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Preface

The techniques that can be used to solve nonlinear problems are very
different from those that are used to solve linear problems. Most courses
in analysis and applied mathematics attack linear problems simply be-
cause they are easier to solve. The information that is needed to solve
them is not as involved or technical in nature as that which is usually
required to solve a corresponding nonlinear problem. This applies not
only to the practical material but also to the theoretical background.

As an example, it is usually sufficient in dealing with linear problems
in analysis to apply Riemann integration to functions that are piecewise
continuous. Rarely is more needed. In considering the convergence of
series, uniform convergence usually suffices. In general, concepts from
functional analysis are not needed; linear algebra is usually sufficient. A
student can go quite far in the study of linear problems without being
exposed to Lebesgue integration or functional analysis.

However, there are many nonlinear problems that arise in applied
mathematics and sciences that require much more theoretical back-
ground in order to attack them. If we couple this with the difficult techni-
cal details concerning the corresponding linear problems that are usually
needed before one can apply the nonlinear techniques, we find that the
student does not come in contact with substantive nonlinear theory until
a very advanced stage in his or her studies. This is unfortunate because
students having no more background in mathematics beyond that of
second year calculus are often required by their disciplines to study such
problems. Moreover, such students can readily understand most of the
methods used in solving nonlinear problems.

During the last few years, the author has been giving a class devoted
to nonlinear methods using the least background material possible and

xiii



xiv Preface

the simplest linear techniques. This is not an easy tightrope to walk.
There are times when theorems from Lebesgue integration are required
together with theorems from functional analysis. There are times when
exact estimates for the linear problem are needed. What should one do?

My approach has been to explain the methods using the simplest
terms. After I apply the methods to the solving of problems, I then
prove them. True, I will need theorems from functional analysis and
Lebesgue integration. At such times I explain the background theorems
used. Then, the students have two options: either to believe me or to
consult the references that I provide.

This brings me to the purpose of the text. I was unable to find a
book that contained the material that I wanted to cover at the level
that I wanted it presented. Moreover, I wanted to include a concise
presentation (without proofs) of all of the background information that
was needed to understand the techniques used in the body of the text.
The writing of this book gave me the opportunity to accomplish both.
If I think the students can handle it, I do prove background material in
the body of the text. Otherwise, I explain it in four appendices in the
back of the book. This also applies to topics that require a whole course
to develop. This approach is intended to accommodate students at all
levels. If they do not wish to see proofs of background materials, they
can skip these sections. If they are familiar with functional analysis and
Lebesgue integration, they can ignore the appendices.

The purpose of the course is to teach the methods that can be used
in solving nonlinear problems. These include the contraction mapping
theorem, Picard’s theorem, the implicit function theorem, the Brouwer
degree and fixed point theorem, the Schauder fixed point theorem, the
Leray–Schauder degree, Peano’s theorem, etc. However, the student will
not appreciate any of them unless he or she observes them in action.
On the other hand, if the applications are too complicated, the student
will be bogged down in technical details that may prove to be extremely
discouraging. This is another tightrope.

What surprised me was the amount of advanced background informa-
tion that was needed to understand the methods used to attack even
the easiest of nonlinear problems. I quote in the appendices only that
material that is needed in the text. And yet, an examination of these
appendices will reveal the substantial extent of this background knowl-
edge. If we waited until the student had learned all of this, we would
not be able to cover the material in the book until the student was well
advanced. On the other hand, students with more modest backgrounds
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can understand the statements of the background theorems even though
they have not yet learned the proofs. In fact, this approach can moti-
vate such students to learn more advanced topics once they see the need
for the material. In essence, I am advocating the cart before the horse.
I want the student to appreciate the horse because it can be used to
transport all of the items in the cart.

Equipping the student with the tools mentioned above is the main
purpose of the book. Of course, one can first present a theorem and
then give some applications. Most books function this way. However, I
prefer to pose a problem and then introduce a tool that will help solve
the problem. My choice of problems could be vast, but I tried to select
those that require the least background. This outlook affected my choice:
differential equations. I found them to require the least preparation.
Moreover, most students have a familiarity with them. I picked them as
the medium in which to work. The tools are the main objects, not the
medium. True, the students do not know where they are headed, but
neither does a research scientist searching for answers. It is also true
that no matter what medium I pick, the nonlinear problems that the
students will encounter in the future will be different. But as long as
they have the basic tools, they have a decent chance of success.

I begin by posing a fairly modest nonlinear problem that would be
easy to solve in the linear case. (In fact, we do just that; we solve the
linear problem.) I then develop the tools that we use in solving it. I do
this with two things in mind. The first is to develop methods that will be
useful in solving many other nonlinear problems. The second is to show
the student why such methods are useful. At the same time I try to keep
the background knowledge needed to a minimum. In most cases the
nonlinear tools require much more demanding information concerning
the corresponding linear problem than the techniques used in solving the
linear problem itself. I have made a concerted effort to choose problems
that keep such required information to a minimum. I then vary the
problem slightly to demonstrate how the techniques work in different
situations and to introduce new tools that work when the original ones
fail.

I then introduce new problems and new techniques that are used to
solve them. The problems and techniques become progressively more dif-
ficult, but again I attempt to minimize the background material without
ignoring important major nonlinear methods. My goal is to introduce
as many nonlinear tools as time permits. I know that the students will
probably not be confronted with the problems I have introduced, but
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they will have a collection of nonlinear methods and the knowledge of
how they can be used.

In the first chapter we confront a seemingly simple problem for peri-
odic functions in one dimension and go about solving it. The approach
appears not to be related to the problem. We then fit the technique to
the problem. (It is not at all obvious that the technique will work.) The
student then sees how the techniques solve the problem. The chapter
deals with the differentiation of functionals, Fourier series, finding min-
ima of functionals and Hilbert space methods. I try to explain why each
technique is used.

In the second chapter we consider the same problem for the cases when
the functionals used in the first chapter have no minima. We begin with
a simple algebraic problem in two dimensions. I introduce methods that
can be used to solve it by producing saddle points, and then general-
ize the methods to arbitrary Hilbert spaces. We then apply them to
the original problem. The tools used include the contraction mapping
principle, Picard’s theorem in a Banach space, extensions of solutions of
differential equations in a Banach space and the sandwich theorem.

The third chapter leaves periodicity and deals with boundary value
problems. I introduce mollifiers and test functions. As expected, different
and stronger techniques are required.

The fourth chapter studies saddle points of functionals using such
properties as convexity and lower semi-continuity. Conditions are given
which produce saddle points, and these are applied to various problems.
Partial differentiation is introduced, and the implicit function theorem
is proved.

The fifth chapter discusses the calculus of variations, the Euler equa-
tions and the methods of obtaining minima. Necessary and sufficient
conditions are given for the existence of minima. Many examples are
presented.

In the sixth chapter I cover degree theory and its applications. Topics
include the Brouwer and Schauder fixed point theorems, Sard’s theorem,
Peano’s theorem and the Leray–Schauder degree. Applications are given.

The seventh chapter is devoted to constrained minima, of both the in-
tegral (iso-perimetric) and finite (point-wise) types. The Lagrange mul-
tiplier rule is proved and a more comprehensive type of differentiation
is introduced.

The eighth chapter discusses mini-max techniques and gives examples.
In the ninth chapter I present the method of solving semi-linear
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equations which are sub-linear at infinity. We solve them by relating
them to the Dancer–Fuć́ık spectrum.

The tenth chapter is by far the largest; it is the first to tackle prob-
lems in higher dimensions. Even so, I limit the discussions to periodic
functions. We consider spaces of distributions, Sobolev inequalities and
Sobolev spaces. As expected, a lot of preparation is needed, and the
proofs are more difficult. We generalize the one-dimensional results to
higher dimensions.

There are four appendices. The first assembles the definitions and
theorems (without proofs) from functional analysis that are needed in
the text. I was surprised that so much was required. The second ap-
pendix deals with the theorems concerning Lebesgue integration required
by the text. Again, proofs are omitted with one exception. We prove
that Carathéodory functions are measurable. This theorem is not well
known and hard to find in the literature. The third appendix describes
what is needed concerning metric spaces. The fourth shows how pseudo-
gradients can be used to strengthen some of the theorems in the text.

It is hoped that this volume will fill a need and will allow students
with modest backgrounds to tackle important nonlinear problems.

TVSLB
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1

Extrema

1.1 Introduction

One of the most powerful tools in dealing with nonlinear problems is
critical point theory. It originates from the fact in calculus that the
derivative of a smooth function vanishes at extreme points (maxima and
minima). In order to apply this basic reasoning, the given problem must
be converted to one in which we look for points where the derivative of a
function vanishes (i.e., critical points). This cannot always be arranged.
But when it can, one has a very useful method. The easiest situation
is when the function has extrema. We discuss this case in the present
chapter. We present a problem and convert it into the desired form. We
then give criteria that imply that extrema exist. The case when extrema
do not exist will be discussed in the next chapter.

1.2 A one dimensional problem

We now consider the problem of finding a solution of

−u′′(x) + u(x) = f(x, u(x)), x ∈ I = [0, 2π], (1.1)

under the conditions

u(0) = u(2π), u′(0) = u′(2π). (1.2)

We assume that the function f(x, t) is continuous in I ×R and is periodic
in x with period 2π. If u(x) is a solution, then we have

(u′, v′) + (u, v) = (−u′′ + u, v) = (f(·, u), v)

for all v ∈ C1(I) satisfying (1.2). Here,

(u, v) =
∫ 2π

0

u(x)v(x) dx,

1
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C1(I) is the set of continuously differentiable periodic functions on I,

and we used the fact that no boundary terms arise in the integration by
parts. The expression

(u, v)H = (u′, v′) + (u, v) (1.3)

is a scalar product corresponding to the norm

‖u‖H = (‖u′‖2 + ‖u‖2)1/2. (1.4)

(See Appendix A for the definition of a scalar product and related terms.)
Thus, a solution of (1.1),(1.2) satisfies

(u, v)H = (f(·, u), v) (1.5)

for all v ∈ C1(I) satisfying (1.2).

As we mentioned before, our approach will be that of critical point
theory. It begins by asking the question, “Does there exist a differentiable
function G from a Hilbert space H to R such that (1.1),(1.2) is equivalent
to

G′(u) = 0?” (1.6)

(See Appendix A for the definition of a Hilbert space.) The reason for the
question is that in elementary calculus it is known that a critical point
of a differentiable function does satisfy such an equation. It is therefore
hoped that one can mimic the methods of calculus to find critical points
and thus solve

G′(u) = 0. (1.7)

Anyone who thinks that this should be easy is due for a rude awakening.
Actually, we are asking the following: Does there exist a mapping G from
a Hilbert space H to R such that

(a) G has an extremum at a“point” u

(b) G has a derivative at u

(c) G′(u) = −u′′ + u− f(x, u(x))?

(The reason we want H to be a Hilbert space will become clear as we
proceed.)
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As we shall see, none of these is easily answered. Moreover, a lot of
explaining has to be done. The motivation is clear. If g(x) is a differen-
tiable function on R and

g(a) = min
R

g,

then it follows that

g′(a) = 0.

Thus, if we can find a “function” G(v) from H to R (such a “function”
is called a “functional”) which is differentiable and satisfies

G(u) = min
H

G, (1.8)

we should be able to conclude that

G′(u) = 0. (1.9)

However, we do not know what it means for a functional to be differen-
tiable. We know that

g′(a) = lim
h→0

[g(a + h) − g(a)]/h. (1.10)

But if we try to use this definition for a functional, we get

G′(u) = lim
v→0

[G(u + v) −G(u)]/v, (1.11)

which is ridiculous since we cannot divide by elements of a vector space.
As an alternative definition, we have

b = g′(a) ⇐⇒ [g(a + h) − g(a) − hb]/h → 0 as h → 0. (1.12)

The corresponding statement for a functional is

w = G′(u) ⇐⇒ [G(u + v) −G(u) − vw]/v → 0 as v → 0. (1.13)

This does not appear to be any better. In fact, it is worse because one
cannot multiply two elements of vector spaces. Or can one? If w is an
element of a vector space such that a “product” 〈v, w〉 can be defined
(and have whatever properties we need), we might be in business. So we
try

w = G′(u) ⇐⇒ [G(u + v) −G(u) − 〈v, w〉]/v → 0 as v → 0. (1.14)

But we still have the same objection as before, namely our inability to
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divide by an element of a vector space. However, there is a difference
between (1.10) and (1.12) in that we can replace (1.12) by

b = g′(a) ⇐⇒ [g(a + h) − g(a) − hb]/|h| → 0 as h → 0, (1.15)

while we cannot replace the denominator in (1.10) by |h|. “But what does
that gain?” you object. “We do not have absolute values of elements.”
True, but we do have a substitute which sometimes serves the same
purpose, namely the norm. Thus we can replace (1.14) by

w = G′(u) ⇐⇒ [G(u + v) −G(u) − 〈v, w〉]/‖v‖H → 0 as ‖v‖H → 0.
(1.16)

We want the “product” 〈v, w〉 to be linear and symmetric in v and w,

and we want the derivative of G at u to be unique. So suppose w1 also
satisfied (1.16). Then we would have

〈v, w − w1〉 /‖v‖H → 0 as ‖v‖H → 0.

If we take v = εh and let ε → 0, we find that

〈h,w − w1〉 = 0 h ∈ H.

Thus, we would like

〈h,w〉 = 0 ∀h ∈ H =⇒ w = 0. (1.17)

However, this is not essential. Suppose (1.17) does not hold. If 〈g, h〉
satisfies

〈g, h〉 ≤ C‖g‖H • ‖h‖H , g, h ∈ H, (1.18)

then for each w ∈ H there is a unique g ∈ H such that

〈h,w〉 = (h, g)H , h ∈ H. (1.19)

To see this, note that for each fixed w, 〈h,w〉 is a bounded linear func-
tional on H (for definitions see Appendix A). We apply the Riesz repre-
sentation theorem (Theorem A.12) to obtain (1.19). This is one advan-
tage of having H be a Hilbert space; we shall see others later. Instead
of defining G′(u) to be w, we can define it to be g. This gives

(G′(u), v)H = 〈w, v〉, v ∈ H. (1.20)

Thus, even though w need not be unique, G′(u) is unique, as we now
show.
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To summarize, we define the derivative as follows. If G(v) is a func-
tional defined on a Hilbert space H and there is a symmetric bilinear
form 〈g, h〉 on H satisfying (1.18) such that

[G(u + v) −G(u) − 〈v, w〉]/‖v‖H → 0 as ‖v‖H → 0, v ∈ H, (1.21)

holds for some u,w ∈ H, then G′(u) ∈ H exists and is given by

(G′(u), v)H = 〈w, v〉, v ∈ H. (1.22)

This definition is independent of the bilinear form 〈·, ·〉 and the element
w. By this we mean that if 〈·, ·〉1 is another bilinear form on H satisfying
(1.18) and w1 is another element in H such that (1.21) holds with 〈v, w〉
replaced by 〈v, w1〉1, then

〈v, w〉 = 〈v, w1〉1, v ∈ H.

To see this, we note that there are elements g, g1 ∈ H such that

(v, g)H = 〈v, w〉, (v, g1)H = 〈v, w1〉1, v ∈ H

by the Riesz representation theorem (Theorem A.12). Then we must
have

(v, g)H = (v, g1)H , v ∈ H,

which implies g = g1 by taking v = g− g1. Thus, we may use any conve-
nient bilinear form 〈·, ·〉 as long as it satisfies (1.18).

The derivative as defined above is called the Fréchet derivative.
There are other definitions. We shall discuss some others later on.

We also note that as in the case of functions of a single variable, dif-
ferentiability implies continuity. For if G′(u0) exists, then (1.21) implies
that there is a δ1 > 0 such that

|[G(u0 + v) −G(u) − (v,G′(u0))H ]/‖v‖H | < 1, ‖v‖H < δ1.

Thus,

|G(u0 + v) −G(u0)| ≤ ‖v‖H [‖G′(u0)‖H + 1], ‖v‖H < δ1.

Let ε>0 be given. Take δ>0 such that δ<δ1 and δ<ε/[‖G′(u0)‖H +1].
Then ‖v‖H < δ implies

|G(u0 + v) −G(u0)| ≤ ‖v‖H [‖G′(u0)‖H + 1] < ε.
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Continuity of the derivative is no problem to define. It is the same as
that for the functional itself. That is, G′ is continuous at u if

G′(v) → G′(u) as v → u.

As expected, we have

Lemma 1.1. If G′(u) exists and (1.8) holds, then G′(u) = 0.

Proof. By (1.8),

G(u) ≤ G(u + v), v ∈ H.

Therefore,

−(v,G′(u))H/‖v‖H ≤ [G(u + v) −G(u) − (v,G′(u))H ]/‖v‖H
→ 0 as ‖v‖H → 0.

Take v = −εh. Then

(εh,G′(u))H/‖εh‖H ≤ [G(u− εh) −G(u) + (εh,G′(u))H ]/‖εh‖H
→ 0 as ε → 0, h ∈ H.

Consequently,

(h,G′(u))H ≤ 0, h ∈ H.

Since −h ∈ H whenever h ∈ H, this implies

(h,G′(u))H = 0, h ∈ H.

Hence G′(u) = 0 (just take h = G′(u)).

Now that we know what it means for a functional to be differentiable,
we want to find a functional which will satisfy (c) above. This is not a
trivial matter. In fact, we have no logical reason to believe that such a
functional exists. But this does not deter us. We first look for a functional
such that G′(u) = −u′′. At this point we will have to think seriously
about the Hilbert space H in which we will work. Since we are looking
for a solution of (1.1),(1.2), it would be natural to take H to have the
norm given by (1.4). Since we want

(v, u′′) = −(v′, u′), u, v ∈ H ∩ C2(I), (1.23)

this suggests

〈v, h〉 = (v′, h′). (1.24)
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Thus, we want

[G(u + v) −G(u) − (v′, u′)]/‖v‖H → 0 as ‖v‖H → 0.

We can make use of the identity (1.23). This suggests trying

G(u) = ‖u′‖2, u ∈ H. (1.25)

It looks good because

[G(u + v) −G(u) − 2(v′, u′)]/‖v‖H = ‖v′‖2/‖v‖H → 0 as ‖v‖H → 0.

Hence we have

Theorem 1.2. If G is given by (1.25), then

(G′(u), v)H = 2 (u′, v′), u, v ∈ H. (1.26)

If u ∈ H ∩ C2(I), then

(G′(u), v)H = 2 (−u′′, v), v ∈ H ∩ C1(I). (1.27)

Note that we are off by a factor of 2, but this should not cause any
indigestion. The same procedure will give us a functional satisfying

(G′(u), v)H = 2 (u, v), u, v ∈ H. (1.28)

We merely take G(u) = ‖u‖2 in this case.

Next we turn to finding a functional G which will satisfy

(G′(u), v)H = (f(·, u), v), u, v ∈ H. (1.29)

Here it is not obvious how to proceed. Going back to the definition, we
want to find a functional G such that

[G(u + v) −G(u) − (v, f(·, u))]/‖v‖H

converges to 0 as ‖v‖H → 0. It is not easy to guess what G should be,
but if we refer back to the comparison with a real valued function, we
want to find a function F (t) such that

F ′(t) = f(x, t).

This would suggest that we try something of the form

G(u) =
∫
I

F (x, u(x)) dx = (F (·, u), 1). (1.30)
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If we now apply our definition, we want

[G(u + v) −G(u) − (v, f(·, u))]/‖v‖H

=
∫
I

[F (x, u + v) − F (x, u) − vf(x, u)] dx/‖v‖H . (1.31)

But

F (x, u + v) − F (x, u) =
∫ 1

0

[dF (x, u + θv)/dθ] dθ

=
∫ 1

0

Ft(x, u + θv)v dθ. (1.32)

Thus, the left-hand side of (1.31) equals∫
I

∫ 1

0

[Ft(x, u + θv) − f(x, u)]v dθ dx/‖v‖H .

We want this expression to converge to 0 as ‖v‖H → 0. This would
suggest that we take Ft(x, t) = f(x, t). Let us try

F (x, t) =
∫ t

0

f(x, s) ds. (1.33)

Then the expression above is bounded in absolute value by the square
root of ∫

I

∫ 1

0

|f(x, u + θv) − f(x, u)|2 dθ dx. (1.34)

In order to proceed, we must make an assumption on f(x, t). The easiest
at the moment is that it is continuous in I × R and satisfies

|f(x, t)| ≤ C(|t| + 1), x ∈ I, t ∈ R, (1.35)

for some constant C. We have

Theorem 1.3. Under the above hypothesis, if G is given by (1.30), then
it satisfies (1.29).

Proof. The theorem will be proved if we can show that the expression
(1.34) converges to 0 together with ‖v‖H . If this were not true, there
would be a sequence {vk} ⊂ H such that ‖vk‖H → 0 and∫

I

∫ 1

0

|f(x, u + θvk) − f(x, u)|2dθ dx ≥ ε > 0. (1.36)

Since ‖v‖ ≤ ‖v‖H , we have ‖vk‖ → 0. Moreover by Theorem B.25, there
is a renamed subsequence (i.e., a subsequence for which we use the same
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notation) such that vk(x) → 0 a.e. The integrand of (1.36) is majorized
by

C(|u|2 + |vk|2 + 1),

which converges in L1(I) to

C(|u|2 + 1).

Moreover, the integrand converges to 0 a.e. Hence, the left-hand side
of (1.36) converges to 0 by Theorem B.24, contradicting (1.36). (See
Appendix B for the elements of Lebesgue integration.) This proves the
theorem.

In order to solve the problem we will have to

(a) find G(u) such that

(G′(u), v)H = (u, v)H − (f(·, u), v), u, v ∈ H. (1.37)

holds,
(b) show that there is a function u(x) such that G′(u) = 0,
(c) show that u′′ exists in I,

(d) show that G′(u) = 0 implies (1.1).

This is a tall order, and some of these steps are not easily carried out.

But first things first. We must decide on the space H where we will be
working. Our initial impulse is to look for a space contained in C2(I),
since (1.1) involves second order derivatives. However, the use of such a
space is not suitable for our approach since the scalar product (1.3) looks
very tempting in light of (1.37), and second derivatives do not appear in
it. One might then think that C1(I) would be suitable. It turns out that
even this is not the case because C1(I) is not complete with respect to
the norm (1.4).

“So what?” you exclaim, “Why do we need completeness?” The reason
is simple. We want to find a function u(x) which satisfies G′(u) = 0. This
means that u is a critical point of G. How do we find critical points?
In most cases in infinite dimensional spaces, this is carried out by a
limiting process, and one would like to know that this process has a
limit satisfying the desired equation. In particular, if we want to use the
scalar product (1.3), it would be very prudent on our part to use a space
which is complete with respect to the norm (1.4).
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How do we find such a space? Clearly, the norm (1.4) applies to all
u ∈ C1(I). We also want to restrict it to functions which satisfy (1.2)
(i.e., functions that are periodic with period 2π). However, this space is
not complete with respect to this norm. The easiest thing to do is to
“complete” the space with respect to the norm (1.4). This is not a trivial
process, but it is rather straightforward. Descriptions can be found in
many textbooks. In the next section we shall accomplish this in a very
easy way. Moreover, we shall know precisely what functions are added.
We call the resulting space H.

What do we get? We allow in functions that are not in C1(I), but
possess “derivatives” in some sense (to be described later). However,
when we are dealing with such functions we can make use of the fact
that they are the limits in H of functions in C1(I). This usually suffices
for our purposes. Here we make use of the fact that C1(I) is dense in H,

but H is a Hilbert space while C1(I) is not. This advantage will make
itself clear as we proceed.

1.3 The Hilbert space H

Let C1(I) denote the set of continuously differentiable functions on I

satisfying (1.2). For u ∈ C1(I) the norm of H is given by

‖u‖2
H = ‖u‖2 + ‖u′‖2. (1.38)

However, if {uk} is a Cauchy sequence in H of functions in C1(I), then

‖uj − uk‖ → 0, ‖u′
j − u′

k‖ → 0.

This means that there are functions u, h ∈ L2(I) such that

uk → u, u′
k → h in L2(I). (1.39)

If H is to be complete, we must allow u to be a member of H. But it is
unclear what role the function h plays. In particular, is it unique? Does
it have any relationship to u? To help us understand this process, note
that

(uk, v
′) = −(u′

k, v), v ∈ C1(I), (1.40)

by integration by parts. Thus in the limit,

(u, v′) = −(h, v), v ∈ C1(I). (1.41)
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Now, if u ∈ C1(I), h ∈ L2(I), and (1.41) holds, then h = u′ a.e. This
follows from

Lemma 1.4. C1(I) is dense in L2(I).

We shall prove Lemma 1.4 a bit later. To show that h = u′ a.e., we
note that by applying integration by parts to (1.41), we have

(u′ − h, v) = 0, v ∈ C1(I).

Since C1(I) is dense in L2(I), there is a sequence {vn} ⊂ C1(I) such
that

‖vn − (u′ − h)‖ → 0.

Consequently,

0 = (u′ − h, vn) → ‖u′ − h‖2.

This shows that h = u′ a.e.
Now, suppose that u ∈ L2(I) and there is an h ∈ L2(I) such that

(1.41) holds. Then I claim that h is unique. For, if (1.41) also holds with
h replaced by g, then

(h− g, v) = 0, v ∈ C1(I).

Again, by Lemma 1.4 we see that g = h a.e. Even though u is not in
C1(I) and we do not know whether or not it has a derivative at any
point, we define the “weak” derivative of u to be h and denote it by u′.

We define it this way because it behaves like a derivative with respect
to integration by parts. We have

Lemma 1.5. If H is the completion of C1(I) with respect to the norm
given by (1.38), then every function in H has a weak derivative in L2(I).

Proof. If {uk} is a Cauchy sequence in H of functions in C1(I), then
there are functions u, h satisfying (1.39). By (1.40), we see that (1.41)
holds. Thus, h is the weak derivative of u. If {uk} is a Cauchy sequence
in H of functions in H, then there are functions u, h satisfying (1.39).
By (1.40), we see that (1.41) holds. Thus, h is the weak derivative of u.

Actually, we have

Theorem 1.6. If H has the norm given by (1.38) and consists of those
functions u in L2(I) which have a weak derivative in L2(I), then H is
complete.
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Proof. Let {uk} be a Cauchy sequence in H. Then there are functions
u, h ∈ L2(I) such that (1.39) holds. Since u′

k is the weak derivative of
uk, (1.40) holds. By (1.39), this implies (1.41). Consequently, u has a
weak derivative u′ in L2(I) and h = u′ a.e. This means that u ∈ H, and

‖uk − u‖H → 0. (1.42)

This “completes” the proof.

Since we want H to be complete, we are well advised to define it to
be the set described in Theorem 1.6. We state this as

Definition 1.7. We define H to be the set of those periodic functions
u ∈ L2(I) which have weak derivatives in L2(I). By Theorem 1.6, H is
a Hilbert space with norm given by (1.38).

We started off by defining the norm of H on functions in C1(I).
However, the space C1(I) is not complete with respect to this norm.
To make H complete we added periodic functions in L2(I) which have
weak derivatives in L2(I). The norm of H makes sense for such func-
tions. Then we showed that H now becomes complete. We might ask if
we made H too large, that is, did we have to add all functions having
weak derivatives in order to make H complete. Perhaps we could have
started with a set smaller than C1(I) such as C∞(I), the set of infinitely
differentiable periodic functions on I, and completed it with the norm
given by (1.38). Perhaps we could have got by without adding so much.
The answer is negative as we see from

Theorem 1.8. The space C∞(I) is dense in H.

Thus, if u is any element of H, then there is a sequence {ϕk} ⊂ C∞(I)
converging to u in H. If we remove u from H, the Cauchy sequence {ϕk}
will not have a limit in H, and H will not be complete.

In proving Theorem 1.8 we shall make use of

Lemma 1.9. For u ∈ L2(I), define

αk = (u, ϕ̄k), k = 0,±1,±2, . . . , (1.43)

where

ϕk(x) =
1√
2π

eikx, k = 0,±1,±2, . . . (1.44)
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Then

‖u−
∑
|k|≤n

αkϕk‖ → 0 as n → ∞. (1.45)

Remark 1.10. The constants αk and the functions ϕk are complex val-
ued. However, they satisfy

α−k = ᾱk, ϕ−k = ϕ̄k.

Consequently, any sum of the form∑
|k|≤n

αkϕk

is real valued. Recall that

(u, v) =
∫ 2π

0

u(x)v(x) dx.

Note that Lemma 1.4 is a consequence of Lemma 1.9. We shall prove
Lemma 1.9 in the next section. Now we show how it implies Theorem 1.8.

Proof. Let u be any function in H. It has a weak derivative u′ ∈ L2(I).
Define αk, ϕk by (1.43) and (1.44). Then (1.45) holds by Lemma 1.9.
Let

βk = (u′, ϕ̄k), k = 0,±1,±2, . . .

By (1.41),

βk = −(u, ϕ̄′
k) = −(u,−ikϕ̄k) = ik(u, ϕ̄k) = ikαk.

Consequently,

βkϕk = ikαkϕk = αkϕ
′
k, k = 0,±1,±2, . . .

Thus,

‖u′ −
∑
|k|≤n

αkϕ
′
k‖ = ‖u′ −

∑
|k|≤n

βkϕk‖ → 0 as n → ∞

by Lemma 1.9. If we define

un(x) =
∑
|k|≤n

αkϕk, n = 0, 1, 2, . . .,

we see that un(x) is a real valued periodic function in C∞(I) for each
n, and it satisfies

‖u− un‖ → 0, ‖u′ − u′
n‖ → 0.
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Thus,

‖u− un‖H → 0 as n → ∞.

Hence, C∞(I) is dense in H.

Although functions in H need not be in C1(I), we shall show that they
are in C(I), the set of continuous functions on I. In fact we have

Lemma 1.11. All functions in H are in C(I), and there is a constant
K such that

|u(x)| ≤ K‖u‖H , x ∈ I, u ∈ H. (1.46)

Moreover,

u(0) = u(2π). (1.47)

More precisely, every function u ∈ H is almost everywhere equal to a
function in C(I). Inequality (1.46) holds for the continuous function
equal to u a.e. It holds for u if we adjust it on a set of measure zero to
make it continuous. The same is true of (1.47). Moreover, if the sequence
{uk} converges in H, then it converges uniformly on I.

Proof. First we prove inequality (1.46) for u ∈ C1(I). We note that

∣∣u(x)2 − u(x′)2
∣∣ =

∣∣∣∣
∫ x

x′
2u′(y)u(y) dy

∣∣∣∣ ≤
∣∣∣∣
∫ x

x′
|2u′(y)u(y)| dy

∣∣∣∣
≤

∫
I

(|u′(y)|2 + |u(y)|2) dy = ‖u‖2
H , x, x′ ∈ I.

We pick x′ ∈ I so that

2πu(x′)2 =
∫
I

u(y)2 dy.

This can be done by the mean value theorem for integrals. Hence,

u(x)2 ≤ 1
2π

‖u‖2 + ‖u‖2
H ≤

(
1 +

1
2π

)
‖u‖2

H .

This gives inequality (1.46) for u ∈ C1(I). Now, I claim that it holds
for any u ∈ H. To see this, let u be any function in H. Then there is a
sequence {uk(x)} of functions in C1(I) such that

‖uk − u‖H → 0.
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By the inequality (1.46) for functions in C1(I),

|uj(x) − uk(x)| ≤ K‖uj − uk‖H → 0, j, k → ∞.

This shows that {uk} is a Cauchy sequence of functions in C1(I) con-
verging uniformly in I to a function ũ. Since they converge to u in H

(and consequently in L2(I)), they converge to both u and ũ in L2(I).
Thus, we must have u = ũ a.e. Since

|uk(x)| ≤ K‖uk‖H ,

we see in the limit that (1.46) holds. To prove (1.47), note that uk(0) =
uk(2π). Since the sequence converges uniformly, we obtain (1.47) in the
limit.

Remark 1.12. Note that functions in L2(I) need not be defined on a
set of measure zero. Thus two functions in L2(I) are considered equal if
they differ only on such a set. We shall consider a function u ∈ L2(I) to
be in C(I) if it is equal a.e. to a function in C(I). In particular, it can
be made continuous by changing its definition on a set of measure zero.
Any inequality it will be reputed to satisfy will be valid after this change
has been made.

What if u has a weak derivative which is continuous in I? That u is
continuously differentiable and u′ is its derivative in the usual sense
follow from

Lemma 1.13. If u has a weak derivative h which is continuous on I,
then u is differentiable at each point of I and h is the derivative of u in
the usual sense.

Proof. Since u ∈ H and C∞(I) is dense in H (Theorem 1.8), there is a
sequence {un} ⊂ C∞(I) such that

‖un − u‖ → 0, ‖u′
n − h‖ → 0.

Thus,

un(x) − un(0) =
∫ x

0

u′
n(t)dt.

By Lemma 1.11, un converges to u uniformly in I. Taking the limit, we
have

u(x) − u(0) =
∫ x

0

h(t)dt.
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This shows that u is differentiable at each point and its derivative
equals h.

We also have

Theorem 1.14. If f ∈ L2(I), u ∈ H and

(u, v)H = (f, v), v ∈ C1(I), (1.48)

then u′ ∈ H and u′′ = (u′)′ = u− f. In particular, u′ is continuous in I

and is the derivative of u in the usual sense.

Proof. By (1.3), u satisfies

(u′, v′) = −(u− f, v), v ∈ C1(I). (1.49)

This means that u′ has a weak derivative equal to u− f. Hence, u′ ∈ H.

Thus u′ is continuous in I (Lemma 1.11). Apply Lemma 1.13.

We also have

Theorem 1.15. If, in addition, f is in C(I), then u′′ is continuous in
I, and u′′ = u− f in the usual sense.

Proof. By Theorem 1.14, u′ has a weak derivative equal to u−f. Since u

is in H ⊂ C(I), and it is now assumed that f ∈ C(I), we see by Lemma
1.13 that u′′ is the derivative of u′ in the usual sense.

Theorem 1.16. If, in addition, f is in H, then u′′ ∈ H, u′′ is contin-
uous in I, u′′ = u− f in the usual sense and (u′′)′ = u′ − f ′.

Proof. Suppose v ∈ C2(I). By (1.49),

(u′, v′′) = −(u− f, v′).

Since u′ ∈ H and u− f ∈ H, this equals

(u′′, v′) = −(u′ − f ′, v). (1.50)

Thus, (1.50) holds for all v ∈ C2(I). Now suppose v is only in C1(I).
Then there is a sequence {vk} ⊂ C∞(I) such that

‖vk − v‖H → 0

(Theorem 1.8). Thus,

‖vk − v‖ → 0, ‖v′k − v′‖ → 0.

Since

(u′′, v′k) = −(u′ − f ′, vk)
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for each k, we see that (1.50) holds in the limit. Thus (1.50) holds for
all v ∈ C1(I). This means that u′′ ∈ H, that u′′ is continuous, that
u′′ = u− f in the usual sense, and that (u′′)′ = u′ − f ′.

1.4 Fourier series

In this section we give the proof of Lemma 1.9. In order to prove it, we
shall need

Lemma 1.17. If f(x) is continuous in I and

(f, ϕ̄k) = 0, k = 0,±1,±2, . . . , (1.51)

then f(x) = 0 in I.

Before we prove Lemma 1.17, we note that a consequence is

Corollary 1.18. If f(x) is continuous in I and

(f, ϕ̄k) = 0, k �= 0, (1.52)

then f(x) is constant in I.

Proof. Let

α0 =
1√
2π

∫ 2π

0

f(x) dx,

and take g(x) = f(x) − (α0/
√

2π). Then

βk = (g, ϕ̄k) = (f, ϕ̄k) − (α0

√
2π)

∫ 2π

0

ϕ̄k dx = 0

for k �= 0. Moreover,

β0 = (g, 1)/
√

2π = α0 − α0 = 0.

Thus, g(x) ≡ 0 by Lemma 1.17. Hence, f(x) ≡ α0/
√

2π.

Another consequence is

Theorem 1.19. If f ∈ L2(I) satisfies (1.51), then f(x) = 0 a.e. in I.

Proof. Define

F (x) =
∫ x

0

f(t) dt. (1.53)
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Then F (x) is continuous in I (Theorem B.36), and F (2π) =
√

2πα0 =
0 = F (0). Hence F is periodic in I. Let

γk = (F, ϕ̄k), k = 0,±1,±2, . . .

Then

γk = (F, e−ikx/
√

2π) = (F, (e−ikx/
√

2π)′/(−ik))

= − (F ′, ϕ̄k)/(−ik) = (f, ϕ̄k)/ik = 0

for k �= 0. Hence, F (x) ≡ constant by Corollary 1.18. Consequently,
f(x) = F ′(x) ≡ 0.

We can now give the proof of Lemma 1.9.

Proof. Let

un(x) =
∑
|k|≤n

αkϕk.

Since

(ϕj , ϕ̄k) =
1
2π

∫ 2π

0

ei(j−k)xdx = δjk =
{

0, j �= k,

1, j = k,

we have

‖u− un‖2 = ‖u‖2 − 2(u, un) + ‖un‖2 = ‖u‖2 − 2
∑
|k|≤n

|αk|2 +
∑
|k|≤n

|αk|2

= ‖u‖2 −
∑
|k|≤n

|αk|2.

Consequently, ∑
|k|≤n

|αk|2 ≤ ‖u‖2.

Since this is true for every n, we have

∞∑
k=−∞

|αk|2 ≤ ‖u‖2. (1.54)

Moreover, if m < n, then

‖un − um‖2 =
∑

m<|k|≤n

|αk|2 → 0 as n → ∞.
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Hence, {un} is a Cauchy sequence in L2(I). It converges in L2(I) to a
function ũ. Let

α̃k = (ũ, ϕ̄k), k = 0,±1,±2, . . .

Then,

α̃k = ( lim
n→∞

un, ϕ̄k) = lim
n→∞

(
∑
|j|≤n

αjϕj , ϕ̄k) = lim
n→∞

∑
|j|≤n

αj(ϕj , ϕ̄k) = αk.

Let f = ũ−u. Then f satisfies (1.51). It follows from Theorem 1.19 that
f ≡ 0. Thus u = ũ a.e., and (1.45) holds.

It remains to give the proof of Lemma 1.17.

Proof. Assume that there is a point x0 ∈ I such that f(x0) > 0. (If
f(x0) < 0, replace f with −f). Thus, there are positive constants ε, δ

such that

f(x) > ε, |x− x0| < δ. (1.55)

Let

wn(x) =
sin2n(x/2)∫

I
sin2n(x/2) dx

. (1.56)

We note that

wn(x) ≥ 0, x ∈ I, (1.57)

and ∫
I

wn(x) dx = 1. (1.58)

Moreover,

wn(x) = cn(1 − cosx)n = c′n(2 − eix − e−ix)n.

Thus wn(x) is periodic in x and is a linear combination of the functions
ϕk, |k| ≤ n. Consequently (1.51) implies∫

I

f(x)wn(x + π − x0) dx = 0. (1.59)

Now, it follows from (1.56) that

wn(x) ≤ sin2n[(π − δ)/2]
δ sin2n[(π − δ/2)/2]

, |x− π| > δ,
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since ∫ π+(δ/2)

π−(δ/2)

sin2n(x/2) dx ≤
∫
I

sin2n(x/2) dx.

Let

θ =
sin2[(π − δ)/2]

sin2[(π − δ/2)/2]
.

Then θ < 1, and

wn(x) ≤ θn/δ, |x− π| > δ.

Hence,

wn(x + π − x0) ≤ θn/δ, |x− x0| > δ. (1.60)

Thus,
∫
I

f(x)wn(x + π − x0) dx =
∫ x0+δ

x0−δ

+
∫
|x−x0|>δ

≥ ε

∫ x0+δ

x0−δ

wn(x + π − x0) dx− 2πθnM/δ

≥ ε

∫
I

wn(x + π − x0) dx− 2πθn(M + ε)/δ

= ε− 2πθn(M + ε)/δ, (1.61)

where

M = max
I

|f(x)|.

Since θ < 1, we can take n so large that the right-hand side of (1.61) is
positive. This contradicts (1.59), and the proof follows.

1.5 Finding a functional

At this point we want to weaken the assumptions on the function f(x, t).
We may have to add to these assumptions from time to time, but such
is life. To begin, we assume that f(x, t) is a “Carathéodory” function on
I×R. This means that f(x, t) is a measurable function of x in I for each
t ∈ R, and it is a continuous function of t in R for almost every x ∈ I.

We assume that for each R ∈ R there is a constant CR such that

|f(x, t)| ≤ CR, x ∈ I, t ∈ R, |t| ≤ R. (1.62)
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This assumption is used to carry out step (a) in our procedure. Based
on our previous experience, we try

G(u) =
1
2
‖u‖2

H −
∫ 2π

0

F (x, u(x)) dx (1.63)

as our first candidate, where

F (x, t) =
∫ t

0

f(x, s) ds. (1.64)

First we must check that G(u) is defined for each u ∈ H. For this
purpose, we use Lemma 1.11. Note that (1.62) implies

|F (x, t)| ≤ RCR, t ∈ R, |t| ≤ R. (1.65)

If u ∈ H, we have by (1.46) that

|F (x, u(x))| ≤ K‖u‖H ≤ C ′.

Note that F (x, t) is also a “Carathéodory” function on I × R. We shall
show that F (x, u(x)) is measurable on I for each u ∈ C(I) (Theorem
B.38). Since it is majorized by a constant and I is a bounded interval,
we see that the integral in (1.63) exists (Theorem B.24). Thus, G(u) is
defined on H.

Next, we calculate the derivative of G. We have

G(u + v) −G(u) =
1
2
(‖u + v‖2

H − ‖u‖2
H)

−
∫ 2π

0

[F (x, u + v) − F (x, u)] dx

=
1
2
(‖u‖2

H + 2(u, v)H + ‖v‖2
H − ‖u‖2

H)

−
∫ 2π

0

∫ 1

0

d

dθ
F (x, u + θv) dθ dx

= (u, v)H +
1
2
‖v‖2

H −
∫ 2π

0

∫ 1

0

f(x, u + θv)v dθ dx.
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Hence,

[G(u + v) −G(u)] − (u, v)H +
∫ 2π

0

f(x, u)v dx

=
1
2
‖v‖2

H −
∫ 2π

0

∫ 1

0

[f(x, u + θv) − f(x, u)]v dθ dx.

The derivative will exist if we can show that the expression (1.34) con-
verges to 0 together with ‖v‖H . If this were not true, there would be a
sequence {vk} ⊂ H such that ‖vk‖H → 0 and

∫
I

∫ 1

0

|f(x, u + θvk) − f(x, u)|2dθ dx ≥ ε > 0. (1.66)

By Lemma 1.11, vk(x) → 0 uniformly on I. Thus, u + θvk → u uni-
formly on I. Consequently, the integrand of (1.66) converges to 0 a.e.
The integrand of (1.66) is majorized by constants depending on the H

norms of u + θvk and u. Since these norms are bounded, the integrand
is majorized by a constant. Since the integrand converges to 0 a.e., this
implies that the integral converges to 0 (Theorem B.18). Consequently,
the derivative of G satisfies (1.37).

Next, we note that the derivative of G is continuous on H. To see this,
suppose that ‖uk − u‖H → 0. Then

(G′(uk) −G′(u), v)H = (uk − u, v)H −
∫
I

[f(x, uk) − f(x, u)]v dx.

Thus,

|(G′(uk) −G′(u), v)H | ≤ ‖uk − u‖H‖v‖H + ‖v‖H

×
∫
I

|f(x, uk) − f(x, u)| dx.

By Lemma 1.11, uk(x) → u(x) uniformly in I. Consequently, |f(x, uk)−
f(x, u)| → 0 a.e. in I. Moreover, it is majorized by constants depend-
ing on the norms ‖uk‖H , ‖u‖H , which are bounded. Thus, the integral
converges to 0. Now, we have by Corollary A.16

‖G′(uk) −G′(u)‖H = sup
v∈H

{|(G′(uk) −G′(u), v)H |/‖v‖H}

≤ ‖uk − u‖H +
∫
I

|f(x, uk) − f(x, u)| dx → 0.

This shows that G′(u) is continuous on H. Thus we have proved
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Theorem 1.20. If f(x, t) satisfies (1.62), then G(u) given by (1.63) is
continuously differentiable and satisfies (1.37).

1.6 Finding a minimum, I

The next step is to find a u ∈ H such that G′(u) = 0. The simplest
situation is when G(u) has an extremum. We now give a condition on
f(x, t) that will guarantee that G(u) has a minimum on H. We assume
that there is a function W (x) ∈ L1(I) such that

−W (x) ≤ V (x, t) ≡ t2 − 2F (x, t) → ∞ a.e. as |t| → ∞. (1.67)

We shall need

Lemma 1.21. If a sequence satisfies

ρk = ‖uk‖H ≤ C, (1.68)

then there are a renamed subsequence (i.e., a subsequence for which we
use the same notation) and a u0 ∈ H such that

uk ⇀ u0 in H (1.69)

and

uk(x) → u0(x) uniformly in I. (1.70)

We shall prove Lemma 1.21 at the end of this section.

Remark 1.22. The symbol “⇀” signifies weak convergence (cf. Ap-
pendix A). In the case of (1.69) it means that

(uk − u0, v)H → 0, v ∈ H.

We let N be the subspace of constant functions in H. It is of dimension
one. Let M be the subspace of those functions in H which are orthogonal
to N, that is, functions w ∈ H which satisfy

(w, 1)H =
∫
I

w(x) dx = 0.

We shall also need

‖w‖ ≤ ‖w′‖, w ∈ M, (1.71)

and
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Lemma 1.23. If w is in M and ‖w‖ = ‖w′‖, then

w(x) = a cosx + b sinx (1.72)

for some constants a, b.

We shall also prove these at the end of the section. Now we show how
they can be used to give

Theorem 1.24. Under hypothesis (1.67) there is a u in H such that

G(u) = min
H

G.

Moreover, if f(x, t) is continuous in both variables, any such minimum
is a solution of (1.1),(1.2) in the usual sense.

Proof. Let

α = inf
H

G,

and let {uk} be a minimizing sequence, that is, a sequence satisfying

G(uk) ↘ α.

Assume first that

ρk = ‖uk‖H ≤ C.

Then, by Lemma 1.21, there is a renamed subsequence such that

uk ⇀ u0 in H (1.73)

and

uk(x) → u0(x) uniformly in I. (1.74)

Then ∫
I

F (x, uk)dx →
∫
I

F (x, u0)dx

by arguments given previously. Since

‖u0‖2
H = ‖uk‖2

H − 2([uk − u0], u0)H − ‖uk − u0‖2
H ,

we have

G(u0) ≤ 1
2
‖uk‖2

H − ([uk − u0], u0)H −
∫
I

F (x, u0)dx

= G(uk) − ([uk − u0], u0)H +
∫
I

[F (x, uk) − F (x, u0)]dx

→ α
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Thus

G(u0) ≤ α.

Since u0 ∈ H, α ≤ G(u0). Consequently, α ≤ G(u0) ≤ α, from which
we conclude that G(u0) = α.

For each u ∈ H we may write

u = w + v,

where w ∈ M and v ∈ N. We have

2G(u) = ‖w′‖2 +
∫
I

V (x, u) dx ≥ 1
2
‖w‖2

H −
∫
I

W (x) dx (1.75)

by (1.67) and (1.71). From this we see that if {uk} is a minimizing
sequence for G, then we must have

|wk(x)| ≤ C‖wk‖H ≤ C ′, x ∈ I

by Lemma 1.11. But then we have

|uk(x)| ≥ |vk| − |wk(x)| ≥ |vk| − C′, x ∈ I.

Thus, the only way we can have ‖uk‖H → ∞ is if

|uk(x)| → ∞, x ∈ I.

But then, ∫
I

V (x, uk(x)) dx → ∞ as k → ∞

by (1.67), and this implies

G(uk) → ∞

by (1.75). But this is impossible for a minimizing sequence. Hence, a
minimizing sequence must satisfy (1.68). Thus, the ρk are bounded, and
the proof of the first statement is complete.

To prove the second statement, note that G′(u) = 0. Consequently,

(u, v)H − (f(·, u), v) = 0, v ∈ H.

Since u ∈ H, it is continuous in I (Lemma 1.11). If f(x, t) is continuous
in both variables, f(x, u(x)) is continuous in I. Thus, u′′ = u − f(x, u)
by Theorem 1.15, and consequently u has a continuous second derivative
and is a solution of (1.1),(1.2) in the usual sense.
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It remains to prove Lemmas 1.21, 1.23 together with (1.71). Lemma 1.21
follows from a theorem in functional analysis (Theorem A.61) and the
following two lemmas.

Lemma 1.25. If u ∈ H, then

|u(x) − u(x′)| ≤ |x− x′|1/2‖u′‖, x, x′ ∈ I.

Proof. Assume first that u ∈ C1(I). Then

|u(x) − u(x′)| =
∣∣∣∣
∫ x

x′
u′(y) dy

∣∣∣∣ ≤
∣∣∣∣
∫ x

x′
dy

∣∣∣∣
1/2 ∣∣∣∣

∫ x

x′
u′(y)2dy

∣∣∣∣
1/2

≤ |x− x′|1/2‖u′‖.

If u ∈ H, there is a sequence {uk} ⊂ C1(I) such that ‖uk − u‖H → 0.
Thus,

|uk(x) − uk(x′)| ≤ |x− x′|1/2‖u′
k‖.

The uk converge to u uniformly (Lemma 1.11). Taking the limit, we
obtain the desired inequality.

Lemma 1.26. If {uk} ⊂ H and ‖uk‖H ≤ C, then there is a subsequence
which converges uniformly on I.

Proof. By Lemmas 1.11 and 1.25, we have

|uk(x)| ≤ K′, x ∈ I,

and

|uk(x) − uk(x′)| ≤ K ′′|x− x′|1/2, x, x′ ∈ I.

Thus, the sequence {uk} is uniformly bounded on I and equicontinu-
ous there. The conclusion now follows from the Arzelà–Ascoli theorem
(Theorem C.6).

Now we can prove Lemma 1.21.

Proof. From Lemma 1.26 we see that there is a renamed subsequence
converging uniformly to a function g ∈ C(I). Moreover, by a theorem in
functional analysis (Theorem A.61), there is a renamed subsequence of
this subsequence such that

(uk, v) → (u0, v), (u′
k, v) → (h, v), v ∈ L2(I),

where u0, h ∈ L2(I). Now

(uk, v
′) = −(u′

k, v), v ∈ C1(I).
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Consequently,

(u0, v) = −(h, v), v ∈ C1(I).

Thus, h is the weak derivative of u0, and u0 ∈ H (Definition 1.7). This
means that

(uk, v)H → (u0, v)H , v ∈ H.

Moreover,

(g, v) ← (uk, v) → (u0, v), v ∈ L2(I).

Consequently,

(u0 − g, v) = 0, v ∈ L2(I).

This implies ‖u0 − g‖2 = 0, showing that u0 ≡ g a.e. The proof is com-
plete.

It now remains to prove (1.71) and Lemma 1.23. We prove them together.

Proof. By Lemma 1.9

‖u‖2 = lim
n→∞

‖
∑
|k|≤n

αkϕk‖2 = lim
n→∞

∑
|k|≤n

|αk|2 =
∞∑

k=−∞
|αk|2, (1.76)

where the αk, ϕk are given by (1.43) and (1.44), respectively. For the
same reason,

‖u′‖2 = lim
n→∞

‖
∑
|k|≤n

βkϕk‖2 =
∞∑

k=−∞
|βk|2 =

∞∑
k=−∞

k2|αk|2, (1.77)

where βk = (u′, ϕ̄k) = ikαk. If u ∈ M, then α0 = 0. Hence,

‖u‖2 =
∑
k �=0

|αk|2 ≤
∑

k2|αk|2 = ‖u′‖2,

which is (1.71). Moreover, if the two are equal, then

‖u′‖2 − ‖u‖2 =
∑

(k2 − 1)|αk|2 = 0.

Hence, αk = 0 if |k| �= 1. This means that

u = (α1e
ix + α−1e

−ix)/
√

2π = a cosx + b sinx,

and the proof is complete.
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1.7 Finding a minimum, II

It is still possible to show that G(u) attains a minimum even when
F (x, t) does not satisfy (1.67). Now we assume that

|f(x, t)| ≤ C(|t| + 1), x ∈ I, t ∈ R, and (1.78)

2F (x, t)/t2 → β(x) a.e. as |t| → ∞,

where

β(x) ≤ 1, β(x) �≡ 1. (1.79)

We now have

Theorem 1.27. Under hypotheses (1.78), (1.79) there is a u in H such
that

G(u) = min
H

G.

Moreover, if f(x, t) is continuous in both variables, any such minimum
is a solution of (1.1),(1.2) in the usual sense.

Proof. First, we note that (1.78) implies (1.62). Thus, the functional
given by (1.63) has a continuous derivative satisfying (1.37) (Theorem
1.20). Let

α = inf
H

G.

(As far as we know now, we can have α = −∞.) Let {uk} be a minimizing
sequence, that is, a sequence satisfying

G(uk) → α.

Assume first that

ρk = ‖uk‖H ≤ C.

Then we can conclude, as we did in the proof of Theorem 1.24, that
G(u0) = α.

Next, assume that

ρk = ‖uk‖H → ∞,

and let ũk = uk/ρk. Then ‖ũk‖H = 1, and there is a renamed subse-
quence such that

ũk ⇀ ũ in H (1.80)
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and

ũk(x) → ũ(x) uniformly in I (1.81)

(Lemma 1.21). Now,

2G(uk)/ρ2
k = 1 − 2

∫
I

F (x, uk)
u2
k

• ũ2
k dx.

Let Ω1 be the set of points x ∈ I such that |uk(x)| → ∞, and let
Ω2 be the set of points x ∈ I such that |uk(x)| is bounded. Let Ω3 =
I \ (Ω1 ∪ Ω2). On Ω1 we have by (1.78)

2F (x, uk(x))
uk(x)2

• ũk(x)2 → β(x)ũ(x)2 a.e. (1.82)

On Ω2 we have ũk(x) = uk(x)/ρk → 0, and, consequently, ũ(x) = 0. In
this case,

2F (x, uk(x))
uk(x)2

• ũk(x)2 =
2F (x, uk(x))

ρ2
k

→ 0 = β(x)ũ(x)2 a.e.,

and (1.82) holds as well. If x ∈ Ω3, there are subsequences for which
|uk(x)| → ∞ and subsequences for which |uk(x)| is bounded. For the
former (1.82) holds, and for the latter it holds as well since ũ(x) = 0.
Hence, (1.82) holds a.e. on the whole of I. Moreover,

|F (x, uk)|
ρ2
k

≤ C

(
|uk|2
ρ2
k

+
|uk|
ρ2
k

)
= C

(
|ũk|2 +

|ũk|
ρk

)
≤ C a.e. (1.83)

by (1.78). Thus, by the Lebesgue dominated convergence theorem (The-
orem B.18)

2
∫
I

F (x, uk)/ρ2
k dx →

∫
I

β(x)ũ(x)2 dx. (1.84)

Hence,

2G(uk)/ρ2
k → 1 −

∫
I

β(x)ũ(x)2 dx

= (1 − ‖ũ‖2
H) + ‖ũ′‖2 +

∫
I

[1 − β(x)]ũ(x)2 dx

= A + B + C.

Since ‖ũ‖H ≤ 1 and β(x) ≤ 1, the quantities A,B,C are each ≥ 0.
The only way the sum can equal 0, is if each equals 0. If B = 0, then
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ũ′(x) ≡ 0. Thus ũ(x) ≡ constant and ‖ũ‖H = ‖ũ‖. If A = 0, then
‖ũ‖ = 1. Thus, ũ is a nonvanishing constant. If C = 0, then∫

I

[1 − β(x)] dx = 0.

Consequently,

G(uk) → ∞.

But this is impossible since {uk} is a minimizing sequence. Thus, the
ρk are bounded, and the proof of the first statement is complete. The
second statement follows as in the proof of Theorem 1.24.

1.8 A slight improvement

We now give a slight improvement of Theorem 1.27. Now we assume
that f(x, t) is a Carathéodory function satisfying (1.62) and

F (x, t)/t2 ≤W (x) ∈ L1(I), |t| ≥ 1, and lim sup
|t|→∞

2F (x, t)/t2 ≤ β(x) a.e.,

(1.85)

where

β(x) ≤ 1, β(x) �≡ 1. (1.86)

We now have

Theorem 1.28. Under hypotheses (1.85), (1.86) there is a u in H such
that

G(u) = min
H

G.

Moreover, if f(x, t) is continuous in both variables, any such minimum
is a solution of (1.1),(1.2) in the usual sense.

Proof. First, we note that the functional given by (1.63) has a continuous
derivative satisfying (1.37) (Theorem 1.20). Let

α = inf
H

G.

(As far as we know now, we can have α = −∞.) Let {uk} be a minimizing
sequence, that is, a sequence satisfying

G(uk) → α.
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Assume first that

ρk = ‖uk‖H ≤ C.

Then we can conclude, as we did in the proof of Theorem 1.24, that
G(u0) = α.

Next, assume that

ρk = ‖uk‖H → ∞,

and let ũk = uk/ρk. Then ‖ũk‖H = 1, and there is a renamed subse-
quence such that

ũk ⇀ ũ in H (1.87)

and

ũk(x) → ũ(x) uniformly in I (1.88)

(Lemma 1.21). Now,

2G(uk)/ρ2
k = 1 − 2

∫
I

F (x, uk)
u2
k

• ũ2
k dx.

Let Ω1 be the set of points x ∈ I such that |uk(x)| → ∞, and let
Ω2 be the set of points x ∈ I such that |uk(x)| is bounded. Let Ω3 =
I \ (Ω1 ∪ Ω2). On Ω1 we have by (1.85)

lim sup
k→∞

2F (x, uk(x))
uk(x)2

• ũk(x)2 ≤ β(x)ũ(x)2. (1.89)

On Ω2 we have ũk(x) = uk(x)/ρk → 0, and, consequently, ũ(x) = 0. In
this case,

2F (x, uk(x))
uk(x)2

• ũk(x)2 =
2F (x, uk(x))

ρ2
k

→ 0 = β(x)ũ(x)2,

and (1.89) holds as well. If x ∈ Ω3, there are subsequences for which
|uk(x)| → ∞ and subsequences for which |uk(x)| is bounded. For the
former (1.89) holds, and for the latter it holds as well since ũ(x) = 0.
Hence, (1.89) holds a.e. on the whole of I. Thus, by Theorem B.17

lim sup
k→∞

2
∫
I

F (x, uk)/ρ2
k dx ≤

∫
I

β(x)ũ(x)2 dx. (1.90)
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Hence,

lim inf
k→∞

2G(uk)/ρ2
k ≥ 1 −

∫
I

β(x)ũ(x)2dx

= (1 − ‖ũ‖2
H) + ‖ũ′‖2 +

∫
I

[1 − β(x)]ũ(x)2dx

= A + B + C.

We now follow the proof of Theorem 1.27 to reach the desired conclusion.

1.9 Finding a minimum, III

Here we show that one can obtain solutions of (1.1),(1.2) which minimize
the functional (1.63) without making assumption (1.67) or assumptions
(1.78) and (1.79), provided that the function F (x, t) is concave in t. We
call a function g(t) on R convex if

g((1 − θ)s + θt) ≤ (1 − θ)g(s) + θg(t), s, t ∈ R, 0 ≤ θ ≤ 1. (1.91)

It is called concave if −g(t) is convex. We shall need

Lemma 1.29. If g(t) ∈ C1(R) is convex on R, then

g(t) ≥ g(s) + g′(s)(t− s). (1.92)

Proof. From (1.91) we see that

g(s + θ(t− s)) − g(s)
θ(t− s)

(t− s) ≤ g(t) − g(s).

Letting θ → 0, we obtain

g′(s)(t− s) ≤ g(t) − g(s).

We can now state

Theorem 1.30. Assume that f(x, t) satisfies (1.62) and that F (x, t) is
concave in t for each x ∈ I. Then G(u) given by (1.63) has a minimum
on H.

Proof. First we note that

F (x, t) ≤ F (x, 0) + f(x, 0)t = f(x, 0)t, x ∈ I, t ∈ R
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by Lemma 1.29. Thus,

F (x, t) ≤ C0|t|, t ∈ R

by (1.62). This implies that

G(u) ≥ 1
2
‖u‖2

H −
∫
I

f(x, 0)u(x) dx

≥ 1
2
‖u‖2

H − c1‖u‖, u ∈ H (1.93)

by Lemma 1.29. Let {uk} ⊂ H be a minimizing sequence for G(u), that
is, a sequence such that

G(uk) ↘ α = inf
H

G.

Since G(uk) ≤ K and

G(uk) ≥ ‖uk‖2
H − c1‖uk‖,

we see that the ‖uk‖H are bounded. We now follow the proof of Theorem
1.24 to arrive at the desired conclusions.

1.10 The linear problem

You may be curious about the linear problem corresponding to (1.1),
(1.2), namely

−u′′(x) + u(x) = f(x), x ∈ I = [0, 2π], (1.94)

under the conditions

u(0) = u(2π), u′(0) = u′(2π), (1.95)

where the function f(x) is continuous in I and is periodic in x with
period 2π. After a substantial calculation one finds that there is a unique
solution given by

u(x) = Aex + Be−x +
∫ x

0

sinh(t− x) f(t) dt, (1.96)

where

2A =
e2π

e2π − 1

∫ 2π

0

e−tf(t) dt (1.97)

and

2B =
e−2π

1 − e−2π

∫ 2π

0

etf(t) dt. (1.98)
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Can this solution be used to solve (1.1), (1.2)? It can be if f(x, t) is
bounded for all x and t. For then we can define

Tu(x) = A(u)ex + B(u)e−x +
∫ x

0

sinh(t− x) f(t, u(t)) dt, (1.99)

where

2A(u) =
e2π

e2π − 1

∫ 2π

0

e−tf(t, u(t)) dt (1.100)

and

2B(u) =
e−2π

1 − e−2π

∫ 2π

0

etf(t, (u(t)) dt. (1.101)

Then a solution of (1.1),(1.2) will exist if we can find a function u(x)
such that

Tu(x) = u(x), x ∈ I. (1.102)

Such a function is called a fixed point of the operator T. In Chapter 6
we shall study techniques for obtaining fixed points of operators in vari-
ous spaces. In the present case, one can show that there is indeed a fixed
point for the operator T when f(x, t) is bounded.

It is also of interest to note that the linear problem (1.94),(1.95) can
be solved easily by the Hilbert space techniques of this chapter. To see
this note that

Fv = (v, f), v ∈ H (1.103)

is a bounded linear functional on H (see Appendix A). By the Riesz
representation theorem (Theorem A.12), there is an element u ∈ H such
that

Fv = (v, u)H , v ∈ H.

Hence,

(u, v)H = (f, v), v ∈ H. (1.104)

Since f is continuous, Theorem 1.15 tells us that u′′ is continuous in I

and satisfies u′′ = u− f.

Note that u satisfies

u′(2π) = u′(0)
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as well as u(2π) = u(0). To see this, recall that (1.104) implies

(u, v) + (u′, v′) = (f, v), v ∈ H,

which in turn says,

∫ 2π

0

[u′(x)v(x)]′dx = (u′′, v) + (u′, v′)

= (u− f, v) + (f, v) − (u, v) = 0, v ∈ H.

Thus

u′(2π)v(2π) − u′(0)v(0) = 0, v ∈ H.

Since v(2π) = v(0) for all v ∈ H, we have

[u′(2π) − u′(0)]v(0) = 0, v ∈ H.

We now merely take v(0) = u′(2π) − u′(0) to obtain the result.

All of this illustrates how much easier it is to be linear (straight).

1.11 Nontrivial solutions

Theorems 1.24, 1.27, and 1.30 guarantee us that a solution of (1.1),(1.2)
exists, but as far as we know the solution may be identically 0. Such
a solution is called “trivial” because it usually has no significance in
applications. If f(x, 0) ≡ 0, we know that u ≡ 0 is a solution of (1.1),(1.2)
and any method of solving it is an exercise in futility unless we know
that the solution we get is not trivial. On the other hand, if f(x, 0) �≡ 0,
then we do not have to worry about trivial solutions. We now consider
the problem of insuring that the solutions provided by Theorems 1.24,
1.27, and 1.30 are indeed nontrivial even when f(x, 0) ≡ 0. We have

Theorem 1.31. In addition to the hypotheses of Theorems 1.24, 1.27,
or 1.30 assume that there is a t0 ∈ R such that∫

I

F (x, t0) dx > πt20. (1.105)

Then the solutions of (1.1),(1.2) provided by these theorems are non-
trivial.

Proof. We show that the minima α provided by Theorems 1.24, 1.27,
and 1.30 are negative. If this is the case, then the solution u0 satisfies
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G(u0) < 0. But G(0) = 0. This shows that u0 �= 0. To prove that α < 0,
let v ≡ t0. Then

2G(v) = ‖v‖2
H − 2

∫
I

F (x, v) dx = 2πt20 − 2
∫
I

F (x, t0) dx < 0

by (1.105). Hence α < 0, and the proof is complete.

Another question we can ask is if the solutions obtained by our theorems
are constants. In answer to this we have

Theorem 1.32. In addition to the hypotheses of Theorems 1.24, 1.27,
or 1.30 assume that for each t ∈ R

f(x, t) �≡ constant. (1.106)

Then the solutions of (1.1),(1.2) provided by these theorems are noncon-
stant.

Proof. If u ∈ N and v ∈ M, then

(G′(u), v)/2 = (u, v)H −
∫
I

f(x, u)v dx = −
∫
I

f(x, t)v dx,

where u(x) ≡ t. By (1.106), f(x, t) �∈ N. Hence, there is a v ∈ M such
that

(G′(u), v)/2 = −
∫
I

f(x, t)v dx �= 0.

Therefore, we cannot have G′(u) = 0 for u ∈ N.

1.12 Approximate extrema

We now give a very useful method of finding points which are close to
being extremum points even when no extremum exists. The following
theorem is due to Ekeland.

Theorem 1.33. Let M be a complete metric space and let G(u) be a
lower semi-continuous (l.s.c.) functional on M . This means that uk → u

in M implies

G(u) ≤ lim inf G(uk).

Assume that

inf
M

G > −∞.
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Then for every ε > 0, C > 0, y ∈ M satisfying

G(y) ≤ inf
M

G + ε, (1.107)

there is a z ∈ M satisfying

G(z) + Cd(z, y) ≤ G(y) (1.108)

and

G(z) < G(u) + Cd(z, u), u ∈ M, u �= z. (1.109)

Proof. Fix C > 0, and let

Gs(r) = G(r) + Cd(r, s), r, s ∈ M,

and write r ≺ s if Gs(r) ≤ G(s). Note that r ≺ r since Gr(r) = G(r),
and

r ≺ s, s ≺ t =⇒ r ≺ t,

since

Gs(r) ≤ G(s), Gt(s) ≤ G(t)

imply

G(r) + Cd(r, s) ≤ G(s), G(s) + Cd(s, t) ≤ G(t).

Hence,

Gt(r) = G(r) + Cd(r, t) ≤ G(r) + Cd(r, s) + Cd(s, t)

= Gs(r) + Cd(s, t) ≤ G(s) + Cd(s, t)

= Gt(s) ≤ G(t).

Let

Is = {r ∈ M : r ≺ s}.

Then Is is closed, since rk ∈ Is, rk → r implies

Gr(s) = G(r) + Cd(r, s) ≤ lim inf{G(rk) + Cd(rk, s)} ≤ G(s).

Let ε, y satisfy (1.107), and let S0 = Iy. Pick z0 ∈ S0 such that

G(z0) ≤ inf
S0

G + 2.

Set S1 = Iz0 , and pick z1 ∈ S1 such that

G(z1) ≤ inf
S1

G + 1.
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Inductively, pick zn ∈ Sn = Izn−1 such that

G(zn) ≤ inf
Sn

G +
1
n
,

and set Sn+1 = Izn . Since zn ∈ Sn = Izn−1 , we have zn ≺ zn−1. If
u ∈ Sn, then u ≺ zn−1 ≺ zn−2. Thus, u ∈ Sn−1. This means that
Sn ⊂ Sn−1. Hence, if u ∈ Sn+1, then

Gzn(u) = G(u) + Cd(u, zn) ≤ G(zn) ≤ inf
Sn

G +
1
n
≤ G(u) +

1
n
.

In particular, this implies that

d(u, zn) ≤ 1
Cn

.

Since u was any element of Sn+1, we see that the diameter of Sn+1 is
≤ 2/Cn → 0. We therefore have a nested sequence of closed sets whose
diameters converge to 0. Consequently there is a unique

z ∈ S =
∞⋂

n=0

Sn

(Theorem C.5). Since z ∈ S0 = Iy, we have z ≺ y, that is, (1.108) holds.
If u ≺ z, then u ≺ zn for every n, since z ≺ zn for every n. Hence,
u ∈ Sn for every n. Thus, u ∈ S. But the only element in S is z. Hence
u = z. If u �= z then u �≺ z. This means that Gz(u) > G(z). This is the
same as (1.109).

Corollary 1.34. Let G ∈ C1(H,R), where H is a Hilbert space. Assume
that

inf
H

G > −∞.

Then for every ε > 0, y ∈ H satisfying

G(y) ≤ inf
H

G + ε2,

there is a u ∈ H such that

G(u) ≤ G(y), ‖u− y‖ ≤ ε, ‖G′(u)‖ ≤ ε. (1.110)

Proof. By Theorem 1.33 there is a u ∈ H such that

G(u) + ε‖u− y‖ ≤ G(y)

and

G(u) < G(w) + ε‖u− w‖, w �= u.
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Thus, G(u) ≤ G(y) and

G(u) + ε‖u− y‖ ≤ G(y) ≤ inf
H

G + ε2 ≤ G(u) + ε2.

Thus, ‖u−y‖ ≤ ε. To prove the last inequality, let v be any fixed element
of H, and take w = u + tv. Then we have

G(u) < G(u + tv) + ε‖tv‖.

Now, since the Fréchet derivative of G exists, it satisfies

(G′(u), v) = lim
t→0

[G(u + tv) −G(u)]/t ≥ −ε‖v‖.

Take v = −G′(u). This gives

‖G′(u)‖2 ≤ ε‖G′(u)‖,

and the corollary is proved.

We also have

Corollary 1.35. Let G ∈ C1(H,R), where H is a Hilbert space. Assume
that

α = inf
H

G > −∞.

Then there is a sequence such that

G(uk) → α, G′(uk) → 0. (1.111)

Proof. For each positive integer k there is an element yk ∈ H such that

G(yk) ≤ α +
1
k2

.

By Corollary 1.34, there is a uk ∈ H such that

G(uk) ≤ G(yk), ‖G′(uk)‖ ≤ 1
k
.

This gives the required sequence.

In the next chapter, we shall give another proof of Corollary 1.35 based
on Theorem 2.5. That proof will be simpler than the one given here.

Remark 1.36. A sequence satisfying

G(uk) → c, G′(uk) → 0. (1.112)

is called a Palais–Smale sequence or PS sequence. Notice that
Corollary 1.35 does not obtain a minimum for the functional G on H.
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However, if it turns out that the PS sequence has a convergent sub-
sequence, then indeed we obtain a minimum for G and a solution of
(1.1),(1.2).

1.13 The Palais–Smale condition

Under the hypotheses of Corollary 1.35 we obtained the PS sequence
(1.111). If a functional is such that every PS sequence has a convergent
subsequence, we say that is satisfies the Palais–Smale condition or
PS condition. In this section we allow f(x, t) to satisfy (1.62), and give
sufficient conditions which will guarantee that the PS condition holds
for G(u) given by (1.63). We have

Theorem 1.37. If there are constants µ > 2, C such that

Hµ(x, t) := µF (x, t) − tf(x, t) ≤ C(t2 + 1) (1.113)

and

lim sup
|t|→∞

Hµ(x, t)/t2 ≤ 0, (1.114)

then (1.112) implies that {uk} has a convergent subsequence which con-
verges to a solution of (1.1),(1.2).

Proof. If (1.112) holds, then

G(uk) = ρ2
k − 2

∫
I

F (x, uk) dx → c (1.115)

and

(G′(uk), uk)H = 2ρ2
k − 2(f(·, uk), uk) = o(ρk), (1.116)

where ρk = ‖uk‖H . Assume that ρk → ∞, and let ũk = uk/ρk. Since
‖ũk‖H = 1, there is a renamed subsequence such that (1.80) and (1.81)
hold (Lemma 1.21). By (1.115) and (1.116)

∫
I

2F (x, uk)
u2
k

ũ2
k dx → 1

and ∫
I

ukf(x, uk)
u2
k

ũ2
k dx → 1.
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Thus,∫
I

Hµ(x, uk)
u2
k

ũ2
k dx =

∫
I

µF (x, uk) − ukf(x, uk)
u2
k

ũ2
k dx → 1

2
µ− 1.

But by hypothesis (1.114),

lim sup
Hµ(x, uk)

u2
k

ũ2
k = lim sup

µF (x, uk) − ukf(x, uk)
u2
k

ũ2
k ≤ 0.

