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1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2. Poplar as a Model for Studying Formation . . . . . . . . . . . . . . . . . . . . . . . 51
3. Elucidating the Control of Secondary Xylem Development . . . . . . . . 51

3.1. The Role of Aux/IAA Genes in Regulation of Secondary
Xylem Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2. Genomics Approach to Elucidation of Secondary Xylem
Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4. The Seasonal Control of Cambial Activity . . . . . . . . . . . . . . . . . . . . . . . 56
4.1. Large Scale Sequencing of Active and Dormant Cambial

Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2. Transcript Profiling of Active and Dormant Cambium . . . . . . . 58

5. Future Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.1. Arabidopsis as Test Bed for Rapidly Identifying Genes

Involved in Vascular Development . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2. Rapid Analysis of Gene Function of Poplar Genes with

Unknown Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



Contents xi

6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Chapter 5

Novel Tools for Plant Genome Annotation and Applications to
Arabidopsis and Rice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Volker Brendel

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2. Boon and Bane of the Industrialization of Molecular Biology and

Genetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3. The Gene Structure Annotation Problem . . . . . . . . . . . . . . . . . . . . . . . . 65
4. Gene Structure Annotation by Spliced Alignment . . . . . . . . . . . . . . . . 65
5. The Case for a Community Approach to Annotation . . . . . . . . . . . . . . 68
6. Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Chapter 6

FCModeler: Dynamic Graph Display and Fuzzy Modeling
of Metabolic Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Julie A. Dickerson

1. Modeling Metabolic Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2. Metabolic Networking Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3. Modeling Metabolic Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.1. Graphing the Metabolic Map: FCModeler . . . . . . . . . . . . . . . . . 80
3.2. Modeling Metabolic Networks Using Fuzzy Cognitive Maps 81
3.3. Cycle Analysis in Metabolic Networks . . . . . . . . . . . . . . . . . . . . 82

4. Representing Metabolic Pathways in Virtual Reality . . . . . . . . . . . . . . 82
4.1. 3-D Network Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2. User Interaction and Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3. Virtual Cell Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Chapter 7

Old Methods for New Ideas: Genetic Dissection of the Determinants
of Gene Expression Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Kyunga Kim, Marilyn A.L. West, Richard W. Michelmore,
Dina A. St. Clair, and R.W. Doerge



xii Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2. Genetical Genomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.1. Dye Swap Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.2. Modelling Determinants of Expression Level Polymorphisms 92
3.3. Experimental Design for Expression Level Polymorphism

Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.4. Implementation of ELP Mapping Using Existing Multiple Trait

Mapping Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4. Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.1. Simulation of RIL Genotypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.2. Simulation of Gene Expression Simulation. . . . . . . . . . . . . . . . . 98
4.3. Multiple Gene/trait JZmapqtl Mapping . . . . . . . . . . . . . . . . . . . . 99
4.4. Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Chapter 8

Charting Contig–Component Relationships within the Triticeae:
Exploiting the Genome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Gerard R. Lazo, Nancy Lui, Frank M. You, David D. Hummel,
Shiaoman Chao, and Olin D. Anderson

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
2. Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

2.1. Display Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
2.2. Discerning Contig-Component Relationships . . . . . . . . . . . . . . 112
2.3. Other Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3. Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Chapter 9

Protein Family Classification with Discriminant Function Analysis . . 121

Etsuko N. Moriyama and Junhyong Kim

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
1.1. Protein Classification Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
1.2. Pros and Cons for the Current Protein Classification Tools . . . 122
1.3. G-protein Coupled Receptor Super Family . . . . . . . . . . . . . . . . . 124

2. Discriminant Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
2.1. Input Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



Contents xiii

2.2. Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
2.3. Discrimination Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
2.4. Performance Comparisons for the GPCR Protein Family

Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
3. Development of a Hierarchical Classification Algorithm . . . . . . . . . . 130
4. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Chapter 10

Exploiting Natural Variation to Understand Gene Function in Pine . 133

David B. Neale and Garth R. Brown

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
1.1. Association Mapping in Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

2. Pine is a Model Species to Understand Allelic Effects on Phenotypes 134
2.1. Pines are Evolutionarily Much Older than Crop Species . . . . . 135
2.2. Pines are Mostly Undomesticated and Are Found in Large

Random-Mating Populations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
2.3. Clonal Replication Permits Precise Evaluation of Phenotypes 136
2.4. Direct Determination of Haplotype . . . . . . . . . . . . . . . . . . . . . . . 136

3. Association Mapping in Loblolly Pine . . . . . . . . . . . . . . . . . . . . . . . . . . 138
3.1. Clonal Association Mapping Populations and Phenotypic

Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
3.2. SNP Discovery, Nucleotide Diversity and Linkage

Disequilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
3.3. Associations between SNP Genotype and Phenotype . . . . . . . . 142

4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Chapter 11

MergingAnalyses of Predisposition and Physiology Towards Polygene
Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Daniel Pomp, Mark F. Allan, and Stephanie R. Wesolowsk

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
2. Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
3. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4. Transcriptome Mapping: A New Experimental Paradigm for Analysis

of Complex Trait Genetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
4.1. Expected Outcomes from the Transcriptome Mapping

Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
4.2. Future Directions for Transcriptome Mapping . . . . . . . . . . . . . 154

5. Statistical Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154



xiv Contents

6. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Chapter 12

Mining the EST Databases to Determine Evolutionary Events
in the Legumes and Grasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Jessica A. Schlueter, Phillip Dixon, Cheryl Granger,
and Randy C. Shoemaker

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
2. Evolutionary History of Legumes and Grasses . . . . . . . . . . . . . . . . . . . 164
3. Identification of Duplicated Contigs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
4. Pairwise Distance Measures and Mixtures of Normal

Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
5. Coalesence Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6. Positively Selected Genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
8. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Chapter 13

A Biologist’s View of Systems Integration Systems Biology:
The Pathogen Portal Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

R. Lathigra, Y. He, R.R. Vines, E.K. Nordberg, and B.W.S. Sobral

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
2. Illustration of PathPort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

2.1. Use of PathPort for Genome Annotation and
Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

2.2. PathPort as a Pathogen Information Resource . . . . . . . . . . . . . . 187
3. Other PathPort Tools for Functional Annotation . . . . . . . . . . . . . . . . . . 191
4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
5. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Chapter 14

Alignment of Wheat and Rice Structural Genomics Resources . . . . . . 197

Daryl J. Somers, Sylvie Cloutier, and Travis Banks

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
2. Primary Structural Genomics Resources . . . . . . . . . . . . . . . . . . . . . . . . . 198



Contents xv

2.1. Genetic Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
2.2. QTL Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
2.3. EST Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
2.4. Chinese Spring Deletion Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
2.5. Large Insert Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
2.6. Rice Genome Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

3. SNPs in Wheat ESTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
3.1. Nested PCR Analysis of SNPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
3.2. Development of Genome-Specific SNPs . . . . . . . . . . . . . . . . . . . 203

4. Wheat/Rice Virtual Mapping (WRVM). . . . . . . . . . . . . . . . . . . . . . . . . . 204
5. Implementation of ‘WRVM’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
7. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Chapter 15

Computational Identification of Legume-Specific Genes . . . . . . . . . . . . . 211

Michelle A. Graham, Kevin A. T. Silverstein, Steven B. Cannon,
and Kathryn A. VandenBosch

1. Identification of Sequences of Interest from Public Databases . . . . . . 211
2. Importance of Legumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
3. Databases of Expressed Sequence Tags . . . . . . . . . . . . . . . . . . . . . . . . . 212

3.1. Data Mining the TIGR Gene Indices . . . . . . . . . . . . . . . . . . . . . . 213
3.2. Data Mining the M. truncatula MtDB Database . . . . . . . . . . . . 213

4. Identification of Legume-Specific Genes . . . . . . . . . . . . . . . . . . . . . . . . 214
4.1. Using BLAST to Identify Legume-Specific Genes . . . . . . . . . . 214
4.2. Are the Identified Legume-Specific TCs Really

Legume-Specific? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
5. How Can a Gene’s Function be Determined When BLAST Fails to

Find a Homolog? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
5.1. Single Linkage Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
5.2. Motif Searching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

6. Future Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
7. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

ABSTRACTS

Brahms and Beergenes: Information Management for Genetic
Research on Barley and Oat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Jean Gerster, Nicholas A. Tinker, Yella Jovich-Zahirovich, Anissa Lybaert,
Shaolin Liu, Stephen J. Molnar, and Diane E. Mather



xvi Contents

Microcolinearity in the Allotetraploid Gossypium hirsutum . . . . . . . . . . 231

C. Grover, H. Kim, R.A. Wing, and J.F. Wendel

Determining the Chromosomal Location of the Wheat Leaf Rust
Resistance Gene LrW1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

C. Hiebert, J. Thomas, and B. McCallum

Characterization of EST Libraries from Drought-Stressed Leaves
and Penetrated Roots of Rice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Md S. Pathan, William G. Spollen, Mark Fredricksen, Hans J. Bohnert,
Deshui Zhang, and Henry T. Nguyen

The Phylogenetic Utility of N-Length DNA Strings in Plants . . . . . . . . 237

Ryan Rapp and J. Gordon Burleigh

Telocentrics as a Breeding Tool in Wheat . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Erica Riedel and Julian Thomas

Comparative DNA Sequence Analysis of Wheat and Rice Genomes . . 241

Mark E. Sorrells and Mauricio La Rota

Marker Assisted Backcrossing—Some Lessons from Simulation . . . . . 243

Julian Thomas and Daryl Somers

Ceregenedb: A Database of Coding Sequence Conservation Between
Rice and Nonrice Cereals and Arabidopsis . . . . . . . . . . . . . . . . . . . . . . . . . . 245

Shibo Zhang, Brian C. Thomas, and Peggy G. Lemaux

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247



Chapter 1

Rice Genome Sequencing and Data
Mining Resources

Baltazar A. Antonio, Yoshiaki Nagamura, Nobukasu
Namiki, Takashi Matsumoto, and Takuji Sasaki

1. INTRODUCTION

Rice is one the most widely studied crop in terms of genetics, molecular
biology and breeding science. Among the two major subspecies of Oryza sativa,
namely, subspecies japonica and indica, a large number of local cultivars exist
and allelic differences among these cultivars may underlie the adaptations that
have evolved in response to a particular set of environmental conditions. The
rice genome sequencing project, which has become an international collabora-
tion, should provide the foundation for a thorough understanding of the rice plant
(Sasaki and Burr, 2000). As rice is considered one of the world’s most important
crop having an accurate genome sequence of a single rice cultivar for use as a
prototype is a requisite for identifying all genes and for associating sequence vari-
ation with phenotypic expression. Furthermore, rice is also considered a model
cereal genome, which shares a common synteny with much larger grass genomes
including maize, wheat, barley and sorghum (Moore et al., 1995). Thus, the com-
plete sequence of rice will also undoubtedly be beneficial in the genomic analysis
of cereal genomes in general.
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In order to facilitate the discovery of new biological insights from the genome
sequence data as well as to create a global perspective from which applied princi-
ples in crop improvement can be discerned, we are developing a robust informatics
system of rice based on the genome sequence and other genomics data. These re-
sources will be very useful for processing, elucidating and propagating genomic
information in rice and facilitate data mining to extract more useful information.
From the biological point of view, genomic resources derived from comprehensive
sequencing will also be useful in understanding complex biological pathways as
well as in uncovering the phylogenetic relationships and evolutionary patterns of
cereal genomes. However, this requires new methods for analysis, tools for data
mining and the development of integrated databases that would facilitate efficient
access and management of different types of information. Thus a major objective
of the rice genome project is to integrate the rice genome sequence data with other
genomics information available for rice to allow a more efficient utilization of the
entire sequence particularly in functional genomics, comparative genomics and
applied genomics.

An overview of the rice genome sequencing effort and various genomic re-
sources that have been developed as part of the Japanese program for rice genome
research is described here. The URLs and major features of databases and websites
generated from various projects are shown Table 1. These data mining resources
will be indispensable in revealing all the unique features of rice as well as other
cereal crops, which share syntenic relationships with rice.

2. RICE GENOME SEQUENCING

As a major food source for more than half of the world’s population, the impor-
tance of analyzing the entire genome has become a research priority in the scientific
community. With this situation on hand, Japan initiated the Rice Genome Research
Program (RGP) in 1991 with the aim of elucidating the structure and function of
the rice genome (Sasaki, 1999). During the first phase of the program, RGP has
successfully established a high-density linkage map of rice (Kurata et al., 1994a,
Harushima et al., 1998), an extensive catalog of rice ESTs (Yamamoto and Sasaki,
1997) and a YAC (yeast artificial chromosome)-based physical map covering the
entire genome (Saji et al., 2001). These resources have been very useful in genome
analysis of rice and other cereal crops. The molecular markers have been used in
comparative mapping of rice varieties (Antonio et al., 1996), mapping of quantita-
tive trait loci (Yano and Sasaki, 1997) and comparative mapping with other cereal
crops (Kurata et al., 1994b). The ESTs developed by RGP from about 15 types of
cDNA libraries derived from various tissues and organs such as leaves, roots, pan-
icles and calli using Nipponbare as resource constitute the main bulk of rice ESTs
deposited in public databases. The physical maps have also been useful in map-
based cloning of many agronomically important traits in rice (Yano and Sasaki,
1997).



Table 1
Databases and Websites for Rice Genome Sequencing, Functional Genomics and

Related Projects.1

Website/Database URL Features

RGP (Rice Genome
Research Program)

http://rgp.dna.affrc.go.jp/ genomics resources such as genetic
map, physical map, transcript map,
genome sequence, databases etc.

IRGSP (International
Rice Genome
Sequencing Project)

http://rgp.dna.affrc.go.jp/IRGSP/ sequenced PAC / BAC clones from the
international sequencing consortium

INE (Integrated Rice
Genome Explorer)

http://rgp.dna.affrc.go.jp/giot/
INE.html

integration of genetic map, physical
map, transcript map genome
sequence data and annotation

RiceGAAS (Rice
Genome Automated
Annotation System)

http://ricegaas.dna.affrc.go.jp/ automated annotation tool and
database of annotated rice genome
sequence data

RAD (Rice Genome
Annotation Database)

http://golgi.gs.dna.affrc.go.jp/SY-
1102/rad2/index.html

contig-oriented annotation of rice
genome sequence, analysis of
sequence features

Tos17 (Tos17 Mutant
Panel Database)

http://tos.nias.affrc.go.jp/∼miyao/
pub/tos17/

flanking sequences with Tos17
insertions in about 5000 lines from
50000 transposon insertion lines

KOME
(Knowledge-based
Oryza Molecular
biological
Encyclopedia)

http://cdna01.dna.affrc.go.jp/
cDNA/

rice full-length cDNA sequences,
annotation, homology search,
mapping information, pattern of
alternative splicing, protein domain,
transmembrane structure, cellular
localization and gene function

RED (Rice Expression
Database)

http://red.dna.affrc.go.jp/RED/ expression profiles of rice ESTs
analyzed using 1265 and 8897
cDNA microarray systems

RMOS (Rice
Microarray Opening
Site)

http://cdna01.dna.affrc.go.jp/
RMOS/main en.html

outline of the rice microarray project

Rice PIPELINE http://cdna01.dna.affrc.go.jp/
PIPE/

unification tool for rice functional
genomics resources

RiceBLAST http://riceblast.dna.affrc.go.jp/ BLASt homology search using various
rice genome sequence datasets

PLACE (Plant Cis-acting
Regulatory DNA
Elements Database)

http://www.dna.affrc.go.jp/
htdocs/PLACE/

motifs in plant cis-acting regulatory
DNA elements

RMG (Rice
Mitochondrial
Genome Database)

http://rmg.rice.dna.affrc.go.jp/ rice mitochondrial genome sequence
and detailed analysis

Rice Genome Simulator http://www.nias.affrc.go.jp/
project/inegenome e/simulator/
simulator outlook e.htm

outline of the Rice genome Simulator
Project

RGRC (Rice Genome
Resource Center)

http://www.rgrc.dna.affrc.go.jp/
index.html.en

distribution center for rice full-length
cDNA, insertion mutant lines and
materials for genetic analysis

DNA Bank http://www.dna.affrc.go.jp/ genome projects of the Japanese
Ministry of Agriculture, Forestry
and Fisheries

1These websites and databases are maintained at the National Institute of Agrobiological Sciences (NIAS,
http://www.nias.affrc.go.jp/index e.html).
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In 1998, the RGP embarked on the second phase of genome analysis, which
was aimed at sequencing the entire rice genome. A sequence strategy based on
clone-by-clone shotgun sequencing method was adopted. The genetic map, YAC-
based physical map and a transcript map derived by anchoring ESTS in the YAC-
based physical map (Wu et al., 2001) served as fundamental tools in constructing
a sequence-ready physical map of rice. The DNA markers in the genetic map and
ESTs in the transcript map were used to align large insert clones of PAC (P1-
derived artificial chromosome) or BAC (bacterial artificial chromosome) clones
along the 12 rice chromosomes (Baba et al., 2000). These clones were used to
obtain a high-quality sequence with 99.99% accuracy.

Even with a relatively small genome size estimated at 430 Mb, the task of se-
quencing the entire genome is quite enormous. The genome sequencing initiative
in Japan served as a stimulus for the U.S.A. as well as other Asian and European
countries to establish a similar program. Eventually an international collaboration
now known as the International Rice Genome Sequencing Project (IRGSP) was
organized in order to share resources and accelerate the completion of sequencing
(Sasaki and Burr, 2000). Several standards were decided concerning sequenc-
ing strategy, sequence quality, annotation and sequence release. The rice cultivar
Nipponbare, which has been used by RGP was chosen as a common template for
sequencing. This collaboration, which started with five-member countries, has ex-
panded into a consortium of ten participating countries or regions. Each group is in
charge of sequencing entire chromosomes or specific regions of a particular chro-
mosome. The sequencing effort is also highly facilitated by contributions from the
private sector. In 2000, the Monsanto Company, which conducted an independent
genome sequencing of rice has made the draft sequence of more than 3000 BAC
clones available (Barry, 2001). Then Syngenta, which released the draft sequence
of the rice genome obtained by whole genome shotgun sequencing (Goff et al.,
2002) also shared the sequence data to IRGSP.

The rice genome sequencing collaboration has made a significant harvest last
year with the completion of the high-quality draft sequence of the entire genome.
As of June 2003, a total of 3,349 PAC/BAC clones have been sequenced resulting
in 219 Mb of phase 2 quality (all segments of sequence are in the proper orientation
and order but with few gaps) sequence and 232 Mb of phase 3 quality (high quality
finished sequence with no gaps) sequence. At present, chromosome 1 (Sasaki et al.,
2002), chromosome 4 (Feng et al., 2002) and chromosome 10 (Rice Chromosome
10 Sequencing Consortium, 2003) have been completely sequenced by Japan,
China, and the USA, respectively, at the phase 3 level. Currently the IRGSP is
aiming at closing several gaps in the physical map for each chromosome as well as
in raising the sequence to phase 3 finished-quality level. Ultimately the sequence
of the entire genome is expected to be completed before the end of year 2004.

3. RICE GENOME INFORMATICS

In order to extract as much biological information from the genome sequence,
the RGP has developed a robust informatics infrastracture aimed at analyzing the
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genome sequence, developing integrated databases and releasing the analyzed se-
quence through the internet. The genome sequences are initially analyzed using an
automated annotation system, edited using an annotation plotting tool to construct
the most plausible gene model and then incorporated into a database designed to
integrate map and genome sequence information.

An automated annotation system and database called Rice Genome Auto-
mated Annotation System (RiceGAAS) has been developed to extract biologi-
cally useful and timely information from the sequence data on a regular basis
(Sakata et al., 2002). The system integrates a total of 15 analysis programs for
prediction protein-coding gene structure and analysis of other features of the se-
quence. These include GENSCAN (Arabidopsis), GENSCAN (Maize), RiceHM-
Mand FGENESHfor gene domain prediction; BLASTXand BLASTNfor homol-
ogy search against protein and rice EST databases, respectively; MZEF for exon
prediction; SplicePredictor for splice site prediction; Printrepeats and Repeat-
Masker for repetitive sequence detection; tRNAscan for transfer RNA prediction;
HMMER ProfileScan and MOTIF for homology search against amino acid se-
quence motif database; PSORTfor protein localization site prediction; SOSUI for
classification and prediction of the secondary structure of membrane protein; and
PLACE-SignalScan for cis-element detection. The reference databases are up-
loaded from the original sites, stored in the system and updated on a regular basis.
Thus all analyses are executed using the latest entries in respective databases.
The system automatically integrates multiple analysis results and interprets cod-
ing regions using an algorithm based on the concept of combining the analysis of
different gene prediction programs, homology search and analysis of other fea-
tures of the sequence. Then the results are summarized in an annotation map using
a web-based graphical view. The autopredicted gene set as well as the output of
the different gene prediction programs and homology searches are represented as
colored objects, which are clickable and provide links to the corresponding page
of analysis results. RiceGAAS functions not only for analysis of RGP generated
sequences but all other genome sequences generated by other IRGSP members.
All rice genome sequences in GenBank are automatically collected using a key-
word search executed on a daily basis against the GenBank database. Thus, all
submitted sequences by participating IRGSP members are immediately annotated
and the results can be viewed through RiceGAAS.

