,
so discretion is warranted when deciding which lights will cast shadows and which
objects will be aff ected. It is advisable to use depth map shadows whenever possible,
cast from a single light, and to turn off Receive Shadows (in the Attribute Editor →
Render Stats) on all objects for which shadows are unnecessary.

Shadows

 Maya Help → Using Maya → Rendering and Render Setup → Lighting → Basics
of lighting → Shadow → Shadow in Maya

(a)

 FIGURE 10.02

 Depth map shadows (a) are fast to
render but lack some of the realism

possible with raytracing (b); namely,
internal shadowing on transparent

objects and edge blurring that
progresses with distance from the

source of the shadow.
(b)

 FIGURE 10.01

 The Lighting menu in the Panel
menus allows you to choose which

light(s) will be used in Shaded mode
in the scene view.

235CHAPTER 10: LIGHTING

 Tutorial 10.01: Lighting the hemoglobin scene
 Now that the rendering camera is ready, you can set up lights knowing where they
need to be to provide proper illumination for the shot as the molecules move and
your camera orbits through the 3D environment. In this tutorial, we want you to cre-
ate a standard stationary 3-point lighting rig (Figure 10.03). Th is involves a key light , sup-
plying the main source of illumination, a fi ll light to balance the dark spots missed by
the key, and a back light , to help separate the edges of objects from the background. A
back light is useful at times, but is not always essential; its eff ect can be quite subtle.
A fi ll light, on the other hand, contributes greatly to the illusion of 3D form. Figure 10.04

Key lighting

(a)

Back lighting

Fill lighting

Key lighting

(b)

 FIGURE 10.04

 Multiple lights can be used to create
naturally-occurring illumination
effects such as lighting along the
contour of an object and refl ected
(or fi ll) light. Such effects contribute
to the illusion of 3D form and help to
visually separate objects from one
another and from the background.
Notice how, without the back and
fi ll lights, the sphere in (a) blends in
with the dark background.

(a) Using a single key light.

(b) Using key, back, and fi ll lights.

 FIGURE 10.03

 A standard 3-point lighting rig
involves a key, a fi ll, and a back
light. We used spot lights for
this illustration to emphasize the
directional nature of the illumination.

(a) Side view.

(b) Top view.
(a)

Key light

Back light

Fill light

Camera
Subject

(b)

Key light

Camera

Fill light

Back light

Subject

236 PART 2: A FOUNDATION IN MAYA

illustrates the contribution of back and fi ll lights to the basic illumination of a key
light.

 Lighting doesn ’ t just defi ne form; it also sets the mood and atmosphere of a picture or
fi lm. Lighting can be used to impart a sense of calm or urgency. It can reveal secrets
and enhance mystery. A convention that you will use in this tutorial is to light from
the upper left—a common practice in commercial photography and illustration.

To begin, start Maya and open the scene you created in the previous tutorial or copy
the ready-made scene fi le from the CD-ROM.

10_Lighting/tutorial_10_01.ma

 Create the lights
 You will create three Point lights for this exercise and convert one to an Area light
for the back lighting. Point lights are easy to use and their eff ects highly predict-
able, which makes them attractive choices for standard lighting setups. An Area
light, which emits from a plane instead of a point, is more eff ective for back lighting
because it illuminates a greater proportion of the geometry than a Point light, when
shone from behind.

 1. (a) Choose Create → Lights → Point light.
 (b) Hit the repeat last action hotkey G twice to create two more lights.

 2. Rename the lights key_light, fi ll_light, and back_light.

 3. Select fi ll_light. In the Channel Box, enter 0.5 for Intensity.

 4. Select back_light and open the Attribute Editor.

 5. Choose Point light Attributes → Type → Area Light to change the light type.

 6. Set the following attribute values:
 Intensity: 0.5
 Scale X: 200
 Scale Y: 100
 Scale Z: 50

 Th e length and width (X and Y) of an Area light determine its region of illumination.
An Area light has a normal, much like a surface normal, that indicates the direction
in which it shines. Increasing the Scale Z value simply makes the light normal big-
ger, and therefore easier to see (to you; it does not appear in the rendered scene!), but
doesn ’ t aff ect illumination.

 7. In the camera1 view panel:
 (a) choose Shading → Smooth Shade All.
 (b) choose Lighting → Use All Lights.

 Th e settings you made in step 7 will provide a rough preview of the lighting situation
in the scene. With all lights in the same position, the scene will appear over-lit, or
 “ blown out ” . Th is will be fi xed when you move the lights to their proper positions.

 In some cases it may be
desirable to animate your lights

to compensate for a moving
camera and/or geometry.

237CHAPTER 10: LIGHTING

 Place the lights
 Since the Point lights are multidirectional, you need only be concerned with their
 Translate values and not their Rotations . In contrast, the orientation of the Area light
has everything to do with its illumination; it emits light in the direction of its nor-
mal. Furthermore, because in this project we have decided that the lights are station-
ary and the camera moves, the illumination will look diff erent from diff erent camera
angles. In a rendering, this fact will enhance the illusion of 3D form and give the
sense that the camera is moving relative to the objects. Th is also means that the
lighting must be eff ective for the range of camera motion. We must therefore pick a
representative frame at which to set up the lighting rig; we chose the half-way point
in the animation, frame 60. Your goal is to get the lights working well at frame 60 and
then make minor adjustments if needed at frames 1 and 120.

 1. Move the current time indicator to frame 60 (half-way through the animation).

 2. Hit the hotkey to activate the Move Tool.

 3. In the persp view:
 (a) Select key_light in the scene view or the Outliner and drag it to a position

above and to the left of camera1.
 (b) Select fi ll_light and drag it to a position below and to the right of camera1.
 (c) Select back_light and drag it to a position behind the polygon models, rela-

tive to camera1.
 (d) Rotate back_light so that its normal points toward the polygon models.

 Figure 10.05a shows approximately where the three lights should be placed. Temporarily
increase the Intensity for each light to 2 or 3 in order to observe its eff ect in the
scene, as shown in Figure 10.05b . Fine-tuning of the lights will be done after you make
the shadow settings.

Key light

Fill light

Back light

(a)

 FIGURE 10.05

 (a) The placement of lights prior to
tweaking with IPR.

(b) Increasing the Intensity of the fi ll
light makes its effect more obvious
in the scene view, which makes the
light easier to position.

(b)

238 PART 2: A FOUNDATION IN MAYA

 Turn on shadows
 Shadow casting is controlled by attributes in a light ’ s shape node. It is, by default, turned
off when you create a light. In this tutorial raytraced shadows are unnecessary since you
have no need for shadows within transparent objects and you ’ re not rendering translu-
cent eff ects. Depth map shadows will be more than adequate. As well, you will designate
the key light as the only shadow-caster, to keep shadow calculation time to a minimum.

 1. Select key_light and open the Attribute Editor.

 2. Under Shadows → Depth Map Shadow Attributes, check Use Depth Map
Shadows.

 3. Enter 3 for the Filter Size.

 Depth map Filter Size controls the softness of shadow edges. A value of 0 gives hard
edges. As the number increases, so does edge softness. Th e other shadow map attributes
are okay at their default settings. You can preview shadows in the scene view as follows.
In the Panel menus:

 1. Choose Renderer → High Quality Rendering.

 2. Choose Lighting → Use All Lights.

 3. Choose Lighting → Shadows.

 However, keep in mind that scene view shadows are extremely taxing on your compu-
ter system and will slow down interactivity considerably.

 Light Linking
When you create a light, it automatically illuminates all visible objects in a scene.
Conversely, when you add a new object to a scene, it receives illumination from all of
the lights. With Light Linking you can specify which lights interact with which sur-
faces. In the real physical world, a cinematographer would have a diffi cult time achiev-
ing such a specifi c interaction between given lights and selected elements of the shot!

 In the present scene, you want only the key light to illuminate and cast shadows on
the plane. Th e fi ll and back lights are meant for the hemoglobin subunits and not for
the plane, so you will use Light Linking to disconnect them from the latter.

 1. Hit the hotkey F6 to activate the Render menu set.

 2. Choose Lighting/Shading → Light Linking Editor → Object Centric. This
launches the Light Linking window (Figure 10.06).

 3. In the Illuminated Objects panel, select the polygon plane pPlane1.

 4. The lights to which pPlane1 is linked are highlighted in the Light Sources
panel.

 5. LMB + click on fi ll_light and back_light in the Light Sources panel to unlink
them from pPlane1. Figure 10.06 shows what the Light Linker should look like
after you ’ ve taken this action.

 When using Render Layers,
we avoid Light Linking. In our

experience, the two features do
not work well together.

239CHAPTER 10: LIGHTING

 Previewing with IPR
 Th e roughly lit preview you see in the view panel for camera1 is actually hardware-
rendered by your computer ’ s graphics card. Interactive software previewing can be
done using IPR, which renders a low-resolution image that updates automatically as
you edit lights and shaders. Unlike your scene view, however, the IPR image will not
update geometry or camera movements. You must therefore create a diff erent IPR
image for each point along the timeline you wish to preview. Let ’ s start at frame 60,
since that is your benchmark frame for lighting.

 1. Move the current time indicator to frame 60 and make the camera1 view active.

 2. Press the IPR button in the Status Line to launch the Render View and start
an IPR preview.

 Th is creates a group of temporary IPR render fi les. When you set up your Project, if you
specifi ed no directory for IPR images, they will be saved loosely in the Project directory.
After the preview appears, which could take several seconds, a message appears at the
bottom of the Render View window telling you to Select a region to begin tuning . By doing
so, you tell Maya what region it should update as you adjust lights and shaders.

 3. LMB + Drag a selection box around the region you wish to see update (see our
suggestion in Figure 10.07).

 4. Press the Keep Image button to cache the current image for comparison
later on with the edited lighting rig.

 5. Take a few minutes to move the three lights around, adjust their Intensity
values, and observe the effect in the Render View IPR preview. When you ’ re
satisfi ed with how the scene looks at frame 60, cache the most recent image
using the Keep Image button.

 FIGURE 10.06

 Light Linking is the practice of
specifying which lights illuminate
which objects in a scene. By
default, all lights are linked to all
objects. To unlink a light from an
object, select the object in the
left-hand pane, then click on a light
in the right-hand pane; when it is
unhighlighted, it is unlinked. In this
example, fill_light and back_
 light have been unlinked from the
plane, pPlane1. Light Linking will
only show up in a rendered view, not
in the interactive scene display.

 Back in Chapter 09 , you set the
Image Size to 320 � 240, or half-
NTSC. This was done to make
preview rendering fast—about
one-quarter the time a 640 � 480
image takes. However, the
smaller image size can make it
diffi cult to see the subtleties of
the lighting adjustments you ' re
making. If this is indeed the case,
set the Image Size to 640 � 480
in the Render Settings and see if
the increase in preview render
time is tolerable.

240 PART 2: A FOUNDATION IN MAYA

Before moving on to frames 1 and 120, make a software renderer preview to update
the shaders and see what the fi nal rendering will look like at this frame.

 6. In the Render view, press the Redo Previous Render button .

 If you are satisfi ed with the result at frame 60, it ’ s time to see how things look at
frames 1 and 120. Again, the goal is to get one lighting situation that works reasona-
bly well from three vantage points. Repeat steps 1 through 5, above, with the current
time indicator at frame 1 and then at frame 120. Figure 10.08 shows the fi nal lighting
setup we arrived at, software-rendered at frames 30, 60, and 120 (we omitted frame
1 because very little geometry is visible at that point). Th e light intensity values we
used in the end were:

 key_light: 1.25
 fi ll_light: 0.5
 back_light: 0.25

 The right lights?
 Because camera1 moves a considerable distance relative to the geometry, your standard
3-point lighting rig, which was set to work best at frame 60, is being stretched a little.
Every scene requires some specialization of the lighting. Let 3-point lighting serves as
a starting point for your own experiments with cinematic lighting principles; the key
light provides the main source of directional illumination; the fi ll brings back some of
the shadowy areas and really helps accentuate 3D—particularly curvilinear—form; the

Direction of
image refresh

 FIGURE 10.07

 An IPR preview rendering. The
red box indicates the " tuning "

region—the area that gets updated
each time you alter a light or shader.

In this fi gure, the image is half-way
refreshed after the back_light

intensity was increased.

241CHAPTER 10: LIGHTING

back light helps separate foreground geometry from the background and helps defi ne
contour.

 Th ere are several important aspects of shading, lighting, cameras, and rendering that
we have intentionally skipped here. Th ey are better left to later chapters where they can
be discussed in the context of our MEL projects. Some notable mentions are shader
 specularity and toon (or NPR) rendering techniques. You ’ ll work with them later in this
book.

 At this point your molecular actors are in place and their script—their animated
activity—is set, your camera is in position, and your lights are showing off the spa-
tial dance of molecules and lens to striking eff ect. It ’ s time to shoot some virtual fi lm
footage. You ’ ll fi nd the fi nished Maya scene fi le for this tutorial on the CD-ROM:

 10_Lighting/tutorial_10_01_done.ma

 Summary
 In this chapter we have discussed the manipulation of light and shadow in Maya. When
used well, light and shadow in a 3D scene defi ne form and spatial relationships the way
they do in the real world; you can even amplify these eff ects in ways that are physi-
cally impossible outside of the computer. Th ere are several types of light in Maya, each
suited to a particular mode of real-world lighting. Th ough we haven ’ t touched on it in
this chapter, it should be mentioned that lights can also be assigned colors, which can
further their expressive range. Th ree-point lighting is a technique used by studio pho-
tographers to defi ne form and contour. It is easily emulated in Maya using two Point
lights and an Area light, and makes a great departure point for your work with Maya
cameras and lights.

 FIGURE 10.08

 After tweaking the lights with the
aid of IPR previewing, we arrived at
a point where the key, fi ll, and back
lights were all working well together
to defi ne 3D form. These images
were rendered at (from left to right)
frames 30, 60, and 120. We have
enlarged frames 60 and 120 to make
the geometry more visible on the
printed page.

Th is page intentionally left blank

11 Action! Maya rendering

 Rendering
 On a live-action fi lm set, a shot is fi nally set in all its specifi cs of actors, action, cos-
tumes, camera, and lighting. Someone says, “ Action! ” and fi lm rolls through the
motion picture camera. (Or if it is a digital motion picture camera, the digital cinema
frames are downloaded quickly from the camera to large-capacity disk storage.) Th e
exposed fi lm is sent to the processing lab where it is developed, color corrected, and
printed, then returned to the studio for a look. Your production workfl ow in Maya has
a step equivalent to the fi lm ’ s exposure and developing; it is called rendering. When
you have rendered your animation, Maya has produced the digital fi lm frames (2D
image fi les) of your computer animation at fi nal quality. Your material can then at
once be viewed and prepared for the postproduction steps like editing scenes together
into a longer, complex fi lm report of your work.

 Maya creates 2D image fi les using a program called a render engine , or renderer . As
of release Maya 8.5, Maya includes four renderers . Th ese are Maya Software , Maya
Hardware , Maya Vector , and mental ray for Maya . Th e fi rst two are native to Maya and
load automatically when you start the program. Th e last two are bundled with Maya
as Plug-ins and are loaded by default when you fi rst start Maya. If either of them is
not included in the list of available renderers in the Render Settings editor, you can
load it as follows:

 1. Choose Window → Settings/Preferences → Plug-in Manager.

 2. To load mental ray for Maya, check " loaded " next to Mayatomr.mll. To load
the Maya Vector renderer, check " loaded " next to VectorRender.mll.

 3. Check auto load next to either Plug-in if you want it to load when you start
Maya.

 Render Settings
 Th e Render Settings (part of which is shown in Figure 11.01) is an editor used to select a
renderer and customize the output of rendered fi les. It displays two or more tabs, one
for attributes that are common to all renderers and one for the active renderer. We
will explore Render Settings in the upcoming tutorial.

 Batch rendering
 Batch rendering is done by an application external to Maya, enabling you to continue
working on your project while images are created behind the scenes. You can batch
render a still frame or an animation. If you start a batch render from within Maya, it
uses the renderer and settings currently specifi ed in the Render Settings.

 A command line render is a batch render started by executing the render command
from either the Command Line or the Script Editor in Maya, or from a command
prompt external to Maya. A command line render external to Maya will use the Render
Settings (including the specifi ed renderer) saved in the fi le you ’ re rendering and the
Project settings that were saved the last time you closed Maya. Alternately you can
type in fl ags , or special instructions, with the render command in the Command Line
in order to override the saved Render Settings.

244 PART 2: A FOUNDATION IN MAYA

 Although you can execute a render while continuing to work in Maya proper, doing so
will result in slower than normal performance due to the allocation of system resources
to the render engine. Th e real advantage to the stand-alone batch renderer is the exter-
nal, command line rendering capability; it allows you to execute renders without
having to open the Maya application, which uses valuable memory. In general, batch
renders that are executed from the Command Line run faster when Maya is closed.

 Batch rendering

 Maya Help → Using Maya → Rendering and Render Setup → Rendering →
Rendering menus → Render menu set → Render → Render → Batch Render

 Command line renderer

 Maya Help → Using Maya → Rendering and Render Setup → Rendering Utilities
→ Command line renderer → Command line renderer

 The Maya Software renderer
Th is is the default renderer in Maya and is capable of both scan-line rendering and
 raytracing . Th e scan-line technique renders a scene in rows based on the intersection of
a scan line with the scene geometry. It is faster than raytracing, which is a more accu-
rate physical simulation that calculates the illumination of objects, their shadows,
and refl ections, based on the paths of imaginary photons emitted from light sources
in the scene (it actually works backwards, emitting “ reverse photons ” from the scene

(a) (b)

 FIGURE 11.01

 The Render Settings editor is used
to select a renderer and to specify
image size and quality. The Common
tab (a) contains attributes common
to all Maya renderers. Each
renderer has its own tab (b) with
settings unique to it.

 Each operating system has
its own name for the system
Command Line (external to
Maya). In Windows, it is known
as the Command Prompt, In Mac
OS, the Terminal Window, and in
Linux, the Shell.

The name " Maya " precedes the
native renderers to distinguish
them from third-party renderers
like mental ray for Maya.

245CHAPTER 11: ACTION! MAYA RENDERING

viewpoint). Raytracing can create certain eff ects not available in a scan-line render.
Th ese include shadow casting inside transparent objects, physically realistic shadows,
refractive distortions in transparent materials of diff erent densities, and caustics , the
illumination patterns created when light refl ects from and refracts through objects.
Raytracing is not turned on by default; it must be activated in the Render Settings.

 Th e software renderer must be used to render eff ects created by Maya ’ s 3D painting
tool, Paint Eff ects.

 Multi-processor support
 Th e Maya Software renderer supports multithreading , meaning it can be set to use more
than one CPU on a multi-processor machine. Th is feature can literally half the time
required to render a scene. Maya automatically attempts to exploit hyperthreading
as long as "Use All Available CPUs " is checked in the Multi Processing section of the
Maya Software tab in the Render Settings.

 The Maya Hardware renderer
 Th e Maya Hardware renderer uses your computer ’ s video graphics card to render
images faster than the software renderer. Due to the way it processes images, the
hardware renderer does not support raytracing or Paint Eff ects. Nonetheless it works
with a wide variety of Maya shaders and lighting eff ects, including transparency and
shadows. Furthermore, a person skilled in compositing can do a lot to create sophis-
ticated visual eff ects using only hardware-rendered animation. Because compositing
involves 2D footage rather than 3D scenes, it is often much faster to create visual
eff ects in the compositing rather than 3D rendering stage. For example, depth-of-
fi eld eff ects are, in our opinion, best left for compositing.

 Your computer must have a Maya-compatible graphics card in order to hardware
render scenes. On the offi cial Maya website, you will fi nd links to lists of qualifi ed
hardware for each release of Maya. If your card is unable to handle Maya Hardware
rendering, you may get the following message:

 // Error: Graphics card capabilities are insufficient for rendering.
Render aborted

 The Hardware Render Buffer
Before the Maya Hardware renderer was brought up to current level of sophistication,
we usually relied on the Hardware Render Buffer (HRB for short) to make fast hardware
renders. Th e fact that it doesn ’ t match the hardware renderer proper for image quality
and eff ects capabilities makes it a less attractive choice for fi nal renders. Nonetheless,
it is still a regular item in our tool set. One advantage it off ers over the other render-
ers is the ability to view an animation while it ’ s being rendered. In contrast, when you
render an animation (as opposed to a still frame) using one of the other four render-
ers, you can ’ t see the images as they ’ re created.

 The Maya Vector renderer
 A 2D picture on a computer screen is either a raster graphics image or a vector graph-
ics image. A raster graphics image is a rectangular grid of pixels, each with its own
color value. As you enlarge a raster image, the pixels become visible. Vector graphics
images, on the other hand, are drawn using mathematical curves and polygons whose

 The Hardware Render Buffer
is a handy item to add to your

custom shelf.

246 PART 2: A FOUNDATION IN MAYA

shapes are defi ned by directed line segments, or vectors running between points in
space. Th ey are resolution-independent and will always look sharp when enlarged.

 Th e subject of vector graphics will be familiar to users of illustration and drafting
applications like Adobe Illustrator , Autodesk AutoCAD , and that ubiquitous 2D
animation and web design software, Adobe Flash (formerly by Macromedia). Vector
images are characterized by fi lls and strokes. Fills are solid colors or gradients applied
to enclosed areas. Strokes are colored lines that follow the boundary curves that
defi ne those areas. When you render with the Maya Vector renderer, the eff ects of
lights and shaders in your scene are converted to strokes and fi lls. In Render Settings
you will fi nd options for how fi lls and strokes are rendered and for the output fi le
format. If you choose one of the vector fi le formats, like .swf or .eps , Maya will output
a resolution-independent vector fi le. If you select a raster fi le format, such as .tga or
.tif, the strokes and fi lls will be converted back into pixels and saved in a raster fi le.
Most render fi le formats produce individual image fi les. To be viewed as animation,
the images must be opened in a movie player like fCheck or QuickTime. In contrast
a .swf fi le is a self-contained Flash movie that can be opened and played directly in
 Flash Player software which is available free of charge from Adobe ’ s Website: http://
www.adobe.com/products/flashplayer/ .

 Th e Maya Vector renderer is the obvious choice if you want to output fi les for use in a
vector graphics program like Flash or Illustrator. It also makes it very easy to get NPR
toon shading features (see Figure 11.02) without the need for custom shading networks
or Maya Paint Eff ects. You can specify fi ll and stroke colors, and stroke weights, for
diff erent materials in your scene. Th is feature supports one of the key strengths of
 toon shading for scientifi c interpretive visualization: the use of line weight and color
to highlight diff erent properties of data visually. If you wish to draw on this strength

 FIGURE 11.02

 The Maya Vector renderer creates
vector images that are defi ned by
colored strokes and fi lls. This image,
from a simulation of actin protein
fi lament (or polymer) assembly,
uses different shaders for different
sub-populations of molecule: pre-
existing polymers (mauve), newly
added polymer subunits (purple),
and unassociated monomers (red)
(the individual building blocks of a
polymer).

247CHAPTER 11: ACTION! MAYA RENDERING

in your projects but also want the smooth-shaded appearance of software rendering,
an approach using either a custom mental ray shading network or Maya Paint Eff ects
is preferable to vector rendering.

 Loading the Vector renderer plug-in
 If Maya Vector does not appear on the list of available renderers in the Render Using
menu of the Render Settings, you can load it using the Plug-in Manager as follows:

 1. Choose Window → Settings/Preferences → Plug-in Manager.

 2. Check the loaded box beside VectorRender.mll, the Maya Vector plug-in.

 3. Check auto load if you want the plug-in to load each time you start Maya.

 The mental ray for Maya renderer
 mental ray for Maya is a third-party renderer which uses raytracing , a physical simula-
tion that calculates the illumination of objects, their shadows, and refl ections, based
on the paths of imaginary photons emitted from light sources in the scene. Th e devel-
opers have improved the integration of mental ray with each subsequent release of
Maya. Th e result, in addition to making mental ray easier to use, is that some shading
and rendering techniques that are used in recent versions of Maya may have to be
approached diff erently in earlier versions of the software.

 Maya includes a host of render nodes specifi c to mental ray for Maya. As DG nodes,
they connect one to another to form shading networks in the same way as Maya
render nodes. mental ray nodes greatly extend Maya ’ s rendering eff ects capabili-
ties, with features like subsurface scattering which is an advanced simulation of
translucence (Figure 11.03). Unfortunately the documentation on mental ray for Maya
isn ’ t nearly as extensive as that for the other Maya renderers. For this reason, we
recommend getting comfortable with Maya shading networks and the Maya Software
renderer fi rst before diving into mental ray. To list the mental ray render nodes:

 1. In the Hypershade:

 (a) RMB+click on the Create Bar.

 (b) From the Marking menu, select mental ray nodes.

or

 2. In the Create Render Node window:

 (a) In the Hypershade menu bar, choose Create → Create Render Node.

 (b) Click on the mental ray tab.

or

 3. Open the Create menu. The mental ray nodes are listed by category under the
regular Maya render nodes.

 Like the Maya Vector renderer, mental ray for Maya is a plug-in. By default it is auto-
loaded when you start Maya. If it does not appear on the list of available renderers in
the Render Settings window, you can load it by checking load next to Mayatomr.mll in
the Plug-in Manager.

248 PART 2: A FOUNDATION IN MAYA

 Descriptions of the different renderers

 Maya Help → Using Maya → Rendering and Render Setup → Rendering →
About rendering and renderers → Renderers → Maya Software renderer

 Maya Hardware render
 mental ray for Maya renderer
 Maya Vector renderer

 Renderer Settings for the Maya Software, Hardware, and Vector renderers

 Maya Help → Using Maya → Rendering and Render Setup → Rendering →
Rendering Windows and Editors → Render Settings →
 Render Settings: Maya Software tab
 Render Settings: mental ray tab
 Render Settings: Maya Hardware tab
 Render Settings: Maya Vector tab

 Advanced rendering techniques with
the mental ray for Maya renderer
 Th e developers of mental ray for Maya have incorporated numerous advances in 3D
rendering that mimic real-world lighting and material situations. While these can
improve the photorealism of a rendering, they can add substantially to your render
times. Figure 11.04 shows examples of several of these rendering features.

 FIGURE 11.03

 mental ray for Maya extends Maya ' s
rendering effects capabilities with
features like subsurface scattering
(pictured here), which simulates the
absorption and scattering of light
beneath the surface of an object.

Courtesy Ellis Entertainment and AXS
Biomedical Animation Studio. Copyright
 © 2006 Ellis Entertainment.

249CHAPTER 11: ACTION! MAYA RENDERING

 Caustics
 Caustics refers to the light patterns created by specular refraction through materials
such as glass and water, or refl ection from materials like chrome. See the example in
 Figure 11.04a .

 Caustics

 Maya Help → Using Maya → Rendering and Render Setup → Lighting → mental
ray for Maya lighting → Global illumination and caustics → Caustics

 Subsurface scattering
Th e absorption and scattering of light beneath an object ’ s surface is a property of
many real-world materials, including organic tissues like skin. Maya can simulate
this phenomenon with two mental ray for Maya subsurface scattering shading net-
works: a fast, non-physically correct one (Figure 11.04b) and a slow, physically accurate
one. Subsurface scattering is available in Maya 6.0 (mental ray 3.3) and later.

 Subsurface scattering (Maya 6.0 or later)

 Help → Maya Help → Using Maya → mental ray → mental ray Shaders Guide →
Subsurface Scattering Shaders

(a) (b)

(c) (d)

FIGURE 11.04

 Examples of advance rendering
techniques using the mental ray

for Maya renderer. The molecule
pictured here is hemoglobin.

(a) Caustics.

(b) Subsurface scattering.

(c) Global illumination.

(d) Ambient occlusion.

Courtesy of Eddy Xuan.

 Translucence is an attribute
common to all Maya material

nodes. It is the same in principle
as subsurface scattering but

works with the Maya Software
renderer rather than mental ray
for Maya. The choice between
Translucence and subsurface
scattering depends on which

renderer you use.

250 PART 2: A FOUNDATION IN MAYA

 Global illumination
 Global illumination (GI) (Figure 11.04c) simulates real-world lighting by accounting for the
indirect light that has been refl ected off of all objects in a scene. Th is technique can
make for long rendering times, so it should be used selectively when rendering ani-
mations. However, it is well suited to creating realistic lighting eff ects in still images,
where the wait time is less of a concern than for animations where hundreds or thou-
sands of images are often rendered.

 Global illumination

 Maya Help → Using Maya → Rendering and Render Setup → Lighting → mental
ray for Maya lighting → Global illumination and caustics → Global illumination

 Ambient occlusion
 Ambient occlusion (AO) (Figure 11.04d) is similar to GI but quicker to render and cruder.
It calculates the attenuation of indirect light by nearby objects, in order to produce
the realistic shadow eff ects resulting from even, ambient light. Th e resulting image
is typically monotone and used in compositing to enhance the illusion of 3D. Since
Maya 7, ambient occlusion has been incorporated into Render Layers (more on this
shortly) as a Preset called occlusion. When activated, occlusion creates a mental ray
for Maya shading network using the mib_amb_occlusion node, and connects it to the
geometry in the layer.

 Render Layer presets: occlusion

 Maya Help → Using Maya → Rendering and Render Setup → Rendering →
Visualize and render images → Visualize scenes and render images → Work
with Render Layers → Work with layer presets

 mental ray for Maya mib_amb_occlusion node

 Maya Help → Using Maya → mental ray → mental ray Shaders Guide → Base
Shaders → Illumination

Search: mib_amb_occlusion on the Illumination Help page

 Image-based lighting
 Image-based lighting (IBL) uses an image fi le as a source of illumination or refl ection
in order to create natural-looking lighting conditions in a scene. Traditionally, the
image is applied to a sphere which encloses the scene. However, this technique is slow
to render because the sphere geometry is factored into the raytracing calculations. A
more effi cient approach, introduced Maya 7.0, uses a special IBL node, which controls
IBL with attributes and eliminates the need for geometry.

 IBL works best with high dynamic range imaging (HDRI) fi les. In addition to color data,
each pixel in an HDRI image stores a luminance value. IBL uses both the color and
luminance data to calculate the lighting situation in a scene.

251CHAPTER 11: ACTION! MAYA RENDERING

 IBL

 Maya Help → Using Maya → Rendering and Render Setup → Lighting → mental
ray for Maya lighting → Final gather and HDRI → Image-based lighting (sky-like
illumination)

 HDRI

 Maya Help → Using Maya → Rendering and Render Setup → Lighting → mental
ray for Maya lighting → Final gather and HDRI → High dynamic range imaging
(HDRI)

 Realism about photorealism
 Before using one or more of these photorealistic techniques, you may want to ask if
this sort of realism is a worthwhile rendering goal. Certainly, on cellular and molecu-
lar scales, photorealism has no meaning other than a projection of macro-world ideas
about light and materials onto micro- and nano-world entities. We ’ re not suggesting
that you dismiss Maya ’ s capabilities for photography-like rendering complex real-
world lighting scenarios. Instead, we propose that they be considered for their merits
in relation to the communication goals of each project.

 For example, caustics could be used to give a gel-like appearance to the cytoplasm of
a cell; not because we think the cytoplasm would appear to distort and refl ect light in
such a way, but because the visual association of caustics with macro-scale gelatinous
materials could help suggest the mechanical properties of the cytoplasm, which is
a gelatinous combination of water and protein. Similarly, ambient occlusion may
lend itself well to visualizing an intricate nano-structure, such as a bioengineering
scaff old. Again, not because it gives a realistic picture of nano-scale light and shadow,
but it gives a beautiful sense of 3D form.

 Render Layers
 Maya ’ s Render Layers features let you organize items in your scene (objects, cam-
eras, lights, even shaders) into diff erent groups or layers. Each layer is then rendered
individually. Render Layers have a number of presets such as ambient occlusion (dis-
cussed above), specular, and shadow with which you can render those eff ects individ-
ually as well.

 Render Layers

 Using Maya → Rendering and Render Setup → Rendering → Visualize and ren-
der images → Layers and passes → Render Layer overview

 Tutorial 11.01: Batch rendering
 Batch rendering is used to render an animation into a sequence of image fi les. In this
tutorial, you will adjust the Render Settings and then batch render the hemoglobin

252 PART 2: A FOUNDATION IN MAYA

animation using the Maya Software renderer. Begin by opening the scene you created
in the last chapter or copy the ready-made scene fi le from the CD-ROM.

 11_Rendering/scenes/tutorial_11_01.ma

 In the next two sections we ’ ll explore the Render Settings window:

 1. Choose Window → Rendering Editors → Render Settings.

 2. From the Render Using menu, choose Maya Software and make the Common
tab active.

 Common Render Settings
 Th e following attributes are common to all renderers, including mental ray for Maya.

 Image File Output
 In this section, you will specify the fi le name, image format, and rendering frame
(or time) range. When you render an image sequence, the fi le names must include an
image number so that the fi les will be recognized as a sequence by a movie player or
editing application, and be read in the correct order. Figure 11.05 shows a sequence of
image fi le names and labels their components, which you will set below.

 3. Make the following settings:

 File Name Prefi x hemoTest

 Frame/Animation Ext name.#.ext

 Th is last setting, name.#.ext , determines the order of fi le name components. Th e name
component will be assigned your entry for File Name Prefi x: hemoTest . Th e # compo-
nent will be assigned the number of the frame being rendered. And fi nally, the ext
component will be assigned the appropriate fi le extension, .tif for a TIFF fi le, for the
fi le format, which you will specify in step 4 below.

 Maya supports a large number of image fi le formats. Th e one you choose will depend
on how you plan to use the images. Most compositing applications used in the
postproduction phase support a wide range of fi le types too. If you ’ re creating an ani-
mation for an online journal publication or for broadcast at a conference, the pub-
lisher or media coordinator may request a specifi c fi le type.

 Furthermore, there are functional diff erences between certain image formats. For
example, Wavefront RLA (fi le extension .rla) supports fi ve image channels: R, G, B,
alpha, and depth all in one image fi le. Targa (fi le extension .tga) format, which is
popular in production for television and movies, produces two separate fi les for each

File Name Prefix

Frame number, # (Frame Padding = 4)

Image Format, ext (file extension)

hemoTest. 0039 .tif
hemoTest. 0040 .tif
hemoTest. 0041 .tif
hemoTest. 0042 .tif
hemoTest. 0043 .tif
hemoTest. 0045 .tif

FIGURE 11.05

Render fi le naming.

253CHAPTER 11: ACTION! MAYA RENDERING

animation frame: one containing the R, G, B, and alpha channels, and the other the
depth channel. Th e popular TIFF format has R, G, B, and alpha, but no depth channel.
Maya has its own native format, IFF, which is popular with commercial animation
studios. Nonetheless, we tend to avoid IFF fi les due to compatibility issues with the
compositing software we use. As a general rule, we render RLA fi les when we need the
depth channel for compositing (depth-of-fi eld eff ects), and TIFF fi les when depth is
unnecessary. In this tutorial you will render a TIFF image sequence, which you will
then view using Maya ’ s movie player fCheck.

 4. Enter the following settings:

 Image Format TIFF (.tif)
 Start Frame 1.000
 End Frame 120.000
 By Frame 1.0
 Frame Padding 4
 Camera camera1
 RGB Channel (Color) ✓
 Alpha Channel (Mask) ✓

You can leave Depth Channel unchecked since it won ’ t be rendered in the TIFF for-
mat. Frame Padding sets the number of decimal places reserved for the frame
number. A setting of 4 is good for sequences less than 10,000 frames in length. You
have no need presently for Custom File Extension or Renumber Frames, so you can
skip those sections.

 Image Size
 Th ere are a number of standard video formats you can choose from in the Preset
menu. When producing animation for video playback on a television, it is important
to render in the required broadcast format. Widely used formats are NTSC for video
in North America and PAL in Europe. DV (for Digital Video) format, which applies
to miniDV video and DVD-Video, uses non-square pixels. In this case, when a frame
is rendered, each pixel in the image is compressed to 90% of its width. On playback,
it is stretched back to its original square shape. Non-square pixels are denoted in
the Render Settings by a Pixel Aspect Ratio of 0.9. When you choose one of the non-
square Image Size presets, this ratio is automatically set.

 If your animation is likely only to be seen on a computer screen, you can avoid the
broadcast presets and choose a standard format like 640 � 480. Th e fi rst time you
render this animation you may want to use a small image size for quicker results. On
our benchmark computer system, a single frame rendered as follows, for three diff er-
ent image sizes:

 Small (1 ×) 320 × 240 px: 2 seconds
 Medium (2 ×) 640 × 480 px: 7 seconds
 Large (3 ×) 1280 × 960 px: 24 seconds

 You can see that, for this example, the increase in rendering time is roughly in direct
proportion to the increase in image dimensions. Guided by these results, you can
forecast that your batch render of 120 frames will take approximately 14 minutes
for a 640 � 480 px rendering versus 4 minutes for one that ’ s 320 � 240 px in size.
It ’ s much quicker to render the smaller size, which can be helpful if you discover

 A depth channel can be rendered
in a separate TIFF fi le when using
Render Layers. Render Layers are

used to produce separate image
passes, such as color, depth, and

shadow. When you render the
depth pass, it will render as a

separate single-channel fi le, not
as a channel in a multichannel fi le.

 The shorthand, " px " , denotes
 " pixels ".

254 PART 2: A FOUNDATION IN MAYA

problems with your rendered animation that you wish to fi x. Assuming that you ’ re
using the smaller render size:

 5. Enter the following settings:

 Presets 320 � 240
 Size Units pixels
 Resolution 72
 Resolution Units pixels/inch

 Th e Pixel and Device Aspect Ratios can be left as is. Th e former is set by Width and
Height and the latter by the Preset choice; 320 � 240 is a square pixel preset, there-
fore the ratio will be 1. If you are rendering for print and know the image resolution
requirements, you can choose units other than pixels, including inches and cen-
timeters, and specify a resolution in pixels per unit. For example, suppose a journal
requested that you supply a single frame from your animation as a 4 inch � 6 inch
picture at 300 dpi (for dots per inch). In Maya, you would set Width and Height to
4 and 6, respectively, set Size Units to inches, and resolution to 300.

 Th e remaining settings—those under Render Options—don ’ t apply to this exercise
and can be ignored for the time being.

 Maya Software Render Settings
 Most of the settings particular to the Maya Software renderer will be fi ne at their
default values for this exercise. We will focus on those that most aff ect image quality.

 1. Click on the Maya Software tab in the Render Settings to make it active.

 Anti-aliasing Quality
 Anti-aliasing diminishes unwanted visual artifacts typical of low-resolution com-
puter displays. One type of artifact that it resolves is edge aliasing (Figure 11.06),
also known as the “ jaggies ” . Quality is an over-arching setting that infl uences the
remaining attributes in this section. Until you desire a more in-depth understanding

When you choose a preset, the
Width and Height fi elds are set
automatically.

(a) (b)

FIGURE 11.06

 Edge aliasing (or " jaggies ") is one
of the rendering artifacts affected
by the anti-aliasing attributes in
the Render Settings. Without anti-
aliasing, edges appear jagged.

(a) Without edge anti-aliasing.

(b) With edge anti-aliasing.

255CHAPTER 11: ACTION! MAYA RENDERING

of these attributes, the Quality settings of Preview and Production will suit your
requirements for fast, low-quality and slower, high-quality renderings, respectively.
Th e Quality setting automatically adjusts Edge Anti-aliasing.

 2. Choose Quality → Production Quality.

 Leave the Render Settings window open for the time being. For a complete descrip-
tion of Render Settings for any of the renderers, see the Maya Help section on the
Render Settings window.

 Render Settings

 Maya Help → Using Maya → Rendering and Render Setup → Rendering →
Rendering Windows and Editors → Render Settings → Render Settings window

 Hit Render!
 Wait! Before you hit Render, check to make sure the render fi les will go where you
want them to in your fi le system. If you haven ’ t set your project as described back in
 Chapter 04 , do so now. Th e render fi le destination directory (usually called “ images ”)
is displayed at the top of the Render Settings window (Figure 11.07). You may have to
widen the window to see the path name on one line.

 Now you can hit Render :

 1. (a) With the Render menu set active, choose Render → Batch Render .

FIGURE 11.07

The render fi le path is displayed
along the top of the Common tab in

the Render Settings.

256 PART 2: A FOUNDATION IN MAYA

 (b) If you are rendering on a multi-processor machine, check Use All Available
Processors. If not, leave the box unchecked.

 (c) Press Batch Render.

or

 2. (a) Activate the Render shelf.

 (b) Press the Batch Render button in the Render shelf.

 Information about the render will appear in the result fi eld of the Command Line (Figure
11.08). Th is tells you what frame is currently being rendered, the percentage of the frame
that is done rendering, and the path to the directory where it ’ s being saved. When ren-
dering is complete, the Command Line will display the following text:

 Result: Rendering Completed. See mayaRenderLog.txt for information.

 Th e Render Log is a text fi le to which Maya writes information such as the time taken
to render each frame. Th e fi le is named mayaRenderLog.txt and is located in your
Maya user account directory.

 On the CD-ROM, we have included a copy of the completed scene fi le, along with the
rendered sequence of rendered TIFF fi les.

 11_Rendering/scenes/tutorial_11_01_done.ma

 11_Rendering/images/hemoTest.0001.tif etc.

 Software versus hardware rendering
 Th e hemoglobin scene you ’ ve been working on is considered light in the world of Maya
scene fi les. In other words, it didn ’ t tax your system resources heavily and was well suited
to rendering with the Maya Software renderer. As the complexity of your work in Maya
increases, it is worthwhile becoming familiar with the Maya Hardware renderer. In many
cases, it delivers results as good as the software renderer but in a fraction of the time.

Tutorial 11.02: Playback using fCheck
 Now, after all that work—shading, camera setup, lighting, and render settings—
comes the moment you ’ ve been waiting for: seeing your rendered animation in
action. In this tutorial, you will view the rendering of hemoglobin, using Maya ’ s own
 fCheck (short for “ fi le check ”) previewing application. fCheck was installed when you
installed Maya. In Windows, a shortcut was placed in the Start menu. Th e application
itself is located in Maya(version)/extras/bin within your applications directory. If you
did not render the animation sequence in the previous tutorial, copy the 120 TIFF
fi les from the CD-ROM to the image directory within your Project directory.

FIGURE 11.08

The Command Line at the bottom
of the main window displays
information about each frame as it's
being rendered.

257CHAPTER 11: ACTION! MAYA RENDERING

 11_Rendering/images/hemoTest.0001.tif etc.

 Playback in fCheck
 1. Launch fCheck by locating it on your hard drive and

 (a) double-clicking its icon

or (b) RMB+click on its icon or name and selecting Open.

 2. In the fCheck menu bar, choose File → Open Animation.

 3. Navigate to the image fi le sequence in your <project>/images directory.

 4. Select the fi rst fi le in the list, hemoTest.0001.tif.

 5. Press Open.

 6. Enter " 30 " in the FPS fi eld.

 Playback will likely be slow until all frames have been loaded, at which point it will
speed up. Basic playback controls are available in the Control Bar for the fCheck win-
dow (Figure 11.09). Additional control over playback and to adjust the display (zoom,
channels, etc.) and image (luminance, saturation, etc.), are available through hotkeys
and mouse controls. You can enter any FPS rate you like in order to see your anima-
tion playback at slower- and fast-than-normal speeds. Th e actual playback rate is dis-
played in red type at the top of the Playback window. If your computer is unable to
play the animation at the rate you specify, hitting the hotkey “ T ” forces to fCheck to
skip frames in order to meet the prescribed rate. Another handy fCheck feature is the

Playback window

Playback controls

FIGURE 11.09

fCheck is an application external
to Maya that is used for viewing

rendered animations and still
images. It has an extensive suite

of functions for adjusting and
resizing the displayed image and

for controlling animation playback.
Many of these are accessed

through hotkeys.

258 PART 2: A FOUNDATION IN MAYA

ability to scrub back and forth through the animation interactively by LMB � dragging
in the Playback window.

 Saving from fCheck
 If you make image adjustments in fCheck, you can save your animation under a dif-
ferent name and the changes will be saved as well. If you ’ re using Maya in Mac OS X
you have the option to save out a self-contained QuickTime movie fi le. In either case,
to save out of fCheck:

 1. Choose File → Save Animation.

 2. In the Save As window, navigate to an appropriate directory or create a
new one.

 3. Enter a fi le name and select the Image type.

 4. Press Save.

 Third-party applications
 It is often desirable to produce a self-contained movie fi le of an animation sequence.
Unless you ’ re using Maya for Mac OS X—in which case you can export a QuickTime
fi le from fCheck—you can use a third-party application such as Apple QuickTime
Pro or Adobe After Eff ects to save out your image sequence in a popular video for-
mat like QuickTime (fi le extension .mov), Windows Media Player (fi le extension .wmv),
or Audio Video Interleave (fi le extension .avi). Such formats can be viewed using free
movie player applications like Apple QuickTime Player and Windows Media Player,
making it feasible to distribute your movies to colleagues, clients, or students over
the Internet or on portable media, such as CD-ROM/DVD-ROM.

 Summary
 Rendering is the creation of image fi les from a Maya scene. It is the fi nal stage in the
3D production workfl ow and includes a series of creative steps covered in the last four
chapters:

 • Shade/texture

 • Camera setup

 • Lighting

 • Rendering

 Th e fi nal step of the rendering workfl ow involves customizing the Render Settings
and then batch rendering your animation. Th e choice of renderer is usually made
early on, before making Render View previews to test shaders, lights, and camera
setup. A batch render can be started from within Maya, which allows you to continue
working on a scene while rendering happens in the background. Alternately, you
can execute a batch render from your computer ’ s Command Line, without opening
Maya. We concluded our discussion of rendering with a brief summary of some of the
advanced rendering techniques available through mental ray for Maya.

259CHAPTER 11: ACTION! MAYA RENDERING

 Th e hemoglobin tutorials let you try out these workfl ow steps on a small but meaning-
ful project. Eff ective visualization of big, complex biomolecules is a frequently requested
deliverable in computational cell biology. Th e hemoglobin scene presented a challenge
typical of rendering in silico cellular environments: how to light and shade multiple,
simultaneously moving objects for a moving camera view. You learned that materials
can be easily created, applied, and edited using the Hypershade and the Attribute Editor.

 In Chapter 09 , you saw that a camera to view the virtual molecule can be animated in
the same way as the molecule ’ s geometry. Motion paths, which are commonly used
to control the animation of geometry, are an easy way to animate a camera along
a predictable trajectory. With the camera animation set, in Chapter 10 you lit the
scene with a classic 3-point lighting rig. IPR previewing in the Render View helped
you adjust the lights for optimal eff ect at the beginning, middle, and end of the ani-
mation. When you were happy with the lighting, in this chapter you adjusted the
Render Settings to prepare for batch rendering the animation. In the Common render
attributes, which apply to all Maya renderers, you set the fi le name, frame range,
and image size. Each renderer has its own tab in the Render Settings. You used the
Maya Software tab to set the image quality. When the settings were done, you batch-
rendered the animation to the image folder in your current project.

 In this chapter ’ s second tutorial, you used the stand-alone application, fCheck, to pre-
view your fi nished animation. If you work in Maya for Mac OS X, you may have also
used fCheck to export a self-contained QuickTime movie fi le.

 Rendering is an essential part of the in silico workfl ow. If you ’ re producing an anima-
tion for a client, the rendering is what you deliver; it ’ s the product. If you ’ re using
Maya to run simulations and generate data, rendering is how you report your results
as visual images. While not everyone has access to Maya in order to open and review
your scene fi le, anyone with a computer and an Internet connection can view a ren-
dering of your scene fi le using freely available software.

 Th e rendering needs of a biomedical communicator creating content for a big-budget
pharmaceutical video may diff er substantially from those of a scientist publishing
results on a Maya-based protein folding simulation. Your new skills with materials,
cameras, lights, and renderers equip you for initial projects and, we hope, will set you
on an exciting journey to learn more. Th e learning resources available on the subject
are substantial. Further exploration will no doubt guide you to the tools and tech-
niques suited to your specifi c needs, and enable you to innovate further in the visu-
alization of molecules, cells, and tissues.

 Astonishingly, most of the attributes involved in Maya materials, cameras, and lights
are open to automated control through the MEL language, just as MEL enables access
to the geometry, dynamics, and physics of your scene elements. Now that you have
established a foundation in Maya, it is time to take command of your virtual world
with MEL.

260 PART 2: A FOUNDATION IN MAYA

 12 MEL scripting

This model of a
“nano-trellis”
composed of self-
assembling peptides
was built and
animated entirely
using MEL.

Image courtesy
Shaftesbury Films
and AXS Biomedical
Animation Studio.
Copyright Shaftesbury
ReGenesis III Inc.

262 PART 2: A FOUNDATION IN MAYA

Maya Scene Architecture

Script Editor
and Command Line

enter MEL commands

Maya Command
Architecture (C��)

MEL Interpreter

User Interface
Tools

Dependency Graph Scene Hierarchy

update
the scene

MEL script

User Interface
Menus

 FIGURE 12.01

 Maya ' s command architecture
receives MEL commands from
UI menu selections and tools,

and from user input via the MEL
interpreter . The result is a change

to the DG, the Scene Hierarchy,
or both. The compiled commands

in the Command Architecture,
were written in the C ��

programming language. Users
can add custom commands to the

command architecture using the
application programming interface

(API) available through Maya ' s
Developer ' s Toolkit. Furthermore,

although MEL is used to implement
much of Maya ' s functionality,

including the UI, MEL is not the
source of the commands per se.

Therefore, the role of MEL in Maya
could conceivably be fi lled by

another language that can interact
with Maya ' s command architecture

via its own interpreter. Early in the
development of Maya, this role was

fi lled by the Tcl scripting language—
before MEL came into being.

 If you ' re new to programming,
some of the terminology in this
section may sound foreign. Not

to worry: terms like variables,
function arguments, strings, and

back quotes will be explained
shortly.

 Introduction
 Up to this point in this book, you ’ ve done most things in Maya using menus and tools
available through the user interface (UI). In this chapter you will learn about Maya ’ s
powerful built-in scripting language called MEL (for Maya Embedded Language).
With MEL you can perform just about any task in Maya using computer code (typed
instructions) that you would otherwise do through the UI. Such tasks range from
one-off actions such as creating a polygon or NURBS primitive using a MEL com-
mand, right up to procedural animations in which MEL code is used to animate
attributes, producing complex results that would be diffi cult or impossible with
keyframing alone. It ’ s in this latter role that MEL scripting shines as powerful tool
for in silico biology.

 MEL scripting is not another layer of functionality built on top of Maya ’ s core
modeling, animation, and rendering systems. It is integral to the program ’ s opera-
tion. When you create an object, set a keyframe or change the color of a shader
through the UI, Maya executes a MEL statement (a command and text that modi-
fi es it) to do the job. In fact, the UI itself is constructed by MEL scripts each time
you start Maya. A MEL script is a computer program composed of MEL commands
and other supporting information. Figure 12.01 illustrates how MEL fi ts into Maya ’ s
program architecture.

263CHAPTER 12: MEL SCRIPTING

 Th e developers of Maya made its inner workings easy to see and interact with via
MEL. Many of the statements you execute through UI tools are echoed (displayed
as they are executed) in the Script Editor as MEL statements. As well, dependency
and scene hierarchy relationships are plainly displayed in the Hypergraph. Th e abil-
ity to see what goes on behind the scenes when you select a menu item or use a tool
is a tremendous advantage in learning how to script in Maya: you can see the state-
ments Maya runs in response to actions you perform through the UI and then use
those statements to build a script. You can subsequently enter the script to perform
a number of tasks at once, saving the time you would otherwise spend working with
menus and tools. If the tasks involve a repetitive action—such as building and dis-
tributing many similar objects throughout your scene—using a MEL script can be
a signifi cant time saver. You ’ ll see examples of this shortly as you work through the
chapter. Th e projects in Part 03 of this book take advantage of MEL scripting to build
complex models and to automate animation.

 In this chapter you will learn how to work with MEL commands and scripts. Even
if you are brand new to computer programming, set your worries aside. MEL is an
elegant, powerful language and you ’ ll quickly meet the basics in preparation for the
projects in Part 03 . By the end of this chapter you ’ ll know how to create objects and
animate attributes without relying on the common UI menus and tools.

 The origins of MEL
 Early in the development of Maya, prior to the Alias|Wavefront merger, it was deemed
that the program ’ s command architecture was to be integrated with the Dependency
Graph (DG) through a scripting interface. Th is would allow users to execute com-
mands and customize the Maya UI via typed instructions. Th e development team at
Alias Research surveyed a number of scripting languages for the job, including PERL,
Scheme, Tcl, and Python (which was still in early development). Tcl was used at fi rst,
in order to leverage its similarity to the Unix shell scripting language for the ben-
efi t of users; at the time, PowerAnimator (one of Maya ’ s predecessors) ran on SGI
computers, for which users had varying degrees of familiarity with the Unix shell
scripting interface. In the 1995 merger under SGI, Wavefront Technologies brought
with it Sophia, the scripting language embedded in Dynamation (see page 15 in
Chapter 01).

 Originally written in 1990–1991 by Jim Hourihan—then of Santa Barbara Studios
and, as of this writing, co-founder and R & D Director at Tweak Films studios—
Sophia had many of the features the Maya developers were looking for in a scripting
language: it was simple to use and fast to execute—a must for computer-generated
imagery (CGI) artists; it was by design suited to 3D algebra and UI development;
and it resembled Unix shell scripting. Sophia began its transformation into MEL at
the hands of Alias|Wavefront programmer and IBM alumnus Joyce Janczyn. As it
evolved, MEL took on certain traits of shell scripting languages, including dollar
signs ($) before variable names and back quotes to call functions. Nonetheless, MEL
retained many of the original Dynamation Sophia constructs like noise functions,
vector algebra, and string manipulation.

 Since the release of Maya 1 in 1998, there have been numerous additions to Maya ’ s
capabilities, but little has changed with MEL—save for the obvious addition of new
commands. Th e syntax and data structures have remained steady in order to sup-
port customer workfl ows built on MEL. Remarkably, despite its supposed simplicity,

 In the Unix operating system
(OS) , the " shell " is a scripting
interface allowing users to
interact with the OS through
typed instructions.

264 PART 2: A FOUNDATION IN MAYA

animators and technical directors continually use MEL to achieve sophisticated results
in Maya that far exceed what MEL ’ s developers originally had in mind for the lan-
guage. “ We intended MEL to enable users to script basic tasks and customize the
UI in Maya ” says Janczyn. “ I ’ ve been surprised and delighted to see how users have
embraced MEL and used it to do things in Maya we never imagined. 1”

 In a word: Scripting
 You ’ ll notice we ’ re saying “ MEL scripting ” at this point, not “ MEL programming ” .
We ’ ve even used “ MEL scripting ” as our chapter ’ s title! Th is deserves a short comment
on terminology before we look closely at the nut-and-bolts of MEL ’ s elegant syntax
and command structure.

 You may have encountered the verb “ script ” in other software books and come across
it in on-line forums. Occasionally you might even have seen “ script ” and “ scripting ”
used as put-downs among people with diff erent attitudes about what makes a good
programming language. In this book, we intend no such negative connotation. In fact
you will see that we use the terms “ scripting ” and “ programming ” interchangeably—
deliberately so, to make clear that scripting is a practice of software authoring capa-
ble of delivering sophisticated code for complex applications.

 Th e modern notion of scripting is based on the insight that there are at least two
interesting ways to get a computer to give you the outcomes you want. Th e fi rst way
is to write a program and let the computer run it. Th e second is to take control of
the programs already running on the machine and somehow direct their operation
to achieve the ends you seek. Th is insight is not new and dates from the early years
of computer programming, when the fi rst programming language compilers and
language interpreters were developed. We noted in Chapter 02 that interpreters for
processing higher-level languages, such as IBM ’ s Speedcoding, actually predated the
invention of effi cient compilers and the rise of Fortran, COBOL, and their peers in
software history.

 Chapter 02 also introduced the notion that an interpreter is a program simulating a
 “ virtual computer ” , which runs as software inside the hardware of the actual physi-
cal machine. Th e interpreter ’ s virtual computer is useful because it is not limited to
the instruction set and operations wired into the hardware. It can go beyond them
to include anything an ingenious programmer can devise. Th e MEL interpreter run-
ning inside Maya takes commands in the MEL language, which by comparison with
modern-day assembly languages is very high level. With a single MEL command you
can invoke entire math operations (like vector cross products) and computer graphics
procedures.

 In a program written in or compiled to machine code, you can with some accuracy say
your software is running the hardware, since the hardware circuits are wired to react
automatically to each machine language instruction in just the right way. When you
are inputting code to an interpreter, however, you are not intervening on the machine
hardware in quite the same way. Your software fi le—your MEL script—is directing
the activity of the interpreter to produce the results we need.

 With humble origins in the early interpreters and the job control commands of the
early operating systems, “ scripting ” has come to mean writing software that organizes
or modifi es the activity of other, pre-existing computer programs. A “ script ” , then,
is a program that modifi es or guides the activity of another program or programs.

 " Scripting " , when deployed as
a put-down, is used to hint that
a piece of software is facile or

trivial compared to what the
critic imagines it could have

been, if only a " real " programming
language had been used—one

loaded with an ultimate range of
data types—from booleans to

objects, trees, and beyond—and
packed with low-level operations

to peek and poke the hardware.
Languages with a trimmer range

of data types, or with little to
say about pokes or pointers,

need not apply. Attitudes that
champion this false dichotomy

are semantic trash—dim echoes
of the earliest debates over the

merits of writing software in
anything but machine language.
As we saw in Chapter 02 , these
debates were in full swing long
ago, in the 1950s following the

appearance of the fi rst popular
languages with human-friendly

design, like Fortran and COBOL.

265CHAPTER 12: MEL SCRIPTING

Th at is why script programs are sometimes called “ glue ” programs: they bring
together existing processes. “ Scripting ” is the creative act of programming in the lan-
guage understood by an interpreter that runs as part of the target program. Th ese
programming languages are usually referred to as scripting languages.

 One interesting trait of modern scripting languages is concision: it is not unusual to
see a script that is just a fraction of the length (and is written in a fraction of the
time) of a fi le for the same job written in a general-purpose language like C � � .
Scripting languages achieve their concision by drawing on the pre-existing tools and
resources of the application program they direct. Th us while the creation of a specifi c
3D pattern of noisy driving forces for an animation might take many lines of math-
ematics and fl ow control expressions in C or C � � , a single MEL command call to the
Maya physics engine invokes an entire toolset of such procedures.

 Trends to concision are nothing new to the evolution of programming languages. We
saw in C hapter 02 that while the earliest assemblers did little more that transcribe
abstruse binary instructions on a 1-for-1 basis, they were quickly enhanced by assem-
bler macro commands, which unrolled into whole sets of machine instructions or
triggered an entire subroutine to automatically load from a library. Compilers took
this a step further with parsers that unpacked scientist-friendly expressions like
 y(k+j) = log(x(k)) + sin(x(k)*x(j)) into the lengthy list of assembly instructions
needed to drive the math through the processor circuitry. Scripting languages, in
their turn, transform objects, methods, and procedures of their host application into
building blocks for task automation.

 Th e scripting language programmer is also the happy benefi ciary of everything
learned so far from the mistakes and oversights of the earlier language designers,
on whose shoulders we stand. Since scripting languages are in vogue, you have many
fl avors of command syntax, data type, and program fl ow control to explore as your
skills and application needs develop—sometimes even for the same host application
program! For example, as this book goes to press Autodesk has announced that, start-
ing with Version 8.5, Maya can be scripted not only with MEL but also with Python,
a general-purpose, object-oriented language (http://www.python.org) with legions of
admirers. Since MEL remains the language of the Maya UI and the bedrock of Maya
procedural animation we shall have just a little to say about Python in this book.

 MEL is a beautiful instance of a domain-oriented programming language . Since it lever-
ages on the high-level objects of its host application, Maya, it has a special aptitude
for certain kinds of problems. Th us in addition to its general-purpose facilities for
arithmetic, string manipulation, and fi le input/output, MEL has a huge vocabulary
of commands for 3D computer graphics and animation operations. It is designed
expressly for solving problems in the domain of 3D animation.

 A language like C � � , by comparison to a domain-oriented language like MEL, cer-
tainly will provide you general-purpose facilities—very powerful general-purpose
facilities supporting diverse data constructs and multiple styles of programming.
Th e domain orientation you build yourself with the aid of whatever libraries you fi nd
helpful. A domain-general language doesn ’ t nudge you in one application direction or
another. You could sit down with C � � to write a tax accounting program as read-
ily as you would write to a game engine or a 3D modeling application. But it ’ s your
responsibility to build the domain-relevant tools and capabilities for your applica-
tion. Th e general-purpose language defi nition does not supply them from the get-go.

 The quest for concision is
of course not the private
territory of scripting codes.
This is an exciting era in which
programming language designers
of all stripes are fi nding ways to
let you write correct software,
in the fewest possible lines of
crystal-clear code, making the
fewest mistakes along
the way.

 The diversity of software
equipped with scripting
languages and interpreters
today is truly impressive:
web browsers, image and
video editing and compositing
software, computer games,
spreadsheets, operating systems
(the " shell scripting " patois of
Unix has been hugely infl uential),
and of course 3D computer
modeling and animation
packages like Maya with its MEL
language and MEL interpreter.

266 PART 2: A FOUNDATION IN MAYA

 MEL also is (for now at least) tied to the application Maya; it is a case par excel-
lence of an application-oriented programming language : a scripting language intended
to be used in association with particular application software. For the time
being, there is no sign that other top-tier software packages for 3D modeling and
animation will swing to MEL as a de facto scripting standard. Th ey have their own
scripting language tools. MEL is likely to remain at home in its established Maya envi-
ronment. Fortunately most programming languages—including those invented for
scripting—have strong family resemblances. Th at is because all, ultimately, are about
letting you micro-manage the activity of von Neumann-style computer hardware (see
page 32 in Chapter 02). Th e benefi t of this common foundation is that experience you
get from MEL and Maya will accelerate your progress with other learning curves.

 With this comparative vocabulary in place we can begin to explore MEL in depth,
recognizing it as a modern, domain-oriented, application-specifi c programming lan-
guage for scripting the Maya animation package. Let ’ s get started!

 Getting started

 Prepare your scene fi le
 As you learn MEL, you ’ ll be typing statements and sending them to Maya for process-
ing. For this you ’ ll want to have Maya running.

 1. Start Maya.

 2. Choose Window → Settings/Preferences → Preferences.

 3. Choose Categories → Settings and make the following settings:
 Under Working Units → Linear: centimeter.
 → Angular: degrees.
 → Time: NTSC.

 4. Choose Categories → Timeline and make the following settings:
 Under Timeline → Playback Start: 1 .
 → Playback End: 300.

→ Time, select NTSC.

 Under Playback → Looping: once.
 → Playback Speed: Play every frame.
 → Playback by 1 .

 5. Press the Save button to set your preferences.

 6. Select the Perspective view of your scene by pressing the button in the
Toolbox.

 MEL input
 Th ere are three primary ways to enter MEL statements and scripts in Maya:

 1. Through the Command Line.

 2. Through the Script Editor.

 3. By sourcing a MEL script.

267CHAPTER 12: MEL SCRIPTING

 The Command Line
 For entering single MEL statements, the Command Line (Figure 12.02) comes in handy.
A statement is entered by typing it in the input fi eld and then pressing Enter on your
numeric keypad.

 The Script Editor
 Th e Script Editor (Figure 12.03) is used both for single statements and multiple lines
of MEL script. Launch the Script Editor in one of two ways:

 1. Choose Window → General Editors → Script Editor.

or

 2. Press the icon at the far right of the Command Line.

 Because the Script Editor behaves in some ways like a text editing application, you
can use it to compose MEL scripts. However, we recommend writing your MEL scripts
in a text editor external to Maya and saving them as plain text fi les separate from
your Maya scene fi le. On page 302 we ’ ve listed several text editors that work well for
composing computer code.

 We use the Script Editor for running and tracing (reporting the goings-on of a script
at run-time) externally written MEL scripts and for testing short bits of MEL code
that don ’ t necessarily warrant creating an external text fi le. Tracing refers to the
process of displaying certain script results in the history panel of the Script Editor to
help you d ebug (locate and fi x errors within) your code.

 When composing MEL statements and scripts in an external text editor, you can get
the code into Maya by copying and pasting it into the command input panel of the
Script Editor. After the code has been pasted, pressing Enter runs (or executes) it in
Maya. Th e two Enter keys on your keyboard perform diff erent functions in the Script
Editor. Th e alphanumeric Enter key (located next to the letter and punctuation keys)
causes a line break in the command input panel; it doesn ’ t send any code to Maya. Th e
numeric keypad Enter key executes the code in the command input panel. From here
on, when you see an instruction to enter a command or script in the Script Editor,
it means type or paste the code into the input panel and press the numeric keypad
Enter key. When you select code within the input panel and press Enter, only the
selected text is sent to Maya for processing. When Maya is fi nished, the selected text
remains in the input panel. You can delete text in the input panel by selecting it and
pressing Delete on your keyboard.

Script Editor buttonCommand Line Command Line results FIGURE 12.02

 The Command Line is useful for
entering single MEL commands.
It also displays the result of the
most recent scripting action—
in this example, the creation of
a NURBS sphere object. The
button at the far right of the
Command Line launches the
Script Editor.

268 PART 2: A FOUNDATION IN MAYA

 Th e History panel in the Script Editor automatically logs MEL command results. You
can clear the History or command input panel at any time as follows:

 From the Script Editor menu bar, choose Edit → Clear History
 or → Clear Input

 We will explore other features of the Script Editor as they pertain to specifi c examples
in the chapter. Th e Maya Help Library is a good one-stop source of additional infor-
mation as you work along:

The Script Editor

 Maya Help → Using Maya → General → Basics → Basic Windows and Editors →
Script Editor

 Sourcing an external MEL script
 When you source a script, you are loading it from a text fi le that is external to your
Maya scene. You can source a script through the Script Editor as follows:

 1. Choose Window → General Editors → Script Editor.

 2. From the Script Editor menu bar, choose File → Source Script.

 3. In the Source Script window, navigate to your script fi le, select it, and press
Open.

 This automatically loads the script into memory. If it contains errors, Maya will display
error messages in the History panel of the Script Editor and in the Results fi eld next to
the Command Line.

Command
input panel

History panel

Menu bar
Tool bar

MEL and
Python tabs

Open; source; save; and save-script-to-shelf
Clear panels

Show panels

Echo all commands
Show line numbers

Search
Goto

Execute

 FIGURE 12.03

 The Script Editor is an essential tool
for testing, sourcing, and debugging

MEL commands and scripts. Code
that is selected (highlighted in blue)

remains in the command input panel
after you hit Enter to run it.

 Depending on the settings/
preferences in your text editor, a

long line of text may refl ow to the
following line when it exceeds

the page margins. Maya ignores
these " line feeds " . Carriage

returns or " line breaks " (pressing
Enter), however, are not ignored;

each line ending in a carriage
return must be terminated with
a semi-colon before Maya will

accept it.

269CHAPTER 12: MEL SCRIPTING

 You can also source a script using the MEL command, source. For example, you might
enter the following line of code in the Command Line to load a MEL script you ’ d
created and saved in a fi le called myFirstScript.mel.

 source myFirstScript.mel

 However, for this to work, your script fi le must be located on Maya ’ s search path and
be listed in the search path contents .

 Maya ' s search path
 When you installed Maya on your computer, a default Scripts directory was created for
your user account. Th e path to this directory is Maya ’ s search path. Every time you
start Maya, the program queries the contents (fi le names) of its search path. When
you use the source command, Maya scans its search path contents for the fi le. If the
fi le exists on the search path, Maya sources it (loads it into memory). If you add fi les
to the Scripts directory when Maya is running, you will have to refresh the search
path contents using the rehash command in order to have access to those fi les and
their contents.

 To refresh the search path contents, enter the following in the Script Editor:

 rehash;

 You can get the search path by querying Maya ’ s internal variables as follows:

 Enter the following in the Script Editor:

 internalVar -userScriptDir;

 Th e result displayed in the Script Editor should look something like:

 // Result: C:/Documents and Settings/User/My Documents/maya/8.5/
 scripts/ //

 We ’ ll return to sourcing scripts toward the end of the chapter. For now, you will run
MEL commands and short scripts by entering them directly in the command input
panel of the Script Editor.

 MEL syntax
 Before dealing with MEL commands explicitly, let ’ s look at some of the elements that
are fundamental to writing MEL scripts in Maya.

 Terminate your MEL statements;
 For our purposes in this chapter, a MEL statement is a single instruction to be exe-
cuted by Maya. Th is may be a MEL command to return the value of an attribute or a
declaration of a variable used to store a number. Regardless of its purpose, each MEL
statement must be terminated with a semi-colon. Th is tells Maya where one instruc-
tion ends and the next one begins. Strictly speaking, when only one MEL statement
is executed on its own, it doesn ’ t require a semi-colon. However, when more that one
statement is passed to Maya at a time, it is essential to end each with a semi-colon.
Th ere is one notable exception: between the “ if ” and “ else ” components in a conditional
statement —which we ’ ll discuss later in the chapter.

 From this point on, when you
see an instruction to enter a
command or script in the Script
editor, it means type or paste
the code into the input panel
and press the numeric keypad
Enter key.

270 PART 2: A FOUNDATION IN MAYA

 Not all “ quotation marks” are " the same "
 Th ere will be many occasions where your MEL statements use double quotation marks
(") to enclose character strings . As in other computer programming languages, Maya will
accept only straight (" ") and not curved (“ ”) or slanted quotation marks (or quotes). Th e lat-
ter will generate an error in Maya. When you type code in Maya ’ s Script Editor, the double
quotes are straight. However, when you compose a MEL script in an external text editing
application, you may have to set the application to use straight quotes instead of curved
quotes (which are sometimes called smart quotes); consult the documentation of your text
editing program for instructions on how to specify the type of quotation marks used.

 MEL is CASE sensitive
 To Maya, the following two statements are distinct from one another

 1. ScriptEditor;

 2. scriptEditor;

 #1 will launch Maya ’ s Script Editor whereas #2 will generate an error message because
there is no such command as scriptEditor . To your computer, upper and lower case
versions of the same letter are distinct characters, and Maya treats them as such.

 Comments
 Comments are statements used to document your code. Th ey are ignored by Maya
during the execution of a script. Commenting your code is an important part of
scripting because it communicates information about variables and other elements of
your script in plain language. Such communication is helpful not just for other users
who are trying to understand your code but also for keeping track yourself of what
does what. Single line comments are denoted with two forward slashes, //, and ended
with a line break (by pressing the Return key), as in the following example:

 print "This line will print in the Script editor. ";
 //print "This line will NOT print in the Script editor. "
(press Enter here)

 Multi-line, or block comments , are denoted with a forward slash and asterisk, as follows:
 /* Commenting your code is an important part of scripting because
 it communicates information about variables and other elements of
 your script in plain language. */

 Values
 A value is what is stored in an attribute or a variable. Th e number 11 and the word
 “ eleven ” are values. Much of what a MEL script does is manipulate values. Every value
in Maya has a specifi c type. For example, the transform attributes (translate, rotate,
and scale) of a typical transform node all use fl oating point , or decimal values. Th e dif-
ferent value (or data) types in Maya are as follows:

Data type Example

integer 5

floating point (float) 5.25

string "Henry, Alex, Aaron ", "3.14"

boolean "yes ", "no ", 1, 0�

 Within a MEL script, values are often stored in variables, which we ’ ll discuss next.

 The MEL command print has
nothing to do with creating a
paper (" hard copy ") output. It

instructs Maya to display a value
on your computer screen in the
Script editor and the Command

Line. In the next chapter we will
discuss the important topic of

moving data between your Maya
models and your computer ' s fi le

system (data input/output).

271CHAPTER 12: MEL SCRIPTING

 Variables
 A variable is a container for data in a computer program. After being created—or
 “ declared ” —a variable exists for the duration of the program although its value typi-
cally “ varies ” , that is takes on diff erent values as the program runs. For example, you
may create a variable to store a chemical concentration, a force, or the speed of a
crawling cell. As the program executes, changes in the concentration, force, or speed
are refl ected in the changing value of the variable. In MEL, variables store one of the
four types of data listed above. In addition to single-value variables, MEL supports
compound variables in the form of vectors, arrays, and matrices. Table 12.01 lists the
diff erent variable types available in MEL and examples of their use.

 Th e variable types listed in Table 12.01 also apply to node attributes. Th at is to say, every
attribute has a particular data type. In fact, variables and attributes are very similar, in
that they both store values and the same types of data structure (vectors, arrays, and
matrices). Th e diff erence is that attributes belong to nodes in the Hypergraph whereas
variables are not connected in any permanent way to the scene—each time you start
Maya, a variable must be declared and assigned a value before being used. In contrast,
an attribute and its value is saved within your Maya scene fi le.

 Naming variables
 Every variable name must begin with the dollar sign ($) symbol, followed immedi-
ately by a letter or an underscore (_), but not a number. Th e remaining characters
can be any combination of numbers, letters, and underscores and can be as long or as
short as you like. Th e following are examples of variable name “ dos ” and “ don ’ ts ” :

$position Correct

$position5 Correct

 $position_5 Correct

$5position Incorrect (a number cannot immediately follow $)

$_5position Correct

 If you leave the $ off the front a variable name—“position” , for instance—Maya will
interpret the word as a procedure. If it can ’ t locate a procedure named “position” it
will generate an error message. In addition to proper syntax, it is good practice to
give your variables intuitive names that relate to their functions within a script. Th is
will not only benefi t others who use your scripts, but will help you recall how your
code works when you haven ’ t seen it for a while.

 Declaring and assigning variables
 A variable must be declared before being used. Th e following statement declares $title
as a variable of type, string.

 string $title;

 Assigning a variable means storing a value in it. Continuing on, the following state-
ment assigns a value to $title:

 $title = " cellInvasions";

 Variable declarations for the diff erent data types, along with sample assignments, are
shown in Table 12.01 . Note that an array is not declared as “ array ” but rather according to
the type of values it stores.

272 PART 2: A FOUNDATION IN MAYA

 If you use a variable before declaring it, the MEL interpreter will generate an error.
Th e following code attempts to perform an operation with the variable $edition which
hasn ’ t yet been declared.

 string $title;
 string $filmName;

 $title = "cellInvasions";
 $filmName = $title + $edition;

 // Error: $filmName = $title + $edition; //
 // Error: "$edition" is an undeclared variable. //

 To conserve space in your scripts, you can declare multiple variables of the same type
together on the same line, as follows:

 int $counter1, $counter2, $counter3, $counter4;
 float $cellx, $cellY, $cellZ;

 Variable type Declaration Assignment

int int $myInt; $myInt = 20�;

fl oat float $myFlt; $myFlt = 3.14159265;

vector vector $myVct; $myVct = << 5.5, 1.1, 6.6 >>;

string string $myStr; $myStr = "henry";

vector array vector $myVctArray[]; $myVctArray = {<< 1, 0�, 0� >>,

 << 0�, 1, 0� >>, << 0�, 0�, 1 >>};

 or

 vector $myVectArray[0�] = << 1, 0�, 0� >>;

 vector $myVectArray[1] = << 0�, 1, 0� >>;

 vector $myVectArray[2] = << 0�, 0�, 1 >>;

fl oat array float $myFltArray[]; $myFltArray = { 4.5, 12, 6.2 };

 or

 $myFltArray[0�] = 4.5;

$myFltArray[1] = 12;

 $myFltArray[2] = 6.2;

matrix matrix $myMatr[2][2]; matrix $myMatr2[2][3]

 = << 4.5, 12, 6.2; 5.4, 21, 2.6 >>;

 or

 float $myMatr[0�][0�] = 4.5;

float $myMatr[0�][1] = 12;

 float $myMatr[0�][2] = 6.2;

float $myMatr[1][0�] = 5.4;

 float $myMatr[1][1] = 2.1;

float $myMatr[1][2] = 2.6;

 TABLE 12.01

 Variable types. An array can be of
type integer, fl oat, vector, or string.

All matrices are of type fl oat. The
size of a matrix must be declared
explicitly and, unlike an array, the

size of a matrix cannot change once
it's been declared.

 In addition to alphabetic
characters, a string variable can

contain numbers.

273CHAPTER 12: MEL SCRIPTING

 Dynamic typing
 MEL is a dynamically typed language, meaning you can assign a value to a vari-
able without explicitly declaring its data type. For example, the following variable
assignment:

 $myVar = "cellInvasions";

 is interpreted the same as the explicitly typed statement:

 string $myVar = " cellInvasions ";

 MEL ’ s author and long-time Maya developer Joyce Janczyn incorporated dynamic
typing for the sake of 3D artists who, early in the development of Maya, rallied
against excessive formality in its scripting language. Although dynamic typing
demands less attention to detail than does requiring users to explicitly type every
variable, Janczyn cautions that “ explicit typing helps you stay organized and get bet-
ter diagnostics when there are bugs in your script.1 ” When scanning your MEL code,
you can tell at a glance the data type of each variable.

 So, you can assign a value to a variable either when you declare it or afterward, as in
the following example:

 string $myStr;
 $myStr = "cellInvasions";

or

 string $myStr = " cellInvasions" ;

 Th e choice is one of organizational style; for the MEL scripts in this book we separate
variable declaration and assignment—as in the fi rst example above—because we fi nd
the code clearer to follow this way.

 Data conversion
 If you attempt to assign a value of one type to a variable of another type, Maya will
convert the value in order to complete the assignment. When assigning a string value
to an integer or fl oat variable, Maya behaves as shown in the following examples:

 string $str = " Hello world." ;
 int $int = $str;
 // Warning: line 3: Converting string " Hello" to an int value of 0�. //
 // Result: 0� //

 float $flt = $str;
 // Warning: line 1: Converting string "Hello" to a float value
 of 0�. //
 // Result: 0� //

 $str = "3.1459";
 $int = $str;
 // Warning: line 2: Converting string "3.1459" to an int value
 of 3. //
 // Result: 3 //

 $flt = $str;
 // Result: 3.1459 //

274 PART 2: A FOUNDATION IN MAYA

 Maya applies diff erent rules depending on what type of data mismatch you give it.
Th e Maya Help Library contains information on data type conversion:

Data type conversion in Maya

 Maya Help → Using Maya → General → MEL and Expressions → Advanced →
Advanced programming topics → Automatic type conversion

 Maya Help → Using Maya → General → MEL and Expressions → Advanced →
Advanced animation expressions topics → Data type conversions

 Type casting
 In certain instances it ’ s desirable to cast data from one type to another. In the follow-
ing example, dividing one integer by another returns a somewhat unexpected result:

 int $a = 1;
 float $b = $a/5;
 // Result: 0� //

 While $b was declared a fl oat, dividing an integer by an integer returns an integer. To
get the desired result, cast the value of $a to type fl oat as follows:

 int $a = 1;
 float $b = (float) $a/5;
 // Result: 0�.2 //

 You will use this technique in the next chapter to convert data before assigning it to
variables.

 Strings
 Certain characters perform special functions when used with character strings in
Maya (Table 12.02). Th ey apply to string variables and to the MEL commands, print
and expression.

 Vectors
 Vectors are triple fl oating point variables or attributes, and are used often in Maya to
describe 3D transform values and RGB colors. Vectors are denoted by angled brackets
and must be assigned all three elements at once, as follows:

 $myVect = << 2.3, 4.6, 7.5 >>;

 Although they must all be assigned at once, individual elements can be queried one at
a time using the .x, .y, and .z accessors , as in the example below:

 float $x, $y, $z;

 $x = $myVect.x; // Result: 2.3 //
 $y = $myVect.y; // Result: 4.6 //
 $z = $myVect.z; // Result: 7.5 //

275CHAPTER 12: MEL SCRIPTING

 Character Description Sample use

\ " Quotation mark
character

 $myStr = " She said \ "eureka!\ "";

 // Result: She said " eureka! " //

\ t Tab $myStr = "She\tsaid\t\ "eureka!\ "";

 // Result: She said "eureka! " //

\n New line $myStr = "She said:\neureka! ";

 // Result: She said:

 eureka! //

\ r Carriage return $myStr = "She said:\reureka! ";

 // Result: She said:

 eureka! //

\\ Back slash
character

$myVar = "Escape characters with a back

 slash: \\ ";

// Result: Escape characters with a back

 slash: \ //

 TABLE 12.02

 Special characters are used
to modify strings in Maya. The
backslash character “ escapes ”
the following character so that it
will be included in the string and
not treated as computer code. The
Script Editor treats line breaks (\n)
and carriage returns (\r) the same.

 Arrays
 An array is a list of integers, fl oats, strings, or vectors. Square brackets following a
variable name mark it as an array. Arrays are declared according to the types of values
they contain.

 float $myFirstArray[]; // Size = 0�

 float $mySecondArray[] = {5.1, 6.2, 7.3, 8.4}; // Declaring size
 is optional.

 string $myThirdArray[] = {" cell1" , "cell2", "cell3" };

 float $myFourthArray[4]; // Size = 4. // Allocate memory for
 4 values.

 int $myFifthArray[4] = {5, 9, 2, 12}; // The size (4) is redundant
 here.

 Th e size of an array is the number of elements it contains. You can set the size explicitly
when you declare an array. Alternately, you can leave it blank (a “ zero-element ” array)
and let Maya increase it automatically as you add elements. Th e fi rst three arrays in
the example above are declared as zero-element arrays. Th e fourth and fi fth arrays are
declared each with a size of 4.
 Th e term index is used to refer to a specifi c element of an array. In Maya, indices start
at zero. Th erefore a four-element array has indices numbering from 0 to 3. Th is is
important to remember when you begin using arrays in your MEL scripts since it ’ s
easy to confuse the fi rst element of an array with index #1, when in fact the fi rst
element corresponds to index #0.

 float $myVar = $mySecondArray[1]; // Result: 6.2 //

276 PART 2: A FOUNDATION IN MAYA

 You can assign array elements together, using curly brackets, or individually using
index numbers within the square brackets as follows:

 float $myFirstArray[] = {5.1, 6.2, 7.3, 8.4};

or

 float $myFirstArray[];
 $myFirstArray[0�] = 5.1;
 $myFirstArray[1] = 6.2; // etc.

 Arrays of vectors come in handy for storing position data in the migrating cell simula-
tions you ’ ll undertake in Part 03 of this book. A vector array is declared and assigned
as follows:

 vector $myVectArray[] = { << 5.1, 6.2, 7.3 >>, << 1.5, 2.6, 3.7 >> };

or

 vector $myVectArray[];
 $myVectArray[0�] = << 5.1, 6.2, 7.3 >>;
 $myVectArray[1] = << 1.5, 2.6, 3.7 >>;

 Matrices
 A matrix is a 2D array of fl oating point values. Th e size of a matrix variable—the
number of rows and columns—must be stated explicitly when it is declared. Like 1D
arrays, matrices use square brackets. Furthermore, once you ’ ve declared a matrix, as
in the following example, its size cannot be changed.

matrix $myMatrix[3][2] = << 5.1, 6.2; 7.3, 1.5; 2.6, 3.7 >>;

rows columns

 Th e fi rst square-bracketed index specifi es the number of rows and the second to columns.
In conventional mathematical notation, the matrix above would be written as follows:

5 1 6 2

7 3 1 5

2 6 3 7

. .

. .

. .

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

rows

 columns

 To query or set a specifi c element in an array, use its row and column numbers, as
follows:

 float $tmpFlt = $myMatrix[1][0�];
 // Result: 7.3 //

 $myMatrix[1][0�] = 75;
 // Result: 75 //

 Global variables
 A variable is either local or global, refl ecting its scope in Maya. A local variable oper-
ates only within the animation expression or procedure in which it ’ s declared. In
contrast, a global variable can be declared and assigned in one procedure, and then
queried and reassigned in any other procedure or expression available to your Maya

277CHAPTER 12: MEL SCRIPTING

scene. Th e signifi cance of a variable ’ s scope will become apparent as we explore the
scripting structures, procedures and expressions, later in this chapter.
 All variables declared in the Script Editor—that is, entered via the Command input
panel—are automatically global variables. However, this does not apply to variables
contained within procedures or animation expressions that are in turn entered via
the Script Editor. In procedures and animation expressions, variables can be either
global or local. A variable is local if declared as follows:

 string $myString;

 A variable is declared global by preceding it with the word “ global ” :

 global string $yourString;

 A global variable need only be assigned once, but it must be declared within each
procedure or expression that uses it.

 You cannot re-type a global variable
 Once you declare a global variable, you cannot change its data type until you restart
Maya. For example, enter the following code in the Script Editor:

 string $myStr = "cellInvasions";
 $myStr = "tumor progression" ; // Okay.
 int $myStr = 5; // Declare $myStr as a different type.

 // Error: int $myStr = 5; //
 // Error: Invalid redeclaration of variable "$myStr" as a different
 type. //

 You made $myStr global by entering it in the Script Editor. Th e code then attempts to
retype it as an integer. You cannot use the name $myStr with a diff erent variable type
until you quit and restart Maya.

Global variables

 Maya Help → Using Maya → General → MEL and Expressions → Debugging, opti-
mizing, and troubleshooting → Troubleshooting → Accessing global variables

Values and variables in Maya
 Maya Help → Using Maya → General → MEL and Expressions → Values and
variables

Arrays, vectors, and matrices

 Maya Help → Using Maya → General → MEL and Expressions → Arrays, vec-
tors, and matrices

 Mathematical and logical expressions
 Th e word expression refers to two things in Maya. Th e fi rst is a mathematical or logi-
cal statement composed of one or more operands (or values) and one or more operators .
For example:

 5 + 6

or
 size($someArrayVariable)

278 PART 2: A FOUNDATION IN MAYA

 Expressions may contain MEL commands, as in the second example above (size is a
MEL command), and MEL command statements may contain expressions as follows:

 float $var1 = 5.5;
 setAttr mySphere.translateX ($var1 + 6);

 setAttr is a MEL command used to set the value of an attribute.

 Blocks
 A block is several expressions grouped together in curly brackets. Blocks are used fre-
quently in conditional statements—a programming structure you ’ ll meet more for-
mally shortly. For example:

 float $x, $y;
 $x = 5;
 $y = 4;
 if ($x > $y)
 {

 float $biggest = $x;
 string $message = "\n$x is bigger than $y\n ";
 print $message;
 }

 For legibility, blocks are usually indented (as shown above). Also, each statement
within a block must end with a semi-colon (an uncommon requirement in many pro-
gramming languages). However, the end of a block—the second curly bracket—does
not require a semi-colon.

 Th e second type of expression in Maya is an animation expression , which is a statement
or script that you typically attach to an attribute to animate it. We will explore ani-
mation expressions in detail beginning on page 292 .

 Operators
 Operators are used in arithmetic and logical expressions and in conditional statements.
 Table 12.03 lists the operators available for use in MEL. Th e order in which they are
evaluated in an expression—their order of precedence—is as follows:

 Highest () []
 ! + + --
 * / % ^
 + -

 < <= > >=
 & &
 ||
 ? :

 Lowest = += - = * = / =

 Operators on the same row of the above list have equal precedence. When operators
from the same row are used together, the left-most one in the expression is evaluated
fi rst. Th e following two expressions demonstrate how operator precedence causes two

 Local variables declared within
a block operate only inside

that block. In other words, the
variable ' s scope is limited to the

block. For example, moving
the print $message command

outside the code block to
the right generates an error

message.

279CHAPTER 12: MEL SCRIPTING

 Operator Name or meaning Sample use

 Arithmetic operators

 () Round brackets $var1 = 2 * (2 + 3); // Result: 10.

 [] Square brackets $var1 = $array1[4]; // 5th element of
$array1.

 ! Not if ($var ! = 0) // If $var not equal to 0,
follow with a function or a command.

 ++ , -- Increment, Decrement
by 1

 $var1 ++ ; // Increases the value of $var
by 1.

 * Multiply $var1 = 2 * 5; // Result: 10

 / Divide $var2 = (float) 2/5; // Result: 0.4 (float)
forces 2/5 to return a floating point
value.

 % Modulo $mod = 8% 3; // Result: 2

 ̂ Vector cross product $vect = << 1, 3, 5>> ^ << -2, 4, -5>>;
// Result: << -35, -5, 10>>

 + , - Plus, minus $var2 = $var2 + 5 – $var1; // Result: -4.6

 Logical operators

 < Less than if ($var1 < 5) …

 < = Less than or equal

to

 if ($var1 < = 5) …

 > Greater than if ($var1 > 5) …

 > = Greater than or

equal to

if ($var1 > = 5) …

 == Equal to if ($var1 == 5) …

 ! = Not equal to if ($var1 ! = 5) …

 & & Logical AND if ($var1 == 5 && $var2 == 6) …

 || Logical OR if ($var1 == 5 || $var2 == 6) …

 ? : If-else shorthand ($var2 < 0) ? $var2 : $var2/2; // If
$var2 < 0, return its value, else return
its value divided by 2.

 TABLE 12.03

 MEL operators listed in order of
precedence from the highest at the
top of the table to the lowest at the
bottom.

similar expressions to evaluate diff erently due to the order in which the operators are
applied.

 float $myFloat = 3 + 6 * 2;

 // Result: 15 //

 In some programming languages
the circumfl ex (̂) character
is used for the exponentiation
operation. Still other languages
use a double asterisk (* *) for the
same operation. In Maya, this
operation is performed with the
pow(a,n) command, where a is
the base and n , the exponent.

280 PART 2: A FOUNDATION IN MAYA

 float $myFloat = 2 * 3 + 6;

 // Result: 12 //

Expressions and operators

 Maya Help → Using Maya → General → MEL and Expressions → Syntax →
Expressions, operators and statements

 Operator overloading
 In a programming language with operator overloading, certain operator symbols
can have more than one meaning. A familiar example is the use of the symbol � . It
would not be unusual to write code today in which the “ plus ” sign could be invoked
legitimately to “ add ” together pairs of data of diverse kinds: pairs of integers, or pairs
of decimal numbers, or two strings or vectors or matrices—all with one little “ plus ”
sign. (To get a feel for the old days, just try this in a vintage language of the 1950s or
1960s, like Fortran!)

 Operator overloading can bring signifi cant concision to your coding. Why use a pleth-
ora of symbols or procedure invocations when the right one can be triggered in con-
text with just one symbol? Be careful though: a downside to overloading, and it can
become a signifi cant issue as the size and complexity of your program grows, is the
problem future readers of your code (including yourself) may have deciphering what
you intend the overloaded operator to do at each place it is used in your code. For
example, seeing what you mean by two integers added may be clear, but what might a
reader make of a line in which your plus sign links an integer and a decimal number,
or a decimal number and a string? Error or genius? Good coding style in an over-
loaded programming language demands very careful attention to how the compiler or
interpreter handles all the possible permutations of data types you could throw at it.

 The MEL command
 Let ’ s look at a MEL command that runs when you choose a typical menu item in
Maya. You ’ ll then use that command to perform the same action without making the
menu selection.

 1. Type the following in the Command Line and press Enter:

 ScriptEditor;

 You ’ ve just run a MEL command!

 2. Adjust the Script Editor so that you can see both the history and command input
panels. You can change the relative size of the panels by LMB + dragging the
horizontal bar dividing them.

 3. From the Script Editor menu bar, choose Edit → Clear All.

 4. From the main window menu bar choose Create → Polygon Primitives →
Sphere ❒ .

 5. In the Polygon Sphere Options window choose Edit → Reset Settings.

 6. Press Create.

281CHAPTER 12: MEL SCRIPTING

 As you may have expected, your actions above created a sphere centered at the world
origin of your scene. Now let ’ s look at the two lines that appeared in the Script editor
History panel immediately after you pressed Create.

 polySphere -r 1 -sx 20� -sy 20� -ax 0� 1 0� -tx 1 -ch 1;
 // Result: pSphere1 polySphere1 //

 Th e fi rst line is a statement containing the MEL command and various modifi ers.
Th e second line states the return value of the command: the names of the transform
node (pSphere1) and the creation (or history) node (polySphere1). By default, the
shape node name is not reported. Th e forward slash “ // ” characters indicate non-
executable (commented) code—that is, information intended only for the user and
not for Maya to process in any way. Let ’ s take a closer look at the fi rst line:

 polySphere -r 1 -sx 20� -sy 20� -ax 0� 1 0� -tx 1 -ch 1;

MEL command flag fl ag argument

 Th e MEL command performs a task—manipulates the UI or the scene graph in some
way. In the above example, the polySphere command creates a polygonal sphere. A fl ag
is preceded with a hyphen (or dash) and modifi es the MEL command according to the
fl ag arguments given to it. Th e arguments are values of a certain type: fl oat, integer,
string, and so on. Flags often correspond to attribute settings. Th e fi rst fl ag, -r, specifi es
the sphere ’ s radius: the default argument value for this fl ag is 1. When Maya traces a
command to the Script Editor, it displays the short names for the fl ags: “ -r ” is short for
 “ -radius” . You can use long or short names when you type MEL commands.

 Next you ’ ll create another sphere by reusing the statement that Maya traced in the
History panel of the Script Editor.

 1. Select the following line in the history panel of the Script Editor:

 polySphere -r 1 -sx 20� -sy 20� -ax 0� 1 0� -tx 1 -ch 1;

 2. LMB + drag the selection from the history panel to the command input panel.

 3. With the text still selected (highlighted), hit Enter on your numeric keypad.

 Th is should create a second sphere, automatically named pSphere2 .

 Flags and default tool settings
 Specifying fl ags and arguments is essential if you want a command to do something other
than what its default settings dictate. By extension, you need only to include fl ags whose
values you wish to alter from the default settings; those that aren ’ t specifi ed in your MEL
command line will be used at their default values. For example, let ’ s create a third poly-
gon sphere with the same dimensions and other basic settings, but with a unique name:

 1. Type the following line into the Script Editor:

 polySphere -name mySphere;

 2. Press Enter.

 If you take a minute to inspect the sphere in your perspective scene view and look
at its nodes and attribute settings in the Attribute Editor, you ’ ll see that it is the
same as the previous two spheres except for its name, which is “ mySphere ” instead of

282 PART 2: A FOUNDATION IN MAYA

 pSphere3 . Th e other fl ags—radius, subdivisionsX, subdivisionsY, and so on—were
taken at their saved settings since you didn ’ t specify alternate values.

 MEL command mode: Create, edit, and query
 In the examples above, you used the polySphere command in its default create mode .
Here you ’ ll explore the other two MEL command modes: edit mode query . Edit mode
makes changes to the attributes of an existing item. For example, change the radius
of mySphere as follows:

 1. From the Script Editor menu bar, choose Edit → Clear All.

 2. Type the following code in the input panel and press Enter:

 polySphere -edit -radius 5 mySphere;

 Th e -edit fl ag specifi es the command mode and requires no arguments. Th e
 -radius fl ag sets the sphere ’ s radius to the fl ag argument value of 5. Th e fi nal term in
the statement, mySphere , is a command argument ; it has no fl ag and tells the
 polySphere command what is being edited.