This is obvious if |uk| → ∞. Otherwise, we use the fact that ũk → 0.
Moreover,

Hµ(x, uk)
u2
k

ũ2
k =

µF (x, uk) − ukf(x, uk)
u2
k

ũ2
k ≤ C

u2
k + 1
u2
k

ũ2
k ≤ C′.

Note that if ũ2
k ≤ 1, then the right-hand side is

≤ C
u2
k + 1
ρ2
k

= C(ũ2
k +

1
ρ2
k

) ≤ C ′,

while otherwise it is

≤ C(1 +
1
u2
k

)ũ2
k ≤ 2Cũ2

k ≤ C′.

By Theorem B.17, this implies that 1
2µ−1 ≤ 0, contrary to assumption.

Hence, the ρk are bounded. Consequently, we can conclude that there is
a renamed subsequence satisfying (1.73),(1.74). Then∫

I

F (x, uk)dx →
∫
I

F (x, u0) dx.

Therefore, (1.112) implies

(u0, v)H − (f(u0), v) = 0, v ∈ H,

which means that u0 is a solution of (1.1),(1.2) and satisfies

‖u0‖2
H − (f(u0), u0) = 0.

Moreover, by (1.112),

‖uk‖2
H = (f(uk), uk) + o(1) → (f(u0), u0) = ‖u0‖2

H ,

showing that uk converges to u0 in H. Hence, the PS condition holds,
and the proof is complete.

As a consequence we have
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Theorem 1.38. Under hypotheses (1.62),(1.113), and (1.114), if

2F (x, t) ≤ t2 + W (x), x ∈ I, t ∈ R, (1.117)

where W (x) ∈ L1(I), then the functional (1.63) has a minimum on H

providing a solution of (1.1),(1.2).

Proof. We have

2
∫
I

F (x, u) dx ≤ ‖u‖2 + B,

where

B =
∫
I

W (x) dx.

Thus,

2G(u) ≥ ‖u‖2
H − ‖u‖2 −B = ‖u′‖2 −B ≥ −B.

Consequently,

α = inf
H

G > −∞.

From Corollary 1.35 we conclude that there is a PS sequence satisfying
(1.111). We can now apply Theorem 1.37 to reach the desired conclusion.

1.14 Exercises

1. Show that

(u′, v′) + (u, v) = (−u′′ + u, v) = (f(·, u), v)

holds for all v ∈ C1(I) satisfying (1.2).

2. Prove (1.15) and show that we cannot replace the denominator in
(1.10) by |h|.

3. If 〈g, h〉 satisfies (1.18), show that for each w ∈ H there is a unique
g ∈ H such that (1.19) holds.

4. If

G(u) = ‖u′‖2, u ∈ H, (1.118)

show that

[G(u + v) −G(u) − 2(v′, u′)]/‖v‖H = ‖v′‖2/‖v‖H → 0 as ‖v‖H → 0.
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5. Prove Theorem 1.2.

6. Verify that (1.39) and (1.40) imply (1.41).

7. If αk, ϕk are given by (1.43) and (1.44), let

βk = (u′, ϕ̄k), k = 0,±1,±2, . . .

Verify that

βk = −(u, ϕ̄′
k) = −(u,−ikϕ̄k) = ik(u, ϕ̄k) = ikαk.

8. Show that there is a x′ ∈ I such that

2πu(x′)2 =
∫
I

u(y)2 dy.

9. Prove

u(x)2 ≤ 1
2π

‖u‖2 + ‖u‖2
H ≤

(
1 +

1
2π

)
‖u‖2

H , u ∈ H.

10. Why do we need F (x) to be periodic in the proof of Theorem 1.19?

11. Show that wn(x) given by (1.56) satisfies

wn(x) ≤ sin2n[(π − δ)/2]
δ sin2n[(π − δ/2)/2]

, |x− π| > δ.

12. If

θ =
sin2[(π − δ)/2]

sin2[(π − δ/2)/2]
,

show that θ < 1, and

wn(x) ≤ θn/δ, |x− π| > δ.

13. Prove (1.76) and (1.77).

14. It follows from the text that the Fréchet derivative of a functional
G on a Hilbert space H at a point u exists and equals g ∈ H if and
only if

[G(u + v) −G(u) − (v, g)H ]/‖v‖H → 0 as ‖v‖H → 0, v ∈ H.

(1.119)

Why was this simple definition not given outright at the very be-
ginning, rather than in a long drawn out discussion involving other
expressions?
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15. Show that the problem

−u′′(x) + u(x) = f(x), x ∈ I = [0, 2π],

under the conditions

u(0) = u(2π), u′(0) = u′(2π), (1.120)

where the function f(x) is continuous in I and is periodic in x with
period 2π, has a unique solution given by

u(x) = Aex + Be−x +
∫ x

0

sinh(t− x) f(t) dt,

where

A =
e2π

e2π − 1

∫ 2π

0

e−tf(t) dt

and

B =
e−2π

1 − e−2π

∫ 2π

0

etf(t) dt.

16. Derive these formulas.

17. Show that

Fv = (v, f), v ∈ H

is a bounded linear functional on H when f ∈ L2(I).
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Critical points

2.1 A simple problem

In order to obtain a minimum for the functional corresponding to our
problem (1.1),(1.2), we required (1.67) or (1.78) and (1.79) or concavity.
It is quite easy to show that no minimum exists if we assume that

|f(x, t)| ≤ C(|t| + 1), t ∈ R, and f(x, t)/t → β(x) a.e. as |t| → ∞,

(2.1)

where ∫
I

[1 − β(x)] dx < 0.

Let uk ≡ k. Then

G(uk)/k2 =
1
2
‖1‖2

H −
∫
I

F (x, k)/k2 dx

→ π − 1
2

∫
I

β(x) dx =
1
2

∫
I

[1 − β(x)] dx < 0.

Thus, G(uk) → −∞. Can the problem (1.1),(1.2) be solved if (1.79) does
not hold? Before we attempt to answer this question, let us consider a
simple problem.

Suppose f(x, y) is a C2 function on R
2 satisfying

m0 = inf
x

f(x, 0) �= −∞, m1 = sup
y

f(0, y) �= ∞. (2.2)

Does it follow that there is a point p0 = (x0, y0) such that

∇f(p0) = 0? (2.3)

45
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The answer is negative. For instance, if we take f(x, y) = ex − ey, then
f(x, 0) = ex − 1, while f(0, y) = 1 − ey. Consequently,

inf
x

f(x, 0) = −1, sup
y

f(0, y) = 1.

But,

∇f(x, y) = (ex,−e−y) �= 0, (x, y) ∈ R
2.

However, even though there is no point p0 satisfying (2.3), there is a
sequence pk = (xk, yk) such that

f(pk) → c, m0 ≤ c ≤ m1, ∇f(pk) → 0. (2.4)

In fact, if we take xk → −∞, yk → −∞, then

f(xk, yk) → 0 and ∇f(xk, yk) → (0, 0).

“What does this accomplish?” you ask. For the present example, noth-
ing. But if we can produce a sequence satisfying (2.4) and this sequence
has a convergent subsequence, then we do obtain a point p0 satisfying

f(p0) = c, m0 ≤ c ≤ m1, ∇f(p0) = 0. (2.5)

It would therefore appear that a reasonable approach to solving (2.3) is
to

(a) find a sequence satisfying (2.4) and
(b) show that this sequence has a convergent subsequence.

Actually, it would appear to be more prudent to check if (b) holds for
a sequence satisfying (2.4) before attempting to find such a sequence.
Indeed, this is the recommended approach.

2.2 A critical point

Even though the example given in the preceding section does not have
a critical point, there does exist a sequence of points satisfying (2.4). It
would then appear that the existence of such a sequence accomplishes
nothing. However, if we change the example slightly and write

f(x, y) = ex − ey − xy,

then (2.2) also holds in this case. If we knew that (2.2) produced a
sequence satisfying (2.4), then the situation would be different. For, in
this case

∇f(x, y) = (ex − y,−ey − x).
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If pk = (xk, yk) satisfies (2.4), then

exk − eyk − xkyk → c,

exk − yk → 0, (2.6)

and

−eyk − xk → 0. (2.7)

If this is true, then the points pk must be bounded. For, xk cannot
converge to +∞ by (2.7). If it converges to −∞, then we must have
yk → +∞ by the same expression. But that is precluded by (2.6). Also,
yk cannot converge to −∞ by (2.6), and if it converges to +∞, then xk

would have to do likewise by (2.6). But this is precluded by (2.7). Hence,

x2
k + y2

k ≤ C.

This implies that there is a renamed subsequence such that

xk → x0, yk → y0.

But then

f(pk) → f(p0)

and

∇f(pk) → ∇f(p0),

where

p0 = (x0, y0).

Consequently, we would have

∇f(p0) = 0.

This example shows that there are situations in which it is worth search-
ing for a sequence satisfying (2.4).

2.3 Finding a Palais–Smale sequence

A sequence satisfying (2.4) is called a Palais–Smale sequence. We
shall prove

Theorem 2.1. Let f(x, y) be a twice continuously differentiable func-
tion on R

2 such that

m0 = sup
y

inf
x

f(x, y) �= −∞, m1 = inf
x

sup
y

f(x, y) �= +∞. (2.8)

Then there is a sequence pk = (xk, yk) such that (2.4) holds.
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To prove this, assume first that m0,m1 are given by (2.2). As usual
when we do not know how to prove something, we assume that it is not
so. This would mean that there is a δ > 0 such that

|∇f(p)| ≥ δ (2.9)

when

m0 − δ ≤ f(p) ≤ m1 + δ. (2.10)

Otherwise, for every positive integer k there would be a point pk such
that

m0 −
1
k
≤ f(pk) ≤ m1 +

1
k
, |∇f(pk)| ≤

1
k
,

and there would be a subsequence satisfying (2.4).

For each x ∈ R, solve the differential equation

σ′(t) =
∇f(σ(t))
|∇f(σ(t))| , t ≥ 0, σ(0) = (x, 0), (2.11)

and call the solution σ(t)x. It is very easy to say, “Solve the equation,”
but it is not so easy to verify that it can be solved. Moreover, we want the
solution to be unique. In order to apply Picard’s theorem (cf. Theorem
2.13), we must verify that the right-hand side satisfies a local Lipschitz
condition. The numerator in (2.11) does satisfy a local Lipschitz condi-
tion since ∇f has continuous derivatives (this is the reason for assuming
that f ∈ C2). Moreover, the same is true of the denominator, since the
modulus of a function satisfying a Lipschitz condition also satisfies a
Lipschitz condition. In addition, the quotient of two functions satisfying
Lipschitz conditions satisfies a Lipschitz condition, provided that the
denominator does not vanish.

I am not really concerned about the denominator vanishing, because
if it did, we would have a critical point, and this whole discussion would
be unnecessary. However, we can avoid the vanishing of the denominator
by replacing (2.11) by

σ′(t) =
∇f(σ(t))

max[|∇f(σ(t))|, δ] , t ≥ 0, σ(0) = (x, 0). (2.12)

A more pressing concern is how far can we solve (2.12)? Picard’s theorem
only guarantees the solution in some neighborhood of 0. We shall need
more than that. Fortunately, we can prove
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Theorem 2.2. Let h(p) be a continuous map from R
2 to R

2 which satis-
fies a local Lipschitz condition in the neighborhood of each point. Assume
also that h(p) is uniformly bounded on R

2. Then for each p ∈ R
2 there

is a unique solution of

σ′(t) = h(σ(t)), t ∈ R, σ(0) = p. (2.13)

If σ(t)p is the solution of (2.13), then it is a continuous map from R×R
2

to R
2.

We shall prove Theorem 2.2 later (cf. Theorem 2.9). Now we use it to
continue the proof of Theorem 2.1.

Proof. By Theorem 2.2 we can solve (2.12) as far as we like for each
x ∈ R. Note that

|σ′(t)x| ≤ 1, t ≥ 0, x ∈ R.

Consequently,

|σ(t1)x− σ(t2)x| ≤ |t1 − t2|, t1, t2 ≥ 0, x ∈ R. (2.14)

Now,

d

dt
f(σ(t)x) = ∇f(σ(t)x) • σ′(t)x =

|∇f(σ(t)x)|2
max[|∇f(σ(t)x)|, δ] ≥ 0. (2.15)

Thus, f(σ(t)x) ≥ m0 for all t, x by (2.2). If f(σ(t)x) ≤ m1 + δ as well,
then the right-hand side of (2.15) is ≥ δ by (2.9). As long as this is true,
we have

f(σ(t)x) ≥ f(x, 0) + δt ≥ m0 + δt. (2.16)

Let

T = (m1 −m0 + 2δ)/δ. (2.17)

Then f(σ(t)x) will reach the value m1 + δ before t reaches the value T.

Thus, if f(x, 0) ≤ m1 + δ, there is a smallest number Tx < T such that

f(σ(Tx)x) = m1 + δ. (2.18)

By Theorem 2.2, Tx depends continuously on x. If f(x, 0) > m1 + δ,

we take Tx = 0. It results that Tx is a continuous function of x. We
know that this is true if f(x, 0) < m1 +δ or if f(x, 0) > m1 + δ. Suppose
f(x0, 0) = m1 + δ. Then Tx0 = 0. If xk → x0 and f(xk, 0) ≥ m1+ δ, then
Txk

= 0, and Txk
→ 0 = Tx0 . If xk → x0 and f(xk, 0) < m1 + δ, then

there is a renamed subsequence such that Txk
→ T̃ . Now σ(Txk

)xk →
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σ(T̃ )x0 by Theorem 2.2. Consequently, f(σ(Txk
)xk) → f(σ(T̃ )x0). Since

f(σ(Txk
)xk) = m1 + δ, we must have f(σ(T̃ )x0) = m1 + δ. This implies

that T̃ = 0. Otherwise, we would have

f(σ(T̃ )x0) − f(x0, 0) =
∫ T̃

0

d

dt
f(σ(t)x0) dt

=
∫ T̃

0

|∇f(σ(t)x0)|2
max[|∇f(σ(t)x0)|, δ]

dt

= 0.

Consequently,

∇f(σ(t)x0) = 0, 0 ≤ t ≤ T̃ ,

which implies

d

dt
f(σ(t)x0) dt = 0, 0 ≤ t ≤ T̃ ,

giving

f(σ(t)x0) = m1 + δ, 0 ≤ t ≤ T̃ ,

implying

|∇f(σ(t)x0)| ≥ δ, 0 ≤ t ≤ T̃ ,

an obvious contradiction. Since this is true for each subsequence we see
that Txk

→ 0 for the entire sequence.

Let

h(x) = σ(Tx)x. (2.19)

Then,

|h(x) − (x, 0)| = |σ(Tx)x− σ(0)x| ≤ Tx < T (2.20)

by (2.14), and

f(σ(Tx)x) = m1 + δ (2.21)

by the definition of Tx. It follows that h(x) is a continuous function of
x.

Suppose x > T. Then I claim that h(x) is to the right of the y-axis,
that is, if h(x) = (h1(x), h2(x)), then h1(x) > 0. To see this, note that

x = x− h1(x) + h1(x) ≤ |(x, 0) − h(x)| + h1(x) ≤ T + h1(x).
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Consequently,

0 < x− T ≤ h1(x).

Similarly, if x < −T, then h1(x) < 0. For then we have

h1(x) = h1(x) − x + x ≤ |h(x) − (x, 0)| + x ≤ T + x < 0.

Hence we have

h1(x) > 0, x > T,

and

h1(x) < 0, x < −T.

Since h1(x) is a continuous function of x, there must be an x̂ ∈ R such
that h1(x̂) = 0. This means that h(x̂) = (0, h2(x̂)) is on the y-axis, while

f(h(x̂)) = f(σ(Tx̂)x̂) ≥ m1 + δ

by the definition of Tx. But this contradicts (2.2).

This argument proves Theorem 2.1 when (2.2) holds. To prove it when
(2.8) holds, let ε > 0 be given. Then there is a point p0 = (x0, y0) ∈ R

such that

m0 < inf
x

f(x, y0) + ε, sup
y

f(x0, y) < m1 + ε.

Let

g(p) = f(p + p0), p ∈ R
2.

Then

m0 < inf
x

g(x, 0) + ε, sup
y

g(0, y) < m1 + ε.

By what we have already proved, there is a sequence {p̃k} such that

g(p̃k) → c, m0 − ε ≤ c ≤ m1 + ε, ∇g(p̃k) → 0.

Consequently,

f(p̃k + p0) → c, m0 − ε ≤ c ≤ m1 + ε, ∇f(p̃k + p0) → 0.

This shows us that there is a point pε ∈ R
2 such that

m0 − 2ε ≤ f(pε) ≤ m1 + 2ε, |∇f(pε)| < ε.

By taking a sequence of ε → 0 we find a Palais–Smale sequence satisfying
(2.4). This completes the proof of Theorem 2.1.
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2.4 Pseudo-gradients

In Theorem 2.1 we were required to assume that f(x, y) was twice con-
tinuously differentiable on R

2. This was done in order to apply Theorem
2.2 to (2.11). For that purpose we needed the right-hand side of (2.11)
or (2.12) to satisfy a local Lipschitz condition. On the other hand, the
conclusion of Theorem 2.1 only involves the gradient of f(x, y), that is,
the first order derivatives of f. It makes one suspicious that the require-
ment on the second derivatives might not be necessary. Indeed, we are
going to show that Theorem 2.1 remains true even when f is only known
to have continuous first order derivatives.

How can this be accomplished? Let Q denote the set (2.10). Suppose
we can find a function V from Q to R

2 which is locally Lipschitz con-
tinuous and satisfies

|V (p)| ≤ 1, p ∈ Q, (2.22)

and

V (p) • ∇f(p) ≥ 1
2
δ, p ∈ Q. (2.23)

Instead of solving (2.11), we solve

σ′(t) = V (σ(t)), t > 0, σ(0) = (x, 0). (2.24)

This can be done by Theorem 2.2. The solution exists for 0 ≤ t < ∞.

Then

|σ′(t)| ≤ 1, |σ(t) − (x, 0)| ≤ t,

and

df(σ(t))
dt

= ∇f(σ(t)) • σ′(t) = ∇f(σ) • V (σ) ≥ δ

2

as long as σ(t) ∈ Q. Therefore,

f(σ(t)) − f(x, 0) =
∫ t

0

[
df(σ(s))

ds

]
ds ≥ t

δ

2

as long as σ(s) ∈ Q for 0 ≤ s ≤ t. We can now follow the proof of
Theorem 2.1 to come to the same conclusion.

Of course, all of this depends on our finding such a function V. In
carrying out our construction we shall make use of the following simple
but useful lemma.
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Lemma 2.3. If A is any set in R
2 and

g(p) = d(p,A) = inf
q∈A

|p− q|,

then

|g(p) − g(p′)| ≤ |p− p′|.

Proof. If q ∈ A, then p− q = p− p′ + p′ − q, and

d(p,A) ≤ |p− q| ≤ |p− p′| + |p′ − q|.

Thus,

d(p,A) ≤ |p− p′| + d(p′, A).

Consequently,

d(p,A) − d(p′, A) ≤ |p− p′|.

Interchanging p and p′ gives

d(p′, A) − d(p,A) ≤ |p′ − p|,

which produces the desired inequality.

Now to the construction of V (p). For each p ∈ Q, let

γ(p) = ∇f(p)/|∇f(p)|.

This is finite by (2.9). Since

∇f(p) • γ(p) = |∇f(p)| ≥ δ,

there is a neighborhood N(p) of p such that

∇f(q) • γ(p) ≥ δ

2
, q ∈ N(p).

(We may assume that the diameter of N(p) is less than one.) Thus,

Q ⊂
⋃
p∈Q

N(p).

Let

BR = {p ∈ R
2 : |p| < R}.

Then for each integer J ≥ 0, the set

Q ∩ [BJ+1\BJ ]
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can be covered by a finite number of these neighborhoods by the Heine–
Borel theorem. Consequently, there are integers KJ , LJ and points pk
in this set such that

Q ∩ [BJ+1\BJ ] ⊂
LJ⋃

k=KJ

N(pk).

Then,

Q ⊂
∞⋃
k=1

N(pk).

Let

gk(p) = d(p,R2\N(pk)) = inf
q/∈N(pk)

|p− q|.

Then,

gk(p) ≡ 0, p /∈ N(pk),

and gk(p) is Lipschitz continuous by Lemma 2.3. Define

ψk(p) =
gk(p)

∞∑
j=1

gj(p)

, p ∈ Q, k = 1, 2, . . .

The denominator is positive and finite for each p ∈ Q. The reason for
this is that each p ∈ Q is contained in at least one, but not more than
a finite number of, N(pk), and gj(p) = 0 when p is not in N(pj).

Let Ñ(p) be a small neighborhood of p. Then

Ñ(p) ∩N(pk) �= φ

for only a finite number of pk. Thus, there is only a finite number of gj
which do not vanish on Ñ(p). Since each gj is locally Lipschitz contin-
uous, the same is true of the denominator of each ψk. Thus the same is
true of each ψk itself. We take

V (p) =
∞∑
k=1

ψk(p)γ(pk).

Now, each ψk(p) is locally Lipschitz continuous in N(pk), and γ(pk) is
constant there. Moreover, ψk ≡ 0 outside N(pk). For each Ñ(q) suffi-
ciently small, only a finite number of functions ψk(p)γ(pk) �≡ 0 in Ñ(q).
Consequently, V (p) is locally Lipschitz continuous.
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Now,

|V (p)| ≤
∞∑
k=1

ψk(p)|γ(pk)| =
∞∑
k=1

ψk(p) = 1, p ∈ Q.

Also,

V (p) • ∇f(p) =
∞∑
k=1

ψk(p)γ(pk) • ∇f(p) ≥ (
δ

2
)

∞∑
k=1

ψk(p) =
δ

2
.

The reason for this is that ψk(p) = 0 if p /∈ N(pk) and γ(pk) • ∇f(p) ≥
δ/2 if p ∈ N(pk). Thus, V (p) satisfies (2.22) and (2.23).

We can now state

Theorem 2.4. If f(x, y) is only once continuously differentiable on R
2

but otherwise satisfies the hypotheses of Theorem 2.1, then the conclu-
sions of that theorem hold.

We are going to show in Appendix D (Theorem D.3) that a pseudo-
gradient can be constructed even in a Banach space of infinite dimen-
sions. This will be needed in future work.

2.5 A sandwich theorem

In order to apply the ideas of the preceding section to the problem
(1.1),(1.2) that we have been studying, we must generalize Theorem 2.1
to a Hilbert space setting. In this case it reads as follows.

Theorem 2.5. Let M ,N be closed subspaces of a Hilbert space E such
that M = N⊥. Assume that at least one of these subspaces is finite
dimensional. Let G be a differentiable functional on E such that G′ is
locally Lipschitz continuous and satisfies

m0 = sup
v∈N

inf
w∈M

G(v + w) �= −∞ (2.25)

and

m1 = inf
w∈M

sup
v∈N

G(v + w) �= ∞. (2.26)

Then there is a sequence {uk} ⊂ E such that

G(uk) → c, m0 ≤ c ≤ m1, G
′(uk) → 0. (2.27)
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We note that Corollary 1.35 is a simple consequence of Theorem 2.5.
To show this, all we need do is consider the case M = E, N = {0}. Then

m0 = m1 = α = inf
E

G.

The result now follows immediately from Theorem 2.5.

We shall begin the proof of Theorem 2.5 in the next section and com-
plete it in Chapter 6. A stronger version will be given in Appendix D

(Theorem D.5), where we remove the requirement that G′ be locally Lip-
schitz continuous and replace it with mere continuity. Now we show how
it can be used to solve (1.1),(1.2) when (1.79) does not hold. Of course,
then we cannot expect to obtain a minimum for G as we showed before.
However, Theorem 2.5 allows us to obtain a Palais–Smale sequence if we
can find subspaces of H such that (2.25) and (2.26) hold. An example
of this is given by

Theorem 2.6. Assume that (1.78) holds with

1 ≤ β(x) ≤ 2, β(x) �≡ 1, β(x) �≡ 2 a.e. (2.28)

If G(u) is given by (1.63) and G′ is locally Lipschitz continuous, then
there is a u0 ∈ H such that

G′(u0) = 0. (2.29)

In particular, if f(x, t) is continuous in both variables, then u0 is a
solution of (1.1),(1.2) in the usual sense.

Proof. We let N be the subspace of constant functions in H. It is of
dimension one. Let M be the subspace of those functions in H which
are orthogonal to N, that is, functions w ∈ H which satisfy

(w, 1)H =
∫
I

w(x) dx = 0.

I claim that

m0 = inf
M

G > −∞, m1 = sup
N

G < ∞.

For suppose {wk} ⊂ M and G(wk) ↘ m0. If ρk = ‖wk‖H ≤ C, then
by Lemma 1.11, (1.63) and (1.65) imply that m0 > −∞. If ρk → ∞,

let w̃k = wk/ρk. Then ‖w̃k‖H = 1. Consequently, there is a renamed
subsequence such that

w̃k ⇀ w̃ in H (2.30)
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and

w̃k → w̃ uniformly in I (2.31)

(Lemma 1.21). Thus,

2G(wk)/ρ2
k = 1 − 2

∫
I

F (x,wk)
w2

k

w̃2
k dx (2.32)

→ 1 −
∫
I

β(x)w̃2(x) dx

= (1 − ‖w̃‖2
H)

+ (‖w̃‖2
H − 2‖w̃‖2)

+
∫
I

[2 − β(x)]w̃2(x) dx

= A + B + C,

as we saw before. Now, I claim that A,B,C ≥ 0. Since ‖w̃k‖H = 1, we see
that A ≥ 0. We also note that (1.71) implies that B = ‖w̃′‖2−‖w̃‖2 ≥ 0.
The only way the right-hand side of (2.32) can vanish is if A = B = C =
0. If A = 0, we see that w̃ �≡ 0. If B = 0, then w̃ is of the form (1.72). If
w̃ �≡ 0, then a and b cannot both vanish. In such a case, w̃(x) can vanish
at only a finite number of points. Finally, for such a function, if C = 0,
then we must have β(x) ≡ 2 a.e. But this is excluded by hypothesis.
Hence, A,B,C cannot all vanish. This means that the right-hand side of
(2.32) is positive. But this implies that m0 = ∞, an impossibility. Thus,
the ρk must be bounded, and m0 > −∞.

To prove that m1 < ∞, let {uk} be a sequence uk ≡ ck, where |ck| →
∞. Then

2G(uk)/c2k = 2π − 2
∫
I

F (x, uk)/c2k dx → 2π −
∫
I

β(x) dx

=
∫
I

[1 − β(x)] dx < 0

by hypothesis. Thus,

G(uk) → −∞ as |k| → ∞.

Since G is continuous, we see that m1 < ∞.

We can now apply Theorem 2.5 to conclude that there is a sequence
{uk} satisfying (2.27). By (1.37),

(G′(uk), v)H = (uk, v)H − (f(·, uk), v) = o(‖v‖H), ‖v‖H → 0.
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Assume first that

ρk = ‖uk‖H → ∞. (2.33)

Set ũk = uk/ρk. Then ‖ũk‖H = 1, and consequently, by Lemma 1.21,
there is a renamed subsequence such that

ũk ⇀ ũ in H, ũk → ũ uniformly on I. (2.34)

Thus,

(ũk, v)H − (f(x, uk)/ρk, v) → 0, v ∈ H.

As we saw before, this implies in the limit that

(ũ, v)H = (βũ, v), v ∈ H.

Take

ũ = w̃ + γ, v = w̃ − γ, where w̃ ∈ M, γ ∈ N.

Then

([w̃ + γ], [w̃ − γ])H = (β[w̃ + γ], w̃ − γ).

This gives

‖w̃‖2
H − 2πγ2 = (βw̃, w̃) − γ2(β, 1).

We write this as

(‖w̃′‖2 − ‖w̃‖2) +
∫ 2π

0

[2 − β(x)]w̃(x)2 dx + γ2

∫ 2π

0

[β(x) − 1] dx

= A + B + C = 0.

Note that A,B,C are all nonnegative. Since their sum is 0, they must
each vanish. If A = 0, then we must have, in view of Lemma 1.23,

w̃ = a cosx + b sinx.

If a, b are not both 0, then w̃ �= 0 a.e. If B = 0, then [2−β(x)]w̃(x)2 ≡ 0
a.e., and since β(x) �≡ 2, we must have a = b = 0. Hence, w̃(x) ≡ 0. If
C = 0, we must have γ = 0. Hence, ũ(x) ≡ 0.

On the other hand, we also have

2G(uk)/ρ2
k = 1 − 2

∫
I

F (x, uk)/ρ2
k dx → 0.
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Thus,

1 −
∫
I

β(x)ũ2 dx = 0.

This cannot happen if ũ ≡ 0. Thus (2.33) cannot hold, and the ρk are
bounded. Consequently, there is a renamed subsequence such that

uk ⇀ u in H, uk → u uniformly in I (2.35)

(Lemma 1.21). By (2.27),

(G′(uk), v) = (uk, v)H − (f(x, uk), v) → 0, v ∈ H,

and we have in the limit

(u, v)H − (f(x, u), v) = 0, v ∈ H.

Thus, (2.29) holds with u0 = u. Since u ∈ H, it is continuous in I. If
f(x, t) is continuous in both variables, then f(x, u(x)) is continuous in
I. Thus, u′′ = u− f(x, u) in the usual sense by Theorem 1.15. Hence, u
is a solution of (1.1),(1.2).

In order to complete the program, we must find conditions on G which
will imply local Lipschitz continuity of G′. A simple choice is

|f(x, t) − f(x, s)| ≤ K|t− s|, x ∈ I, s, t ∈ R. (2.36)

For then we have∫
I

|f(x, u + h) − f(x, u)| • |v| dx ≤ K

∫
I

|h| • |v| dx ≤ K ‖h‖ • ‖v‖.

Hence,

|(G′(u + h) −G′(u), v)H | ≤ ‖h‖H ‖v‖H + K ‖h‖ • ‖v‖ ≤ C ‖h‖H ‖v‖H ,

yielding

‖G′(u + h) −G′(u)‖H ≤ C ‖h‖H , h ∈ H

(cf. (A.5)).

Can we do better? The answer is yes. In fact, we have

Lemma 2.7. If q < ∞, and f(x, t) satisfies

|f(x, t) − f(x, s)| ≤ C(|t|q + |s|q + 1)|t− s|, x ∈ I, s, t ∈ R, (2.37)
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then G′(u) satisfies

‖G′(u) −G′(v)‖H ≤ C(‖u‖qH + ‖v‖qH + 1)‖u− v‖H , u, v ∈ H.

(2.38)

Proof. It follows from (2.37) that
∫
I

|f(x, u) − f(x, v)| • |h| dx ≤ C

∫
I

(|u|q + |v|q + 1)|u− v| • |h| dx

≤ C′(‖u‖qH + ‖v‖qH + 1)‖u− v‖H‖h‖H .

(2.39)

This implies

|(G′(u) −G′(v), h)H | ≤ ‖(u− v)‖H‖h‖H
+ C ′(‖u‖qH + ‖v‖qH + 1)‖u− v‖H‖h‖H ,

which implies (2.38).

Thus we have

Theorem 2.8. Under hypotheses (1.78), (2.28), and (2.37), if f(x, t)
is continuous in both variables, then there is at least one solution of
(1.1),(1.2).

2.6 A saddle point

In this section we begin the proof of Theorem 2.5. First, we consider
the case needed in the proof of Theorem 2.6. The general case will be
proved later in Chapter 6. We take E = H, M = V, N = W and follow
the proof of Theorem 2.1. Thus, we have the following situation. Space
H splits into the sum of orthogonal subspaces: H = V ⊕ W, where V

represents the constant functions. The functional G is bounded above
on V and below on W. Let

m0 = inf
W

G, m1 = sup
V

G, (2.40)

and suppose that there is no sequence satisfying (2.27). Then there is a
δ > 0 such that

‖G′(u)‖H ≥ δ (2.41)
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whenever

m0 − δ ≤ G(u) ≤ m1 + δ. (2.42)

Once we have this, we try to draw a “curve” from each point (function)
in V along which G decreases at a rate of at least δ. Thus, if σ(t)v is
the curve emanating from v ∈ V, then we have

G(σ(t)v) ≤ G(v) − tδ ≤ m1 − tδ. (2.43)

Hence, if

T > 1 + (m1 −m0)/δ, (2.44)

we have

G(σ(T )v) ≤ m0 − δ, v ∈ V. (2.45)

If σ(T )v intersects W, we have a contradiction of (2.40). This implies
that (2.41) cannot hold in the interval (2.42). We can now conclude that
there is a sequence satisfying (2.27).

However, there are quite a few obstacles that have to be overcome
before we can reach this conclusion. First of all, how do we obtain a
curve such as σ(t)v? Following the reasoning we used in the case of R

2,

we look for a solution of the differential equation

dσ(t)v
dt

= − G′(σ(t)v)
‖G′(σ(t)v)‖H

, t > 0, σ(0)v = v. (2.46)

If we can solve this for 0 ≤ t ≤ T, we will have

dG(σ(t)v)/dt = (G′(σ(t)v), σ′(t)v) = −‖G′(σ(t)v)‖H ≤ −δ. (2.47)

This will give (2.43), and (2.45) will hold for T satisfying (2.44). It is not
obvious that we can solve (2.46) for 0 ≤ t ≤ T. As before, we have to be
concerned with the denominator vanishing before we get to t = T. This
is not too much of a concern, since the vanishing of the denominator
produces a solution of G′(u) = 0. Moreover, the vanishing of the denom-
inator at some point in the interval [0, T ] means that G(σ(t)v) ≤ m0 − δ

at some earlier point. Actually, we can always “adjust” the right-hand
side of (2.46) to avoid this problem. For instance, we can replace (2.46)
with

dσ(t)v
dt

= − G′(σ(t)v)
max[‖G′(σ(t))‖H , δ]

, (2.48)

which will imply (2.45) in any case. However, we have bigger problems.
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We do not know how small δ is, and consequently, T may be very large.
Therefore, we must be able to solve (2.46) for all t ≥ 0. We shall need
the following extension of the well known Picard theorem.

Theorem 2.9. Let h(t, u) be a continuous map from R×H to H, where
H is a Banach space. Assume that for each point (t0, u0) ∈ R × H, there
are constants K,b > 0 such that

‖h(t, u)−h(t,v)‖≤K‖u− v‖, |t−t0|<b, ‖u−u0‖<b, ‖v − u0‖< b.

(2.49)

Assume also that there is a constant M such that

‖h(t, u)‖ ≤ M, t ∈ R, u ∈ H. (2.50)

Then for each u ∈ H there is a unique solution σ(t)u of the equation

dσ(t)u
dt

= h(t, σ(t)u), t ∈ R, σ(0)u = u. (2.51)

Moreover, σ(t)u is a continuous map from R ×H to H.

We shall give the proof of Theorem 2.9 later in Section 2.12. Now we
shall see how it can be used to help us solve our problem. We want to
solve (2.48) for t > 0. If we take

h(u) = − G′(u)
max[‖G′(u)‖H , δ]

, (2.52)

we see that (2.50) holds with M = 1. However, we also need a local
Lipschitz condition of the form

‖h(u) − h(v)‖H ≤ K‖u− v‖H , ‖u− u0‖H < b, ‖v − u0‖H < b

(2.53)

in order to satisfy (2.49). If we can show that

‖G′(u) −G′(v)‖H ≤ K‖u− v‖H , ‖u− u0‖H < b, ‖v − u0‖H < b,

(2.54)

then the numerator in (2.52) will satisfy a local Lipschitz condition. As
we noted in the R

2 case, the same will be true of the entire fraction
because

(a) the norm of a mapping satisfying a Lipschitz condition satisfies
the same condition,

(b) the maximum of two functions satisfying Lipschitz conditions
satisfies a Lipschitz condition and
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(c) the ratio of two functions satisfying Lipschitz conditions satisfies
a Lipschitz condition provided the denominator does not vanish.

Suppose we can prove (2.54). Then Theorem 2.9 tells us that (2.48) can
be solved for all t ∈ R. Moreover,

dG(σ(t)v)/dt = −‖G′(σ(t)v)‖2
H/max[‖G′(σ(t)v)‖H , δ] ≤ 0. (2.55)

Let T satisfy (2.44). If there is a t1 ≤ T such that

G(σ(t1)v) ≤ m0 − δ,

we have

G(σ(T )v) ≤ G(σ(t1)v) ≤ m0 − δ, (2.56)

and (2.45) holds. On the other hand, if

G(σ(t)v) > m0 − δ, 0 ≤ t ≤ T,

then (2.40), (2.41) and (2.55) imply (2.43), and (2.45) holds in this case
as well. Once we know that (2.45) holds, we would like to conclude that
the set S = {σ(T )v : v ∈ V } intersects W. Theorem 2.9 tells us that S

is a continuous curve in H. Let P be the projection of H onto V . We
shall say that the point σ(T )v lies “above” W if Pσ(T )v > 0, and we
shall say that it lies “below” W if Pσ(T )v < 0. There are points in S

which lie above W. For if v ∈ V , then

‖σ(T )v − v‖H ≤
∫ T

0

‖σ′(s)v‖H ds ≤ T.

Consequently,

|Pσ(T )v − v| ≤ T,

and

Pσ(T )v ≥ v − T, Pσ(T )v ≤ v + T.

Thus if v > T, we must have Pσ(T )v > 0. Similarly, if v < −T, we must
have Pσ(T )v < 0. Hence, there are points in S which lie above W and
points which lie below. Since S is a continuous curve, there must be at
least one point σ(T )v1 ∈ S such that Pσ(T )v1 = 0. This means that
σ(T )v1 ∈ W. In view of (2.40), this gives G(σ(T )v1) ≥ m0, contradicting
(2.45).
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Remark 2.10. It remains, among other things, to prove Theorem 2.9.
This will be done in the next few sections. It also remains to complete
the proof of Theorem 2.5. We did start it and finished what was neces-
sary for the proof of Theorem 2.6. The general case will be considered in
Chapter 6. In Appendix D we shall show that the requirement of Lips-
chitz continuity of G′ can be replaced by mere continuity in Theorem 2.5.
This allows us to remove this requirement from Theorem 2.6 and remove
the hypothesis (2.37) from Theorem 2.8. We will deal with this and other
matters and complete the proof of Theorem 2.5 in Chapter 6 and Ap-
pendix D.

2.7 The chain rule

In the previous section we used the formula

dG(σ(t)v)
dt

= (G′(σ(t)v), σ′(t)v).

This is the counterpart of the chain rule from elementary calculus. We
present it formally here.

Lemma 2.11. Let H be a Hilbert space, and let σ(t) be a mapping of
H × R to H which has a derivative with respect to t and such that σ(t)
and σ′(t) are continuous from H × R to H. Let G be a C1 functional
from H to R. Then

g(t) = G(σ(t))

is a continuously differentiable function from R to R and satisfies

g′(t) = (G′(σ(t)), σ′(t)), t ∈ R.

Proof. Since σ(t) is differentiable, we have

[σ(t + h) − σ(t) − hσ′(t)]
h

→ 0 as h → 0

for each fixed t ∈ R. Fix t. Then

σ(t + h) = σ(t) + hσ′(t) + o(h),

where o(h)/h → 0 as h → 0. Since G ∈ C1(H,R), we have

[G(u + v) −G(u) − (G′(u), v)]
‖v‖ → 0 as ‖v‖ → 0.

Thus,

G(u + v) = G(u) + (G′(u), v) + o(‖v‖),
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where o(‖v‖)/‖v‖ → 0 as ‖v‖ → 0. Consequently,

G(σ(t + h)) = G(σ(t) + hσ′(t) + o(h))

= G(σ(t)) + (G′(σ(t)), hσ′(t) + o(h))

+ o(‖hσ′(t) + o(h)‖).

This means that

[g(t + h) − g(t)]
h

− (G′(σ(t)), σ′(t)) =
o(h)
h

→ 0 as h → 0.

This gives the desired result.

2.8 The Banach fixed point theorem

In proving Theorem 2.9 we shall make use of several important results
from functional analysis concerning mappings on Banach spaces. They
will allow us to solve differential equations in such spaces.

Let X be a Banach space, let M �= φ be a closed subset, and let f(x)
be a map from M to itself such that

‖f(x) − f(y)‖ ≤ θ‖x− y‖, x, y ∈ M, (2.57)

for some θ < 1. We have

Theorem 2.12. Under the above hypotheses there is a unique x0 ∈ M

such that

f(x0) = x0. (2.58)

Proof. Let z0 be any point in M. Define

zk+1 = f(zk), k = 0, 1, 2, . . .

Then zk ∈ M for every k, and

zk+1 − zk = f(zk) − f(zk−1).

Hence

‖zk+1 − zk‖ = ‖f(zk) − f(zk−1)‖ ≤ θ ‖zk − zk−1‖
≤ θ2‖zk−1 − zk−2‖
≤ θ3‖zk−2 − zk−3‖

≤ · · · ≤ θk‖z1 − z0‖.
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Therefore, if m < n, then

‖zn − zm‖ ≤ ‖zn − zn−1‖ + ‖zn−1 − zn−2‖ + · · · + ‖zm+1 − zm‖

≤ (θn−1 + θn−2 + · · · + θm)‖z1 − z0‖

≤
∞∑

k=m

θk‖z1 − z0‖ =
θm

1 − θ
‖z1 − z0‖ → 0 as m,n → ∞.

By the completeness of X, zk converges to some limit x0 in X. By (2.57)

||f(zk) − f(x0)‖ ≤ θ‖zk − x0‖ → 0.

Hence

f(x0) ← f(zk) = zk+1 → x0,

showing that x0 is a solution of (2.58). If y0 is another solution, we have

‖y0 − x0‖ = ‖f(y0) − f(x0)‖ ≤ θ‖y0 − x0‖,

which can happen only if y0 = x0. This proves the theorem.

Theorem 2.12 is known as the Banach fixed point theorem or the
contraction mapping principle.

2.9 Picard’s theorem

Banach’s fixed point theorem can be used to prove the following theorem
of Picard.

Theorem 2.13. Let X be a Banach space, and let

B0 = {x ∈ X : ‖x− x0‖ ≤ R0}

and

I0 = {t ∈ R : |t− t0| ≤ T0}.

Assume that g(t, x) is a continuous map of I0 ×B0 into X such that

‖g(t, x) − g(t, y)‖ ≤ K0‖x− y‖, x, y ∈ B0, t ∈ I0 (2.59)

and

‖g(t, x)‖ ≤ M0, x ∈ B0, t ∈ I0. (2.60)

Let T1 be such that

T1 ≤ min(T0, R0/M0), K0T1 < 1. (2.61)



2.9 Picard’s theorem 67

Then there is a unique solution x(t) of

dx(t)
dt

= g(t, x(t)), |t− t0| ≤ T1, x(t0) = x0. (2.62)

Remark 2.14. We deal with mappings from R to X in the same way
that we deal with mappings from R to itself. In particular, continuity,
differentiability, and Riemann integrability are defined in the same way,
and the same theorems hold. In particular, continuous functions are Rie-
mann integrable, and the fundamental theorems of differential and inte-
gral calculus are valid.

We now give the proof of Theorem 2.13.

Proof. First we note that x(t) is a solution of (2.62) iff it is a solution of

x(t) = x0 +
∫ t

t0

g(s, x(s)) ds, t ∈ I1 = {t ∈ R : |t− t0| ≤ T1}. (2.63)

For if x(t) is a solution of (2.62), we can integrate to obtain (2.63). Note
that x(t) will be in B as long as t is in I1 by (2.61). Conversely, if x(t)
satisfies (2.63), it is continuous in t since

x(t + h) − x(t) =
∫ t+h

t

g(s, x(s)) ds,

and consequently,

‖x(t + h) − x(t)‖ ≤ M0|h| → 0 as h → 0.

It is also differentiable since g(s, x(s)) is continuous, and

[x(t + h) − x(t)]/h =
1
h

∫ t+h

t

g(s, x(s)) ds → g(t, x(t)) as h → 0.

Let Y be the Banach space of all continuous functions x(t) from I1 to
X with norm

|||x||| = max
t∈I1

‖x(t)‖. (2.64)

For x(t) ∈ Y, let f(x(t)) be the right-hand side of (2.63), and let

Q = {x(t) ∈ Y : |||x− x̂0||| ≤ R0},

where x̂0(t) ≡ x0, t ∈ I1. If x(t) is in Q, then f(x(t)) satisfies

|||f(x) − x̂0||| ≤
∫ t0+T1

t0

M0 ds ≤ R0.
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Thus f maps Q into Q. Also

|||f(x) − f(y)||| = max
I1

‖
∫ t

t0

[g(s, x(s)) − g(s, y(s))]ds‖

≤ K0

∫ t0+T1

t0

‖x(s) − y(s)‖ ds ≤ K0T1|||x− y|||.

Since K0T1 < 1 by (2.61), we can use Theorem 2.12 to conclude that
there is a unique x(t) ∈ Q such that x(t) = f(x(t)). Hence, x(t) satisfies
(2.63), and therefore (2.62). Since every solution of (2.62) is a solution
of (2.63), the uniqueness follows from Theorem 2.12.

2.10 Continuous dependence of solutions

We now show that the unique solution of (2.62) provided by Theorem
2.13 depends continuously on both t and x0. We denote this solution by
x(t, x0). Thus,

x(t, x0) = x0 +
∫ t

t0

g(s, x(s, x0)) dx,

and

x(t, x1) = x1 +
∫ t

t0

g(s, x(s, x1)) ds,

for x1 ∈ B0. Hence,

‖x(t, x0) − x(t, x1)‖ ≤ ‖x0 − x1‖ +
∫ t

t0

‖g(s, x(s, x0)) − g(s, x(s, x1))‖ ds

≤ ‖x0 − x1‖ + K0

∫ t

t0

‖x(s, x0) − x(s, x1)‖ ds.

Let

w(t) = ‖x(t, x0) − x(t, x1)‖.

Then

w(t) ≤ ‖x0 − x1‖ + K0

∫ t

t0

w(s) ds.

This implies

d

dt

[
e−K0t

∫ t

t0

w(s) ds
]

= e−K0t

[
w(t) −K0

∫ t

t0

w(s) ds
]
≤ e−K0t‖x0 − x1‖
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and

e−K0T

∫ T

t0

w(s) ds ≤ ‖x0 − x1‖
∫ T

t0

e−K0tdt

= ‖x0 − x1‖ [e−K0t0 − e−K0T ]/K0,

where T satisfies

T ≤ min(T0, (R0 − ‖x1‖)/M0), K0T < 1.

It follows that∫ T

t0

w(s) ds ≤ ‖x0 − x1‖ [eK0(T−t0) − 1]/K0,

and

w(t) ≤ eK0(T−t0)‖x0 − x1‖.

Thus we have

Theorem 2.15. The solution of (2.62) obtained in Theorem 2.13 is
continuous in t and x0.

2.11 Continuation of solutions

We now discuss the question concerning the interval in which (2.62) can
be solved. First we note

Lemma 2.16. Assume that g(t, x) is continuous in R × X, and that
x(t) is a solution of

dx(t)
dt

= g(t, x(t)), a ≤ t < b,

while y(t) is a solution of

dy(t)
dt

= g(t, y(t)), b < t ≤ c,

where a < b < c. Assume also that

lim
t↗b

x(t) = lim
t↘b

y(t) = z0.

Let

z(t) = x(t), a ≤ t < b,

z(b) = z0,

z(t) = y(t), b < t ≤ c.
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Then z(t) is a solution of

dz(t)
dt

= g(t, z(t)), a ≤ t ≤ c. (2.65)

Proof. It is quite clear that z(t) is a solution in the intervals a < b, b < c

and that z(t) is continuous in [a, c]. Moreover,

lim
t↗b

dx(t)
dt

= lim
t↗b

g(t, x(t)) = g(b, z0),

and

lim
t↘b

dy(t)
dt

= lim
t↘b

g(t, y(t)) = g(b, z0),

showing that z(t) is continuously differentiable at b and satisfies (2.65).

We also have

Corollary 2.17. Assume that g(t, x) is continuous in R ×X and that
x(t) is a solution of

dx(t)
dt

= g(t, x(t)), a ≤ t < b,

satisfying

lim
t↗b

x(t) = z0.

Assume also that there is a unique solution z(t) of

dz(t)
dt

= g(t, z(t)), a ≤ t ≤ c, z(b) = z0,

where c > b. Then x(t) ≡ z(t) in a ≤ t ≤ b.

Proof. Let

w(t) = x(t), a ≤ t < b,

w(b) = z0,

w(t) = z(t), b < t ≤ c.

By Lemma 2.16, w(t) is a solution of

dw(t)
dt

= g(t, w(t)), a ≤ t ≤ c,

and w(b) = z0. By hypothesis, z(t) is the only solution of this equation
equal to z0 at b. Hence, w(t) ≡ z(t) in [a, c]. Since w(t) ≡ x(t) in [a, b),
the result follows.
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2.12 Extending solutions

We are now able to give the proof of Theorem 2.9.

Proof. By Theorems 2.13 and 2.15 there is an interval |t| < r in which a
unique solution of (2.51) exists and is continuous with respect to both t

and u (with r depending on u). Let T be the supremum of all numbers
m such that (2.51) has a unique solution in [0,m]. Let mk be a sequence
of such m converging to T . If mj < mk, then the solution in [0,mj ]
coincides with that of [0,mk] since such solutions are unique. Thus a
unique solution of (2.51) exists for 0 ≤ t < T. The values σ(mk)u are
uniquely defined for each u ∈ H.

Assume T < ∞. Since

σ(mk)u− σ(mj)u =
∫ mk

mj

h(t, σ(t)u) dt,

we have by (2.50)

‖σ(mk)u− σ(mj)u‖ ≤ M |mk −mj |.

Thus {σ(mk)u} is a Cauchy sequence in H. Since H is complete, σ(mk)u
converges to an element w ∈ H. Moreover, we note that

σ(t)u → w as t → T.

To see this, let ε > 0 be given. Then there is a k such that

‖σ(mk)u− w‖ < ε, M(T −mk) < ε.

Then for mk ≤ t < T,

‖σ(t)u− w‖ ≤ ‖σ(t)u− σ(mk)u‖ + ‖σ(mk)u− w‖

≤ M |t−mk| + ‖σ(mk) − w‖ < 2ε.

We define σ(T )u = w. Then, we have a solution of (2.51) in [0, T ]. By
Theorem 2.13, there is a unique solution of

dσ(t)u
dt

= h(t, σ(t)u), σ(T )u = w (2.66)

in some interval |t − T | < δ. By the uniqueness, the solution of (2.66)
coincides with the solution of (2.51) in the interval (T − δ, T ]. This gives
a solution of (2.51) in the interval [0, T + δ), contradicting the definition
of T. Hence, T = ∞. Similar reasoning applies to the interval (−∞, 0].
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2.13 Resonance

In Theorem 1.27 (cf.(1.79)) we did not allow β(x) ≡ 1 for a good reason.
Consider, for instance the case

2F (x, t) = t2 − t3/2, t > 0,

2F (x, t) = t2 + |t|3/2, t < 0.

For this function

G(c) → ±∞ as c → ±∞.

Consequently, neither method used so far will work because the func-
tional G is unbounded on the constants from both above and below.
Why the difficulty? If we try to solve the linear problem

−u′′ + u = λu,

for functions satisfying (1.2), we note that the only solution is u ≡ 0
unless

λ = n2 + 1, n = 0, ±1, ±2, . . .

For these values of λ, called eigenvalues, there are more solutions, 0,
cosnx, sinnx. Thus, the number of solutions jumps from one to three
when λ hits an eigenvalue. In other words, the number of solutions is
unstable in the neighborhood of an eigenvalue. This instability causes the
nonlinear problem which asymptotically equals a linear problem at an
eigenvalue to become much more delicate than otherwise. We call such
a situation “resonance.” So let us assume that f satisfies (1.78) with
β(x) ≡ 1. Is there any way of attacking the problem? We shall try the
following. Assume that there are constants θ, σ such that 2θ < σ < θ+1,
and

|f(x, t) − t| ≤ C(|t|θ + 1), x ∈ I, t ∈ R, (2.67)

|F (x, t) − 1
2
t2| ≤ C(|t|σ + 1), x ∈ I, t ∈ R, (2.68)

[2F (x, t) − t2]/|t|σ → F±(x) as t → ±∞, (2.69)∫
I

F±(x) dx > 0. (2.70)

We have

Theorem 2.18. In addition to the above hypotheses, assume that (1.78)
holds with β ≡ 1. Then (1.1),(1.2) has at least one solution.
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Proof. First we note that G is bounded from above on V. In fact, we
have

2G(c)/|c|σ =
∫
I

[c2 − 2F (x, c)] dx/|c|σ → −
∫
I

F±(x) dx < 0. (2.71)

Hence,

G(c) → −∞ as |c| → ∞.

On the other hand, G(c) is continuous and bounded on any finite inter-
val. Thus, G is bounded from above on V. In contrast, it is bounded from
below on W. For if wk ∈ W and ρk = ‖wk‖H → ∞, let w̃k = wk/ρk.

Then

2G(wk)/ρ2
k = ‖w̃k‖2

H − 2
∫
I

F (x,wk) dx/ρ2
k

= 1 − ‖w̃k‖2 +
∫
I

[w2
k − 2F (x,wk)] dx/ρ2

k → 1 − ‖w̃‖2,

where we took a renamed subsequence such that w̃k → w̃ weakly in H,
and uniformly in I (Lemma 1.21). But

1 − ‖w̃‖2 = (1 − ‖w̃‖2
H) + (‖w̃′‖2 − ‖w̃‖2) + ‖w̃‖2,

which is nonnegative (cf. (1.71)). The only way it can vanish is if

‖w̃‖H = 1,

and

‖w̃‖ = 0.

The obvious contradiction shows that

G(w) → ∞ as ‖w‖ → ∞, w ∈ W.

From this it follows that G is bounded from below on W. We can now
follow the procedure in the proof of Theorem 2.8. Let m0,m1 be given
by (2.40). Then there is a sequence {uk} ⊂ H such that

G(uk) → a, G′(uk) → 0, (2.72)

where a ∈ [m0,m1]. At this point we must depart from the proof of
Theorem 2.8 because (1.78) will not imply that ũ ≡ 0 in this case. We
must use a different argument. We write uk = vk + wk, where vk ∈
V, wk ∈ W. By (2.72)

(G′(uk), wk)H = ‖w′
k‖2 − (f(·, uk) − uk, wk) = o(‖wk‖H).
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Now by (2.67)

∫
I

[f(x, uk) − uk]wk dx ≤ C

(∫
I

(|uk|θ + 1)2 dx
)1/2

‖wk‖

≤ C ′
(∫

I

(|uk|2θ + 1) dx
)1/2

‖wk‖

≤ C ′′(‖uk‖θ + 1)‖wk‖,

since
∫
I

|uk|2θ dx ≤
(∫

I

|uk|2dx
)θ(∫

I

dx

)1−θ

.

Consequently,

‖w′
k‖2 ≤ C(‖uk‖θ + 1)‖wk‖ + o(‖wk‖H).

In view of (1.71), the same bound holds for ‖wk‖2. Thus

‖wk‖2
H ≤ C(‖uk‖θ + 1)‖wk‖ + o(‖wk‖H). (2.73)

Assume that ρk = ‖uk‖H → ∞, and let ũk = uk/ρk, ṽk = vk/ρk, w̃k =
wk/ρk. Then ‖ũk‖H = 1, and there is a renamed subsequence such that
ũk → ũ weakly in H and uniformly in I (Lemma 1.21). Now (2.73)
implies

‖wk‖H ≤ C(ρθk + 1) + o(1),

and hence, w̃k → 0 in H. This means that ũk → ṽ in H, and ‖ṽ‖H = 1.
But∫

I

[
F (x, uk) −

1
2
u2
k

]
dx/ρσk =

∫
I

[(
F (x, uk) −

1
2
u2
k

)
/|uk|σ

]
|ũk|σ dx

→
∫
ṽ>0

F+(x)|ṽ|σdx +
∫
ṽ<0

F−(x)|ṽ|σ dx

→



|ṽ|σ

∫
I

F+(x) dx, ṽ > 0,

|ṽ|σ
∫
I

F−(x) dx, ṽ < 0,

by (2.68) and (2.69), since ṽ is a nonzero constant. In view of (2.72),

2G(uk)/ρσk = ‖w′
k‖2/ρσk − 2

∫
I

[
F (x, uk) −

1
2
u2
k

]
dx/ρσk → 0.
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But this implies ∫
I

F+(x) dx = 0 or
∫
I

F−(x) dx = 0,

contradicting (2.70). Therefore, we must have ρk ≤ C. Once we know
that the uk are bounded in H, we can now follow the proof of Theorem
2.8 to reach the desired conclusion.

2.14 The question of nontriviality

In the case of Theorems 2.8 and 2.18, we have the same problem that
faced us when we proved Theorem 1.27, namely if f(x, 0) ≡ 0, what
guarantee do we have that the solution provided is not u ≡ 0. Of course,
if f(x, 0) �≡ 0, then we can relax because 0 cannot be a solution of
(1.1),(1.2). But if f(x, 0) ≡ 0, then we have no such guarantee. In the
case of Theorem 1.27 we were able to find a criterion (namely (1.105))
which provides such a guarantee (cf. Theorem 1.31). This was accom-
plished by showing that the minimum obtained by Theorem 1.27 was
less than 0. Since G(0) = 0, this shows that the solution obtained was
not 0. However, this does not work in the case of Theorem 2.8 since
m0 ≤ G(0) ≤ m1 (cf. (2.40)). Thus, in order to guarantee that our so-
lutions are not ≡ 0, we must devise another means of attack. One plan
is as follows. Suppose, in addition to the hypotheses of Theorem 2.8, we
have assumptions which will provide positive constants ε, ρ so that

G(u) ≥ ε, ‖u‖H = ρ, u ∈ H.

Since G(0) = 0, this creates the image of 0 being in a valley surrounded
by mountains of minimum height ε. Now, we maintain that there is a
sequence {uk} ⊂ H such that

G(uk) → c, ε ≤ c ≤ m1, G
′(uk) → 0. (2.74)

With this added help, there is a situation in which we can be sure
that (1.1),(1.2) has a nontrivial solution. In fact, we have

Lemma 2.19. In addition to the hypotheses of Theorem 2.8, assume
that there are positive constants ε, ρ such that

G(u) ≥ ε (2.75)

when

‖u‖H = ρ. (2.76)

Then there is a solution u of (1.1),(1.2) satisfying (2.75).
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Proof. We proceed as in the proof of Theorem 2.8. However, this time
we suppose that (2.41) holds for all u ∈ H satisfying

ε− δ ≤ G(u) ≤ m1 + δ. (2.77)

If we now take

T > 1 + (m1 − ε)/δ, (2.78)

we find that

G(σ(T )v) < ε− δ, v ∈ V. (2.79)

Next, we note that

Pσ(T )v > v − T

as before. Thus, if v > T + ρ, then σ(T )v must be outside the sphere
(2.76). However, if v is close to 0, then G(v) < ε (since G(0) = 0).
By (2.55), G(σ(t)v) cannot increase as t increases. Hence, for such v ∈
V, σ(t)v must remain inside the sphere (2.76) for ever. In particular,
σ(T )v is inside. Since S = {σ(T )v : v ∈ V } is a continuous curve, there
must be at least one point σ(T )v1 ∈ S such that ‖σ(T )v1‖H = ρ. This
means that

G(σ(T )v1) ≥ ε

by (2.75) and (2.76). But this contradicts (2.79) and completes the proof.

Similarly, we have

Lemma 2.20. In addition to the hypotheses of Theorem 2.18 assume
that (2.75) holds when u is on the sphere (2.76). Then (1.1),(1.2) has a
solution satisfying (2.75).

Since the surrounding of the origin by mountains is very helpful, we
would like to find criteria which will ensure that this is the case. We take
up this matter in the next section.

2.15 The mountain pass method

We now want to give sufficient conditions on F (x, t) which will imply
that the origin is surrounded by mountains. This can be done as follows.
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Theorem 2.21. Assume that (1.62) holds and that there is a δ > 0
such that

2F (x, t) ≤ t2, |t| ≤ δ. (2.80)

Then for each positive ρ ≤ δ/2, we have either

(a) there is an ε > 0 such that

G(u) ≥ ε, ‖u‖H = ρ, (2.81)

or

(b) there is a constant t ∈ R such that |t| = ρ/(2π)
1
2 ≤ δ/2, and

f(x, t) ≡ t. (2.82)

Moreover, the constant function v ∈ V satisfying v ≡ t is a solution of
(1.1) and (1.2).

Proof. For each u ∈ H write u = v + w, where v ∈ V, w ∈ W. Then

2G(u) = ‖u‖2
H − 2

∫
I

F (x, u) dx

= ‖u′‖2 −
∫
I

[2F (x, u) − u2] dx

≥ ‖w′‖2 −
∫
|u|>δ

[2F (x, u) − u2] dx.

Now

‖u‖H ≤ ρ =⇒ ‖v‖2 + ‖w‖2
H ≤ ρ2 =⇒ (2π)

1
2 |v| ≤ ρ.

Thus, if ρ ≤ δ/2, then |v| ≤ δ/2. Hence, if

‖u‖H ≤ ρ, |u(x)| ≥ δ,

then

δ ≤ |u(x)| ≤ |v| + |w(x)| ≤ δ/2 + |w(x)|.

Consequently,

δ ≤ |u(x)| ≤ 2|w(x)|.
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Then

2G(u) ≥ ‖w′‖2 − C

∫
|u|>δ

(|u|q+1 + u2 + |u|) dx

≥ ‖w′‖2 − C(1 + δ1−q + δ−q)
∫
|u|>δ

|u|q+1dx

≥ 1
2
‖w‖2

H − C ′
∫

2|w|>δ

|w|q+1 dx

≥ 1
2
‖w‖2

H − C ′′
∫
I

‖w‖q+1
H dx

≥ 1
2
‖w‖2

H − C ′′′‖w‖q+1
H

=
(

1
2
− C ′′′‖w‖q−1

H

)
‖w‖2

H

by Lemma 1.11 and (1.71). Hence,

G(u) ≥ 1
5
‖w‖2

H , ‖u‖H ≤ ρ, (2.83)

for ρ > 0 sufficiently small. For such ρ assume that there is no ε > 0 for
which (2.81) holds. Then there is a {uk} ⊂ H such that ‖uk‖H = ρ and
G(uk) → 0. Write uk = vk +wk, where vk ∈ V, wk ∈ W. Then ‖wk‖H →
0 by (2.83). This means that ‖vk‖H → ρ. Thus, |vk| → ρ/(2π)

1
2 . Since

the constants {vk} are bounded, there is a renamed subsequence such
that vk → v0. Clearly |v0| = ρ/(2π)

1
2 ≤ δ/2, and∫

I

[v2
0 − 2F (x, v0)] dx = G(v0) = 0.

In view of (2.80), F (x, v0) ≡ v2
0 , and v0 is a minimum point of t2 −

2F (x, t) in |t| < δ. Hence, the derivative of t2 − 2F (x, t) with respect
to t must vanish at t = v0. This gives f(x, v0) ≡ v0. Since ρ was any
sufficiently small constant, we see that (b) holds. This completes the
proof.

We note that (b) implies that every constant function v ∈ V satisfying
(2.82) is a solution of G′(v) = 0. We therefore have

Corollary 2.22. Under the hypotheses of Theorem 2.21, either(a) holds
for all ρ > 0 sufficiently small, or (1.1),(1.2) has an infinite number of
solutions.

We are now able to prove
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Theorem 2.23. Assume that (1.78), (2.28), (2.37), and (2.80) hold.
Then there is a nontrivial solution of (1.1) and (1.2).

Proof. By Corollary 2.22, either (2.81) holds for some positive constants
ε, ρ, or (1.1),(1.2) has an infinite number of solutions. Thus, we may
assume that (2.81) holds. Then by Lemma 2.19 there is a solution of
(1.1),(1.2) satisfying (2.75). But such a solution cannot be trivial since
G(0) = 0.

2.16 Other intervals for asymptotic limits

Suppose f(x, t) satisfies (1.78), but β(x) does not satisfy (2.28). Are
there other intervals (a, b) such that a solution of (1.1),(1.2) can be
found when a ≤ β(x) ≤ b? We are going to show that this is indeed the
case. In fact we have

Theorem 2.24. Let n be an integer ≥ 0. Assume that (1.78) holds with
β(x) satisfying

1 + n2 ≤ β(x) ≤ 1 + (n + 1)2 1 + n2 �≡ β(x) �≡ 1 + (n + 1)2. (2.84)

If (2.37) holds, then (1.1),(1.2) has a solution.

Proof. First, we note by Lemma 1.9, (1.76), and (1.77), that

‖u‖2
H =

∑
(1 + k2)|αk|2, u ∈ H, (2.85)

where the αk are given by (1.43) and (1.44). Let

N = {u ∈ H : αk = 0 for |k| > n}.

Thus,

‖u‖2
H =

∑
|k|≤n

(1 + k2)|αk|2 ≤ (1 + n2)‖u‖2, u ∈ N. (2.86)

Let

M = {u ∈ H : αk = 0 for |k| ≤ n}.

In this case,

‖u‖2
H =

∑
|k|≥n+1

(1 + k2)|αk|2 ≥ (1 + (n + 1)2)‖u‖2, u ∈ M. (2.87)

Note that M,N are closed subspaces of H and that M = N⊥. Note also
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that N is finite dimensional. Next, we consider the functional (1.63) and
show that

G(v) → −∞ as ‖v‖H → ∞, v ∈ N, (2.88)

and

G(w) → ∞ as ‖w‖H → ∞, w ∈ M. (2.89)

Assuming these for the moment, we note that they imply

inf
M

G > −∞; sup
N

G < ∞. (2.90)

This is easily seen from the fact that (2.89) implies that there is an
R > 0 such that

G(w) > 0, ‖w‖H > R, w ∈ M.

Consequently, if the first statement in (2.90) were false, there would be
a sequence satisfying

G(wk) → −∞, ‖wk‖H ≤ R, wk ∈ H.

But this would imply that there is a renamed subsequence converging
uniformly to a limit w0 in I. Thus,

G(wk) ≥ −
∫
I

F (x,wk)dx → −
∫
I

F (x,w0) dx > −∞.

This contradiction verifies the first statement in (2.90). The second is
verified similarly by (2.88).

We are now in a position to apply Theorem 2.5. This produces a
sequence in H satisfying

G(uk) → c, G′(uk) → 0, (2.91)

where c is finite. In particular, this implies

(G′(uk), v)H = (uk, v)H − (f(·, uk), v) = o(‖v‖H), ‖v‖H → 0. (2.92)

Assume first that

ρk = ‖uk‖H → ∞. (2.93)

Set ũk = uk/ρk. Then ‖ũk‖H = 1, and consequently, by Lemma 1.21,
there is a renamed subsequence satisfying (2.34). Thus

(ũk, v)H − (f(·, uk)/ρk, v) → 0, v ∈ H. (2.94)
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As we saw before, this implies in the limit that

(ũ, v)H = (βũ, v), v ∈ H. (2.95)

Let

ũ = w̃ + ṽ, û = w̃ − ṽ. (2.96)

Then

(ũ, û)H = (βũ, û).

This implies

‖w̃‖2
H − ‖ṽ‖2

H = (β[w̃ + ṽ], w̃ − ṽ) = (βw̃, w̃) − (βṽ, ṽ),

since

(βṽ, w̃) = (βw̃, ṽ) =
∫
I

β(x)ṽ(x)w̃(x) dx.

Thus,

‖w̃‖2
H − (βw̃, w̃) = ‖ṽ‖2

H − (βṽ, ṽ).

This becomes
(
‖w̃‖2

H − (1 + (n + 1)2)‖w̃‖2
)

+
∫
I

[1 + (n + 1)2 − β(x)]w̃2 dx

=
(
‖ṽ‖2

H − (1 + n2)‖ṽ‖2
)

+
∫
I

[1 + n2 − β(x)]ṽ2 dx.

We write this as A + B = C + D. In view of (2.84), (2.86) and (2.87),
A ≥ 0, B ≥ 0, C ≤ 0, D ≤ 0. But this implies A = B = C = D = 0. If

ũ =
∑

α̃kϕk,

then in view of (2.87) the only way A can vanish is if

w̃ = a cos (n + 1)x + b sin (n + 1)x.

If a and b are not both 0, then this function can vanish only at a finite
number of points. But then, B cannot vanish in view of (2.84). Hence,
w̃ ≡ 0. Similar reasoning shows that C = D = 0 implies that ṽ ≡ 0. On
the other hand, (2.91) implies

2G(uk)/ρ2
k = ‖ũk‖2

H − 2
∫
I

F (x, ũk)dx/ρ2
k → 1 − 2

∫
I

β(x)ũ2dx = 0,

from which we conclude that ũ �≡ 0. This contradiction shows that the
assumption (2.93) is incorrect. Once this is known, we can conclude that
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there is a renamed subsequence such that (2.35) holds (Lemma 1.21). It
then follows from (2.92) that

(u, v)H − (f(·, u), v) = 0, v ∈ H. (2.97)

It remains to prove (2.88) and (2.89). Let {wk} ⊂ M be any sequence
such that ρk = ‖wk‖ → ∞. Let w̃k = wk/ρk. Then ‖w̃k‖H = 1. Thus,
there is a renamed subsequence such that (2.30) and (2.31) hold. This
implies

2G(wk)/ρ2
k = 1 − 2

∫
I

f(x,wk)
w2

k

w̃2
k dx → 1 −

∫
I

β(x)w̃2(x)dx

≥ (1 − ‖w̃‖2
H) + (‖w̃‖2

H − (1 + (n + 1)2)‖w̃‖2)

+
∫
I

[1 + (n + 1)2 − β(x)]w̃2(x) dx

= A + B + C.

As before, we note that A ≥ 0, B ≥ 0, C ≥ 0. The only way G(wk)
can fail to become infinite is if A = B = C = 0. As before, B = C = 0
implies that w̃ ≡ 0. But this contradicts the fact that A = 0. Thus,
G(wk) → ∞ for each such sequence. This proves (2.89). The limit (2.88)
is proved in a similar fashion. This completes the proof of Theorem 2.24.

We also have

Theorem 2.25. If, in addition, (2.80) holds, then (1.1),(1.2) has a
nontrivial solution.

Proof. Follow the proof of Theorem 2.23.

2.17 Super-linear problems

When f(x, t) satisfies (1.35), we refer to problem (1.1),(1.2) as sub-linear.
If f(x, t) does not satisfy (1.35), we call problem (1.1),(1.2) super-linear.
As we saw in Theorem 1.20, assumption (1.62) will make the functional
G(u) given by (1.63) continuous and have a continuous derivative on H.

We now come to a situation which causes a serious departure from the
sub-linear case. In that case we assumed (1.78) with β(x) having certain
properties. From these properties we were able to infer that either G is
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bounded from below (Theorem 1.27), or (2.40) holds with m0,m1 finite.
If (1.78) does not hold, these configurations are not true. We must look
for another “geometry.” The simplest is the one we used in connection
with nontriviality. If we can show that 0 is in a “valley” surrounded by
“mountains” and that there are villages beyond the mountains, then we
can adapt to this situation the splitting subspaces method that we used
before.

Suppose we can show that

G(u) ≥ ε, ‖u‖H = ρ, (2.98)

holds for some positive ε, ρ, and that G is bounded from above on
V1 = {v ∈ V : v > 0}. Now, G(0) = 0. Hence, 0 would be in a val-
ley surrounded by mountains. If we can draw a curve of bounded length
from each v ∈ V1 along which G decreases and such that (a) the endpoint
of each curve depends continuously on the beginning point and (b) G is
less than ε (the height of the mountains) at the endpoint of each curve,
then we will have the desired contradiction.

The reason is simple. Since G decreases along the curves and G(0) = 0,
curves emanating from points in V1 near 0 will be trapped inside the
mountain sphere ‖u‖H = ρ. Moreover, there will be points in V1 so far
away from the origin that the curves emanating from them will remain
outside the sphere ‖u‖H = ρ. As before, the continuity of the endpoint
curve will imply that there is an endpoint on the sphere, providing the
contradiction.

We now need three sets of hypotheses; (a) those that will imply that
(2.98) holds, (b) those that imply that G is bounded from above on V1,
and (c) those that imply that for each v ∈ V1, there is a curve of bounded
length emanating from v such that the endpoint depends continuously
on v and G < ε at the endpoint. In the next section we shall give the
details.