For RGP sequenced clones, the autopredicted gene sets are downloaded from
the database and edited using an annotation-plotting tool to generate an accurate
structure of the gene based on existing evidences. The different prediction pro-
grams use different measures to determine the coding regions so that the output may
differ even for the same region of the sequence. The Combiner program originally
developed by TIGR (The Institute for Genomic Research) is used to determine
the best prediction output. This program integrates the results of various gene
prediction programs, generates a consensus prediction, and selects a prediction
output that differs least from the consensus. The gene models selected are checked
against homology with protein and EST sequences. The translation products of
the coding regions are examined and the exons are edited if necessary. Manual
curation also facilitates identification of miscellaneous features of the sequence
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such as transposons and retrotransposable elements. The resulting annotation map
provides the most plausible structure of all predicted genes in the sequence. Func-
tional characterization of the predicted genes is performed by BLASTP analysis
against non-redundant protein database. The predicted genes are then classified
as “same protein”, “putative protein”, “similar to the protein”, “unknown protein”
and “hypothetical protein” based on the degree of similarity to known proteins in
public databases.

The informatics effort of RGP centers on the database aptly named INE
(INtegrated Rice Genome Explorer), which literally means “rice plant” in the
Japanese language (Sakata et al., 2000). This database was developed primarily
to integrate the genetic and physical mapping data with the sequence of the rice
genome. In addition, it also functions as a repository of rice genome sequences
from the international sequencing collaboration. At present the database consists
of the genetic map with 3,267 DNA markers, a YAC-based physical map covering
80% of the genome, PAC/BAC contigs and a transcript map of rice, which consists
of about 6500 ESTs. These data are integrated with the genome sequence data.
The integrated maps for each chromosome facilitate a general overview of the
genomic information in a particular chromosome. A relational database scheme
has been implemented to improve facile access to the database and facilitate a
robust searching capability. The maps can be manipulated by zoom in/out, which
enables browsing at detail-oriented levels. The viewer was programmed in Java
language using an application, which facilitates rapid display of integrated maps.
This attribute contributes to smooth navigation of specific information associated
with each data set. Furthermore, it also provides an overall view of the distribution
of the markers and clones in the entire chromosome as well as specific details
such as screening data, image sets, sequences, as well as detailed contig maps
in the case of sequenced regions of the chromosome. Links are also provided
on the curated annotation of all sequenced clones. The annotation map provides
information on the structural features of the predicted genes as well the results of
homology searches with protein and EST databases.

An annotation database was also developed in an effort to efficiently manage
and integrate accumulated information from annotation of the genome sequence.
The Rice Genome Annotation Database (RAD) system allows merging the anno-
tation of individual PAC/BAC clones and provides a graphical view of the genome
sequence with relevant annotation information at contig level. It also facilitates
gene search, statistical analysis of the characteristic features of predicted genes
and efficient management of the genome annotation.

4. FUNCTIONAL GENOMICS RESOURCES

The second phase of RGP also focused on elucidating the function of the entire
genome. In addition to the existing genome sequencing efforts, several projects on
functional analysis of the genome were also launched. These included projects
on expression profiling, map-based cloning, molecular breeding, insertional
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mutagenesis and full-length cDNA analysis. In addition, databases and analyses
tools associated with these projects have been constructed and a center for distri-
bution of biological materials generated from these projects has been established.

Analysis of gene function by the gene expression monitoring technique was
initiated in 1999 (Yazaki et al., 2000). A system with 1,265 and 8,897 ESTs,
respectively, selected from cDNA libraries constructed during the first phase of
RGP was established. These rice cDNA microarrays were used to investigate
changes in the expression of rice genes at different stages of development and
to elucidate genes expressed in response to various types of stress conditions.
More than 769 experiments on expression profiling provide the main source of
data that can be accessed through the database RED (Rice Expression Database,
Yazaki et al., 2002). All normalized expression data can be searched based on the
experiment, expression profile and accession of the cDNA clone. Details of the
microarray project are also available through RMOS (Rice Microarray Opening
Site).

Analyses of agronomically useful genes and complex traits, including QTL,
have been effectively accomplished using the precise linkage map with various
DNA markers, genomic DNA libraries and physical map. A strategy that involved
developing of specific mapping populations and fine mapping of many traits proved
effective in map-based cloning. Among the genes that have been isolated with
this strategy include Xa21, a bacterial blight resistance gene (Yoshimura et al.,
1998), Pib, a rice blast resistance gene (Wang et al., 1999), a rice gibberellin-
insensitive dwarf mutant gene d1 (Ashikari et al., 1999) and rice spotted leaf
gene Sp17 (Yamanouchi et al., 2002). Extensive QTL analyses also resulted in
characterization of several photoperiod sensitivity genes such as Hd1 (Yano et al.,
2000), Hd3a (Kojima et al. 2002) and Hd6 (Takahashi et al., 2001), as well as
genes controlling seed dormancy (Lin et al., 1998) and cool-temperature tolerance
at booting stage (Takeuchi et al., 2001).

Insertional mutagenesis is an effective approach in determining the function
of 40-60,000 genes predicted in rice. A transposon tagging strategy, which utilizes
a rice endogenous retrotransposon Tos17 has been developed (Hirochika, 2002).
Mutations due to Tos17 transposition are normally induced under tissue culture
conditions and are inherited in subsequent generations to facilitate analysis of the
mutated gene. So far, more than 50,000 insertional mutant lines carrying about
500,000 insertions have been generated. These resources would be very useful for
forward and reverse genetic analyses. The Tos17 Mutant Panel Database currently
contains flanking sequences of Tos17 insertion sites from 5,000 lines and associ-
ated phenotypes. The site also provides a BLAST search against these flanking
sequences.

The Rice Full-length CDNA Project has generated sequence data on 175,642
rice full-length cDNAs clustered into 28,469 nonredundant clones (Kikuchi et al.,
2003). A total of 21,596 clones have been assigned with tentative protein functions
through homology searches of publicly available sequence data. In addition, more
than 94% of the clones could be mapped to japonica and indica genomic sequences.
All sequence data are available through the database KOME (Knowledge-based
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Oryza Molecular biological Encyclopedia). The database provides the nucleotide
sequence and encoded amino acid sequence information, results of the homol-
ogy search with the public databases, mapping information, patterns of alternative
splicing, protein domain information, transmembrane structure, cellular localiza-
tion and Gene Ontology classification. Access to specific information for each
full-length cDNA clone can be made by BLAST search, accession number of the
clone, specific domain name and general key word search.

These resources are available to the research community through the NIAS
DNA Bank and the newly established Rice Genome Resource Center (RGRC).
Since 1994, the NIAS DNA Bank has been providing access to biological ma-
terials generated mainly from the first phase of RGP including rice ESTs, DNA
markers, YAC clones and YAC filters. In addition sequenced PAC and BAC clones
are also currently available. The Rice Genome Resource Center was established in
April 2003 to provide access to the functional and applied genomics resources de-
rived from the rice genome project. The biological materials currently distributed
through this center include full-length cDNA clones, Tos17 insertion mutant lines
and genetic mapping populations such as recombinant inbred lines (RIL), chromo-
some segment substitution lines (CSSL) and doubled-haploid lines (DHL) from
crosses of different rice varieties. The availability of these resources will allow a
wide community of scientists to conduct functional and applied genomics research
and to accelerate the application of these resources to improvement of rice and
other cereal crops.

5. TOWARDS AN INTEGRATED DATA MINING RESOURCE

The major challenge for rice bioinformatics is to establish a comprehensive
database that will allow integration of genomic information with present and future
expectations in biological and agricultural research. One way to address this need
is to interlink the resources of various types of information such as genomic data,
phenotypic or expression data, and germplasm resources (Antonio et al., 2000). The
Rice PIPELINE which aims to provide a unification tool for rice genomics (Yazaki
et al., in preparation) and the Rice Simulator Project which aims to coordinate the
data produced from extensive genome analysis with emerging technologies in
computational biology should provide the necessary infrastracture for efficient
utilization of genomics data.

The Rice PIPELINE integrates the structural and functional genome databases
such as KOME, INE, RED, Tos17 and PLACE (Higo et al., 1999). A query using
a sequence, accession number, clone name or keyword can provide structural
information, gene expression information and genome information. The structural
information derived through full-length cDNA BLASTN and BLASTX homology
provides details of KOME report such as full-length cDNA matches, domain search
and GO classification. It also provides a PLACE search for information on the cis-
element motif at the 5′ upstream region of the full-length cDNA and a Tos17
Mutant Panel Database search for phenotype of Tos17 flanking sequences. The
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expression information through the microarray EST BLASTN homology provides
gene expression profiles in RED derived from microarray analysis and linked to
the genetic and physical mapping information on INE. The genome information
through BLASTN with the japonica genome or indica genome provides links to
the sequence data, genetic map and physical map. Thus, any search through the
Rice PIPELINE will facilitate integration of genomic information that can be used
for elucidating gene structure, identification of function and map-based cloning of
useful genes.

The Rice Genome Simulator Project will facilitate integration of the output
of genomics research and information technology to build a virtual experimental
system designed to estimate the functions of crop genes and make breeding ex-
periments on a computational platform (Harris, 2002). One aspect of the project
focuses on the development of a network that will link all fundamental rice ge-
nomic resources databases such as the huge amount of data from rice proteome
analysis, full-length cDNA, microarray, insertional mutagenesis and biochemical
profiling. Another major trust is on the development of an informatics infrastrac-
ture including specialized softwares that will allow visualization and integration
of various types of complex data, prediction of gene functions and simulation of
various parameters. In the long run, the project will focus in simulating rice growth
and development by creating in silico models of the rice plant or the so-called “e-
rice” at the cellular, tissue and whole organism level. Thus, in the future it would
be possible predict how the rice plant will perform under varying environmental
or stress conditions. It will also allow breeders to perform crosses between two
varieties in silico and select lines with desirable characteristics.

As we move to the postgenomic era over the next ten years, the next chal-
lenge for rice bioinformatics is not only in transforming rice genomics data into
information that the rice community and biologists in general can query and use
properly. The essential logistics necessary to achieve the desired success in rice
bioinformatics involve developing the necessary tools for analyzing biological and
agricultural problems in multiple dimensions. A robust rice informatics infrastrac-
ture that would facilitate integration across various data types may eventually lead
to the development of viable strategies for cereal crop improvement.
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Chapter 2

Application of Evolutionary
Computation to Bioinformatics

Daniel Ashlock

1. INTRODUCTION

In solving a scientific problem, one of the most helpful possibilities is that you
will see a pattern in your data. It is almost the definition of an interesting scientific
problem that it contains some sort of pattern. The patterns that arise in nature are
often subtle and escape notice until cleverness or hard work un-cover them. The
field of machine learning is a collection of techniques intended to automate the pro-
cess of pattern discovery. A broad survey of machine learning techniques applied
to bioinformatics is given in Pierre Baldi and Soren Brunak (2001). This document
introduces a single, relatively versatile machine learning technique called evolu-
tionary computation. A collection of applications of evolutionary computation to
bioinformatics is given in Fogel and Corne (2003).

Both machine learning and evolutionary computation have applications far
beyond bioinformatics but almost all of the techniques in the domain of machine
learning and evolutionary computation have useful applications within bioinfor-
matics. The introduction to evolutionary computation given here is in the form
of three examples intended to showcase three substantially different applications
of evolutionary computation. The first, while it solves a real problem, is an al-
most trivial instance of evolutionary computation. It seeks a gapless alignment of
315 sequences in a fashion that permits the discovery of a motif associated with
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Table 1
Predictions versus Truth Results for the Most Fit

Finite State Machines Located During the First Set
of Evolutionary Runs.

Training Data Crossvalidation Set

Prediction Prediction
+ − ? + − ?

Good 666 256 78 Good 115 106 29
Bad 287 659 54 Bad 96 125 29

insertion of a mu-transposon. The second example is a more sophisticated but
standard application of evolutionary computation, learning patterns in a collec-
tion of good and bad primers designed as part of a Zea mays genomics project.
Once learned, these patterns are then used to reduce the failure rate of primers
in subsequent work. The third example is a departure from standard evolutionary
algorithms, which fuses evolutionary algorithms with greedy algorithms to create
a new type of evolutionary algorithm called a greedy closure genetic algorithm.
This algorithm is used to create error correcting DNA bar codes for use in pooled
genetic libraries. These bar codes permit the identification of the library, which
contributed a given expressed sequence tag. The error correcting property of the
bar codes permits the identification of the library even when the area containing
the bar code is sequences with some errors.

2. EVOLUTIONARY COMPUTATION

Evolutionary computation has been described as a “Swiss army algorithm”
in comparison to the Swiss Army knife, which typically has a whole collection of
small tools built into it (Fig. 1). This description is both misleading and a good
starting point for discussing the strengths of evolutionary computation. A com-
pletely general-purpose tool would be useless (probably too heavy to lift). The
Swiss army knife is not a multipurpose tool. Careful examination will show the
alert scientist that it is a collection of many tools with fairly specific applications.
Sure, it is possible to use the screwdriver as a hole punch and the large blade may
be useful for both shaving a dowel and trimming a bad spot out of an apple, but
the applications of each tool within the knife are fairly limited. Also, the tools you
are not using tend to get in your way. The purchase on a Swiss army knife is not
as good as the handle on a normal screwdriver. What does this have to do with
evolutionary computation? The basic algorithm for evolutionary computation is
given in Table 1. This algorithm can solve any problem for which the solutions
can be placed in the form of a data structure and for which the quality of the solu-
tions in such data structures can be compared. In spite of this apparent power, the
process of getting a problem transformed into a data structure and then creating a
useful quality comparison can be insuperably difficult. Even if these hurdles can
be overcome, the running time on evolutionary algorithms is typically long and so
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Generate an initial population of solutions.
Repeat

Evaluate your solutions.
With a quality bias, select solutions.
Reproduce and vary the solutions selected.
Place the new solutions in the population.

Until(Satisfied)

FIGURE 1. Basic algorithm for evolutionary computation.

an evolutionary algorithm may be impractical. Let us start with the very simplest
type of evolutionary algorithm, a string evolver.

In a string evolver the population is a population of character strings and the
notion of fitness is that of matching a reference string. Examine the following
population member (character string), aligned with the reference string “Madam,
I’m Adam.”:

Reference: “Madam, I’m Adam.”

Population Member: “Mad*g,hI.m Admm!”

Fitness loci: +++ + + ++++ +

The fitness of the above population member is 10 of a possible 16 because 10 of
its 16 characters match the reference string. Once we have a notion of fitness it
becomes possible to apply the algorithm given in Table 1.

Generating an initial population of character strings is done by filling in char-
acters at random in each member of the population. We pick strings to reproduce by
shuffling the population into groups of four and permitting the best two members of
each group of four to reproduce. Their offspring replace the two worst members of
the group of four. The relatively small size of the groups (four members) represents
a weak bias in favor of fitness; larger groups would yield sharper selection. Repro-
duction is done by first copying the two strings that are reproducing and then per-
forming crossover and mutation on the copies. These words have completely dif-
ferent meanings in the context of evolutionary algorithms than they do in biology.
Crossover consists of exchanging middle segments of the strings; mutation consists
of picking a position in the string and putting in a new random character. An exam-
ple of crossover is shown in Figure 2, an example of mutation is shown in Figure 3.

The process of evolving a copy of a string that you already have in hand is not
an intrinsically interesting one. It does serve as a simple example of evolutionary
computation and serves as a starting point for discussing the design of evolutionary

“Mad*g,hI.m Admm!”
“kadam, I’m Adasl”

Parents:

Fitness:

10
13

15
8

Children: “Madam, I’m Adam!”
“kad*g,hI.m Admsl”

FIGURE 2. Depicted above is crossover. Two selected parent strings are copied and characters in
positions 3–14 are swapped. We call 3 and 14 the crossover points and the type of crossover depicted
is called two point crossover.
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“Madam, I’m Adam!”Child: 15

14Mutated Child: “Maˆam, I’m Adam!”

FIGURE 3. Mutation consists of taking one or more character positions and generating new random
characters at those positions. Above is depicted mutation at the third character in a string with a net
decrease in fitness.

algorithms. A trace of the best string found so far in a run of a string evolver is
shown in Figure 4. Notice that the time to the next improvement in fitness is highly
irregular but generally increases with time. Initially, crossover can bring together
correct sub-strings. As evolution proceeds the population in the algorithm becomes
highly inbred and crossover does little. Toward the end of a run, mutation becomes
the sole source of progress as we wait for a fortuitous mutation to fill in the one or
two missing characters not present in the initial population.

The method of picking parents and placing offspring used in the string evolver
example is called single tournament selection with size four. The methods of pro-
ducing variation are called two point crossover and single point mutation. There
is a wealth of possible choices for parent selection, offspring placement, and of
variation producing techniques. Many of these are detailed in Ashlock (2004),
which is available at http://www.math.iastate.edu/danwell/EC

3. FINDING A TRANSPOSON INSERTION MOTIF

In Dietrich, Cui, Packila, Ashlock, Nikolau, and Schnable, (2002), an example
of an application of a string evolver to bioinformatics appears. A collection of 315

HadDe Q'/--<jlm’
HadDe,em3m/<Ijm-
HadDe,em3m/<Ijm-
HadDm,ex3m/#Ijmj
HadDm,eI8m/#Ijmj
HadDm,eI8m[Ajjmt
HadDm,UI8m[Ajjm.
MadDm,zI8m4AJ1m.
Madam,zIXm4AJ1m.
Madam, InmqAJym.
Madam, I’mqArHm.
Madam, I’m AC-m.
Madam, I’m APam.
Madam, I’m Adam.

3
4
5
6
7
8
9

10
11
12
13
14
15
16

Best String Fitness

5
52
54
73
86
118
135
154
163
256
327
473
512
647

Appeared in
Generation

FIGURE 4. A string evolver running. Each time an improvement in the best fitness in the population
occurs, the string receiving that fitness is printed together with the generation number in which it
appeared.
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DNA sequences 129 bases long and centered on a 9 base repeat created during a
transposon insertion were acquired. The conjecture is that there is a motif favored
by the transposon at the site of insertion but this motif is masked by not knowing
which orientation of the sequenced DNA contains the motif. The motif is not tight
enough to permit its discovery by inspection or simple statistical analysis. What is
desired is to recover the correct orientation by aligning all 315 sequences. There is
not sufficient sequence homology at the insertion sites to permit useful alignment
via dynamic programming, the standard alignment technology.

The choice of data structure for attempting to solve this problem is fairly
obvious. It is a character string of 315 zeros and ones that specifies an alignment
of the sequences. A zero means “leave the sequence in it current orientation”
while a 1 means “compute the reverse complement of the sequence.” This yields
a space of 2314 = 3:34 × 1094 possible alignments (the first sequence is never
reversed, selecting one of two possible global alignments). The tricky part of
designing the evolutionary algorithm in this case is the fitness function. It was
decided to minimize the randomness of the alignment of the sequences. In this
case the randomness of an alignment (choice of forward or reverse orientations)
was estimated by computing the squared deviation of the number of bases of each
type at each position from the empirical frequency of those bases in the sequences
being aligned. This measure of non-randomness is given in Equation 1.

f (A) =
129∑
i=1

( ∑
zε(C,G,A,T )

(Nx − Ex )
2

)

The number Nx is the number of bases x at a given position while Ex is the expected
number of bases of that type, i.e. the number of sequences times the fraction of all
bases in the data set of type x.

Using Equation 1 as a fitness function, a string evolver can be used to perform
the alignment. The string is made up of characters each of which specifies the
orientation of one of 314 sequences with the first sequence left in its original
orientation. Such a string evolver that searched the space of alignments was run
100 times. Out of those 100 runs, 88 returned the same alignment and the same
fitness value. This fitness value was the largest found in any of the runs. This makes
it likely we are detecting a true optimal alignment of the 315 sequences.

In order to see if there is a motif at or near the point of insertion, a x2-value
was computed for each position of the alignment. The x2-values are given along
the length of the alignment in Figure 5. The unaligned sequences did not show a
significantly non-random base composition at any point. The aligned sequences
yield a significant deviation from the expected base composition statistics at points
immediately flanking the insertion. Readers interested in the biology that underlies
this example should read Dietrich, Cui, Packila, Ashlock, Nikolau, and Schnable,
(2002).