 Query mode is used to query information about a node whose name is specifi ed by
the command argument. For example, suppose you wanted to know if mySphere has
construction history:

 1. From the Script Editor menu bar, choose Edit → Clear All.

 2. Type the following code in the input panel and press Enter:

 polySphere -query -ch mySphere;

 Th e fl ag, -ch, is short for the rather cumbersome word: -constructionHistory . After
entering the command, you should see the following result in the History panel of
the Script Editor:

 // Result: 1 //

 Th e return value in this case is boolean : 1 corresponds to “ yes ” and 0 to “ no ” .
Th erefore the sphere does indeed have construction history. Naturally, a quick way
to query an attribute value is to select the item in question and inspect the Channel
Box or the Attribute Editor. However, when you begin using MEL scripts to build
complex models and run simulations, you ’ ll need to query attribute values for mul-
tiple objects in rapid succession—the position and orientation of colliding molecules
for example. You ’ ll learn additional methods for querying and setting attributes
shortly.

 MEL command syntax

 Imperative and function syntax
 Th e MEL command example above (polySphere -query -ch mySphere;) is written in
 imperative syntax which is used in Unix shell and DOS commands. Maya also supports

 If you highlight text (by selecting
it) before entering it in the

Script editor, it will remain in the
command input panel, ready to

be run again. On the other hand,
if you enter a statement without

selecting it fi rst, it will run, but
the text will be deleted from the

command input line.

283CHAPTER 12: MEL SCRIPTING

 function syntax , in which commands resemble a standard function call in computer
language. Th e following statements do exactly the same thing when executed in Maya:

 1. Imperative syntax: polySphere -name mySphere;

 2. Function syntax: polySphere ("-name", "mySphere");

 In #2 the fl ag and fl ag arguments are passed as function arguments to the command
polySphere. Note that the arguments must be enclosed in quotation marks, unlike
with imperative syntax, for which quotation marks around character strings (e.g.
 " mySphere ") are optional.

 As you work with MEL, occasions will arise in which you want to pass the return
value of a MEL command to an attribute or to a variable. In the following example,
$rad is an empty variable used to store the radius attribute value for a polygon sphere
named mySphere .

 1. Imperative syntax: float $rad = ' polySphere -query -radius mySphere ';
 // Result: 5 //

 2. Function syntax: float $rad = polySphere ("-query", "-radius",

 "mySphere ");

 // Result: 5 //

 When imperative syntax is used, the command has no return value unless you force
one by surrounding the command in back quotes as shown in #1 above. Function syn-
tax returns a value without the need for modifying characters. With few exceptions,
we use imperative syntax throughout this book. It generally requires fewer characters
than function syntax and is therefore easier to debug (analyze and correct for errors).

 Blank spaces and lines
 Blank spaces in MEL statements are, for the most part, ignored by the MEL inter-
preter. Th e following two lines of code are interpreted in the same way:

 vector $myVect=<<1.2,2.3,3.4>>+<<2.1,3.2,4.3>>;
 // Result: << 3.3, 5.5, 7.7>> //

 vector $myVect = << 1.2, 2.3, 3.4 >> + << 2.1, 3.2, 4.3 >>;
 // Result: <<3.3, 5.5, 7.7>> //

 Used wisely, blank space can improve the legibility of your MEL code. Similarly blank
lines are ignored and can therefore enhance legibility.

 Functions
 Functions are MEL commands used with values and variables. Most functions per-
form mathematical operations as in the following example featuring the trigonomet-
ric (periodic) function, cosine:

 float $pi = 3.14159265;
 float $y = ' cos $pi';
 // Result: -1 //

284 PART 2: A FOUNDATION IN MAYA

 Functions can be written using imperative or function syntax. For example, the
cosine function above could also be written as:

 float $y = cos($pi);
 // Result: -1 //

 Maya has over 50 functions which are well documented in the Help Library:

MEL functions

 Maya Help → Using Maya → General → MEL and Expressions →
Useful functions

 MEL command reference library
 As of Maya release 8.5 there were several thousand MEL commands spanning a broad
range of functionality in Maya—from system utilities to modeling. In this book we
will introduce many of the commands relevant to learning the in silico biology Maya
workfl ow. A complete list of MEL commands, their fl ags, and arguments is available
in the MEL command reference in the Maya Help Library.

MEL command reference

 Maya Help → Commands

 MEL commands we know and love
 When asked to relate best practices for MEL scripting, Joyce Janczyn (MEL ’ s author)
stressed the importance of learning the commands so that you ’ ll be able to use them
quickly and effi ciently.1 Table 12.04 lists our 10 most frequently used MEL commands
and the ones we have committed to memory.

 Make a shelf button from a MEL command
 Shelf buttons are handy for launching windows and editors. What a button actually
does when you press it is run a MEL statement or script. You can attach any script
you like to a button; each time you press the button, the script executes. Th e follow-
ing example demonstrates how to capture a script from the Script Editor and turn
it into a button. Th e script in this case is a single MEL command used to launch the
Expression Editor.

 1. Enter the following text in the Command Line:

 ExpressionEditor;

 2. If your shelves are not visible, choose Display → UI Element → Shelves.

 3. Click on your Custom shelf tab. If you do not have a custom shelf, create one
now:

 (a) Window → Settings/Preferences → Shelves.

 (b) Under the Shelves tab press the New Shelf button and name it " Custom "

285CHAPTER 12: MEL SCRIPTING

 (c) Press the Save All Shelves button.

 (d) Select your Custom shelf tab.

 4. Open the Script Editor and select the command in the History fi eld:

 ExpressionEditor;

 5. LMB + or MMB + drag the command to your Custom shelf and release the mouse
button.

 6. Open the Shelf editor: choose Window → Settings/Preferences → Shelves.

 7. Choose the Shelf Contents tab, then locate and select the newly added
Expression Editor command.

 8. In the Icon Name fi eld at the bottom of the editor, type the short name
EE (Figure 12.04).

 9. Press the Save All Shelves button.

 MEL command Sample use Result

Select select mySphere; Selects the object called mySphere.

getAttr getAttr mySphere.

translateX;

 Returns the value of the specifi ed
attribute, translateX.

setAttr setAttr polySphere1.radius 5; Sets the value of the specifi ed
attribute.

connectAttr connectAttr myGlobe.tx

myCube.rz;

 Connects the output value of the
fi rst attribute to the input of the
second.

addAttr addAttr -longName newAttr

myGlobe;

 Adds a custom attribute called
 " newAttr " to the object myGlobe.

rand rand 0 1; Returns a pseudorandom number
between 0 and 1.

 ls $var = 'ls-transforms

"poly *"' ;

 Returns the names of items in your
scene—in this example, objects
with a transform node name
starting with " poly " .

size size $var; Returns the length of an array.

clear clear $var; Clears the memory being used by
an array variable and resets the
array length to zero.

print print "Hello world "; Prints the argument (" hello world ")
to the Script Editor and Command
Line Result fi eld.

 TABLE 12.04

 Our MEL Top 10 : MEL commands
that we use most regularly in our
Maya-based in silico biology work.
The commands are displayed in
imperative syntax.

286 PART 2: A FOUNDATION IN MAYA

 Now anytime you want to launch the Expression Editor you can do so easily by press-
ing the EE button on your Custom shelf.

 Attributes in MEL
 You have done a lot with attributes in the previous chapters—reading and setting
their values in the Channel Box and Attribute Editor. When used in MEL statements,
attribute names are slightly diff erent than they appear in the Channel Box and
Attribute Editor; they use dot notation as follows:

 objectName.attributeName

 Getting, setting, and connecting attributes
 By now you ’ ve learned that working in Maya boils down to manipulating attribute
values; models, shaders, and animation are all characterized by attributes. Of the
thousands of MEL commands, arguably the most useful are those that query, set,
and connect attributes because they directly aff ect the DG, modifying and animat-
ing your models. Th e following code listing demonstrates these three important com-
mand types. Note our use of comments to document each step.

 // Create a polygonal sphere.
 polySphere -name myGlobe;

 // Set translateY to a random value less than or equal to 20�.
 setAttr myGlobe.translateY ' rand 20�' ;

 // Create a polygonal cube.
 polyCube -name myCube;

 FIGURE 12.04

 Use the Shelf Editor to arrange and
rename shelf buttons.

287CHAPTER 12: MEL SCRIPTING

 // Get the translateY value of myGlobe and store it in a variable.
 float $transY = ̀ getAttr myGlobe.translateY` ;

 // Set the translateY value of myCube using the variable $transY.
 setAttr myCube.translateY $transY;

 // Use the sphere 's X position to drive the cube 's Z rotation.
 connectAttr myGlobe.translateX myCube.rotateZ;

 In the example above, dot notation was used for attribute names. Note the diff erence
between the following two statements. In the fi rst, the rotateY attribute is written as
it appears in the Channel Box. Th e second statement uses the correct dot notation to
refer to the attribute and executes without error.

setAttr myGlobe Rotate Y 45;

// Error: line 1: No attribute was specified. //

 (incorrect)

setAttr myGlobe.rotateY 45; (correct)

 Like variables, each attribute in Maya has data type. Table 12.05 lists attribute data
types with examples of each.

 Setting attributes with the " type " fl ag
 Unlike single-value, numerical attributes—like translateX, visibility, and so on—some
attributes must be set using the type fl ag and an appropriate argument. Two common
examples include compound transform and string attributes:

 setAttr myGlobe.translate -type double3 5 10� 15;

 setAttr someObject.customAttribute -type "string" "someValue";

 String attributes are rare in Maya and usually take the form of a custom attribute
in which you want to store textual information. Unlike numerical attributes like
translate and scale , string attributes cannot be keyframed.

 Attribute type Sample attribute Sample data

fl oat mySphere.translateX 3.14159265

boolean mySphere.visibility " yes " or " no " ; 1 or 0

vector mySphere.translate << 5.5, 1.1, 6.6 >>

int polySphere1.subdivisionsX 20

string polySphere1.customAttribute " concentration "

vector array swarmShape.rgbPP { << 1, 0, 0 >>, << 0, 1, 0 >>, << 0,
0, 1 >> }

fl oat array swarmShape.mass { 4.5, 12, 6.2 }

 TABLE 12.05

 Attribute data types. The last
two types pertain to per particle
attributes , for which each element
pertains to a specifi c particle within
a particle object.

288 PART 2: A FOUNDATION IN MAYA

 Conditional statements
 Conditional statements choose a course of action in a computer program by testing
one or more conditions and take the following basic form:

 if (some condition is met)

 do something

 else if (some other condition is met)

 do something else

 Maya has two types of conditional statement: if … else and switch … case . Th e following
is an example of a typical if …else statement. It tests a random number against sev-
eral conditions then assigns a variable and prints a message base on the result.

 string $myColor;
 float $rnd = ' rand 9' ; // Pick a random number between 0� and 9.

 if ($rnd <= 3) {
 $myColor = "red";
 print "Win!";
 }
 else if ($rnd > 3 & & $rnd <= 6) {
 $myColor = "blue";
 print "Lose!";
 }
 else {
 $myColor = "green";
 print "Draw!";
 }

 Th e fi nal else statement is a catch-all if none of the previous conditions are met.
Curly brackets are used to enclose the contents of each if, else …if , and else state-
ment. Note that semi-colons are not used to terminate the statements. If the con-
tents of a condition statement don ’ t exceed one line, you can omit the curly brackets
and shorten each statement to a single line, as in the following example:

 float $rnd = 'rand 3' ;
 if ($rnd <= 1) print "Win!";
 else if ($rnd > 1 & & $rnd <= 2) print " Lose! ";
 else print "Draw!";

 Th e switch …case statement evaluates an expression against several predetermined
cases. When it matches the expression to the value of a case it executes the corre-
sponding code. A break statement exits the switch …case statement once a condition
has been met. switch …case looks for an equality between an expression and a case and
cannot match them based on an inequality as we did in the if …else examples above.
In the following example the ceil (short for ceiling) function is used to return next
highest integer value above the randomly generated number.

 int $rnd2 = ceil(` rand 3`); // Function syntax wrapping imperative
 syntax.
 switch ($rnd2){

 case 1:
 print " Win!" ;
 break;

 The ceil function returns the
next highest integer above its

argument—a fl oat value.

289CHAPTER 12: MEL SCRIPTING

 case 2:
 print "Lose!" ;
 break;
 default:
 print "Draw!";
 break;

 }

 Note that the imperative command, 'rand 3' , is wrapped within function syntax,
ceil() . Th e expression could be written as it appears above or as:

 int $rnd2 = ceil(rand(3)) // Function syntax.

 but not as:

 int $rnd2 = ' ceil ' rand 3 '' ; // Imperative syntax wrapping imperative
 syntax.

 // Error: int $rnd2 = ' ceil ' rand 3' ' ; //
 // Error: Line 1.23: Syntax error //

 Indenting lines
 Indenting lines of code is not a syntactic requirement of MEL but is a style choice that
makes your scripts easier for humans to read. We highly recommend it. We typically
indent lines using tab characters, which are ignored by the MEL interpreter. Many
text editors designed for computer coding indent lines automatically.

 Loops
 A loop is a block of code that repeats for as long as some condition is met. Loops are
essential to in silico simulations involving multiple objects like cells and molecules, and
for constructing models out of repeated subunits like the ones you ’ ll build beginning in
 Chapter 14 . MEL supports four kinds of loop: for,for-in,while , and do …while .

 The for loop
 Th e following is a typical example of a for loop, involving a counter integer used to
increment through the code block.

 int $i;
 for ($i = 1; $i <= 5; $i++) {
 print $i;
 print "\n";
 }

 Th e fi rst term within the brackets states the starting condition, the second term
states the ending condition, and the third increments the counter by 1. Upon run-
ning the above for loop, the printed result in the Script Editor is:

 1
 2
 3
 4
 5

290 PART 2: A FOUNDATION IN MAYA

 Note the use of the “ new line ” notation, “ \n ” , to print each new value of $i on a sepa-
rate line. Th e above for loop could also be written more concisely as:

 for ($i = 1; $i <= 5; $i++) print($i + "\n");

 The for-in loop
 Th e for-in loop is a tidy way to increment through the elements of an array, as in the
following example:

 string $cell;
 string $cellType[] = { "tCell", "fibroblast", "keratinocyte",
"monocyte"};

 for ($cell in $cellType) print($cell + "\n");

 Th e printed result in the Script Editor is:

 tCell
 fibroblast
 keratinocyte
 monocyte

 The while loop
 A while loop executes for a long as the condition in brackets is true. For example:

 int $i = 0�;
 while ($i <= 10�) {

 $i += 2; // The += assignment operator adds 2 to the current
 value of $i.

 print($i + "\n");
 }

 Th e printed result in the Script Editor is:

 2
 4
 6
 8
 10�
 12

 The do …while loop
 A do …while statement evaluates the condition at the end of the code block rather than
the beginning like the while loop. Th e code is executed as long as the condition is true.

 int $i = 0�;
 do {

 $i += 2; // The += assignment operator adds 2 to the current
 value of $i.

 print($i + "\n");
 }
 while ($i <= 10�);

291CHAPTER 12: MEL SCRIPTING

 Th e printed result in the Script Editor is the same for the code above as for the while
loop. Use caution with while and do …while statements; a simple error in the code can put
your computer into an infi nite loop, from which the only recovery is to force-quit Maya.

 Th e Maya Help Library is an excellent source of information and examples about
statements that control the logical fl ow of your MEL scripts:

MEL script fl ow control

 Maya Help → General → MEL and Expressions → Controlling the fl ow of a script

 Procedures
 A procedure is a user-defi ned, self-contained set of MEL statements that carries out
specifi c operations or actions. A procedure is executed (or called) with a single com-
mand: its name. Procedures are similar to pre-defi ned MEL functions like cos or rand ;
they take arguments, make calculations, and then return results. Procedures have
three things in common with variables:

 1. Procedures have data types (or return types) which are the same as the data
types available for variables in Maya.

 2. A procedure must be declared before it is used.

 3. Procedures can be either local or global. A local procedure is available only
within the script or expression in which it resides. A global procedure, on the
other, is available at any time (after being declared), to any script or expression
within the Maya environment.

 A procedure declaration takes the following basic form:

 global proc returnType procedureName (arguments) {
 // MEL statement.
 // MEL statement.
 // MEL statement.
 // etc …
 }

 Omit the word global for local procedures. Arguments must be declared by type as
you ’ ll see in the following sample procedure which prints a message in the Script Editor.

 1. Open the Script Editor.

 2. Type the following in the command input panel:

 global proc string headBump(int $monkeyNum, string $location) {

 // Declare and assign variables.
 string $little = " little monkeys jumping on the ";
 string $verse = $monkeyNum + $little + $location + " ! ";

 // Assign the return value.
 return $verse;

 }

 3. Press Enter. This declares the procedure—it is now loaded in memory and can be
called at any time using the procedure name, headBump. headBump will be cleared

 In some programming languages
procedures are known as
subroutines or functions.

292 PART 2: A FOUNDATION IN MAYA

from memory when you quit Maya, so it must be re-declared when you restart Maya if
you wish to use it again.

 4. In the Script Editor choose Edit → Clear All.

 5. Call the procedure using its name and arguments: type the following into the
Script Editor or Command Line and hit Enter.
 string $story = headBump(5, "bed");

 Maya displays the procedure result (its return value) in the Script Editor and the
Command Line:

 5 little monkeys jumping on the bed!

 Of course, you ’ ll be using procedures for more than building nursery rhymes; pro-
cedures are a highly useful tool in the in silico biology workfl ow. Th ey allow you to
package sets of instructions that can be called only when needed. As your work with
procedural techniques in Maya advances, and your MEL scripts get longer and more
complex, procedures are good way to keep your code organized.

 Sourcing procedures
 For the example above, entering the procedure into the Script Editor is a simple way to
declare it and is a good way to declare short procedures in general. When you compose
a longer procedure in an external text editor, you can copy and paste it in the Script
Editor then press Enter to declare it. However, this can get tedious, particularly when
you need to declare several procedures so that they ’ ll all be available to Maya at once;
locating and opening the text fi les, then copying and pasting the code each time you
start Maya takes up valuable time. For this reason we recommend you take advantage
of Maya ’ s built-in script sourcing capabilities via the MEL script search path. When
you call an undeclared procedure (e.g. myProcedure())—for instance, by typing its
name in the Script Editor—Maya scans its search path contents list for a MEL script
fi le of the same root name (e.g. myProcedure.mel). If the fi le exists, Maya loads it into
memory, thereby declaring any procedures the fi le contains.

 One fi le—one procedure
 While it may be tempting to gang up multiple procedures within a single MEL script
(text) fi le, it ’ s not advisable according to veteran Maya developer Mike Taylor. He rec-
ommends saving each procedure out in its own fi le. “ Maya knows how to automati-
cally load the script that defi nes a global procedure as long as the fi le name matches the
procedure name . If you include multiple global procedures in a single MEL fi le, then
you loose that benefi t and you add the overhead of making sure your global procedure
is defi ned before you call it. ” Th roughout the projects in Part 03 of this book we rec-
ommend you to take Mike ’ s advice and save each global procedure in a distinct text
fi le that is named appropriately. For instance, a procedure called rule1() should be
saved in a fi le called rule1.mel within your Maya Scripts directory. 2

 Animation expressions
 Animation expressions are the engines of procedural animation in Maya. Generally
speaking, an animation expression (expression for short) is a set of instructions used
to animate one or more attribute. Typically, an expression evaluates every time the
Maya frame number changes, meaning that the instructions are processed in regular

 Remember that If you add fi les
to the Scripts directory when

Maya is running, you will have
to refresh the search path

contents, using the rehash
command, in order to have

access to those fi les and their
contents.

 Mike Taylor has been a member
of the Maya developers team

since 1995, prior to the launch of
Maya version 1.

293CHAPTER 12: MEL SCRIPTING

time increments when Maya is in playback mode. In the following example you ’ ll
make a sphere and an expression to animate its translateX attribute.

 1. Start a new Maya scene: choose File → New Scene.

 2. Open the Script Editor: type ScriptEditor in the Command Line and press Enter
(remember that MEL is case sensitive).

 3. Use a MEL command to set the playback options for your scene:

 playbackOptions -playbackSpeed 1 -loop continuous -min 1 -max 150�;

 4. Create the sphere. Enter the following in the Script Editor:

 polySphere -r 1 -n mySphere;

 5. With the sphere selected, highlight its Translate X attribute in the Channel Box.

 FIGURE 12.05

 The expression Editor is where
you ' ll typically interact with
animation expressions in Maya.

 The playbackSpeed fl ag sets the
scene view playback speed to
a multiple of the frame rate. To
alter the frame rate (say, from 24
fps (fi lm) to 30 fps (NTSC)) you
must open up Preferences and
make the change under Settings
→ Time.

294 PART 2: A FOUNDATION IN MAYA

 6. RMB + click on Translate X and choose Expressions. This launches the Expres-
sion Editor with the attribute highlighted in the Selected Object & Attribute
fi eld.

 7. Select mySphere.translateX in the Selected Object & Attribute fi eld, and then
LMB+drag the text into the Expression text fi eld.

 8. Create the expression shown in Figure 12.05 by adding " = frame - 1; " to the text.

 9. Press the Create button to fi nish.

 Maya will assign a default name to your expression which is displayed in the
Expression Name Field of the Expression Editor.

 10. In the timeline controls of the main window, press the Play button.

 As the frame number increases, so does the X position of your sphere due to the
expression. Th e result is a simple procedural animation similar to the one you made
back in Chapter 06 . From this, you can see how MEL can be used in place of the UI
tools (Move, Rotate, and so on) to animate attributes. Next, let ’ s take a look at what ’ s
going on behind the scenes when you use an animation expression.

 The animation expression node
 An animation expression is itself a type of DG node . It has attributes and is part of
the DG , with direct access to all other nodes and their attributes. Figure 12.06 shows an
expression represented in the Connection Editor: in the left panel are the expression

 FIGURE 12.06

 The Connection Editor showing the
connection between an expression

node and the attribute it controls.
The settings under the Left

Display and Right Display menus
dictate what types of attributes

will be shown (e.g. keyable or
non-keyable attributes). In most

cases, you ' ll interact with relatively
few of the attributes displayed

in the Connection Editor, such as
the Translate attributes shown

for mySphere in the right panel.
Attributes that are connected (or

driven) are displayed in italics
(oblique text).

295CHAPTER 12: MEL SCRIPTING

attributes; in the right panel are the attributes of mySphere. expression1.output drives
 mySphere.translateX . Another way to visualize this relationship is in the Hypergraph
(Figure 12.07) where you can also see that Maya ’ s time node drives the expression.

 The Expression Editor
 Although you can create and edit expressions using the MEL command expression,
it is often more convenient to do so using the Expression Editor (Figure 12.05). We ’ ll
cover a few of this important editor ’ s key features here. Th e Select Filter menu lets you
choose how items are listed:

 1. By Expression Name:

 for example, expression1

 2. By Object/Attribute Name:

 displays attributes and expressions (if any exist) for selected objects

 3. By Script Node Name

 (a Script Node is a DG node which stores a MEL script)

 Th e Editor menu lets you choose to edit your expressions in the Expression Editor or
in a default text editor on your system. For more information on using this feature,
refer to Maya ’ s Help Library:

Linking an external text editor to Maya ' s Expression Editor

 Maya Help → General → MEL and Expressions → Animation expressions →
Edit an animation expression with a text editor

Expression node

Time node

Expression drives an attribute of
the connected transform node

Transform node sends the state of its
driven attribute to the Expression

 FIGURE 12.07

 An expression node is driven by
Maya ' s time node and in turn drives
the attributes to which
it ' s connected.

296 PART 2: A FOUNDATION IN MAYA

 Converting units
 When Maya assigns and queries an attribute or internal variable whose value is a meas-
urement unit—distance, playback speed, or an angle—the program does so using its
default internal units of centimeters, 24 fps, and radians, respectively. If you alter any
of these default working units in Preferences, Maya converts the attribute values that
you specify to its default working units behind the scenes. For example, suppose you
changed the Angular working units from radians to degrees—like you did back on page
 266 . When you assign a Rotation attribute value for an object, Maya will convert that
value from degrees to radians for storage in the object ’ s transform node. Th e attribute
value will still be displayed in degrees in the Channel Box (and other UI editors, such as
the Attribute Editor), but Maya will work with its equivalent value in radians for any cal-
culations it makes in order to animate the rotation of the object.

 Th e Convert Units settings in the Expression Editor tell Maya whether or not to con-
vert All three types of unit, None of the three, or Angular (units) only . When you spec-
ify None , Maya will treat all distance units as centimeters and all angles as radians,
regardless of the working units you specifi ed in Preferences. When you specify All or
Angular only, and set the default working units in Preferences, Maya will not convert
units. In other words, unit conversion in animation expressions only happens when
you ’ re using non-default working units (set in Preferences) and specify unit conver-
sion other than None in the Expression Editor.

 Converting from non-default units adds extra computation steps and can there-
fore slow down the execution of an animation expression. For optimal speed, it ’ s
best to set working units in Preferences to their default values of centimeters,
24 fps, and radians. However, this is not always practical: you may fi nd it more intuitive
to work with angles in degrees rather than radians, and your project may call for
distance units other than centimeters. Th erefore, the choice of working units comes
down to a trade-off between convenience and speed.

 The Create and Edit buttons
 Maya won ’ t create or update an expression node until you press either the Create or
Edit buttons at the bottom of the Expression Editor. Because of this requirement for
manual intervention, via the UI it is easy to lose changes you ’ ve made while editing
an expression. Th e Reload button reloads from memory the version of the expression
that was stored last time you pressed the Edit button; it allows you to undo changes
to an expression before pressing Edit.

 You will get to know the Expression Editor quite well as you work through this book.
For complete documentation, refer to the Help Library:

The Expression Editor

 Maya Help → General → MEL and Expressions → MEL Windows and Editors →
Expression Editor

 Animation expression syntax
 Expression syntax diff ers in two ways from the syntax of MEL statements that you
enter through the Script Editor or use in procedures. First, you can query, assign, and

297CHAPTER 12: MEL SCRIPTING

connect attribute values directly in an expression, whereas you must use the MEL
commands, getAttr, setAttr , and connectAttr in a MEL script to do the same. In
the following example, we set our sphere ’ s translateY attribute to 5. Th e fi rst line is
something you might enter in the Script Editor or Command Line but will also work
in the Expression Editor. Th e second line is proper expression syntax but will fail if
entered as a MEL statement in the Script Editor.

 setAttr mySphere.translateY 5; // Standard MEL syntax.

 mySphere.translateY = 5; // Expression syntax.

 Secondly, expressions have two native variables, frame and time , that are set automat-
ically through an input connection from the time node. Th ese variables are not availa-
ble to scripts outside of an expression. If you want to query the frame number outside
of an expression, use the currentTime MEL command as in the following example:

 // Incorrect:
 int $myVar = frame;
 // Error: int $myVar = frame; //
 // Error: Line 1.19: Invalid use of Maya object "frame". //

 // Correct:
 int $myVar = ' currentTime -query';
 // Result: 44 //

 The expression command
 When you press Create to make a new expression in the Expression Editor, Maya exe-
cutes a MEL command—as it does with most other actions you perform in the UI.
To demonstrate the expression command, let ’ s recreate expression1 for mySphere , as
follows:

 1. Open the Script Editor and choose Edit → Clear All.

 2. Open the Expression Editor: choose Window → Animation Editors →
Expression Editor.

 3. Choose Select Filter → By Expression Name.

 4. Select expression1 in the Expressions fi eld and press the Delete button. This
deletes the expression node from the DG and the expression code from the
Expression Editor.

 5. Enter the following statement in Expression Editor text fi eld, then press Create:

mySphere.translateX = frame - 1;

 6. Inspect the History fi eld of the Script Editor. You should see the following MEL
statement:

 expression -s " mySphere.translateX = frame - 1;" -o " " -ae 1 -uc all ;

 // Result: expression1 //

 Th e fi rst fl ag, -s , indicates the expression “ string ” which holds the contents of
the expression. Th e second fl ag, -o , is short for “ object ” —the default object for the
expression. In this case, since you set the selection fi lter to Expression Name instead
of Object/Attribute Name, the expression has no default object associated with it,

 The commands getAttr and
setAttr can be used in animation
expressions but are unnecessary
in many cases since you can
directly assign attribute values
using the " equals " operator (�).

298 PART 2: A FOUNDATION IN MAYA

hence the empty quotation marks. Th e fl ag -ae is short for alwaysEvaluate . When this
is set to 1 , or true , the expression will evaluate each time the frame number changes.
Finally, -uc is short for unitConversion . Its setting of all ensures that all times,
distances, and angles will be converted to standard working units (frames, centim-
eters, and radians) for the purpose of making calculations, even if you specifi ed
diff erent units in Preferences (see Converting units on page 296). Since -object,
-alwaysEvaluate , and -unitConversion are set to their default values they could be
omitted without any eff ect on the expression.

 Next, let ’ s use the expression statement that Maya produced in order to make a new
expression. With the Expression Editor still open,

 1. Open the Script Editor and choose Edit → Clear All.

 2. Open the Expression Editor and choose Select Filter → By Expression Name.

 3. Select expression1 in the Expressions fi eld and press the Delete button.

 4. Enter the following statement in the Script Editor:

 expression -s "mySphere.translateX = frame - 1; " -name

 myFirstExpression;

 5. You should see the following result displayed in the History Panel:

 // Result: myFirstExpression //

 You ’ ve just created your fi rst expression using MEL! Its name will appear in the
Selection → Expressions fi eld of the Expression Editor. When you select it by name, it
can be edited in the Expression text fi eld.

 Stand-alone animation expressions
 Despite the emphasis we ’ ve put on the role of expressions in animating attributes, an
expression can stand alone without any connections to objects and their attributes.
For instance, an expression may be used only to make calculations and update global
variables. In this role, the expression is a computer program that runs every time the
frame number in your scene changes. By including a loop (do … while, for… in, and so
on) in the “ program ” can run multiple times for each frame. For in silico modeling
work, we use expressions both to make important calculations for the scene and to
update attributes based on those calculations. Let ’ s look at a simple example of this
kind of use: an expression that moves a sphere around the scene randomly and dis-
plays its location in the Script Editor.

 1. Create a new scene: choose File → New Scene.

 2. Open the Script Editor.

 3. Use a MEL command to set the playback options for your scene:

playbackOptions -playbackSpeed 1 -loop continuous -min 1 -max 150�;

 4. Create a sphere. Enter the following in the Script Editor:

 polySphere -r 1 -n mySphere;

 5. Press your custom shelf button, EE, to launch the Expression Editor.

 6. Choose Select Filter → By Expression Name.

 Unlike a procedure, each
time you run the expression

command, Maya creates a new
animation expression—it does
not replace a previous version

of it. It is good practice to delete
redundant animation expressions

in the Expression Editor since
they may give unpredictable

results.

299CHAPTER 12: MEL SCRIPTING

 7. Enter the following in the Expression text fi eld (Figure 12.08) to control the
translateX (tx) and translateZ (tz) attributes:

 if (frame <= 1) mySphere.tx = mySphere.tz = 0�;
 else {

 // Move the sphere randomly in the XZ plane.
 mySphere.tx += ' rand -1 1' ;
 mySphere.tz += ' rand -1 1' ;
 // Print its coordinates to the Script editor.
 print ("(x, z) = (" + mySphere.translateX + " , " + mySphere.
 translateZ + ")\n");

 }

 Note the conditional if statement which is used to reset the sphere to the world
origin each time the playhead returns to frame 0 or 1.

 8. Press the Create button.

 9. In the Expression Name fi eld, type: randomSphere.

 10. Open the Script Editor, then re-size and position it such that you can clearly see
the History fi eld and a view of the sphere in the scene view.

 11. In the timeline controls of the main window, press the Play button.

 Because your expression is, by default, set to evaluate “ always ” it will run once for
each frame as your scene plays. Th e result is a random walk of the sphere in the XZ
plane, with the accompanying coordinates displayed in the Script Editor. Notice in
the Channel Box, that the Translate X fi eld for the sphere is colored purple (Figure
12.09 a); this indicates a connection to an expression node.

 FIGURE 12.08

 In the Expression Editor, attributes
can be directly assigned values
using the equal (�) operator.

 The print command can print
multiple values at once, as long
as they are enclosed in curved
brackets. The contents of the
brackets are added together as a
string and then printed.

300 PART 2: A FOUNDATION IN MAYA

 Line breaks in animation expressions
 In the example above you entered the multi-line expression directly into the
Expression Editor. However, if you wish to enter it via the expression MEL command,
you must instruct Maya to ignore the internal quotation marks (i.e. those associated
with the print command). Otherwise, Maya will take the second quotation mark it
encounters to mean the end of the expression command string. Instead you want
Maya to interpret only the fi rst and last quotation marks as defi ning the expression
string, while internal quotes are read in as part of the string. To accomplish this,
you ’ ll type a back slash character, \, before every quotation mark you want Maya to
ignore. In this usage, we say the back slash escapes the quotation mark.

 As well, because the expression command requires a continous string of characters,
you must also escape line breaks (or carriage returns), using the character combina-
tion of \n\ . Here is a simple example intended to make an expression that prints a
message to the Script Editor.

 expression -s "print("This is frame: " + frame + "\n")" -n myExpr;

 // Error: expression -s "print(" This is frame: " + frame + "\n")"
 -n myExpr; //
 // Error: Line 1.36: Syntax error //

 In the above statement, the quotation marks aren ’ t escaped and Maya interprets
the expression string as " print(", which is followed by indecipherable code. Properly
escaped, the above statement should look like this:

 expression -s "print(\"This is frame: \ " + frame + \ "\\n\")" -n
 myExpr;

 FIGURE 12.09

 When connected to an animation
expression node, attributes are

colored purple in (a) the Channel
Box and (b) the Attribute Editor.

Note the Inputs listed in the Channel
Box. randomSphere is the name of

an expression to which Maya ' s time
node is connected. polySphere1

is the history node for the polygon
geometry.

(a) (b)

301CHAPTER 12: MEL SCRIPTING

 Note that even the line break, \n, must be escaped by placing a back slash in front of
it; otherwise Maya will read the lone \ and escape the n instead of \n together. Th e
only quotation marks that aren ’ t escaped are those enclosing the entire expression
string. Entered as a MEL command the randomSphere expression you created on page
299 would be entered as follows:

 expression -s "\n\
 if (frame <= 1) mySphere.tx = mySphere.tz = 0�;\n\
 else {\n\
 // Move the sphere randomly in the XZ plane.\n\
 mySphere.tx += ' rand -1 1';\n\
 mySphere.tz += ' rand -1 1' ;\n\
 // Print its coordinates to the Script editor.\n\
 print (\ "(x, z) = (\ " + mySphere.tx + \ ", \ " + mySphere.

 tz + \ ")\\n\");\
n\

 }\n\
 " -name randomSphere;

 You can imagine that once an expression script grows past a several lines, escap-
ing quotes and line breaks can become a genuine nuisance and a potential source of
errors. For this reason we generally avoid the expression command. Instead we enter
expressions either directly in the Expression Editor or compose them in an external
text editor, then copy and paste them into the Expression Editor. Th e latter approach
will be used throughout the remainder of this book.

 Putting it all together: The MEL script
 Now that you ’ re familiar with the components of scripting in Maya, let ’ s see how they
can work together in a complete script. Because MEL is so completely integrated in
Maya, we encourage you to use it whenever possible in order to work more effi ciently—
for example, by making shelf buttons to automate common tasks that might otherwise
take longer to do through menu selections. However, where MEL truly shines is in the
form of scripts to do things that would be diffi cult and tedious, if not impossible using
the UI menus and tools: build complex models and run procedural animations.
 A MEL script can take the form of a procedure, an animation expression, or a set of
MEL instructions that executes when sourced from a text document with the fi le
extension .mel . Some MEL scripts create custom UI windows that provide access to
modeling tools. Other MEL scripts create animation expressions and load procedures
into memory. Th ere are even MEL scripts that build custom shading networks. Since
Maya version 1 hit the market, thousands of scripts have been written for various
purposes. Many of these are integral to custom workfl ows in animation studios,
while others have been made freely available on 3D animation community websites.
In the Further reading section we have listed a few of these community websites.
 In the following tutorial you ’ ll explore the structure of a typical script, and how the
components we ’ ve described in this chapter—variables, attributes, commands, loops,
conditional statements, etc.—fi t together.

 Text editors for writing computer code
 For the rest of this book, the tutorials and projects involve scripts that are suffi ciently long
to warrant composing them in an external text editing program—preferably one that
is designed for editing computer code—a programmer ' s editor —with automatic tabbing,

 A simple attribute (like
translateZ) cannot have more
than one input. Therefore,
an attribute controlled by an
animation expression cannot
have keyframes assigned to it
as well.

302 PART 2: A FOUNDATION IN MAYA

line numbering, and highlighting of special structures like strings. Below we ’ ve listed four
text editors that are available for Windows either free of charge or for a nominal fee.

jedit
 http://www.jedit.org/

Microsoft Visual Studio Express
 http://msdn2.microsoft.com/en-us/express/

TextPad
 http://www.textpad.com/

UltraEdit
 http://www.ultraedit.com/

 Presentation of the MEL scripts in this book
 Much of what follows in this book is concerned with building complete MEL scripts
to visualize and simulate phenomena in cell biology. In each tutorial and project, we
present scripts in their entirety, interspersed with instructions and explanations. All
MEL code is indented from the left page margin and set in the following typeface to
make it easy to recognize.

 // This is MEL code.

 Th e beginning and end of a script will be clearly indicated in the explanatory text.
Furthermore, when a script ends, you ’ ll see a comment such as:

 // End procedure.

Occasionally, the number of letters and symbols in a MEL statement will exceed the para-
graph width of our book. To show the statement to you, we will have to break the state-
ment at a convenient point and continue it on the next line of our book’s text. When
this happens, we will indent that next line (and, as needed, any subsequent lines) to
mark the continuation. You, however, should type the code statement as one unbroken
string! If, via your text editor, you were to put line feeds and carriage return commands
in the middle of a MEL statement, the Maya will not be able to parse the statement cor-
rectly and you will get error messages. So far example in typing the MEL statement

 setAttr ($name + ".inPosition") -type double3 ($pos.x) ($pos.y)
 ($pos.z);

you, in typing up that statement yourself, would not hit your ‘Enter’ key between typ-
ing “($pos.y)” and “($pos.z)”.

 As you follow along, you can build each script yourself in a text editor or simply test
individual pieces of code by entering them in Maya ’ s Script Editor or Expression
Editor. Th e complete scripts are included on the accompanying CD-ROM within
appropriate directories. For example:

18_Cell_Migration/MEL/cRule.mel

 Tutorial 12.01: Building a MEL script
 Other than using correct syntax and ensuring that information fl ows logically, there
are no fi rm rules for building a script—just ideas and hard-won practical insights

303CHAPTER 12: MEL SCRIPTING

about style and form. As we mentioned earlier, MEL was designed with artists in
mind and is therefore quite relaxed in its requirements for structure. What follows is
a description of the form that scripts in this book take. Figure 12.10 outlines this form
and shows how the script fi le relates to the search path vis-a-vis sourcing through the
Script Editor.
 In this tutorial you ’ ll build a procedure that creates spheres and distributes them ran-
domly within a cube of user-specifi ed dimensions (Figure 12.11). Th e ability to quickly
make and distribute objects in space is essential to 3D in silico biology simulations,
which usually involve multiple interacting agents such as cells and molecules, and
for structural models composed of many parts like the molecules and tissue scaff olds
you ’ ll make in Chapters 14 and 17 , respectively.

 Getting started
 Open a text editor that is external to Maya and start a new fi le. As you work through
this tutorial, enter the code in the text fi le in the order it ’ s presented. Save the fi le
under the name makeSpheres.mel within your Maya Scripts directory. If you don ’ t
know the path to this directory, open up Maya and run the following statement by
entering it in the Command Line:

 internalVar -userScriptDir;

 FIGURE 12.10

 (a) The format used for MEL scripts
in this book. (b) A typical MEL script
search path for Maya. (c) You can
load a script into Maya using the
source command. First typing the
rehash command refreshes the
search path contents list.

File header
(non-executing information about
the MEL script)

START

Declare variables

Initialize variables

Evaluate expressions
• mathematics

and logic

Assign values to attributes
in order to update Maya's
Dependency Graph and Scene
Hierarchy

END

myScript.mel

(a)

(b)

(c)

MEL script search path

the Script editor

304 PART 2: A FOUNDATION IN MAYA

 Save your fi le periodically as you work. When you ’ re done, you ’ ll source your MEL
script in Maya. If you wish to work with a ready-made fi le, we ’ ve included the com-
plete MEL script on the CD-ROM:

12_MEL_Scripting/MEL/makeSpheres.mel

 The fi le header
 Th e fi le header is commented documentation. It usually includes: title; author
name(s); creation and modifi cation dates; a brief description of what the script does
and how to run it in Maya. Here ’ s the header for our sample procedure:

 / * * * * * FILE HEADER * * * * * /
 / *
 makeSpheres.mel
 Created 0�1 September 20�0�7.
 Modified 27 September 20�0�7.
 Modified 21 October 20�0�7.
 Authors: Jason Sharpe, Charles Lumsden, Nick Woolridge

 Description:
 This procedure makes polygon spheres and distributes them
throughout a cube. The procedure arguments are as follows:

 $count The number of spheres to make.
 $radius The sphere radius.

 $cubeSize The dimensions of the cube.

 To use this script:

Save this entire script in a text file, using the .mel extension, in
your Maya Scripts directory, then source it through Maya' s Script
Editor. Alternately, you can copy and paste the entire script into
Maya's Script Editor.
 * /

 Declare the procedure
 Th is step is unique to procedures in Maya and wouldn ’ t be taken for an expression.
Following the bracketed procedure arguments, the procedure ’ s contents are enclosed
in curly brackets. Indenting the contents helps to distinguish them from the proce-
dure command itself.

 global proc makeSpheres (int $count, float $radius, float
 $cubeSize) {

 Declare your variables
 According to Maya ’ s syntax rules, a variable needs only to be declared immediately
before it ’ s used. Nonetheless, grouping and declaring variables together makes them
easier to keep track of, especially as your scripts begin to grow in length; it ’ s much
easier to refer back to one spot in your script to check the type and meaning of a
certain variable than to hunt for it throughout your procedure. It is also helpful to
others who use your scripts, and a good reminder for yourself, to provide some docu-
mentation describing what variables do.

305CHAPTER 12: MEL SCRIPTING

 / * * * * * DECLARE THE VARIABLES * * * * * /

 / *
 $half Half the cubesize: used to position the cube.
 $x, $y, and $z Used to position each sphere.
 $d The separation between evenly distributed

spheres.
 * /
 float $half, $x, $y, $z, $d;

 / *

 $cubeName[] The return value of the polyCube command:

 the transform node name.

 $cubeShaderName The return value of the shadingNode command:

 the cube shader name.

 $sphereName[] The return value of the polySphere command:

 the transform node name.
 * /
 string $cubeName[], $cubeShaderName, $sphereName[];

 / *
 $i A counting index.

 * /
 int $i;

 Initialize your variables
 If variables require initial values before being used, this is the place to assign them.

 / * * * * * INITIALIZE THE VARIABLES * * * * * /
 $half = $cubeSize/2;

 Main body of the script
 Th e main body or your script is where you use MEL commands and expressions to
create objects and determine their attribute settings.

 / * * * * * MAIN BODY * * * * * /

 // Make a cube to visualize the volume.
 $cubeName = ' polyCube -w $cubeSize -h $cubeSize -d $cubeSize' ;

 // Move the cube so that its corner lies at the world origin.
 move $half $half $half $cubeName[0�];

 // Create a new Lambert shader.
 $cubeShaderName = ' shadingNode -asShader -shared lambert -name

 cubeShader' ;

 // Set the color to white and make the shader transparent.
 setAttr ($cubeShaderName + " .color ") 1 1 1;
 setAttr ($cubeShaderName + ".transparency") 0�.7 0�.7 0�.7;

 // Assign the shader to the cube.
 select $cubeName[0�];
 hyperShade -assign cubeShader;

 // Make and position the spheres.
 for ($i = 0�; $i < $count; $i ++) { // Loop once for every sphere.

 Content enclosed by the / * and
 * / characters is commented
out and won ' t be executed by
Maya. We use the character
string, * * * * to highlight section
headings in the code.

306 PART 2: A FOUNDATION IN MAYA

 // Make the sphere.
 $sphereName = 'polySphere -r $radius' ;

 // Get a random value within the boundaries of the cube.
 $x = ' rand $radius ($cubeSize - $radius)' ;
 $y = ' rand $radius ($cubeSize - $radius)' ;
 $z = ' rand $radius ($cubeSize - $radius)';

 // Position the sphere.
 move $x $y $z $sphereName[0�];

 }

 } // End procedure.

 Source your MEL script
 Before you can use your procedure you must fi rst declare it. As we mentioned previ-
ously, there are several ways to do this. Here, you ’ ll take advantage of Maya ’ s auto-
matic search capabilities and simply call the procedure using its name and arguments.
Since the procedure hasn ’ t been declared and therefore doesn ’ t exist in memory, Maya
will scan its search path contents for a fi le of the same root name as the procedure:
 makeSpheres (the fi le extension .mel is optional).

 1. Start Maya. If Maya was already running when you started composing your
script fi le, run the rehash command in the Command Line to refresh the search
path contents:

 rehash;

 2. Open the Script Editor and enter the following code:

makeSpheres(20�, 1, 10�);

 Within a second or two you should see a cube and 20 spheres appear in your scene view
(Figure 12.11). If this doesn ’ t happen, chances are you either have errors in your code and
need to debug it, or Maya was unable to locate your MEL script fi le on its search path. In
the latter case, you will see the following message in the Command Line:

 Error: line 1: Cannot find procedure "makeSpheres".

 In this case, double-check that your fi le is named correctly (it ’ s makeSpheres.mel) and
that it is located in Maya ’ s scripts directory, the path that you can query with the
 internalVar command as demonstrated on page 269. Alternately, you may need to
refresh Maya ’ s search path using the rehash command.

 Once your script does execute, there will likely be some overlapping/intersecting of
spheres. Th is is due to their random placement and the fact that the procedure has
no contingency for intersections. On the CD-ROM we ’ ve included a version of the
 makeSpheres() procedure called makeSpheresAvoid() which includes a simple collision
avoidance algorithm to space spheres apart from one another. We will explore similar
approaches to collision avoidance in subsequent chapters.

12_MEL_Scripting/MEL/makeSpheresAvoid.mel

 Debugging your scripts
 Finding and correcting errors is an almost unavoidable part of writing computer code,
and MEL scripting is no exception. Rarely will you create a script and enter it in Maya

307CHAPTER 12: MEL SCRIPTING

without some complaint from Maya about incorrect syntax, such as an undeclared vari-
able or an incorrect use of a MEL command. Syntax errors are relatively easy to debug
when compared to logic errors. Logic errors are problems with the way your script
executes that are not detected by Maya and can lead to incorrect results; they are often
tricky to detect.

 Syntax errors
 Syntax error messages appear in the Command Line and Script Editor. Line and col-
umn numbers point you to the error location in the script. For example, the following
error was caused by a mis-typed variable name, $X instead of $x .

 // Error: move $X $y $z $sphereName[0�];
 //
 // Error: Line 62.12: "$X" is an undeclared variable. //

 Th e mistake can be found and corrected in the original MEL script fi le using the line
number 62 and column number 12 provided in the error message. To display line num-
bers in error messages:

 In the Script Editor, choose History → Line numbers in errors.

 Below are some common syntax errors to watch out for:

 • typographer’s quotation marks (“ ”) used instead of straight marks (" ")
(can occur when sourcing code from an external text editor)

 • within an expression statement, quotation marks have not been escaped using
the back slash character (\ ").

 • unterminated MEL statement (;)

 • missing $ at the start of a variable name

 • code comments not preceded with // or surround by / * and * /

 Logic errors
 Logic errors can be dealt with in two ways. Th e fi rst, and quickest, is to compare your
script, line for line, with the corresponding fi le we ’ ve included on the CD-ROM, and

 FIGURE 12.11

 The MEL procedure in Tutorial 12.01
makes spheres and distributes them
randomly in a cube.

 Maya supports third-party
debugger software to debug
plug-ins that you write but has no
built-in mechanism for debugging
MEL scripts; they must be
debugged manually by correcting
syntax errors and analyzing the
outcome of logical statements.

308 PART 2: A FOUNDATION IN MAYA

look for discrepancies. Th e second, and more informative, is to print to the Script
Editor, variables from the part of the script that you suspect is causing the trouble.
Th is will help you to see the diff erence between what you think Maya is doing and
what is actually happening. You do this using the print command. For example:

 for ($i = 0�; $i < $count; $i ++) { // Evaluate once for every sphere:
 $sphereName = ' polySphere -r $radius'; // Make the sphere.
 print ("making a sphere called: " + $sphereName[0�] + "\n");
 etc …
 }

 Th e example above reports the variable $sphereName in the Script Editor, for each
sphere created. Tracing values in this way can help locate mistakes in variable assign-
ment that may be causing logic errors. For more information on managing errors in
Maya, refer to the Help Library.

Error handling in Maya

 Maya Help → General → MEL and Expressions → Debugging, optimizing, and
troubleshooting → MEL debugging features

 Random number generation in Maya
 By now you ’ ve seen Maya ’ s rand() function used several times. Here we ’ ll elaborate on
random number generation and the relevant MEL functions. Essential to modeling
events and processes that depend on probability are methods that simulate uncer-
tainly within the otherwise deterministic working of the computer ’ s digital circuitry.
Although various ways of doing this have found favor over the years—such as stor-
ing tables of numbers drawn from unpredictable (random) natural events like fl ips
of a coin or rolls of dice—modern techniques use a remarkable discovery: once suit-
ably processed, certain successive permutations, multiplications, and rearrangements
of the numbers stored in a computer ’ s CPU register can mimic—often with high
fi delity—successive draws from a random process. Because the number stream
is not completely and exactly random, but rather a deterministic mimic of a
random number sequence, it is conventional to call such computer-generated digits
 pseudorandom numbers . Eventually, a pseudorandom sequence will unmask its deter-
mined nature by repeating itself, again and again as the number of calls to it exceeds
its period. Th e initial digit used by the computer, to start its process of giving you
back a pseudorandom number each time you ask for one, is called quite naturally
the “ seed ” . An important feature of pseudorandom number generators is repeatabil-
ity—the ability to generate the same stream of numbers over and over again for a
given seed. Change the seed, and a diff erent—but repeatable—number stream is
generated.

 Modern programming languages off er commands letting you mimic the act of pick-
ing random numbers from specifi c probability distributions. Very popular is the use
of the uniform probability distribution on the unit interval. Th is command mimics
the act of drawing a number between zero and one with equal likelihood you will
fetch back a value anywhere between the bottom value of zero and the top value of

 In fact there is a whole
fi eld within the subject of

computational methods
devoted to the invention

and study of pseudorandom
number generation and quality

testing. If you are interested
in exploring the topic more

fully as you work through this
book (we will often invoke

MEL ' s pseudorandom number
facilities), a superb starting

point is the chapter on random
numbers in the famous text

Numerical Recipes by William
Press and his colleagues. As we
go to press, this classic has just

been released in its Third Edition
(2007). Please see our Further
reading section at the back of

this book for further details.
(Long at home in theoretical
astrophysics at Harvard, Bill

Press currently holds the
Warren J. and Viola M. Raymer

Chair in Computer Sciences
and Integrative Biology at the
University of Texas at Austin.)

309CHAPTER 12: MEL SCRIPTING

one. In Maya, this is accomplished with the rand() command. Other pseudorandom
number functions in Maya include sphrand(), noise(), and gauss() which you ’ ll use in
 Chapter 15 to pick numbers from a Gaussian distribution in order to simulate molecu-
lar diff usion.

 Summary
 Just about anything you can do via the Maya UI can be done using coded MEL you
write. A MEL script can take the form of single line or multiple lines of code that
execute when entered or sourced through the Script Editor. Procedures are scripts
that execute when called by name and are useful for organizing scripting tasks.
Th ey are typically stored in text fi les external to your Maya scene fi les. Animation
expressions are scripts that are embedded in scene fi les and execute in relation to the
timeline—often once every time the frame number changes. Figure 12.12 illustrates
how an animation expression and procedures work together in a typical in silico biol-
ogy model like the ones you ’ ll explore later in this book, beginning with Chapter 15 .

 In this chapter we explored the basics of programming in Maya—syntax, variables,
MEL commands, expressions and operators, conditional statements and loops—and
how they fi t together to make a MEL statement or a script. Tutorial12.01 demon-
strated a simple approach to quickly populating a scene with multiple objects using a
procedure—a hint of what ’ s to come in our explorations of 3D in silico molecules and
cells in Part 3 of this book.

 An oft-cited strength of MEL is the ability it gives users to construct custom user
interface elements. While we don ’ t have space here to elaborate on this topic, the
Maya Help Library is a good source of information on this topic of creating interfaces
using MEL. As well, we ’ ve listed literary references under Building Custom UIs in the
 Further reading section at the end of this book.

Animation expression

Finished?

yes

no

Procedure

Procedure

Procedure

Increment the time step:
frame += 1

Start

End

 FIGURE 12.12

 Flowchart of a typical in silico model
combining an animation expression
and procedures. You ' ll put this
design into practice in Chapters 15,
17, and 18 .

310 PART 2: A FOUNDATION IN MAYA

Creating custom UIs with MEL

 Maya Help → General → MEL and Expressions → Creating interfaces

 In the next and fi nal chapter of Part 2 , you ’ ll build on your MEL scripting skills and
knowledge as you learn methods for writing and reading attribute values to and from
external data fi les.

 References
 1. Janczyn J (Senior Product Manager, Autodesk, Inc.): Personal interview with Jason

Sharpe, Toronto, ON, September 29, 2006.

 2. Taylor M (Developer, Autodesk, Inc.): Personal interview with Jason Sharpe, Toronto,
ON, September 27, 2006.

13 Data input/output

312 PART 2: A FOUNDATION IN MAYA

Maya

3D animation
and modeling

Terrain data for
visual simulation

3D for
World Wide Web

Cell migration
trajectories

Mocap
(motion capture)

Plug-in or
custom MEL script

Molecular
structures

CAD/CAID

Gaming

 FIGURE 13.01

 The many uses for Maya
call for importing and exporting

different data types, some
of which are represented here.

 Introduction
 Th is chapter deals with moving alphanumerical data into and out of your Maya
scenes. Th e data itself can take many forms (Figure 13.01). Th ree-Dimensional model-
ers and animators, for instance, routinely work with polygon vertex coordinates
and with motion capture (or Mocap) data imported from various software packages. A
research scientist, on the other hand, may deal with chemical concentrations, meas-
urements of force, material properties, or, in the case of our own work, parameters of
cellular and biomolecular behavior. If you ’ re working with a widely used 3D data for-
mat, chances are that an import/export plug-in exists that will make your job easier.
Th e next section introduces the plug-ins that come bundled with Maya. Still others
are available through third-party suppliers. If, however, your data requirements are
not served by a ready-made plug-in, you may have to code your own. For such a prob-
lem, advanced Maya programmers will typically code plug-ins through Maya ’ s C � �
API. However, for novice and intermediate users, MEL off ers some handy commands
that we ’ ll show you how to use in order to read and write external data fi les.

 In this chapter ’ s tutorial you ’ ll import and visualize trajectory data recorded for live
mobile cells. In the second tutorial, you will generate a textual report summarizing
key parameters of the cell ’ s motion.

313CHAPTER 13: DATA INPUT/OUTPUT

 Set up your scene
 To work through the examples and tutorial in this chapter, you ’ ll need to have Maya
running and the Project directory set up.

 1. Start Maya. If Maya is already running, start a new scene fi le.

 2. From the main menu bar, choose File → Project → New.

 3. Enter DataInOut_Project in the Name fi eld.

 4. For Location, browse to your projects directory or another location on your hard
drive where you ' d like to save this project.

 5. Enter scenes, images, MEL, and FBX in the appropriate text fi elds. FBX is a fi le
type you ' ll work with in the next example .

Note the headings Project Data Locations and Data Transfer Locations , under which are
listed the standard fi le types used in Maya workfl ows. Th ere is no fi eld for “ custom ”
data fi les, so you ’ ll need to create a custom data directory outside of Maya.

 6. Press Accept to create the project and close the New Project window.

 7. Leave Maya and navigate in Windows to the DataInOut_Project directory you
created above then make a new directory (folder) called customData. The direc-
tory path should look something like the following:

 ...\My Documents\maya\projects\DataInOut_Project\customData

 Return to Maya and set the preferences for your scene.

 8. Choose Window → Settings/Preferences → Preferences.

 9. Choose Categories → Settings and make the following settings:

 Under Working Units → Linear: centimeter.

 → Time: NTSC.

 Any settings that aren ’ t specifi ed above can be left at their default values for now.

 10. Press the Save button to set your preferences.

 11. Select the Perspective view of your scene by pressing the button in the
 Layouts panel at the bottom-left of the main window.

 Translators
 At the time this book went to press, Maya 2008 shipped with translators for import-
ing and exporting many widely used 3D data formats. In order to allow Maya to start

 FBX is an open-standard,
platform-independent 3D fi le
format. FBX fi les can be shared
(via plug-ins) amongst users
of Maya, Autodesk 3ds Max,
Autodesk VIZ, and Autodesk
MotionBuilder.

 The plug-in fi le extension in
Maya for Windows is .mll (short
for m aya l ink l ibrary).

314 PART 2: A FOUNDATION IN MAYA

quickly and to save memory, many of these plug-ins are not loaded by default when
you launch Maya and must be loaded via the Plug-in Manager prior to use. We have
included a sample FBX fi le on the CD-ROM which you ’ ll import into Maya in the fol-
lowing example.

File translators

 Maya Help → Using Maya → Translators and Exporters

 Th e model you ’ ll import is of a buckyBall (Figure 13.02)—a carbon nanostructure com-
posed of carbon and named for architect Buckminster Fuller.

 1. Copy the following fi le from the CD-ROM to the customData directory that you
created inside your Maya Project directory.

 13_DataInOut/FBX/ buckyBall.fbx

 2. Start Maya. If Maya is already running, start a new scene fi le.

 3. Choose File → Import. This launches the Import window.

 4. Navigate to your customData directory, select buckyBall.fbx and press the Import
button.

 If you get an error message stating: “Unrecognized File Type ” or “Error reading

file ” it ’ s because the FBX translator plug-in was not automatically loaded when you
start Maya. You can load it using the Plug-in Manager, as follows:

 1. Choose → Window → Settings/Preferences → Plug-in Manager.

 At the top of the Plug-in Manager you ’ ll see the plug-ins directory path—the location
to place any plug-ins you wish to add to Maya. Below the path name is a list of about

 A buckminsterfullerene
(sometimes referred to as a

buckyBall) is a carbon molecule
composed of 60 atoms (thus its

chemical name C60), arranged in
a spherical conformation. They

were discovered in the mid-
1980s by Harold Kroto, Robert
Curl, and Richard Smalley, for

which they won the Nobel Prize
in Chemistry in 1996. They

resemble the geodesic domes
of famed inventor Richard

Buckminster Fuller, for whom
they were named. They have

been investigated for their
potential use in a number of

medical applications, including
the encapsulation and delivery of
specialized antimicrobial agents.

 FIGURE 13.02

 Plug-ins called translators and
exporters let you import and export

models in formats other than Maya ' s
native one. This model of a carbon

buckyBall was saved in FBX format
then imported into Maya via the

fbxmaya.mll plug-in.

315CHAPTER 13: DATA INPUT/OUTPUT

50 plug-ins. Only those with “ Loaded ” or “ Auto load ” checked are current available to
your scene. When Auto load is checked, the plug-in will be loaded automatically when
you start Maya.

 2. Check the box next to fbxmaya.mll.

 3. Press the Close button.

 Repeat steps 3 and 4 above to import buckyBall.fbx now that the plug-in is loaded.

 Reading and writing fi les with MEL
 Table 13.01 lists the MEL commands designated for reading and writing external data
fi les. To help you try out these commands, we ’ ve included a sample text fi le on the
CD-ROM which you ’ ll reference in this section ’ s examples. Start by copying it from
the CD-ROM to your new customData directory.

 MEL
command

 Sample use Result

 fopen $fi leID = `fopen` $fi leName "r"`; Opens the fi le, $fi leName, for reading.

 fclose fclose $fi leID; Closes the fi le.

 feof feof $fi leID; Returns 1 if the end of the fi le has been
reached, and 0 otherwise.

 fgetline string $line = ` fgetline $fi leID`; Returns the next line of $fi leName, then
increments the line pointer.

 fgetword string $word = `fgetline $fi leID`; Returns the next word of $fi leName, then
increments the word pointer.

 fread $char = ̀ fread $fi leID $str` ; Returns the next set of bytes until either
a null character or the end of the fi le is
reached. Its type is specifi ed by its second
argument, a dummy variable.

 frewind frewind $fi leID; Returns the reading pointer to the start of
the fi le.

 fprint fprint $fi leID "Hello World"; Prints the argument to the fi le specifi ed by
$fi leID.

 fwrite fwrite $fi leID "Hello World"; Prints the argument to the fi le specifi ed by
$fi leID. Null characters are added to the
ends of new lines.

 ffl ush ffl ush $fi leID; The results of fprint and fwrite are not
immediately written to the fi le, but are
stored in a software buffer. ffl ush fl ushes
the data to the fi le and clears the buffer.

 TABLE 13.01

 MEL commands used for reading
and writing external data fi les.

316 PART 2: A FOUNDATION IN MAYA

 1. Start a new scene in Maya.

 2. Copy the following fi le from the CD-ROM to your DataInOut_Project/customData
directory.

 13_DataInOut/customData/ helloWorld.txt

 The fi le path
 In order to read from and write to a fi le you must fi rst be able to locate it on your
hard drive from within Maya. You can do so using Maya ’ s workspace command and
the relative path name, customData. Maya uses the forward slash character to sepa-
rate directories.

 string $fileName = ' workspace -q -fullName' + "/customData/
helloWorld.txt";

 When working in Windows, you can use the back slash character (Windows NT nota-
tion) to separate directories. However, you must remember to escape each back slash
so that it will remain part of the string. For example:

 // INCORRECT (not escaped):
 string $fileName = 'workspace -q -fullName ' + " \customData\

helloWorld.txt";
 // Result: C:/ ... DataInOut_ProjectcustomDatahelloWorld.txt //

 // CORRECT (escaped):
 string $fileName = 'workspace -q - fullName ' + "\\customData\\

helloWorld.txt";
 // Result: C:/ ... DataInOut_Project\customData\helloWorld.txt //

 fi letest command
 Maya ’ s filetest command is used to query information about a fi le. Th e -r fl ag tests if
the fi le exists and is readable. filetest can be used together with the error command
to halt a script and warn the user if a fi le cannot be located.

 if (!' filetest -r $fileName') error "No such file exists " ;
 else print "File located successfully. " ;

 Opening and closing the fi le
 Before reading or writing a fi le, you must open it for Maya with the fopen command
which takes two arguments. Th e fi rst is the fi le name and path. Th e second tells Maya
whether the fi le is to be opened in read (r), write (w), or append (a) mode. Adding � to
the mode letter (r+ or w+) opens the fi le for both reading and writing. fopen returns
a fi le handle (identifi cation number) which is used subsequently to refer to the fi le
by number when using any of the fi le read/write commands. When you open a fi le
in write or read/write mode, any data you write to the fi le from within Maya over-
writes the fi le ’ s previous data. Use the append mode if you wish to add to a fi le with-
out deleting its existing contents.

 // Open the file in read and write mode.
 int $fileID = 'fopen $fileName "r+ "' ;

317CHAPTER 13: DATA INPUT/OUTPUT

 If no fi le by the specifi ed name exists, fopen creates a new one. When you ’ re done
reading or writing the fi le you must close it using the fclose command, as follows:

 fclose $fileID;

 The fi le browser
 When you can ’ t be sure of the directory in which a fi le resides, you can use the
 fileBrowserDialog command to launch a browser window (Figure 13.03). Th e user
can then navigate to the desired fi le, select, and load it at the push of a button.
fileBrowserDialog executes a command (or procedure) defi ned by the - fileCommand fl ag and
sends that command into two arguments: the fi le name and type. Below, we ’ ve defi ned a
custom procedure named fopenFile that will be called by fileBrowserDialog. fopenFile
is declared with two arguments: $fileName and $type, corresponding to the arguments to
be sent by fileBrowserDialog. Th e second argument, $type, is not used by fopenFile but
must be declared nonetheless since fileBrowserDialog returns two arguments. Th e vari-
able $fileID has been defi ned globally so that it will be accessible outside of fopenFile.
To try out the following code, enter it in the Script Editor in the order it appears below.

 global proc fopenFile(string $fileName, string $type) {
 global int $fileID;
 // Open the file for reading.
 $fileID = 'fopen $fileName "r"' ;

 }

 fileBrowserDialog -mode 0� -fileCommand "fopenFile" -fileType " "
 -actionName " Open_File" ;

 FIGURE 13.03

 The fi le browser window launched
by Maya 's fi lebrowserdialog
command.

318 PART 2: A FOUNDATION IN MAYA

 For the -mode fl ag, a value of 0 opens the browser window in read mode. Th ere is
no “ text ” or “ txt ” fi le type defi ned for this command so we ’ ve left the -fileType argument
empty (" "). Th is will invoke the default “ Best Guess ” option in the “ Files of type ” menu
of the browser window. Th e argument passed to -actionName is the text that appears on
the browser “ action ” button (e.g. Open , Save , and so on). For a complete list of fl ags for
the fileBrowserDialog command, refer to the MEL command reference in Maya ’ s Help
Library.

 Reading data
 You can read data one textual line, word, or character at a time using the MEL
commands fgetline, fgetword, and fread, respectively. For the examples below to
work properly, you must fi rst complete the examples in the previous section which
open and prepare for reading the fi le helloWorld.txt.

 The fgetline and frewind commands
 // Use fgetline to get each line of text in helloWorld.txt.
 // When the file end is reached, fgetline will assign the integer 0�
 to $line;

 string $line; $line = ' fgetline $fileID' ;
 while ('size $line' > 0�) {

 $line = ' fgetline $fileID' ;
 print $line;

 }

 Th e printed result:

 " The scientific study of the living cell brings countless
opportunities to apply computing and visualization to crucial
problems, to map the cell 's molecular world and develop new
treatments for disease. "

Each time fgetline executes, Maya advances to the next new line in the text fi le.
Th erefore, if you were to run the above 6 lines of code again nothing would print.
Instead, $line would be assigned null values since there are no lines 4, 5, and 6 in the
text fi le. To return to the start of the text fi le use the frewind command, as follows:

 int $i;
 for ($i = 0�; $i < 3; $i++) {

 frewind $fileID;
 $line � ' fgetline $fileID' ; print $line;

 }

 Th e printed result:

 " The scientific study of the living cell brings countless
 opportunities to
 " The scientific study of the living cell brings countless
 opportunities to
 " The scientific study of the living cell brings countless
 opportunities to

 Th e above result is obviously not very useful but it illustrates the function of
frewind well.

 When referring to strings, a
null value corresponds to the
absence of content, which is

sometimes denoted as an empty
string: " " . A null string value is

not the same as the integer zero.
However, if you were to assign

an integer variable the value of a
null string, Maya would convert

the null string value to a zero
integer value. In the example
below, $str is automatically

assigned a null value when
declared. Upon assigning its

value to $int, Maya converts
null to zero.

 string $str;
 int $int � $str;

 // Result: 0�//

319CHAPTER 13: DATA INPUT/OUTPUT

 The fgetword command
 fgetword reads a string of characters separated from other strings by blank spaces or
tabs. Each time fgetword executes, Maya advances to the next word in the fi le.

 // Use fgetword read the first six words in helloWorld.txt.
 frewind $fileID;
 string $word;
 for ($i = 0�; $i < 6; $i++) {

 $word = 'fgetword $fileID';
 print ($word + "\n");

 }

 Th e printed result is the fi rst six words of helloWorld.txt:

 " The
 scientific
 study
 of
 the
 living

 You can specify a custom separator by passing fgetword a second argument. In the
following example, “ words ” (strings of characters) are not separated according to
blank spaces but rather by the presence of a “ new line ” character "\n " .

 frewind $fileID;
 for ($i = 0�; $i < 3; $i++) {

 $word = 'fgetword $fileID "\n"' ;
 print $word;

 }

 Th e result is that each line is treated as a single word:

 " The scientific study of the living cell brings countless
opportunities to apply computing and visualization to crucial
problems, to map the cell 's molecular world and develop new
treatments for disease. "

 The fread command
fread reads an entire set of bytes (to a maximum of 1024 on strings) until either a
null character or the end of the fi le is reached. fread casts the data to the type
specifi ed by a dummy variable (int, fl oat, string, or vector). Th e dummy variable is
 $tmpStr in the following example.

 frewind $fileID;
 string $tmpStr, $textChars;
 $textChars = ' fread $fileID $tmpStr' ;

 Since your fi le helloworld.txt contains no null characters and is less than 1024 bytes
long, fread reads the entire text string and returns the following result in the Script
Editor:

 " The scientific study of the living cell brings countless
opportunities to apply computing and visualization to crucial
problems, to map the cell ' s molecular world and develop new
treatments for disease. "

320 PART 2: A FOUNDATION IN MAYA

 The feof command
feof is short for “ fi le end-of-fi le ” . It returns a value 1 if the end of the data fi le has
been reached, and a value of 0 otherwise. In the following example, each word in the
text fi le is read and stored in an array variable.

 int $i � 0�;
 string $wordArray[];
 // Clear the variable to a null value.
 clear $wordArray;
 frewind $fileID;

 while (!' feof $fileID') {
 $wordArray[$i] � ' fgetword $fileID' ;
 $i + + ;

 }
 print $wordArray;

 Th e following gets printed to the Script Editor:

 " The
 scientific
 study
 of
 the
 living
 cell

 etc. ..

 To make convenient examples, we ’ ve focused on textual instead of numerical data
so far. However, you ’ ll see shortly how numbers are handled by the same set of MEL
commands.

 Writing data
 To write data from Maya into an external text fi le, you ’ ll use either of the fprint or
fwrite commands. fprint writes its argument as a string to the fi le, whereas fwrite
does so as binary data, terminating strings with null characters.

 fprint
 In this example, you ’ ll create a new fi le in and write text to it. You ’ ll save the new fi le
in your customData directory.

 string $fileName = ' workspace -q -fullName' + "/customData/
myDataOut.txt";

 // Open the file in write mode.
 int $fileID = ' fopen $fileName "w"';
 string $content = "For all their mystery and beauty, ";
 fprint $fileID $content;
 fclose $fileID;

 Th e workspace command with the fullName fl ag returns your current projects
directory (DataInOut_Project/) to which you added customData/ and the fi le name,
 myDataOut.txt. Leave Maya and browse to your customData directory. Open your new

321CHAPTER 13: DATA INPUT/OUTPUT

fi le, myDataOut.txt, in a text editor. You should see the text: “ For all their mystery
and beauty,”

 fwrite
 Here you ’ ll open myDataOut.txt in append mode and add a couple lines of text to it.

 // Open the file in write mode.
 int $fileID = 'fopen $fileName "a"' ;
 string $content = " \nthe body 's cells do not live or work in

isolation.";
fwrite $fileID $content;
 string $content = " \nEach organ and tissue is an intricate society

of cellular specialists. ";
 fwrite $fileID $content;
 // Close the file.
 fclose $fileID;

 Enter the above script in the Script Editor, then open the appended fi le, myDataOut.txt,
in your text editor. Note the null characters that fwrite added to the end of the new
lines. Diff erent text editors represent null characters in diff erent ways. You may see
something like:

 For all their mystery and beauty,
 the body 's cells do not live or work in isolation. �
 Each organ and tissue is an intricate society of cellular
 specialists.�

 When you read the fi le back into Maya using fgetline or fgetword, the null charac-
ters get dropped. In the case of fread, only the characters up to each null character
are read each time fread is called. In the following example, fread reads up to the
fi rst null character:

 // Open the file for reading.
 int $fileID = 'fopen $fileName "r"';
 string $tmpStr; string $textChars;
 $textChars = 'fread $fileID $tmpStr '; // $tmpStr is a dummy variable.

 The ffl ush command
 Th e commands fprint and fwrite store data in a software buff er. Th ey don ’ t actually
write the data to your hard drive until you close the fi le with the fclose command.
You can, however, force the data to be written while the fi le is still open by fl ushing
the buff er with the fflush command, as in the following example:

 string $fileName = 'workspace -q -fullName' + "/customData/
myDataOut.txt";

 // Open the file in write mode. The existing data will be
 overwritten.
 int $fileID = 'fopen $fileName "w" ';
 string $content = "For all their mystery and beauty, ";
 fprint $fileID $content;
 fflush $fileID;

322 PART 2: A FOUNDATION IN MAYA

 Now browse to your Maya Scripts directory and open myDataOut.txt in your text edi-
tor application. It should contain the single line, “For all their mystery and beauty,”
which was written to the fi le when you fl ushed the software buff er using fflush. Close
the fi le in your text editor. With the fi le still open in Maya, add two more lines of
text to it:

 string $content = " \nthe body 's cells do not live or work in
isolation.";

 $content += " \nEach organ and tissue is an intricate society of
cellular specialists. ";

 fprint $fileID $content;
 fclose $fileID; // Close the file.

 You can view the updated contents of myDataOut.txt by reading the fi le back
into Maya.

 int $fileID = ' fopen $fileName "r"' ; // Open the file in read mode.
 string $tmpStr;
 print ("\n" � ' fread $fileID $tmpStr');
 fclose $fileID; // Close the file.

 Th at ’ s it for the commands used to read and write external fi les from within Maya.
In the following tutorial you ’ ll bring several of the techniques and commands you ’ ve
learned to bear on a case study involving data for living cells.

Reading and writing fi les

 Maya Help → Using Maya → General → MEL and Expressions → I/O and inter-
action → Reading and writing fi les

 Tutorial 13.01: Visualizing cell migration
 In this tutorial you will build a short MEL script to read in position data for live,
migrating cells and use it to visualize the their trajectories (Figure 13.03). Th e script will
also analyze the data and prepares a summary report of key migration statistics.

 The cell migration data fi le
Th e data—recorded for CD4 lymphocytes (white blood cells)—was generously pro-
vided by Prof. Peter Friedl of the Rudolf-Virchow Center, University of Würzburg,
Germany. Dr. Friedl is a pioneer in the study of cancer cell migration in 3D envi-
ronments (you ’ ll explore 3D cell migration in Chapter 18). Th e data—for six cells
undergoing planar (2D) motion—is saved in a tab-delimited fi le on the CD-ROM.
Other common formats for numerical data include space- and comma-delimited
(CSV), which can be interpreted by spreadsheet applications such as Microsoft Excel
and Corel Quattro Pro, and by mathematics and statistics programs like MATLAB
(Th e MathWorks). Below is an excerpt from the fi le you ’ ll use in this tutorial,
cellData.txt.

323CHAPTER 13: DATA INPUT/OUTPUT

TABLE 13.02

 An excerpt from the cellData
.txt fi le. To produce their cell
migration data, Peter Friedl
and colleagues used a special
videomicroscopy apparatus to
make timelapse videos of cells.
They then subjected the video
to analysis by cell tracking
software to produce the data
featured in this tutorial.

Cell trajectory data provided
by Peter Friedl, Rudolf-Virchow
Center, University of Würzburg,
Germany. Used with permission.

Time

Cell0� Cell1 Cell2 Cell3 Cell4

x z x z x z x z x z

1 40�0� 268 335 384 592 40�6 483 184 326 50�1

2 40�0�.89 268.1 335.64 384.64 588 40�5 483 184 328 499

3 40�1.29 267.7 335.79 384.79 587 40�5 483 184 335 498

4 40�1.7 267.29 335.95 384.95 585.5 40�6.83 483 184 338.5 499

5 40�2.1 266.89 336.1 385.1 583.5 40�8.16 483 184 341 499

6 40�2 266 336.25 385.25 581 40�9 482 187 346 50�1

7 etc. 40�2 266 336.39 385.39 578 412 481 184 352 499.5

 Th e fi rst two rows contain labels for each of the data columns. Th e fi rst column lists time
increments of 40 seconds each. Th e remaining columns list X and Z coordinates, in video
pixel units, for each of four cells. Th e fi le you ’ ll use contains positions for six cells over a
period of 230 time increments. Copy the fi le from the CD-ROM to your hard drive:

 Copy the following fi le from the CD-ROM to your DataInOut_Project/customData
directory. If you haven ' t created this directory, do so now.

13_DataInOut/customData/cellData.txt

 Spatial and temporal scales
 In the XZ coordinate data, each pixel corresponds to 1.4 micrometers (μm for short).
For simplicity, let ’ s treat 1 Maya unit as being equal to 1 μm. Th erefore each X and Z
position value stored in cellData.txt will be multiplied by 1.4 to give an equivalent
value in Maya units.

 Each time step in cellData.txt represents 40 seconds of real cell migration time.
Th erefore, a 230 frame animation that shows the total displacement of the six
cells in fact represents (230 � 40
 60 �) 153 minutes of real time. Furthermore,
if the animation plays back at 30 fps, one second of viewing time corresponds to
(153
 30) � 5 minutes of real time.

 Visualizing the data
 Visualizing the data in Maya using 3D objects in place of living cells gives you a time-
lapse view of the migration dynamics. You ’ ll represent each cell with a NURBS sphere
of diameter � 10 Maya units (or 10 � m—the approximate size of a lymphocyte).
You ’ ll animate their positions, using an animation expression called moveCells, to
match the migration data as your scene plays from frame 1 to 230. Furthermore,
rather than read the position data in at each frame, you ’ ll read it in only once and

324 PART 2: A FOUNDATION IN MAYA

store it in a global array variable. Updating the positions of your cell models then
becomes a matter of querying this array and setting the translate attribute values.

 In addition to moving your cell models, your script will trace their trajectories using
NURBS curves and assign Maya Paint Eff ects strokes to the curves so that they can
be rendered along with the cells. Figure 13.04 shows the scene view at the end of an ani-
mation run.

 Plan your visualization algorithm
 In order to get clear picture of what you require make this visualization happen, let ’ s
look at a fl owchart—or logical diagram—of the steps to be taken in Maya (Figure 13.05).
From the fl owchart, you will build an algorithm in the form of a MEL script. Flowcharts
are often used to plan and illustrate the logical fl ow of a computer program. If you ’ re
unfamiliar with fl owchart conventions refer, to the legend in Figure 13.06 .

 Plan your summary report
 During animation playback, you ’ ll calculate the cell migration parameters, net dis-
placement (Dnet), the total distance traveled (L), and the directedness coeffi cient (D c):

1. Directedness coeffi cient, Dc � Dnet/L

 When the animation has fi nished (i.e. at frame 230) you ’ ll write DC to a summary text
fi le, using the layout shown in Figure 13.08 . As we ’ ve written the code here, the sum-
mary data will be tab-delimited. However, tab characters can easily be replaced by
commas or blank spaces if either format is better suited to an established spreadsheet
workfl ow you ’ re using.

 FIGURE 13.04

 A rendering of cell (purple spheres)
positions at frame 230 (the fi nal time

step). Spline curves are used to
trace trajectory paths and are made

visible in the rendering by Maya
Paint Effects strokes (in white).

Cell trajectory data provided by
Peter Friedl, Rudolf-Virchow Center,

University of Würzburg, Germany. Used
with permission.

325CHAPTER 13: DATA INPUT/OUTPUT

 We ’ ll take a closer look at ways in which cell migration is quantifi ed and qualifi ed in
 Chapters 16 and 18 . For now it ’ s useful to know that the “ directedness ” of cells, their
tendency to move in a directed rather than random fashion, is a key cell behavior
parameter that is implicated in many normal and pathological processes within the
body, including embryonic development, tissue regeneration, and cancer.

• Read cellData.txt and store the data in a matrix
• Prepare the NURBS spheres (cells)

and curves (cell trajectories)
• Clear the statistics variables for L and Dnet

no

frame = 1
?

yes

no

• Move the cells
• Add a point to the trajectory curve
• Calculate and store Dnet

• Calculate L and Dc for each cell
• Calculate the average value for all cells of Dnet, L,

and Dc
• Compose a data output string called $dataOut using

Dnet,L, and Dc
• Open a new file and fprint $dataOut to it.

frame =
230 ?

yes

Stop playback

(frame += 1)

Start

End

on press Play

 FIGURE 13.05

 Flowchart for Tutorial 13.01.

326 PART 2: A FOUNDATION IN MAYA

 Encoding the algorithm
 Now it’s time to take the algorithm plan outlined in Figure 13.05 and turn it into a MEL
script to make it happen. Below we present the entire moveCells expression, inter-
spersed with explanations where necessary. We ’ ve included the fi nished script on the
CD-ROM. You ’ ll fi nd it useful for checking your work or for seeing moveCells in action
right away!

 13_DataInOut\MEL\moveCells.txt

 Composing the script fi le
 We recommend building your MEL script in a text editor like one of those we suggested
on page 302. Ensure that the editor is set to use straight, not curly, quotes. You can
type the script in as you follow along with the instructions below. Th at way you can
save it as plain text (.txt) fi le in your Maya Scripts directory periodically. You can query
the path to your Scripts directory in Maya using the internalVar command, as follows:

 internalVar -userScriptDir;

 In Windows, internalVar will return a path like:

 Result: C:/Documents and Settings/User/My Documents/maya/8.5/
scripts/

Parallelogram

Rectangle

Diamond

Flow arrow

Indicates the start or end of a program.

Indicates the direction of information flow in the
program.

Indicates an input or output operation. For instance, a
user may be required to locate and select input data to be
read by the program. Likewise, the program may output
results to a computer file, the screen, or paper.

Indicates a decision or branching point in the program.
This is manifest in the computer code as a conditional
statement or a loop.

Indicates a process or collection of processes to be
executed. For example, a mathematical operation
performed on a set of variables.

Ellipse

 FIGURE 13.06

 Conventional shapes used to build
fl owcharts.

327CHAPTER 13: DATA INPUT/OUTPUT

 Give your fi le the name moveCells.txt. Since it ’ s to be an expression and therefore
uses slightly diff erent syntax for assigning attributes, the script won ’ t execute prop-
erly if you source it through the Script Editor. Giving your fi le the extension .txt
instead of .mel will avoid confusion with scripts that are meant to be sourced through
the Script Editor or loaded by procedure calls.

 When you want to try out bits of code in Maya, simply copy and paste them from your
text editor into Maya ’ s Script Editor. When your MEL script is complete you will copy
and paste it into Maya ’ s Expression Editor to create the moveCells expression.

 moveCells.txt
 Let ’ s begin with a short header to document the script:

 /***** moveCells.txt *****/
 /*
 Date:
 Authors: Donald Ly and Jason Sharpe.

 Description:
 This expression reads in cell migration data from an external text
file and uses it to move objects called "cell1", "cell2", etc. The
cells are created if they don 't already exist in the scene file.
This expression also calculates L, Dnet, and Dc for the cells and
prints the results to a text file.

 To use this script:
 Start a new Maya scene, then copy and paste this entire script into
Maya's Expression Editor and press the Create button. Locate and
load the data file when prompted by the file browser. Press play to
animate the cells and generate the summary report.
 */

 Now declare and assign your variables. Th is is necessary on frame 1 only—doing
so on every frame would be redundant and eat up processing cycles—so you ’ ll start
with a conditional statement to test the current frame number. You ’ ll be using the
 fileBrowserDialog command and a custom procedure called fopenFile() (as previ-
ously described on page 317) to load the data fi le. Th erefore, you ’ ll need to make the
 $fileID variable global so that it can be used outside of the procedure. Cell positions
will be stored in a matrix called $cellPos[][] . Using a matrix allows you to store the
data for all cells over the 230 time steps in one variable. However, unlike an array, a
matrix cannot change size once it ’ s been declared, nor can its dimensions be set using
variables. Th erefore you must give $cellPos[][] enough elements to store all of the
position data: 230 rows and 16 columns (8 cells � 2 coordinates).

 Th e following comments describe briefl y what each of the variables is for.

 /***** DECLARE THE VARIABLES *****/

 /*
 $fileName The name of the open data file, cellData.txt.

At frame 230� it will be used to store the name
of your summary report file.

 $coord A temporary holder for the X and Z coordinate
values.

 $line The result of the fgetline command.

328 PART 2: A FOUNDATION IN MAYA

 $name The current cell or curve name.
 $Lstring The $L values for writing to the summary file.
 dNetString The $dNet values for the summary file.
 $DcString The Dc values for the summary file.
 */
 string $fileName, $coords[], $line, $name, $Lstring, $dNetString,
 $DcString;

 /*
 $dataOut A single string containing all of the information

to be written to your summary file.
 */
 global string $dataOut;

 /*
 $cellPos[][] The XZ coordinates of the cells for all time

steps.
 */
 global matrix $cellPos[230�][12];

 /*
 $fileID The data file handle and is assigned by fopen.
 $cellCount The number of cells, 6.
 */
 global int $fileID, $cellCount;

 /*
 $L[] The total distance by each cell.
 $dNet[] The net displacement of each cell.
 $Dc[] The directedness coefficient of each cell.
 */
 global float $L[], $dNet[], $Dc[];

 /*
 $dNetSum Used to calculate the average $dNet value.
 $Lsum Used to calculate the average $Lsum value.
 $scale The spatial scale of the simulation: 1.4 m

per video pixel.
 $x A Temporary holder for the cell X coordinate.
 $z A Temporary holder for the cell Z coordinate.
 */
 float $dNetSum, $Lsum, $scale, $x, $z;

 /*
 $newPos The position of the current cell in the current

frame.
 $oldPos The position of the current cell in the

previous frame.
 The above values are used to calculate the

distance traveled by the cell in one time
step.

 */
 vector $newPos, $newPos;

329CHAPTER 13: DATA INPUT/OUTPUT

 /*
 $i A counter for matrix rows.
 $j A counter for matrix columns.
 */
 int $i, $j;

 Only a few variables need to be assigned up front. Th e others will be assigned at
appropriate points throughout the script. Th e playbackOptions command is used to
set a playback range corresponding to the number of time steps in the data set: 230.
Maya must play every frame in order for the expression to execute properly. After
that you ’ ll declare the fopenFile procedure we demonstrated back on page 317.

 if (frame == 1) {

 /***** INITIALIZE THE VARIABLES *****/
 $cellCount = 6;
 $scale = 1.4;
 $dNetSum = $Lsum = 0�;

 /***** MAIN BODY *****/

 // Set the playback speed (0� = play every frame) and range.
 playbackOptions -playbackSpeed 0� -loop once -min 1 -max 230�;

 // Define a procedure to fopen the data file.
 global proc fopenFile(string $mode, string $fileName, string
 $type) {

 global int $fileID;
 $fileID = 'fopen $fileName $mode '; // Open the file for reading.

 }

 Read and store the data
 Next, you ’ ll read cellData.txt line by line using fgetline and store the X and Z posi-
tions in $cellPos[][] . Th e fi le will be accessed and read using the combination of file-
BrowserDialog and the fopenFile procedure. In order to break each line into separate
strings, you ’ ll use the tokenizeList command. tokenizeList collects elements (or
tokens) of a string that are separated by white spaces or commas, and assigns them to
a string array.

 /***** LOAD THE DATA *****/

 /* Check if the data has already been loaded. If it has, the
 file ID will not be 0�. */

 if (!$fileID) {

 // Open a file browser and send the "r" mode argument to
 fopenFile.
 fileBrowserDialog -m 0� -fc ("fopenFile" + " \ "r\" ") -ft " "
 -an "Open_File";

 It ’ s possible that you or another user will press Escape or close the browser window
without selecting a fi le. In this case, you ’ ll want to halt the expression and print a
message in the Script Editor using the error command.

330 PART 2: A FOUNDATION IN MAYA

 // Stop the expression if the user doesn' t select a file.
 if ($fileID == 0�) {

 error "No file chosen ";
 }

 /* Run fgetline twice to increment to the start of the
 numerical data (past two lines of header text). */
 fgetline $fileID;
 fgetline $fileID;

 $i � 0� ; // The row counter.
 $line � 'fgetline $fileID' ;

 while (!' feof $fileID') {// feof returns 1 at the file end.

 // Break $line into tokens and store them in $cellNames.
 tokenizeList ($line, $coord);

 When assigning values to $cellPos [][] using variables to specify the elements,
remember that X and Z reside in alternating columns. Th e column element expres-
sions $j*2 and $j*2+1 for X and Z, respectively, ensure that X values occupy odd num-
bered columns (1, 3, 5, and so on) and Z values occupy even numbered columns (2, 4,
6, etc.) for every value of $j. Furthermore, because the XZ values in the fi rst row of
$coord[][] are all integers (refer to page 323), you ’ ll type cast $coord[] by prefacing
it with (float). Without (float), Maya will interpret the data in $coord[][] as integers,
based on the numbers in the fi rst row. When those integers are in turn assigned to
 $cellPos [][] (whose type is not set by the matrix declaration—remember, a matrix
is declared on as type “ matrix ”) Maya will set $cellPos [][] to type: integer. After that
any values assigned to $cellPos [][] will be automatically converted to integers, which
you don ’ t want. Th e (fl oat) preface avoids this problem by ensuring Maya interprets
the numbers as fl oat values.

 for ($j = 0�; $j < $cellCount; $j++) {// The column
 counter.

 $cellPos[$i][$j*2] = (float) $coord[$j*2+1] * $scale;
 $cellPos[$i][$j*2+1] = (float) $coord[$j*2+2] * $scale;

 }

 $line = ' fgetline $fileID' ; // Get the next line of data.
 $i++; // Increment the row counter.

 } // End while loop.

 } // End if (!$fileID) statement.

 Prepare the geometric models
 Th ere are three scenarios to consider when this expression executes at frame 1. In
the fi rst, you ’ re running this project for the very fi rst time: no spheres and no curves
(which trace the cell trajectories) exist yet. In the second, you ’ ve reopened the scene
after saving it with the spheres and, possibly, the curves in place. In the third, you ’ ve
just rewound the timeline and need to reposition the spheres to their starting posi-
tions and delete the curves so that new ones can be created the next time you press
Play. Th e following code covers all three scenarios by fi rst deleting existing curves,
then checking for existing spheres. If none exist, new ones are created. Next, the

 You ' ll recall from Chapter 12 that
type casting coverts a value
to the data type specifi ed in

brackets.

331CHAPTER 13: DATA INPUT/OUTPUT

spheres are moved into position according to the coordinates stored in $cellPos [][]
and new curves are started at the center of each cell. You need only delete the curves
once, whereas creating and/or positioning a sphere and starting a new curve must
occur six times—once for each of your cells.

 /***** PREPARE THE SPHERES AND CURVES *****/
 // Sphere represent the cells, and the curves,the cell paths.
 // Delete existing curves.
 string $tmpStr [];
 $tmpStr = 'ls -tr "curve*" ' ; // Make a list of curves.

 If the size of the $tmpStr array is greater than 0, then curves exist. Th e following if
statement checks this condition. If it ’ s true, the curves are deleted.

 if (' size $tmpStr'> 0�) delete $tmpStr; // Delete the curves.

 Next, the expression deletes Paint Eff ects strokes and brushes that may exist in the
scene from a previous animation run. You ’ ll see how these nodes are created and what
they do shortly. To check if strokes or brushes exist in your scene you can simply test
the $tmpStr array for a zero or non-zero value with a Boolean if statement—rather
than explicitly comparing the size of $tmpStr to zero, as you did for the curves above.
If $tmpStr is of size zero, the if statement returns zero or false , and doesn ’ t execute
the next command. Conversely, if $tmpStr has a non-zero size, the if statement
returns true , and executes the next command.

 // Delete existing Paint Effects strokes.
 $tmpStr = ' ls -tr "stroke*"' ; // Make a list of strokes.
 if (` size $tmpStr`) delete $tmpStr; // Delete the strokes.

 // Delete existing Paint Effects brushes.
 $tmpStr = ' ls -tr "brush*"' ; // Make a list of brushes.
 if (' size $tmpStr') delete $tmpStr; // Delete the brushes.

 // Make and/or position the spheres, and make the curves.
 for ($i = 0�; $i < $cellCount; $i++) {

 Since the animation starts at frame 1 and the index of the fi rst row of $cellPos [][] is
 “ 0 ” , you ’ ll need to subtract 1 from Maya ’ s internal frame variable in order to it as an
index in $cellPos [][]. Furthermore, frame is of type, fl oat, not int. Th erefore, to use
frame as an index variable for an array or matrix, you must preface it with (int) in
order to explicitly type its value to an integer.

 // Store the cell coordinates in the variables $x and $z.
 $x = $cellPos[(int)(frame-1)][$i*2];
 $z = $cellPos[(int)(frame-1)][$i*2+1];

 Th e variable $name is used to store the name of the current cell. Below you ’ ll assign
this variable and use it to check if the cell exists in the scene already. If it doesn ’ t
exist, you ’ ll create a sphere called $name.

 $name = "cell" + $i; // $name is the cell name.
 // Make a sphere if one doesn 't already exist.
 if (!' objExists $name') sphere -r 5 -n $name;

 // Move the sphere into position.
 move -absolute $x 0� $z $name;

 The objExists command checks
the existence of an object in
your scene. If the object does
exist, objExists returns 1 , if not,
it returns 0 .

332 PART 2: A FOUNDATION IN MAYA

 // Make the curve.
 // The curve command doesn 't require a -name flag in

create mode.
 curve -point $x 0� $z -name ("curve" + $i);

 }

 Reset variables
 Frame 1 is also the place to clear variables that should be reset each time you play the
animation. If these variables are not cleared, future assignments will simply add to
their current values rather than replace them.

 // Clear the migration statistics variables.
 clear $L; clear $dNet; clear $Dc;
 $dataOut = $Lstring = $dNetString = $DcString = " " ;

 Now close the outer if statement that checked if Maya is at frame 1. Th e rest of the
expression will execute for every frame greater than 1.

 } // End if (frame == 1) statement.

 The main loop
 Th is next section executes for every frame after frame 1, up to the end of the run at
frame 230. It positions the cells and calculates incremental values for L ($L).

 else { // frame > 1
 // Position the cells.
 for ($i = 0�; $i < $cellCount; $i++) {

// Store the cell coordinates in the variables $x and $z.
 $x = $cellPos[(int)(frame-1)][$i*2];
 $z = $cellPos[(int)(frame-1)][$i*2+1];

 $name = "cell" + $i;
 move -absolute $x 0� $z $name;

 You won ’ t be using the cell name again in this loop, so you can reuse the variable
$name to store the name of the curve that will trace out the trajectory of the current
cell (cell $i).