2.18 A general mountain pass theorem

In proving our theorems we have been using ideas which can be combined
into a general theorem. We have

Theorem 2.26. Let G be a continuously differentiable functional on
a Hilbert space H such that G′(u) satisfies a local Lipschitz condition.
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Assume that G(0) = 0 and that there are positive numbers ε, ρ such that

G(u) ≥ ε when ‖u‖ = ρ. (2.99)

Assume also that there is a nonzero element ϕ0 ∈ H such that

G(rϕ0) ≤ C0, r > 0, (2.100)

for some constant C0. Then there is a sequence {uk} ⊂ H such that

G(uk) → c, ε ≤ c ≤ C0, G′(uk) → 0. (2.101)

Proof. We have essentially proved this theorem already, so we will merely
sketch the main points. If the conclusion (2.101) were not true, there
would be a positive number δ such that

‖G′(u)‖ ≥ δ when ε− δ ≤ G(u) ≤ C0 + δ. (2.102)

From each v = rϕ0, r > 0, construct a curve σ(t)v such that σ(0)v = v

and

dG(σ(t)v)/dt ≤ −δ when ε− δ ≤ G(σ(t)v) ≤ C0 + δ,

and

dG(σ(t)v)/dt ≤ 0

otherwise. We do this by applying Theorem 2.9 to the equation (2.48)
using the fact that G′(u) is locally Lipschitz continuous. If we take

T > 1 + (C0 − ε)/δ,

we see that

G(σ(T )v) ≤ ε− δ

for every v. As we showed before, the endpoints σ(T )v depend contin-
uously on v and form a continuous curve. Since G decreases along each
curve, the endpoints of those v near 0 cannot escape from the ball if the
radius is ρ, while there are points v so far away that their end points
never reach the ball. Hence there must be an endpoint σ(T )v such that

‖σ(T )v‖ = ρ.

But this is impossible, since

G(σ(T )v) ≤ ε− δ

and

G(u) ≥ ε when ‖u‖ = ρ.

This contradiction proves the theorem.
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2.19 The Palais–Smale condition

In solving the problem (1.1),(1.2), our approach has been to find a se-
quence {uk} such that (2.27) holds and then show that this implies that
{uk} has a convergent subsequence (i.e., the functional (1.63) satisfies
the PS condition). So far we have shown this when f(x, t) satisfies (1.78)
or the hypotheses of Theorem 1.37.

We can now combine Theorems 2.21 and 1.37 to solve a super-linear
problem. We have

Theorem 2.27. Assume that either

t2 − 2F (x, t) ≤ W (x) ∈ L1(Ω), t > 0 (2.103)

or

t2 − 2F (x, t) ≤ W (x) ∈ L1(Ω), t < 0. (2.104)

Then under the hypotheses of Theorems 2.21, 1.37, and Lemma 2.7,
problem (1.1),(1.2) has at least one nontrivial solution.

Proof. Use Theorem 2.26. We must show that (2.100) holds. To show
this, let ϕ(x) ≡ ±1, depending on whether (2.103) or (2.104) holds. Then

2G(kϕ) =
∫
I

[k2 − 2F (x,±k)] dx ≤
∫
I

W (x) dx < ∞.

This completes the proof.

2.20 Exercises

1. Why does

x2
k + y2

k ≤ C

imply that there is a renamed subsequence such that

xk → x0, yk → y0?

2. Show that ∇f satisfies a local Lipschitz condition if f ∈C2(Rn,R).

3. Show that the modulus of a function satisfying a local Lipschitz
condition satisfies a local Lipschitz condition.

4. Show that the ratio of two functions on R
n satisfying local Lips-

chitz conditions satisfies a local Lipschitz condition provided that
the denominator does not vanish.



86 Critical points

5. Prove (2.15).

6. Why is there a renamed subsequence such that Txk
→ T̃ in the proof

of Theorem 2.1?

7. Follow the proof of Theorem 2.1 replacing (2.11) with (2.24).

8. Prove: If f ∈ C1(Rn,R) and

∇f(p) • γ(p) = |∇f(p)| ≥ δ,

there is a neighborhood N(p) of p such that

∇f(q) • γ(p) ≥ δ

2
, q ∈ N(p).

9. Why was it assumed that the diameter of each neighborhood N(p)
was less than one in the construction of V following Lemma 2.3?

10. Show that if Ñ(p) is a small neighborhood of p, then

Ñ(p) ∩N(pk) �= φ

for only a finite number of pk. Why do we need Ñ(p) to be small?

11. Show that ψk is locally Lipschitz continuous.

12. Show that (2.39) implies (2.38).

13. Show that the set Y of all continuous functions x(t) from I1 to X

with norm

|||x||| = max
t∈I1

‖x(t)‖ (2.105)

is a Banach space.

14. Prove the statements in the remark following Theorem 2.13.

15. If T < ∞, why do we obtain a solution of (2.51) in [0, T ] in the proof
of Theorem 2.9 in Section 2.12?

16. Show that ∫
I

[w2
k − 2F (x,wk)] dx/ρ2

k → 0 as k → ∞

in the proof of Theorem 2.18.

17. Show that Theorem 2.18 applies to problem (1.1),(1.2) when

2F (x, t) = t2 + |t|3/2, t ∈ R.
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Boundary value problems

3.1 Introduction

Until now we have studied problems for periodic functions. However,
there are many problems arising from applications which search for func-
tions satisfying boundary conditions. These functions are not required
to be periodic, but their values are prescribed on the boundary of the
region under consideration. In dealing with such problems, we are un-
able to use some of the tools which helped us in the periodic case (e.g.,
Fourier series). Consequently, we must search for other means of solving
such problems. The spaces we shall use will be different to adjust to the
new situations. The methods will change as well as the outcomes.

3.2 The Dirichlet problem

Let us change problem (1.1), (1.2) slightly. Suppose we want to solve

−u′′ + u = f(x, u(x)), x ∈ Ω = (a, b), (3.1)

under the condition

u(a) = u(b) = 0. (3.2)

We assume that f(x, t) satisfies (1.62). We must make some changes
from the periodic case. We shall use the set

C1
0 (Ω) = {u ∈ C1(Ω̄) : u(a) = u(b) = 0}.

Here, C1(Ω̄) denotes the set of continuously differentiable functions on
Ω̄; no periodicity is required. We let H1

0 = H1
0 (Ω) be the completion of

C1
0 (Ω) with respect to the norm given by

‖u‖2
H = ‖u‖2 + ‖u′‖2.

87
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The corresponding scalar product is given by

(u, v)H = (u, v) + (u′, v′),

where

(u, v) =
∫ b

a

u(x)v(x)dx.

The question of completing a normed vector space arose before with
respect to the Hilbert space H. We will have to address it here as well.
As we saw in the case of periodic functions, we shall need the concept
of a weak derivative. Here it will differ slightly from that for periodic
functions. Before we proceed we shall need some of the results of the
next two sections.

3.3 Mollifiers

Let j(x) be an infinitely differentiable function on R
n such that j(x) > 0

for |x| < 1, j(x) = 0 for |x| ≥ 1, and∫
j(x)dx = 1. (3.3)

An example of such a function is

j(x) =

{
ae−1/(1−|x|2), |x| < 1,

0, |x| ≥ 1,

where the constant a is suitably chosen. For u ∈ Lp = Lp(Rn), p ≥ 1,
we define

Jεu(x) =
∫

jε(x− y)u(y) dy =
∫

j(z)u(x− εz) dz, (3.4)

where

jε(x) = ε−nj(x/ε).

We shall prove

|Jεu|p ≤ |u|p, u ∈ Lp, (3.5)

and

|Jεu− u|p → 0, u ∈ Lp. (3.6)

Recall that

|u|p =
(∫

|u(x)|pdx
)1/p

.
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In proving these statements, note that

∫
jε(x) dx = 1.

By (3.4) and Hölder’s inequality (Theorem B.23),

|Jεu(x)| ≤
∫

[jε(x− y)1/p|u(y)|] jε(x− y)1/p
′
dy

≤
(∫

jε(x− y)|u(y)|pdy
)1/p (∫

jε(x− y) dy
)1/p′

,

where

1
p

+
1
p′

= 1.

Hence

|Jεu(x)|p ≤
∫

jε(x− y)|u(y)|pdy.

Integrating with respect to x and using Fubini’s theorem (Theorem
B.26), we obtain

∫
|Jεu(x)|pdx ≤

∫ [∫
jε(x− y)|u(y)|pdy

]
dx

=
∫ [∫

jε(x− y) dx
]
|u(y)|pdy

= |u|pp.

This gives (3.5). In proving (3.6), assume first that u is continuous. Let
δ > 0 be given, and take R so large that

∫
|x|>R−1

|u(x)|pdx < δp.

On the set |x| ≤ R+1, the function u(x) is uniformly continuous. Hence,
there is an ε > 0 such that ε < 1 and

|u(x + y) − u(x)| < δ/Rn/p, |x| < R, |y| < ε.
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Consequently,

|Jεu(x) − u(x)|p =
∣∣∣∣
∫

j(z)1/p[u(x− εz) − u(x)]j(z)1/p
′
dz

∣∣∣∣
p

≤
∫

j(z)|u(x− εz) − u(x)|pdz

≤




∫
j(z)δp/Rndz, |x| < R,∫
j(z)(|u(x− εz)| + |u(x)|)pdz. |x| > R

Hence,∫
|Jεu(x) − u(x)|pdx ≤

∫
|x|<R

∫
j(z)δp/Rndz dx

+
∫ ∫

|x|>R

j(z)(|u(x− εz)| + |u(x)|)pdx dz

≤ 2nδp + 2p+1

∫
|x|>R−1

|u(x)|pdx

≤ (2n + 2p+1)δp.

Since δ was arbitrary, we see that (3.6) holds for continuous functions
in Lp(Rn). If u ∈ Lp(Rn), then for each δ > 0 there is a continuous
function v ∈ Lp(Rn) such that |u− v|p < δ. Thus,

|Jεu− u|p ≤ |Jε(u− v)|p + |Jεv − v|p + |v − u|p ≤ δ + δ + δ,

for ε sufficiently small. This proves (3.6).

3.4 Test functions

We let C∞
0 denote the set of infinitely differentiable functions with com-

pact supports in R
n. This means that they vanish for |x| large. The

function j(x) described in the previous section is such a function. Thus,
C∞

0 is not empty. In fact, we shall prove

Theorem 3.1. For 1 ≤ p < ∞, C∞
0 is dense in Lp = Lp(Rn).

Proof. Let u be any function in Lp, and take R so large that |u−uR|p < δ,

where δ > 0 is given and

uR(x) =

{
u(x), |x| ≤ R

0, |x| > R.
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Then JεuR ∈ C∞
0 by (3.4). Moreover, by (3.6) we can take ε > 0 so

small that

|JεuR − uR|p < δ.

Thus

|JεuR − u|p ≤ |JεuR − uR|p + |uR − u|p < 2δ.

This proves the theorem.

For any open set Ω ⊂ R
n, we let C∞

0 (Ω) denote the set of infinitely
differentiable functions with compact supports in Ω, that is, functions
in C∞

0 which vanish outside Ω and near ∂Ω. We shall show that C∞
0 (Ω)

is not empty for any open set Ω. In fact, we have

Theorem 3.2. For 1 ≤ p < ∞, C∞
0 (Ω) is dense in Lp(Ω).

Proof. Let u be any function in Lp(Ω). For x ∈ R
n, let

d(x, ∂Ω) = min
y∈∂Ω

|x− y|

be the distance from x to ∂Ω. Let

uR(x) =

{
u(x), |x| ≤ R, x ∈ Ω, d(x, ∂Ω) ≥ 1/R,

0, otherwise.

We note that

|u− uR|p → 0 as R → ∞.

To see this, note that

|u(x) − uR(x)| ≤ |u(x)|, x ∈ Ω,

and

uR(x) → u(x), x ∈ Ω.

Apply the Lebesgue dominated convergence theorem (Theorem B.18).
Let δ > 0 be given. Take R so large that |u − uR|p < δ. For ε > 0
sufficiently small, JεuR ∈ C∞

0 (Ω), and we can take it so small that
|JεuR − uR|p < δ. Thus

|JεuR − u|p ≤ |JεuR − uR|p + |uR − u|p < 2δ.

This completes the proof.
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3.5 Differentiability

We return to the one dimensional case Ω = (a, b) ∈ R. A corollary of
Theorem 3.2 is

Lemma 3.3. The set C1
0(Ω) is dense in L2(Ω). Hence, if h ∈ L2(Ω)

and ∫
h(x)ϕ(x) dx = 0, ϕ ∈ C∞

0 (Ω),

then h(x) = 0 a.e.

This will be important in defining a weak derivative. We shall say that
h ∈ L2(Ω) is a weak derivative of u ∈ L2(Ω) if

(u, ϕ′) = −(h, ϕ), ϕ ∈ C1
0 (Ω). (3.7)

Lemma 3.3 tells us that weak derivatives are unique. For if h1 were
another, we would have

(h− h1, ϕ) = 0, ϕ ∈ C1
0 (Ω).

The density of C1
0 (Ω) would then show that h = h1 a.e.

The proof of Lemma 3.3 is easily given.

Proof. By Theorem 3.2, there is a sequence {ϕk(x)} ⊂ C∞
0 (Ω) converg-

ing to h(x) in L2(Ω). Then,∫
h(x)ϕk(x) dx = 0, k = 1, 2, . . .

In the limit we have ∫
|h(x)|2 dx = 0,

which implies our conclusion.

We want H1
0 (Ω) to be the smallest Hilbert space containing C1

0 (Ω) using
the norm ‖u‖H . To this end, we let H1

0 = H1
0 (Ω) be the set of those

u ∈ L2(Ω) such that there is an h ∈ L2(Ω) and a sequence {uk} ⊂ C1
0 (Ω)

such that

uk → u, u′
k → h in L2(Ω). (3.8)

Not every function in L2(Ω) has a weak derivative, but we have

Lemma 3.4. Every function in H1
0 (Ω) has a weak derivative.
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Proof. If u ∈ H1
0 (Ω), then there is a sequence {uk} ⊂ C1

0 (Ω) such that

‖uk − u‖H → 0.

Thus uk → u in L2(Ω) and {u′
k} is a Cauchy sequence in L2(Ω). Hence,

there is an h ∈ L2(Ω) such that u′
k → h in L2(Ω). Then,

(uk, ϕ
′) = −(u′

k, ϕ), ϕ ∈ C1
0(Ω).

In the limit this gives (3.7).

It follows from Lemma 3.4 that the function h in the definition (3.8) is
the weak derivative of u; it will be denoted by u′. We shall need

Theorem 3.5. The space H1
0 (Ω) is complete.

Proof. Suppose {uk} is a Cauchy sequence in H1
0 (Ω). Then there are

functions u, h ∈ L2(Ω) such that (3.8) holds. Since each uk ∈ H1
0 (Ω),

there is a vk ∈ C1
0 (Ω) such that

‖vk − uk‖ <
1
k
, ‖v′k − u′

k‖ <
1
k
.

Thus,

‖vk−u‖ ≤ ‖vk−uk‖+‖uk−u‖ → 0, ‖v′k−h‖ ≤ ‖v′k−u′
k‖+‖u′

k−h‖ → 0.

Hence, u ∈ H1
0 (Ω) and h = u′ a.e.

Next we have

Theorem 3.6. The space H1
0 ⊂ C(Ω̄) and

|u(x)| ≤ min(|x− a| 12 , |b− x| 12 )‖u′‖, u ∈ H1
0 . (3.9)

Proof. First assume that u ∈ C1
0 (Ω). Then

|u(x)| =
∣∣∣∣
∫ x

a

u′(t)dt
∣∣∣∣ ≤ (x− a)

1
2 ‖u′‖,

and

|u(x)| =

∣∣∣∣∣
∫ b

x

u′(t) dt

∣∣∣∣∣ ≤ (b− x)
1
2 ‖u′‖.

This gives (3.9). Now if u ∈ H1
0 , there is a sequence {uk} ⊂ C1

0 (Ω)
converging to u in H1

0 (definition). By inequality (3.9), uk converges
uniformly to a limit in C(Ω̄) which must coincide with u(x) a.e. More-
over, u′

k converges to u′ in L2(Ω). By inequality (3.9),

|uk(x)| ≤ min(|x− a| 12 , |b− x| 12 )‖u′
k‖,

and in the limit the inequality applies to u(x) itself.
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Next we have

Theorem 3.7. If u ∈ L2(Ω) has a weak derivative h ∈ L2(Ω), then
u ∈ C(Ω). If h ∈ C(Ω), then u ∈ C1(Ω), and h is its derivative in the
usual sense.

Proof. Let η > 0 be given, and let (a′, b′) = Ω′ ⊂ Ω be an open interval
such that d(Ω′, ∂Ω) = min(b− b′, a′ − a) > η. For ε < η and x ∈ Ω′, we
note that jε(x− y) as a function of y is in C∞

0 (Ω). Thus

Dx(Jεu) =
∫

Dxjε(x− y)u(y) dy

= −
∫

Dyjε(x− y)u(y) dy

=
∫

jε(x− y)h(y) dy

= Jεh(x) → h(x) in L2(Ω′),

where Dx = ∂/∂x. Since u ∈ L2(Ω), we know that

Jεu(x) → u(x) in L2(Ω).

This implies that there is a sequence {εk} such that εk → 0 and

Jεku(x) → u(x) a.e., x ∈ Ω

(Theorem B.25). Let M ⊂ Ω′ be the set where

Jεku(x) → u(x), x ∈ M.

Then the set Ω′\M has measure zero. Thus,

Jεku(x) − Jεku(x′) =
∫ x

x′
Dt(Jεku(t)) dt →

∫ x

x′
h(t) dt, x, x′ ∈ M.

Consequently,

u(x) − u(x′) =
∫ x

x′
h(t) dt, x, x′ ∈ M. (3.10)

Fix x′ ∈ M and define

ũ(x) = u(x′) +
∫ x

x′
h(t) dt, x ∈ Ω′.

The right-hand side is continuous on Ω′. Thus, u(x) is a.e. equal to a
continuous function ũ(x) on Ω′. By correcting it on a set of measure 0,
we can make u(x) continuous there. Since η was arbitrary, we see that
u(x) is continuous on the whole of Ω.
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If h(t) ∈ C(Ω), then u(x) is differentiable and

u′(x) = h(x), x ∈ Ω′.

Since η was arbitrary, the result follows.

As a result we have

Theorem 3.8. If u ∈ H1
0 , f ∈ L2(Ω) and

(u, v)H = (f, v), v ∈ C1
0 (Ω), (3.11)

then u′ is continuous in Ω and is the derivative of u in the usual sense.
If f ∈ C(Ω), then u′ is differentiable in the usual sense and satisfies
u′′ = u− f in Ω.

Proof. We see from (3.11) that

(u′, v′) = −(u− f, v), v ∈ C1
0(Ω).

Therefore, u′ has a weak derivative equal to u−f. By Theorem 3.7, u′ is
continuous in Ω and is the derivative of u in the usual sense. If f ∈ C(Ω)
then u−f ∈ C(Ω), and u′ is differentiable in the usual sense and satisfies
u′′ = u− f in Ω.

Corresponding to Lemma 1.9 we have

Lemma 3.9. If I = [0, π] and u(x) ∈ L2(I), then

‖u−
n∑

k=1

bk sin kx‖ → 0 as n → ∞ (3.12)

and

‖u‖2 =
π

2

∞∑
k=1

b2k, (3.13)

where

bk =
2
π

∫ π

0

u(x) sin kx dx, k = 1, 2, . . . (3.14)

Proof. Define

ũ =

{
u(x), 0 ≤ x ≤ π,

−u(−x), −π ≤ x < 0.

Then ũ is an odd function in Ĩ = [−π, π]:

ũ(−x) = −ũ(x), x ∈ Ĩ .
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By Lemma 1.9,

‖ũ−
∑
|k|≤n

α̃kϕk‖ → 0,

where ϕk is given by (1.44),

α̃k = (ũ, ϕ̄k) =
1√
2π

∫ π

−π
ũ(t)e−iktdt,

and the norm is that of L2(−π, π). Since ũ is odd,
∫ 0

−π
ũ(t)e−iktdt = −

∫ π

0

u(s)eiksds.

Hence,

α̃k =
1√
2π

∫ π

0

u(t)[e−ikt − eikt]dt = − 2i√
2π

∫ π

0

u(t) sin kt dt.

Consequently,

α̃kϕk + α̃−kϕ−k = − 2i√
2π

∫ π

0

u(t) sin kt dt ϕk

+
2i√
2π

∫ π

0

u(t) sin kt dt ϕ−k

= − 2i
2π

∫ π

0

u(t) sin kt dt (i sin kt)

+
2i
2π

∫ π

0

u(t) sin kt dt (−i sin kt)

=
4
2π

∫ π

0

u(t) sin kt dt sin kx

= bk sin kx.

Thus,
∑
|k|≤n

α̃kϕk =
n∑

k=1

bk sin kx,

and

‖ũ−
n∑

k=1

bk sin kx‖ → 0 as n → ∞,

where the norm is that of L2(−π, π). This implies (3.12) with the norm
of L2(0, π) and completes the proof. Inequality (3.13) follows from (3.12)
and the fact that the functions sin kx are orthonormal in L2(Ω).



3.5 Differentiability 97

Lemma 3.10. If u ∈ C(R) has a weak derivative u′ ∈ L2(Ω) and sat-
isfies

u(x) ≡ 0, x ≤ a + ε, x ≥ b− ε

for some ε > 0, then u ∈ H1
0 (Ω).

Proof. If δ < ε, then

Jδu(x) ∈ C∞
0 (Ω) ⊂ C1

0(Ω).

This follows from the fact that

Jδu(x) = 0, x ≤ a + ε− δ, x ≥ b− ε + δ.

By (3.6),

Jδu → u in L2(Ω).

Moreover, if a+ ε ≤ x ≤ b− ε, then jδ(x− y) ∈ C∞
0 (Ω) as a function of

y. Thus

J ′
δu(x) =

∫
∂

∂x
jδ(x− y)u(y) dy

= −
∫

∂

∂y
jδ(x− y)u(y) dy

=
∫

jδ(x− y)u′(y) dy

= Jδu
′(x) → u′(x) in L2(Ω).

Therefore, u ∈ H1
0 (Ω) and

Jδu → u in H1
0 (Ω).

Lemma 3.11. If u ∈ C(R) has a weak derivative u′ ∈ L2(Ω) and sat-
isfies

u(x) ≡ 0, x ≤ a, x ≥ b,

then u ∈ H1
0 (Ω).

Proof. We may assume that a = 0. For 0 < ε < b/2, let

xε =




0, 0 ≤ x ≤ ε,

b(x− ε)/(b− 2ε), ε ≤ x ≤ b− ε,

b, b− ε ≤ x ≤ b.



98 Boundary value problems

Then

xε − x → 0 as ε → 0, uniformly in Ω̄.

If h ∈ C(Ω̄), then

hε(x) = h(xε) → h(x) as ε → 0, uniformly in Ω̄.

If h ∈ L2(Ω), then

‖hε‖2 =
∫ b−ε

ε

|h(xε)|2dx

=
b− 2ε

b

∫ b

0

|h(xε)|2dxε

=
b− 2ε

b

∫ b

0

|h(y)|2dy

→ ‖h‖2 as ε → 0.

Moreover,

hε(x) → h(x) in L2(Ω) as ε → 0.

To see this, note that for any δ > 0, there is a g ∈ C(Ω̄) such that

‖g − h‖ < δ.

Take ε so small that

‖gε − g‖ < δ.

Then

‖hε − h‖ ≤ ‖hε − gε‖ + ‖gε − g‖ + ‖g − h‖ < δ + δ + δ

for ε sufficiently small.

If u satisfies the hypotheses of the lemma, the uε ∈ H1
0 (Ω) for each

ε > 0 by Lemma 3.10. Moreover, uε → u, u′
ε → u′ in L2(Ω) as ε → 0.

Therefore, there is a sequence {uk} of functions in C1
0 (Ω) such that

uk → u, u′
k → u′ in L2(Ω). Thus, u ∈ H1

0 (Ω), and the proof is complete.

We now have

Corollary 3.12. A function u is in H1
0 (Ω) if, and only if, it is in C(Ω̄),

satisfies (3.2), and has a weak derivative in L2(Ω).
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Proof. If u ∈ H1
0 (Ω), then it is in C(Ω̄) and satisfies (3.2) by Theorem

3.6. It has a weak derivative by Lemma 3.4. Conversely, if it has these
properties, then it can be extended to be continuous in the whole of
R by defining it to be 0 outside Ω̄. We can then apply Lemma 3.11 to
conclude that u ∈ H1

0 (Ω).

3.6 The functional

We can now proceed to tackle problem (3.1), (3.2). Actually, all we need
to do is follow the methods used to solve (1.1),(1.2). First, we must
choose a space and a functional. This is not difficult. We merely use
H1

0 = H1
0 (Ω) in place of H and replace G(u) with

G0(u) =
1
2
‖u‖2

H −
∫ b

a

F (x, u(x)) dx, u ∈ H1
0 , (3.15)

where F (x, t) is given by (1.64). Replacing (1.46) with (3.9), we follow
the proof of Theorem 1.20 to conclude

Theorem 3.13. If f(x, t) satisfies (1.62), the functional G0(u) is con-
tinuously differentiable on H0 and satisfies

(G′
0(u), v)H = (u, v)H − (f(·, u), v), u, v ∈ H1

0 . (3.16)

It therefore follows that if we can find a function u0 ∈ H1
0 satisfying

G′
0(u0) = 0, (3.17)

then it will satisfy

(u0, v)H = (f(·, u0), v), v ∈ H1
0 . (3.18)

Since u0 ∈ H1
0 , it is in C(Ω̄) by Theorem 3.6 and satisfies (3.2) by (3.9).

This means thatf(x, u0(x)) is in C(Ω). Thus, by Theorem 3.8, u0 has
continuous second derivatives and satisfies

u′′
0(x) = u0 − f(x, u0(x)), x ∈ Ω,

which is (3.1).

Now we are ready to search for solutions of (3.17). The first attempt
to find such a solution is to look for a minimum as we did in the case
of problem (1.1),(1.2). In order to keep the same numbers, we take Ω =
(0, π). We shall need the counterpart of Lemma 1.21.
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Lemma 3.14. If {uk} ⊂ H1
0 satisfies

‖uk‖H ≤ C, (3.19)

then there is a renamed subsequence and a u0 ∈ H1
0 such that

uk ⇀ u0 in H1
0 (3.20)

and

uk(x) → u0(x) uniformly in Ω̄. (3.21)

In proving Lemma 3.14 we shall use

Lemma 3.15. If u ∈ L2(Ω) has a weak derivative h ∈ L2(Ω), then

(u, v′) = −(h, v), v ∈ H1
0 . (3.22)

Proof. By definition,

(u, ϕ′) = −(h, ϕ), ϕ ∈ C1
0 (Ω).

If v ∈ H1
0 , then there is a sequence {ϕk} ⊂ C1

0(Ω) converging to v in
H1

0 . Since

(u, ϕ′
k) = −(h, ϕk)

we obtain (3.22) in the limit.

We can now give the proof of Lemma 3.14.

Proof. We note that Lemmas 1.25 and 1.26 remain valid when we replace
H by H1

0 . From Lemma 1.26 we see that there is a renamed subsequence
converging to a function w ∈ C(Ω̄). Moreover, by a theorem in functional
analysis (Theorem A.61), there is a renamed subsequence of this subse-
quence which converges weakly in H1

0 to a function u0 ∈ H1
0 . Let v be a

function in H1
0 such that v′ has a weak derivative v′′. Then

(uk, v − v′′) = (uk, v)H → (u0, v)H = (u, v − v′′).

But

(uk, v − v′′) → (w, v − v′′).

Thus

(u0 − w, v − v′′) = 0.

Let h be any function in L2(Ω). Define

Φ(ϕ) = (ϕ, h), ϕ ∈ H1
0 .
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Then Φ(ϕ) is a linear functional on H0. It is also bounded, since

|Φ(ϕ)| ≤ ‖ϕ‖ • ‖h‖ ≤ C‖ϕ‖H1
0
.

By the Riesz representation theorem (Theorem A.12), there is a v ∈ H1
0

such that

Φ(ϕ) = (ϕ, v)H , ϕ ∈ H1
0 .

Thus

(ϕ, h) = (ϕ, v) + (ϕ′, v′), ϕ ∈ H1
0 .

This means that v′ has a weak derivative

v′′ = v − h.

Since h was arbitrary, we see that

(u0 − w, h) = 0, h ∈ L2(Ω).

If we take h = u0 − w, we see that u0 ≡ w. This completes the proof.

3.7 Finding a minimum

The next step is to find a u ∈ H1
0 such that G′

0(u) = 0. The simplest
situation is when G0(u) has an extremum. We now give a condition on
f(x, t) that will guarantee that G0(u) has a minimum. We assume that
there is a function W (x) ∈ L1(I) such that

−W (x) ≤ V (x, t) ≡ t2 − F (x, t) → ∞ a.e. as |t| → ∞. (3.23)

Remark 3.16. Note that this assumption is weaker than hypothesis
(1.67) which was used in Theorem 1.24. Recall that we are now assuming
that Ω=(0, π).

We shall also make use of

‖u‖ ≤ ‖u′‖, u ∈ H1
0 , (3.24)

and

Lemma 3.17. If u is in H1
0 , and ‖u‖ = ‖u′‖, then

u(x) = b sinx (3.25)
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for some constant b. If ∫ π

0

u(x) sinx dx = 0, (3.26)

then

2‖u‖ ≤ ‖u′‖. (3.27)

If u satisfies (3.26) and

2‖u‖ = ‖u′‖,

then

u(x) = c sin 2x.

We shall prove these at the end of the section. Now we show how they
can be used to give

Theorem 3.18. Under hypothesis (3.23) there is a u in H1
0 such that

G0(u) = min
H1

0

G0.

Moreover, if f(x, t) is continuous in both variables, any such minimum
is a solution of (3.1),(3.2) in the usual sense.

Proof. Let

α = inf
H1

0

G0.

Let {uk} be a minimizing sequence, that is, a sequence in H1
0 satisfying

G0(uk) ↘ α.

I claim that

ρk = ‖uk‖H ≤ C.

To see this, note that for each u ∈ H1
0 we may write

u = w + v,

where w satisfies (3.26) (and consequently (3.27)) and v is of the form
(3.25). We have

2G0(u) ≥ 3
4
‖w′‖2 + 2

∫
Ω

V (x, u) dx ≥ 3
5
‖w‖2

H − 2
∫

Ω

W (x) dx (3.28)

by (3.24) and (3.27). In fact these latter inequalities imply

4‖w‖2 ≤ ‖w′‖2, ‖v‖ = ‖v′‖,
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and consequently

‖u‖2
H ≥ 3

4
‖w′‖2 + 2‖u‖2 ≥ 3

5
‖w‖2

H + 2‖u‖2.

From this we see that if {uk} is a minimizing sequence for G0, then we
must have

|wk(x)| ≤ C‖wk‖H ≤ C ′, x ∈ Ω

by Theorem 3.6. The only way we can have

ρk → ∞

is if

‖vk‖H → ∞.

Since

vk(x) = ck sinx,

this means that

‖vk‖2
H = πc2k → ∞.

Whence,

|vk(x)| = |ck| sinx → ∞, x ∈ Ω.

But then we have

|uk(x)| ≥ |vk(x)| − |wk(x)| ≥ |vk(x)| − C′ → ∞, x ∈ Ω.

Thus, the only way we can have ‖uk‖H → ∞ is if

|uk(x)| → ∞, x ∈ Ω.

But then, ∫
Ω

V (x, uk(x)) dx → ∞ as k → ∞

by (3.23), and this implies

G0(uk) → ∞

by (3.28). Thus, the ρk are bounded. Then, by Lemma 3.14, there is a
renamed subsequence such that

uk ⇀ u0 in H1
0 (3.29)

and

uk(x) → u0(x) uniformly in Ω. (3.30)
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Then ∫
Ω

F (x, uk) dx →
∫

Ω

F (x, u0) dx

by arguments given before. Since

‖u0‖2
H = ‖uk‖2

H − 2([uk − u0], u0)H − ‖uk − u0‖2
H ,

we have

G0(u0) ≤ 1
2
‖uk‖2

H − ([uk − u0], u0)H −
∫

Ω

F (x, u0) dx

= G(uk) − ([uk − u0], u0)H +
∫

Ω

[F (x, uk) − F (x, u0)] dx

→ α.

Thus

G(u0) ≤ α.

Since u0 ∈ H1
0 , α ≤ G(u0). Consequently, α ≤ G(u0) ≤ α, from which

we conclude that G0(u0) = α. Thus, the proof of the first statement is
complete.

To prove the second statement, note that G′
0(u0) = 0. Consequently,

(u0, v)H − (f(x, u0), v) = 0, v ∈ H1
0 .

Since u0 ∈ H1
0 , it is continuous in Ω̄. If f(x, t) is continuous in both

variables, f(x, u0(x)) is continuous in Ω̄. Thus, u′′
0 = u0 − f(x, u0) by

Theorem 3.8. Consequently, u0 has a continuous second derivative and
is a solution of (3.1),(3.2) in the usual sense.

It remains to prove (3.24) and Lemma 3.17. We prove them together.

Proof. We follow the proof of Lemma 1.23. (By now, you should know
it by heart.) By Lemma 1.9

‖u‖2 = lim
n→∞

‖
∑
|k|≤n

αkϕk‖2 = lim
n→∞

∑
|k|≤n

|αk|2 =
∞∑

k=−∞
|αk|2, (3.31)

where the αk, ϕk are given by (1.43) and (1.44). For the same reason,

‖u′‖2 = lim
n→∞

‖
∑
|k|≤n

βkϕk‖2 =
∞∑

k=−∞
|βk|2 =

∞∑
k=−∞

k2|αk|2, (3.32)



3.7 Finding a minimum 105

since βk = ikαk. If u ∈ H1
0 , then α0 = 0. Hence,

‖u‖2 =
∑
k �=0

|αk|2 ≤
∑

k2|αk|2 = ‖u′‖2,

which is (3.24). Moreover, if the two are equal, then

‖u′‖2 − ‖u‖2 =
∑

(k2 − 1)|αk|2 = 0.

Hence, αk = 0 if |k| �= 1. This means that

u = (α1e
ix + α−1e

−ix)/
√

2π = a cosx + b sinx.

Since u ∈ H1
0 , we see that a = 0. This completes the proof.

Next, we have the counterpart of Theorem 1.27.

Theorem 3.19. Assume that f(x, t) satisfies (1.78) for some β satis-
fying

β(x) ≤ 2, β(x) �≡ 2 a.e. (3.33)

If Ω = (0, π), then there is a u ∈ H1
0 such that

G0(u) = min
H1

0

G0. (3.34)

Moreover, if f(x, t) is continuous in both variables, then any such min-
imum is a solution of (3.1),(3.2) in the usual sense.

The proof of Theorem 3.19 is almost identical to that of Theorem 1.27
if we replace I,H and G with Ω, H1

0 and G0, Lemma 1.21 with Lemma
3.14 and Theorem 1.15 with Theorem 3.8. This includes Lemmas 1.25
and 1.26. We follow that proof until we reach the conclusion

2G0(uk)/ρ2
k → 1 −

∫
Ω

β(x)ũ(x)2 dx

= (1 − ‖ũ‖2
H) + (‖ũ′‖2 − ‖ũ‖2) +

∫
Ω

[2 − β(x)]ũ(x)2 dx

= A + B + C.

Since ‖ũ‖H ≤ 1 and β(x) ≤ 2, the quantities A,B,C are each ≥ 0.
The only way the sum can equal 0, is if each equals 0. If B = 0, then
ũ(x) = b sinx by Lemma 3.17. If C = 0, then

b2
∫

Ω

[2 − β(x)] sin2 x dx = 0.

By hypothesis (3.33), the only way this can happen is if b = 0. Then
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ũ(x) ≡ 0, causing A to be positive. Thus, the ρk are bounded, and the
proof of the first statement is complete. The second statement follows
as in the proof of Theorem 3.18.

We also have a counterpart of Theorem 1.30.

Theorem 3.20. Assume that f(x, t) satisfies (1.62) and that F (x, t) is
concave in t for each x ∈ Ω. Then G0(u) given by (3.15) has a minimum
on H1

0 .

Proof. Reasoning as in the proof of Theorem 1.30, we first note that

F (x, t) ≤ F (x, 0) + f(x, 0)t = f(x, 0)t, x ∈ Ω, t ∈ R

by Lemma 1.29. Thus,

F (x, t) ≤ C0|t|, t ∈ R

by (1.62). This implies that

G0(u) ≥ 1
2
‖u‖2

H −
∫
Ω

f(x, 0)u(x) dx

≥ 1
2
‖u‖2

H − c1‖u‖, u ∈ H1
0 (3.35)

by Lemma 1.29. Let {uk} ⊂ H1
0 be a minimizing sequence for G0(u),

that is, a sequence such that

G0(uk) ↘ α = inf
H1

0

G0.

Since G0(uk) ≤ K and

G0(uk) ≥
1
2
‖uk‖2

H − c1‖uk‖,

we see that the ‖uk‖H are bounded. We now follow the proofs of Theo-
rems 3.18 and 3.19 to arrive at the desired conclusions.

We also have a counterpart of Theorem 1.31.

Theorem 3.21. In addition to the hypotheses of Theorem 3.18, 3.19,
or 3.20, assume that there is a t0 ∈ R such that∫

Ω

F (x, t0 sinx) dx >
π

2
t20. (3.36)

Then the solutions of problem (3.1),(3.2) given by these theorems are
nontrivial.
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Proof. Let ψ(x) = t0 sinx. Then

G0(ψ) =
π

2
t20 −

∫
Ω

F (x, t0 sinx)dx < 0.

Thus, the minimum obtained in Theorem 3.19 is negative. Since G0(0) =
0, the theorem follows.

3.8 Finding saddle points

We also want to obtain theorems for the situations in which no extrema
exist for the functional. As in the periodic case, we can obtain such
results. Recall that we are now assuming that Ω = (0, π). For instance,
as a counterpart of Theorem 2.6, we have

Theorem 3.22. Assume that (1.78) holds with

2 ≤ β(x) ≤ 5, β(x) �≡ 2, β(x) �≡ 5 a.e. (3.37)

If G0(u) is given by (3.15) and G′
0(u) is locally Lipschitz continuous,

then there is a u0 ∈ H1
0 such that

G′
0(u0) = 0. (3.38)

In particular, if f(x, t) is continuous in both variables, then u0 is a
solution of (3.1),(3.2) in the usual sense.

Proof. We let N be the subspace of functions in H1
0 which are multiples

of ϕ0 = sinx. It is of dimension one. Let M be the subspace of those
functions in H1

0 which are orthogonal to N, that is, functions w ∈ H1
0

which satisfy ∫
Ω

w(x) sinx dx = 0.

Note that this implies

(w′, ϕ′
0) = 0,

and consequently that

(w,ϕ)H = 0.

I claim that

m0 = inf
M

G0 > −∞, m1 = sup
N

G0 < ∞.

For suppose {wk} ⊂ M and G0(wk) ↘ m0. If ρk = ‖wk‖H ≤ C, then
Theorem 3.6 and Lemma 3.14, imply that m0 > −∞. If ρk → ∞,
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let w̃k = wk/ρk. Then ‖w̃k‖H = 1. Consequently, there is a renamed
subsequence such that

w̃k ⇀ w̃ in H1
0 (3.39)

and

w̃k → w̃ uniformly in Ω̄ (3.40)

(Lemma 3.14). Thus,

2G0(wk)/ρ2
k = 1 − 2

∫
Ω

F (x,wk)
w2

k

w̃2
kdx → 1 −

∫
Ω

β(x)w̃2(x) dx

= (1 − ‖w̃‖2
H) + (‖w̃‖2

H − 5‖w̃‖2) +
∫

Ω

[5 − β(x)]w̃2(x)dx

= A + B + C, (3.41)

as we saw before. Now, I claim that A,B,C ≥ 0. We note that Lemma
3.17 implies that B = ‖w̃′‖2 − 4‖w̃‖2 ≥ 0. The only way the right-hand
side of (3.41) can vanish is if A = B = C = 0. If A = 0, we see that
w̃ �≡ 0. If B = 0, then w̃ is of the form

w̃(x) = c sin 2x.

If w̃ �≡ 0, then c �= 0. Finally, for such a function, if C = 0, then we
must have β(x) ≡ 5 a.e. But this is excluded by hypothesis. Hence,
A,B,C cannot all vanish. This means that the right-hand side of (3.41)
is positive. But this implies that m0 = ∞, an impossibility. Thus, the
ρk must be bounded, and m0 > −∞.

To prove that m1 < ∞, let {uk} be a sequence in N of the form

uk = ck sinx

such that |ck| → ∞. Then

ρ2
k = πc2k, uk(x)2 = c2k sin2 x.

Hence,

2G0(uk)/ρ2
k = 1 − 2

∫
Ω

F (x, uk)/ρ2
kdx

= 1 − 2
∫

Ω

[F (x, uk)/u2
k] sin

2 x dx

→ 1 −
∫

Ω

β(x) sin2 x dx

=
∫

Ω

[2 − β(x)] sin2 x dx < 0
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by hypothesis. Thus,

G0(uk) → −∞ as k → ∞.

Since G0 is continuous, we see that m1 < ∞.

We can now apply Theorem 2.5 to conclude that there is a sequence
{uk}⊂H1

0 satisfying (2.27). By (1.37),

(G′
0(uk), v)H = (uk, v)H −(f(·, uk), v) = o(‖v‖H), ‖v‖H → 0, v ∈ H1

0 .

Assume first that

ρk = ‖uk‖H → ∞. (3.42)

Set ũk = uk/ρk. Then ‖ũk‖H = 1, and consequently, by Lemma 3.14,
there is a renamed subsequence such that

ũk ⇀ ũ in H1
0 , ũk → ũ uniformly on I. (3.43)

Thus,

(ũk, v)H − (f(·, uk)/ρk, v) → 0, v ∈ H1
0 .

As we saw before, this implies in the limit that

(ũ, v)H = (βũ, v), v ∈ H1
0 .

Take

ũ = w̃ + γ, v = w̃ − γ, where w̃ ∈ M, γ ∈ N.

Then

([w̃ + γ], [w̃ − γ])H = (β[w̃ + γ], w̃ − γ).

This gives

‖w̃‖2
H − ‖γ‖2

H = (βw̃, w̃) − (βγ, γ).

We write this as

(‖w̃′‖2 − 5‖w̃‖2) +
∫ π

0

[5 − β(x)]w̃(x)2dx +
∫ π

0

[β(x) − 2]γ(x)2dx

= A + B + C = 0.

This follows from the fact that

γ(x) = c sinx.

Consequently,

‖γ‖2
H = 2‖γ‖2.
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Note that A,B,C are all nonnegative. Since their sum is 0, they must
each vanish. If A = 0, then we must have, in view of Lemma 1.23,

w̃ = b sin 2x.

If b �= 0, then w̃ �= 0 a.e. If B = 0, then [5 − β(x)]w̃(x)2 ≡ 0 a.e., and
since β(x) �≡ 2, we must have w̃(x) ≡ 0. If C = 0, we must have γ ≡ 0.
Hence, ũ(x) ≡ 0.

On the other hand, we also have

2G0(uk)/ρ2
k = 1 − 2

∫
Ω

F (x, uk)/ρ2
k → 0.

Thus,

1 −
∫

Ω

β(x)ũ2 dx = 0.

This cannot happen if ũ ≡ 0. Thus, (3.42) cannot be true, and the ρk
are bounded. Consequently, there is a renamed subsequence such that

uk ⇀ u in H1
0 , uk → u uniformly in I (3.44)

(Lemma 3.14). By (2.27),

(G′
0(uk), v) = (uk, v)H − (f(·, uk), v) → 0, v ∈ H1

0 ,

and we have in the limit

(u, v)H − (f(·, u), v) = 0, v ∈ H1
0 .

Thus, (2.29) holds with u0 = u. Since u ∈ H1
0 , it is continuous in Ω. If

f(x, t) is continuous in both variables, then f(x, u(x)) is continuous in
Ω. Thus, u′′ = u− f(x, u) in the usual sense by Theorem 3.8. Hence, u
is a solution of (3.1),(3.2).

3.9 Other intervals

Suppose f(x, t) satisfies (1.78), but β(x) does not satisfy (3.37). Are
there other intervals (a, b) such that a solution of (3.1),(3.2) can be found
when a ≤ β(x) ≤ b? (We have asked this question before.) We are
going to show that this is indeed the case. In fact we have the following
counterpart of Theorem 2.24.
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Theorem 3.23. Let n be an integer ≥ 0. Assume that (1.78) holds with
β(x) satisfying

1 + n2 ≤ β(x) ≤ 1 + (n + 1)2, 1 + n2 �≡ β(x) �≡ 1 + (n + 1)2 a.e.
(3.45)

If (2.37) holds, then (3.1),(3.2) has a solution.

Proof. As you guessed, we follow the proof of Theorem 2.24. First, we
note by (3.31) and (3.32), that

‖u‖2
H =

∑
(1 + k2)|αk|2, u ∈ H1

0 , (3.46)

where the αk are given by (1.43) and (1.44). Let

N = {u ∈ H1
0 : αk = 0 for |k| > n}.

Thus,

‖u‖2
H =

∑
|k|≤n

(1 + k2)|αk|2 ≤ (1 + n2)‖u‖2, u ∈ N. (3.47)

Let

M = {u ∈ H1
0 : αk = 0 for |k| ≤ n}.

In this case,

‖u‖2
H =

∑
|k|≥n+1

(1 + k2)|αk|2 ≥ (1 + (n + 1)2)‖u‖2, u ∈ M. (3.48)

Note that M,N are closed subspaces of H1
0 and that M = N⊥. Note

also that N is finite dimensional. Next, we consider the functional (3.15)
and show that

G0(v) → −∞ as ‖v‖H → ∞, v ∈ N, (3.49)

and

G0(w) → ∞ as ‖w‖H → ∞, w ∈ M. (3.50)

Assuming these for the moment, we note that they imply

inf
M

G0 > −∞; sup
N

G0 < ∞. (3.51)

This is easily seen from the fact that (3.50) implies that there is an
R > 0 such that

G0(w) > 0, ‖w‖H > R, w ∈ M.
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Consequently, if the first statement in (3.51) were false, there would be
a sequence satisfying

G0(wk) → −∞, ‖wk‖H ≤ R, wk ∈ M.

But this would imply that there is a renamed subsequence converging
uniformly to a limit w0 in Ω. Thus,

G0(wk) ≥ −
∫

Ω

F (x,wk)dx → −
∫

Ω

F (x,w0)dx > −∞.

This contradiction verifies the first statement in (3.51). The second is
verified similarly by (3.49).

We are now in a position to apply Theorem 2.5. This produces a
sequence in H1

0 satisfying

G0(uk) → c, G′
0(uk) → 0, (3.52)

where c is finite. In particular, this implies

(G′
0(uk), v)H = (uk, v)H − (f(·, uk), v) = o(‖v‖H), ‖v‖H → 0, v ∈ H1

0 .

(3.53)

Assume first that

ρk = ‖uk‖H → ∞. (3.54)

Set ũk = uk/ρk. Then ‖uk‖H = 1, and consequently, by Lemma 3.14,
there is a renamed subsequence satisfying (3.20) and (3.21). Thus

(ũk, v)H − (f(·, uk)/ρk, v) → 0, v ∈ H1
0 . (3.55)

As we saw before, this implies in the limit that

(ũ, v)H = (βũ, v), v ∈ H1
0 . (3.56)

Let

ũ = w̃ + ṽ, û = w̃ − ṽ. (3.57)

Then

(ũ, û)H = (βũ, û).

This implies

‖w̃‖2
H − ‖ṽ‖2

H = (β[w̃ + ṽ], w̃ − ṽ) = (βw̃, w̃) − (βṽ, ṽ),
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since

(βṽ, w̃) = (βw̃, ṽ) =
∫

Ω

β(x)ṽ(x)w̃(x)dx.

Thus,

‖w̃‖2
H − (βw̃, w̃) = ‖ṽ‖2

H − (βṽ, ṽ).

Consequently,

(
‖w̃‖2

H − (1 + (n + 1)2)‖w̃‖2
)

+
∫

Ω

[1 + (n + 1)2 − β(x)]w̃2 dx

=
(
‖ṽ‖2

H − (1 + n2)‖ṽ‖2
)

+
∫

Ω

[1 + n2 − β(x)]ṽ2 dx.

We write this as A + B = C + D. In view of (3.45), (3.47), and (3.48),
A ≥ 0, B ≥ 0, C ≤ 0, D ≤ 0. But this implies A = B = C = D = 0. If

ũ =
∑

α̃kϕk,

then in view of (3.48) the only way A can vanish is if

w̃ = b sin (n + 1)x.

If b is not 0, then this function can vanish only at a finite number of
points in Ω. But then, B cannot vanish in view of (3.45). Hence, w̃ ≡ 0.
Similar reasoning shows that C = D = 0 implies that ṽ ≡ 0. On the
other hand, (3.52) implies

2G0(uk)/ρ2
k = ‖ũ‖2

H − 2
∫

Ω

F (x, ũ)dx/ρ2 → 1 − 2
∫

Ω

β(x)ũ2dx = 0,

from which we conclude that ũ �≡ 0. This contradiction shows that the
assumption (3.54) is incorrect. Once this is known, we can conclude that
there is a renamed subsequence such that (3.20) and (3.21) hold (Lemma
3.14). It then follows from (3.53) that

(u, v)H − (f(·, u), v) = 0, v ∈ H1
0 . (3.58)

It remains to prove (3.49) and (3.50). Let {wk} ⊂ M be any sequence
such that ρk = ‖wk‖H → ∞. Let w̃k = wk/ρk. Then ‖w̃k‖H = 1. Thus,
there is a renamed subsequence such that (3.20) and (3.21) hold. This
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implies

2G0(wk)/ρ2
k = 1 − 2

∫
Ω

f(x,wk)
w2

k

w̃2
kdx → 1 −

∫
Ω

β(x)w̃2(x)dx

≥ (1 − ‖w̃‖2
H) + (‖w̃‖2

H − (1 + (n + 1)2)‖w̃‖2)

+
∫

Ω

[1 + (n + 1)2 − β(x)]w̃2(x)dx

= A + B + C.

As before, we note that A ≥ 0, B ≥ 0, C ≥ 0. The only way G0(wk) can
fail to become infinite is if A = B = C = 0. As before, B = C = 0 implies
that w̃ ≡ 0. But this contradicts the fact that A = 0. Thus, G0(wk) → ∞
for each such sequence. This proves (3.50). The limit (3.49) is proved in
a similar fashion. This completes the proof of Theorem 3.23.

Remark 3.24. It is rather surprising that Theorems 2.24 and 3.23 are
practically the same since the spaces of functions are so different. This
is especially true if we compare Theorems 2.6 and 3.22. The crux of the
matter is that the spectrum of the operator

Lu = −u′′ + u

in the space H is

λn = 1 + n2, n = 0, 1, . . . ,

while that of the same (formal) operator in H1
0 is

λn = 1 + n2, n = 1, 2, . . .

3.10 Super-linear problems

Up until now in our study of the Dirichlet problem we have assumed that
f(x, t) satisfies (1.35). As we did before, in this case we refer to problem
(3.1),(3.2) as sub-linear. If f(x, t) does not satisfy (1.35), we call problem
(3.1),(3.2) super-linear. We now want to consider this problem in such a
case. However, if we want to use the functional G0(u) given by (3.15) and
we want this functional to be continuous on H1

0 and have a continuous
derivative on this space, we will have to make some assumptions on
f(x, t). However, we have shown that the assumption (1.62) is sufficient
for this purpose in the periodic case (Theorem 1.20).
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As we saw before, we now come to a situation which causes a serious
departure from the sub-linear case. In the sub-linear periodic case we
assumed (1.78) with β(x) having certain properties. From these proper-
ties we were able to infer that either G is bounded from below (Theorem
1.27), or (2.40) holds with m0,m1 finite. If (1.78) does not hold, these
configurations are not true. The same is essentially true for the Dirichlet
problem.

We must look for another “geometry.” The simplest one employs the
ideas used previously in connection with uniqueness. As in the case of
periodic functions, if we can show that 0 is in a “valley” surrounded by
“mountains” and that there are villages beyond the mountains, then we
can adapt to this situation the splitting subspaces method that we used
before. For suppose we can show that

G0(u) ≥ ε, ‖u‖H = ρ, (3.59)

holds for some positive ε, ρ, and that G0 is bounded from above on
V1 = {v ∈ V :v = c sin x, c > 0}. Now, G0(0) = 0. Hence, 0 would be in
a valley surrounded by mountains. If we can draw a curve of bounded
length from each v ∈ V1 along which G0 decreases and such that

(a) the endpoint of each curve depends continuously on the beginning
point and

(b) at the endpoint of each curve G is less than ε (the height of the
mountains),

then we will have the desired contradiction. The reason is simple. Since
G0 decreases along the curves and G(0) = 0, curves emanating from
points in V1 near 0 will be trapped inside the mountain sphere ‖u‖H = ρ.
Moreover, there will be points in V1 so far away from the origin that the
curves emanating from them will remain outside the sphere ‖u‖H = ρ.

As before, the continuity of the endpoint curve will imply that there is
an endpoint on the sphere, providing the contradiction.

We now need three sets of hypotheses.

(a) those that will imply that (3.59) holds,
(b) those that imply that G is bounded from above on V1 and
(c) those that imply that for each v ∈ V1 there is a curve of bounded

length emanating from v such that the endpoint depends contin-
uously on v and G0 < ε at the endpoint.
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3.11 More mountains

As we did in Theorem 2.21, we now want to give sufficient conditions on
F (x, t) which will imply that the origin is surrounded by mountains for
the functional G0. This can be done as follows.

Theorem 3.25. Assume that (1.62) holds and that there is a δ > 0
such that

F (x, t) ≤ t2, |t| ≤ δ. (3.60)

Then for each positive ρ ≤ δ/2, we have either

(a) there is an ε > 0 such that

G0(u) ≥ ε, ‖u‖H = ρ, (3.61)

or
(b) there is a constant c ∈ R such that |c| = ρ/π

1
2 ≤ δ/2, and

f(x, c sin x) ≡ 2c sin x a.e., x ∈ Ω. (3.62)

Moreover, such a function is a solution of (3.1),(3.2).

Proof. For each u ∈ H write u = v + w, where v ∈ V, w ∈ W. Then

2G0(u) = ‖u‖2
H − 2

∫
Ω

F (x, u) dx

= ‖u′‖2 − ‖u‖2 − 2
∫

Ω

[F (x, u) − u2] dx

≥ ‖w′‖2 − ‖w‖2 − 2
∫
|u|>δ

[F (x, u) − u2] dx.

Now

v(x) = c sin x

and

‖v‖2
H = πc2, |v(x)| ≤ |c| ≤ ‖v‖H/π

1
2 .

Consequently,

‖u‖H ≤ ρ ⇒ ‖v‖2
H + ‖w‖2

H ≤ ρ2 ⇒ π
1
2 |v(x)| ≤ ρ.

Thus if ρ ≤ δ/2, then |v(x)| ≤ δ/2. Hence, if

‖u‖H ≤ ρ, |u(x)| ≥ δ,
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then

δ ≤ |u(x)| ≤ |v(x)| + |w(x)| ≤ δ/2 + |w(x)|.

Consequently,

|v(x)| ≤ δ/2 ≤ |w(x)|

and

δ ≤ |u(x)| ≤ 2|w(x)|

for all such x. Thus

2G0(u) ≥ 3
5
‖w‖2

H − C

∫
|u|>δ

(|u|q+1 + u2 + |u|) dx

≥ 3
5
‖w‖2

H − C(1 + δ1−q + δ−q)
∫
|u|>δ

|u|q+1dx

≥ 3
5
‖w‖2

H − C ′
∫

2|w|>δ

|w|q+1 dx

≥ 3
5
‖w‖2

H − C ′′
∫

Ω

‖w‖q+1
H dx

≥ 3
5
‖w‖2

H − C ′′′‖w‖q+1
H

=
(

3
5
− C ′′′‖w‖q−1

H

)
‖w‖2

H

by Lemma 1.11 and (1.71). Hence,

G0(u) ≥ 2
5
‖w‖2

H , ‖u‖H ≤ ρ, (3.63)

for ρ > 0 sufficiently small. Now suppose alternative (b) of the theorem
did not hold. Then there would be a sequence such that

G0(uk) → 0, ‖uk‖H = ρ. (3.64)

If ρ is taken sufficiently small, (3.63) implies that ‖wk‖H → 0. Conse-
quently, ‖vk‖H → ρ. Now,

vk(x) = ck sin x

and

‖vk‖H = πc2k.

Thus, |ck| → ρ/π
1
2 . Since the ck are bounded, there is a renamed subse-

quence such that

ck → c0.
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Let

v0 = c0 sin x.

Then we have

‖v0‖H = ρ, G0(v0) = 0, |v0(x)| ≤ δ/2, x ∈ Ω.

Consequently, (3.60) implies

F (x, v0(x)) ≤ v0(x)2, x ∈ Ω. (3.65)

Since ∫
Ω

{v0(x)2 − F (x, v0(x))} dx = G0(v0) = 0

and the integrand is ≥ 0 a.e. by (3.65), we see that

F (x, v0(x)) ≡ v0(x)2, x ∈ Ω.

Let ϕ(x) be any function in C∞
0 (Ω). Then for t > 0 sufficiently small

t−1[F (x, v0 + tϕ) − (v0 + tϕ)2 − F (x, v0) + v2
0] ≤ 0.

Taking the limit as t → 0, we have

(f(x, v0) − 2v0)ϕ(x) ≤ 0, x ∈ Ω.

Since this is true for every ϕ ∈ C∞
0 (Ω), we see that

f(x, v0(x)) ≡ 2v0(x), x ∈ Ω.

Since v0 ∈ V , it follows that (3.62) holds. Since ρ was any sufficiently
small constant, we see that (b) holds. This completes the proof.

We note that (b) implies that every function v ∈ V satisfying v = tk is
a solution of G′

0(v) = 0. We therefore have

Corollary 3.26. Under the hypotheses of Theorem 3.25, either (a)
holds for all ρ > 0 sufficiently small, or (3.1),(3.2) has an infinite num-
ber of solutions.

We are now able to prove

Theorem 3.27. Assume that (1.78), (2.28), (2.37), and (3.60) hold.
Then there is a nontrivial solution of (3.1),(3.2).
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Proof. By Corollary 3.26, either (3.61) holds for some positive constants
ε, ρ, or (3.1),(3.2) has an infinite number of solutions. Thus, we may
assume that (3.61) holds. Then by Lemma 2.19 there is a solution of
(3.1),(3.2) satisfying (2.75). But such a solution cannot be trivial since
G0(0) = 0.

3.12 Satisfying the Palais–Smale condition

In solving the problem (3.1),(3.2), as well as problem (1.1),(1.2) our
approach has been to find a sequence {uk} such that (2.27) holds and
then show that this implies that {uk} has a convergent subsequence.
So far we have shown this only when f(x, t) satisfies (1.78). In Chapter
2 we allowed f(x, t) to satisfy (1.62) with q < ∞ and gave sufficient
conditions which guarantee that the PS condition holds for G(u) given
by (1.63) (Theorem 1.37). The identical results hold in the case of the
Dirichlet problem. In fact, we have

Theorem 3.28. If there are constants µ > 2,C such that

Hµ(x, t) := µF (x, t) − tf(x, t) ≤ C(t2 + 1) (3.66)

and

lim sup
|t|→∞

Hµ(x, t)/t2 ≤ 0, (3.67)

then (2.27) implies that {uk} has a convergent subsequence which con-
verges to a solution of (3.1),(3.2).

The proof of Theorem 3.28 is almost identical to that of Theorem
1.37, and is omitted.

We can now combine Theorems 3.25 and 3.28 to solve a super-linear
problem. We have

Theorem 3.29. Under the hypotheses of Theorems 3.25, 3.28, and
Lemma 2.7, if either

t2 − 2F (x, t) ≤ W (x) ∈ L1(Ω), t > 0

or

t2 − 2F (x, t) ≤ W (x) ∈ L1(Ω), t < 0,

then problem (3.1),(3.2) has at least one nontrivial solution.
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Proof. Use Theorem 2.26. We have

G(t sinx) =
∫

Ω

[t2 sin2 x− 2F (x, t sinx)] dx ≤
∫

Ω

W (x) dx

for either t > 0 or t < 0.

3.13 The linear problem

As in the periodic case, you may be curious about the linear Dirichlet
problem corresponding to (3.1),(3.2), namely

−u′′(x) + u(x) = f(x), x ∈ Ω = (0, π), (3.68)

under the conditions

u(0) = u(π) = 0, (3.69)

where the function f(x) is continuous in Ω̄ and we took a = 0 and b = π.
Again after a substantial calculation one finds that there is a unique
solution given by

u(x) = A sinhx +
∫ x

0

sinh(t− x) f(t) dt, (3.70)

where

A =
−1

sinh π

∫ π

0

sinh(t− π)f(t) dt. (3.71)

Can this solution be used to solve (3.1), (3.2)? Again, the answer is yes
if f(x, t) is bounded for all x and t. For then we can define

Tu(x) = A(u) sinhx +
∫ x

0

sinh(t− x) f(t, u(t)) dt, (3.72)

where

A(u) =
−1

sinh π

∫ π

0

sinh(t− π)f(t, u(t)) dt. (3.73)

Then a solution of (3.1),(3.2) will exist if we can find a function u(x)
such that

Tu(x) = u(x), x ∈ Ω̄. (3.74)

As we mentioned, such a function is called a fixed point of the operator
T, and in Chapter 6 we shall study techniques of obtaining fixed points
of operators in various spaces. In the present case, one can show that
there is indeed a fixed point for the operator T when f(x, t) is bounded.
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It is also of interest to note that in this case as well, the linear problem
(3.68),(3.69) can be solved easily by the Hilbert space techniques of this
chapter. To see this note that

Fv = (v, f), v ∈ H1
0 , (3.75)

is a bounded linear functional on H1
0 (see Appendix A). By the Riesz

representation theorem (Theorem A.12), there is an element u ∈ H1
0

such that

Fv = (v, u)H , v ∈ H1
0 .

Hence,

(u, v)H = (f, v), v ∈ H1
0 . (3.76)

Since u ∈ H1
0 , it is continuous and satisfies (3.69) (Corollary 3.12). Since

f is continuous, Theorem 3.8 tells us that u′′ is continuous in Ω and
satisfies u′′ = u− f there. Thus, u is a solution of (3.68),(3.69).

3.14 Exercises

1. Show that the function

j(x) =

{
ae−1/(1−|x|2), |x| < 1,

0, |x| ≥ 1,

is in C∞(Rn).

2. Show that ∫
jε(x) dx = 1,

where jε(x) is given by

jε(x) = ε−nj(x/ε).

3. If u ∈ L1(Rn), show that∫
|x|>R

|u(x)| dx → 0 as R → ∞.

4. Show that C(Rn) ∩ Lp(Rn) is dense in Lp(Rn) for 1 ≤ p < ∞.

5. Show that

Jεu(x) =
∫

jε(x− y)u(y) dy =
∫

j(z)u(x− εz) dz (3.77)

is in C∞(Rn).
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6. Prove: If ũ is an odd function in L2(−π, π), then
∫ 0

−π
ũ(t)e−iktdt = −

∫ π

0

u(s)eiksds.

7. Show that the functions sin kx are orthonormal in L2(0, π).

8. Show that (3.12) implies (3.13).

9. Prove that

xε → x as ε → 0, uniformly in Ω̄,

where

xε =




0, 0 ≤ x ≤ ε,

b(x− ε)/(b− 2ε), ε ≤ x ≤ b− ε,

b, b− ε ≤ x ≤ b.

10. If h ∈ C(Ω̄), show that

hε(x) = h(xε) → h(x) as ε → 0, uniformly in Ω̄.

11. Show that for each h ∈ L2(Ω) there is a v ∈ H1
0 (Ω) such that v′ has

a weak derivative satisfying v − v′′ = h.

12. Prove: If u = w + v, where w satisfies (3.26) (and consequently
(3.27)) and v is of the form (3.25), then

‖u‖2
H ≥ 3

5
‖w‖2

H + 2‖v‖2.

13. Why, in Theorem 3.25, were we able to obtain mountains under the
assumption

F (x, t) ≤ t2, |t| ≤ δ, (3.78)

while in Theorem 2.21 we needed

2F (x, t) ≤ t2, |t| ≤ δ? (3.79)

14. Show that (3.70),(3.71) give a solution of (3.68),(3.69).

15. Show that the solution is unique.
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Saddle points

4.1 Game theory

An interesting problem arising in the theory of games involves two play-
ers, P and Q. In this model, they are given a number λ and a “machine”
G(v, w) defined on N ×M, where M,N are given sets. When an element
v ∈ N and an element w ∈ M are input into the machine, it produces
a number G(v, w). The player P inputs an element v ∈ N (called his
strategy), and player Q inputs an element w ∈ M. (Neither player
knows what the other did.) If it turns out that G(v, w) > λ, then player
P wins. If G(v, w) < λ, then player Q wins. (If G(v, w) = λ, then it is
a draw.) An important question is whether a player can pick a strategy
that will better his chances of winning?

The following discussions will provide no help whatsoever in picking
a strategy. All that we shall do is describe a situation in which selecting
an optimum strategy is possible.

4.2 Saddle points

Let M,N be as above and let G(v, w) be a map of M×N → R. First, we
note that

sup
v∈N

inf
w∈M

G(v, w) ≤ inf
w∈M

sup
v∈N

G(v, w). (4.1)

To see this, note that

inf
z∈M

G(v, z) ≤ G(v, w), v ∈ N, w ∈ M.

Hence,

sup
v∈N

inf
z∈M

G(v, z) ≤ sup
v∈N

G(v, w), w ∈ M.

123



124 Saddle points

Since the left-hand side does not involve w, it is

≤ inf
w∈M

sup
v∈N

G(v, w).

This proves (4.1).

We say that (v0, w0) is a saddle point of G if

G(v, w0) ≤ G(v0, w0) ≤ G(v0, w), v ∈ N,w ∈ M. (4.2)

We note that

Lemma 4.1. If there exist v0 ∈ N,w0 ∈ M, λ ∈ R such that

G(v, w0) ≤ λ, v ∈ N ,

and

G(v0, w) ≥ λ, w ∈ M ,

then (v0, w0) is a saddle point of G and

λ = inf
w∈M

sup
v∈N

G(v, w) = sup
v∈N

inf
w∈M

G(v, w). (4.3)

Proof. Clearly

G(v0, w0) ≤ λ ≤ G(v0, w0).

Thus, λ = G(v0, w0) and (4.2) holds. Hence, (v0, w0) is a saddle point
by definition. To prove (4.3) note that (4.2) implies

sup
v∈N

G(v, w0) ≤ G(v0, w0) ≤ inf
w∈M

G(v0, w).

Thus,

inf
w∈M

sup
v∈N

G(v, w) ≤ sup
v∈N

G(v, w0)

≤ G(v0, w0)

≤ inf
w∈M

G(v0, w)

≤ sup
v∈N

inf
w∈M

G(v, w). (4.4)

But this inequality is reversed by (4.1). Hence, we have equality through-
out, and (4.3) holds.

We also have
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Lemma 4.2. The functional G has a saddle point if, and only if,

max
v∈N

inf
w∈M

G(v, w) = min
w∈M

sup
v∈N

G(v, w). (4.5)

Proof. If (v0, w0) is a saddle point of G, then equality in (4.4) gives

inf
w∈M

sup
v∈N

G(v, w) = sup
v∈N

G(v, w0)

= G(v0, w0)

= inf
w∈M

G(v0, w)

= sup
v∈N

inf
w∈M

G(v, w).

This implies that

min
w∈M

sup
v∈N

G(v, w) = sup
v∈N

G(v, w0)

= G(v0, w0)

= inf
w∈M

G(v0, w)

= max
v∈N

inf
w∈M

G(v, w).

Thus the minimum and maximum are attained. This implies (4.5). Con-
versely, if (4.5) holds, then

inf
w∈M

G(v, w) ≤ inf
w∈M

G(v̄, w) = λ = sup
v∈N

G(v, w̄) ≤ sup
v∈N

G(v, w)

for some (v̄, w̄), where λ is the common value in (4.5). Consequently,

G(v, w̄) ≤ λ ≤ G(v̄, w), v ∈ N,w ∈ M.

Thus, by Lemma 4.1, (v̄, w̄) is a saddle point of G and G(v̄, w̄) = λ.

4.3 Convexity and lower semi-continuity

Let M be a convex subset of a Hilbert space E, and let G be a functional
(real valued function) defined on M. We call G convex on M if

G((1 − t)w0 + tw1) ≤ (1 − t)G(w0) + tG(w1), w0, w1 ∈ M, 0 ≤ t ≤ 1.

We call it strictly convex if the inequality is strict when t = 1
2 , w0 �=

w1.

We call G(v) upper semi-continuous (u.s.c.) at w0 ∈ M if wk →
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w0 ∈ M implies

G(w0) ≥ lim supG(wk).

It is called lower semi-continuous (l.s.c.) if the inequality is reversed
and lim sup is replaced by lim inf. We have

Lemma 4.3. If M is closed, convex, and bounded in E, and G is convex
and l.s.c., then there is a point w0 ∈ M such that

G(w0) = min
M

G. (4.6)

If G is strictly convex, then w0 is unique.

In proving Lemma 4.3 we shall make use of

Lemma 4.4. If uk ⇀ u in E, then there is a renamed subsequence such
that ūk → u, where

ūk = (u1 + · · · + uk)/k. (4.7)

Proof. We may assume that u = 0. Take n1 = 1, and inductively pick
n2, n3, . . . , so that

|(unk
, un1)| ≤

1
k
, . . . , |(unk

, unk−1)| ≤
1
k
.

This can be done since

(un, unj
) → 0 as n → ∞, 1 ≤ j ≤ k.

Since

‖uk‖ ≤ C

for some C, we have

‖ūk‖2 =


 k∑
j=1

‖uj‖2 + 2
k∑

j=1

j∑
i=1

(ui, uj)


 /k2

≤


kC2 + 2

k∑
j=1

j∑
i=1

1
j


 /k2

≤ (C2 + 2)/k → 0.

Lemma 4.5. It G(u) is convex and l.s.c. on E, and uk ⇀ u, then

G(u) ≤ lim inf G(uk).
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Proof. Let

L = lim inf G(uk).

Then there is a renamed subsequence such that G(uk) → L. Let ε > 0
be given. Then

L− ε < G(uk) < L + ε (4.8)

for all but a finite number of k. Remove a finite number and rename it
so that (4.8) holds for all k. Moreover, there is a renamed subsequence
such that ūk → u by Lemma 4.4, where ūk is given by (4.7). Thus,

G(u) ≤ lim inf G(ūk) = lim inf G


1
k

k∑
j=1

uj




≤ lim inf
1
k

k∑
j=1

G(uj) ≤ lim inf
1
k

• k(L + ε) = L + ε.

Since ε was arbitrary, we see that G(u) ≤ L, and the proof is complete.

A subset M ⊂ E is called weakly closed if u ∈ M whenever there
is a sequence {uk} ⊂ M converging weakly to u in E. This terminology
is very unfortunate and misleading. A weakly closed set is closed in a
stronger sense than an ordinary closed set. It follows from Lemma 4.4
that

Lemma 4.6. If M is a closed convex subset of E, then it is weakly
closed in E.

Proof. Suppose {uk} ⊂ M and uk ⇀ u in E. Then by Lemma 4.4, there
is a renamed subsequence such that ūk → u, where ūk is given by (4.7).
Since M is convex, each ūk is in M. Since M is closed, we see that
u ∈ M.

We can now give the proof of Lemma 4.3.

Proof. Let

α = inf
M

G.

(At this point we do not know if α �= −∞.) Let {wk} ⊂ M be a se-
quence such that G(wk) → α. Since M is bounded, we see that there
is a renamed subsequence such that wk ⇀ w0. Since M is closed and
convex, it is weakly closed (Lemma 4.6). Hence, w0 ∈ M. By Lemma 4.5,
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G(w0) ≤ lim inf G(wk) = α. Since G(w0) ≥ α, we see that (4.6) holds. So
far, we have only used the convexity of G. We use the strict convexity
to show that w0 is unique. If there were another element w1 ∈ M such
that G(w1) = α, then we have

G

(
1
2
w0 +

1
2
w1

)
<

1
2
[G(w0) + G(w1)] = α,

which is impossible from the definition of α. This completes the proof.

We also have

Lemma 4.7. If M is closed and convex, G is convex, l.s.c., and satisfies

G(u) → ∞ as ‖u‖ → ∞, u ∈ M , (4.9)

if M is unbounded, then G is bounded from below on M and has a
minimum there.

Proof. If M is bounded, then Lemma 4.7 follows from Lemma 4.3. Oth-
erwise, let u0 be any element in M. By (4.9), there is an R ≥ ‖u0‖ such
that

G(u) ≥ G(u0), u ∈ M, ‖u‖ ≥ R.

By Lemma 4.3, G is bounded from below on the set

MR = {w ∈ M : ‖w‖ ≤ R}

and has a minimum there. A minimum of G on MR is a minimum of
G on M. Hence, G is bounded from below on M and has a minimum
there.

4.4 Existence of saddle points

We now present some sufficient conditions for the existence of saddle
points. Let M,N be closed, convex subsets of a Hilbert space, and let
G(v, w) : M ×N → R be a functional such that G(v, w) is convex and
l.s.c. in w for each v ∈ N, and concave and u.s.c. in v for each w ∈ M.