It is important to consider the question of interaction between the fitness func-
tion and the x2-statistics. In this case the non-randomness of the entire alignment
was maximized. Using 60 bases of flanking sequence on either side of the insertion
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FIGURE 5. x2-values derived from base composition at each position in an alignment of 315 DNA
sequences of length 129 fanking distinct insertion points of a mu-transposon. The alignment used was
the best found by the evolutionary algorithm.

point reduces the chance that we are creating a motif by fortuitous arrangement of
existing variation in a small region including the point of insertion. The fact that
the x2-values spike in positions immediately flanking the insertion but not in the
remainder of the flanking sequence suggests a motif does exist at the point of in-
sertion. It is also important to note that non-randomness was maximized relative to
the empirical base statistics of the sequences aligned. Using some larger region to
compute expected base frequencies would have made it easier to create a phantom
motif by exploiting and aligning existing random sequence features.

4. PCR PRIMER PICKING

A more complex application of evolutionary computation to bioinformatics
is that of picking PCR primers. At this point the application is complex enough
to raise the issue of representation. The representation used in an instance of
evolutionary computation is the way that candidate solutions to a problem are
coded as data structures and varied during reproduction. The representation used
to align the transposon insertion sites was a character string representation with
two point crossover and single point mutation, exactly the same representation as
was used in the example string evolver. Before picking a representation for primer
picking, we will need a clear specification of the problem.
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Using a standard primer-picking tool (Primer 3 from the NCSA Biology
Workbench), many thousands of primers were designed to amplify sites likely to
contain polymorphisms in Zea mays. Many of these primers amplified their targets
correctly, while others did not. The problem is to distinguish the good primers from
the bad primers given that the original primer picking software thought they were
all good. We are neglecting technician error in performing the PCR reactions and
in scoring the outcomes of the PCR experiments, in effect treating these sources
of errors as “noise”. We thus act as if the scoring of primers as good or bad is
entirely correct. These primers, scored as good and bad, form the training data for
our primer picking system.

The experiment designed to find bad primers used evolutionary computation
as a machine learning system to attempt to detect any patterns that will help us
to tell good primers from bad primers. Note that many of the standard things that
make a primer good, such as correct Tm and the presence of a GC-clamp are
already in every primer because they were put there by the original primer picking
software. This means we will be looking for organism specific patterns that only
affect primers in Zea mays. In subsequent work on Zea mays, multiple primers
will be designed for each target and the good/bad classifier created via machine
learning will pick from among them those primers most likely to work based on
patterns learned from earlier primers.

In the last example there was an obvious representation (a character string
that specified sequence orientations) but the fitness function (minimize overall
randomness of the alignment) was not such a clear choice. In building an evolu-
tionary algorithm to pick primers, it turns out that both the fitness function and
representation are not obvious. We want a classifier that, given a primer, gives a
(often correct) prediction if it is a good or bad primer. Fitness will thus consist of
some abstraction of predicting correctly the good/bad status of the primers in the
training data. In a set of initial experiments simply scoring the number of correct
predictions did not work well.

Given that the problem could be in a motif that is somewhere in the primer,
we need a representation that does not assess bases in a manner based on their
distance from the end of the primer but rather based on the pattern of surrounding
bases. Because of this need to have a non-position-specific assessment we settled
on finite state machines as our representation. A finite state machine can process
a string of bases, waiting for one of a small set of motifs to appear, and then make
a state transition that detects it. The widely used BLAST software incorporates
finite state machines to perform essentially this task. As an additional benefit,
use of finite state machines permitted a unique sort of incremental fitness reward,
described subsequently.

A finite state machine is a collection of states (including a starting state),
together with a collection of data-driven transitions among the states. The output
of a finite state machine is associated with the transitions or the states themselves.
An example of a finite state machine is shown in Figure 6. In this case the output
of the FSM is encoded by noting that, when it is in state five, the last three bases
it encountered formed a stop codon. In order to give an incremental assessment of
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FIGURE 6. A finite state machine that recognizes stop sequences in DNA.

strings of DNA bases we are considering as primers we will make a modification
to this standard sort of finite state machine.

The states of the finite state machines used to classify primers have three
possible types or labels: ? (don’t know), + (good primer), and −(bad primer). These
state labels are used to permit the finite state machine to function as a classifier.
The fitness of a finite state machine on a training set of primers is computed as
follows. Each PCR primer in a set of training data is run through the finite state
machine. As the machine passes through each state it is given +1 score if the
state label matches the good/bad status of the primer and −1 if it doesn’t match.
No incremental score is awarded for the don’t know states. Fitness is summed
over all primers examined. If we imagine the evolutionary algorithm as searching
a fitness landscape for good classifiers then the use of this sort of incremental
reward scheme acts to smooth the landscape and permit the search to avoid getting
stuck. A more complete discussion of these issues appears in Ashlock, Wittrock,
and Wen, (2002). A finite state machine of the sort used to classify primers is
shown in Figure 7 as both a state transition diagram (picture) and as a table.

Having decided to use finite state machines in our evolutionary computation
system, we still need to select methods for generation of an initial population
and for generating variations during reproduction. The finite state machines are
initialized uniformly at random, filling in both transitions and state labels with
uniformly distributed valid values. As with the string evolver, we will have a
crossover operator and a kind of mutation. Both of these variation operators need
to be re-tooled to contend with the more complex structure of finite state machines.
The crossover operator used works by treating the states, including their label and
outward transitions, as “characters” and then performing crossover on the “string”
of states. Two point crossover of this string of states was used and the designation
of the initial state moves with the first state during crossover. The mutation used
on the finite state machine modifies the choice of initial state 10% of the time,
randomly picks a new destination for one of the transitions 30% of the time, and
modifies the label f+;−; ?g on a state 60% of the time.

One hundred evolutionary runs with distinct random starting populations of
600 machines were performed. The best finite state machine from each simulation
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FIGURE 7. A finite state machine configured for primer classification. Both a pictorial and a tabular
representation are given. The starting state, denoted by the rootless arrow, is state 1 and the states in
the pictorial representation are numbered clockwise from that point.

was saved for evaluation as a classifier and for use in later sets of runs. Each
evolutionary run proceeded for 1000 generations. These evolutionary runs used a
set of 2000 primers, half good and half bad, as their training data. In order to ensure
that the classifers were learning patterns rather than just memorizing the training
data they were cross-validated on a set of 500 primers, also half good and half
bad, that were not part of the training data. In order to use the finite state machines
to predict the good/bad status of a primer, primers are run through the finite state
machines noting how many of each type of state are encountered. A majority vote
is taken on the type of state label encountered. This permits a failure to classify if
a majority of the states are of type ?. Table 1 documents the classification abilities
of the best finite state machine located in the first 100 runs.

The outcomes given here show some patterns are being located but the finite
state machines are not yet classifying well enough to have a substantial impact on
the number of bad primers used. A score of 240 correct, 192 wrong, and 59 unde-
cided is less than one would hope for. Examining the distribution of best finesses
it appeared that a few of the evolutionary runs had discovered interesting patterns
and many had not. In an attempt to consolidate these patterns in a single finite state
machine we performed a second set of evolutionary runs that hybridized the finite
state machines found in the first set of runs. For another instance of hybridization
in the context of evolutionary computation see (Ashlock and Joenks, 1998). The
hybridization runs are identical to the first set except that 100 members of the initial
random population are replaced with the best-of-run finite state machines saved
during the first 100 runs. The other members of these initial populations are still
generated uniformly at random. A second set of hybridizations was performed,



22 Daniel Ashlock

Table 2
Predictions versus Truth Results for the Most Fit

Finite State Machine Located During the Second Set
of Evolutionary Runs, the First Set of Hybridization.

Training Data Crossvalidation Set

Prediction Prediction
+ − ? + − ?

Good 626 337 37 Good 104 137 9
Bad 181 802 17 Bad 79 161 10

using the best-of-run finite state machines from the first set of hybridization runs.
The outcomes for both sets of hybridization runs are given in Tables 2 and 3.

Examining the cross-validation results for the two sets of hybridizations we
see improved performance for the first set of hybridizations and degraded perfor-
mance appearing in the second. This means that, in the second set of hybridization
runs, the finite state machines had gone beyond finding general patterns in the
training data and had begun to find highly specific patterns that were relevant
only to the training data. The prediction scores on the training data show this, as
do histograms of end-of-run best finesses given in Figure 8. The fitness on the
training data climbs impressively from the initial set of runs to the first hybridiza-
tion. It also climbs substantially from the first hybridization to the second. This
second improvement is at the expense of useful performance, as gauged by cross
validation.

The “memorization” of the training data in the second set of hybridization
runs is an instance of a problem that can appear in many machine learning systems:
over-training. If you spend too much time training on a set of data you will become
almost perfectly able to recognize patterns that give you a good score on that
training data. Many of these patterns do not exist outside of the training data. This
phenomenon of over-training means that the use of cross validation on data not
used in training is a critical part of evaluating the success of any machine learning
experiment. The best classifier found in the first set of hybridization runs is good

Table 3
Predictions versus Truth Results for the Most Fit

Finite State Machine Located During the Third Set
of Evolutionary Runs, the Second Set of

Hybridization.

Training Data Crossvalidation Set

Prediction Prediction
+ − ? + − ?

Good 636 364 0 Good 127 107 16
Bad 171 829 0 Bad 95 132 23
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enough to have an impact on primer location. It makes 265 correct predictions,
216 bad predictions, and cannot decide about 19 of the primers. Since different
runs may have found classifiers that recognize different patterns, it is also possible
that a voting scheme among several classifiers will yield even better performance.
That possibility has not yet been evaluated.

5. DNA BAR CODE LOCATION

Many useful evolutionary algorithms are hybrids. The word “hybrid” is used
in a completely different fashion from its use in the preceding section. In this
case a hybrid algorithm is a combination of evolutionary computation with some
other type of algorithm. In this case we combine evolutionary computation with a
greedy algorithm.We will use this greedy algorithm, under the control of evolved
structures, to locate an error correcting bar code over the DNA alphabet. The errors
corrected will not be biological but rather will permit us to recognize embedded
DNA bar codes in constructs even when a sequencing error has modified them.

Greedy algorithms are familiar to most computational professionals. They
are algorithms that use a greedy rule (e.g. make the best possible next move)
to try to accomplish some goal. A few greedy algorithms, like those for finding
a minimal-weight spanning tree in a weighted network, can be proven to yield
optimal results. Other problems, like graph 14 coloring or the traveling salesman
problem, admit a plethora of greedy algorithms all of which cannot be shown to
yield optimal results. While it would seem that the control and improvement of
greedy algorithms is a natural target for evolutionary computation, relatively few
attempts have been made. It turns out that there are several possible approaches.
The approach explored in the current paper consists of making small modifications
in the order of presentation of potential parts of a growing structure as a means of
deflecting the greedy algorithm’s behavior. The role of evolutionary computation
is to locate modifications of the order of presentation that result in better structures.
The resulting structure is not a standard one for evolutionary computation and the
crossover used is probably macromutational (Peter, 1997) in character. The greedy
algorithm we will use is Conway’s lexicode algorithm.

Algorithm 1 Conway’s Lexicode Algorithm
Input: A minimum distance d and a word length n.
Output: An(n,d) − code.
Algorithm:

Place the DNAwords of length n in lexicographical order. Initialize an empty set C
of words. Scanning the ordered collection of DNA words, select a word and place
it in the code if it is distance d or more from each word placed in code so far.

An (n; d)-error correcting code is a collection of n-character strings (in this
case strings of DNA) that have the property that any two of them are at least d
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errors apart. The notion of error must be chosen to fit the problem. In this case,
since sequencing errors can change, remove, or insert an apparent DNA base, the
relevant notion of error is the edit metric. In the edit metric the distance between
two strings of DNA is the minimum number of single base additions, deletions, or
substitutions required to transform one string into the other. The edit distance of
CGATT and GGAT, for example, is two: change the initial C to a G and delete the
terminal T. Since no single edit will transform one of these strings into the other,
their edit distance is exactly 2.

The (n; d)-error correcting codes over the DNA alphabet will be used as error
tolerant bar codes for genetic constructs. In order to correct errors, we note that any
collection of less that 1/2d errors leaves us nearer to the actual bar code used than
any other. Error correction consists of checking what bar code, among those used
in any genetic construct, is closest in edit distance to the one apparently sequenced
at the bar code’s location in the genetic construct.

Examining Algorithm 1, the reader will see that the algorithm extends a
partial code as it goes along. Since the algorithm considers the potential code
words in a fixed order and starts with an empty set of code words the algorithm is
deterministic. Run many times it always produces the same result. In order to get
a different code out of the algorithm we would need to present the words to the
algorithm in a different order. A greedy closure evolutionary algorithm exploits
a restricted method of permuting the order in which the words are considered.
Conway’s lexicode algorithm is modified by specifying a short list of words, called
a seed, that start as members of the code. The seeds used here have three members.
Once a seed is chosen, Conway’s algorithm is used to “close” the partial code
represented by the seed. The words not in the seed are presented in the same order
as in the standard algorithm. Since each word chosen to be in the code prevents
any other word within d edits from being in the code even a small seed can have a
huge impact on the membership and size of the code.

The structure to be evolved by the evolutionary algorithm is the seed. The
fitness of a seed is the size of the resulting error correcting code. Notice that bigger
codes are better because you get more bar codes with the same error correcting
potential.

We have chosen seeds as the data structure to evolve. In order to complete a
representation for the bar code location problem we must also specify the crossover
and mutation operators for the data structure. Crossover of two seeds consists of
copying two parents and then randomly shuffling the words between the copies,
save that any words that appear twice send one copy to each child. Mutation
consists of replacing one word in a seed with a new word generated at random.
All of the variation operators listed here have the potential to create seeds, which
violate the minimum distance for the code. Such seeds are awarded a fitness of
zero and so removed from the population by the selection process. We call these
seeds invalid. For valid seeds, the size of the code resulting from application of
the lexicode algorithm to the seed is the fitness of that seed.

Before we run an evolutionary algorithm to locate bigger error correcting
codes (equivalently: sets of DNA bar codes) it would be a good idea to compute
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Table 4
Size of DNA Edit-Metric Lexicodes Found with the Unmodified Version of

Conway’s Lexicode Algorithm.

Code Size Minimum Distance d

Length n 3 4 5 6 7 8 9
3 4 − − − − − −
4 12 4 − − − − −
5 36 8 4 − − − −
6 96 20 4 4 − − −
7 311 57 14 4 4 − −
8 1025 164 34 12 4 4 −
9 3451 481 90 25 10 4 4
10 ∗ 1463 242 57 17 9 4
11 ∗ ∗ 668 133 38 13 4

∗ Big
- empty

the rough size we could expect codes to be. Table 4 gives the sizes of the codes
located by the unmodified version of Conway’s algorithm for several values of the
length n of the bar code and the minimum distance d between any two strings in
the code.

The evolutionary algorithm was run 100 times for 100 generations in for each
of ten different sets of parameters n and d. Results from these runs are given in
Table 5. The greedy fitness evolutionary algorithm outperformed the plain lexicode
algorithm for all parameter sets tested. An example of a (6; 3)-error correcting code
in DNA for the edit metric is given in Table 6.

Table 5
Comparison of DNA Edit Metric Code Sizes for the Plain
Lexicode Algorithm and the Greedy Fitness Evolutionary
Algorithm. The Figures in Parenthesis are the Number of

Times the Best Result was Located in 100 Runs.

Minimum Plain Evolutionary
Length Distance Lexicode Algorithm

4 3 12 16 (18)
5 3 36 41 (2)
5 4 8 11 (1)
6 3 96 106 (2)
6 4 20 25 (11)
6 5 4 9 (9)
7 3 311 329 (2)
7 4 57 63 (1)
7 5 14 18 (12)
7 6 4 7 (92)
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Table 6
An Instance of a Maximum Size (6; 3)-Error Correcting Code Among

those Locate by the Evolutionary Algorithm. This Code has 106
Members, All at Mutual Edit Distance at Least 3. The Unmodified

Version of Conway’s Lexicode Algorithm Locates a 96 Member Code.

GTGCTC ATTGGC ACGGOG CGOCTG
GACTAA AGGAGC GAAGOG ATACTG
OOCAGC TAGTGC TTGACG GTTGTG
GOCOOC ACATGC GCTAOG COGATG
CGGOCC ATCCAC GTCOGG TGAATG
AAAOOC TAOGAC CAGCGG AOCTTG
TTTCOC CTGGAC AGAGGG TATTTG
AGOGCC GGCAAC TCTGGG TGACCA
TCAGOC AATAAC AACAGG CTGGCA
CAGACC CGATAG CGTAGG CGCACA
CTAACC TCTTAC GGGTGG ACAACA
CACTOC TGGGTC TTATGG TATACA
ATGTOC CCTGTC GOGCAG TOCTCA
GGTTCC TTCATC AGTCAG CTTTCA
TGOCGC GAATTC CATGAG ATGOGA
GATOGC TAOCOG TOCAAG ACOGGA
GOGGGC CCAOOG GTAAAG CGGGGA
CAAGGC CTOGCG AAATAG TCGAGA
ATTGGC ACGGCG CGOCTG GGAAGA
AGGAGC GAAGOG ATACTG GCTTGA
TAGTGC TTGACG GTTGTG OOCCAA
ACATGC GCTAOC COGATG TAGCAA
ATOCAC GTCCGG TGAATG GTTCAA
TAOGAC CAGOGG AOCTTG GCAGAA
CTGGAC AGAGGG TATTTG TGTGAA
GGCAAC TCTGGG TGACCA CAAAAA
AGGAGC GAAGOG

The application for the error correcting codes in the edit metric is to provide
embeddable bar codes for cDNA libraries. Because these bar codes are to be
embedded in constructs there are a number of constraints on the sequence that
may be used that are driven by biology beyond the need for error correction. In
making the constructs various restriction enzymes are used which cut a DNA
strand at a particular pattern. We must avoid creating additional instances of this
pattern either within our bar codes or as a side effect of embedding our bar codes
into the construct. Sub-strings of the form TT or AAA will interfere with use of
the construct because of a long sting of T’s near the point were the bar code is
embedded.

It turns out that modifying the evolutionary algorithm to deal with such con-
straints is not difficult. In the seed generator, mutation operators, and in the greedy
algorithm, a short piece of code is called that checks the acceptability of each
string relative to the biological constraints.
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6. SUMMARY

Three examples of applications of evolutionary computation to bioinformat-
ics are presented here. The first differs from the simple introductory example, the
string evolver, only by having a different fitness function. With a fitness function
that minimized the randomness of an alignment of a set of 315 sequences the
string evolver was able to bring a motif correlated with transposon insertion over
the threshold of detectability. While quite simple as an example of evolutionary
computation, this application solved a real problem. Because of the essential sim-
plicity of evolutionary computation, the entire software development effort needed
to solve that problem took an afternoon.

The creation of finite state machines to learn how to second-guess a standard
primer-picking package was a more difficult effort. A large amount of data, in
the form of scored primers, was required before the effort began. The choice of
a representation was not as obvious as in the first example. Finite state machines
are well able to pick out a pattern no matter where it appears along the length
of the primer and so were selected as the representation for our classifiers. The
standard fitness function—scoring the number of correct predictions—did not
work well in preliminary studies. The use of an incremental reward, computed as a
primer traverses the finite state machine, worked well enough to have an impact on
future costs. Classifiers located with the incremental fitness function will decrease
the number of bad primers used. Substantial room remains for improvement. The
evolutionary algorithm used to evolve finite state machines to classify primers
(equivalently: to learn the patterns in the scored primer training set) was a fairly
standard evolutionary algorithm. The only feature not completely standard was
the fitness function. It is also worth reminding the reader that this evolutionary
algorithm over-trained the finite state machines when permitted to hybridize a
second time. It is not possible to over-emphasize the need for cross validation
when learning from data.

The creation of larger sets of error correcting DNA bar codes used a new type
of evolutionary algorithm called a greedy closure evolutionary algorithm. The
basic notion is to first choose a greedy algorithm that extends partial structures. In
this case Conway’s lexicode algorithm is the greedy algorithm. The representation
for this type of evolutionary algorithm is a small initial part of the structure, in
this case a seed of three initial DNA bar codes. The fitness is the quality (in the
case of error correcting codes: size) of the final structure constructed by the greedy
algorithm. While we used this technique to find larger sets of DNA bar codes it
has many other possible applications.

These three examples, while quite different from one another, do not do justice
to the breadth of evolutionary computation. Evolutionary computation has been
used since at least the 1960s (Fogel, Owens, and Walsh, 1965) with techniques
similar to those used in the primer-picking example. Foundational works in the area
include (Goldberg, 1989; Holland, 1992) which introduce a type of evolutionary
computation called genetic algorithms. Evolution of variable sized structures, in-
cluding whole computer programs, comes under the name of genetic programming
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(Kinnear, 1994; Kinnear, and Angeline, 1994; Koza., 1992 and 1994). While these
techniques have in common the basic structure given in Figure 1, they each incor-
porate unique features and potential pitfalls.