 // Add to each cell 's trajectory curve.
 $name = "curve" + $i;
 // The -append flag tells the curve command to add to an
 existing curve.
 curve -append -point $x 0� $z $name;

 $newPos = <<$x, 0�, $z >>;

 $x = $cellPos[(int)(frame-2)][$i*2];
 $z = $cellPos[(int)(frame-2)][$i*2+1];
 $oldPos = <<$x, 0�, $z>> ;

 // Calculate the displacement, L, for cell $i.
 $L[$i] += 'mag ($newPos - $oldPos)';
 // mag returns the scalar length of the vector.
 }

 }

333CHAPTER 13: DATA INPUT/OUTPUT

 Create the Paint Effect strokes
 Here you make the cell trajectory paths renderable by converting each NURBS
curve to a Paint Eff ects stroke (Figure 13.07). By frame 4, each cell path curve has
4 CVs—the requisite number for a stroke to properly adhere to its curve. A brush is
a Paint Eff ects node that controls the apprearance of a stroke. You can simplify your
task of setting attributes for all six strokes by forcing them to use the same brush
node via the shareOneBrush command.

 if (frame == 4) {// Add a Paint Effects stroke to each curve.

 // Make the Paint Effects strokes.
 select ' ls -tr "curve*"' ;
 AttachBrushToCurves;
 convertCurvesToStrokes;
 string $strokes[] = ' ls -tr "stroke*"' ;
 select $strokes;
 ShareOneBrush;

 Next, you ’ ll set the sampleDensity and useNormal attributes of the strokes ’ shape
nodes. Sample density determines the smoothness of the stroke—the higher the
sampling, the smoother the curve. Use normal alignes the stroke with the curve nor-
mals so that it doesn ’ t twist and cause constrictions. To see the eff ect of useNormal
turn it on and off manual in the Channel Box and see what happens to your strokes.

 string $name;
 for ($name in $strokes) {

Paint Effects stroke with a
brush applied to it

NURBS curve

Cell (NURBS sphere)

 FIGURE 13.07

 A Maya Paint Effects stroke is
attached to a NURBS curve that
traces out the trajectory of the cell
(purple sphere).

334 PART 2: A FOUNDATION IN MAYA

 string $tmp[] = ' listRelatives -children $name' ;
 setAttr ($tmp[0�] + ".sampleDensity") 50� ;
 setAttr ($tmp[0�] + ".useNormal") 1;

 }

 Query the name of the brush node and use it to set the color and brushWidth
attributes. You can set these manually in the Channel Box or Attribute editor to tune
the stroke appearance once the nodes have been created.

 string $list[] = ' listConnections strokeShape1' ;
 // Make the stroke white.
 setAttr ($list[0�] + ".color1") -type double3 1 1 1;
 setAttr ($list[0�] + ".brushWidth") 0�.2; // Set the brush width.

 } // End if (frame == 4).

 You ' ve reached the end!
 Upon reaching the fi nal frame, 230, you ’ ll need to make some summary calculations
and then write the statistics out to a fi le. An easy way to test if playback has stopped
is to run playbackOptions in query mode. If playbackOptions returns a value of 1 then
playback has stopped.

 if (frame == ' playbackOptions -query -maxTime') {

 /*
 Calculate the net displacement, Dnet, and the average values for
 $N, $L, and $D.
 */

 for ($i = 0�; $i < 6; $i++) {

 // Net displacement.

$x = $cellPos[(int)(frame-1)][$i*2];
 $z = $cellPos[(int)(frame-1)][$i*2 +1];
$newPos = <<$x, 0�, $z>>;

 $x = $cellPos[(int)0�][$i*2];
$z = $cellPos[(int)0�][$i*2+1];
$oldPos = <<$x, 0�, $z>>;

 $dNet[$i] = ' mag ($newPos—$oldPos)' ;
 $dNetSum += $dNet[$i]; // Sum the net displacement for all
 eight cells.

 $Lsum += $L[$i]; // Sum the total distance traveled for all
 cells.

 $Dc[$i] = $dNet[$i]/$L[$i]; // Calculate the directedness
 ratio.
 }

 $dNet[6] = $dNetSum/6; // Average net displacement for all cells.
 $L[6] = $Lsum/6; // Average distance traveled for all cells.
 $Dc[6] = $dNet[6]/$L[6]; // Average directedness ratio for all
 cells.

335CHAPTER 13: DATA INPUT/OUTPUT

 /*
 Put $N, $D, and $L arrays into single-value strings to print to
the text file. The first character in each string identifies
the variable: L, Dnet, or Dc. Tab characters are used to
separate each array element.
 */
 for ($i = 0�; $i < 7; $i++){

 $Lstring = $Lstring + "\t " + $L[$i];
 $dNetString = $dNetString + "\t" + $dNet[$i];
 $DcString = $DcString + "\t" + $Dc[$i];

 }

 One way to write the data out to a fi le is in the form of a single, long string with tab
(\t) and new line (\n) characters used where appropriate. Th is allows you precom-
pose your output data and send it to the fi le with a single fprint command. To
make the following line of code more legible we broke the variable assignment into
several statements, each time adding a new chunk to the existing string. Figure 13.08
shows what the output fi le will look like when viewed in a text editor or spreadsheet
application.

 // Compose the summary report for printing.
 $dataOut = "Title: Cell Migration Summary Data\n ";
 $dataOut = $dataOut + "Author: Your Name\n ";
 $dataOut = $dataOut + "************************************\n\n";
 $dataOut = $dataOut + "***** Directedness Coefficient *****\n ";
 $dataOut = $dataOut + "Cell:\t0�\t1\t2\t3\t4\t5\tAvg.\n";
 $dataOut = $dataOut + "L" + $Lstring + "\n ";
 $dataOut = $dataOut + "N" + $dNetString + "\n";
 $dataOut = $dataOut + "D" + $DcString;

 Th e following procedure is very similar to the one you used to open cellData.txt at the
beginning of this expression. Th e diff erence with this procedure is that it opens (cre-
ates) a new fi le and then uses fprint to print the long string value you have stored in
$dataOut to it. You will be prompted to provide a fi le name by the fi le browser which
opens in “ write ” (1) mode.

 // Define a procedure to fopen and fprint the data file.
 global proc fprintFile(string $mode, string $fileName, string
 $type) {

Title: Cell Migration Summary Data
Author: Your Name

***** Directedness Coefficient *****
Cell 0 1 2 3 4 5 Average
L 424.370 260.083 243.172 1141.795 1040.529 490.636 600.098
Dnet 100.810 62.922 110.635 513.991 412.584 71.386 212.055
Dc 0.237 0.242 0.455 0.450 0.396 0.145 0.353

 FIGURE 13.08

 The summary report fi le as it
should appear in a text editor
or spreadsheet application. It
contains the migration statistics net
displacement (Dnet), total distance
traveled (L), and the directedness
coeffi cient (Dc).

336 PART 2: A FOUNDATION IN MAYA

 // Open the file for reading.
 $fileID = ' fopen $fileName $mode' ;
 // Print the data string and close the file.
 fprint $fileID $dataOut;
 fclose $fileID;

 }

 // Open a file browser and send the "w" mode argument to
 fprintFile.
 fileBrowserDialog -m 1 -fc ("fprintFile" + " \ "w\" ") -ft " "
 -an " Save_File";

 }

 Th at ’ s it for your animation expression. Be sure to save your fi le. Now it ’ s time to
watch the “ cells ” move and check out your summary report.

 Running the script
 Before you create the expression, make sure that there are no external fi les currently
open in Maya—you may have inadvertently left one or more open while testing out bits
of code throughout this chapter. Enter the following code in the Script Editor. It will close
up to 10 open fi les. If you like, you can save this to your custom shelf for easy access.

 int $i;
 global int $fileID;
 for ($i = 0�; $i < 10; $i++) fclose $i;

 Before anything can happen in your scene, you must create an expression from your
script.

 1. Open moveCells.txt (either the fi le you just created or the one on the CD-ROM) in
your text editor.

 2. Select and copy the entire script.

 3. In Maya, open the Expression Editor by entering the following command in the
Command Line or Script Editor.

 ExpressionEditor;

 4. Press the New Expression button.

 5. LMB + click in the Expression text fi eld.

 6. Press Ctrl + V to paste your copied script into the text fi eld.

 7. Press the Create button at the bottom of the Expression Editor.

 8. In the Expression Name Field, replace the default name with moveCells and
press Enter.

 If Maya accepts your script without displaying error messages, the fi le browser should
open and prompt you to locate and select a fi le.

 9. Browse cellData.txt , select it, and press Open_File.

337CHAPTER 13: DATA INPUT/OUTPUT

 Th e default perspective camera settings won ’ t show enough area in your scene to view
all of the cells and their paths at once. To remedy this, increase the far clipping plane:

 10. Enter the following in the Script Editor or Command Line:

setAttr "perspShape.farClipPlane” 30�0�0�0� ;

 11. Manipulate your scene view so that all cells are visible.

 12. Press the Play button to start the animation.

 Debug if necessary
 If Maya generates one or more errors when you created the animation expression,
you will need to debug your script: open the Script Editor to view the specifi c error
messages and to read the line number(s) that generated them. If your text editor can
display line numbers, use this feature to cross-reference the error messages to the
off ending lines in your script. If you are unable to resolve the errors, you can compare
your script to the version of moveCells.txt included on the book ’ s CD-ROM.

 Play your animation
 After you ’ ve successfully created the moveCells expression and loaded cellData.txt ,
press the Play button to see the results. When the animation reaches frame 230, the
fi le browser will prompt you to enter a name and choose a location on your hard drive
for the summary fi le. After saving this fi le, open and inspect it in your text editor.
If the columns do not line up properly, you can adjust the placement of tabs in the
application so that there is enough width between each to facilitate the data. You
may wish to open or import your fi le into a spreadsheet program to test how the tab-
delimited strings are parsed into spreadsheet cells.

 Th e way you ’ ve crafted moveCells, you can rewind and play the animation as many
times as you like. You may also want to make a quick movie of your animation using
Maya ’ s playblast feature. For a reminder on how to do this, refer back to page 184 in
 Chapter 7 .

 Summary
 Maya ’ s ability to interact with your computer ’ s fi le system makes it easy to import and
export custom data—a feature that makes the program extensible to a wide range of
data visualization and in silico biology simulation applications. In the tutorial above
you read the cell migration coordinates into a variable in single step. For large data
sets it may be more desirable to import values only as they are needed rather than all
together which can use up valuable memory. Conversely, when running a simulation
that calculates a large number of attribute values—say, for a population of migrat-
ing cells or a large number of interacting molecules—you can write the values out to
a fi le periodically rather than storing them in variables or keyframing them. Until
a scene is saved, keyframe values are stored in RAM. When RAM is used up, virtu-
ally memory takes over, which can slow a simulation considerably because it involves
writing the keyframe information to your hard drive and then fetching it back again,
every time the CPU needs it. Likewise, if values are stored in variables and those vari-
ables meet or exceed you computer ’ s memory limitations, your simulation can fail in

338 PART 2: A FOUNDATION IN MAYA

midstream. A safer alternative to ever-growing sets of variables and keyframes is to
write attribute values to a fi le, frame by frame, using the ffl ush command. Doing so
gives the added protection of keeping a permanent record of your results as they ’ re
produced. In the unlikely event of a Maya abort or a computer crash, your simulation
results will be safely stored in a fi le up to the time of the crash.

 In the next chapter, the fi rst of the case study projects in Part 3 of the book, you ’ ll use
Maya ’ s fi le reading commands (fopen, fgetline, and so on) to work with a diff erent
kind of data: the atomic coordinates stored in a protein structure fi le. You ’ ll learn a
practical workfl ow for building biomolecules—and the fi rst step in modeling living
systems in Maya.

 Part 3
 Biology in silico
Maya in action

Th is page intentionally left blank

 14 Building a protein

 Introduction
 In this chapter you will create a 3D model of a protein using data stored in a molecu-
lar structure fi le. Th is is a natural spot to begin both because of the place of single
molecules in the organization in biological systems and because it involves simple
geometry and texturing in Maya. It also takes us into a very practical application of
MEL scripting: to automate a modeling task that would be tedious if done 100% man-
ually. By the end of this chapter you know how to import data from a fi le in Protein
Data Bank (PDB) format into Maya and how to use it to create surface models of a bio-
molecules similar to the one in Figure 14.02d . Models like this are the basic elements of
the universal visual language scientists use to describe the structure of living matter.

 Research Collaboratory for Structural Bioinformatics (RCSB)
Protein Data Bank (PDB) website:

 http://www.pdb.org/

 Visualizing macromolecules: A very brief history
 Since the early models of John Dalton—who in 1808 proposed that all matter is
made of atoms—scientists have created 3D depictions of molecules in order to
understand their structure. Structure in turn elucidates function; how a molecule
works as it performs its duties inside the cell. A knowledge of the function of bio-
molecules, notably nucleic acids (DNA, RNA, etc.) and proteins, ultimately leads the
devel opment of therapies, cures, and strategies for prevention of disease. 3D mod-
els were essential to James Watson and Francis Crick as they solved the geometric
structure of DNA. 1 In turn, the arrangement they uncovered of nucleotide bases in
opposite pairs revealed the mechanism for copying genetic material. Th is is just one
of many examples of the vital role played by visualization in the discovery process
in biology.

 Moreover, while Watson and Crick, and their contemporaries, labored over large,
handmade models, advances in computing have made creating 3D molecular models
from structural data a relatively simple task. Maps showing the positions of atoms
in a molecule were once transcribed by hand into 3D models by innovators such as
Linus Pauling and Robert Corey (Figure 14.01). Software now exists to convert these
maps into letters and numbers describing the element (carbon, oxygen, etc.) and loca-
tion in space of each individual atom in a given dataset, and then turn them into 3D
computer visualizations.

 Further reading → iVis in Action: Molecules, cells, and tissues →Interpretive
visualization (iVis)

 Wires, ribbons, and surfaces
 Computer algorithms enable us to represent biomolecules in diff erent visual styles,
each of which has its historic roots and utility. Several widely used styles are shown
for a lysozyme molecule in Figure 14.02 . Surface models, similar to those shown
in Figure 14.02d, e, and f , are used in many applications including the visu alization of

 The PDB was founded in 1971 by
Brookhaven National Laboratory.

Currently administered by
the Research Collaboratory

for Structural Bioinformatics
(RCSB), it is a key worldwide

resource in structural biology. As
of January 2008, it housed over

48,000 structures.

The PDB data fi le format is a
global standard for macro-

molecular structure data derived
from X-ray diffraction and NMR

crystallography studies.

342 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

 FIGURE 14.01

 Linus Pauling and Robert Corey with
some of their signature space-fi lling
molecular models (c. 1951).

Courtesy of the Archives, California
Institute of Technology.

shape complementarity between molecules, which plays an important role in the
drug discovery process. Simply put, candidates for a new drug are molecules which
bind to and enhance or inhibit the activity of a certain biomolecule imp licated
in a disease. Just as a key fi ts a lock, these molecules of complementary shape
can recognize on another and so activate their functions in the cell. A well-designed
drug can target this recognition event to enhance its eff ects or, if it ’ s dangerous,
block it.

343CHAPTER 14: BUILDING A PROTEIN

 FIGURE 14.02

 The structure of the digestive
enzyme lysozyme (14.3 kDa; 1001

atoms) was solved in 1965 by David
Chilton Phillips. With it, he went on

to explain how enzyme function
relates to structure. Scale bar � 10 Å

(a) wire backbone

(b) ball and stick

(c) ribbon

(d) CPK surface

(e) contact surface

(f) low-resolution surface.

We modeled these structures using
the UCSF Chimera package from
the Resource for Biocomputing,
Visualization, and Informatics at
the University of California, San

Francisco (supported by NIH
P41 RR-01081).

(Petterson EF et al.: UCSF Chimera –
A visualization system for

exploratory research and analysis.
J. Computational Chemistry 25:
1605–1612, 2004). For molecular

structure, we used PDB entry 2LYZ
(Diamond R, Phillips DC, Blake CCF,
North ACT: Real-space refi nement

of the structure of hen egg-white
lysozyme. J. Molecular Biology 82:

371–391, 1974).
 The Dalton (Da) is a unit of atom

mass. One Dalton is 1/12 the
mass of one Carbon-12 atom. A

kilodalton (or kDa) is equal to
1000 Da.

 The Angstrom (Å) is a unit
of length used for atomic

dimensions and light
wavelengths. It is equal to

1 � 10 � 10 meters, or 0.1 nm.

(f)(e)

(d)(c)

(b)(a)
10Å

Understanding how molecules interface with one another—their shape complemen-
tarity—accelerates the search for potential matches.

 In this chapter you will create a surface model of an actin molecule in a style reminis-
cent of the CPK models produced by Harvard Apparatus, USA. Th e CPK style, named
for chemists Robert C orey, Linus P auling, and Walter K oltun uses a colored sphere to
represent the van der Waals (vdW) radius of each atom in a molecule (see Figure 14.02d).
With Maya and MEL tools in hand for a basic surface model, you ’ ll be ready to tackle
more advanced structures such as ball and stick, wireframe, and ribbon models of
molecules using the data embedded in PDB fi les.

 Level of detail
 Figure 14.02d, e, and f , are all depictions of the surface of a lysozyme molecule
but they diff er in the level of detail (LOD from here on) shown. Another term that is
sometimes used interchangeably with LOD is resolution ; high LOD corresponds to high
resolution and vice versa. Th ere are two factors to take into account when consider-
ing LOD for a given model. Th e fi rst is the need for eff ective visual communication.

 Putting molecular scale in
perspective:

 100 meter (m) → a dog

 10 � 2 meter (cm) → a tooth

 10 � 3 meter (mm) → a pin head

 10 � 6 meter (μm) → a cell

 10 � 9 meter (nm) → a molecule

10 � 10 meter (Å) → an atom

344 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

For instance, how much surface detail is important to what you ’ re trying to show?
Th e individual colored atoms in a CPK model become superfl uous when the point is
to depict the general globular shape of a protein, and will likely even interfere with
the perception of that shape. Th e second factor has to do computer processing. Th e
more detail that must be calculated and drawn on a computer display, the greater the
demand on processing speed and power. For example, a molecular dynamics simu-
lation shown as highly detail CPK models like the one in Figure 14.02d would likely be
much slower to run than the same simulation containing the low-resolution surfaces
shown in Figure 14.02f .

 In this project, you are going to create a detailed space-fi lling model for purpose of
rendering the atomic structure of an actin protein. In the next chapter we will intro-
duce a low LOD actin model.

 Visualization freeware
 Th e 1990s saw an explosion of molecular visualization (a visualization process some-
times described as MolVis) and modeling software applications, many of which are
available to use free of charge. A group of these applications derive from computer
scientist Roger Sayle ’ s RasMol 2 program for which he generously made the C source
code freely available. While we don ’ t describe this software here, we do encourage you
to become familiar with one or more of the key freeware applications listed below.
Th ey provide a quick, interactive way to view molecular structures in diff erent styles.
One can therefore preview diff erent structures before choosing which one to import
into Maya. Th is is often helpful since there may be multiple PDB entries for a given
molecule, each with features peculiar to the circumstances under which the data was
collected.

Molecular visualization freeware

UCSF Chimera http://www.cgl.ucsf.edu/chimera/

JMol http://jmol.sourceforge.net/

VMD http://www.ks.uiuc.edu/Research/vmd/

USCF Chimera is a MolVis freeware application with particular utility in our current
in silico modeling workfl ow (see Figure 14.03). With it, you can generate and export a sin-
gle polygonal object which is representative of a given molecule ’ s surface and can be
subsequently imported into Maya. Furthermore, Chimera lets us preprocess the raw
molecule data into varying levels of detail for the surface. Th e low-resolution actin
model used in the next chapter was created using a Chimera-to-Maya workfl ow and is
provided in a Maya ASCII fi le in the CD-ROM supplement for Case study 2 . To date, we
fi nd Chimera the best suited of the MolVis freeware programs to a MolVis/Maya sur-
face modeling workfl ow. Chimera is relatively intuitive to use and, most importantly,
produces well-constructed 3D surface models that are easily edited in Maya.

 Th is discussion of MolVis software perhaps begs the question, with all of this molec-
ular modeling and visualization software freely available, why use Maya? Maya ’ s
capabilities for editing, shading, animating, and rendering molecules are far more
extensive and fl exible than those of any MolVis freeware application currently avail-
able. Maya has unmatched built-in scripting and dynamic simulation features which

 The van der Waals atomic radius
(vdW for short) is named for
Johannes Diderik van der Waals,
b. 1837, d. 1923. It corresponds to
the distance between two atoms
when they are " just touching " ,
that is when they are packed
side by side but have negligible
chemical bonding interaction.
The interior of a crystal, where
atoms can be eased together
cheek by jowl, has been a
favorite hunting ground for
chemists' pursuit of van der
Waals' radii, which in turn are
used by structural chemists to
represent an idealized " contact
surface " for each atom when
they push together but do not
embrace through the added
force of a chemical bond.

Freeware is a term given
to software applications made
available to the public free of
charge, often over the World
Wide Web.

345CHAPTER 14: BUILDING A PROTEIN

are not rivaled in any current MolVis program. Maya was developed to create stun-
ning visual eff ects: the lighting, shading, and rendering capabilities of MolVis appli-
cations don ’ t even come close to Maya ’ s. To create a basic still image of a molecule
for journal publication or classroom teaching, a program like Chimera may be all you
need. But to go further, Maya ’ s capabilities open a world of possibilities for molecu-
lar simulation and visualization. In this case study, you won ’ t be using a MolVis pro-
gram. Instead, we want you to work with all the steps, from raw protein coordinates
to fi nal polished model, so you will import protein structure data directly into Maya
to build an actin model. You will automate the process using a custom MEL script and
then light and render the model to create an image that no MolVis program can rival.

 Problem overview
 Your objective is to prepare a MEL script that creates a CPK surface model of a mol-
ecule using structure data contained in a PDB fi le. Th is model will be static, intended
for structure visualization, so there is no need to rig it for dynamic behaviors. You
will use the MEL script fi rst to create a small adenosine triphosphate (ATP) molecule
(Figure 14.04). Th is makes a great learning exercise. You ’ ll follow that up with the big,
complex actin protein. Finally you will make a production–quality rendering of the
actin.

 ATP: The energy currency of life
 Th e nucleotide , ATP, is a source of energy for many metabolic processes in living
organisms. It is a small molecule, weighing 0.5 kDa, with only 31 atoms (excluding
hydrogen) and therefore makes good data with which to try out your script since the
PDB fi le can be loaded and modeled quickly; if there is an error in your script, you
won ’ t have to wait long to fi nd out!

 Actin
 Actin is 43 kDa structural protein that is plentiful in eukaryotic organisms and criti-
cal to many biological functions including cell movement and muscle contraction.

Mol Vis
app.

Mol Vis
app.

Molecule
data files

Data file
preprocessing Maya

Rendering,
postprocessing

Maya-ready
visualization
construct

Maya FIGURE 14.03

 A workfl ow that leverages molecule
surface modeling capabilities in

MolVis freeware applications for
advanced visualization in Maya. We

have found the 3D models created in
UCSF Chimera (versus other MolVis
freeware programs) to be the most

compatible with Maya.

346 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

1 Å

 FIGURE 14.04

 The nucleotide, ATP, is a vital
source of energy for a large number
of metabolic processes within cells.
It is a small molecule and has a
distinct shape, making it an ideal
test subject for building your fi rst
molecule in Maya.

Relative to ATP, actin is fairly large, comprised of some 2,880 atoms. It is a typical
polypeptide—a chain of amino acids, folded in upon itself to produce a higher-order
functional unit.

 Under the right conditions, actin polypeptides form regular chain-like polymers called
actin fi laments. An individual actin chain is called a subunit within a fi lament and a
 monomer when in the unpolymerized state. Actin fi laments are a major component
of the protein scaff olding, or cytoskeleton , that give a cell its shape. Figure 14.05a shows
actin fi laments (stained red) comprising the cytoskeleton in a fi broblast, a kind of con-
nective tissue cell. It is the assembly and disassembly of actin fi laments that enable
cells to change shape and move in their surroundings. In muscle cells, contraction
is caused by motor proteins, called myosin, ratcheting along actin fi laments. Figure
14.05b shows actin fi laments arranged in contractile fi bers, called myofi brils, within
cardiomyocytes.

 Th e distinctive shape of the actin monomer (Figure 14.06) determines its orientation rel-
ative to other subunits in a fi lament and, ultimately, the shape and physical and chem-
ical properties of the fi lament itself. Th e actin monomer has two recognition regions
on its surface; their properties give actin a fundamental polarity in the polymerized
state. Th ese are commonly referred to as “ barbed ” and “ pointed ” or “ plus ” and “ minus ”
ends of the actin fi lament. An obvious cleft between the two peaks of the pointed end
reveals the binding site for a nucleotide—one of ATP or its de-energized form, ADP
(adenosine diphosphate), which is ATP less one phosphate group.

 Its many roles make actin one of the most widely studied of all biomolecules. Th ere is
plentiful literature of science journal articles devoted to its structure and function.
As well, actin fi lament assembly has been the subject of numerous computational
modeling eff orts. Th erefore, you have much material to draw upon when using actin
as a test subject around which to build 3D animation-based strategies for modeling
biology.

347CHAPTER 14: BUILDING A PROTEIN

Pointed (minus) end

Barbed (plus) end

monomer
= subunit filament

(polymer)

10 Å

10 Å

 FIGURE 14.06

 Actin momomer and fi lament. The
monomer is shown as a contact

surface model with its bound
nucleotide (ADP) represented as
a CPK model. The actin fi lament
is depicted using low-resolution
surfaces of the monomers. The

surfaces were generated by USCF
Chimera then modifi ed and rendered

in Maya.

(b)(a)

 FIGURE 14.05

 Actin fi laments labeled with
phalloidin conjugated to a red

fl uorescent dye.

(a) The actin cytoskeleton of a
cultured fi broblast cell.

(b) The actin component of
myofi brils within a cultured

cardiomyocyte.

Images courtesy and copyright ©
2006 Sylvia Papp and Michal Opas,

Institute of Medical Science, University
of Toronto. From research supported
by the Canadian Institutes of Health

Research (CIHR).

 The CPK look

 What ' s in a look?
 Atoms and molecules are much smaller than the wavelength of visible light (5,000–
7,000 Å). Th is makes them completely invisible to the naked eye. Even stranger is
the fact that atoms and their building blocks, the atomic nuclei which center atoms

348 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

and give them most of their weight as well as the electrons that make atoms stick
together by whizzing round them in smeared-out orbits, don ’ t move the same way
baseballs or satellites do. Physicists have determined that electrons play by diff erent
rules—the rules of atomic physics, which makes them very stealthy: unlike a base-
ball or the space shuttle, there is at no one moment any place an electron is “ at ” , even
though its action glues atoms together in molecules. Like fi ckle friends, electrons and
nuclei have only places they are likely to be found (Figure 14.07).

Molecules, including the big molecules comprising living cells, are eff ectively fl ocks
of electrons in motion through the space rendered by the centers of the atoms (the
atomic nuclei) of the molecules. Since the electrons are not only too miniscule for the
eye to see if they could be pinned down—but in fact can ’ t be pinned down—atoms and
molecules do not have a visual appearance in the sense we usually apply that term to
the look of a friend ’ s face or a gorgeous sunset. Th e pictures of atoms and molecules we
see throughout today ’ s media are therefore not a true-life rendering of a visual appear-
ance we would all see if only the molecule could be expanded to the size of a baseball.
Th ese pictures are visual interpretations that artists, working with scientists, have
made about certain vital properties of these molecules, which have a natural spatial
interpretation. Two of these are very important for you to keep in mind in working
with PDB and other molecular structure data. First, atomic nuclei, being a lot heavier
than their fl ightier cousins the electrons, are more settled. Th ey are more likely by far
to frequent rather small regions (compared to the typical “ size ” of the atom, which
we ’ ll get to next) of space. Th e PDB coordinate you see for an atom ’ s location is a mea-
surement that says where the center of this preferred hang-out region is located.

Th e space-fi lling molecular models don ’ t simply show where the atomic nuclei are,
however. Compared to the size of an atom, the atomic nuclei are just specks. What
is the space-fi lling substance portrayed in these evocative, often beautiful visual
constructions? It all comes back to the electrons and their duties as the “ glue ” that
bonds atoms together into molecular frameworks. Backing up the electrons that

10 Å
12 inches

 FIGURE 14.07

 (a) A plastic CPK model
of DNA, built circa 1972
and photographed by
us in 2006; scale:
The ruler is 12 inches long.

(b) A computer-generated CPK
model of DNA; scale bar � 10 Å .
Note the absence of hydrogen
atoms (white spheres) in the
computer model.

Plastic DNA model courtesy of Dr.
Laurence A. Moran, Department of
Biochemistry, University of Toronto,
Canada. Computer model created in
Maya using data from PDB entry 1A36
(Stewart L, Redinbo MR, Qiu X, Hol
WG, Champoux JJ, A model for the
mechanism of human topoisomerase I.
Science 279: 1534–1541, 1998).

 The plastic CPK models
manufactured by Harvard
Apparatus (originally by Ealing
Scientifi c Ltd.) use the color
black to represent carbon.
The convention in computer
graphics is to use grey instead—
presumably because black tends
to fl atten rather than accentuate
form in print or display graphics,
and because black objects are
diffi cult to see against dark
backgrounds.

349CHAPTER 14: BUILDING A PROTEIN

join the glue is an electron pack which prefers the space closer to the atomic nucleus,
between the boundary electrons and the nucleus. Th is intermediate region of space
is their turf and so on and they resist having it invaded: if you try to push two atoms
together, you quickly fi nd the inner electrons pushing back. Th e atoms bounce apart,
or at least back to the distance they settle into under the joint infl uence of the gluing
action of the outer electrons and the turf defense mounted by the inner electrons.
Using the equations of atomic physics, chemists can map out how far from the atomic
center or nucleus it is to the edge of this turf zone. So equipped, they can then meas-
ure this distance for specifi c atoms. So although atoms and molecules are jaw-drop-
pingly strange and complicated when thought about scientifi cally—in terms of atomic
physics and its esoteric math—atoms can behave toward on another in impressively
simple ways: if they get too close, they act (thanks to the turf defense mounted by the
inner electrons) rather like hard balls. Th e diameter of the hard balls is an estimate
of the spatial turf over which the inner electrons resist intrusion, reduced a bit by
any gluing action of outer electrons extending their turf into the space of neighbor
atoms. Th e van der Waal ’ s (vdW) radius is the name given to this turf size, in honor of
an early investigator of atomic collisions. So, the inspiration of the space-fi lling
molecular model is to ask not how the molecule would look to us if we made it bigger
(though to atomic math it has no such “ look ”), but how as artists we might instead
visualize how the atom looks to another atom or molecule. As you work with the CPK
and other visual languages then, keep in mind you are modeling visual analogues
of rather abstract things—the edges of quantum turfs that let molecules sense one
another!

 Atoms as spheres
 CPK models represent each atom as a solid sphere of radius equal to the atom ’ s vdW
radius. Table 14.01 lists the vdW radii for the atoms that make up ATP and actin. Th ese
spheres are large compared to those used in a ball-and-stick model, and obscure the
bonds between atoms. For convenience, we will deem one Maya unit equal to 1 Å. You
will model each CPK sphere with a NURBS sphere, using the MEL command, sphere ,
as follows:

 sphere -r $radius -n $atomName;

 While many publications and
MolVis applications agree on

colors for the most common
elements (gray for carbon, white
for hydrogen, red for oxygen and

so on), they lack consistency in
their RGB values. For instance,

the blue used for nitrogen in
one application may look quite
different from the blue used in

the next.

 Element C H N O P S

 vdW radius (Å) 1.70 1.20 1.55 1.40 1.90 1.85

 CPK color

gray white blue red orange yellow

 RGB values
(normalized
from 0 to 1)

R: 0.7
G: 0.7
B: 0.7

R: 1.0
G: 1.0
B: 1.0

 R: 0.0
 G: 0.5
 B: 1.0

 R: 1.0
 G: 0.0
 B: 0.0

R: 1.0
G: 0.5
B: 0.0

R: 1.0
G: 1.0
B: 0.0

 TABLE 14.01

 The vdW radii and CPK colors
for the elements that occur in ATP

and actin.

vdW radius data from: Pauling L.
The nature of the chemical bond and

the structure of molecules and crystals,
Cornell University Press, Ithaca,

NY, 1960.

350 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

 Color and material
 Table 14.01 shows the CPK colors for the elements that comprise ATP and actin. By
assigning a shader to each group of elements (all of the carbon atoms, for example),
you will be able to easily adjust the colors after the model is built.

 Th e semi-gloss quality of the material assigned to the spheres in Table 14.01 is typi-
cal of computer-generated CPK models and recalls the original plastic CPK models
manufactured by Harvard Apparatus, Massachusetts, USA (www.harvardapparatus.
com). Th is look can be achieved in Maya using Blinn shaders, which you can make
and assign to atoms either during or after the creation of the model. You will do the
former, automating the creation and assignment of the shaders within the main MEL
script, using the following command:

 shadingNode -asShader -shared blinn -name $shaderName

What creates the appearance of “ semi-gloss ” is a diff use specular highlight from the
main light source. Th e Blinn shader attributes Eccentricity and Specular Roll Off
control the size of the highlight and the distance over which its intensity fades to
zero. Th ese attributes can be adjusted after the model and shaders have been created
by the MEL script.

 Data
 You will use two PDB fi les in this project. Th e fi rst, atp.pdb , is located on the book ’ s
CD-ROM and contains atomic coordinates (xyz positions) for the atoms in an ATP
molecule. You ’ ll download the second fi le, 1j6z.pdb , from the RCSB PDB website. 1j6z.
pdb contains the atomic coordinates for an actin protein monomer. 3

 Start by creating new project directory called CPK_Project on you harddrive, and
within it, a directory called PDB. Th e resulting fi le path should look something like:

 \My Documents\maya\projects\CPK_Project\PDB

 Copy the fi le called atp.pdb from the CD-ROM to the PDB directory you created.

 14_Protein/PDB/atp.pdb

 In a Web browser, navigate to the following website:

 http://www.pdb.org/pdb/explore.do?structureId � 1J6Z

 Under the heading Download Files , click on PDB text . When prompted, browse to your
PDB directory and press Save. Th is download/save process may vary slightly from
one Web browser to another. What matters is saving the fi le 1j6z.pdb to the new PDB
directory on your computer. Next, open and inspect 1j6z.pdb in a text editor.

 PDB fi le format
 Figure 14.08 shows a several lines taken from the middle of the actin fi le 1j6z.pdb . It
describes how data is to be organized in rows and columns within a text fi le. Each
record occupies a row, while columns are reserved for specifi c data types. For this

 The -shared fl ag for the
createNode command is
important. It ensures that the
node will only be created if one
of that name doesn ' t already
exist. Use it when you want to
create only one of each type of
shader. For instance, once the
fi rst carbon atom is created, a
carbon shader is made. When a
second carbon atom is created,
you ' ll want to assign it the
existing shader rather than
create a new one.

351CHAPTER 14: BUILDING A PROTEIN

project, you ’ re interested in the Cartesian coordinates of individual atoms, which are
stored in record entries of types ATOM and HETATM. HETATM records are for water
molecules and for heterogens —entries that are not part of amino or nucleic acids,
such as inhibitors, solvent molecules, and ions. Your actin model will not include het-
erogens, but they are listed in the PDB fi le nonetheless.

 Descriptions of the PDB format for ATOM entries

 http://www.wwpdb.org/documentation/format23/sect9.html

A column in the PDB format is one character wide. Th erefore one data type will often
occupy several columns. For example, columns 1 through 6 are reserved for the record
name (ATOM or HETATM, for instance). Columns 7 through 11 are reserved for
data called “ Atom serial number ” , and so on. Th ere are 16 data types in all reserved
for ATOM and HETAM entries. However, real PDB fi les rarely contain all types (Figure
14.08 is a fairly typical example). Th is results in blank or empty columns, which is not
a problem as long as your program that reads and interprets the fi le counts charac-
ters (including blank spaces) correctly and therefore knows exactly when it arrives
at a particular data type. If, on the other hand, the program reads in data word-by-
word instead of character by character, it may mistakenly attribute data to the wrong
column.

 Maya falls into this latter category; it reads word-by-word using the fgetword com-
mand. We therefore urge you always to preview the PDB fi le in a text browser to
determine which columns Maya needs to locate the appropriate data. From here on,
we will use the Maya interpretation of a column, as shown in Figure 14.08 .

record name
atom #

atom name
residue name (amino acid)

chain ID
residue sequence #

x-coordinate
y-coordinate

z-coordinate
occupancy

temperature
factor

element

ATOM 501 CG GLU A 72 3.875 -4.227 32.802 1.00 15.62 C
ATOM 502 CD GLU A 72 3.736 -4.655 34.246 1.00 17.66 C
ATOM 503 OE1 GLU A 72 2.721 -5.280 34.611 1.00 20.39 O
HETATM 504 N HIC A 73 3.185 - 5.256 29.261 1.00 15.85 N
HETATM 505 CA HIC A 73 4.005 -6.030 28.341 1.00 19.07 C

 FIGURE 14.08

 Excerpt from the PDB fi le, 1j6z.
pdb3 for the crystal structure of

uncomplexed rabbit actin. Note that
each row corresponds to a unique
atom and that the columns contain

data specifi c to that atom. These are
the column entries commonly found
in PDB fi les. Those that you ' ll use in
your MEL script are printed in black.

 In most PDB fi les, hydrogen
atoms are absent because they

are too small for the resolution of
X-ray diffraction crystallography.

In contrast, hydrogen atoms are
present in data derived by NMR

crystallography.

 Important note on PDB fi le
column numbers: Since Maya
reads fi les word-by-word and

not character by character,
one can truly be sure which

columns certain data appear in
only by opening and inspecting

a given PDB fi le in a text editing
application such as Wordpad in

Windows or TextEdit in Mac OS.

352 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

 To create a vdW surface model, the columns we are interested in are:

 record name
 Th is identifi es the type of data to follow in the row. For the present example,
we ’ re interested only in ATOM records. HET or HETATM records include hydro-
gen and oxygen atoms belonging to water molecules and heterogens. Th e record
name enables us to fi lter out these and other unwanted entries.

 chain ID
 It is worth noting that atp.pdb and 1j6z.pdb have only one chain each, but you ’ ll
want your solution to accommodate other PDB fi les, many of which contain two
or more chains. Th at way you can use the same script to handle any PDB entry,
regardless of the number of chain it contains.

 x-coordinate y-coordinate z-coordinate
 Orthogonal coordinates in angstrom (Å) units, relative to the reference origin
chosen by the fi le authors.

 element
 Th e one- or two-digit shorthand for the chemical element.

 Th e remaining columns don ’ t concern us for this project and won ’ t be dealt with here.
For more information on these and other PDB fi le format specifi cations, visit the fol-
lowing link:

 PDB fi le format specifi cations

 http://www.rcsb.org/pdb/fi le_formats/pdb/

 Naming your models
 Assigning unique names to objects is essential to the way Maya operates. It fol-
lows that your script must create uniquely named objects as it builds a molecule.
Furthermore, it is often helpful to have hierarchical groupings of objects for easy
selection. For instance, if all carbon atoms are in one group, you can quickly assign a
new shader to them or by assigning it to the group. Likewise, if you wish to transform
a molecule, you can do so by transforming the molecule group node. Th is strategy is
consistent with Maya ’ s scene hierarchy which maps transformations and deforma-
tions through parent/child relationships. We will use the following naming conven-
tion for a molecule, its chains, and their atoms. To remain consistent with Maya ’ s
default naming strategy, numbering will begin at zero (0).

 molecule0 (the fi rst molecule created in the scene)

 → chain_A0 (chain A belonging to the fi rst molecule)

 → elementGroupA0 (a group of like atoms within chain A)

 → element (an individual atom; e.g. " carbon ")

 Unique molecule , chain , and group names will allow you to build hierarchical relation-
ships without encountering naming confl icts. Since individual atoms have no children,
you won ’ t need to select them by name in order to parent objects underneath them.

353CHAPTER 14: BUILDING A PROTEIN

Th erefore atoms don ’ t require unique names. You ’ ll let Maya assign default names to
atoms in order to make them unique only within their parent atomGroup nodes.

 Methods: Algorithm design
 Simply stated, your solution in Maya must do the following:

Read data Create, position, and color
spheres

User input PDB file
information

 Due to the repetitive nature of creating, positioning, and coloring almost 3,000
atoms, this problem is well suited to procedural modeling using a MEL script. After
Maya creates and shades the models, you can then light and render your scene using
the techniques described in Chapters 10 and 11 .

 Flowchart
 Now let ’ s make a plan by identifying the necessary steps and fl ow control for your
molecule-building procedure. In the fl owchart show in Figure 14.09 , the steps in rectan-
gles will become MEL commands, while those in diamonds will become conditional
statements and loops in your script. You will build the script in two parts. One proce-
dure will read and store data. A second procedure will use the data to create, position,
and shade the atoms.

 Methods: Encoding the algorithm
 You ’ ll now turn each element in our fl owchart into a form that Maya understands:
the MEL script. Your script will take the form of a procedure (a user-defi ned func-
tion in MEL). Essentially, the procedure function, proc , wraps many separate instruc-
tions into a single global command, specifi ed by the procedure name, that you can call
any number of times from anywhere in the Maya environment. Let ’ s build the code
in pieces, parceled by command or logical task, with a brief explanation for each. To
work as a procedure in Maya, all lines of code must be entered together, in the same
sequence that they appear in the text. Th e complete MEL script can be found on the
book ’ s CD-ROM. You ’ ll fi nd it useful for checking your work or, if you want a very fast
results, seeing cpk.mel in action right away!

 14_protein/MEL/cpk.mel

 Composing the MEL script
 We recommend building your MEL script in a text editor that is well suited to script-
ing (see page 302 in Chapter 12). You can type it in as you follow along with the
instructions below. Th at way you can save a script fi le periodically. Save it in your
 Maya Scripts directory which, in Windows, will be something like:

 C:\Documents and Settings\User\My Documents\maya\8.5\scripts

 Use the following fi le name:

 cpk.mel

354 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

go to
next
line

read & store record:
• chain ID
• x, y, z coordinates
• element

open PDB file

is record
of type

"ATOM"?

yes

no

end
of file?

yes

no

START

END

make, position,
and shade spheres

read record type

procedure #1
cpk()

procedure #2
vanDerSphere()

 FIGURE 14.09

 Flowchart for the cpk.mel script to
read data from a PDB fi le and then
create a CPK model in Maya.

 When you want to try out bits of code in Maya, simply copy and paste them from
your text editor into Maya ’ s Script Editor. When your MEL script is complete you can
load it into Maya in one step by sourcing the text fi le. We don ’ t recommend compos-
ing anything longer than a few lines of code in the Script Editor. Its editing capabili-
ties are elementary and if Maya crashes, you will lose anything you typed in that you
didn ’ t explicitly save out.

355CHAPTER 14: BUILDING A PROTEIN

 cpk() Procedure
 Th e script starts with the procedure command proc. Your procedure, cpk(), is going to
take three variables for arguments. As procedure “ arguments ” , these variables are
declared within the brackets next to the proc command (below).

 /***** cpk.mel *****/
 /*
 Date: created February 0�1 20�0�6; modified August 15 20�0�7.
 Authors: Jason Sharpe, Charles Lumsden, Nick Woolridge.

 Description:
 This procedure reads ATOM entries from a PDB file. It calls a
second procedure to make and shade a sphere to represent each atom
according to its element (oxygen, carbon, etc). The end result is
a CPK-style model built from sphere representing the van der Waals
radii of the constituent atoms.

 The procedure arguments are as follows:
 $chaincol The pdb file column in which the chain letters reside.
 $xcol The column in which the x-coordinates reside

(starting with 1).
 $elemcol The column in which the element (atom) names reside.

 To use this script:
 Save the entire script in a text file, using the .mel extension, in
your Maya Scripts directory, then source it through Maya's Script
Editor. Alternately, you can copy and paste the entire script into
Maya's Script Editor.
 */

 global proc cpk(int $chainCol, int $xCol, int $elemCol) {

 // Start of cpk()...

Next you ’ ll declare all variables and clear those whose values should be reset each
time the script is run. Defi nitions of key variables are commented in the code below.
Th e others will be explained as they are used in the script.

 /***** DECLARE THE VARIABLES *****/
 /*
 $filename A string that stores the name of the PDB file

being read.
 $molNames[] A list of objects named "molecule* ".
 $chains[] The chain name for each line of the PDB file.
 $chain A single array element within $chains[].
 $atom The name of the current atom.
 $elements[] The element name for each PDB file line.
 $element A single array element within $elements[].
 $word The return value of the fgetword command.
 $letters[] A list of letters: A, B, C, etc.
 $letter Each element in the array $letters[].
 $group The node name for a group of like elements

belonging to a given chain if that node exists.
 For example: $group = "oxygenGroupA ".

Reminder: small and capital
versions of the same letter are

different characters as far as
MEL is concerned. Keep this in

mind when you name, assign,
and query variables.

You need not specify the
Y- and Z-coordinate columns in

the procedure call since they
always follow the X-coordinate.
For instance, if $xcol = 7, we can

count on the Y and Z columns
being 8 and 9, respectively.

We have not closed the curly
brackets " { " here because cpk()

continues below.

356 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

 $groupName The name of a group node yet to be created.
 $newNodeName An empty transform node used to group all chains.
 */
 string $filename, $molNames[], $chains[], $chain, $atom,

$elements[];
 string $element, $word, $letters[], $letter, $group[],

$groupName, $newNodeName;

 /*
 $xyz[] The XYZ coordinates for each PDB file line.
 */
 vector $xyz[] ;

 /*
 $x, $y, and $z Coordinate values read from the PDB file.
 $rad The van der Waal's radius a given element.
 $cpkColor[] RGB color values used to set the element

shader colors.

 $xyzArray[] Stores the vector $xyz as an array.
 */
 float $x, $y, $z, $rad, $cpkColor[], $xyzArray[];

 /*
 $molNum The size of $molNames--the number of objects

named "molecule* " in your scene.
 $fileId The index number of the file opened by the

fopen command.
 $i and $j Counters.
 $lineNumIndex for the variable arrays including $xyz[].
 */
 int $molNum, $fileId, $i, $j, $lineNum;

 /*
 $molNumStr The number of existing nodes called molecule

converted to a string for the purpose of
naming objects.

 */
 global string $molNumStr;

 Th e clear command (below) empties an array, setting its size to zero. Th is is good
practice if you plan to run the script in succession for diff erent molecules. Setting the
counters $i and $j equal to zero is good form, although not entirely necessary since
they will be initialized when they are used subsequently.

 /***** INITIALIZE THE VARIABLES *****/
 $i = $j = $lineNum = 0� ;
 clear $xyz;
 clear $elements;
 clear $chains;

 Check for other molecules in the scene
Before querying the PDB fi le, the script will take quick stock of what items, if any,
are in the current Maya scene. Th e requirement for unique node names can lead to
trouble if you run cpk.mel more than once in one scene fi le. As the script creates and

357CHAPTER 14: BUILDING A PROTEIN

First execution Second execution Third execution

molecule0 molecule1 molecule2
chain_A0 chain_A1 chain_A2

carbonGroupA0 carbonGroupA1 carbonGroupA2
carbon carbon carbon
carbon1 carbon2 carbon3

hydrogenGroupA0 hydrogenGroupA1 hydrogenGroupA2
hydrogen hydrogen hydrogen
hydrogen1 hydrogen6 hydrogen11
hydrogen2 hydrogen7 hydrogen12
hydrogen3 hydrogen8 hydrogen13
hydrogen4 hydrogen9 hydrogen14
hydrogen5 hydrogen10 hydrogen15

oxygenGroupA0 oxygenGroupA1 oxygenGroupA2
oxygen oxygen oxygen

 FIGURE 14.10

 Objects must have unique names
to allow for multiple molecules to

be created in one scene fi le. In this
example, the fi nished MEL script

was run three consecutive times in
a single Maya scene. It called the
same data fi le each time: ethanol

(C2 H 6 O).

groups objects, it could encounter more than one Maya node with the same name,
then falter. To prevent this, the script must account for existing objects and take
appropriate action. Counting the number of existing molecules (the top node in the
hierarchy created by cpk.mel) at the start of the script allows you to specify the
 number of the molecule being created in the current execution. Th is number will in
fact be equal the number of existing molecules because we begin counting at 0. For
example, if no molecules currently exist in the scene, the script will create a node
called molecule0� . Figure 14.10 shows your hierarchical naming structure applied to three
molecules that were created with subsequent executions of cpk.mel within one scene
fi le. To count the number of molecules in the scene, you will use the ls command to
list objects named molecule* and then count the number of objects in the list using
the size command. Th at count is then converted to a string and stored in $molNumStr
for the purpose of naming the molecule , chain, and elementGroup nodes later on.

 // Get a list of objects called molecule*.
 $molNames = ' ls -tr "molecule*" ' ;
 $molNum = size($molNames);
 // convert $molNum to a string.
 $molNumStr = $molNum;

 Open the PDB fi le
 In Chapter 13 we introduced a group of MEL commands used to read and write fi les.
Here you ’ ll use the fileDialog command to open a window and allow the user to
browse for a fi le.

 // Open the PDB file.
 $filename = ' fileDialog -directoryMask "*.pdb"' ;

 Th e directoryMask fl ag allows you to specify the directory and must contain a fi le-type
specifi er such as " pdb " . Th e asterisk (*) on its own will return all fi le types residing

Reminder: When used with the
ls command, an asterisk, * ,

indicates " beginning or ending
with this " . For example, a list of

comprised of " atom* " will return
all Maya nodes whose name

begins with " atom " . Alternately
a list of " *atom " will return all

nodes ending in " atom " .

358 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

in the directory. If no directory is specifi ed the current directory will be used. Th e
 fopen command returns an integer we ’ ll call $fileId, which you will use subsequently
to query data from the PDB fi le. Th e next line of code is:

 /*
 fopen opens the file for Maya to read. The command returns an
index number to $fileId which you 'll use subsequently to refer
to the file within Maya.
 */
 $fileId = ' fopen $filename "r"' ;

 Error checking
 Th ere is always a chance that a user will choose Cancel in the fi le browser window
after executing cpk() . Without a contingency for this event, Maya will attempt to exe-
cute the rest of the script and wind up in a infi nite loop, from which the only recovery
is to force quit the application—not a good option because it means crashing Maya
and losing unsaved work. Th erefore, in the event that the user hits Cancel , you can
use the error command to stop the execution of a script—in this case, the balance of
 cpk.mel. When called, error displays a message in the Command Line and the Script
Editor, and returns control of the Maya scene to the user. It can be embedded in a
conditional statement so that it ’ s called upon when a problematic situation arises.

 // Stop the script if no file is selected.
 if ($filename = = " ") error "No file selected. Please run cpk()
 again ";

 After hitting Cancel in the fi le browser, the user would simply run cpk() again if they
wished to continue building a molecule.

 Main loop
 Now let ’ s create the loop that reads and stores the essential data. Th e condition for
remaining in the loop is not having reached the end of the PDB fi le. Th erefore, you ’ ll
use the feof command to check each time through the loop whether the fi le end has
been reached. If feof returns 1, the fi le end has been reached. If it returns 0, the fi le
end has not been reached.

 /***** MAIN LOOP *****/
 while (' feof $fileId ' = = 0�) {
 // A non-zero ' feof $fileId' value means the file end has

 been reached.

 Record type
As long as you haven ’ t reached the end of the fi le, it ’ s okay to read the fi rst word of the
current line in the fi le. Th e fgetword command reads words, that is, strings of charac-
ters separated by space or tab characters. You will store the return value of fgetword in
a string variable called $word . Each time the command is used, Maya advances to the
next word in the fi le. Th e fi rst time fgetword is used on each new line in the PDB fi le, it
returns the fi rst word—the record type. If the record is “ ATOM ” then the script should
proceed to read and store the data. Th e following lines begin the while loop you opened.

 $word = ' fgetword $fileId ' ;
 if ($word = = "ATOM") {

 // Ready to read and store the PDB record...

The variable $word is used
frequently during this part of
the script, which is responsible
for reading the PDB fi le data.
$word is a container used to
temporarily hold each string
returned by the fgetword
command.

359CHAPTER 14: BUILDING A PROTEIN

 Read the record
 Here you read in the chain, x-, y-, and z-coordinate, plus the element for the ATOM
entry. Th e column in which each data appears is stored in the variables, $chainCol,
$xCol, and $elemCol, which were supplied by the user as arguments in the procedure
call. In preparing the code, don ’ t lose track of the rule that on each line of a PDB-
formatted fi le, each column is represented by a word. You will use fgetword to incre-
ment from word to word (i.e. from column to column) until you reach the column
corresponding to the number stored in $chainCol, $xCol, or $elemCol . At that point,
you will store the value of fgetword in the temporary holder $word , which is in turn
used to assign $chain, $x, or $element.

 Note that, although you know the column numbers for the entries we ’ re interested
in, you don ’ t explicitly know their order from left to right. Th ese can vary from one
PDB fi le to another. Th ree columns give you six cases for possible orders (show in Table
14.02). Th erefore you must test for each case, and read in the data accordingly.

 Th e fl owchart in Figure 14.11 shows the steps you ’ ll take in determining the order of
data columns and then reading the data into your three array variables, $chains[],
$xyz[] , and $elements[] (via the variables $word, $chain, $x, and $element). Let ’ s
look at the MEL code for Case 1, which immediately follows the if ($word=="ATOM ")
statement above.

 // Determine order of columns and read in data.

 // CASE 1.
 if ($chainCol < $xCol & & $xCol < $elemCol) { // CASE 1.
 // Chain column.

 for ($i = 1; $i < $chainCol; $i + +) {

 // This increments fgetword until the chain column is
 reached.

 $word = ' fgetword $fileId ' ;
 }
 $chain = $word;

 Case Column 1 Column 2 Column 3

1 A X E

2 A E X

3 X A E

4 X E A

5 E A X

6 E X A

 A = chain; X = x-coordinate; E = element.

 TABLE 14.02

 Cases for the possible order of
chain, x-coordinate, and element
columns in a PDB data fi le. These

cases must be considered when
reading data into variables in your

MEL script.

 For concision, the code for
Cases 2 through 6 are not

included here in the text. You ' ll
fi nd the entire code listing in

the MEL script, cpk.mel on the
CD-ROM.

360 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

Store coordinates together in
one vector array.

Case 1?

yes

no Case 2? no

 $chains[$lineNum] =
fgetword

$x = fgetword
– advance one column –

$y = fgetword
– advance one column –

$z = fgetword

 $xyz[$lineNum] =
$x, $y, $z

Use fgetword to increment
to the element column.

 $elements[$lineNum] =
fgetword

repeat these
steps for every

"ATOM" record in
the PDB file

($lineNum += 1)

Use fgetword to increment
to the x-coord column.

Use fgetword to increment
to the chain column.

etc...

yes

etc...

record is of type
"ATOM"

make, position, and
shade spheres

 FIGURE 14.11

 The steps involved in reading a
line from a PDB fi le using Maya ' s
fi le-reading commands. There are
six possible cases for the order in
which the data columns for chain
ID, x-coordinate , and element
appear.

361CHAPTER 14: BUILDING A PROTEIN

 $j = $i; // Continue column counter where it left off.

 // X column.
 for ($i = $j; $i < $xCol; $i + +) {
 $word = ' fgetword $fileId ' ;

 }
 $x = $word;
 $y = ' fgetword $fileId' ; $i + = 1;
 $z = 'fgetword $fileId'; $i + = 1;

 $j = $i;

 // Element column.
 for ($i = $j; $i < $elemCol; $i + +) {

 $word = ' fgetword $fileId ' ;
 }
 $element = $word;

 } // End CASE 1 if statement.

 Th e same approach applies to the remaining fi ve cases, the only diff erence being the
order in which the variables, $chain, ($x , $y and $z), and $element are assigned.

 Now let ’ s assign values to the array variables $chains[] , $elements[] , and $xyz[] for
the current line in the PDB fi le. When you assign string data to a numerical type vari-
able, Maya converts the data into numerical values. Th is feature allows us to turn the
string data stored in $x, $y, and $z into fl oating point numbers to use for positioning
the atoms. Furthermore, since $xyz[] is a vector array, we must pass it the $x, $y, and
$z values in vector form, using the << >> characters.

 // Chain ID.
 $chains[$lineNum] = $chain; // String.

 // X, Y, Z coordinates.
 $xyz[$lineNum] = < < $x, $y, $z >>; // Vector.

 // Element name.
 $elements[$lineNum] = $element ; // String.

 Next, we increment the $lineNum counter, close the if “ ATOM ” statement, update the
 $fileEnd variable, and close the main while loop .

 // Only count lines starting with "ATOM " .
 $lineNum + = 1;

 } // End if ($word = = "ATOM ").

 // Advance to the next line in the PDB file.
 fgetline $fileId;

 } // End while loop.

 Create the atoms
Here is where you will make, position, and shade the spheres which represent
atoms in your CPK model. Th e fl owchart in Figure 14.12 illustrates the steps involved.

362 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

Th e script increments through the entries in the $elements[] array using a for...in
loop. Within this loop, a series of nested if...else statements query the element type.
Th e type of element in turn determines the atom ’ s radius and color. Th e radius, color,
element, chain ID, and XYZ coordinates are used as arguments to call the second pro-
cedure in your script, vanDerSphere(). vanDerSphere() makes a sphere and a shader,
positions the sphere, assigns the shader to the sphere, and groups the sphere with
like atoms. Parceling these tasks in a second procedure, or subroutine, means they
need only be included once in the main body of the script rather than in every place
they ’ re needed. Th e code below continues the main script, following the previous code
line which closed the while loop.

 // initialize $i, the counter in the following loop.
 $i = 0�;

 for ($atom in $elements) {
 // Put the xyz vector into an array for use below.
 $xyzArray = $xyz[$i];
 $chain = $chains[$i];

 // CARBON.
 if ($atom = = "C") {

 $rad = 1.70�; // van der Waals radius for carbon.
 $cpkColor = {0�.35, 0�.35, 0�.35}; // Gray, the CPK color for

 carbon.
 // Call procedure.
 vanDerSphere("carbon", $chain, $rad, $cpkColor, $xyzArray[0�],

 $xyzArray[1], $xyzArray[2]);

For the current atom,
determine the element
and assign appropriate

values to $rad (radius) and
$cpkColor (color) variablesfor every entry

in $elements,
repeat

make a shader and assign it a
color using $cpkColor

call vanDerSphere()
procedure with the following

arguments:
$atomName, $chainId,

$radius, $color[], $x, $y, $z

make a sphere using $rad
and position it using $xyz []

assign the shader
to the sphere

group this sphere with like
elementsgroup element groups

by chain

read and store record

vanDerSphere()

 FIGURE 14.12

 The steps involved in making the
atoms from the PDB fi le data.

 You may recall from Chapter 12 ,
that for. . . in loops cycle through
elements in an array. The " for "
part is a holder for the element
value, while the " in " part is the
array itself.

363CHAPTER 14: BUILDING A PROTEIN

 }
 // HYDROGEN.
 else if ($atom = = "H") {
 $rad = 1.20�;
 $cpkColor = {1.0�, 1.0�, 1.0�}; // White.
 vanDerSphere("hydrogen", $chain, $rad, $cpkColor,

 $xyzArray[0�], $xyzArray[1], $xyzArray[2]);

 }
 // NITROGEN.
 else if ($atom = = "N") {
 $rad = 1.55;
 $cpkColor = {0�.0�, 0�.5, 1.0�}; // Blue.
 vanDerSphere("nitrogen", $chain, $rad, $cpkColor,

 $xyzArray[0�], $xyzArray[1], $xyzArray[2]);

 }
 // OXYGEN.

 else if ($atom = = "O") {
 $rad = 1.52;

 $cpkColor = {1.0�, 0�.0�, 0�.0�}; // Red.
 vanDerSphere("oxygen", $chain, $rad, $cpkColor,

 $xyzArray[0�], $xyzArray[1], $xyzArray[2]);

 }
 // PHOSPHORUS.
 else if ($atom = = "P") {
 $rad = 1.80� ;
 $color = {1.0�, 0�.5, 0�.0�}; // Orange.
 vanDerSphere("phosphorus", $chain, $rad, $color,

 $xyzArray[0�], $xyzArray[1], $xyzArray[2]);

 }
 // SULFUR.
 else if ($atom = = "S") {
 $rad = 1.80� ;
 $cpkColor = {1.0�, 1.0�, 0�.0�}; // Yellow.
 vanDerSphere("sulfur", $chain, $rad, $cpkColor,

 $xyzArray[0�], $xyzArray[1], $xyzArray[2]);

 }

 // Add more elements if you like.

 // increment the for...in loop counter.
 $i + = 1;

 } // End for loop.

 In the script excerpt above, we have accounted for the fi ve elements which occur in
chain A of the actin data. Th e fi le on CD-ROM, cpk.mel, includes else ...if statements
for additional elements that occur in many proteins: chlorine, fl uorine, iron, phos-
phorus. More elements can easily be added. If your script is missing an element that
is present in a PDB fi le you ’ re reading, those atoms simply won ’ t be created when you
run cpk() .

 Because vanDerSphere() is a separate procedure, you ’ ll want to wrap up your main
 cpk() procedure before moving onto this atom-building subroutine.

364 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

 Organize the scene hierarchy
 cpk() ends with a for ...in loop that organizes the models into the hierarchy described
back on page 358 . It collects like elements together under group nodes called chain_
A*, chain_B* , etc., and then collects these chains under a group node called molecule* .
In the Maya scene hierarchy, group nodes are parents and group members, their chil-
dren. In the code that follows, you will use the string array variable, $group[] to hold a
lists of node names for groups of like elements within a given chain. Th ese groups will
have been created in vanDerSphere() which you will see in a minute. As an example,
the data fi le 1j6z.pdb , produces the groups carbonGroupA, hydrogenGroupA, nitrogen-
GroupA, and oxygenGroupA .

 // Group atoms by chain ID (add more letters for more chains).
 $letters[] = { "A", "B", "C", "D", "E", "F", "G", "H"};

 for ($letter in $letters) {

 // Ensure $group is empty at the start of each loop.
 clear ($group);

 // Create a list of element groups within the current molecule.
 string $tmpStr = "*Group" + $letter + $molNumStr;

 // $molNumStr is the number of the current molecule.
 $group = ' ls -transforms $tmpStr' ; // e.g. carbonGroupA, etc...

 if ($group[0�] ! = " ") {
 // $group is not empty, therefore this chain exists.

 $groupName = "chain_" + $letter + $molNumStr; // E.g.
 chain_A1.

 createNode transform -shared -name $groupName;

 Starting with " | " ensures that the element group gets parented to the newly created
group node and not to an existing one that is parented under a molecule ($group-
Name) that already exists in your scene.

 parent $group (" | " + $groupName);
 } // End if.

 } // End for.

 // Parent all chains under a group node called molecule*.
 $tmpstr = " | chain*" + $molNumStr;
 $group = ` ls -transforms $tmpstr` ; // a list of nodes called

 chain*.

 if ($group[0�] ! = " ") // There exists at least one chain*.
 {
 $newNodeName = ' createNode transform -name ("molecule" +

 $molNumStr)' ;
 // parent chain* nodes to molecule*;
 parent $group $groupName;
 }

 } // End cpk() procedure.

 The script checks to see if there
exists at least one chain in your
scene, using the statement,

if ($group[0�] ! = "") .

It does this before using the chain
object in parenting (grouping)
operations. It ' s necessary to
check because some PDB fi les do
not include chain IDs.

365CHAPTER 14: BUILDING A PROTEIN

 Th at wraps up the main procedure. Now let ’ s have a look at the code that creates and
positions the atoms, which are represented as NURBS spheres:

 vanDerSphere() procedure
 Th is procedure takes seven arguments and has no return value. It follows the steps
outlined in Figure 14.12 . Up to this point, you have created shaders and assigned them
to models using the Hypergraph, as described back in Chapter 8 . In this procedure
you will use the MEL command shadingNode to make a shader and then the hyper-
Shade command with its -assign flag to connect the shader to the appropriate geom-
etry. You ’ ll use Blinn shaders to achieve the semi-gloss appearance of the traditional
hard plastic CPK models.

 You ’ ll build this procedure in a new fi le, separate from cpk.mel, and save it under the
name vanDerSphere.mel (capital letters are optional for fi le names).

 /***** vanDerSphere.mel *****/
 /*
 Created: February 20�0�6, modified August 20�0�7 .
 Authors: Jason Sharpe, Charles Lumsden, Nick Woolridge.

 Description:
 This procedure creates and shades a sphere to represent the van der
Waals contanct surface of a particular element (oxygen, carbon,
etc.), based on arguments send to it from the cpk() procedure.

 The procedure arguments are as follows:
 $atomName The name of the current atom. For example: carbon1.
 $chainId The PDB file chain letter (A, B, C, etc.) and is

used in naming the group node to which the atom will
belong.

 $radius The vdW radius of the atom.
 $color[] The name of the shader node to be assigned to the

atom.
 $x, $y, and $z The world space coordinates for the atom.

 To use this script:
Save the script in a text file, using the .mel extension, in your
Maya Scripts directory, then source it through Maya 's Script Editor.
 */

 global proc vanDerSphere (string $atomName, string $chainId,
 float $radius, float $color[], float $x, float $y, float $z) {

 /***** DECLARE THE VARIABLES *****/

 /*
 $molNumStr Was assigned in the cpk() procedure and is used

for naming when more than one whole molecule
exists in your scene.

 */
 global string $molNumStr;

366 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

 /*
 $shaderName The name of the shader to be assigned to the

current atom.
 $groupName The name of the element group to which the

current atom will be parented.
 $newNodeName The transform node name of the shader,

$shaderName.
 $atomNodeName[] The transform and history node names

returned by the sphere command.
 */
 string $shaderName, $groupName, $newNodeName, $atomNodeName[];

 /***** INITIALIZE THE VARIABLES *****/

 $shaderName = $atomName + "Shader";
 $groupName = $atomName + "Group" + $chainId + $molNumStr;

 Below, the shadingNode command is used with the -shared fl ag to ensure that only
one shader is created for each element. We set the shader diffuse value to 0.9 to
brighten it up slightly from the default setting of 0.8. After your model is built you
can try diff erent RGB and diff use settings for each of the shaders.

 // Create a shader and store its name in $newNodeName.
 $newNodeName = ' shadingNode -asShader -shared blinn -name
 $shaderName' ;

 // Set the shader's color and diffuse attributes.
 setAttr ($newNodeName + ".color") $color[0�] $color[1] $color[2];
 setAttr ($newNodeName + ".diffuse") 0�.9;

 Next you ’ ll make and position the NURBS sphere. Th e sphere command returns
a string array of size 2, the fi rst element (index 0) of which is the transform node
name. After the sphere is made, it remains selected. Th e hyperShade command then
assigns it the appropriate shader.

 $atomNodeName = ' sphere -r $radius -n $atomName' ;
 // Position the sphere.
 move -worldSpace $x $y $z $atomNodeName[0�];

 // Assign the shader.
 hyperShade -assign $shaderName ;

 Again, you ’ ll use the -shared fl ag, but this time with the createNode command to
ensure that only one group node is created corresponding to this type of element,
chain ID, and molecule.

 // Create a group node to hold this type of atom.
 createNode transform -shared -name $groupName;;
 parent $atomNodeName[0�] $groupName;

 } // End procedure.

 Save the entire script—including both procedures—under the name cpk.mel in the
Maya Scripts directory on your hard drive.

367CHAPTER 14: BUILDING A PROTEIN

 Results: Running the script

 The ATP model
 Now let ’ s try out the script on ATP (Figure 14.13) .

 Source the script

 1. Open the Script Editor

 2. Choose File → Source Script

 3. In the fi le browser, navigate to and select your script fi le, cpk.mel .

 4. Press Open.

 Th is loads cpk.mel into memory so that the procedures cpk() and vanDerSphere() can
be called from within Maya.

 Examine the PDB fi le
Next, open the PDB fi le atp.pdb in your text editor and examine an ATOM entry (see
below). Th e column numbers corresponding to chain , X-coordinate , and element are
5, 7, and 12, respectively. Th erefore, these will be the arguments sent to the main pro-
cedure, cpk() .

 The character in column 3 is the
Atom Name, a data type that
is distinct from the Element,

displayed in column 12. For ATP
they happed to be the same

character. This is not usually
the case; Atom Names are often

2 to 3 character long, whereas
Elements are always 1 character

in length. Atom Names are
used by MolVis applications
in determining connectivity

between atoms.

 FIGURE 14.13

 The cpk() procedure was run three
times to create these CPK models of

an ATP molecule.

chain X-coordinate element

Column: 1 2 3 4 5 6 7 8 9 10 11 12

Data: ATOM 10� C ATP A 1 0�.291 -2.472 -5.311 1.0�0� 0�.0�0� C

368 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

 Run the script

 1. Enter cpk(5, 7, 12); in the Command Line or Script Editor.

 2. When the fi le browser window appears, locate atp.pdb fi le in your project PDB
directory (CPK_Project/PDB/atp.pdb).

 Given the small size of atp.pdb, the script should execute quickly. When it ’ s done,
have a look at the various elements in your scene, including the shaders you cre-
ated. Note that the organization of elements into groups makes it ease to assign a
diff erent shader to carbon, for example, by assigning the shader to the entire group.
Alternately, you could change the color attribute in the carbon shader, which is
already connected to all the carbon atoms in the scene.

 Make a Shelf button
 Placing the procedure call, cpk(5, 7, 12) , on your Custom Shelf enables you to execute
the script at the push of a button. Th e button will work as long Maya can locate a pro-
cedure called cpk, which will happen under one or both of the following conditions:

 A. Since starting Maya you have loaded the procedure by sourcing its parent
script cpk.mel, or by copy>paste>Entering cpk() in the Script Editor.

 B. The script cpk.mel has been placed in a directory that is listed in Maya ' s
Scripts path; notably, the default Scripts directory, which by default in
Windows is:

 C:\Documents and Settings\User \My Documents\maya\8.5 \scripts

 When you call a procedure, if it isn ’ t currently in memory, Maya will search the .mel
files within its Scripts path until it locates a procedure named cpk. Furthermore,
when the procedure vanDerSphere() is called from within cpk(), Maya will again auto-
matically search for and load it. To create the cpk() button:

 1. Make sure Shelves are displayed and that you have created a custom shelf
already (see page 86 in Chapter 04: Maya basics).

 2. Type cpk(5, 7, 12) in the Script Editor.

 3. Select the text cpk(5, 7, 12) then MMB+Drag it to your Custom shelf (Figure 14.14a).
A new MEL icon will appear.

 4. Choose Window → Settings/Preferences → Shelves, and click the Shelves
tab. This opens the Shelves Editor.

 5. Under the Shelf Contents tab, select cpk(5, 7, 12) . In the Icon fi eld, type cpk
(Figure 14.14b).

 6. Hit Save All Shelves.

 You can now execute cpk(5, 7, 12) simply by pressing the cpk Shelf button. Keep in
mind that this button will only work with PDB fi les that have the “ 5, 7, 12 ” column
arrangement. For fi les with diff erent arrangements, you can source cpk.mel, and then
enter appropriate arguments in the cpk() procedure call.

369CHAPTER 14: BUILDING A PROTEIN

 Create an actin protein model
 Now at last you ’ re ready. Use the cpk Shelf button created above to make your actin
model. If you wish, save your ATP and create a new scene, although this is not necessary
since the script facilitates multiple molecules within one scene. To create the actin model:

 1. Press the cpk button that you created in your Custom Shelf.

 2. When the browser window appears locate the fi le 1j6z.pdb and hit Enter.

 Th at ’ s it! With nearly 100 � more atoms, actin will naturally take longer to build than
the ATP model. While the script is running, Maya will be unresponsive to any other
commands, menu selections, or view changes. It will seem as if the application has
crashed—but it hasn ’ t, it ’ s just busy. Unfortunately there is by default no ticking
clock or scroll bar to indicate progress, you just have to be patient. Figure 14.15 shows
the completed CPK actin model in the scene view.

 Applying the script to other molecules
 You may now want to try out cpk.mel on other molecules. PDB fi les for tens of thou-
sands of biomolecules can be downloaded from the RSCG PDB website free of charge:

 http://www.pdb.org/pdb/

 Use of the PDB archive is subject to conditions listed at:

http:// www.rcsb.org/pdb/static.do?p=general_information/about_pdb/pdb_advisory.
html

 Please keep in mind, however, not all PDB lay their data out exactly alike. Th e number
of columns and their order can be inconsistent from fi le to fi le. Before running
 cpk.mel on a PDB fi le, remember to open the fi le in a text editor and determine the
column numbers for the chain, the x-coordinate, and the element; then enter those
column numbers as arguments in the cpk() procedure. Strange results, or none at all,
usually indicate a misinterpretation of the column numbers.

(a)

 FIGURE 14.14

 (a) Drag the procedure call, cpk(5,
7, 12) to your custom shelf to make

it a button.

(b) Locate cpk() in the Shelves Editor
and give it an Icon Name so that you
can easily recognize it on the Shelf.

(b)

370 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

 Debugging the script
 In the unlikely event that you encountered no errors when you sourced and ran
the script, skip this section. If, on the other had, you transcribed the code piece by
piece from this chapter or rewrote it yourself by following the written instructions,
chances are you encountered syntax errors at some point.

 Syntax errors
 Syntax errors will appear as usual in the Command Line and Script Editor. Line and
column numbers will point you to the error location in the script fi le cpk.mel. For
example, the following error was caused by a mistyped variable name, $xYz instead of
$xyz. Th e clear command empties an array variable, setting its size to zero.

 // Error: clear $xYz; //
 // Error: Line 70�.11: "$xYz" is an undeclared variable. //

 Th e mistake can be found and corrected in the original script fi le using the line
number, 70�, and column number, 11, provided in the error message.

 Logic errors
 Logic errors can be dealt with in two ways. Th e fi rst, and quickest, is to compare
your script, line for line, with the fi le, cpk.mel, included on the CD-ROM, and look for
discrepancies. Th e second, and more informative, is to print to the Script Editor, vari-
ables from the part(s) of the script that you suspect is causing the trouble. Th is will

10Å FIGURE 14.15

 Finished CPK model of actin. Note
the group hierarchy in the Outliner.
Scale bar � 10 Å.

371CHAPTER 14: BUILDING A PROTEIN

help you to see the diff erence between what you think Maya is doing and what is
actually happening. You do this using the print command.

 int $i;
 for ($i = 0� ; $i <3; $i + +) {
 string $name = "molecule" + $i;
 print ("$i = " + $i + ", $name = " + $name + "\n");
 }

 Th e example above reports the variables, $i and $name, in the Script Editor, as
follows.

 $i = 0�, $name = molecule0�
 $i = 1, $name = molecule1
 $i = 2, $name = molecule2

 Tracing values in this way can help locate mistakes in variable assignment that may
be causing logic errors.

 Results: Rendering your molecule
 In visualization, it ’ s the look that counts. To conclude this project, let ’ s create a ren-
dering of the actin molecule as it appears on the title page of this chapter. You ’ ll start
by repositioning the model, then add a camera and lights, and fi nally render it using
the Maya Software Renderer.

 Reposition the model
 If you select the parent node, molecule0� , in the Outliner and show its move, rotate,
or scale handles, you ’ ll see that its origin is at the world origin (0, 0, 0) and not at the
model ’ s center. A centered origin will make positioning the model for rendering easier
and more intuitive. Also, for other work you may need to position multiple molecules
relative one another in order to make them interact dynamically, as in Case Study 3
just ahead. In this case it helps to have the default rotation values (0, 0, 0) correspond
to a preferred orientation for the model. In other words it may be helpful to consider
the model in terms of a convenient “ right side up ” and “ front and back ” . Any required
deviation from this could be handled as a change from rotation values of 0, 0, 0.

 Actin has a distinct shape, which is closely linked to its function (Figure 14.05).
For didactic purposes, actin is often illustrated with its pointed end up and one of the
wide faces toward the viewer.

 To center the origin and reorient the model:

 1. Select molecule0� in the Outliner.

 2. Choose Modify → Center Pivot.

 3. Hit " E " to show the rotation handles.

 4. Rotate the molecule in the three orthographic views to look somewhat like
the model in Figure 14.16 . That is, pointed end up and wide face perpendicular to
the positive z-axis.

372 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

 5. Turn on " Snap to grids " and use the Move Tool to drag the model to the world
origin.

 6. Turn off " Snap to grids " .

 7. Choose Modify → Freeze Transformations. This will set all transform values
to 0.

 Th e model is now “ zeroed ” in its default position.

 Set up the camera
 1. Choose Create → Cameras → Camera

 2. Select the new camera and open the Attribute Editor.

 3. Set the camera ' s focal length to 50 (this is reasonably close to human vision).

 4. Click on the transform node tab and rename your camera " renderCam " .

 5. From the Panel menu set, choose Panels → Look Through Selected.

 6. Manipulate the camera using alt + mouse button (rotate, track, and dolly) to get
a view you ' re satisfi ed with.

 FIGURE 14.16

 We used the default orthographic
scene view to position and orient
the actin model for rendering.

373CHAPTER 14: BUILDING A PROTEIN

 7. Fix the renderCam ' s position by locking its transform attributes, so that you
don ' t accidentally move it (Figure 14.17):

 (a) Select renderCam if it ' s not already selected.

 (b) In the Channel Editor: highlight the transform attributes; RMB to bring up
the context-sensitive menu.

 (c) Choose Lock Selected.

 Note : If you want to move the camera again, repeat steps (a) and (b), then
choose Unlock Selected.

 Background
 Set the background color in the Camera settings:

 1. Select renderCam.

 2. Open the Attribute Editor and select the shape node tab, e.g. renderCamShape.

 3. Choose Environment, then click on the Background Color palette to launch the
Color Chooser.

 4. Adjust the color then hit Accept.

 Set up the workspace
 It is helpful to have more than one view of the workspace when setting up a scene like
this one. Figure 14.18 shows the two-panel view introduced on page 223 in Chapter 09 .
Th e left panel shows the persp view and the right, renderCam 's view.

Adjusting view panels

 Maya Help → Using Maya → General → Basics → Basic menus → Panel menus →
Panels

 FIGURE 14.17

 Once you are happy with
the camera, lock its transforms so

that you don ' t accidentally move it.

374 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

 Set up the lights
 Here we ’ d like you to explore the 3-point lighting setup we described in Chapter 10 .
Back then you used two Point lights and an Area light. Here you ’ ll use Spotlights
instead in order to get some practice setting up lights that have a directional bias (not
to be confused with Directional lights).

 1. Choose Create → Lights → Spotlight. This will be your key light.

 2. Select the light and open the Attribute Editor (ctrl + A).

 3. Rename the light as " keyLight " .

 4. The Cone and Penumbra Angles are used together control the edges of a spotlight.
In this project you don ' t want the edge of the light to be visible. Instead you want
to light the model all over for a smooth, even effect:

 Set the Cone Angle to 90º or greater.

 5. In the persp workspace panel, choose Panels → Look Through Selected. This
creates a non-rendering camera that is connected to the light, enabling you to
interactively position the light.

 6. Manipulate the light view, using the navigation controls (rotate, track, and
dolly), to light the model from the upper-front-left direction.

 7. Create two more lights and name them, fi llLight, and backLight, respectively.

 8. Set the fi llLight Intensity Attribute to 0.5 to decrease the amount of light it emits.

 9. Position fi llLight and backLight as described in steps 4 and 5 above.

 FIGURE 14.18

 Multiple workspace panels are
helpful when setting up a scene for
rendering.

 Tip: We increased the size of our
lights and camera by increasing
their scaleX, scaleY, and scaleZ
attribute values. This makes
their wireframe icons easier to
see in the scene view, without
changing their functionality.

375CHAPTER 14: BUILDING A PROTEIN

 In the next section, you will tune the positions and intensities of the three lights to
get a pleasing result. Figure 14.19 shows the lighting rig we started with.

 IPR preview
Now use IPR (for Interactive Photorealistic Rendering) to tune the light positions and
intensities.

 1. Open the Render View: choose Windows → Rendering Editors → Render
View.

 2. In the Render View, choose → IPR → IPR Render. Select the camera you want
to render from. After a pause a message will appear at the bottom of the Render
View, prompting you to " Select a region to begin tuning " .

 3. LMB + drag to select the entire picture (Figure 14.20). Maya will take a few sec-
onds to load the pixels.

 4. One by one adjust the positions, orientation, and intensities of your lights until
the IPR image is satisfactory.

 Er … make that a 6-point lighting rig
For some rendering situations three lights just won ’ t cut it and you have to add more.
After IPR previewing the lights, we decided to add two more spotlights, each with an
 Intensity of 0.5 in order to round out the back lighting. As well, because the preview
was too dark overall, we added an ambient light, with an Intensity of 1.0 to brighten
the scene up evenly. Our fi nal lighting setup is shown in Figure 14.21 .

keyLight
Intensity: 1

fillLight
Intensity: 0.5

backLight
Intensity: 0.5

renderCam
Focal Length: 50

 FIGURE 14.19

 The lighting setup we started
with.

 In addition to lighting changes,
changes to shader colors are

updated in the IPR preview as
well.

376 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

 FIGURE 14.20

 After choosing IPR, use your cursor
to select the region that you want
to update in the Render View as you
tune lights and shaders.

keyLight
Intensity: 1
Shadows: on

fillLight
Intensity: 0.5
Shadows: off

backLight2
Intensity: 0.5
Shadows: on

renderCam
Focal Length: 50

backLight1
Intensity: 0.5
Shadows: on

backLight3
Intensity: 0.5
Shadows: on

ambientLight
Intensity: 1
Shadows: on

 FIGURE 14.21

 The fi nal lighting setup that we used
to render the title page image for this
chapter.

377CHAPTER 14: BUILDING A PROTEIN

 Color your lights
 Colored lights can enhance the atmosphere of a rendering and aid the perception of
depth. In very general terms, warm colors—toward the top-right of the color wheel
shown in Figure 14.22 —in a picture appear to advance and cool colors to recede. In com-
bination, warm and cool lighting can set up a visual tension between warm and cool,
foreground and background, in order accentuate the illusion of 3D space and add a
dramatic edge to a rendering. Th e eff ect can be bold or subtle. We opted for the latter,
just to give a hint of color to edges of the atoms that make up our actin molecule. Th e
following are the HSV values we used to color our back and fi ll lights.

 backLight Color fi llLight Color

 H: 22.0 H: 180.0

 S: 0.35 S: 0.2

 V: 1.0 V: 1.0

 Add Depth Map Shadows
Although we now have a nicely lit picture of a lot of individual atoms, the image in
 Figure 14.20 portrays little of the molecule ’ s striking variations in depth. Th is is because
every atom is receiving the same amount of light. If, on the other hand, some atoms
block light from hitting others, you ’ ll get a better picture of how all the atoms relate
to one another in space. Th is is a basic consequence of the interplay between light and
shadow in nature.

 By default, the lights you created are set not to cast shadows. By turning on Use
Depth Map Shadows and adjusting a few attributes you get the image shown in Figure
14.23b . Th is provides a much better sense of the 3D form of the actin molecule than
 Figure 14.23a . Here are the steps we followed to activate the shadows:

 1. Select keyLight and open the Attribute Editor.

 2. Under Shadows, check Use Depth Map Shadows.

 3. Set Filter Size to 3, but leave all other settings at their default values.

 We deal only with Depth
Map Shadows here. They are

generally less accurate than ray
traced shadows but quicker to
render. Maya Help covers ray

traced shadows.

 FIGURE 14.22

 A color wheel is a circular plot of
the spectrum of visible light. Plots

like this are often employed in
computer graphics programs for the
purpose of choosing colors to apply

to objects. Artists often discuss
colors in terms of warm versus

cool, which correlate to locations
on the color wheel proximal to the

red and blue ends of the spectrum,
respectively (think fi re and ice). (a) (b)

378 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

 Depth Map Filter Size aff ects shadow softness: Th e greater the fi lter size, the softer
the shadow. We turned on Depth Map Shadows for the back lights, but left them off
for the fi ll light. We wanted the back light to help separate the edges of the molecule
from the dark background. Th e fi ll light, on the other hand, helped defi ne the forms
of the atoms that lie in the shadow of the key light. In our experience, good use of
lights and shadows is often a matter of trial and error; start with a standard 3-point
setup, then experiment to get the best results for a given purpose.

Shadows

 Maya Help → Using Maya → Rendering and Render Setup → Lighting → Basics
of Lighting → Shadow → Shadow in Maya

 Set up the rendering
 You will make the image using the Maya Software Renderer, which we introduced
back in Chapter 11 . IPR will help you tune the lights. First, adjust the Render Settings.

 Render Settings

 1. Choose Rendering Editors → Render Settings.

 2. Make sure " Render Using " is set to Maya Software.

 3. Under the Common tab, set the fi le name, images format, and so on. Below are
the settings we used:

 Common tab

 Image File Output

 File Name Prefi x cpk_model
 Frame/Animation Ext name.ext (Single Frame)
 Image Format Tiff (tif)

 Camera renderCam

(a) (b)

 FIGURE 14.23

 IPR preview renderings with:
(a) No shadows.

(b) Depth Map Shadows turned on.

379CHAPTER 14: BUILDING A PROTEIN

 Image Size

 Preset 640x480

 Maya Software tab

 Anti-aliasing Quality

 Quality Production Quality
 Edge Anti-aliasing Highest Quality

 4. Hit Close.

 Hit Render!
 When you ’ re happy with the lighting and colors, render your scene and save out an
image fi le:

 1. In the Render View, choose → Render → renderCam.

 2. When Maya has fi nished rendering, choose → File → Save Image.

 3. Enter a fi le name, choose a fi le type, and select or create a directory in which to
save the image.

 4. Save your scene fi le.

 We ’ ve included a render-ready scene fi le on the CD-ROM:

 14_Protein/scenes/actin_render.ma

 Summary
 In this chapter you took a logical fi rst step in the modeling of living systems. Proteins
are a core component in what molecular biologist David Goodsell calls the machinery
of life . 4 You now have a MEL script you can use to model virtually any protein you lay
your hands on in PDB format. Moreover, you ’ re not limited to proteins; PDB fi les are
available for the other types of molecules manufactured by living cells: nucleic acids,
polysaccharides, and lipids.

 You saw that molecular representation can take several forms. CPK models help us to
visualize the overall 3D form of a molecule and are useful in shape complementary
studies. Scientists also routinely use ball and stick and ribbon models to study molec-
ular structure. MolVis applications create these models from information contained
within PDB fi les, such as the HELIX, SHEET, and TURN records. You may wish to build
on your eff orts in this chapter to explore the PDB format further and develop additional
modeling tools using MEL.

 Next we ’ ll move from the atomic-level detail of a single protein to the next level of
biological organization: multi-protein self-assembly.

Remember: the higher the
Antialiasing quality, the longer

the render time.

380 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

 References
 1. Watson JD: Th e Double Helix: A Personal Account of the Discovery of the Structure of

DNA , Atheneum, New York, 1968 (Touchstone, New York, 2001).

 2. Bernstein � Sons: Home Page for RasMol and OpenRasMol Molecular Graphics
Visualization Tool (website): http://www.openrasmol.org, accessed August 2, 2007.

 3. Otterbein LR , Graceff a P , Dominguez R : Th e crystal structure of uncomplexed actin
in the ADP state . Science 293 : 708 – 711 , 2001 .

 4. Goodsell DS : Th e Machinery of Life . Springer-Verlag , New York , 1993 .

381CHAPTER 14: BUILDING A PROTEIN

Th is page intentionally left blank

 15 Self-assembly

384 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 Introduction
 Within the living cell, proteins do not exist in point-like isolation, fl oating alone in
the aqueous cytoplasm of the cell interior. Quite the opposite: proteins are highly
gregarious molecules, though choosy about the chemical company they keep.
Th rough the action of inter-atomic forces, which allow proteins to sense and react to
one another in specifi c ways, proteins like to join together and assemble with non-
protein molecules such as sugars and nucleic acids. Th is makes the cell interior
a crowded place, with proteins jostled into 1D arrays (fi laments and polymers, the
structural “ bones ” of the cell), into 2D groupings (such as ion pumps and receptor
channels on the cell membrane), and 3D, multi-protein machines (like the ribosome,
the gigantically intricate multi-protein “ jig ” on which nucleic acid tapes of genetic
information are decoded and the matching protein built from amino acids). Small
regulatory factors like calcium and phosphorous bind to many proteins and modify
their affi nity for interaction, so these 1D, 2D, and 3D protein arrays essentially build
themselves from their component protein subunits. Th is is called self-assembly and is
at times assisted by assembly supervisors, chaperone proteins that help the subunits
fi nd the folding pattern best suited to interaction with other building blocks of the
macromolecular array.

 In this chapter you will use Maya to step into this remarkable world of macromolecu-
lar self-assembly. It will be exciting (and challenging!) enough to tackle the case of
the 1D protein array. As we noted above, such polymers or fi laments are enormously
important in cell biology because they form the basic structural “ bones ” of the liv-
ing cell—the cytoskeleton defi ning the cell ’ s characteristic shape and capacities for
movement. Diverse kinds of cytoskeleton polymers and polymer building blocks
function within the cell, and their subtle activity is regulated by an intricate web of
chemical factors that seed, cap, cut, reinforce, and cross-link the polymer fi laments.
Exploring the chemical facts and biological details of even a small corner of this vast

 FIGURE 15.01

 Computer models of dense, complex
biomaterials can be explored

interactively, using simulations
to " fl y " into the 3D meshwork.

Pictured here is a joystick-operated
simulation in the authors ' lab. Inset:

Detail from an actin assembly
simulation.

385CHAPTER 15: SELF-ASSEMBLY

web would take us far beyond the scope and space constraints of this book. In this
chapter you will take the fi rst step by modeling essential ideas of fi lament layout and
assembly organization in the presence of small regulatory factors that modify the
rates, or kinetics, of the self-assembly steps. Th is strategy of regulated self-assembly
is a universal motif of cell behavior and so makes a great departure point for your
Maya explorations above the level of the single protein.

 Rest assured: we are not going to leave behind what we have learned about proteins
in Maya. In this chapter you will develop your model around key facts about one of
the essential cytoskeleton building blocks: the actin protein molecule, which you met
and worked with in the last chapter. You will discover how such a model can incor-
porate the core data on actin fi lament assembly and structure in silico. Th e regula-
tion of growth and shrinkage of actin fi laments is central to important cell activities
like locomotion and endocytosis. In the detailed project steps, we guide you through
the methodology and MEL code for a simulation model that provides a striking visual
demonstration of actin fi lament dynamics.

 It will be evident how our approach lets you link, step by step as needed, further reac-
tions and regulatory pathways into the basic model. By the end of this chapter, there-
fore, you will have learned Maya methods and modeling strategies you can extend
and modify for larger, more complex systems biochemistry applications than we
can accommodate here. It will also be clear that you can apply similar techniques to
Maya projects in which the self-assembly events engage 2D and 3D arrays of self-
assembled macromolecules, not only the 1D structures of fi lamentary fame. Th e
chapter ’ s references will take you further afi eld in the rich biochemistry of actin fi la-
ments, cytoskeleton structure and control, and macromolecular self-assembly.

 Problem overview
 Traditionally mathematical models of chemical systems have often used diff erential
calculus to compute the changing concentrations of the various reactants. Th is deter-
ministic approach neglects the eff ects that random spatial diff usion of the individual
reactants has on the behavior of the system. As you ’ ll see in this and future chapters,
we favor a stochastic approach in which both spatial diff usion and the eff ects of uncer-
tainty play a role in determining the outcome of a simulation model. Moreover, this
stochastic approach presents an intriguing challenge for the medical artist or scientist
who wishes to at once simulate the chemistry involved and visualize its essence in a
meaningful way. Th e challenge arises from the fact that the time intervals between
signifi cant diff usion events (see below) and the time intervals between chemical reac-
tions are vastly diff erent. In other words, if one wishes to observe the stepwise wan-
dering of actin molecules as they jostle about in the cytoplasm, one would have to wait
a very long time (on average) before a reaction between two molecules was likely to
occur. Th is is not because the molecules wouldn ’ t encounter one another but because,
given an encounter, a reaction is not a certainty—there is merely a probability that the
reaction will occur. Conversely, to observe chemical reactions with relative frequency,
one would forgo watching—and perhaps modeling—molecular diff usion.

 In this chapter we wish to model and visualize a small but important bit of biopoly-
mer chemistry—the steady-state turnover of a fi lament by the balanced addition and
removal of fi lament subunits. Th is process is often referred to as treadmilling because
it involves the fl ux of subunits from addition at one end of the fi lament to removal
at the other. In one treadmilling cycle, a given subunit travels from the plus to the

386 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

minus end of the fi lament. Th is treadmilling property of actin is central to cell loco-
motion and shape change. In order to capture the essence of steady-state treadmill-
ing, your model will incorporate both time-dependent and spatial diff usion eff ects.
However, before addressing the modeling and visualization challenge of our diff erent
time scales—for diff usion and reactions—let ’ s look at the physics involved.

 You ’ ll recall from the last chapter that the lone actin protein, before it associates with
an actin fi lament, is often denoted G-actin by biochemists. An actin fi lament, on the
other hand, is referred to as F-actin. A G-actin protein is a subunit of the fi lament
F-actin array when we think of it as coming into contact with, recognizing, and bind-
ing to the fi lament. Textbooks sometimes make F-actin formation look like an easy
problem in procedural animation, involving the regular hopping of monomers on to
and off from an F-actin fi lament. Th ink of railroad cars being added to a freight train
in a nice steady order.

Hop

F-actin

G-actin

Hop

Hop

 Th ere are several problems with this interpretive visualization view, however, which
make it a very limited model of fi lament formation and destruction:

 1. First, the G-actin monomers need not at fi rst be close to the F-actin fi lament;
monomer and fi lament have to “ fi nd ” one another within the cell.

F

G

 2. Th e second problem is that neither the F-actin nor the G-actin are equipped with
long-range sensors to assist this fi nding operation. G-actin is not like a dolphin
zeroing in on a school of tuna, using echolocation (the dolphin ’ s sensor) to detect
its target from far away through the water! Th e “ sensor ” parts of proteins are
specialized regions of the protein surface, in which the amino acids are folded in
very specifi c spatial arrangements. Th is lets the regions match up to other protein
surfaces with complementary patterns of shape or electric charge—the regions
fi t together rather like a key fi ts a lock. Because water molecules very eff ectively
screen the partial charges of amino acid side chains, recognition can take place
only over very short range: at about the van der Walls collision distances for
molecular contact we discussed in the last chapter. So the monomer has to wan-
der about in the cell interior until it chances to collide with the docking end of an
F-actin fi lament. (Not just any location on the F-actin will do; the bare end of the
F fi lament has “ sweet spot ” where the G can hook up.)

387CHAPTER 15: SELF-ASSEMBLY

 3. Th e approach of F and G comprises wandering with a vengeance. In cell biology,
the packed interior of the cell jostles all the cytoplasm ’ s molecules, which cannot
approach one another in the smooth manner of a space shuttle orbiting in to dock
at the International Space Station. Th is is much more like the mosh pit of a fren-
zied rock concert. Every 10 � 15 seconds or so, every cytoplasmic molecule is hap-
hazardly bumped by others around it; all the molecules are obliged to make their
way through the cytoplasmic crowd by moving in a random walk manner.