Assume also that there is a v0 ∈ N such that

G(v0, w) → ∞ as ‖w‖ → ∞, w ∈ M, (4.10)

and there is a w0 ∈ M such that

G(v, w0) → −∞ as ‖v‖ → ∞, v ∈ N. (4.11)
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(If M is bounded, then (4.10) is automatically satisfied; the same is true
for (4.11) when N is bounded.) We have

Theorem 4.8. Under the above hypotheses, G has at least one saddle
point.

Proof. Assume first that M,N are bounded and that G(v, w) is strictly
convex with respect to w. Then for each v ∈ N, there is a point σ(v) ∈ M

where G(v, w) achieves its minimum (Lemma 4.3). Since G is strictly
convex in w, this minimum point is unique. Let

J(v) = G(v, σ(v)) = min
w∈M

G(v, w).

Since J(v) is the minimum of a family of functionals which are concave
and u.s.c., it is also concave and u.s.c. In fact, if

vt = (1 − t)v0 + tv1, t ∈ [0, 1],

then

G(vt, w) ≥ (1 − t) min
ŵ∈M

G(v0, ŵ) + t min
ŵ∈M

G(v1, ŵ), w ∈ M.

Since this is true for each w ∈ M, we finally obtain

J(vt) ≥ (1 − t)J(v0) + tJ(v1). (4.12)

Similarly, if vk → v ∈ N, then we have

J(vk) ≤ G(vk, w), w ∈ M.

Thus,

lim supJ(vk) ≤ lim supG(vk, w) ≤ G(v, w), w ∈ M.

Since this is true for each w ∈ M, we have

lim supJ(vk) ≤ inf
w∈M

G(v, w) = J(v). (4.13)

Consequently, J(v) has a maximum point v̄ satisfying

J(v) ≤ J(v̄), v ∈ N

(Lemma 4.3). In particular, we have

J(v̄) = min
ŵ∈M

G(v̄, ŵ) ≤ G(v̄, w), w ∈ M. (4.14)

Let v be an arbitrary point in N, and let

vθ = (1 − θ)v̄ + θv, wθ = σ(vθ), 0 ≤ θ ≤ 1.
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Since G is concave in v, we have

G(vθ, w) ≥ (1 − θ)G(v̄, w) + θG(v, w).

Consequently,

J(v̄) ≥ J(vθ)

= G(vθ, wθ)

≥ (1 − θ)G(v̄, wθ) + θG(v, wθ)

≥ (1 − θ)J(v̄) + θG(v, wθ).

This gives

J(v̄) ≥ G(v, wθ), v ∈ N, 0 < θ ≤ 1. (4.15)

Let {θk} be a sequence converging to 0, and let wk = wθk . Since M is
bounded, there is a renamed subsequence such that wk ⇀ w̄. Since

(1 − θ)G(v̄, wθ) + θG(v, wθ) ≤ G(vθ, wθ) ≤ G(vθ, w), w ∈ M,

we have

(1 − θk)G(v̄, wk) + θkJ(v) ≤ G(vθk , w), w ∈ M.

In the limit this gives

G(v̄, w̄) ≤ G(v̄, w), w ∈ M

(cf. Lemma 4.5). This tells us that w̄ = σ(v̄) and does not depend on v.

Since

J(v̄) ≥ G(v, wk),

we have

G(v, w̄) ≤ J(v̄) ≤ G(v̄, w), v ∈ N, w ∈ M

in view of (4.14) and (4.15). The result now follows from Lemma 4.1.

Now we remove the assumption that G is strictly convex in w. For
ε > 0, let

Gε(v, w) = G(v, w) + ε‖w‖2.

Now Gε satisfies all of the hypotheses of the theorem and is also strictly
convex with respect to w. This follows from the fact that

‖(1 − θ)w0 + θw1‖2 = (1 − θ)‖w0‖2 + θ‖w1‖2 − θ(1 − θ)‖w0 − w1‖2.
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We can now apply the theorem to Gε and obtain saddle points (v̄ε, w̄ε)
satisfying

Gε(v, w̄ε) ≤ Gε(v̄ε, w̄ε) ≤ Gε(v̄ε, w), v ∈ N, w ∈ M.

Let {εk} be a sequence tending to 0. Then there are renamed subse-
quences v̄k = v̄εk , w̄k = w̄εk such that v̄k ⇀ v̄, w̄k ⇀ w̄. By Lemma
4.5, we have

G(v, w̄) ≤ G(v̄, w), v ∈ N, w ∈ M.

Thus (v̄, w̄) is a saddle point of G. Next, we remove the restriction that
M,N are bounded. Let R be so large that ‖v0‖ < R, ‖w0‖ < R. The
sets

MR = {w ∈ M : ‖w‖ ≤ R}, NR = {v ∈ N : ‖v‖ ≤ R}

are closed, convex, and bounded. By what we have already proved, there
is a saddle point (v̄R, w̄R) such that

G(v, w̄R) ≤ G(v̄R, w̄R) ≤ Gv̄R, w), v ∈ NR, w ∈ MR. (4.16)

In particular, we have

G(v0, w̄R) ≤ G(v̄R, w̄R) ≤ G(v̄R, w0).

Since G(v0, w) is convex, l.s.c., and satisfies (4.10), it is bounded from
below on M (Lemma 4.7). Thus,

G(v0, w̄R) ≥ A > −∞.

Similarly, G(v, w0) is bounded from above. Hence,

G(v̄R, w0) ≤ B < ∞.

Combining these with (4.16), we have

A ≤ G(v0, w̄R) ≤ G(v̄R, w0) ≤ B.

By (4.10) and (4.11), the sequences {v̄R}, {w̄R} are bounded. Hence,
there are renamed subsequences such that

v̄R ⇀ v̄, w̄R ⇀ w̄, as R → ∞,

and

G(v̄R, w̄R) → λ, as R → ∞.

In view of (4.16) we have in the limit

G(v, w̄) ≤ λ ≤ G(v̄, w), v ∈ N, w ∈ M.
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This shows that (v̄, w̄) is a saddle point, and the theorem is completely
proved.

4.5 Criteria for convexity

Recall that a functional G is called convex if

G([(1 − t)u0 + tu1]) ≤ (1 − t)G(u0) + tG(u1), t ∈ [0, 1].

It is strictly convex if the inequality is strict when u0 �= u1 and t = 1
2
.

This implies that the inequality is strict when u0 �= u1 and t ∈ (0, 1).

If G is a differentiable functional on a Hilbert space E, there are simple
criteria which can be used to verify convexity of G. We gave one such
criterion in Lemma 1.29. We also have

Theorem 4.9. Let G be a differentiable functional on a closed, convex
subset M of E. Then G is convex on E iff it satisfies any of the following
inequalities for u0, u1 ∈ M.

(G′(u0), u1 − u0) ≤ G(u1) −G(u0) (4.17)

(G′(u1), u1 − u0) ≥ G(u1) −G(u0) (4.18)

(G′(u1) −G′(u0), u1 − u0) ≥ 0. (4.19)

Moreover, it will be strictly convex iff there is strict inequality in any of
them for u0 �= u1.

Proof. Let ut = (1 − t)u0 + tu1, 0 ≤ t ≤ 1, and ϕ(t) = G(ut). If G is
convex, then

G(ut) ≤ (1 − t)G(u0) + tG(u1), (4.20)

or

ϕ(t) ≤ (1 − t)ϕ(0) + tϕ(1), 0 ≤ t ≤ 1. (4.21)

In particular, the slope of ϕ at t = 0 is ≤ the slope of the straight line
connecting (0, ϕ(0)) and (1, ϕ(1)). Thus ϕ′(0) ≤ ϕ(1) − ϕ(0), and this
is merely (4.17). Alternatively, we can use Lemma 1.29. Reversing the
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roles of u0, u1 produces (4.18). We obtain (4.19) by substracting (4.17)
from (4.18). Conversely, (4.19) implies

ϕ′(t) − ϕ′(s) = (G′(ut) −G′(us), u1 − u0)

= (G′(ut) −G′(us), ut − us)/(t− s) ≥ 0, 0 ≤ s < t ≤ 1.

Thus,

ϕ′(t) ≥ ϕ′(s), 0 ≤ s ≤ t ≤ 1,

which implies (4.21). Since this is equivalent to (4.20), we see that G is
convex. If G is strictly convex, we obtain strict inequalities in (4.17)–
(4.19), and strict inequalities in any of them implies strict inequalities
in (4.21) and (4.20).

Corollary 4.10. Let G be a differentiable functional on a closed, convex
subset M of E. Then G is concave on E iff it satisfies any of the following
inequalities for u0, u1 ∈ M.

(G′(u0), u1 − u0) ≥ G(u1) −G(u0) (4.22)

(G′(u1), u1 − u0) ≤ G(u1) −G(u0) (4.23)

(G′(u1) −G′(u0), u1 − u0) ≤ 0. (4.24)

Moreover, it will be strictly concave iff there is strict inequality in any
of them for u0 �= u1.

Proof. Note that G(u) is concave iff −G(u) is convex.

4.6 Partial derivatives

Let M,N be closed subspaces of a Hilbert space H satisfying H = M⊕N.

Let G(u) be a functional on H. We can consider “partial” derivatives of
G in the same way we considered total derivatives. We keep w = w0 ∈ M

fixed and consider G(u) as a functional on N, where u = v+w0, v ∈ N.

If the derivative of this functional exists at v = v0 ∈ N, we call it
the partial derivative of G at u0 = v0 + w0 with respect to v ∈ N

and denote it by G′
N (u0). Similarly, we can define the partial derivative

G′
M (u0). We have

Lemma 4.11. If G′ exists at u0 = v0 + w0, then G′
M (u0) and G′

N (u0)
exist and satisfy

(G′(u0), u) = (G′
M (u0), w) + (G′

N (u0), v), v ∈ N, w ∈ M. (4.25)
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Proof. By definition

G(u0 + u) = G(u0) + (G′(u0), u) + o(‖u‖), u ∈ H.

Therefore,

G(u0 + v) = G(u0) + (G′(u0), v) + o(‖v‖), v ∈ N,

and

G(u0 + w) = G(u0) + (G′(u0), w) + o(‖w‖), w ∈ M.

But

G(u0 + v) = G(u0) + (G′
N (u0), v) + o(‖v‖), v ∈ N,

and

G(u0 + w) = G(u0) + (G′
M (u0), w) + o(‖w‖), w ∈ M.

In particular, we have

(G′(u0) −G′
N (u0), v) = o(‖v‖) as ‖v‖ → 0, v ∈ N.

Thus,

(G′(u0) −G′
N (u0), tv) = o(|t|) as |t| → 0

for each fixed v ∈ N. This means that

(G′(u0) −G′
N (u0), v) =

o(|t|)
t

→ 0 as t → 0.

Hence,

(G′(u0), v) = (G′
N (u0), v), v ∈ N.

Similarly,

(G′(u0), w) = (G′
M (u0), w), w ∈ M.

These two identities combine to give (4.25).

Lemma 4.12. Under the hypotheses of Lemma 4.11, assume that G is
differentiable on H, convex on M and concave on N. Then,

G(u) −G(u0) ≤ (G′
N (u0), v − v0) + (G′

M (u), w − w0),

u = v + w, u0 = v0 + w0, v, v0 ∈ N, w,w0 ∈ M. (4.26)
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Proof. This follows from Theorem 4.9 and its corollary. In fact, we have

G(u) −G(u0) = G(u) −G(v + w0) + G(v + w0) −G(u0)

≤ (G′(u), w − w0) + (G′(u0), v − v0).

Apply Lemma 4.11.

We also have

Lemma 4.13. Under the hypotheses of Lemma 4.11, if G′(u0) exists
and u0 = v0 + w0 is a saddle point, then

G′(u0) = G′
M (u0) = G′

N (u0) = 0.

Proof. By definition

G(v + w0) ≤ G(u0) ≤ G(v0 + w), v ∈ N, w ∈ M.

Since v0 is a maximum point on N, we see that G′
N (u0) = 0 (Lemma 1.1).

Since w0 is a minimum point on M, we have G′
M (u0) = 0 for the same

reason. We then apply Lemma 4.11.

We also have

Theorem 4.14. Under the hypotheses of Lemma 4.11, let a(u) be a
differentiable functional on H which is convex on M and concave on N .
Assume that there are a Hilbert space H1 and linear operators S, T, with
S mapping N into H1 and T mapping M into H1 such that

Sv ∈ D(T ∗), Tw ∈ D(S∗), v ∈ N, w ∈ M ,

and

a(v1 + w) − (Sv1, Tw)1 → ∞ as ‖w‖ → ∞, w ∈ M ,

a(v + w1) − (Sv, Tw1)1 → −∞ as ‖v‖ → ∞, v ∈ N ,

for some v1 ∈ N and w1 ∈ M. Then there is a solution u0 = v0 + w0 of

T ∗Sv0 = a′M (u0), S∗Tw0 = a′N (u0). (4.27)

Proof. Let

G(u) = a(u) − (Sv, Tw)1, u = v + w, v ∈ N, w ∈ M.

Note that vk → v in N implies

(Svk, Tw)1 = (vk, S∗Tw) → (v, S∗Tw) = (Sv, Tw)1, w ∈ M,
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and wk → w in M implies

(Sv, Twk)1 = (T ∗Sv,wk) → (T ∗Sv,w) = (Sv, Tw)1, v ∈ N.

Consequently, G(u) is continuous and convex on M for each v ∈ N,

and continuous and concave on N for each w ∈ M. Thus, all of the
hypotheses of Theorem 4.8 are satisfied. It therefore follows that G(u)
has a saddle point u0 satisfying

G(v + w0) ≤ G(u0) ≤ G(v0 + w), v ∈ N, w ∈ M.

Consequently,

a(v + w0) − (Sv, Tw0)1 ≤ a(v0 + w0) − (Sv0, Tw0)1
≤ a(v0 + w) − (Sv0, Tw)1, v ∈ N, w ∈ M,

or

a(v + w0) − a(v0 + w0) ≤ (S(v − w0), Tw0)1, v ∈ N,

and

a(v + w0) − a(v0 + w0) ≥ (Sv0, T (w − w0))1, w ∈ M.

Let ṽ ∈ N, w̃ ∈ M, t > 0 be arbitrary, and take v = v0 + tṽ, w =
w0 + tw̃. Then

a(u0 + tṽ) − a(u0) ≤ t(Sṽ, Tw0)1, ṽ ∈ N, t > 0,

and

a(u0 + tw̃) − a(u0) ≥ t(Sv0, T w̃)1, w̃ ∈ M, t > 0,

Letting t → 0, we obtain

(a′N (u0) − S∗Tw0, ṽ) ≤ 0, ṽ ∈ N,

and

(a′M (u0) − T ∗Sv0, w̃) ≥ 0, w̃ ∈ M.

By picking ṽ, w̃ judiciously, we see that these imply (4.27). The proof
is complete.
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4.7 Nonexpansive operators

If M is a closed subset of a Banach space, and f(x) maps M into itself
and satisfies

‖f(x) − f(y)‖ ≤ θ‖x− y‖, x, y ∈ M

for some θ < 1, then we know that there is a unique x0 ∈ M such that
f(x0) = x0 (Theorem 2.12). The mapping f is called a contraction be-
cause θ < 1, and f(x), f(y) are closer together than x, y (unless x = y).
A natural question is whether or not the theorem is true if one relaxes
the hypotheses to

‖f(x) − f(y)‖ ≤ ‖x− y‖, x, y ∈ M. (4.28)

In this case we call f nonexpansive. Unfortunately, the theorem is false
in this case as the following example shows.

Let X be the set of bounded sequences x = {xn} such that xn → 0
as n → ∞. With the norm

‖x‖ = max
n

|xn|,

it becomes a Banach space. Let M = {x ∈ X : ‖x‖ ≤ 1}, and define f

by

f(x) = {1, x1, x2, . . . }.

If y = {yn} ∈ M, then

‖f(x) − f(y)‖ = ‖{0, x1 − y1, x2 − y2, . . . }‖ = ‖x− y‖.

Thus f satisfies (4.28). However, if f(x) = x, then

{x1, x2, . . . } = {1, x1, x2, . . . },

and this implies x1 = 1, x2 = 1, . . . , xn = 1, . . . But then x /∈ X since
xn = 1 �→ 0. However, the following is true.

Theorem 4.15. Let M be a bounded, closed, convex subset of a Hilbert
space X, and let f be a map of M into itself that satisfies (4.28). Then
there is at least one point x0 ∈ M such that

f(x0) = x0. (4.29)

The set of such points is convex.
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Remark 4.16. Recall that a set Q is convex if tu+ (1− t)v ∈ Q when-
ever u, v ∈ Q and 0 ≤ t ≤ 1. Note that we added the hypotheses that
M is bounded and convex and that X is a Hilbert space. However, we
cannot claim that a solution of (4.29) is unique.

Proof. By shifting everything, we may assume that 0 ∈ M. Now, for
each t such that 0 ≤ t < 1, the mapping tf(x) is a contraction. Hence,
there is a unique xt ∈ M such that

tf(xt) = xt.

Since M is a closed, bounded, and convex subset of a Hilbert space,
there is a sequence tn → 1 such that xn = xtn converges weakly to a
limit x0 ∈ M (Theorem A.61). Let

An(x) = x− tnf(x), A(x) = x− f(x).

Then,

(An(x) −An(y), x− y) = ‖x− y‖2 − tn(f(x) − f(y), x− y) ≥ 0
(4.30)

by (4.28). If we take y = xn, we have

(An(x) −An(xn), x− xn) ≥ 0.

Since An(xn) = 0, this gives

(An(x), x− xn) ≥ 0, x ∈ M.

Letting n → ∞, we obtain

(A(x), x− x0) ≥ 0, x ∈ M. (4.31)

This implies

(A(x0), x− x0) ≥ 0, x ∈ M. (4.32)

Assuming this for the moment, we see that

(x0 − f(x0), x− x0) ≥ 0, x ∈ M.

If we take x = f(x0), we obtain

−‖A(x0)‖2 ≥ 0,

which implies that x0 satisfies (4.29).

It therefore remains only to show that (4.32) holds and that the set
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of solutions of (4.29) is convex. To see that (4.32) holds, let y be any
element of M, and take x = θy + (1 − θ)x0, 0 < θ < 1. Then by (4.31),

(A(θy + (1 − θ)x0), y − x0) ≥ 0.

If we let θ → 0, we obtain (4.32) with x replaced by y. In particular, we
see that x is a solution of A(x) = 0 iff it satisfies (4.31).

To show that that the set of solutions of (4.29) is convex, note that
(4.28) implies

(A(x) −A(y), x− y) ≥ 0, x, y ∈ M. (4.33)

If x0 is a solution of (4.29), it satisfies

(A(x), x− x0) ≥ (A(x0), x− x0) = 0, x ∈ M.

If x1 is also a solution, then

(A(x), x− [θx0 + (1 − θ)x1]) = θ(A(x), x− x0)

+ (1 − θ)(A(x), x− x1) ≥ 0,

showing that x = θx0 + (1 − θ)x1 satisfies (4.31) and consequently, it is
also a solution for 0 ≤ θ ≤ 1. This completes the proof.

4.8 The implicit function theorem

Before we prove a general theorem which is useful in many applications,
we shall prove a simple, well known version.

Theorem 4.17. Suppose f(x, y) is a continuous function mapping an
open set Ω ⊂ R

2 → R. Assume that fy(x, y) is continuous on Ω and that
there is a point (x0, y0) ∈ Ω such that

f(x0, y0) = 0, A ≡ fy(x0, y0) �= 0.

Then there is an r > 0 and a continuous function g(x) on

Ir(x0) = {x ∈ R : |x− x0| < r}

such that g(x0) = y0,

(x, g(x)) ⊂ Ω, x ∈ Ir(x0), (4.34)

and

f(x, g(x)) ≡ 0, x ∈ Ir(x0). (4.35)
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Proof. We may assume that x0 = y0 = 0. Define

R(x, y) = Ay − f(x, y).

For x, y1, y2 close to 0, we have

f(x, y1) − f(x, y2) =
∫ 1

0

d

dθ
f(x, θy1 + (1 − θ)y2) dθ

= (y1 − y2)
∫ 1

0

fy(x, θy1 + (1 − θ)y2) dθ.

Consequently,

R(x, y1) −R(x, y2) = (y1 − y2)
∫ 1

0

[fy(0, 0) − fy(x, θy1 + (1 − θ)y2)] dθ,

since A = fy(0, 0). By continuity, there is a δ > 0 such that

|R(x, y1) −R(x, y2)| ≤ |y1 − y2|/2|A|, |x|, |yj | ≤ δ.

Let

h(x, y) = R(x, y)/A.

Then,

|h(x, y1) − h(x, y2)| ≤ |y1 − y2|/2, |x|, |yj | ≤ δ. (4.36)

Moreover,

|h(x, y)| ≤ |h(x, y) − h(x, 0)| + |h(x, 0) − h(0, 0)|
≤ δ/2 + δ/2 = δ, |x| ≤ r, |y| ≤ δ

for some r ≤ δ. Consequently, for each x satisfying |x| ≤ r, h(x, y) is a
continuous map of Iδ(0) into itself satisfying (4.36). We can now apply
the contraction mapping theorem (Theorem 2.12) to conclude that for
each x ∈ Ir(0) there is a unique y ∈ Iδ(0) such that h(x, y) = y. This
means f(x, y) = 0. Define g(x) = y. Then g(x) is a unique function
satisfying g(0) = 0 and (4.34), (4.35).

To show that g(x) is continuous, let x1, x2 be any points in Ir(0).
Then

|g(x1) − g(x2)| = |h(x1, g(x1)) − h(x2, g(x2))|
≤ |h(x1, g(x1)) − h(x1, g(x2))|

+ |h(x1, g(x2)) − h(x2, g(x2))|

≤ 1
2
|g(x1) − g(x2)| + |h(x1, g(x2)) − h(x2, g(x2))|.
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From this we conclude that

|g(x1) − g(x2)| ≤ 2|h(x1, g(x2)) − h(x2, g(x2))|.

Let x1 → x2. Since h(x, y) is continuous,

h(x1, g(x2)) → h(x2, g(x2)).

This implies that g(x1) → g(x2), and the proof is complete.

We also have

Theorem 4.18. If, in addition, f ∈ C1(Ω,R), then g ∈ C1(Ir(x0),R)
and

g′(x) = −fy(x, g(x))−1
• fx(x, g(x)). (4.37)

Proof. Again we assume that x0 = y0 = 0. Let x, x + ξ ∈ Ir(0) and
η=g(x+ ξ)− g(x). Then η → 0 as ξ → 0. Let ε < |A|/4 be given. Since
f ∈ C1, we have

|f(x+ξ, g(x + ξ))−f(x, g(x))−fx(x, g(x))ξ−fy(x, g(x))η|<ε(|ξ|+|η|)

for |ξ| sufficiently small. Since

fy(x, g(x)) → A �= 0 as x → 0,

we have

|fy(x, g(x))| ≥ |A|
2

for x close to 0. Since f(x + ξ, g(x + ξ)) = f(x, g(x)) = 0, we have

|fx(x, g(x))ξ + fy(x, g(x))ξ| ≤ ε(|ξ| + |η|),

and consequently,

|fy(x, g(x))−1fx(x, g(x))ξ + η| ≤ 2ε
|A| (|ξ| + |η|).

Let v = fy(x, g(x))−1fx(x, g(x))ξ. Then there is a constant C such that

|v| ≤ C|ξ|.

Thus,

|η + v| ≤ 2ε
|A| (|ξ| + |η + v| + |v|) ≤ 1

2
|η + v| + 2ε

|A| (C + 1)|ξ|.
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Consequently,

|η + v| ≤ 4ε
|A| (C + 1)|ξ|.

Since ε was arbitrary, we see that

|η
ξ

+
v

ξ
| → 0 as |ξ| → 0.

But this is

g(x + ξ) − g(x)
ξ

+ fy(x, g(x))−1fx(x, g(x)) → 0 as ξ → 0.

Thus, g′(x)exists and equals

g′(x) = fy(x, g(x))−1fx(x, g(x)).

But the right-hand side is continuous in x. Thus, the same is true of
g′(x). This completes the proof.

We also have

Corollary 4.19. If, in addition, f ∈ Ck(Ω,R), then g ∈ Ck(Ir(x0),R).

Proof. We merely differentiate (4.37).

Now we generalize Theorem 4.17 to a Hilbert space setting.

Theorem 4.20. Let X,Y, Z be Hilbert spaces and let Ω be an open set
in X × Y. Let f be a continuous map from Ω to Z such that there is a
point (x0, y0) ⊂ Ω for which f(x0, y0) = 0. Assume that f ′ exists and is
continuous in Ω and A = fy(x0, y0) is invertible from X×Y to Z. Then
there exists an r > 0 and a unique mapping g(x) from Br(x0) = {x ∈
X : ‖x− x0‖ < r} to Y such that

(a) y0 = g(x0)
(b) f(x, g(x)) ≡ 0, x ∈ Br(x0)
(c) If f ∈ C1(Ω, Z), then

g′(x) = −fy(x, g(x))−1fx(x, g(x)), x ∈ Br(x0) (4.38)

(d) If f ∈ Ck(Ω, Z), then g ∈ Ck(Br(x0), Y ).

Proof. We follow the proof of Theorem 4.17 replacing R
2 with X × Y

and absolute value signs with norms. The same is true with the proof of
Theorem 4.18 and Corollary 4.19.
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4.9 Exercises

1. Why does

inf
w∈M

sup
v∈N

G(v, w) = sup
v∈N

G(v, w0)

= G(v0, w0)

= inf
w∈M

G(v0, w)

= sup
v∈N

inf
w∈M

G(v, w)

imply that

min
w∈M

sup
v∈N

G(v, w) = sup
v∈N

G(v, w0)

= G(v0, w0)

= inf
w∈M

G(v0, w)

= max
v∈N

inf
w∈M

G(v, w)?

2. Verify

‖ūk‖2 =


 k∑
j=1

‖uj‖2 + 2
k∑

j=1

j∑
i=1

(ui, uj)


 /k2

≤


kC2 + 2

k∑
j=1

j∑
i=1

1
j


 /k2

≤ (C2 + 2)/k → 0

when

|(unk
, un1)| ≤

1
k
, . . . , |(unk

, unk−1)| ≤
1
k
.

3. Verify (4.15).

4. If G(v, w) satisfies the hypotheses of Theorem 4.8, show that

Gε(v, w) = G(v, w) + ε‖w‖2

satisfies the hypotheses of Theorem 4.8 and is also strictly convex
with respect to w.

5. Verify that

‖(1−θ)w0 + θw1‖2 = (1−θ)‖w0‖2 + θ‖w1‖2−θ(1−θ)‖w0−w1‖2.
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6. Show that

Gε(v, w̄ε) ≤ Gε(v̄ε, w̄ε) ≤ Gε(v̄ε, w), v ∈ N, w ∈ M

implies

G(v, w̄) ≤ G(v̄, w), v ∈ N, w ∈ M

when ε → 0, v̄ε ⇀ v̄, w̄ε ⇀ w̄.

7. Why is there a subsequence such that

G(v̄R, w̄R) → λ as R → ∞

in the proof of Theorem 4.8?

8. Verify

G(v, w̄) ≤ λ ≤ G(v̄, w), v ∈ N, w ∈ M.

9. Show that a functional G(u) is strictly convex iff

G([(1 − t)u0 + tu1]) < (1 − t)G(u0) + tG(u1)

when u0 �= u1 and t ∈ (0, 1).

10. Show that

(a′N (u0) − S∗Tw0, ṽ) ≤ 0, ṽ ∈ N,

and

(a′M (u0) − T ∗Sv0, w̃) ≥ 0, w̃ ∈ M

imply (4.27).

11. Show that the set of bounded sequences x = {xn} such that xn → 0
as n → ∞ with the norm

‖x‖ = max
n

|xn|,

is a Banach space.

12. Prove Corollary 4.19.

13. Carry out the proof of Theorem 4.20.



5

Calculus of variations

5.1 Introduction

In the first three chapters we wanted to solve a specific problem. Our
attack was to find a functional such that the vanishing of its derivative
at a point is equivalent to providing a solution of the original problem.
Many problems arise in which one is given a functional and one is search-
ing for an extremum. Before we present the general theory we give some
examples.

5.2 The force of gravity

We assume that a particle is travelling in the plane starting at the point
(a0, b0), b0 > 0, and ending at the point (0, 0). The only force that is to
act on the particle is that of gravity in the negative y direction. Assume
that the particle is moving along a wire connecting the two points, but
there is no friction. We would like to know if there is a fixed path that
will minimize the time that it will take the particle to make its descent.
If it exists, the path is known as the “brachistochrone.”

If m is the mass of the particle and g is the acceleration due to gravity,
then the particle satisfies

1
2
mv2 + mgy = mgb0, (5.1)

where v is its velocity. If t represents time, then

v(t)2 =
(
dx(t)
dt

)2

+
(
dy(t)
dt

)2

=
(
ds(t)
dt

)2

,

where s(t) is the arc length starting from t = 0. Thus ds/dt = v. If we
assume that the wire is such that the curve it makes can be expressed
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as x = f(y), then we have

T =
∫ b0

0

(1 + f ′(y)2)
1
2

(2g(b0 − y))
1
2
dy =

∫ b0

0

F (y, f ′(y)) dy, (5.2)

where F (y, z) is given by

F (y, z) =
(1 + z2)

1
2

(2g(b0 − y))
1
2

(5.3)

and T represents the total time taken for the particle to reach (0, 0).
We want T for the given path to be ≤ the time taken if another path
is chosen. In particular if ε > 0 and η(y) is a smooth function in [0, b0]
such that η(0) = η(b0) = 0, then

x = fε(y) = f(y) + εη(y)

is a competing path. We want T ≤ Tε, where

Tε =
∫ b0

0

F (y, f ′
ε(y))dy.

In particular, we should have

dTε

dε
= 0

when ε = 0. But

dTε

dε
=

∫ b0

0

∂F

∂z
(y, f ′

ε(y))η
′(y) dt = −

∫ b0

0

d

dy

∂F

∂z
(y, f ′

ε(y))η(y) dy.

The reason we integrated by parts is because of

Lemma 5.1. If h(t) is a continuous function in the interval [a, b] and
∫ b

a

h(t)η(t)dt = 0

for all smooth functions η(t) vanishing at a and b, then h(t) ≡ 0 in [a, b].

We shall prove Lemma 5.1 later at the end of this section. Applying
it to our case, we see that

∫ b0

0

d

dy

∂F

∂z
(y, f ′(y))η(y) dy = 0

for every such η(y). Hence, we have

d

dy

∂F

∂z
(y, f ′(y)) ≡ 0, y ∈ [0, b0].
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This means that
∂F

∂z
(y, f ′(y)) ≡ c

for some constant c. Now
∂F

∂z
(y, z) =

z

[2g(b0 − y)(1 + z2)]1/2
.

Hence,
f ′(y)

[2g(b0 − y)(1 + f ′(y)2)]1/2
≡ c.

Thus,

f ′(y)2 =
2gc2(b0 − y)

1 − 2gc2(b0 − y)
.

Let

4gc2(b0 − y) = 1 − cos θ.

We can do this because

2gc2(b0 − y) ≤ 1

(in fact, it equals f ′(y)2/[1 + f ′(y)2]). Then

f ′(y)2 =
1
2
(1 − cos θ)

1 − 1
2 (1 − cos θ)]

=
1 − cos θ
1 + cos θ

.

Consequently,

f(y) =
−1
4gc2

∫ [
1 − cos θ
1 + cos θ

]1/2

sin θ d θ + const.

=
1

4gc2

∫
(cos θ − 1)dθ + const.

=
1

4gc2
(sin θ − θ) + const.

Since θ = 0 when y = b0 and f(b0) = a0, we have

f(y) =
1

2gc2
(sin θ − θ) + a0.

Since
dy

dθ
= − 1

4gc2
sin θ,

we have

y =
1

4gc2
cos θ + const.
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Since θ = 0 when y = b0, this constant must be b0 − (1/4gc2). Conse-
quently, we have

y =
1

4gc2
(cos θ − 1) + b0.

From these equations, we see that there should be a number θ0 such that

4gc2b0 = 1 − cos θ0, 4gc2a0 = θ0 − sin θ0.

We leave it as a simple exercise to show that we can always find such a θ0.

The equations we have found describe a cycloid. Note that

c2 =
1 − cos θ0

4gb0
=

θ0 − sin θ0

4ga0
.

It should be stressed that we have not provided a minimum. All we have
shown is that if a minimum function exists, it is a cycloid.

The proof of Lemma 5.1 is simple.

Proof. Functions in C∞
0 (a, b) meet the requirements of η. Hence,

Lemma 3.3 tells us that h(t) = 0 a.e. Since h(t) is continuous, it must
vanish everywhere in [a, b].

5.3 Hamilton’s principle

This principle states that a dynamical system will move along a path
which minimizes the integral with respect to time of the difference be-
tween the kinetic and potential energies of the system.

If T, V represent the kinetic and potential energies of the system, re-
spectively, then the principle states that the path followed by the system
from t = t1 to t = t2 minimizes

∫ t2

t1

(T − V )dt.

Consider the motion of a particle of mass m along the x-axis. If the
particle is subject to a force f(x), then

T =
1
2
mẋ2, V = −

∫ x

x0

f(x)dx,

where

ẋ =
dx

dt
.
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We want to minimize the integral
∫ t1

t0

L(x, ẋ) dt,

where

L = T − V =
1
2
mẋ2 +

∫ x

x0

f(x)dx

is called the Lagrangian. We shall use

Lemma 5.2. If the integral

J =
∫ b

a

F (x, ẋ, t)dt

has a minimum at the function

x = x(t), a ≤ t ≤ b,

then the function x(t) is a solution of

∂F

∂x
− d

dt

(
∂F

∂ẋ

)
= 0. (5.4)

This equation is known as Euler’s equation. We shall prove
Lemma 5.2 later (Corollary 5.8). Applying it to our situation, we look
for solutions of

∂L

∂x
− d

dt

(
∂L

∂ẋ

)
= 0.

This gives

f(x) − d

dt
(mẋ) = 0.

Hence, we are looking for solutions of

mẍ = f(x).

This is the usual Newtonian equation of motion.

As another example, consider the problem of a pendulum under the
force of gravity. Let φ denote the angle between the pendulum and the
downward direction, and let � denote the length of the pendulum. In
this case

T =
1
2
m(�φ̇)2, V = mg�(1 − cosφ),
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so that

L =
1
2
m�2φ̇2 −mg�(1 − cosφ).

In this case the Euler equation becomes

∂L

∂φ
− d

dt

(
∂L

∂φ̇

)
= 0.

From this we obtain

−mg� sinφ− d

dt
(m�2φ̇) = 0,

or

φ̈ +
g

�
sinφ = 0.

If we assume that the vertical position of the pendulum is always small,
we can approximate this equation by

φ̈ = −
(g

�

)
φ.

This represents simple harmonic motion about φ = 0. The general
solution is

φ = A cos(ωt) + B sin(ωt) = C cos(ωt + α),

where ω2 = (g/�) and A,B (or C,α) are arbitrary constants. Again, we
must emphasize that we have not shown the existence of minima.

As another example, consider

J =
∫ 1

0

(1 + ẋ2)2dt.

Any curve x = x(t) which minimizes J must satisfy

4ẋ(1 + ẋ2) = const.

The only solution of this is

ẋ = const.,

or

x(t) = At + B,

where the constants A,B are to be determined by the given conditions
of the problem.
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5.4 The Euler equations

Suppose H(x, y, z) is a function on Ω̄ × R × R, where Ω = (a, b), and
we want to find a function y(x) ∈ C1(Ω̄) satisfying

y(a) = a1, y(b) = b1 (5.5)

and minimizing the expression

J(y) =
∫

Ω

H(x, y(x), y′(x))dx. (5.6)

This is a typical situation dealt with in the calculus of variations. Here,
one not only wants to know that a minimum exists, but one wants to find
one of them (and hopefully it should be unique). The “brachistochrone”
problem was discussed at the beginning of this chapter. It was posed
by John Bernoulli in 1696. In it, one is given two points (a, a1), (b, b1)
in a vertical plane such that b1 <a1. One wants to find a curve joining
them so that a particle starting from rest at (a, a1) will traverse the
curve (without friction) from (a, a1) to (b, b1) in the shortest possible
time. One can reduce the problem to that of minimizing (5.6) under the
conditions (5.5) when

H(x, y, z)2 =
c(1 + z2)
(a1 − y)

. (5.7)

In dealing with such problems one is again tempted to follow the logic
used in elementary calculus which notes that the derivative vanishes at
an extreme point. If we want to follow this line of reasoning, we are again
confronted with the need to define a derivative for the expression (5.6).
If y(x) ∈ C1(Ω̄) satisfying (5.5) makes J a minimum, then

J(y) ≤ J(z)

for every other z(x) ∈ C1(Ω̄) satisfying (5.5). The difference η(x) =
z(x) − y(x) is in C1

0 (Ω). Thus, we want

J(y) ≤ J(y + η), η ∈ C1
0 (Ω). (5.8)

For this purpose, we note that if

A(y, η) = lim
t→0

J(y + tη) − J(y)
t

(5.9)

exists for each η ∈ C1
0(Ω) and y ∈ C1(Ω̄) satisfying (5.5), then we must

have

A(y, η) = 0, η ∈ C1
0 (Ω). (5.10)
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To see this, note that if A(y, η) �= 0 for some η ∈ C1
0 (Ω), then

J(y + tη) − J(y) = tA(y, η) + o(t), (5.11)

and the right-hand side can be made < 0 for |t| sufficiently small by
taking tA(y, η) < 0. Thus, if we want to follow this line of reasoning, we
are looking for a y(x) ∈ C1(Ω̄) satisfying (5.5) such that the limit (5.9)
exists and vanishes for each η ∈ C1

0 (Ω).

You may be wondering why we did not suggest using the Fréchet
derivative that we used earlier. There are several reason for this. (1)
There, we were trying to solve an equation with boundary conditions.
We wanted the derivative of the functional to coincide with the equation.
(2) Here, we have no equation. We are trying to find a function which
minimizes the functional under the given boundary conditions. (3) The
function y(x) is required to satisfy (5.5). It need not be in C1

0 (Ω). The
derivative as defined earlier would require the limits to exist for all η ∈
C1(Ω̄). (4) It will be shown later that the expression (5.9) is related to
the Fréchet derivative we used earlier (Theorem 5.9).

Let us consider the limit (5.9) for the functional (5.6). We have

J(y + tη) − J(y) =
∫

Ω

[H(x, y + tη, y′ + tη′) −H(x, y, y′)] dx

=
∫

Ω

∫ 1

0

d

dθ
H(x, y + tθη, y′ + tθη′) dθ dx

= t

∫
Ω

∫ 1

0

[Hy(x, y + tθη, y′ + tθη′)η

+ Hz(x, y + tθη, y′ + tθη′)η′] dθ dx,

provided the derivatives Hy, Hz exist and are continuous. If we divide
by t, then the limit will exist as t → 0. What we need is

Theorem 5.3. Assume that H(x, y, z), Hy(x, y, z), Hz(x, y, z) are con-
tinuous in Ω̄ × R × R and satisfy

|H(x, y, z)|+ |Hy(x, y, z)| + |Hz(x, y, z)| (5.12)

≤ C(|y|q + |z|p + 1), x ∈ Ω̄, y, z ∈ R

for some p, q < ∞. Then the limit (5.9) exists and equals

A(y, η) =
∫

Ω

[Hy(x, y, y′)η + Hz(x, y, y′)η′] dx, y ∈ C1(Ω̄), η ∈ C1
0 (Ω).

(5.13)
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Proof. We note that the right-hand side of

[J(y + tη) − J(y)]
t

=
∫

Ω

∫ 1

0

[Hy(x, y + tθη, y′ + tθη′)η + Hz(x, y + tθη, y′+ tθη′)η′]dθ dx

converges to the right-hand side of (5.13) as t → 0. Clearly, the integrand
converges to the integrand of (5.13) a.e. (Since θ disappeared from the
integrand in (5.13), the integral with respect to θ can be suppressed.)
Moreover, it is majorized by

C(|y|q + |η|q + |y′|p + |η′|p + 1)

when |t| ≤ 1. Since y, η ∈ C1(Ω̄), this is in L1(Ω). Hence, the integral
converges (Theorem B.18), and the proof is complete.

Thus we have

Corollary 5.4. Under the hypotheses of Theorem 5.3, if y(x) ∈ C1(Ω̄)
satisfies (5.5) and minimizes J(y) given by (5.6), then it must satisfy
(5.10).

Now our path leads us to search for functions y(x) ∈ C1(Ω̄) which
satisfy (5.10). This is not an easy task. It would be much easier if
Hz(x, y, z)≡ 0. For then (5.10) would reduce to∫

Ω

Hy(x, y, y′)η dx = 0, η ∈ C1
0 (Ω).

But we know that C∞
0 (Ω) is dense in L2(Ω), and this would lead to

Hy(x, y, y′) = 0.

This is an equation which may be solvable for y in terms of x. However,
the restriction Hz(x, y, z) ≡ 0 is very severe. It says that H(x, y, z) does
not really depend on z, a situation which rarely comes up in practice.
We then need only solve Hy(x, y) = 0 for y in terms of x. This can be
done, for instance, if Hyy(x, y) �= 0.

However, in the general case we have a more complicated situation.
One way of attacking the problem is to try to get (5.10) to reduce to
something of the form∫

Ω

h(x)η′dx = 0, η ∈ C1
0(Ω),
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then we could conclude that h(x) is a constant by means of the following
lemma.

Lemma 5.5. If h(x) ∈ Lp(Ω), 1 ≤ p < ∞, and∫
Ω

h(x)η′dx = 0, η ∈ C1
0 (Ω), (5.14)

then h(x) ≡ constant a.e.

Proof. Let

ψε(x) = Jεh(x) =
∫

jε(x− y)h(y) dy.

If ε < d(x, ∂Ω) = min{|x − a|, |x − b|}, then jε(x − y) ∈ C∞
0 (Ω), and

consequently

ψ′
ε(x) =

∫
∂

∂x
jε(x− y)h(y) dy = −

∫
∂

∂y
jε(x− y)h(y) dy = 0.

Thus, ψε(x) is a constant cε in [a+ ε, b− ε] for each ε > 0. On the other
hand, ψε(x) converges to h(x) in Lp(Ω) as ε → 0 (c.f. (3.6)). This implies
that there is a sequence {εk} such that εk → 0 and ψεk(x) → h(x) a.e.
(Theorem B.25). Thus, ck = ψεk(x) → h(x) a.e. as k → ∞. This shows
that h(x) ≡ constant a.e. The proof is complete.

This leads to

Theorem 5.6. Under the hypotheses of Theorem 5.3, if y ∈ C1(Ω̄)
satisfies (5.10), then

Hz(x, y(x), y′(x)) −
∫ x

a

Hy(t, y(t), y′(t)) dt ≡ constant, x ∈ Ω̄.

(5.15)

Proof. Let h(x) denote the left-hand side of (5.15). Then∫
Ω

h(x)η′dx =
∫

Ω

Hz(x, y, y′)η′dx−
∫

Ω

η′
∫ x

a

Hy(t, y(t), y′(t)) dt dx

=
∫

Ω

[Hz(x, y, y′)η′ + Hy(x, y, y′)η] dx

=A(y, η), η ∈ C1
0 (Ω)

by integration by parts. Hence, h(x) satisfies (5.14), and we can conclude
via Lemma 5.5 that h(x) ≡ constant.

We also have
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Corollary 5.7. Under the same hypotheses, Hz(x, y(x), y′(x)) is differ-
entiable on Ω̄ and satisfies

Hy(x, y(x), y′(x)) − d

dx
Hz(x, y(x), y′(x)) = 0, x ∈ Ω̄. (5.16)

Proof. Apply Theorem B.36.

Combining these results, we have

Corollary 5.8. Under the hypotheses of Theorem 5.3, if y(x) ∈ C1(Ω̄)
minimizes the functional (5.6) under the conditions (5.5), then it must
satisfy (5.15) and (5.16).

5.5 The Gâteaux derivative

Let G(u) be a functional on a Hilbert space H. According to our defini-
tion, the Fréchet derivative of G at an element u ∈ H exists if there is
an element g ∈ H such that

[G(u + v) −G(u) − (v, g)H ]
‖v‖H

→ 0 as ‖v‖H → 0, v ∈ H. (5.17)

We defined G′(u) to be g. If there is a symmetric bilinear from 〈v, w〉
satisfying (1.18), then

(v, g)H = 〈v, w〉, v ∈ H.

This means that

(v,G′(u))H = 〈v, w〉, v ∈ H. (5.18)

There is another definition of derivative which is sometimes more con-
venient to use. Recall that we had great difficulty defining the derivative
because of multiplication and division in a vector space. Another ap-
proach is to consider the limit

lim
t→0

G(u + tv) −G(u)
t

.

We say that G is Gâteaux differentiable at a point u ∈ H if this limit
exists for each v ∈ H and satisfies

lim
t→0

G(u + tv) −G(u)
t

= (v, h)H , v ∈ H (5.19)

for some element h ∈ H. We call h the Gâteaux derivative of G at u and
denote it (temporarily) by G′

1(u). There is an important relationship
between the two derivatives. We have
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Theorem 5.9. If the Gâteaux derivative of G exists in the neighborhood
of a point u ∈ H and is continuous at u, then the Fréchet derivative of
G exists at u and equals the Gâteau derivative at u.

Proof. For v ∈ H, let

ϕ(t) = G(u + tv), t ∈ [0, 1].

Let ε > 0 be given. If the Gâteaux derivative of G exists in the neigh-
borhood of a point u ∈ H and is continuous at u, then there is a δ > 0
such that ϕ′(t) exists and satisfies

|ϕ′(t) − ϕ′(0)| < ε

for t ∈ I = [0, 1] when ‖v‖ < δ. Thus, ϕ′(t) is bounded on I. Hence,
ϕ′(t) is Lebesgue integrable on I and satisfies

ϕ(1) − ϕ(0) =
∫ 1

0

ϕ′(s)ds

(Theorem B.20). Consequently,

|G(u + v) −G(u) − (v,G′
1(u))H | =

∣∣∣∣
∫ 1

0

(v,G′
1(u + tv) −G′

1(u))dt
∣∣∣∣

≤ ‖v‖H
∫ 1

0

‖G′
1(u + tv) −G′

1(u)‖dt.

Thus,
[G(u + v) −G(u) − (v,G′

1(u))H ]
‖v‖H

→ 0, v ∈ H.

This shows that G′(u) exists and equals G′
1(u).

Remark 5.10. When G′
1(u) equals G′(u), we shall designate both of

them by G′(u).

5.6 Independent variables

In some situations we are required to minimize expressions such as

J =
∫ b

a

F (x1, x2, . . . , xn, ẋ1, ẋ2, . . . , ẋn, t)dt, (5.20)

where

xi = xi(t), i = 1, 2, . . . , n

are independent functions. Corresponding to Lemma 5.2 we have
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Lemma 5.11. If the functions x1(t), x2(t), . . . , xn(t) minimize the
functional (5.20), then they satisfy

∂F

∂xi
− d

dt

(
∂F

∂ẋi

)
= 0, i = 1, 2, . . . , n. (5.21)

The proof of Lemma 5.11 is similar to that of Lemma 5.2 and is
omitted. As an example, consider a particle of mass m moving in the
plane under an attractive force mk/r2 towards the origin, where (r, φ)
are the polar coordinates. We apply Hamilton’s principle. In this case
the potential energy is

V = −mk

r
,

and the kinetic energy is

T =
1
2
m(ṙ2 + r2φ̇).

Hence,

L = T − V =
1
2
m(ṙ2 + r2φ̇) + mk/r.

By Lemma 5.11, curves r(t), φ(t) which minimize∫ t2

t1

Ldt

must satisfy
∂L

∂r
− d

dt

(
∂L

∂ṙ

)
= 0

and
∂L

∂φ
− d

dt

(
∂L

∂φ̇

)
= 0.

Thus we must have

−mk

r2
+ mrφ̇2 − d

dt
(mṙ) = 0

and

mr2φ̇ =
∂L

∂φ̇
= const. = M.

Eliminating φ̇ from these equations, we obtain

r̈ −M2/m2r3 = −k/r2,

which is the equation of motion of such a particle. In particular, this is
the equation of motion of a planet as it travels around the Sun.
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5.7 A useful lemma

If the integrand in (5.6) does not contain x explicitly (i.e., it is only to
be found in y(x) and y′(x)), then it is often useful to utilize the following

Lemma 5.12. If y = y(x) is a critical point of

J =
∫ b

a

F (y, y′)dx, (5.22)

then it is a solution of

y′
∂F

∂y′
− F = constant. (5.23)

Proof. We know that it must satisfy the Euler equation

∂F

∂y
− d

dx

(
∂F

∂y′

)
= 0

(Corollary 5.8). Hence, we must have

d

dx

(
y′
∂F

∂y′

)
= y′

d

dx

(
∂F

∂y′

)
+ y′′

∂F

∂y′
= y′

∂F

∂y
+ y′′

∂F

∂y′

and
d

dx
F =

∂F

∂y
y′ +

∂F

∂y′
y′′.

Subtracting, we obtain

d

dx

(
F − y′

∂F

∂y′

)
= 0,

which is precisely the conclusion of the lemma.

As an example, let us find a curve that is a critical point of

J =
∫ b

a

y(1 + y′
2)1/2dx.

In this case F = y(1 + y′
2)1/2, and we can apply Lemma 5.12. Thus, we

are looking for a solution of (5.23). Hence,

yy′
2(1 + y′

2)−1/2 − y(1 + y′
2)1/2 = constant = K.

This implies

y2 = K2(1 + y′
2),

or

y′ = (y2 −K2)1/2/K.
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Thus, ∫
dy

(y2 −K2)1/2
=

1
K

(∫
dx + C

)
.

Integrating, we find

cosh−1(y/K) = (x + C)/K,

or

y = K cosh
(
x + C

K

)
.

The constants C,K are to be determined from the boundary conditions.

5.8 Sufficient conditions

Our next step is to try to find a minimum for J(y) under the conditions
(5.5). Of course, we must make sure that J(y) is bounded from below
on this set. A fairly simple condition which will accomplish this is

H(x, y, z) ≥ ρ|z|p −W (x), x ∈ Ω̄, y, z ∈ R, (5.24)

where ρ > 0, p > 1, and W (x) ∈ L1(Ω). In this case, J(y) is clearly
bounded from below. So now we can try to find a minimum of J(y) on

D = {y(x) ∈ C1(Ω̄) : y(a) = a1, y(b) = b1}.

Let

α = inf
D

J.

It is clear that α > −∞. Let {yn(x)} ⊂ D be a minimizing sequence:

J(yn) ↘ α.

Since

ρ

∫
Ω

|y′n|pdx−
∫

Ω

W (x)dx ≤ J(yn) ≤ C,

we see that there is a constant B such that

|y′n|p ≤ B.

Since

|yn(x) − yn(x′)| =
∣∣∣∣
∫ x

x′
y′n(t)dt

∣∣∣∣ ≤
∫ x

x′
|y′n(t)|dt, a ≤ x′ ≤ x ≤ b,
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we have

|yn(x) − yn(x′)| ≤ |x− x′|1/p′
(∫ x

x′
|y′n(t)|pdt

)1/p

≤ |x− x′|1/p′
B, a ≤ x′ < x ≤ b,

where p′ = p/(p− 1). In particular, we have

|yn(x) − a1| ≤ |x− a|1/p′
B, |yn(x) − b1| ≤ |x− b|1/p′

B.

These last inequalities show that the sequence {yn(x)} is uniformly
bounded and equicontinuous on Ω̄. By the Arzelà–Ascoli theorem (The-
orem C.6), there is a renamed subsequence that converges uniformly on
Ω̄ to a continuous function ȳ(x). In the limit we have

|ȳ(x) − ȳ(x′)| ≤ |x− x′|1/p′
B, a ≤ x′ < x ≤ b,

and

|ȳ(x) − a1| ≤ |x− a|1/p′
B, |ȳ(x) − b1| ≤ |x− b|1/p′

B, x ∈ Ω̄.

In particular, we have

ȳ(a) = a1, ȳ(b) = b1.

Since the Lp(Ω) norms of the y′n are uniformly bounded, there is a
renamed subsequence which converges weakly in Lp(Ω) to a function
h(x) ∈ Lp(Ω) (Theorems B.23 and A.61). This means that∫

Ω

[y′n(x) − h(x)]v(x) dx → 0 as n → ∞, v ∈ Lp′
(Ω).

Therefore, if η ∈ C1
0(Ω), then

(ȳ, η′) ← (yn, η′) = −(y′n, η) → −(h, η).

Thus, h is the weak Lp(Ω) derivative of ȳ. We shall denote it by ȳ′(x).

Now we come to our final assumption. We assume that Hzz(x, y, z)
exists and is continuous and satisfies

Hzz(x, y, z) > 0, x ∈ Ω, y, z ∈ R. (5.25)

In particular, Hz(x, y, z) is an increasing function of z for each x and y.

We now proceed to show that the minimum exists.

For fixed M, let

ΩM = {x ∈ Ω̄ : |ȳ′(x)| ≤ M}.
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Let ε > 0 be given. Since yn(x) → ȳ(x) uniformly, there is an integer N
such that

|H(x, yn, ȳ′) −H(x, ȳ, ȳ′)| < ε, |Hz(x, yn, ȳ′) −Hz(x, ȳ, ȳ′)| < ε,

x ∈ ΩM , n > N.

Thus, for x ∈ ΩM , we have

H(x, yn, y′n) −H(x, ȳ, ȳ′) =H(x, yn, y′n) −H(x, yn, ȳ′)

+H(x, yn, ȳ′) −H(x, ȳ, ȳ′)

≥ (y′n − ȳ′)Hz(x, yn, ȳ′) − ε

≥ (y′n − ȳ′)[Hz(x, yn, ȳ′) −Hz(x, ȳ, ȳ′)]

+(y′n − ȳ′)Hz(x, ȳ, ȳ′) − ε

≥ (y′n − ȳ′)Hz(x, ȳ, ȳ′) − ε(|y′n| + |ȳ′| + 1)

for n > N. Here we used the fact that

H(x, yn, y′n) −H(x, yn, ȳ′) = (y′n − ȳ′)Hz(x, yn, ξ),

where ξ(x) lies between y′n(x) and ȳ′(x). Since Hz(x, y, z) is an increasing
function of z for each x and y, we have

Hz(x, yn, ξ) ≥ Hz(x, yn, ȳ′)

when y′n(x) ≥ ȳ′(x) and

Hz(x, yn, ξ) ≤ Hz(x, yn, ȳ′)

when y′n(x) ≤ ȳ′(x). Hence,

H(x, yn, y′n) −H(x, yn, ȳ′) ≥ (y′n − ȳ′)Hz(x, yn, ȳ′).

The function

g(x) =

{
Hz(x, ȳ, ȳ′), x ∈ ΩM ,

0, x ∈ Ω\ΩM ,

is bounded in Ω. Consequently,∫
ΩM

(y′n(x) − ȳ′(x))Hz(x, ȳ, ȳ′)dx =
∫

Ω

(y′n − ȳ′)g(x)dx → 0

as n → ∞. On the other hand,
∫
ΩM

(|y′n| + |ȳ′| + 1)dx ≤
(∫

ΩM

|y′n|pdx
)1/p

(b− a)1/p
′
+ M(b− a) + (b− a)

≤ B(b− a)1/p
′
+ (M + 1)(b− a) = BM .
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Thus∫
ΩM

[H(x, yn, y′n)−H(x, ȳ, ȳ′)] dx ≥
∫
ΩM

(y′n − ȳ′)Hz(x, ȳ, ȳ′) dx− εBM ,

for n > N. Thus for n sufficiently large

J(yn) ≥
∫
ΩM

H(x, ȳ, ȳ′) dx− ε(BM + 1).

Letting n → ∞, we find

α ≥
∫
ΩM

H(x, ȳ, ȳ′) dx− ε(BM + 1),

and since ε was arbitrary, we see that∫
ΩM

H(x, ȳ, ȳ′) dx ≤ α.

This is true for each M. Consequently,

J(ȳ) ≤ α.

This does not yet produce a minimum. We do not yet know if ȳ ∈ D.

We know that it is continuous on Ω̄ and satisfies (5.5). It also has a
weak derivative in Lp(Ω). But in order for ȳ to be in D, it must have a
continuous derivative.

In this regard, let us try to determine if ȳ has any further regularity
properties. Our first step in this direction is to show that ȳ(x) is abso-
lutely continuous on Ω̄ (see Appendix B). Recall that we have shown
that for the minimizing sequence

|yn(x) − yn(x′)| ≤ |x− x′|1/p′
(∫ x

x′
|y′n(t)|pdt

)1/p

, a ≤ x′ < x ≤ b.

Let [x′
k, xk] ⊂ Ω̄, 1 ≤ k ≤ m, be non-overlapping intervals. Then by

Hölder’s inequality (Theorem B.23),

m∑
k=1

|yn(xk) − yn(x′
k)| ≤

m∑
k=1

|xk − x′
k|1/p

′

(∫ xk

x′
k

|y′n(t)|pdt
)1/p

≤
(

m∑
k=1

|xk − x′
k|

)1/p′ (
m∑

k=1

∫ xk

x′
k

|y′n(t)|pdt
)1/p

≤
(

m∑
k=1

|xk − x′
k|

)1/p′

B.



5.8 Sufficient conditions 163

Taking the limit as n → ∞, we find

m∑
k=1

|ȳ(xk) − ȳ(x′
k)| ≤

(
m∑

k=1

|xk − x′
k|

)1/p′

B,

which shows that ȳ(x) is absolutely continuous on Ω. In particular, the
true derivative ȳ′(x) of ȳ(x) exists a.e., is in L1(Ω), and satisfies

ȳ(x) − a1 =
∫ x

a

ȳ′(t) dt, x ∈ Ω̄ (5.26)

(Theorem B.36). (Until now, ȳ′(x) was only known to be the weak Lp

derivative of ȳ(x).) Moreover,

|yn(x+ h)− yn(x)| ≤ h1/p′

(∫ x+h

x

|y′n(t)|pdt
)1/p

, a ≤ x < x+ h ≤ b.

Consequently,
∣∣∣∣yn(x + h) − yn(x)

h

∣∣∣∣
p

≤ 1
h

∫ x+h

x

|y′n(t)|pdt =
1
h

∫ h

0

|y′n(x + s)|p ds.

This implies
∫ b−h

a

∣∣∣∣yn(x + h) − yn(x)
h

∣∣∣∣
p

dx ≤ 1
h

∫ b−h

a

dx

∫ h

0

|y′n(x + s)|pds

≤ 1
h

∫ h

0

ds

∫ b−h

a

|y′n(x + s)|p dx

≤ Bp.

Since yn(x) → ȳ(x) uniformly, we obtain
∫ b−h

a

∣∣∣∣ ȳ(x + h) − ȳ(x)
h

∣∣∣∣
p

dx ≤ Bp.

The integrand converges to |ȳ′(x)|p a.e. as h → 0, showing that
∫ b

a

|ȳ′(x)|pdx ≤ Bp.

Hence, ȳ is differentiable a.e. and its true derivative ȳ′ is in Lp(Ω).

To recapitulate, we have shown that ȳ(x) is absolutely continuous in
Ω̄ and that its derivative is in Lp(Ω). This is not enough to declare that
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we have a minimum. So we try again. We replace D with the set

D′ = {y ∈ C(Ω̄) : y(a) = a1, y(b) = b1,

y(x) is absolutely continuous in Ω̄ and y′ ∈ Lp(Ω).}

Note that ȳ ∈ D′. We now seek to find a minimum for J on D′. “But then
we shall not have solved our problem,” you object. “We were looking for
a minimum in C1(Ω̄).” You have a point, but be patient. We let

α′ = inf
D′

J.

If we now retrace our steps, we will discover that all of the proofs we have
given go through even if we replace y ∈ C1(Ω̄) with y ∈ D′ (we require
the constant p appearing in (5.12) to be the same as the p appearing
in (5.24)). In particular, there is a ȳ ∈ D′ such that J(ȳ) = α′, and a
minimum is attained on D′. Moreover, the limit (5.9) exists and equals
(5.13) for y ∈ D′. Thus, if J(ȳ) is a minimum on D′, then A(ȳ, η) = 0
for all η ∈ C1

0 (Ω). Consequently, ȳ satisfies

Hz(x, ȳ(x), ȳ′(x)) −
∫ x

a

Hy(t, ȳ(t), ȳ′(t)) dt ≡ C0, x ∈ Ω̄ a.e.

for some constant C0 (Theorem 5.6). However, in view of hypothesis
(5.25), for each x ∈ Ω̄ there is exactly one value z(x) satisfying

Hz(x, ȳ(x), z(x)) −
∫ x

a

Hy(t, ȳ(t), ȳ′(t))dt = C0.

Moreover, Theorem 4.17 tells us that the function z(x) is continuous
in Ω̄. Thus, ȳ′(x) is a.e. equal to the continuous function z(x). Conse-
quently,

ȳ(x) =
∫ x

a

ȳ′(t) dx =
∫ x

a

z(t) dt,

showing that ȳ(x) has a continuous derivative in Ω̄. This means that
ȳ ∈ C1(Ω̄). Hence

J(ȳ) = min
D′

J = min
D

J.

To summarize, we have

Theorem 5.13. Assume that H,Hy, Hz, Hzz are continuous on Ω̄ ×
R × R and satisfy (5.12) for 1 < p, q < ∞. Assume also that (5.24) and
(5.25) hold (with the same p). Then the functional J(y) given by (5.6)
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has a minimum on the set D consisting of functions in C1(Ω̄) satisfying
(5.5). Any minimizing function is a solution of (5.15) and (5.16).

We also note

Remark 5.14. All of the examples mentioned so far in this chapter
meet the requirements of Theorem 5.13. Hence, in each case a minimum
was attained.

5.9 Examples

Since all of the applications described earlier meet the requirements
of Theorem 5.13, all of the solutions of the Euler equations which we
obtained actually produced minima for their corresponding functionals.
We now discuss some other examples, some of which do not qualify and
do not produce extrema.

Example 5.15. Consider the problem to minimize

J(y) =
∫ 1

0

ẏ2dx,

under the conditions

y(0) = y(1) = 0.

The solution of the Euler equation satisfying the boundary conditions
exists, is unique, and yields an absolute minimum.

Proof. The Euler equation is ÿ(x) = 0. The solution that satisfies the
boundary conditions is y(x) ≡ 0. It provides an absolute minimum.

Example 5.16. Consider the problem to minimize

J(y) =
∫ 1

0

x2/3ẏ2dx,

under the conditions

y(0) = y(1) = 0.

The solution of the Euler equation exists and is unique, but it is not
in C1(Ω̄). Although the functional is bounded from below, there is no
minimum.
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Proof. The Euler equation is

2
d

dx
(x2/3ẏ(x)) = 0.

The unique solution that satisfies the boundary conditions is

y0(x) = x1/3.

This is not in C1(Ω̄). However,

J(y0) = inf J(y),

where the infimum is taken over the class of y ∈ C1(Ω̄) satisfying the
boundary conditions.

Example 5.17. Consider the problem to minimize

J(y) =
∫ T

0

[ẏ2 − y2] dx,

under the conditions

y(0) = y(T ) = 0.

We consider two cases.
Case 1. T ≤ π. First we note that

∫ T

0

[ẏ − y cotx]2 dx =
∫ T

0

[ẏ2 + y2 cot2 x− 2yẏ cotx]dx

=
∫ T

0

[ẏ2 + y2(cot2 x− csc2 x)] dx

=
∫ T

0

[ẏ2 − y2]dx.

Note that y(x) cotx ∈ C1(Ω̄) if y satisfies the boundary conditions. For,
we have

lim
x→0

y(x)
sinx

= lim
x→0

y′(x)
cosx

= y′(0).

Thus J(y) ≥ 0 for y ∈ C1(Ω̄) satisfying the boundary conditions. If
T < π, the only solution of the Euler equation satisfying the boundary
conditions is y(x) ≡ 0. If T = π, all such solutions are of the form
y(x) = c sinx, for which J(y) = 0.

Case 2. T > π. Let

yk(x) = k sin(πx/T ), k = 1, 2, . . .
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Then

J(yk) = Tk2(π2/T 2 − 1)/2 → −∞ as k → ∞.

Thus, J(y) is not bounded from below in this case. Hence, we have

1. If T < π, then there is a unique solution of the Euler equation
satisfying the boundary conditions and producing a minimum.

2. If T = π, then there is an infinite number of such solutions pro-
ducing a minimum.

3. If T > π, there is no minimum.

Example 5.18. Consider the problem to minimize

J(y) =
∫ 1

0

x2ẏ2 dx,

under the conditions

y(0) = 0, y(1) = 1.

Clearly, J(y) ≥ 0. If we take yk(x) = x1/k, then we have

J(yk) → 0 as k → ∞.

Since J(y) > 0 when y(x) �≡ 0, there is no minimum.

5.10 Exercises

1. In the brachistochrone problem, show that if we assume that the
wire is such that the curve it makes can be expressed as x = f(y),
then we have

T =
∫ b0

0

(1 + f ′(y)2)1/2

(2g(b0 − y))1/2
dy, (5.27)

where T represents the total time taken for the particle to reach
(0, 0).

2. If

f ′(y)2 =
1
2 (1 − cos θ)

1 − 1
2(1 − cos θ)]

=
1 − cos θ
1 + cos θ

and

4gc2(b0 − y) = 1 − cos θ,
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show that

f(y) =
−1
4gc2

∫ [
1 − cos θ
1 + cos θ

]1/2

sin θ d θ + const.

=
1

4gc2

∫
(cos θ − 1)dθ + const.

=
1

4gc2
(sin θ − θ) + const.

3. Show that there is a number θ0 such that

4gc2b0 = 1 − cos θ0, 4gc2a0 = θ0 − sin θ0.

4. Show that if

L =
1
2
m�2φ̇2 −mg�(1 − cosφ)

and L satisfies
∂L

∂φ
− d

dt

(
∂L

∂φ̇

)
= 0,

then

φ̈ +
g

�
sinφ = 0.

5. Show that the only solution of

4ẋ(1 + ẋ2) = const

is

x(t) = At + B.

6. Prove Lemma 5.11.

7. Derive

r̈ −M2/m2r3 = −k/r2

for a particle moving in the plane.

8. Show that the only solution of

yy′
2(1 + y′

2)−1/2 − y(1 + y′
2)1/2 = constant = K

is

y = K cosh
(
x + C

K

)
.
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9. Define a weak Lp(Rn) derivative for 1 < p < ∞. Show that it is
unique and satisfies

|Jεu|p ≤ |u|p, u ∈ Lp

and

|Jεu− u|p → 0 as ε → 0, u ∈ Lp.

10. Verify

H(x, yn, y′n) −H(x, ȳ, ȳ′) = H(x, yn, y′n) −H(x, yn, ȳ′)

+ H(x, yn, ȳ′) −H(x, ȳ, ȳ′)

≥ (y′n − ȳ′)Hz(x, yn, ȳ′) − ε

≥ (y′n − ȳ′)[Hz(x, yn, ȳ′) −Hz(x, ȳ, ȳ′)]

+ (y′n − ȳ′)Hz(x, ȳ, ȳ′) − ε

≥ (y′n−ȳ′)Hz(x, ȳ, ȳ′)−ε(|y′n|+|ȳ′| + 1)

for n > N.

11. Verify∫
ΩM

(y′n(x) − ȳ′(x))Hz(x, ȳ, ȳ′)dx =
∫

Ω

(y′n − ȳ′)g(x)dx → 0

as n → ∞.

12. Verify

m∑
k=1

|ȳ(xk) − ȳ(x′
k)| ≤

(
m∑

k=1

|xk − x′
k|

)1/p′

B

13. Verify
∣∣∣∣yn(x + h) − yn(x)

h

∣∣∣∣
p

≤ 1
h

∫ x+h

x

|y′n(t)|pdt =
1
h

∫ h

0

|y′n(x + s)|pds

and∫ b−h

a

∣∣∣∣yn(x + h) − yn(x)
h

∣∣∣∣
p

dx ≤ 1
h

∫ b−h

a

dx

∫ h

0

|y′n(x + s)|pds

≤ 1
h

∫ h

0

ds

∫ b−h

a

|y′n(x + s)|pdx

≤ Bp.
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14. Use Theorem 4.17 to show that there is exactly one continuous func-
tion z(x) satisfying

Hz(x, ȳ(x), z(x)) −
∫ x

a

Hy(t, ȳ(t), ȳ′(t))dt = C0.

15. Show that

J(y0) = inf J(y),

where

J(y) =
∫ 1

0

x2/3ẏ2dx,

y0(x) = x1/3

and the infimum is taken over the class of y ∈ C1(Ω̄) satisfying the
boundary conditions

y(0) = y(1) = 0.

16. Prove:∫ T

0

[ẏ − y cotx]2dx =
∫ T

0

[ẏ2 + y2 cot2 x− 2yẏ cotx]dx

=
∫ T

0

[ẏ2 + y2(cot2 x− csc2 x)]dx

=
∫ T

0

[ẏ2 − y2]dx

when

y(0) = y(T ) = 0.
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Degree theory

6.1 The Brouwer degree

Let Ω be an open, bounded subset of R
n, and let p be any point in R

n.

Assume that for each continuous map ϕ : Ω̄ → R
n such that p /∈ ϕ(∂Ω)

there is an integer d(ϕ,Ω, p) with the following properties:

(a) d(I,Ω, p) = 1. If both p and −p are in Ω, then d(±I,Ω, p) =
(±1)n.

(b) If d(ϕ,Ω, p) �= 0, then there is an x ∈ Ω such that ϕ(x) = p.

(c) If ht(x) = H(t, x) is a continuous map of [0, 1] × Ω̄ into R
n and

p /∈ ht(∂Ω) for 0 ≤ t ≤ 1, then d(ht,Ω, p) is independent of t.

We shall prove later that such an integer exists satisfying (a)–(c) for
each set ϕ,Ω, p described above. Unfortunately, the same is not true in
infinite dimensional spaces without restricting the map ϕ. We shall have
more to say about this later. We call d(ϕ,Ω, p) the Brouwer degree of
ϕ at p relative to Ω.

As an application of the degree, we have

Theorem 6.1. Let B be the unit ball

B = {x ∈ R
n : ‖x‖ < 1}.

If ϕ is a continuous map of B̄ into itself, then there is a point x ∈ B̄

such that

ϕ(x) = x. (6.1)

Proof. If there is a point x ∈ ∂B such that (6.1) holds, then the theorem
is true. Otherwise, let

ht(x) = x− tϕ(x), x ∈ B̄, t ∈ [0, 1]. (6.2)

171
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Then ht(x) is a continuous map of [0, 1] × B̄ into R
n. We note that

ht(x) �= 0, x ∈ ∂B, t ∈ [0, 1]. (6.3)

For t = 1, this is true by assumption. For 0 ≤ t < 1, we have tϕ(x) ∈ B,

so that (6.3) holds in this case as well. Thus, d(ht, B, 0) exists for each
t ∈ [0, 1]. By properties (c) and (a),

d(h1, B, 0) = d(h0, B, 0) = d(I,B, 0) = 1. (6.4)

By property (b), there is a point x ∈ B such that h1(x) = 0. This means
that x satisfies (6.1). The proof is complete.

Corollary 6.2. If B is the unit ball

B = {x ∈ R
n : ‖x‖ < 1},

then there does not exist a continuous map ϕ of B̄ into ∂B such that

ϕ(x) = x, x ∈ ∂B. (6.5)

Proof. If such a map existed, let

ψ(x) = −ϕ(x), x ∈ B̄.

Then ψ is a continuous map of B̄ into itself. By Theorem 6.1, there is
an x ∈ B̄ such that ψ(x) = x. This means that x = −ϕ(x) ∈ ∂B. But
on ∂B, we have ϕ(x) = x. Hence, x = −x. This means that x = 0 and
cannot be on ∂B. This contradiction proves the corollary.

If ϕ0, ϕ1 are two continuous maps of Ω̄ to R
n and there is a continuous

mapping ht of [0, 1] × Ω̄ to R
n such that

h0(x) = ϕ0(x), h1(x) = ϕ1(x), (6.6)

then we say that ϕ0, ϕ1 are homotopic and ht is a homotopy. Property
(c) states that if ϕ0, ϕ1 are homotopic, then

d(ϕ0,Ω, p) = d(ϕ1,Ω, p).

Two subsets of R
n are called homeomorphic if there is a continu-

ous map h having a continuous inverse h−1 which maps one onto the
other. The mapping h is called a homeomorphism. As a consequence of
Theorem 6.1, we have

Corollary 6.3. If Ω is an open subset of R
n such that Ω̄ is homeomor-

phic to B̄ and ϕ is a continuous map of Ω̄ into itself, then there is a
point x ∈ Ω̄ such that (6.1) holds.
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Proof. Let h : Ω̄→B̄ be the homeomorphism, and let ψ(x)=h(ϕ(h−1x)).
Then ψ(x) is a continuous map of B̄ into itself. By Theorem 6.1, there
is a z ∈ B̄ such that

ψ(z) = z.