Evolutionary computation started as a machine learning and optimization
techniques, having been discovered many times in many places. It was not practi-
cal until the late 1980s when the size of widely available computers grew to where
it could support the long run times required. The algorithms used by evolutionary
computation are fast to write, slow to run, and easy to specialize for particular tasks.
In general, pure evolutionary computation does not perform well on problems that
have been studied for a long time. This is because pure evolutionary computa-
tion is too simple to take advantage of expert knowledge about problems. Hybrid
evolutionary algorithms, where evolutionary computation is blended with other
techniques, can incorporate expert knowledge and does often compare well with
or beat other techniques. The DNA bar codes are an example of a high performance
hybrid technique.

Evolutionary computation is an option for problem solving best used in the
initial, exploratory stages of a project. Algorithms that are less general-purpose
can almost always out-perform evolutionary computation. Such specialized al-
gorithms, while they supplant evolutionary computation techniques, may require
knowledge gained with initial studies of the problem that used evolutionary com-
putation. In summary, evolutionary computation is so easy to use that it is a good
choice for brain-storming and prototyping. It is also quite a lot of fun.
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Chapter 3

Architectures for Integration of Data
and Applications

Lessons from Integration Projects

William D. Beavis

1. INTRODUCTION

Despite the hyperbole and excitement about bioinformatics in the late 90s,
during the last two years bioinformatics as a stand-alone commercial enterprise
has failed. Of dozens of Bioinformatics companies in existence in 2000, only a
few remain in early 2003 (Toner, 2002). This is due in part to the overall economic
malaise and the “bust” of technology-based companies. However, there are fun-
damental reasons that are more complex. Consider, for example chem-informatics
companies have not only survived during this same time, but have actually thrived
(Cramer, R. V.P.for Research of Tripos Inc., personal communication). The dif-
ference is that chem.-informatics activities are very focused on discovery of small
molecules that will have biological activity. Specifically, chem-informatics is fo-
cused on development of databases and algorithms that will search through libraries
of potential (and existing) small molecules that could bind DNA and proteins and
thus serve as drug candidates. Chem-informatics is recognized by investors as fo-
cused on discoveries of potential products with short-term return on investment. In
contrast, Bioinformatics encompasses a broad set of activities involved in a wide
range of discoveries from candidate genes responsible for complex phenotypes
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Genome Exploitation: Data Mining the Genome, edited by J. Perry Gustafson, Randy Shoemaker, and
John W. Snape.
Springer Science + Business Media, New York, 2005.

31



32 William D. Beavis

Clinical Assays

Cellular NetworksBiological
Data Types

Bioinformatic
Activities

Infrastructure

Biological
Species

Development
Effort

Molecular Networks

Protein Expression

RNA Expression

Maps

DNA Sequence

Fly

α
β

Yeast

C

A.
thaliana

H.
sapiens

Cow Pig corn soy

Acquire Data
Store

Integrate
Query

Analyze
Visualize

Model

FIGURE 1. Representation of the research and development space spanned by various aspects of
Bioinformatics.

to understanding the structure and evolution of whole genomes. Even the more
focused and applied bioinformatics goals, e.g., discovery and characterization of
binding sites for expression of candidate genes and proteins, are recognized as
long-term investments.

There are, however, positive outcomes to the more fundamental and broadly
defined goals of Bioinformatics. First, Bioinformatics is emerging as a scientific
discipline. There are now over 150 Bioinformatics programs at US universities.
Second, although Bioinformatics may not be viable as a stand-alone commercial
enterprise, it has emerged as an integral part of successful commercial life-science
companies. Virtually all now have large Bioinformatics Departments because they
recognize their long-term viability will depend on fundamental discoveries that
map the relationships between genotypes and phenotypes.

At a high level, the Research and Development Space of Bioinformatics can
be viewed as a set of non-orthogonal vectors (Figure 1) that describe

Bioinformatic Activities
Biological Data Types
Biological Species
Computing Infrastructure
Development Effort

Bioinformatic activities (acquisition, storage, retrieval, integration, analysis,
visualization, modeling) need to be developed for multiple biological data types
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(nucleic and amino acid sequences, physical and linkage maps, RNA, protein and
metabolite expression arrays and clinical and field assays) derived from multi-
ple biological species using multiple biotechnology platforms. Notice that the
scope of bioinformatics exceeds existing resources and capabilities of most or-
ganizations including large pharmaceutical companies. Thus, decisions about the
amount of development effort (theory, prototype, alpha, beta, production) and com-
puting infrastructure that a Bioinformatics program is going to devote toward the
development of these tools and methods need to be made based on the planned
strategic directions of funding agencies, as well as the expectations, interests and
competencies of the relevant faculty or staff.

With the emergence of numerous high throughput biotechnologies that pro-
duce large amounts of various “-omics” data, there is widespread recognition for
the need to develop integrated software systems. The problem space of integrated
software systems for bioinformatics can be categorized according to content and
approach. That is, in order to address an integration problem in bioinformatics, one
needs to understand what data, information and applications need to be integrated
as well as the possible technical approaches that can be pursued; recognizing that
the development of an integrated software system is likely to transcend multiple
categories in both of these dimensions.

The simplest form of integration is to combine data from repeated or related
experiments for either combined analyses or meta-analyses. Once able to combine
data the next logical thing to do is integrate data with analysis tools and to integrate
multiple analysis tools so that the output from one analysis can serve as input to
subsequent analyses. More complex forms of integration across species, data-types
and applications are necessary for the synthesis of knowledge (Seipel et al., 2001a).
For example, integration of information derived from unrelated experiments across
data types provides the researcher with the ability to validate and narrow the search
for candidate genes. Consider also the field of comparative genomics where data
and information from multiple species are integrated for purposes of understanding
evolutionary relationships.

Informatics has provided us with a large number of technical approaches
to integration. Seipel et al. (2001a, 2001b) described these approaches as either
top-down or bottom-up (Figure 2). Top-down approaches can be characterized by
their coordinated development of the database, interfaces, and applications, use
of well defined standards for data representation and data transfer protocols, and
homogeneous data. An example is the data warehouse where all information on a
species is served through a database and interfaces that are developed as a single
system. The advantages include tight, consistent and high quality integration of
all data types (Ritter, 1994), thus allowing very efficient, complex queries and
effective representations of multi-dimensional data. The disadvantages include
high costs for development and inability to incorporate emerging data types and
applications because every change to any single aspect of the system will have,
often unanticipated, impacts throughout the system.

Thus, in rapidly evolving scientific disciplines, such as bioinformatics, one is
faced with abandoning systems before they are completed. Bottom up approaches
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FIGURE 2. Representation of approaches to integrate heterogeneous content, i.e., various aspects
data, information and application (query tools, analyses, visualization tools).

are characterized by independent development of databases and applications as
components with little adherence to a single set of standards for data representa-
tion and data transfer protocols. Rather than attempting to homogenize the data,
heterogeneity is embraced (Benton, 2000). The use of web-enabled hyperlinks
represents a well-known example of this concept, although it could be argued that
hyperlinks do not represent actual integration. There are also component-based
approaches that fall between these extremes. Application service providers, fed-
erated databases, and component-based integration represent examples of these
intermediate approaches. Component based approaches do not produce systems
capable of complex declarative queries because they do not provide inter-database
consistency. However, they do allow heterogeneous resources to exchange data
without homogenizing the data and applications (Szyperski, 1998). Thus pro-
viding development and maintenance cost advantages (Searls, 1995; Goodman,
et al., 1995; Boyle, 1998; Szyperski, 1998) as well as greater flexibility in de-
velopment of intuitive user-interfaces (Searls, 1995; Boyle, 1998; Fischer, et al.,
1999). While each of the component-based approaches have their own advantages
and disadvantages (Siepel et al., 2001b), a common feature includes the ability to
adopt new and changing data types and applications from diverse sources. This
is particularly useful in rapidly changing scientific disciplines where novel tech-
nologies and methods cannot be predicted (Gessler, 2002).

When I first arrived at NCGR over four years ago there was a great deal
of interest, scholarship and debate among our biologists and software developers
about the various approaches to integration. We’ve had a chance to investigate
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and apply theory through development of numerous integrated systems including
the Genome Sequence Database (GSDB), the Arabidopsis Information Resource
(TAIR), X-Genome Initiative (XGI), GeneX, PathDB, ISYS, MOBY, and the
Legume Information System (LIS). To varying degrees of success, these have been
implemented across biological data types and biological species in several com-
puting environments. Some of these projects have been quite successful in terms
of technical innovations, but unsuccessful in terms of wide-spread use by biolo-
gists, while other projects have been rather mundane in terms of computer science
and technical innovation, but very successful in terms of use by biologists. In the
following, I will describe four of these integrated software systems (TAIR, XGI,
GeneX and ISYS) and the lessons we learned from these development projects.
The single most important lesson is not about the relative technical merits of the
approaches rather it is about the essential participation of biologists as partners and
collaborators.

2. A WEB-ACCESSIBLE DATA WAREHOUSE (TAIR)

2.1. Description

The development of The Arabidopsis Information Resource (TAIR) is an
example of a top down approach to integrating all known data, information and
applications for a single model plant species, Arabidopsis thaliana. It is a web-
accessible data warehouse that we have been developing in collaboration with plant
biologists at The Carnegie Institute of Washington at Stanford University (Huala
et al., 2001). The primary goal of TAIR is to provide web access to all research
information about Arabidopsis and thus promote interactions in the plant research
community. As a database system TAIR integrates all of the known genomic, ge-
netic, molecular, biochemical, metabolic, pathway and phenotypic information for
a single species, although the database schema is sufficiently robust to accommo-
date multiple species. The data held in TAIR is acquired in a number of different
ways. Data provided by genomic sequencing centers like TIGR deliver data in
bulk format, which are parsed and loaded directly into the database. Other data
are acquired automatically from online database sources like GenBank. Other data
are provided directly by researchers and this data is processed by either ABRC or
the TAIR curators and sent as files to the database for loading. Finally, a signifi-
cant amount of data is extracted from publications by the curators and sent via a
pipeline to the database for automated loading. In the near future TAIR will also
allow individuals to dynamically upload data for storage via the web site. Perhaps
TAIR’s greatest asset is the careful curation of data by plant biologists under the
supervision of Dr. Sue Rhee at the Carnegie Institute.

The current version of TAIR actually represents a third generation in the
evolution of the system. The original system, known as AtDB, was developed by
Mike Cherry at Stanford University (Flanders et al., 1998). The second generation
was conceived in a proposal (Huala et al., 2001) to NSF that currently supports
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development of TAIR, but was short-lived because we learned that our original
concepts for the architecture were not sufficiently robust to support the amount
and diversity of data or the number of queries from the research community. Since
autumn of 1999, when NSF began funding TAIR, the size of the database has
grown to support about 29,000 genes, 400,000 nucleotide sequence entries asso-
ciated to data objects, 200,000 mutant lines, 4,000 genetic markers mapped on
the sequenced genome, 90,000 polymorphisms mapped on the genome or asso-
ciated with germplasm resources, 500 microarray experiments, 14,000 publica-
tions, 11,000 researcher and 4,000 organization profiles (ref NAR 2003 and http://
arabidopsis.org/about/). Furthermore, there has been an increase from 20,000
web page visits per month in November 1999 to over 500,000 per month
(http://arabidopsis.org/usage/).

From a computer science perspective, TAIR is a software development project
with very little research. In order to accommodate a maximum diversity of plat-
forms and operating systems used by plant biologists TAIR is served through a trio
of servers: a web server that processes all incoming requests; a database server that
houses all the Arabidopsis data; and an analysis server which handles computation-
ally intense data processing tools like BLAST and Patmatch. TAIR is accessible
at (http://arabidopsis.org) through commonly used web browsers. The software is
written in Java, Javascipt and HTML with an emphasis on minimizing platform
dependency issues experienced by the various web browsers and the hardware
systems they are operated on, and is accessible at (http://arabidopsis.org) through
commonly used web browsers. The design of the database and application tools is
based on an object-oriented approach. The database is implemented using Sybase
(version 12.5), a relational DBMS. We designed flexibility into the database by
minimizing linkage among tables. The data tables are organized in a hierarchical
structure where attribution, reference and annotation classes constitute meta-data
of all TAIR objects (http://www.arabidopsis.org/search/schemas.html). As a result
we have ensured optimal responses to queries as the system grows to accommodate
new data types from emerging technologies.

All software applications are implemented in a client-server mode also us-
ing the JAVA Servlet technology and are accessible to researchers by common
web browsers. Information can be retrieved and visualized in a number of dif-
ferent ways. For example, SeqViewer and its complement, MapViewer, provide
views of the genome decorated with genes, clones, transcripts, genetic markers
and polymorphisms in the context of whole chromosomes and chromosomal seg-
ments and can be used to compare Arabidopsis sequence, physical, and genomic
maps. Alternatively, genes can be viewed in the context of metabolic pathways
and biochemical structures using AraCyc.

TAIR also provides some analysis services including BLAST, FASTA and
Patmatch, which provide sequence similarity analyses against Arabidopsis and
plant-specific sequences. Matching sequences are hyperlinked to the TAIR loci
as well as to the MIPS and TIGR databases and can be used to retrieve other
associated data such as GO annotations. However, because researchers often want
to conduct their own analyses a set of bulk data download tools that produce flat
files also are available (http:// arabidopsis.org/tools/bulk/).
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2.2. Lessons

Despite use of well-established design principles and a state of the art DBMS
to assure simplicity and flexibility, TAIR is now a very complex and large system.
Changes to the system to accommodate new data types or applications are more
and more difficult to implement. This, of course is a well-recognized consequence
of utilizing the single data warehouse concept (Siepel et. al., 2001a), but was not
fully understood at the time we proposed the project. From a financial perspective
TAIR is not our most successful project; we have subsidized as much as 1/4 of the
direct labor costs for the project. Also, because TAIR is a development project,
there have not been many peer-reviewed manuscripts generated in the course of the
project. None-the-less, with respect to use and impact on the biological community
TAIR is the most successful integrated software system that we have developed.
Growth in both content and use are measurements of this success.

Although development of such a large complex system depends on techni-
cal expertise, our experience with this system and others (described below) is
that success depends more on clear and good communication between biologists
and software developers. From a technical perspective it is the clearly defined,
structured and shared vocabularies between software developers and biologists
that were essential to design of the system. It has been the responsibility of
Dr. Sue Rhee to assure that this communication takes place despite the physical
distance between Santa Fe and Palo Alto as well as the cultural distance between
biologists and software developers.

In many respects development of this resource is as much about technical
considerations as it is about building a sense of community. This not only re-
quires good communication between software developers and biologists on the
project team, but also active communication with the broader Arabidopsis and
other model organism research communities. To assure this broader participation,
Sue has represented TAIR as an active member of the Gene Ontology Consortium
(http://www.geneontology.org) since 2000 and has provided our perspective on
gene models and the roles of genes and products so that it will be possible for
biologists from different backgrounds to investigate similarities among diverse
organisms.

3. AN AUTOMATED ANALYSIS AND ANNOTATION PIPELINE (XGI)

3.1. Description

Like many organizations that have been faced with large continuous streams
of DNA sequences from multiple projects, we have automated analyses and anno-
tation. In an effort to consolidate these efforts into single automated process we
developed XGI (Genome Initiative for species X). The goal of the XGI project
has been to develop a system that is powerful enough to process large amounts
of both genomic and expressed sequence data and flexible enough to incorpo-
rate different analysis tools depending upon the needs of a particular project. The
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FIGURE 3. Representation of the architecture for automated analysis, annotation, storage and retrieval
of sequence information used by XGI.

components of XGI can be described as three interacting modules: an analysis
pipeline, a relational database and user interface (Figure 3).

In the context of research and development, XGI, like TAIR, is a software
development project, although the results of the analyses are used extensively for
comparative genomics research. Development of the pipeline might be viewed as
utilizing a bottom up approach because most of the analysis and annotation tools
as components that were developed independently of the pipeline. In contrast,
the database, user interface, and data transfer protocols were all developed using
a top down approach. The analysis pipeline is fully parallel and can be run in
symmetric multiprocessing mode (SMP) on shared memory machines, or can be
run in distributed multiprocessing mode (DMP) on clusters of workstations or on
Beowulf clusters. It uploads raw sequence data and processes it through a series
of analysis operations, each operation building upon the results of the previous
stage. Results of each analysis stage in the pipeline are stored in the XGI relational
database that has been implemented in both Sybase (v 12.5) and Oracle (v 9i ). The
web interface provides the ability to pursue powerful complex declarative queries
using Boolean operators on the part of our collaborators. The XGI Web Interface
provides researchers with the ability to submit complex queries that permit precise
delineation with Boolean logic operators in conjunction with scope delimiters
(STRICT, LOOSE) enabling virtual Northerns and in silico subtractions as well
mine the results of the analyses based on keyword searches of features and GO
annotations.
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The analysis pipeline is fully parallel and can be run in symmetric multipro-
cessing mode (SMP) on shared memory machines, or can be run in distributed
multiprocessing mode (DMP) on clusters of workstations or on Beowulf clusters.
It uploads raw sequence data and processes it through a series of analysis oper-
ations, each operation building upon the results of the previous stage. Due to its
modular design, it is possible to add sequence analysis tools to the pipeline through
several mechanisms including: writing the new analysis in JAVA, use of the JAVA
Native Interface (http://java.sun.com/docs/books/tu-rial/native1) for tools written
in C or C++, and use of XML (http://www.w3.org/XML/) to incorporate pro-
grams written in other languages. Results of each analysis stage in the pipeline are
stored in the XGI relational database that has been implemented in both Sybase (v
12.5) and Oracle (v 9i). The XGI Web Interface provides researchers with the abil-
ity to submit complex queries that permit precise delineation with Boolean logic
operators in conjunction with scope delimiters (STRICT, LOOSE), thus enabling
virtual Northerns and in silico subtractions as well mine the results of the analyses
based on keyword searches of features and GO annotations.

The current version of XGI has been through several generations of develop-
ment that have been supported by the Novartis Foundation, the Noble Foundation,
USDA-ARS, NSF-IFAFS, NSF-PGRP and UC-Davis. These organizations rep-
resent several diverse biological research communities with interests in the plant
pathogensPhytophthora infestans, Phytophthora sojae, several species of legumes
including the reference legume Medicago truncatula, and cotton. Since its incep-
tion the pipeline has processed hundreds of thousands of ESTs from several plant
and fungal species and thousands of genomic BACs and Contigs, primarily from
Medicago truncatula. When utilizing all steps in the pipeline it is currently capable
of processing about 2000 ESTs per day or 300 BACs per day on our 16-node clus-
ter. By far the slowest stage in the process are the seven searching steps performed
by InterproScan, which constitute about 40% of the time for an EST pipeline run.
This is due to several computationally intensive hidden markov chain-based al-
gorithms. It is possible to run the pipeline without sending the sequences through
the InterProScan stage (or any other stage for that matter) by using an Adminis-
tration Tool, which also makes it possible to adjust the parameters associated with
any of the analysis steps. Because XGI achieves high-throughput by paralleliza-
tion, performance will improve in a near linear fashion as the number of available
processors increase.

3.2. Lessons

XGI has been a successful integration project. From a financial perspec-
tive, it has been fully supported by the communities that it serves. On the other
hand, it has not produced many peer-publications and it has not been widely
used by biological researchers outside the collaborative research communities
for which it was designed. Results of analyses are accessed primarily by the
collaborative research communities involved in the specific genome sequencing
projects.
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Although developed for use by specific collaborative genomics research
projects, the XGI system is portable and can be installed offsite. It is available
through a no cost license to academic researchers and it has been successfully
installed and is in use at Plant Research International in The Netherlands. None-
the-less, to date there have been few external installations of the software sys-
tem. I think that there are several reasons for this. First, until recently we did
not devote resources into development of a licensing model. Second, XGI was
designed and developed by bioinformaticists to meet the need for automated anal-
yses and annotation of specific collaborative projects, not as commercial software
for distribution. Thus, installation of XGI requires computational expertise to set
up and run. Third, it was developed to process large amounts of sequence data
from collaborative genomics projects and to present the results to remote sites
through web interfaces. It was not designed to be a stand-alone desktop applica-
tion. For this reason it is not suited to running multiple iterations with small datasets,
which has been an oft-asked request from biologists. Finally, most large-scale se-
quencing projects have developed their own pipelines. Likewise smaller projects
have built smaller scale pipelines to meet their specific needs with students and
post-docs.

4. AN OPEN SOURCE INTEGRATED SYSTEM (GENEX-LITE)

4.1. Introduction

Several years ago we initiated a large project, which we named GeneX, to
integrate data and information from gene expression arrays. Our original intent
for GeneX was to develop a system that would integrate data and information
across technology platforms and across biological species with the flexibility to
be deployed at an individual lab, groups of labs and globally (Figure 4). Similar
to TAIR, our approach was top down with the goal of developing and supporting
a global warehouse to support comparative functional genomics. In contrast to

Proposed GeneX Architecture GeneX-Lite Architecture
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FIGURE 4. Comparative representation of architectures used by GeneX and GeneX-Lite.
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TAIR, we were interested in a single data type rather than a single species. Also,
we wanted to manage the development through an open source model and take
advantage of emerging standards for modeling and transfer protocols of data from
gene expression experiments.