F

G

 A little math, which we needn ’ t bother to reproduce here, shows that F and G will
eventually fi nd one another this way. Indeed a remarkable trait of this 3D “ diff u-
sion ” in the cell is how quickly it lets macromolecules encounter on another.

 4. Getting there, however, is just a fraction of the fun. Before F and G bind together,
both must rotate around in space to the extent their sensor regions can detect the
 “ lock–key ” fi t, letting G bind to the growing end of F. Again we have to be careful
about the mental pictures painted by our choice of words. “ Rotate ” , at least for us,
suggests a smooth spinning action, like an ice skater twirling round or the majestic
turn of those donut-shaped space stations popular in Sci-fi movies of the 1950s .

Axis

Sensor

Spin

 As with translational movement in the cell, the diff usional jostling destroys any
hope of such a nice smooth turning match-up. G and F are kicked through small
bits of topsy-turvy spins by their collisions with other molecules.

G

Axis

Non-uniform spin

388 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 5. We must think not just about F and G, but about the small regulating molecules
that will interact with them and modify the probable outcome of an F–G collision.
Some physics math, which we again leave to the thermodynamics texts, does tell
us that, over equivalent intervals of time, the distance staggered by these lighter,
smaller molecules is considerably greater than what F and G cover. You will use
this observation soon.

 6. Th ough we have cartooned them as solid, concrete-looking lumps, F, G, and the
other reactants of our model exist in the cell as molecules, that is, as “ societies ” of
chemically bonded atoms replete with all the intricate internal patterns of atomic
and molecular motion. Certainly, protein chemists assure us that the recognition
of protein by protein can trigger shifts—called conformational changes—in these
internal patterns of molecular motion, which enhance the likelihood that the G
and F will remain together for a useful period of time—that the key stays in the
lock, as it were.

 And we must not overlook the plain fact that atomic physics is a world of likelihoods,
not certainties. Just because two sensor regions are aligned does not make their
chemical binding a certainty. Th e atomic forces determine a probability that the well-
oriented regions will lock and G bind to F. Laboratory chemists refer to this as the
 “ rate ” of the reaction given the favored alignment of the molecules.

 Enough complexity! Th ink of all of this, and more, transpiring in every meaningful
event between molecules within the cell. To set up our game plan, we will start from
a fascinating and very convenient property of astrobiology: although life evolved in
crowded aqueous environments on our planet, the forces of gravity, electromagnet-
ism, and atomic packing density are not so high as to scramble together all the seven
or so classes of events we just discussed. Th us, for example, the cell is not so crowded
and the molecular jostle not so highly energetic that the movement of G to F strips
atoms right off G (and F) and so changes their reaction likelihoods once they are
together and lined up. Similarly, the intermolecular forces are so short ranged that
we can, at least to start, not worry about the eff ects of sensor–sensor interaction on
molecular rotation rate in the rotational diff usion. We can therefore impose some
helpful simplifi cations:

 1. Th e time scales of intramolecular rotation and vibration are very short compared
to those of interest. We ignore them, and so are concerned with “ average ” behav-
ior seen on the time scale of cell physiology.

 2. Th e time a protein needs to change its shape is very fast on the time scales of
interest to actin treadmilling, and may be treated as instantaneous.

 3. Using steps 1 and 2 we treat the monomers as stable “ lumps ” which approximate
atomic force surfaces. Such a coarse-grained view of the actin molecule is well
suited to simulating the interaction of cell volumes in which hundreds or thou-
sands of monomers are present, which is the direction we want you to start with
this project. When atomic events inside the protein molecules are important, cur-
rent supercomputers can rack up impressive results with model fi laments in which
a half million or more atoms (about a dozen actin subunits) are monitored at once
using specialized software for molecular dynamics simulation.

 4. Th e regulating molecules are small and low molecular weight, diff using through
large distances over the relevant time scales. We therefore treat them as a uniform
chemical background against which the F–G interactions take place.

389CHAPTER 15: SELF-ASSEMBLY

 5. Th e macromolecules translate (diff use) through space by a 3D random walk. Th e
statistical properties of the walk embody the resultant impacts of those myriad
small jostlings taking place too fast for any single one, on the average to impact
cell events. You ’ ll use a small set of MEL commands to conveniently generate ran-
dom spatial movement that is consistent with the statistical properties of molecu-
lar diff usion.

 6. Similarly for rotation.

 7. When F–G sensor surfaces are aligned, a reaction probability determines the sto-
chastic outcome of each simulated binding encounter. Th e mathematical prob-
lem of predicting such reaction probabilities from the fi rst principles of quantum
physics is unsolved (and likely unsolvable) in general and is certainly impractical
for F–G, at least with current methods and technology. In place of fundamental
theorems, models can use estimates based on chemical reaction data. You will
develop the model along these latter lines.

 Let ’ s therefore look more closely at the molecules and chemistry your model will
cover.

 The structure of F-actin
 Like the monomers themselves, the F-actin polymer (Figure 15.02) is a polar structure
with a barbed and a pointed end—terms coined from an early observation of how fi l-
aments appeared in electron micrographs when bound to another protein, myosin.
Under physiological conditions, fi laments grow more rapidly at their barbed than

Plus (barbed) end

gRotation ~ 166°

gLength ~ 27.7 nm

Minus (pointed) end

fLength

~

~

 FIGURE 15.02

 Moving lengthwise along the F-actin
fi lament, each subunit is rotated by
166° and shifted 27.7 Å relative to its
neighbor.

390 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

at their pointed ends, a feature that led to the terms plus and minus end which are
used interchangeably with barbed and pointed , respectively.

 Th e F-actin fi lament can be described both as a right-hand double helix of proto-
fi laments and as a single helix of subunits 1 that are rotated relative to one another
about the longitudinal axis of the fi lament. Using the latter description, as we move
from the fi lament minus end toward the plus end, each subunit is rotated by 166	 in
a clockwise direction relative to the one immediately preceding it. Th ere are 370 sub-
units per � m along the length of a fi lament, which equates to a distance of � 27.7 Å
from the center of one subunit to the next.

 Actin reactions
 Intracellular actin chemistry is a rich mixture of processes including fi lament nucle-
ation, growth, shrinkage, capping, branching, and cross-linking, each consisting of
one or more chemical reactions. Th e cell regulates these processes via accessory (or
helper) molecules which infl uence the chemical reaction rates. Any number of these
reactions can be incorporated into a model of regulated self-assembly. In this project
we ’ ll focus on the following:

 1. Plus-end association: the addition of actin monomers to a fi lament.
 G + F i → F i + 1

 2. The hydrolysis of each F-actin subunit ’ s bound nucleotide molecule and the
subsequent release of inorganic phosphate.

 ATP → ADP•Pi → ADP + Pi

 3. Minus-end dissociation: the removal of actin monomers from a fi lament.
 F i → F i�1 + G

 Th ese steps are illustrated in Figure 15.03 .

 Actin ’ s bound nucleotide: ATP, ADP • Pi, or ADP
 An important factor in actin chemistry is the nucleotide that is bound deep in a
cleft in the center of G-actin monomers and F-actin subunits. Th e nucleotide takes
the form of ATP (adenosine triphosphate) or its de-energized state ADP (adenosine
diphosphate). Although the mechanism of action remains unclear, the type of bound
nucleotide has been linked to actin binding affi nities and is therefore a regulatory
factor in fi lament dynamics. Some time after a G-actin monomer binds to a fi lament,
its ATP releases energy through the breaking of one of its three phosphate bonds—
a process called hydrolysis —becoming ADP•Pi (ADP with an associated inorganic
phosphate):

ATP → ADP•Pi

 It is currently unclear whether or not this reaction stabilizes the subunit on the
fi lament—that is, increases the binding affi nity. Th erefore reactions involving ATP-actin
and ADP•Pi-actin molecules are often treated with the same reaction parameters. In
other words, an ATP-actin subunit is as likely to dissociate from a fi lament as a subunit

391CHAPTER 15: SELF-ASSEMBLY

whose ADP has been hydrolyzed to ADP•Pi. After a period of time, however, Pi dissoci-
ates from ADP:

ADP•Pi → ADP � Pi

 Th is ADP-actin subunit becomes more tightly bound and is therefore much less likely
to dissociate from the fi lament than its ATP or ADP•Pi relatives. Th e relative eff ects
of the actin bound nucleotides on fi lament dynamics are refl ected in their reaction
rate constants —empirically derived numbers used to make predictions about chemi-
cal reactions.

 Reaction rates
 Th e chemical reaction

Fi → Fi�1 � G [Reaction 15.1]

 in which a G-actin monomer leaves a fi lament can be described mathematically using
a reaction rate constant (k � in units of seconds � 1) to yield the number of reactions
that can occur in a time interval � t. Let N represent the number of G molecules that
will leave a fi lament during this interval:

N � k� � �t [Equation 15.1]

 Likewise, the monomer binding reaction

Fi � G → Fi�1
 [Reaction 15.2]

Rotational and
translational
diffusion G•ATP� F•ATP

F•ATP� F•ADP•Pi

F•ADP•Pi � F•ADP + Pi

F•ADP� G•ADP

G•ATP

G•ADP

G•ADP� G•ATP

1

2

3
 FIGURE 15.03

 The diffusion and reaction events
modeled in your simulation.

392 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 can be described using the reaction rate constant k � (in units of � M � 1 s � 1) and the
concentrations (denoted with square brackets) of either reacting species, for example:

N � k� � �t � [G] [Equation 15.2]

 where N is the number of monomers that bind the fi lament in time � t.

 Empirical studies of actin in vitro have yielded rate constants (k � and k � values) that
can serve as a guide in constructing your actin simulation in silico. One must use cau-
tion when adapting such numbers to a stochastic model in which both reaction and dif-
fusion are considered. Reaction rates are thermodynamic statistical averages derived
for largely homogeneous solutions of reactants. Research is showing that the widely
accepted rate constants for actin don ’ t apply without modifi cation to the heterogeneous
mixture within living cells. Furthermore, studies into the roles of actin accessory mol-
ecules such as profi lin, ADF (or actin depolymerizing factor), and formin to name a few,
interact in complex ways with actin to provide tight control over reaction rates in vivo.
Th erefore, we ’ ll use the established rate constants as a point of departure for choosing
parameter values to use in silico. Equally important in choosing these values are the sci-
entifi c and didactic objectives of the model you ’ re building. We ’ ll come to these shortly.

 Pairing reaction and diffusion: A visualization challenge
 As stated earlier, if your model is to capture the essence of dynamic actin fi lament turn-
over, it will incorporate both time-dependent reactions and spatial diff usion eff ects.

 Reaction timing
 Ignoring diff usion for a moment, you could describe the association and dissociation
reaction events in terms of Equations (15.1) and (15.2) above. Adapting rate con-
stants from the actin science literature and choosing a reasonable concentration of
G-ATP-actin you could quickly determine the number of reactions occurring in each
time step � t. By carefully choosing the number of Maya frames per � t, you could set
up a nice simulated visualization of actin treadmilling. For example, let ’ s say:

 1. k + = 11.6 μ M – 1 s – 1 , the established in vitro G-ATP plus end association rate
constant.

 2. [G-ATP] = 0.1 μ M, the accepted in vitro critical concentration for
G-ATP-actin.

 3. Rearranging Equation 15.2 to solve for � t gives:

 Δ t = N/([G-ATP] � k +)

 The time interval required for one association reaction per fi lament is
therefore

 Δ t = 1/(0.1 � 11.6) s = 0.862 seconds

 Suppose you wish to represent an association reaction in your Maya model on aver-
age once every second. A frame rate of 30 fps gives a reaction rate of 1/30 reactions
per frame.

 The critical concentration (C c)
is the minimum concentration of

units needed before a polymer
will form. It can be expressed

mathematically as the ratio
of off and on rate constants:

Cc � k � /k� .

393CHAPTER 15: SELF-ASSEMBLY

 4. We can now express Maya frames in terms of reaction time:

 1 Maya frame � 1/30 reactions � 0.862 seconds/reaction
 � 0.029 seconds

 Th e reaction rates for hydrolysis and dissociation follow similar logic with the excep-
tion that they depend only on time and not concentration. So far so good. We have a
comfortable time increment of 0.04 seconds per Maya frame—set by the reaction rate
constant and a reasonable G-actin concentration—that allows us to observe about 1
association reaction per animation second (at 30 fps).

 Diffusion timing
 Within a cell, macromolecules such as G-actin undergo random walks due to col-
lisions with other macromolecules, small molecules, and water. For time steps that
are large compared to those between intermolecular collisions, these random walks
result in diff usive motion. For their ChemCell4 program, Steven J. Plimpton and
Alex Slepoy derived the following equation to calculate the distance, r, that a macro-
molecule with a diff usion coeffi cient, D, diff uses in time, �t:

 r � 4(D � �t/�)1/2 [Equation 15.3]4

 Plimpton and Slepoy’s approach maps the eff ect of intermolecular jostling to times
and distances relevant to events we ’ re interested in for this model: chemical reac-
tions between macromolecules. Calculating an approximate value for D or choosing
one from the literature, we can set r to reasonable fraction of the diameter of G-actin,
and then calculate the corresponding time step � t. For example:

 1. r = 1 nm (1/5 the approximate diameter of G-actin)

 2. D = 1.65 � 10 – 12 m 2 /s

 3. Rearranging equation 15.3 to solve for � t gives

�t � �r2/(16D)
 � (3.14)(10�9)2/(16 � 1.65 � 10�12)s
 � 1.19 � 10�7 s

 Now, suppose we let one Maya frame equal 1.19 � 10 �7 seconds—in order to visual-
ize and animate the eff ects of reasonable diff usion step sizes—and use our k � and
concentration values from above. In this case you ’ ll be waiting some 0.862 s/reaction /
(1.19 � 10 � 7 s/frame) � 7.25 million frames (or � 3 days at 30 fps!) between asso-
ciation reactions. Th is is clearly not a good outcome if the purpose of your model is
to both simulate and visualize actin steady-state treadmilling. After your monomer
associated with its fi lament, you ’ d then have to wait another 3 days times the number
of subunits in your fi lament for one treadmilling cycle to fi nish!

 Th erefore, in order to represent actin treadmilling behavior within reasonable
observer time scales you ’ ll take a novel, yet straightforward approach to simulation
and interpretive visualization.

 Model conditions
 Before leaving the problem overview behind, let ’ s state some initial conditions
that will help you get your Maya model up and running as quickly as possible. Rest

 A value of r on the order of
a few Angstroms would be
appropriate when steric effects
on interaction are considered.
In the present model, however,
nanometer diffusion step sizes
work nicely with the temporal
and spatial scales used.

 ChemCell4 is a computer
program that uses particles to
simulate the protein chemistry
of biological cells (www.sandia.
gov/�sjplimp/cell.html). It
was developed by Steven
Plimpton and Alex Slepoy at
the Computation, Computer,
Information and Mathematics
Center at Sandia National
Laboratories.

394 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

assured, the modular approach we ’ re taking will allow you to increase the model ’ s
complexity if you wish to explore actin dynamics further.

 1. Association reactions occur at the fi lament plus end only. Th is models the dis-
covery that, in vivo, G-actin is associated with helper proteins, such as profi lin,
that inhibit it interaction with fi lament minus ends. In contrast, profi lin bound
G-actin has a high affi nity for the plus end of fi laments. While you won ’ t model
profi lin explicitly, its eff ects are implicit in this condition for the model.

 2. Th e environment created by additional helper proteins, such as formin, at the
plus end, inhibits the off rates there in comparison with the on rates and with the
helper protein stimulated off rates at the minus end (ADF/cofi lin).

 3. Th e model features one fi lament and a small number of G-actin monomers. Since
you ’ re considering G-actin binding at the fi lament plus end only, the monomers
are shown (for clarity) to move within a bounding region (the concentration vol-
ume) centered at the plus end. Th e monomer number and their concentration vol-
ume determine the G-actin concentration.

 4. It ’ s diffi cult to make out treadmilling activity when fi laments are themselves
buff eted about by diff usion. Th erefore, in this model you ’ ll limit diff usive motion
G-actin monomers, keeping the fi lament aligned with a major axis and stationary.
In this way, the fi lament ’ s local axes serve as the frame of reference for observing
subunit fl ux.

 5. Th e only G-actin is G-ATP-actin. Physiologic concentrations of ATP are much
higher than ADP and any free G-ADP-actin is quickly changed to ATP-G-actin.

 6. Once G-ADP dissociates from the fi lament minus end, its ADP is thus exchanged
for ATP almost immediately and it rejoins the pool of G-ATP-actin. Th is allows
you to maintain a constant supply of G-ATP-actin ready for association at the fi la-
ment plus end. As well, due to the action of sequestering proteins and the fact that
G-ADP has a very low association affi nity for F-actin, there is no practical reason
you should be consider free G-ADP-actin in your model at this time.

 Conditions like the ones above are common to mathematical modeling of complex
systems. Th ey set reasonable boundaries within which you can get things working.
Once you ’ re satisfi ed the model is working well under the current conditions you can
explore diff erent sets of assumptions, relaxing as many of these conditions as you
wish to model actin fi lament dynamics in the test tube or in the cell.

 Methods: Actin geometry
 Th ere are several possible approaches to simulating molecules diff using in a
Maya scene, including particle systems and rigid body dynamics, both of which
we ’ ve explored in our research. For this project we favor an intuitive approach that
uses polygon models to represent the atomic contact surfaces of actin molecules,
combined with diff usion and collision engines you ’ ll code in MEL. While this
approach foregoes some of the effi ciencies of Maya ’ s particle systems and the collision
detection capabilities built into Maya ’ s rigid body dynamics, it also bypasses their
shortcomings and ultimately lessens the amount of MEL code required to implement
this model.

395CHAPTER 15: SELF-ASSEMBLY

 The G-actin template model
 Individual ’ s G-actin monomers and an F-actin subunits were created by instancing a
template model (Figure 15.04) created from molecular structure data—the same data you
applied in the previous chapter to build the CPK model of actin. However, unlike a
space-fi lling CPK model, in which every atom is instanced with a sphere, your camera
distance in this scene is great enough that you won ’ t need the exact location of every
atom—recall it ’ s the complementarity of surface shapes that ’ s key to protein–protein
recognition. Your template model will be a low level-of-detail (LOD) polygonal sur-
face expressing this surface shape idea (the concept of level-of-detail was discussed in
the previous chapter, beginning on page 344). For the CPK model, we were interested
in representing the location and species of the individual atoms (nearly 3000 in total)
that comprised the actin molecule.

 A low-LOD surface model of a molecule is a geometric object that captures the general
features of a molecule ’ s surface—it ’ s lobes and clefts—with a minimal number of pol-
ygons. A high-LOD model, in contrast, captures surface characteristics in more detail
using a greater number of polygons. When you choose a low-LOD over a high-LOD
model you gain processing speed in favor of structural detail. A lower degree of sur-
face detail can also benefi t your viewers. Th ere is a point, which you must judge for each
of your projects, beyond which additional surface detail no longer aids understand-
ing, and can even interfere with a grasp of the subject being illustrated. In a particu-
larly complex visual scene, with many moving and interacting objects—such as your
G-/F-actin scene—low-LOD surfaces can make it easier for the viewer to tell objects
apart. Th is principle applies equally to still and animated images and is illustrated in
 Figure 15.05 , which compares two versions of the same Maya scene at diff erent LOD.

 FIGURE 15.04

 The G-actin template is a low level-
of-detail (LOD) model comprised of
520 polygons. It was created with
UCSF Chimera, using Protein Data
Bank fi le 1j6z.pdb. 2

396 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 To help you focus on the MEL development, we have prebuilt the actin template model
and included it in the book ’ s companion CD-ROM. Th e model was created using the
Multiscale Models tool in UCSF Chimera software, which can be downloaded from
 http://www.cgl.ucsf.edu /chimera / and used free of charge for a variety of structural
modeling purposes (UCSF Chimera was introduced in the previous chapter). Th e
model is based on a Protein Data Bank fi le for the actin monomer, 1j6z.pdb . 2 Th e origi-
nal PDB fi le can be found by searching 1j6z on the Protein Data Bank at www.pdb.org.
You ’ ll fi nd our low-LOD actin model saved in a Maya scene fi le on the CD-ROM:

15_Self_Assembly/scenes/actinTemplate.ma

 We created the template model with enough surface detail to capture the general
morphology of the G-actin (or F-actin subunit) molecule—its characteristic shape
(Figure 15.04). Th is lower-LOD surface model also satisfi es our desire for a low polygon
count (520 polygons) relative to a van der Waals surface model of actin at atomic res-
olution (� 33,000 polygons). You could easily go lower than 500 polygons, but your
actin model would begin to look blocky.

 Th e template model was correctly oriented relative to the fi lament axes—which is
aligned with the Y-axis in Maya—and off set its pivot point so that it can be dupli-
cated and positioned properly on a growing fi ber simply by rotating it 166	 and mov-
ing it lengthwise by 28 Å relative to the preceding subunit. Th e degree of off set and
the rotational orientation of the model were determined by comparison with the
Holmes/Lorenz model of F-actin. 3

(b)(a)

 FIGURE 15.05

 Too much surface detail can make
an image diffi cult to read. Both (a)
and (b) show the same 250 G-actin

monomers, however (a) depicts the
van der Waals surfaces at atomic-

radius resolution, whereas (b)
shows the low poly-count surfaces

that average over this fi ne, atom-
scale detail—using the template

surface model we provided on the
CD-ROM. In (a) it is diffi cult to tell
one actin molecule from another,

whereas the individual objects can
be clearly distinguished in (b).

 At the time this book was
published, the Maya developers
had yet to incorporate tools (like

those embedded in UCSF
 Chimera) for making a polygonal

surface model from a cloud of
 points like the atomic coordinates

 in a PDB fi le.

397CHAPTER 15: SELF-ASSEMBLY

 One surface model for all species of actin?
 Th e diff erent types (or species) of actin we ’ re considering, G•ATP, F•ATP, F•ADP•Pi,
and F•ADP are almost identical to one another in overall shape but—and this is cru-
cial to the biological signifi cance of your model—have diff erent chemical properties.
Th e conformational (shape) changes in the monomers and subunits associated with
binding and nucleotide events, while small relative to the overall size and shape of
actin, help trigger changes in those chemical properties. For instance, the release of
the inorganic phosphate molecule (Pi) from ADP•Pi in an F-actin subunit induces a
shape change that increases its binding affi nity for its neighbors. However, the eff ects
of these conformational changes are encompassed nicely in the reaction probabili-
ties. As a result, such subtle structural changes need not be considered in this model.
Instead the diff erences between actin states can be more eff ectively represented
through naming, shaders, and custom attribute values.

 The F-actin model
 Table 15.01 lists the Maya components that make up the F-actin model. Th ey are shown
in context in Figure 15.06 . Th e collision surface of the fi lament is a NURBS cylinder with

 Item What the item looks
like in Maya

 Description

 F_0 F-actin fi lament (NURBS cylinder)

 G_# * G-actin monomer (instance of template model)

 GF_group† NA Group of all F-actin subunits within a fi lament

 Plus Plus end locator

 Minus Minus end locator

 pmGroup NA Group of plus and minus locators within the
fi lament

 plusConcVol Plus end concentration volume

plus RxnVol Plus end reaction volume

 * The # symbol represents an actual number such as 1, 2, 3, etc.
† F-actin subunits are grouped (parented) under a null transform node GF-group prior to parenting under the
F-actin model.
This makes it easy to shift all GF models at once to make room for a new binding subunit in the dynamic
simulation.

 TABLE 15.01

 Nomenclature used in the actin
simulation model.

398 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

its Visibility attribute set to off or 0. Its 7 nm diameter defi nes the approximate
cross-sectional area of an actin fi lament. Th ink of the cylinder as an invisible shell
surrounding the constituent subunits. It grows in length as monomers are added to
it. What you ’ ll see of the fi lament in the scene are its subunits, which are visible dupli-
cates of the G-actin template model. Every time the fi lament reacts with a mono-
mer it lengthens and the monomer changes status to a subunit and becomes a child of
the fi lament. Th e subunit then no longer diff uses—its movement instead dictated by
the motion of its parent fi lament which (in the present model) is stationary relative
to the viewer.

 Plus and minus ends of the fi lament are represented by locators—non-rendering
Maya objects that show up as cross-hairs in your scene view. When each locator is
positioned the distance of one-half subunit (1/2 � 27 � 13.5 Å) beyond its fi lament
end and rotated another 166	, it conveniently marks the location where the next
reacting G-actin will be placed when it becomes a subunit. A minus end locator is
included in case you wish to extend your model to incorporate minus end association
reactions. We ’ ll address the concentration and reaction volumes shortly.

 Maya ’ s Scene Hierarchy lends itself conveniently to modeling the nested relationships
of biomolecular structure. Figure 15.07 shows how the molecular relationships within an
F-actin fi lament can be modeled using transform nodes in Maya. Th ese relationships
diff er from those we ’ ve discussed in previous chapters, where they involved attribute
connections between nodes; the connections were the domain of the Dependency
Graph. Instead, parent–child relationships belong to Maya ’ s Scene Hierarchy which
can be viewed in the Outliner (Figure 15.07a) and in the Hypergraph (Figure 15.07b).

F-actin collision surface
F_0

G-actin monomer
G_20

Plus end reaction volume
plusRxnVol

Plus end concentration volume
plusConcVol

F-actin subunit
G_14

Plus end locator
plus

 FIGURE 15.06

 The initial setup for the actin
treadmilling model contains a ready-

made fi lament and fi ve
G-actin monomers. The translucent

cylinder surrounding the fi lament
subunits is used both as the fi lament

transform node and its collision
surface.

399CHAPTER 15: SELF-ASSEMBLY

(a)

 FIGURE 15.07

 An F-actin model in the Maya ' s
Scene Hierarchy. It is composed of
fi ve F-actin subunits.

(a) Viewed in the Hypergraph.

(b) Viewed in the Outliner.
(b)

 To save your time—and keep the printed code listings to a minimum here—we ’ ve
included a ready-made actin scene fi le on the CD-ROM (called treadmilling.ma), with
which to begin building your simulation model. In living cells, actin never exists as
either entirely monomeric or entirely fi lamentous—a balance exists between the
two. Th e simulation fi le on the CD-ROM is therefore set up with a fi lament model
composed of 20 subunits and fi ve G-actin monomers. Th e monomer and subunit mod-
els are instances of the G-actin template model discussed in the previous section.
Spheres have been parented to the fi lament plus end as a visual cue for the G-actin
concentration and reaction volumes (more on this second volume shortly):

 15_Self_Assembly/scenes/treadmilling.ma

 Now you ’ re set for a strategy to let fi laments grow and also change their nucleotide
profi les according to the events outlined in Figure 15.03 .

 Methods: Diffusion and reaction events
 Th is section is divided into the diff erent diff usion and reaction events that together
create treadmilling behavior.

 Diffusion
 In mathematical terms 3D Brownian diff usion can be conveniently described as the
product of three Gaussian random number distributions. 4 As a result, the stepwise

400 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

x, y, and z displacements of your G-actin monomer can be obtained by sampling a
Gaussian number generator with standard deviation

� � (2DT �t)1/2 (Ref. 4)

 where D T is the translational diff usion constant and � t, the time increment, both of
which were introduced earlier in this chapter. Maya ’ s gauss command takes standard
deviation as an argument and returns a random number from Gaussian distribution,
with mean value � 0. You will therefore generate your translational diff usion vector
in MEL as follows:

 float $tD, $t, $stdDevTrans, $x, $y, $z;
 vector $trans;

 $tD = 1.65 x pow(10�, –12); // m^2/s;

 $t = 1.19 x pow(10�, –7); // seconds.

 $stdDevTrans = sqrt(2.0� * $tD * $t) * pow(10�, 9);

 $x = ' gauss $stdDevTrans ' ;

 $y = ' gauss $stdDevTrans ' ;

 $z = ' gauss $stdDevTrans ' ;

 $trans = << $x, $y, $z >>;

 Th e standard deviation, $std Dev-Trans, was multiplied by 109 to scale from meters
to nanometers—our Maya model’s working units. Rotational diff usion is handled in
a similar fashion to translation, with a rotational diff usion constant D R � 2 � 10 5

 rad2/s. Both translational and rotational diff usion will be calculated in a MEL proce-
dure called diffuse().

 Collisions
 Collisions between G-actin models will be detected by testing their proximity of their
pivot points against a threshold value (5.4 nm � G-actin diameter). If molecule A is
within the threshold distance of molecule B, A will take a step away from B in the
direction of the vector that separates A and B from one another. Likewise, B will step
away from A in the opposite direction. Th e magnitude of this step can be set to any
value you wish. For starters, you ’ ll use 1.4 nm (� 1/4 G-actin diameter).

 Collisions between a monomer and the F-actin fi lament will be detected by test-
ing the distance from the monomer ’ s pivot point to the closest point on the F-actin
NURBS cylinder. You ’ ll use a special node called closestPointOnSurface (cpos in
our book for short) to perform this test. cpos is connected to the cylinder through
Maya ’ s Hypergraph. When assigned an input vector value (G-actin ’ s pivot location),
cpos returns (via its position attribute) a vector that is the closest surface point to
the input vector. If our monomer is within a threshold distance from the fi lament,
the G-actin model will take a step (again 1.4 nm in magnitude) away from the fi lament.

 Given the viscosity of the cytoplasm and the diff usion time steps being considered,
you can treat the motion of your actin monomers as highly damped. You can there-
fore neglect the eff ects of momentum imparted by collisions. Once two molecules
have collided and moved apart they are free to continue diff using without any physi-
cal memory of the recent collision. Th is is certainly a simplifi ed collision algorithm,
but is suffi cient for the current model.

 All collisions will be evaluated and converted to avoidance vectors (“ steps away ”) in a
procedure called collide ().

401CHAPTER 15: SELF-ASSEMBLY

 Reaction 1: Association
 Figure 15.08 shows two G-actin monomers colliding with F-actin in the time interval of
one frame. For a chemical reaction to happen—the binding of G-actin to F-actin—the
collision must occur at the plus end of the fi lament (at least in the present model). To
qualify as being “ at the plus end ” the monomer must breach a spherical reaction vol-
ume. We will discuss the reasoning behind this approach shortly in the section entitled
 Association reaction rate . A monomer that enters this reaction volume reacts with the
fi lament and is added to the fi lament ’ s current group of subunits. A monomer that col-
lides with the fi lament outside of the reaction volume—that is, not at the fi lament plus
end—defl ects off the fi lament and continues diff using.

 In order to add an associating monomer to the fi lament, your simulation model must
be able to query the location of the plus end relative to Maya ’ s world space. Th is func-
tionality is provided by the plus end locator. For an association reaction, your MEL
code will update the G- and F-actin Maya models in a series of steps to refl ect their
new status:

 1. Translate the G-actin model to the position of the fi lament ’ s plus-end locator.

 2. Rotate the G-actin into its correct orientation relative to its neighboring F-
actin subunit.

 3. Parent G-actin to F-actin.

 4. Increase the length of F-actin (the NURBS collision surface) by one subunit.

 5. Reposition the plus or minus-end locator to account for the increased fi la-
ment length.

 6. Update custom attributes that store the fi lament ’ s subunits count and length.

 Association reactions will be evaluated in a procedure called associate().

 FIGURE 15.08

 Collisions between F- and G-actin
result in association reaction if two
conditions are met:

(1) The collision occurs proximal to
the fi lament plus-end.

(2) The probability of the reaction
is greater than a randomly drawn
number.

G-actin

F-actin

Reaction volume

Plus end locator

A reaction
occurs

Minus end locator

The plus end locator moves to
mark the location where the
next monomer will associate.

No reaction occurs and the
monomer continues diffusing.

402 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 Reactions 2 and 3: Hydrolysis and phosphate release
 Th e nucleotide profi le for F-actin—the distribution of F•ATP, F•ADP•Pi, and F•ADP-
actin subunits along a fi lament—has been widely studied for its implications in the
regulation of F-actin length and subunit turnover (treadmilling). By building into
the F-actin subunit and G-actin monomer models the ability for each to change the
state of its nucleotide, you will have the fl exibility to simulate and visualize diff er-
ent hypotheses about the role of the nucleotide profi le in fi lament regulation, should
you wish to explore the simulation model further. To set up the model, you need only
assign an initial nucleotide state to each F-actin subunit and G-actin monomer. To
emulate actin fi lament conditions encountered in vivo, your Maya fi lament starts out
with a plus end “ cap ” of ADP•Pi subunits, with the remaining subunits in the ADP
state. Each G-actin monomer is assigned an ATP state. Th ese nucleotide states are
tracked using a custom state attribute and a unique shader (Table 15.02). To assess the
nucleotide profi le of a given F-actin fi lament, you need only query the state attributes
of its constituent subunit molecules.

 Hydrolysis and phosphate release are not directly dependent on molecular concentra-
tions the way G-actin association reactions are. Instead these nucleotide reactions
depend on time and rate constants. Based on the rate constant, a probability is cal-
culated and tested against a random number at every time step � t which you ’ ll treat
as one Maya animation frame. Th e rate constants for each reaction will be discussed
below.

Reaction 4: Dissociation
 In vivo, there are diff erent mechanisms by which actin fi laments disassemble and a
complete picture of these mechanisms has not yet emerged. Your model treats one of
these: the dissociation of G•ADP-actin from the minus end of the fi lament. When the
monomer/subunit dissociates, the following steps are taken:

 1. Move the newly G-actin monomer (former F-actin subunit) away from the fi la-
ment minus-end.

 2. Decrease the length of the F-actin NURBS collision object by one subunit.

 3. Reposition the plus and minus-end locators to account for the decreased fi la-
ment length.

 4. Create and assign a temporary shader to the G-actin model.

 Actin species State
attribute
value

 Shader name Normalized RGB
color values (R,
G, B)

 Color

 G • ATP 0
 ATP_shader 1, 1, 0.8

 F • ATP 1

 F • ADP • Pi 2 ADPpi_shader 0.65, 0.75, 1

 F • ADP 3 ADP_shader 1, 0.7, 0.5

 TABLE 15.02

 Actin bound nucleotides are
indicated in the model by a custom

state attribute and a unique shader.

403CHAPTER 15: SELF-ASSEMBLY

 Th e shader assigned in step 4 will allow you to fade out the G-actin model over a spec-
ifi ed number of frames. When it ’ s transparent, your MEL code will move the mono-
mer into the fi lament ’ s plus end concentration volume and assign it the ATP_shader.
At this point the monomer has joined the pool of ATP-G-actin and is ready to bind
the fi lament should the opportunity arise.

 You ’ ll build a procedure called dissociate() to evaluate and execute all dissociation
reactions.

Methods: Reaction rates and probabilities
 In this section we ’ ll be working quickly through the chemistry math needed to set
up the animation events in your MEL code. If you would prefer to move directly to
MEL coding, you can take those parameters as established, go to the next section,
and return to this section at a later reading.

 We ’ ll now address the dual scientifi c and interpretive visualization requirements of
your model:

 1. Simulate both the reaction and diff usion events that give rise to self-assembly and
treadmilling behavior.

 2. Do the above in a way that permits the important events to be appreciated during
the animation. Th e disparate time scales for relevant diff usion and reaction events
enhance, as we ’ ve seen, the challenge of designing an eff ective visualization.

 You ’ ll follow a workfl ow in which you establish the visualization requirements of
your model and let the reaction rate constants and corresponding probabilities follow
naturally from those requirements. Let ’ s derive the numbers to simulate treadmilling
behavior in a timely and visually striking fashion.

 Visualization requirements of the model
 You want to record a 30 second clip of your model in action. Half a minute is long
enough to present detail but short enough not to bore viewers.

 A frame rate of 30 fps gives you 900 frames to work with. Next, let ’ s say you are asked
to show an average of fi ve complete treadmilling cycles per simulation run—being a
stochastic model, this number will of course vary from run to run. Five cycles give
your audience several opportunities to see the cycle and its components in action.

 One cycle would therefore last approximately

 900 frames/run ÷ 5 cycles per run = 180 frames

 Your actin fi lament in this project is 20 subunits long. One cycle represents the jour-
ney of any given subunit from the plus to the minus end of the fi lament. You there-
fore have a fi lament fl ux rate

 subunit fl ux rate = 20 subunits per 180 frames = 1/9 subunits per frame

 At this fl ux rate, you can expect a subunit to travel the length of the fi lament in
roughly 180 frames, or six seconds of animation playback time.

 Bear in mind that for the purpose
of seeing treadmilling up close
you ' re using a much shorter
fi lament than one would typically
encounter within a cell.

404 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 Smoothing the fl ow from G-ADP to G-ATP-actin
 You ’ ll recall from Model Condition #6 on page 394 that newly dissociated
G-ADP-actin monomers are to rejoin the pool of ATP-G-actin at the fi lament plus
end, ready for reassociation with the fi lament. Rather than moving these transition-
ing molecules instantly—which makes the molecules appear as if they ’ re popping out
of and into existence—let ’ s take an approach that is less jarring visually, and there-
fore less distracting from the main action: treadmilling and diff usion. With this
approach, you ’ ll fade out each recently dissociated G-actin monomer over several
frames, move it to the fi lament plus end, and then fade it back in to join the pool of
association-ready molecules.

 Association reaction rate
 In steady-state treadmilling, the above subunit fl ux rate is the same as both your
association and dissociation reaction rates. Since only whole monomers (not frac-
tions) can bind the fi lament, there must be a probability,

P� � 1/9 � 0.11

 that one monomer will associate during each Maya frame to provide the animation
pace you need. In your dynamic model, this probability is a function of diff usion as
well as chemical reaction. An innovative way to handle this probability was developed
by Steven J. Plimpton and Alex Slepoy for their ChemCell program. 4 Implemented in
our Maya simulation, their approach involves a reaction volume centered at the fi lament
plus end (Figures 15.09 and 15.10). Any monomer entering this volume has a probability of

RR
Reaction

volumeRC

Concentration
volume

 FIGURE 15.09

 A concentration volume (light gray
sphere) defi ned by radius R C lets you
calculate the G-actin concentration

and contain the monomers to the
useful space around the fi lament
plus-end. The red sphere defi nes

the association reaction volume of
radius R R .

405CHAPTER 15: SELF-ASSEMBLY

binding to F-actin that is naturally dependent on the size of the reaction volume. To
derive this probability, let ’ s start by setting the G-actin concentration and calculating
the appropriate rate constant. Th e subsequent use of subscript and superscript letters
is outlined in Table 15.03 . Let

 [G] be the micromolar concentration of G-ATP monomer (� M).

 Rate � be the association rate in monomers per second.

 k � be the association rate constant in monomers per micromolar second
(� M � 1 s � 1).

 V C be the spherical volume in liters of radius R C used to determine [G]
(Figure 15.10).

 N be the number of G-actin monomers in solution.

 A V be Avogadro ’ s number � 6.022 � 10 23 .

 You fi rst set R C and N to any values you like. For starters, we chose:

R nm meters), N monomers.C � � ��15 15 10 59(

 Th is gives

V / R liters.C C� � � �4 3 1 4 103 20� .

G-actin
monomer

Reaction
volume

 FIGURE 15.10

 The red sphere represents the plus-
end reaction volume V R (a sphere
of radius R R). A reaction occurs with
probability P when the surface of
a G-actin monomer penetrates this
volume.

406 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

[]G N/(V A) M. (the free G-actin concentration)C V� � � �10 5906

 Next we ’ ll calculate the reaction rate and derive k � :

Rate (/ monomers/frame)/ s/frame monomer� �� � � �1 9 1 19 10 9 26 107 5. . ss/s.

k R / G (monomers)/s/ M M s� � � �� � � � � � �[] . . .9 34 10 590 1 59 105 3 1 1

 Th is k � value should (in theory!) yield the desired number of association reactions
per Maya frame—an average of one every nine frames. What is needed now is a way
to relate this rate constant to the bustling diff usion about the fi lament plus end.
Plimpton and Slepoy provide an elegant approach in the following equation. It relates
the binding probability of a two-reactant chemical reaction to the reaction volume V R
and incorporates the eff ect of translational diff usion and the reaction rate constant k � .
Th e radius R R of this volume is the maximum separation between the monomer and
fi lament surfaces for which a reaction is considered probable (Figure 15.10). Th e prob-
ability P � of this reaction is expressed as

P k t/(A V)V R
�� �

 where V R � 4/3 � RR
3 (V R units are liters, R R units are meters)

 Th erefore P � � k � t/(A V 4/3 � RR
3)

 Rearranging this equation, setting P � � 1, and solving for R R yields the desired reac-
tion radius

 R R � 4.23 nm

 Typical reaction rates for in
vitro actin preparations are

on the order of 10 4 association
reactions per second (for k� �

12 � M – 1 s – 1 and [G-ATP] �
0.1 � M). 5 While in vivo G-ATP

concentrations have been
measured in the neighborhood of
0.1 � M, in vivo rate constants are
a source of ongoing investigation

and debate in the cell biology
community.

 Subscript/
superscript

 Meaning Example

� of the fi lament plus end k �

 C of the concentration volume V C

 V Avogadro ’ s number A V

 F of the F-actin fi lament R F

 G of G-actin monomers R G

 R of the plus end reaction volume R R

' the distance between object centers R R�

 D of the ATP → ADP • Pi hydrolysis reaction k D

 PI of the ADP • Pi→ ADP � Pi reaction k PI

 TABLE 15.03

 Subscript and superscript notation
used in the derivation of reaction

rates and probabilities.

407CHAPTER 15: SELF-ASSEMBLY

 In other words, if the surface of a G-actin monomer comes within a distance R R of the
fi lament plus end surface, there is a probability of 1 (a certainty!) that the ensuing
chemical events at the top will bind the monomer to the fi lament. Let

 R G � 2.7 nm be the approximate radius of a G-actin monomer, and

 RF � 3.5 nm be the approximate radius of an F-actin fi lament.

 Th en the distance R� R between the G-actin center and F-actin plus end center is given by

R R R R nmR R G F
� � � � � � � �4 2 2 7 3 5 10 4. . . .

 Th is value can now serve as the key parameter in your model to evaluate association reac-
tions resulting from diff usive motion. R � R will be represented by the variable $RrPrime in
your model. To visualize the reaction volume, the model uses a sphere of radius:

R R nmR F� � 7 7.

 When a monomer ’ s surface breaches the surface of this volume, it is considered for an
association reaction. Let ’ s now look at the time-dependent reactions and derive their
rate constants.

 Hydrolysis and phosphate release rates
 Within the cytoplasm, hydrolysis of ATP-F-actin and the subsequent release of the
cleaved inorganic phosphate molecule are closely linked to the activity of profi lin and
formin at fi lament plus ends. You ’ ll recall that profi lin acts as a chaperone, catalyzing
association reactions at the fi lament plus end while inhibiting them at the minus end.
Recent empirical evidence suggests that a fi lament whose two terminal plus end sub-
units are profi lin-ATP-actin can ’ t grow until ATP has been hydrolyzed and Pi released
from the penultimate subunit. 6 Th is evidence suggests that rapid hydrolysis and Pi
release may be essential for rapid fi lament growth in the cell where actin dynamics
is supervised by a myriad of helper proteins. It also provides you with another degree
of control over plus end association reactions in your animation. Each association
reaction will be contingent upon phosphate release from the penultimate plus end
subunit.

 Th e state of a bound nucleotide also aff ects the likelihood of a subunit dissociating
from the fi lament. Widely cited minus end dissociation rate constants for in vitro
actin solutions

k F F+G-ATP Pi s
k F F+ -ADP s

1

1

� �

� �

() .
() .

→
→

• ≈
≈

0 8
0 3G

 suggest that phosphate release slows depolymerization, thereby stabilizing fi laments.
Given the above numbers, if a subunit were to make it to the minus end without releas-
ing its phosphate, it would be almost three times more likely to dissociate than if it had
lost its phosphate molecule. Th is property can lead to catastrophic depolymerization in
a short fi lament like the one in your model if you set the phosphate release rate low
enough that ADP•Pi subunits are somewhat likely to reach the minus end.

 However, since in this project you are interested in emulating actin dynamics as they
exist in vivo rather than in vitro—and since there is evidence implying that phosphate

 For the G-actin radius we
averaged the largest (� 6.8 nm)
and smallest (� 4 nm)
dimensions, and divided by 2 to
get 2.7 nm.

408 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

release is necessary for plus end growth in the presence of plus end helper molecules—
you will set your nucleotide reaction rates in accordance with your association rate.
Th erefore, given your associate rate

Rate (/ monomers/frame)/1.19 s/frame monomer� �� � � �1 9 10 9 34 107 5. ss/s.

 and the requirement that the terminal subunit must hydrolyze its ATP and release its
phosphate before it becomes the third subunit from the plus end (i.e. in two steps),
let ’ s calculate the hydrolysis and phosphate release reaction rate constants (k D and
k PI). Combined both reactions must occur within 9 frames. In other words, each reac-
tion must occur in 4.5 frames. Let Rate D and Rate PI be the reaction rates in mono-
mers per frame, then

Rate Rate / subunits/frame

Rate k t, Rate k t
D PI

D D PI PI

� �

� �

(.)1 4 5

� � ..

 Th erefore

(k k) t 2(/) k k / / tD PI D PI� � � �� �1 4 5 4 9. ()→

 Th e typical in vitro ratio of hydrolysis and phosphate release rate is

k k / 115D PI � �0 3 0 0026. .

 Since you have nine, and not 115, frames in which to perform both reactions, you ’ ll
have to alter this in vitro ratio. For starters, let ’ s go with

k k / k kD PI D PI � �2 1 2→

 Th erefore

k k k t k / / t sD PI PI PI� � � � � � �3 4 9 4 27 1 25 106 1/() () .� �→

k k sD PI� � � �2 2 50 106 1.

 Expressing these rate constants in terms of reaction probability (P D and P PI) per Maya
frame gives

P k t s s
P k t s

D D

PI PI

� � � � �

� � �

� ��
�

(.)(.) .
(.
2 5 10 1 19 10 0 296
1 25 10

5 1 7

5 �� �� �1 71 19 10 0 148)(.) .s

 When added together,

P P 444 (/)D PI� � �0 4 9.

 which is of course equal to the desired reaction rate in subunits per Maya frame. Now
let ’ s look at the minus end dissociation rate.

 Dissociation reaction rate
 In order to produce steady-state treadmilling behavior in the model, your dissocia-
tion rate must balance the plus end association rate—the net subunit count should
remain more or less constant throughout the simulation. Given the brisk pace of the
nucleotide reactions estimated above we can expect that all subunits reaching the

409CHAPTER 15: SELF-ASSEMBLY

minus end will be G-ADP-actin. For generality, however, you ’ ll build into the model
the ability to handle dissociation reactions for both types of subunit, in case you wish
to experiment with the nucleotide rates. Let RateD be the dissociation rate of G-ADP
in subunits per frame:

Rate Rate (/ monomers/frame)/ 1.19 s/frameD
� � �� � �

� �
1 9 10

9 34

7

. 1105 monomers/s.

 Like the nucleotide reactions, dissociation is time-dependent and therefore its rate
constant is equal to the reaction rate:

k sD
� �� �9 34 105 1.

 Th e probability of minus end dissociation in any one Maya frame is given by

P k t s sD D
� � � �� � � � �� (.)(.) .9 34 10 1 19 10 0 1115 1 7

 Now, let ’ s consider the improbable (but not impossible!) dissociation of an ADP•Pi
subunit. Going to the published rate constants for in vitro actin preparations gives us
the ratio

k /k /PI D
� � � �0 8 0 3 2 7. . .

 Th erefore

k s sPI
� � �� � � �2 7 9 34 10 2 49 105 1 6 1. (.) .

 Th erefore the probability of an ADP•Pi subunit dissociating—provided the minus end
terminal subunit is ADP•Pi—is given by

P k t s sPI PI
� � � �� � � � �� (.)(.) .2 49 10 1 19 10 0 2966 1 7

 Expressing the probability of any reaction as a function of the rate constant k pro-
vides some fl exibility in your model. You could skip the step of deriving k – and simply
enter the P values in your MEL code as fl oating point numbers (as opposed to calcu-
lating P using k and � t). However, building in the extra step of deriving P allows you
to explore the relationship between reaction probabilities, rate constants, and time.
Since biochemical systems are often characterized in terms of rate constants and
concentrations, having a k parameter in your model provides a valuable link between
your in silico Maya laboratory and the world of empirically based experimental
science.

 With the numbers in place (Table 15.04), let ’ s start building the model.

 Methods: Algorithm design
 In the previous chapter you used a procedure to build your atomic-detail G-actin
model. Here we introduce a method that combines animation expressions (which
you met back in Chapter 13) and procedures. You ’ ll use this method in the remaining
chapters to create dynamic simulations. Since Maya, by default, evaluates animation
expressions (just expressions from here on) once per frame, they allow you to update
your model in a stepwise fashion while Maya displays the changes in the scene view.
Th e algorithm fl owchart in Figure 15.11 shows two expressions, fi ve procedures, and the

 By building the rate constants
into your model as variables
you ' ll be able to alter them as you
like to test their relative effects
on treadmilling behavior.

410 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 Reaction Description Rate constant Probability

 G • ATP � F → F Association 1.59 � 10 3 � M � 1 s � 1 1

 F • ATP → F • ADP • Pi Hydrolysis 2.5 � 10 5 seconds � 1 0.296

 F • ADP • Pi → F • ADP � Pi Phosphate release 1.25 � 10 5 seconds � 1 0.148

 F • ADP → G•ADP Dissociation 9.34 � 10 5 seconds � 1 0.111

 F • ADP • Pi → G • ADP • Pi Dissociation 2.49 � 10 6 seconds � 1 0.296

 TABLE 15.04

 Initial reaction rate constants and
probabilities for each reaction in

the model. Probabilities are the
likelihood a reaction will occur in

one Maya frame.

fl ow of information between them. Th ese are the MEL code elements of your tread-
milling model. As you work through the code listings below, it may help to refer back
to Figure 15.11 when you want an overview of how the diff erent pieces of your algorithm
fi t together.

 To begin, let ’ s state clearly what your algorithm should do:

 Using ready-made geometric models of G- and F-actin, simulate diffusion and reac-
tion events implicated in biopolymer steady-state treadmilling behavior. The model
parameters will be updated at the start of each simulation run. The specifi c events
to simulate are:

 1. Translational and rotational diffusion within a concentration volume.
Diffusing molecules must respond to collisions with one another and with the
fi lament.

 2. Plus end association of G-actin monomers to the fi lament.

 3. Hydrolysis of bound ATP on fi lament subunits.

 4. Release of inorganic phosphate from fi lament subunits.

 5. Minus-end dissociation of subunits from the fi lament.

 Th e fi rst element in Figure 15.11 is reset, an expression that executes only on frame 1
and resets your model to its initial conditions. It ’ s within this expression that you ’ ll
specify the parameters such as the time increment and the treadmilling cycle. Below
reset is selfAssembly, the command-and-control center of the simulation. It gets
run by Maya once per frame and calls the various diff usion and reaction procedures
in order to query and then update the state of the model. Within selfAssembly is a
loop that cycles through the G-actin models (named G_#), evaluating boundary con-
ditions, association reactions, diff usion, and collisions. Th e latter three are each
handled by a separate procedure. You ’ ll use a fourth procedure called faderShader()
to meet the project objective of smoothing the transition from newly dissociated
G-ADP-actin to association-ready G-ATP-actin.

 Once done with the G-actin models, selfAssembly calls the dissociate() procedure,
which draws a random number and compares it to the dissociation probability to
determine if the minus end terminal subunit will dissociate from the fi lament.
Finally selfAssembly draws random numbers for comparison with the nucleotide
reaction probabilities.

411CHAPTER 15: SELF-ASSEMBLY

reset expression

• Return models to their initial
states

• Initialize global variables (t,
reaction probabilities, etc.)

selfAssembly expression

• For every G-actin:
• Evaluate boundary conditions
• If G-actin is within the plus-

end reaction volume call
associate() procedure

• If G-actin is recently
dissociated from the filament,
call the faderShader()
procedure

• Call the diffuse() procedure
• Call the collide() procedure

to react to collisions

• Call the dissociate() procedure

• For every F-actin subunit, test
the probability of:
• Nucleotide hydrolysis
• Phosphate release

diffuse()
• Calculate and return

the diffusion values

associate()
• Test the probability

of a reaction
• If the reaction

is successful,
associate the
G-actin model with
the filament

collide()
• Test for collisions

and return an
"avoidance" vector

dissociate()
• Test the probability

of a reaction
• If successful,

dissociate the
subunit from the
filament and assign
it a "faderShader"

faderShader()
• Depending on

how recent the
dissociation:
• Fade out G-actin
• Move G-actin to

join the plus-end
monomers

• Fade in G-actin

yes

no

yes

no

end of
playback
range?

frame = 1
?

Start

End

and stop on press Play

 FIGURE 15.11

 Algorithm fl owchart for the
treadmilling model. For model
nomenclature refer to Table 15.01.

412 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

Methods: Encoding the algorithm
 As we ’ ve done in previous projects, let ’ s build code in pieces relating to the steps out-
lined in the fl owcharts. You ’ ll recall that for the MEL procedures to work in Maya, all
lines of code must be entered together, in the same sequence that they appear in the
text. Likewise, the animation expression must be entered whole in Maya ’ s Expression
Editor. You can fi nd the complete procedure and expression fi les on the CD-ROM
along with a ready-made scene fi le. You ’ ll fi nd these useful for checking your work or,
if you want a very fast results, seeing the model in action right away!

15_Self_Assembly\mel\associate.mel

 \collide.mel

 \diffuse.mel

 \dissociate.mel

 \ faderShader.mel

 \ reset.txt

 \selfAssembly.txt

 The reset expression
 As usual, we recommend building your MEL script in a text editor other than Maya ’ s
Script Editor and saving it often as you follow along with the project steps below. Save
the fi le in your Maya Scripts directory under the following name:

 reset.txt

 Since this expression is to run only when Maya returns to frame 1, begin with a con-
ditional “ if ” statement to this eff ect.

 / * Description:
 This animation expression restores F-actin, subunit, and G-actin
models to their original conditions.
 * /

 if (frame = = 1) {

 / * * * * * DECLARE THE VARIABLES * * * * * /

 / *
 $fName The name of the filament model.
 $gNames A list of G-actin model names.
 $tracer The name of the first G-actin monomer to bind

the filament.
 $gfGroup The name of the group node holding the filament

subunits.
 $pName The name of the plus-end locator.
 $mName The name of the minus-end locator.

 * /
 global string $fName, $gNames[], $tracer, $gfGroup, $pName, $mName;

 You may recall from
Chapter 13 that we recommend

using the fi le extension " .txt " for
animation expression fi les and
 " .mel " for procedures. We will

continue to use this convention
throughout this book.

 To save space, we ' ve foregone
the usual fi le header information

such as authors , creation date ,
and so on.

413CHAPTER 15: SELF-ASSEMBLY

 / *
 $subTrans The distance separating adjacent subunits.
 $subRot The relative rotation of adjacent subunits

about the filament 's long axis.
 $Rg The effective radius of G-actin � 2.7
 nanometers.
 $Rf The approximate filament radius.
 $Rc The plus-end concentration volume radius.
 $Rr The plus-end reaction volume radius.
 $Av Avogadro 's number which is used to calculate

chemical concentrations.
 $t The simulation time increment in seconds.
 $r The average diffusion distance for G-actin.
 $stdDevTrans Standard deviation used with Maya 's gauss

command to calculate translational diffusion.
 $std DevRot Standard deviation used with Maya' s gauss

command to calculate rotational diffusion.
 $kpATP_For Plus-end association reaction rate of ATP-G-actin.
 $kmADPpi_Rev Minus-end dissociation rate constant of

ADP•Pi-G-actin.
 $kmADP_Rev Minus-end dissociation rate constant of

ADP-G-actin.
 $kADP Hydrolysis reaction rate.
 $kpi Pi release reaction rate.
 $pATP_ForProb Plus-end association probability of ATP-G-actin.
 $mADPpi_RevProb Minus-end dissociation probability of

ADP•Pi-G-actin.

 $mADP_RevProb Minus-end dissociation probability of ADP-G-actin.
 $adpProb Hydrolysis reaction rate.
 $piProb Pi release reaction rate.
 * /
 global float $subTrans, $subRot, $Rg, $Rf, $Rc, $Rr, $Av, $t, $r;
 global float $stdDevTrans, $stdDevRot, $kpATP_For, $kmADPpi_Rev,
 $kmADP_Rev, $kADP, $kpi;
 global float $pATP_ForProb, $mADPpi_RevProb, $mADP_RevProb,
 $adpProb, $piProb;

 / *
 $totalOn Counts association (on) reactions.
 $totalOff Counts dissociation (off) reactions.
 $fadeSteps The number of frames taken to fade out a

dissociated subunit before it rejoins the
plus-end pool of G-actin.

 * /
 global int $totalOn, $totalOff, $fadeSteps;

 / *
 $name The element in a list of names.
 $parent Used to determine if G-actin is a subunit of

F-actin.
 $origParent Used to rejoin dissociated subunits with the

filament when you reset the simulation.
 $currentParent Used with $origParent (above).

 $shadeGrp A shading group node name.
 $relatives A list of filament children, namely subunits,

group nodes, and plus/minus-end locators.

414 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 $child An element of the list $relatives.
 * /
 string $name, $parent, $origParent, $currentParent, $shadeGrp,
 $relatives[], $child;

 / *
 $trans Translation vector.
 $rot Rotation vector.
 * /
 vector $trans, $rot;

 / *
 $fLength The starting length of the F-actin filament.
 $yPos The absolute value of the Y-position of the plus-

and minus-end locators relative to the filament.
 $tD The translation diffusion constant.
 $rD The rotation diffusion constant.
 $pi The trigonometric constant pi.
 $Vc The plus-end concentration volume.
 $Vr The spherical reaction volume centered at the

plus-end.
 $c The concentration of free G-actin, that is, the

time for one subunit to flux through the filament.
 $ratio The ratio of the in vitro reaction rate constants

$kmADPpi_Rev and $kmATP_Rev.
 $fluxRate The flux rate per frame of subunits through the

filament.
 * /
 float $fLength, $yPos, $tD, $rD, $pi, $Vc, $Vr, $c, $ratio,
 $fluxRate;

 / *
 $cycle The average number of frames for one treadmilling

cycle.
 $state The value of the G-actin state attribute.

 = 0� for free G-actin
 = 1 for F-ATP-actin
 = 2 for F-ADP•Pi-actin
 = 3 for F-ADP-actin

 $fNum The filament number. In the present model there is
one filament, with $fNum == 0�.

 $gCount The number of G-actin models.
 $subunits The number of F-actin subunits.
 * /
 int $cycle, $state, $fNum, $gCount, $subunits;

 In the next section, you ’ ll set the values used in diff usion, collision, and reaction
probability calculations. All distances are given in nanometers and converted to
meters where necessary. To simulate collisions in your model, you can treat G-actin as
more or less spherical. Below, we assign this “spherical” G-actin an eff ective collision
radius, Rg, of 2.7 nm. If you change this value, be sure to update the reaction radius val-
ues as well (see page 407). Th e F-actin radius R F is used throughout the simulation to
change the length of the fi lament via the NURBS cylinder heightRatio attribute. You ’ ll
set the $totalOn and $totalOff variables to count reaction through each simulation
run. Th is will tell you how close your model is performing to the specifi cations we out-
lined earlier in this chapter.

415CHAPTER 15: SELF-ASSEMBLY

 / * * * * * INITIALIZE THE VARIABLES * * * * * /

 $fName = " F_0� " ;

 $gNames = ' ls –tr "G_*" ' ;

 $tracer = " ";

 $gfGroup = $fName + "|" + "gfGroup";

 $pName = $fName + "|" + "pmGroup" + "|" + "plus";

 $mName = $fName + "|" + "pmGroup" + "|" + "minus";

 $subTrans = 2.8; // Nanometers.

 $subRot = – 166; // Degrees.

 $Rg = 2.7; // Nanometers.

 $Rf = 3.5; // Nanometers.

 $Rc = 15; // Nanometers.

 $Rr = 4.2; // Nanometers.

 $Av = 6.0�22 * ' pow 10� 23 ' ;

 $r = 1.0�; // Average diffusion distance.

 $totalOn = $totalOff = 0�;

 $fadeSteps = 10�;

 $tD = 1.65 * pow(10�, –12);

 $rD = 1.98 * pow(10�, 5);

 $pi = 3.14159265;

 $Vc = 4.0� / 3.0� * $pi * pow(($Rc *pow(10�,–9)), 3) * 10�0�0�.0� ; // Litres.

 $Vr = 4.0� / 3.0� * $pi * pow(($Rr *pow(10�,–9)), 3) * 10�0�0�.0� ; // Litres.

 $cycle = 180�;

 $subunits = ' getAttr ($fName + ".subunitsOrig")' ;

 $gCount = ' size $gNames ' - $subunits;

 // Time and distance.

 float $tmp = $r * pow(10�, –9); // $r in meters.

 $t = $pi * pow($tmp, 2) / (16 * $tD);

 $fluxRate = (float) $subunits/$cycle; // Subunits per second.

 // Concentration.

 $c = $gCount / $Vc / $Av * pow(10�,6); // Micromolar

 // Diffusion.

 $stdDevTrans = sqrt(2.0� * $tD * $t) * pow(10�, 9);

 $stdDevRot = sqrt(2.0� * $rD * $t);
 // Convert from radians to degrees.

 $stdDevRot = $stdDevRot * 360� /(2 * $pi);

 Th e following rate constant and probability calculations are the MEL code version of
the derivations we presented earlier in this chapter.

 / * * * * * REACTION PROBABILITIES * * * * * /

 // Plus-end reaction rate constant.
 $kpATP_For = $fluxRate / $t / $c; // Molecules per Micromolar
 second.

 // Plus-end association probability for monomer entering
 reaction volume.
 $pATP_ForProb = $kpATP_For * $t / ($Av * $Vr) / pow(10�, –6);

 // Minus-end reaction rate constants.
 $kmADP_Rev = $fluxRate / $t; // Molecules per second.

 Recall from Chapter 12 that
placing (fl oat) in front of a value
forces it to be of type fl oat. This
is called explicit typing and is
often necessary if you want
a fl oating point value as the
result of an expression involving
integers.

416 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 $ratio = 0�.8 / 0�.3;
 $kmADPpi_Rev = $fluxRate / $t * $ratio;

 // Minus-end dissociation probabilities.
 $mADPpi_RevProb = $kmADPpi_Rev * $t;
 $mADP_RevProb = $kmADP_Rev * $t;

 // Hydrolysis reaction rate probabilities.
 $kADP = 2.5 * pow(10�,6);
 $adpProb = $kADP * $t;
 $kpi = 1.25 * pow(10�,6);
 $piProb = $kpi * $t;

 We fi nd it helpful to have the key parameters at hand when running a simulation
model in Maya. Th e next lines print to the History panel of the Script Editor at the
start of each simulation run.

 // Print model parameters.
 print "\n\n* * * * * RESETTING * * * * * \n\n";
 print ("gCount = " + $gCount + "\n");
 print ("conc = " + $c + "\n");
 print ("concVol = " + $Vc + "\n");
 print ("fluxRate = " + $fluxRate + "\n");
 print ("rxnRad = " + $Rr + "\n");
 print ("rxnVol = " + $Vr + "\n");
 print ("t = " + $t + "\n");
 print ("diffusion step stdDev = " + $stdDevTrans + "\n");
 print ("diffusion rotation stdDev = " + $stdDevRot + "\n\n");
 print "\n* * * Probabilities * * * \n\n";
 print ("$kpATP_For = " + $kpATP_For + "\t\t$pATP_ForProb =

 " + $pATP_ForProb + "\n");
 print ("$kmADPpi_Rev = " + $kmADPpi_Rev + "\t$mADPpi_RevProb =

" + $mADPpi_RevProb + "\n");
 print ("$kmADP_Rev = " + $kmADP_Rev + "\t$mADP_RevProb = " +

 $mADP_RevProb + "\n");
 print ("$adpProb = " + $adpProb + "\n");
 print ("$piProb = " + $piProb + "\n");

 Your fi lament and G-actin models have been assigned custom attributes which are
listed in Table 15.05 . Th e “ Orig ” attributes are used below to reset the transform and
custom attributes to their starting values. Th e .state attribute tracks the nucle-
otide state of each G-actin model (G_#). Th e fi lament model ’ s .heightRatio attribute
is connect to and drives the .heightRatio attribute belonging to the NURBS cylin-
der creation node. As your F-actin model grows and shrinks, your MEL code sets the
.heightRatio value on F_0�, which in turn drives the cylinder height.

 / * * * * * RESET THE FILAMENT MODEL * * * * * /

 $gCount = ' size $gNames ' ; // A list of all G-actin and subunits.

 // Center the filament 's pivot point.
 xform -centerPivots ($fName + "|gfGroup.translate");

 Remember that the " \n " string
causes a line break in the printed

information.

 The vertical bar " | " is used to
construct path names within

Maya.

The following command selects
a list of all G-actin models in your

scene: select ls -tr " G_ * " ;

Substituting the following inside
the quotes will select only

those that are parented to the
F-actin fi lament (i.e. subunits):

 " F_0|gfGroup|G_ * "

417CHAPTER 15: SELF-ASSEMBLY

 // Reset the subunit group node.
 setAttr ($fName + "|gfGroup.translate") 0� 0� 0�;

 // Reset the subunits attribute to its original value.
 setAttr ($fName + ".subunits") $subunits;

 Model Attribute Initial value Description

 F_0 transOrigX
 transOrigY
 transOrigZ

 0
 0
 0

 Initial translate values

 rotOrigX
 rotOrigY
 rotOrigZ

 0
 0
 0

 Initial rotate values

 Subunits 20 Shows you the number of fi lament
subunits at a glance

 subunitsOrig 20 Initial number of subunits

 heightRatio 16.914 Ratio of F-actin length to radius (used
to drive the height of the NURBS
cylinder model which is the F-actin
collision surface)

 G_# transOrigX
 transOrigY
 transOrigZ

 Varies Initial translate values

 rotOrigX
 rotOrigY
 rotOrigZ

 Varies Initial rotate values

 State
stateOrig

 Nucleotide state

 0 Free G-actin

 1 ATP-F-actin

 2 F-ADP • Pi-actin

 3 F-ADP-actin

 fi lOrig _ 1 Initially a free G-actin monomer

 0 Initially an F-actin subunit belonging
to F_0

 TABLE 15.05

 Custom attributes.

418 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 / *
 Reset the NURBS cylinder length. Length is connected to the
heightRatio attribute of the actin model 's history node. The
length of F-actin = 2.8 nm per subunit * (original number of
subunits -1). Adding 6 nm to enclose the distal subunits gives a
starting length of 59 nm for 20� subunits.
 * /
 $fLength = (float) 6.0� + $subTrans * ($subunits - 1);
 setAttr ($fName + ".heightRatio") ($fLength/$Rf);

 // Reset plus- and minus-end locators.
 $yPos = (float)($subunits + 1)/2 *$subTrans;
 setAttr ($fName + "|pmGroup|plus.ty") ($yPos);
 setAttr ($fName + "|pmGroup|minus.ty") (-$yPos);
 setAttr ($fName + "|pmGroup|plus.ry") ($subRot *($subunits + 1)/2);
 setAttr ($fName + "|pmGroup|minus.ry") (-$subRot *($subunits + 1)/2);

 // Reset the F-actin model to its starting position.
 $trans = ' getAttr ($fName + ".transOrig")' ;
 setAttr ($fName + ".translate") -type double3 ($trans.x)
 ($trans.y) ($trans.z);

 select -clear; // Clear the current selection.

 / * * * * * RESET THE G-ACTIN AND SUBUNIT MODELS * * * * * /

 for ($name in $gNames) { // G-actin and F-actin subunits.

 // Get the state of the current molecule.
 $state = ' getAttr ($name + ".stateOrig")' ;

 if ($state = = 0�) { // The current model was a G-actin
 monomer to begin.

 $parent = ' firstParentOf $name ' ;
 if ($parent ! = " ") {

 / *
 The model currently has a parent and was therefore
incorporated into a filament during the previous
simulation run. Now parent G-actin to world space.
 * /
 parent -world $name;

 }
 // Set the shading group.
 $shadeGrp = "ATP_shaderSG";

 }
 else { // The current model was originally an F-actin
 subunit.

 / * Parent the model to its F-actin filament if it
 became dissociated during the last run. */
 $currentParent = ' firstParentOf $name ' ;
 $fNum = ' getAttr ($name + ".filOrig")' ;
 $origParent = "|F_" + $fNum + "|gfGroup";

 Parenting an object to world
space (parent-world) removes it
from the hierarchy of its current

parent.

419CHAPTER 15: SELF-ASSEMBLY

 if ($fNum > -1 & & $origParent ! = $currentParent) {
 parent $name $origParent;

 }

 // Determine the appropriate shader for this model.
 if ($state = = 1) {

 // The current model was an F-actin ATP subunit.
 // Set the shading group.
 $shadeGrp = "ATP_shaderSG";

 }
 else if ($state = = 2) $shadeGrp = "ADPpi_shaderSG";
 else if ($state = = 3) $shadeGrp = "ADP_shaderSG";

 } // End else.

 // Reset the G-actin model to its starting position.
 $trans = ' getAttr ($name + ".transOrig")' ;
 setAttr ($name + ".translate") -type double3 ($trans.x)

 ($trans.y) ($trans.z);

 // Reset the G-actin model to its starting rotation.
 $rot = ' getAttr ($name + ".rotOrig")' ;
 setAttr ($name + ".rotate") -type double3 ($rot.x) ($rot.y)

 ($rot.z);

 // Reset G-actin custom state attribute.
 setAttr ($name + ".state") $state;

 // Put the G-actin in the appropriate shading group.
 sets -e -forceElement $shadeGrp $name;

 // Clear the current selection.
 select -clear;

 } // End "for ($name in $gNames) ".

 Th is next bit of code uses Maya ’ s reorder command to put the subunit model in alpha-
numeric order within the fi lament cylinder model. Th is is not essential for the simu-
lation to function, but keeps your objects tidy in the Outliner.

 // Put F-actin subunits in their proper alphanumeric order.
 $relatives = sort(' listRelatives -path ($fName + "|gfGroup")');
 for ($child in $relatives) reorder -back $child;

 Finally, delete any temporary “ faderShader ” that were in use when the simulation run
stopped.

 // Delete faderShaders.
 delete ' ls "faderShader*" ' ;

 } // End if (frame = = 1).
 // End expression.

 Save your text fi le and start a new one for the next animation expression.

 The " select -clear " statement
makes it so that the fi nal G-
actin to be reset doesn ' t remain
selected when this expression
fi nishes.

420 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 The selfAssembly expression
 Save this fi le in your Maya Scripts directory under the following name:

 selfAssembly.txt

 Unlike reset, this expression must run once every frame greater than frame 1. Again,
this condition can be tested with an “ if ” statement.

 / * Description:
 This is a runtime animation expression that updates the actin
assembly simulation. Diffusion, collision avoidance, and reactions
are parcelled off as procedures that are called when needed from
this expression.
 * /

 if (frame > 1) {

 / * * * * * DECLARE THE VARIABLES * * * * * /

 global string $fName, $gNames[], $tracer, $pName;
 global float $Rg, $Rf, $Rc, $Rr, $adpProb, $piProb;
 global int $totalOn;

 / *
 $plusSubunit The current plus-end subunit.

 $minusSubunit The current minus-end subunit.
 * /
 string $plusSubunit, $minusSubunit, $name, $gName,

 $relatives[];

 / *
 $gTrans Current position of the current G-actin molecule.

 $gRot Current rotation of the current G-actin molecule.

 $pTrans Current position of the plus-end locator.

 $separation The vector separating G-actin and the filament

plus-end.

 $trans The sum of diffusion, collision, and bounding

vectors.

 $rot The diffusional rotation vector.

 $bounding Nudges the G-actin back inside the reaction

volume.

 $diffusion The return value of the diffuse() procedure.

 $collision The return value of the collide() procedure.

 * /
 vector $gTrans, $gRot, $pTrans, $separation, $trans, $rot,

$bounding, $diffusion[], $collision;

 / *

 $dist The scalar distance of the vector $separation.

 $RrPrime The distance used to test if G-actin lies within

the association reaction volume.

 $rnd A random number between 0� and 1.

 * /
 float $dist, $RrPrime, $rnd;

 / *
 $bindThisFrame Set to 1 if an association reaction has

occurred in the current frame, 0� if not.

 Reminder: variables that have
been described previously will
not be given a description here

or with subsequent occurrences.

421CHAPTER 15: SELF-ASSEMBLY

 $bindThisMonomer Set to 1 if the current G-actin has associated
with F-actin, 0� if not.

 The above values are set in the associate() procedure.
 $mState The nucleotide state of the minus-end subunit.
 * /
 int $bindThisFrame, $bindThisMonomer, $mState, $state,

 $subunits;

 / * * * * * INITIALIZE THE VARIABLES * * * * * /

 $state = 0�;
 $bindThisFrame = 0�;
 $bindThisMonomer = 0�;

 / *
 Query the coordinates of the plus- and minus-end locators.
 xform queries the world matrix for the specified object.
 * /
 $pTrans = ' xform -query -worldSpace -translation $pName ' ;

 // Refresh the list of G-actin monomers.
 $gNames = ' ls -tr "|G_*" ' ;

 Here, your expression will assess bounding, association reactions, diff usion, and
collisions for every free G-actin monomer. You ’ ll use the “ for in ” conditional state-
ment to loop through a list of G-actin names. If a given monomer associates with the
fi lament, you need not calculate its diff usion or check for collisions. Th erefore you ’ ll
track the “ recently associated ” status of the monomer using the variable $bindThis-
Monomer . Its value will be set to 1 if an association reaction occurs and 0 if not. A simi-
lar variable $bindThisFrame tracks whether an association reaction has occurred yet
during the present frame. If one has, $bindThisFrame � 1 prevents the expression
from evaluating any more binding opportunities. Th is limits the model to binding a
maximum of one monomer per frame. Note the totalOn variable which has 1 added
to its value each time a successful association reaction occurs.

 Bounding, diff usion, and collision each produce a vector (with direction and magni-
tude) (Figure 15.12). After all three have been evaluated, their eff ects are combined (vec-
tors added) and used to update the transform of the G-actin model.

 / * * * * * G-ACTIN BOUNDING, REACTION, AND DIFFUSION * * * * * /
 for ($name in $gNames) {

 // Zero the bounding vector for this G-actin.
 $bounding = <<0�, 0�, 0�>>;
 $bindThisMonomer = 0�;

 // Query the position and state of monomer $name.
 $gTrans = ' getAttr ($name + ".t")' ;
 $state = ' getAttr ($name + ".state")' ;

 if ($state = = 0�) { // This G-actin is ready for binding.

 // Calculate the distance between G-actin and the
 plus-end.

 $separation = $pTrans – $gTrans;
 $dist = mag($separation);

 The fi rst time you see a command
used in the code listings here
(e.g. xform) the long fl ag names
will be used. Subsequently, the
short names will be used.

422 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 // The distance between the G-actin and reaction volume
 surfaces.
 $RrPrime = $Rr + $Rf + $Rg;

 // Determine if G-actin is outside the concentration
 volume.
 if ($dist > ($Rc - $Rg)) {

 // Calculate a vector to nudge G-actin back inside.
 $bounding = unit($separation) * $Rg;

 }
 else if ($dist < = $RrPrime & & $bindThisFrame = = 0�) {

 / * The monomer can associate with the filament.
 Call the association reaction procedure.
 * /
 $bindThisFrame = associate($name);

 if ($bindThisFrame) { // 1 if yes, 0� if no.
 // Increment the "on" reaction counter.
 $totalOn + + ;
 / *
 The current G-actin has bound the filament
and will not be considered for diffusion,
collisions, and bounding below.
 * /
 $bindThisMonomer = 1;

 }
 }

 }
 else {

gTrans

pTrans

Bounding 5
unit(separation) * Rg

Rg (G-actin radius)

G-actin

Actin j

Actin i

F-actin

trans �
bounding � diffusion � collision

Diffusion Collision

Concentration
volume

Separation

 FIGURE 15.12

 Bounding, diffusion, and
collision evaluations each

result in a displacement
vector. The three vectors

are summed and used

 The
if($bindThisFrame)

notation evaluates
$bindThisFrame as if

it were of type Boolean
with two possible

values: 1 (yes) and 0 (no). If
the variable being tested has

only 0 and 1 as possible values,
this notation does the same

thing in fewer characters than
if($bindThisFrame = = 1).

The opposite of
if($bindThisFrame) is

423CHAPTER 15: SELF-ASSEMBLY

 / *
 This is a recently dissociated G-actin and is in the
process of fading in or out. Call the faderShader()
procedure.
 * /
 faderShader($name, $state);

 }

 If the current G-actin model ’ s state is not 0, then it must have recently dissociated
and is either fading out (state � 0) near the fi lament minus end or fading back in
(state � 0) near the plus end. In either case, the faderShader() procedure is called to
fade out, fade in, or move G-actin to the fi lament plus end region. We ’ ll explore this
procedure a little later in this chapter. Provided no association reaction occurred, the
next bit of code calls the diffusion() and collision () procedures. Th eir results are
added to the $bounding vector from above to make a new vector called $trans. $trans
is then used to update the G-actin model.

 / *
 If $name did not associate with the filament, calculate its
diffusion, avoidance and bounding vectors.
 * /
 if ($bindThisMonomer = = 0�) { // No binding occurred.

 // Call the diffusion procedure.
 $diffusion = diffuse();

 // Call the collision avoidance procedure.
 $collision = collide($name);

 // Total the motion for the G-actin molecule.
 $trans = $diffusion[0�] + $collision + $bounding;
 $rot = $diffusion[1];

 / *
 Query the current translation and rotation of the
molecule. Since faderShader() may have moved the
G-actin to the filament plus-end, it 's essential to
query G-actin 's translate attribute again here.
 * /
 $gTrans = ' getAttr ($name + ".translate")' ;
 $gRot = ' getAttr ($name + ".rotate")' ;

 / * Add the current translation and rotation values to
 the $trans and $rot vectors. */
 $trans = $trans + $gTrans;
 $rot = $rot + $gRot;

 // Set the molecule 's new translation and rotation values.
 setAttr ($name + ".translate") -type double3 ($trans.x)
 ($trans.y) ($trans.z);
 setAttr ($name + ".rotate") -type double3 ($rot.x)
 ($rot.y) ($rot.z);

 }
 } // End for ($name in $gNames).

 Here you ’ ll use the ls command to get a list of F-actin subunits and count its size. Th e
list begins with the name of the minus end subunit and ends with that of the plus end
subunit. In other words, in the array ($relatives[]) used to store this list, element 0 is
the minus end subunit and element [$subunits] is the plus end subunit.

424 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 / * * * * * INTRA-FILAMENT REACTIONS * * * * * " ;

 // Get a list of F-actin subunits and count its size.
 $relatives = ' listRelatives -path ($fName + "|gfGroup")' ;
 $subunits = ' size $relatives ' ;
 $minusSubunit = $relatives[0�];

 // Get the nucleotide state of the minus-end subunit.
 $mState = ' getAttr ($minusSubunit + ".state")' ;

 Actin oligomers of two subunits are highly unstable, meaning they are quite likely
to dissociate into G-actin monomers. However, once a third subunit is added, the
structure—now called a nucleus —is much more likely to remain stable and grow into
a fi lament. Th erefore, we ’ ll set minimum stable fi lament size to three subunits and
not allow further dissociation reactions if your fi lament happens to reach the three-
subunit size. We ’ ll present the dissociate procedure() later in this chapter.

 // The minimum filament size is 3 subunits.
 if ($subunits > 3) {

 // Call the dissociate() procedure.
 dissociate($minusSubunit, $mState);

 }

 for ($gName in $relatives) {

 // Get the state of the current molecule.
 $state = ' getAttr ($gName + ".state")' ;
 // Generate a random number with which to test reaction
 probabilities.
 $rnd = ' rand 1 ' ;
 if ($state = = 1) { // ATP subunits.

 if ($rnd < $adpProb) { // A reaction occurs.
 // Change state and set the shading group.
 setAttr ($gName + ".state") 2;
 / * If the current G-actin is not the tracer,
 assign the ADP•PI shader. */
 if ($tracer ! = $gName) sets -e -fe "ADPpi_
 shaderSG " $gName;

 }
 }
 else if ($state = = 2) { // ADP•Pi subunits.

 if ($rnd < $piProb) { // A reaction occurs.
 // Change state and set the shading group.
 setAttr ($gName + ".state") 3;
 / * If the current G-actin is not the tracer, assign
 the ADP shader. */
 if ($tracer ! = $gName) sets -e -fe "ADP_
 shaderSG " $gName;

 }
 }

 }

 The sets command -fe fl ag is
short for -forceElement which
forces the addition of the item

($gName) to the set (the shading
group node) if it currently

belongs to another set.

425CHAPTER 15: SELF-ASSEMBLY

 // Clear the current selection.
 select -clear;

 } // End if (frame > 1).
 // End expression.

 Next we ’ ll cover the fi ve procedures in the order they ’ re called by selfAssembly.

 The associate() procedure
 Th is procedure is called only if a G-actin monomer breaches the reaction volume cen-
tered at the fi lament plus end. It takes the monomer name ($gName) as its only argu-
ment. Th e test for this “ breach ” is carried out in the selfAssembly expression. Since
we calculated the size of the reaction volume to correspond to a binding probability of
one, each call to associate() will result in a binding reaction—at least for now. If you
choose later to vary the reaction volume and probability, the probability test you ’ ll build
into the model below will come in handy. Note that this procedure is of type int, which
means it will return an integer to selfAssembly : 1 if a reaction is successful, 0 if not.

 / * Description:
 This procedure assesses the probability for binding G-actin to
F-actin If a reaction occurs, G-actin is parented to F-actin and
both models are updated.
 * /

 global proc int associate(string $gName) {

 / * * * * * DECLARE THE VARIABLES * * * * * /

 global float $subTrans, $subRot, $pATP_ForProb, $Rf;
 global string $fName, $tracer, $gfGroup, $pName, $mName;

 / *
 $second The name of the second subunit from the plus-end.
 * /
 string $second;

 / *
 $plusTy The plus-end translateY value.
 $minusTy The minus-end translateY value.
 $plusRy The plus-end rotateY value.
 $minusRy The minus-end rotateY value.
 The above variables are used to reposition the plus and minus-
ends after a binding event.
 * /

 float $plusTy, $minusTy, $plusRy, $minusRy, $rnd;

 / *
 $bound Set to 1 if a successful reaction occurs and 0� if not.
 $sState The nucleotide state of the second subunit from the

plus-end. This must be state 3 for an association
reaction to be possible.

 * /
 int $bound, $sState, $subunits;

 Below you ’ ll set $bound to 0 and call a random number to test the reaction probabil-
ity, and query the name and state of the penultimate plus end subunit. Its state must

426 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

be 3, indicating an ADP subunit, for a monomer to bind the fi lament (for a reminder
of the rationale for this condition, refer back to page 407).

 / * * * * * INITIALIZE THE VARIABLES * * * * * /

 $bound = 0�;
 $rnd = ' rand 1.0� ' ;
 $relatives = ' listRelatives -path ($fName + "|gfGroup")' ;
 $subunits = ' size $relatives ' ;
 // Get the state of the penultimate plus-end subunit.
 $second = $relatives[($subunits - 2)];
 $sState = ' getAttr ($second + ".state")' ;

 // Print a message to the Script Editor.
 print ("\nInside associate(), $sState = " + $sState + "\n");

 Th e rand() command generates a random number between limits specifi ed by its
arguments. If only one argument is provided, as we ’ ve done above, the other limit
is zero by default. Th e result of the above statement is therefore a decimal number
between zero and one, which is the range of probabilities for an event to occur. Below
you ’ ll compare $rnd to the probability for G-ATP binding, $pATP_ForProb . Since we ’ ve
set the probability for this reaction to one, the following condition will be met and
the step below it will proceed.

 / * * * * * TEST THE BINDING PROBABILITY * * * * * /
 if ($rnd < $pATP_ForProb & & $sState = = 3) {

 // G-actin will bind to the Plus end of the filament,
 therefore
 $bound = 1;

 print $gName;
 print "will associate with the filament\n ";

 // Adjust the plus- and minus-end locators for the next
 reaction.
 $plusTy = ' getAttr ($pName + ".ty")' ;
 $minusTy = ' getAttr ($mName + ".ty")' ;

 Shift the plus and minus end locators by half the subunit spacing
($subTrans � 2.8 nm) to account for the addition of a new subunit.

 setAttr ($pName + ".ty") ($plusTy + $subTrans/2);
 setAttr ($mName + ".ty") ($minusTy - $subTrans/2);
 $plusRy = ' getAttr ($pName + ".ry")' ;
 setAttr ($pName + ".ry") ($plusRy + $subRot);

 Here, you ’ ll put the G-actin at the world origin to zero its translate and rotate
attributes. Next, you ’ ll put the G-actin into a new group node that you ’ ll connect to
the F-actin translate and rotate attributes. Finally, move the G-actin to its proper
position and rotation relative to the fi lament origin, ungroup the G-actin and delete
the group. Th e net result of these steps is that the G-actin translate and rotate
attributes will represent the subunit ’ s position and orientation relative to its parent
fi lament ’ s transform node. Th e translate and rotate values are far simpler to inter-
pret when treated this way when compared to the equivalent values in world space.

427CHAPTER 15: SELF-ASSEMBLY

 Figure 15.13 describes the parenting and shifting of nodes to accommodate the new sub-
unit that follows below.

 / * * * * * PUT A G-ACTIN INTO THE FILAMENT * * * * * /

 // Locate the G-actin model at the world origin.
 setAttr ($gName + ".translate") 0� 0� 0�;
 setAttr ($gName + ".rotate") 0� 0� 0�;

 // Create a new empty (-em) group to hold the G-actin.
 group -n group1 -em;
 // Parent the newly bound G-actin to group1.
 parent $gName group1;

 // Connect the new group 's transform node to the F-actin
 transform.
 connectAttr -force ($fName + ".translate") group1.
 translate;
 connectAttr -f ($fName + ".rotate") group1.rotate;

 / *
 Rotate and move the G-actin relative to its parent, group1,
using the plus-end locator rotate and translate values.
 * /
 rotate -r -os 0� $plusRy 0� $gName;
 move -r -os -wd 0� $plusTy 0� $gName;

 / *
 Parent G-actin to gfGroup so that it moves with the other
subunits when the next G-actin monomer is added on.
 * /
 parent $gName $gfGroup;

Step:

Plus (barbed) end

Minus (pointed) end

1 2 3 4

G_#

F_0

gf
Gr

ou
p

subTrans1
2subTrans1

2

subTrans1
2 subTrans1

2subTrans1
2

subTrans1
2 subTrans

subTrans = 2.8 nm

 FIGURE 15.13

 The plus end binding of a monomer
into the Maya fi lament model is
executed as a series of steps within
the association() procedure.

Step 1: Move the plus- and minus-
end locators relative to the fi lament
(F_0) by 1/2 the subunit spacing
(1/2 subTrans).
Step 2: Parent the G-actin model
(G_#) to the gfGroup which is a child
of F_0. Lengthen F_0 by 1/2
subTrans.

Step 3: Move gfGroup toward
the minus end to center gfGroup
vertically in F_0.

Step 4: Move F_0 in world space by
subTrans toward its plus-end. In the
end the fi lament minus-end winds
up in the same spot it began, the
fi lament is longer by one subunit,
and the locators indicate the new
binding locations.

428 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 / *
 Center the gfGroup 's pivot point, now that you 've added
another subunit to it.
 * /
 xform -cp $gfGroup;

 // Delete group1 since it 's no longer needed.
 delete group1;

 // Shift gfGroup by half a subunit height to center it
 within F-actin.
 move -r -os -wd 0� (-$subTrans/2) 0� $gfGroup;

 // Move the filament by half a subunit to reflect its
 increase in length.

 move -r -os -wd 0� ($subTrans/2) 0� $fName;

 // Update the F-actin 's .subunits and .heightRatio attributes.
 string $tmpStr = $fName + ".subunits";
 int $tmp = ' getAttr $tmpStr ' ;
 setAttr $tmpStr ($tmp + 1);
 setAttr ($fName + ".heightRatio") (((float) 6.0� + $subTrans

 * ($tmp)) /$Rf);

 // Update the G-actin 's .state attribute.
 setAttr ($gName + ".state") 1;

 To visualize the fl ux of a subunit through the fi lament, you can assign a unique
shader to one subunit per treadmilling cycle. We ’ ll call this subunit the “ tracer ” and
connect it to a blinking shader called tracer_shader. $tracer is a global variable that
stores that name of the G-actin tracer model. tracer_shader exists prebuilt in the
 treadmilling.ma scene fi le. Once a subunit becomes the tracer, it remains so until it
dissociates from the fi lament, at which point the very next subunit to associate at the
plus end become the new tracer. Th e fi rst tracer will be the fi rst monomer to join the
fi lament once the simulation begins.

 /* If no tracer object exists make this subunit the tracer
and assign it the tracer_shader. */
 if ($tracer = = " ") {

 $tracer = $gName;
 sets -e -forceElement tracer_shaderSG $gName;

 }
 } else {

 print $gName;
 print "will not associate with the filament\n ";

 }

 // Send a return value back to the expression that called this
 procedure.
 return $bound;

 } // End procedure.

 If you decide to vary the association binding probability, the print statement above
reports failed binding attempts in the Script Editor History panel. Save this proce-
dure in text fi le in your Maya Scripts directory under the following name:

 associate.mel

429CHAPTER 15: SELF-ASSEMBLY

 The faderShader() procedure
 After a subunit dissociates from the fi lament it transitions from the G-ADP state to
the G-ATP state and joins the group of diff usion monomers near the fi lament plus
end (Figure 15.14). Th e purpose of this procedure is to ease these transitions visually,
which is in keeping with our interpretive visualization goals of this project. You can
set the number of transition steps via the $fadeSteps variable in the reset expres-
sion. Setting its value to 1 causes a dissociated G-actin to join the plus end group one
frame after it dissociates, without fading out and back in.

 / * Description:
 This procedure fades out newly dissociated monomers, moves them to the
plus end of the filament, then fades them back in.
 * /

 global proc faderShader(string $gName, int $state) {

 / * * * * * DECLARE THE VARIABLES * * * * * /

 global float $Rc;
 global string $fName, $pName;
 global int $fadeSteps;

 / *
 $transp The transparency attribute value for the

faderShader.
 $newTrans The new position of G-actin after being

transported to plus-end.
 * /
 vector $transp, $newTrans, $pTrans;

F-actin

Minus end

Plus end

2. The monomer is then
moved to within the
concentration volume at
the filament plus end

 and joins the pool of
G•ATP-actin, ready to
associtate with the
filament.

1. Upon dissociation from the
filament, G•ADP-actin

 begins diffusing. It fades
 (gains transparency) a
 specified amount within
 each time step until it is

completely transparent.

Concentration
volume

 FIGURE 15.14

 The transition of a monomer from
newly dissociated ADP-actin
subunit to ATP-actin ready to bind
the plus-end of the fi lament is
governed by the faderShader()
procedure. The purpose is to
smooth the transition visually.

430 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 / *
 $increment The incremental increase or decrease in

transparency.
 * /
 float $increment;

 / *
 $shaderName The name of the faderShader for the current

G-actin.
 * /
 string $shaderName;

 Each faderShader will be unique to the monomer for which it was created. Th is makes
it possible to fade multiple monomers at once, each at a diff erent stage in its transi-
tion to the plus end. Th e shader name will therefore include the name of its mono-
mer. When the monomer has faded back in and joined the other diff using plus end
monomers, it will be assigned the default ATP shader, at which point its custom fad-
erShader can be deleted from the scene.

 / * * * * * INITIALIZE THE VARIABLES * * * * * /

 $increment = 1.0� / $fadeSteps;
 $shaderName = "faderShader" + $gName;

 / * * * * * TEST THE MONOMER 'S STATE * * * * * /

 if ($state < -1) { // Fade out.
 $transp = ' getAttr ($shaderName + " .transparency")' ;
 $transp = $transp + < < $increment, $increment, $increment>>;
 setAttr ($shaderName + ".transparency") -type double3
 ($transp.x) ($transp.y) ($transp.z);
 setAttr ($gName + ".state") ($state + 1);

 }

 Once the G-actin ’ s state attribute has incremented to –1, it ’ s time to move it to a new
location near the fi lament plus end. Rather than picking a location anywhere within
the concentration bounding volume—which could likely land it within the reaction
volume—let ’ s introduce it to the plus end region as if it had wandered in from afar.
To do this, you can take advantage of Maya ’ s sphrand command. sphrand generates
random numbers (single numbers and vectors) that lie within a spherical volume of
radius R, where R is the command ’ s argument.

 else if ($state = = -1) { // Move to the plus-end.

 // Query the location of the plus-end locator.
 $pTrans = ' getAttr ($pName + " .worldPosition")' ;
 // Generate a random vector within the concentration
 sphere.
 $newTrans = sphrand($Rc);
 // Move the vector 's origin to the plus-end.
 $newTrans = $newTrans +$pTrans;

 // Move the monomer and set its .state attribute.
 setAttr ($gName + ".translate") -type double3 ($newTrans.x)

 ($newTrans.y) ($newTrans.z);
 setAttr ($gName + ".state") ($fadeSteps + 1);

 Free G-actin with a state
attribute value other than 0 is

either fading out (state � �1),
transferring to the fi lament plus
end (state �� �1), or fading in

(state � 0).

431CHAPTER 15: SELF-ASSEMBLY

 // Set the shader colour to match the ATP_shader.
 setAttr ($shaderName + ".color") 1 1 0�.8;

 }
 else if ($state > 1) { // Fade in.

 $transp = ' getAttr ($shaderName + " .transparency")' ;
 $transp = $transp - < < $increment, $increment, $increment>>;
 setAttr ($shaderName + ".transparency") -type double3
 ($transp.x) ($transp.y) ($transp.z);
 setAttr ($gName + ".state") ($state - 1);

 }

 Once the monomer has faded back in, assign it the default ATP shader and set its
state attribute to 0. Th e latter step makes this G-actin once again a candidate for
association reactions.

 // Swap shaders and set G-actin 's state to 0�.
 else if ($state = = 1) {

 // Replace faderShader with ATP_shader and set .state
 attribute to 0�.
 sets -e -forceElement ATP_shaderSG $gName;
 setAttr ($gName + " .state") 0�;
 delete $shaderName; // No longer needed.

 }
 } // End procedure.

 Save this procedure in text fi le in your Maya Scripts directory under the following name:

 faderShader.mel

 The diffuse() procedure
 Th is procedure is called for every G-actin monomer in the simulation and returns
a translation and a rotation vector. It employs the method described starting on
page 399 to query random diff usion values via Maya ’ s gauss command. Th e argu-
ments passed to gauss were calculated using � t and the diff usion coeffi cients,
$stdDevTrans and $stdDevRot, which were initialized in the reset expression. Unlike
the associate() procedure this one returns an array of vectors: $trans and $rot.

 / * Description:
 This procedure returns translation and rotation diffusion vectors
via Maya 's gauss command.
 * /

 global proc vector[] diffuse() {

 / * * * * * DECLARE THE VARIABLES * * * * * /

 global float $stdDevTrans, $stdDevRot;

 / *
 $trans The translational diffusion vector.