Since h is a homeomorphism of Ω̄ onto B̄, there is an x ∈ Ω̄ such that
h(x) = z. Then

ϕ(x) = ϕ(h−1(z)) = h−1(ψ(z)) = h−1(z) = x,

and x ∈ Ω̄ is a solution of (6.1). This completes the proof.

A solution of (6.1) is called a fixed point of the map ϕ. Theorem 6.1
and Corollary 6.3 state that any continuous map of a closed ball in R

n

(or any set homeomorphic to it) into itself has a fixed point. These sets
are said to have the fixed point property. These results are due to L.
Brouwer.

We also have

Theorem 6.4. Let K be a closed, bounded, convex set in R
n. Then K

has the fixed point property.

Proof. Since K is bounded, there is an R > 0 such that

K ⊂ BR = {u ∈ R
n : ‖u‖ ≤ R}.

For each x ∈ BR, let N(x) be the closest point in K to x. (There is
one because K is closed and bounded; cf. Lemma A.56.) Because K is
convex, there is only one such point. For, if

d(x,K) = ‖x− y1‖ = ‖x− y2‖,

then 1
2 (y1 + y2) ∈ K, and because we are in R

n,

‖x− 1
2
(y1 + y2)‖ < ‖x− y1‖ = d(x,K),

contrary to the definition of d(x,K). Note also that N(x) is a continuous
map of BR into K. For if xk ∈ BR, xk → x, and N(xk) does not converge
to N(x), then there is a renamed subsequence such that N(xk) → y �=
N(x). Since N(xk) is the nearest point to xk in K, we have

‖xk −N(xk)‖ ≤ ‖xk −N(x)‖.

Taking the limit, we find

‖x− y‖ ≤ ‖x−N(x)‖.
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This means that y = N(x), showing that N(x) is indeed continuous.

Letf(x) be a continuous map of K into itself, and let f1 = fN. Then
f1 is a continuous map of BR into itself. By Theorem 6.1 there is an
x ∈ BR such that f1(x) = x. Since f1 maps BR into K, we see that
x ∈ K. But then f1(x) = f(N(x)) = f(x). Hence, f(x) = x, and x is a
fixed point of f.

Corollary 6.5. If K is homeomorphic to a closed, bounded, convex set
in R

n, then K has the fixed point property.

Theorem 6.6. Let Ω be a bounded open set in R
n, and let ϕ be a con-

tinuous map of Ω̄ → R
n such that for some fixed z ∈ Ω

ϕ(x) − z �= λ(x− z), x ∈ ∂Ω, λ > 1. (6.7)

Then ϕ has a fixed point in Ω̄.

Proof. We may assume that ϕ has no fixed point on ∂Ω. Let

ht(x) = x− z − t(ϕ(x) − z), x ∈ Ω̄, t ∈ [0, 1].

We know that 0 /∈ h0(∂Ω) since z ∈ Ω. Also, 0 /∈ h1(∂Ω) by assumption.
The same is true for ht, t ∈ (0, 1). For if x ∈ ∂Ω and ht(x) = 0, then
(6.7) would be violated for λ = 1/t. Thus, 0 /∈ ht(∂Ω) for t ∈ [0, 1].
Hence, d(ht,Ω, 0) exists and is independent of t by property (c). Thus,

d(h1,Ω, 0) = d(h0,Ω, 0).

This means that

d(I − ϕ,Ω, 0) = d(I − z,Ω, 0) = 1,

since z ∈ Ω. Hence, there must be an x ∈ Ω such that x − ϕ(x) = 0.
This completes the proof.

One can interpret (6.7) as saying that ϕ(x) does not lie on the continu-
ation of the straight line [z, x] beyond the point x for any x ∈ ∂Ω.

Theorem 6.7. No matter how well you comb a hedgehog, at least one
hair will stand up.

Another way of stating this theorem is

Theorem 6.8. If n is odd, Ω is a bounded, open subset of R
n containing

the origin, and ϕ is a continuous map of Ω̄ → R
n such that 0 /∈ ϕ(∂Ω),

then there is an x ∈ ∂Ω such that ϕ(x) = λx with λ �= 0.
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Proof. Let

ht(x) = (1 − t)ϕ(x) + tx, kt(x) = (1 − t)ϕ(x) − tx, x ∈ Ω̄, t ∈ [0, 1].

If one cannot find x ∈ Ω̄, λ �= 0 such that ϕ(x) = λx, then ht(x) �= 0,
kt(x) �= 0 for x ∈ ∂Ω and 0 < t ≤ 1. Since 0 /∈ ϕ(∂Ω), we have h0(x) �=
0, k0(x) �= 0 for x ∈ ∂Ω as well. Thus by property (c),

d(h0,Ω, 0) = d(h1,Ω, 0), d(k0,Ω, 0) = d(k1,Ω, 0).

Hence,

d(ϕ,Ω, 0) = d(I,Ω, 0) = 1, d(ϕ,Ω, 0) = d(−I,Ω, 0) = (−1)n.

These can be equal only if n is even, contrary to hypothesis. This com-
pletes the proof.

Note that Theorem 6.8 need not be true when n is even. For instance,
let ϕ be the rotation of the unit disk in R

2 into itself given by

ϕ(r, θ) = (r, θ + r), 0 ≤ r ≤ 1, 0 ≤ θ < 2π.

Thus, you can comb a two dimensional hedgehog so that no hair stands
up.

6.2 The Hilbert cube

We let �2 be the set of sequences

x = (x1, x2, . . . )

satisfying

‖x‖2 =
∞∑
k=1

|xk|2.

It becomes a Hilbert space with the appropriate scalar product. The
Hilbert cube H0 is the subset of �2 consisting of those sequences satis-
fying

|xk| ≤
1
k
.

Clearly, it is closed, bounded, and convex. First we note

Lemma 6.9. If {x(j)} is a sequence of points in H0, then there is a
subsequence that converges to a point in H0.
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Proof. Let

Pnx = (x1, . . . , xn, 0, 0, . . . ), n = 1, 2, . . . , (6.8)

and let ε > 0 be given. Then there is an n such that

‖Pnx− x‖2 =
∞∑

k=n+1

k−2 < ε2, x ∈ H0. (6.9)

Moreover, since the range of Pn is finite dimensional, there is a renamed
subsequence such that

‖Pnx
(i) − Pnx

(j)‖ < ε, i, j > N

(Corollary A.54). Hence,

‖x(i) − x(j)‖ ≤ ‖x(i) − Pnx
(i)‖ + ‖Pn(x(i) − x(j))‖

+ ‖Pnx
(j) − x(j)‖ ≤ ε + ε + ε.

Thus, there is subsequence that is Cauchy in H0. Since H0 is closed in
�2, the result follows (Lemma A.3).

This leads to

Theorem 6.10. The Hilbert cube H0 has the fixed point property.

Proof. Let ϕ be a continuous map of H0 into itself. For each n, PnH0

is homeomorphic to a closed, bounded, convex subset of R
n. Hence, by

Theorem 6.4, there is a point x(n) ∈ PnH0 such that

Pnϕ(x(n)) = x(n).

By Lemma 6.9 the sequence {x(n)} has a renamed subsequence which
converges in H0 to a limit x. Consequently,

‖ϕ(x) − x‖ ≤ ‖ϕ(x) − Pnϕ(x)‖ + ‖Pnϕ(x) − Pnϕ(x(n))‖ + ‖x(n) − x‖
≤ ‖ϕ(x) − Pnϕ(x)‖ + ‖ϕ(x) − ϕ(x(n))‖ + ‖x(n) − x‖
→ 0 as n → ∞.

This completes the proof.

Corollary 6.11. Any closed, convex subset of H0 has the fixed point
property.

Proof. Let K be a closed, convex subset of H0, and let ϕ be a continuous
map from K → K. For each n the set K

⋂
PnH0 is a closed, convex,

bounded subset of R
n, and Pnϕ is a continuous map of K

⋂
PnH0 to
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itself. By Theorem 6.4, there is a sequence x(n) ∈ K
⋂

PnH0 such that
Pnϕ(x(n)) = x(n). By Lemma 6.9 there is a renamed subsequence such
that x(n) → x ∈ H0. Since K is closed, x ∈ K, and Pnϕ(x(n)) →
ϕ(x). This implies that ϕ(x) = x, and ϕ has a fixed point. Since ϕ was
arbitrary, we see that K has the fixed point property.

A subset K of a Hilbert space is called compact if every sequence in
K has a subsequence that converges to a limit in K. This is equivalent
to the statement that every open cover of K contains a finite subcover
(Theorem C.3). A subset V ⊂ W is called dense in W if for every ε > 0
and every w ∈ W there is a v ∈ V such that ‖v−w‖ < ε. A subset W of
a normed vector space is called separable if it has a dense subset that
is denumerable. In other words, W is separable if there is a sequence
{xk} of elements of W such that for each x ∈ W and each ε > 0, there
is an xk satisfying ‖x − xk‖ < ε. A compact set is separable (Lemma
A.46). For a subset W of a normed vector space, the linear span of W
is the set of linear combinations of elements of W. It is a subspace. The
closed linear span of a set is the closure of its linear span. The closed
linear span of a separable set is separable (Lemma A.48).

Lemma 6.12. Every convex, compact subset K of a Banach space X

is homeomorphic to a closed, convex subset of H0.

Proof. Assume K is a subset of the unit ball. Since K is compact, it is
separable (Lemma A.46). The linear span of K is also separable (Lemma
A.48). Hence, there is a sequence {xn} which is dense in the linear span
of K. For each n let x′

n be a bounded linear functional on X such that

x′
n(xn) = ‖xn‖/n, ‖x′

n‖ = 1/n

(Theorem A.15). Let

F (x) = {x′
1(x), x′

2(x), . . . } (6.10)

be a map from K to H0. It is bounded and linear. It is also one-to-one.
For let x �= y be two points in K. Then z = x − y �= 0, and there is an
xn such that

‖xn − z‖ <
1
2
‖z‖.

Then

‖xn‖ ≥ ‖z‖ − ‖z − xn‖ > ‖z‖ − 1
2
‖z‖ =

1
2
‖z‖ > ‖xn − z‖,
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and consequently,

|x′
n(x) − x′

n(y)| ≥ |x′
n(xn)| − |x′

n(z − xn)| ≥ (‖xn‖ − ‖z − xn‖)/n > 0.

This shows that F (x) �= F (y). Finally, note that R(F ) is a closed, convex
subset of H0. Hence, F is a homeomorphism of K into H0.

Theorem 6.13. Any compact, convex subset K of a Banach space has
the fixed point property.

Proof. By Lemma 6.12, every such set is homeomorphic to a convex,
closed subset of H0. But any such subset of H0 has the fixed point
property (Corollary 6.11). Thus K has the fixed point property.

In contrast to the above we have

Theorem 6.14. The unit ball in �2 does not have the fixed point prop-
erty.

Proof. Elements in the unit ball are of the form

x = (x1, x2, . . . ), ‖x‖2 =
∞∑
k=1

x2
k ≤ 1.

Let

Tx =
(√

1 − ‖x‖2, x1, x2, . . .
)
.

Then T is a continuous map of the ball into itself. But T does not have
any fixed points. For, if Tx = x, then

x1 =
√

1 − ‖x‖2, x2 = x1, x3 = x2, . . . , xk+1 = xk, . . .

Thus all of the xk are equal. The norm ‖x‖ can be finite only if they are
all 0. But then ‖x‖ = 0, and consequently, x1 = 1. This contradiction
proves the theorem.

Contrast this with

Theorem 6.15. Let M be a convex subset of a normed vector space X.
Let T be a continuous map of M into a compact subset K of M . Then
T has a fixed point.

This is known as Schauder’s fixed point theorem. Before proving
the theorem, we introduce several concepts. A map from a set to another
is called compact if its range (image) is contained in a compact set. For
any set M, we let co(M) denote the smallest convex set containing M
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(it is called the convex hull of M). The closure of co(M) is denoted by
co(M). We have

Lemma 6.16. If X is a normed vector space and K is a compact subset,
then for each ε > 0 there is a finite subset Q of K and a continuous map
P from K to co(Q) such that

‖Px− x‖ < ε, x ∈ K. (6.11)

Proof. Since K is compact, we may cover it with a finite number of
balls of radii ε. We may assume that the centers x1, . . . , xm are in K.

Let Q = {x1, . . . , xm}. Put

fj(x) = max[0, ε− ‖x− xj‖], x ∈ X.

Then fj(x) �= 0 if and only if ‖x− xj‖ < ε. Thus at each x ∈ K there is
a j such that fj(x) �= 0. Put

Px =

m∑
j=1

fj(x)xj

m∑
j=1

fj(x)

, x ∈ K. (6.12)

It is a continuous map of K into co(Q). Moreover, for each x ∈ K, Px

consists of a convex combination of those xk which are located in the ball
of radius ε and center x. Since this ball is convex, Px must be located
in the ball. Thus (6.11) holds.

Corollary 6.17. Let X be a normed vector space and D a bounded
subset of X. Let T be a compact map from D to X. For each ε > 0 there
is a mapping Tε ∈ C(D,X) with finite dimensional range such that

‖T (x) − Tε(x)‖ < ε, x ∈ D.

Proof. Let K = T (D). Then K is a compact subset of X. By Lemma
6.16 for each ε > 0 there is a finite subset Q of K and a continuous map
P from K to co(Q) such that (6.11) holds. Take

Tε(x) = PT (x), x ∈ D.

We can now give the proof of Theorem 6.15.
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Proof. For each n = 1, 2, . . . , let Qn be the finite subset of K and Pn

the mapping given by Lemma 6.16 corresponding to ε = 1/n. Since
Qn ⊂ K ⊂ M, we have co(Qn) ⊂ M. Thus, for each n, PnT is a
continuous map of the finite dimensional, convex, closed set co(Qn) into
itself. By the Brouwer fixed point theorem (Theorem 6.4), there is a
point xn ∈ co(Qn) such that PnTxn = xn. By (6.11)

‖xn − Txn‖ = ‖PnTxn − Txn‖ < 1/n

for each n. Since T maps M into the compact subset K, there is a
renamed subsequence such that Txn → y ∈ K. Thus, xn → y. In par-
ticular, Ty is defined, and Txn → Ty. Since Txn → y, we see that y is
a fixed point of T.

Theorem 6.18. Let B be the closed unit ball of a normed vector space
X. Let T be a continuous, compact map of B into X such that T maps
∂B into B. Then T has a fixed point.

In order to prove Theorem 6.18 we shall make use of the following lemma.
Our notation is:

◦
M is the interior of a set M, and ∂M is its boundary.

Lemma 6.19. Let B be the closed ball of radius k in a normed vector
space X. Define

r(x) =

{
x, x ∈ B,

kx/‖x‖, x /∈ B.
(6.13)

Then

(i) r is a continuous retraction of X into B, that is, a mapping
of X into B which is the identity on B,

(ii) if r(x) ∈
◦
B, then r(x) = x,

(iii) if x /∈ B, then r(x) ∈ ∂B.

The proof of Lemma 6.19 is left as an exercise. We can now give the
proof of Theorem 6.18.

Proof. Let r be defined by (6.13) with k = 1, and let T satisfy the
hypotheses of Theorem 6.18. The mapping, rT is a compact mapping of
B into itself. By Theorem 6.15, there is a y ∈ B such that

rTy = y.

If y ∈ ∂B, then Ty ∈ B by hypothesis, so that

y = rTy = Ty.
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On the other hand, if y ∈
◦
B, then y = rTy ∈

◦
B, showing that y = rTy =

Ty. Since y ∈ B, we have Ty = y in any case.

We can strengthen Theorem 6.18 by letting B be any closed, convex
subset of X. We have

Theorem 6.20. Let B be a closed, convex subset of X, and let T be
a continuous, compact map of B into X such that T maps ∂B into B.
Then T has a fixed point.

In order to prove Theorem 6.20, we shall need the following.

Lemma 6.21. Assume that B is a closed, convex subset of X such that
0 ∈

◦
B. Define

g(x) = inf
{c>0, cx∈B}

c−1. (6.14)

Then g(x) is a continuous real valued function on X and satisfies

(i) g(cx) = cg(x), c ≥ 0,
(ii) g(x + y) ≤ g(x) + g(y),

(iii) 0 ≤ g(x) < 1, x ∈
◦
B ,

(iv) g(x) > 1, x /∈ B,
(v) g(x) = 1, x ∈ ∂B.

We leave the proof of this as an exercise. We now show how it can be
used to give the proof of Theorem 6.20.

Proof. If B has no interior points, then B = ∂B. Thus, T maps B into
B. The result now follows from Theorem 6.15. If

◦
B is not empty, we may

assume that 0 ∈
◦
B. Define r(x) by

r(x) = x/max[1, g(x)], (6.15)

where g(x) is given by (6.14). Then r(x) has the properties described in
Lemma 6.19. We can now follow the proof of Theorem 6.18.

One can sometimes deal with the question of fixed points by considering
the more general problem of finding solutions of

x = λTx, λ ∈ R. (6.16)

Along these lines we have
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Theorem 6.22. Let X be a normed vector space, and let T be a con-
tinuous map on X which is compact on bounded subsets of X. Then
either

(a) T has a fixed point, or
(b) the set of solutions of (6.16) for 0 < λ < 1 is unbounded.

Proof. Let B be the closed ball of radius k (center 0), and defined r(x)
by (6.13). Then rT is a compact map of B into itself. By Theorem 6.15
it has a fixed point x ∈ B. Either

(i) ‖Tx‖ ≤ k, or
(ii) ‖Tx‖ > k.

In the first case,

Tx = rx = x.

In the second,

‖x‖ = ‖rTx‖ = k. (6.17)

Consequently,

x = rTx = (k/‖Tx‖)Tx = λTx, 0 < λ < 1. (6.18)

Thus, either for some integer k we obtain a fixed point of T or we have
a sequence {xk} ⊂ X such that (6.17) and (6.18) hold for x = xk. Since,
‖xk‖ = k, this gives alternative (b).

Another type of fixed point theorem is given by

Theorem 6.23. Let B be a closed, convex subset of a Banach space X,
and suppose that S, T map B into X and satisfy

(a) Sx + Ty ∈ B, x, y ∈ B,
(b) S is continuous and compact,
(c) T is a contraction.

Then there exists an x in B such that

Sx + Tx = x.

Proof. For each y ∈ B, there is a unique z ∈ B such that

z = Tz + Sy

(Theorem 2.12). The operator (I−T )−1S is continuous and compact on
B. By Theorem 6.15, this operator has a fixed point x ∈ B. This point
satisfies the requirements of the theorem.
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6.3 The sandwich theorem

Once we have developed the Brouwer degree, we can now complete the
proof of the sandwich theorem (Theorem 2.5). We follow the proof of
Theorem 2.8. We take E = H, M = V, N = W and assume that there
is no sequence satisfying (2.27), where m0, m1 are given by (2.40). Then
there must be a δ > 0 such that (2.41) holds whenever u ∈ H satisfies
(2.42). By solving (2.48) we obtain a curve σ(t)v emanating from each
v ∈ V such that (2.43) holds for each v ∈ V. Hence, if we take T to
satisfy (2.44), we see that (2.45) holds.

From (2.48) we see that

‖σ′(t)v‖ ≤ 1, v ∈ H.

Consequently,

‖σ(t)v − v‖H ≤
∫ t

0

‖σ′(s)v‖H ds ≤ t, v ∈ H.

Let P be the (orthogonal) projection of H onto V. If v ∈ V and ‖v‖ = R,

then

‖Pσ(t)v‖ ≥ ‖v‖ − ‖v − Pσ(t)v‖ ≥ R− t.

Thus, if

ϕ(t)v := Pσ(t)v, v ∈ V,

then ϕ(t) is a continuous map of V × R into V. Pick R > T. Then

ϕ(t)v �= 0, v ∈ V ∩ ∂BR, 0 ≤ t ≤ T.

Consequently, the Brouwer degree

d(ϕ(t), V ∩BR, 0), 0 ≤ t ≤ T

in defined. By property (c) of that degree

d(ϕ(t), V ∩BR, 0) = d(ϕ(0), V ∩BR, 0) = d(I, V ∩BR, 0) = 1.

Hence, there is a v0 ∈ V ∩BR such that

ϕ(T )v0 = Pσ(T )v0 = 0.

This means that σ(T )v0 ∈ W and

G(σ(T )v0) ≤ m0

by (2.45). But this contradicts (2.40). The proof of Theorem 2.5 is now
complete.
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Remark 6.24. The requirement that G′ be locally Lipschitz continuous
will be removed in Appendix D.

6.4 Sard’s theorem

We now begin our proof of the existence of the Brouwer degree. As we
shall see later, it is extremely important for us to be able to move points
slightly to avoid potholes without changing the degree. Our ability to
do this is guaranteed by a theorem due to Sard which we describe next.

Let Ω ⊂ R
n be an open set, and let f ∈ C1(Ω,Rn). Set

Sf = {x ∈ Ω : Jf (x) = 0},

where Jf denotes the Jacobian

Jf (x) = det




∂f1

∂x1
· · · ∂f1

∂xn

· · · · · · · · ·

∂fn
∂x1

· · · ∂fn
∂xn




.

We let f(Sf ) denote the images of the points of Sf under the mapping
f, that is,

f(Sf ) = {y ∈ R
n : y = f(x), x ∈ Sf}.

The aim of Sard’s theorem is to show that this set is small in the sense
that its measure is 0 (cf. Appendix B). Specifically, we have

Theorem 6.25. Under the above hypotheses, for every ε > 0 there is a
sequence of cuboids Rk ⊂ Ω such that

f(Sf ) ⊂
∞⋃
k=1

Rk and
∞∑
k=1

vol{Rk} < ε. (6.19)

Proof. Let Q be any closed cube in Ω, and let ρ be the length of its
side. Its diagonal has length ρ

√
n. Let ε > 0 be given. Since ∇f(x) is

uniformly continuous in Q, there is an integer m > 0 such that

|∇f(x) −∇f(x′)| < ε, x, x′ ∈ Q, |x− x′| ≤ δ =
√
nρ

m
.
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Also, there is a constant C such that

|∇f(x)| ≤ C, x ∈ Q.

Now,

f(x) − f(x̄) =
∫ 1

0

d

dθ
f(x̄ + θ(x− x̄)) dθ

=
∫ 1

0

n∑
k=1

∂f

∂xk
(x̄ + θ(x− x̄)) • (xk − x̄k) dθ.

Hence,

f(x) − f(x̄) −∇f(x̄) • (x− x̄)

=
∫ 1

0

{∇f(x̄ + θ(x− x̄)) −∇f(x̄)} • (x− x̄) dθ

≡ R(x, x̄).

Thus,

|R(x, x̄)| ≤
∫ 1

0

|∇f(x̄ + θ(x− x̄)) −∇f(x̄)| • |x− x̄| dθ

≤ ε|x− x̄|, |x− x̄| < δ.

Divide Q into r = mn cubes Q1, . . . , Qr, each Qk having side length
equal to ρ/m and diameter δ =

√
nρ/m. Consequently,

|R(x, x̄)| ≤ εδ, x, x̄ ∈ Qk.

Suppose Qk ∩ Sf �= φ. Pick x̄ ∈ Sf , and let A = ∇f(x̄). Take

g(x) = f(x) − f(x̄) = A(x− x̄) + R(x, x̄).

Now, detA = Jf (x̄) = 0. This implies that the range of A is contained in
an n−1 dimensional subspace of R

n, that is, there is an n−1 dimensional
subspace N of R

n such that

Az ∈ N, z ∈ R
n.

Thus, there is a unit vector b ∈ R
n such that

Az ⊥ b, z ∈ R
n.

Let (b, b2, . . . , bn) be an orthonormal basis for R
n. Then

(g(x), b) = (A(x− x̄), b) + (R(x, x̄), b) = (R(x, x̄), b).
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Consequently,

|(g(x), b)| ≤ |R(x, x̄)| • |b| ≤ εδ, x ∈ Qk,

while

|(g(x), bj)| = |(A(x− x̄), bj)| + |(R(x, x̄), bj)|
≤ |A| • |x− x̄| + εδ

≤ (C + ε)δ, j = 2, . . . , n.

This means that g(x) is contained in a cuboid Rk with one side of length
εδ and all other sides of length (C + ε)δ. Thus, the volume of Rk is
(C + ε)n−1δnε. Since

f(x) = f(x̄) + g(x),

we have

f(Qk) = f(x̄) + g(Qk) ⊂ R′
k,

where

vol R′
k = (C + ε)n−1δnε.

Hence,

f(Sf (Q))⊂
r⋃

k=1

R′
k,

r∑
k=1

vol R′
k = r(C + ε)n−1δnε = nn/2(C + ε)n−1ρnε.

Since ε was arbitrary, we can take this to be as small as we like.

There is a sequence of cubes {Qj} ⊂ Ω such that

Ω =
∞⋃
j=1

Qj .

Let η > 0 be given. Applying the argument above to each Qj , we obtain

f(Sf (Qj)) ⊂
rj⋃
j=1

Rjk,

rj∑
k=1

vol Rjk < η/j2.

Thus,

f(Sf (Ω)) ⊂
∞⋃
j=1

rk⋃
k=1

Rjk,
∞∑
j=1

rj∑
k=1

vol Rjk <
∞∑
j=1

η/j2 = η.

This completes the proof.
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Corollary 6.26. Under the above hypotheses, every open set in R
n con-

tains points not in f(Sf ).

6.5 The degree for differentiable functions

Let Ω be a bounded, open set in R
n, and let p be a point in R

n. Let
ϕ ∈ C1(Ω̄,Rn), and denote the set of critical points of ϕ by γϕ. First
we note

Lemma 6.27. If no critical points satisfy

ϕ(x) = p, (6.20)

then there is only a finite number of solutions of (6.20).

Proof. If x1, x2 are solutions of (6.20) then

0 = ϕ(x2) − ϕ(x1) = detϕ′(x1)(x2 − x1) + o(|x2 − x1|),

where

detϕ′(x) = Jϕ(x).

Since detϕ′(x1) �= 0, there is an r > 0 such that

|ϕ′(x1)v| ≥ r|v|, v ∈ R
n.

Thus

r|x2 − x1| ≤ |ϕ′(x1)(x2 − x1)| = o(|x2 − x1|).

Thus, if x2 �= x1, then it cannot approach x1. Hence, the solutions of
(6.20) are isolated. This means that there is only a finite number of
them.

If no critical points of ϕ satisfy (6.20), we define the degree d(ϕ,Ω, p) of
ϕ at p relative to Ω by

d(ϕ,Ω, p) =
∑

ϕ(x)=p

sign detϕ′(x), (6.21)

where

sign α =

{
α/|α|, α �= 0,

0, α = 0.

If there is no x ∈ Ω such that

ϕ(x) = p,
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then we define d(ϕ,Ω, p) = 0. Note the following

Theorem 6.28. If p ∈ Ω, then d(I,Ω, p) = 1; if −p ∈ Ω, then
d(−I,Ω, p) = (−1)n ; if p /∈ Ω̄, then d(I,Ω, p) = 0.

Proof. This is immediate from the definition.

We also have

Theorem 6.29. Assume that ϕ ∈ C1(Ω̄,Rn) and that no critical or
boundary points satisfy (6.20). Then there is a δ > 0 such that no
critical or boundary points satisfy

ψ(x) = p

whenever ψ ∈ C1(Ω̄,Rn) satisfies ‖ψ−ϕ‖1 < δ, where ‖ • ‖1 is the norm
of C1(Ω̄,Rn). Moreover,

d(ψ,Ω, p) = d(ϕ,Ω, p).

Proof. If there are no x ∈ Ω̄ satisfying (6.20), we can take δ > 0 so small
that

|ψ(x) − p| > δ, x ∈ Ω̄.

Then

d(ψ,Ω, p) = d(ϕ,Ω, p) = 0.

If there are such points, we note that by Lemma 6.27 there is only a
finite number of points a1, . . . , an ∈ Ω satisfying ϕ(ai) = p. Let a be any
one of them. Let

c = | detϕ′(a)| > 0,

and take r > 0 so small that

| detϕ′(x)| ≥ 2
3
c, |x− a| < r.

We can take δ > 0 so small that

|detϕ′(x) − detψ′(x)| < 1
3
c, x ∈ Ω̄.

Hence,

|detψ′(x)| > 1
3
c, |x− a| < r.

We take r > 0 so small that the ball

B(a, r) = {x ∈ R
n : |x− a| < r}
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is contained in Ω. Let

T (z) = ψ(z + a) − ψ′(a)z,

where z = x− a. Then

T (z) − T (y) =
∫ 1

0

d

dθ
T (θz + (1 − θ)y) dθ

=
∫ 1

0

[ψ′(a + θz + (1 − θ)y) − ψ′(a)](z − y) dθ.

Consequently, there is a constant K such that

|T (z) − T (y)| ≤ K(δ + r)|z − y|, |z|, |y| ≤ r.

Note that ψ′(a) is an invertible operator on R
n. Let

S(z) = ψ′(a)−1[T (z) − ϕ(a)].

Then there are constants K1,K2 such that

|S(z)| ≤ K1[(δ + r)r + δ]

and

|S(z) − S(y)| ≤ K2(δ + r)|z − y|

for

|z|, |y| ≤ r.

Shrink δ, r so that K1[(δ + r)r + δ] ≤ r and

K2(δ + r) < 1.

Then −S(t) is a contraction mapping of |z| ≤ r into itself. Consequently
it has a unique fixed point. Hence, there is precisely one z satisfying

−S(z) = z, |z| ≤ r.

This is equivalent to the statement that there is precisely one x satisfying

ψ(x) = ϕ(a) = p, |x− a| ≤ r.

We follow the same procedure for each of the points ai, shrinking δ if
necessary. Let

B(r) =
n⋃

j=1

B(aj , r).

We can take r > 0 so small that none of the balls B(aj , r) overlap and
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ψ(x) = p has exactly one solution in each of them. We can also shrink r

so that

|ϕ(x) − p| ≥ η > 0, x ∈ Ω̄ \B(r).

We can then decrease δ to make

|ϕ(x) − ψ(x)| ≤ 1
2
η, x ∈ Ω̄ \B(r).

Consequently,

|ψ(x) − p| ≥ 1
2
η, x ∈ Ω̄ \B(r),

showing that ψ(x) = p has no solutions in Ω̄ other than those in B(r).
But those in B(r) satisfy

sign detψ′(x) = sign detϕ′(x).

Thus,

d(ψ,Ω, p) =
∑

ψ(x)=p

sign detψ′(x) =
n∑

j=1

sign detϕ′(aj) = d(ϕ,Ω, p).

Theorem 6.30. If d(ϕ,Ω, p) �= 0, then (6.20) has a solution x ∈ Ω.

Proof. If there exists no solution, then (6.21) shows that d(ϕ,Ω, p) = 0.

Theorem 6.31. If ϕ ∈ C1(Ω̄,Rn) and there are no critical or boundary
points satisfying (6.20), then

d(ϕ,Ω, p) =
∫

Ω

jε(ϕ(x) − p) detϕ′(x) dx (6.22)

for ε > 0 sufficiently small.

Proof. If (6.20) has no solutions, then both sides of (6.22) vanish. Oth-
erwise, there is a finite number of points a1, . . . , am ∈ Ω satisfying
ϕ(aj) = p (Lemma 6.27). Each aj is the center of a ball Bj such that ϕ

is one-to-one on Bj , each Bj is disjoint from ϕ(∂Ω), and

supp jε(ϕ(x) − p) ⊂
m⋃
j=1

Bj.
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(The support of a function is the closure of the set on which it does
not vanish.) Hence,∫

Ω

jε(ϕ(x) − p) detϕ′(x) dx

=
m∑
j=1

∫
Bj

jε(ϕ(x) − p) detϕ′(x) dx

=
m∑
j=1

sign detϕ′(aj)
∫
Bj

jε(ϕ(x) − p)| detϕ′(x)| dx

=
m∑
j=1

sign detϕ′(aj)
∫

jε(y) dy

= d(ϕ,Ω, p),

where we made the transformation y = ϕ(x) − p and used the fact that∫
jε(y) dy = 1.

Lemma 6.32. Assume that ϕ ∈ C1(Ω̄,Rn) and that p0, p1 are such
that (6.20) has no solutions which are critical or boundary points when
p = p0, p1. Assume also that there is a path γ(s) ∈ R

n, 0 ≤ s ≤ 1, such
that γ(0) = p0, γ(1) = p1, and no critical or boundary points satisfy
(6.20) with p = γ(s), 0 ≤ s ≤ 1. Then,

d(ϕ,Ω, p0) = d(ϕ,Ω, p1).

Proof. By Theorem 6.29 for each s ∈ [0, 1] there is a δs > 0 such that
no critical or boundary points satisfy

ϕ(x) = p

whenever p satisfies ‖p− γ(s)‖ < δs and

d(ϕ,Ω, p) = d(ϕ,Ω, γ(s)).

By compactness, there is one δ > 0 which will serve for all s ∈ I.

Moreover, we can cover I = [0, 1] with a finite number of intervals of
length > η > 0 in which this holds in each interval. Let 0 = s0 < s1 <

· · · < sm = 1 be a partition of I such that

‖γ(sk+1) − γ(sk)‖ < δ, k = 0, 1, . . . ,m− 1.
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Hence,

d(ϕ,Ω, p0) = d(ϕ,Ω, γ(s0)) = d(ϕ,Ω, γ(s1))

= · · · = d(ϕ,Ω, γ(sm)) = d(ϕ,Ω, p1).

This completes the proof.

We now define d(ϕ,Ω, p) for those points p such that (6.20) is satisfied
by critical points but not by boundary points. Let p0 be such a point.
Let B0 be a neighborhood of p0 such that (6.20) has no solutions in ∂Ω
for p ∈ B0. By Sard’s theorem (Theorem 6.25), B0 contains points p

such that no critical points satisfy (6.20). Let p1, p2 be any such points.
Then by Lemma 6.32,

d(ϕ,Ω, p1) = d(ϕ,Ω, p2).

Thus, the degree is the same for all such points. We take d(ϕ,Ω, p0) to
be this constant value.

Theorem 6.33. The degree d(ϕ,Ω, p) is constant on any component of
R

n\ϕ(∂Ω).

Proof. If Σ is any component of R
n\ϕ(∂Ω), let p1, p2 be any two points in

Σ. By Sard’s theorem (Theorem 6.25) and the definition, there are points
q1, q2 such that no critical points satisfy (6.20) when p = qj , j = 1, 2
and

d(ϕ,Ω, qj) = d(ϕ,Ω, pj), j = 1, 2.

But

d(ϕ,Ω, q1) = d(ϕ,Ω, q2)

by Lemma 6.32. Hence,

d(ϕ,Ω, p1) = d(ϕ,Ω, p2).

Theorem 6.34. If noboundary pointssatisfy(6.20),then there is a δ > 0
such that d(ψ,Ω, p) = d(ϕ,Ω, p) when ψ ∈ C1(Ω̄,Rn) and ‖ψ−ϕ‖1 < δ.

Proof. There is a neighborhood of p such that no boundary points sat-
isfy ϕ(x) = p′ for p′ in this neighborhood. Let q be a point in the
neighborhood for which ϕ(x) = q is not satisfied by any critical point.
Take δ > 0 so small that ‖ψ − ϕ‖1 < δ implies d(ψ,Ω, q) = d(ϕ,Ω, q)
(Theorem 6.29). If x ∈ ∂Ω, then

|ψ(x) − p| ≥ |ϕ(x) − p| − δ.
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Hence, we can take δ so small that p, q are in the same component of
R

n \ ψ(∂Ω). Consequently,

d(ψ,Ω, p) = d(ψ,Ω, q) = d(ϕ,Ω, q) = d(ϕ,Ω, p)

by Theorems 6.33 and 6.29.

Theorem 6.35. If ht(x) = H(t, x) is a continuous map of [0, 1] × Ω̄
into R

n and p /∈ ht(∂Ω), then d(ht,Ω, p) is independent of t.

Proof. By Theorem 6.34, d(ht,Ω, p) is a continuous function of t. Since
it only takes on integer values, it must be a constant.

6.6 The degree for continuous functions

We now show that the degree can be defined for mappings that are only
continuous. As before, we assume that Ω is a bounded open set in R

n.

Suppose ϕ ∈ C(Ω̄,Rn) and p /∈ ϕ(∂Ω), that is, no x ∈ ∂Ω satisfies (6.20).
Let ρ > 0 be the distance from p to ϕ(∂Ω), and let ψ1, ψ2 ∈ C1(Ω̄,Rn)
be such that

‖ψj − ϕ‖∞ < ρ, j = 1, 2.

Let

ht(x) = tψ1(x) + (1 − t)ψ2(x), x ∈ Ω̄, t ∈ [0, 1].

Then

|ht(x) − ϕ(x)| ≤ t|ψ1(x) − ϕ(x)|
+ (1 − t)|ψ2(x) − ϕ(x)| < tρ + (1 − t)ρ = ρ.

Thus,

|ht(x) − p| ≥ |ϕ(x) − p| − |ht(x) − ϕ(x)| > ρ− ρ = 0.

Consequently,

p /∈ ht(∂Ω), t ∈ [0, 1].

By Theorem 6.35,

d(ψ1,Ω, p) = d(ψ2,Ω, p).

This mean that d(ψ,Ω, p) is the same for all ψ ∈ C1(Ω̄,Rn) satisfying
‖ψ − ϕ‖∞ < ρ. We can now define d(ϕ,Ω, p) to be this common value.

We note also that there exist ψ ∈ C1(Ω̄,Rn) satisfying ‖ψ−ϕ‖∞ < ρ

such that no critical point satisfies ψ(x) = p. For let σ(x) ∈ C1(Ω̄,Rn)
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be such that ‖σ − ϕ‖∞ < 1
2ρ, and let q ∈ Ω be such that |q − p| < 1

2ρ

and no critical point of σ satisfies σ(x) = q. Let ψ(x) = σ(x) + p − q.

Then, ψ(x) = p if and only if σ(x) = q. Moreover,

‖ψ − ϕ‖∞ ≤ ‖σ − ϕ‖∞ + |p− q| < ρ.

Since x is a critical point of ψ if and only if it is a critical point of σ, we
see that our claim is correct.

We now have

Theorem 6.36. If ϕ ∈ C(Ω̄,Rn) and p /∈ ϕ(∂Ω), then d(ϕ,Ω, p) �= 0
implies that there is an x ∈ Ω satisfying (6.20).

Proof. Suppose p /∈ ϕ(Ω̄). If ψ ∈ C1(Ω̄,Rn) is such that ‖ψ − ϕ‖∞ is
less than the distance from p to ϕ(Ω̄), then p /∈ ψ(Ω̄). By definition
d(ψ,Ω, p) = 0. Consequently, d(ϕ,Ω, p) = 0. From this we see that
d(ϕ,Ω, p) �= 0 implies that p ∈ ϕ(Ω̄). Since p /∈ ϕ(∂Ω), we must have
p ∈ ϕ(Ω).

We also have

Theorem 6.37. Suppose ϕ,ψ ∈ C(Ω̄,Rn) and p /∈ ϕ(∂Ω). If ‖ψ −
ϕ‖∞ is less than the distance from p to ϕ(∂Ω), then p /∈ ψ(∂Ω) and
d(ψ,Ω, p) = d(ϕ,Ω, p).

Proof. The first statement is obvious. Pick σ ∈ C1(Ω̄,Rn) such that
‖σ − ψ‖∞ + ‖ψ−ϕ‖∞ is less than the distance from p to ϕ(∂Ω). Then
d(ϕ,Ω, p) = d(σ,Ω, p). Moreover, ‖σ − ψ‖∞ is less than the distance
from p to ψ(∂Ω). Hence, d(ψ,Ω, p) = d(σ,Ω, p). This proves the second
statement.

Theorem 6.38. If ht(x) = H(x, t) is a continuous map of [0, 1] × Ω̄
into R

n and p /∈ ht(x), t ∈ [0, 1], then d(ht,Ω, p) is independent of t.

Proof. By Theorem 6.37, d(ht,Ω, p) is a continuous function of t. Since
it is integer valued, it must be a constant.

Theorem 6.39. If p1, p2 ∈ Ω are in the same component of R
n\ϕ(∂Ω),

then d(ϕ,Ω, p1) = d(ϕ,Ω, p2).

Proof. There is a path γ(s) ∈ R
n \ ϕ(∂Ω), s ∈ [0, 1] such that γ(0) =

p1, γ(1) = p2. Take ψ ∈ C1(Ω̄,Rn) such that ‖ψ − ϕ‖∞ is less than the
distance from γ to ϕ(∂Ω). Then p1 and p2 are in the same component of
R

n\ψ(∂Ω). Consequently, d(ψ,Ω, p1) = d(ψ,Ω, p2) (Lemma 6.32). But
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by definition, d(ϕ,Ω, pj) = d(ψ,Ω, pj), j = 1, 2. This gives the desired
result.

We also have

Theorem 6.40. Let ϕ,ψ ∈ C(Ω̄,Rn) be such that ϕ = ψ on ∂Ω. If
p /∈ ϕ(∂Ω) = ψ(∂Ω), then d(ϕ,Ω, p) = d(ψ,Ω, p).

Proof. Consider the function

H(x, t) = tϕ(x) + (1 − t)ψ(x), x ∈ Ω̄, t ∈ [0, 1].

Then ht(x) = H(x, t) is a continuous map of [0, 1]× Ω̄ into R
n. Moreover,

ht(x) = ϕ(x), x ∈ ∂Ω, t ∈ [0, 1].

Hence, p /∈ ht(∂Ω) for t ∈ [0, 1]. Consequently, by Theorem 6.38,

d(ϕ,Ω, p) = d(h1,Ω, p) = d(h0,Ω, p) = d(ψ,Ω, p).

The proof is complete.

Theorem 6.41. If ϕ ∈ C(Ω̄,Rn) and p /∈ ϕ(∂Ω), then d(ϕ−q,Ω, p−q)
is defined for all q ∈ R

n, and d(ϕ− q,Ω, p− q) = d(ϕ,Ω, p).

Proof. Let

ht(x) = ϕ(x) − tq, pt = p− tq, x ∈ Ω̄, t ∈ [0, 1].

Note that pt ∈ ht(∂Ω) if and only if p ∈ ϕ(∂Ω). Hence, pt /∈ ht(∂Ω)
for t ∈ [0, 1]. By Theorems 6.38 and 6.39, d(ht,Ω, pt) is a continuous
function of t ∈ [0, 1]. Hence,

d(ϕ− q,Ω, p− q) = d(h1,Ω, p1) = d(h0,Ω, p0) = d(ϕ,Ω, p).

This completes the proof.

Theorem 6.42. Let ht(x) = H(x, t) be a continuous map of [0, 1] × Ω̄
into R

n, and let pt = p(t) be a continuous map of [0, 1] into R
n such that

pt /∈ ht(∂Ω) for t ∈ [0, 1]. Then d(ht,Ω, pt) does not depend on t ∈ [0, 1].

Proof. Let

kt(x) = ht(x) − pt, t ∈ [0, 1], x ∈ Ω̄.

Then d(kt,Ω, 0) = d(ht,Ω, pt) by Theorem 6.41. But d(kt,Ω, 0) is inde-
pendent of t by Theorem 6.38.
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Lemma 6.43. If

Ω =
∞⋃
k=1

Ωk,

where the Ωk are disjoint open sets, then

∂Ωk ⊂ ∂Ω, k = 1, 2, . . .

Proof. If x ∈ ∂Ωk ⊂ Ω̄k ⊂ Ω̄ but x /∈ ∂Ω, then we must have x ∈
Ω. This means that x ∈ Ωj for some j �= k. Since Ωj is open and
Ωj∩Ωk = φ, the point x cannot be on ∂Ωk. This contradiction proves the
lemma.

Theorem 6.44. Under the same hypotheses, if ϕ ∈ C(Ω̄,Rn) and p ∈
R

n \ ϕ(∂Ω), then

d(ϕ,Ω, p) =
∑
k

d(ϕ,Ωk, p).

Proof. Take φ ∈ C1(Ω̄,Rn) such that ‖ψ − ϕ‖∞ is so small that no
boundary or critical point satisfies ψ(x) = p. Since ∂Ωk ⊂ ∂Ω for each
k, we see that p /∈ ψ(∂Ωk) and d(ϕ,Ωk, p) = d(ψ,Ωk, p). Thus,

d(ϕ,Ω, p) = d(ψ,Ω, p) =
∑

ψ(x)=p, x∈Ω

sign detψ′(x)

=
∑
k

∑
ψ(x)=p, x∈Ωk

sign detψ′(x)

=
∑
k

d(ψ,Ωk, p)

=
∑
k

d(ϕ,Ωk, p).

This gives the desired result.

Theorem 6.45. Assume that ϕ ∈ C(Ω̄,Rn) and that p ∈ R
n \ ϕ(∂Ω).

If Q is a closed subset of Ω, and p /∈ ϕ(Q), then

d(ϕ,Ω, p) = d(ϕ,Ω \Q, p).

Proof. Since Q is compact, we can choose ψ ∈ C1(Ω̄,Rn) so that ‖ψ −
ϕ‖∞ is sufficiently small to guarantee that no boundary or critical point
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satisfies ψ(x) = p and p /∈ ψ(Q). Then

d(ϕ,Ω, p) = d(ψ,Ω, p) =
∑

ψ(x)=p, x∈Ω

sign detψ′(x)

=
∑

ψ(x)=p, x∈Ω\Q
sign detψ′(x)

= d(ψ,Ω \Q, p)

= d(ϕ,Ω \Q, p),

since no point x ∈ Q satisfies ψ(x) = p. This completes the proof.

6.7 The Leray–Schauder degree

Suppose that D is an open, bounded subset of R
n and ϕ ∈ C(D̄,Rm),

where m ≤ n. Define ψ(x) ∈ C(D̄,Rn) by

ψ(x) = x + ϕ(x), x ∈ D̄.

We have

Lemma 6.46. If Dm = R
m ∩ D and ψm is the restriction of ψ to

Rm ∩ D̄, then

d(ψ,D, p) = d(ψm, Dm, p), (6.23)

where d represents the Brouwer degree and p ∈ R
m\ψ(∂D).

Proof. If Dm = φ, then p /∈ ψ(D̄), and both sides of (6.23) are 0. Oth-
erwise, ψm maps D̄m into R

m. Since ∂(Rm ∩ D) ⊂ R
m ∩ ∂D, we have

p /∈ ψm(∂Dm). If ψ(x) = p, then x = p−ϕ(x) ∈ R
m. Thus, ψ−1(p) ⊂ Dm

and ψ−1(p) = ψ−1
m (p).

First, assume that ϕ ∈ C1(D̄,Rm) and that Jψm
(x) �= 0 when ψm(x)=

p. Then

d(ψ,D, p) =
∑

x∈ψ−1(p)

sign Jψ(x)

=
∑

x∈ψ−1
m (p)

sign det
(
Jψm

(x) 0
0 In−m

)

=
∑

x∈ψ−1
m (p)

sign Jψm
(x)

= d(ψm, Dm, p).
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If ϕ and p do not have the added restrictions, choose ϕ̂j ∈ C1(D̄,R)
so that ϕ̂ = (ϕ̂1, . . . , ϕ̂n) satisfies

ϕ̂j = 0, j = m + 1, . . . , n

and

|ϕ̂(x) − ϕ(x)| < ρ(p, ψ(∂D)), x ∈ D̄,

where ρ(p, ψ(∂D)) is the distance between p and ψ(∂D). If ψ̂(x) =
x + ϕ̂(x), then

|ψ̂(x) − ψ(x)| < ρ(p, ψ(∂D)), x ∈ D̄. (6.24)

Let ψ̂m be the restriction of ψ̂ to D̄m. In view of Sard’s theorem (The-
orem 6.25), we can adjust ϕ̂ slightly to insure that Jψ̂m

(x) �= 0 when
ψ̂m(x) = p. Then d(ψ,D, p) = d(ψ̂,D, p), and we can apply the reason-
ing above.

Let X be a normed vector space, D an open, bounded subset of X,

and p a point in X. Let T be a compact map from D̄ to X. We define
ϕ = I − T and assume that p /∈ ϕ(∂D). We have

Lemma 6.47. If

r = ρ(p, ϕ(∂D)) = inf
x∈∂D

‖p− ϕ(x)‖,

then r > 0.

Proof. Suppose not. Then there is a sequence {xn} ⊂ ∂D such that
ϕ(xn) → p as n → ∞. Since the sequence is bounded, there is a renamed
subsequence such that T (xn) converges in X to some element y. Then
y ∈ T (D) and

xn = T (xn) + ϕ(xn) → y + p as n → ∞.

Since ∂D is closed, y + p ∈ ∂D. But

y = lim
n→∞

T (xn) = T (y + p)

by continuity. Hence,

ϕ(y + p) = y + p− T (y + p) = p.

Since y + p ∈ ∂D, this means that p ∈ ϕ(∂D), contrary to assumption.
Thus, r > 0.
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Lemma 6.48. For each ε > 0 such that ε < r, there is a mapping
Tε ∈ C(D̄,X) with finite dimensional range such that

‖T (x) − Tε(x)‖ < ε, x ∈ D̄,

and d(ϕε, Dε, p) is defined and independent of ε, where Dε is the inter-
section of D with the finite dimensional subspace spanned by Tε(D̄) and
p, and ϕε(x) is the restriction of

ϕ̃ε(x) = x− Tε(x), x ∈ D̄

to Dε.

Proof. Let η also satisfy 0 < η < r. By Corollary 6.17 there are mappings
Tε, Tη satisfying the conclusion of that corollary for ε and η, respectively.
Let Ŝ be the subspace of X spanned by Tε(D̄), Tη(D̄) and p. (We have
to include them !!!) Let D̂ = D ∩ Ŝ. Then by Lemma 6.46 we have

d(ϕε, Dε, p) = d(ϕε, D̂, p) (6.25)

and

d(ϕη, Dη, p) = d(ϕη, D̂, p). (6.26)

Let Sε be the finite dimensional subspace of X spanned by the Tε(D̄)
and p. Let Dε = D ∩ Sε. Then Dε is a bounded, open subset of Sε,

and ∂εDε ⊂ ∂D, where ∂εDε is the boundary of Dε in Sε. Note that
ϕε(D̄ε) ⊂ Sε and that

‖x− Tε(x) − p‖ ≥ ‖x− T (x) − p‖ − ‖T (x) − Tε(x)‖ > r − ε > 0,

x ∈ ∂D.

Thus, d(ϕε, Dε, p) is defined. If Dε = φ, then d(ϕε, Dε, p) = 0.

Consider the homotopy

ht(x) = tϕε(x) + (1 − t)ϕη(x), x ∈ D̂, 0 ≤ t ≤ 1.

Then

‖ht(x) − ϕ(x)‖ ≤ t‖ϕε(x) − ϕ(x)‖ + (1 − t)‖ϕη(x) − ϕ(x)‖
< tε + (1 − t)η < r.

Consequently, we have

‖ht(x) − p‖ ≥ ‖ϕ(x) − p‖ − ‖ϕ(x) − ht(x)‖ > 0, x ∈ ∂D̂.
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By Property 3 of the Brouwer degree, we see that

d(ϕε, D̂, p) = d(ϕη, D̂, p).

We can now apply (6.25) and (6.26) to obtain the desired result.

To define the Leray–Schauder degree, let D be an open, bounded
subset of X, and let T be a compact map from D̄ to X. Take ϕ = I − T

and suppose that p ∈ X\ϕ(∂D). We can find a continuous map T1 of D̄
to X such that its range is finite dimensional and

‖T (x) − T1(x)‖ < ρ(p, ϕ(∂D)), x ∈ D̄

(Corollary 6.17). Let S1 be a finite dimensional subspace of X containing
T1(D̄) and p. We then define

d(ϕ,D, p) = d(ϕ1, D1, p),

where ϕ1 = I − T1 and D1 = D ∩ S1. By Lemma 6.48, this definition is
independent of ϕ1 and D1.

6.8 Properties of the Leray–Schauder degree

We now discuss some of the properties of the Leray–Schauder degree
defined in the preceding section. We take D,T, ϕ and p as described
there. We have

Lemma 6.49. If p∈D, then d(I,D, p)=1. If p /∈ D̄, then d(I,D, p)=0.

Proof. Take T1 = 0 in the definition and let S1 be the one dimensional
subspace containing p. Apply Theorems 6.36 and 6.39.

Lemma 6.50. If d(ϕ,D, p) �= 0, then there is an x ∈ D such that
ϕ(x) = p.

Proof. For each integer k = 1, 2, . . . , there is an operator Tk with finite
dimensional range satisfying Lemma 6.48 for ε = 1

k . Then

‖Tk(x) − T (x)‖ <
1
k
, x ∈ D̄

and

d(ϕ,D, p) = d(ϕk, Dk, p),

where ϕk = I − Tk, and Dk is the intersection of D with the finite
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dimensional subspace spanning Tk(D̄) and p. By Theorem 6.36, for each
k sufficiently large there is an xk ∈ D such that

xk − Tk(xk) = p.

Since D is bounded, there is a renamed subsequence such that T (xk)
converges to an element y ∈ X. But

‖xk − T (xk) − p‖ = ‖Tk(xk) − T (xk)‖ <
1
k
→ 0.

Hence xk → y + p. By continuity, T (xk) → T (y + p). But T (xk) → y.

Hence, y = T (y + p). This means that ϕ(y + p) = y + p− T (y + p) = p,

and the proof is complete.

6.9 Peano’s theorem

Picard’s theorem (Theorem 2.13) requires g(t, x) to satisfy a Lipschitz
condition in x. It obtains both existence and uniqueness in an interval.
If we do not have the Lipschitz condition, we may lose both existence
and uniqueness. However, if X is finite dimensional, we can retain the
existence. There is an existence theorem due to Peano which only re-
quires continuity but gives up the important element of uniqueness. This
theorem is useful when one does not require uniqueness (this was the
case in the proof of Theorem 5.13). Then we do not have to be concerned
with verifying Lipschitz continuity (which can sometimes be a pain). We
shall describe such a result here. It is known as Peano’s theorem. We
have

Theorem 6.51. Let X be a finite dimensional Banach space, and let

B0 = {x ∈ X : ‖x− x0‖ ≤ R0}

and

I0 = {t ∈ R : |t− t0| ≤ T0}.

Assume that g(t, x) is a continuous map of I0 ×B0 into X such that

‖g(t, x)‖ ≤ M0, x ∈ B0, t ∈ I0. (6.27)

Let T1 be such that

T1 ≤ min(T0, R0/M0), K0T1 < 1. (6.28)
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Then there is a solution x(t) of

dx(t)
dt

= g(t, x(t)), |t− t0| ≤ T1, x(t0) = x0. (6.29)

Proof. As in the case of Picard’s theorem we first note that x(t) is a
solution of (6.29) if and only if it is a solution of

x(t) = x0 +
∫ t

t0

g(s, x(s))ds, t ∈ I1 = {t ∈ R : |t− t0| ≤ T1}. (6.30)

For if x(t) is a solution of (6.29), we can integrate to obtain (6.30). Note
that x(t) will be in B as long as t is in I1 by (6.28). Conversely, if x(t)
satisfies (6.30), it is continuous in t since

x(t + h) − x(t) =
∫ t+h

t

g(s, x(s))ds,

and consequently,

‖x(t + h) − x(t)‖ ≤ M0|h| → 0 as h → 0.

It is also differentiable since g(s, x(s)) is continuous and

[x(t + h) − x(t)]/h =
1
h

∫ t+h

t

g(s, x(s))ds → g(t, x(t)) as h → 0.

Following the proof of Theorem 2.13, we let Y be the Banach space of
all continuous functions x(t) from I1 to X with norm

|||x||| = max
t∈I1

‖x(t)‖. (6.31)

For x(t) ∈ Y, let f(x(t)) be the right-hand side of (6.30), and let

Q = {x(t) ∈ Y : |||x− x̂0||| ≤ R0},

where x̂0(t) ≡ x0, t ∈ I1. If x(t) is in Q, then f(x(t)) satisfies

|||f(x) − x̂0||| ≤
∫ t0+T1

t0

M0 ds ≤ R0.

Thus f maps Q into Q. Also

‖f(x(s)) − f(x(t))‖ ≤
∣∣∣∣
∫ t

s

g(σ, x(σ))dσ
∣∣∣∣

≤
∣∣∣∣
∫ t

s

‖g(σ, x(σ))‖ dσ
∣∣∣∣ ≤ M0|s− t|.

Thus the mapping f is bounded and equicontinuous. By the Arzelà–
Ascoli theorem (Theorem C.6), it is a compact map of Q into itself. We
can now apply Schauder’s fixed point theorem (Theorem 6.15) to show
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that f(x) has a fixed point which is a solution of (6.30) and come to the
desired conclusion.

6.10 An application

Let us solve the problem

−u′′ = g(x, u, u′), x ∈ I = [0, 1], u(0) = u(1) = 0. (6.32)

We assume that g(x, t, τ) is a continuous function on I × R × R and
satisfies

g(x, t, τ)2 ≤ c0(|t|p + |τ |p + 1), x ∈ I, t, τ ∈ R (6.33)

and

|g(x, t1, τ1) − g(x, t2, τ2)|2 ≤ c1(|t1 − t2|2 + |τ1 − τ2|2), x ∈ I, ti, τi ∈ R,

(6.34)

where p < 2. Before we tackle this problem we examine the linear prob-
lem

−u′′ = f(x), x ∈ I, u(0) = u(1) = 0. (6.35)

Let

h(t) =
∫ t

0

f(s) ds.

Then any solution of (6.35) satisfies

u′(t) = −h(t) + u′(0).

Consequently,

u(x) = −
∫ x

0

h(t) dt + u′(0)x + u(0).

Hence,

u(1) = −
∫ 1

0

h(t) dt + u′(0) + u(0).

Since u(0) = u(1) = 0, this yields

u(x) = −
∫ x

0

h(t) dt + x

∫ 1

0

h(t) dt. (6.36)

A simple calculation shows that (6.36) is indeed a solution of (6.35) for
f(x) ∈ L2(I). This shows that (6.35) has a unique solution

u ∈ H1
0 = {u ∈ L2(I) : u′ ∈ L2(I), u(0) = u(1) = 0}
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for each f ∈ L2(I). Of course, u′′ is also in L2(I), but we do not want
to use this fact yet.

We note that

|h(t)| ≤
(∫ t

0

f(s)2ds
)1/2 (∫ t

0

ds

)1/2

≤ t1/2‖f‖, t ∈ I.

Consequently,

|u′(t)| ≤
(
t1/2 +

2
3

)
‖f‖, t ∈ I,

and

‖u′‖ ≤ 2‖f‖.

If we use the norm ‖u′‖, then H1
0 becomes a Hilbert space. We designate

L as the mapping f → u from L2(I) to H1
0 given by (6.36), and we put

v = F (u) = Lg(·, u, u′). If u ∈ H1
0 , then

‖g(·, u, u′)‖2 =
∫
I

g(x, u, u′)2 dx ≤ c0

∫
I

(|u|p + |u′|p + 1) dx

≤ c0

[(∫
I

|u|2 dx
)p/2

+
(∫

I

|u′|2 dx
)p/2

+ 1

]

≤ c0

(
‖u‖p/2 + ‖u′‖p/2 + 1

)
.

Since

|u(x)| ≤ ‖u′‖, |u(x) − u(x′)| ≤ |x− x′|1/2‖u′‖, x, x′ ∈ I,

this gives

‖g(·, u, u′)‖2 ≤ c0(2‖u′‖p/2 + 1), u ∈ H1
0 .

Thus,

‖v′‖2 ≤ 4c0(2‖u′‖p/2 + 1), u ∈ H1
0 .

Let R satisfy

R2 ≥ 4c0(2Rp/2 + 1),

and let

B = {u ∈ H1
0 : ‖u′‖ ≤ R}.

Then B is a closed, convex, bounded subset of H1
0 . Moreover,

u ∈ B ⇒ v ∈ B.
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Thus F (u) maps B into itself. It is continuous. For if vi = F (ui), then

‖v′1 − v′2‖2 ≤ 4‖g(·, u1, u
′
1) − g(·, u2, u

′
2)‖2

= 4
∫
I

[g(x, u1, u
′
1) − g(x, u2, u

′
2)]

2 dx

≤ 4c1
∫
I

(|u1 − u2|2 + |u′
1 − u′

2|2) dx

= 4c1(‖u1 − u2‖2 + ‖u′
1 − u′

2‖2) ≤ 8c1‖u′
1 − u′

2‖2.

Thus, F (u) is a continuous mapping. It is also compact. For, if {uk} is
a sequence of functions in B, then

‖g(·, uk, u
′
k)‖2 ≤ c0(2Rp/2 + 1).

Consequently, the vk = F (uk) satisfy

‖v′k‖ ≤ R.

Since v′′k = g(x, uk, u
′
k), we also have

‖v′′k‖ ≤ R.

Thus, the sequences {vk}, {v′k} are bounded and equicontinuous on I.

This implies that there is a renamed subsequence such that vk → v, v′k →
h uniformly on I. Of course, h = v′, and it follows that v′k → v′ uni-
formly on I. Thus vk → v in H1

0 , and we see that F (u) is a compact
mapping on B. Hence, by the Schauder fixed point theorem (Theorem
6.15), there is a u ∈ B such that F (u) = u. This means that (6.32) has
a solution.

6.11 Exercises

1. Prove Theorem 6.1 in R
1 without using the degree.

2. Prove: if

‖x− y1‖ = ‖x− y2‖ = d, x, yi ∈ R
n, y1 �= y2,

then

‖x− 1
2
(y1 + y2)‖ < d.

3. Prove Corollary 6.5.

4. Show that the Hilbert cube is a closed, convex, bounded set.
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5. Show that for each n, PnH0 is homeomorphic to a closed, bounded,
convex subset of R

n, where H0 is the Hilbert cube and Pn is given
by (6.8).

6. Prove Corollary 6.11.

7. For F given by (6.10), show that it is a homeomorphism of K onto
a closed, convex subset of H1

0 .

8. Show that

Px =

m∑
j=1

fj(x)xj

m∑
j=1

fj(x)

, x ∈ K (6.37)

is a continuous map of K into co(Q).

9. Show that

Tε(x) = PT (x), x ∈ D

satisfies the conclusions of Corollary 6.17.

10. Prove Lemma 6.19.

11. Prove Lemma 6.21.

12. Show that the function r(x) given by (6.15) has the properties de-
scribed in Lemma 6.19.

13. Prove Theorem 6.28.

14. In the proof of Theorem 6.29, show that ψ′(a) is an invertible oper-
ator on R

n.

15. Why do we not obtain uniqueness in Peano’s theorem? Can you give
an example where uniqueness fails?
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Conditional extrema

7.1 Constraints

In Chapter 5 we studied problems in which one searched for a function
y(x) which minimized the functional (5.6) on functions in C1(Ω̄) satisfy-
ing (5.5). There are times when one is required to minimize functionals
such as (5.6) under more restrictive conditions. Sometimes, these con-
ditions are imposed upon the admissible functions by requiring them to
satisfy an additional stipulation of the form

∫ b

a

g(x, y, y′) dx = c0,

where g(x, y, z) is a given function. Such problems are called iso-
perimetric because the first and best known problem of this type was
that of finding a closed curve having a given perimeter which will en-
close the largest area. The following theorem will help us deal with such
problems.

First we have

Theorem 7.1. Let H be a Hilbert space, and let G0, G1, . . . , GN be
functionals in C1(H,R). Let

Q = {u ∈ H : G1(u) = · · · = GN (u) = 0},

and assume that

G0(u0) = min
Q

G0.

Then there are numbers λ0, λ1, . . . , λN not all 0 such that

N∑
j=0

λjG
′
j(u0) = 0.

207
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Proof. Assume not. Then the elements vj = G′
j(u0) are linearly inde-

pendent. This means that

det[(vj , vk)] �= 0.

Otherwise, there would be a vector β = (β0, β1, . . . , βN ) �= 0 such that

N∑
i=0

βi(vi, vj) = 0, 0 ≤ j ≤ N.

Multiplying the j-th equation by βj and summing, we obtain

‖
N∑
i=0

βivi‖2 = 0,

contradicting the fact that the vi are linearly independent. For b ∈ R
n+1,

let g(b) be the matrix

g(b) = (gij(b)),

where

gij(b) = (G′
i(u0 +

N∑
j=0

bjvj), vj), 0 ≤ i, j ≤ N.

There is a δ > 0 such that g(b) is invertible for ‖b‖ < δ. Let γ =
(1, 0, . . . 0) and consider the differential equation

b′(t) = g−1(b(t))γ, |t| ≤ t0, b(0) = 0.

By Peano’s theorem (Theorem 6.51), this can be solved for some t0 > 0.
The solution satisfies

g(b(t))b′(t) = γ,

or
N∑
j=0

(G′
i(u0 +

N∑
k=0

bk(t)vk), vj)b′j(t) = γi, 0 ≤ i ≤ N.

But this says

d

dt
Gi(u0 +

N∑
k=0

bk(t)vk) = γi, 0 ≤ i ≤ N.

Consequently,

Gi(u0 +
N∑

k=0

bk(t)vk) = 0, 1 ≤ i ≤ N,
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while

G0(u0 +
N∑

k=0

bk(t)vk) = G0(u0) + t, |t| ≤ t0.

This means that

u(t) = u0 +
N∑

k=0

bk(t)vk ∈ Q

and

G0(u(−t0)) = G0(u0) − t0,

contradicting the hypothesis of the theorem. Hence, the vj must be lin-
early dependent.

As an application of Theorem 7.1, we have

Theorem 7.2. If ỹ1(x), . . . , ỹm(x) minimize the functional

J0(y1, . . . , ym) =
∫ b

a

F0(x, y1(x), . . . , ym(x), y′1(x), . . . , y′m(x)) dx

under the constraints

Jk(y1, . . . , ym) =
∫ b

a

Fk(x, y1(x), . . . , ym(x), y′1(x), . . . , y′m(x)) dx = ck,

k = 1, . . . , n,

then there are numbers λ0, λ1, . . . , λN not all 0 such that

N∑
k=0

λk

[
∂Fk

∂yj
− d

dx

∂Fk

∂y′j

]
= 0, j = 1, . . . ,m

when

yj(x) = ỹj(x), j = 1, . . . ,m.

Proof. We apply Theorem 7.1 and note that

J ′
k =

[
∂Fk

∂yj
− d

dx

∂Fk

∂y′j

]

by Corollary 5.7.

As a special case we have



210 Conditional extrema

Theorem 7.3. Suppose H(x, y, z) is a function on Ω̄×R×R satisfying
the hypotheses of Theorem 5.3, where Ω = (a, b), and we want to find a
function y(x) ∈ C1(Ω̄) satisfying

y(a) = a1, y(b) = b1, (7.1)

and minimizing the expression

J(y) =
∫

Ω

H(x, y(x), y′(x))dx (7.2)

over functions not only satisfying (7.1) but also a condition such as

J1(y) =
∫

Ω

H1(x, y(x), y′(x)) dx = l. (7.3)

If J(y) has a minimum y = u0(x) over the set of y(x) ∈ C1(Ω̄) satisfying
(7.1), (7.3), and J ′

1(u0) �= 0, then there is a λ �= 0 such that

J̃ ′(u0) = 0,

where

J̃(y) =
∫

Ω

H̃(x, y(x), y′(x)) dx (7.4)

and

H̃(x, y(x), y′(x)) = H(x, y(x), y′(x)) + λH1(x, y(x), y′(x)). (7.5)

Proof. By Theorem 7.1 there are constants λ0, λ1, not both zero, such
that

λ0J
′(u0) + λ1J

′
1(u0) = 0.

Since J ′
1(u0) �= 0, we cannot have λ0 = 0. Divide by λ0 to obtain the

desired statement.

We present some well known examples.

Example 7.4. Find a curve of length l given by a positive function
y = y(x) satisfying (7.1) having the maximum area under the curve.
(We assume that (b− a)2 + (b1 − a1)2 < l2.)

We want to maximize

J(y) =
∫ b

a

y(x) dx
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under the conditions (7.1) and

J1(y) =
∫ b

a

√
1 + ẏ2 dx = l.

Applying Theorem 7.3, we take

H̃(x, y, ẏ) = y + λ
√

1 + ẏ2

and solve

H̃y(x, y(x), ẏ(x)) − d

dx
H̃z(x, y(x), ẏ(x)) = 0, x ∈ Ω̄. (7.6)

By Lemma 5.12, H̃ satisfies

ẏ
∂H̃

∂ẏ
− H̃ = constant. (7.7)

Thus,

y + λ
√

1 + ẏ2 − λẏ2√
1 + ẏ2

= c1

or

y +
λ√

1 + ẏ2
= c1.

If we let ẏ = tan t, we have

y − c1 = −λ cos t, dy = λ sin t dt.

Hence,

dx =
dy

tan t
=

λ sin t dt

tan t
= λ cos t dt

and

x = λ sin t + c2.

Consequently, we have

x− c2 = λ sin t, y − c1 = −λ cos t.

It is clear that this is a family of circles. The constants c1, c2, and λ can
be determined by l and (7.1).

Example 7.5. Given a fixed curve y = f(x) connecting the points
(a, a1) and (b, b1), find a curve y = y(x) of length l connecting the same
points such that the two curves enclose the maximum area.
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In this case, we want to maximize

J(y) =
∫ b

a

[y(x) − f(x)] dx

under the same conditions as before. Here we have

H̃(x, y, ẏ) = y − f(x) + λ
√

1 + ẏ2.

We proceed as before. (Can we apply Lemma 5.12?)

Example 7.6. Find the shape of a flexible rope of length l extended
between the points (a, a1) and (b, b1).

In this case we find a minimum of the functional

J(y) =
∫ b

a

y
√

1 + ẏ2 dx

over functions satisfying (7.1) and

J1(y) =
∫ b

a

√
1 + ẏ2 dx = l.

In this case we have

H̃(x, y, ẏ) = (y + λ)
√

1 + ẏ2.

Again, by Lemma 5.12, H̃ satisfies

ẏ
∂H̃

∂ẏ
− H̃ = constant. (7.8)

Thus,

(y + λ)
√

1 + ẏ2 − (y + λ)ẏ2√
1 + ẏ2

= c1

or
y + λ√
1 + ẏ2

= c1.

This time we set ẏ = sinh t. Then√
1 + ẏ2 = cosh t, y + λ = c1 cosh t, dx = dy/ sinh t = c1dt, x = c1t + c2.

Thus,

y + λ = c1 cosh[(x− c2)/c1],

which is a family of catenaries. Again, the constants c1, c2, and λ can be
determined by l and (7.1).
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7.2 Lagrange multipliers

Suppose we want to minimize the functional

J =
∫ b

a

F (x1, x2, ẋ1, ẋ2, t)dt

under the constraint

g(x1, x2, ẋ1, ẋ2, t) = 0.

By this we mean that x1, x2 are not independent but are bound together
by a relationship. In this case Lemma 5.11 does not apply. Later we shall
show that we can incorporate the constraint into the functional J and
consider x1, x2 independent. In particular, we can replace J by

J∗ =
∫ b

a

[F (x1, x2, ẋ1, ẋ2, t) − λ(t)g(x1, x2, ẋ1, ẋ2, t)]dt,

where λ(t) is a function called a Lagrange multiplier. We now proceed
as before with F replaced by

F ∗(x1, x2, ẋ1, ẋ2, t) = F (x1, x2, ẋ1, ẋ2, t) − λg(x1, x2, ẋ1, ẋ2, t).

Example 7.7. As an example, let us try to minimize

J =
∫ b

a

(ẍ)2dt.

This does not fit into the situation covered by Lemma 5.2. However,
we can create an additional variable by writing

x1 = x, x2 = ẋ1.

Then J becomes

J =
∫ b

a

ẋ2
2 dt.

Since g(x1, x2, ẋ1, ẋ2, t) = x2 − ẋ1 = 0, we can use

J∗ =
∫ b

a

[ẋ2
2 − λ(x2 − ẋ1)]dt

in place of J. The Euler equations give

0 − d

dt
(−λ) = 0, λ − d

dt
(ẋ2) = 0.

Thus

λ̇ = 0, λ − ẍ2 = 0.
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This implies

dẍ2/dt = d3x2(t)/dt3 = 0.

Thus,

x2(t) = At2 + Bt + C,

where A,B,C are arbitrary constants. Since ẋ1 = x2, we have

x =
1
3
At3 +

1
2
Bt2 + Ct + D.

The arbitrary constants are to be determined by given conditions.

Example 7.8. As another example, consider the functional

J =
∫ b

0

(1 + ẋẏ)1/2t−1/2dt,

which we want to minimize under the constraint

y = x + 1.

In this case we can minimize

J∗ =
∫ b

0

[(
1 + ẋẏ

t

)1/2

+ λ(y − x− 1)

]
dt.

Euler’s equations become

−λ − d

dt

ẏ

2t(1 + ẋẏ)1/2
= 0

and

λ − d

dt

(
ẋ

2[t(1 + ẋẏ)]1/2

)
= 0.

If we eliminate λ, we obtain

d

dt

(
ẋ + ẏ

2[t(1 + ẋẏ)]1/2

)
= 0.

Thus,
ẋ + ẏ

[t(1 + ẋẏ)]1/2
= const. = C.