We planned the system to support data generated by micro-arrays (Schena
et al., 1995), Affy-Chips (Lipschutz et al., 1999), nylon arrays, AFLPs (Vos et al.,
1995) and Serial Analyses of Gene Expression (Velculescu et al., 1995) with

� an open-source relational DBMS,
� an extensible DB schema
� scripts and applications to handle data input and output
� code to interface the DB with applications
� statistical analysis applications
� and a client-side Curation tool with which we expected to curate
� a “large number” of publicly available expression arrays.

We initiated this project with internal resources, but also obtained funding
from NSF after about a year of effort. The reviewers at NSF were fairly skeptical
of the scope of the original proposal and strongly encouraged us to reduce the
scope to show proof of concept; it was advice that we did not fully appreciate at
the time.

In the first two years of the project we learned a great deal about how not
to manage a large software development project, particularly in a dynamic envi-
ronment of constantly changing data and information. At the end of our second
year (first year of NSF support) we had developed relatively large and complex
relational data model that was capable of accommodating virtually all types of
expression data along with most associated data describing species, experimental
design, gene annotation, etc. The database was implemented in Postgres, an open
source RDBMS. We felt very good about this accomplishment given the evolv-
ing standards during the time we were developing the system. However, with the
release of MIAME, we realized that the schema was unnecessarily complex. We
also developed an XML based data transfer protocol and implemented it in an ob-
ject layer between the database and applications. The data model for this middle
layer was also quite complex to accommodate the anticipated diversity of data.
Unfortunately, the data model for this middle layer did not map well to the data
model of the database. Finally the system had several applications consisting of a
curation tool, an upload tool, a web interface, and several analysis and visualiza-
tion applications including R, CyberT (xgobi and xviz), J-Express and xcluster.
The weakest applications at the time were the curation and upload tools, which
required researchers to fill out several pages of information in order to upload
even simple data sets. Indeed our biologists only managed to upload a couple of
publicly available datasets in a six-month period.

The entire GeneX system was released initially through SourceForge
(http://genex.sourceforge.net) and subsequently through the NCGR web-site
(http://genex/ncgr.org/download). Although functional, the entire system was cum-
bersome. Contrary to our expectations, releasing the code through an open source
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model did not attract software developers interested in joining the development
process. I think there are a couple of reasons for this. First, as Peter Rojas (2000)
points out, simply putting code on a server with an open source license is not
sufficient for success. The code needs to be cleaned up and well documented be-
fore the open source community is willing to work with it. Second, the code must
address a need recognized broadly by software developers. There are not large
numbers software developers with sufficient knowledge or interest in gene expres-
sion; those with sufficient domain knowledge are probably already working on
their own systems.

The code was downloaded primarily by biologists, but they found the sys-
tem particularly the curation and upload tools, to be too cumbersome to meet their
needs. Most downloads by biologists were motivated by a desire for a free software
system that could be utilized for management and analysis of expression data in
the individual laboratory setting. We therefore decided to develop a simpler sys-
tem, based on the MIAME standards (http://www.mged.org), to meet the needs of
the single investigator. We refer to the system as GeneX-Lite due to the simple,
somewhat abstract, data model and simpler interface design (Figure 4). The new
schema easily supports a wide variety of experimental designs and data from mul-
tiple technology platforms (http://www.ncgr.org/genex/architecture.html). Thus,
it is possible to combine selected data from different experiments into an in
silico or virtual experiment; assuming that the data are properly normalized before
analyses.

The entire system including database server, web server, and all applications
can be run on a laptop and has been installed in UNIX, windows and OSX envi-
ronments. We also abandoned the XML mechanism for data transfer, replaced it
with JDBC and developed a data upload mechanism that is flexible and fast. It is
flexible in the sense that it is possible to load and annotate information and data in
separately and incrementally. Individual research biologists have found this to be
quite useful because annotations and meta-information can be added as needed.
Our own bioinformaticists have loaded over 520 experiments into the system; the
largest of these by Kim et al. (2001) had almost seven million measurements and
took only about 15 minutes to load.

Most recently, with the open source release of TMEV (http://www.tigr.org),
we decided to see if the code from both open source systems could be integrated.
It turned out to be very easy and straight-forward. We then discarded our ef-
forts to integrate CyberT and the other analysis and visualization tools because
TMEV provided greater functionality with a single interface. We also abandoned
the xgobi/xgvis visualization tools in favor of those provided by TMEV because
xgobi/xgvis rely on X-Windows and can be troublesome on some platforms with
network configurations. In the near future we will be extending the visualization
capabilities of the system by incorporating GenomeDX (Matthews et al., 2002),
an open source visualization and data-mining tool.

Since completing integration between GeneX-Lite and TMEV the number
of down loads of the system has increased dramatically. Currently, GeneX-Lite
registrations average about 60 per month. These are primarily by biologists and
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bioinformaticists. None have contributed code, but many have made suggestions
to improve the user interface, which have been easy to implement.

4.2. Lessons

GeneX has been our most difficult software development project, while
GeneX-Lite has become one of our more successful projects. Our original concept
of deploying a comprehensive system at individual labs, for a group of labs or
globally through an open source model was naı̈ve. We missed all three targets with
our first few releases of the GeneX system and failed to attract open source devel-
opers. Since changing our development model to focus on the needs of a single
investigator while paying close attention to emerging standards for data modeling
and exchange, we have developed a functional system that seems to be meeting
the needs of many.

There are numerous reasons for lack of success with the initial GeneX project.
Recall that top down approaches are characterized by their use of well-defined
standards for data representation and data transfer protocols through coordinated
development of the database, interfaces, and applications. While we had members
of our development team participate in development of MAML and subsequently
MIAME standards these standards were not settled during our first two years
of development. Subsequent development of GeneX-Lite has benefited from the
release of MIAME and will benefit from various MAGE initiatives dealing with
data exchange protocols.

More importantly, the development of GeneX modules was not well coordi-
nated. Because we were enamored with the open source philosophy, but did not
understand the open source development model, our developers tended to interpret
the open source model as permission to pursue a bottom up approach to develop-
ment. Thus, the modules tended to be developed independently. With turnover of
project staff, however, we had an opportunity to reevaluate our approach and real-
ized that top down approaches were not incompatible with an open source model.
Indeed, they are quite compatible, as evidenced by the coordinated development
of LINUX through strong management by a “benevolent dictator”.

Most importantly, rather than try to develop a comprehensive system for our
perception of all researchers needs, we decided to focus on development of an
integrated system that could be deployed into the lab of single researchers and
listened to a single yeast researcher, Dr. Stephanie Ruby, at the University of New
Mexico Health Sciences Center.

5. LOOSE COUPLING INTEGRATION (ISYS)

5.1. Description

Several years ago we began a component based approach to the development
of an Integrated System (ISYSTM) that would provide greater integration than
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simple hyperlinks yet still facilitate an exploratory environment for the researcher.
We were motivated by several factors. First it was our sense that Biologists would
prefer to explore relationships in databases rather than specify complex queries a
priori, i.e., most researchers would prefer to compose queries interactively while
probing, inspecting and exploring database information. Thus, we wanted to build
a system that facilitated biological discovery. Second, we recognized that bioin-
formatics is a rapidly changing discipline where novel methods and technologies
are continually emerging. Thus, we wanted to build a flexible integration plat-
form that would allow researchers to adopt new and changing data types and
applications from diverse sources. Although funded primarily with internal re-
sources, we also obtained funding and collaborative support from four members
of the Consultative Group of International Agricultural Research (CGIAR) cen-
ters who felt that our implementation as a client-side integration system could
be beneficial to their programs consisting of widely distributed researchers with
poor and inconsistent connections to the internet and other centralized information
resources.

Our approach with ISYS was similar to that advocated by the Life Sciences
Task Force (1997) of the Object Management Group in which heterogeneous
components, including both databases and applications, can interoperate, but allow
freedom in the assembly of systems from components (Slidel, 1998; Benton, 2000).
The resulting integration platform is capable of integrating websites, databases,
service providers and applications that have been developed independently of
ISYS. Integrating components into the platform is straight-forward using standard
protocols and is published in the ISYS API (http://www.ncgr.org/isys/developers).
To date, we have integrated over a dozen components, including sequence viewers,
the Berkeley Drosophila’s Genome Project’s gene ontology browser, maxdView’s
gene expression viewer, interfaces to local and remote BLAST, and numerous web
pages. The integration of web pages allows researchers to invoke web pages as
services and extract results from web pages to bring them back client-side for
further analysis.

Details of how to implement ISYS are published in the ISYS SDK (Soft-
ware Development Kit) available at www.ncgr.org/isys/developers.html/. Features
of the system include synchronous display among components and the ability to
discovery appropriate services based solely on the type of data they accept, which
we refer to as DynamicDiscovery. These are direct outcomes of the use of an Event
Channel and Broker Pattern in the ISYS architecture. The event channel allows
components to “listen and react” to other components thus providing synchronous
displays of filtered information. Our implementation of the Broker Pattern in the
ISYS bus allows all components to request and provide services to and from all
other components, thus allowing independently developed components to dynam-
ically volunteer their services on selected objects.

ISYS has been available to the research community for a couple of years
and over 3200 copies have been distributed. It is not clear to us whether other
researchers are adding their own choices of components to the system. We have
been working in partnership with molecular plant breeders at the Consultative
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Group of International Agricultural Research (CGIAR) centers to develop and add
components of their choosing to the system.

5.2. Lessons

From a scientific and technical perspective we managed to bring two powerful
features, dynamic discovery and component synchronization, to the problem of
integrating heterogeneous and independently developed bioinformatics resources.
From a financial perspective, most of the direct labor costs of the research compo-
nents of the project have been funded with internal resources. And from a “use”
perspective, we are not sure how many biological researchers are using the sys-
tem. From our collaborative efforts with the CGIAR researchers it seems that
synchronization and dynamic discovery are features that researchers have been
very useful for probing and exploring multi-dimensional information resulting in
discovery and synthesis of knowledge. At the same time, it needs to be noted that
there are several learning curves that need to be engaged when using such a sys-
tem. First, the set of components that we have integrated may not be familiar to the
biologist. Second, if the biologist desires a different set of components then there
is a need to the API so that their preferred components can be integrated. Finally,
we thought by building the platform to run on desktop and laptop clients, rather
than central servers, independent PIs would find it possible to configure the system
with components for their personal use. However, most biological researchers with
access to the web are more comfortable with a single web browser technology than
multiple client side technologies.

The project has brought us a number of collaborative opportunities. In addition
to the collaborations with the CGIAR, we have partnered with Cold Spring Harbor
Laboratory on an NSF-funded project, and in cooperation with Canadian funding
efforts, we are pursuing the design and implementation of a web-based, distributed
analysis system. This project, called MOBY, is aimed at developing a common
syntax, common semantic, and discovery mechanism for bioinformatic data and
services. MOBY rests heavily on the ideas and approaches of ISYS and DAS
(Dowell et al., 2001). Conceptually, it is a small step to expand ISYS’s loose-
coupling, client-side approach to full web integration: that is, the association of
web services with data types and service discovery. Architecturally, though, such
web integration is non-trivial, as a number of issues concerning syntax, semantics,
and discovery need to be addressed in the creation of a viable model.

6. SUMMARY OF LESSONS LEARNED FROM ALL
INTEGRATION PROJECTS

In this manuscript I’ve used three criteria to judge the integration projects:
financial considerations, scientific and technical innovation and use of the system
for research and discovery by biologists. Evaluating the first criterion is straight
forward with an accurate accounting system. Scientific and technical innovations
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are a little more difficult to measure, but certainly peer reviewed publications
represent a measure that can be quantified. The most difficult to measure is system
use. It is a criterion that software developers use to judge themselves, but it is
difficult to tell if a system is being used by the number web-site visits, number of
downloads or requests for licenses.

As a non-profit organization, where 100% of our annual operating expenses
need to be covered by the R&D projects, we are learning that there are few fund-
ing opportunities from federal granting agencies for pure software development
projects. Thus, we have broadened our funding portfolio to include research foun-
dations and international agencies. XGI is our only project where virtually all
direct labor and infrastructure costs have been fully covered by external fund-
ing; primarily through competitive grants. We chose to subsidize the remaining
projects with internal funds for various reasons. We deliberately decided to sub-
sidize ISYS because we wanted to pursue its scientific and technical innovations.
Because TAIR is a high profile, long-term project we have been willing to sub-
sidize unforeseen costs due to emerging requirements. Although these emerging
requirements could have been better forecast in the original proposal, we have to
recognize that projecting five years in a technically changing environment involves
a certain amount of luck. GeneX has been our most ambitious project with regard
to planning a system in a changing scientific and technical environment, but we
also have to admit that a great deal of its initial costs can be attributed to poor
management.

The project with the least innovative computer science and information tech-
nology, TAIR, has been the most successful in terms of serving the biological
research community. On the other hand, our most innovative integration project,
ISYS, has had the smallest impact in terms of serving the biological research com-
munity. Design and requirements of the former have been driven by biologists,
while biologists were used primarily for “use-cases” in the development of the
latter. This dichotomy between development needs of biologists and research in-
terests of bioinformaticists is fairly widely recognized and represents a significant
challenge for program directors at funding agencies. One way to address this is to
utilize different mechanisms for development than for research, e.g., the recently
issued RFA from NIAID for Bioinformatics Resource Centers. As Bioinformatics
emerges as a discipline, however, it is likely that both research and development
can and will be accommodated in large programmatic grants.
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Chapter 4

Functional Genomics Approach to
Elucidate the Regulation of Vascular
Development in Poplar

Rishikesh P. Bhalerao and Göran Sandberg

1. INTRODUCTION

The vascular cambium is the lateral meristem responsible for wood formation
in trees (Larson 1994). The cambial initial (equivalent of the stem cells) undergoes
cell divisions that give rise to xylem and phloem mother cells. These mother
cells undergo several rounds of cell division to give rise to daughter cells that
progressively undergo expansion, secondary wall formation and cell death. This
sequential progression of the cells from division to death manifests itself in an easily
distinguishable developmental gradient on the xylem side (Figure 1). The regular
pattern of wood formation is altered by environmental and hormonal signals. For
example, wood formation differs noticeably during the growing season with xylem
cells being thin walled early in season where as they are thick walled during the later
part of the season (Larson 1960). Similarly, bending trees modulates the orientation
of the cambial cell divisions, with the cambial cell divisions terminating on one side
and being enhanced on the opposite side. Additionally, the walls of these newly
formed xylem cells have higher cellulose to lignin ratio (Timell 1969). Age of the
tree also influences wood formation with juvenile woodbeing different compared
to mature wood. Finally, one of the most significant alterations in wood formation

Rishikesh P. Bhalerao and Göran Sandberg Umeå Plant Science Center, S-901 87, Umeå,
Sweden
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A B C D

Auxin concentration gradient 

FIGURE 1. A schematic representation of the wood forming zone in trees with auxin concentration
gradient overlapping the developmental gradient in the secondary xylem tissues. The main zones shown
are, A-dividing cambial cells, B-early expanding cells, C-late expanding cells, D-early secondary wall
forming cells and E-late secondary wall forming cells. Please note that this zone also includes cells
undergoing cell death.

is the seasonal change in cambial activity so that the period of wood formation
is synchronized with the period of favourable growth conditions. This cycling
of the cambium between active and dormant state allows the trees to protect the
meristems from harsh environmental conditions as well (Little and Bonga 1974).

Thus from above it is clear that wood formation is influenced by several
different environmental and other signals. The challenge for tree biologists is to
understand the molecular basis of wood formation and its alteration by a diverse
range of signals. Understanding of wood formation is important from both research
and economical point of view. On one hand wood formation provides an excel-
lent experimental system to investigate the developmental regulation. The spatial
separation of xylems cells at distinct stages of development permits their isola-
tion for high resolution transcript profiling and growth regulator measurements
(Uggla et al., 1996; Hertzberg et al., 2001). At the same time wood production is
economically important. However, the investigation of wood formation especially
at the molecular level has significantly lagged behind other processes for several
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reasons until recent times. This paper evaluates the progress made in the area of
molecular wood biology with emphasis on the work that has been performed in
poplar, which has become an experimental model for elucidating wood formation
using functional genomics approach. In this chapter we will focus on two areas of
wood formation, (i) The development of secondary xylem and (ii) The seasonal
control of cambial activity.

2. POPLAR AS A MODEL FOR STUDYING FORMATION

One of the major reasons for the lack of knowledge regarding wood forma-
tion especially at the molecular level has been a lack of good experimental systems
to investigate wood formation. While trees such as pine, spruce are economical
important, the long generation times and that these trees are not easily amenable to
genetic approaches has precluded their use for the purpose for experimental anal-
ysis of wood formation using molecular techniques with few exceptions (MacKay
et al., 1997; Allona et al., 1998). Equally important is the fact that wood as a tis-
sue is difficult to obtain for experimental manipulation although at the same time
the basic design of wood cells make them an excellent experimental system. For
example, the large size of cambial meristem and the fairly regular pattern of cells
in the secondary xylem allows measurement of the concentration of key growth
regulators such auxin and transcript pools of xylem cells at specific stages of devel-
opment. This in turn allows prediction of the influence of concentration gradients
of growth regulators and alterations in the pattern of gene expression to build a
transcriptional network to explain the molecular basis of xylem development. Sev-
eral years ago scientists in Umeå and other groups in several other labs focused on
poplar as an experimental system for questions pertaining to tree biology (Feuillet
et al., 1995; Tuominen et al., 1995; Nilsson et al., 1996). This choice of poplar as
an experimental system was based the rapid growth rate of polar and the ability to
manipulate poplar genetically through agrobacterium mediated transformation. In
retrospect, this choice of poplar was especially fortuitous given that DOE decided
to sequence poplar genome in 2001 and completed its sequence in December 2002
(http://genome.jgi-psf.org/poplar0/poplar0.home.html).

3. ELUCIDATING THE CONTROL OF SECONDARY
XYLEM DEVELOPMENT

3.1. The Role of Aux/IAA Genes in Regulation of Secondary
Xylem Development

One of the key findings in the area of vascular development was the descrip-
tion of a concentration gradient of plant growth regulator auxin overlapping the
developmental gradient of xylem in the wood forming tissues in trees (Uggla et al.,
1996) (Figure 1). The concentration of auxin displays a peak in zone comprising the
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FIGURE 2. Expression pattern of hybrid aspen Aux/IAA genes (denoted as PtIAA) in the cell types
comprising the wood forming zone. Note that cambium corresponds to zone A, div xylem (dividing
xylem) corresponds to zone B, expanding xylem (Exp Xylem) corresponds to zone C and secondary
wall forming xylem (Sec xylem) corresponds to zone D of figure 1.

cambial initial and dividing cells and then progressively declines towards the edge
of xylem in the zone comprising the secondary wall forming cells. Based on this
distribution of auxin it has been proposed that auxin concentration acts as a posi-
tional cue to influence xylem development. This hypothesis leads to the question of
how the concentration gradient of auxin can translate into activation and repression
of gene expressions whose output is the visible pattern of xylem development.

The answer to these questions has been approached in two ways. Firstly we
have cloned cDNAs for 18 members of the Aux/IAA gene family from poplar.
The Aux/IAA genes encode small molecular weight nuclear targeted proteins that
interact with ARF family of transcription factors and influence gene expression
in auxin responsive manner (Ouellet et al., 2001; Tiwari et al., 2001). Important
to this discussion is also the observation that Aux/IAA proteins are destabilized
by auxin (Gray et al., 2001; Tiwari et al., 2001). Furthermore, mutations in sev-
eral Aux/IAA genes lead to aberrant auxin responses in Arabidopsis (reviewed in
Reed 2001). In order to elucidate the regulation of xylem development by auxin
we examined the expression of poplar Aux/IAA genes in the cell types comprising
the developmental gradient of secondary xylem (Moyle et al., 2002). The results
shown in figure 2 indicate the expression of Aux/IAA genes is highly specific
expression patterns. The pattern of expression of the poplar Aux/IAA genes sug-
gest two potential mechanisms how auxin distribution can influence the course of
xylem development. Firstly, the different Aux/IAA genes can act as tissue spe-
cific auxin responsive transcription factors that activate or repress the expression
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of downstream genes. These auxin dependent activation activation or repression
of gene expression programs could then modulate the course of xylem develop-
ment leading to organization of developing xylem cells into distinct developmental
zones. An alternative explanation of auxin regulation of secondary xylem devel-
opment can be considered based on the observation that auxin concentration can
regulate the level of Aux/IAA proteins. This would mean that auxin concentra-
tion gradient could set a corresponding gradient of Aux/IAA transcription factors.
This gradient of Aux/IAA transcription factors in turn would activate or repress
downstream genes depending upon the concentration of the Aux/IAA transcrip-
tion factor leading to auxin dependent activation or repression of gene expression
programs in the developing secondary xylem cells.