 $rot The rotational diffusion vector.

 $both[] An array used to return $trans and $rot to the

selfAssembly expression.

432 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 * /
 vector $trans, $rot, $both[];

 / *

 $x Stores the x-component of the $trans and $rot

vectors.

 $y Same as above for the y-component.

 $z Same as above for the z-component.

 * /
 float $x, $y, $z;

 / * * * * * TRANSLATIONAL DIFFUSION * * * * * /

 $x = ' gauss $stdDevTrans ' ;
 $y = ' gauss $stdDevTrans ' ;
 $z = ' gauss $stdDevTrans ' ;
 $trans = < < $x, $y, $z>>;

 / * * * * * ROTATIONAL DIFFUSION * * * * * /

 $x = ' gauss $stdDevRot ' ;
 $y = ' gauss $stdDevRot ' ;
 $z = ' gauss $stdDevRot ' ;
 $rot = < < $x, $y, $z>>;

 // Store both vectors $both, then return $both to the
 selfAssembly expression.
 $both = {$trans, $rot};
 return $both;

 } // End diffuse.

 Save this procedure in text fi le in your Maya Scripts directory under the following name:

 diffuse.mel

 The collide() procedure
 Th is procedure returns a single vector $collide which represents the sum total steps
taken by the current G-actin in response to collisions with neighboring monomers
and the fi lament. As we stated earlier, the purpose here is not to emulate the true
dynamics of intermolecular collisions but rather to embody their net eff ects.

 Moreover, while there exist more sophisticated collision detection and avoidance algo-
rithms, the approach used here is intuitive to grasp, straightforward to implement, and
runs quickly for the present model. Nonetheless it has shortcomings which will become
apparent when you study the simulation carefully. In particular, it assesses collisions
for each monomer only once per time step. As a result, the net response of a monomer
to its current collisions can at times cause it to intersect another model with which it
was not previously in contact. If you ’ re interested, we encourage you to explore addi-
tional collision avoidance strategies and compare their merits and limitations.

 / * Description:
 This procedure detects collisions and moves monomers accordingly.
 * /

 global proc vector collide(string $gName) {

433CHAPTER 15: SELF-ASSEMBLY

 / * * * * * DECLARE THE VARIABLES * * * * * /

 global string $gNames[];
 global float $Rg;
 string $name;

 / *
 $otherTrans The position of a G-actin being considered for

collision with the current G-actin.
 $separation The vector separating two G-actins.

 $collide The vector used to avoid a collision between two
G-actins.

 * /
 vector $otherTrans, $separation, $collide, $gTrans;

 / *
 $dist The scalar magnitude of $separation.
 $contactRange The range within which molecules are considered

in contact.
 $collideScale Used to scale the unit collision vector.
 * /
 float $dist, $contactRange, $collideScale;

 / * * * * * INITIALIZE THE VARIABLES * * * * * /

 $gTrans = ' getAttr ($gName + " .translate")' ;
 $collide = < < 0�, 0�, 0� >>;
 $dist = 0�;
 $contactRange = $Rg *2.0�;
 $collideScale = $Rg/2.0�;

 / * * * * * CHECK FOR COLLISIONS * * * * * /

 // Check the proximity of $gName to every other G-actin.
 for ($name in $gNames) {

 if ($name ! = $gName) { // Test all but the current G-actin.

 // Get the other cell 's translate value.
 $otherTrans = ' getAttr ($name + " .translate")' ;

 $separation = $gTrans — $otherTrans;
 $dist = mag($separation);

 // Determine if $dist is less than the $contactRange
 value.
 if ($dist < $contactRange) { // $gName is in contact
 with $name.

 // The unit separation vector.
 vector $tmp = unit($separation) * $collideScale;

 // The return value will be the sum total of
 collision steps.
 $collide = $collide + $tmp;

434 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 // Move $name away from $gName.
 $tmp = $otherTrans— <<($tmp.x), ($tmp.y), ($tmp.z)>>;
 setAttr ($name + ".translate") ($tmp.x) ($tmp.y)
 ($tmp.z);

 }
 }

 } // End for ($name in $gNames).

 To detect collisions with the fi lament model, you ’ ll use the closestPointOnSurface
node we presented on page 400. Th is node was made and connected to the F-actin
NURBS cylinder model in the treadmilling.ma scene fi le on the CD-ROM.

 // Check for a collision with the filament.
 $cposName = "F_0�_cpos";

 setAttr ($cposName + " .inPosition") -type double3 ($gTrans.x)
 $gTrans.y) ($gTrans.z);
 $otherTrans = ' getAttr ($cposName + " .position")' ;

 $separation = $gTrans — $otherTrans;
 $dist = mag($separation);

 if ($dist < $Rg) { // $gName is in contact with the filament.

 vector $tmp = unit($separation) * $collideScale * 2;
 $tmp = < < ($tmp.x), ($tmp.y), ($tmp.z) >> ;

 // Add $tmp to the total collision vector.
 $collide = $collide + $tmp;

 }
 // Return the collision avoidance vector to the selfAssembly
 expression.
 return $collide.

 } // End procedure.

 Save this procedure in a text fi le in your Maya Scripts directory under the following
name:

 collide.mel

 The dissociate() procedure
 Th is is the fi fth and fi nal procedure for the project. You can think of it essentially as
the reverse of associate(), with the exception that two reactions are under consid-
eration, not just one. Th e procedure arguments are the name and state of the subunit
being considered for reaction. You ’ ll see some print statements as well. Th ese provide
helpful information about the outcome of the probability test.

 / * Description:
 This procedure dissociates G-actin molecules from F-actin
filaments.
 * /

 global proc dissociate(string $subunit, int $state) {

 closestPointOnSurface (cpos
for short) is an example of an

underworld node , a type of
DG node associated with the

parameter space of NURBS
objects. Underworld nodes

that are used to query points
on curves and surfaces (such

as cpos) cannot be grouped or
parented, and therefore must be
named uniquely. Other examples

of underworld nodes include:

pointOnCurve

pointOnCurveInfo

pointOnSurface

pointOnSurfaceInfo

 You ' ll get experience with a few
of these later in this book.

435CHAPTER 15: SELF-ASSEMBLY

 / * * * * * DECLARE THE VARIABLES * * * * * /

 global float $subTrans, $gRot, $Rf;
 global float $mADPpi_RevProb, $mADP_RevProb;
 global string $fName, $tracer, $gfGroup, $pName, $mName;
 global int $totalOff, $fadeSteps;
 float $rnd, $plusTy, $minusTy, $plusRy, $minusRy;

 / *
 $shaderGroup Used to create the faderShader group node.
 * /
 string $shaderGroup[], $gName, $gfGroup, $shaderName[];

 / *
 $react Set to 1 if a reaction occurs, 0� if not.
 * /
 int $react;

 / * * * * * TEST THE REACTION PROBABILITY * * * * * /

 $rnd = ' rand 1.0� ' ;
 print ("\nInside dissociate(), STATE: " + $state + " \n");

 if ($state = = 3) { // An ADP subunit.
 print ("$mADP_RevProb = " + $mADP_RevProb + ", $rnd =
" + $rnd + "\n");

 if ($rnd < $mADP_RevProb) {
 $react = 1;
 print $subunit;
 print (", an ADP subunit will dissociate from the
 filament.\n ");

 }
 }
 else { // An ADP-Pi subunit.

 print ("$mADPpi_RevProb = " + $mADPpi_RevProb + ", $rnd =
" + $rnd + "\n");

 if ($rnd < $mADPpi_RevProb) {
 $react = 1;
 print $subunit;
 print (", an ADP •Pi subunit will dissociate from the
 Minus-end of the filament.\n ");

 }
 }

 Th e $react variable here serves a similar purpose to $bound in the associate() proce-
dure; it stores the outcome of the reaction probability test: 1 if successful, 0 if not. In
the latter case the following code will be skipped.

 / * * * * * UPDATE THE MODELS * * * * * /

 if ($react = = 1) { // A reaction occurred at the Minus-end.

 Th e following steps are similar to but achieve the opposite results to those outlined in
 Figure 15.13 . Th e fi rst statement below un-parents the subunit from F-actin and moves
it to a random location just below the fi lament minus end. After that, you ’ ll reset the
various F-actin model elements and update its custom attributes.

436 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 // Move G-actin and parent it to world space.
 move -r -os ($subTrans/2 *rand(-1,1)) (-$subTrans * 1.5)
 ($subTrans/2 *rand(-1,1)) $subunit;

 parent -world $subunit;

 // Rotate the Minus end locator into position for the next
 bind.
 $minusRy = ' getAttr ($mName + " .ry")' ;
 setAttr ($mName + ".ry") ($minusRy + $gRot);

 / * Shift gfGroup by half a monomer height within F to
account for the subunit loss. */
 move -r -os -wd 0� (-$subTrans/2) 0� $gfGroup;
 // Move the filament by half a subunit spacing.
 move -r -os -wd 0� ($subTrans/2) 0� $fName;

 // Query the local Plus and Minus end coordinates.
 $plusTy = ' getAttr ($pName + ".ty")' ;
 $minusTy = ' getAttr ($mName + ".ty")' ;

 // Reposition the Plus and Minus ends.
 setAttr ($pName + ".ty") ($plusTy - $subTrans/2);
 setAttr ($mName + ".ty") ($minusTy + $subTrans/2);

 // Update the F-actin 's .subunits and .heightRatio attributes.
 string $tmpStr = $fName + ".subunits";
 int $tmp = ' getAttr $tmpStr ' ;
 setAttr $tmpStr ($tmp—1);
 setAttr ($fName + ".heightRatio") (((float) 6.0� +
 $subTrans * ($tmp-2))/$Rf);

 Next, you ’ ll set the state attribute equal to $fadeSteps � � 1. Th is marks the mono-
mer for consideration by the faderShader() procedure. Next, you ’ ll create the fad-
erShader and assign it to the monomer. faderShader is made by duplicating of
ADP_shaderSG. When the –ic (short for inputConnections) fl ag is used, the upstream
shader node is duplicated as well. Duplicating an existing shader rather than creating
one from scratch saves you the hassle of setting attribute values for the new shader—
the attributes are duplicated along with the node.

 // Update the G-actin 's .state attribute.
 setAttr ($subunit + " .state") (-$fadeSteps);

 // Create a fader_shader.
 $shaderGroup = ' duplicate -un -ic -name

 ("faderShader" + $subunit+ " SG") ADP_shaderSG ' ;

 Naming the duplicated shading group node does not give a corresponding unique
name to the shader node (Maya simply adds an integer to the end of the original
shader name). Let ’ s name the new shader distinctly as faderShader—so you can pick
it out easily in the Hypergraph. To rename the shader you must fi rst get its current
name. Do this using the listConnections command as follows:

 // Rename the upstream shader node.
 $shaderName = listConnections ($shaderGroup[0�] +
".surfaceShader");

 rename $shaderName[0�] ("faderShader" + $subunit);

437CHAPTER 15: SELF-ASSEMBLY

 // Assign the shader to the newly dissociated monomer.
 sets -e -forceElement $shaderGroup[0�] $subunit;

 Finally, check if this subunit is the fl ux tracer. If it is, clear the $tracer variable so
that a new tracer can be assigned when the next plus end association reaction occurs.
 Like $totalOn, $totalOff counts reactions so you can check your treadmilling rate at
the end of a simulation run.

 // If this subunit was the firstBind subunit, reset $tracer.
 if ($tracer = = $subunit) $tracer = " " ;

 // Increment the "off" reaction counter.
 $totalOff + + ;

 } // End if ($react = = 1).

 else {
 print $subunit;
 print "will not dissociate.\n ";

 }

 } // End procedure.

 Save this procedure in text fi le in your Maya Scripts directory under the following name:

 dissociate.mel

 Th at ’ s it! Your code is complete. Make sure you saved each procedure in your
Maya ’ s Scripts directory with appropriate names. Now it ’ s time to get your model
running!

 Results: Running your simulation

 Prepare your scene fi le
 1. Start Maya.

 2. Choose Window → Settings/Preferences → Preferences.

 3. Choose Categories → Settings and make the following settings:
 Under Working Units → Linear: centimeter .

 → Angular: degrees.

 → Time: NTSC .

 4. Choose Categories → Timeline and make the following settings:
 Under Timeline → Playback Start: 1 .

 → Playback End: 900 .

 → Time, select NTSC.

438 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 Under Playback → Looping: once.

 → Playback Speed: Play every frame .

 → Playback by 1 .

 5. Press the Save button to set your preferences.

 Open the treadmilling.ma scene fi le included on the book ’ s CD-ROM:

 1. Copy the scene fi le from the CD-ROM to your Maya Scenes directory

 15_Self_Assembly/scenes/treadmilling.ma

 2. In Maya, choose File → Open Scene

 3. Browse to your Maya Scenes directory and choose treadmilling.ma .

 Take a moment to inspect the scene. Explore the hierarchy relationships in the
Outliner and check out the shaders in the Hypergraph. Notice that we ’ ve created a
camera for you called camera1. Its attributes are locked—to prevent accidental move-
ment—and its translateY attribute is connected to the F-actin model ’ s translateY
attribute. Next, set up a panel layout that uses both camera1 and the default persp
camera (Figure 15.15). Use persp to move around your scene and camera1 to capture a
consisted view of the model ’ s behavior each time you run the simulation.

 4. Choose Window → View Arrangement → Two Panes Side by Side

 5. In the left-hand view panel choose Panels → Perspective → persp

 6. In the right-hand view panel choose Panels → Perspective → camera1

 Your scene is now ready for the custom expressions and procedures.

 FIGURE 15.15

 A two-panel view of the scene.
The persp camera on the left is

used to move around within your
scene. camera1 on the right travels
vertically with the actin fi lament as

it treadmills.

439CHAPTER 15: SELF-ASSEMBLY

 Load the script fi les

 Create the expressions
 First you ’ ll create the reset and selfAssembly expressions. If you didn ’ t build the
expression scripts earlier in this chapter, copy them from the CD-ROM to your Maya
Scripts directory:

15_Self_Assembly/MEL/ reset.txt

 /selfAssembly.txt

 1. Open reset.txt (either the fi le you created or the one on the CD-ROM) in the
text editor of your choice.

 2. Ensure that the text editor is set to not use typographer ’ s quotation marks.

 3. Select and copy the entire script to the clipboard.

 4. In Maya, enter ExpressionEditor in the Command Line to launch the
Expression Editor, or select it from the menu Windows → Animation Editors
→ Expression Editor.

 5. Press the New Expression button.

 6. LMB + click in the Expression text fi eld.

 7. Press Ctrl + V to paste your expression into the text fi eld.

 8. Press the Create button at the bottom of the Expression Editor.

 9. In the Expression Name fi eld, replace the default name with reset and press
Enter.

 10. Repeat steps 5 through 9 for the selfAssembly expression, but name it
selfAssembly in the Expression Name fi eld.

 If Maya generates one or more errors when you press the Create button, you will need
to debug the expression: open the Script Editor to view the specifi c error messages
and to read the line number(s) that generated the error(s). If your text editor can
display line numbers, use this feature to cross-reference the error messages to the
off ending lines in your expression. If you are unable to resolve the errors, you can
compare your script to the appropriate fi le (reset.txt or selfAssembly.txt) included on
the CD-ROM.

 11. Press Ctrl + S to save your scene with the expressions in it.

 Prepare the procedures
 In the previous chapter, you loaded the cpk.mel procedure by “ sourcing ” it through
the Script Editor. In this project you ’ ll let Maya search for and load the procedures
automatically when they ’ re called by the selfAssembly expression. In order for this
method to work, it ’ s essential that your fi ve procedures are each contained within a
separate fi le and saved in your default Maya Scripts directory. For example, the asso-
ciate() procedure must reside within a fi le named associate.mel. You can query

440 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

the name of your Maya Scripts directory by entering the following statement in the
Script Editor:

 internalVar -userScriptDir;

 You may recall from Chapter 12 that Maya only creates the contents list (fi le names) of
its search path at startup. If you add fi les to the Scripts directory when Maya is run-
ning, you will have to refresh the search path contents, using the rehash command,
in order to have access to those fi les and their contents.

 Refresh the search path contents. In the Script Editor, enter:

 rehash;

 Running and debugging your simulation
 When you ’ re ready to run the simulation, press the Play button in Maya ’ s timeline
controls.

 Errors
 Unless you ’ ve already tested your procedures for syntax errors and corrected them,
chances are you ’ ll get error messages when you go to run the simulation for the
fi rst time. If this happens, we recommend sourcing one procedure script at a time
through the Script Editor and fi xing the bugs as they ’ re fl agged by Maya. After you ’ ve
debugged syntax errors you may discover that your expressions and procedures con-
tain runtime errors—errors that appear only upon execution—that didn ’ t appear
when you loaded or sourced the scripts. You can tackle these by reading the error
description in the Script Editor and then tracking down the sources one at a time.
Alternately you can compare your scripts line-by-line with those we ’ ve included on
the CD-ROM and search for discrepancies:

 15_Self_Assembly/MEL/ reset.txt

 /selfAssembly.txt

 / associate().mel

 /collide().mel

 / diffuse().mel

 / dissociate().mel

 / faderShader().mel

 One common runtime error occurs when Maya is unable to locate a procedure that
has been called. If you get an error such as

 // Error: line 62: Cannot find procedure "associate". //

 It means that Maya is unable to locate your associate().mel fi le —or that you
misnamed the procedure either in the MEL script fi le itself or in the procedure call

441CHAPTER 15: SELF-ASSEMBLY

within selfAssembly . It may also be that you added the fi le containing the procedure
to your Scripts directory while Maya was already running. In this case, executing the
rehash command refreshes Maya ’ s search path contents.

 When your scripts are error free, you ’ ll be able to play and stop the simulation
as you like. Each time you rewind to frame 1, your model should reset to its original
state.

 Summary
 Figure 15.16 shows four frames from a simulation we ran using the current model. After
each run, we entered the following code in the Script Editor to see how many on and
off reactions occurred:

 print ("$totalOn: " + $totalOn + "\n$totalOff: " + $totalOff + "\n");

 Th e average results were:

 $totalOn: 10�7

 $totalOff: 10�6

 which are well within range of our target number:

Number of reactions � P� � Frames � (1/9) (900) � 100

 We encourage you to vary the model ’ s parameters and observe their eff ects on tread-
milling behavior. Th ere are many ways you could take the model further, includ-
ing the incorporation of plus end dissociation and minus end association. Figure
15.17 shows a still from one of our multi-fi lament simulations in which both the
G- and F-actin diff use through space.

 Th e regulated self-assembly of actin molecules you ’ ve emulated in this project is central
to cell locomotion—the growth and shrinkage of actin fi laments pushing and retract-
ing the cell membrane extensions called pseudopodia. In the next chapter you ’ ll take a
natural next step and explore some of the principles of cell locomotion via Maya.

 FIGURE 15.16

 Four frames from a simulation run
(approxmiately 10 frames apart).

442 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 References
 1. Alberts B , Johnson A , Lewis J , Raff M , Roberts K , Walter P : Molecular Biology of the

Cell , 5th edn . Garland Science , Boca Raton, FL , 2007 .

 2. Otterbein LR , Graceff a P , Dominguez R : Th e crystal structure of uncomplexed actin
in the ADP state . Science 293 : 708 – 711 , 2001 .

 3. Lorenz M , Popp D , Holmes KC : Refi nement of the F-actin model against X-ray fi ber
diff raction data by the use of a directed mutation algorithm . Journal of Molecular
Biology 234 : 826 – 836 , 1993 .

 4. Plimpton S, Slepoy A: ChemCell: A particle-based model of protein chem-
istry and diff usion in microbial cells, Sandia National Laboratories Report
Number SAND2003-4509 (technical report online): infoserve.sandia.gov/sand_
doc/2003/034509.pdf, accessed August 3, 2007.

 5. Pollard TD : Rate constants for the reactions of ATP- and ADP-actin with the ends of
actin fi laments . Journal of Cell Biology 103 : 2747 – 2754 , 1986 .

 6. Romero S , Didry D , Larquet E , Boisset N , Pantaloni D , Carlier MF : How ATP hydroly-
sis controls fi lament assembly from profi lin–actin: Implication for formin proces-
sivity . Journal of Biological Chemistry 282 : 8435 – 8445 , 2007 .

 FIGURE 15.17

 Still from one of our multi-fi lament
actin assembly simulations. The
fi laments diffuse along with the
G-actin molecules. Free G-actin

and recently bound subunits are
red. This image was rendered using

Maya ' s 3D motion blur to give the
impression of movement in a still

image.

16 Modeling a mobile cell

444 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

10 μm

1 2 3

4 5 6
 FIGURE 16.01

 Through innovations in experimental
techniques and imaging technology,

in vitro and in vivo cell studies will
increasingly enter the realm of 3D.
Shown here is a migrating cancer
cell captured on video within a 3D

scaffold of collagen fi bers. 1

Courtesy of Katarina Wolf and Peter
Friedl, University of Würzburg,

Germany.

Introduction
 In previous chapters we have focused on the atomic, nano, molecular, macromolecu-
lar, and multimer levels of biological organization, using both hemoglobin and actin
as working examples. Among other roles in cell structure and function, dynamic cycles
of actin polymerization and depolymerization, and of actin fi lament bending, are now
widely accepted as the engine that drives cell locomotion. Th is self-propelled trans-
location of a whole cell is implicated in both normal physiological and disease proc-
esses. Notable examples include fertilization, embryonic development, wound healing,
and the spread of cancer cells (Figure 16.01) . Th ere are several primary mechanisms that
drive cell locomotion: spinning fl agella, which propel human sperm cells (a 3D compu-
ter model of a sperm cell is shown in Figure 16.02) and many species of bacteria; beating
cilia, also responsible for propulsion in many types of single-cell organism; and crawl-
ing, which is the mechanism commonly employed by mobile cells in animals.

 In this chapter we will introduce you to a method we created for the purpose of pro-
cedurally animating the crawling movement of a cell. You will build the cell behav-
ior simulator using a very powerful Maya construct: character rigging, by which 3D
CGI animation models are induced to change their spatial confi guration over time. In
conventional character rigging (think of the animated behavior of your favorite 3D
CGI character) joint deformers are bound to the deformable surface mesh before ani-
mation takes place; the relationship between the deformers and the surface doesn ’ t
change once the animation begins. In contrast, our rig is created during the anima-
tion—on the fl y—not before it. Th e deformers are continually destroyed and rec-
reated by the MEL script, in new positions relative to the mesh in order to deform
the cell in any required direction; the cell deformations are not limited to the initial
placement of the deformers.

445CHAPTER 16: MODELING A MOBILE CELL

 Your model will consist of a single cell crawling over a surface, in a combination of ran-
dom and directed movement. Th e surface might be a plane of tissue in a developing
embryo or part of a blood vessel into which cancer cells will escape and invade distant
organs. Th e plane might be the glass slide in a microscope through which a cell biolo-
gist is tracking and measuring migration paths. All are interesting and important cases
of cell motion. In the next chapter we will look at what it takes to begin modeling the
even more complex world of the 3D tissue environments in which cells move when they
are not zeroing in on surface motion. Presently, your cell is free to move about the plane
without needing to work around collisions with other cells or objects. Th is is the simplest
scenario that a cell could face and makes an excellent point from which to begin simulat-
ing cell locomotion. In the subsequent chapters we will explore collision detection strate-
gies that allow us to locomote cells in response to, not in spite of, their environment.

 In this chapter you will fi rst create a scene fi le which includes the cell geometry. Th en
you will build a Maya expression to animate the cell during playback of the scene.
If you wish to dive right into the model, you can skip ahead to the Model Defi nition
on page 449. Th e next section provides background on the fascinating world of cell
locomotion and why it ’ s suited to computer modeling. By the end of this chapter you
will have created a prototype cell locomotion model. Along the way you ’ ll learn how
to rig and deform a character model, both with the Maya UI tools, and procedurally
using MEL commands. You can then apply these tools and techniques to your own
cell behavior modeling tasks.

 Problem overview

 Crawling in context
 In this section we are going to take a closer look at cell crawling, which is of central
importance in the cell biology of both health and disease. To see why, think of your
body as a society of about 100 trillion cells, all of which have descended from the fer-
tilized ovum at the beginning of your life. Like members of any cooperative society,
there is a complex division of labor by which those cells are organized to perform spe-
cifi c tasks: nerve cells transmit and process information, gut cells transport nutri-
ents from digested food to the blood stream, kidney cells fi lter waste products from
the circulation, and so on. Most of these cellular specialists are immobile: their lives

5 μm FIGURE 16.02

 A 3D computer model of a human
sperm cell.

446 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

are spent at or near to the spot where cell division splits them from their progeni-
tor cells. Th e developing embryo, from which those more sessile descendents fi nally
arise, attains its form as successive generations of progenitor cells divide and move,
by cell crawling, into the 3D confi gurations that become working brains, kidneys,
and the other familiar organs and tissues of our bodies. While many of the cell types
comprising the developed tissues have minimal inclination to move around, several
groups of highly mobile specialists are crucial to our health: wriggling sperm (Figure
16.02) seek unfertilized ova; red blood cells, passively adrift in the fl owing blood, carry
life-giving oxygen to the tissues and carry off poisonous carbon dioxide metabolic
waste; cells of the immune system crawl through the tissues, patrolling for invad-
ing viruses and bacteria; traction specialists called fi broblasts activate in wounds
and contract, helping pull the regenerating tissue shut. Crawling cells can, by disrup-
tions in their motility control, also become deadly threats as cancerous mutations
change otherwise sessile specialists into determined movers unable to cease an end-
less cycle of division and invasion: the growing tumor edging into healthy parts of
the body.

 Crawls and walks
 Th e project you ’ ll undertake in this chapter is to create an interesting initial model of
a cell crawling behavior. Th e science and the MEL you ’ ll explore in carrying out this
project will draw on a remarkable discovery: despite the impressive complexity of the
biochemistry behind cell crawling, and its seemingly endless web of chemical detail,
the resulting behavior the crawling of the cell has simple, beautiful mathematical prop-
erties. When biologists watch through microscopes and trace the pattern of crawling
cell movement as demarcated, say, by the position of the cell center or the cell surface,
the meanders traced out by cell crawling in two and three dimensions have the traits of
random walks!

 Th e details of the biochemistry behind this random walk behavior are intricate and not
yet fully worked out. If you fi nd the subject intriguing, this chapter ’ s References will
take you beyond the capsule survey we have room for here. And while questions remain,
the basics of the cell crawl mechanism are well understood (Figure 16.03) : actin fi laments
like the one you dealt with in the last chapter begin to grow just beneath the cell sur-
face, shifting a balance of chemical and mechanical forces so that the cell surface pro-
trudes, and may ultimately elongate in the direction of the fi lament-rich protrusion. In
the latter stage of the cycle, the cell shifts the bulk of its mass in the direction of that
protrusion and prepares to repeat the cycle. Repeated over and over as the cell thrusts
protrusions out in numerous directions and follows their advance, the cell slides along
in a stochastic meander.

 Th e motion of your model cell certainly will be simpler than observed in real cells. Cell
crawling often belongs to the very interesting class of persistent random walks 6–10,
which are probabilistic wanders in which the mover carries on rather longer in one
direction, once movement begins, than we would expect based on an acquaintance
with the Brownian motion random walks of chemical diff usion (Figure 16.04) . Th is chap-
ter ’ s project will not embrace all these mathematical subtleties, but will get you started
with a method you can easily refi ne and extend. In fact you ’ ll be doing some of this
in later chapters, when you let the cells escape from two into three dimensions. And
while acknowledging the role of actin and other proteins in the chemistry behind the
crawl, we ’ ll focus on the resulting behavior itself—the repeating cycles of protrusion,
traction, and advance.

447CHAPTER 16: MODELING A MOBILE CELL

 Your model will incorporate an additional element from chemistry that makes them
aware of their environment. Sensor molecules in the cellular wanderers let them
detect chemical concentration gradients. Detection can trigger changes in the prob-
ability characteristics of the cell crawling, causing their random walk to become

Distance (x)

Time (t)

t0

x0 x1

t1

t2

t3

t4

Cell nucleus
Cell membrane

Adhesions

Substrate

Pseudopod

Pseudopod

Stage 1: protrusion and adhesion

Stage 2: traction (translocation of cell body)

Stage 3: retraction of rear pseudopod

End of cycle

Wait time
before embarking
on next cycle

 FIGURE 16.03

 The stages of cell locomotion on a
fl at substrate.

Start

Finish
(a)

Start

Finish

(b)

 FIGURE 16.04

 Random motion can be
characterized as (a) Brownian and
(b) persistent.

448 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

biased in spatial orientation. Th e crawling cell can then navigate along these chemical
gradients.

 Navigation steps produced by chemically oriented cell crawling are thought to be
essential to the normal formation of tissues and organs. Th ey may also be keys to
understanding how a few cancer cells can mobilize into an eff ective invading force,
tracking outside their place of origin and mounting a deadly threat to the entire body.
Your model will include the cell ’ s navigation response to chemical signals.

 Fast and slow movers
 Diff erent body cell types adapt diff erent strategies for crawling locomotion based on
their makeup and that of their surrounding tissues. For example, fi broblasts (connec-
tive tissue cells) and some tumor cells abundantly express proteins of the integrin fam-
ily which enable the cells to make strong adhesions with the extracellular matrix (ECM),
the “ glue ” holding cells together in ordered patterns of healthy tissue. Th ese cells are
relatively large and slow moving (� 0.01 � m/s), and rely on constant reorganization of
the actin cytoskeleton for locomotion. Endothelial cells are another cell type that rely
on integrin-mediated locomotion to do their job during angiogenesis , the growth of new
capillaries. In contrast, lymphocytes and neutrophils, both white blood cell types, are
smaller and express much lower integrin levels. Th eir locomotion is characterized by
shorter-lived integrin-independent contacts with the ECM and the ability to adapt cell
shape to pre-formed cytoskeleton architecture rather than having to constantly reor-
ganize it. As a result, lymphocytes can move relatively quickly (� 0.1 � m/s) compared
with their larger, integrin-dependent cousins like fi broblasts.

 Protrusion nomenclature
 For both fast and slow movers, those membrane protrusions observed in the fi rst
stage of the crawl cycle are often called pseudopodia and adhere to the substrate via
adhesion molecules such as integrins. On a fl at substrate, cells tend to send out fl at
protrusions. Th ese are often called lamellopodia , in place of pseudopodia, in reference
to their fl attened shape. Furthermore, in the scientifi c literature on lymphocyte cell
migration, rearward membrane projections are sometimes called uropodia rather than
pseudopodia. In this book we ’ ll simply use of the words pseudopod and pseudopo-
dia to refer to motility-related projections of the cell surface involved in movement
behavior. In the next stage the cell body translocates toward the front-end adhesion:
that process termed traction .

 As the body moves, it leaves behind rearward protrusions, also called pseudopodia.
In the fi nal stage, de-adhesion and retraction , the rearward adhesions are released and
the rear pseudopodia retract to rejoin the cell body. All three motility processes—
 protrusion, traction , and retraction —involve the actin cytoskeleton. Th ere is arguably a
fourth stage of locomotion which involves no locomotion at all! Th is is when the cell
has no pseudopods extended yet.

 Navigation nomenclature
 We saw that cells move in response to chemical signals. When this movement is non-
directional, or random, the process is called chemokinesis . When the motion is direc-
tional, we call the process chemotaxis . Chemotaxis is the mechanism employed during

449CHAPTER 16: MODELING A MOBILE CELL

embryonic development as cells migrate to diff erent regions and become specialized
for specifi c tissues. Similarly, chemotaxis is believed to be largely responsible for the
migration of fi broblast cells into a wound environment in order to begin healing. As
well, cell-cell signaling among cancer cells creates a chemotactic environment for
metastasis. Your cell model in this chapter will undergo random motility on a homo-
geneous substrate, but with a chemotactic stimulus to provide a directional bias to its
movement.

Cells don ’ t need the stimulus of chemical gradients to set them in motion. Cells also
move in response to contact with a substrate, a process called haptotaxis . Haptotaxis
can be a random process (in which cells wander aimlessly), or a directed one, depend-
ing on the organization of the substrate. In the absence of external chemical stim-
uli, cells on a homogeneous substrate such as a smooth coverslip will tend to wander
aimlessly. Conversely, a non-homogeneous substrate—on which there is a directional
pattern to the surface-bound chemicals which they can detect—cells can be infl u-
enced to migrate in specifi c directions.

 Model defi nition

 The cell model
 Your goal is to make a model of a crawling cell that migrates on a fl at substrate via
random motility and under the infl uence of a chemotactic signal, or chemoattractant .
Th e cell is inclined to move from a lower to a higher concentration of chemoattract-
ants, or signaling molecule. To account for the probability eff ects involved in cell loco-
motion, you will build randomness into the speed and direction calculations for your
cell. Th erefore as your cell crawls up the chemoattractant gradient, it won ’ t necessar-
ily do so in a straight line.

 Like a living cell beginning its migration on a coverslip, your cell will start off as a
10 � m spheroid that has been fl attened around the edges. You could call it a lym-
phocyte, but it could just as easily be another type of motile cell that crawls using the
three-stage mechanism shown in Figure 16.03 . For simplicity, the cell will produce a sin-
gle pseudopod at the start of each locomotion cycle and retract a single one at end of
the cycle. We will introduce the technique shortly for setting up your cell to deform.
Th is will be the key Maya technique you ’ ll learn and apply in this chapter. Below is a
list of parameters you ’ ll build into the model:

 1. Leading pseudopod protrusion rate.

 2. Traction (cell center translocation) rate.

 3. Trailing pseudopod retraction rate.

 4. Wait time—the time spent sitting still between crawl cycles.

 From these four parameters, a fi fth will emerge:

 5. Linear migration speed of the whole cell.

 Without adhering to the substrate, a cell cannot generate the traction required to
move. We can represent cell-substrate adhesions in Maya by fi xing the location of dif-
ferent portions of the cell surface—by fi xing the joints—at appropriate times during

 A ligand is any molecule that
binds to another. In biochemistry
the term usually refers to a small
molecule that binds to a receptor
or other kind of protein. In cell
migration it is the binding of
membrane receptor molecules
to ECM ligands—small side-
chains of large ECM molecules
like collagen—that enable a cell
to generate a traction force by
contracting its cytoskeleton.

450 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

the crawl cycle. Finally, to make the cell center clearly visible as it moves about the
scene, you will couple a smaller sphere—the nucleus—to the cell body.

 Cell behavior
 Your cell will start its journey at the Maya world origin, decide on a direction and
incremental distance to move, and then execute a crawl cycle that encompasses the
diff erent stages shown in Figure 16.03 . A living, motile cell has no defi nite front and
back, or left and right. When it changes direction, it does so by sending out a pseudo-
pod in the new direction, not by turning its body around. It has the ability to extend
processes in any direction meaning that any location on the cell surface may become
the new cell “ front ” . Th is is an important characteristic of living cells and therefore
one we want to build into the model.

 Furthermore, to make the model fl exible, you ’ ll want the ability to easily adjust the
rates of the diff erent motility stages: protrusion; traction, and retraction. Th is will
allow you to tailor the model with experimental data on unique motility characteris-
tics for diff erent cell types and locomotion scenarios.

 For the determination of random motility, the calculation of direction, which is
denoted by the angle alpha (�), and the distance to be traveled, which we ’ ll call reach
(for the reach of a pseudopod) should vary randomly from crawl cycle to crawl cycle.
Th e specifi c numbers involved in this random variability are not important at this
stage; they can be tailored in later, more advanced stages of the model—if you wish
to take it further—in order to test diff erent hypotheses about cell locomotion.

 The chemotactic signal
 You ’ re including in the model a chemotactic infl uence, or chemoattractant gradient,
to bias the random motility of the cell. Th is can be characterized as an angle, theta
(�), to represent the gradient orientation (see Figure 16.05), and a magnitude, c, to rep-
resent its strength. Th ese two parameters will be used to bias the cell ’ s direction
by altering its motility angle, alpha.

 The substrate
 Using a fl at (horizontal) substrate allows you to limit the complexity of the model
to two dimensions in Maya: X and Z. Such a substrate can be modeled implicitly by
limiting all Y-translation values to zero throughout the locomotion simulation. If you
like, you can place a geometric plane object (NURBS or polygon) on the view plane
made by the XZ world axes to depict the substrate plane explicitly and receive cast
shadows from the cell when you render the scene. Furthermore, as with an in vitro
study of locomotion, you will need a point of reference on the substrate from which
all distance measurements will be made. Th e Maya world origin makes for a logical
reference point.

 The cellular scale
 When working with the actin model in the previous two chapters, you set 1 Maya unit
equivalent to 1 Å or 0.1 nm. In moving from the scale of individual molecules to that
of a whole cell, we make a 1,000-fold leap in scale; whereas one G-actin monomer is
approximately 7 nm across, a motile lymphocyte cell, for example, is about 10,000 nm

451CHAPTER 16: MODELING A MOBILE CELL

(or 10 � m) in diameter. For simplicity, let ’ s make 1 Maya unit represent 1 � m for this
project. As for time scale, we know that a eukaryotic fast mover like a lymphocyte
cell migrates at an average speed of 0.1 � m/s. What you call a Maya frame in terms
cell migration time will depend on the speed parameters you set for the cell. In other
words, once the model is functioning, you can work backwards to determine how
many seconds of cell time is represented by 1 frame on the Maya timeline.

Methods: Generating pseudopods
 A principle creative element of your project is the way your cell changes shape,
extruding and retracting pseudopodia, as it moves. Th is cycle of deformations and
shape dynamics gives your model enhanced realism as a simulation of real cell activ-
ity. It also sets the stage for more advanced applications, such as the MEL code that
links the mechanical properties of the cell and the locomotion forces to exact predic-
tions of protrusion size and shape.

 But how to coax such smooth biomorphic deformations and extrusions out of Maya
geometry models? In this chapter you will learn about and apply a powerful approach
to this problem based on the concept of the rig and its atomic constituents, bones and
joints.

 Animation using joints
 Underlying the movements of animated characters—the articulated CG actors you
see in fi lms and on television—are what animators refer to as character rigs. A rig is
a set of deformers and other tools that an animator uses to control everything from

 Z axis

X axis

Direction () of increasing
chemoattractant concentration

High concentration

Low concentration

 FIGURE 16.05

 Chemotaxis occurs in the
presence of a gradient of signaling
molecules, a chemoattractant
or chemorepellant, which is
represented here by the color ramp.
You will represent such a gradient
in Maya using an angle, theta , for
its orientation and a magnitude, c,
which will bias the random motility
angle, alpha , chosen by the cell.

452 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

facial expression to gait, and all gestures in between. A common type of character rig
involves a skin that is bound to a skeleton (animation curves provide the muscle). Th e
skin is the surface mesh to be animated. Th e skeleton is comprised of joints which are
connected by bones, much like a real animal skeleton. Th e joints do the actual deform-
ing, while the bones locate the joints relative to one another and constrain their move-
ment in space. When you bind a skin to a skeleton, you are putting the mesh control
vertices (CVs) under the infl uence of the nearby joints. Th e total infl uence on all CVs
is distributed among all the joints in the skeleton. When it comes time to animate,
the animator rotates the joints to position a limb, for example, and the skin deforms
accordingly. Figure 16.06 shows a simple skeleton rig applied to a polygon primitive cylin-
der in Maya; in your hands for a biomedical project, the mesh could just an easily be an
arm or a leg, or a chain of amino acids folding to form a protein!

 When you build a skeleton the traditional way, joints are related to one another through
the Scene Hierarchy via parent/child relationships with bones. Like bones in the human
body, a Maya bone is rigid and of a fi xed length. While these characteristics are essen-
tial to creating a typical character animation rig, they can be a hindrance when ani-
mating models that need to change size and shape continually, such as cells in dynamic
simulation models.

 Your cell will need to alter its rigging “ on the fl y ” to accommodate diff erent pseudo-
pods advancing in diff erent directions. When rigging the cell, therefore, you will take
advantage of the fact that joints can be used independently of bones, existing all at the
same level in the Scene Hierarchy; in other words, transforming one joint has no infl u-
ence on the other joints since none of them are related by parent/child relationships.

Polygonal
cylinder

Bone

Joint

Joint
rotation
handles

 FIGURE 16.06

 A skeleton rig applied to a polygonal
cylinder. The surface CVs are

under the infl uence of the joints.
As the joints rotate, the surface
deforms. Bones relate the joints

to one another throughout the
Scene Hierarchy and constrain the

locations of joints in space.

453CHAPTER 16: MODELING A MOBILE CELL

What this leaves you, the animator, with is a collection of joints that can be moved
independently about the scene, while exerting a distributed infl uence in their target
geometry—in this case a cell. Th is type of rig (shown in Figure 16.07) is well suited to
procedural control of a surface since the deformations are related directly to the trans-
lation values of the joints and are therefore predictable and easy to manage. You will
see just how useful this simple rig can be for a cell model shortly.

Methods: Algorithm design
 Figure 16.08 shows the Maya elements comprising your cell locomotion model.
Assuming these pieces are in place (which they will be shortly!) let ’ s design an algo-
rithm to make the cell crawl. Following our in silico workfl ow, let ’ s fi rst lay out the
algorithm in fl owchart form and then encode the fl owchart into a Maya expression.
You will fi nd it helpful to state clearly and succinctly the goal of this algorithm:

 Make a polygonal object deform, frame by frame during Maya playback, to
resemble a crawling cell. Th e direction and magnitude of the joint-induced
deformations are to be calculated using pseudorandom numbers to emu-
late the required probabilities, taking into account a chemotactic angle and
magnitude.

 Th e fl owchart in Figure 16.09 expands this statement into a series of steps describing
one complete crawl cycle. Figure 16.10 shows a diagrammatic translation of the fl owchart
and Table 16.01 lists the nomenclature you ’ ll use to name and refer to the various ele-
ments of your model. Now that we have a step-by-step plan to simulate and visualize
the crawl, let ’ s build your cell model!

 FIGURE 16.07

 When joints are used without
bones to deform a surface, they
can be moved about in space,
unconstrained by the hierarchical
relationships imposed by bones
in a typical skeleton rig. This
boneless skeleton is useful for
rigging amorphous surfaces like the
crawling cell model shown here.
The large picture is a still from a
Maya simulation of cell motility in
a 3D tissue environment. The inset
shows the cell model polygonal
mesh along with joints used to
animate it.

Image courtesy and copyright 2006
Donald Ly, University of Toronto.

454 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 Methods: A cell locomotion engine
 In this section you will set up your Maya scene fi le, make the cell geometry, and build
a Maya expression to animate it. If you wish to begin experimenting with the model
right away, you can open the complete Maya scene fi le for this chapter. It is located on
the accompanying CD-ROM:

 16_Mobile_Cell/scenes/cellCrawl.ma

 Please note that there are two versions of the scene: one tested for Windows and
one tested for Max OS X 10.4 (Tiger). If you ’ re using Maya for Mac OS X, refer to
the readMe.txt fi le, which is in the same directory as the Maya scene fi le, for a brief
description of the diff erences between the two scene fi le versions. If you ’ re building
the scene from scratch, you ’ ll fi nd a small modifi cation described at the end of this
section that will enable the scene fi le to be opened in Maya for Mac OS X.

 Prepare your scene fi le
 Start Maya and make the following settings. If Maya is already running, save your
work and start a new scene fi le.

 1. Choose Window → Settings/Preferences → Preferences.

 2. Choose Categories → Settings and make the following settings:
 Under Working Units → Linear: centimeter .
 → Angular: degrees .
 → Time: NTSC .

cell surfacenucleus

pod1cellCenterpod2

XY plane

 FIGURE 16.08

 The crawling cell model in terms of
its Maya components: a polygonal

mesh for the cell surface, two
joints (pod1 and pod2) bound to the
mesh. The pod1 and pod2 will draw

out the membrane protrusions,
or pseudopodia. A third joint

represents the cell center. The XZ
plane represents a fl at substrate for

the cell to crawl on.

455CHAPTER 16: MODELING A MOBILE CELL

Reset the cell
model

• reset $i to 0

• delete existing
 cell rig elements:
 joints,
 skinCluster, and
 bindPose nodes
• move the
 cellCenter joint
 and the cell to the
 origin
• bind the cell to
 the cellCenter
 joint, creating
 skinCluster and
 bindPose nodes

frame � 1
?

frame � 1
?

frame � 1
&&

$i �� 0
?

frame � 3
&&

$i �� 0
?

yes

no

Set up the next
crawl cycle

• calculate the
 random motility
 direction, $alpha,
 and distance,
 $reach
• add the effect of
 chemotattractant
 direction, $theta,
 and magnitude, $c
• calculate the
 location for
 the pseudopod
 joints pod1 and
 pod2, and for the
 destination of pod1
• create and position
 pod1 and pod2

• add pod1
 and pod2 to
 the existing
 skinCluster node
• calculate the step
 sizes (�m/frame)
 for each stage of
 the crawl
• calculate the
 waiting time
 between this and
 the next crawl cycle

yes
yes

yes

Increment the
crawl cycle

Depending on which
crawl stage the cell
is in, increment the
position of one of the
following:
• pod1

• cellCenter

• pod2

$i �� 1

Prepare for the
next crawl cycle

• delete pod1 and
 pod2

• unbind cell from
 skinCluster node

no

no

frame �� 1

no

Start and Stop on press Play

 FIGURE 16.09

 Flowchart for the cell crawl model.
The variable $i is the number of
frames left in the current crawl
cycle. Because the algorithm runs
as an expression, it starts and stops
when the Play button is pressed.

456 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

X axis

cellRadius

Z axis

pod1Vect

ligand position

Cell membrane pod2 joint
 pod1 joint

 ligandVect (resultant
 cell motility
 vector)

Cell nucleus

Direction of increasing
chemoattractant
concentration (θ)

Randomly chosen
cell direction (α)

cellCenter joint

ligand
position
(pseudopod destination)

(resultant cell direction)

centerVect

STAGE 1 Protrusion

Frame = 1 Frame > 1 (setup)

STAGE 2 Traction

pod2Vect

next ligandVect

next cell
direction

local cell
coordinates

STAGE 3 Retraction

α α
γ γ

θ θ

θ

α�

α�

α�

γ � α � θ

α� � α � γ � c

 FIGURE 16.10

 A diagrammatic version of the cell
crawl algorithm.

457CHAPTER 16: MODELING A MOBILE CELL

 Name What it looks
like in Maya

 Description

cell
 The cell body (polygonal mesh). In our rig it gets
coupled to the joints below through a skinCluster
node.

cellCenter

 This joint anchors the membrane, proximal to the cell
center, to the substrate during leading-end protrusion
and rear-end retraction. During the traction stage,
this joint moves the bulk of the cell body forward.

pod1

 This joint deforms the cell to create the leading
pseudopod. After the extension of the pseudopod,
this joint adheres it to the substratum during the
traction and retraction stages of locomotion.
Theoretically, pod1 provides the anchor against
which the traction force is generated.

pod2

 This joint anchors the rear of the cell to the
substratum, creating the trailing pseudopod as the
cell body advances during the traction stage. In the
retraction stage, pod2 returns to the periphery of the
cell body, bringing with it the deformed cell surface.

nucleus The cell nucleus (squashed NURBS sphere).
 TABLE 16.01

 Nomenclature used in our cell
locomotion model.

 3. Choose Categories → Timeline and make the following settings:

 Under Timeline → Playback Start: 1 .
 → Playback End: 1000 .
 → Time, select NTSC .

 Under Playback → Looping: once.
 → Playback Speed: Play every frame .
 → Playback by 1 .

 4. Press Save.

 5. Select a Four-View of your scene by pressing the button in the Toolbox.

 Build the geometric model
 Here you ’ ll create a polygon cube and then smooth it to turn it into a sphere. Th is
technique is handy for making spherical surfaces with roughly equal sized polygons.
 Figure 16.11 compares a Maya primitive polygon sphere with one created by the smooth-
ing a cube. Quite a diff erence! Th e CVs are more evenly distributed on the latter, mak-
ing surface deformations more predictable and easier to control, and also making it
easier to map textures onto the surface.

 Because you ’ re dealing with
an expression that is evaluated
at each frame, it is especially
important to set Playback Speed
to Play every frame.

458 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 Up until this point in this book you have relied on the Maya UI menus to access many
of the tools, commands, and settings. At this point, we will begin introducing MEL
commands in place of menu selections. To economize on words in the step-by-step
instructions, we will write simply Enter in place of saying Enter the following in the
Command Line entry fi eld or the Script Editor input pane . We ’ ll also from here on refrain
from elaborating on the MEL commands and their many fl ags here in the text with
the provision that such details are well documented and easily accessed in Maya ’ s
Help Library. In general we will use the long name for a fl ag the fi rst time it appears
and then employ its short name for subsequent uses. Let ’ s begin using MEL com-
mands in the following steps which will take you through creating the cell geometry
model.

 Make the cube
 First, you ’ ll use the polyCube command to make an 11 � m cube which will shrink
slightly to make a 10 � m diameter cell after smoothing.

 Enter:

 polyCube -width 11 -h 11 -d 11 -subdivisionsX 1 -sy 1 -sz 1 -n cell;

 Smooth the cube
 Th e polySmooth command will subdivide the cube (a hexahedron) into a polyhedron
with n sides according to the following internal Maya formula:

 n = 6 � 2 exp(2 � d)

 where d is the value of the polySmooth node divisions attribute. In practical terms, a
 divisions setting of 2 gives us 96 sides (or quadrilateral polygons), which is suffi cient
detail for the deformations required of this initial model.

polySphere polyCube + polySmooth

 FIGURE 16.11

 Two types of polygonal sphere
model in Maya. On the left is a

primitive sphere created with the
polySphere command. On the right

is a polyCube (with width, height,
and depth subdivisions all set to 1)

with a polySmooth node applied.
Note that the CVs are more

evenly distributed over the surface
of the smoothed cube.

459CHAPTER 16: MODELING A MOBILE CELL

 Enter:
 polySmooth -continuity 1 -divisions 2 cell;

 Create and apply a shader
 Here you ’ ll make a blue, translucent Phong shader called cellShader and apply it to
the cell. Th e translucence will allow you to see the nucleus through the cell ’ s outer
membrane (or surface). You can make the shader in the Hypershade and set its color
and transparency in the Attribute Editor if you like. Otherwise, you can create and
apply the shader by entering the following lines of code in the Script Editor:

 shadingNode -asShader phong -n cellShader;
 setAttr "cellShader.color" -type double3 0�.5 0�.5 1;
 setAttr "cellShader.transparency" -type double3 0�.5 0�.5 0�.5;
 select cell;
 hyperShade -assign cellShader;

 Shape the cell with a Lattice Deformer
 Lattice Deformers are powerful tools for shaping polygonal and NURBS surfaces and
clusters of particles in Maya. Here you ’ ll use a Lattice Deformer to fl atten the cell bot-
tom and spread out its edges.

 Enter:
 lattice -divisions 2 5 2 -objectCentered true -ldivisions 2 2 2;

 Figure 16.12 shows the lattice and cell together and the subsequent steps you ’ ll take,
manipulating lattice points to deform the cell. A lattice is like a hexahedron and its
points like CVs: as you translate, scale, or rotate them, you change the shape of the
lattice. Th is in turn deforms the object under the infl uence of the lattice. Th e follow-
ing steps are guidelines only. In all likelihood your lattice-deformed cell will look a bit
diff erent than ours.

 1. Press the hotkey, W, to activate the Move Tool.

 2. RMB + click over a portion of the lattice and choose Lattice Points.

 3. Select, move, and scale groups of lattice points to fl are and fl atten the bottom of
the cell as shown in Figure 16.12 .

 Th is just gives you a taste of what lattices are capable of. To learn more about the
nodes that comprise a Lattice Deformer and its various uses, refer to Maya Help:

 Lattice Deformers

 Maya Help → Using Maya → Animation, Character Setup, and Deformers →
Deformers → Lattice Deformer

 Delete history
 When you are satisfi ed with the shape of your cell, delete its history to remove the
lattice nodes and make permanent the surface deformations that give the cell its
default “ resting ” shape. You want the Dependency Graph (DG) cleared of any nodes

460 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

(a) Select the lower eight
lattice points.

(b) Use the Move tool to move
the lattice points up.

(c) Select the bottom four
lattice points.

(d) Move the lattice points up
to flatten the bottom of

(e) Select the lower eight lattice
points and use the Scale tool
to splay them apart.

(f) Select the bottom four points
and continue to spread the cell
bottom using the Scale tool.

your cell model.

 FIGURE 16.12

 Step by step deformation of the
sphere, by moving and scaling the

lattice points, in order to create the
basic cell geometry. Using the Scale

tool doesn ’ t scale the lattice points
themselves, but scales the distance

between selected points. To scale
uniformly in X, Y, and Z, click on the

central manipulator (yellow) cube
and MMB-drag your mouse.

461CHAPTER 16: MODELING A MOBILE CELL

that aren ’ t essential to the cell crawl cycle in order to minimize the number of steps
needed in the expression to make the cell deform predictably.

 Enter:
 delete -constructionHistory cell

 Reset the cell ’ s position
 Depending on how much you moved the lattice points, your cell may be intersecting
the XZ plane, which represents the fl at substrate on which you want the cell to crawl.
If this is the case, take the following steps (Figure 16.13) :

 1. Activate a side or front orthographic view.

 2. Select the cell and hit the hotkey, W, to activate the Move Tool.

 3. LMB + click the Y manipulator handle and drag it in the positive Y direction
until the cell surface clears the XZ plane (Figure 16.13 b).

 Next, freeze the translate values so that the cell ’ s current position will be its zero
position.

 Enter:
 makeIdentity -apply true -translate 1 cell;

 Freeze Transformations

 Help → Using Maya → Tools, Menus, and Nodes → Menus → Modify →
Modify > Reset Transformations, Freeze Transformations

 Rig the cell
 Initially, your model requires only one joint, which we ’ ve been calling cellCenter .
Th e other, pod1 and pod2, will be created by the expression which you will soon build.
You can make the cellCenter joint easily using the MEL command, joint, which makes
a joint and places it at the world origin—right where you want cellCenter to start off .

After lattice deformation
but before translation.

After translation.

(a) (b)

 FIGURE 16.13

 The XZ plane represents a fl at
substrate for your cell. After
deforming the geometry with a
Lattice Deformer, you may need
to translate it in Y so that it sits on
or slightly above the XZ plane and
doesn ’ t intersect it.

462 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

However, we believe it would be useful for you to create cellCenter and two other
joints using Maya ’ s Joint tool in the UI and then bind them to the cell mesh in order to
experience manually what your expression script will be doing many times per sec-
ond automatically. Th ink of these next steps as building a prototype by hand to see
what your rig is capable of before setting it loose through an expression. Th is will help
you better understand the expression as you build it.

 Make the joints

 1. Activate the orthographic top view of your scene and adjust your view to
appear similar to that in Figure 16.14 .

 2. Press the F2 hotkey to activate the Animation menu set.

 3. Choose Skeleton → Joint Tool .

 4. In the Joint tool options:

 (a) Press Reset Tool.
 (b) Under Bone Radius Settings → Short Bone Radius, enter 2.
 (c) Press the Close button.

 Your cursor will change to cross hairs to indicate that the Joint tool is enabled. Th e
Short Bone Radius setting determines how large the joints you make will appear in
the scene view—it has no bearing on a joint ’ s functional properties.

 5. While holding down the X key (to constrain the joint to a point on the grid) click
 at the world origin to make the cellCenter joint.

 6. Press Enter on your numeric key pad to complete the joint creation and disable
the Joint tool.

 7. In the Channel Box, rename the joint cellCenter .

 FIGURE 16.14

 A top view of the cell geometry as
joints are created. With the Joint

tool active, a joint is created each
time you LMB � click in the scene

view. Hold down the X key when you
click to constrain the joint to a point

on the scene grid. Press Enter on
your numeric keypad after each joint

click to deactivate the joint tool—
otherwise subsequent joints will be
parented to the fi rst. (a) Click at the
world origin to make the cellCenter

joint then press Enter. (b) and (c)
Click at the perimeter of the cell to

make the pseudopod joints, pressing
Enter between each click.

Cell center joint

(a) (b)

Psuedopod joint

(c)

463CHAPTER 16: MODELING A MOBILE CELL

 8. Adjust the Joint Display Scale:

 (a) From the main menu set choose Display → Joint Size → Custom.
 (b) Enter 5 and then close the Joint Display Scale window.

 9. Press the repeatLast hotkey, G, to re-enable the Joint tool.

 10. While holding down the X key click somewhere near the cell perimeter.

 11. Press Enter on your numeric key pad.

 12. In the Channel Box, rename the joint pod 1 .

 13. Press G to re-enable the Joint tool.

 14. While holding down the X key click near the cell perimeter opposite to pod1.

 15. Press Enter on your numeric key pad.

 16. In the Channel Box, rename the joint pod 2 .

 Bind the skin to the joints
 A skin can be bound to a skeleton in one of two ways: a smooth bind and a rigid bind.
In smooth binding, the infl uence over a given set of mesh CVs is shared among proxi-
mal joints. Th is type of binding is great for smooth, organic-looking deformations of
the kind we ’ re after to represent cell surfaces. In rigid binding each CV is infl uence
by only one joint. Th is produces mechanistic-looking deformations, useful for articu-
lated limbs that are rigid, such as those found on a striding robot or a crustacean for
example, where you don ’ t want the surface mesh stretching and bending like an elas-
tic membrane.

 When applied, the Smooth Bind tool executes the skinCluster MEL command behind
the scenes. Th is in turn creates a skinCluster node, which stores information on how
joint infl uences are distributed throughout the mesh. In the expression you ’ ll build
shortly, you will use the skinCluster command to smooth bind the cell to its joints.
At this point, however, just use the Smooth Bind tool:

 1. Select the cell and the three joints you made. The selection order isn ’ t impor-
tant for the Smooth Bind tool.

 2. In the Animation menu set, choose Skin → Smooth Bind .

 3. In the Smooth Bind options window, choose Edit → Reset Settings.

 4. Press the Bind Skin button.

 If Maya generates an error, make sure that all four objects are selected and repeat
steps 2–4.

 Deform the cell
 Your cell is now rigged! Take a minute or two to move each of the joints around using
the Move Tool and observe the resulting changes to the cell surface (Figure 16.15).

 If you don ’ t press Enter after
clicking to make a joint, the Joint
tool remains active. If you click
again to make a second joint,
Maya automatically creates
a bone linking the fi rst and
second joint through the Scene
Hierarchy (the second joint
becomes a child of the fi rst).
Pressing Enter after the fi rst joint
disables the Joint tool: if you
then re-enable it and click again,
the second joint will have no
relationship to the fi rst, which is
the scenario we want for the cell
animation rig.

464 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

Note that each joint has keyable transform attributes which are displayed in the
Channel Box. Your cell crawl expression will set those attribute values (but not key
them) according to the numbers it computes for the random walk, the chemotactic
infl uence, and the duration of each stage—protrusion, traction, and retraction—of
the cell crawl cycle.

 Reset the cell
 Before moving on to building the expression reset your cell by returning the three
joints to their original locations and unbinding (or detaching) the cell from the joints
and then deleting pod1 and pod2:

 1. Select the three joints.

 2. Choose Skin → Go To Bind Pose.

 3. Select the cell.

 4. Choose Skin → Detach Skin .

 5. In the Detach Skin options window choose Edit → Reset Settings.

 6. Press the Detach button.

 7. Select and pod1 and pod2. Press the Delete key on your keyboard.

 Add custom attributes
Now you ’ ll add six custom attributes to the cell transform node. Th ey will be a means
for quickly entering key expression variables rather than having to search for them
in the Expression Editor. All you ’ ll have to do to assign the variables is select the cell

 FIGURE 16.15

 Once you ’ ve rigged your cell by
binding the mesh to the joints, select
and move each joint using the Move

Tool to see the deformation effects
on the surface. The centerCell joint

is selected in this picture.

465CHAPTER 16: MODELING A MOBILE CELL

in the Scene View or Outliner and enter values in the appropriate attribute fi elds in
the Channel Box. Note the minimum (min) and maximum (max) values. Th ese are used
to prevent the user from entering values that would result in errors, such as a zero
speed value for one of the joints.

 Enter the following lines in the Script Editor:

 addAttr -longName pod1Speed -attributeType double -min 1 -max 10�
 -dv 2 |cell;
 setAttr -edit -keyable true |cell.pod1Speed;
 addAttr -ln centerSpeed -at double -min 1 -max 10� -dv 1 |cell;
 setAttr -e -keyable true |cell.centerSpeed;
 addAttr -ln pod2Speed -at double -min 1 -max 10� -dv 2 |cell;
 setAttr -e -keyable true |cell.pod2Speed;
 addAttr -ln waitFactor -at double -min 0�.1 -max 10� -dv 1 |cell;
 setAttr -e -keyable true |cell.waitFactor;
 addAttr -ln chemoMagnitude -at double -min 0� -max 10� -dv 5 |cell;
 setAttr -e -keyable true |cell.chemoMagnitude;
 addAttr -ln chemoTheta -at double -min 0� -max 360� -dv 0� |cell;
 setAttr -e -keyable true |cell.chemoTheta;

 You can change the minimum and maximum limits on these attributes by using the
addAttr command with the edit fl ag. For example:

 addAttr -edit -min 3 -max 6 cell.pod1Speed; // Change the min and
 max limits.

 Add the cell nucleus
 For the cell nucleus, create, scale, and position a NURBS sphere so that it fi ts comfort-
ably within the cell model (Figure 16.16).

 1. Enter the following line in the Script Editor:
 sphere -radius 5 -axis 0� 1 0� -name nucleus;

 2. Press W to activate the Move Tool then drag the nucleus in the positive
Y-direction until it ’ s mostly inside the cell.

 3. Press R to activate the Scale tool then scale the nucleus in the Y-axis so that it
fi ts within the boundaries of the cell.

To make the nucleus move as the cell does, connect its translate attribute to that of
the cellCenter joint.

 4. Enter the following line in the Script Editor:
 connectAttr cellCenter.translate | nucleus.translate;connectAttr cellCenter.translate |nucleus.translate;

 Now that your cell geometry is ready—complete with custom attributes—save your
scene. You will use it again shortly. First you ’ ll apply your knowledge of rigging and
animating with joints to the cell crawl expression.

 -dv is short for defaultValue. You
can later change the values of
these attributes in the Channel
Box.

466 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 Methods: Encoding the algorithm
 Before beginning, you may wish to refer back to Figures 16.09 and 16.10 , the fl owchart
and schematic illustration for a quick refresher on the steps you ’ re about to encode.
Unlike the earlier projects you will not use procedures here, but rather create one
expression that calculates the crawl parameters and makes, moves, and destroys
the pieces needed to make your cell crawl, on a frame by frame basis. Th at ’ s not to
say the code in your expression couldn ’ t be broken out into several subroutines that
are then called when needed. However, this script is suffi ciently concise that we fi nd
it simpler to manage in one chunk.

 The cellCrawl expression
 As you saw back in Chapter 12 , an expression can be made in one of two ways.
Th e fi rst uses the MEL command expression and a single line of code. If the code
is suffi ciently long, you can break it up into multiple lines as long as you use the
escape line break notation, \n , at the end of each line. In longer expressions, escap-
ing line breaks becomes tedious and can lead to errors when you add new lines to
the code and forget to escape them. For this project we recommend the second way
to make an expression: compose it in multiple lines—as you would a procedure—
then copy/paste it into Maya ’ s Expression Editor and press Create. Making an
expression this way avoids the errors associated with the extra step of building it as
a single MEL statement. As in previous chapters, we also suggest that you compose
your expression in a text editor (other than Maya ’ s Script Editor), saving it periodi-
cally as you follow along with the instructions below. When you want to test bits
of code in Maya, just copy and paste them from your text editor into Maya ’ s Script
Editor.

 Some header information will be helpful when you refer back to this expression at a
later date and to help others understand your code.

(a)

 FIGURE 16.16

 After creating the nucleus model
using the sphere command:

(a) Move the nucleus into position
within the cell model. (b) Scale the

nucleus so that it fi ts within the
boundaries of the cell surface.

(b)

467CHAPTER 16: MODELING A MOBILE CELL

 /***** cellCrawl.txt *****/
 /*
 Date: April 20�0�6.
 Authors: Jason Sharpe, Charles Lumsden, Nick Woolridge.

 Description:
 This expression animates a crawling cell.

 To use this script:
 Your Maya scene must contain a NURBS or polgon model called cell
and a joint called cellcenter, both located at the world origin.
The cell model must have the following attributes (sample default
values are given):
 pod1Speed � 2; centerSpeed � 1; pod2Speed � 2; waitFactor � 1,
chemoMagnitude � 5; chemoTheta � 0�.
 Note : All angles are in degrees, measured CCW from the positive
z-axis.
 Copy and paste this entire script into Maya's Expression Editor and
press the Create button. Press play to animate the cell.
 */

Next, declare the main variables. You ’ ll use global variables for the parameters that
are set at the start of a cycle and then must be read at each frame in the cycle. Being
global, once these variables are set, they can be read at any time and anywhere in the
Maya environment (i.e. in an expression, a procedure, or in the Script Editor).

 /***** DECLARE THE VARIABLES *****/
 /*
 $pod1Pos XYZ position of the leading pseudopod joint, pod1.
 $pod2Pos XYZ position of the trailing pseudopod

joint, pod2.
 $centerPos XYZ position of the cell center joint.
 $ligandPos Location where the leading pseudopod binds to the
 substrate.
 */
 global vector $pod1Pos, $pod2Pos, $centerPos, $ligandPos;

 /*
 $theta Chemoattractant direction (an angle in degrees).
 $c Magnitude of the chemoattractant concentration.
 $alpha Random motility direction (an angle).
 $gamma Difference between $alpha and $theta.
 $alphaPrime Final motility direction, accounting for both

random motility and chemotaxis.
 $cellRadius Radius of the flattened cell (˜10� m).
 $reach Distance travelled the cell in a given cycle.
 $waitAverage The average time, in frames, the cell waits before

moving.
 $wait A random wait time.
 */
 float $theta, $c, $alpha, $gamma, $alphaPrime, $cellRadius, $reach;
 float $waitAverage, $wait;

 /*
 $minDist Minimum possible value of $reach.
 $maxDist Maximum possible value of $reach.

468 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 $pod1Speed Rate of protrusion in m/frame.
 $pod2Speed Rate of retraction in m/frame.
 $waitFactor Multiplier to scale the waiting time.
 $stateZero Number of frames spent waiting.
 */
 float $minDist, $maxDist, $pod1Speed, $pod2Speed, $waitFactor,
 $stateZero;

 /*
 $pod1Vect Vector added to the position of pod1 for each

step in a crawl cycle.
 $pod2Vect Same as above for pod2.
 $centerSpeed Rate of cell center translocation in m/frame.
 $centerVect Vector added to the position of cellCenter for

each step in a crawl cycle.
 */
 vector $pod1Vect, $pod2Vect, $centerSpeed, $centerVect;

 /*
 $pod1Steps Number of frames needed for protrusion.
 $centerSteps Number of frames needed for translocation.
 $pod2Steps Number of frames needed for retraction.
 */
 global int $pod1Steps, $centerSteps, $pod2Steps;

 /*
 $clusterNames[] A list of skinCluster node names.
 $bindPoseNames[] A list of bindPose node names.
 $podNames[] A list of pods names.
 */
 string $clusterNames[], $bindPoseNames[], $podNames[];

 /*
 $i Counts the steps in a crawl cycle
 */
 int $i;

 Initialize the variables
 At this point, the expression uses the getAtt r command to read the custom attribute
values you assigned to the cell transform node.

 /***** INITIALIZE THE VARIABLES *****/

 $theta = ' getAttr cell.chemoTheta' ;
 $c = ' getAttr cell.chemoMagnitude ' ;
 $pod1Speed = ' getAttr cell.pod1Speed ' ;
 $pod2Speed = ' getAttr cell.pod2Speed ' ;
 $centerSpeed = ' g etAttr cell.centerSpeed ' ;
 $waitFactor = ' g etAttr cell.waitFactor ';
 $cellRadius = 10�;
 $minDist = 20�;
 $maxDist = 40�;

 A bindPose node is created
when you bind a skin (surface) to
a joint. It stores the joint ’ s world
matrix (translation and rotation)

at the time of binding.

469CHAPTER 16: MODELING A MOBILE CELL

 Reset the cell model
 Each time you set the current time indicator to frame 1 the cell should return to
the world origin and prepare for the next sequence of crawl cycles. Th is preparation
includes deleting the skinCluster, bindPose, and pseudopod joint nodes. To do this
you ’ ll use a string array to store a list (using the ls command) of each type of node
by name and then delete the array contents. Th is is a safer technique than deleting
items by name, as in delete pod1. If no item named pod1 exists, Maya will gener-
ate an error and halt the expression. On the other hand, if the array of objects called
pod1* is empty and you delete the array contents, Maya will only issue a warning,

 Warning: Nothing is selected. Select objects or components to
 delete.

 and will continue to execute the expression (do not enter the above line as part of the
expression).

 /***** RESET THE CELL MODEL *****/

 if (frame == 1) {

 // Reset the crawl step counter.
 $i = 0�;

 // Delect existing skinCluster nodes when you return to frame 1.
 $clusterNames = ' ls -long "skinCluster*"' ;
 delete $clusterNames;

 // Delect existing bindPose nodes when you return to frame 1.
 $bindPoseNames = ' l s -long "bindPose*" ' ;
 delete $bindPoseNames;

 // Delect existing pod objects when you return to frame 1.
 $podNames = ' ls -tr "pod*"' ;
 delete $podNames;

 // Center the cell center joint.
 $centerPos = << 0�, 0�, 0�>>;
 setAttr cellCenter.translate ($centerPos.x) ($centerPos.y)
 ($centerPos.z);

 If you delete a skinCluster node when it is connected to an object, Maya locks
the object ’ s connected attributes. Th e following lines unlock the cell ’ s transform
attributes, ensuring they are free to be connected to a new skinCluster node.

 // Unlock the cell 's transform attributes.
 setAttr -lock 0� "cell.tx";
 setAttr -lock 0� "cell.ty";
 setAttr -lock 0� "cell.tz";
 setAttr -lock 0� "cell.rx";
 setAttr -lock 0� "cell.ry";
 setAttr -lock 0� "cell.rz";
 setAttr -lock 0� "cell.sx";
 setAttr -lock 0� "cell.sy";
 setAttr -lock 0� "cell.sz";

 // Center the cell.
 setAttr cell.translate ($centerPos.x) ($centerPos.y)
 ($centerPos.z);

470 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 // Bind the cell to the cell center joint.
 print "Cell is set to go!\n ";

 $clusterName1 = ' skinCluster cellCenter cell ' ;

 // Select the cell to make its attributes available in the
 channel box.
 select cell;

 } // End if (frame == 1). Cell is reset.

 Figure 16.17 shows the eff ect of the above section of code on the DG for the cell.

 Print commands
 As you learned in Chapter 12 , the print command in the above code section sends a
message to the Command Line and the Script Editor telling you that this part of the
expression executed and the cell is now ready to crawl. Printing information about an
expression or MEL script can be very helpful when debugging code. Printing allows
you to see if variables and attribute values are being assigned the values that you
think they are. We will continue to use print throughout the code. When the expres-
sion is done and you run the cell crawl simulation, the Script Editor will display a
running report of what ’ s going on behind the scenes.

 Set up the next crawl cycle
 In this section of code you will calculate the values necessary to move the cell, includ-
ing the random motility direction, the eff ect of the chemoattractant, and the step

 FIGURE 16.17

 These images of the Hypergraph
show the DG nodes of the cell model

in different stages of operation: (a)
At the start of each crawl cycle,

the joint nodes pod1 and pod2 are
made. They remain in existence
during the cycle. (b) After each

cycle is completed, and at frame
1 when the cell is reset, pod1 and

pod2 are deleted and the cell is
bound only to the cellCenter joint.

(a)

(b)

471CHAPTER 16: MODELING A MOBILE CELL

sizes for each of the three motility stages: protrusion, traction, and retraction. In
order to execute this code, the following conditions must exist:

 1. The cell must be at the beginning of a crawl cycle, i.e. $i == 0.

 2. The frame number must be > 1 (we ’ re reserving frame 1 for resetting the model).

 3. The variable skinCluster[0] must have an assigned value, the name of the
existing skinCluster node. If it doesn ’ t, it ’ s because the scene fi le has just been
opened and hasn ’ t been reset to frame 1 yet, or you edited the expression after
stopping the cell in mid-crawl. In such cases, checking if a skinCluster node
exists prevents an execution error.

 You ’ ll use Maya ’ s rand() function to generate the random motility angle, $alpha and
pseudopod protrusion distance. Feel free to experiment with more complex probabil-
ity models once you have the basic code up and running, for example a Gaussian (bell-
curve) form. Th e chemoattractant angle $theta and magnitude $c were read in from
the cell attribute chemoMagnitude when you initialized variables. We have given the
name $gamma to the diff erence between $alpha and $theta . $gamma will be used with
$c to calculate $alphaPrime , the cell direction that accounts for both random motility
and chemotaxis (see Figures 16.05 and 16.10). Th ere are four possible cases we must con-
sider for the value of the angle $gamma which are shown in Figure 16.18 .

 /***** SET UP THE NEXT CRAWL CYCLE *****/
 if ($i == 0� & & frame > 1 & & ' objExists $clusterNames[0�]') {

 // Calculate the random angle $alpha.
 $alpha = rand(0�,360�);

Case A
0 � γ � 180

 Z axis

X axis

Case B
0 � γ � �180

Case C
γ � 180

Case D
γ � �180

α

γ
θ

α

γ
θ

α

γ

θ

α

γ

θ

γ � α � θ

α� � α � γ � c
c � chemoattractant strength

(0.1 � c � 1)

 FIGURE 16.18

 Four cases to consider for the
angle (� = � – �) when calculating
alphaPrime, the direction resulting
from both random motility and
chemotaxis.

472 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 float $gamma = $alpha - $theta;
 print ("\nStarting new crawl\n$gamma = " + $gamma + "\n");

 // CASE A.
 if ($gamma > 0� & & $gamma < = 180�){
 $alphaPrime = $alpha - $gamma*$c/10�; print "CASE A\n ";
 }
 // CASE B.
 else if ($gamma < 0� & & $gamma > = -180�){
 $alphaPrime = $alpha - $gamma*$c/10�; print "CASE B\n ";
 }
 // CASE C.
 else if ($gamma > 180�){
 $alphaPrime = $alpha + (360� - $gamma)*$c/10�; print "CASE C\n ";
 }
 // CASE D.
 else if ($gamma < -180�){
 $alphaPrime = (360� + $alpha) - (360� + $gamma)*$c/10�; print

 " CASE D\n ";
 }

 // Calculate the pseudopod reach.
 $reach = rand($minDist, $maxDist);
 print ("$alpha = " + $alpha);
 print (", $alphaPrime = " + $alphaPrime + ", $reach = " +
 $reach + "\n");

 // cellCenter position.
 $centerPos = ' getAttr cellCenter.translate ' ;

 // pod1 position.
 $tmpX = $centerPos.x + $cellRadius * sin(deg_to_
 rad($alphaPrime));
 $tmpZ = $centerPos.z + $cellRadius * cos(deg_to_
 rad($alphaPrime));
 $pod1Pos = << $tmpX, 0�, $tmpZ>>;

 // pod1 position.
 $tmpX = $centerPos.x + $reach * sin(deg_to_rad($alphaPrime));
 $tmpZ = $centerPos.z + $reach * cos(deg_to_rad($alphaPrime));
 $ligandPos = << $tmpX, 0�, $tmpZ>>;

 // pod1 position.
 $tmpX = $centerPos.x + $cellRadius * sin(deg_to_rad
 ($alphaPrime � 180�));
 $tmpZ = $centerPos.z + $cellRadius * cos(deg_to_rad
 ($alphaPrime + 180�));
 $pod2Pos = << $tmpX, 0�, $tmpZ>>;

 /* Delete existing pseudopod joints. This is a safeguard for
when the file is saved in mid-crawl, and then reopened and
played.*/
 string $podNames[] = ' ls -tr "pod*" ' ;
 delete $podNames;

 // Make the pseudopod joints.
 select -clear;

473CHAPTER 16: MODELING A MOBILE CELL

 If a joint happens to be selected when you use the joint tool or joint command, Maya
will automatically create a bone and parent the second joint to the fi rst, which is not
what we want to happen. Clearing the selection before making a new joint ensures no
bone is created and the joint remains unparented. Th e short name for the -clear fl ag
is -cl, which we ' ll use from now on.

 joint -p ($pod1Pos.x) ($pod1Pos.y) ($pod1Pos.z) -n pod1; select -cl;
 joint -p ($pod2Pos.x) ($pod2Pos.y) ($pod2Pos.z) -n pod2; select -cl;

 Th e use of brackets around $pod1Pos.x, etc. forces Maya to return the value of the
attribute. Below, the skinCluster command is used with the edit and addInfluence
fl ags to add the joints pod1 and pod2 to the existing skinCluster node. Th e - dropof-
fRate attribute fl ag determines how a joint ’ s infl uence on the bound skin decreases,
or drops off , with increased distance from the skin. Th e higher the value, the quicker
the dropoff . Th e default value is 4 .

 // Add pod1 and pod2 to the existing skinCluster1.
skinCluster -edit -dropoffRate 4 -addInfluence pod1 $clusterNames[0�];
skinCluster -edit -dropoffRate 4 -addInfluence pod2 $clusterNames[0�];

// $tmpVect is the vector that translates each of the cell 's joints.
 vector $tmpVect = $ligandPos - $pod1Pos;
 // $mag is the scalar distance the cell will travel.
 float $mag = mag($tmpVect);

 // pod1 step size; the protrusion distance per frame.
 $pod1Steps = $mag/$pod1Speed;
 $pod1Vect = $tmpVect/$pod1Steps;

 // cellCenter step size; the traction distance per frame.
 $centerSteps = $mag/$centerSpeed;
 $centerVect = $tmpVect/$centerSteps;

 // pod2 step size; the retraction distance per frame.
 $pod2Steps = $mag/$pod2Speed;
 $pod2Vect = $tmpVect/$pod2Steps;

 print ("$pod1Steps = " + $pod1Steps + ", $centerSteps = ");
 print ($centerSteps + ", $pod2Steps = " + $pod2Steps + "\n");

 Next, the expression calculates the wait time between locomotive excursions. For
starters, you ’ ll make the average wait time value one half the crawl cycle time for the
cell (time here refers to frames). You ’ ll then use this average value, $waitAverge , to
randomize the wait time, $wait according to the following formula 11 :

 $wait = $waitAverage*log(1/$rnd)*$waitFactor;

 Where $rnd is a random number between 0 and 1 and $waitFactor is a multiplier
that was assigned the value of the cell ’ s custom waitFactor attribute. By changing
the value for $waitFactor in the Channel Box you can then easily scale the wait time
up or down.

474 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 /* In state zero, the cell waits before another excursion. Here
you' ll generate a random wait time of average value:$waitAverage
frames. */
 $waitAverage = ($pod1Steps + $pod2Steps + $centerSteps)/2;
 float $rnd = rand(0�,1);
 $wait = $waitAverage*log(1/$rnd)*$waitFactor;

 $stateZero = ceil($wait);
 // ceil (for "ceiling") rounds $wait up to the nearest integer.
 print ("$waitAverage = " + $waitAverage + ", stateZero = "
+ $stateZero + "\n");

 Th e crawl cycle counter is then set to the sum of the pod1, cellCenter , pod2, and
stateZero steps sizes.

 // Set the crawl cycle counter.
 $i = $pod1Steps + $pod2Steps + $centerSteps + $stateZero;
 print ("$i = " � $i + "\n");

 } // End if.
 // The crawl cycle is now set up.

 Increment the crawl cycle
 Th e following section of code is executed at every frame for which the crawl cycle
counter, $i, is greater then zero. Its function is to move fi rst pod1 through each of its
steps, then cellCenter , followed by pod2. Th e time remaining in each stage is given
by $i minus the time for the remaining stages. When the cell has fi nished moving—
when the retraction stage is fi nished and pod2 has returned to its default position rel-
ative to cellCenter —the cell remains in state zero until $i has counted down to zero.
At this point the cell is detached from its skeleton (the three joints), pod1 and pod2
are deleted, then the cell is rebound to cellCenter using the skinCluster command.

 /***** Increment the crawl cycle.*****/
 if (frame > 1){

 // Increment pod1 toward ligandPos.
 if ($i > ($pod2Steps + $centerSteps + $stateZero)) {

 // Move the pseudopod, pod1.
 $pod1Pos = $pod1Pos + $pod1Vect;
 setAttr pod1.translate ($pod1Pos.x) ($pod1Pos.y) ($pod1Pos.z);

 }
 else if ($i <� ($pod2Steps + $centerSteps + $stateZero) & & $i >

 $pod2Steps + $stateZero) {

 // Move cellCenter.
 $centerPos = $centerPos + $centerVect;
 setAttr cellCenter.translate ($centerPos.x) ($centerPos.y)

 ($centerPos.z);
 }
 else if ($i < = ($pod2Steps = $stateZero) & & $i > $stateZero) {

 // Move the tail, pod2.
 $pod2Pos = $pod2Pos + $pod2Vect;
 setAttr pod2.translate ($pod2Pos.x) ($pod2Pos.y)
 ($pod2Pos.z);

 }

475CHAPTER 16: MODELING A MOBILE CELL

 // Increment the counter.
 $i - � 1;
 print ("$i � " � $i � "\n");

 // If cell has completed a crawl step ...
 if ($i == 0� & & frame > 3) {

 // Unbind the cell skin.
 print "*************** DETACHING SKIN ******************\
 n\n ";
 skinCluster -edit -unbind cellShape;

 // Delete the pseudopod joints
 $podNames � ' ls -tr "pod*"' ;
 delete $podNames;

 When you detach the cell from its rigging, it snaps back to the world origin since its
translate values never changed from 0,0,0 (only its CVs were moved by the joints).
You must therefore move it to the location of cellCenter before rebinding it using the
 skinCluster command.

 // Move the cell to the location of cellCenter.
 setAttr cell.translate ($centerPos.x) ($centerPos.y)
 ($centerPos.z);

 // Rebind the cell to the center joint.
 skinCluster cellCenter cell;

 } // End if ($i == 0� & & frame > 3)
 } // End if (frame > 1).

 // End cell crawl expression.

 Th at ’ s it for the coding. It ’ s now time to enter the expression in Maya and get your cell
crawling.

 Methods: Loading the script
 With your script now complete, turn it into an expression within the cell geometry
scene fi le you created earlier in this chapter.

 1. Start Maya, open your cell geometry cell fi le, and set the current time indicator
to frame 1.

 2. Select and copy the expression entire script in your text editor.

 3. In Maya, enter ExpressionEditor in the Command Line to launch the
Expression editor, or select it from the menu Windows → Animation Editors →
Expression Editor.

 4. LMB + click in the Expression text fi eld.

476 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 5. Press Ctrl + V to paste your expression.

 6. Press the Create button at the bottom of the Expression Editor.

 If Maya accepts your script, the Command Line will display the following line:

 // Result: expression1 //

 You can rename the expression by entering text in the Expression Name fi eld at the
top of the Expression Editor.

 If, however, Maya detects an error in your script, it may or may not create an
expression depending on the type of error. In either case, you ’ ll need to debug the
script: open the Script Editor and look for error notices that point to specifi c lines
in your script. If your text editor supports line numbers, you can then track and fi x
errors line by line. You can also compare your script directly with the complete script
we ’ ve included on the CD-ROM:

 16_Mobile_Cell/MEL/cellCrawl.txt

 Results: Running the script
 When you have successfully created the expression, you need only press Play to set
your cell crawling. Each time you press Rewind the cell should return to the world
origin, ready for another excursion. Try varying the cell ’ s custom attribute values in
the Channel Box to observe their eff ects. If you included the various print commands
listed in the code above, you can get an ongoing report of what the cell crawl algo-
rithm is doing behind the scenes: open the Script Editor and observe the data that
displays as the simulation plays.

 Data I/O
 If you wish to try out the Data I/O methods described in Chapter 13 , this crawling cell
model makes a good test subject. You can export the cell ’ s trajectory as a list of XYZ
coordinates and analyze it using the statistics software of your choice. In the Further
reading section we have listed resources concerning cell migration modeling many of
which provide information on the statistics of cell migration.

 Troubleshooting
 We found this scene fi le to be unstable in Maya for Mac OS X; the application crashed
every time we attempted to open the fi le. Th is is due to a problem with the way Maya
evaluates the cell crawl expression when it opens the fi le. An easy workaround for this
problem is to use a safety check that disables the expression unless a condition is met.
For example, enclose the entire expression within a conditional statement, as follows:

 global int $safety;
 if ($safety == 1) {

 // ENTIRE EXPRESSION SCRIPT.

 };

477CHAPTER 16: MODELING A MOBILE CELL

 When you start Maya and/or open the scene in Maya for Mac OS X, the default value
of safety is zero, therefore the expression won ’ t evaluate and Maya won ’ t crash.
Once the scene fi le loads, Maya is stable, and you can enter the following line in the
Command Line to unlock the expression before playing the animation:

 global int $safety � 1;

 Another peculiarity in Maya for Mac OS X is the behavior of the Evaluation setting in
the Expression Editor. We fi nd it reverts to On Demand no matter how many times we
set it to Always , which should be its default setting. If your Expression Editor is set to
On Demand, the cell crawl expression will not evaluate properly and cell will not move.
We found that setting Evaluation to Always once fi xed the problem even though the
Evaluation setting indicator in the Expression Editor reverted to On Demand .

 Summary
 With the 2-pod model up and running you are ready for explorations that will take
you further into the science of cell locomotion. Real cells, for example, may have a
number of pseudopods extended at any one time, from which a “ winner ” seems
to emerge that points the direction for the cell ’ s next migratory step. How could a
many-pod version of your current model be created? On a planar surface, the lead-
ing pseudopod has a dynamic anatomy that includes not only extension by an intri-
cate, delicate fl attening and ruffl ing of the leading edge. Moreover, your cell model
is a behavioral “ container ” that invites you to equip it with chemistry, such as the
turnover of actin fi laments and intracellular signal ligands, to drive the deforma-
tion biophysics. Th ese are all exciting problems at the frontier of current research. In
the next two chapters we turn to another amazing frontier, which is the world of cell
behavior when locomotion is released from 2D wide open planes and the cells moved
into crowded 3D jungles of tangled fi bers—matrix worlds like those holding your
body together!

 References
 1. Wolf K , Mazo I , Leung H , Engelke K , von Andrian UH , Deryugina EI , Strongin AY ,

 Bröcker E-B , Friedl P : Compensation mechanism in tumor cell migration:
Mesenchymal–amoeboid transition after blocking of pericellular proteolysis . Journal
of Cell Biology 160 : 267 – 277 , 2003 .

 2. Pollard T : Regulation of actin fi lament assembly by arp2/3 complex and formins .
 Annual Review of Biophysics and Biomolecular Structure 36 : 451 – 477 , 2007 .

 3. Paluch E , Sykesa C , Prosta J , Bornens M : Dynamic modes of the cortical actomyosin
gel during cell locomotion and division . Trends in Cell Biology 16 : 5 – 10 , 2006 .

 4. Condeelis J , Singer RH , Segall JE : Th e great escape: When cancer cells hijack the
genes for chemotaxis and motility . Annual Review of Cell and Developmental Biology
 21 : 695 – 718 , 2005 .

 5. Mitchison TJ , Cramer LP : Actin-based cell motility and cell locomotion . Cell 84 :
 371 – 379 , 1996 .

 6. Berg HC : Random Walks in Biology , 2nd edn . University Press , Princeton NJ , 1993 .

478 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 7. Rudnick J , Gaspari G : Elements of the Random Walk: An Introduction for Advanced
Students and Researchers . Cambridge University Press , Cambridge UK , 2004 .

 8. Maheshwari G , Lauff enburger DA : Deconstructing (and reconstructing) cell migra-
tion . Microscopy Research and Technique 43 : 358 – 368 , 1998 .

 9. Zygourakis K : Quantifi cation and regulation of cell migration . Tissue Engineering 2 :
 1 – 16 , 1996 .

 10. Othmer HG , Dunbar SR , Alt W : Models of dispersal in biological systems . Journal of
Mathematical Biology 26 : 263 – 298 , 1988 .

 11. Gillespie DT : Markov Processes: An introduction for Physical Scientists . Academic
Press , San Diego CA , 1992 .

17 Growing an ECM scaffold

480 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 Introduction
 For all their mystery and beauty, the body ’ s cells do not live or work in isolation. Each
organ and tissue is an intricate society of cellular specialists, whose chemical and
mechanical activities assure health. In the brain, for example, information is pro-
cessed and transmitted by electrically linked cells called neurons, which in turn are
cradled in nests of supporting cells (the glia) and fed oxygen and chemical energy by
the blood cell ’ s of the brain ’ s circulation. In the heart, specialized nerve cell circuits
time-out the rhythm of the cardiac beat, triggering the heart muscle cells to contract
in wave-like patterns.

 Tissue architecture thus varies widely throughout the body and is highly specialized
for diff erent functions; the microscopic composition and dynamic properties of heart
muscle, we see, are decidedly diff erent from that of bone, brain, kidney, skin, and
so on. Th e approaches taken to modeling activity in these cellular societies can like-
wise vary from one tissue to the next. Nonetheless, there are characteristics—design
parameters, if you will—that recur through bodily tissues and serve as powerful
organizing themes. For instance, tissues generally are composed of cells and extracel-
lular matrix (ECM or matrix for short). Look through a microscope at a tissue and you
will see arrays of cells embedded within ECM, the long interweaving ECM fi ber mol-
ecules (protein and carbohydrate polymers) making a pliant 3D scaff old to which the
cells adhere.

 While cells perform localized functions such as information processing (e.g. brain),
protein synthesis and secretion (e.g. bone), and contraction (e.g. muscle), the ECM

Epidermis

Dermis

 FIGURE 17.01

 Although tissue structure and
function vary widely throughout

the body, all tissues are composed
of cells and ECM. Connective

tissues—like the dermal layer of
skin shown here—are composed

mostly of ECM, with relatively few
cells. For other tissues—like the
epidermis—the opposite is true:

many cells, with relatively little ECM
(by volume) connecting them.

481CHAPTER 17: GROWING AN ECM SCAFFOLD

provides support for these activities to work together. When modeling a tissue, one
therefore is modeling cells and ECM in silico.

 Problem overview

 The dermis: A model tissue
 In this chapter, you will build an idealized ECM model comprised of structural pro-
tein fi bers like those found in connective tissue such as the dermis, a deep layer of
the skin. Cell-matrix interactions have been deemed highly important in the progres-
sion and treatment of disease. Notable examples include tumor metastasis, genera-
tive disorders of the brain (including Alzheimer ’ s disease), wound healing, and tissue
regeneration. Th e fi elds of tissue engineering and regenerative medicine are con-
cerned with problems in wound repair and tissue transplantation. Connective tissue
makes an excellent 3D in silico model tissue because it has both geometric and physi-
cal properties that impact normal physiology and disease (Figure 17.0 2).

 Your project will focus on the dermis, the connective tissue layer of skin that is rich
in collagen and elastin proteins, and provides much of the skin ’ s structural integrity.
 Figure 17.01 shows the dermis in relation to other components of the skin. Th e dermis
is crucial to both health and disease. In the treatment of deep burns, diabetic ulcers,
and large wounds requiring skin replacement, missing or damaged dermis is often
damaged and must be surgically replaced with substitute scaff olds to promote the
skin ’ s natural regeneration. Th e success or failure of a tissue replacement depends on
several factors including its ability to provide a suitable structural and mechanical
environment for the patient ’ s own cells (called host cells). Indeed, a critical issue in
the surgical repair of wounds is the ability of host cells to eff ectively infi ltrate—by
cell migration—the substitute dermis, after which they begin synthesizing a new,
autologous dermal ECM scaff old of collagen, elastin, and proteoglycans. Th e fi brous
ECM molecules become the foundation for regenerated skin. It is now understood
that fi broblast cells (the cell type largely responsible for dermal wound repair) are
highly sensitive to the 3D architecture of dermal collagen fi ber bundles, and tissue
 morphometry is therefore a focus of much work in regenerative medicine. Cells are also
sensitive to mechanical traits such as ECM tension and compliance. If you wish to
learn more about the role of the ECM in regulating cell behavior and gene expression,
the chapter ’ s references 1–3 will take you beyond the brief discussion we have time
for here.

In this project you will deal with the challenges of the scaff old geometry. Th e size and
arrangement of the dermal scaff old bundles, including the negative space between
them, presents cells with an array of structural information that can at once pro-
mote, inhibit, and guide their migratory behavior. It is with this in mind that you will
embark on the project: modeling a 3D ECM scaff old that embodies general morpho-
metric properties of the dermal collagen scaff old and can be used to study patterns of
migration for simulated cells.

 Parameters of the dermis
 Figure 17.03 shows dermis samples at three levels of magnifi cation. In the human body,
the dermis varies in thickness from 0.3 mm on the eyelid to 3 mm on the back.

Fibers and bundles: There
appears to be no consensus
among authors regarding the
defi nitions of fi ber and fi ber
bundle in reference to collagen.
The terms fi bril and fasciculus ,
used in different ways by
different authors, further confuse
the issue. In dermis, collagen is
arranged in bundles of various
diameters and there appears
to be no practical distinction
between what constitutes a
fi ber and what does a bundle. For
clarity, we use the term fi ber to
refer to a collection of individual
collagen molecules that forms a
structural unit in the dermis—be
it a " fi ber " or a " fi ber bundle" . For
our purposes a fi ber ranges from
1 to 50 � m in diameter.

482 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

You will use 0.1 mm (100 � m)—a thickness one-fi fth that of modern, surgically
implanted dermal substitutes (Figures 17.03a and b). Starting with a relatively small scaf-
fold will allow you to see results quickly. When the model is working to your satisfac-
tion, you can easily change a few parameters and output larger scaff olds.

 Dermal microstructure is characterized by discrete collagen fi ber bundles (Figure
17.03c) whose average diameter, cross-sectional shape, and directional orientation
vary in relation to their depth from the skin surface. Collagen fi ber bundles are gen-
erally arranged parallel to the plane of the skin surface but their orientation about
the other two major axes is random, apparently to manage tensile forces on the skin
from multiple directions. Th is random orientation stands in stark contrast to the
arrangement of collagen in another tissue, tendon, in which fi bers are aligned for
maximum tensile strength in (most often) one direction. Collagen bundles in the
dermis cross-link with one another, forming complex meshworks and presenting cells
with an array of opportunities for, and obstacles to, migration.

 Five characteristics of this complex 3D pattern provide a material starting point. Th ey
are listed in Table 17.01 . By treating them as variables when you construct the modeling
algorithm, you can subsequently adjust them and test their downstream eff ect on the
migration behavior of your simulated cell population (next chapter!). Th e macroscopic
dimensions of the dermis are also parameters you ’ ll incorporate into the model; unlike
living skin which is continuous over the entire body, your Maya model will capture a
small, cubic sample of tissue matrix. By building the dimensions into the model as vari-
ables, you can create scaff olds of diff erent sizes and length/width/height ratios.