Since ẏ = ẋ, this becomes

2ẏ
[t(1 + ẏ2)]1/2

= C.
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Consequently,

ẏ2 =
C2t

4 − C2t
,

from which we can determine y. We then use y = x + 1 to determine x.

Actually, we could have eliminated x in the beginning and considered
only

J =
∫ b

0

(1 + ẏ2)1/2dt.

Then we would not have needed the Lagrange multiplier.

7.3 Bang–bang control

Suppose we want to drive a car from a stationary point a to a station-
ary point b along a horizontal driveway assuming that there is no closed
garage door between the points. Assume that the only controls that the
driver has are the accelerator and brake. If h(t) represents the accelera-
tion (or deceleration) at the time t, we assume that it is subject to the
following constraints:

−µ ≤ h(t) ≤ ν. (7.9)

The equation of motion is

ẍ(t) = h(t). (7.10)

If the car arrives at point b at time T, we want

x(0) = a, ẋ(0) = 0, x(T ) = b, ẋ(T ) = 0.

We are interested in determining the minimum time for effecting the
transfer. Assuming that ẋ(t) ≥ 0 for all t ∈ [0, T ] (i.e., that the driver
does not reverse), we may consider v = ẋ as a function of x. Since

h = ẍ = v
dv

dx
=

d

dx

(
1
2
v2

)
,

we have

T =
∫ T

0

dt =
∫ b

a

dx

v
=

∫ b

a

dx

(2w)1/2
,

where w(x) = 1
2v

2. Thus,

dw(x)
dx

= h, w(a) = w(b) = 0. (7.11)
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In order to deal with the constraints (7.9), we introduce the additional
variable z given by

z2 = (h + µ)(ν − h). (7.12)

The constraints (7.9) guarantee that z is real.
We are finally ready to proceed (make sure the driver is wearing a

seat belt). We wish to minimize T under the conditions that (7.11) and
(7.12) hold. Using the method of Lagrange multipliers, we take

T ∗ =
∫ b

a

{
(2w)−

1
2 + λ1

(
dw

dx
− h

)
+ λ2[z2 − (h + µ)(ν − h)]

}
dx.

If there is an optimum path w = w(x), it will satisfy

∂F

∂w
− d

dx

(
∂F

∂w′

)
= 0,

∂F

∂h
− d

dx

(
∂F

∂h′

)
= 0,

∂F

∂z
− d

dx

(
∂F

∂z′

)
= 0.

Thus, we must have

(−2w)−3/2 − dλ1

dx
= 0, −λ1 + λ2(2h + µ− ν) = 0, 2zλ2 = 0.

The last equation requires either z = 0 or λ2 = 0. If λ2 = 0 then λ1 = 0
and, consequently, (2w)−3/2 = 0. Since w(x) ≡ ∞ clearly violates our
guidelines, we must conclude that z = 0. But then

(h + µ)(ν − h) ≡ 0

which implies that at each time t ∈ [0, T ] we have either h(t) = −µ or
h(t) = ν. Now, initially we have h(0) = ν and finally we have h(T ) = −µ.

Since h(t) must have one of these values in between, all the driver can
do is switch from one to the other. Suppose he or she switches only once
at the time t = α. Then (7.10) becomes

ẍ(t) = h(t) =

{
ν, 0 ≤ t ≤ α,

−µ, α < t ≤ T.
(7.13)

Integrating, we obtain

ẋ(t) =

{
νt, 0 ≤ t < α,

−ν(t− T ), α < t ≤ T,

and

x(t) =

{
1
2νt

2 + a, 0 ≤ t < α,

− 1
2µ(t− T )2 + b, α ≤ t ≤ T.
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Since x(t), ẋ(t) are required to be continuous in [0, T ], this includes the
point t = α. Hence, we must have

να = −µ(α− T ),
1
2
να2 + a = −1

2
µ(α− T )2 + b.

From these we obtain

α2 =
2µ(b− a)
ν(µ + ν)

and

T 2 =
2(b− a)(µ + ν)

µν
.

Thus, the time for the operation is minimized if the driver begins with
his or her foot all the way down on the accelerator and then at the time
t = α all the way down on the brake until the time t = T. (We do
not recommend this at all.) It is not difficult to understand why this
procedure is called bang–bang control.

7.4 Rocket in orbit

In order to place a rocket in orbit, it is necessary to obtain a sufficiently
high speed at the end of its trajectory. As a simple model, let us assume
that it is a single stage rocket launched at an angle θ0 with the horizon.
The thrust is produced by the combustion of fuel and is in the direction
of motion. We ignore air resistance (which we should not) and assume
that gravity is the only other force acting on the rocket. Since the mass
of the rocket diminishes as the propellant is ejected, the force P per unit
mass will change with time. The equations of motion are

mr̈ = mv̇ = m(P cos θ, P sin θ − g),

where m is the mass of the rocket at time t, r = (x1, x2), v = ṙ =
(ẋ1, ẋ2) = (v1, v2), θ is the angle the rocket makes with the horizontal
direction at time t, and g is the gravitational constant. Thus, we have

ẋ1 = v1, v̇1 = P cos θ, ẋ2 = v2, v̇2 = P sin θ − g. (7.14)

If the initial velocity is 0 and the rocket attains its final horizontal speed
at time T and height H, we wish to maximize

v1(T ) =
∫ T

0

P cos θ dt.
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Using the restrictions imposed by (7.14), we try to maximize

v∗1(T ) =
∫ T

0

F (θ, x2, ẋ2, v2, v̇2) dt,

where

F (θ, x2, ẋ2, v2, v̇2) = P cos θ + λ(ẋ2 − v2) + µ(v̇2 − P sin θ + g).

The Euler equations for this system are

∂F

∂x2
− d

dt

(
∂F

∂ẋ2

)
= 0,

∂F

∂v2
− d

dt

(
∂F

∂v̇2

)
= 0,

∂F

∂θ
− d

dt

(
∂F

∂θ̇

)
= 0.

Thus, we have

λ̇ = 0, λ = −µ̇, µ = − tan θ.

Consequently, we have µ̈ = 0. This means that µ = At + B. But then,
tan θ = −(At + B). Since the maximum horizontal speed is achieved at
t = T, we have θ(T ) = 0. Thus, AT + B = 0 and tan θ = −B(1 − t/T ).
Since θ(0) = θ0 this gives

tan θ = (1 − t/T ) tan θ0. (7.15)

We wish to solve for θ0 and T. This is not an easy task. For instance,
(7.15) implies

T sec2 θ tan θ d tan θ = − tan θ0 dt.

This gives

v2 = − T

tan θ0

∫
P tan θ sec θ dt− gt + A.

To simplify matters, we assume that P is a constant. In this case we
readily obtain

v2 = − TP

tan θ0
− gt + A.

Since v2(0) = 0, we see that A = TP/ sin θ2
0. Thus,

v2 =
TP

sin θ0
(1 − cos θ0 sec θ) − gt.

Since θ(T ) = 0, and v2(T ) = 0, we have

TP

sin θ0
(1 − cos θ0) = gT.
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Let γ = g/P. Then

γ2 =
(1 − cos θ0)2

sin2 θ0

.

Thus,

γ2 + 1 =
2(1 − cos θ0)

sin2 θ0

and

γ2 − 1 =
2 cos θ0(cos θ0 − 1)

sin2 θ0

.

Consequently,

cos θ0 =
1 − γ2

1 + γ2
, sin θ0 =

2γ
1 + γ2

. (7.16)

Substituting this into the equation for v2, we obtain

v2 =
TP

2γ
[(1 + γ2) − (1 − γ2) sec θ] − gt.

Thus,

x2 =
TP

2γ

[
(1 + γ2)1/2 − (1 − γ2)

∫
sec θdt

]
− 1

2
gt2 + B

for some constant B. As before,
∫

sec θ dt = −T (1 − γ2)
2γ

∫
sec3 θ dθ

= −T (1 − γ2)
4γ

[
sin θ

cos2 θ
+ log(sec θ + tan θ)

]
.

When θ = θ0, this expression becomes

−T (1 − γ2)
4γ

[
2γ(1 + γ2)
(1 − γ2)2

+ log
{

1 + γ

1 − γ

}]
.

Since x2(0) = 0, θ(0) = θ0, this implies

B =
−T 2P

8γ2

[
2γ(1 + γ2) + (1 − γ2)2 log

{
1 + γ

1 − γ

}]
.

Since x2(T ) = H, θ(T ) = 0, we have

H =
T 2P (1 + γ2)

2γ
− 1

2
gT 2 + B.
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Consequently,

H

T 2P
=

1 + γ2

2γ
− 1

2
γ +

B

T 2P
=

1
2γ

+
B

T 2P

=
1

8γ2

[
4γ − 2γ(1 + γ2) − (1 − γ2)2 log

{
1 + γ

1 − γ

}]

=
(1 − γ2)

8t2

[
2γ − (1 − γ2) log

{
1 + γ

1 − γ

}]
.

Hence,

T 2 =
8γ2H

P (1 − γ2)
[
2γ − (1 − γ2) log

{
1 + γ

1 − γ

}] . (7.17)

7.5 A generalized derivative

In our studies of extrema in the calculus of variations, we came across
problems such as finding a minimum of

F (y) =
∫ b

a

H(x, y, ẏ) dx (7.18)

on functions y ∈ H1(Ω) satisfying

y(a) = a1, y(b) = b1, (7.19)

where Ω = (a, b). If we want to differentiate F using the Fréchet or
Gâteaux derivative, we come across the following problem. If y, η both
satisfy (7.19), then y + tη need not. Therefore, we cannot compute the
difference quotient

[F (y + tη) − F (y)]
t

(7.20)

We had to adjust the definition to have η satisfy

η(a) = η(b) = 0. (7.21)

Then y + tη will satisfy (7.19) whenever y does. This does not result in
any great trauma as long as we realize that we are differentiating with
respect to H1

0 (Ω) in place of H1(Ω). However, what do we do when we
want to minimize F (y) on the set of those y ∈ H1(Ω) satisfying both
(7.19) and

ϕ(x, y, ẏ) = 0? (7.22)
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We can still differentiate F with respect to H1
0 (Ω), but the derivative

will not necessarily vanish at a minimum. What can we do?

We are faced with the following situation. Let X be a vector space and
let Q,V, Y be Banach spaces such that Q,V ⊂ X. Let F be a mapping
from X to Y. We are confronted with two problems.

(a) If u+ th is not in V for u ∈ V and h ∈ Q, how can we define the
derivative when the difference quotient

[F (u + th) − F (u)]
t

(7.23)

does not exist?
(b) Even if V +Q ⊂ V, we have difficulty dealing with situations such

as

G(u) = min
S

G, (7.24)

in which u + tq need not be in S ⊂ V even though it is in V for
q ∈ Q. For then it is not necessarily true that G′(u) = 0.

The following approach is intended to deal with these situations.

7.6 The definition

Let X,Y, V,Q be as described above. For each u ∈ V we take C(V,Q, u)
to denote the set consisting of those q ∈ Q for which there exist sequences
{tn} ⊂ R, and {qn} ⊂ Q such that

qn → q in Q, 0 �= tn → 0, u + tnqn ∈ V. (7.25)

The set of C(V,Q, u) need not be a subspace of Q. We let E(V,Q, u) be
the smallest subspace of Q containing C(V,Q, u), that is, the set of all
finite sums of elements in C(V,Q, u). We have the following definition.

Definition 7.9. A linear operator A from X to Y is called the deriva-
tive of F with respect to Q at the point u and denoted by F ′

Q(u) if

(a) D(A) = E(V,Q, u) and
(b) for any sequences {tn}, {qn} satisfying (7.25) we have

t−1
n [F (u + tnqn) − F (u)] → Aq in Y as n → ∞. (7.26)
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Note that when it exists, F ′
Q(u) is uniquely determined on E(V,Q, u).

On the other hand, any larger domain might not determine it uniquely.
Note that even when V +Q ⊂ V, the requirement (7.26) is stronger than
the existence of the limit

t−1[F (u + tq) − F (u)] → Aq as t → 0.

It is possible for this limit to exist while that of (7.26) does not exist.

7.7 The theorem

We now study some of the properties of this derivative.

Theorem 7.10. Assume that V +Q ⊂ V and that there are u ∈ V and
T ∈ B(Q,Y ) such that

‖T (h1−h2)−[F (u + h1)−F (u + h2)]‖ ≤ δ‖h1−h2‖, hi ∈ Q, ‖hi‖ < m.

(7.27)

Assume further that R(T ) = Y ,

d(h,N(T )) = inf
w∈N(T )

‖h− w‖ ≤ C0‖Th‖, h ∈ Q (7.28)

and δC0 < 1. Then for each q ∈ Q there is an interval (−r, r) and a
mapping q(t) of (−r, r) into Q such that

F (u + tq(t)) = F (u), −r < t < r, (7.29)

and

‖q(t) − q‖ ≤ Ct−1‖F (u + tq) − F (u)‖, −r < t < r. (7.30)

Before proving Theorem 7.10, we would like to show how it can be
applied. One application is

Theorem 7.11. Under the hypotheses of Theorem 7.10, let

S = {v ∈ V : F (v) = F (u)}. (7.31)

Let G be a functional on V such that

G(u) = min
S

G. (7.32)

Assume that both F ′
Q(u) and G′

Q(u) exist. Then

F ′
Q(u)q = 0 =⇒ G′

Q(u)q = 0. (7.33)
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Proof. Let q be any element of Q. By Theorem 7.10, there is an interval
(−r, r) and a mapping q(t) of (−r, r) into Q such that (7.29) and (7.30)
hold. Thus, u + tq(t) ∈ S for −r < t < r. If F ′

Q(u)q = 0, then q(t) → q

by (7.30). Now

G(u + tq(t)) ≥ G(u)

by (7.32) and

t−1[G(u + tq(t)) −G(u)] → G′
Q(u)q.

If t → 0 through positive values, the limit is nonnegative and if it ap-
proaches through negative values, the limit is nonpositive. Since the limit
is the same for both, we see that G′

Q(u)q = 0.

As a result, we have

Theorem 7.12. Under the same hypotheses, H = F ′
Q(u) maps Q onto

Y and

G′
Q(u)[1 −H−1F ′

Q(u)]q = 0, q ∈ Q, (7.34)

where H−1y is any element q ∈ Q such that Hq = y.

In proving Theorem 7.12 we shall make use of

Lemma 7.13. If X,Y, Z are Banach spaces,H ∈ B(X,Y ),L ∈ B(X,Z),
R(H) = Y , N(H) ⊂ N(L), then LH−1 ∈ B(Y,Z), where H−1y is any
element x ∈ X such that Hx = y.

Proof. The operator LH−1 is well defined. For if Hx = y and Hx1 = y,

then Lx = Lx1. To show that it is bounded, it suffices to show that it is
continuous at 0 (Theorem A.23). Suppose yk → 0. Let Hxk = yk. Then
by Theorem A.64,

d(xk, N(H)) ≤ C‖yk‖ → 0.

In view of Lemma A.25, there is an x̂k ∈ X such that

Hx̂k = Hxk = yk, and ‖x̂k‖ ≤ d(xk, N(H)) → 0.

Hence

Lxk = Lx̂k → 0.

Theorem 7.14. Let Q,Y be Banach spaces, and assume that there are
operators T,H ∈ B(Q,Y ) such that (7.28) holds with ‖T −H‖ ≤ δ and
δC0 < 1. If R(T ) = Y, then R(H) = Y.
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Proof. Let y be any element of Y, and let C1 > C0 be such that ρ =
δC1 < 1. Then there is an element z0 ∈ Q such that

Tz0 = y, ‖z0‖ ≤ C1‖y‖

and inductively, there are elements zk ∈ Q such that

Tzk = (T −H)zk−1, ‖zk‖ ≤ C1‖Tzk‖, k = 1, 2, . . .

Then

‖zk‖ ≤ C1‖(T −H)zk−1‖ ≤ ρ‖xk−1‖ ≤ ρk‖z0‖.

Thus,

hk ≡
k∑
0

zj → h in Q

and

Thk =
k∑
0

Tzj

=
k∑
1

(T −H)zj−1 + y

= (T −H)
k−1∑
i=0

zi + y

= (T −H)hk−1 + y

→ (T −H)h + y.

Thus, Th = (T − H)h + y, or Hh = y. Since y was any element of Y,
this shows that R(H) = Y.

We can now give the proof of Theorem 7.12.

Proof. First we show that R(H) = Y. By (7.27)

‖Th− [F (u + h) − F (u)]‖ ≤ δ‖h‖, h ∈ Q.

Hence ‖T−H‖ ≤ δ and δC0 < 1. Since R(T ) = Y, we see that R(H) = Y

by Theorem 7.14. Let q be any fixed element in Q, and let h ∈ Q be any
element such that q − h ∈ N(H). Then G′

Q(u)(q − h) = 0 by Theorem
7.11. But Hh = F ′

Q(u)q. Hence,

G′
Q(u)[1 −H−1F ′

Q(u)]q = 0.
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This leads to

Theorem 7.15. Let F be a mapping of V ⊂ X into Y , and G a map-
ping of V into R. Let S be given by (7.31), and assume that (7.32) holds
for some u ∈ S. Assume that V +Q ⊂ V , and that F ′

Q(u+ q) exists and
is in B(Q,Y ) for q ∈ Q small with

‖F ′
Q(u + q) − F ′

Q(u)‖ → 0 as q → 0.

Assume further that the range of F ′
Q(u) is closed in Y and that G′

Q(u)
exists and is in Q′. Then there exist λ ∈ R and y′ ∈ Y ′ not both vanishing
such that

λG′
Q(u) + y′F ′

Q(u) = 0. (7.35)

In proving Theorem 7.15 we shall use

Theorem 7.16. Let q ∈ Q be such that u + sq ∈ V for 0 ≤ s ≤ 1, and
let y′ ∈ Y ′. Assume that

F ′
Q(u + sq) → y′F (u) as s → 0

and

y′F (u + sq) → y′F (u + q) as s → 1.

Then there is a θ such that 0 < θ < 1 and

y′[F (u + q) − F (u)] = y′F ′
Q(u + θq)q.

Proof. First we note that q ∈ C(V,Q, u + sq) for 0 < s < 1. For if
tn → 0, then u + sq + tnq is in V for n large. If we put qn = q, then
(7.25) holds for u + sq. Put f(s) = y′F (u + sq). Then for 0 < s < 1, we
have

t−1
n [f(s + tn) − f(s)]

= t−1
n y′[F (u + sq + tnq) − F (u + sq)]

→ y′G′
Q(u + sq)q as tn → 0.

Thus, f(s) is differentiable in (0, 1). By hypothesis, it is continuous in
[0, 1]. Hence, there is a θ such that 0 < θ < 1 and f(1) − f(0) = f ′(θ).
This gives the desired result.

We can now give the proof of Theorem 7.15.

Proof. Assume first that M = R(F ′
Q(u)) �= Y. Since M is closed in Y

there is a y0 ∈ Y such that d = d(y0,M) > 0. (Otherwise, for each
y0 ∈ Y there would be a sequence {yn} ⊂ M such that ‖yn − y0‖ → 0.
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Since M is closed, this would imply that y0 ∈ M. Thus, we would have
M = Y.) By Theorem A.17, there is a y′ ∈ Y ′ such that ‖y′‖ = 1,
y′(y0) = d > 0, and y′(M) = 0. Hence, (7.35) holds with λ = 0.

On the other hand, if M = Y, we can apply Theorem 7.12. All of the
hypotheses of Theorem 7.10 are satisfied. We take T = F ′

Q(u). Then by
Theorem 7.16 we have

y′[T (q1 − q2) − F (u + q1) + F (u + q2)] = y′[T − F ′
Q(u + qθ)](q1 − q2)

for each y′ ∈ Y ′, where qθ = θq1 + (1 − θ)q2. Thus,

‖y′[T (q1 − q2)−F (u + q1) + F (u + q2)]‖
≤ ‖y′‖ • ‖T − F ′

Q(u + qθ)‖ • ‖q1 − q2‖.

If the ‖qi‖ are sufficiently small, this is bounded by

δ‖y′‖ • ‖q1 − q2‖,

where δC0 < 1. This is true for each y′ ∈ Y ′. Thus, by Corollary A.16,

‖T (q1 − q2) − [F (u + q1) − F (u + q2)]‖ ≤ δ‖q1 − q2‖, ‖qi‖ < m

for m sufficiently small. Moreover, by Lemma 7.13, the operator
G′

Q(u)H−1 is in Y ′. We can now see that (7.34) implies (7.35) with
λ = 1 and y′ = G′

Q(u) H−1. This completes the proof.

Theorem 7.15 is a generalization of the Lagrange multiplier rule.

7.8 The proof

In this section we give the proof of Theorem 7.10. It will be based on

Theorem 7.17. Let T be a closed operator from a Banach space Q to
a Banach space Y satisfying (7.28). Suppose h0 ∈ D(T ) and f is a
mapping of the ball B = {h ∈ Q : ‖h− h0‖ < m} into Y such that

‖f(h) − f(h′)‖ ≤ δ‖h− h′‖, h, h′ ∈ B. (7.36)

Assume that R(T ) = Y and δC0 < 1. Let h1 be any element of D(T )∩B,
and put y1 = Th1 − f(h1). Then for any ε > 0 and any y ∈ Y such that(

C0

(1 − δC0)

)
‖y − y1‖ + ‖h1 − h0‖ < m, (7.37)
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there exists an h ∈ D(T ) ∩B such that

Th− f(h) = y (7.38)

and

‖h− h1‖ ≤
(

C0

(1 − δC0)
+ ε

)
‖y − y1‖. (7.39)

Proof. Let ε > 0 be given, and take C1 > C0 such that (7.37) holds with
C0 replaced by C1, with

C1

1 − δC1
<

C0

1 − δC0
+ ε,

and ρ = δC1 < 1. From (7.28) and the fact that R(T ) = Y, we can find
an element z1 ∈ D(T ) such that Tz1 = y − y1 and ‖z1‖ ≤ C1‖y − y1‖.
Define {hk}, {zk} inductively by

hk+1 = h1 +
k∑

j=1

zj , T zk = f(hk) − f(hk−1), zk = hk+1 − hk,

‖zk‖ ≤ C1‖Tzk‖ = C1‖f(hk) − f(hk−1)‖ ≤ ρ‖zk−1‖.

Thus

‖zk‖ ≤ ρk−1‖z1‖.

Since ρ < 1, we see that hk → h in Q. Moreover,

‖h− h0‖ ≤ ‖h1 − h0‖ +
∞∑
j=1

‖zj‖ ≤ ‖h1 − h0‖ +
∞∑
j=1

ρ j−1‖z1‖

≤ ‖h1 − h0‖ +
C1

1 − ρ
‖y − y1‖ < m.

Thus h ∈ B. Also

‖h− h1‖ ≤ C1

1 − ρ
‖y − y1‖,

showing that (7.39) holds. Finally, we note that

Thk+1 = Th1 +
k∑

j=1

Tzj = Th1 + f(hk) − f(h1) + y − y1

= f(hk) + y → f(h) + y as k → ∞.

Since T is a closed operator, we see that Th − f(h) = y holds. This
completes the proof.

We can now give the proof of Theorem 7.10.
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Proof. Put

f(h) = Th− F (u + h) + F (u), h ∈ Q.

It maps the ball ‖h‖ < m into Y. Let q be any element in Q, and let
ε > 0 be given. By (7.27),

‖f(h) − f(h′)‖ ≤ δ‖h− h′‖, h, h′ ∈ B,

where B is the ball ‖h‖ < m in Q. We apply Theorem 7.17 with h0 = 0,
h1 = tq, y = 0. We take r > 0 such that

C0

1 − δC0
‖F (u + tq) − F (u)‖ + ‖tq‖ < m

for |t| < r. Since

y1 = T (tq) − f(tq) = F (u + tq) − F (u),

this implies

C0

1 − δC0
‖y1‖ + ‖h1‖ < m

for |t| < r. Theorem 7.17 now implies that for each t satisfying |t| < r

there is an h ∈ B such that Th− f(h) = 0 and

‖h− tq‖ ≤ C‖y1‖.

These translate into

F (u + h) − F (u) = 0

and

‖h− tq‖ ≤ C‖F (u + tq) − F (u)‖.

Put q(t) = h/t. Then we have

F (u + tq(t)) = F (u), |t| < r,

and

‖q(t) − q‖ ≤ Ct−1‖F (u + tq) − F (u)‖, |t| < r.

This is precisely what we wanted to prove.
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7.9 Finite subsidiary conditions

In the isoperimetric problem, the constraints were in the form of integral
conditions. We now consider the point-wise constraints of the form

ϕ(x, y1, y2, ẏ1, ẏ2) = 0.

Such constraints arise in many applications as we have just seen. Here
we shall show why Lagrange multipliers work. We have

Theorem 7.18. Assume that F0(x, y1, . . . , yn, z1, . . . , zn)∈C1(Ω̄×R
2n).

If the functions ỹ1(x), . . . , ỹn(x) make the functional

J(y) =
∫

Ω

F0(x, y1(x), . . . , yn(x), ẏ1(x), . . . , ẏn(x)) dx (7.40)

have an extremum under the conditions

ϕi(x, y1(x), . . . , yn(x), ẏ1(x), . . . , ẏn(x)) = 0, j = 1, . . . ,m, m < n,
(7.41)

then they satisfy the Euler equations for the functional

J̃(y) =
∫

Ω

[λ0F0 +
m∑
i=1

λi(x)ϕi]dx (7.42)

for a suitably chosen constant λ0 and functions λ1(x), . . . , λm(x) not all
zero. If we define

F̃ = λ0F0 +
m∑
i=1

λi(x)ϕi, (7.43)

then the functions ỹ1(x), . . . , ỹn(x), λ1(x), . . . , λm(x) will satisfy

∂F̃

∂yj
− d

dx

∂F̃

∂ẏj
= 0, j = 1, . . . , n (7.44)

as well as (7.41). These two sets of equations can be used to determine
the ỹj and λi. It is assumed that each function

ϕk(x, y1, . . . , yn, z1, . . . , zn)

is in C1(Ω̄ × R
2n) for each k, 1 ≤ k ≤ m. It is also assumed that the

Jacobian
∂(ϕ1, . . . , ϕm)
∂(z1, . . . , zm)

�= 0, x ∈ Ω̄, y, z ∈ R
n.
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Proof. Let

V = H1(Ω)×· · ·×H1(Ω), n times,

Q = H1
0 (Ω) × · · · ×H1

0 (Ω), n times,

and

Y = L2(Ω)×· · ·×L2(Ω), m times.

Let F be the mapping from V to Y given by

F (y1, . . . , yn) = (ϕ1(x, y1, . . . , yn, ẏ1, . . . , ẏn), . . . ,

ϕm(x, y1, . . . , yn, ẏ1, . . . , ẏn)), (y1, . . . , yn) ∈ V.

Let

u = (ỹ1(x), . . . , ỹn(x)),

and let

q = (η1(x), . . . , ηn(x))

be any element of Q. Since

t−1[ϕk(x, y1 + tη1, . . . , yn + tηn, ẏ1 + tη̇1, . . . , ẏn + tη̇n)

− ϕk(x, y1, . . . , yn, ẏ1, . . . , ẏn)]

→
n∑

j=1

(
∂ϕk

∂yj
ηj +

∂ϕk

∂ẏj
η̇j

)
, 1 ≤ k ≤ m,

we have

F ′
Q(u)q =





 n∑

j=1

[aj1ηj + bj1η̇j ]


 , . . . ,


 n∑

j=1

[ajmηj + bjmη̇j ]





 ,

where

ajk =
∂ϕk(x, u)

∂yj
, bjk =

∂ϕk(x, u)
∂ẏj

, 1 ≤ j ≤ n, 1 ≤ k ≤ m.

Let

M = {q = (η1, . . . , ηn) ∈ Q : ηj = 0, m < j ≤ n}

and

N = {q = (η1, . . . , ηn) ∈ Q : ηj = 0, 1 ≤ j ≤ m}.

Then

Q = M ⊕N.
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By hypothesis, the matrix (bjk), 1 ≤ j, k ≤ m, is invertible. Hence, there
is a matrix (dkl) such that

m∑
k=1

bjkdkl =
m∑

k=1

dklbjk = δjl, 1 ≤ j, l ≤ m.

Let

T̃ q =


 m∑

j=1

bj1η̇j , . . . ,
m∑
j=1

bjmη̇j


 , q ∈ M.

I claim that

T̃ ∈ Φ(M,Y ).

To see this, let

Uw =

(
m∑

k=1

dk1wk, . . . ,
m∑

k=1

dkmwm

)
, w = (w1, . . . , wm) ∈ Y.

Then U ∈ B(Y ), and

UT̃q = (η̇1, . . . , η̇m), q ∈ M.

Next we note

Lemma 7.19. A function w ∈ L2(Ω) is the weak derivative of a func-
tion v ∈ H1

0 (Ω) if and only if (w, 1) = 0.

Proof. If v ∈ H1
0 (Ω), then there is a sequence {vk} ⊂ C1

0 (Ω) such that
‖vk − v‖H → 0. In particular, (v′k, 1) → (v′, 1). But

(v′k, 1) =
∫ b

a

v′k(x) dx = vk(b) − vk(a) = 0.

Hence (v′k, 1) = 0, and consequently, (v′, 1) = 0. Conversely, if (w, 1) = 0,
then there is a sequence {wk} ∈ C∞

0 (Ω) such that wk → w in L2(Ω).
Let

w̃k = wk − (wk, 1)
(b− a)

.

Then

(w̃k, 1) = (wk, 1) − (wk, 1)

∫ b

a
dx

(b− a)
= 0.

Since

(wk, 1) → (w, 1) = 0,
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we see that w̃k → w in L2(Ω). Set

vk(x) =
∫ x

a

w̃k(y)dy.

Then

vk(a) = vk(b) = 0.

Thus, vk ∈ C1
0 (Ω). Moreover, vk → v uniformly, where

v(x) =
∫ x

a

w(y) dy.

Since

v′k = w̃k → w in L2(Ω),

we see that

‖vk − v‖H → 0.

Hence, v ∈ H1
0 (Ω).

Let Z be the set of all w ∈ Y of the form

w = (c1, . . . , cm),

where the ck are constants. If

lk = (0, . . . , 1, . . . , 0)

is the element in Y consisting of functions which are 0 in all positions
except in the k-th position, where it is the constant 1, then

w = (c1, . . . , cm) =
m∑

k=1

cklk.

Hence, Z is a subspace of Y having dimension m. By Lemma 7.19

Y = R(UT̃ ) ⊕ Z.

Consequently,

β(UT̃ ) = m

(Corollary A.72). Since

α(UT̃ ) = 0

we have

i(UT̃ ) = −m.
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Thus,

UT̃ ∈ Φ(M,Y ).

Since U ∈ B(Y ) is invertible, we see that T̃ ∈ Φ(M,Y ) and i(T̃ ) = −m.

Now,

T1q = (
m∑
j=1

aj1ηj , . . . ,
m∑
j=1

ajmηj)

is a compact operator from M to Y. To see this, assume that

qi = (η1i, . . . , ηmi)

is a sequence of elements of M such that

‖qi‖Q ≤ C.

Thus,
m∑

k=1

‖ηki‖2
H ≤ C2.

By Lemma 1.21 there is a renamed subsequence such that

ηki → ηk, 1 ≤ k ≤ m

uniformly in Ω̄. Therefore
m∑

k=1

ajkηki →
m∑

k=1

ajkηk as i → ∞, 1 ≤ j ≤ m

uniformly in Ω̄. Let

T2 = T1 + T̃ .

Since T1 ∈ K(M,Y ) and T̃ ∈ Φ(M,Y ) with index i(T̃ ) = −m, we see
that T2 ∈ Φ(M,Y ) with i(T2) = −m. Let PM , PN be the orthogonal
projections of Q onto M and N, respectively. We define

T = T2PM + T3PN ,

where

T3q =


 n∑

j=m+1

[aj1ηj + bj1η̇j ], . . . ,
n∑

j=m+1

[ajmηj + bjmη̇j ]


 , q ∈ N.
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Then T3 ∈ B(N,Y ) and

Tq =


 n∑

j=1

[aj1ηj + bj1η̇j ], . . . ,
n∑

j=1

[ajmηj + bjmη̇j ]


 = FQ(u)q, q ∈ Q.

Note that β(T2) < ∞. Consequently, there is a finite dimensional sub-
space W ⊂ Y such that

Y = R(T2PM ) ⊕W

(Lemma A.71). Since R(T ) ⊃ R(T2PM ), we see that R(T ) is closed in
Y (Lemma A.70).

Let

J(y) =
∫ b

a

F0(x, y1, . . . , yn, ẏ1, . . . , ẏn) dx, y = (y1, . . . , yn).

Then

J ′
Q(y)q =

∫ b

a

n∑
j=1

(
∂F0

∂yj
ηj +

∂F0

∂ẏj
η̇j

)
dx.

If

u = (ỹ1, . . . , ỹn),

Theorem 7.15 tells us that there are λ0 ∈ R and y′ ∈ Y ′ such that

λ0J
′
Q(u) + y′F ′

Q(u) = 0.

Since Y is a Hilbert space, Y ′ can be represented by Y (Theorem A.12).
Thus, we can take

y′ = (λ1(x), . . . , λm(x)) ∈ Y,

with

y′(y) =
∫ b

a

m∑
k=1

λk(x)yk(x) dx, y ∈ Y.

Consequently,

y′(F ′
Q(u)q) =

∫ b

a

n∑
j=1

m∑
k=1

λk(x)[ajkηj + bjkη̇j ] dx.

If we put

F̃ = λ0F0 +
m∑

k=1

λk(x)ϕk,
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we obtain

y′(F ′
Q(u)q) =

∫ b

a

n∑
j=1

[
∂F̃

∂yj
ηj +

∂F̃

∂ẏj
η̇j] dx =

∫ b

a

n∑
j=1

[
∂F̃

∂yj
− d

dx

∂F̃

∂ẏj
]ηj dx.

We now apply Lemma 5.1 to obtain the desired conclusion.

7.10 Exercises

1. Show that

det[(vj , vk)] = 0

implies that there is a vector β = (β0, β1, . . . , βN ) �= 0 such that

N∑
i=0

βi(vi, vj) = 0, 0 ≤ j ≤ N.

2. Why is the matrix

g(b) = (gij(b)),

given by

gij(b) = (G′
i(u0 +

N∑
j=0

bjvj), vj), 0 ≤ i, j ≤ N

invertible for ‖b‖ sufficiently small?

3. Show that the system of differential equations

b′(t) = g−1(b(t))γ, |t| ≤ t0, b(0) = 0

satisfies the hypotheses of Peano’s theorem.

4. Carry out the calculations to solve Example 7.10.5. Can we use
Lemma 5.12?

5. Finish solving the problem in Example 7.10.8 using both ways.

6. Fill in the details in the calculations for the bang–bang control prob-
lem.

7. Fill in the details in the calculations for the rocket in orbit problem.

8. Show that when it exists, F ′
Q(u) is uniquely determined on

E(V,Q, u) and that any larger domain might not determine it
uniquely.
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9. In the proof of Theorem 7.18, show that

F ′
Q(u)q =





 n∑

j=1

[aj1ηj + bj1η̇j ]


 , . . . ,


 n∑

j=1

[ajmηj + bjmη̇j]





 ,

where

ajk =
∂ϕk(x, u)

∂yj
, bjk =

∂ϕk(x, u)
∂ẏj

, 1 ≤ j ≤ n, 1 ≤ k ≤ m.

10. In that proof, why does

UT̃ ∈ Φ(M,Y )

imply that T̃ ∈ Φ(M,Y ).
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Mini-max methods

8.1 Mini-max

In this chapter we will show how mini-max methods can also be applied
to situations that differ from those that we have considered previously.
In order to simplify the arguments, we use convexity in a very significant
way.

In this section we will prove the following:

Theorem 8.1. Let M,N be closed subspaces of a Hilbert space E such
that M ∩ N = {0}, E = M ⊕ N, dimN < ∞, and let Q be a closed,
bounded, convex subset of E containing 0. Let G(u) ∈ C1(Q,R) be such
that for each w ∈ Q∩M , the functional G(v +w) is concave in v ∈ Q∩N.

For each w ∈ Q ∩M let N(w) be the set of those v ∈ Q ∩N such that

G(v + w) = sup
g∈Q∩N

G(g + w), (8.1)

and let
L(w) = {PG′(v + w) : w ∈ Q ∩M, v ∈ N(w)},

where P is the (orthogonal) projection of E onto M. Let

S = {u ∈ Q : u = v + w, w ∈ M, v ∈ N(w)}.
Assume

(A) there is an interior point u0 of Q such that u0 ∈ S and

G(u0) = inf
S

G. (8.2)

Then the following hold.

(1) For each w ∈ Q ∩M, the set N(w) is not empty.
(2) For each w ∈ Q ∩M, the set N(w) is convex.

237
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(3) For each w ∈ Q ∩M, the set L(w) is convex.
(4) For each u0 ∈ S satisfying (8.2) which is an interior point of Q,

we have 0 ∈ L(Pu0). Therefore, there exists a u1 ∈ S such that
PG′(u1) = 0.

(5) There is a u0 ∈ S such that G′(u0) = 0.

Proof. (1) For fixed w ∈ Q ∩M, the functional G(v + w) is concave in
v ∈ Q ∩ N. Thus, by Lemma 4.3, there is a v ∈ Q ∩ N such that (8.1)
holds.

(2) If v1, v2 ∈ N(w) and vθ = (1 − θ)v1 + θv2, 0 ≤ θ ≤ 1, then

G(vθ + w) ≥ (1 − θ)G(v1 + w) + θG(v2, w) = sup
g∈Q∩N

G(g + w).

Hence, vθ ∈ N(w) and

G(vθ + w) = G(v1 + w) = G(v2, w).

(3) Under the same circumstances,

G(vθ + w + th) −G(vθ + w) ≥ (1 − θ)[G(v1 + w + th) −G(vθ + w)]

+ θ[G(v2 + w + th) −G(vθ + w)]

= (1 − θ)[G(v1 + w + th) −G(v1 + w)]

+ θ[G(v2 + w + th) −G(v2 + w)]

holds for any t �= 0 and h ∈ Q ∩M. If we divide by t and let 0 < t → 0,
we obtain

(G′(vθ + w), h) ≥ (1 − θ)(G′(v1 + w), h) + θ(G′(v2 + w), h).

If we let 0 > t → 0, we obtain the opposite inequality. Since this is true
for every h ∈ Q ∩M, we have

PG′(vθ + w) = (1 − θ)PG′(v1 + w) + θPG′(v2 + w). (8.3)

Since vθ ∈ N(w), we see that PG′(vθ + w) ∈ L(w).

(4) Suppose u0 = v0 +w0 satisfies hypothesis (A), and L(w0) does not
contain 0. Since L(w0) is closed, there is an element h1 ∈ L(w0) such
that

0 �= ‖h1‖ = inf
h∈L(w0)

‖h‖.
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To see this, let {hk} ⊂ L(w0) be any sequence such that

‖hk‖ → inf
h∈L(w0)

‖h‖.

Since the hk are bounded, there is a renamed subsequence converging
weakly to an element h1 ∈ E. Since

‖h1‖2 = ‖hk‖2 − 2([hk − h1], h1) − ‖hk − h1‖2,

this implies

‖h1‖2 ≤ lim inf ‖hk‖2 = inf
h∈L(w0)

‖h‖.

Moreover, there is a renamed subsequence such that h̄k = (h1 + · · ·hk)/k
converges to h1 strongly in E (Lemma 4.4). Since h̄k ∈ L(w0) and L(w0)
is closed, we see that h1 ∈ L(w0). Since we are assuming that L(w0) does
not contain 0, this tells us that h1 �= 0. If h ∈ L(w0), the same is true
of hθ = (1 − θ)h1 + θh = h1 + θ(h− h1), 0 ≤ θ ≤ 1. Hence,

‖h1‖2 + 2θ(h− h1, h1) + θ‖h− h1‖2 ≥ ‖h1‖2

or

2(h− h1, h1) + θ‖h− h1‖2 ≥ 0.

Letting θ → 0, we have (h− h1, h1) ≥ 0 or

(h, h1) ≥ ‖h1‖2 > 0, h ∈ L(w0).

This means that

(G′(v + w0), h1) ≥ ‖h1‖2 > 0, v ∈ N(w0). (8.4)

For t small and positive, let vt be any element in N(w0 − th1). (Note
that w0 − th1 ∈ Q ∩ M.) Since the vt are bounded in norm, there is a
sequence tk → 0 such that vt ⇀ ṽ0 in Q ∩ N for t = tk. Since N is
finite dimensional, there is a renamed subsequence such that vt → ṽ0 in
Q ∩N. Now,

G(vt + w0 − th1) ≥ G(v + w0 − th1), v ∈ Q ∩N.

Hence, in the limit we have by continuity

G(ũ0) = G(ṽ0 + w0) ≥ G(v + w0), v ∈ Q ∩N,

where ũ0 = ṽ0 + w0. Thus, ṽ0 ∈ N(w0). Since u0 ∈ S, we have
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G(u0) = G(ũ0). Hypothesis (A) tells us that

0 ≤ G(vt + w0 − th1) −G(u0) ≤ G(vt + w0 − th1) −G(vt + w0)

= − t

∫ 1

0

(G′(vt + w0 − θth1), h1)dθ.

Dividing by t and taking the limit as tk → 0, we have in the limit

(G′(ṽ0 + w0), h1) ≤ 0.

This contradicts (8.4), showing that L(w0) does contain 0. Consequently,
there is a v1 ∈ N(w0) such that PG′(v1 + w0) = 0.

(5) To show that (1 − P )G′(v1 + w0) = 0, let g be any element in
Q ∩N. Then for any t �= 0,

G(v1 + w0 + tg) ≤ G(v1 + w0).

Dividing by t and letting t → 0 through both positive and negative
values, we obtain

(G′(v1 + w0), g) = 0, g ∈ Q ∩N.

Hence (1−P )G′(v1 +w0) = 0, and if we combine this with (4), the proof
is complete.

8.2 An application

As an application we have

Theorem 8.2. Let n be an integer ≥ 0, and let λ satisfy

1 + n2 < λ < 1 + (n + 1)2. (8.5)

Let f(x, t) be a Carathéodory function satisfying (1.62) such that
g(x, t) = f(x, t) − λt is a nondecreasing function in t for each x ∈ I.

Assume

C2t
2 −W2(x) ≤ 2F (x, t) − λt2 ≤ |V1t|σ + W1(x), x ∈ I, t ∈ R,

(8.6)

where W1,W2 ∈ L1(I) and∫
I

|V1u|σdx ≤ C1‖u‖σH , u ∈ H.

Assume that there are constants R0, T0 such that

B + C1T0
σ/2 <

(
1 − λ

(n + 1)2 + 1

)
T0, (8.7)
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and

B + C1T0
σ/2 <

C2 + λ − n2 − 1
n2 + 1

R0, (8.8)

where B = |W1|1 + |W2|1.
Then problem (1.1),(1.2) has a solution.

Proof. Let G(u) be the functional (1.63), and let M,N be the subspaces
of H defined in the proof of the Theorem 2.24. Note that N is finite
dimensional. Let Q be the region

‖v‖2
H ≤ R0, ‖w‖2

H ≤ T0, v ∈ N, w ∈ M.

We now show that all of the hypotheses of Theorem 8.1 are satisfied.
Our hypotheses imply that G(u) ∈ C1(H,R) by Theorem 1.20. Next,
we note that G(v +w) is concave in v ∈ N for each w ∈ M. To see this,
we note that if we put u1 = v1 + w, u2 = v2 + w, then we have

(G′(u1) −G′(u2), u1 − u2) = ‖u1 − u2‖2
H − (f(·, u1)− f(·, u2), u1 − u2)

= ‖v1 − v2‖2
H − (g(·, u1)− g(·, u2), u1 − u2)

− λ‖v1 − v2‖2 ≤ 0

because of (8.5) and

[g(x, t1) − g(x, t2)](t1 − t2) ≥ 0, t1, t2 ∈ R, x ∈ I.

Finally, we show that hypothesis (A) of Theorem 8.1 holds. Let

G(uk) ↘ α = inf
S

G,

where S is defined as in Theorem 8.1. Since S is bounded, there is a
renamed subsequence such that wk ⇀ w0 (Theorem A.61). Let hk =
v0 + wk, h0 =w0 + v0, where v0 ∈ N(w0). Then

‖h0‖2
H = ‖hk‖2

H − 2(hk − h0, h0)H − ‖hk − h0‖2
H .

Therefore,

G(h0) = G(hk)−2(hk−h0, h0)H−‖hk−h0‖2
H +

∫
I

[F (x, hk)−F (x, h0)]dx

≤ G(uk) − 2(hk − h0, h0)H +
∫
I

[F (x, hk) − F (x, h0)]dx,

because vk ∈ N(wk). Since the hk are bounded in H, there is a renamed
subsequence which converges uniformly in I (Lemma 1.21). Hence,∫

I

[F (x, hk) − F (x, h0)]dx → 0.
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Consequently,

G(h0) ≤ lim inf G(uk) = α.

Since v0 ∈ N(w0), we have h0 ∈ S. Thus G(h0) = α. We must now show
that h0 is an interior point of Q. By (8.6) we have

C2‖u‖2 −B2 ≤
∫
I

[2F (x, u) − λu2]dx ≤
∫
I

|V1u|σdx + B1

where Bj = |Wj |1. Hence

‖u‖2
H − C1‖u‖σH −B1 ≤ 2G(u) ≤ ‖u‖2

H − (λ − C2)‖u‖2 + B2.

If u = v + w ∈ Q, and ‖v‖2
H = R, ‖w‖2

H = T, then

R + T − C1(R + T )σ/2 −B1 ≤ 2G(u) ≤ R + T − λ + C2

n2 + 1
R + B2.

In particular, we have

T − C1T
σ/2 −B1 ≤ 2G(w),

and

2G(v) ≤ R− λ + C2

n2 + 1
R + B2.

This gives

2[G(u) −G(w)] ≤
(

1 − λ + C2

n2 + 1

)
R + C1T

σ/2 + B,

where B = B1 + B2. Note that this will be negative if R = R0. Now
suppose u0 = v0 + w0 ∈ S and satisfies

G(u0) = α.

Since v0 ∈ N(w0), we must have G(w0) ≤ G(u0). This shows that we
cannot have ‖v0‖2

H = R0 in this case.

Similarly, if v is any function in Q ∩N, then

2[G(v) −G(w0)] ≤
(

1 − λ + C2

n2 + 1

)
R− T + C1T

σ/2 + B.

If T = T0, this is negative by (8.7). But there is a v ∈ N(0) ⊂ S. We
then have

α ≤ G(v) < G(w0) ≤ G(u0) = α.

This contradiction shows us that when u0 = v0 + w0 ∈ S satisfies



8.3 Exercises 243

G(u0) = α, then ‖w0‖2
H < T0. In summary, any such u0 must be an

interior point of Q.

Thus, all of the hypotheses of Theorem 8.1 are satisfied. We may now
conclude that there is a solution of G′(u) = 0. This is equivalent to a
solution of (1.1),(1.2).

8.3 Exercises

1. Show that

0 ≤ G(vt + w0 − th1) −G(u0) ≤ G(vt + w0 − th1) −G(vt + w0)

= − t

∫ 1

0

(G′(vt + w0 − θth1), h1)dθ.

2. Use the equation in Exercise 8.3.1 to prove

(G′(ṽ0 + w0), h1) ≤ 0.

3. If u = v + w ∈ Q, and ‖v‖2
H = R, ‖w‖2

H = T, show that

R + T − C1(R + T )σ/2 −B1 ≤ 2G(u) ≤ R + T − λ + C2

n2 + 1
R + B2.

4. Prove

T − C1T
σ/2 −B1 ≤ 2G(w),

2G(v) ≤ R− λ + C2

n2 + 1
R + B2

and

2[G(u) −G(w)] ≤
(

1 − λ + C2

n2 + 1

)
R + C1T

σ/2 + B,

where B = B1 + B2.

5. If v is any function in Q ∩N, show that

2[G(v) −G(w0)] ≤
(

1 − λ + C2

n2 + 1

)
R− T + C1T

σ/2 + B.
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Jumping nonlinearities

9.1 The Dancer–Fuč́ık spectrum

Consider the Dirichlet problem

−u′′ = bu+ − au− on Ω = (0, π) (9.1)

u(0) = u(π) = 0, (9.2)

where

u±(x) = max{±u(x), 0}

and a, b are positive constants. Equation (9.1) is mildly nonlinear, but
we shall see that solving it is a rather delicate procedure. Moreover, we
shall see that the solvability of (9.1) plays an important role in solving
problems of the form

−u′′ = f(x, u)

when
f(x, t)

t
→ b as t → +∞,

f(x, t)
t

→ a as t → −∞.

First we note that any solution of (9.1) which is not ≡ 0 has at most
a finite number of zeros (points of Ω where u(x) = 0). To see this, let
σ(x) = {σ1(x), σ2(x)} be a solution of the system

σ′(x) = h(x, σ)

and

σ(x0) = 0,

where

h(x, σ) =
[

−σ2(x)
bσ1(x)+ − aσ1(x)−

]
.

245
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Thus, {
σ′

1(x) = −σ2(x)

σ′
2(x) = bσ1(x)+ − aσ1(x)−.

Note that

−σ′′
1 = bσ1(x)+ − aσ1(x)−.

Thus, σ1(x) is a solution of (9.1). Note also that for each x0 ∈ Ω the
only solution of this system is σ(x) ≡ 0 near x0. This follows from the
uniqueness part of Picard’s theorem (Theorem 2.13) and the fact that
σ(x) ≡ 0 is a solution (it is easy to verify that h(x, σ) satisfies a Lipschitz
condition with respect to σ).

It follows from this that if u(x) is a solution of (9.1) and satisfies
u(x0) = 0 for some x0 ∈ Ω, then either u(x) ≡ 0 in the neighborhood of
x0 or u′(x0) �= 0. (To see this, just set σ1(x) = u(x), σ2(x) = −u′(x).)
Moreover, if u(x) ≡ 0 on a subinterval of Ω, then it must vanish on the
whole of Ω since it must vanish identically in the neighborhood of the
endpoints of the subinterval. Thus, if u(x) is a solution of (9.1) that
does not vanish identically on Ω, then u′(x) �= 0 whenever u(x) = 0.
This shows that the zeros of u(x) are isolated, and consequently, there
can only be a finite number of them.

If x1, x2 are two consecutive zeros of u(x) satisfying (9.1) in Ω̄, then
u(x) satisfies

−u′′ = bu, x1 < x < x2

if u(x) > 0 in x1 < x < x2, or it satisfies

−u′′ = au, x1 < x < x2

if u(x) < 0 in x1 < x < x2. Consequently, we have

u(x) = c sin b1/2(x− x1), x1 ≤ x ≤ x2

in the former case and

u(x) = c sin a1/2(x− x1), x1 ≤ x ≤ x2

in the latter case. In order that u(x2) = 0, we must have b1/2(x2−x1) = π
in the first case and a1/2(x2 − x1) = π in the second. It therefore follows
that

x2 − x1 =
π

b1/2
or x2 − x1 =

π

a1/2
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as the case may be. Two such intervals in which u(x) is positive (neg-
ative) cannot be adjacent to each other. If there are k intervals where
u(x) is positive, and k intervals where it is negative, and u(x) satisfies
(9.2), then the sum of the lengths of these intervals must add up to π.
Thus,

kπ

(
1

a1/2
+

1
b1/2

)
= π. (9.3)

On the other hand, if there are k + 1 intervals where u is positive and k

intervals where it is negative, then we have

k

a1/2
+

k + 1
b1/2

= 1. (9.4)

If there are k intervals where u is positive and k + 1 intervals where it
is negative, then we have

k + 1
a1/2

+
k

b1/2
= 1. (9.5)

Thus, the system (9.1), (9.2) has a nontrivial solution if, and only if,
a, b satisfy one of the equations (9.3), (9.4), or (9.5). These equations
describe curves in the (a, b) plane that pass through points of the form
(n2, n2), where n = 1, 2, . . . In fact, if n is even, we take k = n/2 in
(9.3). If n is odd, we take k = (n − 1)/2 in (9.4) and (9.5). If n = 1,
these “curves” form two straight lines parallel to the axes and pass
through the point (1, 1). If n > 1, then the curves are hyperbolas. If
n is even, then there is only one curve passing through (n2, n2) (given
by (9.3)), and if n is odd, there are two (given by (9.4) and (9.5)).
Note that curves passing through different points (n2, n2) do not in-
tersect. Note also that the nontrivial solutions of (9.1), (9.2) that we
pieced together are in C2(Ω). This is accomplished by choosing the con-
stants in each subinterval to make the derivatives continuous at each
zero.

We call the set of those points (a, b) ∈ R
2 for which (9.1),(9.2) has

a nontrivial solution the Dancer–Fuč́ık spectrum and denote it by Σ.

We have found that Σ consists of a sequence of curves passing through
points (n2, n2) ∈ R

2, with n = 1, 2, . . . For even n, the curves are given
by (9.3) with k = n/2. For odd n, the curves are given by (9.4),(9.5)
with k = (n − 1)/2. Note that for a > n2, the upper curve is given by
(9.4), while for a < n2 the upper curve is given by (9.5). We denote the
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upper curve passing through (n2, n2) by b = µn(a). Thus,

µn(a) =




(n + 1)2a
4a + (n− 1)2 − 4a1/2(n− 1)

, a > n2,

(n− 1)2a
4a + (n + 1)2 − 4a1/2(n + 1)

, a < n2,

when n is odd. When n is even, we have

µn(a) =
n2a

4a + n2 − 4a1/2n
.

Note that the curve b = µn(a) is symmetric with respect to the diagonal
a = b. When n is odd we denote the lower curve by b = νn−1(a) (the
reason for this index n− 1 will be made clear later). Hence,

νn−1(a) =




(n− 1)2a
4a + (n + 1)2 − 4a1/2(n + 1)

, a > n2,

(n + 1)2a
4a + (n− 1)2 − 4a1/2(n− 1)

, a < n2,

This curve is also symmetric with respect to the diagonal a = b.

9.2 An application

We see from (9.3), (9.4), and (9.5) that for each n > 0, points (a, b)which
satisfy

µn(a) < b < νn(a)

are not in Σ. Since

(n + 1)2 < νn(a), a < (n + 1)2,

and

n2 > µn(a), a > n2,

the square

Qn = {(a, b) ∈ R
2 : n2 < a, b < (n + 1)2}

is free of the Dancer–Fuč́ık spectrum Σ. As an application of this fact
we shall prove

Theorem 9.1. Let f(x, t) be a Carathéodory function on Ω × R satis-
fying

|f(x, t)| ≤ C(|t| + 1), x ∈ Ω, t ∈ R (9.6)
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and

f(x, t)
t

→
{
a, as t → −∞
b, as t → ∞,

(9.7)

where Ω = (0, π) and (a, b) ∈ Qn. Then there is a solution u ∈ C2(Ω) ∩
C(Ω̄) of

−u′′ = f(x, u), x ∈ Ω (9.8)

satisfying (9.2).

Proof. Let N be the subspace of H1
0 = H1

0 (Ω) that is spanned by the
functions sinx, . . . , sinnx, and let M be its orthogonal complement in
H1

0 . I claim that

G(u) = ‖u‖2
H − 2

∫
Ω

F (x, u)dx, u ∈ H1
0 ,

satisfies

m1 = sup
N

G < ∞, m0 = inf
M

G > −∞.

To see this, let {vk} be a sequence in N satisfying G(vk) → m1. If
‖vk‖H ≤ C, then there is a renamed subsequence such that vk → v0 in
N (recall that N is finite dimensional). Thus,

G(vk) → G(v0) = m1.

Consequently, m1 < ∞. If ρk = ‖vk‖H → ∞, let ṽk = vk/ρk. Then
‖ṽk‖H = 1, and there is a renamed subsequence such that ṽk → ṽ0.

Thus

G(vk)
ρ2
k

= ‖ṽk‖2
H − 2

∫
Ω

[
F (x, vk)

v2
k

]ṽ2
k dx

→ ‖ṽ0‖2
H − a‖ṽ−0 ‖2 − b‖ṽ+

0 ‖2

≤ ‖ṽ0‖2
H − n2‖ṽ0‖2

+ (n2 − a)‖ṽ−0 ‖2

+ (n2 − b)‖ṽ+
0 ‖2

< 0

since a, b > n2 and ‖ṽ0‖H = lim ‖ṽk‖H = 1. This shows that

G(vk) → −∞ as ‖vk‖H → ∞.

Thus, m1 < ∞.
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To prove the second inequality, let {wk} ⊂ M be such that G(wk) →
m0. If ‖wk‖H ≤ C, then there is a renamed subsequence such that
wk ⇀ w0 in M and wk → w0 uniformly on Ω̄ (Lemma 3.14). Hence,

G(w0) = ‖wk‖2
H − 2([wk − w0], w0)H − ‖wk − w0‖2

H − 2
∫

Ω

F (x,w0) dx

≤ G(wk) − ([wk − w0], w0)H +
∫

Ω

[F (x,wk) − F (x,w0)] dx → m0.

This tells us that m0 > −∞. If ρk = ‖wk‖H → ∞, let w̃k = wk/ρk. Then
‖w̃k‖H = 1, and there is a renamed subsequence such that w̃k ⇀ w̃0 in
M and w̃k → w̃0 uniformly in Ω̄ (Lemma 3.14). Consequently,

G(wk)
ρ2
k

= 1 − 2
∫

Ω

F (x,wk)
ρ2
k

dx

→ 1 − a‖w̃−
0 ‖2 − b‖w̃+

0 ‖2

= (1 − ‖w̃0‖2
H)

+ (‖w̃0‖2
H − (n + 1)2‖w̃0‖2)

+ [(n + 1)2 − a]‖w̃−
0 ‖2

+ [(n + 1)2 − b]‖w̃+
0 ‖2

> 0

no matter what w̃0 is. Hence,

G(wk) → ∞ as ‖wk‖H → ∞,

contrary to assumption. Thus, m0 > −∞.

We can now apply the sandwich theorem (Theorem 2.5) to conclude
that there is a sequence {uk} ⊂ H1

0 such that

G(uk) → c, G′(uk) → 0.

Thus,

‖uk‖2
H − 2

∫
Ω

F (x, uk) dx → c,

and

(G′(uk), h)H = (uk, h)H − (f(·, uk), h) = o(‖h‖H), h ∈ H1
0 .

In particular, we have

(G′(uk), uk)H = ‖uk‖2
H − (f(·, uk), uk) = o(‖uk‖H).
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If ‖uk‖H ≤ C, then there is a renamed subsequence such that uk ⇀ u0

in H1
0 and uk → u0 uniformly on Ω̄ (Lemma 3.14). In the limit we have

(u0, h)H − (f(·, u0), h) = 0, h ∈ H1
0 .

From this it follows that u0 is a solution of (9.8) (Theorem 3.8). It
also satisfies (9.2) since each uk does so. If ρk = ‖uk‖H → ∞, we let
ũk = uk/ρk (how did you guess?). Then ‖ũk‖H = 1, and there is a
renamed subsequence such that ũk ⇀ ũ0 in H1

0 and ũk → ũ0 uniformly
on Ω̄ (Lemma 3.14). Thus,

G(uk)
ρ2
k

= 1 − 2
∫

Ω

[
F (x, uk)

u2
k

]ũ2
kdx → 1 − a‖ũ−

0 ‖2 − b‖ũ+
0 ‖2 = 0

and

(G′(uk), h)H
ρk

= (ũk, h)H − (
f(·, uk)

ρk
, h)

→ (ũ0, h)H + a(ũ−
0 , h) − b(ũ+

0 , h) = 0.

In particular, we have,

‖ũ0‖2
H − a‖ũ−

0 ‖2 − b‖ũ+
0 ‖2 = 0,

from which we conclude that ‖ũ0‖H = 1. We also conclude that ũ0 is
a solution of (9.1) (Theorem 3.8). But (a, b) /∈ Σ. Hence ũ0 ≡ 0. This
contradicts the fact that the H1

0 norm of ũ0 is one. Consequently, the ρk
must be bounded, and the theorem follows.

9.3 Exercises

1. Show that

h(x, σ) =
[

−σ2(x)
bσ1(x)+ − aσ1(x)−

]

satisfies a Lipschitz condition with respect to σ.

2. Prove: If a solution of (9.1) satisfies u(x) ≡ 0 on a subinterval of Ω,

then it must vanish on the whole of Ω.

3. For a solution u(x) �≡ 0 of (9.1), can two intervals in which u(x)
is positive (negative) and vanishes at the end points be adjacent to
each other?

4. Show that the curves of the Dancer–Fuč́ık spectrum passing through
different points (n2, n2) do not intersect.
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5. Show that the nontrivial solutions of (9.1),(9.2) constructed in the
text can be made to be in C2(Ω).

6. Show that the upper curve of the Dancer–Fuč́ık spectrum going
through the point (n2, n2) is given by

µn(a) =




(n + 1)2a
4a + (n− 1)2 − 4a1/2(n− 1)

, a > n2,

(n− 1)2a
4a + (n + 1)2 − 4a1/2(n + 1)

, a < n2,

when n is odd.

7. Show that the lower curve is given by

νn−1(a) =




(n− 1)2a
4a + (n + 1)2 − 4a1/2(n + 1)

, a > n2,

(n + 1)2a
4a + (n− 1)2 − 4a1/2(n− 1)

, a < n2,

.

8. Show that the square

Qn = {(a, b) ∈ R
2 : n2 < a, b < (n + 1)2}

is free of the Dancer–Fuč́ık spectrum Σ.

9. Verify

G(uk)
ρ2
k

= 1 − 2
∫

Ω

[
F (x, uk)

u2
k

]ũ2
kdx → 1 − a‖ũ−

0 ‖2 − b‖ũ+
0 ‖2 = 0

in the proof of Theorem 9.1.

10. Verify

(G′(uk), h)H
ρk

= (ũk, h)H − (
f(·, uk)

ρk
, h)

→ (ũ0, h)H + a(ũ−
0 , h) − b(ũ+

0 , h) = 0.

11. Verify

‖ũ0‖2
H − a‖ũ−

0 ‖2 − b‖ũ+
0 ‖2 = 0.
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Higher dimensions

10.1 Orientation

So far, we have studied one dimensional problems. This was done pri-
marily because the corresponding linear problems in one dimension are
more easily solved. (As you know by now, we hate to work.) It saved us
the need to develop the tools required to solve the linear problems in
higher dimensions. The nonlinear methods are almost the same, but they
need basic information from the linear problems in order to function.

We now turn our attention to higher dimensional problems. There is
much more to learn about the linear cases than in one dimension, and
some of this information can be quite involved and technical. We have
attempted to keep the need minimal by considering periodic functions.
Even so, the amount of information we shall need is far from trivial. Mo-
rover, many of the facts that are true in one dimension are no longer true
in higher dimensions. This requires us to demand stronger hypotheses on
the nonlinear terms than were needed in the one dimensional case. The
higher the dimension, the stronger the assumptions needed. We shall
prove everything along the way.

10.2 Periodic functions

Let

Q = {x ∈ R
n : 0 ≤ xj ≤ 2π, 1 ≤ j ≤ n} (10.1)

be a cube in R
n. By this we mean that Q consists of those points

x = (x1, . . . , xn) ∈ R
n

253
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such that each component xj satisfies 0 ≤ xj ≤ 2π, 1 ≤ j ≤ n. We
shall consider periodic functions in Q, that is, functions having the same
values on opposite edges. To this end, we consider n-tuples of integers
µ = (µ1, . . . , µn) ∈ Z

n, where each µj is an integer. We write µx =
µ1x1 + · · · + µnxn and consider the set S of finite sums of the form

u(x) =
∑

αµe
iµx. (10.2)

We want these functions to be real valued. In order to accomplish this,
we require α−µ to appear in (10.2) whenever αµ appears and to satisfy

α−µ = αµ. (10.3)

If

u(x) =
∑

αµe
iµx, v(x) =

∑
βµe

iµx (10.4)

are any functions in S, and t is any real number, we define

(u, v)t = (2π)n
∑

(1 + µ2)tαµβ−µ, (10.5)

where µ2 = µ2
1 + · · · + µ2

n. For each t ∈ R, this has all of the properties
of a scalar product (see Appendix A). The corresponding norm is given
by

‖u‖2
t = (2π)n

∑
(1 + µ2)t|αµ|2. (10.6)

We are now going to consider the completion of S with respect to the
norm (10.6). However, it will be more convenient to start from scratch.

10.3 The Hilbert spaces Ht

For t ∈ R we let Ht be the set of all series of the form

u =
∑

αµe
iµx, (10.7)

where the αµ are complex numbers satisfying

α−µ = αµ, (10.8)

and

‖u‖2
t = (2π)n

∑
(1 + µ2)t|αµ|2 < ∞, (10.9)

where µ2 = µ2
1+· · ·+µ2

n. It is not required that the series (10.7) converge
in any way, but only that (10.9) hold. If

u =
∑

αµe
iµx, v =

∑
βµe

iµx (10.10)
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are members of Ht, we can introduce the scalar product

(u, v)t = (2π)n
∑

(1 + µ2)tαµβ−µ. (10.11)

With this scalar product, Ht becomes a Hilbert space (see Appendix A).
Completeness is the only property that is not obvious. To show this, let

uj =
∑

α(j)
µ eiµx

be a Cauchy sequence in Ht. Then∑
(1 + µ2)t|α(j)

µ − α(k)
µ |2 → 0 as j, k → ∞.

Hence {α(j)
µ } is a Cauchy sequence of complex number for each µ ∈ Z

n.

Thus, there is a subsequence such that

α(j)
µ → αµ as j → ∞

for each µ ∈ Z
n. Let ε > 0 be given. Take K so large that∑

(1 + µ2)t|α(j)
µ − α(k)

µ |2 < ε2, j, k > K.

Then ∑
µ2≤N

(1 + µ2)t|α(j)
µ − α(k)

µ |2 < ε2, j, k > K,

holds for each finite N. Letting k → ∞, we have∑
µ2≤N

(1 + µ2)t|α(j)
µ − αµ|2 ≤ ε2, j > K.

Since this is true for any N, we have∑
(1 + µ2)t|α(j)

µ − αµ|2 ≤ ε2, j > K.

If we let u represent (10.7), then u is in Ht and ‖uj − u‖t ≤ ε. Thus Ht

is complete.

If u ∈ S, then

∂u/∂xj =
∑

(iµj)αµe
iµx. (10.12)

For each u ∈ Ht we can define ∂u/∂xj by means of (10.12) provided we
note that the result is an element of Ht−1, since∑

(1 + µ2)t−1µ2
j |αµ|2 ≤

∑
(1 + µ2)t|αµ|2 < ∞.
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Thus the “operator” ∂/∂xj maps Ht into Ht−1. Consequently,

∆u =
n∑

j=1

∂2u/∂x2
j = −

∑
µ2αµe

iµx (10.13)

maps Ht into Ht−2 for each t ∈ R.

If t ≥ 0, then (10.9) shows that series in Ht converge in L2(Q). To see
this note that ∫

Q

ei(µ−ν)xdx = (2π)nδµν , µ, ν ∈ Z
n, (10.14)

where

δµν =

{
1, µ = ν,

0, µ �= ν.

This comes from the fact that
∫ 2π

0

eikxdx =




1
ik

[e2πik − 1] = 0, k �= 0,

2π, k = 0,

and ∫
Q

ei(µ−ν)xdx =
∫ 2π

0

ei(µ1−ν1)x1dx1 · · ·
∫ 2π

0

ei(µn−νn)xndxn.

Thus if u is represented by (10.7), let

uN (x) =
∑

µ2≤N

αµe
iµx.

Then for M < N,∫
Q

|uN (x) − uM (x)|2 dx =
∑

M<µ2,ν2≤N

αµα−ν

∫
Q

ei(µ−ν)xdx

= (2π)n
∑

M<µ2≤N

|αµ|2 → 0 as M,N → ∞.

Thus the series (10.7) converges in L2(Q) to a function u(x). Conse-
quently, we have

Theorem 10.1. TheHilbert spacesHt ⊂ L2(Q) for t ≥ 0. Moreover,

(u, v)0 =
∫
Q

uv dx, u, v ∈ H0. (10.15)
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Proof. In view of (10.14),∫
Q

u(x)e−iνxdx =
∑

αµ

∫
Q

ei(µ−ν)xdx = (2π)nαν .

Hence both sides of (10.15) equal

(2π)n
∑

αµβ−µ

when u, v are given by (10.10). This completes the proof.

We also have

Lemma 10.2. If u(x) ∈ L2(Q) and

αµ = (2π)−n

∫
Q

e−iµxu(x) dx,

then

‖u−
∑

µ2≤N

αµe
iµx‖ → 0 as N → ∞.

Proof. This is the counterpart of Lemma 1.9 for n > 1. To prove it we
follow the arguments used in the proof of Lemma 1.9. In particular, we
define

uN (x) =
∑

µ2≤N

αµe
iµx

and verify

‖uN‖2 = (uN , u) = (2π)n
∑

µ2≤N

|αµ|2,

‖u− uN‖2 = ‖u‖2 − (2π)n
∑

µ2≤N

|αµ|2.

Consequently,

(2π)n
∑

µ2≤N

|αµ|2 ≤ ‖u‖2,

which implies

(2π)n
∑

|αµ|2 ≤ ‖u‖2.

Moreover,∫
Q

|uN (x) − uM (x)|2 dx =
∑

M<µ2,ν2≤N

αµα−ν

∫
Q

ei(µ−ν)xdx

= (2π)n
∑

M<µ2≤N

|αµ|2 → 0 as M,N → ∞.
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Thus, uN converges in L2(Q) to a function ũ(x). Finally, we make use
of the fact that ∫

Q

eiµxv(x) dx = 0, µ ∈ Z
n,

implies that v(x) = 0 a.e.

Corollary 10.3. The space H0 = L2(Q) with the same norm.

10.4 Compact embeddings

The following is a useful result.

Lemma 10.4. If s < t, then every bounded sequence in Ht has a sub-
sequence which converges in Hs.

Proof. Let uj =
∑

α
(j)
µ eiµx be a bounded sequence in Ht, ‖uj‖t ≤ M.

Since |α(j)
µ | ≤ M/(1 + µ2)t/2, there is a renamed subsequence such that

α
(j)
µ converges as j → ∞ for each µ. For each N ≥ 0,∑

µ2>N

(1+µ2)s|α(j)
µ |2 ≤

∑
µ2>N

(1+µ2)t(1+N)s−t|α(j)
µ |2 ≤ M2/(1+N)t−s.

Let ε > 0 be given. Take N so large that

(2π)n
∑

µ2>N

(1 + µ2)s|α(j)
µ |2 < ε2.

Take K so large that

(2π)n
∑

µ2≤N

(1 + µ2)s|α(j)
µ − α(k)

µ |2 < ε2, j, k > K.

Thus,

‖uj − uk‖s < 3ε, j, k > K.

This proves the lemma.

10.5 Inequalities

It is clear that

|(u, v)t| ≤ ‖u‖t‖v‖t, u, v ∈ Ht. (10.16)

We also have

|(u, v)t| ≤ ‖u‖t+s‖v‖t−s, u ∈ Ht+s, v ∈ Ht−s. (10.17)
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This follows from∣∣∣∑(1 + µ2)tαµβ−µ

∣∣∣ ≤ (∑
(1 + µ2)t+s|αµ|2

)1/2

×
(∑

(1 + µ2)t−s|β−µ|2
)1/2

.

It is also obvious that

‖u‖s ≤ ‖u‖t, s < t, u ∈ Ht. (10.18)

Hence,

Ht ⊂ Hs, s < t. (10.19)

Let

τ = (τ1, . . . , τn), τj ≥ 0, τj ∈ Z,

and define

Dτ =
(

∂

∂x1

)τ1

· · ·
(

∂

∂xn

)τn

.

Then Dτ is a partial derivative of order |τ | =
∑

τj . It satisfies

Dτu =
∑

(iµ1)τ1 · · · (iµn)τnαµe
iµx

for u satisfying (10.7). Hence, Dτ maps Ht into Ht−|τ | and satisfies

‖Dτu‖t−|τ | ≤ ‖u‖t, u ∈ Ht. (10.20)

We also note that

Lemma 10.5. For a > 0, t > 1
2 , we have

∞∑
m=−∞

(a + m2)−t ≤ a−t + 2
∫ ∞

0

(a + x2)−tdx. (10.21)

Proof. We note that

(a + m2)−t ≤
∫ m

m−1

(a + x2)−tdx (10.22)

when m ≥ 1, and

(a + m2)−t ≤
∫ m+1

m

(a + x2)−tdx (10.23)

when m ≤ −1. These imply (10.21).

We can now prove
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Theorem 10.6. (Sobolev) If u ∈ Ht is given by (10.7) and t > n/2,
then u is continuous on Q, and

max
Q

|u(x)| ≤
∑

|αµ| ≤ Ct‖u‖t, u ∈ Ht. (10.24)

Proof. First let us prove (10.24). Note that (10.21) implies
∞∑

m=−∞
(a + m2)−t ≤ a−t + 2a(1/2)−t

∫ ∞

0

(1 + y2)−tdy ≤ cta
(1/2)−t

(10.25)

when a ≥ 1, where

ct = 1 + 2
∫ ∞

0

(1 + y2)−tdy.