3.2. Genomics Approach to Elucidation of Secondary Xylem Development

3.2.1. Large Scale Gene Discovery in Wood Forming Zone of Poplar

The auxin concentration gradient and the gene expression of Aux/IAA genes
in the xylem cells provides the conceptual framework that at least partly explains
how auxin concentration gradient may regulate the formation of distinct domains
of developing xylem cells. However, the downstream targets of these Aux/IAA
genes need to be described, a task that cannot be accomplished by conventional
approaches. To illustrate this point it is useful to consider that at the start of the
poplar project (described below) in 1998, less then 50 cDNA sequences were
present in the NCBI database. Therefore the first step towards understanding the
xylem development was to initiate gene discovery in poplar. As realised in several
other organisms, the most obvious way to do this was to perform EST sequencing
in poplar preferably using cDNA library prepared from RNA isolated from the
tissue of interest, the developing xylem. Therefore an EST sequencing project was
initiated and 5000 ESTs were sequenced from a cDNA library constructed from
mRNA isolated from developing xylem and phloem tissues (Sterky et al., 1998).
The ESTs sequenced provided the first glimpse of the type genes that are expressed
in wood forming cells. A total of 2,988 transcripts could be identified from the
assembly of sequenced ESTs. Several genes for lignin and cellulose biosynthesis
were identified as well. For almost 40% of the sequenced ESTs, no function could
be deduced from the sequence alone. However it is important to realize that this
could be due to either small sequence length and/or the fact that 5′ sequence does
not contain enough information for confirming sequencing identity.

3.2.2. Transcript Profiling of Developing Xylem

While EST sequencing was useful in describing the type of genes expressed
in wood forming cells, these results do not provide information on how different
gene expression programs are regulated during the course of xylem development.
Therefore transcript profiling of developing xylem was performed. In order to
perform transcript profiling a microarray was fabricated. The sequenced ESTs
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FIGURE 3. Cryosectioning technique to obtain 1–3 cell layer thick sections for mRNA isolation. See
section 4.2.1 for description.

were assembled creating a unigene set of approximately 2300 unique sequences.
The ESTs for these 2300 unique “genes” were used to generate a cDNA microarray
for transcript profiling of cells comprising the developmental gradient of the xylem
cells (Hertzberg et al., 2001).

In order to investigate the choreography of gene expression to chart the course
of xylem development, it was necessary to perform transcript profiling using probes
prepared from single cell layers. In order to do this, firstly, we developed cryosec-
tioning technique to obtain tangential sections of developing xylem cells (Uggla
et al., 1996) (see Figure 3). This technique allowed precise isolation of well de-
fined 1–3 cell layers of xylem about 30 micrometer in size. The sections isolated in
this manner were used to measure auxin distribution across the developing xylem
cells. Typically, it was calculated that the tissue obtained using this method would
be about 0.5 milligrams and therefore a yield of 0.5 micrograms of RNA was
expected from such a small amount of sample. The challenge was in being able
to isolate RNA from this tissue and make probes using extremely small amount
of RNA. This difficulty was due to the existing probe labeling protocols that use
at least 1–2 micrograms of mRNA and therefore a novel PCR amplification based
protocol was developed (Hertzberg et al., 2001). Briefly, the method was based on
random fragmentation of cDNA obtained from small amounts of tissues obtained
by cryosectioning (typically 1–3 cell layers of 30 micrometer) followed by capture
of the 3 prime ends using magnetic beads technology followed by PCR amplifi-
cation of the 200–400 base pair long fragments to generate the target that could
be labeled for use in transcript profiling experiments. This method overcame the
problems associated with alternative PCR based methods using mRNA isolated
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from single cells which suffered from the bias in PCR towards small fragments
which was further reflected in results obtained in transcript profiling experiments.
The hybridization results from the amplification strategy were compared with the
results obtained using conventional probe preparation methods. It was found that
the amplification method was robust and reproducible.

3.2.3. The Spatial Regulation of Gene Expression During the Secondary
Xylem Development

In order to describe the dynamics of the pattern of gene expression during
xylem development, transcript profiling was performed (Hertzberg et al., 2001).
For transcript profiling, probes were generated from RNA isolated from 30 mi-
crometer sections as described above. In total 5 sections were used referred to
as ABCDE in the subsequent figures. A corresponded to cambium, B-young
xylem, C-expanding xylem, D-secondary wall forming xylem and E-the zone
of programmed cell death. The experimental design for transcript profiling in-
volved hybridizing each zone against a pooled reference sample i.e. A/ABCDE
and B/ABCDE, this allowed a direct comparison of A vs B. The results of this
analysis are summarized below and explain some of the information obtained from
this analysis.

Firstly it was found that although the zone of cell division is confined to zone
A, the expression of cell cycle genes e.g. PttCDKA, PttCYCH extends beyond this
zone. This may reflect that the cells retain their competence to divide late into de-
velopment. Also this may be indicative of the fact that some of the cell cycle genes
encode proteins that may play a role in other aspects of cellular functions. Secondly,
our microarray analysis was useful in delineating the potential roles for individual
members of the large gene families. For example, we found over 16 sequences for
tubulins and their expression patterns could be divided into 2 clusters. One of these
had a peak of expression in the zone B where most of the dividing cells are present
where as the other cluster was positioned over the zone of expansion. Tubulins
are involved in cell division as well as orientating the cellulose microfibirils and
these two processes are separated in space and the distinct expression of tubulins
may indicate the roles of the different members of the tubulin family. Similarly,
the members of MYB transcription family also exhibited differential expression
across the cells of developing xylem. As MYB genes have been involved in regu-
lation of diverse cellular processes ranging from cell division to lignification, the
description of the expression patterns of different members of this family provides
the first clue regarding the potential roles in the context of xylem development.
These examples simply reflect the type of information obtained from global tran-
script profiling. Thus the data from microarray analysis not only described the
genes that are expressed in specific cell types but more importantly they allowed
us to construct the transcriptional network underlying the formation and organi-
zation of the domains of the cells comprising the developing xylem for the first
time.
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4. THE SEASONAL CONTROL OF CAMBIAL ACTIVITY

The other key aspect of vascular development considered here is the seasonal
cycle of the vascular cambium. One of the major points of distinction between
annuals such as Arabidopsis and perennials such as trees is the seasonal cycle of
the activity of the cambial meristem. The cambial meristem cycles between active
and dormant states. This cycling allows the cambial meristem to synchronise its
period of growth with favourable environmental conditions thereby maximizing its
period of growth and protecting the meristem from harsh environmental conditions
(reviewed in Samish 1954). However the activity-dormancy cycling is a complex
process that involves several stages (see Figure 4) whose orderly transition is reg-
ulated by the environmental and possibly hormonal signals. The cycling of the
cambial meristem between active and dormant state is described in the figure 4.
The cambium during the active period of growth can be considered to be in online
state with the cell division machinery being responsive to growth promotive sig-
nals. However upon exposure of the trees to short days, growth cessation occurs
and cambium enters the ecodormant state at this stage the cell division machinery
can be considered to be in standby mode as transfer of the plants in ecodormant
state to favorable conditions leads to reactivation of the growth. Later in the sea-
son, the cambium makes the transition to endodormant state with the cell division
machinery entering the offline mode, becoming insensitive to the growth promo-
tive signals. Exposure to chilling temperatures leads to transition of the cambium
into ecodormant state and the cambial cell division machinery returns to standby

Ecodormant

Endodormant

Ecodormant

Short days 

Low temperature 

Low temperature 
Chilling

Warm
temperature

ABA

Auxin

Online

Standby

Offline

Standby

FIGURE 4. Schematic representation of the annual cambial cycle. See the description for explanation
of terms.
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mode so that warm spring temperatures cause reactivation of the cambial growth.
At this stage very little is known about the molecular basis of regulation of the
cambial activity by environmental signals and in particular about the differences
between ecodormant and endodormant states at the molecular level. The entire
process of cambial cycle involves several sub processes, in which multiple signals,
environmental and hormonal act on diverse signaling pathways. Therefore it was
deemed that the study of the regulation of cambial activity would benefit from a
functional genetics approach. However, prior to initiating a functional genomics
approach to study cambial cycle it is important to remember that the actual site
of dormancy is the cambial meristem. Therefore obtaining relevant information
regarding dormancy would benefit considerably from being able to analyse prior
to initiating a functional genomics approach to study cambial cycle it is important
to remember that the actual site of dormancy is the cambial meristem. Therefore
obtaining relevant information regarding dormancy would benefit considerably
from being able to analyse gene expression in the cambium itself. This is espe-
cially a relevant issue since the meristem constitutes a minor part of stem or apical
bud and therefore it is to be expected that grinding up entire stem or apical bud
might cause considerable loss of information due dilution effects. Importantly, it
is the meristem that undergoes dormancy and not the surrounding tissues. There-
fore in our investigations of cambial activity we worked with cambial sections for
making cDNA libraries as well as transcript profiling as described below. We used
cryosectioning described earlier to isolate pure cambial sections as a starting mate-
rial for cDNA library construction as well as transcript profiling experiments. This
minimized confounding of results from processes that occur in non-meristematic
tissues during dormancy in the cambium.

4.1. Large Scale Sequencing of Active and Dormant Cambial Libraries

In order to analyse seasonal cambial activity we firstly generated cDNA li-
braries for active and dormant cambium and sequenced about 4–4.5 thousand
ESTs to identify the genes expressed in active and dormant cambium and compare
the difference in expression between active and dormant cambium to get a first
glimpse of the changes in gene expression taking place upon transition from active
to dormant state. The data indicated that less then 10% of ESTs were common
between the two libraries. While it is clear that the total number of ESTs sequenced
are not high, nevertheless, this data clearly indicates that active to dormant transi-
tion involves considerable change in cambial gene expression. Secondly, the EST
assembly of active and dormant libraries independently leads to a greater number
of assembled genes from active cambial library compared to dormant library in-
dicating that there is greater diversity of gene expression in the active cambium
compared to that in the dormant cambium.

One of the interesting observations of EST sequencing of cambial cDNA
library was that the pattern of meristematic transcriptome clearly differs from the
transcriptome of developing leaf. This is most clearly reflected in the difference in
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the percentage of ESTs involved in energy generation. In case of the leaf cDNA
library, this number is in the range of 36% where as for cambium it is in the
range of 5–6%. The other interesting aspect of active and dormant cDNA library
comparison indicates that there is little quantitative difference in the percentage
of metabolism and energy subclasses between cambium. However qualitatively,
secondary metabolism is considerably increased in the dormant cambium, which is
further supported by the increased expression of lignan and terpenoid metabolism
genes in the dormant cambium compared to active cambium.

4.2. Transcript Profiling of Active and Dormant Cambium

While EST sequencing provided us with important information on the tran-
scriptome of a meristematice tissue, it was important to analyse not only the type
of genes that are expressed in active and dormant cambium but their relative lev-
els in cambium at two different states. Therefore we performed global transcript
profiling to compare the expression of cambially-expressed genes in active and
dormant state. The data is too numerous to describe in entirety here but some
major observations are described below. Firstly, we found about 4000 genes that
were significantly upregulated in the active cambium compared to dormant cam-
bium and about 700 genes that were upregulated in the dormant cambium com-
pared to active cambium. Here the results from dormant cambial gene patterns
are described. In accordance with cambial insensitivity to auxin during endodor-
mancy, one of the genes SINA that is a negative regulator of auxin sensitivity
(Xie et al., 2002) was upregulated in the dormant cambium. Similarly, genes
are involved in starvation responses such as poplar homolog of SIP4. Analysis
of the transcript profiling data is time consuming and therefore a methodology
needs to be developed that would reduce the time required to analyse this data.
We therefore concentrated our analysis on looking into genes that constitute an
entire pathway e.g. glycolysis etc. to identify pathways rather then genes that are
potentially upregulated during dormancy. This is exemplified by the two genes
encoding malate synthase and isocitrate lyase that often are coregulated and are
involved in glyoxalate cycle channeling lipids for use as energy and/or carbon
source (Rylott et al., 2001). Interestingly, these genes are often upregulated dur-
ing seed germination to drive the initial phase of growth before photosynthesis
can provde the plants with energy. This observation leads to a question whether
the transcripts for the abovementioned genes are also translated or whether they
are stored to be translated during the initial phase of cambial reactivation before
newly formed leaves can photosynthesis and provide energy for cambial growth.
In addition to these genes other genes upregulated in the dormant cambium in-
cludes genes encoding enzymes of lipid synthesis, sugar metabolism etc. This
data is a mere tip of the iceberg and considerably more bioinformatics analysis
is necessary to glean useful information for the future. The obvious next step
will be to perform a detailed time course of cambial gene expression as cambium
makes the transition from active to dormant state to improve upon the results
here.
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5. FUTURE PERSPECTIVES

5.1. Arabidopsis as Test Bed for Rapidly Identifying Genes
Involved in Vascular Development

Poplar is an excellent experimental system to perform transcript profiling
and metabolic profiling in the vascular cells owing to the large size of the cambial
region to identify important processes and genes whose expression suggests a role
in regulating vascular development. However, the subsequent genetic analysis is
time and resource consuming. In particular it is important to note that several of
genomics technologies rapidly identify genes of interest but this itself creates a
functional genomics nightmare since because of the sheer amount of information,
it becomes difficult to glean useful information. Typically, there are several genes
whose function cannot be predicted based on sequence alone. Secondly, there are
multigene families and it is difficult to understand the role of individual genes in
a specific process. Thirdly, there are genes for which there is no closely related
sequence in the database yet. In view of these difficulties, it is necessary to identify
a model system in which functional analysis of genes of interest identified from
experiments in poplar can be performed with ease. The model plant Arabidopsis
is probably the best experimental system for analysis of plant gene function at the
moment. With the entire genome sequenced and several mutant collections existing
makes it fairly easy to understand the function of the poplar gene for which a gene
with high sequence identity in Arabidopsis can be found (see www.arabidopsis.org
for the description of all the resources). However, in case of vascular development
it was important to first characterize the vascular development in Arabidopsis and
ascertain that it is similar to that in poplar. As can be seen in figure 5, Arabidopsis
is able to undergo secondary growth and major developmental events and the
components of the vascular system show high degree of similarity with poplar
(Chaffey et al., 2002). This high degree of conservation of secondary growth and
vascular development between poplar and Arabidopsis meant that we could use
Arabidopsis as test bed for rapidly characterizing the function of genes from poplar
whose sequence does not predict their function but whose expression pattern links
them to a specific process in vascular development. Below we give examples where
this strategy has been tested.

FIGURE 5. Transverse section of Arabidopsis hypocotyls showing secondary growth (A and B) Wild
type Arabidopsis, (C) A mutant with inactivated gene of GRAS family
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5.2. Rapid Analysis of Gene Function of Poplar Genes
with Unknown Function

One of the key observations that arises from genomics approach for eluci-
dating vascular development is that both EST sequencing as well gene expression
analysis leads to identification of several genes whose function can not be pre-
dicted based on sequence or expression pattern alone. The number of genes that
fall into this category is quite high. It is extremely essential to develop strategies to
rapidly identify the function of these genes. We have taken an approach to rapidly
understand the function of poplar genes using Arabidopsis thaliana as a model
system. The strategy is based on identify Arabidopsis genes that display high level
of sequence similarity to poplar genes of interest. Following this, in those cases
where a single Arabidopsis gene with high homology to the poplar gene of interest
is identified, in silico screening is performed to identify Arabidopsis mutants in
which a T-DNA has been inserted thereby inactivating the function of the Ara-
bidopsis gene. With several insertional knockout collections being available, the
probability to find a T-DNA mutant is very high. This strategy was applied to 150
poplar genes that displayed a specific expression pattern in the zones A and B
(Figure 1). Analysis of Arabidopsis genome sequence led to the identification of
15 poplar genes for which either 1 or maximum of 3 Arabidopsis genes with high
sequence homology could be identified. The sequence of these Arabidopsis genes
was used to screen the publicly available T-DNA mutant collections and in all
cases at least 1 T-DNA tagged Arabidopsis mutant was identified (A. Marchant,
pers communication). Of the 15 mutants so analysed, 2 displayed a clear visual
phenotype. In both the cases, the mutants had apparent alterations in cell elon-
gation (R. Nilsson pers communication). Currently we are performing analysis
of their vascular development. In another case, a transcription factor of GRAS
family (Pysh et al., 1999) whose expression was limited to cambial cells was used
to identify closely related genes in Arabidopsis. This led to identification of over
8 Arabidopsis genes that displayed high level of similarity to poplar genes. Since
characterization of the mutants of all Arabidopsis GRAS-like genes would be time
consuming, we proceeded to characterize the expression of arabidopsis genes with
vascular expression. One of the 8 genes had expression in the vascular tissue. A
T-DNA tagged mutant for this gene was obtained and it displayed aberrant vascular
development (Figure 5) indicating the promise of the strategy outlined above.

6. CONCLUSIONS

To summarize, poplar appears to be a very useful experimental model to
analyse wood formation at the molecular level. With large EST collections and
full genome sequence publicly available, genomics approach, which has been
successfully used for elucidating the regulation of Arabidopsis can be used in
poplar to a great extent. Finally, the conservation at the genetic and developmental
level between poplar and Arabidopsis at least in terms of fundamental processes
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related to wood formation promises the possibility to use Arabidopsis as a test bed
for analysis of the function of genes involved in wood formation.
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Chapter 5

Novel Tools for Plant Genome
Annotation and Applications to
Arabidopsis and Rice

Volker Brendel

1. INTRODUCTION

Our conference title, “Genome Exploitation: Data Mining”, is equally evoca-
tive and provocative. The combined use of the terms “exploitation” and “mining”
conjures up images of the industrial process of exploiting natural resources by
mining the earth for precious metals. Such parallels are not accidental but reflect a
widely accepted paradigm of modern genetics. This paradigm is evident in many
other terms that have become common in our field, including biotechnology, ge-
netic engineering, high-throughput approaches, etc. It may be a bit too early to
circumscribe this paradigm precisely. Undoubtedly, this will be done in the in-
troductory chapters of forthcoming textbooks. But the dominant theme can be
pinpointed as the industrialization of molecular biology and genetics. In this arti-
cle I shall raise concerns about eager acceptance of this paradigm and argue for a
more balanced approach. Personally, I would have preferred a conference title like
“Genome Exploration: New Frontiers”. Such title would place emphasis on discov-
ery and learning, and it may suggest a more measured pace towards applications.
In the technical part of this article I review my research group’s efforts to provide

Volker Brendel Department of Genetics, Development and Cell Biology and Department of Statis-
tics, Iowa State University, Ames, Iowa 50011-3260

Genome Exploitation: Data Mining the Genome, edited by J. Perry Gustafson, Randy Shoemaker, and
John W. Snape.
Springer Science + Business Media, New York, 2005.
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web-accessible tools for plant genome annotation that attempt to harness individ-
ual, expert contributions to complement large-scale, “industrial” annotation efforts.

2. BOON AND BANE OF THE INDUSTRIALIZATION
OF MOLECULAR BIOLOGY AND GENETICS

The Human Genome Initiative was an unprecedented large-scale international
collaborative effort that resulted in the completion of the sequence of a representa-
tive human genome in 2001. To a large extent, this project was driven by medical re-
search questions, both in the public and private sector. The National Plant Genomics
Initiative in the United States (2003) and related programs in other countries have
had a similar great impact on plant genome research, withArabidopsis thaliana the
first plant genome nearly finished three years ago (The Arabidopsis Genome Initia-
tive, 2000). Again, much of this effort has been driven by practical applications. The
promise of another “green revolution” by novel crop varieties has been attracting
large and small businesses. Growers and the public have successfully lobbied for
public projects to provide a counterpoint to proprietary research and ensure public
control. The influx of funds and the development of new technologies have ushered
a very exciting period in plant genome research, stepping at least partly out of the
shadow of the much more publicized and funded medical research. However, the
accelerated pace of research and data accumulation has also created problems. Our
large-scale projects are generating such a volume of data that the responsible inves-
tigators cannot individually encompass all the data generated in their own projects.
By contrast, think of the people who sequenced the first proteins, RNA, or DNA
molecules—they would certainly have been able to write down these sequences
from memory, residue by residue! In fact, the entire compilation of sequences fit
into a nice little booklet only about 30 years ago. Now we can generate megabases
of DNA sequence per day. Thus, automated annotation becomes necessary and
quality control is a big issue. Of course, not only are we individually unable to
keep pace with the sequence accumulation, but similar problems also occur with
respect to the scientific literature. Thus, as our databases increase, instances of
wrong annotation also increase, and these mis-annotations often propagate as new
sequences get annotated based on similarity and implied annotation transitivity.