 An advantage to creating the scaff old model in Maya geometry—NURBS curves and
surfaces—is that later you can build in the physical matrix properties in the form

 FIGURE 17.02

 Scaffold models:

(a) A procedural model of the
collagen component of dermis,
similar to the one you ' ll build in
this project. In this example, a

procedural texture was used to give
the ribbed appearance of many

small collagen fi brils that make up
the larger fi bers.

A procedural model of
cancellous bone, an ECM structure

widely studied for its role in surgical
bone graft implantation.

(b) Courtesy and copyright © 2006
Eddy Xuan.

10 μm(a) 500 μm(b)

483CHAPTER 17: GROWING AN ECM SCAFFOLD

of deformations and custom attributes, and perhaps even dynamics, if you choose to
develop this model further.

 Model defi nition
 Th e goal of this project is to make a geometric model that embodies key characteris-
tics of a dermal collagen scaff old, can be generated in relevant clinical dimensions 2,
and can be used subsequently as a substrate in an in silico model of cell migration.
Th e model will involve dozens of individual fi bers. We will explain shortly how we
estimate the number of fi bers in a given scaff old volume. Building these using stand-
ard Maya UI tools—that is, making and shaping individual wavy collagen fi bers while
minimizing their interpenetrations with one another—is a highly impractical task.
You want automatic control, through Maya, over the scaff old ’ s structure via param-
eters like fi ber defl ection (waviness) and packing density. Th erefore, in addition to
satisfying the scaff old design parameters, you are also faced with the challenge of
getting such a complex tangle of geometry build on the fl y in Maya.

1 cm(a) 500 μm(b)

50 μm(c)

 FIGURE 17.03

 The collagen component of the
dermis (Ref. 2).

(a) Photograph of a dermal graft
similar to those used in surgical
procedures. Here it ’ s shown
being held for the camera by a
surgeon ' s gloved hands. The tissue
was rendered white by chemical
processing that removes cells
debris that may cause an adverse
immune response in the patient
receiving the graft.

(b) Light micrograph of the dermal
layer of the skin. This slide was
made from a sample similar to that
shown in (a).

(c) SEM of the cut edge of a dermis
sample similar to that shown in (b).
Note the appearance of distinct
collagen fi ber bundles.

(d) High-magnifi cation SEM showing
fi broblast cells seeded on the
surface of a dermal graft sample
similar to that shown in (a). The
fi broblasts have been artifi cially
colored blue for easy identifi cation.

All images courtesy and copyright ©
2006 Alexis Armour, MD, University of
Toronto. Used with permission.

10 μm(d)

484 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 Scaffold dimensions
 Th e scaff old shape will be a rectangular prism 100 � m deep (or thick) � 100 � m
wide � 150 � m long. Th e eff ective volume for the cell migration model in the next
chapter is 100 � m cubed. You ’ re making the scaff old longer than it is deep or wide
to accommodate boundary conditions for the migrating cells; they tend to move
more freely lengthwise along the fi bers than width- or depth-wise between parallel-
running fi bers.

 Fiber size, packing density, and shape
 Table 17.02 gives you an idea of how fi ber sizes are distributed throughout the dermis.
Let ’ s call this the fi ber size distribution . A statistical histogram of the size distribution
is shown in Figure 17.04 . If the long axes of fi bers are aligned on average with a major
axis (the Z-axis in this model)—their meandering paths will provide the overall
multidirectional orientation that characterizes dermal collagen—you can estimate
the appropriate number of fi bers for a given volume from the number that intersect
the plane perpendicular to this major axis. We tested a number of diff erent densities
in Maya and arrived at a range of values that were both practical time-wise for Maya

 Parameter Example

 Diameter

d
d

d

 Cross-sectional geometry

 Directional orientation

θ

 Defl ection (waviness)

γ

 Packing density

versus

 TABLE 17.01

 Scaffold parameters.

485CHAPTER 17: GROWING AN ECM SCAFFOLD

and functioned well in the cell migration project. In a (100 � m) 3 cube these density
values equate to 20, 40, and 60 fi bers. In this project, you ’ ll fi ll the scaff old with 40
fi bers.

 Th e model fi ber circular fi ber cross-sections let us simplify the process of scaff old
generation. As you saw back in Chapter 05 , you can make fi ber models in Maya easily,
by extruding a cross-sectional shape along a spline curve (the fi ber axis). With this
approach, you may later choose to randomize the cross-sectional shape of the fi bers
to refl ect the irregular shapes seen in cut views of dermal collagen.

 Fiber orientation and intersections
 By defl ecting each fi ber along its length, you can capture in the model the character-
istic waviness and random orientation of dermal collagen seen in scanning electron
micrograph (SEM) data. As well, while dermal fi ber bundles do split apart and also
form cross-links with one another, they do not interpenetrate. It follows that your
Maya fi bers must also avoid interpenetrations—a considerable challenge given their
wavy paths and tight packing!

0

5

10

15

20

Si
ze

 d
is

tri
bu

tio
n

(%
) 25

30

35

3 6 9

Fiber diameter (μm)

12 18�
 FIGURE 17.04

 Size distribution of collagen fi ber
bundles measured from published
scanning electron micrographs 3 .

 Fiber diameter bins

 1 2 3 4 5

 Diameter (� m) 3 and under 6 9 12 18 and over

 Size distribution (%) 30 29 18 8 15

 TABLE 17.02

 Fiber sizes and size distribution from
measurements of published SEM of
dermal collagen.

 From electron micrograph
measurements made by the authors and
reported in reference 3.

 Forty fi bers accord nicely with
the range of 750–1500 fi bers
reported for real lab specimens 3.

486 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 Methods: Algorithm design
 Now that we ’ ve covered the essential morphometric parameters of the model, it ’ s
time to design an algorithm to build ECM scaff olds procedurally—that is, using MEL
and Maya ’ s built-in functions to make the model under algorithmic control. Here
then is the mission statement:

 Take a number of input parameters (scaffold dimensions, fi ber size distribution,
etc.) and build a scaffold of randomly oriented cylindrical surfaces.

 Let ’ s take a close look at the Maya elements that will make up the model and discuss a
strategy for equipping the fi ber orientation with the appropriate statistical properties.
 Figure 17.05 shows the diff erent fi ber model elements that are discussed below.

 The fi ber axis
 In Chapter 05 you created a fi ber model—an extruded tube—by fi rst making a spline
curve for the fi ber axis using the CV Curve tool, then making a circular profi le spline,
and fi nally extruding the circle along the axis using the Extrude tool. In this project,
you will use the same approach but, rather than placing the axis curve points manu-
ally, you ’ ll do so using the curve command from within an expression. Th e profi le cir-
cle will of course have the diameter of the fi ber (or tube) it creates.

 NURBS spheres called seeds
 Here we ’ ll introduce an abstraction that helps in the design and visualization of
the modeling process. You ’ ll use an object—which happens to be a NURBS sphere,

Fiber profile spline

Fiber origin

Fiber axis curve

Curve point

Fiber surface
created using the
extrude command

“Seed” (NURBS sphere)

Maya Timeline (frames)

Z-axis

Y-
ax

is

0 5 10 15
 FIGURE 17.05

 The elements of a single fi ber
model. Curve defl ections are shown

for the Y-axis only, but also occur
along the X-axis.

487CHAPTER 17: GROWING AN ECM SCAFFOLD

but doesn ’ t have to be—to represent the leading point of every fi ber axis. Rules of
motion—in the form of a random walk, collision avoidance, and adherence to scaff old
boundaries—govern the motion of these objects. As each object moves, it lays down a
spline curve in its path, which in the end is a fi ber axis. We call these objects seeds in
reference to their role in growing fi bers. Th e diameter of each seed is the same as the
diameter of the fi ber it represents.

 Th e next four sections outline the modeling strategy. As you read them, trace along
the fl owchart in Figure 17.11 to see how the diff erent pieces of this in silico procedure
relate to one another.

 Modeling with the timeline
 In the previous chapter, you used an animation expression to animate the crawl-
ing cell (remember: an animation expression is a script that Maya typically executes
each time the frame number changes on the timeline). In this project you ’ ll use an
expression actually to build the 3D scaff old model. Called moveSeeds , this expression
repositions each seed according a set of rules, which we ’ ll discuss shortly, and adds a
new CV point to the corresponding fi ber axis curve (Figure 17.04). As moveSeeds builds
the axes, the frame number is used as an incrementing variable, so that the model
evolves as the scene plays back. Using an expression to build your model, instead of
a MEL script that executes entirely at a single frame, allows you to watch the model
 grow before your eyes. If you wish, you can even make a rough playblast animation to
keep a visual record of the scaff old fi bers being created.

 A rule-based design
Th is project uses a rule-based design in order to move the seeds that determine the
fi ber paths. Th ere are three rules, each parceled in a procedure called rule1(), rule2(),
and rule3(), respectively. Th ey are shown schematically in Figure 17.06 . Each procedure
is called from the moveSeeds expression at every frame during playback and for every
seed in your scene. Each rule returns a vector: $v1, $v2, and $v3. Th ese vectors are
added together and then added to the current position of the seed in order to move it
(Figure 17.07). By parceling rules of motion into separate procedures instead of putting
them all in one you can easily turn off individual rules or add new ones in a modular
fashion.

 rule1() provides the random element to the seed motion using a biased random
walk algorithm—a variation on the random motility generated for the crawling cell
in the previous chapter—which is largely responsible for the meandering nature of
the fi ber paths. rule2() uses collision avoidance to keep seeds (and by extension, the
axes) from approaching one another too closely in order to minimize fi ber interpen-
etrations. By issuing standard MEL commands that query Maya ’ s internal geometry
engine, you can check for collisions very concisely, without having to formulate large
amounts of your own custom code. Finally, rule3() constrains the seeds within the
prescribed scaff old boundaries, which we ’ ll call the bounding box. Let ’ s take a quick
look at the methods used in each rule.

 rule1(): The random walk
To generate the meandering fi ber paths, you ’ ll employ a basic random walk algorithm.
It uses Maya ’ s random number generator (the rand() MEL function) to select one of

 Rule-based strategies are
common in agent-oriented
programming (AOP) approaches
to in silico biology.

488 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

Z ZZ

X

Y

Z

X

Y

Bounding box wall

Cell A

Cell B

Bounding box wall

Cell A
$vTotal

Sum the rule vectors

$vTotal

$v3

$v2

$v1

$v1 = rule1, the random walk
$v2 = rule2, collision avoidance
$v3 = rule3, bounding

$vTotal = $v1 + $v2 + $v3

Y Y

Current frame Next frame

Old
position

New
position

 FIGURE 17.07

 The vectors returned by rule1(),
rule2(), and rule3() are added

together to produce the stepwise
displacement $vTotal for

each seed.

Rule 3
Scaffold boundary

Rule 1
Random walk

Bounding box

Rule 2
Collision avoidance

Incremental
steps in the
Z-direction

X-axis

Z-axis

XY plane

Y-axis

 FIGURE 17.06

 Three rules are responsible for the
meandering fi ber paths, collision

avoidance, and keeping the fi bers
within the prescribed scaffold

volume.

489CHAPTER 17: GROWING AN ECM SCAFFOLD

nine possible vectors (dx, dy) relative to a seed ’ s current position (see Figure 17.08). We ’ ll
call the incremental Z-distance traveled by each seed, dz. Together, dx, dy, and dz
make the 3D random walk vector (dx, dy, dz). At each time step (one frame of scene
playback) the seed may either continue along its current course or change direction,
depending on a parameter we call persistence . Persistence here means the same thing
it did in the last chapter when it was applied to cell migration: the tendency to con-
tinue on the present course. When a seed ceases to persist, it selects a new direction
and a new persistence value. It then persists in the new direction for the prescribed
time until once again it selects a new direction and new persistence value. Th is proc-
ess is shown schematically in Figure 17.08 .

 So that you can take a straightforward approach to collision avoidance, all seeds will
advance uniformly in the Z-direction, resulting in a biased random walk.

 rule2(): Collision avoidance
 rule2 () evaluates the separation between a given seed (seed A in Figure 17.09) and every
other seed in the scene (represented by seeds B and C in Figure 17.09). If another seed
lies within a critical distance of seed A then an avoidance vector is calculated and

X

Z

Y

Local X-axis

Local Y-axis

(0, 0)

(�1, �1)

(�1, 1)

(1, 1)

(0, 0)

(1, �1)

(0, 1)

(0, �1)

(�1, 1)

(1, 0)

(0, 0)

(0, 0)

(0, 0)

(�1, 0)

(�1, �1)

(�1, �1) (�1, �1)

Previous course

Seed

New course

$dz $dz $dz

Frame i Frame i+1

First step Persistence

Direction change

Time

Frame i+2 Frame i+3

$dz = Z displacement in one frame

 FIGURE 17.08

 In this random walk algorithm, a
seed selects one of nine possible
vectors (including (0, 0)) in the XY
plane relative to its local (versus
global) position. dz is the seed ' s
displacement in the Z-direction.
If the seed is persisting, it moves
in the same direction it did in the
previous frame.

 Non-uniform movement in the
Z-direction would certainly
be desirable in some tissue
design applications. This would
be achieved by varying the
incremental step in Z on a per-
seed basis, and would require a
modifi ed approach to collision
detection and avoidance. This is
a good follow-up project!

490 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

added to a master avoidance vector called $ avoid , which is the return value of rule2 ()
and determines the “ avoidance ” component of seed A ’ s motion.

 Th e method used here is a simple approach to collision avoidance but is not fl awless—
the resulting scaff olds contain some interpenetrating fi bers. Collision avoidance in
crowded environments is by no means a trivial problem. More robust (and more com-
plex) solutions exist and we encourage you to explore the topic further if your in silico
modeling projects require absolute avoidance of collision between objects.

 rule3(): Bounding box
 rule3 () checks each seed to see if it lies outside of the bounding box. If so, the procedure
returns a vector called $ bound to the moveSeeds expression which is used to nudge the

X-axis

y-axis

$surfaceSep < $spacingMin

$avoid (resultant vector)

A

C

B

$centerSep
= mag(A � B)

$unitSep
= unit(A � B)

$spacingMin

$surfaceSep
= $centerSep � (DA + DB)/2

(DA and DB are the seed diameters)

A

B

A

B

A

B

A

B

$avoid AB = $avoidScale × $unitSep

C

B

$avoid AB

$avoid CB

B

Original course Collisions imminent New course

 FIGURE 17.09

 rule2() returns a vector, $avoid, that
is the sum of all avoidance vectors

between the current seed (seed
A in the illustration) and all other

seeds in the scene (B and C). The
procedure then performs the same
calculations on each of seed B and

C. The net result is a tendency for all
seeds to avoid one another, which
in turn minimizes the intersections

between fi ber surfaces once
the scaffold is built. The names

of vectors and scalars in this
illustration (e.g. $surfaceSep) are

the ones you ' ll use when composing
your MEL code. The vector math

functions for calculating magnitude
and unit vectors are denoted here
with the MEL commands mag and

unit, respectively.

491CHAPTER 17: GROWING AN ECM SCAFFOLD

seed in question back into the bounding box within the current frame. Th e strength of
the “ nudge ” varies exponentially with the distance of the seed outside the box, in order
to smooth the motion. Figure 17.10 shows this rule in schematic form.

 Randomizing the fi bers at the start
 Th e fi rst thing you ’ ll do before building the expressions and the rule procedures is
code a procedure called makeSeeds() that creates the seeds (one for every fi ber) and
positions them randomly in the XY plane at Z � 0. In the beginning, the seeds mark
the starting points of the fi ber axes. Th eir random placement will likely result in
overlapping of seeds. Th erefore, the moveSeeds expression will spend the fi rst several
frames of playback calling rules 1 and 2, to space the seeds out while keeping them
within the bounding box. We dubbed this process untangling and found through trial
and error that, for the packing densities you ’ re interested in with this project, the
seeds untangle by frame 20. Beginning at frame 20 moveSeeds calls all three rules to
move the seeds and grow the scaff old.

 Resetting the seeds
 After building a whole or partial scaff old, you may want to scrap it and start again.
You may also want to build a new model using diff erent parameters—without having
to create and untangle a new batch of seeds. To accommodate these situations, you ’ ll
write a short expression call resetSeeds that executes only at frame 1—that is, when
you rewind the playhead (current time indicator) to the start of the playback range.

New
course

New
course

Z

X or Y
Current frame Current frame

$outside

$bound = $boundScale
 × $outside

Present
course

Present
course

Inside bounding box

Outside bounding box

Before bounding After bounding

Previous frame Next frame Next frame FIGURE 17.10

 A vector called $ bound is used to
nudge errant seeds back into the
bounding box of the scaffold. $ bound
varies exponentially with distance of
the seed outside the box in order to
smooth the motion.

492 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 The fi ber surfaces
 Th e fi ber axes of your scaff old are complete once the seeds have traveled the length you
specify up front: 150 � m. At this point playback is halted from within the moveSeeds
expression and the motion rule procedures are no longer called. Th e next step then is
to make and position a profi le spline—a circle of the appropriate diameter—at the fi rst
CV of every curve. Th e extrude command is then called to make the fi ber surfaces.

 To your migrating cells in the next chapter, each NURBS tube represents the adhesion
contact surface of a collagen fi ber bundle. Subsequently, any point on a fi ber surface
can be queried for its position in 3D worldspace (X,Y,Z coordinates) and therefore
used to position a cell. In addition to the NURBS tube representing the fi ber surface
(which can be used to locate cells while providing a visual representation of this con-
tact surface) you can also query Maya for the 3D worldspace position of a point on
the axis curve and use it to position a cell. Th is saves a lot of coding. Th e bottom line
is that within each axis curve and its fi ber surface lies all the spatial information
needed to position and move cells within the scaff old.

 Algorithm summary
 To make things crystal clear before building the algorithm, let ’ s sum up the script ele-
ments (procedures and expressions) and the procedural modeling steps.

 1. makeSeeds() procedure
 (a) Create NURBS spheres called seeds.
 (b) Position the seeds randomly in a 100 x 100 μm plane parallel to the XY plane

at Z = 0.

 2. moveSeeds expression
 (a) For frames 2 to 20, untangle the seeds using rule1() and keep them bound

with rule3().
 (b) At frame 20, start a curve for every fi ber axis, at the position of the corre-

sponding seed.
 (c) After frame 20, call rule1(), rule2(), and rule3() to move the seeds as the

scene plays.
 (d) Add a CV to each fi ber axis at the position of the corresponding seed.

 3. rule1() procedure
 Calculate the random walk component of seed motion, biased in the positive

Z-direction.

 4. rule2() procedure
 Calculate the collision avoidance component of seed motion.

 5. rule3() procedure
 Calculate the bounding box component of seed motion.

 6. resetSeeds expression
 R eset the seeds to their untangled starting positions when the playhead is

rewound to frame 1.

 Th e fl owchart in Figure 17.11 shows how the procedures and expressions link together.
In the next section you will build them in the order we ’ ve listed above.

493CHAPTER 17: GROWING AN ECM SCAFFOLD

Has seed
traveled 150

μm ?

makeSeeds procedure
user inputs:
• Cube size
• Fiber number
• % of total fibers

allocated to each
diameter bin

resetSeeds expression
• Initialize global variables
• Return seeds to initial

positions
• Delete existing fiber

construction elements:
curves, circles, and
surfaces

moveSeeds expression
• Call the rule procedures
• Update seed positions
• At frame 20, create a

curve for every seed,
placing its first point at
the center of its seed

• After frame 20, append
a point to each curve at
the center of its seed

rule 2
Avoid collisions with
other seeds

rule 1
Random walk in XY plane;
uniform step in Z-direction

rule 3
Keep seeds within the
scaffold bounding box

yes

no

frame = 1
?

yes

no

Start

End FIGURE 17.11

 Flowchart for the scaffold algorithm.

494 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 Methods: Encoding the algorithm
 Unlike the previous project, in which the cellCrawl algorithm operated on a prebuilt
geometry model, this project requires no initial fi le setup. Everything to grow the
fi ber scaff old model in silico is contained in the scripts you ’ re about to build. We rec-
ommend composing them as you did the scripts in previous chapters: in an external
text editor, with each element (procedure or expression) saved in a separate text fi le
within your Maya Scripts directory on your hard drive. When your code ’ s done, you
can simply load the elements into a new Maya scene and make the scaff old. You may
wish to have Maya open as you follow along with the material below so that you can
test out certain commands or bits of code. You may also wish to test each script in its
entirety before moving on to the next one. Th is will save you from debugging all fi ve
scripts at once at the end of this chapter.

 If you want to begin growing scaff olds right away, you can open and play the ready-
made Maya scene fi le entitled scaffold.ma which is located on the CD-ROM. Th is
scene contains the resetSeeds and moveSeeds expressions and a group of seeds ready
to go. To grow the scaff old, you ’ ll need to source the three rule procedures which are
also on the CD-ROM.

 17_ECM_Scaffold/scenes/scaffold.ma (Maya scene fi le)

 17_ECM_Scaffold/MEL/rule1.mel

 /rule2.mel

 /rule3.mel

 The makeSeeds() procedure
 To save space we ’ ve foregone the usual “ author, date, etc. ” header information.

 /* Description:
 Run this procedure first when making a fiber scaffold. It creates
NURBS spheres called seeds, which are used in a subsequent
expression called moveSeeds that creates the fiber axes.

 The procedure arguments are as follows:
 $cubeSize The length of one side of the scaffold cube.
 $seedNum The number of seeds (and therefore fibers) to

be made.
 $three–$twentyfour The percentages of each of the fiber diameters.
 */

 global proc makeSeeds(float $cubeSize, int $seedNum, float $three,
 float $six, float $nine, float $twelve, float $eighteen) {

 /***** DECLARE THE VARIABLES. *****/

 /*
 $values[] An array of initial values for the widget

attributes.
 $bins[] An array of diameter bin sizes.
 $binSize The number of seeds in the current bin.

495CHAPTER 17: GROWING AN ECM SCAFFOLD

$diameter[] The six fiber diameters, one value for each bin.
 $dia The diameter of a given seed.

 $radius The radius of a given seed.

 $x, $y, $z Position the seeds randomly in the XY plane at

Z � 0� .
 */
 float $values[], $bins[], $binSize, $diameter[], $dia, $radius,

$x, $y, $z;

 /*
 $attributes[] Custom attributes to be added to the widget.

 $name The name of the current seed.
 */
 string $attributes[], $name;

 /*
 $arraySize The size of $attributes[];

 $i and $j Counters.
 */
 int $i, $j;

Next you ’ ll initialize the variables, make a locator object called widget, and assign it
custom attributes. Th ese attributes will store parameters that aff ect scaff old design.
Th ey will be queried in the moveSeeds expression and the three rule procedures. Unlike
a variable value which gets erased when Maya is closed, an attribute value gets written
into the scene fi le. Th erefore the parameter values will be ready and waiting. Th at way
you won ’ t have to enter them by hand each time you restart Maya and open an exist-
ing scaff old scene fi le. Th e initial attribute values are specifi ed in $values. Th ese are the
numbers we recommend you start with. You can change them at any time by selecting
the widget and entering new values in the Channel Box.

 /***** INITIALIZE THE VARIABLES. *****/

 $attributes = { "cubeSize", "maxSpan", "minSpan", "dx", "dy", "dz",
 " persistMax", "persistMin", "sizeBias", "spacingMin",

 " avoidScale", "boundScale"};
 $values = {$cubeSize, 40�, 20�, 1, 1, 1, 10�, 0�, 0�.0�5, 2, 2, 1};
 $arraySize = size($attributes);
 $bins = {$three, $six, $nine, $twelve, $eighteen};
 $diameter = {3, 6, 9, 12, 18};

 /***** MAIN BODY *****/

 // Make a locator called widget to store scaffold design
 parameters.

 spaceLocator -p 0� 0� 0� -name "widget";

 for ($i = 0� ; $i < $arraySize; $i + +) {

 // Add and set values for the custom attributes.
 addAttr -ln $attributes[$i] -dv 0� widget;
 string $tmpStr = "widget." + $attributes[$i];
 setAttr -e -keyable true $tmpStr;

 setAttr $tmpStr $values[$i];

 }

 The name widget is arbitrary. It
doesn ' t refer to a specifi c Maya
construct.

496 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 Make the seeds
 Next you ’ ll make two for loops, one nested inside the other, to create the seeds. Th e
outer loop cycles through the seed size (i.e. fi ber diameter) distribution variables,
$three, $six, and so on. Th e inner loop makes and positions the seeds for each size.
Th e rand() command is used to generate random X and Y position values that lie
within the scaff old boundaries.

 // Make the seeds. $i counts the array index in $diameter;
 for ($i = 0�; $i < 5; $i + +) {

 $binSize = (float) $bins[$i]/10�0� * $seedNum;

 for ($j = 0�; $j < = $binSize ; $j + +) {

 $dia = $diameter[$i];
 $radius = $dia/2;

 // Set random start positions
 $x = rand((0� + $radius), ($cubeSize - $radius));
 $y = rand((0� + $radius), ($cubeSize - $radius));
 $z = 0� ;

 // Create a name for the current seed.
 $name = (" seed " + $dia + "_" + $j);

 Create the fi rst seed of each size (diameter) bin (see Table 17.02) using the sphere com-
mand. Th e radius is set to 0.5, giving a starting diameter of 1. Th e seed is then scaled
to the appropriate fi ber diameter (3, 9, etc.). Scale is a compound attribute, composed
of scaleX , scaleY , and scaleZ , therefore, it must be set using the - type double3 fl ag with
the setAttr command. Subsequent seeds of the same size can then be duplicated from
the fi rst. You ’ ll ensure only one “ fi rst ” seed is created, and the rest duplicated from it,
by checking if the fi rst exists with an “ if not objExists ” expression below (where “ not ”
is expressed by the character ! in MEL). If the sphere does not exist, the expression
returns 1 and the code in the curly brackets executes. On the other hand, if the sphere
does exist, the expression returns 0, and the fi rst seed is duplicated.

 // Make and position the sphere.
 if (!'objExists seed3_0� ') {

 // Create a new NURBS sphere.
 sphere -r 0�.5 -n $name;

 With this next bit of code, you ’ ll add a custom compound attribute called posInit
to the seed ’ s transform node and use it to store the seed ’ s initial position. Th is
attribute ’ s values will be used in the resetSeeds expression to return the seeds to
their starting points when the frame number is reset to 1.

 // Add custom attributes.
 addAttr -longName posInit -attributeType double3

 $name;
 addAttr -ln posInitX -at double -parent posInit

 $name;
 addAttr -ln posInitY -at double -p posInit $name;
 addAttr -ln posInitZ -at double -p posInit $name;

 // Make the attributes keyable.
 setAttr -e -keyable true ($name + ".posInit");
 setAttr -e -keyable true ($name + ".posInitX");
 setAttr -e -keyable true ($name + ".posInitY");

 The parent fl ag in the addAttr
command indicates the attribute

that is to be the new attribute ' s
parent; in this case: posInit .

497CHAPTER 17: GROWING AN ECM SCAFFOLD

 setAttr -e -keyable true ($name + ".posInitZ");
 }
 else duplicate -n $name seed3_0� ;

 // Scale the sphere to the proper diameter.
 setAttr ($name + ".scale") -type double3 $dia $dia $dia;

 // Set the custom vector attribute values.
 setAttr -type double3 ($name + ".posInit") $x $y $z;

 // Move the sphere to $x $y $z.
 move $x $y $z $name;

 }
 }

 Conclude the procedure
 In this last bit of code, you ’ ll group the seeds (to keep the Outliner window manage-
able) and then send a message to the Maya user (most likely yourself) stating that the
procedure is complete. Next, you ’ ll set the current time indicator to frame 1 in order
to force the resetSeeds expression to evaluate and thereby initialize key global vari-
ables. Finally, close the procedure using a curly bracket. It is often helpful to print a
sample procedure call to the Script Editor and Command Line. You can cut, paste, and
execute the sample code after loading the procedure.

 // Group the seeds.
 group -n "groupSeeds" 'ls -tr "seed*" ';

 // Print user feedback in the Script editor.
 print " \nThe seeds are ready to go! ";

 // Set the current time to 1.
 currentTime 1;

 } // End makeSeeds procedure.

 // Print user instructions in the Script editor.
 print " Enter: makeSeeds(10�0�, 40�, 30�, 29, 18, 8, 15) ";

 Th at ’ s all for this procedure. You can enter and run it now if you like, or wait until
you ’ ve composed the remaining scripts. Th e next script is the resetSeeds expression.

 The resetSeeds expression
 After creating a group of seeds, you may want to make several scaff olds with it, testing
the eff ects of diff erent random walk parameters. Th is expression initializes the global
variables and snaps the seeds back to their starting positions whenever the current time
changes to frame 1 from another frame or when you press the Edit button in the
Expression Editor at frame 1. It is also in this expression that you will set the random walk
parameters. Th e random walk proper will be coded in the rule1() procedure, and called from
the animation expression named moveSeeds . You ’ ll build moveSeeds in the next section.

 For clarity we ’ ll present this expression without the escape line break notation, /n ,
that would allow you to enter it using the expression command. As mentioned in
 Chapter 12 , we fi nd all but the simplest one-line expressions easier to manage when
composed with line breaks, and then copied and pasted directly into the Expression
Editor, without regard for the restrictions imposed by the expression command.

498 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 Start the script with a test of the frame number. Since this expression needs to exe-
cute only at frame 1, open with a conditional statement that prevents Maya from
wasting time reading variable declarations at other frames. Th e currentTime com-
mand is used to set or, in this case, query the current time in the timeline.

 /* Description:
 This expression resets spheres called "seeds" to starting positions
and declares key variables. These variables are used in the rule
procedures to calculate the motion of seeds, and therefore the
paths of scaffold fibers. This expression executes only at frame 1.
 */

 if ('currentTime -query' = = 1)
 {

 /***** DECLARE THE VARIABLES. *****/

 /*
 $seedPos[] A string array of seed positions.
 $v1_old[] This stores the motion rule vectors and is used

for persistence.
 */
 global vector $seedPos[], $v1_old[];

 /*
 $seedNames[] A list of seed names.

 */
 global string $seedNames[];

 /*
 $cubeSize The X and Y dimensions of the scaffold.
 $dx, $dy, $dz Incremental displacements used in rule1().
 $length[] Tracks the length of each fiber.
 */
 global float $cubeSize, $dx, $dy, $dz, $length[];

 /*
 $end 1 if seeds have reached the scaffold end,

0� if not.
 $seedCount The number of seeds in the scene.
 $persistence[] An array of persistence times for all seeds.
 $persistMin The minimum persistence time which is stored

in the widget's persistMin attribute.
 $persistMax The maximum persistence time.

 */
 global int $end, $seedCount, $persistence[], $persistMin,

 $persistMax;

 /*
 $trans The translate attribute values for the current

seed.

 */
 vector $trans;

 /*
 $name The name of the current seed.
 */

 Remember that global variables
must be declared within each

script that uses them.

499CHAPTER 17: GROWING AN ECM SCAFFOLD

 string $name;
 int $i;

 Initialize the variables

 Here you ’ ll clear the global array variables and set the random walk displacement
variables, $dx, $dy, and $dz to good starting values (we found them by experimenting
with the procedure). When you begin making scaff old models, try varying $dx, $dy,
and $dz yourself, and study their eff ect on scaff old architecture.

 /***** INITIALIZE THE VARIABLES. *****/

 clear ($seedPos);
 clear ($v1_old);
 $seedNames = 'ls -transforms "seed*" ';
 $seedCount = size($seedNames);
 clear ($persistence);
 clear ($length);
 $end = 0� ;
 $cubeSize = 'getAttr widget.cubeSize';
 $dx = 'getAttr widget.dx';
 $dy = 'getAttr widget.dy';
 $dz = 'getAttr widget.dz';
 $persistMin = 'getAttr widget.persistMin';
 $persistMax = 'getAttr widget.persistMax';
 $i = 0� ;
 // Set playback to loop only once.
 playbackOptions -l "once";

 Reset seeds to their initial positions
 Th is next bit of code resets every seed to its starting position at Z � 0 using the posInit
attribute of each seed ’ s transform node. Th is vector attribute is in the form << x, y, z >>
and cannot be used directly in the setAttr command. An intermediate step is required:
assign posInit to a temporary vector, then use the latter to set the attribute.

 /***** MAIN BODY *****/

 // Set seed positions equal to their initial positions.
 for ($name in $seedNames)
 {

 // Query the initial seed position and move it there.
 $trans = 'getAttr ($name + ".posInit")';
 setAttr ($name + ".translate") ($trans.x) ($trans.y)
 ($trans.z);

 Now store the initial seed positions in the variable $ seedPos[] for use in the moveSeeds
expression.

 // Assign the position vector to the global variable
 $seedPos[].
 $seedPos[$i] = < < $trans.x, $trans.y, $trans.z>>;

 // At frame 1 $oldPosition equals $seedPos.
 $oldPosition[$i] = $seedPos[$i];

 // increment the counter.
 $i++;

500 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 } // End seed name loop.

 // Provide user feedback.
 print "resetSeeds expression has finished. ";

 Th e next four lines are optional. Th ey delete any existing fi ber axis curves, profi le splines
(circles), and fi ber surfaces. Th is is handy when you ’ re testing scaff old parameters (those
stored in the custom widget attributes) but can lead you to accidentally delete a scaff old
you wanted to keep, just by returning the seen to frame 1 (which executes this expres-
sion). When you want to make scaff olds to keep, comment these lines out or delete them.

 // Delete fiber elements on rewind.
 if ('objExists groupFibers') delete groupFibers;
 if ('objExists fiberAxis3_0� ') delete 'ls -tr "fiberAxis*" ';
 if ('objExists nurbsCircle1') delete 'ls -tr "nurbsCircle*" ';
 if ('objExists fiberSurface3_0� ') delete 'ls -tr "fiberSurface*" ';

 // Select the widget so the scaffold parameters appear in the
 channel box. select widget;

 } // End resetSeeds expression.

 The moveSeeds expression
 Th is expression calls the procedures, rule1, rule2, and rule3, in order to update the
position of each seed. Each procedure requires as an argument the current seed
number, which is stored in the variable $i. Each procedure then returns a vector
called $v1, $v2, and $v3, respectively. Th ese vectors are added to the current position
vector, stored in $ seedPos[$i] , which is in turn used to set the translate X, Y, and Z
attributes for seed[$i] . Once the seed has been moved, a new curve point is added to
the corresponding fi ber axis curve.

 Since this expression is intended to be read after, but not at, frame 1, let ’ s start with a
conditional statement similar to that used in resetSeeds .

 /* Description:
 This expression moves spheres called "seeds" one step in the Z-
direction each time the frame increments, while building splines
that follow the seed paths.

 The rules of motion are contained in three procedures:
 rule1() Returns $v1, a biased random walk vector.
 rule2() Returns $v2, a collision avoidance vector.
 rule3() Returns $v3, a bounding vector.
 */

 if ('currentTime -query' > 1)
 {

 /***** DECLARE THE VARIABLES. *****/

 global vector $seedPos[], $v1_old[];
 global float $length[], $dx, $dy, $dz, $cubeSize;
 int $i;

 /*
 $curveNames[] A list of fiber axis curves.

501CHAPTER 17: GROWING AN ECM SCAFFOLD

 */
 global string $curveNames[], $seedNames[];

 /*
 $frameCheck Used to send the current frame number to the rule

procedures. A global variable must be used since
the Maya variable " frame " cannot be queried outside
of its scope: this expression.

 */
 global int $frameCheck, $seedCount, $end;

 /*
 $seed The current seed.
 $index[] Stores the return strings from the tokenize command.

 $curve The current fiber axis (NURBS curve).
 $circle The current fiber profile (NURBS circle).
 $surface The current fiber surface (extruded NURBS tube).
 $cpos The closestPointOnSurface node.
 $posi The pointOnSurfaceInfo node.
 $fiberGroup A group containing $curve, $circle, and $surface.
 */
 string $seed, $index[], $curve, $circle, $surface, $cpos, $posi;
 string $fiberGroup;

 /*
 $v1 The return vectors from rule1() procedure.
 $v2 The return vectors from rule2() procedure.
 $v3 The return vectors from rule3() procedure.
 $vTotal The sum of $v1, $v2, and $v3.
 $oldPos The seed position prior to calling rules 1, 2,

 and 3.
 $cStart The axis curve ’s starting point.
 */
 vector $v1, $v2, $v3, $vTotal, $oldPos, $cStart, $trans;

 /*
 $z The Z-position of the first seed (seed0�).
 $maxSpan The number of curve spans corresponding to the

smallest diameter fiber. Spans are curve sections
between edit points.

 $minSpan The number of curve spans corresponding to the
largest diameter fiber.

 $span The number of spans for the current fiber curve.
 $maxD The largest seed diameter.
 $minD The smallest seed diameter.
 */
 float $z, $maxSpan, $minSpan, $span, $maxD, $minD, $diameter;

 /***** INITIALIZE THE VARIABLES. *****/

 // Set the global variable $frameCheck for use in the
 procedures.

 $frameCheck = frame;
 $maxD = 18;
 $minD = 3;

502 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 Check if the seed journey is complete
 Th e fi rst thing the expression must do is check if the seeds have completed their jour-
ney. $end is used as a Boolean variable (although it ’ s declared as an integer), with 0 equal
to false and 1 equal to true . Also, since all seeds move uniformly in the Z-direction, you
need to only query the translateZ value of the fi rst seed to know whether all seeds have
reached their destination and therefore whether to set $end equal to 1.

 /***** MAIN BODY *****/

 // Check if the seeds have reached the scaffold end.
 $z = 'getAttr ($seedNames[0�] + " .tz ")';
 if ($z > = $cubeSize * 1.5) $end = 1;

 if ($end == 0�) { // Seeds are still traveling

 Main loop
 Th is is a for loop that increments for every seed in the scene, calls the rule proce-
dures, and builds the axis curves. Because $seedCount is a global variable and was
initialized in resetSeeds , you needn ’ t set its value in this expression. From frame 2
to 20, only rule2() and rule3() are called in order to space out the seeds while keep-
ing them inside the bounding box (see Figure 17.12). At frame 20 the curves are started.
After frame 20 all three rules are called.

 // Loop for every seed.
 for ($i = 0� ; $i < $seedCount; $i + +) {

 // Get the seed position at the end of the previous
 frame.
 $oldPos = $seedPos[$i];

 /***** RULES OF MOTION *****/

 if (frame < = 20�) {

 // Call the avoid and bounding procedures.
 $v1 = <<0� , 0� , 0� >>;
 $v2 = 'rule2($i)';
 $v3 = 'rule3($i)';

 }

 FIGURE 17.12

 This front view shows the seeds at
the start (a) and the end (b) of the

fi rst 19 frames of a modeling run. In
the interim, rule2() and rule3()

were called each frame to eliminate
seed intersections and keep them

within the bounding box
(gray square).

(a) (b)

503CHAPTER 17: GROWING AN ECM SCAFFOLD

 else { // frame > 20� .

 // Call the random walk (rule1) as well.
 $v1 = 'rule1($i)';
 $v2 = 'rule2($i)';
 $v3 = 'rule3($i)';

 }

 Update the seed position
Now the rule vectors are added to the seed ’ s current position to determine its new
position. $vTotal is shown graphically in Figure 17.07 . $v1_old[] stores components of
the seed ’ s current motion that you ’ ll use in rule1() as the seed ’ s persistence vector.
Th is vector incorporates the full random walk component and half of each of the
avoidance and bounding components of motion.

 // Update the position array for seed $i.
 $vTotal = $v1 + $v2 + $v3;
 $seedPos[$i] + = $vTotal;

 /* Store the previous seed direction for persistence.
This vector is used in rule 1. */
 $v1_old[$i] = $v1 + ($v2 + $v3)/2;

 // Set the translate attribute for seed $i.
 $seed = $seedNames[$i];
 $trans = $seedPos[$i];
 setAttr ($seed + ".translate") ($trans.x) ($trans.y)
 ($trans.z);

 Build the fi ber axis curves
 At frame 20, after the seeds have untangled, a curve object is created for every seed.
Each curve is given a unique name and a custom attribute called diameter . Both fea-
tures will be used in the next project to locate cells on the fi ber surfaces.

 /***** MAKE OR UPDATE THE FIBER CURVES *****/

 /*
 Create the name of the fiber curve. Begin by tokenizing
the seed name at the split character "d". E.g. "seed3_7"
gets split into "seed" and "3_7";
 */
 tokenize $seed "d" $index;
 $curve = "fiberAxis" + $index[1];
 $diameter = 'getAttr ($seed + ".scaleX")';

 if (frame = = 20�) {

 // Make a fiber curve.
 curve -point ($trans.x) ($trans.y) ($trans.z) -n
 $curve;

 The degree to which the
avoidance and bounding vectors
contribute to persistence is yet
another degree of control you
have over scaffold shape. When
determining how to calculate
$v1_old[] —the random walk
persistence vector—we found
that including the full avoidance
and bounding vectors caused
seeds to intersect more than
we ' d like. However, excluding
avoidance and bounding vectors
from persistence altogether
resulted in seed paths (or fi ber
axes) too angular and lacking the
smooth curvature seen in natural
ECM scaffolds. A happy medium
was found using half of the
avoidance and collision vectors.
Incorporating these values into
persistence achieves good
curvature without overtly forcing
seeds to intersect.

504 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 /* Add a custom diameter attribute and set it to
match the diameter of the corresponding seed. */

 addAttr -ln diameter -at double -min 0� -max 48 -dv 0�
 $curve;
 setAttr -e -keyable true ($curve + ".diameter");
 setAttr ($curve � ".diameter") $diameter;

 }

 After frame 20, a CV is added to the curve at each frame using the append fl ag with
the curve command.

 else if (frame > 20�) {

 // Append an edit point to the curve.
 curve -append -p ($trans.x) ($trans.y) ($trans.z)
 $curve;

 // Increment length of the fiber.
 $length[$i] += mag($trans - $oldPos);

 }
 } // End loop for every seed.

 } // End if ($end == 0�).

 Next, you ’ ll rebuild the curve, reducing its spans to the number specifi ed in the
 maxSpan and minSpan attributes of your control widget. Reducing the spans smoothed
the fi ber axis curve by eliminating CVs. However, if too few spans exist and the curve
has frequent defl ections, the resulting surface may not maintain a cylindrical shape
along its length. Furthermore, the number of spans will be scaled according to fi ber
diameter. A small diameter fi ber requires more CVs to maintain a consistent cross-
section than does a large diameter fi ber. Th e widget attributes maxSpan and minSpan
store the values corresponding to the 3 and 18 � m fi ber diameters, respectively. Th e
intermediate span values will be calculated in the code below, assuming a linear rela-
tionship between spans and diameter.

 Th e rebuildCurve command has a fl ag called keepRange fl ag which you ’ ll set to 0 in
order to reparameterize the curves to a range of 0–1. Th is allows you to query a point
on a curve using the pointOnCurve command and a parameter value between 0 and 1;
0 corresponds to the start of the curve and 1 to the end.

 /***** BUILD THE FIBER SURFACES *****/
 if ($end = = 1) {

 // Stop playback.
 play -state off;

 // Change $end so that this code will be called only once.
 $end = 2;

 // Loop for every curve.
 $curveNames = 'ls -transforms "fiberAxis*" ';
 $i = 0� ;
 for ($curve in $curveNames) {

 $diameter = 'getAttr ($seedNames[$i] + ".scaleX")';

 // Rebuild the curve.

505CHAPTER 17: GROWING AN ECM SCAFFOLD

 $maxSpan = 'getAttr widget.maxSpan';
 $minSpan = 'getAttr widget.minSpan';
 $span = (($minSpan - $maxSpan)*$diameter + ($maxD*$maxSpan
 -$minD*$minSpan))/($maxD - $minD);
 rebuildCurve -keepRange 0� -spans $span $curve;

 // Tokenize $curve to get its index number.
 tokenize $curve "s" $index;

 // Make the NURBS profile circle.
 $circle = "nurbsCircle" + $index[1];
 circle -center 0� 0� 0� -normal 0� 0� 1 -radius ($diameter/2)
 -n $circle;

 // Query the curve's starting point.
 $cStart = 'pointOnCurve -parameter 0� -position $curve';

 // Move the circle to the start of the curve.
 move -relative ($cStart.x) ($cStart.y) ($cStart.z) $circle;

 Note that you ’ re creating the NURBS circle at the Maya world origin (0 0 0) and then
moving it to the starting point of the curve. Why not just create the circle at this sec-
ond location in the fi rst place? If you do, the circle Translate attributes will be 0 0 0
even though the object center is not at the world origin. Because of the way the
extrude algorithm works, Maya will double transform the resultant surface, plac-
ing the fi ber surface nowhere near the axis curve. Making the circle at the origin and
then moving it with the move command to the axis curve origin avoids the double
transformation, placing the surface at its proper location along the fi ber axis.

Th ere are three key fl ags to be aware of for the extrude command: extrudeType ,
 fixedPath , and useProfileNormal . An extrudeType value of 2 specifi es a tube . If true
(a Boolean value), fixedPath positions the extruded surface relative to the axis curve
as opposed to the profi le curve (see Figure 17.13 for the diff erence between a true and
false setting for this fl ag). If useProfileNormal is true then the surface will follow the
profi le normal direction as it extrudes along the path of the fi ber curve, allowing the
surface to accurately refl ect the curvature of the path.

 // Extrude the NURBS surface.
 $surface = "fiberSurface" + $index[1];
 extrude -extrudeType 2 -fixedPath 1 -useProfileNormal
 1 -n $surface $circle $curve;

 // Add a custom length attribute to the surface.
 addAttr -ln length -at double -dv 0� $surface;
 setAttr -e -keyable true ($surface + ".length")
 $length[$i];

 // Add a custom diameter attribute to the surface.
 addAttr -ln diameter -at double -dv 0� $surface;
 setAttr -e -keyable true ($surface + ".diameter")
 $diameter;

 // Create closestPointOnSurface node and connect it to
 the surface.
 $cpos = "cpos" + $index[1];
 createNode closestPointOnSurface -n $cpos;
 connectAttr -force ($surface + ".worldSpace[0�]")
 ($cpos + ".inputSurface");

 // Add a diameter attribute to cpos.
 addAttr -ln "diameter" -at double -dv $diameter $cpos;
 setAttr -e -keyable true ($cpos + ".diameter");

Note : In earlier versions of Maya,
the - name fl ag in the extrude
command didn't work and the
resulting object was given a
default name. If you ' re using a
version of Maya earlier than 8,
you may have to name each fi ber
surface immediately after it's
created by using the rename
command.

506 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 // Create pointOnSurfaceInfo node and connect it to the
 surface.
 $posi = "posi" + $index[1];
 createNode pointOnSurfaceInfo -n $posi;
 connectAttr -force ($surface + ".worldSpace[0�]")
 ($posi + ".inputSurface");

 // Group together each fiber ’s curve, circle, and
 surface nodes.
 $fiberGroup = "fiberGroup" + $index[1];
 group -n $fiberGroup $curve $circle $surface;

 // Increment the counter.
 $i + + ;

 } // End loop for every curve.

 // Group all of the fibers together.
 group -n "groupFibers" 'ls -tr "fiberGroup*" ';

 // Select the widget so scaffold parameters appear in the
 channel box. select widget;

 } // End if ($end = = 1).
 } // End moveSeeds expression.

 Th at ’ s it for the moveSeeds expression. Next let ’ s give it something to call: the rule
procedures.

nurbsCircle

fiberAxis

fiberSurface

a

b
 FIGURE 17.13

 Setting the fi xedPath fl ag to " 1 " in
the extrude command positions the

extruded surface relative to the fi ber
axis path (a) rather than the profi le

curve (b).

507CHAPTER 17: GROWING AN ECM SCAFFOLD

 rule1(): The random walk
rule1() calculates the random walk we described starting on page 487. Let ’ s start
with the header information. Again, to save space, we ’ ll include only the description.

 /* Description:
 This procedure moves seeds randomly in the xy plane and positively
in the z-direction. To "run" is to continue in the same direction.
Between persistence runs, a seed picks a new direction. This
procedure is called from the moveSeeds expression.
 */

 Note that this procedure is of type “ vector ” and therefore returns a vector value to
 moveSeeds . It requires a single argument, $i, which is the current seed number.

 global proc vector rule1(int $i) {

 /***** DECLARE THE VARIABLES. *****/

 global vector $v1_old[];
 global string $seedNames[];
 global float $dx, $dy, $dz;
 global int $persistence[], $persistMin, $persistMax;

 /*
 $randomWalk The return value of this procedure.
 */
 vector $randomWalk, $trans;

 /*
 $xDir The X-component of the random walk.

 $yDir The Y-component of the random walk.
 $diameter The diameter of the current seed.
 $sizeBias Used to scale the random walk steps according to

fiber (or seed) diameter.
 $base Used to calculate $sizeBias.
 $exponent Used with $base to calculate $sizeBias.
 */
 float $xDir, $yDir, $diameter, $sizeBias, $base, $exponent;

 Th e persistence[] variable stores the time, in frames, to the next direction change
in the random walk. It was set to 0 for every seed in the resetSeeds expression using
the clear command. Before this procedure calculates new directions for the current
seed, it must check to see if it ’ s persisting .

 /***** MAIN BODY *****/

 // Has this seed ceased persisting?
 if ($persistence[$i] < 1){

 // Pick a new direction.
 $xDir = floor(rand(-1,2)) * $dx;
 $yDir = floor(rand(-1,2)) * $dy;

 // Pick a new $persistence.
 $persistence[$i] = rand($persistMin, $persistMax);

 }

508 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 Th e floor command returns the largest integer that is still less than the argument
given to it. For example, floor(-0.09) returns -1 and floor(0.09) returns 0. When used
with the rand() command it allows you to generate random integers. If persistence[]
for the current seed is >1, the seed will continue on its present course using the
 $v1_old[] stepwise displacement vector from the previous frame. Th en persistence[$i]
is decremented by 1.

 else {

 // The seed is persisting and takes the same step it did
 last time.

 $trans = $v1_old[$i];
 $xDir = $trans.x;
 $yDir = $trans.y;

 // Decrement $persistence By 1 frame.
 $persistence[$i] - � 1;

 }

 With less cross-sectional rigidity, smaller fi bers will tend to show more directional
defl ection over a given distance than larger ones. Th e next segment of the code scales the
random walk result for diff erent fi ber sizes, and therefore has a large impact on scaff old
architecture. Th e $bias variable queries the widget sizeBias attribute, and is used as the
exponent with the MEL pow() function. For a sizeBias value of 1, the random walk is
scaled down for all fi bers by a factor of 3/ $diameter . Th is means that 3 � m fi bers will get the
full eff ect of the random walk vector calculated above, while 18 � m fi bers will get 3/18 �
the eff ect of the random walk. Higher sizeBias values result in smaller defl ections for
all fi bers with a diameter �3. We recommend starting with a sizeBias value of 0.05 and
then increasing it with each successive modeling run as you tune your scaff old design.

 // Scale the random walk according to fiber diameter.
 $diameter = 'getAttr ($seedNames[$i] + ".scaleX")';
 $exponent = ('getAttr widget.sizeBias');
 $base = 3/$diameter;
 $sizeBias = pow($base, $exponent);
 $xDir = $xDir * $sizeBias;
 $yDir = $yDir * $sizeBias;

 Th e last step returns the result of this procedure to the expression that called it,
moveSeeds.

 // Return the random walk vector to the moveSeeds expression.
 $randomWalk = < < $xDir, $yDir, $dz>>;
 return $randomWalk;

 } // End procedure.

 rule2(): Collision avoidance
 Here you ’ ll use a strategy similar described starting on page 489 and in Figure 17.08 .
Like rule1() this procedure takes the current seed, $i, as its argument and returns a
vector to the moveSeeds expression.

509CHAPTER 17: GROWING AN ECM SCAFFOLD

 /* Description:
 This procedure moves seeds apart if they come within a critical
distance of one another. It is called from the moveSeeds expression.
 */

 global proc vector rule2 (int $i) {

 /***** DECLARE THE VARIABLES. *****/

 global vector $seedPos[];
 global string $seedNames[];
 global int $seedCount;
 int $i, $j;

 /*
 $avoid The vector returned from this procedure.
 $sepUnit The unit vector (of magnitude 1) for $centerSep.
 */
 vector $avoid, $sepUnit;

 /*
 $CenterSep The distance between the centers of seeds $i

and $j.
 $surfaceSep The distance between the surfaces of seeds $i

and $j.
 $iDiameter The diameter of seeds $i.
 $jDiameter The diameter of seeds $j.
 $spacingMin The minimum tolerated surface separation between

seeds $i and $j.
 $avoidScale Scales the avoid vector.
 */
 float $CenterSep, $surfaceSep, $iDiameter, $jDiameter,
 $spacingMin;
 float $avoidScale;

 /***** INITIALIZE THE VARIABLES. *****/

 $avoid = <<0� ,0� ,0� >>;
 $spacingMin = 'getAttr widget.spacingMin';
 $avoidScale = 'getAttr widget.avoidScale';
 $iDiameter = 'getAttr ($seedNames[$i] + ".scaleX")';

 Th is procedure evaluates the separation, $surfaceSep , between the current seed and
every other seed in the scene, one at a time. If $surfaceSep is less than a critical value,
 $spacingMin , then a vector is added to the return avoidance vector, $avoid . After all
seeds have been considered, $avoid is the sum total of every step the current seed
must take to avoid colliding with the others.

 /***** MAIN BODY *****/

 // Loop for every seed in the scene.
 for ($j = 0� ; $j < $seedCount; $j + +) {

 // The current seed can't collide with itself. Therefore:
 if ($j ! = $i) {

 // How far apart are seed $i and $j centers?
 $centerSep = mag($seedPos[$i] - $seedPos[$j]);

510 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 // How far apart are their surfaces?
 $jDiameter = 'getAttr ($seedNames[$j] + ".scaleX")';
 $surfaceSep = $centerSep - ($iDiameter + $jDiameter)/2;

 if ($surfaceSep < $spacingMin) {

 // The seeds are too close to one another.
 $sepUnit = unit ($seedPos[$i] - $seedPos[$j]);
 $avoid += ($avoidScale * $sepUnit);
 }
 }

 }

 // Zero the Z-component of $avoid.
 $avoid = < < $avoid.x, $avoid.y, 0� >>;
 // Return the collision avoidance vector to the moveSeeds

 expression.
 return $avoid;

 } // End procedure.

 Th at ’ s it for rule2! You have just one more short procedure to complete and you ’ ll be
ready to build your fi rst scaff old.

 rule3(): Bounding
 Like rule1() and rule2(), this procedure takes the current seed, $i, as its argument
and returns a vector to the moveSeeds expression.

 /* Description:
 This procedure constrains seeds to the scaffold bounding box. The
bounding box depth and width dimensions are stored in the cubeSize
attribute of the widget.
 */

 global proc vector rule3 (int $i) {

 /***** DECLARE THE VARIABLES. *****/

 global vector $seedPos[];
 global float $cubeSize;
 global string $seedNames[];
 int $i;

 /*
 $bound The return vector for this procedure.
 */
 vector $bound, $trans;

 /*
 $radiusSeed radius.
 $outside The distance from the seed surface to a

corresponding side of the bounding box.
 $boundScale A multiplier to scale the X

511CHAPTER 17: GROWING AN ECM SCAFFOLD

 $pushX The X-distance by which the seed will be pushed
back inside the bounding box.

 $pushY The Y-distance by which the seed will be pushed
back inside the bounding box.

 */
 float $pushX, $pushY, $outside, $radius, $boundScale;

 /***** INITIALIZE THE VARIABLES. *****/

 $boundScale = 'getAttr widget.boundScale';
 $trans = $seedPos[$i];
 $radius � 'getAttr ($seedNames[$i] � ".scaleX")'/2;

 Determine if the seed is outside of the bounding box in the X-direction.

 /***** MAIN BODY *****/

 // Check bounding in the X-direction.
 if (($trans.x - $radius) < 0�) {

 // The seed is outside the bounding box in the negative
 X-direction.
 $outside = 0� - ($trans.x - $radius);
 $pushX � $boundScale*sqrt($outside);

 }

 Using the square root of $outside gently pushes the seed back toward the bounding box
(note the smooth curvatures of fi ber paths that leave and then re-enter the bounding
box in Figure 17.14). A linear or exponential push (exponent � 1) tends to launch the seed
back into the bounding box, causing large loops in fi ber paths and collisions between
seeds.

 else if (($trans.x + $radius) > $cubeSize) {

 // The seed is outside the bounding box in the positive
 X-direction.
 $outside = ($trans.x + $radius) - $cubeSize;
 $pushX = -$boundScale*sqrt($outside);

 }

FIGURE 17.14

 This Front view shows the seeds
and fi ber axes (a) half-way through
and (b) at the end of a modeling
run. This view demonstrates how
rule2() and rule3() keep the seeds
(and therefore the fi ber axes) largely
free of intersections and within the
bounding box (red square).

(a) (b)

512 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 else { // The seed is in the box.
 $pushX = 0� ;
 }

 Determine if the seed is outside of the bounding box in the Y-direction.

 // Check bounding in the Y-direction.
 if (($trans.y - $radius) < 0�) {

 // The seed is below the bounding box.
 $outside = 0� - ($trans.y - $radius);
 $pushY = $boundScale*sqrt($outside);

 }
 else if (($trans.y + $radius) > $cubeSize) {

 // The seed is above the bounding box.
 $outside = ($trans.y + $radius) - $cubeSize;
 $pushY = -$boundScale*sqrt($outside);

 }
 else { // The seed is in the box.
 $pushY = 0� ;
 }

 // Return the bounding vector to the moveSeeds expression.
 $bound = < < $pushX, $pushY, 0� >>;
 return $bound;

 } // End procedure.

 Th is concludes the three rule procedures. With the rule-based program architecture,
you can add additional rules of motion if you wish by encoding them in procedures
and plugging them in to the main moveSeeds expression. Now let ’ s load the diff erent
script elements and build a scaff old!

 Methods: Grow your scaffold!

 Prepare your Maya scene
 Start Maya or, it ’ s already running, start a new scene. Create a new Maya Project
directory to use for the scaff old model and for the cell migration model you ’ ll build in
the next chapter:

 1. From the main menu bar, choose File → Project → New.

 2. Enter cellMigrationProject in the Name fi eld.

 3. For Location, browse to your Maya Projects directory or another location on
your hard drive where you ' d like to save this project.

 4. Enter scenes and images in the appropriate text fi elds and then press the Accept
button.

 Source the script elements
 If you haven ’ t done so already, save your makeSeeds and rule procedure fi les in your
Maya Scripts directory. Make sure the fi le names match the respective procedures.

513CHAPTER 17: GROWING AN ECM SCAFFOLD

For instance, the procedure called rule1 should be saved in a fi le called rule1.mel .
You may have tested your procedures by entering them in the Script Editor as you cre-
ated them. Likewise for expressions in the Expression Editor. If you haven ’ t yet tested
your scripts, there ’ s a chance they may contain errors. If this is the case, we recom-
mend sourcing one script at a time fi xing the bugs as they ’ re fl agged by Maya. You can
check your scripts against our working copies which you ’ ll fi nd on the CD-ROM:

 17_ECM_Scaffold/MEL/makeSeeds.mel
 /moveSeeds.txt
 /resetSeeds.txt
 /rule1.mel
 /rule2.mel
 /rule3.mel

 Now source the procedures:

 1. Refresh the search path contents. In the Script editor, enter:

 rehash;

 2. Source the script fi les. In the Script editor, enter:

 source "makeSeeds.mel ";

 source "rule1.mel ";

 source "rule2.mel ";

 source "rule3.mel ";

 Make the seeds
 Your fi rst step in building the scaff old is to make those little pathfi nders, the seeds.
Begin with the parameters outlined earlier in the chapter:

 • 100 μm thick × 100 μm wide × 150 μm long.

 • 40 seeds (for 40 fi bers).

 • a size distribution of 30% , 29% , 18% , 8% , and 15% for the 3, 6, 9, 12, and 18 μm
diameter fi bers, respectively.

 To call the procedure:

 Enter the following in the Command Line or Script Editor:

 makeSeeds(100, 40, 30, 29, 18, 8, 15)

 Th e speed of execution will vary depending on computing power and memory, but
should take no more than a few seconds in any case. When the procedure is done,
you ’ ll see in the Command Line, the message you sent yourself:

 The seeds are ready to go!

 Create the expressions
Here you ’ ll create the resetSeeds and moveSeeds expressions. If you didn ’ t build the
expression scripts earlier in the chapter, copy them from the CD-ROM to your Maya
Scripts directory.

514 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 1. Open resetSeeds.txt (either the fi le you created or the one on the CD-ROM) in the
text editor of your choice.

 2. Ensure that the text editor is set to not use typographer ’ s quotation marks.

 3. Select and copy the entire script to the clipboard.

 4. In Maya, enter ExpressionEditor in the Command Line to launch the Expression
Editor, or select it from the menu Windows → Animation Editors → Expression
Editor.

 5. Choose Select Filter → By Expression Name.

 6. Press the New Expression button.

 7. LMB + click in the Expression text fi eld.

 8. Press Ctrl + V to paste your expression into the text fi eld.

 9. Press the Create button at the bottom of the Expression Editor.

 10. In the Expression Name fi eld, replace the default name with resetSeeds and
press Enter.

 11. Repeat steps 6 through 10 for the moveSeeds expression, but name it moveSeeds
in the Expression Name fi eld.

 12. Press Ctrl + S to save your scene with the expressions in it.

 Prepare the scene

 Adjust the view
 If you move around your scene a little, you may see some of the seeds disappearing. Th is
is due to the default clipping plane settings (Near Clip Plane: 0.10; Far Clip Plane:
1000.0) of the persp camera; the array of seeds is large enough that it intersects the
clipping planes as you move the camera back and forth. To remedy this, set the Far Clip
Plane to a suffi ciently large value (say, 20,000). While you ’ re at it, you may as well set
the Far Clip Planes for all cameras once to save having to do it individually as needed.

 Enter the following four code lines in the Script editor:

 setAttr perspShape.farClipPlane 20� 0� 0� 0� ;
 setAttr topShape.farClipPlane 20� 0� 0� 0� ;
 setAttr frontShape.farClipPlane 20� 0� 0� 0� ;
 setAttr sideShape.farClipPlane 20� 0� 0� 0� ;

 Preload resetSeeds
 Th anks to the eff ort you put into the expressions and procedures, all you do to build a
scaff old model is press Play. However, the fi rst time you do this, it ’ s important to ensure
the procedure resetSeeds has evaluated in order to load the key global variables.

 1. In the Expression Editor → Selections → Expressions fi eld, select resetSeeds
and press the Edit button.

 Reminder: To Maya typographers
quotation marks (“ ”) are

unknown characters and will
generate errors when used

in MEL scripts and animation
expression.

515CHAPTER 17: GROWING AN ECM SCAFFOLD

 Set the Playback range
 A 150 � m long scaff old will take 150
 $dz � 20 � 170 frames to complete its self-
build. Give yourself a little extra room and set the Playback range from 1 to 180.

 Inspect the scaffold parameters
 Take a moment to look at the custom attributes of the widget object you made in
the makeSeeds() procedure. Relative to the seeds, the widget may be hard to see in
the scene, so use the Outliner to select it. In the Channel Box you ’ ll see the custom
attributes listed under the transform (widget) node, with the values you set using the
 makeSeeds() . By adjusting these parameters in the Channel Box at the start of each
model making run, you can vary the outcome of each scaff old. We ’ ve explored these
values in our own research on ECM and cell migration, but much remains to be seen
about how diff erent combinations of values aff ect the model. Th e parameters shown
in Table 17.03 were used to generate the scaff olds shown in Figure 17.15 .

 Press Play!
 All that ’ s left to do is …

 1. Adjust your perspective view to get a comfortable view of the scene.

 2. Press the Play button in the Playback controls.

 3. Sit back, relax, and enjoy the show.

Scaffold

Parameter Figure 17.15a Figure 17.15b Figure 17.15c Figure 17.15d

cubeSize 100 100 100 100

maxSpan 40 40 80 60

minSpan 20 20 40 40

dx 1 3 1 1

dy 1 3 1 1

dz 1 1 0.5 1

persistMax 10 10 10 30

persistMin 0 0 0 20

sizeBias 0.05 0.05 0.05 0.05

spacingMin 2 2 2 2

avoidScale 2 2 2 2

boundScale 1 1 1 1

 TABLE 17.03

 These are the parameter values
we used to generate the scaffolds
shown in Figure 17.15. The
parameters most responsible for the
differences between scaffolds are
highlighted in the Table.

516 PART 3: BIOLOGY IN SILICO—MAYA IN ACTION

 Once your model is complete you have two options for how to proceed:

 A. Save the fi le at the current frame to preserve your scaffold model. You may wish
to delete both the resetSeeds and makeSeeds expressions in the Expression Edi-
tor to prevent yourself (or someone else) from accidentally deleting your model
by rewinding the scene to frame 1.

 Note that you can also select and export the fi ber axes and surfaces to a new
fi le—using Export Selected, located under the main File menu—and then reset
your scene (see below).

 B. Press the rewind button to reset the scene. If you included the set of " delete "
lines at the end of resetSeeds, then your fi ber axis curves, surfaces, and profi le
splines will be eliminated from the scene, leaving only the seeds you began
with.

 If you chose option B, you can simply hit Play again to make another model with the
current set of seeds. If you want to vary the seed number, scaff old size, and or fi ber
size distribution, then you simply select and delete the group of seeds and the widget ,
and then run makeSeeds() again with a new set of parameters. You won ’ t have to rec-
reate the expressions since they already exist in the scene, although you ’ ll want to
press Edit in the Expression Editor to evaluate resetSeeds for the new set of seeds.

 Results: Parameter effects
 Figure 17.15 shows a sampling of scaff olds that we built, varying the design parameters.
Worth noting is the eff ect that the displacement variables $dx, $dy , and $dz have
on collision avoidance (rule2) . Small values (1–2 units) allow the rule2() to work with

(a) (b)

(c) (d)

 FIGURE 17.15

 Four scaffold we built by varying
key model parameters (see Table

17.03). The box dimensions are
100 � 100 � 150 � m.

517CHAPTER 17: GROWING AN ECM SCAFFOLD

reasonable eff ectiveness. As the values were increased—upwards of 3 or more units—
the resolution for collision detection became coarser and fi ber paths intersected (Figure
17.15b). Figure 17.15c illustrates the eff ect of dz—the smaller its value, relative to dx and
dy, the wavier the fi bers. Finally, higher persistence values result in greater fi ber defl ec-
tion (Figure 17.15d). For each modeling run we tuned the maxSpan and minSpan values to
achieve fi bers whose diameters remained reasonably constant along their lengths.

 If time permits, play around with the various settings of the model. You made this
process easy by listing the model parameters as attributes of the widget object.

 Playblast your scene
 Depending on the processing speed and RAM of your computer, watching a scaff old
evolve from many seeds can be a bit like watching paint dry (although slightly more
interesting) because it happens so slowly. If you want to capture a dynamic view of
your scaff olds as they evolve, you can set up your camera and then make a playblast
rendering while you make plans for your next in silico project.

 Save your scene
 You will use your scaff old model as the substrate for a migrating cell population in
the next chapter. When you are satisfi ed with the model, delete the resetSeeds and
 moveSeeds expressions, then save your scene as a Maya ASCII fi le under the name
 scaffold.ma .

 Summary
 Th e ECM of living tissues are intricate 3D tapestries in which many kinds of fi brous
molecules intertwine and cross react. Th e methods we ’ ve introduced to you here will
get you started with Maya as a window on this little seen, poorly explored world.
Alone, however, even the most exacting ECM is like a stadium without the baseball
team and the spectators—an empty arena awaiting action. Let ’ s fi ll it.

 References
 1. Nelson CM , Bissell MJ : Of extracellular matrix, scaff olds, and signaling: Tissue

architecture regulates development, homeostasis, and cancer . Annual Review of Cell
and Developmental Biology 22 : 287 – 309 , 2006 .

 2. Armour AD , Fish JS , Woodhouse KA, Semple JL : A comparison of human and por-
cine acellularized dermis: Interactions with human fi broblasts in vitro . Plastic and
Reconstructive Surgery 117 (3): 845 – 856 , 2006 .

 3. Sharpe J, Lumsden CJ, Semple JL, Woolridge N: Fibroblast behavior in human dermal
substitutes: A computer simulation model, I—3d collagen matrix model structure and
visualization, International Tissue Engineering Society Conference, Orlando, 2003.

Th is page intentionally left blank

18 Scaffold invasions
 Modeling 3D populations of mobile cells

520 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

 Introduction
 In Chapter 16 you modeled a single cell as an agent that behaves according to certain
rules of motion. Th en in Chapter 17 you modeled agents called “ seeds ” whose tra-
jectories became longitudinal axes for the extracellular matrix (ECM) collagen fi ber
bundles that composed your tissue scaff old. Like the single cell, the seeds moved
in response to a set of rules. In the scaff old modeling MEL script, you parceled the
motion rules into discrete software procedures called rule1() , rule2() , and rule3() .
Th ese rules were in turn “ plugged in ” to the main software component of the script—
the moveSeeds expression—making for a modular software algorithm that can be
modifi ed by adding or removing rules.

 In this project you will build on your progress modeling individual agents and on the
cell biology concepts presented in the previous two chapters. Th e objective is to make
a simulation involving a population of cells that migrate throughout the Maya tis-
sue scaff old you built in Chapter 17 . In Chapter 16 you treated explicitly the stages of
cell locomotion—protrusion, traction, and retraction. In the current project you will
treat them collectively, and from one level up on the ladder of organizational hierar-
chy, by modeling the stepwise displacement of the cell center, a process that encom-
passes the individual crawling stages in a single event (Figure 18.01).

 When your MEL script for this project is fi nished and working, you will have a tool
for rapidly deploying a group of mobile cells in a scaff old model. Th e rules of motion
depend on various parameters which you can change—as you did with the scaff old
script—in order to observe their eff ects on migration behavior. Moreover, the rules
themselves can be modifi ed or removed altogether and new ones constructed and

 FIGURE 18.01

 In this project you will build a cell
migration algorithm that treats the

three primary stages of locomotion
as a collective event: the stepwise

displacement of the cell center.

Three-stage crawl

Displacement

DistanceDistance

t0

t1

t2

t3

�
t

Centroid displacement

Displacement

t0

t1

t2

t3

Ti
m

e

�
t

Ti
m

e

521CHAPTER 18: SCAFFOLD INVASIONS

then added to the algorithm to test diff erent hypotheses about the behavior of cell
groups.

 Problem overview

 Cell migration as an emergent behavior
 Th e change in state over time of a migrating cell population is a property that emerges
from the minutia of cell mobility events beginning at the molecular level with signal-
ing events and cytoskeleton turnover. Th e state could be any quantifi able property
of the cell population such as the pattern of dispersion—the spatial arrangement of
migrated cells. In Chapter 16 you saw the single cell changing state—position and
translocation speed—as a result of mobility events at the level of physical cell proc-
esses: protrusion, traction, and retraction. Th e cell ’ s position and speed emerged from
the rules governing the physical processes.

 Mobile cell populations
 Animal cells that are specialized for active mobility—and therefore lend themselves
especially well to 3D agent-based models—include patrolling immune cells like lym-
phocytes and wound-healers like fi broblasts, keratinocytes, and endothelial cells
(Figure 18.02). When cancer strikes, otherwise sessile cells can become specialized mov-
ers as well and aggressively invade adjacent tissues, disrupting normal bodily func-
tions. Th rough intercellular signaling and by physically altering their ECM, many

 FIGURE 18.02

 Collective cell migration is an
essential feature of wound healing
in the skin. Wound healing begins
with an infl ammatory response
that includes leukocytes (white
blood cells). In the skin' s dermal
layer fi broblasts migrate into a
temporary scaffold of fi brin (the
blood clot) then degrade the fi brin
and synthesize and remodel a new
scaffold of collagen. Endothelial
cells migrate through the dermis,
building new capillaries to provide a
blood supply. In the epidermal layer,
keratinocytes migrate as a confl uent
sheet to seal the wound.

522 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

individual cells can act as a coordinated front to accomplish a physiological goal. Th e
overall movement of a group of cells is a behavior that emerges from the minutia of
locomotion events on the level of individual cells.

 Cells, scaffolds, and regenerative medicine
 To researchers and practitioners in regenerative medicine, the ways in which cells
infi ltrate and interact with tissue scaff olds can be of great importance. Regenerative
medicine aims to replace, or assist in the regeneration of, cells and tissues when the
body is unable to do so itself. Such interventions cover a broad range of subspecial-
ties and tissue types. Once such specialty involves the application of skin grafts to
replace lost or damaged dermis in cases of severe burns and other situations involv-
ing deep trauma or disease of the skin. Currently, the gold standard for a skin replace-
ment is skin itself—usually derived from a cadaveric donor and treated chemically
to remove cellular tissue and soluble proteins that could elicit an immune response
in the graft recipient, or host. Th e remaining tissue is largely composed of collagen
fi ber bundles which facilitate cell infi ltration and mitigate scar formation. It is cur-
rently thought that the relative success of cadaveric skin grafts over alternatives is
due to the positive response of host fi broblast cells to the natural architecture of the
collagen scaff old. A key study that supports this view demonstrated a high degree
of scaff old infi ltration in cadaver grafts when compared with a potential alterna-
tive1. However, this success comes with a price—quite literally—since donor skin is
rare and therefore costly. For less expensive and more plentiful alternatives such as
synthetic or animal-derived tissues to be clinically viable—that is to facilitate nor-
mal wound healing—it must elicit a positive response from host cells and promote
normal wound healing behavior. While there are numerous factors involved in such
a response, the 3D tissue architecture itself has been identifi ed as a key one, and the
relationship between this architecture and cell migration fl agged as an important
area of research in regenerative medicine.

 Emergence in a cell migration model
 We can frame the infi ltration of a tissue scaff old by cells—be they healing fi broblasts
or invading cancer cells—as a population-level response to individual cell-scaff old
and cell-cell interaction events. Th ese include the cell crawling events associated
with haptotaxis and chemotaxis that we looked at in Chapter 16 . In our agent-based
approach we treat each event as the outcome of a rule —like the rules you encoded
in procedures in the previous chapter. Th e model evaluates the current state of each
cell, applies the rules of migration, then updates the cell states (Figure 18.03)—a proc-
ess that occurs at each time increment. As time progresses, the rules are applied, and
the cell states changed, a pattern of migration for the entire population will emerge.

 Parameters of cell migration
 With an individual-based model you can study cell migration behaviors, or param-
eters, that emerge at diff erent levels of detail. By modeling the stepwise translo-
cation of each cell body in this project, you can evaluate parameters to quantify
single cell locomotion (such as the mean squared displacement, mean speed, and
directional persistence) and derive coeffi cients that characterize migration for

523CHAPTER 18: SCAFFOLD INVASIONS

whole populations: random motility coeffi cient, chemotaxis/haptotaxis index, and
chemokenesis/haptokenesis coeffi cient.

 Cell migration in scaffolds
 We can see that a cell makes chemical bonds called adhesions with its substrate in
order to generate the traction force needed to move. Much attention in cell migration
research has been given to adhesion molecules and ways in which they ’ re regulated
and, in turn, regulate cell locomotion events. For a moment, let ’ s take for granted
that the mechanism for adhesion is present—the cell has its components (integrins)
and so does the ECM (ligands)—and consider other variables in the cell-ECM
relationship that impact locomotion.

 Many variables are at play in the complex relationship between cells and a scaff old
environment—all of which contribute in some way to the emergent behavior of the cell
population. In this project you will focus on a manageable piece of puzzle: the process
of haptotaxis through which scaff old fi bers serve as a substrate for cell crawling and
a conduit for movement throughout the scaff old (Figure 18.04).

 We ’ ll deliberately omit some of the refi nements such as the deformability of the
moving cells, the way they can work with other cells to digest and remodel the matrix,
and the arrival and departure of nutrients and waste products via surrounding blood
vessels. Th is will let you focus on the fi rst core problem of 3D cell group motion in the
ECM, which you can then refi ne and extend as your interests develop. With 3D compu-
tational cell and tissue modeling still in its infancy, exciting opportunities abound for
addressing factors like perfusion, cell deformation, and scaff old remodeling.

Current state

• Location
• Current heading

and speed
• Proximity of

neighboring cells
• Opportunities for

movement

New state

• Location
• New heading

and speed
• Proximity of

neighboring cells
• New opportunities

for movement

Apply
rules

On entering frame On leaving frame
Advance

frame
number FIGURE 18.03

 Outline for a cell population
migration model.

524 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

 Cell migration nomenclature
 Let ’ s look briefl y at the two key cell migration parameters that you ’ ll model in this
project.

 Haptotaxis
 Th e cell movement facilitated by contact with the substratum can be random in
nature, directed, or both. A non-homogeneous substratum like the scaff old model
you made in the previous chapter is bound to introduce bias into the motion of
 “ randomly ” moving cells by virtue of the fact that cells can travel only where the
scaff old fi bers go.

 Chemotaxis
 Chemotactic signals may originate from cells within the study population, from an
external source such as the extracellular concentration of an ion like calcium in the
tissue, or from another population of cells such as the immune cells involved in the
infl ammatory response to injury. Whatever the source—and it may in fact be a com-
bination of infl uences—a spatial gradient of molecules that elicit a motility response
in a cell biases the direction of its movement.

 Cell-cell signaling
 Chemically or physically mediated communication between cells is essential to many
physiological and disease processes. Notable examples include the immune response,
endocrine (hormone) function, and the growth and spread of cancer. Chemical

(b)(a)

 FIGURE 18.04

 A migrating cell's progress from
point A to point B can be both
facilitated (a) and impeded (b)

by the organization of ECM
structures. This illustration depicts

collagen fi ber bundles as the
conduits and obstacles to cell

movement.

525CHAPTER 18: SCAFFOLD INVASIONS

signals are a way for one cell to receive information from another. Going back to our
Maya Hypergraph/biology network analogy from Chapter 04 (page 82) , you could
think of a cell as a DG node and the signal as a connection between that node and
another (the other cell). What the cell does in response to receiving the signal (often
via membrane-bound receptor molecules) is analogous to a Maya node processing its
input to calculate a result.

 Furthermore, signaling between cells needn ’ t be long range—like the passing of a
hormone from an endocrine cell to its target far away in another part of the body.
Th e fact that epithelial and mucosal cells (which line external and internal surfaces
of the body) replicate and migrate to close defects in otherwise continuous cell sheets
suggests that cells have a physical and chemical awareness of contact between each
other. Th is ability to sense other cells at close range may help explain why solitary
cells like fi broblasts or patrolling lymphocytes don ’ t, under normal physiological
conditions, bunch up or overlap one another. In contrast, they generally avoid
contact with one another.

 Now that we ’ ve established a vocabulary for discussing living cells engaged in
migration—random and directed haptotaxis; biased movement due to chemotactic gra-
dients; and contact avoidance—let ’ s apply it in a defi nition of the model you ’ re about to
build.

 Model defi nition
 Th is project realizes the scenario we described above: mobile cells that infi ltrate an
ECM scaff old via haptotaxis and chemotaxis. In your model, a population of cells
will begin on the bottom surface of the scaff old you modeled in the previous chap-
ter and migrate upwards through the scaff old. Each cell is then driven by rules for
cell-matrix interaction (which incorporate both chemical and haptic cell responses)
and cell-cell signaling. To develop the model you will build upon programming struc-
tures introduced in earlier chapters along with a novel technique for attaching the
moving cells to the complex, 3D surfaces of the fi ber scaff old.

 Cell behavior
 In order to simulate haptotaxis, you require a method to calculate a random walk
(or crawl) over the surface of the fi ber to which it ’ s presently attached. We will refer
to this method as the cell crawling algorithm . Biasing the random walk will introduce
directed haptotaxis—in addition to that which we noted earlier is inherent in a
non-homogeneous substrate. Th is bias can be built into the algorithm by manipulating
the probabilities that govern the cell ’ s choice of direction.

 Each cell must also have the ability to sense contact with other fi bers and then to
decide whether or not to detach from its current fi ber and transfer to another. We will
call this property transferring . By giving cells a preference for transferring to fi bers
that allow them to move through the scaff old in a given direction—again by manipu-
lating the probabilities that govern the cell ’ s choices—you will eff ect a gradient of
chemoattractant in the model; the preferred direction is the vector of chemotaxis
and the probability for choosing that direction over any other is the magnitude of
the chemoattractant. In your model, you will begin with a chemotaxis vector of
 � 0,1,0 � and a magnitude of 0.9 out of 1, thus setting up strong bias for cells to
transfer to fi bers above them (i.e., in the positive Y-direction) in the scaff old.

526 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

 Cell-cell signaling
 To prevent clustering, overlapping and interpenetration of cells, you will endow them
with contact sensitivity and a mechanism for avoiding contact. Th is is the kind of
close range signaling we mentioned above. Once your model is built you may wish
to incorporate longer range signaling such as the ability for cells to broadcast their
progress to others—a mechanism used by invading cancer cells.

 The cell geometry
 Your cell crawling algorithm will determine the direction and distance traveled
in each time interval in a way that bundles the minutia of locomotion—molecular
events, membrane protrusion, traction, and retraction—as a translocation step of
the cell center. At the same time, each cell in your model requires a space-fi lling man-
ifestation in the scene. Th is represents its boundaries both for the purpose of making
it visible to you and for the detection of contacts between the cell and surrounding
matrix fi bers and other cells. A sphere primitive fulfi lls these requirements in an ele-
gantly simple Maya object: the sphere has a center (its transform node) to displace
each time the cell moves; it has a uniform contact radius represented by its surface;
and a sphere can readily be discerned visually from the intertwining mass of the scaf-
fold. Once you have this up and running, you can build on your progress to extend
the simulation to include cells of more complex, changing shape.

 We ’ ll use the term seeding density to refer to the number of cells per unit area of the
scaff old surface at the start of your simulation run. With cells that use close range
signaling to communicate, it can be interesting to vary the seeding density and watch
its eff ect on population behavior. You ’ ll begin with 10 cells, a high density relative to
clinical studies of cell-scaff old interaction in dermal regeneration 1 but necessary to
get interesting cell-cell contact interaction eff ects in your small test scaff old.

 The sutbstrate
 To control the movement of your cells on a substrate it must be composed of objects
whose surfaces can be surveyed for positions in Maya world space. You fulfi lled this
requirement in Chapter 17 by constructing a scaff old out of parametric surfaces
(NURBS); parameter values can be used to determine the world space position of any
point on a NURBS surface, along with the corresponding surface normal which comes
in handy when attaching a cell to the surface.

 Using a relatively small, medium density scaff old—namely the one you made in the
previous chapter—will allow you get reasonably quick simulation results on a com-
puter of similar processing and memory attributes as our benchmark system
(described on page xxi in the Preface) we used to develop and test this project.
Figure 18.05 shows a scaff old like the one you made in Chapter 17 , with its dimensions
and active volume indicated. Th e active volume is the region of the scaff old in which this
model ’ s cells migrate. Th ey are restricted to the active volume by the boundary conditions
described below. In theory the size (length, width, height, and fi ber packing density)
of scaff old you use and, by extension, the number of cells in the simulation is limited
only by the processing power and memory capacity of your computer, and by time con-
straints (i.e. how many minutes, hours, or days you can dedicate to a single simula-
tion). Th e parameter values we ’ ve suggested will give you interesting simulation results
quickly (less than 1 hour simulation time on our benchmark system).

527CHAPTER 18: SCAFFOLD INVASIONS

 Boundary conditions
 Ideally your scaff old would be long and wide enough, relative to the cells, to present
them with an essentially infi nite sheet of tissue to migrate in. Th is would emulate the
experience of microscopic cells in a surgical tissue graft measuring even a few cen-
timeters across. For the reasons mentioned above, your model will be of more modest
proportions. When dealing with a fi nite substrate, your model will require boundary
conditions to prevent cells from running to the ends of fi bers and jeopardizing the
simulation when they can no longer move in a certain direction. Boundary conditions
for this model can be handled in several ways. One straightforward method, and a
good place to start, is to limit migration to a given region along the length (longi-
tudinal axis) of the fi bers. When a cell steps outside of this region (the Z-dimension
of the active volume; see Figure 18.05), its random walk is biased to push it back inside.
Natural boundaries exist for the depth of the scaff old, since cells begin their journeys
on the bottom surface (and can ’ t go any lower) and complete it upon reaching the top.
Similarly, cells that reach either side of the scaff old width-wise will have nowhere to
go but up, down, or back toward the center of the scaff old.

 Spatial and temporal scales
 You defi ned the spatial scale for this project back when you built your scaff old model:
1 Maya unit � 1 � m. Temporal scale is a little trickier. It equates one time increment
(a frame) in Maya simulation time to a given number of seconds, minutes, or hours of
living cell time. By basing the incremental displacements of the cell random walk on
data from living cells, you can calculate what a time step is in Maya relative to a time
step in vivo or in vitro (see Figure 18.06).

z

y

x

Length = 150 μmWidth = 100 μm

Active
volume

Height
= 100 μm

region
25 μmregion

Buffer
Buffer

25 μm
volume
Active

100 μm

 FIGURE 18.05

 The model scaffold that will serve
as the substrate for cell migration in
this project. Cell locations and their
contact radii are represented by the
blue spheres. The active volume is
the region in which cells can move
and is limited along the
Z-axis by the buffer regions.

528 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

 Methods: Model design
 Th e previous section outlined the diff erent elements of this project and what it must
do. Here we ’ ll describe methods to make those elements and behaviors come to life
in Maya. Let ’ s start with the cell crawling algorithm which generates the random
haptotaxis, which we ’ ll call haptotaxis 1 .

 Haptotaxis 1: The random walk
 To calculate the frame by frame displacement of a cell, you ’ ll adapt a mathemati-
cal description of locomotion that was developed in a seminal study of migrating
lymphocytes 2 on a 2D surface. Lymphocytes are highly motile white blood cells that
play an important role in immunity. Th e authors of the infl uential study, Peter Noble
and Martin Levine (N & L from here on) discovered that, in the absence of a chemoat-
tractant, the motion of their lymphocytes closely resembled an unbiased random walk.
Th ey fi t this observed behavior to a mathematical model called a 5-state Markov pro-
cess (named for Russian mathematician Andrey Andreyevich Markov; 1856–1922). A
Markov process is a stochastic process for which the probability of future states for an
item depends only on its present state and not its history 3 . In the case of a migrating
cell, the 5 states are 5 possible choices for the cell ’ s next position (Figure 18.07) which are
based solely on its current position. Each state has a probability associated with it and
varying those probabilities biases the random walk. N & L also recorded persistence
times for each of the 5 states. You may recall that persistence is a cell migration term
applied to the time duration between signifi cant changes in direction.

�t � 20 s

d

�t � 1 frame

d

The living cell position is
recorded once every

20 seconds

The in silico cell position is
recorded once for every

Maya frame

Therefore:
1 frame � 20 seconds
in silico cell time living cell time

Next, given that the fibroblast cells move roughly 1/10 the speed of
lymphocytes (the source of living cell data):
1 frame � 20 � 10 � 200 seconds
in silico fibroblast time living cell time

 FIGURE 18.06

 This diagram shows how we
estimated the equivalence of a

simulation time increment in Maya
(1 frame) to the experimental 20

second increment in an in vitro cell
migration study 2 . In the absence
of appropriate data for fi broblast

cells, we used an available dataset
for lymphocytes. The lymphocyte

migration time step was scaled to
approximate an equivalence for the

slower-moving fi broblasts.

529CHAPTER 18: SCAFFOLD INVASIONS

 State change probabilities
 In their study, N & L recorded the displacement of cell center points at regular 20
second time intervals and then determined the probabilities associated with moving
from any of the 5 states to any other state. A moving cell would either continue on
its present course, that is, remain in its current state, or change its course, that is,
change to a new state. Th ese probabilities are presented in Table 18.01 , in a form we call
the state change probability matrix . Th e data show a distinct trend: if a cell in state 0
decides to change course, it has an approximately equal (25%) chance of choosing any
of the other 4 states. However, if the cell is in one of states 1 through 4 and decides to
change course, there is roughly an 80% chance that it will choose state 0 and between
a 6% and 7% chance of choosing any of the remaining 3 states. Th e way that the
Markov process describes the migration behavior, when a cell changes state, the cell
must choose a state other than the one it ’ s currently in.

 Biasing the random walk
 By adjusting the probability matrix you can favor motion in one direction over
another—the modeling equivalent of a chemoattractant. For example, biasing
motion for states one and three versus two and four in Figure 18.07 will aff ect the time
that a cell spends moving in a vertical rather than a horizontal direction. In this
project model, you ’ ll bias the cell walks in terms of longitudinal versus circumferen-
tial motion on the cylindrical fi bers.

 Persistence time
 Th e persistence, P, for a single mobile cell tells us how long a cell will persist in its
current state (or continue on its present course). N & L measured P in intervals

#4:S1 #5:S3

#6:S3

#3:S2

#2:S1
cell

State 2

<1,0>

State 4

<-1,0>

State 3

<0,-1>

State 0
<0,0>

State 1

<0,1>

State 1
<1,1>

State 2
<1,-1>

State 4
<-1,1>

State 3
<-1,-1>

#1:S2

(a) The 5-state Markov process (b) Random 2D cell walk via
 the Markov process

y

x

 FIGURE 18.07

 (a) The 5 states of the Markov
process used by Noble and Levine
(Ref. 3) to characterize the migration
of lymphocyte cells. The original N
 & L Markov states (inset) have been
rotated 90 degrees CCW to align
with UV axes on NURBS surfaces
in Maya.

(b) The 5 states are manifest as the
displacement of the cell center.

530 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

20 seconds long. Th eir data show a mean persistence time of roughly one interval
(or 20 seconds) for states one through four, and two intervals (or 40 seconds) for
state 0—or standing still. Th eir statistical analysis found an exponential distribution
of the recorded persistence times. To use the N & L persistence time data in your
model, you ’ ll therefore need an algorithm that simulates random draws from an
exponential probability distribution. Here we ’ ll use the formulation developed by
the research physicist Daniel Gillespie as part of a more comprehensive theory of
stochastic chemical reactions 4 . Th e full “ Gillespie algorithm ” , though developed in the
mid-1970s, has in the past few years come into its own as an essential tool of compu-
tational biologists. In the case of cell migration persistence time, the events would be
changes in state—a start, a stop, or a change in direction. Gillespie ’ s notation for the
waiting time to each of those events is as follows:

 tau = (1/a)ln(1/r1)

 where tau is the waiting time to the next event, measured in appropriate time incre-
ments such as 20 second frames.

1/a is the mean value of the exponential distribution of waiting times.

 r1 is a random number drawn from the uniform distribution in the unit
interval (i.e. between 0 and 1). You ’ ll use Maya ’ s rand() function to gen-
erate this.

ln(1/r1) is the natural logarithm of 1/r1 .

 For this project we ’ ll call tau the persistence time spent in the current state and 1/a
the mean persistence time for that state.

 Figure 18.08 shows our Markov process fl owchart for the cell migration described by N
 & L. Th is will form the basis for your random walk algorithm.

 Adapting for cell type
 Since Nobel and Levine studied lymphocytes, you ’ ll need to make a few adjustments
with regards to the cell type in this project, that is: scale the lymphocyte time interval
and mean persistence times to values more suitable to the slower-moving fi broblast
cells in your model. Given that lymphocytes move roughly an order of magnitude

 State 0 1 2 3 4

 0 0 0.800 � 0.046 0.837 � 0.054 0.841 � 0.052 0.801 � 0.042

 1 0.254 � 0.032 0 0.057 � 0.017 0.046 � 0.013 0.060 � 0.037

 2 0.223 � 0.024 0.101 � 0.021 0 0.057 � 0.017 0.056 � 0.015

 3 0.266 � 0.038 0.051 � 0.016 0.064 � 0.017 0 0.081 � 0.015

 4 0.254 � 0.029 0.046 � 0.024 0.039 � 0.019 0.055 � 0.036 0

TABLE 18.01

 The state change
probability matrix for the
5-state Markov process.

Source : Reproduced from
Noble and Levine 2 .

 In addition to Daniel Gillespie ’ s
seminal paper on stochastic

chemical reactions 4 , we
also encourage you to see

his book Markov Processes:
 An Introduction for Physical

Scientists which we ' ve listed in
the Further reading section.

531CHAPTER 18: SCAFFOLD INVASIONS

Is the cell
persisting?

no

Draw a
random number

yes

increment
the time

(frame += 1)

Compare the random
number to the

probability matrix to
determine the

new state of the cell.

The new state
becomes the
current state.

Move the cell to its
new position

Simulation
finished?

no

yes

Calculate the new
persistence time (tau)

Start

End
 FIGURE 18.08

 Flowchart for a Markov process
describing cell migration.

532 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

faster than fi broblasts, you can begin by multiplying both the time interval and mean
persistence times by 10 as shown in Table 18.02 . While these conversions are a gross
simplifi cation, they give you a starting point from which to incorporate living cell
data into your in silico model. Moreover, although the mean speeds of the two cell
types can be compared—allowing you to estimate the speed of one cell type based
on the speed of another—there exists (at the time this book went to press) no analy-
sis of state change probabilities and waiting times for fi broblasts comparable to the
extremely thorough one published by N & L for lymphocytes at the level of single cell
behavior. In the absence of such quantitative data you can reasonably make the mod-
eler ’ s assumption that a fi broblast would fi t a Markov approximation of motion as
well as a Noble and Levine lymphocyte does, that is, until it ’ s proven otherwise.

 Model-data time equivalence
 Th e resolution of N & L ’ s model is 20 seconds, meaning that no data exists in their
compilation for time increments shorter than 20 seconds. It makes sense therefore to
equate one frame (the unit time interval in Maya) with the 20 second unit time inter-
val from N & L. Th e far right column in Table 18.02 lists the Maya frame equivalents
you ’ ll use in this project.

 Leaving fl atland: Moving from planes to fi bers
 Despite the gap between the worlds of 2D and 3D cell research, the movement of
cells in a complex 3D environment can be thought of in some projects as building
on 2D behavior. Th at is to say that the interactions between cell and substrate are
essentially surface interactions (Figure 18.09). Th e fact that the substrate twists and
turns throughout three dimensions only means that the emergent cell trajectory will
be truly 3D. Th e degree to which we can treat 3D scaff olds as 2D surfaces depends
of course on the tissue being modeled. An in vitro tissue preparation of fi ne colla-
gen fi brils—which forms the substrate for many cell migration studies—for example,
would not be amenable to such treatment. For projects involving scaff old structures
such as dermis and cancellous bone that are large relative to the cells however, you
can eff ectively treat the 3D environment as a construct built from 2D surfaces.

 Such a treatment of course allows you to readily adapt the mathematics of 2D cell
migration, such as the Noble and Levine methods described above, to a 3D scaff old
model composed of surfaces. Th ere still remains the interesting question of how to
take 2D position data—like that generated by the random walk algorithm—and
map it onto the 3D model surfaces, as shown in Figure 18.09 . After all, we ’ re not talking
about simple planar motion like that generated by the single cell model in Chapter 16 .