Hence,∑
(1 + µ2

1 + · · · + µ2
n)−t ≤ ct

∑
(1 + µ2

1 + · · · + µ2
n−1)

−(t−(1/2))

≤ ctct−(1/2)

∑
(1 + µ2

1 + · · · + µ2
n−2)

−(t−1)

≤ ctct−(1/2)ct−1

∑
(1 + µ2

1 + · · ·

+µ2
n−3)

−(t−(3/2))

≤ ctct−(1/2)ct−1ct−(3/2) · · · ct−((n−1)/2) ≡ C2
t .

Thus, ∑
|αn| =

∑
(1 + µ2)−t/2(1 + µ2)t/2|αµ|

≤
(∑

(1 + µ2)−t
)1/2 (∑

(1 + µ2)t|αµ|2
)1/2

≤ Ct‖u‖t,

since t− ((n− 1)/2) > 1/2. Let uN (x) =
∑

µ2≤N αµe
iµx. Then uN is a

function in C∞(Q̄) for each N, and for M < N,

|uN (x)−uM (x)| =

∣∣∣∣∣∣
∑

M<µ2≤N

αµe
iµx

∣∣∣∣∣∣ ≤
∑

M<µ2≤N

|αµ| → 0, M,N → ∞.

Therefore, uN converges uniformly to u, and

|u(x)| =
∣∣∣∑αµe

iµx
∣∣∣ ≤ ∑

|αµ| ≤ Ct‖u‖t.

Corollary 10.7. If t > n
2 + k, then Ht ⊂ Ck(Q).
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Proof. If uN is given as in the proof of Theorem 10.6, we have

DτuN =
∑

µ2≤N

(iµ)ταµe
iµx, |τ | ≤ k,

and consequently,

|Dτ (uN − uM )| ≤
∑

M<µ2≤N

|µ||τ ||αµ|

≤
∑

(1 + µ2)(k−t/2)|µ||τ |(1 + µ2)(t−k/2)|αµ|

≤
(∑

(1 + µ2)k−t
)1/2(∑

|µ|2|τ |(1 + µ2)t−k|αµ|2
)1/2

≤
(∑

(1 + µ2)k−t
)1/2 (∑

|µ|2|τ |(1 + µ2)t−k|αµ|2
)1/2

≤ Ct−k‖u‖t.

Let

H∞ =
⋂
t

Ht, H−∞ =
⋃
t

Ht. (10.26)

We have

Corollary 10.8. The space H∞ ⊂ C∞(Q).

Let

K = 1 − ∆ = 1 −
(

∂

∂x1

)2

− · · · −
(

∂

∂xn

)2

. (10.27)

Then,

K
∑

αµe
iµx =

∑
αµ(1 − (iµ) • (iµ))eiµx =

∑
αµ(1 + µ2)eiµx.

(10.28)

Define

Kt
∑

αµe
iµx =

∑
(1 + µ2)tαµe

iµx. (10.29)

Then,

(Ktu, v)s = (u,Ktv)s = (u, v)s+t, (10.30)

and

‖Kt‖s = ‖u‖s+2t. (10.31)

We also have
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Theorem 10.9. If u ∈ H−∞ and

|(u, v)0| ≤ C1‖v‖t, v ∈ H∞, (10.32)

then u ∈ H−t and

‖u‖−t ≤ C1. (10.33)

Proof. If u ∈ H−∞, there is some s such that u ∈ H−s and u is given by
(10.7). Let

vN =
∑

µ2≤N

(1 + µ2)−tαµe
iµx. (10.34)

Then vN ∈ H∞, and

(u, vN )0 = (2π)n
∑

µ2≤N

(1 + µ2)−t|αµ|2

≤ C1


(2π)n

∑
µ2≤N

(1 + µ2)t(1 + µ2)−2t|αµ|2



1/2

.

Thus,

(2π)n
∑

µ2≤N

(1 + µ2)−t|αµ|2 ≤ C2
1 .

Since this is true for each N,

(2π)n
∑

(1 + µ2)−t|αµ|2 ≤ C2
1 .

Consequently, u ∈ H−t, and (10.33) holds.

10.6 Linear problems

If

f(x) =
∑

γµe
iµx, (10.35)

we wish to solve

−∆u = f. (10.36)

In other words, we wish to solve∑
µ2αµe

iµx =
∑

γµe
iµx.

This requires

µ2αµ = γµ, µ ∈ Z
n. (10.37)
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In order to solve for all of the αµ, we must have

γ0 = 0. (10.38)

Hence, we cannot solve (10.35) for all f . However, if (10.38) holds, we
can solve (10.36) by taking

αµ = γµ/µ
2 when µ �= 0. (10.39)

On the other hand, we can take α0 to be any number we like, and u will
be a solution of (10.36) as long as it satisfies (10.39). Thus we have

Theorem 10.10. If f , given by (10.35), is in Ht and satisfies (10.38),
then (10.36) has a solution u ∈ Ht+2. An arbitrary constant can be added
to the solution.

Proof. We take the solution to be of the form (10.7) satisfying (10.39).
It is in Ht+2 since∑

(1 + µ2)t+2|αµ|2 =
∑

(1 + µ2)t+2µ−2|γµ|2 + |α0|2 < ∞

when (10.38) holds. Since ∆ acting on any constant gives 0, we can add
any constant to the solution.

Now that we know how to solve (10.36), we turn our attention to the
equation

−(∆ + λ)u = f, (10.40)

where λ ∈ R is any constant. In this case we want (µ2 − λ)αµ = γµ, or

αµ = γµ/(µ2 − λ) when µ2 �= λ. (10.41)

Therefore, we must have

γµ = 0 when µ2 = λ. (10.42)

Not every λ can equal some µ2. This is certainly true if λ < 0 or if λ �∈ Z.

But even if λ is a positive integer, there may be no µ such that

λ = µ2. (10.43)

For instance, if n = 3 and λ = 7 or 15, there is no µ satisfying (10.43).
Thus there is a subset

0 = λ0 < λ1 < · · · < λk < · · · (10.44)

of the nonnegative integers for which there are n-tuples µ satisfying
(10.43). For λ = λk, we can solve (10.40) only if (10.42) holds. In that
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case, we can solve by taking αµ to be given by (10.41) when (10.43)
does not hold, and to be given arbitrarily when (10.43) does hold. On
the other hand, if λ is not equal to any λk, then (10.43) never holds, and
we can solve (10.40) by taking the αµ to satisfy (10.41). Thus we have

Theorem 10.11. There is a sequence {λk} of nonnegative integers tend-
ing to +∞ with the following properties. If f ∈ Ht and λ �= λk for every
k, then there is a unique solution u ∈ Ht+2 of (10.40). If λ = λk for some
k, then one can solve (10.40) only if fsatisfies (10.42). In this case, the
solution is not unique; there is a finite number of linearly independent
periodic solutions of

(∆ + λk)u = 0 (10.45)

which can be added to the solution.

Proof. The λk → +∞ since the µ2 are unbounded. Suppose f ∈ Ht is
given by (10.35), and λ �= λk for any k. Define αµ by (10.41) and take u

to be given by (10.7). Then u is in Ht+2 and satisfies (10.40), since∑
(1 + µ2)t+2|αµ|2 =

∑
(1 + µ2)t+2|µ2 − λ|−2|γµ|2 < ∞,

and there is a constant C such that

1 + µ2 ≤ C|µ2 − λ|, µ ∈ Z
n.

The solution is unique since the only solution of

(∆ + λ)u = 0 (10.46)

is u = 0. On the other hand, if λ = λk for some k, we can solve (10.40)
only if (10.42) holds. In that case, we can solve by taking αµ to be given
by (10.41) when (10.43) does not hold, and to be given arbitrarily when
(10.43) does hold. Again, it follows that u ∈ Ht+2. Finally, we note
that the functions αµe

iµx, µ2 = λk, are linearly independent and are
solutions of (10.45).

The values λk for which (10.45) has a nontrivial solution (i.e., a solu-
tion which is not ≡ 0) are called eigenvalues, and the corresponding
nontrivial solutions are called eigenfunctions.

Let us analyze the situation a bit further. Suppose λ = λk for some k,
and f ∈ Ht is given by (10.35) and satisfies (10.42). If v ∈ Ht is given
by

v =
∑

βµe
iµx, (10.47)
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then

(f, v)t = (2π)n
∑

(1 + µ2)tγµβ−µ,

by (10.11). Hence we have

(f, v)t = 0 (10.48)

for all v ∈ Ht satisfying (10.47) and

βµ = 0 when µ2 �= λk. (10.49)

On the other hand,

(∆ + λk)v =
∑

(λk − µ2)βµe
iµx. (10.50)

Thus v is a solution of (10.45) iff it satisfies (10.49). Conversely, if
(f, v)t = 0 for all v satisfying (10.47) and (10.49), then f satisfies (10.42).
Combining these, we have

Theorem 10.12. If λ = λk for some k, then there is a solution u ∈
Ht+2 of (10.40) iff

(f, v)t = 0 (10.51)

for all v ∈ Ht satisfying

(∆ + λk)v = 0. (10.52)

Moreover, any solution of (10.52) can be added to the solution of (10.40).

What are the solutions of (10.52)? By (10.50), they are of the form

v =
∑

µ2=λk

βµe
iµx =

∑
µ2=λk

[aµ cosµx + bµ sinµx],

where we took βµ = aµ − ibµ. Thus (10.51) becomes

(f, cosµx)t = 0, (f, sinµx)t = 0 when µ2 = λk. (10.53)

10.7 Nonlinear problems

Now we turn the discussion to that of nonlinear multidimensional prob-
lems. Let f(x, t) be a continuous function on Q × R such that f(x, t) is
periodic in the components of x with period 2π for each fixed t ∈ R. We
would like to solve the equation

−∆u = f(x, u(x)). (10.54)
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(For convenience, we are absorbing the function u into f(x, u).) Follow-
ing the procedures we used in the one dimensional case, we first look for
a functional such that w = G′(u) = ∆u. At this point we will have to
think seriously about the Hilbert space H in which we will work. (Does
this sound familiar?) Since we are looking for a solution of (10.54), it
would be natural to take H = Ht. But if u is in Ht and w = ∆u, we
must have w ∈ Ht−2. By (10.17), this suggests taking

〈v, w〉 = (v, w)t−1. (10.55)

Note that this choice of 〈u, v〉 does satisfy (10.17). Thus, we want

[G(u + v) −G(u) − (v,∆u)s]/‖v‖t → 0 as ‖v‖t → 0,

where s = t− 1. In this case we can make use of the identity

(v,∆u)s = −(∇v,∇u)s, u, v ∈ S, (10.56)

where

∇v = (∂v/∂x1, . . . , ∂v/∂xn)

and

(∇v,∇u)s = (∂v/∂x1, ∂u/∂x1)s + · · · + (∂v/∂xn, ∂u/∂xn)s

=
n∑

k=1

∑
µ2
k(1 + µ2)sβµα−µ

=
∑

µ2(1 + µ2)sβµα−µ

= − (v,∆u)s
= − (∆v, u)s.

This suggests trying

G(u) = ‖∇u‖2
s, u ∈ Ht, (10.57)

where s = t− 1. It looks good because

[G(u + v) −G(u) − 2(∇v,∇u)s]/‖v‖t = ‖∇v‖2
s/‖v‖t → 0 as ‖v‖t → 0,

since

‖∇v‖2
s + ‖v‖2

s = ‖v‖2
t , v ∈ Ht.

Hence, we have

Theorem 10.13. If G is given by (10.57), then

G′(u) = −2 ∆u, u ∈ Ht. (10.58)
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Next we turn to finding a functional G which will satisfy

G′(u) = f(x, u), u ∈ Ht. (10.59)

Here it is not obvious how to proceed, so let us consider the simple case
when t = 1. Going back to the definition, we want to find a functional
G such that [G(u + v) − G(u) − (v, f(·, u))0]/‖v‖1 converges to 0 as
‖v‖1 → 0. As before, we want to find a function F (t) such that

F ′(t) = f(x, t).

This would suggest that we try something of the form

G(u) =
∫
Q

F (x, u(x)) dx = (F (x, u), 1)0. (10.60)

If we now apply our definition, we want

[G(u + v) −G(u) − (v, f(·, u))0]/‖v‖1 (10.61)

=
∫
Q

[F (x, u + v) − F (x, u) − vf(x, u)]/‖v‖1.

But

F (x, u + v) − F (x, u) =
∫ 1

0

[dF (x, u + θv)/dθ] dθ (10.62)

=
∫ 1

0

Ft(x, u + θv)v dθ.

Thus the left-hand side of (10.61) equals∫
Q

∫ 1

0

[Ft(x, u + θv) − f(x, u)]v dθ dx/‖v‖1.

We want this expression to converge to 0 as ‖v‖1 → 0. This would
suggest that we take Ft(x, t) = f(x, t). As we did in the one dimensional
case, we try

F (x, t) =
∫ t

0

f(x, s) ds. (10.63)

Then the expression above is bounded in absolute value by the square
root of ∫

Q

∫ 1

0

|f(x, u + θv) − f(x, u)|2dθ dx. (10.64)

In order to proceed, we must make an assumption on f(x, t). We are
now hampered by the fact that for n > 1, functions in H1 need not be
continuous or even bounded. In fact, the best we can do is
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Theorem 10.14. If 1 ≤ q ≤ 2∗ := 2n/(n− 2), then

|u|q ≤ Cq‖u‖1, u ∈ H1,

where

|u|q :=
(∫

Q

|u|qdx
)1/q

. (10.65)

If 1 ≤ q < 2∗, then every bounded sequence in H1 has a subsequence
which converges in Lq(Q).

These statements will be proved later (Corollaries 10.45 and 10.46).
As a consequence, we have

Corollary 10.15. If 1 ≤ q < 2∗, then a bounded sequence in H1 has a
subsequence that converges weakly in H1, strongly in Lq(Q) and a.e. in
Q.

Proof. First we find a subsequence that converges weakly in H1. We can
do this by Theorem A.61. By Theorem 10.14, there is a subsequence of
this subsequence that converges in Lq(Q). We then find a subsequence
of this subsequence that converges a.e. in Q (Theorem B.25).

If we want to use the functional G(u) given by (10.60) and we want this
functional to be continuous on H1 and have a derivative on this space,
we will have to make assumptions on f(x, t) which are stronger than
those made in the one dimensional case because we are restricted by
Theorem 10.14. For this purpose we will have to assume

|f(x, t)| ≤ C(|t|q−1 + 1), x ∈ Q, t ∈ R, (10.66)

where

1 ≤ q < 2∗ =
2n

n− 2
, 2∗ − 1 =

n + 2
n− 2

. (10.67)

The first thing we must check is that

G1(u) =
∫
Q

F (x, u) dx

is differentiable on H1. The fact that G1 maps H1 into R follows from
Theorem 10.14. For (10.66) implies

|F (x, t)| ≤ C(|t|q + |t|),
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and therefore, ∫
Q

|F (x, u)| dx ≤ C‖u‖q1, u ∈ H1

in view of Theorem 10.14. Moreover,

G1(u + v) −G1(u) =
∫
Q

∫ 1

0

f(x, u + θv)v dθ dx.

Thus, ∣∣∣∣G1(u + v) −G1(u) −
∫
Q

f(x, u)v dx
∣∣∣∣

≤
∫
Q

∫ 1

0

|f(x, u + θv) − f(x, u)|v dθ dx

≤
(∫

Q

∫ 1

0

|f(x, u + θv) − f(x, u)|ρ dθ dx
)1/ρ

|v|2∗ ,

where ρ = 2n/(n+2). By (10.66), the integrand on the right is bounded
by

C(|u|q + |v|q + 1),

which is in L1(Q) for u, v ∈ H1 in view of Theorem 10.14. Since the
integrand converges to 0 point-wise, we see that G′

1(u) exists.

If we now want to solve

−∆u = f(x, u), (10.68)

our arguments suggest that we try

2G(u) = ‖∇u‖2
0 − 2

∫
Q

F (x, u) dx, u ∈ H1. (10.69)

We have

Proposition 10.16. The functional G(u) has a Fréchet derivative G′(u)
on H1 given by

(G′(u), v)1 = (∇u,∇v) − (f(·, u), v), u, v ∈ H1. (10.70)

Proof. We have by (10.69)

G(u + v) −G(u) − (∇u,∇v) + (f(·, u), v)

=
1
2
‖∇v‖2 −

∫
Q

[F (x, u + v) − F (x, u) − vf(x, u)] dx. (10.71)
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The first term on the right-hand side of (10.71) is clearly o(‖v‖1) as
‖v‖1 → 0. Since

F (x, u + v) − F (x, u) =
∫ 1

0

[dF (x, u + θv)/dθ] dθ

=
∫ 1

0

f(x, u + θv)v dθ,

the integral in (10.71) equals
∫
Q

∫ 1

0

[f(x, u + θv) − f(x, u)]v dθ dx.

By Hölder’s inequality (Theorem B.23), this is bounded by

(∫
Q

∫ 1

0

|[f(x, u + θv) − f(x, u)]|q′ dθ dx
)1/q′

‖v‖q. (10.72)

In view of (10.71), the proposition will be proved if we can show that the
expression (10.72) is o(‖v‖1). By (10.67), the second factor is O(‖v‖1).
Hence it suffices to show that the first factor in (10.72) is o(1). The
integrand is bounded by

(|(u + θv)|q−1 + |u|q−1 + 1)q
′ ≤ C(|u|q + |v|q + 1). (10.73)

If the first factor in (10.72) did not converge to 0 with ‖v‖1, then there
would be a sequence {vk} ⊂ H1 such that ‖vk‖1 → 0 while

∫
Q

∫ 1

0

|[f(x, u + θvk) − f(x, u)]|q′ dθ dx ≥ ε > 0. (10.74)

In view of Corollary 10.15, there is a renamed subsequence such that
‖vk‖q → 0 and vk → 0 a.e. But by (10.73), the integrand of (10.74) is
majorized by

C(|u|q + |vk|q + 1)

which converges in L1(Q) to

C(|u|q + 1).

Moreover, the integrand converges to 0 a.e. Hence the left-hand side of
(10.74) converges to 0, contradicting (10.74). This proves the proposi-
tion.

Proposition 10.17. The derivative G′(u) given by (10.70) is continu-
ous in u.
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Proof. By (10.70), we have

(G′(u1) −G′(u2), v)1 = (∇u1 −∇u2,∇v)

−
∫
Q

v[f(x, u1) − f(x, u2)] dx

≤ ‖∇u1 −∇u2‖ • ‖∇v‖

+‖v‖q
(∫

Q

|[f(x, u1) − f(x, u2)]|q
′
dx

)1/q′

.

Thus,

‖G′(u1) −G′(u2)‖1 ≤‖u1 − u2‖1

+ C

(∫
Q

|[f(x, u1) − f(x, u2)]|q
′
dx

)1/q′

. (10.75)

Reasoning as in the proof of Proposition 10.16, we show that the right-
hand side of (10.75) converges to 0 as u1 → u2 in H1.

It now follows under the given hypotheses that

G′(u) = −∆u− f(x, u), u ∈ H1. (10.76)

Thus, if we can find a u ∈ H1 such that

G′(u) = 0, (10.77)

we will have found a solution of (10.68). So far we have

Theorem 10.18. If f(x, t) satisfies (10.66) and (10.67), then the func-
tional G(u) given by (10.69) is continuously differentiable and satisfies
(10.76).

In the next section we shall give conditions on f(x, t) which will guar-
antee the G has a minimum on H1.

10.8 Obtaining a minimum

The next step is to find a u ∈ H1 such that G′(u) = 0. The simplest
situation is when G(u) has an extremum. We now give a condition on
f(x, t) that will guarantee that G(u) has a minimum. We assume that
there is a function W (x) ∈ L1(Q) such that

W (x) ≥ F (x, t) → −∞ a.e. as |t| → ∞. (10.78)
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We let N be the subspace of constant functions in H1. Let M be the
subspace of those functions in H1 which are orthogonal to N, that is,
functions w ∈ H1 which satisfy

(w, 1)1 =
∫
Q

w(x) dx = 0.

We shall need

Theorem 10.19. The expression ‖u‖0 ≤ ‖∇u‖0, u ∈ M.

Proof. If u =
∑

αµe
iµx, then (u, 1)0 = (2π)nα0. Hence u ∈ M iff α0 = 0.

This implies

‖∇u‖2
0 =

n∑
k=1

‖∂u/∂xk‖2
0 =

n∑
k=1

(2π)n
∑

µ2
k|αµ|2

= (2π)n
∑
µ2≥1

µ2|αµ|2 ≥ (2π)n
∑

|αµ|2 = ‖u‖2
0.

This establishes the theorem.

Theorem 10.20. Under hypotheses (10.66) and (10.78) there is a u in
H1 such that

G(u) = min
H1

G.

Proof. Let

α = inf
H1

G.

Let {uk} be a minimizing sequence, that is, a sequence satisfying

G(uk) ↘ α.

Assume first that

ρk = ‖uk‖1 → ∞.

Note that

2G(u) ≥ ‖∇u‖2
0 − 2

∫
Q

W (x) dx ≥ 1
2
‖w‖2

1 − 2
∫
Q

W (x) dx, u ∈ H1,

where u = v + w, v ∈ N, w ∈ M. We see from this that if {uk} is a
minimizing sequence, then

‖wk‖1 ≤ C.
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By Corollary 10.15, there is a renamed subsequence such that wk

converges in L2(Q) and a.e. in Q. Since

|uk(x)| ≥ |vk| − |wk(x)|,

we see that

|uk(x)| → ∞ a.e.

Since

W (x) ≥ F (x, uk(x)) → −∞ a.e.,

we have ∫
Q

F (x, uk(x)) dx → −∞

(Theorem B.16). Thus,

G(uk) → ∞,

contrary to assumption. Consequently,

ρk = ‖uk‖1 ≤ C.

Then, by Corollary 10.15, there is a renamed subsequence such that uk

converges weakly to a function u0 in H1, strongly in Lq(Q) and a.e. in
Q. Since

|F (x, uk)| ≤ C(|uk|q + |uk|),

and

F (x, uk) → F (x, u0) a.e.,

we have ∫
Q

F (x, uk)dx →
∫
Q

F (x, u0)dx

(Theorem B.24). Moreover, by the weak convergence,

(uk, v)1 → (u0, v)1, v ∈ H1.

Since ‖u0‖2
1 = ‖uk‖2

1 − 2([uk − u], u0)1 − ‖uk − u0‖2
1, we have

G(u0) ≤ ‖uk‖2
1 − 2([uk − u], u0)1 − ‖u0‖2

0 − 2
∫
Q

F (x, u0)dx

= G(uk) − 2([uk − u], u0)1 + ‖uk‖2
0

− ‖u0‖2
0 + 2

∫
Q

[F (x, uk) − F (x, u0)]dx

→ α.



274 Higher dimensions

Thus,

α ≤ G(u0) ≤ α,

and the theorem is proved.

As a consequence we have

Corollary 10.21. Under hypotheses (10.66) and (10.78), the equation
(10.54) has a solution u ∈ H1.

Proof. By Theorem 10.20, G has a minimum on H1. It now follows from
(10.76) that (10.54) holds.

10.9 Another condition

We were able to obtain a minimum for the functional (10.69) and conse-
quently a solution of (10.54) under the assumptions (10.66) and (10.78).
In particular, this requires that F (x, t) be bounded from above by a
function W (x) ∈ L1(Q). We now discuss a situation which does not
require such a bound. To begin, we study the case in which

|f(x, t)| ≤ C(|t| + 1), x ∈ Q, t ∈ R. (10.79)

This implies

|F (x, t)| ≤ C(|t|2 + |t|), x ∈ Q, t ∈ R. (10.80)

We shall see that solvability depends upon the asymptotic behavior of
f(x, t) as |t| → ∞. First we consider the assumption

f(x, t)/t → α(x) as |t| → ∞, (10.81)

which implies

2F (x, t)/t2 → α(x) as |t| → ∞, (10.82)

where

α(x) ≤ 0, α(x) �≡ 0. (10.83)

In this case we have

Lemma 10.22.

inf
H1

G > −∞.



10.9 Another condition 275

Proof. If the lemma were not true, there would be a sequence {uk} ⊂
H1 such that G(uk) ↘ −∞. Assume first that ρk = ‖uk‖1 → ∞. Let
ũk = uk/ρk. Then ‖ũk‖1 = 1, and there is a renamed subsequence such
that ũk → ũ weakly in H1, strongly in L2(Q) and a.e. in Q(Corollary
10.15). For those x ∈ Q such that {uk(x)} is bounded, we have

2F (x, uk(x))/ρ2
k → 0.

In this case, ũ = 0. For those x ∈ Q such that |uk(x)| → ∞ we have

2F (x, uk(x))/ρ2
k = [2F (x, uk(x))/uk(x)2]ũ2

k → α(x)ũ(x)2.

Hence, this limit holds for all x ∈ Q. Since

|F (x, uk)|/ρ2
k ≤ C(ũk(x)2 + |ũk(x)|/ρk)

and C(ũk(x)2 + |ũk(x)|/ρk) converges in L1(Q), this implies

2
∫
Q

F (x, uk) dx/ρ2
k →

∫
Q

α(x)ũ(x)2 dx

(Theorem B.20). Consequently,

2G(uk)/ρ2
k = ‖∇ũk‖2

0 + ‖ũk‖2
0 − ‖ũk‖2

0 − 2
∫
Q

F (x, uk) dx/ρ2
k

= 1 − ‖ũk‖2
0 − 2

∫
Q

F (x, uk) dx/ρ2
k

→ (1 − ‖ũ‖2
0) −

∫
Q

α(x)ũ(x)2dx ≥ 0.

The only way the right-hand side can vanish is if

‖ũ‖0 = 1,
∫
Q

α(x)ũ(x)2 dx = 0.

Since ‖ũ‖1 ≤ 1, we have ∇ũ ≡ 0. Then ũ ≡ a constant. Since α(x) ≤ 0
and α(x) �≡ 0, this constant must be 0. But this contradicts ‖ũ‖0 = 1.
Thus

G(uk) → ∞,
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showing that the ρk must be bounded. But then

2G(uk) = ‖∇uk‖2
0 − 2

∫
Q

F (x, uk) dx

≥− C

∫
Q

{|uk|2 + |uk|}dx

≥− C ′‖uk‖2
0

>−K.

This completes the proof.

Because of Lemma 10.4 we have hopes of finding a minimum for G. In
fact we have

Theorem 10.23. Under the hypotheses (10.80)–(10.83), there is a
function u0 in H1 such that

G(u0) = min
H1

G. (10.84)

Proof. Let

m0 = inf
H1

G,

and let uk be a sequence such that G(uk)↘m0. As we saw in the proof of
Lemma 10.22, the norms ‖uk‖1 are bounded. Consequently, by Corollary
10.15 there is a renamed subsequence such that uk → u0 weakly in H1,

strongly in L2(Q) and a.e. in Q. Since

|F (x, uk)| ≤ C(|uk|2 + |uk|),

and

F (x, uk) → F (x, u0) a.e.,

we have ∫
Q

F (x, uk) dx →
∫
Q

F (x, u0) dx.

Moreover, by weak convergence

(uk, v)1 → (u0, v)1, v ∈ H1.
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Since ‖u0‖2
1 = ‖uk‖2

1 − 2([uk − u], u0)1 − ‖uk − u0‖2
1, we have

2G(u0) ≤ ‖uk‖2
1 − 2([uk − u], u0)1 − ‖u0‖2

0 − 2
∫
Q

F (x, u0) dx

= 2G(uk) − 2([uk − u], u0)1 + ‖uk‖2
0 − ‖u0‖2

0

+ 2
∫
Q

[F (x, uk) − F (x, u0)] dx

→ 2m0.

Thus

m0 ≤ G(u0) ≤ m0,

and the theorem is proved.

As a consequence we have

Corollary 10.24. If (10.80)–(10.83) hold, then the equation (10.54)
has a solution u ∈ H1.

Proof. By Theorem 10.23, G has a minimum on H1. It now follows from
(10.76) that (10.54) holds.

10.10 Nontrivial solutions

Corollaries 10.21 and 10.24 guarantee us that solutions of (10.68) exist,
but as far as we know the solutions may be identically 0. Such a solution
is called “trivial” because it usually has no significance in applications.
We have the same situation that we had in the one dimensional case. If
f(x, 0) ≡ 0, we know that u ≡ 0 is a solution of (10.68), and any method
of solving it is an exercise in futility unless we know that the solution
we get is not trivial. On the other hand, if f(x, 0) �≡ 0, then we do not
have to worry about trivial solutions. We now consider the problem of
insuring that the solutions provided by Corollaries 10.21 and 10.24 are
indeed nontrivial even when f(x, 0) ≡ 0. We have

Theorem 10.25. In addition to the hypotheses of either Theorem 10.20
or Theorem 10.23, assume that there is a t0 ∈ R such that∫

Q

F (x, t0) dx > 0. (10.85)

Then the solutions of (10.68) provided by Corollary 10.21 or Corollary
10.24 are nontrivial.
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Proof. We show that the minima provided by Theorem 10.20 or Theo-
rem 10.23 are negative. If this is the case, then the solution u0 satisfies
G(u0)<0. But G(0)=0. This shows that u0 �=0. To prove that G(u0)<0,
let v ≡ t0. Then

2G(v) = ‖∇v‖2
0 − 2

∫
Q

F (x, v) dx < 0

by (10.85). Hence, G(u0) < 0, and the proof is complete.

10.11 Another disappointment

We showed that (10.68) has a solution if (10.80)–(10.83) hold. We did
this by showing that G(u) has a minimum on H1. However, this does
not work if ∫

Q

α(x) dx > 0. (10.86)

To see this, let u = c, a constant. Then

2G(c)/c2 = −2
∫
Q

F (x, c) dx/c2 →
∫
Q

α(x) dx < 0 as |c| → ∞.

Consequently

G(c) → −∞ as c2 → ∞, (10.87)

showing that G is unbounded from below. We shall learn how to deal
with this situation in the next section.

10.12 The next eigenvalue

In proving Theorem 10.11, we showed that λ is an eigenvalue of −∆ if
and only if it satisfies (10.43). It follows that the next eigenvalue after
λ0 = 0 is λ1 = 1. This suggests that we try to replace (10.83) with
(10.86) and

α(x) ≤ 1, α(x) �≡ 1. (10.88)

Moreover, we know that in this case, (10.87) holds, and G is unbounded
from below. However, we suspect that the unboundedness from below is
due only to (10.87), and if one considers the set W consisting of those
u ∈ H1 which are “orthogonal” to the constants, that is, satisfy

(u, 1)1 = (u, 1)0 = 0, (10.89)

one should find that G is bounded below on W .
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Theorem 10.26. If (10.66), (10.80), (10.82), (10.86), and (10.88)
hold, then

G(w) → ∞ as ‖w‖1 → ∞, w ∈ W.

Proof. Let wk be any sequence in W such that ρk = ‖wk‖1 → ∞. Let
w̃k = wk/ρk. Then

2G(wk)/ρ2
k = ‖∇w̃k‖2

0 − 2
∫
Q

F (x,wk)/ρ2
k dx.

Since ‖w̃k‖1 = 1, there is a renamed subsequence such that w̃k → w̃

weakly in H1, strongly in H0, and a.e. in Q (Corollary 10.15). Moreover

‖∇w̃k‖2
0 = ‖w̃k‖2

1 − ‖w̃k‖2
0 = 1 − ‖w̃k‖2

0 → 1 − ‖w̃‖2
0.

Consequently,

2G(wk)/ρ2
k → 1 − ‖w̃‖2

0 −
∫
Q

α(x)w̃2 dx

= (1 − ‖w̃‖2
1) + (‖∇w̃‖2

0 − ‖w̃‖2
0)

+
∫
Q

[1 − α(x)]w̃2 dx ≥ 0.

The only way this can vanish is if

‖w̃‖1 = 1 (10.90)

‖∇w̃‖0 = ‖w̃‖0 (10.91)

and ∫
Q

[1 − α(x)]w̃2 dx = 0. (10.92)

If w̃ =
∑

γµe
iµx, then (10.91) implies

∑
µ2|γµ|2 =

∑
|γµ|2.

Since w̃ ∈ W, γ0 = 0. Thus γµ = 0 whenever µ2 > 1. This means that

w̃ =
∑
µ2=1

γµe
iµx.

This is a finite sum. Let

h(z) =
∑
µ2=1

γµe
iµz, zj = xj + iyj .
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Then h(z) is analytic in the whole of C
n, and it satisfies∫

Q

[1 − α(x)]|h(x)|2dx = 0.

In view of (10.88), this implies that h(x) = 0 on a set of positive measure
in Q. From this we can conclude that h(x) ≡ 0. There are several ways
of showing this. One way is to notice that

h(x) =
n∑

k=1

(ak cos xk + bk sin xk) =
n∑

k=1

hk(xk).

We note that

Lemma 10.27. If

h(x) = a cos x + b sin x, 0 ≤ x ≤ 2π,

and h(x) = c on a set e of positive measure, then c = 0 and

h(x) ≡ 0, 0 ≤ x ≤ 2π.

Proof. Since e has a limit point (a finite set of points has measure 0)
and h(x) has a convergent Taylor series, it must be identically equal to c

on the whole interval I = [0, 2π]. The only way this can happen is when
c = 0.

For the n dimensional case we have

Lemma 10.28. If E ⊂ Q is a set of positive measure and

h(x) = c, x ∈ E,

then c = 0 and

hk(xk) ≡ 0, xk ∈ I = [0, 2π], 1 ≤ k ≤ n.

Proof. We use induction. The lemma is true for n = 1 (Lemma 10.27).
Assume it is true for n− 1, where n > 1. Let y = (x1, . . . , xn−1) ∈ R

n−1

be any point in

Qn−1 = {x ∈ R
n−1 : 0 ≤ xj ≤ 2π, j = 1, . . . , n− 1}.

For each xn ∈ R, let

E(xn) = {y ∈ Qn−1 : (y, xn) ∈ E},

and let e ⊂ R be the set of those xn ∈ R such that

m(E(xn)) > 0.
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Then m(e) > 0 by Fubini’s theorem (Theorem B.26) since

∫
Q

µ(E) dx =
∫
e

[∫
Qn−1

µ(E(xn))dy

]
dxn,

where µ(E) is the characteristic function of E. For each xn ∈ e we have

n−1∑
k=1

hk(xk) = c− hn(xn), y = (x1, . . . , xn−1) ∈ E(xn).

Since m(E(xn)) > 0 for xn ∈ e, we have by the induction hypothesis

c− hn(xn) = 0, xn ∈ e

and

hk(xk) ≡ 0, xk ∈ I, 1 ≤ k ≤ n− 1.

Since this is true for every xn ∈ e, we have by Lemma 10.27 that

hk(xk) ≡ 0, xk ∈ I, 1 ≤ k ≤ n.

From this we see that w̃ ≡ 0. But this is impossible by (10.90). Hence

limG(wk)/ρ2
k > 0.

Since this is true for any sequence in W, the theorem follows.

Theorem 10.29. The functional G is bounded from below on W.

Proof. Suppose {wk} ⊂ W is such that G(wk) ↘ −∞. By Theorem
10.26, the sequence must be bounded. But then

2G(wk) = ‖∇wk‖2
0 − 2

∫
Q

F (x,wk) dx

≥− C

∫
Q

(|wk|2 + |wk|) dx

≥− C′(‖wk‖2
0 + 1)

≥− C′′,

providing a contradiction.
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10.13 A Lipschitz condition

In order to solve (10.77) when we do not have a minimum, we must
verify that G′(u) given by (10.76) satisfies a Lipschitz condition of the
form (2.54). Initially, we showed that this will be true if f(x, t) satisfies
(2.36). We can do better, but we cannot do as well as we did in the one
dimensional case. The degree of improvement gets worse as n increases.
In fact, we have

Lemma 10.30. If 2 ≤ q ≤ 2∗, and f(x, t) satisfies

|f(x, t) − f(x, s)| ≤ C(|t|q−2 + |s|q−2 + 1)|t− s|, (10.93)

then G′(u) satisfies

‖G′(u) −G′(v)‖−1 ≤ C(‖u‖q−2
1 + ‖v‖q−2

1 + 1)‖u− v‖1, u, v ∈ H1.

(10.94)

Proof. It suffices to show that∫
Q

|f(x, u) − f(x, v)| • |h| dx ≤ C(|u|q−2
2∗ + |v|q−2

2∗ + 1)|u− v|2∗ |h|2∗ .

(10.95)

By Corollary 10.46, this implies

|(G′(u) −G′(v), h)0| ≤ ‖∇(u− v)‖0‖∇h‖0

+ C(‖u‖q−2
1 + ‖v‖q−2

1 + 1)‖u− v‖1‖h‖1,

which implies (10.94). To prove(10.95), we note that the left-hand side
of (10.95) is bounded by

(∫
Q

|f(x, u) − f(x, v)|2∗′
dx

)1/2∗′ (∫
Q

|h|2∗
dx

)1/2∗

≤
(∫

Q

(|u|q−2 + |v|q−2 + 1)2
∗′
|u− v|2

∗′
dx

)1/2∗′

|h|2∗

≤
(∫

Q

(|u|q−2 + |v|q−2 + 1)2
∗′ρdx

)1/ρ2∗′

×
(∫

Q

|u− v|2∗′ρ′
dx

)1/ρ′2∗′

|h|2∗

≤ C

(∫
Q

(|u|2∗′ρ(q−2) + |v|2∗′ρ(q−2) + 1)dx
)1/ρ2∗′

|u− v|2∗′ρ′ |h|2∗

≤ C(|u|q−2
2∗′ρ(q−2) + |v|q−2

2∗′ρ(q−2) + 1) |u− v|2∗′ρ′ |h|2∗ ,
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where p′ = p/(p − 1). Take ρ = (2∗ − 1)/(2∗ − 2). Then 2∗′ρ′ = 2∗ and
2∗′ρ(q − 2) ≤ 2∗. This gives (10.95) and completes the proof.

Remark 10.31. As we mentioned before, we can dispense with the re-
quirement that G′(u) satisfy a local Lipschitz condition as long as it
is continuous. This is accomplished by replacing G′(u) with a locally
Lipschitz “pseudo-gradient.” The difficulty lies in showing that such
a pseudo-gradient exists. We shall present the argument later in Ap-
pendix D.

10.14 Splitting subspaces

It should come as no surprise that we have the same problems in higher
dimensions as we had in one dimension. We now have the following
situation. The functional G is bounded above on the constants (the
subspace V ) and below on the subspace W orthogonal to the constants.
We can now apply Theorem 2.5 to obtain

Theorem 10.32. Under the hypotheses of Theorem 10.26 and Lemma
10.30, there is a PS sequence satisfying

G(uk) → a, G′(uk) → 0.

Proof. By (10.86) and Theorem 10.26, G is bounded above on V and
bounded below on W. By Lemma 10.30, G′ satisfies a local Lipschitz con-
dition. We may now apply Theorem 2.5 to reach the desired conclusion.

This theorem raises hope of finding a stationary point of G, that is, a
solution of (10.77). A step in this direction is

Theorem 10.33. Under the hypotheses of Theorem 10.26, if for some
a ∈ R, G′(u) �= 0 for all u ∈ H1 such that G(u) = a, then there is a
δ > 0 such that

‖G′(u)‖−1 ≥ δ when a− δ ≤ G(u) ≤ a + δ. (10.96)

Proof. Suppose not. Then there would be a sequence {uk} ⊂ H1 such
that

G(uk) → a, G′(uk) → 0.

Consequently, by Proposition 10.16,

(∇uk,∇v)0 − (f(uk), v)0 = o(‖v‖1), v ∈ H1. (10.97)
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If ρk = ‖uk‖1 → ∞, let ũk = uk/ρk. Then ‖ũk‖1 = 1, and hence there
is a renamed subsequence such that ũk → ũ weakly in H1, strongly
in L2(Q), and a.e. in Q (Corollary 10.15). For this subsequence (10.97)
implies

(∇ũk,∇v)0 − (f(uk)/ρk, v)0 → 0, v ∈ H1.

Thus in the limit

(∇ũ,∇v)0 −
∫
Q

α(x)ũv dx = 0, v ∈ H1. (10.98)

Here we used the fact that

f(x, uk)/ρk = [f(x, uk)/uk]ũk → αũ a.e.

and

|f(x, uk)|/ρk ≤ C(|ũk| + 1/ρk).

This implies

−∆ũ = α(x)ũ.

Set ũ = γ + w̃, where γ is a constant and w̃ ∈ W. Take v = γ − w̃ in
(10.98). Then

−‖∇w̃‖2
0 =

∫
Q

α[γ + w̃][γ − w̃]dx =
∫
Q

α(γ2 − w̃2)dx.

Consequently,

(‖∇w̃‖2
0 − ‖w̃‖2

0) +
∫
Q

[1 − α]w̃2dx + γ2

∫
Q

α(x)dx = 0.

As we saw above, this implies γ = 0, w̃ = 0. Hence ũ = 0. But (10.97)
also implies

‖∇ũk‖2
0 − (f(·, uk)/ρk, ũk)0 → 0,

or

1 − ‖ũk‖2
0 − (f(·, uk)/ρk, ũk)0 → 0,

which gives

1 − ‖ũ‖2
0 −

∫
Q

αũ2 dx = 0.

This shows that ũ �≡ 0. Hence the ρk are bounded. But then there is a
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renamed subsequence such that uk → u weakly in H1, strongly in H0,
and a.e. in Q (Corollary 10.15). Now (10.97) implies that

(∇u,∇v)0 − (f(·, u), v)0 = 0, v ∈ H1. (10.99)

Hence G′(u) = 0, and

‖∇u‖2
0 − (f(·, u), u)0 = 0.

Moreover, by (10.97),

‖∇uk‖2
0 = (f(·, uk), uk)0 + o(1) → (f(·, u), u)0 = ‖∇u‖2

0.

Thus ∇uk converges strongly to ∇u in L2(Q). This implies that

2G(uk) = ‖∇uk‖2
0−2

∫
Q

F (x, uk)dx → ‖∇u‖2
0−2

∫
Q

F (x, u)dx = 2G(u).

Since G(uk) → a, we have G(u) = a, contradicting the hypothesis. This
proves the theorem.

We can conclude from Theorems 10.32 and 10.33 that

Theorem 10.34. Under the hypotheses of Theorem 10.26 and Lemma
10.30, G has a critical point which is a solution of (10.54).

Remark 10.35. As we noted previously, a sequence satisfying

G(uk) → a, G′(uk) → 0, (10.100)

is called a Palais–Smale sequence (PS sequence) at level a. A functional
G is said to satisfy the Palais–Smale condition (PS condition) at level a
if every PS sequence at level a has a convergent subsequence. It is said
to satisfy the Palais–Smale condition if it satisfies the PS condition at
all levels. Theorem 10.33 states that under the hypotheses of Theorem
10.26, if G has a PS sequence at level a, then it has a critical point at
that level.

10.15 The question of nontriviality

We essentially follow the arguments used in the one dimensional periodic
problems. In the case of Theorem 10.34, we have the same problem that
faced us when we proved Corollaries 10.21 and 10.24, namely, if f(x, 0) ≡
0, what guarantee do we have that the solution provided is not u ≡ 0.
In the case of these corollaries, we were able to find a criterion (namely
(10.85)) which provides such a guarantee (cf. Theorem 10.25). This was
accomplished by showing that the minimum obtained in (10.84) was less
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than 0. Since G(0) = 0, this shows that the solutions obtained in Corol-
laries 10.21 and 10.24 were not 0. However, this does not work in the case
of Theorem 10.34 since m0 ≤ G(0) ≤ m1 (cf. (2.41)–(2.40)). Thus in or-
der to guarantee that our solutions are not ≡ 0, we must devise another
means of attack. A method that worked in the one dimensional case is
as follows. Suppose, in addition to the hypotheses of Theorem 10.34, we
have assumptions which will provide positive constants ε, ρ so that

G(u) ≥ ε when ‖u‖1 = ρ.

Since G(0) = 0, this creates the image of 0 being in a valley surrounded
by mountains of minimum height ε. Now we maintain that there is a
solution of (10.77) which satisfies

ε ≤ G(u) ≤ m1

in place of (2.42). To see this we follow the proof of Theorem 2.8 and
claim that if (10.77) does not have such a solution, then there is a δ > 0
such that (2.41) holds whenever u satisfies

ε− δ ≤ G(u) ≤ m1 + δ.

We draw our curves as before from each point of V along which G de-
creases at a rate of at least δ. Again we arrive at a curve S = {σ(T )v :
v ∈ V }. The claim now is that S has points both inside and outside
the sphere ‖u‖1 = ρ. To see this note that there are points v ∈ V so
far away from the origin that σ(T )v never reaches the sphere. On the
other hand, G(σ(t)0) is nonincreasing in t. Consequently, σ(t)0 cannot
exit the sphere. Thus, σ(T )0 is inside the sphere while there are points
σ(T )v outside. By continuity, there must be a point v1 ∈ V such that
G(σ(T )v1) = ε. But

G(σ(T )v) ≤ ε− δ, v ∈ V.

This contradiction provides the desired solution. This procedure is sum-
marized by

Lemma 10.36. In addition to the hypotheses of Theorem 10.34, assume
that there are positive constants ε, ρ such that

G(u) ≥ ε (10.101)

when

‖u‖1 = ρ. (10.102)

Then there is a solution u of (10.68) satisfying (10.101).
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The proof of Lemma 10.36 is similar to that of Lemma 2.20 and is
omitted.

In the next section we shall give simple conditions under which the
“mountains” can be constructed.

10.16 The mountains revisited

We now want to give sufficient conditions on F (x, t) which will imply
that the origin is surrounded by mountains. By this we mean the follow-
ing.

Theorem 10.37. Assume that (10.66) holds and that there is a δ > 0
such that

F (x, t) ≥ 0, |t| ≤ δ. (10.103)

Then for each positive ρ ≤ δ/2, we have either

(a) there is an ε > 0 such that

G(u) ≥ ε, ‖u‖1 = ρ, (10.104)

or
(b) there is a constant function v0 ∈ V such that |v0| = ρ/(2π)n/2 ≤

δ/2, and

f(x, v0) ≡ 0. (10.105)

Moreover, the constant function v0 ∈ V satisfying (10.105) is a solution
of (10.54).

Proof. For each u ∈ H1 write u = v + w, where v ∈ V, w ∈ W. Then

2G(u) = ‖∇w‖2
0 − 2

∫
Q

F (x, u) dx ≥ ‖∇w‖2
0 − 2

∫
|u|>δ

|F (x, u)| dx.

Now

‖u‖1 ≤ ρ ⇒ ‖v‖2
0 + ‖w‖2

1 ≤ ρ2 ⇒ (2π)n/2|v| ≤ ρ.

Thus if ρ ≤ (2π)n/2δ/2, then |v| < δ/2. Hence, if

‖u‖1 ≤ ρ, |u(x)| ≥ δ,

then

δ ≤ |u(x)| ≤ |v| + |w(x)| ≤ δ/2 + |w(x)|.
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Consequently,

δ ≤ |u(x)| ≤ 2|w(x)|.

We may assume that q satisfies 2 < q ≤ 2∗. Then

2G(u) ≥ ‖∇w‖2
0 − C

∫
|u|>δ

(|u|q + |u|) dx

≥ ‖∇w‖2
0 − C(1 + δ1−q)

∫
|u|>δ

|u|q dx

≥ ‖∇w‖2
0 − C ′

∫
2|w|>δ

|w|qdx

≥ 1
2
‖w‖2

1 − C ′|w|qq

≥ 1
2
‖w‖2

1 − C ′′‖w‖q1

≥
(

1
2
− C ′′‖w‖q−2

1

)
‖w‖2

1.

Hence,

G(u) ≥ 1
5
‖w‖2

1, ‖u‖1 ≤ ρ, (10.106)

for ρ > 0 sufficiently small. For each such ρ assume that there is no
ε > 0 for which (10.104) holds. Then there is a {uk} ⊂ H1 such that
‖uk‖1 = ρ and G(uk) → 0. Write uk = vk + wk, where vk ∈ V, wk ∈ W.

Then ‖wk‖1 → 0 by (10.106). This means that ‖vk‖1 → ρ. Thus, |vk| →
ρ/(2π)n/2. Since the constants {vk} are bounded, there is a renamed
subsequence such that vk → v0. Clearly |v0| = ρ/(2π)n/2 ≤ δ/2, and∫

Q

F (x, v0) dx = G(v0) = 0.

In view of (10.103), F (x, v0) ≡ 0, and v0 is a minimum point of F (x, t)
in |t| < δ. Hence, the derivative of F (x, t) with respect to t must vanish
at t = v0. This gives f(x, v0) ≡ 0. Since ρ was any sufficiently small
constant, we see that (b) holds. This completes the proof.

We note that (b) implies that every constant function v0 ∈ V satisfying
(10.105) is a solution of G′(v) = 0. We therefore have

Corollary 10.38. Under the hypotheses of Theorem 10.37, either (a)
holds for all ρ > 0 sufficiently small, or (10.68) has an infinite number
of solutions.



10.17 Other intervals between eigenvalues 289

Combining our results so far, we have

Theorem 10.39. Under the hypotheses of Theorems 10.26, 10.37, and
Lemma 10.30, G has a nontrivial critical point which is a solution of
(10.54).

Proof. We combine Lemma 10.36 and Theorem 10.37.

10.17 Other intervals between eigenvalues

Suppose f(x, t) satisfies (10.80) and (10.82), but α(x) does not satisfy
(10.88). Are there other intervals (a, b) such that a solution of (10.54)
for u ∈ H1 can be found when a ≤ α(x) ≤ b? We are going to show that
this is indeed the case. In fact we have

Theorem 10.40. Assume that (10.66), (10.80), and (10.93) hold. Let
λm and λm+1 be consecutive eigenvalues of −∆. Assume that (10.82)
holds with α(x) satisfying

λm ≤ α ≤ λm+1, λm �≡ α �≡ λm+1. (10.107)

Then (10.54) has a solution. If, in addition, (10.103) holds, then we are
assured that it has a nontrivial solution.

Proof. First, we note by (10.9), that

‖u‖2
1 = (2π)n

∑
(1 + µ2)|αµ|2 < ∞, (10.108)

where the αµ are given by Lemma 10.2. Let

N = {u ∈ H1 : αµ = 0 for |µ| > λm}.

Thus,

‖u‖2
1 =

∑
|µ|≤λm

µ2|αµ|2 ≤ λm‖u‖2, u ∈ N. (10.109)

Let

M = {u ∈ H : αµ = 0 for |µ| ≤ λm}.

In this case,

‖u‖2
1 =

∑
|µ|≥λm+1

µ2|αµ|2 ≥ λm+1‖u‖2, u ∈ M. (10.110)

Note that M,N are closed subspaces of H1 and that M = N⊥. Note also
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that N is finite dimensional. Next, we consider the functional (10.69) and
show that

G(v) → −∞ as ‖v‖1 → ∞, v ∈ N, (10.111)

and

G(w) → ∞ as ‖w‖1 → ∞, w ∈ M. (10.112)

Assuming these for the moment, we note that they imply

inf
M

G > −∞; sup
N

G < ∞. (10.113)

This is easily seen from the fact that (10.112) implies that there is an
R > 0 such that

G(w) > 0, ‖w‖1 > R, w ∈ M.

Consequently, if the first statement in (10.113) were false, there would
be a sequence satisfying

G(wk) → −∞, ‖wk‖1 ≤ R, wk ∈ H1.

But this would imply that there is a renamed subsequence such that
wk → w0 weakly in H1, strongly in L2(Q), and a.e. in Q to a limit
w0 ∈ H1 (Corollary 10.15). Since

|F (x,wk)| ≤ C(|wk|2 + |wk|),

and

F (x,wk) → F (x,w0) a.e.,

we have ∫
Q

F (x,wk) dx →
∫
Q

F (x,w0) dx.

Thus,

G(wk) ≥ −
∫
Q

F (x,wk) dx → −
∫
Q

F (x,w0) dx > −∞.

This contradiction verifies the first statement in (10.113). The second is
verified similarly by (10.111).

We are now in a position to apply Theorem 2.5. This produces a
sequence in H1 satisfying

G(uk) → c, G′(uk) → 0, (10.114)
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where c is finite. In particular, this implies

(G′(uk), v)1 = (uk, v)1 − (f(·, uk), v) = o(‖v‖1), ‖v‖1 → 0. (10.115)

Assume first that

ρk = ‖uk‖1 → ∞. (10.116)

Set ũk = uk/ρk. Then ‖uk‖1 = 1, and consequently, by Corollary 10.15,
there is a renamed subsequence that converges to a limit ũ ∈ H1 weakly
in H1, strongly in L2(Q), and a.e. in Q. Thus,

(ũk, v)H − (f(·, uk)/ρk, v) → 0, v ∈ H. (10.117)

As we saw before, this implies in the limit that

(ũ, v)1 = (αũ, v), v ∈ H1. (10.118)

Let

ũ = w̃ + ṽ, û = w̃ − ṽ. (10.119)

Then

(ũ, û)1 = (αũ, û).

This implies

‖w̃‖2
1 − ‖ṽ‖2

1 = (α[w̃ + ṽ], w̃ − ṽ) = (αw̃, w̃) − (αṽ, ṽ),

since

(αṽ, w̃) = (αw̃, ṽ) =
∫
Q

α(x)ṽ(x)w̃(x) dx.

Thus,

‖w̃‖2
1 − (αw̃, w̃) = ‖ṽ‖2

1 − (αṽ, ṽ).

This says

(‖w̃‖2
1 − λm+1‖w̃‖2) +

∫
Q

[λm+1 − α(x)]w̃2 dx

=
(
‖ṽ‖2

1 − λm‖ṽ‖2
)

+
∫
Q

[λ2
m − α(x)]ṽ2 dx.
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We write this as A + B = C + D. In view of (10.107), (10.109), and
(10.110), A ≥ 0, B ≥ 0, C ≤ 0, D ≤ 0. But this implies A = B = C =
D = 0. If

ũ =
∑

α̃µϕµ,

then in view of (10.110) the only way A can vanish is if

w̃ =
n∑

k=1

(ak cos λm+1xk + bk sin λm+1xk) .

But then, B cannot vanish unless w̃ ≡ 0 (Lemma 10.28). Similar rea-
soning shows that C = D = 0 implies that ṽ ≡ 0. On the other hand,
(10.82) implies

2G(uk)/ρ2
k = ‖ũ‖2

1 − 2
∫
Q

F (x, ũ) dx/ρ2
k → 1 − 2

∫
Q

α(x)ũ2 dx = 0,

from which we conclude that ũ �≡ 0. This contradiction shows that the
assumption (10.116) is incorrect. Once this is known, we can conclude
that by Corollary 10.15, there is a renamed subsequence that converges
to a limit u ∈ H1 weakly in H1, strongly in L2(Q), and a.e. in Q. It then
follows from (10.115) that

(u, v)1 − (f(·, u), v) = 0, v ∈ H1. (10.120)

It remains to prove (10.111) and (10.112). Let {wk} ⊂ M be any
sequence such that ρk = ‖wk‖1 → ∞. Let w̃k = wk/ρk. Then ‖w̃k‖1 = 1.
Thus, there is a renamed subsequence such that (2.30) and (2.31) hold.
This implies

2G(wk)/ρ2
k = 1 − 2

∫
Q

f(x,wk)
w2

k

w̃2
k dx → 1 −

∫
Q

α(x)w̃2(x) dx

= (1 − ‖w̃‖2
1) + (‖w̃‖2

1 − λm+1‖w̃‖2)

+
∫
I

[λm+1 − α(x)]w̃2(x) dx

= A + B + C.

As before, we note that A ≥ 0, B ≥ 0, C ≥ 0. The only way G(wk)
can fail to become infinite is if A = B = C = 0. As before, B = C = 0
implies that w̃ ≡ 0. But this contradicts the fact that A = 0. Thus,
G(wk) → ∞ for each such sequence. This proves (10.112). The limit
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(10.111) is proved in a similar fashion. This completes the proof of the
first part of Theorem 10.40. The last statement follows from Lemma
10.36 and Theorem 10.37.

10.18 An example

Before we become overjoyed by our success in finding Palais–Smale se-
quences and obtaining solutions, we want to stress the fact that not all
Palais–Smale sequences are created equal. Here is another example of
a simple situation in which no Palais–Smale sequence has a convergent
subsequence.

Let us consider the Hilbert space H = R
2. For u = (x, y) ∈ H define

G(u) = x2 − (x− 1)3y2.

Then,

G′(u) = ∇G(u) = {2x− 3(x− 1)2y2,−2(x− 1)3y}.

Note that G satisfies all of the hypotheses of Theorem 2.26. Clearly,
G(0) = 0. Moreover, there are positive constants ε, ρ such that

G(u) ≥ ε‖u‖2, ‖u‖ ≤ ρ. (10.121)

For if (10.121) did not hold, there would be a sequence {uk} ⊂ H such
that ρk = ‖uk‖ → 0 and

G(uk)/‖uk‖2 → 0. (10.122)

Let ũk = uk/ρk. Then

G(uk)/ρ2
k = x̃2

k − (xk − 1)3ỹ2
k.

Since x̃2
k + ỹ2

k = 1, there is a renamed subsequence such that x̃k →
x̃, ỹk → ỹ, x̃2 + ỹ2 = 1. Consequently,

G(uk)/ρ2
k → x̃2 + ỹ2 = 1,

contradicting (10.122). Thus (10.121) holds, and this implies (2.99). If
we take ϕ0 = (1, 1), then

G(rϕ0) = r2 − (r − 1)3r2 → −∞ as r → ∞.

Thus (2.100) holds for some constant C0. Since G is a polynomial, all
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of the hypotheses of Theorem 2.26 are satisfied. Thus, there is a Palais–
Smale sequence satisfying (2.101). Hence,

x2
k − (xk − 1)3y2

k → c, ε ≤ c ≤ C0.

2xk − 3(xk − 1)2y2
k → 0,

and

2(xk − 1)3yk → 0.

Either there is a renamed subsequence such that xk → 1, or the whole
sequence is such that xk is bounded away from 1. In the latter case,
yk → 0, and

|(xk − 1)yk|2 = |(xk − 1)3yk|2/3|yk|4/3 → 0.

Consequently, xk → 0. But then, G(uk) → 0, and this is not the sequence
(2.101). In the former case,

(xk − 1)2y2
k → 2/3.

Hence, |yk| → ∞, and there is no convergent subsequence. Thus, G does
not satisfy the PS condition. Note that G has no critical point other
than u = 0. For, in order that u be a critical point, we need either x = 1
or y = 0. But either of these implies that x = 0. This shows that the
only critical point of G is 0.

10.19 Satisfying the PS condition

In solving the problem (10.68), our approach has been to find a sequence
{uk} such that (10.100) holds and then show that this implies that {uk}
has a convergent subsequence. So far we have shown this only when
f(x, t) satisfies (10.83). In this section we allow f(x, t) to satisfy (10.66)
with q < 2∗ and give sufficient conditions which will guarantee that the
PS condition holds for G(u) given by (10.69). We have

Theorem 10.41. If there are constants γ > 2, C such that

Hγ(x, t) := γF (x, t) − tf(x, t) ≤ C(t2 + 1) (10.123)

and there is a function W (x) ∈ L1(Ω) such that

−W (x) ≤ F (x, t)/t2 → ∞ as |t| → ∞, x ∈ Ω, (10.124)

then (10.100) implies that {uk} has a convergent subsequence.
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Proof. If (10.100) holds, then

‖∇uk‖2
0 − 2

∫
Q

F (x, uk) dx → a, (10.125)

(∇uk,∇v)0 − (f(uk), v)0 = o(‖v‖1), v ∈ H1, (10.126)

and

‖∇uk‖2
0 − (f(uk), uk) = o(‖uk‖1). (10.127)

If we multiply (10.127) by 2, (10.125) by γ and subtract, we obtain

(γ − 2)‖∇uk‖2
0 − 2

∫
Q

Hγ(x, uk)dx = o(‖uk‖1). (10.128)

Assume that ρk = ‖uk‖1 → ∞, and let ũk = uk/ρk. Then ‖ũk‖1 = 1,
and (10.128) implies

(γ − 2)(1 − ‖ũk‖2
0) − 2

∫
Q

Hγ(x, uk)dx/ρ2
k → 0.

However,

Hγ(x, uk)/ρ2
k = [Hγ(x, uk)/u2

k]ũ
2
k.

There is a renamed subsequence such that ũk → ũ weakly in H1, strongly
in H0, and a.e. in Q (Corollary 10.15). By (10.125),

∫
Ω

2F (x, uk) + u2
k

u2
k

ũ2
k dx → 1,

and by (10.127) ∫
Ω

ukf(x, uk) + u2
k

u2
k

ũ2
k dx → 1.

Let

Ω1 = {x ∈ Ω : ũ(x) �= 0}, Ω2 = Ω \ Ω1.

Then
2F (x, uk)

u2
k

ũ2
k → ∞, x ∈ Ω1

by (10.124). If Ω1 has positive measure, then
∫

Ω

2F (x, uk)
u2
k

ũ2
k dx ≥

∫
Ω1

2F (x, uk)
u2
k

ũ2
k dx +

∫
Ω2

[−W (x)] dx → ∞.
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Thus, the measure of Ω1 must be 0, that is, we must have ũ ≡ 0 a.e.
Thus, ũk → 0 in L2(Q) implying∫

Ω

2F (x, uk)
u2
k

ũ2
k dx → 1

and ∫
Ω

ukf(x, uk)
u2
k

ũ2
k dx → 1.

Consequently, ∫
Ω

γF (x, uk) − ukf(x, uk)
u2
k

ũ2
k dx → γ

2
− 1.

But by (10.123),

lim sup
γF (x, uk) − ukf(x, uk)

u2
k

ũ2
k ≤ lim supC

u2
k + 1
u2
k

ũ2
k = 0,

which implies that γ/2 − 1 ≤ 0, contrary to assumption. Thus, the ρk
must be bounded. Consequently, there is a renamed subsequence such
that uk → u weakly in H1, strongly in Lq(Q), and a.e. in Q (Corollary
10.15). In view of (10.66),

|f(x, uk) − f(x, u)| ≤ C(|uk|q−1 + |u|q−1 + 1),

and ∫
Q

|uk|q−1|v| dx ≤ |uk|q−1
q |v|q,

which converges. Therefore (10.126) implies

(∇u,∇v)0 − (f(u), v)0 = 0, v ∈ H1,

which means that u is a solution of (10.68) and satisfies

‖∇u‖2
0 − (f(u), u)0 = 0.

Moreover, by (10.127)

‖∇uk‖2
0 = (f(uk), uk) + o(1) → (f(u), u) = ‖∇u‖2

0,

showing that uk converges to u in H1. Hence, the PS condition holds,
and the proof is complete.

Remark 10.42. In Theorem 10.41 we could have used hypothesis
(1.114) in place of (10.124). The proof would have followed the reasoning
of Theorem 1.37.
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10.20 More super-linear problems

If f(x, t) does not satisfy (10.79), then the problem (10.54) is called
super-linear. In the one dimensional case we proved a theorem concerning
super-linear equations (Theorem 2.27). Now we consider a corresponding
theorem for higher dimensions. The process is almost the same, but for
higher dimensions we must place stronger restrictions on the growth of
f(x, t) because of the Sobolev inequalities. We have

Theorem 10.43. Assume (10.66), (10.67), (10.103), and (10.93).
Then under the hypotheses of Theorem 10.41, the problem (10.54) has
a nontrivial solution.

Proof. Apply Theorems 2.26, 10.37, and 10.41 to the functional G(u)
given by (10.69). We have to show that (2.100) holds. This follows from
(10.124). In fact, we have

G(kϕ) = −
∫
Q

F (x, kϕ) dx

for any constant function ϕ. If we take ϕ ≡ 1, we have

G(kϕ)/k2 = −
∫
Q

F (x, k)/k2 dx → −∞ as k → ∞.

This completes the proof.

10.21 Sobolev’s inequalities

Unlike the one dimensional case, it is not true in higher dimensions that
functions having weak derivatives in L2 are bounded and continuous.
In fact, they need not be either. The best that can be said for them is
that they are in some Lq space with q depending on the dimension. The
higher the dimension, the worse the q is; it may be very close to 2. These
facts are revealed in the Sobolev inequalities which we now describe.

We know from the definition that

‖u‖0 ≤ ‖u‖1, u ∈ H1.

Actually, one can improve upon this. In fact, we have

Theorem 10.44. For each p ≥ 1, q ≥ 1 satisfying

1
p
≤ 1

q
+

1
n

(10.129)
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there is a constant Cpq such that

|u|q ≤ Cpq(|∇u|p + |u|p), u ∈ C1(Q), (10.130)

where

|u|q =
(∫

Q

|u|qdx
)1/q

(10.131)

and

|∇u| =

(
n∑

k=1

∣∣∣∣ ∂u∂xk

∣∣∣∣
2
)1/2

. (10.132)

Proof. First we note that for each integer r ≥ 1
∫

(h1 · · ·hr)
1/r ≤

(∫
h1

)1/r

· · ·
(∫

hr

)1/r

, (10.133)

by Hölder’s inequality (Theorem B.23), where the hj ≥ 0. Let

Hjk...� =
∫

|∇u|dxjdxk · · · dx�.

Assume that there is a y ∈ Q such that u(x) = 0 whenever xj = yj for
some j. Then

u(x) =
∫ xj

yj

∂u

∂xj
dxj.

This implies that

|u(x)| ≤
∫ 2π

0

∣∣∣∣ ∂u∂xj

∣∣∣∣ dxj

≤ hj(x) =
∫ 2π

0

|∇u(x)| dxj .

(Note that hj(x) does not depend on xj .) Then

|u(x)|n ≤ h1 · · ·hn. (10.134)

Take r = n− 1. We claim that∫
|u(x)|n/rdx1 · · · dxk

≤
{
H

k/r
1···k(x)(H1···k,(k+1)(x)H1···k,(k+2)(x) · · ·H1···k,n(x))1/r, k < n,

H
k/r
1···k(x), k = n.

(10.135)
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We prove (10.135) by induction. We note that it holds for k = 1. By
(10.133)

∫
|u(x)|n/r dx1 ≤

∫
(h1 · · ·hn)1/r dx1

≤ h
1/r
1

∫
(h2 · · ·hn)1/r dx1

≤ H
1/r
1 (H12 · · ·H1n)1/r,

which shows that (10.135) holds for k = 1. Assume that it holds for k.

Then∫
|u(x)|n/rdx1 · · · dxk dxk+1

≤ H
1/r
1···(k+1)

∫
(Hk/r

1···kH1···k,(k+2) · · ·H1···k,n)1/r dxk+1

≤ H
(k+1)/r
1···(k+1)(H1···(k+1),(k+2)H1···(k+1),(k+3) · · ·H1···(k+1),n)1/r.

Thus (10.135) holds for k + 1. In particular, if we take k = r = n − 1,
we obtain (10.135) for k = n. Thus, (10.135) holds for 1 ≤ k ≤ n. If we
take k = n, we obtain∫

|u(x)|n/r dx1 · · · dxn ≤ H
n/r
1···n = |∇u|n/r1 .

This implies

|u|n/(n−1) ≤ |∇u|1 (10.136)

when u satisfies the hypotheses given above. Hence, (10.130) is proved
for the case p = 1 and u(x) vanishing when xj = yj for some j. To derive
it without this restriction, let

Q̂ = [−2π, 2π]n = {x ∈ R
n : −2π ≤ xj ≤ 2π, 1 ≤ j ≤ n}.

For each j, let x′
j be the vector x with the xj component missing (e.g.,

x′
3 = {x1, x2, x4, . . . , xn}). Thus we can write x = {x′

j , xj} for each j. In
consecutive order, we extend u ∈ C1(Q) to a C1 function of {x′

j , xj} for
−2π ≤ xj ≤ 2π, j = 1, . . . , n. This is done as follows. For −2π ≤ xj ≤ 0,
we define

u(x′
j , xj) = 4u(x′

j ,−
1
2
xj) − 3u(x′

j ,−xj).

It is easily checked that u is a C1 function of x for −2π ≤ xj ≤ 2π.
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Moreover, ∫ 0

−2π
|u(x′

j , xj)| dxj ≤ 4
∫ 0

−2π
|u(x′

j ,−
1
2
xj)| dxj

+ 3
∫ 0

−2π
|u(x′

j ,−xj)| dxj

≤ 8
∫ π

0

|u(x′
j , z)| dz

+ 3
∫ 2π

0

|u(x′
j , z)| dz

≤ 11
∫ 2π

0

|u(x′
j , xj)| dxj

and ∫ 0

−2π
|Dju(x′

j , xj)| dxj ≤ 2
∫ 0

−2π
|Dju(x′

j ,−
1
2
xj)| dxj

+ 3
∫ 0

−2π
|Dju(x′

j ,−xj)| dxj

≤ 4
∫ π

0

|Dju(x′
j , z)| dz

+ 3
∫ 2π

0

|Dju(x′
j , z)|dz

≤ 7
∫ 2π

0

|Dju(x′
j , xj)| dxj .

We carry out this procedure in consecutive order from j = 1 to j = n.

Consequently,

|u|1,Q̂ ≤ C|u|1,Q, |∇u|1,Q̂ ≤ C|∇u|1,Q. (10.137)

Let ψ(t) ∈ C∞(R) be such that

0 ≤ ψ(t) ≤ 1

and

ψ(t) =

{
1, t ≥ 0,

0, t ≤ −2π.

We define

û(x) = ψ(x1) · · ·ψ(xn)u(x).

Note that û(x) = u(x) when x ∈ Q and û(x) = 0 if any xj = −2π. Thus



10.21 Sobolev’s inequalities 301

û satisfies in Q̂ the hypotheses that produced (10.136) for the cube Q.

Now

Dj û(x) = ψ(x1) · · ·ψ′(xj) · · ·ψ(xn)u(x) + ψ(x1) · · ·ψ(xn)Dju(x).

Hence,

|Dj û(x)| ≤ C(|Dju(x)| + |u(x)|),

and

|û|n′,Q̂ ≤ C|∇û|1,Q̂
by (10.136), where n′ = n/(n− 1). Consequently,

|u|n′,Q ≤ |û|n′,Q̂ ≤ C|∇û|1,Q̂
≤ C ′(|∇u|1,Q̂ + |u|1,Q̂)

≤ C′′(|∇u|1,Q + |u|1,Q).

Thus we have

|u|n′ ≤ C(|∇u|1 + |u|1) (10.138)

holding for all u ∈ C1(Q) without restriction. Next, assume that u(x) >
0 in Q, and let ρ = (n− 1)q/n ≥ 1. Then (10.138) implies

|uρ|n/(n−1) ≤ C(|∇(uρ)|1 + |uρ|1).

Thus, by Hölder’s inequality (Theorem B.23),

|uρ|n′ ≤ C′(ρ|uρ−1∇u|1 + |uρ−1u|1) ≤ C ′|uρ−1|p′ (ρ|∇u|p + |u|p),
(10.139)

where p′ = p/(p− 1), n′ = n/(n− 1). By (10.129),

1
p′

= 1 − 1
p
≥ 1 − 1

n
− 1

q
=

1
n′ −

1
q
.

Hence,

q ≥
( q

n′ − 1
)
p′ = (ρ− 1)p′,

and(∫
Q

u(ρ−1)p′
)1/p′

≤
(∫

Q

uρn′
)(ρ−1)/(ρp′) (∫

Q

1
)1/(ρp′)

≤ C|u|ρ−1
q .

It therefore follows from (10.139) that there is a constant C0 such that

|u|q ≤ C0(ρ|∇u|p + |u|p). (10.140)
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Consequently, we see that (10.130) holds for positive u.

In the general case, let

uε(x) = (u2 + ε2)1/2, ε > 0.

Then
∂(uρ

ε)
∂xj

= ρuρ−1
ε

∂uε

∂xj
.

We apply (10.130) to uε and use the fact that

|u| ≤ |uε| ≤ |u| + ε, |∇uε| ≤ |∇u|

to show that (10.130) holds for general u. This proves the theorem.

As a corollary, we have

Corollary 10.45. If

1 ≤ q ≤ 2∗ := 2n/(n− 2),

then

|u|q ≤ Cq‖u‖1, u ∈ H1.

Proof. Since S is dense in H1, it suffices to prove the corollary for u ∈ S.

We take p = 2 in (10.129). Then 2∗ = 2n/(n−2) is the largest value of q
which satisfies (10.129). The corollary now follows from Theorem 10.44.

We also have

Corollary 10.46. If 1 ≤ q < 2∗, then every bounded sequence in H1

has a subsequence which converges in Lq(Q).