In the rush to generate more data, are we creating a backlog of data that
is not sufficiently analyzed, annotated, and made easily accessible? Campbell
and Karlin (2003) hint at this in their overview to a special issue of Theoretical
Population Biology on the evolution of genome structures when they “pose the
question of whether the primary need is for yet more data (how prioritized?) or for
additional analyses of available databases.” Konopka (2003) writes very critically
about current genome annotation strategies and strongly advocates intellectual
investment into new ideas and methods. The examples discussed below suggest
that community efforts to correct and refine approximate, first-phase automated
genome annotation may be a practical step to generate reliable data, which in turn
are essential for building better theoretical models that may give rise to improved
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automated annotation tools. Building a more reliable foundation for further genome
research not only serves our immediate research interests. It will also set a tone in
our interactions with the public at large, increasing confidence that our knowledge
base is solid and not compromised by the all too frequent fame-seeking public
announcements of another finished genome (including the same one that was
announced finished every other year before!) and more possibilities for lucrative
biotech manipulations.

3. THE GENE STRUCTURE ANNOTATION PROBLEM

Complete genome annotation can be a very large problem. Initially, we think
of this problem as identifying the genes in the genome, or in an even narrower
sense, as identifying the protein coding regions. However, one quickly wishes for
more: annotation of transcribed, but non-coding exons and parts of exons; iden-
tification of regulatory regions; indication of alternative splicing; levels of gene
expression under different conditions; allelic variations; known mutants and their
associated phenotypes; comparisons with orthologous loci and syntenic regions
in other genomes. In this purview, the genome simply becomes the scaffold and
portal for the entire body of associated genetic data, stored in linked databases.
Because much of the other data rely on the gene structure annotation, accurate and
comprehensive descriptions of gene structure are the central problem of genome
annotation. In simple terms, the challenge may be posed as generating the mRNA
and CDS tags of a standard GenBank file representing genomic DNA. The chal-
lenge exists both with respect to correcting existing annotation and with respect to
(automated) generation of annotation for novel genomic sequence data. An “old”
paper by Korning et al. (1996) illustrated typical problems in GenBank annotation
of Arabidopsis thaliana gene structures. Unfortunately, the problem persists, and
in particular, even the published annotation mistakes have mostly remained uncor-
rected (see Brendel, 2002). Because GenBank and other public databases function
as repositories, incorrect annotations will be kept in these databases as historical,
original records unless corrected by the submitting authors—an unlikely event in
most cases. Thus, I only see two practical outs from the annotation problem: one,
commercial interests will provide for a fee proprietary, curated databases based on
public data but with corrected and enhanced annotation; second, research commu-
nities make a communal effort to re-annotate the genomes of their interest, with the
load of human-intensive non-automated annotation distributed over the network
of experts in the community. I shall discuss our attempts at promoting the latter
approach, with Arabidopsis thaliana as the model.

4. GENE STRUCTURE ANNOTATION BY SPLICED ALIGNMENT

Gene structure prediction by ab intio approaches that rely on evaluation of
genomic DNA sequence features to assign exon, intron, or intergenic status to
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FIGURE 1. A. Schematic representation of spliced alignment evidence for a gene structure an-
notation in the Arabidopsis thaliana genome. The display was generated at the AtGDB web site
(http://www.plantgdb.org/AtGDB/), where analogous displays can be viewed for the entire genome.
The scale (top bar) and the dark blue gene structure represent the current chromosome assembly and
gene annotation for chromosome four (GenBank accession NC 003075; Wortman et al., 2003). Solid
boxes correspond to exons and thin lines correspond to introns. The 5′- and 3′-boundaries of the
coding region are indicated by green and red triangles, respectively. Arrows indicate the direction of
transcription, which in case for multi-exon spliced alignments is inferred from the implied splice site
patterns (Usuka et al., 2000). Full-length cDNA spliced alignments are shown in light blue. EST spliced
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any given sequence segment have not been successful to produce entirely reliable
gene structures (reviewed by Pavy et al., 1999). A complementary approach is
to use cDNA or EST evidence in “spliced alignments” that delineate exons and
introns (Brendel and Zhu, 2002). A number of programs are available to derive
such alignments, including BLAST-like methods such as sim4 (Florea et al., 1998),
Spidey (Wheelan et al., 2001), or BLAT (Kent, 2002) and dynamic programming
methods such as dds/gap2 (Huang et al., 1997) or GeneSeqer (Usuka et al., 2000).
Zhu et al. (2003) reported a large-scale application of the GeneSeqer program to
align ESTs to the Arabidopsis genome, which revealed many cases of wrong gene
structure annotation and provided additional information on untranslated regions
and instances of alternative splicing. The latest version of the Arabidopsis genome
annotation also incorporates comprehensive cDNA/EST evidence, largely based
on an automated pipeline for spliced alignment (Wortman et al., 2003; Haas et al.,
2003). Limitations of this approach mostly result from insufficient cDNA/EST
sampling to annotate entire gene structures and all genes and technical problems
for at least some of the programs to correctly identify short exons and introns with
non-canonical splice sites (Haas et al., 2002).

Figure 1 gives an example of spliced alignment display at the AtGDB web
site (http://www.plantgdb.org/AtGDB/). This site was set up to allow viewing of
all available cDNA/EST evidence for Arabidopsis gene structure annotations (Zhu
et al., 2003). For this example, the evidence supports the current annotation, and
thus this gene model can be confidently accepted and should be classified as a fully
confirmed model. In the next section I will discuss examples from a currently large
list of gene structure models that are contradicted by the cDNA/EST evidence.
Because sophisticated annotation pipelines are already in use to automatically
incorporate such evidence into the annotation (Haas et al., 2003), it would seem
that alternatives to automated annotation must be contemplated. I will discuss tools
for user contributed annotations available at AtGDB and argue that such approaches
ought to be tried as attempts to involve the expert community in improving the
accuracy of genome annotation for the benefit of the entire community.

←
FIGURE 1. (continued) alignments are in red. Multi-exon 5′-ESTs are marked by green color at their
5′-terminus, and multi-exon 3′-ESTs are marked by blue color at their 3′-terminus. Single exon ESTs
have corresponding 5′ / 3′ labels at the center of their representations. Pairs of 5′- and 3′-ESTs from
the same clone are grouped by green boxes. Numbers labeling the spliced alignments are GenBank
gi tags for the corresponding sequences. The RAFL tag identifies full-length cDNAs derived from
the Seki et al. (2002) project. The gene (At4g08150) encodes a knotted-1 like homeobox protein.
EST evidence supports all but the second intron. cDNA evidence supports the entire gene structure
annotation, although the 5′- and 3′-termini of the transcripts are either variable or not always captured
in the cDNAs. B. Partial GeneSeqer output of the spliced alignment of EST gi:8723136 (plus strand)
to the genomic region on chromosome four displayed in A. The spliced alignment entails three exons
as summarized on top. Exon scores are normalized sequence similarity scores. Pd, donor site score;
Pa, acceptor site score (the s-values in parenthesis are the normalized sequence similarity scores in the
adjacent 50 exon nucleotides). Only part of the alignment is shown (omitted parts indicated by ///).
Identities between the genomic sequence (upper lines) and the EST sequence (lower lines) are indicated
by vertical bars. Introns are represented by dots. All alignments are viewable at the AtGDB web site.
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5. THE CASE FOR A COMMUNITY APPROACH TO ANNOTATION

The annotation of At4g08150 displayed in Figure 1 represents a nice case
from an annotator’s perspective: the cDNA/EST evidence is consistent with the ab
initio predicted gene structure and simply extends that gene structure to include
the 5′- and 3′-untranslated regions of the mRNA transcripts. Future evidence may
of course indicate additional transcription initiation and termination sites or alter-
native splice sites, however the current annotation will stand as representing true
transcripts.

Unfortunately, or rather as a matter of fact, there are many cases for which the
annotation problem is more challenging. A first example is displayed in Figure 2.
The AtGDB display of spliced alignments shows a contradiction between the
first annotated intron of the At1g24050 gene and the intron borders confirmed
by spliced alignment of two cDNAs and five ESTs in the same region. Inspec-
tion of the spliced alignments (not shown) reveals the presence of an AT-AC
U12-type intron (Zhu and Brendel, 2003). This suggests that the annotated gene
structure was based on an ab initio prediction using standard programs that are
not able to predict introns other than standard GT-AG U2-type introns, and thus
the annotation includes the best fitting GT-AG intron to extend the open reading
frame across the first two exons. Because there is no evidence for the ab ini-
tio predicted U2-type intron, the At1g24050 gene structure annotation should be
corrected.

How should annotation corrections be implemented? Because theArabidopsis
genome project, including annotation and database management, probably is as
well funded as can be expected and involves state-of-the-art bioinformatics support,
it stands to reason that automated, computational annotation will not be adequate
to resolve more challenging annotation problems.

Neither should we expect that a small group of staff scientists will be able
to look at all gene models individually (numbering approximately 27,000–30,000
for Arabidopsis!). Thus, my group has been exploring pathways to community-
based annotation, with a focus on exploring web-based technologies to enable
such effort. To illustrate, I have used the AtGDB User Contributed Annotation
tools to communicate the corrected At1g24050 gene structure. Using the “Login”
function at AtGDB (upper left corner, Figure 2), the contributor will see a screen
similar to the one displayed in Figure 3. My contributed annotation as entered
via the web-form is shown in Figure 4. The schematic gene structure is dis-
played in green. Links to the genomic context and the newly created database
record are provided above the gene structure, and details of the annotation have
been entered into text boxes below. Once saved, the user-contributed annotation
is displayed along with the current GenBank annotation and all the cDNA/EST
evidence as before (Figure 5). Until AtGDB staff approves this annotation, it will
only be visible to the user who contributed it. Once approved, it will be visible
to anyone over the web. Periodically, such annotations with their associated evi-
dence could be downloaded by other Arabidopsis databases and incorporated into
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User vbrendel 
Fullname: Volker  Brendel 
Phone: (515) 294-9884 
email: vbrendel@iastate.edu
Edit Information
Provide Annotation

Arabidopsis Genome Assembly
Version 4 (5 Jun 2003)

Annotations Submitted: 1
Accepted:: 0 On Hold:: 0 In Review::  0  Saved:: 0
Accepted Annotations (0)

Held Annotations (0)

In Review Annotations (0)

Saved Annotations (1)

-- UCAt1g24050  [Record][Context]

Contact

FIGURE 3. Sample user profile for maintaining user contributed gene structure annotations at AtGDB.
This screen is reached after login with a registered user name, using the login functions at any AtGDB
screen. Users can review their contributed annotations, which are classified according to the level of
curation (accepted annotations have been reviewed by AtGDB staff and are visible to any web user of
AtGDB).

future versions of the public genome annotation. The above illustration would be
mostly an exercise if it were not for the fact that a large number of the Arabidopsis
gene structure annotations remain incorrect, a problem that will be compounded
for less mature sequencing projects like rice or maize. Figures 6 and 7 illustrate
other typical problems. Full-length cDNA spliced alignment indicates that the two
gene models At2g40835 and At2g40840 actually correspond to a single gene (Fig-
ure 6). In this case, the fifth intron of the cDNA spliced alignment is an AT-AC
U12-type intron, and here ab initio prediction simply inserted an intergenic re-
gion in its place. Figure 7 shows a frequent case of wrongly annotated overlapping
3′-ends of genes on opposite strands. This annotation problem is caused by au-
tomated assembly of EST spliced alignments into gene models and the inability
of this procedure to associate single-exon ESTs in the region of potential over-
lap to the correct gene model (Haas et al., 2003). In this case, full-length cDNA
evidence clearly indicates the correct 3′-ends, but one should appreciate the dif-
ficulty in writing procedures that would automatically give correct answers in all
such cases and their variants. The full-length cDNA spliced alignment spans the
gene models At2g40835 and At2g40840. These two annotations should be re-
placed by a single gene structure (encoding a disproportionating enzyme in starch
metabolism).
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6. PERSPECTIVE

I hope I have put forward convincing arguments for community-base genome
annotation efforts. It seems to me that there are three factors that necessitate serious
exploration of community-based efforts. These factors are, first, the inherent dif-
ficulties with automated, computational gene structure annotation (at least at this
stage of our theoretical understanding of gene structure); second, the impractical-
ity of reliance on a small staff of dedicated curators to encompass all annotation
needs of a large eukaryotic genome; and, third, the need for accurate gene struc-
ture annotation as a foundation for all other functional and evolutionary studies.
Of course, current annotation providers are already open to and in fact soliciting
user comments. However, for large-scale and systematic efforts to be successful, a
computational infrastructure must be put in place that will make user-contributions
easy, as standardized as possible, and inclusive of evidence that can quickly be
verified by curatorial database staff. We have recently shown that the GeneSeqer
spliced alignment program can successfully employ ESTs from multiple related
species to predict gene structure (Schlueter et al., 2003). This suggests that this
approach is promising for the annotation of more complex plant genomes such as
rice, maize, and legume species that will be sequenced in the next few years.
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Chapter 6

FCModeler

Dynamic Graph Display and Fuzzy
Modeling of Metabolic Maps

Julie A. Dickerson

1. MODELING METABOLIC NETWORKS

Metabolic networks combine metabolism and regulation. These complex net-
works are difficult to understand and visualize due to the diverse types of informa-
tion that need to be represented. FCModeler, a publicly available software package
is designed to enable the biologist to visualize and model metabolic and regulatory
network maps in plants. It links to an interactions database (MetNetDB) containing
information on regulatory and metabolic interactions derived from a combination
of web databases and input from biologists in their area of expertise. FCModeler
displays input from MetNetDB in a graphical form. Sub-networks can be identified
and interpreted using fuzzy cognitive maps. FCModeler is intended to develop
and evaluate hypotheses, and provide a modeling framework for assessing the
large amounts of data captured by high-throughput gene expression experiments.
Three-dimensional graph visualization coupled with visualization of the physical
structure of a cell helps create a novel integrated information workspace for the
study of metabolic networks.

A major challenge in the post-genome era is to understand how interactions
among molecules in a cell determine its form and function. With the help of
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transcriptomic, proteomic and metabolomic analysis technologies, biologists can
obtain vast amounts of valuable data on metabolic network interactions, and many
approaches are being developed to analyze the resultant data (Brown et al., 2000;
Dickerson et al., 2002; Dougherty et al., 2002; Oliver et al., 2002; Yao 2002). Sev-
eral of these approaches use complex databases of cellular interactions. The WIT
Project (Overbeek et al. 2000) (http://wit.mcs.anl.gov/WIT2/WIT) and the Kyoto
Encyclopedia of Genes and Genomes (Kanehisa et al. 2000) (KEGG) (http://www.
genome.ad.jp/kegg) providemolecular networks basedonprokaryoticmetabolism.
WIT produces reconstructions of the metabolism of the organism derived from
sequence, biochemical, and phenotypic data, organized as a static presentation.
KEGG’s goals are to computerize existing knowledge of the information path-
ways that consist of interacting genes or molecules and to link individual com-
ponents of the pathways with the gene catalogs being produced by the genome
projects. This approach provides the framework for eventual simulations. EcoCyc
is a pathway/genome database for Escherichia coli that describes its enzymes,
and its transport proteins. MetaCyc describes pathways and enzymes for many
different organisms (Karp et al., 2002; Karp et al., 2002). The databases combine
information from a number of sources and provide function-based retrieval of
DNA or protein sequences.

MetNetDB combines information from AraCyc, a set of Arabidopsis spe-
cific biochemical pathways derived from the MetaCyc model and curated by an
expert in Arabidopsis (http://aracyc.stanford.edu/). MetNet is designed to provide
a framework for the formulation of testable hypotheses regarding the function of
specific genes, proteins, and metabolites, and in the long term provide the basis for
identification of genetic regulatory networks that control plant composition and
development (Dickerson et al., 2001; Dickerson et al., 2002; Ding et al., 2002;
Oliver et al., 2002). Our primary focus is on the eukaryotic model plant, Ara-
bidopsis (http://www.arabidopsis.org/). The entire Arabidopsis genome has been
sequenced, databases cataloging genes and gene function are expanding, and new
databases, such as protein-protein interactions, are being initiated. However, more
than half of the 26,000 Arabidopsis genes have no assigned function, and many
of the remaining genes have only putatively assigned biochemical functions. Even
less is understood about the metabolic, structural or regulatory role of each gene
product, its interactions with other cellular components, and the kinetics of each
interaction. Our approach to reveal complex biological networks is to extract in-
formation from gene expression data sets and combine it with what is known
about metabolic and regulatory pathways to achieve a better understanding of how
metabolism is regulated in a eukaryotic cell.

2. METABOLIC NETWORKING DATABASE

The Metabolic Networking DataBase (MetNetDB) contains a metabolic and
regulatory map of Arabidopsis with a user-friendly JAVA interface for creating and
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searching the map. The map, together with gene expression data (metabolomics,
proteomics, and microarray), can be transferred to FCModeler as an XML file, for
use in data exploration.

TheMetNetDBmap is being assembledbybiologistswith expertise in specific
areas of metabolism. It is composed of entities (genes, RNAs, polypeptides, pro-
tein complexes, metabolites, and environmental inputs) connected by interactions
(conversion, catalytic, regulatory). Identities of the genes, RNAs, and polypep-
tides have been downloaded from TAIR (http://www.arabidopsis.org/). Protein
complexes are currently added by expert users, as there is no adequate database of
protein complexes in Arabidopsis. Identities of many metabolites have been down-
loaded from KEGG (http://www.genome.ad.jp/kegg/); metabolites not present in
KEGG are manually added as new entities by expert users, based on their CAS
registry number (http://www.cas.org/EO/regsys.html).

The metabolic reactions from the AraCyc database have been downloaded
into MetNetDB. An important aspect of the map is the inclusion of information
on subcellular location. This is critical, because particular entities can interact
contingent on being located in the same subcellular compartment. A given entity
may be present as separate pools in multiple compartments, for example citrate
is present in the mitochondria (where it participates in the TCA cycle) and the
cytosol (where it is a substrate for cytosolic acetyl-CoA formation (Fatland et al.
2002)).

3. MODELING METABOLIC RELATIONSHIPS

Three basic types of interactions are conversion, regulatory, and catalytic. In
a conversion interaction, a node (typically a chemical(s)) is converted into another
node, and used up in the process. A catalytic interaction represents an enzyme
that enables a chemical conversion and does not get used up in the process. In a
regulatory interaction, the entity activates or deactivates another node, and is not
used up in the process.

A wide variety of cellular processes can be represented, each occurring to en-
tities in specified subcellular compartments. For example, to represent the reaction
catalyzed byATP citrate lyase (ACL), that generates cytosolic acetyl-CoA (Fatland
et al. 2002), two interactions are used. One is a conversion interaction; its inputs
are citratecytosol + CoAcytosol + ATPcytosol and its outputs are acetyl-CoAcytosol +
oxaloacetic acidcytosol + ADPcytosol + P04cytosol. The second is a catalytic inter-
action; its input is ATP citrate lyasecytosol. In another example, to represent the
translocation of citrate from the mitochondrion to the cytosol, two entities and a
single conversion interaction are used: citratemitochondrion goes to citratecytosol. The
formation or modification of a protein complex can be represented. For example,
ACLA and ACLB are the subunits that compose the enzyme ACL. A single con-
version interaction is used to represent the reaction; its inputs are ACLAcytosol, and
ACLBcytosol. Its output is ACLcytosol.
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3.1. Graphing the Metabolic Map: FCModeler

The main goals of the FCModeler package are to capture the intuitions
of biologists and provide a modeling framework for assessing large amounts
of information and to test the effects of hypotheses. The tools that are be-
ing developed use graph theoretic approaches to analyze network structure and
behavior and fuzzy methods that model changes in the network (Dickerson
et al., 2002). There are three parts of this system: a dynamic graph visual-
ization package written in Java, graph-theoretic analysis to find critical paths,
and modeling using fuzzy cognitive maps to capture uncertainty in the model.
Figure 1 shows a sample sub-graph from the MetNetDB for OAA metabolism
in Arabidopsis and highlights some of the visualization flexibility available in
FCModeler.

FIGURE 1. The highlighted nodes and links show a small cycle within the metabolic network. The
textbox gives a list of all cycles found in the displayed graph. Colors and shapes of features can be
user-designated: entities in mitochondria and cytosol are shaded; entities in unknown location, white;
enzymes are shaped as ellipses.
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3.2. Modeling Metabolic Networks Using Fuzzy Cognitive Maps

The interactions (also referred to as edges or links) in the network aremodeled
as fuzzy functions depending on the detail known about the network. Modeling
using fuzzy cognitive maps (FCMs) is performed in the MatlabTM analysis pro-
gram and the results showing node activation levels are animated in FCModeler.
Fuzzy cognitive maps are fuzzy digraphs that model causal flow between concepts
(Dickerson et al., 1994) or, in this case, biomolecular entities (Dickerson et al.,
2001; Dickerson et al., 2002). Entities stand for causal fuzzy sets where events
occur to some degree. The entities are linked by interactions that show the degree
to which these entities depend on each other. Interactions stand for causal flow.
The sign of an interaction (+ or −) shows causal increase or decrease between
entities. The fuzzy structure allows the RNA, metabolite, or protein levels to be
expressed as continuous values. This modeling has demonstrated regulation in the
Arabidopsis network, in the case of gibberellin conversion from an inactive form
to an active form (Dickerson et al., 2001).