 Th e solution to this problem lies in querying the 2D surface coordinates of the fi ber
object. We ’ ve mentioned the term parameter several times now with respect to
NURBS curves and surfaces. Parameters are values in UV coordinate space that lie
on a NURBS surface. For a Maya extrude node, which is the fi ber surface geometry
node, the U-axis corresponds the circumferential direction and the V-axis to the lon-
gitudinal direction. Normalized parameters have fl oating point values between 0 and 1,
meaning you can query any point on a surface using a vector whose components span
the range 0–1. For example, the parameter vector � � 0� , 0�.5 � � is a point on the fi ber
surface seam (u � 0�) and half-way (v � 0�.5) along the length of the fi ber (Figure 18.10).

533CHAPTER 18: SCAFFOLD INVASIONS

 With the help of two key nodes, you can fi nd the world space location of a param-
eter vector on a given fi ber surface. In contrast to a procedure you might code your-
self, starting only from data on cell positions, sizes, and fi ber axes and diameters,
the MEL code you ’ ll write to produce this essential information will be extremely
concise. Th ese nodes are the closestPointOnSurface (cpos for short) node and the
 pointOnSurfaceInfo (posi for short) node that were created and connected to each
of the extrude (fiberSurface) nodes in the previous project. cpos and posi are rep-
resented schematically in Figure 18.10 . Figure 18.11a and 11b shows them represented in
the Attribute Editor. cpos takes as input connections the name of a surface in your
scene and an XYZ point in world space (Figure 18.10). It returns the UV parameter
values and the corresponding world space XYZ position lying on the input surface
that is closest in distance to the input point. posi also takes a surface name as an
input connection, along with U and V parameter values. It returns the world space
position, the unit surface normal vector, and the tangent vectors of the input surface
that correspond to the input UVs.

y

v
x

Cell path

start

start

u

 FIGURE 18.09

 When fi ber bundles are large
relative to cells, fi bers can be
treated as 2D surfaces that meander
through 3D space. A displacement
generated by a 2D random walk
algorithm can therefore be mapped
onto a 3D surface as shown here.
Every step in the XY plane has a
corresponding step in the UV space
of the fi ber' s surface.

 Cell type

 Lymphocyte Fibroblast

 Units seconds Seconds Maya frames

 Time interval 20 200 1

 Persistence
(state 0) 40 400 2

 Persistence
(states 1–4) 20 200 1

TABLE 18.02

 Extrapolating data from a study of
lymphocyte locomotion (Ref. 3)
to slower-moving fi broblast cells, and
the equivalent times in Maya frames.

534 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

 By describing the location of a cell in terms of the UV coordinates of the fi ber to
which it ’ s attached , you can query its world space position using the posi node and
use that position to set the cell ’ s translate attributes so that it ’ s eff ectively attached
to the fi ber (Figure 18.10). Th e surface normal vector at the point of attachment is used
to determine the cell ’ s position perpendicular to the fi ber surface. When the cell
changes position as a result of the random walk algorithm (Markov process) and con-
tact avoidance, the movement will be expressed as a change in the UV coordinates.
Again, using the posi node, you will set the cell ’ s translate attributes so that the cell
moves to the appropriate world space position. In the next section, you ’ ll see how to
detect cell-fi ber contacts and execute fi ber transfers using the cpos node.

 Haptotaxis 2: Transferring between fi bers
 Th e cpos nodes in your scaff old model can be queried after each time increment to
determine if a cell is in contact with any of the fi bers, that is other than the fi ber

<xc , yc , zc >

<xc , yc , zc >

Cell world space
position prior to being attached
to the fiber surface.

U V

Y

X

Z

< u , v > (parameters)

cpos node
IN

OUT

cpos.inputSurface
cpos.inPosition

cpos.parameterU
cpos.parameterV

<xf , yf , zf > world space
position of the cell when
attached to the surface.

< u , v > (parameters)

posi node
IN

OUT

posi.inputSurface
posi.parameterU
posi.parameterV

< u , v > The fiber surface point
closest to the cell.

< 0 , 0.5 >
A point on the fiber
seam and half-way

along its length.

posi.position
posi.normal unit vector

describing the surface
normal.

< , jfif , kf >

< , jfif , kf >

 unit surface normal

fiberSurface_N

fiberSurface_N

fiberSurface_N

 FIGURE 18.10

 Parameters describe a point on
the surface of a Maya object

like the cylinder (fi berSurface)
pictured here. The closest point
on the fi berSurface to the cell' s
position is determined using the

closestPointOnSurface (cpos) node.
The world space (XYZ) position of
the surface point is then given by

the pointOnSurfaceInfo (posi) node
and used to " attach" the cell to the

surface.

535CHAPTER 18: SCAFFOLD INVASIONS

to which the cell is currently attached. Th e cell ’ s current translate X, Y, and Z values
provide the input position for a given cpos node and the node returns the world space
position of a point, the return point , on the corresponding fi ber that is closer to the
input than all other points on the fi ber. If the distance (a scalar value) between the
input position and the return point is less than the cell ’ s contact radius, then the cell
is in contact with the fi ber surface. Th e decision to transfer is determined probabalis-
tically by using Maya ’ s rand() function (Figure 18.12). If the cell is in contact with more
than one new fi ber, then the contact points on these fi bers are compared with one
another based on the probability of choosing a contact point that lies in one direction
relative to the cell, say positive Y, over a contact point in another direction. Once a
cell has evaluated a potential transfer, it waits for a period of time (several frames at
least) before checking again for a transfer. Th is prevents the cell from bouncing back
and forth between two or more fi bers with which it ’ s in contact.

 While we ’ re discussing surface coordinates as two -element vectors (i.e. � u, v �), it ’ s
important to note that vector notation in Maya is always in the form of a three -element
vector (i.e. � x, y, z �). If you enter two components for a vector, Maya will add a
Z-element of zero value and return a three-element vector, as in the following example:

 vector $tmpVect = <<1, 2>>;

 // Result: <<1, 2, 0� >> //

 To avoid confusion and possible errors when building the script for this project, UV
vectors are written as � u, v, 0 � in the text.

Chemotaxis: A directional bias
 Setting the directional probabilities for the inter-fi ber transfer rules also lets you
simulate the eff ects of a chemoattractant gradient. For example, suppose you want
to simulate a gradient of chemoattractants that increases in strength in the positive
X direction. When evaluating contacts with other fi bers, you could then set a high
probability (say 0.9 out of 1) so your cell will transfer when in contact with a point on

(a)

 FIGURE 18.11

 The Attribute Editor displays input
and return attributes of

(a) the closesPointOnSurface node
and

(b) the pointOnSurfaceInfo node.
(b)

536 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

a fi ber that has an X-value greater than the cell ’ s translateX value. Conversely a prob-
ability of 0.1 for transferring in the opposite direction makes it very unlikely that
cells will move to fi bers in the negative X-direction. In this project, you ’ ll simulate
a chemoattractant gradient to infl uence migration in the positive Y-direction, in
order to promote infi ltration of the scaff old by the cells which begin on its bottom (or
inferior) surface.

 Another way to eff ect chemoattraction in your model is to set the Markov state prob-
abilities so that with each random walk step the cells tend in the direction of increas-
ing chemoattractant concentration. We have not included such an eff ect in this
project in order to keep the mathematics simple and the code concise. Nonetheless,
we encourage you to explore the eff ects of biasing the Markov process one you have
the basic model functioning.

 Cell-cell signaling: Contact avoidance
 For contact avoidance between cells you ’ ll re-employ the method used to keep your
fi ber-axis seeds from colliding in the scaff old modeling algorithm. After every time
increment, the world space position of each cell will be compared with that of every
other cell in the scene. If the separation distance for a given pair of cells is less than
a threshold value, an avoidance vector will be calculated and added to the UV fi ber
surface position of the fi rst cell, eff ectively moving it away from its neighbor. To
keep the calculations simple, the avoidance vector will eff ect a change in only the
V-component of the cell ’ s position on its fi ber (Figure 18.13). You can extend this method
later, if you wish, to include the U-component as well.

 Before a model cell ’ s MEL rules evaluate opportunities to transfer between fi bers, the
results of the other migration events—random walk, collision avoidance, and boundary
conditions—are summed in a vector called $deltaUVs, which represent both the

New fiber

Contact
$rnd=rand(0,1)
if ($rnd<0.9)
{transfer}

Old fiber

 FIGURE 18.12

 Regulating the probability of
transferring between fi bers based

on direction is one way to model the
effect of a chemoattractant gradient.

In this example, the cell has a 90%
probability of transferring to a fi ber

above it. The outcome is determined
by drawing a random number ($rnd)

and comparing it to the transfer
probability.

537CHAPTER 18: SCAFFOLD INVASIONS

cell ’ s current heading and its speed (displacement over one time step, or frame).
Th e contribution of the random walk algorithm to $deltaUVs is a unit vector, hav-
ing a magnitude of 1 � m in this initial model no matter what its direction (refer back
to Figure 18.07 . So far we ’ ve been concerned only with which direction a cell chooses,
but not the actual magnitude of its displacement per unit time. Likewise, the N & L
process is concerned with direction and persistence, but not distance (explicitly).
In your model, a 1 � m step in 200 seconds (see Table 18.02) equates to an instantane-
ous cell speed of 0.3 � m/min, which is well within the observed range of speeds for
fi broblast cells. However, given that your cell will not be in constant motion due
to periods in state 0, its mean speed over the course of a simulation run is bound
to be much slower than 0.3 � m/min. Multiplying the random walk unit vector
 ($deltaUVs) by a scaling factor ($vScale) lets you set the incremental displacement,
which in eff ect is the instantaneous speed of the cells. By using a custom attribute on
the control widget (which was used to make the scaff old geometry) to set $vScale, you
can easily scale the incremental displacement of the Markov process in the Channel
Box—even while the simulation runs. For starters you ’ ll set $vScale to a constant
value but you can easily randomize it later on so that a cell moves at diff erent speeds
throughout its journey. Determining the mean speed of a cell is a matter for statisti-
cal analysis of its entire trajectory over the course of the simulation.

 Summing the parts
 Figure 18.14 shows how the diff erent migration events work together to translocate a
cell in one time increment. We ’ ve discussed methods for handling these events.
Next you ’ ll organize those methods logically into expressions and procedures, and

Fib
erj

F iber j

B

BA

BA

A

C

CA

CA

$totalSep

Y

Z
X

Before contact avoidance After contact avoidance

$unit = unit($totalSep)

$length = Fiberj.length (length attribute)

$v2 = × $vScale (avoidance vector)
$unit.z
$length

$v2

 FIGURE 18.13

 Cells avoid contact with one another
by moving apart in the fi ber surface
V direction when they ' re within a
threshold distance of one another.

538 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

then encode them for Maya. Ultimately, you ’ re aiming for a cell migration simula-
tion that is entirely created and driven by MEL scripts. You fulfi lled the fi rst require-
ment by building the scaff old model entirely using MEL. Now it ’ s time to encode the
migration model.

 Methods: Encoding the algorithm
 Since the state of each cell is to be updated at regular time increments, the update
process—reading the current state of a cell and its surroundings, evaluating the
rules, and then updating the cell state—is well suited to the expression structure in
Maya. You saw a similar process at work in the previous chapter, where an expression
named moveSeeds updated the position of one fi ber seed at a time. As well, the modu-
lar design, in which rules are parceled out as procedures to be called when needed
by the main expression, makes for an extensible model that you can easily mod-
ify with additional procedures. Figure 18.15 illustrates how you ’ ll implement the
simulation model using expressions and procedures. If you wish to start using the

new fiber

old fiber

Haptotaxis 1 (Markov process) Contact avoidance

Boundary Conditions

$bound

$v3

$v1

$v2

Sc
af

fo
ld

bo
un

da
ry

Haptotaxis 2 (transfer fibers)

$v3 = cRule3

$v1 = cRule1

celli

celli

celli

celli

cellj

cellj

cellj
cellj

$v2 = cRule2

$bound = $vScale
fiber.length

A B

CD

 FIGURE 18.14

 The translocation of cell i in one
time step is the result of up to four

locomotion events (labeled A, B, C,
and D) in sequence. When the time

step increments, the four events
are evaluated again, and so on. The
effect of boundary conditions (C) is
shown here for cell j, a neighbor of

cell i.

539CHAPTER 18: SCAFFOLD INVASIONS

end of
playback

range?

createCells procedure
user inputs:
• cell count
• cell radius
• length of boundary zone

(buffer)

resetCells expression

• return cells to their
initial positions

• initialize global variables

moveCells expression

• call rule 1
• call rule 2
• update the cell's position
• if the cell is has strayed out

of the scaffold's active area,
nudge it back inside

• call rule 3
• update the cell's position
• if recording the simulation for

playback, keyframe the cell's
position

rule 2
avoid contact with other
cells

rule 1
random walk
(5 state Markov process)

rule 3
transfer from one fiber
to another

yes

no

frame = 1
?

yes

no

Start

End FIGURE 18.15

 Flowchart for the cell migration
model.

540 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

ready-made model, you can skip forward to the section entitled Load the script fi les
on page 568 . On the CD-ROM we ’ ve included a scene fi le containing the scaff old and
cells along with the resetCells and moveCells expressions. You ’ ll need only to source
the three-rule procedure fi les to begin the simulation.

 18_Cell_Migration/scenes/cellMigration.ma

 18_Cell_Migration/MEL /cRule1.mel
 /cRule2.mel
 /cRule3.mel

 As in previous chapters, we recommend that you compose your MEL scripts in a text
editor (other than Maya ’ s Script Editor), saving them periodically as you follow along
with the instructions below. When you want to test bits of code in Maya, just copy
and paste them from your text editor into Maya ’ s Script Editor (for procedures) or
Expression Editor (for expressions). You will save each procedure and expression in a
separate text fi le (e.g. makeCells.mel) within your Maya Scripts directory.

 The makeCells() procedure
 Th is procedure makes the cell objects and positions them randomly on the bottom
surface of the scaff old. You may want to open your scaff old scene fi le in Maya in order
to test and debug this procedure as you build it. A ready-made scene fi le is available
on the CD-ROM:

 18_Cell_Migration/scenes/scaffold.ma

 Some header information will be helpful when you refer back to this expression at a
later date and to help others understand your code.

 /* Description:
 This procedure makes nurbs spheres called cells and initializes
their positions within a scene having a prebuilt NURBS fiber
scaffold for the cells to migrate in.

 The procedure arguments are as follows:

 $cellCount The number of cells to be made.
 $cellRadius The radius, in micrometers, of each cell.
 $buffer The length, in Z, of the buffer zones used to

contain the cells within the active area.
 */

 global proc makeCells(float $cellCount, float $cellRadius, float
 $buffer) {

 Next, declare and initialize the main variables. Th e global variables are ones that will
be used by diff erent expressions and procedures in the simulation.

 /*****DECLARE THE VARIABLES*****/

 /*
 $cubeSize The length, in Z, of the active scaffold volume.
 */
 global float $cubeSize;

 A commented description of
each variable will be given only
the fi rst time it appears here in

the text.

541CHAPTER 18: SCAFFOLD INVASIONS

 /*
 $cposNames[] An array of closestPointOnSurface node names.
 $posiNames[] An array of pointOnSurfaceInfo node names.
 */
 global string $cposNames[], $posiNames[];

 /*
 $x, $y, $z Vector components used to position the cell.
 $dist Used in detecting the closest fiber to the cell.
 $shortestDist Same as above.
 $u, $v Fiber surface parameter values.
 $offsetDist The distance each cell center is offset from its

fiber.
 $offset The percentage of cell radius by which the cell

center is offset from its fiber surface.

 */
 float $x, $y, $z, $dist, $shortestDist, $u, $v, $offsetDist,
 $offset;

 /*
 $pos A cell 's current position.
 $cpos The closestPointOnSurface position attribute

value.
 $unitNorm The unit surface normal vector.
 $offsetVect A vector used to offset the cell from the fiber

surface.
 */
 vector $pos, $cpos, $unitNorm, $offsetVect;

 /*
 $cellName Used to name each cell.
 */
 string $cellName;

 /*
 $fiberCount The number of fibers in the scene.
 $i, $j, and $k Counters.
 */
 int $fiberCount, $i, $j, $k;

 /***** INITIALIZE THE VARIABLES *****/

 $cubeSize = ' getAttr widget.cubeSize ' ;
 $buffer = 25;
 $cposNames =' ls -long "cpos*"' ;
 $fiberCount = size($cposNames);
 $posiNames = ' ls -l "posi*"' ;
 $offset = ' getAttr widget.offset ' ; // A percentage of the cell
 radius.

 As a precaution, delete the expressions from the scaff old model if they ’ re still in your scaf-
fold scene. If they ’ re left in the scene, they will interfere with the migration simulation.

 /***** MAIN BODY *****/
 // Delete resetSeeds and moveSeeds if they exist.
 if (' objExists "resetSeeds" ') delete resetSeeds;
 if (' objExists "moveSeeds" ') delete moveSeeds;

542 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

 Make the cells
 Next you ’ ll make a for loop to create the cells. In the case of the fi rst cell you ’ ll use
the sphere command with its default settings except for the radius. Here ’ s the fi rst
part of the for loop.

 // Create the cells.
 for ($i=0�; $i <$cellCount; $i++) {

 if ($i == 0�){

 $cellName = "cell_" + $i;

 // Create a nurbs sphere using default settings except
 for radius.
 sphere -r $cellRadius -n $cellName;

 Add three custom attributes to the cell to store its initial position, the index number
of its initial fi ber (which is called surfaceInit and will be determined subsequently),
and the index of its current fi ber, called closestSurface . At the start of the simula-
tion (frame 1) closestSurface and surfaceInit are equal and will remain so until
the cell transfers to another fi ber. Remember that when adding a vector attribute to
a Maya node, you must explicitly add the vector elements (X, Y, and Z) using the par-
ent fl ag. Th e attributes surfaceInit and closestSurface are used to store integers and
are therefore created with the -attributeType fl ag with a value of long , which indicates
a 32-bit integer. Using the surface index number will let you query any of the related
nodes: fiberSurface; closestPointOnSuface; pointOnSurface Info; or fiber Axis.

 // Add a custom attribute to store the cell 's initial
 position.
 addAttr -longName posInit -attributeType double3
 $cellName;
 addAttr -ln posInitX -at double -parent posInit $cellName;
 addAttr -ln posInitY -at double -p posInit $cellName;
 addAttr -ln posInitZ -at double -p posInit $cellName;

 // Make posInit keyable.
 setAttr -e -keyable true ($cellName + ".posInit");
 setAttr -e -keyable true ($cellName + ".posInitX");
 setAttr -e -keyable true ($cellName + ".posInitY");
 setAttr -e -keyable true ($cellName + ".posInitZ");

 // Add a custom attribute called surfaceInit.
 addAttr -longName surfaceInit -attributeType long
 $cellName;
 setAttr -e -keyable true ($cellName + ".surfaceInit");

 // Add a custom attribute called closestSurface.
 addAttr -longName closestSurface -at long $cellName;
 setAttr -e -keyable true ($cellName + ".closestSurface");

 } // End if.

 For subsequent cells, you ’ ll use the duplicate command, so that only one sphere shape
node is added to your scene.

 else {
 $cellName = "cell_" + $i;
 duplicate cell_0�;

 }

543CHAPTER 18: SCAFFOLD INVASIONS

 Next you ’ ll position the cell in a plane on the bottom surface of the scaff old using the
move command. Refer back to Figure 18.05 for the size and location of the plane.

 // Position the cell.
 $x = rand(0�, $cubeSize);
 $y = 0�; // At the scaffold base.
 $z = rand($buffer, $buffer + $cubeSize);
 move $x $y $z $cellName;
 $pos = <<$x, $y, $z>>;

 Find the closest fi ber
 Th e following code fi nds the closest point on all of the fi bers to the cell ’ s position. Th is
is the fi rst instance where you ’ ll employ the closestPointOnSurface nodes. A for loop
is used to narrow down candidates for closest point. Each time through the loop the
distance ($dist) from the cell to the current fi ber ’ s closest point (stored in $cpos) is
compared to the value of $shortestDist . If $dist is less than $shortestDist , then
 $shortestDist is assigned the value of $dist and the loop increments. Each time
 $shortestDist is updated, $k stores the index number of the corresponding fi ber. At
the end of the loop, $k will be the number assigned to the cell attributes surfaceInit
and closestSurface .

 /*
 Find the nearest fiber to the cell 's position. Set
$shortestDist high enough to include all of fibers in the
first round of testing.
 */
 $dist = 0�;
 $shortestDist = 10�0�0�0�;
 $k = 0�;

 for ($j = 0�; $j < $fiberCount; $j++) {

 // Get the closestPointOnSurface position for fiber $j.
 setAttr ($cposNames[$j] + ".inPosition") -type double3

 $x $y $z;
 $cpos = ' getAttr ($cposNames[$j] + ".position")' ;

 $dist = mag($cpos - $pos);

 // Is $dist the new $shortestDist?
 if ($dist < $shortestDist) {

 // Fiber $j is currently the closest surface.
 $closestSurface[$i] = $cposNames[$j];

 $shortestDist = $dist;

 // Store the closest fiber index in $k.
 $k = $j;

 }
 } // End for loop.
 // $k is the index for the closest fiber to cell $i.

 Position the cell on the fi ber
 Next, the cpos and posi nodes will be used together to fi nd the normal vector for the
surface at the closest point to the cell. Th e cell will be positioned at the closest point
and then off set from the fi ber using the normal vector and the $offset value.

 // Query the u and v surface coordinates from the cpos node.
 $u = ' getAttr ($cposNames[$k] + ".parameterU") ' ;
 $v = ' getAttr ($cposNames[$k] + ".parameterV") ' ;

 Reminder:

cpos is our shorthand notation
for a closestPointOnSurface
node. Given an input XYZ
position, cpos returns the point
in 3D space closest to the input
that also lies on the surface in
question.

posi is our shorthand notation
for a pointOnSurfaceInfo node. It
takes the point returned by cpos
and itself returns information
(surface normal vector, and so
on) about that point.

544 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

 // Input the parameters to the pointOnSurfaceInfo node.
 setAttr ($posiNames[$k] + ".parameterU") $u;
 setAttr ($posiNames[$k] + ".parameterV") $v;

 // Query the surface normal vector.
 $unitNorm = ' getAttr ($posiNames[$k] + ".normal") ' ;

 // Calculate the magnitude of the offset.
 $offsetDist = $offset/10�0� * $cellRadius;

 A minimum value for off set, 0%, would see the cell center positioned on the fi ber sur-
face. A maximum value of 100% would place the cell center at a distance equal to its
radius away from the fi ber surface (Figure 18.16). $offset takes its value from the off set
attribute of the control widget, which you ’ ll create later in this chapter.

 // Calculate the offset vector.
 $offsetVect = $unitNorm * $offsetDist;

 // Calculate the vector to position the cell.
 $cpos = ' getAttr ($cposNames[$k] + ".position") ' ;
 $pos = $cpos + $offsetVect;

 Set the custom attributes
 Here you ’ ll set the cell ’ s custom attributes which you ’ ll query during the simulation.
Vector attributes must be set with the -type double3 flag.

 // Set the cell 's attributes.
 setAttr ($cellName + ".translate") -type double3 ($pos.x)
 ($pos.y) ($pos.z);
 setAttr ($cellName + ".posInit") -type double3 ($pos.x)
 ($pos.y) ($pos.z);

 setAttr ($cellName + ".surfaceInit") $k;
 setAttr ($cellName + ".closestSurface") $k;

offset A = 50% × DD

<u,v>

A

B

offset B = 0% × D
 FIGURE 18.16

 Offsetting the cell center from the
fi ber surface approximates cell

spreading. The more a cell spreads
on the surface, the shorter its reach

perpendicular to the surface and
therefore, the less likely it is to

contact other fi bers by chance. In
this example, cell A has an offset

equal to 50% of its diameter. Cell B
is fully spread on the fi ber, with an

offset of 0.

545CHAPTER 18: SCAFFOLD INVASIONS

 } // End the cell loop.

 } // End procedure

 // Print command line instructions for the user.
 print "Call the procedure: makeCells(10�, 5, 25) ";

 Save your fi le
 Save your procedure as a fi le in your Maya Scripts directory.

 1. Query Maya ’ s search path for the Scripts directory using the internalVar com-
mand. Enter the following in the Script Editor:

 internalVar -userScriptDir

 In Windows, it will return a path such as:

 /Users/yourName/Library/Preferences/Autodesk/maya/8.0�/scripts/

 2. Save your fi le under the name makeCells.mel .

 The resetCells expression
 You made an expression similar to this one in each of the previous two chapters. Its
purpose here is to declare and initialize global variables, return cells to their starting
positions, and to reset the cells ’ closestSurface attributes. Once again, we ’ ll recom-
mend building the expression as it appears here rather than as one long string follow-
ing the expression MEL command. If you prefer to do the latter, remember to escape all
quotation marks and line breaks with the backward slash character, “ \ ” . Because this
expression is to execute only at frame 1, it starts with a conditional time check. Th e
 currentTime command returns the same value as would a query of the global variable
 frame .

 /* Description:
 This is an animation expression that initializes global variables
and resets cells to their starting positions.
 */

 if (' currentTime -query ' == 1) {

 /***** DECLARE THE VARIABLES *****/

 /*
 $sProb[5][5] The state change probability matrix for the

5-state Markov process.
 */
 global matrix $sProb[5][5];

 /*
 $cellPos[] An array of current cell positions.
 $UVs[] The current surface parameter position (UV) of

every cell.
 $deltaUVs[] The last step taken by each cell in UV surface

coordinates.
 */
 global vector, $cellPos[], $UVs[], $deltaUVs[];

 Unlike an array, whose length
(the number of elements it
contains) can be set to different
values, a matrix must be declared
with an explicit length and width
which cannot change once
declared.

546 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

 /*
 $cellNames[] A list of cell names.
 $surfaceNames[] A list of scaffold fibers.
$cpos Names[] A list of closestPointOnSurface node names.
 $posiNames[] A list of pointOnSurfaceInfo node names.
 */
 global string $cell Names[], $surfaceNames[], $cposNames[],
 $posiNames[];

 /*
 $cDiameter Cell diameter.
 $probUp The probability that a cell will transfer to

a fiber above it.
$minBound The lower Z-coordinate value of the migration

boundary.
 $maxBound The upper Z-coordinate value of the migration

boundary.
 */
 global float $cDiameter, $probUp, $minBound, $maxBound;

 /*
 $cellCount The number of cells in the scene.
$crntState[] The current Markov state for every cell.
$persist[] The persistence time in the current state.
 $transWait[] The frame numbers at which corresponding

cells will once again checking for a possible
fiber transfer.

 */
 global int $cellCount, $crntState[], $persist[], $transWait[];

 /*
 $cellPosName The current closestPointOnSurface node name.
 */
 string $cellPosName;

 /*
 $pos Used to store single vectors from $cellPos[].
 */
 vector $pos;

 /*
 $closest The number of the fiber to which the current

cell is attached.
 $i and $k Counters.
 */
 int $closest, $i, $k;
 float $u, $v;

 /***** INITIALIZE THE VARIABLES *****/

 clear ($cellPos);
 clear ($crntState);
 clear ($persist);
 clear ($transWait);

547CHAPTER 18: SCAFFOLD INVASIONS

 clear ($UVs);
 clear ($deltaUVs);
 $cellNames = ' ls -transforms "cell*" ' ;
 $cellCount = ' size $cellNames ' ;
 $surfaceNames = ' ls -transforms "fiberSurface*" ' ;
 $cposNames = ' ls -long "cpos*" ' ;
 $posiNames = ' ls -long "posi*" ' ;
 $minBound = 25;
 $maxBound = $minBound + ' getAttr widget.cubeSize ' ;
 $cDiameter = ' getAttr widget.cDiameter ' ;

 The state change probability matrix
 Th e state probability matrix regulates the directional choices in each cell ’ s random
walk. You ’ ll initialize this matrix (represented by the variable $sProb) with values
similar to those recorded by Noble and Levine 2 but with less weighting on the 0 state.
Less time spent in state 0 means more time spent migrating, which allows you to see
more movement in the model. Naturally the cells will travel farther in the scaff old
over the course of a simulation if they spent less time standing still! Nonetheless,
waiting time (time spent in state 0) is a natural component of cell migration and
therefore one we chose to include in this version of the model. Table 18.03 shows the
$sProb values in tabular form so that you can see how the columns and rows relate to
the matrix notation below.

 // Initialize the markov process state change probability matrix.
 $sProb = <<0�, 0�.25, 0�.25, 0�.25, 0�.25; 0�.7, 0�, 0�.10�, 0�.10�, 0�.10�;
 0�.7, 0� .10�, 0�, 0�.10�, 0�.10�; 0�.7, 0�.10�, 0�.10�, 0�, 0�.10�; 0�.7, 0�.10�,
 0�.10�, 0�.10�, 0�>>;

 The chemoattractant
 Th e probability value stored in $probUp is the analog of a chemoattractant gradient
along the world space Y-axis. A $probUp value of 0 equates to no attraction. A value
of 1 equates to a strong attraction. $probUp will be used in cRule 3 to evaluate fi ber
transferring.

 // Set the chemotactic bias.
 $probUp = 0�.9;

 State 0 1 2 3 4

 0 0 0.7 0.7 0.7 0.7

 1 0.25 0 0.1 0.1 0.1

 2 0.25 0.1 0 0.1 0.1

 3 0.25 0.1 0.1 0 0.1

 4 0.25 0.1 0.1 0.1 0

TABLE 18.03

 The state change probability matrix,
$sProb, for the 5 state Markov
process.

548 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

 Reset the cell ’ s position and update its attributes
 Th e for loop will cycle through the following set of instructions for each of the cells.
$cCount stores the total number of cells in you scene.

 /***** MAIN BODY *****/

 for ($i= 0� ; $i < $cellCount; $i++) {

 // Set the cell to its initial position using its posInit
 attribute.

 $pos = ' getAttr ($cellNames[$i] + ".posInit") ' ;
 setAttr ($cellNames[$i] + ".translate") -type double3 ($pos.x)
 ($pos.y) ($pos.z);

 // Set keys to record cell position.
 setKeyframe -at "translateX" $cellNames[$i];
 setKeyframe -at "translateY" $cellNames[$i];
 setKeyframe -at "translateZ" $cellNames[$i];

 // Get the index number of the cell 's initial surface.
 $closest = ' getAttr ($cellNames[$i] + ".surfaceInit ")' ;
 $cellPosName = $cposNames[$closest];

 // Get the initial surface uv values.
 setAttr ($cellPosName + ".inPosition") -type double3 ($pos.x)
 ($pos.y) ($pos.z);
 $u = ' getAttr ($cellPosName + ".parameterU ")' ;
 $v = ' getAttr ($cellPosName + ".parameterV ")' ;

 // Initialize the global arrays.
 $cellPos[$i] = $pos;
 $UVs[$i] = <<$u, $v, 0� >>;

 // Set the cell 's closestSurface attribute.
 setAttr ($cellNames[$i] + ".closestSurface") $closest;
 }

 // Select the widget so the model parameters appear in the
 channel box.
 select widget;

 } // End expression.

 Save your fi le
 In its present form this expression cannot be sourced like a MEL script. Instead, you
will copy and paste it into Maya ’ s Expression Editor. For this reason we recommend
not using the .mel fi le extension in order to avoid confusion with fi les that qualify
as stand-alone MEL scripts. Save resetCells in a plain text fi le called resetCells.txt
within your Maya Scripts directory.

 The moveCells() expression
 Th is expression is the workhorse of the model. It calls the migration rule procedures
and updates the state of each cell—UV and world space positions and the current fi ber
surface to which the cell is attached—each time the Maya scene enters a new frame.

549CHAPTER 18: SCAFFOLD INVASIONS

 /* Description:
 This is an animation expression that updates cell positions using
vectors $v1, $v2, and $v3. The vectors are derived from the rule
procedures cRule1, cRule2, and cRule3.
 */

 // Execute this expression only if the frame is greater than 1.
 if (' currentTime -query ' > 1) {

 /***** DECLARE THE VARIABLES *****/

 global vector $cellPos[], $UVs[], $deltaUVs[];
 global string $cellNames[];
 global float $cDiameter, $minBound, $maxBound;

 /*
 $frameCheckUsed to send the current frame number to the rule
 procedures.
 */
 global int $frameCheck, $cellCount, $transWait[];

 /*
 $surfacePos The point of cell attachment on a fiber surface.
 $unitNorm The unit vector of the surface normal at the

point of attachment.
 $v1 The vector returned from the random walk

procedure, rule1().

 $v2 The vector returned from the contact avoidance
procedure, rule2().

 $uvVect The UV coordinates of the current cell.
 $newPos The cell ’s new position after all three rules

and boundary conditions have been accounted for.

 */
 vector $surfacePos, $unitNorm, $v1, $v2, $uvVect, $newPos;

 /*
$posiName The current pointOnSurfaceInfo node.
$surfaceName The current fiber surface.
$v3[] The array array returned by the fiber transfer

procedure, rule3().
 */
 string $posiName, $surfaceName, $v3[];

 /*
$vScale Scales the cell ’s random walk step size.
$bound U parameter element of the vector used to nudge

cells back into the active region of the scaffold.

 */
 float $vScale, $bound, $cRadius, $u, $v, $offset, $offsetDist;
 int $closest, $i;

 Multiplying the cell migration unit vector $deltaUVs by the scaling factor $vScale
lets you set the incremental displacement, which in eff ect is the instantaneous speed of
the cells.

 Remember that a global variable
must be declared within each
expression or procedure that
uses it.

550 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

 /***** INITIALIZE THE VARIABLES *****/

 $vScale = ' getAttr widget.vScale ' ;
 $offset = ' getAttr widget.offset ' ;
 $cRadius = $cDiameter/2;
 $frameCheck = frame;
 $buffer = 25;
 $bound = 0�;

 Begin the main loop
 Th e following code increments once for every cell in the population.

 /***** MAIN BODY *****/

 for ($i=0�; $i < $cellCount; $i++) {

 // Get the pointOnSurfaceInfo (posi) and extrude (surface)
 node names.
 $closest = ' getAttr ($cellNames[$i] + ".closestSurface") ' ;
 // e.g. "12".
 $posiName = $posiNames[$closest]; // e.g. "posi6_12".
 $surfaceName = $surfaceNames[$closest]; // e.g.
 fiberSurface6_12.

 Invoke the fi rst two rules of behavior
 Continuing on in the main program loop, you ’ ll now call rules 1 and 2 to calculate the
results of the Markov process and contact avoidance, respectively.

 /***** RULE 1 *****/
 $v1 = (cRule1($i, $vScale, $surfaceName));
 // cRule1 returns the uv coordinates of the random walk step.

 /***** RULE 2 *****/
 $v2 = (cRule2($i, $vScale, $surfaceName));
 /* $cRule2 returns the V-component of the unit contact
avoidance vector, multiplied by scaling factor $vScale. */

 Next, you ’ ll update the vector array $deltaUVs[] with the cell displacement as a result
of rules 1 and 2. Let contact avoidance override the random walk. In other words, if the
current cell is too close to another cell, its avoidance step (along the fi ber ’ s long axis) will
override the V-component of its random walk. Th is prevents the cell from stepping away
from its neighbor, only to step back toward it with a random walk step. Likewise, the cell
will not take a double step if avoidance and the random walk are in the same direction.

 // Update the $deltaUVs array with the results of rules 1
 and 2.
 if ($v2.y != 0�) {

 /* The V-component of avoidance is non-zero, therefore
the cell displacement will consist of the U-component of
$v1 and the V-component of $v2. Because surface vectors
are 2D, the third (Z) component in $uvVect will be 0�. */
 $uvVect = <<$v1.x, $v2.y, 0� >>;
 $deltaUVs[$i] = <<$v1.x, $v2.y, 0� >>;

 }
 else {

 // There is no collision avoidance vector ($v2 = <<0�,
 0�, 0� >>).
 $deltaUVs[$i] = $v1;

 }

 Reminder: U and V surface
components are represented

by .x and .y components,
respectively, in vector notation.

There is no third component
in UV space, so the .z vector

component is given a default
value of 0.

551CHAPTER 18: SCAFFOLD INVASIONS

 // Add $deltaUVs[$i] to the cell 's current position on the
 fiber surface.
 $UVs[$i] += $deltaUVs[$i];

 // Query the UV position for cell $i.
 $uvVect = $UVs[$i];

 Because fi ber parameter values are normalized (spanning zero to one) you must
adjust U-values that would otherwise move the cell past the fi ber U-origin. For exam-
ple, a U-value of 1.25 must be adjusted to 0.25 (Figure 18.17). In normalized parameter
space, values above 1 and below 0 are taken to be 1 and 0, respectively.

 // Correct for circumferencial movement past the U-origin.
 $u = $uvVect.x;
 if ($u > 1) $u = $u - 1;
 else if ($u < 0�) $u = $u + 1;

 Evaluate the boundary conditions
 Now fi nd out where the cell ’ s new surface position lies in world space in order to test
if the cell has stepped out of the imaginary bounding box shown in Figure 18.05 .

 // Get the worldspace coordinates of the attachment point.
 setAttr ($posiName + ".parameterU") ($uvVect.x);
 setAttr ($posiName + ".parameterV") ($uvVect.y);
 $surfacePos = ' getAttr ($posiName + ".position") ' ;
 // This is the temporary new position of the cell.

 /***** BOUNDARY CONDITIONS *****/

 if ($surfacePos.z < $minBound || $surfacePos.z > $maxBound) {

 // Get the length of the cell 's fiber.
 $length = ' getAttr ($surfaceName + ".length") ' ;

 /* Calculate the step size in uv parameter space for a
step back in the migration boundary. $bound will be double
the random walk step size in order to not only halt the
cell's progress outside of the box, but reverse it.*/
 $bound = 1.5 * $vScale / $length;

 The || operator stands for the
logical " or " .

NURBS
seam

u = 0.25

u = 0.25

u = 1.25

u = 0, 1

 FIGURE 18.17

 The seam of a NURBS object is both
the origin and terminus of the U-axis.
When a U-value is less than 0 or
greater than 1, it must be normalized
to a value that corresponds to an
equivalent circumferential position
on the fi ber. In this example the
U-value is 1.25. Its normalized
equivalent value is 0.25.

552 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

 // For a negative step.
 if ($surfacePos.z > $maxBound) $bound = -$bound;
 // Else, $bound will remain positive.

 // Update the $v component of $deltaUVs[$i].
 $deltaUVs[$i] += << 0�, $bound, 0� >>;
 // The u value (X-component of the vector) remains
 unchanged.

 // Update $UVs[$i] and store it in a vector.
 $UVs[$i] += << 0�, $bound, 0� >>;
 $uvVect = $UVs[$i];

 // Get the worldspace coordinates the attachment point.
 setAttr ($posiName + ".parameterU") ($uvVect.x);
 setAttr ($posiName + ".parameterV") ($uvVect.y);
 $surfacePos = ' getAttr ($posiName + ".position")' ;

 }

 The temporary world space position
 Before calling cRule3 for fi ber transferring, we ’ ll update the world space cell position
stored in $cellPos[$i] without actually moving the cell. You will move the cell after
evaluating fi ber transfers.

 // Get the surface normal vector using posi.

 $unitNorm = ' getAttr ($posiName + " .normal ")' ;

 // Determine the cell/fiber offset.
 float $tmpFloat = $offset/10�0� * $cRadius;
 $offsetVect = $unitNorm * $tmpFloat;

 // Set the new cell position, offset from the new surface
 position.
 $cellPos[$i] = $surfacePos + $offsetVect;
 // This is the new position of the cell unless it tranfers
 fibers.

 Invoke the third rule of behavior
 Now check to see the cell has an opportunity to transfer from its current fi ber to a
new one, given its new world space position, $cellPos[$i] . Th e condition for calling
the cRule3 procedure is that the cell ’ s $transWait time has expired and it is therefore
free to check for potential transfers. After evaluating cRule3 , a new $transWait[$i] is
set within the procedure.

 /***** RULE 3 *****
 Call the fiber transfer procedure, rule 3, only if the
cell has waited long enough since it last checked for a
transfer.
 */
 if (frame > $transWait[$i]) {

 $v3 = (cRule3($i));
 /*
 cRule3 returns the array:
 { "yes or no ", "closestSurface", "<<$x, $y, $z>> ",
"<<$u, $y, 0� >>"}.

 If no transition occurs, cRule3 will return "no" and
 null values for $closestSurface and the two vectors.

553CHAPTER 18: SCAFFOLD INVASIONS

 */
 if ($v3[0�] == "yes") { // A transfer has occurred.

 // Update variables with the new information from
 rule3.

 // The fiber 's number:
 $closest = (int) $v3[1];

 // Update the cell 's closestSurface attribute.
 setAttr ($cellNames[$i] + ".closestSurface") $closest;

 // The cell attachment position in world space:
 $surfacePos = $v3[2];
 // The cell attachment position in uv space:
 $UVs[$i] = $v3[3];

 // Get the new posi node.
 $posiName = $posiNames[$closest];

 // Get the surface normal vector using posi.
 $uvVect = $UVs[$i];
 setAttr ($posiName + ".parameterU") ($uvVect.x);
 setAttr ($posiName + ".parameterV") ($uvVect.y);
 $unitNorm = ' getAttr ($posiName + ".normal") ' ;

 // Determine the cell/fiber offset.
 $offsetDist = $offset/10�0� * $cRadius;
 $offsetVect = $unitNorm * $offsetDist;

 // Set the new cell position.
 $cellPos[$i] = $v3[2] + $offsetVect;

 } // End if ($v3[0�] == "yes").

 } // End if (frame > $transWait[$i]).

 Move the cell into position
 Until now, the expression has dealt with position data stored in attributes and arrays,
but has not physically moved the cell within the scaff old—i.e. Maya ’ s scene graph has
not changed. Use the familiar setAttr command to set the cell ’ s transform attributes
and thereby place it where it belongs in world space.

 // Set the cell 's attributes.
 $newPos = $cellPos[$i];
 setAttr ($cellNames[$i] + " .translate ") -type double3
 ($newPos.x) ($newPos.y) ($newPos.z);

 Keyframe the cell ’ s position
 Th e following lines set keyframes for the cell ’ s translate attributes. Th e code is com-
mented out (using the “ // ” notation) for now. When your model is functioning to your
satisfaction and you wish to make a record of a simulation, remove the comments.

 /* Set keys to record cell position. Remove the forward
slashes to make these commands active. */

 // setKeyframe -at translateX $cellNames[$i];

554 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

 // setKeyframe -at translateY $cellNames[$i];
 // setKeyframe -at translateZ $cellNames[$i];

 } // End the main loop.
 } // End the expression.

 Save your fi le
 Save moveCells in a plain text fi le called mov eCells. txt within your Maya Scripts
directory. Next, you ’ ll compose the three-rule procedures.

cRule1(): The random walk
 Th is procedure returns a vector in UV space—the result of the 5-state Markov
process—and calculates the persistence time until the next state change. Th e state
change probabilities are defi ned by the $sProb matrix in the expression called reset-
Cells. Th is procedure takes three arguments: the current cell index, $i; the fl oat
 $vScale , which is used to scale the magnitude of the random walk step size; and the
name of the surface, $surfaceName, to which cell $i is currently attached.

 /* Description:
 This procedure calculates a random walk based on a 5-state
Markov process and corresponding in-state waiting times.

 The procedure arguments are as follows:
$i The index number of the current cell.
$vScale Scales the cell 's random walk step size.
$surfaceName The surface to which the current cell is

attached.
 */

 global proc vector cRule1 (int $i, float $vScale, string
 $surfaceName) {

 /***** DECLARE THE VARIABLES *****/

 global matrix $sProb[5][5];
 global vector $UVs[], $deltaUVs[];
 global int $crntState[], $frameCheck, $persist[];

 /*
$states[] The unit vector equivalents of the 5 Markov

states.
 */
 vector $states[], $surfacePos, $v1;

 /*
$length The length of the fiber, $surfaceName.
$pi The ratio of the circumference of a circle to

its diameter.
$fDiameter The diameter of the fiber $surfaceNam e.
$u and $v The cell 's stepwise displacements in UV

parameter space.
$rnd A number returned by Maya 's rand() function.
$pAvg The average persistence time in frames.
$tau The new persistence time calculated using the

Gillespie equation.
 */
 float $length, $pi, $fDiameter, $u, $v, $rnd, $pAvg, $tau;

555CHAPTER 18: SCAFFOLD INVASIONS

 /***** INITIALIZE THE VARIABLES *****/

 $states = {<<0�,0�,0� >>, <<0�,1,0� >>, <<1,0�,0� >>, <<0�,-1,0� >>,
 <<-1,0�,0� >>};

 $length = ' getAttr ($surfaceName + ".length")' ;
 $fDiameter = ' getAttr ($surfaceName + ".diameter") ' ;
 $pi = 3.14159;

 State change probabilities
 In this next section, you ’ ll simulate a random draw from a probability distribution and
use it to determine the new state of the cell. Because the probabilities vary depending
on which state the cell is currently in, a separate conditional (if) statement will handle
the evaluation for each of the fi ve states. Enable the probability as follows: draw a pseu-
dorandom number on the unit interval (i.e. between 0 and 1) using MEL ’ s rand() func-
tion and compare it with the probability for each state (Figure 18.18). To conserve space,
we have listed the conditional statements for states 0, 1, and 2 below. By applying the
logic outlined in Figure 18.18 , you can write the code for the remaining three states.

 /***** MAIN BODY *****/

 /* Determine the new state of the cell by comparing the
random number, $rnd with the state change probability matrix
$sProb[5][5] that was initialized in moveseeds. */

 if ($persist[$i] <= $frameCheck) { // time to pick a new state.

 // Pick a pseudorandom number on the unit interval (0� to 1).
 $rnd = rand(0�,1);

 // STATE 0�.
 if ($crntState[$i] == 0�) {

 // Pick any of states 1 through 4.

 if (($rnd > 0�) & & ($rnd <= $sProb[0�][1])) {
 // Pick state 1.
 $crntState[$i] = 1; $v1 = $states[1];

State change probabilities
for a cell in State 2

$sProb0[0] = 0.7
$sProb1[0] = 0.1
$sProb3[0] = 0.1
$sProb4[0] = 0.1

Total = 1.0

Pseudorandom number
generator

$rnd = rand(0, 1)
e.g. $rnd = 0.784...

0 0.7 0.8 0.9 1.0

State 0 (s0) s1 s3 s4

 FIGURE 18.18

 The unit interval is broken into
segments that refl ect the state
change probabilities (shown here for
a current cell waking state
of 2). The segment into which the
pseudorandom number, $rnd, falls
determines which new state the cell
chooses—state 1 in this example.

 Because the algorithm of
rand() and functions like it do
not perfectly reproduce all the
properties of randomness, the
numbers they generate often are
called pseudorandom numbers
instead of random numbers.

556 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

 }

 else if (($rnd > $sProb[0�][1]) & & ($rnd <= ($sProb[1][0�] +
 $sProb[0�][2]))) {
 // Pick state 2.
 $crntState[$i] = 2; $v1 = $states[2];
 }
 else if (($rnd > ($sProb[0�][1] + $sProb[0�][2])) & & ($rnd <=
 (1 - $sProb[0�][4]))) {
 // Pick state 3.
 $crntState[$i] = 3; $v1 = $states[3];
 }
 else if (($rnd > (1 - $sProb[0�][4])) & & ($rnd <= 1)) {
 // Pick state 4.
 $crntState[$i] = 4; $v1 = $states[4];
 }
 }

 // STATE 1.
 else if ($crntState[$i] == 1) {

 // Pick one of states 0�, 2, 3, OR 4.

 if (($rnd > 0�) & & ($rnd <= $sProb[1][0�])) {
 // Pick state 0�.
 $crntState[$i] = 0�; $v1 = $states[0�];
 }
 else if (($rnd > $sProb[1][0�]) & & ($rnd <= ($sProb[1][0�] +
 $sProb[1][2]))) {
 // Pick state 2.
 $crntState[$i] = 2; $v1 = $states[2];
 }
 else if (($rnd > ($sProb[1][0�] + $sProb[1][2])) & & ($rnd <=
 (1 - $sProb[1][4]))) {
 // Pick state 3.
 $crntState[$i] = 3; $v1 = $states[3];
 }
 else if (($rnd > (1 - $sProb[1][4])) & & ($rnd <= 1)) {

 // Pick state 4.
 $crntState[$i] = 4; $v1 = $states[4];
 }
 }

 // STATE 2.
 else if ($crntState[$i] == 2) {

 // Pick one of states 0�, 1, 3, OR 4.

 if (($rnd > 0�) & & ($rnd <= $sProb[2][0�])) {
 // Pick state 0�.
 $crntState[$i] = 0�; $v1 = $states[0�];
 }
 else if (($rnd > $sProb[2][0�]) & & ($rnd <= ($sProb[2][0�] +
 $sProb[2][1]))) {
 // Pick state 1.
 $crntState[$i] = 1; $v1 = $states[1];
 }

557CHAPTER 18: SCAFFOLD INVASIONS

 else if (($rnd > ($sProb[2][0�] + $sProb[2][1])) & & ($rnd <=
 (1 - $sProb[2][4]))) {
 // Pick state 3.
 $crntState[$i] = 3; $v1 = $states[3];
 }
 else if (($rnd > (1 - $sProb[2][4])) & & ($rnd <= 1)) {
 // Pick state 4.
 $crntState[$i] = 4; $v1 = $states[4];
 }
 }

 Remember to complete the code for current states 3 and 4! All states are represented
in fi nished fi le on the CD-ROM:

18_Cell_Migration/MEL/cRule1.mel

 Persistence time
 Next you ’ ll calculate the time, $persist[$i], that the cell will persist in its new state,
via Daniel Gillespie ’ s formulation described on page 530 . Run many times, the formula
will return values, $tau, distributed exponentially about the average persistence
time, $pAvg for each cell state. You will store $pAvg values within attributes of the con-
trol widget later in the chapter.

 // Calculate the persistence time.
 $rnd = rand(0�,1);

 if ($crntState[$i] == 0�) { // State 0�.

 $pAvg = ' getAttr widget.persistState0� ' ;
 $tau = $pAvg*log(1/$rnd);
 }
 else if ($crntState[$i] == 1 || $crntState[$i] == 3) { // State
 1 or 3
 $pAvg = ' getAttr widget.persistState13 ' ;
 $tau = ($pAvg)*log(1/$rnd);
 }
 else { // State 2 or 4.
 $pAvg = ' getAttr widget.persistState24 ' ;
 $tau = ($pAvg)*log(1/$rnd);
 }

 Th e new $persist[$i] is determined by adding $tau to the current frame number
which is stored in the global variable $frameCheck . Th e ceil function return the next
highest integer to the value of $tau. $persist[] is a global variable; the value assigned
to it here is available the next time cell this procedure is called from the moveCells
expression.

 $persist[$i] = $frameCheck + ceil($tau);

 The return value
 Th e state vector $v1 must be converted from a unit vector (i.e. of magnitude 1) to a
vector in fi ber parameter space. Th e parameter U-component is calculated by dividing

558 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

the unit vector U-component ($v1.x) by the fi ber circumference ($pi × $fDiameter).
Th e parameter V-component is calculated by dividing the unit vector V-component
 ($v1.y) by the fi ber length ($length).

 // Calulate the random walk vector.

 // Convert the return vector to parameter space.
 $u = (1 / ($pi * $fDiameter)) * $v1.x;
 $v = (1 / $length) * $v1.y;

 // Scale $v1 by the magnitude $vScale.
 $v1 = $vScale * << $u, $v, 0� >>;

 } // End if ($persist[$i] <= $frameCheck).

 If the cell did not transfer fi bers, it will persist on its current heading which is stored
in $deltaUVs

 else $v1 = $deltaUVs[$i]; // The cell continues in its previous
 state.

 // Return the random walk vector to the moveCells expression.
 return $v1;

 } // End cRule1 procedure.

 Save your fi le
 Save cRule1() in a fi le called cRule1.mel within your Maya Scripts directory.

 cRule2(): Contact avoidance
 Th is procedure embodies the cell-cell signaling component of the model. It returns a
vector that is used in the main moveCells expression to nudge the current cell away
from neighbors that are too close according to a threshold value you ’ ll set below.

 /* Description:
 This procedure moves the current cell $i away from a neighboring
cell if the two are within a threshold distance of one another.
 The procedure arguments are the same as those used in cRule1().
 */

 global proc vector cRule2 (int $i, float $vScale, string
 $surfaceName) {

 /***** DECLARE THE VARIABLES *****/

 global vector $cellPos[];
 global string $cellNames[];
 global float $cDiameter;
 global int $cellCount;

 /*
$separation The vector separating the cell centers.
$totalSep The total of the separation vectors for all

neighbors too close to cell $i.
$unitSep The unit vector of $totalSep.

559CHAPTER 18: SCAFFOLD INVASIONS

 */
 vector $neighborPos, $separation, $totalSep, $unitSep, $v2;

 /*
$dist The magnitude of $separation.
$contactRange The tolerable distance between cells.
$v The V component of the return vector, $v2.

 */
 float $dist, $contactRange, $v, $length;

 /*
$name An index used to increment through the cell

name array, $cellNames[].

 */
 string $name;

 /*
$j The index number of the neighboring cell.

 */
 int $j;

 /***** INITIALIZE THE VARIABLES *****/

 $dist = 0�;

 $contactRange = ' getAttr widget.contactRange ' / 10�0� *
 $cDiameter;

 $totalSep = <<0�, 0�, 0�>>;

 $length = ' getAttr ($surfaceName + " .length ") ' ;
 $v2 = << 0�, 0�, 0� >>;
 $j = 0�;

 Main loop
 A for loop is used to increment through the cell population.

 /***** MAIN BODY *****/

 for ($j = 0�; $j < $cellCount; $j++) {

 // Test all but the current cell.
 if ($j != $i) {

 $separation = $cellPos[$i] - $cellPos[$j];
 $dist = mag($separation);

 // Are the cells too close to one another?
 if ($dist < $contactRange) {

 // cell $j is too close to cell $i.
 $totalSep += $separation;
 }
 }
 } // End the cell name loop.

560 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

 The return value
 Th e return vector is the Z-component of the unit total separation vector, $unitSep.
Multiplying $unitSep.z by $vScale scales the return value in terms of the univer-
sal step size for the simulation. Dividing the scaled $unitSep.z by the fi ber length
 ($length) converts it to a parameter value in fi ber surface UV space.

 // Calculate the contact avoidance vector.
 if ($totalSep.z < 0�) $v = -1;
 else if ($totalSep.z > 0�) $v = 1;
 $v = $vScale * $v / $length;
 $v2 = << 0�, $v, 0� >>;

 // Return the contact avoidance vector to the moveCells
 expression.
 return $v2;

 } // End procedure.

 Without too much trouble, you can repurpose this procedure to get cells to move
toward one another or to follow certain “ leaders ” based on their positions within the
scaff old.

 Save your fi le
 Save cRule2() in a fi le called cRule2.mel within your Maya Scripts directory.

 FIGURE 18.19

 When the matrix is hidden, cell
trajectories show clearly where
cells have transferred between

fi bers. You can apply the technique
described in Chapter 13 to generate

trajectory paths using Maya Paint
Effects.

561CHAPTER 18: SCAFFOLD INVASIONS

 While variables can be defi ned
as vector arrays in Maya (e.g.
vector $myVect[];), the same is
not true for procedures.
A procedure cannot return a
vector array. It can, however,
return a string array, which is a
convenient way to return several
values from a single procedure to
the script that called it.

 cRule3(): Transferring between fi bers
 Unlike the previous two procedures, this one returns a string array. Th e fi rst element
of the array will be either “ yes ” or “ no ” , refl ecting whether or not the cell will transfer
fi bers . If the fi rst element is “ yes ” then:

 (a) Th e second element will hold the index number of the fi ber to which the cell will
transfer.

 (b) Th e third element holds the closestPointOnSurface position value for the new
fi ber.

 (c) Th e fourth element stores the vector representing the U and V attributes of the
 closestPointOnSurface (or cpos) node.

 On the other hand, if the fi rst element is “ no” then the remaining $v3[] elements will
be assigned null values. Th is procedure has one argument: the current cell index, $i.

 /* Description:
 This procedure determines if the cell will transfer from its current
fiber to another fiber with which the cell is in contact.
 */

 global proc string[] cRule3 (int $i) {

 /***** DECLARE THE VARIABLES *****/

 global vector $cellPos[];
 global string $cellNames[], $cposNames[], $closestSurface[];
 global string $surfaceNames[];
 global float $cDiameter, $probUp;
 global int $frameCheck, $transWait[];

 /*
$cpos The closestPointOnSurface position attribute

value for the cell 's current fiber.
$newCpos The closestPointOnSurface position attribute

value for the cell 's new fiber.
 */
 vector $cpos, $newCpos, $pos;

 /*
$dist The distance between the cell center and the

closestPointOnSurface position for the fiber
currently under scrutiny.

$threshold The critical distance between the cell and a new
fiber, below which the cell will consider a transfer.

$prob The probability of a transfer. Its value is
either the same as $probUp, or the inverse
probability: 1 - $probUp.

 */
 float $dist, $threshold, $prob, $u, $v, $rnd;

 /*
$current The cell 's closest surface number (the one to

which it 's attached).

562 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

$closest The cell 's new closest surface number (the one to
which it may transfer).

$wait The time in frames the cell must wait before
checking for a transfer opportunity.

$willTrans The result of the cell 's decision to transfer or not.
 */
 int $current, $closest, $wait, $willTrans, $closest, $j;

 /*
$v3[] The return string for this procedure.
$currentCpos The cpos node corresponding the cell ’s current fiber.
 */
 string $v3[], $currentCpos, $name;

 For the initial $threshold value, use the cell ’ s contact radius which is given by
$cDiameter/2. You can vary this value or the cell diameter later on to adjust the sensi-
tivity of the cell ’ s reach.

 /***** INITIALIZE THE VARIABLES *****/

 $pos = $cellPos[$i];
 $dist = 0�;
 $threshold = $cDiameter/2; // The cell 's radius.
 $current = ' getAttr ($cellNames[$i] + ".closestSurface")';
 $currentCpos = $cposNames[$current];
 $wait = 5;
 $j = 0�;

 Main loop
 A for loop is used to increment through the scaff old fi bers. Each fi ber is evaluated via
its cpos node for proximity ($dist) to the cell. If $dist is less than $threshold then
the procedure moves on to test the probability of transferring to that fi ber. If not,
then that fi ber is discarded and the proximity to the next one is checked, and so on.

 /***** MAIN BODY *****/

 for ($name in $cposNames) {

 // Test all but the cell 's current fiber.
 if ($name != $currentCpos) {

 // Get the closest point on the surface to the cell 's
 position.

 setAttr ($name + ".inPosition") -type double3 ($pos.x)
 ($pos.y) ($pos.z);

 $cpos = 'getAttr ($name + ".position")';
 $dist = mag($cpos - $pos);

 // Determine if $dist is less than the $threshold value.
 if ($dist < $threshold) {

563CHAPTER 18: SCAFFOLD INVASIONS

 The transfer probability
 In this next section you ’ ll determine the probability of transferring to the contacted
fi ber. Th e variable $probUp specifi es the likelihood that the cell will transfer to a fi ber
for which the closest point in its surface is higher (in Y) than the cell ’ s center. In other
words, the cpos.position Y-component is greater than the cell ’ s translateY attribute.
 $probUp was set to 0.9 (or 90%) in the resetCells expression, a value that will help bias
migration in the positive Y-direction. If the $cellPos Y-component is less than the cell ’ s
 translateY value, then the probability for transferring is given by: 1 - $probUp � 0.1 (or
10%). Since it can be diffi cult to see fi ber transfers when they occur during a simulation
run, it ’ s sometimes helpful to print messages in the Script Editor when these events
occur. Below, you ’ ll start by assembling a message which you ’ ll print a little further on.

 // Assemble a message to print in the Script editor.

 string $tmpStr = "\n" + $cellNames[$i] + " is in contact
 with " + $name;

 // Test if new contact is above or below the cell 's center.
 if (($cpos.y) > ($pos.y)) {
 $prob = $probUp;

 // Add to the Script editor message.
 $tmpStr += " ABOVE it.\n ";

 }
 else {
 $prob = (1 - $probUp);

 $tmpStr += " BELOW it.\n ";
 }
 // Print the message.
 print $tmpStr;

 To determine the outcome, again draw a random number on the unit interval and
compare it to the probability.

 // Test the probability of a transfer.
 $rnd = rand(0�, 1);
 if ($rnd < $prob) {

 // The cell will transfer to a new fiber.
 $willTrans = 1;
 $newCpos = $cpos;
 $closest = $j;
 }
 else $willTrans = 0�; // The cell will not transfer.

 // Calculate the new waiting time.
 $transWait[$i] = $frameCheck + $wait ;
 }
 }

 // Increment the surface index number.
 $j++;

 } // End the cposName loop.

564 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

 Calculate the waiting time
 Whether or not the cell transfers between fi bers, it must now wait before check-
ing for another opportunity to transfer. Th is prevents the cell from bouncing back
and forth between two or more fi bers with which it is in contact. Th e wait time is given
by $wait, which you set to 5 frames earlier in this procedure. You can vary this number
to govern the frequency with which a cell can actively detect contact with fi bers. In
this way $wait off ers yet another point of control for your future enhancements of
this initial migration model. If you wish, you can add a custom attribute to the control
widget to store and easily change (via the Channel Box) the value for $wait.

 // Determine the new waiting time.
 $transWait[$i] = $frameCheck + $wait;

 The return value
 Now you ’ ll build the string array $v3[] and return it to the expression that called it.
Th e vectors representing the cpos position and UV values are constructed as strings
so they can be packaged in $v3[].

 // Assign the return values for this procedure.
 if ($willTrans == 1) { // The cell will transfer fibers.

 // Query the u and v surface coordinates from the cpos node.

 $name = $cposNames[$closest];
 $u = ' getAttr ($name + ".parameterU") ';
 $v = ' getAttr ($name + ".parameterV") ';

 // Compose the return array.
 // The cell will transfer, therefore
 $v3[0�] = "yes";
 // The surface it will transfer to is
 $v3[1] = $closest;

 // The cell attachment position in world space:
 $v3[2] = ("<<" + ($newCpos.x) + "," + ($newCpos.y) + ","
 + ($newCpos.z) + ">>");
 // The cell attachment position in parameter space:
 $v3[3] = ("<<" + ($u) + ","+ ($v) + ","+ (0�) + ">>");

 // Announce the transfer in the Script editor.
 $tmpStr = $cellNames[$i] + " transferred from " +
 $surfaceNames[$current] + " to " + $surfaceNames[$closest]
 + "\n";
 print $tmpStr;
 }
 else $v3 = { "no", "null", "null", "null" }; // The cell won 't

 transfer.

 // Return the fiber transfer array to the moveSeeds expression.
 return $v3;

 } // End procedure.

 Save your fi le
 Save cRule3() in a fi le called cRule3.mel within your Maya Scripts directory.

565CHAPTER 18: SCAFFOLD INVASIONS

 Th at concludes the scripting portion of this project. Next you ’ ll open the scaff old
model and source and debug the script fi les.

 Methods: Running the simulation

 Prepare your scene fi le
 Start Maya. If it ’ s already running, save your work. Set your project directory to the
one you created at the end of Chapter 17.

 1. From the main menu bar, choose File → Project → New.

 2. Navigate to cellMigrationProject and press Choose.

 Open the scene fi le you created in the previous project.

 3. (a) Choose File → Open Scene

 (b) Navigate to your scene fi le, scaffold.ma , and press Open.

 Th e cell migration simulation will execute properly on a scaff old model that is built
to the specifi cations we outlined in the previous chapter. Most importantly, the clos-
estPointOnSurface node, the pointOnSurfaceInfo node, and the control widget must
possess the attributes that are queried in the current project. We have provided a fi n-
ished scaff old scene fi le on the CD-ROM:

 18_Cell_Migration/scenes/scaffold.ma

 Next, set the scene preferences:

 4. Choose Window → Settings/Preferences → Preferences.

 5. Choose Categories → Settings and make the following settings:

 Under Working Units → Linear: centimeter .

 → Angular: degrees .

 → Time: NTSC.

 6. Choose Categories → Timeline and make the following settings:

 Under Timeline → Playback Start: 1 .

 → Playback End: 500 .

 → Time, select NTSC .

 Under Playback → Looping: once .

 → Playback Speed: Play every frame .

 → Playback by 1.

 7. Press Save.

 8. Select the Perspective view of your scene by pressing the button in the
 Toolbox.

566 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

 Repurpose the control widget
 While building the above scripts you ’ ve used the getAttr command several times to
query control widget custom attributes. You ’ ve then used the results to set various
parameters for the model. Here you ’ ll add those custom attributes after deleting the
ones not needed for this project:

 1. Select the widget in the Outliner and then press Ctrl+A to open the Attribute
Editor.

 2. In the Attribute Editor, click on the left-most tab to select the widget transform
node.

 3. From the Attribute Editor menu bar, choose Attributes → Delete Attributes.

 4. In the Delete Attribute window, hold down the Shift key while selecting the
following attributes:

 avoidScale, boundScale, dx, dy, dz, minSpan, maxSpan, persistMin, persistMax, size-
Bias, and spacingMin.

 5. Press the Delete button then the Close button.

 Now you ’ ll create the new attributes and set their default values. You can do this
manually, through the Attribute Editor, or by entering the following script in the
Script Editor. Th e attributes called persistState13 and persistState24 are the aver-
age persistence values for states 1 and 3, and states 2 and 4, respectively. States 1
and 3 pertain to movement on the fi bers that is circumferential, and states 2 and 4 to
longitudinal movement.

 /* Description:
 This adds custom attributes to the scaffold widget object. The
attributes are used in the cell migration simulation.
 */

 // Make an array of custom attribute names you want to add to the
 widget.
 $attributes = { "cDiameter", "offset", "vScale", "probUp",

 " contactRange", "persistState0� " , "persistState13",
 " persistState24"};

 /* Make an array of initial attribute values. The second "float"
ensures all values are typed as floating point numbers, not
integers. */
 float $values[] = float {10�, 50�, 10�, 0�.9, 125, 1, 2, 2};

 // Add and set the custom attributes.
 for ($i = 0�; $i < ' size $attributes ' ; $i++) {

 addAttr -ln $attributes[$i] -at double -dv $values[$i] widget;
 setAttr -e -keyable true ("widget." + $attributes[$i]);

 }

 Th e initial attribute values listed above are what we recommend starting with. Once your
model is running error-free, you can vary these values within the ranges listed in Table
18.04 (and beyond!). Th e exception is of course cDiameter, which should only be changed
when you change the diameter of the spheres that represent cell contact radius.

567CHAPTER 18: SCAFFOLD INVASIONS

 Parameter name Description Location in your
scene

 Recommended
value range

 $cDiameter The cell diameter
value used in contact
avoidance and fi ber
transferring.

 widget.cDiameter 10

 $offset The distance of the
cell center from the
surface of its fi ber, as
a percentage of cell
radius.

 widget.offset 0–100

 $vScale Scales the unit
locomotion step size.

 widget.vScale 1–10

 $probUp Specifi es the
likelihood of a cell
transferring to a
higher fi ber with
which it’s in contact.

 widget.probUp 0–1

 $contactRange The range within
which cells take
steps to avoid contact
with one another, as
a percentage of cell
diameter.

 widget.
contactRange

100–300

 $persistState0 The average
persistence time in
frames of a cell in
state 0

 widget.
persistState0

1–10

 $persistState13 The average
persistence time in
frames of a cell in
states 1 or 3.

 widget.
persistState13

1–10

 $persistState24 The average
persistence time in
frames of a cell in
states 2 or 4.

 widget.
persistState24

1–10

 $sProb The state change
probability matrix.

 resetCells Sum of the values
in each matrix
column must
equal 1.

TABLE 18.04

 Model parameters to experiment
with and their recommended value
ranges.

568 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

 Th is script can be found on the CD-ROM:

 18_Cell_Migration/MEL/widgetAttributes.mel

 Save your scene
 Save your scene fi le under a new name in your cellMigrationProject directory:

 1. From the main menu bar, choose File → Save Scene As.

 2. Enter cellMigration.ma in the Save As fi eld and then press the Save button.

 Now you ’ re ready to load your script fi les in preparation for a simulation run.

 Load the script fi les

 Create the expressions
 First you ’ ll create the resetCells and moveCells expressions. If you didn ’ t build the
expression scripts earlier in the chapter, you can fi nd them in the following fi les on
the CD-ROM:

 18_Cell_Migration/MEL/ resetCells.txt

 / moveCells.txt

 1. Open resetCells.mel (either the fi le you created or the one on the CD-ROM) in
the text editor of your choice.

 2. Ensure that the text editor is set to not use typographers ’ quotation marks.

 3. Select and copy the entire script.

 4. In Maya, enter ExpressionEditor in the Command Line to launch the Expres-
sion Editor, or select it from the menu Windows → Animation Editors →
Expression Editor.

 5. Press the New Expression button.

 6. LMB+click in the Expression text fi eld.

 7. Press Ctrl+V to paste your expression into the text fi eld.

 8. Press the Create button at the bottom of the Expression Editor.

 9. In the Expression Name fi eld, replace the default name with resetCells and
press Enter.

 10. Repeat steps 5 through 9 for the moveCells expression, but name it moveCells in
the Expression Name fi eld.

 If Maya generates one or more errors when you press the Create button, you will need
to debug the expression: open the Script Editor to view the specifi c error messages and
to read the line number(s) that generated the error(s). If your text editor can display
line numbers, use this feature to cross-reference the error messages to the off ending
lines in your script. If you are unable to resolve the errors, you can compare your script
to the appropriate fi le (resetCells.txt or moveCells.txt) included on the CD-ROM.

 11. Press Ctrl+S to save your scene with the expressions in it.

569CHAPTER 18: SCAFFOLD INVASIONS

 Source makeCells() and the rule procedures
 Source the procedures one at a time and debug them as necessary.

 1. Refresh the search path contents. In the Script Editor, enter:

rehash;

 2. Source the script fi les. In the Script Editor, enter:

source "makeCells.mel";

 source "cRule1.mel";

 source "cRule2.mel" ;

 source "cRule3.mel";

 If Maya generates errors, debug the off ending procedure(s) accordingly. You can cross-
reference your scripts with those we ’ ve included on the CD-ROM:

 18_Cell_Migration/MEL/makeCells.mel

 /cRule1.mel

 /cRule2.mel

 /cRule3.mel

 Create the cells
 One you ’ ve successfully entered the two expressions in the Expression Editor and
declared the four procedures without generating error messages, you ’ re ready to create

10 �m

Intersecting
cells

 FIGURE 18.20

 When you fi rst make the cells, some
of them may intersect each other
due to their initial random placement
on the bottom of the scaffold.
The grey lines defi ne the scaffold
boundaries. The red lines defi ne the
active simulation volume. A Blue
shader was applied to the cells to
make them easy to see.

570 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

the cell population and begin the migration! Start with 10 cells of radius 5 � m and
specify a scaff old buff er length of 25 � m.

 1. Set the current time indicator (play head) to frame 1.

 2. Enter the procedure call in the Expression Editor or the Command Line:
 makeCells(10�, 5, 25);

 Some cells may overlap one another due to the random nature of their initial place-
ment (Figure 18.20). Th e contact avoidance procedure will sort out the overlapping.

 Run the simulation
 Before pressing the Play button to start the simulation, run the resetCells expres-
sion to initialize the global variables.

 1. Open the Expression Editor and choose Select Filter → By Expression Name.

 2. LMB+click on resetCells in the Expression fi eld to make it the active
expression.

 3. Press the Create button at the bottom of the Expression Editor.

 4. Close the Expression Editor.

 5. Press the Play button to start the simulation.

 On frame 2, the moveCells expression calls all three-rule procedures. If any of them
is missing or contains errors, Maya will generate an error message in the feedback
fi eld of the Command Line as well as the Script Editor. If you get an error message,
read it carefully to determine the source: it could be in one of the rule procedures or
in moveCells itself. If you are unable to locate and correct the source of an error mes-
sage, compare your script fi les to the ones we included on the CD-ROM. We have also
included a Maya scene fi le called cellMigration.ma, which contains the scaff old, con-
trol widget, cell models, and the expressions. To run the simulation using cellMigra-
tion.ma, you will need to copy the accompanying rule fi les into your Scripts directory
and run the rehash command to add them to Maya ’ s search path (Figure 18.21).

 18_Cell_Migration/scenes/ cellMigration.ma

 /MEL/ cRule1.mel

 / cRule2.mel

 / cRule3.mel

 If Maya generates no error messages when you press Play, then your cells should
begin crawling about on the fi bers as the playhead progresses along the timeline. You
can stop and rewind the simulation at any time using the Playback control buttons.

 Vary the model parameters
 Th is is the fun part! Trying varying the parameters listed in Table 18.04 —at fi rst one
at a time and then in combination—in order to observe their relative eff ects on the
behavior of the model. Th is brings us full-circle to our discussion of individual-based
modeling and emergent behavior at the beginning of the chapter. Th e motion of each
cell is a stochastic process that emerges from the behavior rules and their parameters.

571CHAPTER 18: SCAFFOLD INVASIONS

Th e distribution pattern of cells in the scaff old during a simulation run is not
the result of equations governing the population as a whole—as in a deterministic
model—but rather the novel consequence of choices made one cell at a time accord-
ing to individual rules of behavior, including cell-cell and cell-matrix interactions. In
this way, your Maya cell population is not unlike a fl ock of birds or a school of fi sh in
that its spatial arrangement at any moment in time is the result of decisions made by
the group ’ s members.

 After you ’ ve put the model through its paces, choose a set of parameters for which
you want to make a recording of the simulation.

 Record the simulation
 When you set keyframes Maya records the simulation run in the form of animation
curve nodes in the DG. A recorded simulation can be played back repeatedly using
the Playback controls or by scrubbing the timeline. To keyframe your simulation,
remove the comments from the code in the moveCells expression that sets the trans-
late attribute keyframes, as follows:

 Change:

 // setKeyframe -at translateX $cellNames[$i];
 // setKeyframe -at translateY $cellNames[$i];
 // setKeyframe -at translateZ $cellNames[$i];

 FIGURE 18.21

 Four stages of the cell
migration simulation at:

(a) frame 15.

(b) frame 175.

(c) frame 330.

(d) frame 500.

The fi bers are
transparent so that cells
can be seen through the
scaffold. Note that half
cells found their way
into the upper part of the
scaffold while the rest
remained essentially
stuck at the bottom.
This discrepancy is due
the random nature of
the migration rules and
the opportunities for
 " climbing " that the cells
encounter during their
journey.

(a) (b)

(c) (d)

572 PART 3: BIOLOGY IN SILICO —MAYA IN ACTION

 To:

 setKeyframe -at translateX $cellNames[$i];
 setKeyframe -at translateY $cellNames[$i];
 setKeyframe -at translateZ $cellNames[$i];

 When the playhead reaches the end of the playback range, you will need to either
delete or disable moveCells so that it doesn ’ t override the cell translation keyframes
when you play the recorded simulation back. To disable moveCells, set the frame
number in its opening conditional statement to a number high enough that your
scene is unlikely to ever reach it:

 In the moveCells expression, change:

 if (' currentTime -query ' > 1) {

 To:

 if (' currentTime -query ' > 10�0�0�0�) {

 Th e resetCells expression will take care of positioning the cells correctly on frame
1 by using their respective posInit attributes. Alternately, you can uncomment the
setKeyframe statements in resetCells to record keys at frame 1. We included a key-
framed simulation run on the CD-ROM:

 18_Cell_Migration/scenes/cellMigration_keyed.ma

 Results: Data output
 You ’ ll want to export the cells ’ trajectories as a matrix of XYZ coordinates in a tab-
delimited fi le. Th is fi le can then be used via your favorite statistical analysis software
to further study the properties of your simulated cell motions. For example, do the
paths behave as simple random walks or are they more complex tracks of the kind
reported in laboratory studies of real cells. Are the paths simple geometric form, or do
they show complicated recursive features like those of fractal meanders? Questions
like these bring you to the frontier of cell migration modeling and research!

 The dataOutput expression
 Here you ’ ll use an expression called dataOutput to write the cell positions to an exter-
nal text fi le. Th e expression is included ready-made on the CD-ROM:

 18_Cell_Migration/MEL/dataOutput.txt

 1. Copy dataOutput.txt to the MEL directory of your current Maya Project.

 2. In Maya, set the current time indicator to frame 1.

 3. Open dataOutput.txt in your text editor application.

 4. In the variable initialization section, change the value of $end- Frame to match
the fi nal frame number for your simulation.

 5. Copy and paste the script into a new expression in Maya ’ s Expression Editor
the same way you did with resetCells and makeCells expressions.

 6. Name this new expression dataOutput .

573CHAPTER 18: SCAFFOLD INVASIONS

 You can record the data while moveCells is active—rather than from a keyframed
recording of the simulation. However, for this to work you ’ ll need to ensure that
 dataOutput follows moveCells in the list of expressions in the Expression Editor.
Otherwise, dataOutput will execute fi rst and you ’ ll wind up recording cell positions
before they ’ re updated by moveCells each frame.

 7. Press the Play button to playback the simulation and record the data.

 8. When the last frame of your simulation is reached, the dataOutput expression
will open a fi le dialog window. Name your data fi le and browse the location on
your hard drive where you ’ d like to save the fi le.

 9. Open the fi le in a spreadsheet application such as Microsoft Excel that accepts
tab-delimited data.

 Th is fi le is small relative to your Maya scene fi le and therefore an effi cient way to
store a record of your simulation. A slight rejig of your moveCells expression from
 Chapter 13 will allow you to read the data fi le you just wrote in to Maya and use it to
reproduce the migration simulation results. If you do this, remember to disable the
 resetCells and moveCells expressions so they don ’ t clash with dataInput for control
over the cell geometry.

 Summary
 In this chapter you saw how to create a multi-agent simulation from a few straight-
forward rules of motion. Handy MEL constructs including the closestPointOnSurface
and pointOnSurfaceInfo nodes allowed you to quickly adapt available data on 2D cell
motion to the complex geometry of a 3D scaff old. Much more can be said about this ini-
tial model and its potential role in understanding mobile population behavior than we
have space for here. Whether you ’ re interested in multi-agent simulation for research
purposes or for developing procedural eff ects in biomedical communications projects,
we hope you ’ ll continue to build on the methods and tools we ’ ve introduced here.

 References
 1. Armour AD, Fish JS, Woodhouse KA, Semple JL: A comparison of human and por-

cine acellularized dermis: Interactions with human fi broblasts in vitro. Plastic and
Reconstructive Surgery 117(3): 845–856, 2006.

 2. Noble PB , Levine MD : Computer-Assisted Analyses of Cell Locomotion and Chemotaxis .
 CRC Press , Boca Rataon, FL , 1986 .

 3. Bergner P-EE: Dynamics of Markovian Particles: A Kinetics of Macroscopic Particles
in Open Heterogeneous Systems (website): www.bergner.se/DMP/download.htm,
accessed August 4, 2007.

 4. Gillespie DT : Exact stochastic simulation of coupled chemical reactions . Journal of
Physical Chemistry 81 : 2340 – 2361 , 1977 .

Th is page intentionally left blank

19 Conclusion
A new kind of seeing

 “Computers are useless. Th ey can only give you answers.”

 —Attributed to Pablo Picasso 18

 Anton van Leeuwenhoek was a Dutch tradesman, living in 16th century Amsterdam,
with no formal scientifi c education. Despite his lack of training and the demands of
his business, he ardently pursued his passion: a new kind of seeing. He was fascinated
with optics and worked to refi ne the microscope, then a recently developed device.
His technical improvements, and his dogged curiosity, opened up a broad vista of
sight-based evidence to science. He was the fi rst to see and describe mobile single-
celled organisms in pond water, human blood cells, and the wriggling of sperm cells.
van Leeuwenhoek ’ s new kind of seeing lead to countless scientifi c discoveries over
the centuries that followed, discoveries that resulted from new questions: questions
that could not even be conceived of before the microscope revealed fresh mysteries to
inquisitive eyes. Looking beyond van Leeuwenhoek toward the present, we are hard
pressed to name any revolutions in the sciences, the arts, and in practical engineer-
ing that have not been triggered by new ways of seeing the world.

 Now, in the early years of the 21st century, radical new kinds of seeing are once again
front page news as artists and scientists harness the computer as an engine for visu-
alizing the unknown. Th ese new kinds of seeing empower us to understand the sci-
ences of life and health as never before. Making things visible, we have seen in this
book, is vastly more than the subtle art of making dull facts palatable for the time-
stressed, the uninformed, or the bored who fi nd themselves obliged to regurgitate
time-honored answers to time-honored questions. Interpretive visualization begins
in the surprise of unexpected—yet immediately graspable—results that allow fresh
new questions to be asked. And more than fi nding answers, asking new questions is
the heart of the sciences and the arts in the human journey.

 So in this sense Pablo Picasso, protean genius of the radically visual, was fl at wrong:
as a gateway to interpretive visualization, computers fuel new questions sustained by
unanticipated dreams and possibilities. Th ey will give you much more than answers.

 Explanations, simulations, speculations
 We have seen that Maya and MEL, in combination with knowledge from the domains
of molecular and cell biology in science, can be exciting tools for the simulation and
visualization of cell systems, from molecules to polymers, cells, and populations.
Th ey are part of a postmodern visual language of asking and answering questions
about the previously unseeable. Th ey empower you to create moving images that
can be explanations, simulations, or (in a more exploratory vein) speculations about
answers to compelling new questions. Th ese results can be put to use in research, in
education, and in much-needed debates about where science is taking us:

 • Explanations : fulfi lling a growing need for advanced visual tools in the research commu-
nication, professional education, and public information realms. Education in science
and science literacy are areas of growing need for visual explanations (Figure 19.01).

 • Simulations : drawing on established databases of biomolecule structure, reaction
dynamics, and other experimentally derived data about cell structure and func-
tion, tools like Maya and MEL can be used to recreate and interrogate lifelike situ-
ations, which would otherwise be remote or unavailable to researchers.

 • Speculations : in the best tradition of scientifi c inquiry, dynamic models can
be used to ask the “ What if? ” questions that drive innovation in areas like drug

PART 3: BIOLOGY IN SILICO—MAYA IN ACTION576

 FIGURE 19.01

 Nobel laureate chemist Linus
Pauling championed interpretive
visualization, set out in the form of
striking illustrations and models, for
the pursuit of scientifi c knowledge.
On this page dated September
21, 1932, Pauling explains how
visualizing 3D form of molecules
could help students of chemistry.
Eight decades later Pauling ’ s
argument is still fresh, capturing
the essence of why interpretive
visualization is so important in all
areas of science.

Courtesy of the Archives, California
Institute of Technology.

577CHAPTER 19: CONCLUSION

discovery and biomaterials development. What if we could make an artifi cial tis-
sue matrix of unprecedented strength? What if we could alter crucial signaling
mechanisms in dying or cancerous cells? What if we could bioengineer our human
bodies to thrive for 500 years, rather than our traditional four score and seven?
Speculative responses to questions like these don ’ t necessarily provide defi nitive
answers right away; but they give clues about which of the many avenues of pos-
sible exploration may prove most fruitful.

 Maya ’ s role
 Maya was designed as a general-purpose 3D modeling, animation, and render-
ing application. Maya is not a tool where specialized capabilities in cellular science
and medicine are built-in. At present these must be created by you as computable
models. Your models express the relations of cause and eff ect, structure and func-
tion, you deem essential to your project and then are coded by you in one of Maya ’ s
programming languages. Th e benefi ts of a Maya-based workfl ow compared to writing
all your own software from scratch is that many other capabilities—all the graphi-
cal user interface effi ciencies, geometry modeling functions, dynamics, interac-
tive display, and sophisticated rendering capabilities—are already present, robustly
built, and tested in the world ’ s most demanding professional 3D visual production
situations.

 Most of the advantages we have cited for Maya and MEL also apply to other script-
able high-end packages for 3D animation and rendering. To a greater or lesser degree,
packages such as Autodesk 3ds Max 1 , Maxon ’ s Cinema 4D 2 , Softimage XSI 3 , Side
Eff ects Software ’ s Houdini 4 , and Newtek ’ s Lightwave 5 (forgive us if we have missed
other deserving products) possess excellent modeling, animation, scripting, ren-
dering, and dynamics capabilities. Th e general approaches we have outlined should,
with the appropriate eff ort on your part, translate to these packages, though the
details of implementation and performance may diff er considerably. And while our
emphasis has been on commercial top-tier packages, we must not leave this point
without stressing the exciting potential—still largely unexplored in molecular and
cellular iVis as we go to press—of lower cost, shareware, or freeware packages such as
Blender 6 , the Visualization Toolkit 7 , and the Torque Game Engine 8 . Fueled by the cre-
ative energies of the open source and personal computation movements worldwide,
these tools of visual discovery can deliver impressive quality within their design
envelope. We encourage you to investigate them, together with the packages like
VMD 9 written specifi cally for jobs in molecular and cellular modeling and visualiza-
tion, and readily available over the Internet. When the needs of your project fi t inside
the style and capabilities of these existing bioscience tools, you may fi nd them the
fast track to productivity and successful results. If your needs push outside the enve-
lope, packages such as Maya and MEL will let you cut your own path. In all of these
situations, we hope that you will fi nd yourself well served by the methodologies of
problem defi nition, analysis, and 3D iVis workfl ow planning and execution you have
learned in this book through Maya and MEL.

 The path so far
 Part 1 of this book was devoted to setting the appropriate biological and technologi-
cal background for the rest of the book. Th e Introduction revealed the book ’ s major

PART 3: BIOLOGY IN SILICO—MAYA IN ACTION578

themes, briefl y looking at the power of vision, the hierarchical structure of life,
and the history of our tool of choice, Maya. With the help of Chapter 02 ’ s historical
perspective, we probed how computers work and how computer programs func-
tion; even if we opened the book as newcomers to computing or programming or
3D graphics, this allowed us to understand what it means to say MEL—our book ’ s
computational focus—is in essence an imperatively structured scripting language
for 3D animation on von Neumann machines. We also saw intriguing commonalities
between the strategies of information processing in computers and those used in liv-
ing cells. Far from being a poor fi t between the organic freedom of life and the rigid
binary world of the computer, there are good reasons to explore biology specifi cally in
terms of its computational nature. Th ese features of biology make it especially ame-
nable to meaningful computer-based simulation. In Chapter 03 we looked at the tra-
ditional history of animation and discussed the lexicon and workfl ow animators use.
We then explored how these aspects of traditional animation are adapted for use in
digital animation in general, and biological animation in particular.

 After Part 1 had set the stage, the chapters of Part 2 brought you hands-on with the
technology platform—Maya—that delivers the visual computing power of MEL to
your desktop. Th e interface of Maya was introduced, and a series of chapters explored
the specifi cs of modeling, lighting, camera setup, shading, animating, and render-
ing in virtual worlds. In other chapters we began to lay the technical groundwork for
our later explorations by introducing the ability to use dynamic simulations, the
ability to write MEL scripts, and basic approaches for importing or exporting user-
defi ned data.

 In Part 3 you embarked on a series of directed projects, which built on your growing
base of Maya knowledge and let you plan and execute MEL applications at the fron-
tiers of biology. Building a protein gave an opportunity to build one of the big organic
polymers that sustain cell structure and catalyze its chemical reactions. Chapter 15
described how to simulate actin self-assembly, from the single protein to fi lamen-
tary protein arrays comprising the cell ’ s dynamic skeleton. Chapter 16 revealed an
approach to the basic cycle of amoeboid-type cell movement, fundamental to nor-
mal tissue development, immune responses, and cancer. Growing an extracellular
matrix (ECM) scaff old explored creating an example of the fi brous ECM, the support
framework for the cells of almost every tissue in the body. Finally, simulating 3D cell
migration showed how to simulate populations of migrating cells as they invade and
occupy an ECM fi ber matrix.

 Th ese projects build around initial models that showcase Maya tools and techniques,
useful approaches that you can expand, refi ne, and improve upon in your own explo-
rations. Th e models and MEL code are fi rst steps to help power your continued
learning.

 The future
 Th ere are many opportunities for extending, expanding, and improving on the work
you have undertaken in these projects. Th ere are numerous problems in molecular, cell,
and tissue biology that will benefi t from computational visualization. We have only
touched on the possibility of coding more performance-dependent simulations in C��
rather than MEL, or in the Python scripting interface for Maya released as our book
was nearing completion. Th e C�� API also provides a potential link to specialized

579CHAPTER 19: CONCLUSION

packages for cell and molecular simulation (such as VMD 9 and E-Cell 10) and to bio-
informatic databases; in some situations, researchers may choose to run simulations
in such custom software and then import those results to Maya via a C�� plug-in,
so leveraging the advanced visualization tools off ered by Maya. And the growing pop-
ularity of Python for general-purpose scripting eases the entry into Maya program-
ming for many new users.

 Much work remains in defi ning new methods and setting best practices in cell and
molecular visualization. Current methods of graphical display and numerical process-
ing will soon prove inadequate to the task of manipulating and exploring the extraor-
dinarily intricate and dynamic simulations enabled by increasingly complex software
and powerful new hardware. Is computer technology up to the challenge? We think so.
Indeed the future looks very bright for computational biology 11–16 , as it does for in
silico visual simulation as a key tool for biomedical research and discovery. Both are
riding a faster-than-exponential growth curve in the pace of computer technology,
which we ’ ve illustrated schematically in Figure 19.02 alongside a few of the remarkable
advances in biology, computers, and visual computing over the last 150 years. During
that time the computing power of calculating machines has increased astonishingly
in both its capacity and its effi ciency. Many measures of each are in use and each has
its own loudly outspoken bands of advocates, opponents, pundits, and critics.

 In the fi gure we have used one of the simplest and most traditional measures, which
brings together a wide range of historical data by estimating KIPS, the thousands
(kilo-, K) of instructions per second (IPS) the device can execute per thousand dollars
(kiloBuck) of machine cost, corrected to 2006 currency values 17 . Th is interpretive vis-
ualization of computing history gives one specifi c glimpse—crude and provisional,
but the same general point is made by all the competing measures—of the upward
surge in progress over a time in history that embraces the early mechanical and elec-
tromechanical devices (black dots), the fi rst von Neumann stored program machines
like the EDSAC (green dots), the vintage mainframes and minicomputers of the
1950s and 1960s (orange dots), and on into the streamlined microcomputer architec-
tures and cluster-based supercomputers of today. Th e modest capacity of the human
brain for deliberated, rote pencil-and-paper calculating is marked by the pink dot
(and reference line) at the bottom left just before the year 1900, a time when “ compu-
ter ” meant a person employed to do such arithmetic.

 Note that the vertical scale in our diagram is logarithmic, so as we trace computing
over the last century we see a surge of over a billion, billion times increase in the
capacity delivered per dollar, with roughly another factor of a billion forecast—if cur-
rent trends are sustained!—by the time scientists anticipate the fi rst simulations, in
silico, of complete living cells that track the position and actions of each and every
molecule in the cell.

 Compared to biology and computer engineering, the practices of 3D computer ani-
mation and computational biology are relative newcomers with accelerating innova-
tion trends of their own. Once a domain restricted to the privileged elite, who access
the most powerful and expensive computers and graphics software, interpretive
visualization in silico is now open—via aff ordable technology—to the expanding
community of media artists, research scientists, and mathematicians dedicated to
the frontiers of molecular and cellular biology. Imagine the new possibilities, and the
new questions, you will uncover in the years ahead.

PART 3: BIOLOGY IN SILICO—MAYA IN ACTION580

1859 Charles Darwin and evolution
1865 Gregor Mendel and genetics

1869 DNA discovered

1885 Cathode Ray Tube (CRT)

1902 Gene concept: Walter Sutton
1905 Gene regulation: Bateson and Punnett

1911 Monroe Calculator
1919 IBM tabulator

1926 Gene theory of inheritance: Thomas Hunt Morgan

1936 Turing machine: launch of computer science

1944 Genes = DNA: Avery, MacLeod, McCarty

1945 von Neumann machine architecture

1952 First computer simulations of cell chemistry pattern formation: Alan Turing

1953 DNA double helix: Watson and Crick

1954 Fortran: John Backus

1959 Jacob-Monod “operon” theory of control

1960 DEC PDP-1 minicomputer

1962 CPK molecular models; US patent 3170246 filed
1964 Birth of molecular computer graphics, MIT Kluge: Cyrus Levinthal

1961–68 Triplet genetic code cracked: Nirenberg, Matthaei, Ochoa, Khorana

1971 Gouraud shading algorithm

1972 Recombinant DNA

1996 Dolly the sheep cloned
2001 Human genome draft completed

1990 Human Genome Project launches

1975 Phong shading algorithm
1975 Bill Gates launches Microsoft

1976 First molecular dynamics simulation of proteins:
Karplus and McCammon

1993 RasMol molecular graphics: Roger Sayle

2006 First all-atom simulation of a simple
life form; satellite tobacco mosaic virus:
Freddolino et al

2030–60 Forecast date for first
all-molecule simulation of a
complete living cell

1981 IBM PC
1983 Alias founded; Bill Reeves and particle systems (Lucasfilm)

1988 Pixar RenderMan patent
1989 mental ray renderer launches

2007 Intel teraFLOPS chip

1972 C programming language: Dennis Ritchie

1949 EDSAC computer

18801860 1900 1920 1940 1960 1980 2000 2020 2040 2060
Year

KI
PS

 p
er

 2
00

6
ki

lo
Bu

ck

10�9

10�8

10�7

10�6

10�5

10�4

10�3

10�2

10�1

1
101

102

103

104

105

106

107

108

109

1010

1011

1012

1013

1014

(Electro)Mechanical
Human
Vintage
Mainframes
Small Business
Minicomputers
Microcomputers
Workstations
Supercomputers
Sony Playstation 2
Intel TeraFLOPS PC

 FIGURE 19.02

 The explosive growth in computing power during modern times, visualized amidst some of the key events
in computer engineering, computer graphics and animation, and in research biology. Note that the vertical
scale is logarithmic, based on successive multiplications of factors of 10.

581CHAPTER 19: CONCLUSION

 References
 1. Autodesk 3ds Max (website): http://usa.autodesk.com/ , accessed October 14, 2007.

 2. Maxon ’ s Cinema 4D (website): http://www.maxon.net/ , accessed October 14,
2007.

 3. Softimage XSI (website): http://www.blender.org/ , accessed October 14, 2007.

 4. Side Eff ects Software ’ s Houdini (website): http://www.sidefx.com/ , accessed October
14, 2007.

 5. Newtek ’ s Lightwave (website): http://www.newtek.com/lightwave/ , accessed
October 14, 2007.

 6. Blender (website): http://www.blender.org/ , accessed October 14, 2007.

 7. Th e Visualization Toolkit (website): http://www.vtk.org/ , accessed October 14, 2007.

 8. Torque Game Engine (website): http://www.garagegames.com/products/torque/
tge/ , accessed October 14, 2007.

 9. Humphrey W , Dalke A , Schulten K : VMD—Visual Molecular Dynamics . Journal of
Molecular Graphics 14 : 33 – 38 , 1996 .