Proof. We may assume that 2 < q < 2∗. We shall prove that

|u|q ≤ C ‖u‖a0 • ‖u‖b1, u ∈ H1, (10.141)

where a = 2(2∗ − q)/q(2∗ − 2), b = 2∗(q − 2)/q(2∗ − 2). Once we have
(10.141), we can prove the corollary as follows. If ‖uk‖1 ≤ M, then there
is a renamed subsequence which converges in H0 (Lemma 10.4). Hence,

|uj − uk|q ≤ C‖uj − uk‖a0 • ‖uj − uk‖b1
≤ (2M)bC‖uj − uk‖a0 → 0 as j, k → ∞.
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Therefore, {uk} converges in Lq(Q). We prove (10.141) by noting that
∫
Q

|u|q dx ≤
(∫

Q

u2 dx

)qa/2 (∫
Q

|u|2∗
dx

)qb/2∗

,

by Hölder’s inequality (Theorem B.23). (Note that a/2+b/2∗ = 1.) Thus

|u|q ≤ |u|a2 |u|b2∗ ,

and this implies (10.141) in view of Corollary 10.45. This completes the
proof.

Note that our proof required q < 2∗, since we needed a > 0.

10.22 The case q = ∞
It would appear from Theorem 10.44 that when p ≥ n, one should be
able to obtain the inequality

|u|∞ ≤ C(|∇u|p + |u|p), u ∈ C1(Q), (10.142)

where

|u|∞ = esssupQ|u(x)|.

(For discontinuous functions the essential supremum ignores sets of mea-
sure 0.) When p = n, this is not true, but otherwise we have

Theorem 10.47. If p > n, then (10.142) holds.

Proof. Assume that u(x) > 0 on Q. By (10.138)

|u|n′ ≤ C0(|∇u|1 + |u|1) ≤ C0|Q|1/p′
(|∇u|p + |u|p).

Let

ũ = u/C0|Q|1/p
′
(|∇u|p + |u|p).

Then

|ũ|n′ ≤ 1,

and if ρ > 1, we have

|ũρ|n′ ≤ C0(|∇ũρ|1 + |ũρ|1)

≤ C0(ρ|ũρ−1∇ũ|1 + |ũρ−1ũ|1)

≤ C0|ũρ−1|p′(ρ|∇ũ|p + |ũ|p).
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Since

|ũρ−1|p′ =
(∫

Q

ũ(ρ−1)p′
dx

)1/p′

≤
(∫

Q

ũρp′
dx

)(ρ−1)/(ρp′)

|Q|1/ρp′
,

we have

|ũρ|n′ ≤ C0|ũ|ρ−1
ρp′ |Q|1/ρp

′
(ρ|∇ũ|p + |ũ|p).

But

C0|Q|1/ρp′
(ρ|∇ũ|p + |ũ|p) ≤ ρ,

since ρ > 1 and |Q| ≥ 1. Hence,

|ũρ|n′ = |ũ|ρρn′ ≤ ρ|ũ|ρ−1
ρp′ .

This is also true for ρ = 1. Let σ = n′/p′ > 1, and take ρ = σk, k =
0, 1, 2, . . . Then we have

|ũ|σkn′ ≤ σk/σk |ũ|1−(1/σk)

σk−1n′ .

This implies

|ũ|σNn′ ≤ σ
N
k=0(k/σ

k).

We saw before that this is true for N = 0. If it is true for N − 1, then

|ũ|σNn′ ≤ σN/σN

σ
N−1
k=0 (k/σk) = σ

N
k=0(k/σ

k),

since σ > 1. Thus,

|ũ|σNn′ ≤ σ
∞
k=0(k/σ

k) ≡ C1

for each N. Let C2 be any number greater than C1, and let Ω be the set
on which |ũ(s)| ≥ C2. Then

C2|Ω|1/(σNn′) ≤ C1, N = 0, 1, 2, . . . ,

where

|Ω| =
∫

Ω

1dx.

If |Ω| �= 0, then |Ω|1/(σNn′) → 1 as N → ∞. This implies that C2 ≤ C1,

contrary to assumption. Hence, |Ω| = 0. This shows that

|ũ|∞ ≤ C1.

If we now use the definition of ũ, we obtain (10.142).
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10.23 Sobolev spaces

For m a nonnegative integer and p ≥ 1, we consider the norm

‖u‖m,p =
∑

|τ |≤m

|Dτu|p, u ∈ Cm(Q).

An equivalent norm is

 ∑

|τ |≤m

∫
Q

|Dτu|pdx




1/p

.

We note

Theorem 10.48. If

p ≥ 1, q ≥ 1,
1
p
≤ 1

q
+

m

n
,

then

|u|q ≤ C‖u‖m,p, u ∈ Cm(Q).

Proof. The theorem is true for m = 1 in view of Theorem 10.44. Assume
it is true for m− 1. Let q1 satisfy

1
q1

=
1
p
− m− 1

n

if (m− 1) < n/p and q1 = 1, otherwise. In either case,

1
p
≤ 1

q1
+

m− 1
n

.

By the induction hypothesis,

|u|q1 ≤ C‖u‖m−1,p, u ∈ Cm−1(Q).

Thus,

|Dju|q1 ≤ C‖Dju‖m−1,p ≤ C‖u‖m,p, u ∈ Cm(Q).

Hence,

|∇u|q1 + |u|q1 ≤ C‖u‖m,p, u ∈ Cm(Q).

Moreover,
1
q1

≤ 1
q

+
1
n
,

since
1
p
− m− 1

n
≤ 1

q
+

1
n
.
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Thus,

|u|q ≤ C(|∇u|q1 + |u|q1) ≤ C‖u‖m,p,

and the theorem is proved.

We let Wm,p(Q) be the completion of Cm(Q) with respect to the norm
‖u‖m,p. What kind of functions are in Wm,p(Q)? If u ∈ Wm,p(Q), then
there is a sequence {uk} ⊂ Cm(Q) such that

‖uk − u‖m,p → 0.

Thus

‖uj − uk‖m,p → 0.

This means that ∑
|τ |≤m

|Dτuj −Dτuk|p → 0,

as j, k → ∞. Consequently, for each τ such that |τ | ≤ m there is a
function uτ ∈ Lp(Q) such that

|Dτuk − uτ |p → 0.

The function uτ does not depend on the sequence {uk}, for if {ûk} is
another sequence converging to û in Wm,p(Q), then

‖ûk − uk‖m,p → 0.

This implies that ûτ = uτ for each τ. We call uτ the generalized strong
Dτ derivative of u in Lp(Q), and denote it by Dτu. We have

Theorem 10.49. Under the hypotheses of Theorem 10.48,

|u|q ≤ C‖u‖m,p, u ∈ Wm,p(Q). (10.143)

Proof. For a sequence {uk} in Cm(Q) converging to u in Wm,p(Q), we
have by Theorem 10.48,

|uj − uk|q ≤ C‖uj − uk‖m,p.

Thus uk → û in Lq(Q). Since uk → u in Lp(Q), we must have û = u

a.e. Since

|uk|q ≤ C‖uk‖m,p,

we have (10.143).

We also have
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Theorem 10.50. If m > n/p, then

|u|∞ ≤ C‖u‖m,p, u ∈ Cm(Q).

Proof. If m− 1 < n/p, let

1
q

=
1
p
− m− 1

n
.

Otherwise, take q > n. Then

|u|q ≤ C‖u‖m−1,p, u ∈ Cm−1(Q),

in view of Theorem 10.48. Hence,

|Dju|q ≤ C‖Dju‖m−1,p ≤ C‖u‖m,p,

implying

|∇u|q ≤ C‖u‖m,p.

Since q > n, we have

|u|∞ ≤ C(|∇u|q + |u|q) ≤ C′‖u‖m,p

(Theorem 10.47). This proves the theorem.

We also have

Theorem 10.51. If m > n/p and u ∈ Wm,p(Q), then u ∈ C(Q), and

max
Q

|u| ≤ C‖u‖m,p. (10.144)

Proof. If {uk} is a sequence in Cm(Q) converging to u in Wm,p(Q), then

|uj − uk|∞ ≤ C‖uj − uk‖m,p → 0.

Hence, uk converges uniformly on Q to a continuous function û. Since
uk → u in Lp(Q), we must have û = u a.e.

Corollary 10.52. If m− � > n/p, then Wm,p(Q) ⊂ C�(Q), and

max
|τ |≤�

max
Q

|Dτu| ≤ C‖u‖m,p, u ∈ Wm,p(Q).

Proof. We apply Theorem 2.26 to the derivatives of u up to order �.
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10.24 Exercises

1. Show that

u(x) =
∑

αµe
iµx (10.145)

is real valued when α−µ appears whenever αµ appears and satisfies

α−µ = αµ. (10.146)

2. Show that Ht is a Hilbert space for each real t.

3. Show that ∑
(1 + µ2)t|α(j)

µ − α(k)
µ |2 → 0 as j, k → ∞

implies that there is a subsequence such that

α(j)
µ → αµ as j → ∞

for each µ ∈ Z
n.

4. Why does letting k → ∞ in∑
µ2≤N

(1 + µ2)t|α(j)
µ − α(k)

µ |2 < ε2, j, k > K,

imply ∑
µ2≤N

(1 + µ2)t|α(j)
µ − αµ|2 ≤ ε2, j > K.

5. Why does this imply∑
(1 + µ2)t|α(j)

µ − αµ|2 ≤ ε2, j > K.

6. Show that both sides of (10.15) equal

(2π)n
∑

αµβ−µ

when u, v are given by (10.10).

7. Prove Lemma 10.2.

8. Prove (10.22) and (10.23). Show that they imply (10.21).

9. Prove (10.25).

10. In the proof of Theorem 10.6, how do we know that uN converges
uniformly to u and not some other function?
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11. Show that there is a constant C such that

1 + µ2 ≤ C|µ2 − λ|, µ ∈ Z
n,

when λ is not an eigenvalue of −∆.

12. List the first 20 eigenvalues of −∆ when n = 3.

13. Prove (10.56).

14. Show that

‖∇v‖2
s + ‖v‖2

s = ‖v‖2
t , v ∈ Ht,

when s = t− 1.

15. Show that

|F (x, t)| ≤ C(|t|q + |t|), x ∈ Q, t ∈ R,

implies ∫
Q

|F (x, u)| dx ≤ C‖u‖q1, u ∈ H1.

16. Carry out the details of the proof of Lemma 10.27.

17. Prove:
∫
Q

µ(E) dx =
∫
e

[∫
Qn−1

µ(E(xn))dy

]
dxn,

where µ(E) is the characteristic function of E.

18. Prove (10.133).

19. Let

Q̂ = [−2π, 2π]n = {x ∈ R
n : −2π ≤ xj ≤ 2π, 1 ≤ j ≤ n}.

For each j, let x′
j be the vector x with the xj component missing

(e.g., x′
3 = {x1, x2, x4, . . . , xn}). Thus we can write x = {x′

j , xj} for
each j. For −2π ≤ xj ≤ 0, define

u(x′
j , xj) = 4u(x′

j ,−
1
2
xj) − 3u(x′

j ,−xj).
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Show that
∫ 0

−2π
|u(x′

j , xj)| dxj ≤ 4
∫ 0

−2π
|u(x′

j ,−
1
2
xj)| dxj

+ 3
∫ 0

−2π
|u(x′

j ,−xj)| dxj

≤ 8
∫ π

0

|u(x′
j , z)| dz

+ 3
∫ 2π

0

|u(x′
j , z)| dz

≤ 11
∫ 2π

0

|u(x′
j , xj)| dxj .

20. Under the same circumstances, show that
∫ 0

−2π
|Dju(x′

j , xj)| dxj ≤ 2
∫ 0

−2π
|Dju(x′

j ,−
1
2
xj)| dxj

+ 3
∫ 0

−2π
|Dju(x′

j ,−xj)| dxj

≤ 4
∫ π

0

|Dju(x′
j , z)| dz

+ 3
∫ 2π

0

|Dju(x′
j , z)|dz

≤ 7
∫ 2π

0

|Dju(x′
j , xj)| dxj .

21. Conclude that

|u|1,Q̂ ≤ C|u|1,Q, |∇u|1,Q̂ ≤ C|∇u|1,Q. (10.147)

22. Find an estimate for the constant Cpq in (10.130).

23. If

ũ = u/C0|Q|1/p
′
(|∇u|p + |u|p)

and ρ > 1, show that

|ũρ|n′ ≤ C0(|∇ũρ|1 + |ũρ|1)
≤ C0(ρ|ũρ−1∇ũ|1 + |ũρ−1ũ|1)
≤ C0|ũρ−1|p′(ρ|∇ũ|p + |ũ|p).
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24. Also, show that

|ũρ|n′ ≤ C0|ũ|ρ−1
ρp′ |Q|1/ρp

′
(ρ|∇ũ|p + |ũ|p).

25. Also,

C0|Q|1/ρp′
(ρ|∇ũ|p + |ũ|p) ≤ ρ.

26. Also,

|ũ|σkn′ ≤ σk/σk |ũ|1−(1/σk)

σk−1n′ ,

where σ = n′/p′ > 1.

27. Also,

|ũ|σNn′ ≤ σ
N
k=0 k/σk

.

28. Show that

‖u‖m,p =
∑

|τ |≤m

|Dτu|p

and 
 ∑

|τ |≤m

∫
Q

|Dτu|pdx




1/p

are equivalent norms.

29. Show that

‖ûk − uk‖m,p → 0

implies that ûτ = uτ for each τ.





Appendix A

Concepts from functional analysis

A.1 Some basic definitions

Consider a collection C of elements or “vectors” with the following prop-
erties:

1. They can be added. If f and g are in C, so is f + g.

2. f + (g + h) = (f + g) + h, f, g, h ∈ C.

3. There is an element 0 ∈ C such that h + 0 = h for all h ∈ C.

4. For each h ∈ C there is an element −h ∈ C such that h+(−h) = 0.
5. g + h = h + g, g, h ∈ C.

6. For each real number α, αh ∈ C.

7. α(g + h) = αg + αh.

8. (α + β)h = αh + βh.

9. α(βh) = (αβ)h.
10. To each h ∈ C there corresponds a real number ‖h‖ with the

following properties:
11. ‖αh‖ = |α| ‖h‖.
12. ‖h‖ = 0 if, and only if, h = 0.
13. ‖g + h‖ ≤ ‖g‖ + ‖h‖.
14. If {hn} is a sequence of elements of C such that ‖hn−hm‖ → 0 as

m,n → ∞, then there is an element h ∈ C such that ‖hn−h‖ → 0
as n → ∞.

A collection of objects which satisfies statements (1)–(9) and the addi-
tional statement

1h = h (15)

313



314 Appendix A: Concepts from functional analysis

is called a vector space (VS) or linear space. We will be using real
scalars.

A set of objects satisfying statements (1)–(13) is called a normed
vector space (NVS), and the number ‖h‖ is called the norm of h. Al-
though statement (15) is not implied by statements (1)–(9), it is implied
by statements (1)–(13). A sequence satisfying

‖hn − hm‖ → 0 as m,n → ∞

is called a Cauchy sequence. Property (14) states that every Cauchy
sequence converges in norm to a limit (i.e., satisfies ‖hn − h‖ → 0 as
n → ∞). Property (14) is called completeness, and a normed vector
space satisfying it is called a complete normed vector space or a Banach
space.

We shall write

hn → h as n → ∞

when we mean

‖hn − h‖ → 0 as n → ∞.

A.2 Subspaces

Definition A.1. A subset U of a vector space V is called a subspace
of V if α1x1 + α2x2 is in U whenever x1, x2 are in U and α1, α2 are
scalars.

Definition A.2. A subset U of a normed vector space X is called closed
if for every sequence {xn} of elements in U having a limit in X, the limit
is actually in U.

A simple consequence of the definitions is

Lemma A.3. A closed subspace of a Banach space is a Banach space
with the same norm.

A.3 Hilbert spaces

Lemma A.4. Consider a vector space X having a mapping (f, g) from
pairs of its elements to the reals such that
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(i) (αf, g) = α(f, g)
(ii) (f + g, h) = (f, h) + (g, h)
(iii) (f, g) = (g, f)
(iv) (f, f) > 0 unless f = 0.

Then

(f, g)2 ≤ (f, f)(g, g), f, g ∈ X. (A.1)

Proof. Let α be any scalar. Then

(αf + g, αf + g) = α2(f, f) + 2α(f, g) + (g, g)

= (f, f)
[
α2 + 2α

(f, g)
(f, f)

+
(f, g)2

(f, f)2

]

+ (g, g) − (f, g)2

(f, f)

= (f, f)
[
α +

(f, g)
(f, f)

]2

+ (g, g) − (f, g)2

(f, f)
,

where we have completed the square with respect to α and tacitly as-
sumed that (f, f) �= 0. This assumption is justified by the fact that if
(f, f) = 0, then (A.1) holds vacuously. We now note that the left-hand
side of (A.2) is nonnegative by property (iv) listed above. If we now take
α = −(f, g)/(f, f), this inequality becomes

0 ≤ (g, g) − (f, g)2

(f, f)
,

which is exactly what we want.

Definition A.5. An expression (f, g) that assigns a real number to each
pair of elements of a vector space and satisfies the aforementioned prop-
erties is called a scalar (or inner) product.

We have essentially proved

Lemma A.6. If a vector space X has a scalar product (f, g), then it is
a normed vector space with norm ‖f‖ = (f, f)1/2.
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Proof. Again, the only thing that is not immediate is the triangle in-
equality. This follows from (A.1) since

‖f + g‖2 = ‖f‖2 + ‖g‖2 + 2(f, g)

≤ ‖f‖2 + ‖g‖2 + 2‖f‖ ‖g‖
= (‖f‖ + ‖g‖)2.

This gives the desired result.

Definition A.7. A vector space which has a scalar product and is com-
plete with respect to the induced norm is called a Hilbert space.

Every Hilbert space is a Banach space, but the converse is not true.
Inequality (A.1) is known as the Cauchy–Schwarz inequality.

Proposition A.8. The space R
n is a Hilbert space.

A.4 Bounded linear functionals

Let H be a Hilbert space and let (x, y) denote its scalar product. If we
fix y, then the expression (x, y) assigns to each x ∈ H a number.

Definition A.9. An assignment F of a number to each element x of a
vector space is called a functional and denoted by F (x).

The scalar product is not the first functional we have encountered. In
any normed vector space, the norm is also a functional. The functional
F (x) = (x, y) has some very interesting and surprising features. For
instance it satisfies

F (α1x1 + α2x2) = α1F (x1) + α2F (x2) (A.2)

for α1, α2 scalars.

Definition A.10. A functional satisfying (A.2) is called linear.

Another property is

|F (x)| ≤ M ‖x‖, x ∈ H (A.3)

which follows immediately from Schwarz’s inequality (cf. (A.1)).

Definition A.11. A functional satisfying(A.3) is called bounded. The
norm of such a functional is defined to be

‖F‖ = sup
x∈H, x�=0

|F (x)|
‖x‖ .
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Thus for y fixed, F (x) = (x, y) is a bounded linear functional in the
Hilbert space H. We have

Theorem A.12. For every bounded linear functional F on a Hilbert
space H there is a unique element y ∈ H such that

F (x) = (x, y) for all x ∈ H. (A.4)

Moreover,

‖y‖ = sup
x∈H, x�=0

|F (x)|
‖x‖ = ‖F‖. (A.5)

Theorem A.12 is known as the Riesz representation theorem.

We also have

Theorem A.13. Let M be a subspace of a normed vector space X, and
suppose that f(x) is a bounded linear functional on M. Set

‖f‖ = sup
x∈M, x�=0

|f(x)|
‖x‖ .

Then there is a bounded linear functional F (x) on the whole of X such
that

F (x) = f(x), x ∈ M , (A.6)

and

‖F‖ = sup
x∈X, x�=0

|F (x)|
‖x‖ = ‖f‖ = sup

x∈M, x �=0

|f(x)|
‖x‖ . (A.7)

Theorem A.13 is known as the Hahn–Banach theorem.

A.5 The dual space

For any normed vector space X, let X ′ denote the set of bounded linear
functionals on X. If f, g ∈ X ′, we say that f = g if

f(x) = g(x) for all x ∈ X.

The “zero” functional is the one assigning zero to all x ∈ X. We define
h = f + g by

h(x) = f(x) + g(x), x ∈ X,

and g = αf by

g(x) = αf(x), x ∈ X.
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Under these definitions, X ′ becomes a vector space. We have been em-
ploying the expression

‖f‖ = sup
x�=0

|f(x)|
‖x‖ , f ∈ X ′. (A.8)

This is easily seen to be a norm. In fact

sup
|f(x) + g(x)|

‖x‖ ≤ sup
|f(x)|
‖x‖ + sup

|g(x)|
‖x‖ .

Thus X ′ is a normed vector space. It is therefore natural to ask when
X ′ will be complete. A rather surprising answer is given by

Theorem A.14. The space X ′ is a Banach space whether or not X is.

Theorem A.15. Let X be a normed vector space and let x0 �= 0 be an
element of X. Then there is a bounded linear functional F (x) on X such
that

‖F‖ = 1, F (x0) = ‖x0‖. (A.9)

Corollary A.16. For each x ∈ X,

‖x‖ = max
f∈X′, f �=0

|f(x)|
‖f‖ . (A.10)

Consequently, if x1 is an element of X such that f(x1) = 0 for every
bounded linear functional f on X, then x1 = 0.

Theorem A.17. Let M be a subspace of a normed vector space X, and
suppose x0 is an element of X satisfying

d = d(x0,M) = inf
x∈M

‖x0 − x‖ > 0. (A.11)

Then there is a bounded linear functional F on X such that ‖F‖ = 1,
F (x0) = d, and F (x) = 0 for x ∈ M.

A subset U of a normed vector space is called convex if αx+(1−α)y
is in U for each x, y ∈ U, 0 < α < 1. Clearly, the closure of a convex
set is convex. The following consequence of the Hahn–Banach theorem
is sometimes referred to as the “geometric form of the Hahn–Banach
Theorem.”

Theorem A.18. If U is a closed, convex subset of a normed vector
space X and x0 ∈ X is not in U, then there is an x′ ∈ X ′ such that

x′(x0) ≥ x′(x), x ∈ U , (A.12)

and x′(x0) �= x′(x1) for some x1 ∈ U .
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A.6 Operators

Definition A.19. Let X,Y be normed vector spaces. A mapping A

which assigns to each element x of a set D(A) ⊂ X a unique element
y ∈ Y is called an operator (or transformation).

The set D(A) on which A acts is called the domain of A.

Definition A.20. The operator A is called linear if

(a) D(A) is a subspace of X
and

(b) A(α1x1 +α2x2) = α1Ax1 +α2Ax2 for all scalars α1, α2 and all
elements x1, x2 ∈ D(A).

Definition A.21. An operator A is called bounded if there is a con-
stant M such that

‖Ax‖ ≤ M‖x‖, x ∈ X. (A.13)

The norm of such an operator is defined by

‖A‖ = sup
x�=0

‖Ax‖
‖x‖ . (A.14)

Again, it is the smallest M which works in (A.13).

Definition A.22. An operator A is called continuous at a point x0 ∈
X if xn → x in X implies Axn → Ax in Y.

A bounded linear operator is continuous at each point. For if xn → x

in X, then

‖Axn −Ax‖ ≤ ‖A‖ • ‖xn − x‖ −→ 0.

We also have

Theorem A.23. If a linear operator A is continuous at one point x0 ∈
X, then it is bounded, and hence continuous at every point.

Proof. If A were not bounded, then for each n we could find an element
xn ∈ X such that

‖Axn‖ > n‖xn‖.

Set

zn =
xn

n‖xn‖
+ x0.
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Then zn → x0. Since A is continuous at x0, we must have Azn → Ax0.

But

Azn =
Axn

n‖xn‖
+ Ax0.

Hence,
Axn

n‖xn‖
−→ 0.

But
‖Axn‖
n‖xn‖

> 1,

providing a contradiction.

We let B(X,Y ) be the set of bounded linear operators from X to Y

having domains equal to the whole of X. Under the norm (A.14), one
easily checks that B(X,Y ) is a normed vector space. As a generalization
of Theorem A.14, we have

Theorem A.24. If Y is a Banach space, so is B(X,Y ).

Lemma A.25. Let X, Y be normed vector spaces, and let A be a linear
operator from X to Y. Then for each x in D(A) and ε > 0 there is an
element x0 ∈ D(A) such that

Ax0 = Ax, d(x0, N(A)) = d(x,N(A)),

d(x,N(A)) ≤ ‖x0‖ ≤ d(x,N(A)) + ε.

Proof. There is an x1 ∈ N(A) such that ‖x− x1‖ < d(x,N(A)) + ε. Set
x0 = x− x1.

Definition A.26. Let X,Y be normed vector spaces. A linear operator
K from X to Y is called compact (or completely continuous) if
D(K) = X and for every sequence {xn} ⊂ X such that ‖xn‖ ≤ C, the
sequence {Kxn} has a subsequence which converges in Y.

The set of all compact operators from X to Y is denoted by K(X,Y ).
If X = Y, then we write K(X) for K(X,X).

Definition A.27. If A is a linear operator on a normed vector space X,
a scalar λ is called an eigenvalue if there is a nonzero element v ∈ X

such that

(A− λ)v = 0.
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Any such v is called a corresponding eigenelement or eigenvector.
The subspace spanned by the eigenelements corresponding to an eigen-
value λ is called its eigenspace and is denoted by E(λ).

A.7 Adjoints

Suppose X,Y are normed vector spaces and A ∈ B(X,Y ). For each
y′ ∈ Y ′, the expression y′(Ax) assigns a scalar to each x ∈ X. Thus, it
is a functional F (x). Clearly F is linear. It is also bounded since

|F (x)| = |y′(Ax)| ≤ ‖y′‖ • ‖Ax‖ ≤ ‖y′‖ • ‖A‖ • ‖x‖.

Thus, there is an x′ ∈ X ′ such that

y′(Ax) = x′(x), x ∈ X. (A.15)

This functional x′ is unique, for any other functional satisfying (A.15)
would have to coincide with x′ on each x ∈ X. Thus, to each y′ ∈ Y ′

we have assigned a unique x′ ∈ X ′. We designate this assignment by A′

and note that it is a linear operator from Y ′ to X ′. Thus, (A.15) can be
written in the form

y′(Ax) = A′y′(x). (A.16)

The operator A′ is called the adjoint (or conjugate) of A.

Theorem A.28. If A ∈ B(X,Y ), then A′ ∈ B(Y ′, X ′), and ‖A′‖ =
‖A‖.

The adjoint has the following easily verified properties:

(A + B)′ = A′ + B′. (A.17)

(αA)′ = αA′. (A.18)

(AB)′ = B′A′. (A.19)

Many problems in mathematics and its applications can be put in the
form: given normed vector spaces X, Y and an operator A ∈ B(X,Y ),
one wishes to solve

Ax = y. (A.20)

The set of all y for which one can solve (A.20) is called the range of A
and is denoted by R(A). The set of all x for which Ax = 0 is called the
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null space of A and is denoted by N(A). Since A is linear, it is easily
checked that N(A) and R(A) are subspaces of X and Y, respectively. If
y ∈ R(A), there is an x ∈ X satisfying (A.20). For any y′ ∈ Y ′ we have

y′(Ax) = y′(y).

Taking adjoints we get

A′y′(x) = y′(y).

If y′ ∈ N(A′), this gives y′(y) = 0. Thus, a necessary condition that
y ∈ R(A) is that y′(y) = 0 for all y′ ∈ N(A′).

A.8 Closed operators

Definition A.29. The operator A is called closed if whenever {xn} ⊂
D(A) is a sequence satisfying

xn −→ x in X, Axn −→ y in Y , (A.21)

then x ∈ D(A) and Ax = y.

Clearly, we have

Lemma A.30. All operators in B(X,Y ) are closed.

Another obvious statement is

Lemma A.31. If A is closed, then N(A) is a closed subspace of X.

A statement which is not so obvious is

Theorem A.32. If X,Y are Banach spaces, and A is a closed linear
operator from X to Y with D(A) = X, then

(a) there are positive constants M, r such that ‖Ax‖ ≤ M whenever
‖x‖ < r

and
(b) A ∈ B(X,Y ).

Theorem A.32 is called the closed graph theorem. As an application
of the closed graph theorem, we have an important result known either
as the uniform boundedness principle or the Banach–Steinhaus
theorem.
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Theorem A.33. Let X be a Banach space, and let Y be a normed vec-
tor space. Let W be any subset of B(X,Y ) such that for each x ∈ X,

sup
A∈W

‖Ax‖ < ∞.

Then there is a finite constant M such that ‖A‖ ≤ M for all A ∈ W.

Another useful consequence of the previous theorems can be stated as
follows.

Theorem A.34. Let A be a closed operator from a Banach space X to
a Banach space Y such that R(A) = Y . If Q is any open subset of D(A),
then the image A(Q) of Q is open in Y .

If A is a linear operator from X to Y, with R(A) = Y and N(A) = {0}
(i.e., consists only of the vector 0), we can assign to each y ∈ Y the
unique solution of

Ax = y.

This assignment is an operator from Y to X and is usually denoted by
A−1 and called the inverse operator of A. It is linear because of the
linearity of A. One can ask: when is A−1 continuous? By Theorem A.23,
this is equivalent to when is it bounded? A very important answer to
this question is given by

Theorem A.35. If X, Y are Banach spaces and A is a closed linear op-
erator from X to Y with R(A) = Y , N(A) = {0}, then A−1 ∈ B(Y,X).

This theorem is sometimes referred to as the bounded inverse the-
orem.

A.9 Self-adjoint operators

Definition A.36. A linear operator A on a Hilbert space X is called
self-adjoint if it has the property that x ∈ D(A) and Ax = f if and
only if

(x,Ay) = (f, y), y ∈ D(A).

In particular, it satisfies

(Ax, y) = (x,Ay), x, y ∈ D(A).
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Proposition A.37. If A is self-adjoint and

(A− λ)x = 0, (A− µ)y = 0

with λ �= µ, then

(x, y) = 0.

Proof. We have

((A− λ)x, y) = (x, (A− µ)y).

Thus,

(λ − µ)(x, y) = 0.

Corollary A.38. Eigenelements corresponding to different eigenvalues
are orthogonal.

Corollary A.39. If A has a compact inverse, its eigenvalues cannot
have limit points.

Proof. If xk is an eigenelement corresponding to λk → λ0 with norm
equal to one, then

A−1xk = xk/λk

is uniformly bounded. Hence, there is a subsequence that converges. But,

‖xk − xj‖2 = ‖xk‖2 − 2(xk, xj) + ‖xj‖2 = 2,

showing that no subsequence can converge.

Corollary A.40. If A−1 is compact, then the eigenelements correspond-
ing to the same eigenvalue form a finite dimensional subspace.

Proof. Same proof. Take λk = λ0 for each k.

Proposition A.41. If A is self-adjoint, A−1 is compact, and all eigen-
values of A are ≥ λ0, then

(Ax, x) ≥ λ0‖x‖2, x ∈ D(A).

Theorem A.42. If A ∈ B(X) is self-adjoint and satisfies

(Ax, x) ≥ 0, x ∈ X,

then there is a unique self-adjoint operator B ∈ B(X) such that

(Bx, x) ≥ 0

and B2 = A. If A is compact, then B is also compact.
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A.10 Subsets

Definition A.43. A subset W of a normed vector space is called
bounded if there is a number b such that ‖x‖ ≤ b for all x ∈ W. It
is called compact if each sequence {x(k)} of elements of W has a sub-
sequence which converges to an element of W.

Definition A.44. A subset V ⊂ W is called dense in W if for every
ε > 0 and every w ∈ W there is a v ∈ V such that ‖v − w‖ < ε.

Definition A.45. A subset W of a normed vector space is called sep-
arable if it has a dense subset that is denumerable. In other words, W
is separable if there is a sequence {xk} of elements of W such that for
each x ∈ W and each ε > 0, there is an xk satisfying ‖x− xk‖ < ε.

Lemma A.46. A compact set is separable.

Definition A.47. For a subset Wof a normed vector space, the linear
span of W is the set of linear combinations of elements of W. It is a
subspace. Its closed linear span is the closure of its linear span.

Lemma A.48. The closed linear span of a separable set is separable.

Theorem A.49. If X ′ is separable, so is X.

Proof. Let {x′
n} be a dense set in X ′. For each n, there is an xn ∈ X

such that ‖xn‖ = 1 and

|x′
n(xn)| ≥ ‖x′

n‖/2

by (A.8). Let M = [{xn}], the closure of the set of linear combinations
of the xn. If M �= X, let x0 be any element of X not in M . Then there
is an x′

0 ∈ M◦ such that ‖x′
0‖ = 1 and x′

0(x0) �= 0 (Theorem A.17). In
particular,

x′
0(xn) = 0, n = 1, 2, . . .

Thus,

‖x′
n‖/2 ≤ |x′

n(xn)| = |x′
n(xn) − x′

0(xn)|

≤ ‖x′
n − x′

0‖ • ‖xn‖ = ‖x′
n − x′

0‖.

Hence,

1 = ‖x′
0‖ ≤ ‖x′

n − x′
0‖ + ‖x′

n‖ ≤ 3‖x′
n − x′

0‖,
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showing that none of the x′
n can come closer than a distance of 1/3 from

x′
0. This contradicts the fact that {x′

n} is dense in X ′. Thus we must
have M = X. But M is separable. To see this, we note that all linear
combinations of the xn with rational coefficients form a denumerable
set. This set is dense in M . Hence, M is separable, and the proof is
complete.

A.11 Finite dimensional subspaces

Let V be a vector space. The elements v1, . . . , vn are called linearly
independent if the only scalars α1, . . . , αn for which

α1v1 + · · · + αnvn = 0 (A.22)

are α1 = · · · = αn = 0. Otherwise, they are called linearly dependent.

Definition A.50. The space V is said to be of dimension n > 0 if

(a) there are n linearly independent vectors in V

and
(b) every set of n + 1 elements of V is linearly dependent.

If there are no independent vectors, V consists of just the zero element
and is said to be of dimension zero. If V is not of dimension n for any
finite n, we say that it is infinite dimensional.

Now suppose dimV = n (i.e., V is of dimension n), and let v1, . . . , vn
be n linearly independent elements. Then every v ∈ V can be expressed
uniquely in the form

v = α1v1 + · · · + αnvn. (A.23)

To see this, note that the set v, v1, . . . , vn of n+1 vectors must be linearly
dependent. Thus, there are scalars β, β1, . . . , βn, not all zero, such that

βv + β1v1 + · · · + βnvn = 0.

Now β cannot vanish, for otherwise the v1, . . . , vn would be dependent.
Dividing by β, we get an expression of the form (A.23). This expression
is unique. For if

v = α′
1v1 + · · · + α′

nvn,

then

(α1 − α′
1)v1 + · · · + (αn − α′

n)vn = 0,
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showing that α′
i = αi for each i. If dimV = n, we call any set of n

linearly independent vectors in V a basis for V. Let X be a normed
vector space, and suppose that it has two norms ‖ · ‖1, ‖ · ‖2. We call
them equivalent and write ‖ · ‖1 ∼ ‖ · ‖2 if there is a positive number
a such that

a−1‖x‖1 ≤ ‖x‖2 ≤ a‖x‖1, x ∈ X. (A.24)

Clearly, this is an equivalence relation, and a sequence {xn} converges
in one norm if and only if it converges in the other.

Theorem A.51. If X is finite dimensional, all norms are equivalent.

We state some important consequences.

Corollary A.52. A finite dimensional normed vector space is always
complete.

Corollary A.53. If M is a finite dimensional subspace of a normed
vector space, then M is closed.

Corollary A.54. If X is a finite dimensional normed vector space, then
every bounded closed set T in X is compact.

Corollary A.54 has a converse.

Theorem A.55. If X is a normed vector space and the surface of its
unit sphere (i.e., the set ‖x‖ = 1) is compact, then X is finite dimen-
sional.

Lemma A.56. If K is a bounded, closed, convex subset of R
n, then for

each x ∈ R
n there is a unique y ∈ K such that

‖x− y‖ = d(x,K) = inf
z∈K

‖x− z‖.

A.12 Weak convergence

Definition A.57. A sequence {xk} of elements of a Banach space X is
said to converge weakly to an element x ∈ X if

x′(xk) −→ x′(x) as k −→ ∞ (A.25)

for each x′ ∈ X ′.

We abbreviate weak convergence by

xk ⇀ x.
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In a Hilbert space, weak convergence is equivalent to

(xk, y) −→ (x, y) as k −→ ∞, y ∈ X.

We shall see how this convergence compares with convergence in norm
(sometimes called strong convergence for contrast). Clearly, a sequence
converging in norm also converges weakly. We have

Lemma A.58. A weakly convergent sequence is necessarily bounded.

A.13 Reflexive spaces

Let X be a Banach space and let x0 be any element of X. Set

F (x′) = x′(x0), x′ ∈ X ′.

Then,

|F (x′)| ≤ ‖x0‖ • ‖x′‖.

This means that F (x′) is a bounded linear functional on X ′. Hence,
there is an x′′

0 ∈ X ′′ = (X ′)′ such that

x′′
0(x′) = x′(x0), x′ ∈ X ′. (A.26)

The element x′′
0 is unique. For if x′′

1 also satisfies (A.26), then

x′′
0(x′) − x′′

1(x′) = 0, x′ ∈ X ′,

showing that x′′
0 = x′′

1 . We set x′′
0 = Jx0. Clearly, J is a linear mapping

of X into X ′′ defined on the whole of X. Moreover, it is one-to-one. For
if Jx0 = 0, we see by (A.26) that x′(x0) = 0 for all x′ ∈ X ′. Hence,
x0 = 0. In our new notation, (A.26) becomes

Jx(x′) = x′(x), x ∈ X, x′ ∈ X ′. (A.27)

We also note that J is a bounded operator. In fact, we have

‖Jx‖ = sup
|Jx(x′)|
‖x′‖ = sup

|x′(x)|
‖x′‖ = ‖x‖, (A.28)

where the least upper bound is taken over all nonvanishing x′ ∈ X ′.

Definition A.59. We call X reflexive if R(J) = X ′′, that is, if for
every x′′ ∈ X ′′ there is an x ∈ X such that Jx = x′′.

Lemma A.60. Every Hilbert space is reflexive.
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Proof. By the Riesz representation theorem (Theorem A.12), every x′ ∈
X ′ is of the form (x, z), where z ∈ X. Hence, X ′ can be made into a
Hilbert space. Thus, elements of X ′′ are of the same form.

We also have

Theorem A.61. If X is reflexive, then every bounded sequence has a
weakly convergent subsequence.

We now realize that weak convergence cannot be equivalent to strong
convergence in a reflexive, infinite dimensional space. The reason is
that if X is reflexive, every sequence satisfying ‖xn‖ = 1 has a weakly
convergent subsequence (Theorem A.61). If this subsequence converged
strongly, then it would follow that X is finite dimensional (Theorem
A.55). On the other hand, we have

Theorem A.62. If X is finite dimensional, then a sequence converges
weakly if and only if it converges in norm.

A.14 Operators with closed ranges

Theorem A.63. Let X,Y be Banach spaces, and let A be a one-to-
one closed linear operator from X to Y. Then a necessary and sufficient
condition that R(A) be closed in Y is that

‖x‖ ≤ C‖Ax‖, x ∈ X. (A.29)

hold.

Theorem A.64. If X,Y are Banach spaces, and A is a closed linear
operator from X to Y , then R(A) is closed in Y if, and only if, there is
a constant C such that

d(x,N(A)) = inf
z∈N(A)

‖x− z‖ ≤ C‖Ax‖, x ∈ D(A) (A.30)

holds.

Theorem A.65. Let X,Y be Banach spaces, and assume that A ∈
B(X,Y ). If R(A) is closed in Y , then

R(A′) = N(A)◦, (A.31)

and hence R(A′) is closed in X ′. Here N(A)◦ is the set of functionals
in X ′ which vanish on N(A).
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Definition A.66. Let X,Y be Banach spaces. An operator A ∈ B(X,Y )
is said to be a Fredholm operator from X to Y if

(1) α(A) = dimN(A) is finite,
(2) R(A) is closed in Y ,
(3) β(A) = dimN(A′) is finite.

The set of Fredholm operators from X to Y is denoted by Φ(X,Y ).
We have

Lemma A.67. If X = Y and K ∈ K(X), then I–K is a Fredholm
operator.

The set of operators for which (1) and (2) hold is denoted by Φ+(X,Y ).
The set for which (2) and (3) hold is denoted by Φ−(X,Y ). Operators
in Φ+(X,Y ) and Φ−(X,Y ) are called semi-Fredholm operators. The
index of a semi-Fredholm operator is defined as

i(A) = α(A) − β(A). (A.32)

Lemma A.68. For K ∈ K(X), i(I −K) = 0.

If A ∈ Φ(X,Y ), then i(A) is finite. If A ∈ Φ+(X,Y ) but not in
Φ(X,Y ), then i(A) = −∞. If A ∈ Φ−(X,Y ) but not in Φ(X,Y ), then
i(A) = ∞.

Theorem A.69. If A is in Φ±(X,Y ) and K ∈ K(X,Y ), then A+K∈
Φ±(X,Y ) and

i(A + K) = i(A). (A.33)

Lemma A.70. Let X be a normed vector space, and suppose that X =
N ⊕X0, where X0 is a closed subspace and N is finite dimensional. If
X1 is a subspace of X containing X0, then X1 is closed.

Lemma A.71. Let Y be a normed vector space, and let R be a closed
subspace. Then R◦ is of finite dimension n if and only if there is an n
dimensional subspace M of Y such that X= R ⊕M.

Corollary A.72. If R = R(A), then R(A)◦ = N(A′). Hence, β(A) = n.

Theorem A.73. Assume that X,Y,Z are Banach spaces. If A ∈ Φ(X,Y)
and B ∈ Φ(Y,Z), then BA ∈ Φ(X,Z) and

i(BA) = i(B) + i(A). (A.34)
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Measure and integration

B.1 Measure zero

Definition B.1. A cuboid (or parallelepiped or box) Q ⊂ R
n is a

set of the form

Q = {x ∈ R
n : aj < xj < bj , j = 1, . . . , n}.

Its volume is given by

vol Q = |Q| = (b1 − a1) · · · (bn − an).

Definition B.2. A set E ⊂ R
n has measure zero if for each ε > 0 it

can be covered by a sequence of cuboids of total volume < ε.

This means that for each ε > 0 there is a sequence {Qk} of cuboids
such that

E ⊂
∞⋃
k=1

Qk,
∞∑
k=1

|Qk| < ε.

A statement is said to hold almost everywhere (abbreviated a.e.) if
the set of points for which it is not true has measure 0. A denumerable
union of sets of measure 0 has measure 0.

Proposition B.3. The boundary of a cuboid having finite volume has
measure 0.

B.2 Step functions

Definition B.4. We call a function ϕ(x) on R
n a step function if it

has a constant value ck on each of a finite number m of nonintersecting

331
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cuboids Qk of finite volume and vanishes outside the closure of

R =
m⋃

k=1

Qk.

It may take any values on the boundary of R. We define the integral of
ϕ(x) to be ∫

ϕ(x) dx =
m∑

k=1

ck|Qk|.

Proposition B.5. The sum or difference of step functions is a step
function.

Definition B.6. The positive part f+(x) and negative part f−(x)
of a function f(x) are defined as

f±(x) = max{±f(x), 0}.

They are nonnegative functions.

Proposition B.7. The positive and negative parts of a step function
are step functions.

We have

Lemma B.8. For every sequence of step functions which decrease to 0
a.e., their integrals converge to 0.

Lemma B.9. If {ϕn} is a nondecreasing sequence of step functions
which satisfy ∫

ϕn(x) dx ≤ C,

then ϕn(x) converges to a finite limit f(x) a.e.

B.3 Integrable functions

Definition B.10. If the function f(x) is the limit a.e. of a sequence of
step functions ϕk satisfying the hypotheses of Lemma B.9, then we define
the integral of f(x) as∫

f(x) dx = lim
k→∞

∫
ϕk(x)dx.
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For this definition to make sense, the limit must be independent of
the sequence ϕk as long as it satisfies the condition of Lemma B.9 and
converges a.e. to f(x). This is guaranteed by Lemma B.8. In fact, we
have

Lemma B.11. If the function f(x) is the limit a.e. of sequences of step
functions ϕk, ψk satisfying the hypotheses of Lemma B.9, then

lim
k→∞

∫
ψk(x) dx = lim

k→∞

∫
ϕk(x) dx.

Proof. For fixed m, the sequence of step functions {[ψm(x) − ϕk(x)]+}
satisfies the hypotheses of Lemma B.8. Hence,∫

[ψm(x) − ϕk(x)]+ dx → 0 as k → ∞.

This implies

lim
k→∞

∫
[ψm(x) − ϕk(x)] dx ≤ 0,

or ∫
ψm(x) dx ≤ lim

k→∞

∫
ϕk(x) dx.

Since this is true for each m, we have

lim
m→∞

∫
ψm(x) dx ≤ lim

k→∞

∫
ϕk(x) dx.

Interchanging the two sequences, we obtain the desired result.

Let S̃ denote the set of those function which are the limits a.e. of se-
quences of step functions satisfying the hypotheses of Lemma B.9. If
f1, f2 ∈ S̃, then f1 + f2 ∈ S̃ and∫

[f1 + f2] dx =
∫

f1 dx +
∫

f2 dx.

Definition B.12. We call a function f(x) integrable (or summable)
in the sense of Lebesgue if it is the difference a.e. of two functions f1, f2 ∈
S̃. We define its integral to be∫

f(x) dx =
∫

f1(x) dx−
∫

f2(x) dx.
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This definition is independent of the functions f1, f2. For, if f = f1 −
f2 = g1 − g2, then f1 + g2 = g1 + f2, and consequently∫

f1 dx +
∫

g2 dx =
∫

g1 dx +
∫

f2 dx.

Thus, ∫
f1 dx−

∫
f2 dx =

∫
g1 dx−

∫
g2 dx.

We denote the set of integrable functions by L1 = L1(Rn).

Proposition B.13. If f ∈ L1, then |f | and f± = max{±f(x), 0} ∈ L1.

Proposition B.14. If f ∈ L1, then there is a sequence {ϕk} of step
functions converging to f a.e. and such that∫

|f(x) − ϕk(x)| dx → 0 as k → ∞.

Theorem B.15. (Beppo-Levi) If {fk} is a nondecreasing sequence of
functions in L1 such that ∫

fk dx ≤ C,

then they converge a.e. to a summable function f, and∫
fk dx →

∫
f dx.

Theorem B.16. (Fatou) If fk ∈ L1 satisfy

(a) fk(x) ≥ 0 a.e.,
(b) fk(x) → f(x) a.e.,
(c)

∫
fk(x) dx ≤ c < ∞,

then f ∈ L1 and ∫
f dx ≤ lim inf

k→∞

∫
fk dx.

Theorem B.17. If fk ∈ L1 and fk(x) ≥ −W (x) ∈ L1, then∫
[ lim inf

k→∞
fk ] dx ≤ lim inf

k→∞

∫
fk dx.

If fk(x) ≤ W (x) ∈ L1, then

lim sup
k→∞

∫
fk dx ≤

∫
[ lim sup

k→∞
fk ] dx.
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Theorem B.18. (Lebesgue) If fk ∈ L1 satisfy

(a) fk(x) → f(x) a.e. and
(b) there is a g(x) ∈ L1 such that

|fk(x)| ≤ g(x) a.e., k = 1, 2, . . . ,

then f ∈ L1 and ∫
fk dx →

∫
f dx.

B.4 Measurable functions

Definition B.19. A function on R
n is called measurable if it is the

limit a.e. of a sequence of step functions.

Theorem B.20. Summable functions are measurable. If f(x) is mea-
surable, g(x) ∈ L1 and

|f(x)| ≤ g(x), a.e.,

then f(x) ∈ L1. If f(x) and g(x) are measurable, then |f(x)|, f(x) ±
g(x), f(x) • g(x), max{f(x), g(x)} are all measurable. If f(x) �= 0 a.e.,
then 1/f(x) is also measurable. If a sequence of measurable functions
converges to f(x) a.e., then f(x) is measurable.

B.5 The spaces Lp

Definition B.21. For 1 ≤ p < ∞, we define Lp = Lp(Rn) to be the set
of those measurable functions f(x) such that |f(x)|p ∈ L1.

Theorem B.22. For each such p, the set Lp is a Banach space with
norm

|f |p =
(∫

|f |p dx
)1/p

.

Theorem B.23. (Hölder) If p > 1, q > 1, 1/p + 1/q = 1, f ∈ Lp, g ∈
Lq, then fg is in L1 and

|fg|1 ≤ |f |p|g|q.

For these values of p, q the space Lp is reflexive with dual space Lq.
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Theorem B.24. If fk ∈ L1 satisfy (a) fk(x) → f(x) a.e., (b) there is
a sequence {gk} ⊂ L1 such that

|fk(x)| ≤ gk(x) a.e., k = 1, 2, . . . ,

and gk → g in L1, then f ∈ L1 and∫
fk dx →

∫
f dx.

Theorem B.25. If fk → f in L1, then there is a subsequence converg-
ing to f(x) a.e.

Theorem B.26. (Fubini) If f ∈ L1, then∫
f(x) dx =

∫
· · ·

∫
f(x1, . . . , xn) dx1 · · · dxn,

where the order of integration is immaterial.

B.6 Measurable sets

Definition B.27. If V ⊂ R
n, the characteristic function µV (x) of

V is defined to be equal to 1 or 0 depending on whether x ∈ V or not.
Thus

µV (x) =

{
1, x ∈ V,

0, x /∈ V.

Definition B.28. A set V ⊂ R
n is measurable if its characteristics

function is measurable. If µV (x) is summable, then the measure of V is
defined to be

m(V ) =
∫

µV (x) dx.

Otherwise, m(V ) = ∞.

Proposition B.29. Open and closed subsets of R
n are measurable.

Proposition B.30. A set has measure 0 if and only if it is measurable
and its measure equals 0. A denumerable union or intersection of mea-
surable sets is measurable. If the measurable sets V1, V2, . . . , are disjoint,
then

m


 ∞⋃

j=1

Vj


 =

∞∑
j=1

m(Vj).
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If Vj ⊂ Vj+1, then

m


 ∞⋃

j=1

Vj


 = lim

j→∞
m(Vj).

If f(x) is measurable and c is arbitrary, then the sets where

f(x) ≤ c, f(x) < c, f(x) ≥ c, f(x) > c

are all measurable. If any one of these sets is measurable for arbitrary
c, then f(x) is measurable.

Theorem B.31. (Egoroff) If E ⊂ R
n is bounded and measurable, then

for every sequence of functions converging point-wise on E and every ε >

0 one can remove from E a set of measure < ε such that the convergence
is uniform on the rest of E.

Theorem B.32. (Lusin) If f(x) is defined on a measurable set E ⊂ R
n,

then it is measurable if and only if for every ε > 0 one can remove from
E an open set of measure < ε such that f(x) will be continuous on the
rest of E.

Definition B.33. For any measurable set Ω ⊂ R
n and for 1 ≤ p < ∞,

we let Lp(Ω) denote the set of those measurable functions f(x) such that
f(x)µΩ(x) is in Lp. If f ∈ L1(Ω), we define∫

Ω

f(x) dx =
∫

Rn

f(x)µΩ(x) dx.

Proposition B.34. The set Lp(Ω) is a Banach space with norm

|f |p,Ω =
(∫

Ω

|f(x)|p dx
)1/p

.

Definition B.35. A function F (x) defined on an interval [a, b] is
absolutely continuous if for every ε > 0 there is a δ > 0 such that

N∑
k=1

[F (bk) − F (ak)] < ε

whenever
N∑

k=1

(bk − ak) < δ,

where the (ak, bk) are nonoverlapping intervals contained in [a, b].
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Theorem B.36. If f(x) is a summable function in [a, b], then

F (x) =
∫ x

a

f(t) dt

is absolutely continuous and satisfies

F ′(x) = f(x) a.e., x ∈ [a, b].

A function F (x) is absolutely continuous in [a, b] if and only if it is of
this form, where f(x) is summable in [a, b].

B.7 Carathéodory functions

Let Ω be a bounded, measurable set in R
n.

Definition B.37. A function f(x, t) on Ω × R is called a Carathéo-
dory function if it is measurable on Ω for each t ∈ R and continuous
on R for a.e.x ∈ Ω.

We shall need

Theorem B.38. If v(x) is continuous on Ω and f(x, t) is a Carathé-
odory function on Ω × R, then the function f(x, v(x)) is measurable.

Proof. Since v(x) is continuous on a closed, bounded set in R
n, there is

an integer N such that

|v(x)| ≤ N, x ∈ Ω.

Let I0 = [−N,N ], let S be the set of measure 0 where f(x, t) fails to be
a continuous function of t for t ∈ I0, and let ε > 0 be given. For each
integer k > 0 define

Eε,k = {x ∈ Ω\S : |t1 − t2| ≤
1
k
, t1, t2 rational, t1, t2 ∈ I0,

=⇒ |f(x, t1) − f(x, t2)| ≤
ε

3
}.

Then x ∈ Ω\(Eε,k∪S) if and only if there are rational numbers t1, t2 ∈ I0
such that |t1 − t2| ≤ 1/k and

|f(x, t1) − f(x, t2)| >
ε

3
.

For each choice of rational t1, t2 ∈ I0 satisfying |t1 − t2| ≤ 1/k, the set
of such points x ∈ Ω is measurable (Proposition B.30). Consequently,
the set Ω\(Eε,k ∪ S) is the denumerable union of measurable sets and,
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hence, measurable. This implies that Eε,k is measurable. Let

Eε =
∞⋃
k=1

Eε,k.

Since Eε,k ⊂ Eε,(k+1), we see that

m(Eε) = lim
k→∞

m(Eε,k).

If x /∈ S, then f(x, t) is a continuous function in t for t ∈ I0. Hence, it
is uniformly continuous there. Consequently, x ∈ Eε,k for k sufficiently
large. This shows that

Ω\Eε ⊂ S.

Thus m(Ω\Eε) = 0. This implies that

m(Eε,k) → m(Eε) = m(Ω)

as k → ∞. Therefore, for each η > 0 there is an integer r such that

m(Eε,r) > m(Ω)−ε
η

2
and

|f(x, t1) − f(x, t2)| ≤
ε

3
wherever t1, t2 ∈ I0, x ∈ Eε,r, and the tj are rational and satisfy |t1 −
t2| ≤ 1/r. Let p = 4Nr, and divide I0 into p intervals of length 1/2r
each. Let s0, . . . , sp be their end points. By Lusin’s theorem (Theorem
B.32), there is a closed set Fj ⊂ Ω̄ for each j such that

m(Fj) > m(Ω) − εη

2p

and f(x, sj) is continuous on Fj . Since Fj is bounded and closed, it is
compact, and there is a δj > 0 such that

|f(x, sj) − f(x′, sj)| <
ε

3
, x, x′ ∈ Fj , |x− x′| < δj .

Let

F =
p⋂

j=1

Fj .

Then F is closed and satisfies

m(F ) > m(Ω)−ε
η

2
.

If we let δ0 be the smallest of the δj , then we have

|f(x, sj) − f(x′, sj)| <
ε

3
, x, x′ ∈ F, |x− x′| < δ0, j = 1, . . . , p.
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Since v(x) is continuous on Ω̄, it is uniformly continuous there, and there
is a δ̃ > 0 such that

|v(x) − v(x′)| < 1
2r

, x, x′ ∈ Ω̄, |x− x′| < δ̃.

Let V = Eε,r ∩ F. Then

m(V ) > m(Ω)−εη.

Let δ = min[δ0, δ̃]. If |x−x′| < δ, then there is an sj such that |v(x)−sj |
and |v(x′)−sj | are both < 1/r. Consequently, for x, x′ ∈ V and |x−x′| <
δ, we have

|f(x, v(x)) − f(x′, v(x′))| < |f(x, v(x)) − f(x, sj)|
+ |f(x, sj) − f(x′, sj)|
+ |f(x′, sj) − f(x′, v(x′))|

<
ε

3
+

ε

3
+

ε

3
= ε.

This shows that f(x, v(x)) is continuous if we remove from Ω an open
set of measure less than η. To see this, let εk = 1/2k. Then there is a
set Vk with m(Vk) > m(Ω) − η/2k and a δk > 0 such that

|f(x, v(x)) − f(x′, v(x′))| < 1
2k

whenever |x− x′| < δk and x, x′ ∈ Vk. Let

V =
∞⋂
k=1

Vk.

Then

m(V ) > m(Ω) − η
∞∑
k=1

2−k = m(Ω) − η.

Let ρ be any positive number. Then there is a k such that 2−k < ρ.

For any x, x′ ∈ V satisfying |x − x′| < δk we have x, x′ ∈ Vk, and
consequently

|f(x, v(x)) − f(x′, v(x′))| < 1
2k

< ρ.

This shows that f(x, v(x)) is continuous on V. Since m(V ) > m(Ω) − η

and η was arbitrary, we see that f(x, v(x)) is measurable by Lusin’s
theorem (Theorem B.32).
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Metric spaces

C.1 Properties

If X is a set, then a map ρ(x, y) of X ×X → R is called a metric on X

if it satisfies

(1) ρ(x, y) = 0 ⇐⇒ x = y, x, y ∈ X,

(2) ρ(x, y) = ρ(y, x), x, y ∈ X,

and

(3) ρ(x, z) ≤ ρ(x, y) + ρ(y, z), x, y, z ∈ X.

A set may have more than one metric. A metric space (X, ρ) is a set
X together with a specific metric ρ(x, y) defined on it. The elements of
X are usually called “points.” A sequence of points {xk} ⊂ X converges
in (X, ρ) to a point x ∈ X if

ρ(xk, x) → 0 as k → ∞.

In this case we write

xk → x in (X, ρ).

It is called a Cauchy sequence in (X, ρ) if

ρ(xj , xk) → 0 as j, k → ∞.

The metric space (X, ρ) is called complete if every Cauchy sequence in
(X, ρ) converges to an element x ∈ X. All Banach and Hilbert spaces
including R

n are examples of complete metric spaces if we use the metric

ρ(x, y) = ‖x− y‖, x, y ∈ X.

341



342 Appendix C: Metric spaces

If (X, ρ), (Y, σ) are metric spaces, a map f(x) : X → Y is called
continuous at x0 ∈ X if for every ε > 0 there is a δ > 0 such that

ρ(x, x0) < δ =⇒ σ(f(x), f(x0)) < ε, x ∈ X.

It is continuous on X if it is continuous at each point of X. It is called
uniformly continuous on X if for each ε > 0 there is a δ > 0 such
that

ρ(x1, x2) < δ =⇒ σ(f(x1), f(x2)) < ε, x1, x2 ∈ X.

Note that δ does not depend on x1, x2. A sequence of functions fk(x) :
X → Y converges point-wise in (X, ρ) to a function f(x) if

fk(x) → f(x), x ∈ X.

It converges uniformly in (X, ρ) if for every ε > 0 there is a number N
such that

σ(fk(x), f(x)) < ε, k > N, x ∈ X.

Note that N does not depend of x.

A subset Z ⊂ X is called compact in (X, ρ) if each sequence {zk} ⊂ Z

has a subsequence converging to a point z ∈ Z in (X, ρ). A subset Z ⊂ X

is called bounded if there is an x0 ∈ X such that

ρ(x, z0) ≤ C, z ∈ Z.

A point x0 ∈ Z ⊂ X is called interior point of Z if there is a δ > 0
such that

ρ(x, x0) < δ =⇒ x ∈ Z.

A subset Z ⊂ X is called open if all of its points are interior points of
X.

Proposition C.1. Every union of open sets is open. Every finite inter-
section of open sets is open.

A set Z ⊂ X is called closed if its complement X\Z in X is open.

Proposition C.2. All intersections of closed sets are closed. All finite
unions of closed sets are closed.

An open covering of a set Z ⊂ X is a collection of open sets in
(X, ρ) such that Z is contained in their union.
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Theorem C.3. If Z ⊂ X is compact in (X, ρ), then from every open
covering of Z one can select a finite number of them that will cover Z.

Theorem C.4. Every bounded, closed subset of R
n is compact.

The closure of a subset Z of a metric space is the smallest closed set
containing it, that is, the intersection of all closed sets containing Z.

Theorem C.5. A metric space is complete if and only if every sequence
{Sk} of closed spheres satisfying Sk+1 ⊂ Sk having radii rk → 0 as
k → ∞ has a non–empty intersection.

The space C[a, b] is the metric space of real functions continuous on
the closed interval [a, b] with the metric

ρ(x, y) = sup
a≤t≤b

|x(t) − y(t)|.

A set Z ⊂ C[a, b] is called equicontinuous if for each ε > 0 there is a
δ > 0 such that

|x(t) − x(t′)| < ε

for all x ∈ Z when |t− t′| < δ.

Theorem C.6. (Arzelà–Ascoli) A subset Z ⊂ C[a, b] is compact if and
only if it is closed, bounded, and equicontinuous.

Theorem C.7. A continuous map of a compact metric space into a
metric space is uniformly continuous.

Theorem C.8. If a sequence of continuous functions from a metric
space to a metric space converges uniformly, then the limit function is
continuous.

Theorem C.9. If a real function is continuous on a compact metric
space, then it attains its supremum and infimum.

C.2 Para-compact spaces

Definition C.10. A collection Θ of sets is called a refinement of a
collection Λ of sets, if each member of Θ is a subset of one of the members
of Λ.

Definition C.11. A collection of sets is called a cover of a set X if
the set X is contained in the union of the members of the collection.
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Definition C.12. A cover is called an open cover if every member of
the collection is an open set.

Definition C.13. A cover of X is called locally finite if each point
of X has a neighborhood which intersects only finitely many members of
the cover.

Definition C.14. A set X is called para-compact if each open cover
has an open locally finite refinement.

Theorem C.15. Any subset of a metric space is para-compact.



Appendix D

Pseudo-gradients

D.1 The benefits

If you recall in Chapter 2, we introduced the concept of a pseudo-
gradient. This was done in order to solve differential equations in which
the right-hand side was not Lipschitz continuous. These equations came
about when we tried to show that if the gradient of a C1 function did
not vanish, we could decrease the function. But the equations we wanted
to use involved the gradient of the function, which was only known to be
continuous and not Lipschitz continuous. Our approach was to substi-
tute another function for the gradient which (a) was Lipschitz continuous
and (b) allowed one to decrease the function when the gradient does not
vanish. This was done by approximating the gradient by a smoother
function. In R

2 we used the Heine–Borel theorem to cover bounded sets
by a finite number of small balls, construct a Lipschitz continuous func-
tion in each ball and then piece them together by means of a partition
of unity.

However, in an infinite dimensional Hilbert space this approach does
not seem to work. We do not have any difficulty constructing a Lipschitz
continuous approximation in a ball or a finite number of balls. But we
need to cover the space (or portion of the space) with balls that are
locally finite (i.e., any small neighborhood intersects only a finite number
of them). This is where the rub is. Can this be done in an arbitrary
Hilbert space?

Fortunately, the answer is yes. However, we will need some powerful
results from point set topology.

Definition D.1. A collection Θ of sets is called a refinement of a
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collection Λ of sets, if each member of Θ is a subset of one of the members
of Λ. A collection of sets is called a cover of a set X if the set X is
contained in the union of the members of the collection. It is called an
open cover if every member of the collection is an open set. A cover of
X is called locally finite if each point of X has a neighborhood which
intersects only finitely many members of the cover. A set X is called
para-compact if each open cover has an open locally finite refinement.

What we need now is

Theorem D.2. Any subset of a metric space is para-compact.

Unfortunately, we do not have the time and space to prove this theo-
rem. All we can do is refer to [Kelley, 1955] for a proof. We shall use it
to prove the existence of a mapping Y (u) needed to strengthen Theorem
2.5 (cf. Theorem D.5).

D.2 The construction

We shall prove

Lemma D.3. Let X(u) be a continuous map from a Hilbert space E to
itself, and let

Ê = {u ∈ E : X(u) �= 0}.

If θ < 1, then there is a mapping Y (u) from Ê to E which is locally
Lipschitz continuous and satisfies

‖Y (u)‖ ≤ 1, θ‖X(u)‖ ≤ (X(u), Y (u)), u ∈ Ê. (D.1)

Proof. For each u ∈ Ê, there is an element h(u) ∈ E such that

‖h(u)‖ = 1, ‖X(u)‖ = (X(u), h(u)), u ∈ Ê (D.2)

(just take h(u) = X(u)/‖X(u)‖). By the continuity of X(u), for each
u ∈ Ê there is a neighborhood N(u) of u such that

0 < θ‖X(v)‖ ≤ (X(v), h(u)), v ∈ N(u). (D.3)

The collection {N(u)} forms as open covering of Ê. Since Ê is para-
compact (Theorem D.2), this open cover has a locally finite open re-
finement {Nτ}. Let {ψτ} be a locally Lipschitz continuous partition of
unity subordinate to this refinement. We construct this partition of unity
as follows. Our first step is to establish the following generalization of
Lemma 2.3.
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Lemma D.4. If A is any set in a metric space (cf. Appendix C) and

g(p) = d(p,A) = inf
q∈A

ρ(p, q),

then

|g(p) − g(p′)| ≤ ρ(p, p′).

Proof. If q ∈ A, then

ρ(p, q) ≤ ρ(p, p′) + ρ(p′, q)

and

d(p,A) ≤ ρ(p, q) ≤ ρ(p, p′) + ρ(p′, q).

Thus,

d(p,A) ≤ ρ(p, p′) + d(p′, A).

Consequently,

d(p,A) − d(p′, A) ≤ ρ(p, p′).

Interchanging p and p′ gives

d(p′, A) − d(p,A) ≤ ρ(p′, p),

which produces the desired inequality.

Now to the construction of the partition of unity. Let

gτ (p) = d(p,E\Nτ ) = inf
q/∈Nτ

‖p− q‖.

Then,

gτ (p) ≡ 0, p /∈ Nτ ,

and gτ (p) is Lipschitz continuous by Lemma D.4. Define

ψτ (p) =
gτ (p)∑
ν gν(p)

, p ∈ Nτ .

The denominator is positive and finite for each p ∈ Nτ . The reason for
this is that each p ∈ Nτ is contained in at least one, but not more than
a finite number of Nν , and gν(p) = 0 when p is not in Nν .

For any p ∈ Ê, let Ñ(p) be a small neighborhood of p. Then

Ñ(p) ∩Nτ �= φ

for only a finite number of τ. Thus, there is only a finite number of gτ
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which do not vanish on Ñ(p). Since each gτ is locally Lipschitz contin-
uous, the same is true of the denominator of each ψτ . Thus the same is
true of each ψτ itself.

For each τ , let uτ be an element for which Nτ ⊂ N(uτ ). Let

Y (v) =
∑

ψτ (v)h(uτ ).

Since uτ is fixed on the support of ψτ , Y (v) is locally Lipschitz contin-
uous. By (D.3)

θ‖X(v)‖ ≤ (X(v), h(uτ )), v ∈ Nτ . (D.4)

Thus

‖Y (v)‖ ≤
∑

ψτ (v)‖h(uτ )‖ =
∑

ψτ (v) = 1

and

(X(v), Y (v)) =
∑

ψτ (v)(X(v), h(uτ ))

≥ θ
∑

ψτ (v)‖X(v)‖ = θ‖X(v)‖.

This gives the desired result.

As a result of Lemma D.3, we can remove the requirement of local Lips-
chitz continuity from our theorems. This is accomplished by substituting
the equation

dσ(t)v
dt

= −Y (u) (D.5)

for the equation

dσ(t)v
dt

= − G′(σ(t)v)
max[‖G′(σ(t))‖H , δ]

, (D.6)

in (2.48), where Y (u) is the pseudo-gradient corresponding to X(u) =
G′(u). By using (D.5) in place of (2.48), we achieve the same goal, but a
bit slower. This is similar to skiing down a smoother path even though
it is not as steep as a more direct path which is not so smooth. As
an example, by using this method we can obtain the following stronger
version of the sandwich theorem.

Theorem D.5. Let M,N be closed subspaces of a Hilbert space E such
that M = N⊥. Assume that at least one of these subspaces is finite
dimensional. Let G be a continuously differentiable functional on E that
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satisfies

m0 = sup
v∈N

inf
w∈M

G(v + w) �= −∞ (D.7)

and

m1 = inf
w∈M

sup
v∈N

G(v + w) �= ∞. (D.8)

Then there is a sequence {uk} ⊂ E such that

G(uk) → c, m0 ≤ c ≤ m1, G
′(uk) → 0. (D.9)

In place of Theorem 2.8 we have

Theorem D.6. Under hypotheses (1.78) and (2.28), there is at least
one solution of (1.1),(1.2).

In place of Theorem 2.23 we have

Theorem D.7. Assume that (1.78), (2.28), and (2.80) hold. Then there
is a nontrivial solution of (1.1),(1.2).

In place of Theorem 2.26 we have

Theorem D.8. Let G be a continuously differentiable functional on a
Hilbert space H. Assume that G(0) = 0 and that there are positive num-
bers ε, ρ such that

G(u) ≥ ε when ‖u‖ = ρ. (D.10)

Assume also that there is a nonzero element ϕ0 ∈ H such that

G(rϕ0) ≤ C0, r > 0, (D.11)

for some constant C0. Then there is a sequence {uk} ⊂ H such that

G(uk) → c, ε ≤ c ≤ C0, G′(uk) → 0. (D.12)

We replace Theorem 2.27 with

Theorem D.9. Assume that either

t2 − 2F (x, t) ≤ W (x) ∈ L1(Ω), t > 0 (D.13)

or

t2 − 2F (x, t) ≤ W (x) ∈ L1(Ω), t < 0. (D.14)

Then under the hypotheses of Theorems 2.21 and 1.37, problem (1.1),
(1.2) has at least one nontrivial solution.

Theorem 2.6 can be replaced by
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Theorem D.10. Assume that (1.78) holds with

1 ≤ β(x) ≤ 2, β(x) �≡ 1, β(x) �≡ 2. (D.15)

If G(u) is given by (1.63) and G′ is continuous, then there is a u0 ∈ H

such that

G′(u0) = 0. (D.16)

In particular, if f(x, t) is continuous in both variables, then u0 is a
solution of (1.1),(1.2) in the usual sense.

In place of Lemma 2.19 we can state

Lemma D.11. In addition to the hypotheses of Theorem D.6, assume
that there are positive constants ε, ρ such that

G(u) ≥ ε (D.17)

when

‖u‖H = ρ. (D.18)

Then there is a solution u of (1.1),(1.2) satisfying (D.17).

We can replace Theorem 3.22 by

Theorem D.12. Assume that (1.78) holds with

2 ≤ β(x) ≤ 5, β(x) �≡ 2, β(x) �≡ 5. (D.19)

If G0(u) is given by (3.15), then there is a u0 ∈ H1
0 such that

G′
0(u0) = 0. (D.20)

In particular, if f(x, t) is continuous in both variables, then u0 is a
solution of (1.1),(1.2) in the usual sense.

In place of Theorem 3.23 we have

Theorem D.13. Let n be an integer ≥ 0. Assume that (1.78) holds
with β(x) satisfying

1 + n2 ≤ β(x) ≤ 1 + (n + 1)2, 1 + n2 �≡ β(x) �≡ 1 + (n + 1)2. (D.21)

Then (3.1), (3.2) has a solution.

We can replace Theorem 3.29 with
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Theorem D.14. Under the hypotheses of Theorems 3.25 and 3.28, if
either

t2 − 2F (x, t) ≤ W (x) ∈ L1(Ω), t > 0

or

t2 − 2F (x, t) ≤ W (x) ∈ L1(Ω), t < 0,

then problem (3.1),(3.2) has at least one nontrivial solution.

In place of Theorem 3.27 we have

Theorem D.15. Assume that (1.78), (2.28), and (3.60) hold. Then
there is a nontrivial solution of (3.1),(3.2).

Concerning Theorem 10.32 we have

Theorem D.16. Under the hypotheses of Theorem 10.26, there is a PS
sequence satisfying

G(uk) → a, G′(uk) → 0.

In place of Theorem 10.34 we can write

Theorem D.17. Under the hypotheses of Theorem 10.26, G has a crit-
ical point which is a solution of (10.54).

For Theorem 10.39 we have

Theorem D.18. Under the hypotheses of Theorems 10.26 and 10.37,
G has a nontrivial critical point which is a solution of (10.54).

In place of Theorem 10.40, we have

Theorem D.19. Assume that (10.66) and (10.80) hold. Let λm and
λm+1 be consecutive eigenvalues of −∆. Assume that (10.82) holds with
α(x) satisfying

λm ≤ α ≤ λm+1, λm �≡ α �≡ λm+1. (D.22)

Then (10.54) has a solution. If, in addition, (10.103) holds, then we are
assured that it has a nontrivial solution.
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point-wise convergence, 342
positive part of a function, 332
potential energy, 148
PS condition, 40
PS sequence, 40, 47
pseudo-gradients, 345

range, 321
refinement, 344, 346
renamed subsequence, 9
retraction, 180
Riesz representation theorem,

317

saddle point, 124
Sard’s theorem, 184
scalar product, 315
Schauder’s fixed point theorem,
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self-adjoint operators, 323
semi-Fredholm operators, 330
separable, 177, 325
simple harmonic motion, 150
step function, 331
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strictly convex, 125
strong convergence, 328
subspace, 314
summable, 333
support, 191

test functions, 90
transformation, 319
triangle inequality, 316

u.s.c., 125
uniformly continuous, 342
upper semi-continuous, 125

vector space, 314
vectors, 313

weak derivative, 11
weakly closed, 127
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