 10. Th e E-Cell Project (website): http://www.e-cell.org/ , accessed October 14, 2007.

 11. Ma ’ ayan A , Blitzer RD , Iyengar R : Toward predictive models of mammalian cells .
 Annual Review of Biophysics and Biomolecular Structure 34 : 319 – 349 , 2005 .

 12. Bader DA : Computational biology and high-performance computing . Communica-
tions of the ACM 47 : 34 – 41 , 2004 .

 13. Stewart I : Life ’ s Other Secret: Th e New Mathematics of the Living World . John Wiley ,
 New York , 1998 .

 14. Watts DJ : Six Degrees: Th e Science of a Connected Age . WW Norton , New York , 2003 .

 15. Penrose R : Th e Road to Reality: A Complete Guide to the Laws of the Universe .
 Jonathan Cape , London , 2004 .

 16. Nowak MA : Evolutionary Dynamics: Exploring the Equations of Life . Th e Belknap
Press of Harvard University Press , Cambridge, MA , 2006 .

 17. Sources consulted for the computer performance/price data used in Figure 19.02
include: Brain M: How microprocessors work (article and tabulation online): http://
www.computer.howstuff works.com/microprocessor1.htm , accessed August 4, 2007;
Ceruzzi PE: Moore ’ s law and technological determinism: Refl ections on the history
of technology, Technology and Culture 46: 584–593, 2005; Dongarra J: Overview
of high performance computing, Computer Innovation 6016: Th e 9th International
Conference/Exhibition on High Performance Computing in Asia-Pacifi c Region , Beijing
China, November 30 to December 3, 2005 (lecture slides online): http://www.
netlib.org/utk/people/JackDongarra/SLIDES/hpcasia-1105.pdf , accessed August
4, 2007; Ein-Dor P: Grosch ’ s law revisited: CPU power and the cost of computation,
 Communications of the ACM 28:142–151, 1985; Held J, Bautista J, Koehl S, editors:
From a few cores to many: a tera-scale computing research overview, Intel White
Paper, 2006 (report online): http://www.download.intel.com/research/platform/
terascale/terascale_overview_paper.pdf , accessed August 4, 2007; Kurzweil R: Th e Age

PART 3: BIOLOGY IN SILICO—MAYA IN ACTION582

of Spiritual Machines: When Computers Exceed Human Intelligence, Viking, New York,
1999; Lynch BD, Rao HR, Lin WT: Economic analysis of microcomputer hardware,
 Communications of the ACM 33:119–129, 1990; MeasuringWorth: Purchasing power
of money in the United States from 1774 to 2006 (calculator online): http://www.
measuringworth.com/calculators/ppowerus/ , accessed August 4, 2007; Moravec H:
Robot: Mere Machine to Transcendent Mind, Oxford University Press, New York, 1999;
Moravec H: Processor performance 1892–2002 (tabulation online): http://www.frc.
ri.cmu.edu/~hpm/book97/ch3/processor.list , accessed August 4, 2007; Technology
News: IBM and compatible mainframe specifi cations (tabulation online): http://
www.tech-news.com/publib/index.html , accessed August 4, 2007; Smith RE: A his-
torical overview of computer architecture, IEEE Annals of the History of Computing
10:277–303, 1989.

 18. Th is piquant assertion about the limits of computers and computation is widely
attributed to Pablo Picasso, and as quoted here appeared in Cliff ord A. Pickover’s
mind-stretching book Computers, Pattern, Chaos and Beauty: Graphics from an Unseen
World, St. Martin’s Press, New York, 1990, page 10.

583CHAPTER 19: CONCLUSION

Th is page intentionally left blank

 Further reading

 Why?
 Perhaps you are a creative artist bent on producing the next revolution in interpretive
visualization. Or maybe you are a curiosity-driven science trainee exploring the myster-
ies of cells and other forms of living matter. You might be a teacher immersed in the chal-
lenges of communicating science or other novel subjects to a modern audience. Or, like
many of us, you might be a private citizen who simply wants to increase your knowledge,
appreciation, and capability in realms crucial to scientifi c discovery and artistic expres-
sion. All these wonderful activities set you on a path of lifelong learning that takes you
across the frontiers of many subjects. In this part of the book we ’ ve listed resources to
help you further the experiences you ’ ve had with our material—taking you deeper into
the foundations, theory, and practical methods of the subjects we have explored.

 What ’ s here
 Arranged to parallel the order in which the topics unfold in our book, these
are titles we use in our own research and teaching, and have found to be informative
and inspiring. Of course our list assays just a tiny fraction of what is available. Th ere
are many, many fi ne learning resources from excellent, hard working authors in each
of the areas our list touches. If you do not see a favorite title named here, it is no
indication we consider it unimportant. Th ese are vast, rapidly growing topics, so as
you go even further with Maya and MEL you will discover a wide variety of learning
materials written in diverse styles by authors each with their own unique slant on
your favorite subjects.

 We therefore encourage you to read widely: if a resource we name does not quite fi t
your learning style or specifi c interests, chances are you can quickly fi nd material
that does aided by our list and the search tools available to you over the World Wide
Web and at your local library. We do apologize to colleagues in these wide-ranging
subjects for the limitations of time, space—not to mention our own knowledge—that
have precluded inclusion of their work here. Wherever possible we have documented
material published recently to assure a useful degree of timeliness and availability.
But there are also a few classics from yesteryear—some still in print after decades of
inspiring learning and discovery—that we could not in good faith omit, and therefore
recommend to you most heartily.

 Mostly books
 We have focused mostly on books in compiling this section, rather than on maga-
zine articles or web-based presentations. Th roughout In Silico you will fi nd many
references to articles and websites we consider vitally interesting to your command
of Maya, MEL, and cell science. Despite the convenience of URLs and the tempting
brevity of magazine articles, well written, peer-reviewed books will continue to give
you a rich medium you can carry, jot in, mark up, fl ip through, stack, dog ear, and
otherwise fi t to your learning needs as you explore further, in depth. To supplement
these book-based resources, near the end of this section you ’ ll fi nd our current “ Top
10 ” must-see URLs for your web-based explorations.

 Also, we give you fair caution: while the listed readings will give you next words on
many of In Silico ’ s topics, they will not give you the last word on any of them. You
live amidst revolutionary times in the arts, the sciences, and the high technologies,

586 FURTHER READING

with discoveries and innovations racing past one another at an astonishing pace.
Compared to the very latest research, information in the books we list will be some-
what dated, perhaps even obsolete, by the time our book reaches you. Th is is an
inevitable consequence of the hyper-progressive times in which we live. If you wish
to advance from additional basic knowledge yet onward, toward the bleeding edge of
innovation and discovery, you will eventually need access to state-of-the-art jour-
nals and periodicals in visual computing, interpretive visualization, and the sciences.
Unfortunately, access to these media often is more restricted, and more costly, for
the individual learner than single core texts, but those of you satisfi ed with nothing
short of the absolute frontier will fi nd this section ends with URLs to some of the
very highest impact sources, where you can follow the latest developments. We rec-
ommend you discuss your interests in accessing such specialized materials with the
reference staff of your community library or your local college or university library.

 And …
 A fi nal note: If you are browsing this section before commencing your reading and
work with the main text and project material in our book, please remember this is
a Further Reading section. It is not a list of the things we expect you to know before
you can dive in to In Silico. Quite the opposite! We have structured the book to be
robustly self-contained once it is in your hands. Th e sources listed in this part of the
book will let you go further still once your core in silico skills are in place—indeed as
far as your goals and your imagination beckon.

 Interpretive visualization (iVis)

iVis: Fundamentals
 Card SK, Mackinlay JD, Shneiderman B, editors: Readings in Information Visualization:
Using Vision to Th ink. Morgan Kaufmann, San Francisco, 1999.

 Tufte ER : Envisioning Information . Graphics Press , Cheshire, CT , 1991 .

 Tufte ER : Visual Explanations: Images and Quantities, Evidence and Narrative . Graphics
Press , Cheshire, CT , 1997 .

 Ware C : Information Visualization: Perception for Design , 2nd ed. Morgan Kaufmann , San
Francisco, CA , 2004 .

 iVis: History and philosophy
 Anker S , Nelkin D : Th e Molecular Gaze: Art in the Genetic Age . Cold Spring Harbor
Laboratory Press , Cold Spring Harbor, NY , 2004 .

 Baigrie BS, editor: Picturing Knowledge: Historical and Philosophical Problems Concerning
the Use of Art in Science. University of Toronto Press, Toronto, 1996.

 Gamwell L : Exploring the Invisible: Art, Science, and the Spiritual . Princeton University
Press , Princeton, NJ , 2002 .

587FURTHER READING

 Kemp M : Seen/Unseen: Art, Science, and Intuition from Leonardo to the Hubble Telescope .
 Oxford University Press , Oxford, UK , 2006 .

 Waddington CH : Behind Appearance: A Study of the Relations Between Painting and the
Natural Sciences in Th is Century . MIT Press , Cambridge, MA , 1970 .

 Elkins J : Th e Domain of Images . Cornell University Press , Ithaca, NY , 1999 .

 Pauwels L : Visual Cultures of Science: Rethinking Representational Practices in Knowledge
Building and Science Communication . Dartmouth College Press , Hanover, NH , 2006 .

 iVis in Action: Molecules, cells, and tissues
 Branden C , Tooze J : Introduction to Protein Structure , 2nd ed. Garland , New York , 1999 .

 De la Flor M : Th e Digital Biomedical Illustration Handbook . Charles River Media ,
 Hingham, MA , 2004 .

 Goodsell DS : Th e Machinery of Life . Springer-Verlag , New York , 1993 .

 Goodsell DS : Bionanotechnology: Lessons from Nature . Wiley-Liss , Hoboken, NJ , 2004 .

 Leach AR : Molecular Modelling: Principles and Applications , 2nd ed. Prentice Hall ,
 Harlow, UK , 2001 .

 Pauling L : Th e Nature of the Chemical Bond and the Structure of Molecules and Crystals:
An Introduction to Modern Structural Chemistry , 3rd ed. Cornell University Press , Ithaca,
NY , 1964 .

 Pauling L , Hayward R : Th e Architecture of Molecules . WH Freeman , San Francisco,
CA , 1964 .

 Perkins JA: A history of molecular representation, part one: 1800 to the
1960s. Journal of Biocommunication 31(1), 2005 (serial online): http://www.jbio
communication.org/31-1/features3.html , accessed October 14, 2007.

 Perkins JA: A history of molecular representation, part two: 1960s—present. Journal
of Biocommunication 31(2), 2006 (serial online): http://www.jbio communication.org/
31-2/feature2.html , accessed October 14, 2007.

 Computers and computing

Architectures (traditional to radical)
 Amos M : Genesis Machines: Th e New Science of Biocomputing . Atlantic Books , London ,
 2006 .

 Hennessy JL , Patterson DA : Computer Architecture: A Quantitative Approach , 4th ed.
 Morgan Kaufmann , Boston, MA , 2007 .

 Lloyd S : Programming the Universe: A Quantum Computer Scientist Takes on the Cosmos .
 Vintage Books/Random House , New York , 2006 .

 Rojas R, Hashagen U, editors: Th e First Computers: History and Architectures. MIT Press,
Cambridge, MA, 2002.

588 FURTHER READING

 History
 Aspray W : John von Neumann and the Origins of Modern Computing . MIT Press ,
 Cambridge, MA , 1990 .

 Campbell-Kelly M , Aspray W : Computer: A History of the Information Machine , 2nd ed.
 Westview Press , Boulder, CO , 2004 .

 Ceruzzi PE : A History of Modern Computing , 2nd ed. MIT Press , Cambridge, MA , 2003 .

 Mindell DA : Between Human and Machine: Feedback, Control, and Computing Before
Cybernetics . Johns Hopkins University Press , Baltimore, MD , 2002 .

 Wurster C : Computers: An Illustrated History . TASCHEN , Köln , 2002 .

 Programming languages
 Sammet J : Programming Languages: History and Fundamentals . Prentice-Hall , Englewood
Cliff s, NJ , 1969 .

 Sebesta RW : Concepts of Programming Languages , 8th ed. Pearson Education/Addison-
Wesley , Boston, MA , 2007 .

 Scott ML : Programming Language Pragmatics , 2nd ed. Morgan Kaufmann , Boston, MA ,
 2006 .

 3D computer graphics and animation

Fundamentals
 Foley JD , van Dam A , Feiner SK , Hughes JF : Computer Graphics: Principles and Practice
in C . Addison-Wesley Professional , Boston, MA , 1995 .

 Hill Jr. FS , Kelley SM : Computer Graphics Using OpenGL , 3rd ed. Pearson Education/
Prentice-Hall , Upper Saddle River, NJ , 2006 .

 Kerlow IV : Th e Art of 3-D Computer Animation and Eff ects , 3rd ed. John Wiley & Sons ,
 Hoboken, NJ , 2003 .

 Watt AH : 3D Computer Graphics , 3rd ed. Addison-Wesley , Reading, MA , 2000 .

 Learning Maya
 Alias Learning Tools : Learning Maya 7: Foundation . Sybex , Alameda CA , 2005 . (Learning
Maya 7 is a good general introduction from the Learning Maya series, a collection of
instructional books and DVDs covering every aspect of the Maya modeling, animation,
eff ects, and rendering workfl ow. While the examples and tutorials do not treat scien-
tifi c subjects explicitly, the techniques covered are applicable to virtually any subject
matter. Titles are listed by category and available to order through the Learning Maya
website: www.learning-maya.com.)

 MEL programming and Maya ’ s API
 Gould DAD : Complete Maya Programming, vol I: An Extensive Guide to MEL and the C ��
API . Morgan Kaufmann , San Francisco, CA , 2003 .

589FURTHER READING

 Gould DAD : Complete Maya Programming, vol II: An In-depth Guide to 3D Fundamentals,
Geometry, and Modeling . Morgan Kaufmann , Boston, MA , 2005 .

 Stripinis D : Th e MEL Companion: Maya Scripting for 3D Artists . Charles River Media ,
 Hingham, MA , 2003 .

 Wilkins MR , Kazmier C : MEL Scripting for Maya Animators . Morgan Kaufmann , San
Francisco, CA , 2005 .

 Cell science

Fundamentals
 Alberts B , Johnson A , Lewis J , Raff M , Roberts K , Walter P : Molecular Biology of the Cell ,
 5th ed. Garland Science , Boca Raton, FL , 2007 .

 Cooper GM , Hausman RE : Th e Cell: A Molecular Approach , 4th ed. Sinauer , Sunderland,
MA , 2007 .

 Pollard TD , Earnshaw WC : Cell Biology , 2nd ed. W.B. Saunders , New York , 2007 .

 Whitford D : Proteins: Structure and Function . John Wiley & Sons , Hoboken, NJ , 2005 .

 Agents and walkers
 Berg HC : Random Walks in Biology , 2nd ed. Princeton University Press , Princeton,
NJ , 1993 .

 Gillespie DT : Markov Processes: An Introduction for Physical Scientists . Academic Press ,
 San Diego, CA , 1992 .

 Rudnick J , Gaspari G : Elements of the Random Walk: An Introduction for
Advanced Students and Researchers . Cambridge University Press , Cambridge, UK , 2004 .

 Cell migration and the cytoskeleton
 Wedlich D : Cell Migration in Development and Disease . John Wiley & Sons , Hoboken,
NJ , 2005 .

 Physical principles (biophysics)
 Bourg DM : Physics for Game Developers . O ’ Reilly , Sebastopol, CA , 2002 .

 Dill KA , Bromberg S : Molecular Driving Forces: Statistical Th ermodynamics in Chemistry
and Biology . Garland , New York , 2003 .

 Howard J : Mechanics of Motor Proteins and the Cytoskeleton . Sinauer , Sunderland , 2001 .

 Jackson MB : Molecular and Cellular Biophysics . Cambridge University Press , New York ,
 2006 .

 Kennedy J , Eberhart RC , Shi Y : Swarm Intelligence . Morgan Kaufmann , San Francisco,
CA , 2001 .

590 FURTHER READING

 Lauff enburger DA , Linderman JJ : Receptors: Models for Binding, Traffi cking, and
Signaling . Oxford University Press , New York , 1993 .

 Murray JD : Mathematical Biology, vol 1: An Introduction , 3rd ed. Springer-Verlag ,
 New York , 2002 .

 Murray JD : Mathematical Biology, vol 2: Spatial Models and Biomedical Applications , 3rd
ed. Springer-Verlag , New York , 2003 .

 Schlick T : Molecular Modeling and Simulation: An Interdisciplinary Guide . Springer-Verlag ,
 New York , 2002 .

 Systems biology
 Alon U : An Introduction to Systems Biology: Design Principles of Biological Circuits .
 Chapman & Hall/CRC , Boca Raton, FL , 2007 .

 Murphy MP, O ’ Neill LAJ, editors: What Is Life? Th e Next Fifty Years: Speculations on the
Future of Biology , Cambridge University Press, New York, 1995.

 Skyttner L : General Systems Th eory: Problems, Perspectives, Practice , 2nd ed. World
Scientifi c , Hackensack, NJ , 2005 .

 Math brush-up
 Dunn F , Parberry I : 3D Math Primer for Graphics and Game Development . Wordware
Press , Plano, TX , 2002 .

 Maynard Smith J : Mathematical Ideas in Biology . Cambridge University Press ,
 Cambridge, UK , 1968 .

 Neuhauser C : Calculus for Biology and Medicine , 2nd ed. Prentice Hall , Upper Saddle
River, NJ , 2004 .

 Press WH , Teukolsky SA , Vetterling WT , Flannery BP : Numerical Recipes: Th e Art of
Scientifi c Computing , 3rd ed. Cambridge University Press , New York, NY , 2007 .

 In silico “ Top 10 ” URLS

Interpretive visualization
 acg.media.mit.edu/people/fry/

 www.edwardtufte.com

 Computer graphics
 www.highend3d.com/maya

 www.cgsociety.org

591FURTHER READING

 www.red3d.com

 www.siggraph.org

 Cell and molecular biology
 www.molecularmovies.com

 cellimages.ascb.org

 mgl.scripps.edu/people/goodsell/pdb

 www.umass.edu/microbio/rasmol/history.htm

 The bleeding edge
 Annual Reviews www.annualreviews.org

 Cell www.cellpress.com

 Th e Cell Migration Gateway www.cellmigration.org/

 Journal of Cell Biology www.jcb.org

 Journal of Biocommunication www.jbiocommunication.org

 Journal of Molecular Graphics and www.elsevier.com/wps/fi nd/
 Modeling journaldescription.cws_home/525012/
 description#description

 Leonardo muse.jhu.edu/journals/leonardo/

 Nature www.nature.com

 Reviews of Modern Physics rmp.aps.org

 Tissue Engineering www.liebertpub.com/ten

 Science www.sciencemag.org

 Th e Visual Computer www.springer.com/west/
 home/computerimaging?
 SGWID=4-149-70-1058675-0

592 FURTHER READING

Glossary

594

 actin Actin is an essential structural protein (~45 kD) that polym-
erizes into actin microfi laments, part of the cytoskeleton of
most eukaryotic cells.

 adenosine ADP results from one of adenosine triphosphate ’ s (ATP)
diphosphate three phosphate groups leaving ATP, a chemical reaction that
(ADP) results in the release of energy useful in cellular metabolism.

 adenosine ATP is a small molecule which acts as the fundamental unit
triphosphate of energy transport in the cell. It is produced during photo-
(ATP) synthesis (in plants) and cellular respiration (in animals).

 alpha channel An alpha channel is a grayscale image channel in some image
and animation fi les, which acts as an indicator of image
transparency. Usually the light part of the alpha indicates
opacity and the dark parts transparency. Adding an alpha
channel is a rendering option that adds fl exibility in the edit-
ing and compositing process.

 ambient occlusion Ambient occlusion is a shader eff ect that simulates the atten-
uation of light (from ambient sources) on a surface where it
comes close to another surface. Th is eff ect can increase render
times, but will often make lighting appear more photorealistic.
Acronym: AO

 angiogenesis Angiogenesis is the process of new blood vessel formation. It
is a focus of interest in cancer research, since growing tumors
require angiogenesis to supply them with blood.

 angle of view Also known as fi eld of view, this term refers to the angular
extent of an image received by a camera.

 animatic An animatic is a preproduction fi lm composed of animated
storyboard frames or simple 3D elements arranged and mov-
ing as they will in the completed fi nal shot. It is used to iron
out timing and camera movement issues before fi nal anima-
tion begins. Sometimes also known as the layout stage or a
story reel.

 animation Animation is the process of bringing inanimate or synthetic
objects to life in the medium of fi lm or television by depict-
ing their movement.

 animation curve An animation curve is a graphical representation of the
change of some attribute over time. Manipulation of the shape
of an animation curve can signifi cantly change the perceived
quality of an animated object or eff ect.

 animation A set of instructions used to animate one or more attributes.
expression Maya ’ s expression language is, for the most part, the same as

MEL. Typically, an expression evaluates every time the Maya
frame number changes, meaning that the instructions are
processed in regular time increments.

 aperture Th e aperture is the width of the opening through which light
enters a camera. In 3D graphics (in which there is, of course,

GLOSSARY

595GLOSSARY

no real aperture) this setting is relevant to the synthesis of
depth of fi eld and motion blur eff ects.

 .avi Th e Audio Video Interleave video format fi le extension:
fi leName.avi. Th is is an older, but still common, Windows
video fi le format.

 back light In a typical 3-point light setup, a back light is positioned
above and behind the subject, causing a fringe of edge illu-
mination on the subject that helps to distinguish it from the
background.

 Bezier handle Bezier handles are common in vector illustration programs
like Adobe Illustrator and consist of the edit points for Bezier
splines that do not reside on the curve itself. Bezier han-
dles are similar to the second and third control vertices in a
NURBS curve span in Maya.

 boolean modeling A boolean operation in modeling allows one shape to modify
another by means of union (one shape plus the other shape),
diff erence (one shape minus the other shape) and intersec-
tion (the volume common to both shapes).

 boolean values Boolean values are logical operators in MEL that refer to true
(1) and false (0) values.

 bump map A bump map is a grayscale image map that is used to simu-
late a textured surface in a surface shader. Bump maps do
not distort the underlying geometry; rather, they perturb
the surface normals of the underlying object at each pixel in
order to create their eff ect.

 breadboard Breadboard is a term derived from electronic circuit design,
where physical breadboards are special generic circuit boards
that allow for the quick assembly and connection of electronic
components. In software engineering it is generally used to
describe preliminary versions of code that are designed to be
fl eshed out into fully working prototypes.

 cancellous bone Cancellous bone is the low-density spongy or trabecular bone
that occupies the central portions of many medium- and
large-size bones.

 caustic Th e word caustic, when used in optic or computer graph-
ics contexts, refers to the patterns created by refl ected and
refracted light; for example, the patterns of light on the bot-
tom of a swimming pool.

 CD4 lymphocyte A CD4 lymphocyte is a type of white blood cell essential to
immune function; they are also known as helper T cells.

 cel A cel—an artifact of traditional animation—is a trans-
parent sheet upon which individual frames of animated
activity are drawn. Multiple cels can be layered together
over an unchanging background to effi ciently partition
the work involved in making hand-drawn animation of a

596 GLOSSARY

complex scene in which multiple characters and special eff ects
appear.

 cell A cell is the basic functional unit of life, usually comprising a
cell wall or membrane enclosing an aqueous gel of organelles,
proteins, and genetic material.

 cell cycle Th e cell cycle refers to the normal sequence of events in a
replicating cell.

 central Th e CPU is the circuitry that controls and executes software
processing unit instructions; it is the “ brain ” of the computer.
(CPU)

 CG Acronym for computer graphics.

 CGI Acronym for computer-generated imagery.

 channel A channel is one part of a digital image fi le, usually com-
prising either the red, green, or blue components of a color
image. Other channels can be added to an image fi le, such
as an alpha channel (a grayscale channel which codes for
transparency) or a depth channel (a grayscale channel
that represents distant objects as dark and near objects as
light).

 chemoattractant Chemoattractant is a general term for any one of a number
of intercellular and extracellular messenger molecules that
serve to attract particular mobile cells.

 chemotaxis Chemotaxis is the motion of mobile cells along a concentra-
tion gradient (increasing or decreasing) of a chemoattractant
substance.

 clipping plane Th e clipping plane is an arbitrary plane close to and perpen-
dicular to the camera; objects or parts of objects between the
camera and the clipping plane will not display or render.

 control vertex A CV is a point that helps defi ne a NURBS curve in Maya.
(CV) Generally, a minimum of four CVs are required to create a

NURBS curve: the fi rst and last sit on the curve itself, and
the middle two infl uence its curvature.

 CPK Acronym for the Corey–Pauling–Koltun specifi cation for
space-fi lling molecular models.

 cytokinesis Cytokinesis is the fi nal stage of mitosis (cell division) or mei-
osis (where the parent cell splits into two daughter cells).

 cytoskeleton Th e cytoskeleton is a dynamic scaff old of long, fi brous pro-
tein molecules stretching through the interior of eukaryotic
cells, allowing them to maintain shape and change it when
necessary. Composed of actin fi laments, intermediate fi la-
ments, and microtubules, the cytoskeleton is also essential
for numerous other cellular processes, from cell movement
and the transport of metabolic products within the cell, to
apoptosis (programmed cell death).

597GLOSSARY

 DAG Acronym for the Directed Acyclic Graph of a Maya scene,
which is Maya ’ s way of effi ciently representing the hierarchy
of elements in a scene.

 debug “ To debug ” refers to the process of fi nding and removing or
correcting errors in software code. One etymology of the
term fi nds it dating from the earliest years of computer engi-
neering, when insects fl uttered or crawled into the warm,
bulky circuitry.

 Dependency A graphical view in Maya (in the Hypergraph window) that
Graph (DG) represents the data fl ow model of scene elements (or nodes)

in terms of outputs on one node connecting to inputs on
another.

 depth map A depth map is a grayscale-rendered image in which untex-
tured scene objects emerge from a black background and
become whiter as they get closer to the camera. Depth maps
can be used for various postproduction eff ects, such as fog
and depth of fi eld.

 depth of fi eld DOF refers to the range of distances from the camera where
(DOF) objects appear to be in focus; if a scene has a “ shallow DOF ” ,

then objects outside a narrow plane of focus will appear
blurry. In conventional photography, lens variables—such
as aperture (f-stop) and focal length—can be manipulated
to create shallow or deep DOF eff ects. A shallow DOF eff ect
is often simulated in CG (either as part of the 3D ren-
dering process or as a post eff ect), either to increase the
photorealism of the image or to selectively focus the viewer ’ s
attention within the 3D scene.

 deterministic Deterministic processes are those in which each unique proc-
ess can be robustly predicted based on its initial conditions and
on known inputs to the process as it changes through time (its
so-called boundary condition); contrast this with stochastic
process (see below) in which, at most, the probability envelope
for a whole spectrum of possible outcomes can be predicted.

 diffusion Diff usion is a spontaneous process of particle motion from
an area of high concentration to an area of low concentra-
tion. It results from the moment-by-moment buff eting of
each molecule by collisions with its neighbors.

 displacement map Displacement maps are texture images used to deform sur-
face geometry in a 3D program; usually, light areas of a dis-
placement map push the geometry outwards (in the direction
of surface normals), and dark areas inwards.

 dot notation A common form of notation in computer programming
where spaces are replaced by periods, for example,
objectName.attributeName.

 emergent behavior Refers to complex, adaptive behavior produced in a system by
the cumulative eff ects of many simple interactions.

598 GLOSSARY

 emitter An object in a 3D program that serves as a source position for
the emission of particles.

 endocytosis Th e process in which a cell absorbs molecules from the outside
by forming an endocytotic vesicle from its cell membrane.

 .eps File extension for the Encapsulated PostScript vector fi le
format.

 eukaryote One of the two main lineages of living cell (the other being
prokaryotes). Eukaryotic cells have an internal organiza-
tion characterized by membrane bound organelles, the most
prominent being the cell ’ s nucleus.

 expression Th e word expression refers to two things in Maya. Th e fi rst is
a mathematical or logical statement composed of one or more
operands (or values) and one or more operators. Th e second is
an animation expression (see above).

 extracellular ECM is a vital structural component of animal tissues. It is a
matrix (ECM) 3D web of fi brous molecules running outside of and between

cells (thus extracellular). Th e ECM is primarily composed of
collagen.

 fi eld Abbreviated name for a force fi eld in Maya Dynamics.

 fi eld of view See angle of view.

 fi le texture A texture for application to a 3D object that is derived from
an image fi le, such as a TIFF or Photoshop fi le.

 fl oating point A string of digits that represents a real or decimal number; in
other words, a number where the decimal point can be placed
(fl oat to) anywhere in the string.

 focal length A term from photography and cinematography which refers
to the optical power of a lens system. A short focal length
lens will have a wide fi eld of view (wide angle) and a long
focal length lens will have a narrow fi eld of view (zoomed in).

 force fi eld A Maya scene object that exerts some sort of infl uence (such
as gravity or wind) upon distant objects in a dynamic simula-
tion; they can be local or global in their infl uence.

 frames per Th e standard term for the rate at which individual fi lm or
second (fps) video images (frames) are displayed.

 function syntax MEL commands can be formatted in function syntax or
imperative (command) syntax. Function syntax takes the
form:

 $myVariable = functionName (parameter1, parameter2);

 geometric Primitives are basic geometric objects, such as spheres,
primitive cones, and cubes, which are part of a default set of simple

objects that are often used to build more complex objects.

 global An approach to representing realistic direct and diff use
illumination (GI) lighting in a computer-generated scene. Any one of a number

599GLOSSARY

of algorithms, or combinations of algorithms, may be used
to generate GI, but its hallmark is the representation of the
diff use inter-surface refl ection of light characteristic of real-
world scenes.

 global variable A variable that is global in scope, meaning it ’ s available to all
procedures and animation expressions within a Maya scene.
Any variables not explicitly declared as global will be avail-
able only within the procedure or expression in which they
are declared; in other words, they are local variables.

 graphics processor Modern computers use graphics processors (sometimes
referred to as graphics cards or GPUs for Graphics Processing
Units) to accelerate the process of drawing 2D and 3D images
on the display device using special hardware circuitry.

 haptotaxis Th e directional migration of living cells, guided by the physi-
cal nature of the substrate on which they are moving (typi-
cally the substrate ’ s adhesivity for the cells).

 hardware Rendering performed by the graphics processor. Hardware
render(ing) rendering can be very fast, but not all textures and eff ects

can be hardware rendered.

 High-dynamic HDRI refers to computer graphics formats and imaging
range imaging methods that allow for the capture of real-world light
(HDRI) intensity range and the use of that range in computer

graphics applications. Conventional computer-based images
(such as 24-bit TIFF fi les) have a very limited intensity range,
while the real world has light intensity contrast range of
60,000:1 or higher. HDRI technologies allow for storing and
processing images in that much larger real-world range.

 hotkey A hotkey is simply a key on the computer keyboard assigned
to execute a particular function when it is pressed.

 HSV Acronym for the hue, saturation, value color model which,
along with RGB, is one of the default color models in Maya.

 hull Line drawn between control vertices of a NURBS curve or
surface. Hulls do not sit on the NURBS curve or surface, but
can be selected and manipulated to infl uence the shape of the
curve or surface.

 hydrolysis A chemical reaction involving water; it is a type of reaction
that occurs when polymers are broken down.

 Hypergraph A window in Maya which displays a graphical view of
your scene in one of two ways: as a scene hierarchy or as a
Dependency Graph.

 Hypershade A window in Maya that provides access to materials, tex-
tures, lights, and special eff ects.

 hyperthreading Hyperthreading is a technique used on some microproces-
sors that emulates the presence of a second processor, speed-
ing some threaded operations like rendering.

600 GLOSSARY

 ID Acronym for industrial design.

 IK Acronym for inverse kinematics.

 imperative syntax MEL commands can be formatted in function syntax or imper-
ative (command) syntax; imperative syntax takes the form:

 functionName parameter1 parameter2.

 in vivo A term from Latin meaning “ in life ” ; used in science to indi-
cate phenomena observed in a living organism.

 in vitro A term from Latin meaning “ in glass ” ; used in science to indi-
cate phenomena observed in a test tube, Petri dish, or other
experimental apparatus.

 in silico A term derived by analogy to in vitro and in vivo to refer to
biological processes simulated in computers. Most current
computers use silicon-based materials in their hardware
circuitry.

 interactive A rendering mode in Maya that allows for a part of the scene
photorealistic to re-render each time changes are made, speeding the process
rendering (IPR) of fi ne-tuning materials and lights.

 interpretive iVis is the research discipline that deals with the formulation
visualization and investigation of new models of pictorial representation
(iVis) in science. Th e goal of iVis is making visible the principal, rel-

evant elements of organization and change within a model
system or data set. iVis is informed by principles of physical
theory, computer graphics, human perception, and informa-
tion design, among other disciplines.

 inverse An software approach for determining the correct confi gura-
kinematics (IK) tion of a jointed structure given the joint constraints and the

position of a terminal joint or eff ector.

 isoparametric A curve component of a NURBS surface (defi ned by the
curve (isoparm) control vertices), defi ning the shape of the surface in either

the U- or V-direction.

 keyboard shortcut See hotkey.

 keyframe In traditional animation, a keyframe is a drawing by the anima-
tor of an important or extreme part of an object ’ s movement;
frames between the keyframes are drawn by secondary ani-
mators known as “ inbetweeners ” . In computer graphics, a key-
frame is a point on the timeline where the animator sets object
parameters such as location, rotation, or scale; the computer
interpolates the changing parameters between keyframes.

 key light In a typical 3-point light setup, a key light is positioned above
and to the camera ’ s left of the subject, providing the princi-
pal source of illumination.

 keyset Another name for a Maya animation curve.

 level of detail (LOD) Th e complexity of the displayed representation of a scene or
object in a 3D application; often the LOD of the interactive

601GLOSSARY

workspace is reduced to allow for speedy display, and increased
at render time for the creation of fi nal-quality images.

 ligand A molecule which binds (usually through a non-covalent
bond) to another, usually much larger, molecule.

 local coordinates A coordinate system measured relative to the transform node
of a particular object. World coordinates are measured from
the world origin.

 lofting A method for creating a NURBS surface composed of a series
of discrete NURBS curves linked in sequence, much like the
hull of a ship is defi ned by its ribs.

 Markov process A stochastic process in which future changes depend on the
system ’ s current state, rather than any past states.

 Maya ASCII (ma) A Maya scene fi le format written in ASCII code via MEL
(Maya Embedded Language) script. A Maya ASCII fi le can be
opened and edited in a text editor, independent of the Maya
application.

 Maya binary (mb) A Maya scene fi le format written in binary, or computer
machine code. Maya binary fi les are smaller than Maya ASCII
fi les but cannot be edited in a text editor.

 Maya Embedded A C-like interpreted scripting language built in to Maya.
Language (MEL)

 memory caching A method of writing memory intensive operations (such as
dynamic simulations or particle positions) to disk in order to
reduce the resource demands during rendering.

 MolVis A short form for molecular visualization.

 monomer A single molecule that can be joined by chemical bonds to
identical or related molecules to form a polymer.

 morphometry Th e process of measuring the dimensions and shape of an
object.

 motion capture An animation method based on recording the motion of
(Mocap) real-world organisms or objects and applying that motion

data to objects in a 3D program.

 .mov Th e QuickTime video format fi le extension: fi leName.mov.

 non-photorealistic A catch-all term for rendering approaches which do not seek
rendering (NPR) to emulate photographic images of reality; sometimes used to

refer to one particular NPR approach: toon rendering, which
is meant to look like traditional cel animation.

 NTSC Th e analog broadcast television format for North America
(as well as parts of South America and Asia). NTSC stands for
the National Television System Committee.

 NURBS NURBS stands for Non-Uniform Rational B-Splines, a class
of mathematically defi ned geometric models used widely in
computer graphics.

602 GLOSSARY

 NURBS curve NURBS curves (or splines) are resolution-independent, math-
ematically defi ned curves. Th ey are often used as animation
paths, function curves, and as the basis for the construction
of surface geometry.

 PAL Th e analog broadcast television format for most of Europe,
Asia, Australia, Africa, and South America. PAL stands for
Phase Alternating Line.

 parallax Th e apparent motion of objects created by the motion of the
observer.

 parenting Th e process of creating organized and functional scene hier-
archies by making some objects subordinate to others within
a scene hierarchy.

 particle systems A dynamic system used in a 3D program to simulate phenom-
ena (such as smoke, dust, fi re, or fl uids) that are composed of
great numbers of small particles whose behavior is governed
by the infl uence of forces like gravity and wind.

 pencil test Another term for the animatic. Th is term is more often
encountered in traditional, pencil-and-paper hand-drawn
animation workfl ows.

 pixelation Th e appearance of individual pixels in a bitmap image result-
ing from the image being displayed at size larger than its
intended resolution.

 photorealism Images created to evoke various photographic eff ects (high-
lights, depth of fi eld, realistic shading, and so on) such that
they appear as if they could have been produced by a real-
world camera.

 physics engine A software component that allows for the simulation of phys-
ical forces and their eff ects on an object ’ s shape and motion,
taking into account factors such as mass, gravity, friction,
and air resistance.

 playblast A screen-resolution, hardware-rendered preview of an ani-
mation created in Maya.

 PLE Acronym for the Maya Personal Learning Edition.

 poly count Th e number of polygons comprising an object or scene.
Reducing poly count can lower memory usage and/or
decrease the render time of a scene.

 polypeptide An alternate term for proteins, which are composed of multi-
ple peptides (amino acid polymers).

 post effect An image or visualization eff ect that is added after the ren-
dering stage in an editing or compositing program like After
Eff ects.

 previsualization A preproduction technique in fi lmmaking where complex
scenes are choreographed as computer animation before
shooting begins.

603GLOSSARY

 procedural Animation that is generated algorithmically, as opposed to
animation being keyframed.

 procedural texture Textures that are generated algorithmically, as opposed to
being derived from an image fi le.

 pseudopod (pl. A dynamic cytoplasmic protrusion on a living cell, often used
pseudopodia) for locomotion, sensing the environment, or engulfi ng

foreign matter.

 pseudorandom A number generated by a computer algorithm—called a
number pseudorandom number generator (PRNG for short)—that

approximates the properties of a true random number.
Because it was determined by a mathematical formula, a
pseudorandom number cannot be truly random, but can be
repeated predictably. Maya ’ s PRNG, the rand() function, gen-
erates numbers from the uniform probability distribution.

 radiosity One of a number of algorithms used to generate global illu-
mination renderings.

 ramp A color gradient.

 raster graphics Computer graphics images composed of pixels.

 reaction rate Th e speed at which a chemical reaction takes place, given the
concentration of reactants and environmental constraints
such as temperature and pressure.

 render layer In a Maya scene, diff erent elements—mainly models, eff ects,
and lights—can be partitioned into diff erent “ render layers ” .
Each layer is rendered separately so that the resulting image
depicts only those elements assigned to the layer. Th e layers
are subsequently combined in a compositing program, where
special eff ects can be applied to individual layers. A render
layer can also be used to produce a specifi c “ channel ” such as
color, alpha, shadow, or specular, to name a few. In this latter
context, a render layer is sometimes referred to as a “ pass ” .

 regenerative A branch of medical and biomedical engineering research
medicine concerned with the potential to repair or restore tissues,

organs, and limbs via the use of stem cells, engineered tis-
sues, and genetic engineering.

 render engine A render engine refers to a software component of a 3D ani-
mation system, designed to produce fi nished images from
geometry and animation data. Maya, for instance, has four
built-in render engines: the Maya Software, Maya Hardware,
mental ray, and Maya Vector renderers.

 render farm A render farm is a collection of multiple computers confi g-
ured to cooperatively render 3D scenes, thus accelerating the
rendering process.

 rigid body A dynamics simulation object that behaves as if it were made
from a rigid material like hard plastic or steel.

604 GLOSSARY

 scene In Maya, a scene is the 3D environment, including models,
animation, lights, and cameras, contained in one computer
fi le.

 scene hierarchy A view in Maya ’ s Hypergraph window which visually repre-
sents the ranking of scene objects within nested parent-child
relationships, depicted as an outline-like ordering of object
node boxes. Parent objects control various parameters of
their child objects, and child objects themselves can be par-
ents of other objects.

 scope Th e domain in which a variable operates: local variables oper-
ate only within the procedure or expression in which they are
declared; global variables are global in scope, meaning they ’ re
accessible to all procedures and expressions operating within
a Maya scene.

 search path Th e directory path or paths that Maya looks to for executable
MEL scripts; directories can be defi ned as part of the search
path in the Maya.env fi le.

 soft body A dynamics simulation object in Maya which behaves as if it
were made from a fl exible material like cloth or gelatin.

 spline See NURBS curve. Th e term spline originated in shipbuild-
ing where it described a thin piece of wood used to defi ne
hull shape. Th e spline was bent into a smooth curve by metal
weights—the equivalent of control points on a Maya spline.

 stochastic A process that displays random or probabilistic behavior.

 story reel In some studios an animatic is called a story reel.

 sub-surface Sub-surface scattering is the name for a shading eff ect that
scattering simulates the penetration, scattering, and re-emission of

light in semi-transparent or translucent surfaces. Its use can
increase the realism of depiction of surfaces such as wax,
milk, or skin.

 tangent Another name for a Bezier handle in Maya.

 tessellation In CG, tessellation refers the pattern of polygons created
(as the result of a modeling operation) in order to specify a
renderable surface. In Maya, for example, NURBS models
are ultimately tessellated for rendering, and changes to the
tessellation settings can aff ect the quality of the rendered
result.

 texture mapping Texture mapping refers to the application of 2D images or
procedural textures to the surface of a model to change its
appearance when rendered.

 three-point A traditional photographic approach to lighting, consisting
(3-point) lighting of a “ key ” light (to provide the main source of illumination),

a “ fi ll ” light (to reduce the harsh shadows created by the key
light), and a “ back ” light (to create edge illumination on the
object of interest).

605GLOSSARY

 toon rendering Toon rendering (which is a contraction of “ cartoon ” render-
ing) is a non-photorealistic rendering approach that mim-
ics the linear outline and fl at color fi lls of traditional cel
animation.

 treadmilling Treadmilling is a term for a dynamic behavior of cytoskeletal
elements (such as actin fi laments). In treadmilling, the fi la-
ment appears to be constant in length; in reality, actin mon-
omers are disassociating from the minus-end, and attaching
to the plus-end.

 van der Waals A radius that defi nes the “ contact surface ” of an atom. For
radius instance, the van der Waals radius of a carbon atom is 1.7 Å.

Acronym: vdW radius.

 vector A 1D data array, specifying direction and magnitude.

 vector graphics Images that are comprised of resolution-independent vector
descriptions of graphical objects.

 virion A whole virus particle.

 virtual memory An operating system technique that uses part of the hard
disk to simulate the presence of additional random access
memory (RAM). Virtual memory allows the eff ective expan-
sion of the usable amount of memory over the amount of
RAM hardware circuitry installed in the computer.

 visualization Th e act of creating a clear visual impression or representation
of something, whether in the mind or in some form of exter-
nal visual media.

 .wmv Th e Windows Media Player video format fi le extension:
 fileName.wmv.

 world coordinates A coordinate system as measured from the world origin.
Local coordinates are relative to the transform node of a
particular object.

 world origin Th e center of the virtual world in Maya, where the value on
all three spatial axes is 0, 0, 0.

Th is page intentionally left blank

 Index
 “ .mel ” fi le extension , 412
 .state attribute , 416, 430
 “ .txt ” fi le extension , 412

 for animation expression fi les , 412
 “ \n ” , new line character , 319, 335
 \n break notation , 466
 1j6z.pdb , 351, 352, 396
 2D animatic , 57–8
 2D cell research , 532, 533
 2D protein array , 384
 2D texture , 196

 see also Procedural texture
 3-point lighting rig , 235, 240
 3D animatic , 66
 3D Brownian diff usion , 399
 3D camera , 64

 movements of , 93
 3D cell research , 532, 533
 3D protein arrays , 384
 3D scene , 58, 60
 3D Studio Max , 16
 3D texture , 196

 see also Procedural texture
 5-state Markov process , 528, 529

 Abyss, Th e , 15
 Actin , 346–8

 F-actin , 386, 389–90, 402
 G-actin , 386, 395–7, 422
 model , 370, 371, 373

 Actin depolymerizing factor (ADF) , 392
 Actin fi laments , 11, 347, 348, 385, 390,

402
 Actin geometry , 394

 F-actin model , 397–9
 G-actin template model , 395–7

 Actin protein model , 370, 371
 Actin reactions:

 bound nucleotides , 390-1
 reaction rates , 391–2

 Active panel , 88
 AddAttr command , 465, 496
 Adenosine diphosphate (ADP) ,

390–1

 Adenosine triphosphate (ATP) , 346, 347,
390

 CPK model of , 368–9
 Adobe After Eff ects , 66, 259
 Advanced rendering techniques:

 with mental ray, for Maya renderer ,
 249

 ambient occlusion , 250, 251
 caustics , 250
 global illumination , 250, 251
 image-based lighting , 251–2
 realism about photorealism , 252
 Render Layers , 252
 subsurface scattering , 250

 Agent-oriented programming (AOP) , 40
 Aim locator , 225
 Airy ’ s diff erential equation , 24
 Alias|Wavefront (A|W) , 14
 Alias Research , 14, 15
 Alpha channels , 194, 220
 Ambient Color, 206
 Ambient occlusion (AO) , 64, 250, 251
 Amino acids , 8
Angle of View, 217, 219
 Animation , 61, 138

 animator ’ s workfl ow , 49
 postproduction , 66–7
 preproduction , 51–8
 production , 58–66

 and fi lm perception , 46–9
 deleting keys , 144
 and fi lm perception , 46–9
 graphing , 142–3
 keyframe animation , 145–51

 vs. procedural animation , 138–9
 menu set , 139–40
 micrographic look , 52–3
 nodes:

 in Hypergraph and Attribute
Editor , 151

 non-photorealistic looks , 53, 55–6
 photorealistic look , 52
 playback settings , 145
 procedural animation , 151–4

 Animation (contd.)
 setting keys , 140–1
 time units , 144

 Animation assistants , 62
 Animation controls , 146, 147
 Animation curve , 62, 143, 155

 editing , 147–8, 149
 see also Interpolation

 Animation expression , 151–2, 278, 292, 309
 creation , 153–4
 expression command , 297–8
 Expression Editor , 295

 converting units , 296
 Create and Edit buttons , 296

 expression node , 139, 154, 294–5
 expression syntax , 296–7
 line breaks in , 300–1
 stand-alone animation expressions ,

 298–300
 Animation nodes , 151, 152
 Animator ’ s workfl ow:

 postproduction , 66–7
 preproduction , 51–8
 production , 58–66

 Apparent motion , 48, 49
 Apple , 15, 66
 Apple key , see Command key
 Application-oriented programming

language , 266
 Application Programming Interface (API) ,

 16, 72, 262
 Area light , 236, 237
 Array index management , 29
 Arrays , 275–6

 molecular arrays , 10
 Assemblers , 25, 26
 Assembly languages , 25, 28
 associate() procedure , 425–8
 Association reaction , 392, 401, 407, 421
 Association reaction rate , 404–7
 ATOM , 352, 359, 360
 Atoms , 8, 348–9

 creation, in CPK model , 362–4
 as spheres , 350

 Attribute data types , 287
 Attribute Editor , 79, 80, 96, 98, 99, 124–6,

144, 151, 535
 see also Camera Attribute Editor

 Attributes, in MEL:
 getting, setting, and connecting , 286–7
 string attributes , 287
 type fl ag , 287

 Auto keyframing , 142
 Autodesk , 14, 72
 Autodesk 3ds Max , 313, 578
 Autodesk MotionBuilder , 313

 Autodesk StudioTools , 15
 Autodesk VIZ , 313
 Avoidance vectors , 400, 190, 536
 Axis indicators , 93

 Back light , 63, 235, 236, 238
 Backslash character , 275, 300, 316
 Backus, John , 29
 Bacterial fl agellum , 10, 11
 Barbed end , 347, 389–90
 BASIC , 28
 Batch Rendering , 244–5, 252

 common Render Settings , 253–5
 Maya Software Render Settings ,

255–6
 Render , 256–7
 software vs. hardware rendering , 257

 Berry, Drew , 201
 Bézier handles , 148
 Binary digit , 23
 Binary string , 25
 Binary switching , 38
b indPose node , 468
 Blank lines , 283
 Blank spaces , 283, 319
 Blender , 578
 Blocks , 278
 Boolean , 116
 Bounding Box , 90, 490–1
 Bounding vector , 422, 423, 503
 Brinsmead, Duncan , 201
 Brownian motion , 172
 Brownian random walks , 393
 Brushes , 331, 333
 Buckminsterfullerene , 314
 BuckyBall , 314
 bump channel , 206
 Bump maps , 198, 199

 C � � Application programming interface
(C � � API) , 28, 40, 312, 579

 C � � plug-in , 580
 Camera attributes , 217, 218–19, 222
 Camera Display Options , 221
 Camera movements:

 Dolly , 93
 keyboard/mouse combinations , 93
 tracking , 93
 tumbling , 93

 Cameras , 64, 216, 217
creation , 223
 two-panel view set up , 223–4

 Camera Attribute Editor:
 camera attributes , 218–19
 Depth of Field attribute , 219–20
 Display Options , 221

608 INDEX

 Environment attributes , 221
 Film Back attributes , 219
 mental ray attributes , 219
 Movement Options , 221–2
 orthographic views , 222
 Output Settings , 220
 Cast shadows , 209, 232, 234

 Caustics , 246, 250, 252
 CD4 lymphocytes , 322
ceil() function , 288–9
 Cell shader technique , 65
 Cell-cell signaling , 449, 524–5, 526,

536–8
 Cell crawling , 445–6, 454, 455, 456

 algorithm , 453, 525, 526, 528
 fast and slow movers , 448
 model defi nition:

 cell behavior , 450
 cell model , 449–50
 cellular scale , 450–1
 chemotactic signal , 450
 substrate , 450

 navigation nomenclature , 448–9
 protrusion nomenclature , 448
 pseudopod generation , 451–3
 retraction , 448
 and walks , 446–8

 Cell locomotion model:
 algorithm design , 453, 455, 456, 457
 algorithm encoding:

cellCrawl expression , 466–75
 cell crawling , 445–6

 and walks , 446–8
data I/O , 476
 geometry , 457

 cell deformation , 463–4
 cell resetting , 464
 cell rigging , 461–2
 cell shaping, with Lattice Deformer ,

 459, 460
 cell ’ s position, resetting of , 461
 custom attributes addition , 464–5
 history deletion , 459, 461
 joints , 462–3
 joints to skin, binding , 463
 shader, creation and application ,

459
 smoothening , 458–9

 model defi nition:
 cell behavior , 450
 cell model , 449–50
 cellular scale , 450–1
 chemotactic signal , 450
 substrate , 450

 navigation nomenclature , 448–9
 protrusion nomenclature , 448

 pseudopod generation:
 animation, using joints , 451–3

 troubleshooting , 476–7
 Cell micrographs , 53
 Cell migration:

 as emergent behavior , 521–3
 model defi nition:

 boundary conditions , 527
 cell behavior , 525
 cell-cell signaling , 526
 cell geometry , 526
 spatial and temporal scale ,

 527, 528
 substrate , 526, 527

 model design , 528–38
 nomenclature , 524–5
 in scaff olds , 523
 simulation model , 539

 Cell migration data , 322–3
 visualization , 325

 algorithm encoding , 326–7
 algorithm planning , 324, 326
 animation, playing , 337
 data fi le , 322–3
 data visualization , 323–4
 debugging , 337
 moveCells.txt , 327–36
 script running , 336–7
 spatial and temporal

scales , 323
 summary report , 324–6, 335

 Cell organization , 10–11
 CellCenter , 461–2, 474
cellCrawl expression , 466

 cell model, resetting , 469–70
 crawl cycle increment , 474–5
 crawl cycle setup , 470–4
 print commands , 470
 variables initialization , 468

 Cellular scale , 450–1
 Channel box , 97–8, 113, 144

 and sphere
transformation , 116–17

 Channel Control editor , 98
 Character rig , 444, 451–2
 Checker texture node , 194, 195
 Chemoattractant , 449, 547
 Chemokinesis , 448
 Chemotactic signal , 450
 Chemotaxis , 448–9, 451, 524, 535–6
 Cinema 4D , 16, 578
-clear fl ag (-cl) , 472
 Clip planes , 219
 closestPointOnSurface (cpos) node , 400,

434, 533, 534
 closestSurface , 542

609INDEX

collide() procedure , 400, 432–4
 Collision forces , 161
 Collision vector , 421, 422
 Color Chooser , 205, 206
 Color wheel , 378
 Colored lights , 378
colorPP attribute , 173
 Command argument , 282
 Command key , 74
 Command Line , 94, 95, 266, 267
 Command line render , 244, 245
 Comments , 270, 327–9
 Compatible Time-Sharing System

(CTSS) , 36
 Compiler , 28, 29–30
 Compositing plan , 65
 Computational biology , 22, 35

compiler , 27–8, 30
 conditional control , 33–4
 high level programming languages ,

26–7
 information and process , 22–3
 interpreter , 27–8
 language and program , 23–5
 low level programming languages ,

26–7
 OOPs and agents , 39–40
 stored programs , 30–3

 Computer-based interpretive visualization ,
 35

 Computer-generated CPK model , 349, 351
 Computer-generated imagery (CGI) , 4, 14,

15, 263
 Computer graphics (CG) , 4
 Concentration volume , 394, 404
 Conditional control, of program execution ,

 33–4
 Conditional statements , 288–9
 Confocal microscopy , 53
 Conformational changes , 388, 397
 connectAttr , 297
 Connection Editor , 79, 127–8
 Construction history , 80–1

 geometry modeling , 122–8
 Container, particles in:

 attributes , 174–5
 collision, between particle and cylinder ,

 176–7
 container creation , 173
 emitter node , 175
 inter-particle collisions , 178–81
 particle data caching , 183–4
 particle emitter creation , 173–4
 particle motion , 178
 particle shape node , 175–6
 per particle color , 181–3

 Control vertex (CV) , 104, 452
 and polygon primitive deformation , 120
 and sphere deformation , 118

 CPK models , 344, 345, 348–51, 368–72,
371, 395,

cpk() procedure , 356–7, 368
 Create button , 296
 Create menu , 102–3
 Creation options , 103
 Critical concentration (C c) , 392
 cRule1() , 554–8
 cRule2() , 558–60
 cRule3() , 552, 561–4
 Curl, Robert , 314
 CurrentTime MEL command , 297
 Curve degree , 130
 Curve fl ow , 163–4
cycleCheck , 170–1
 Cytoskeleton , 10–11, 12, 347, 348, 384

 Dalton (DA) , 344
 Dalton, John , 342
 Data conversion , 273–4
 Data input/output , 312

 cell migration visualization:
 algorithm encoding , 326–7
 algorithm visualization , 324–5
 animation, playing , 337
 data fi le , 322–3
 data visualization , 323–4
 debugging , 337
moveCells.txt , 327–36
 script running , 336–7
 spatial and temporal scales , 323
 summary report planning ,

324–6, 335
 MEL, for reading and writing fi les , 315

 data reading , 318–20
 data writing , 320–2
 fi le, opening and closing , 316–18
 fi le path , 316

 translators , 313–15
 Data management plan , 65–6
 Data reading, using MEL commands:

 feof command , 320
 fgetline command , 318
 fgetword command , 319
 fread command , 319
 frewind command , 318

 Data visualization , 323–4
 Data writing, using MEL commands:

 fflush command , 321–2
 fprint , 320–1
 fwrite , 321

 dataOutput expression , 572–3
 De Humani corporis Fabrica , 4

610 INDEX

 Debugging , 267, 306–8, 371–2, 440–1
 Default light , 63, 90, 232
 DefaultValue , 465
Deoxyribonucleic acid, see DNA
 Dependency Graph (DG) , 16, 161, 192,

263, 459
 and biology , 82
 and DG nodes , 78–81

 Depth channel , 220, 254
 Depth Map Shadows , 234, 378–9
 Depth of Field attribute , 219–20
 Dermal ECM scaff old , 481

 model defi nition , 483
 fi ber orientation and

intersections , 485
 fi ber size distribution , 484–5
 scaff old dimensions , 484

 Design-space , 6, 7
 Device Aspect Ratio , 226
 DG nodes , 78–80, 99
 Diffuse channel , 207
diffuse() procedure , 400, 431–2
 Diff usion vector , 400, 422
 Diff usive motion , 393
 Digital Equipment Corporation (DEC) , 26
 Directed Acyclic Graph (DAG) , 81

 and biology , 82
 Directedness coeffi cient (D c) , 324, 335
Disney, Walt, 15, 46
 Disney-style animation , 57, 61
 Displacement maps , 198, 199
 Displacement materials , 193
 Display layer , 97
 Display Options , 221
dissociate() procedure , 403, 410, 434–7
 Dissociation reaction , 392
 Dissociation reaction rate , 408–9
 DNA , 10, 11, 342

 computer-generated CPK model of , 349
 plastic CPK models of , 349

 do …while loop , 290–1
 Dolly, and camera movement , 93
 Domain-oriented programming language ,

 265
 Dope Sheet , 142–3, 144
 Dot notation , 153, 286
 Double transformation , 133, 505
 Downstream node , 79, 123, 127
 Dream Quest Images , 15
 Dynamation , 15, 16
 Dynamic Relationships Editor , 165, 166
 Dynamic simulations , see Dynamics
 Dynamic typing , 273
 Dynamics , 158, 160

 collision forces , 161
 container, particles in , 173–84

 Dynamic Relationship Editor , 165, 166
 Dynamics engine , 161
 fi elds , 161–2
nCloth , 165
 Nucleus , 165
 particle objects , 162–4

 attributes , 162
 curve fl ow , 163–4
 emitters , 162, 163
 goals , 162–3
 rendering , 163, 164

 rigid bodies , 164, 166–72
 soft bodies , 165

 E-Cell , 579
 Ease in, spline interpolation , 143
 Ease out, spline interpolation , 143
 ECM scaff old growing , 480

 algorithm design , 492, 493
 fi ber axis , 486
 fi ber surfaces , 492
 fi bers randomization , 491
 NURBES spheres , 486–7
 rule-based design , 487–91
 seeds resetting , 491
 timeline, modeling with , 487

 algorithm encoding:
makeSeeds() procedure , 494–7
 moveSeeds expression , 500–6
 resetSeeds expression , 497–500
 rule procedures , 507–12

 dermis:
 fi ber orientation and intersections , 485
 fi ber size, packing density, shape ,

 484–5
 parameters of , 481–3
 scaff old dimensions , 484

 expressions creation , 513–14
 Maya scene preparation , 512
 model playing , 515–16
 parameter eff ects , 517–18
 scaff old parameters inspection , 515, 516
 scene preparation , 514–15
 script elements sourcing , 512–13
 seeds making , 513

 Edit button , 296
 Edit mode , 282
 Edit Points (EPs) , 104–5
 EDSAC , 24, 25, 33, 34, 35
 Electronic Systems Laboratory (ESL) , 36
 Emitter , 161, 162, 163, 175
 Endocytosis , 385
 Endothelial cells , 448
 Environment textures , 196
 EP Curve Tool , 131
 Exit on Completion , 103

611INDEX

 Explanations , 576
 Explicit typing , 273, 415
 expression command , 297–8
 Expression Editor , 151, 153, 293, 295–6
 Expression node , 139, 154, 294–5
 Expression syntax , 296–7
 Extracellular matrix (ECM) proteins , 165
 Extrude tool , 132, 486

 F-actin , 386, 402
 model , 397–9
 reactions , 390–2
 structure of , 389–90
 see also Actin

 Fade in , 423
 Fade out , 423
faderShader() procedure , 410, 429–31
 Far Clip Plane , 514
 FBX , 313
 fCheck , 257

 playback in , 258–9
 saving from , 259

 fclose command , 321
 fgetline , 318
 fgetword , 318, 319, 359
 Fields, in Maya , 161–2

 radial fi eld:
 Manipulator Tool for , 178–9
 particle object, connection with , 179
 particles, as source , 179–81

 Turbulence fi eld , 170, 172, 178
 File opening and closing , 316–17
 File browser , 317–18
 “ File end-of-fi le ” (feof) command , 320
 File header , 304
 File path, for reading and writing , 316
 File Texture , 196–7
 fileBrowserDialog command , 317
 fileDialog command , 358
 fileTest command , 316
 Fill light , 63, 235–6, 237
 Fills , 247
 Film Back attributes , 219
 Filmmaking , 51

 script treatment in , 56–7
 Final Cut Pro , 66
 Flags:

 and default tool settings , 281–2
 for extrude command , 505

 Flash Player , 247
 Flat Shade All , 90
 Flat Shade Selected Items , 90
 Flicker fusion , 48, 49
 Floating point , 116, 270
 Focal Length , 217, 219
 Footage , 64, 66
 fopen command , 316, 317, 327

 for-in loop , 289, 290
 for loop , 289–90
 Force attribute , 181
 -forceElement (-fe) command , 424
 Fortran , 28, 29, 90
 Four panel view , 112, 114
fprint , 320–1
 Frame All , 224
 Frame rate , 61
 Frame Selection , 224
 frame variable , 153, 297
 fread , 318, 319
 frewind , 318
 Function syntax , 282–3
 Future of Maya , 579–82
 fwrite , 320, 321

 G-actin protein , 386
 G-actin template model , 395–7
 gauss command , 400
 GeoConnector node , 177
 Geometric primitives , 102–3
 Geometry modeling , 58–9
getAttr command , 297
 Gillespie algorithm , 530
 Global illumination (GI) , 64–5,

250, 251
 Global procedure , 292
 Global variable , 276–7, 498
 Glue program , 265
 Graph Editor , 142, 143, 147–8

 graph view , 148–50
 keys, for move and deletion , 150–1
 outliner , 148
 toolbar , 150

 Graphics Processing Units (GPUs) , 64
 Graphics processor , 163, 190
 Guide spline:

 drawing , 130–1
 profi le snap , 132

 Haptotaxis , 449, 524–35
 Hardware Render Buff er (HRB) , 246
 Hardware renderers , 163, 176, 246
 Hardware rendering , 190

 vs. software rendering , 246
 Hardware Texturing , 90
 heightRatio attribute , 414, 416, 417
 Help Library , 73, 74, 89–90, 268, 274, 284,

291, 295, 309–10, 458
 Hemoglobin, 204
 High dynamic range imaging (HDRI) , 251,

252
 High-level programming languages , 26–7
 High-LOD model , 395
 History icon , 110
 Holmes/Lorenz model , 396

612 INDEX

 Home-built tools , 16
 Hotbox , 85–6, 168
 Hotkey , 74–5
 Hourihan, Jim , 15
 HSV (Hue, Saturation, and Value) , 205
 Hulls , 105

 scaling , 118–19
 Human sperm cell, 3D computer

model of , 445
 Hydrolysis , 390

 and phosphate release rates , 402, 407–8
 Hypergraph panel , 91
 Hypershade , 190, 192
 Hyperthreading , 246

 In silico approach , 4, 14, 42, 309
 In silico biology , 42, 147, 155, 160, 222
 In vitro methods , 4
 In vivo methods , 4
 IBM , 7094, 30
 if …else statement , 288
 if statement , 331, 420
 Image-based lighting (IBL) , 251–2
 Image File Output , 253–4
 Image Plane , 221
 Image Size , 254–5
 Imperative syntax , 282, 283
 Impulses , see Collision forces
 Incandescence , 206
 Industrial Light and Magic (ILM) , 15
 Initial State , 170
 Interactive Creation , 103
 Interactive Photorealistic Rendering (IPR) ,

 202, 239–40, 376
 internalVar command , 326
 Inter-particle collisions , 178–81
 Interpolation , 62, 143
 Interpreter , 27, 264

 vs. compiler , 28
 Interpretive visualization (iVis) , 8, 17–19
 Isoparms , 105

 Jaggies , 255
 Janczyn, Joyce , 273, 284
 Jmol , 17
 Joint tool , 462
 Jurassic Park , 15

 Keep Image , 203
 Key-framed animation , 61–2
 Key light , 63, 235
 Keyboard/mouse combinations , 93
 Keyboard shortcut , see Hotkey
 Keyframe animation

 curves editing , 147–8
 Graph Editor graph view ,

148–50

 Graph Editor outliner , 148
 Graph Editor toolbar , 150
 keyframe setting , 146–7
 keys setting , 140–1
 moving keys , 150–1
 play, scrub, and stop , 147
 preparation , 145–6
 vs. procedural animation , 138–9

 Keyframes , 61, 138
 and memory , 139

 Keysets , see Animation curve
 Kinemation , 15, 16
 Kroto, Harold , 314

 Lambert shader , 204–5
 Lamellopodia , 448
 Lattice Deformer , 117, 459
 Lattice points , 459, 460
 Layer Editors , 96–7
 Layered texture node , 196
 Layouts , 91
 Level of detail (LOD) , 344–5, 395
 Ligand , 449
 Light linking , 238, 239
 Lighting , 232, 233, 234

 for hemoglobin scene , 235
 IPR, previewing with , 239–40
 Light linking , 238, 239
 lights creation , 236
 lights placement , 237, 240–1
 shadow casting , 238

 shadows , 232, 234
 Lighting menu , 89, 90, 234
 Lights, for animation:

 back light , 63, 235, 236
 fi ll light , 63, 235–6
 key light , 63, 235

 Lightwave , 578
 Line breaks, in animation expressions , 268,

300–1
 Linear interpolation , 143
 Local axis , 93
 Local coordinates , 92–3
 Lofting , 105
 Logic errors , 307–8, 371–2
 “ Look ” , for cell science animation:

 micrographic look , 52–3, 54
 non-photorealistic looks , 53, 55–6
 photorealistic look , 52

 Look Th rough Selected , 91
 Loops , 289

 do …while loop , 290–1
 for loop , 289–90
 for-in loop , 290
 while loop , 290

 Low-level programming languages , 26–7
ls command , 358, 423

613INDEX

 Lymphocytes , 165, 448
 Lysozyme, structure of , 344

 Mac OS equivalents , 74
 Mac OS X , 259, 454, 476–7
 Machine language , 23
 Macromolecular self-assembly ,

see Self-assembly, of macromolecules
 Main Menu bar , 83–4
makeCells() procedure , 540–5
 makeSeeds() procedure , 491, 494–7
 Manipulator Tool , 178–9
 Marking menus , 84–5
 Markov process , 528, 529, 530, 531
 Material marking menu , 207
 Material node , 193–4
 Mathematical and logical expressions , 277

 blocks , 278
 operators , 278–80

 Maya , 1, 13, 16, 263, 578
 construction history , 80–1
 dependency graph and DG nodes ,

 78–80
 DG, DAG, and biology , 82
 explanations , 576, 577
 future , 579–82
 getting started , 72

 Help and instructions , 73, 74, 75
 hotkeys , 74–5
 Maya Complete , 72
 Maya Personal Learning Edition , 72
 Maya project , 76–8
 Maya Unlimited , 72
 Release notes , 74
 scene fi le , 76
 start Maya , 75
 system requirements , 73
 user profi le , 75, 76

 history , 14–16
 and interpretive visualization , 17
 program architecture , 78
 MEL , 17–19
 scene hierarchy and DAG , 81–2
 simulations , 576
 user interface (UI) , 82

 Attribute Editor , 98
 Channel Box , 97–8
 Channel Control editor , 98
 Command Line and Script Editor , 95
 Layer Editors , 96–7
 Main Menu bar , 83–4
 menus, working with , 84–6
 Outliner , 87–8
 playback controls , 95
 Plug-ins , 98–9

 Preferences , 95–6
 Range slider , 94, 95
 scene viewing, through camera ,

93–4
 shelves , 86–7
 Status Line , 86
 Time Slider , 94, 95
 title bar , 83
 workspace and panel menus ,

88–91
 XYZ coordinate system and vectors ,

 91–3
 workfl ow , 14

 Maya , 2008, 72, 313
 Maya ASCII , 76, 77
 Maya-based workfl ow , 578
 Maya Binary , 76, 77
 Maya cameras , see Cameras
 Maya Complete , 72
 Maya Dynamics , see Dynamics
 Maya Embedded Language (MEL) , 16, 72,

262, 301–2
 animation expressions , 292

 expression command , 297–8
 Expression Editor , 295–6
 expression node , 294–5
 expression syntax , 296–7
 line breaks in , 300–1
 stand-alone animation expressions ,

 298–300
 attributes in , 286–7
 building , 302–6
 conditional statements , 288–9
commands, 315
 debugging , 306

 logic errors , 307–8
 syntax errors , 307

 loops:
 do …while loop , 290–1
 for loop , 289–90
 for-in loop , 290
 while loop , 290

 mathematical and logical expressions ,
277

 blocks , 278
 operators , 278–80

 Maya ’ s search path , 269
 MEL, see Maya Embedded Language

(MEL)
 MEL command , 280

 blank lines , 283
 blank spaces , 283
 command modes , 282
 fl ags and default tool settings , 281–2
 function syntax , 283

614 INDEX

 functions , 283–4
 imperative syntax , 282, 283
 reference library , 284
 shelf button from , 284–6
 top 10 commands , 284, 285

 MEL input:
 Command Line , 266, 267
 Script Editor , 267–8
 sourcing , 268–9

 origins , 263–4
 procedures , 291–2
 syntax:

 CASE sensitivity , 270
 comments , 270
 quotation marks , 270
 statement termination , 269

 terminology , 264–6
 values , 270
 variables:

 arrays , 275–6
 data conversion , 273–4
 declaration and assigning , 271–2
 dynamic typing , 273
 global variables , 276–7
 matrices , 276
 naming , 271
 strings , 274, 275
 type casting , 274
 vectors , 274

MEL interpreter , 27, 262
 MEL statement , 262

 Maya Hardware renderer, 244, 246, 257
 Maya link library (.mll) , 313
 Maya materials , 193–4
 Maya Personal Learning Edition (PLE) , 72
 Maya program architecture , 78
 Maya project , 76–8
 Maya scene , 58, 77, 78, 512
 Maya Software renderer , 244, 245–6, 372

 anti-aliasing quality , 255–6
 Maya Unlimited , 72
 Maya Vector renderer , 244, 246–8
 Memory caching , 171–2
 mental ray, for Maya renderer , 244, 248–9

 advanced rendering techniques with ,
249

 ambient occlusion , 251
 caustics , 250
 global illumination , 251
 image-based lighting , 251–2
 realism about photorealism , 252
 Render Layers , 252
 subsurface scattering , 250

 Micrographic look, for cell science
animation , 52–3

 Minicomputers , 26, 36
 Minus end , 390, 398
 Mobile cell populations , 521–2
 Model type , 59, 109
 Modeling geometry , 102

 construction history , 125–7
 Attribute Editor , 124–5
 Connection Editor , 127–8
 Hypergraph revisiting , 122–4

 NURBS modeling:
 NURBS curves (splines) , 104–5
NURBS “ fi ber ” , see NURBS “ fi ber ”

creation
 NURBS surfaces , 105–7
 surface menu set , 103, 104

 NURBS primitive modeling , 109–17
 polygon primitive

deformation , 119–22
 polygonal modeling , 107

 menu set , 108
 subdivision surfaces , 109

 sphere deformation , 117–19
 Molecular arrays , 10
 Molecular visualization (MolVis) ,

345–6
 Molecules , 8
 Motion capture (Mocap) , 312
 Motion path , 227–8, 227, 228, 260
 Motion perception , 48–9
 Move Tool , 116
 Move Tool Manipulator handles , 113–14
moveCells() expression, 548 –54
moveCells.txt, 237
 moveSeeds , 487, 490–1, 500–6
 Multiscale Models tool , 396
 Myosin , 11, 347

 National Television System Committee
(NTSC) , 48, 144

 Navigation nomenclature , 448–9
 nCloth objects , 165
 Neuron , 47, 480
 Non-photorealistic looks , 53, 55–6
 Non-photorealistic rendering (NPR) ,

55–6, 189, 190
 Non-Uniform Rational B-Splines

(NURBS) modeling , 59
 NURBS surfaces:

 components , 105–6
 normals , 106–7

 splines:
 components , 104–5

 surface menu set , 103, 104
 Nucleus , 165, 424, 465
 NURBS curves , see Splines

615INDEX

 NURBS “ fi ber ” creation:
 guide spline:

 and profi le snapping , 132
 drawing , 130–1

 profi le spline creation , 131
 scene view set up , 129–30
 surface extrusion , 132–3
 tube alteration, through history

connections , 133–4
 NURBS primitive modeling:

 sphere:
 creation , 110–11
 deformation , 117–19
 Four panel view , 114
 Move Tool settings , 116
 renaming , 113
 rotation , 114–15
 scaling , 115–16
 selection , 111–12
 transformation, using channel

box , 116–17
 translation , 113–14

 NURBS surface , 59, 105–7

objExists command , 331
 Occlusion , 251
 Omni light, in Cinema 4D , 63
 Operator overloading , 280
 Operators , 278–80
 Option boxes , 86, 110
 Option key , 74
 Organizational hierarchy:

 amino acids , 8, 9
 atoms and molecules , 8
 cell organization , 10–11, 12
 DNA , 10
 micro to macro , 12
 molecular arrays , 10, 11
 proteins , 10
 tissues and organs , 11–12, 13

 Origin Axis , 92
 Orthographic camera , 91, 217, 218
 Orthographic views , 114, 222
 Outliner , 81, 87–8, 398
 Output Settings , 220
 Overscan , 221, 226

 Paint eff ects , 201–2
 Pairing reaction and diff usion:

 diff usion time , 393
 reaction time , 392–3

 PAL , 144, 254
 Panel , 91
 Panel Editor , 91
 Panel menus , 88–9
 Panels menu , 89, 90–1

 Parameters , 532
 of cell migration , 522–3
 of dermis , 481–3
 eff ects , 516–17
 model variations , 570–1

 Particle attributes , 162
 Particle data caching , 183–4
 Particle emitters , 162, 163

 creation , 173–4
 Particle shape node , 175–6
 Particles , 162–4, 165

 attributes , 162
 in container , 173

 attribute settings , 174–5
 collision with cylinder , 176–7
 emitter node , 175
 inter-particle collisions , 178–81
 motion randomization , 178
 data caching , 183–4
 emitter creation , 173–4
 per particle color , 181–3
 shape node , 175–6

 curve fl ow , 163–4
 emitters , 162, 163
 goals , 162–3
 rendering , 163, 164

 Pencil Curve Tool , 131
 Pencil tests , 58
 Per particle attributes , 162, 176, 287
 Per particle color , 181–3
 Per particle expression , 182–3
 Persistence of vision , 48
 Perspective camera , 91, 217–18, 229,

337, 438
 Phase-contrast microscopy , 53, 54
 Photorealism , 52, 64–5, 252
 Photorealistic look , 52
 Physics engine , 17, 62
 Pixar , 15
 Pixelation , 196
 Play every frame , 145, 146, 457
 Playback:

 settings , 145
 using fCheck , 257–9

 Playback control , 95, 258
 Playback Speed , 457
 playbackOptions command , 329, 334
 Playblast , 160, 517

 creation , 184–5, 229
 Playfair, William , 4
 Plug-ins , 78, 98–9, 312, 314
 Point light , 63, 236
 Pointed end , 389–90
 pointOnCurve , 434, 504
 pointOnCurveInfo , 434
 pointOnSurface , 434, 565

616 INDEX

 pointOnSurfaceInfo node , 434, 533, 535,
543, 565, 573

 Points , 90
 Poly count , 107
 polyCube , 458
 Polygon menu set , 108
 Polygon primitive deformation , 119

 control vertex, moving , 120
 edge, moving , 121

 sphere, smoothening , 121–2
 polygon face, moving and scaling , 120–1

 Polygon sphere , 106
 construction history:
 creation , 119–20

 Polygon surface , 15, 58, 107, 120
 Polygonal modeling , 107

 menu set , 108
 subdivision surfaces , 109

 Polygonal surface model , 396
 polySmooth , 458
 polySmoothFace node , 121, 134
 polySphere , 124, 281, 282, 458
 polyTweak , 124, 126
 Popup Help , 73, 208
 posi , see pointOnSurfaceInfo node
 Position markers , 227–8
 Postproduction stage, in animator ’ s

workfl ow , 66–7
 PowerAnimator , 15, 16, 263
 Preconfi gured shading network , 201
 pPlane1 , 210, 211
 Preferences settings , 95–6
 Preproduction stage, in animator ’ s

workfl ow , 51
 2D animatic , 57–8
 animation ’ s “ look ” , 52

 micrographic look , 52–3
 non-photorealistic looks , 53, 55–6
 photorealistic look , 52

 storyboard , 57
 treatment and script , 56–7

 print command , 299, 300, 308, 372,
470

 Procedural animation , 61, 62
 expression , 151–2

 creation , 153–4
 nodes , 153

 vs. keyframe animation , 138–9
 Procedural modeling , 60
 Procedural texture , 139, 196
 Procedures, of MEL statements , 291–2

 sourcing , 292
 Production stage, in animator ’ s workfl ow:

 3D animation , 66
 3D scene , 58
 animation , 61–2

 cameras , 64
 dynamics , 62–3
 frame rate , 61
 geometry modeling , 58–9
 lights , 63
 procedural modeling , 60
 rendering , 64–6
 shading , 64
 volumetric modeling , 59–60

 Profi le spline creation , 131
 Profi lin , 392, 394, 407
 Program:

 and language , 23–5, 26–7
 Protein building:

 algorithm design , 354
 algorithm encoding:

 atoms creation , 362–4
 cpk() procedure , 356–7
 error checking , 359
 main loop , 359
 MEL script composing , 354–5
 molecule check , 357–8
 PDB fi le opening , 358–9
 record reading , 360–2
 record type , 359
 scene hierarchy organization ,

365–6
vanDerSphere() procedure , 366–7

 level of detail , 344–5
 macromolecules visualization , 342
 MEL script preparation:

 actin , 346–8
 ATP , 346
 CPK look , 348–51
 data , 351–3
 models, naming , 353–4

 molecule rendering , 372–80
 script running, on ATP , 368–72
 visualization freeware , 345–6
 wires, ribbons, and surfaces , 342–4

 Protein Data Bank (PDB) , 342, 395, 396
 atoms creation , 362–4
 fi le format , 351–3
 fi le opening , 358–9

 fi le examination , 368
 record reading , 360–2

 Proteins , 10
 Pseudopodia see Pseudopods
Pseudopods, 140, 441, 448

generation of, 451–3
 Pull-down menus , 83–4
 Python scripting interface , 72

 Query mode , 282
 Quick Layout buttons , 94
 Quotation marks, and Maya , 270, 514

617INDEX

 Radial fi eld:
 Manipulation Tool for , 178–9
 particle object connection to , 179
 particles, as source , 179–81

 Radiosity , see Global illumination
 Ramp material node , 197, 198
 Ramp shader , 65
 Ramps , 197–8
rand() function , 308, 426, 471, 487, 496,

508, 535, 555
Random number generation, in

Maya , 308–9
 Range Slider , 94, 95
 Raster graphics image , 246
 Raytraced shadows , 232, 234
 Raytracing , 234, 245, 246, 248
 Reaction events:

 and diff usion , 399
 association , 401
 dissociation , 402–3
 hydrolysis and phosphate release ,

402
 Reaction rates , 391–2

 and probabilities:
 association reaction rate , 404–7
 dissociation reaction rate ,

408–9, 410
 hydrolysis and phosphate release

rates , 407–8
 visualization requirements , 403–4

 Reaction volume , 404, 405
 Realism:

 about photorealism , 252
 rebuildCurve command , 504
 Receive shadows , 234
 Regenerative medicine , 522
 Regulatory factor , 37, 38, 384, 385
 rehash command , 269, 292, 303, 306, 440,

441, 570
 Release notes , 74
 Reload button , 296
 Remove Image , 203
 Render engine , 64, 244
 Render farm , 66
 Render fi le naming , 253
 Render Layer , 97, 251, 252
 Render Log , 257
 Render menu set , 190, 191
 Render nodes , 124, 191, 192

 naming , 208–9
 Render Settings , 213–14, 220, 244, 245,

379
 camera attributes, adjusting , 225–6
 image fi le Output , 253–4
 image size , 254–5
 Maya Software Render Settings , 255–6

 Render View , 190, 260
 images, keeping and removing , 203
 IPR, previewing with , 202

 Renderers , 188, 244
 Rendering , 64–6, 163, 188, 244

 batch rendering , 244–5, 252
 common Render Settings , 253–5
 Maya Software Render Settings , 255–6
 software vs. hardware rendering , 257

 Hardware Render Buff er , 246
 Maya Hardware renderer , 246
 Maya Software renderer , 245–6
 Maya Vector renderer , 246–8
 mental ray for Maya renderer , 248–9

 advanced techniques , 249–52
 playback using fcheck , 257–9
 Render Settings , 244
 economy of , 189–90
 Render menu set , 190
 rendering style , 189
 shading , 191

 black and white , 199
 bump maps , 198, 199
 displacement maps , 198, 199
 Hypershade , 192
 materials , 193–4
 Maya Paint Eff ects , 201–2
 preconfi gured Maya shading

networks , 201
 ramps , 197–8
 render nodes , 192
 render settings , 213–14
 Render View , 202–3
 shaders, making and assigning ,

 207–9
 shading engine nodes , 201
 shading group node, assigning to

object , 207, 208
 texture nodes , 194–7
 texture placement nodes , 200
 textured background plane , 209–13
 UV coordinates, life on surface ,

 199–200
reorder command , 419
 Research Collaboratory for Structural

Bioinformatics (RCSB) , 342
resetCells expression , 545–8, 554, 570
 resetSeeds expression , 497–500
 Resolution gate , 225–6
 rgbPP attribute , 181

 creation , 182
 for software render types , 183

 Rigging technique , 139, 140
 Rigid binding , 463
 Rigid body dynamics , 164, 166–72

 active , 172

618 INDEX

 animation playing , 170–1
 creation , 169
 memory caching , 171–2
 normal direction , 168
 objects, creation and positioning ,

167
 passive , 170
 rigidSolver node , 169
 Turbulence fi eld creation , 170

 RigidSolver attributes , 169
 Root mean square (rms) , 393
 Rotate Tool Manipulator , 114–15
 Rotational diff usion , 388, 400
 Rule-based design, for ECM scaff olds:

 rule1() , 487, 488, 489
 rule2() , 487, 489–90
 rule3() , 487, 490–1

 Saved Layouts , 91
 Scaff old model , 520

 algorithm encoding , 538
cRule1() , 554–8
 cRule2() , 558–60
 cRule3() , 561–5
 makeCells() procedure , 540–5
moveCells() expression , 548–54
 resetCells() expression , 545–8

 cell migration:
 as emergent behavior , 521–3
 nomenclature , 524–5
 in scaff olds , 523

 dataOutput expression , 572–3
 model defi nition:

 boundary conditions , 527
 cell behavior , 525
 cell-cell signaling , 526
 cell geometry , 526
 spatial and temporal scales ,

527, 528
 as substrate, for cell migration , 526,

527
 model design:

 cell-cell signaling , 536–8
 haptotaxis , 528–36

 simulation, running , 565–72
 Scale Tool Manipulator , 114, 115–16
 Scan-line rendering , 245
 Scanning electron microscopy (SEM) , 53, 54,

483, 485
 Scene fi le:

 Maya ASCII , 76
 Maya Binary , 76
 preparation , 266–7, 437–8, 454, 457, 565

 Scene hierarchy , 81–2
 organization , 365–6

 Scene view , 88

 setting up , 129–30
 through camera , 93
 see also Workspace

 Script Editor , 95, 267–8, 317, 327, 355, 412,
439, 459, 470, 566, 568, 570

 Script Editor History panel , 428
 Script formatting, in fi lmmaking , 56–7
 Script loading , 475–6
 Script running:

 Data I/O , 476
 troubleshoot , 476–7

 Script sourcing , 268–9
 Scripting , 264–6

 see also Maya Embedded Language (MEL)
scripting

 Scripting languages , 265
 Scrubbing , 95
 Search path , 269, 306, 441, 570
 Seeding density , 526
 Seeing , 46–8, 576

 motion and animation , 48–9
 wetware for , 5–6

select -clear statement , 419
 Selection modes:

 and masks , 119, 180
 Self-assembly, of macromolecules , 384

 actin geometry , 394
 F-actin model , 397–9
 G-actin template model , 395–7

 algorithm design , 409–11
 algorithm, encoding of:

 reset expression , 412–19
selfAssembly expression , 420

 collisions , 400
 diff usion , 399–400
 F-actin, structure of , 389–90
 problem overview , 385

 actin reactions , 390–2
 model conditions , 393–4
 pairing reaction and diff usion , 392–3

 reaction events:
 association , 401
 dissociation , 402–3
 hydrolysis and phosphate release , 402

 reaction rates and probabilities:
 association reaction rate , 404–7
 dissociation reaction rate , 408–9,

410
 hydrolysis and phosphate release rates ,

 407–8
 visualization requirements , 403–4

 simulation, running of:
 and debugging , 440–1
 scene fi le preparation , 437–8
 script fi les loading , 439–40

selfAssembly expression , 420–5

619INDEX

 Sensor-sensor interaction , 388
 Sensory impulses , 46
 setAttr , 278, 297, 496, 499, 553
 Setting Keys:

 in Attribute Editor , 141
 using channel box , 140
 using hotkey , 141

 SG node , see Shading engine nodes
 Shader Network Library , 201
 Shading , 64, 188, 191, 203

 black and white , 199
 bump maps , 198, 199
 common material attributes:

 Ambient Color , 206
 bump channel , 206
 color , 205, 206
 Diff use channel , 207
 Incandescence , 206
 Translucence , 207
 Transparency , 206

 displacement maps , 198, 199
 Hypershade , 192
 materials , 193–4
 Maya Paint Eff ects , 201–2
 preconfi gured Maya shading networks ,

 201
 ramps , 197–8
 render nodes , 192
 render settings , 213–14
 Render View:

 images, keeping and removing , 203
 previewing, with IPR , 202

 shaders, making and assigning , 207
 color attributes adjustment , 209
 duplication , 209
 render nodes, naming , 208–9

 shading engine nodes , 201
 shading network to object, assigning

ways , 207, 208
 surface material creation , 204–5
 texture nodes , 194–7
 texture placement nodes , 200
 textured background plane , 209–13
 UV coordinates, life on surface ,

 199–200
 see also Rendering

 Shading engine nodes , 201
 Shading menu , 89–90
 Shading networks , 191–2, 201

 duplication , 209
 shadingNode command , 366, 367
 Shadows, in Maya , 232, 234, 235, 238
 Shape node , 80, 175
 shareOneBrush command , 333
 Shelf button , 284–6, 369, 370
 Shelves , 86–7

 Shift key , 75
 Short Bone Radius , 462
 Short range apparent motion , 48, 49
 Showtime , 15
 Side Eff ects Software ’ s Houdini , 578
 Silicon Graphics Inc. (SGI) , 15, 16, 263
 Simulations , 576

 running , 570
 cells creation , 569–70
 control widget, repurposing ,

566–7
 error debugging , 440–1
 model parameters variation , 570–1
 recording , 571–2
 scene fi le preparation , 437–8, 564–5
 scene saving , 568
 script fi les, loading , 439–40, 568–9

sin() function , 153, 154
 Skeleton animation , 452
 skinCluster command , 463, 473
 Smalley, Richard , 314
 Smooth bind tool , 463
 Smooth binding , 463
 Smooth Shade All , 90
 Smooth Shade Selected Items , 90
 Snap to grids , 129
 Snapping , 129
 Soft bodies , 160, 165
 SoftImage , 16
 Softimage XSI , 578
 Software renderer , 163, 176, 245–6
 Software rendering , 190

 vs. hardware rendering , 257
 Sophia , 15, 16, 263
 Space bar , 91
 Spatial scale:

 and temporal scales , 323, 527
 Specular Roll Off , 351
 Specularity , 193, 241
 Sphere:

 atoms as , 350
 deformation , 117

 control vertex, moving , 118
 hull, scaling , 118–19
 selection modes and masks , 119

 NURBS primitive modeling:
 creation , 110–11
 four panel view , 114
 Move Tool settings , 116
 renaming , 113
 rotation , 114–15
 scaling , 115–16
 scene saving , 117
 selection , 111–12
 transformation, using channel box ,

 116–17

620 INDEX

 translation , 113–14
 smoothening , 121–2

 sphere command , 367, 466, 496, 542
 sphrand command , 308, 430
 Spline-based modeling , 15
 Spline curves , 104, 324
 Spline interpolation , 143
 Splines , 59, 103

 components of , 104–5
 Stand-alone animation expressions ,

 298–300
 Start Frame , 176
 Start Maya , 75

 project, setting up , 109–10
 State change probabilities , 554, 555–7
 State change probability matrix , 529, 530,

547
 Status Line , 86
 Stochastic approach , 385
 Stored programs , 30–3
 Story reel , 58
 Storyboard , 57, 58
 Strings , 274, 275
 Strokes , 247
 Subdivision surface (sub-D) , 109
 Subscript notation , 406
 Subsurface scattering , 64, 189, 248, 249, 250
 Superscript notation , 406
 Surface emitter , 162, 163
 Surface index number , 542
 Surface materials , 193

 creation , 204–5
 Surfaces menu set , 103, 104
 swf fi le , 247
 switch …case statement , 288
 Syntax errors , 307, 371
 System requirements:

 monitors , 73
 mouse , 73

 Tangents , 148
 Targa format , 253–4
 Taylor, Mike , 292
 Tcl , 16, 263
 Tear Off , 84, 91
 Tear Off Copy , 91
 Terminator 2:Judgment Day , 15
 Tessellation , 105, 106, 198
 Text editors, for computer code writing , 302
 Texture mapping , 194, 200
 Texture nodes , 194–7
 Texture placement nodes , 200
 Texture ramp node , 197
 Textured background plane:

 creation and positioning , 209–10
 grid texture creation , 211–12

 material assignment , 210–11
 material node, texture connection ,

 212–13
 Th e Advanced Visualizer (TAV) , 15
 Th ird-party applications , 259
 Th ompson Digital Images (TDI) , 14, 15, 16
 Time node , 154, 155, 295
 Time Range attribute , 227
 Time Slider , 93–4
 Time variable , 297
 Time working units , 144
 Timeline , 61, 94, 95, 144, 171

 modeling , 487
 Tissue architecture , 480
 Tissue morphometry , 481
 Tissues and organs , 11–12, 13
 Title bar , 83
 tokenizeList command , 329
 Toolbox , 94
 Tools Settings , 96, 116
 Toon rendering technique , 241
 Toon shading , 65, 247
 Torque Game Engine , 578
 Tracing , 267
 Tracking, camera movement , 93
 Traction , 448
 Transferring , 525
 Transform node , 80, 111, 124, 398
 Transform tools , 94, 112, 113
 Translational diff usion constant , 400
 Translational movement , 387
 Translators , 313–15
 Translucence , 207, 250
 Transmission electron microscopy

(TEM) , 53
 Transparency channel , 206
 Treadmilling , 385–6

 fl owchart , 411
 ready-made fi le , 399

 Tumble, and camera movement , 93
 Tuning region , 240
 Turbulence fi eld , 162, 170, 172, 178
 Turing, Alan , 33
 Turing machine , 33
 Tweak node , 124, 126, 134
 Type casting , 274

 UCSF Chimera , 17, 344, 395, 396
 underworld node , 434
 Unix shell scripting , 263, 282
 Up axis , 92
 Update View , 145
 Upstream node , 79, 123, 127
 Uropodia , 448
 USCF Chimera , 345
 Use All Lights , 90

621INDEX

 User interface (UI) , 13, 16, 25, 41, 72, 82,
102, 191, 262

 Attribute Editor , 98, 99
 Channel Box , 97–8
 Channel Control editor , 98
 Command Line , 95
 Layer Editors , 96–7
 Main Menu bar , 83–4
 menus, working with:

 Hotbox , 85–6
 Marking menus , 84–5
 option boxes , 86
 Tear Off menus , 84

 Outliner , 87–8
 playback controls , 95
 Plug-ins , 98–9
 Preferences , 95–6
 Range Slider , 94, 95
 scene viewing, through camera , 93–4
 Script Editor , 95
 shelves , 86–7
 Status Line , 86
 Time Slider , 94
 Title bar , 83
 workspace and panels:

 active panel , 88
 Lighting menu , 89, 90
 Panel menus , 88–9
 Panels menu , 89, 90–1
 Shading menu , 89–90

 XYZ coordinate system and
vectors , 91

 axis indicators , 92–3
 Up axis , 92
 UV coordinates , 93

 User profi le , 75, 76
 userPrefs.mel fi le , 95
 UV coordinates , 93, 199–200
 UV mapping , see Texture mapping
 UV Texture Editor (UTE) , 199, 200

 Values, in Maya , 270
 Van der Waals (vdW) radius , 344, 345, 350,

353, 356
 Van der Waals collision , 386
 Van Leeuwenhoek, Anton , 576
 vanDerSphere() , 363, 364, 369

 procedure , 366–7
 Variables:

 arrays , 275–6
 data conversion , 273–4
 declaration and assigning , 271–2
 dynamic typing , 273
 global variables , 276–7
 initialization , 499
 matrices , 276
 naming , 271

 strings , 274, 275
 type casting , 274
 types , 272
 vectors , 274

 Vector array , 276
 Vector graphics image , 246–7
 Vector renderer plug-in , 248
 Vectors , 274
 Velocity curve , 62
 VFX studios , 15
 View Axis , 92
 Vintage mainframes , 580
 Virtual computer , 27, 28, 29, 264
 Virtual memory , 139
 Visible Human Project , 60
 Vision, anatomy of , 47
 Visual exploration , 4
 Visual Molecular Dynamics (VMD) , 17,

578, 579
 Visual perception , 5
 Visualization:

 algorithm, planning , 324
 challenge , 392–4
 of macromolecules , 342
 model requirements , 403
 in science , 6–8

 Visualization freeware , 345–6
 Visualization Toolkit , 578
 Volumetric materials , 193
 Volumetric modeling , 59–60
 Volumetric tools , 60
 Von Neumann, John , 30, 31, 32, 34, 39
 Von Neumann machine , 25, 31, 41, 43,

579, 580
 Voxels , 59, 60

 Wavefront RLA , 253
 Wavefront Technologies , 14, 263
 Wetware , 5–6
 while loop , 290
 Wilkes program , 24
 Wireframe , 89, 90
 Workspace , 88–90

 active panel , 88
 Lighting menu , 89, 90
 Panel menus , 88–9
 Panels menu , 89, 90–1
 Shading menu , 89–90

 World coordinates , 92
 World origin , 91, 92
 Write (w) mode , 316

 X-ray shading , 167
 XYZ coordinate system and vectors , 91

 axis indicators , 92–3
 Up axis , 92
 UV coordinates , 93

622 INDEX