Fuzzy cognitive maps (FCMs) have the potential to answer many of the
concerns that arise from the existing models. Fuzzy logic allows a concept or
gene expression to occur to a degree—it does not have to be either on or off
(Kosko 1986). FCMs have been successfully applied to systems that have uncertain
and incomplete models that cannot be expressed compactly or conveniently in
equations. Some examples are modeling human psychology (Hagiwara, 1992),
and on-line fault diagnosis at power plants (Lee et al., 1996). All of these problems
have some common features. The first is the lack of quantitative information on
how different variables interact. The second is that the direction of causality is at
least partly known and can be articulated by a domain expert. The third is that they
link concepts from different domains together using arrows of causality. These
features are shared by the problem of modeling the signal transduction and gene
regulatory networks.

Simple or trivalent FCMs have causal edge weights in the set {−1,0,1} and
concept values in {0,1} or {−1,1}. Simple FCMs give a quick approximation to
an expert’s causal knowledge. More detailed graphs can replace this link with a
time-dependent and/or nonlinear function. The types of link models used in the
current project are described below.

Regulatory Links: The regulatory edges are modeled using a simple FCM
model that assumes binary connecting edges for the single edge case. When there
are multiple excitatory or inhibitory connections, the weights are divided by the
number of input connections in the absence of other information. As more infor-
mation becomes known about details of the regulation, for example how RNA
level affects the translation of the corresponding protein, the function of the link
models will be updated. The regulatory nodes will also have self-feedback since
the nodes stay on until they have been inhibited.

Conversion Links: Conversion relationships are modeled in different ways
depending on the goal of the simulation study. The first case corresponds to
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investigating causal relationships between nodes. The node is modeled in the same
manner as a regulatory link in which the presence of one node causes presence at
the next node. When information about the rate of change in a reaction is available,
a simple difference equation can model the gradually rising and falling levels of
the nodes.

Catalyzed Links: Catalyzed reactions add a dummy node that acts upon a
conversion link. This allows one link to modify another link. In the current model,
the catalyzed link is simulated by weighting the input node in such a way that
both inputs must be present for the node to be active. Another method of modeling
catalyzed links is an augmented matrix that operates on the edges between the
nodes. The catalyst node acts as a switch that allows a reaction to occur in the
proper substrates are available.

3.3. Cycle Analysis in Metabolic Networks

Complex metabolic networks can be analyzed by searching for paths be-
tween two entities and assessing the effects that the entities have on each other
or by searching for feedback cycles in the network as shown in Figure 1. Graph
theoretic methods are a promising path for characterizing metabolic networks and
discover subsystems for detailed modeling. Graph analysis such as searching for
alternate paths and feedback cycles can give information about the underlying
biology. Preliminary results have found existing pathways in the map as well as
new relationships in the models.

Cycles in the data show repeated patterns in the network. These cycles range
from simple loops in which a gene causes a protein to be expressed, when the
protein is present to a degree, the gene is turned off or down. More complex cycles
encompass entire metabolic pathways in an organism. The interactions or overlaps
between the cycles show how these control paths interact. There are three basic
types of cycle in metabolic and regulatory pathways:

Gene expression cycle—a protein A is a part of a pathway that controls
expression of a gene B, gene B produces protein B, then protein B cycles back into
the pathway which contains protein A, at a point upstream of protein A.

Signal transduction cycle—contains no genes, e.g., receptor A activates a
downstream sequence of signal transduction such as: A→ B→ C→ D→ A where
D feeds back to inhibit A. These types of cycles may play a key role in considering
pathways as targets for drugs.

Metabolic feedback cycle—a small molecule from a metabolic pathway dif-
fuses upstream to activate or inhibit an enzyme involved in its production.

4. REPRESENTING METABOLIC PATHWAYS
IN VIRTUAL REALITY

Complex interactive metabolic pathways contain many different types of in-
formation, which presents a challenge to computationally model and visualize
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the interactions. Two-dimensional graph-based models of metabolic networks are
overloaded since edges and nodes can have multiple meanings (Dickerson et al.,
2002). Three-dimensional graph visualization coupled with visualization of the
physical structure of a cell help create a novel integrated information workspace
for the study of metabolic networks.

Virtual reality (VR) and immersive environments are relatively new re-
search tools. VR strives to present the user with a convincing, interactive three-
dimensional (3-D) environment. The user views the 3-D environment stereoscop-
ically, typically with the aid of specialized glasses. The user’s position is tracked
by a computer so the virtual environment can respond to the user’s movements.
Projection-based virtual reality systems, such as Iowa State University’s enclosed
cube structure called the C6, have stereo images projected onto the display surfaces
(Cruz-Neira et al., 1993).

Creating a virtual metabolic network environment requires visualizing and
navigating complex graphs in a scalable immersive environment, and integrating
physical models and graphical representations of cell metabolism. The goal is to
create a seamless system to enable biologists to gain insight on cell metabolism
and to provide an educational tool to communicate their findings through virtual
reality experiences.

4.1. 3-D Network Visualization

Although most of the existing methods to draw metabolic pathways are in 2D
space, there are a few 3D graph drawing algorithms, such as force-directed draw-
ing and orthogonal drawing (Closson et al., 1999; Landgraf, 2001). However,
these algorithms produce graphs, which are difficult to interpret in three di-
mensions due to edge-crossings and graph complexity. Figure 2 shows a three-
dimensional force-directed layout called GEM (adapted from the tulip graph pack-
age at www.tulip.org).

4.2. User Interaction and Navigation

Three-dimensional graph layouts can be difficult to interpret. The biologist
can choose any node as a focus node for a reaction of interest (ROI). An ROI
is defined as all the reactions that the focus node participates in. The reactions
are positioned evenly in the 3D region around the focus node. Figure 3 shows an
example of a selected ROI.

Text-based information concerning the source, synonyms and other data is
important in the study of metabolic pathways. The tablet PC provides a method
to present a traditional 2-D desktop interface to the user. The tablet PC’s GUI can
provide an easily accessible method for the user to find and travel to a node of
interest. In this GUI, the user can see tables of the nodes and edges present in the
displayed graph. The user can interactively select nodes and edges and see the
complete information on the node or edge on the GUI. The user can also select to
have the nodes and/or edges colored to highlight them in the scene or can select
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FIGURE 2. Partial graph of metabolic pathways in Arabidopsis. The graph layout uses a 3-D force-
directed layout which puts highly connected nodes in the center of the graph.

RIBOSE-5P
AT2G45290

TRANSKETOLASE

D-SEDOHEPTULOSE-7-P

XYLULOSE-5-PHOSPHATE

RIBULOSE-5P

TRANSKETOLASE

ERYTHROSE-4P GAP

GAP

FRUCTOSE-6P

D-RIBULOSE-5-PHOSPHATE 3-EPIMERASE

AT3G01850

AT2G45290

FIGURE 3. A reaction of interest selected from the Calvin Cycle. The focus node is xylulose-5-
phosphate.
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FIGURE 4. Three-dimensional model of the chloroplast with a network overlay showing one of the
metabolic processes in that organelle.

a node or edge or have the VR environment moved to show the selected object.
An example interaction is “pulling” a reaction-of-interest out from a larger graph.
This tool uses Java for the GUI and a tool included in the VR software, Tweek
(www.vrjuggler.org).

4.3. Virtual Cell Representation

As a teaching environment for high school and college students, we are de-
veloping a virtual cell model, and integrating this cell with the cellular metabolism
and regulation models. The student will be able to visualize the cell from the out-
side, as well as cross-sections of the entire cell. As the student zooms inward,
she/he enters the cell and the organelle systems within. From this organelle world,
the student can track metabolic pathways, following anabolism and catabolism
within the cell. This encompasses visualizing reactions within the organelle, and
as a given metabolite leaves the cell, the student would virtually move from or-
ganelle to organelle. Figure 4 shows the virtual cell model with an overlay showing
interactions.

5. SUMMARY

The FCModeler software is designed with a focus on understanding the
complex molecular network in the model plant eukaryotic species, Arabidopsis.
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FCModeler enables biologists to capture relationships at different levels of detail,
to integrate gene expression data, and to model these relationships. Because of an
absence of knowledge about many biological interactions, the software is designed
to model at many levels of detail. The three-dimensional virtual environment offers
exciting new opportunities for visualizing complex networks. The ability to link
detailed physical models with representations of regulatory and metabolic flow
will lead to new teaching methods in biology.
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Chapter 7

Old Methods for New Ideas: Genetic
Dissection of the Determinants
of Gene Expression Levels

Kyunga Kim, Marilyn A.L. West, Richard W.
Michelmore, Dina A. St. Clair, and R.W. Doerge

1. INTRODUCTION

There is increasing interest in understanding the molecular basis of complex
traits. Initially, the genetic dissection of quantitative traits involved measurements
of gross phenotypes. Subsequently, specific physiological and developmental com-
ponents of individual traits have been dissected. Most recently, the underlying
mechanisms of inheritance have been studied through various approaches that are
supported by modern technological and methodological advances, namely quan-
titative trait locus/loci (QTL) analysis (Mackay, 2001; Mauricio, 2001; Doerge,
2002) and mutant analysis (Rossant and Spence, 1998; Hughes et al., 2000) in
genetics; genome sequencing (Jang et al., 1999; The Arabidopsis Genome Initia-
tive, 2000; Mouse Genome Sequencing Consortium, 2002) and gene expression
analysis (Duggan et al., 1999; Lipshutz et al., 1999) in genomics; and protein struc-
ture analysis (Service, 1999) and protein assay (Kodadek, 2001; MacBeath, 2002)
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in proteomics. Since each technology and approach focuses on specific pieces of
the larger, poorly understood systems biology, the challenge is to integrate these
different types of information to elucidate the genetic architecture of complex
traits. In particular, the regulation of complex traits remains poorly understood,
and there are still large gaps in our understanding of regulatory networks.

Statistically, QTL analysis has offered many interesting theoretical challenges
and complex models that have resulted in useful software. The conclusions of QTL
analysis often point to large regions of the genome, typically containing many
genes, being associated with a measured quantitative (phenotypic) trait of interest.
These QTL are largely regions of unknown function that often disappear in the next
experiment or environment. If QTL are localized, and a small number of candidate
genes established, it requires large populations of recombinants and extensive
replicated experimentation. The focus now is to move beyond the association
of molecular markers with quantitative phenotypes to understand the regulation
of gene expression and its consequences on the variation of quantitative traits.
To achieve this goal, more powerful statistical methods are needed to reveal the
genes controlling the expression of complex traits. Proper experimental design
and the application of appropriate statistical methodologies to gene expression
levels will provide insights into regulatory networks controlling transcript levels
and ultimately the regulation of complex trait phenotypes.

2. GENETICAL GENOMICS

In recent years, there has been growing interest in uniting genetic and genomic
approaches to enable more comprehensive dissections of complex traits and their
genetic architecture. Jansen and Nap (2001) termed this synthesis ‘genetical ge-
nomics’ and Doerge (2002) outlined the use of QTL methodology to analyze gene
expression data from microarray experiments. Unraveling the mechanisms of phe-
notypic control and the determinants of variation found in gene expression are now
the main foci of many investigations. Several groups have attempted to integrate
quantitative genetic analysis and gene expression analysis. Jin et al. (2001) used a
mixed model ANOVA approach to demonstrate significant genotypic factors inD.
melanogaster affecting variation in gene expression levels, along with other fac-
tors such as sex and age. Wayne and McIntyre (2002) complemented a QTL fine
mapping study of D. melanogaster with a follow-up microarray experiment to in-
vestigate candidate genes that were likely involved in controlling ovariole number.
While their approach does not reveal causal relationships, it is a creative avenue to
identify candidate genes associated with complex traits. Brem et al. (2002) applied
genetic mapping to microarray data for the detection of the genomic regions in
yeast affecting gene expression levels. These investigations employed simple sta-
tistical tools (e.g., the Wilcoxon-Mann-Whitney test, X2 test, ANOVA) for single
marker analyses based on very small populations (6-40 individuals), and thus are
limited in their statistical power to determine the relationship between genotypic
and phenotypic data.
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Recently, Schadt et al. (2003) used QTL interval mapping (Lander and
Botstein, 1989) on gene expression data from human, maize and mouse exper-
iments. In one case, they analyzed 111 individuals from an F2 mouse population
derived from two standard inbred strains. Oligonucleotide microarrays were em-
ployed to evaluate the expression of 23,574 genes in both the parental lines and
the 111 F2 individuals; 7,861 differentially expressed genes were identified within
each of the parental lines or in at least a tenth of the 111 F2 individuals. Treating
the expression levels of the 7,861 genes as quantitative traits, interval mapping us-
ing MAPMAKER/QTL (Lincoln et al., 1992) was employed to identify genomic
regions (expression-QTL, or e-QTL) associated with gene expression variation.

The use of QTL mapping methods on microarray gene expression data out-
lined by Doerge (2002) and now referred to as e-QTL (expression quantitative trait
locus) mapping (Schadt et al., 2003) aims to identify the determinants of poly-
morphisms in gene expression levels (expression level polymorphisms or ELPs)
through genetic analysis. These existing approaches have the potential to provide
insights into regulatory networks controlling complex phenotypes, but may be lim-
ited in their statistical power. Since no one has yet investigated the statistical power
of existing QTL methodologies within the context of e-QTL mapping, there may
be several statistical and technological issues that need to be adequately addressed.

We are therefore investigating whether the application of an existing QTL
methodology known as multiple trait QTL mapping is adequate for e-QTL map-
ping, or whether new statistical methodologies need to be developed. Multiple-trait
QTL analysis was developed by Jiang and Zeng (1995) to provide statistical tests
for gene-by-environment interactions, as well as genomic regions associated with
the multiple quantitative traits. It may be possible to exploit the methods provided
by Jiang and Zeng within the framework of gene expression data for the purpose of
locating e-QTL that are putative determinants of expression level polymorphisms.
In our analysis we treat gene expression levels under different experimental con-
ditions as phenotypes representing multiple traits in the same manner that Jiang
and Zeng (1995) treated phenotype measurements under different environmental
conditions as multiple traits.

3. METHODS

The application of appropriate statistical methodology to gene expression data
from a segregating population allows putative determinants of ELPs to be mapped
as e-QTLs to specific genomic regions by using a partitioning (decomposition) of
the sources of variation associated with measured transcript levels (e.g., genetic and
non-genetic factors, and their interactions). Differences in gene expression (ELPs)
may be determined by cis factors associated with the gene exhibiting the ELP,
or by trans factors encoded elsewhere in the genome (regulatory loci). We define
a structural locus as the genomic region that contains a gene whose transcript
is measured under the different experimental conditions and a regulatory locus
as an independent gene that controls the expression of the structural gene. Both
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structural and regulatory loci can be determinants of ELPs since both contribute
to gene expression levels. Therefore, both structural and regulatory loci can be
identified as e-QTLs. Analysis of the genomic locations of e-QTLs relative to the
genes exhibiting ELPs allows the distinction of regulatory from structural loci,
thus providing insights into regulatory networks underlying gene expression and
ultimately the genetic basis of complex traits encoded by these genes.

3.1. Dye Swap Experimental Design

Genes are represented as probes (cDNAs or oligonucleotides) on a microarray
by arraying them on a solid substrate. The amount of sample hybridized to each
spot or gene feature on the array is quantified reflecting the amount of transcript
for each gene (Schena et al., 1996). Various statistical methods (Eisen et al., 1998;
Holter et al., 2000; Kerr et al., 2000; Kerr and Churchill, 2001a,b,c; Newton et al.,
2001) have been employed to identify statistically significant changes in gene
expression. A variety of statistical issues associated with microarray analysis have
been raised that have not been fully resolved and are the continuing focus of
investigations to assess differential gene expression. Regardless of the limitations
of current methodologies, the end results of microarray analyses do not delineate
causal relationships, but only indicate gene expression changes in response to some
stimulus or change in experimental conditions.

We have employed the dye swap experimental design that has been extensively
used in microarray experiments and the data it produces to locate determinants
of variation in gene expression on a genetic map. Gene expression is typically
measured in response to a treatment condition and compared to a control condition,
or to another treatment condition. These comparisons are often made between
pairs of conditions, and in a dye swap design are based upon a two dye (Cy3:green
and Cy5:red) labeling system. mRNA taken from samples of tissue under different
experimental conditions are hybridized to a microarray to identify gene expression
differences. For each gene, the amount of hybridization is measured by examining
the fluorescence frequencies of the two dyes. Because significant dye-specific
labeling artifacts have been observed, a second hybridization is often performed
in which the biological samples are the same, but the labeling with the dyes are
reversed (i.e., “swapped”). Such a dye swap allows the researcher to account for the
bias due to dye labeling either by incorporating the correction into a pre-processing
normalization, or by incorporating the dye effect as a source of additional variation
in the statistical analysis.

3.2. Modelling Determinants of Expression Level Polymorphisms

The genetic architecture of the regulatory networks controlling ELPs is po-
tentially very complex. Three simple models that are based on a single gene with
one or two regulatory loci are shown in Figure 1. The simplest scenario that is used
later as the basis of our investigation (Model 1; Figure 1) contains only a single
structural gene whose variation is determined by a single regulatory gene. In the
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FIGURE 1. Three simple models illustrating a single structural gene with one or two additional
determinants of expression level polymorphisms.

proposed models (Figure 1), the regulatory genes respond to a stimulus and their
products interact with the structural gene to promote or repress its expression.
Assuming there is some allelic variation in a segregating population or among
genetically distinct individuals contributing to polymorphic gene expression, one
can partition (decompose) the observed variation in gene expression into several
components: genetic sources such as sequence polymorphism (allelic differences)
at both structural and regulatory loci; non-genetic sources such as treatment ef-
fects (the nature of the stimulus); interactions between genetic and non-genetic
components (genotype and the stimulus); and also systematic or technological
components of the experiment itself, such as dye and array effects.
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We have used a well-established statistical method, linear models (Searle,
1971), to partition the sources of variation contributing to differences in gene
expression. Linear models have been applied extensively in both QTL mapping
(Zeng, 1993; Jiang and Zeng, 1995) and microarray analysis (Kerr et al., 2000;
Kerr and Churchill, 2001a). Our investigation here is focused on a simple linear
genetic model that includes a single structural gene and a single regulatory locus
(Model 1; Figure 1), but it is possible to extend this model to more complex
models (e.g., Models 2 and 3, Figure 1). For an additive model (i.e., no epistasis),
we employ a segregating recombinant inbred line (RIL) population (see section
3.3), and for every individual RIL let i denote the genotype of the regulatory
locus, j denote the genotype of the structural locus, and let yi jklmr denote the gene
expression measurement of the structural gene as measured by spotted microarray
technology. The measurement of gene expression is in either the original, or log
scale, and obtained under treatment k using dye l on array m in replication r :

yi jklmr = μ + αi + β j + τk + (ατ )ik + δl + Am + εi jklmr (1)

where i = 1, 2, j = 1, 2, k = 1, 2, l = 1, 2,m = 1, 2, and r = 1, . . . , R. The
terms α, β, τ and δ are the additive effects of the regulatory and structural loci,
treatment effect, and dye effect, respectively. The interaction between the regula-
tory loci and the treatment is denoted ατ , while A, the array effect, is assumed to
be distributed as a random normal with mean 0 and variance σ 2

A. The measurement
error εi jklmr is distributed as a random normal with mean 0 and variance σ 2

ε . The
array effect and measurement error are assumed to be independent. It should be
noted that in this simple model we did not consider statistical interactions between
the treatment and the structural locus.

3.3. Experimental Design for Expression Level Polymorphism Analysis

Variation in gene expression between genetically distinct individuals, i.e.
biological variation, is not usually assessed in microarray experiments. Instead, the
genotypes are assumed to be uniform (Black and Doerge, 2002; Churchill, 2002),
and differential expression is tested. In fact, variation in gene expression between
individuals of a segregating population can be assessed and several studies have
already analyzed genetic/allelic variation in gene expression (Cowles et al., 2002;
Oleksiak et al., 2002; Yan et al., 2002a,b). Several types of segregating populations
have been proposed for mapping e-QTL; these include recombination congenic
strains (RCSs), recombination inbred lines (RILs), and chromosome substitution
strains (CSSs) (Jansen, 2003). These types of populations provide homogeneous
families that allow the biological replication that is essential for distinguishing
genetic from non-genetic sources of variation. For example, individuals within a
homozygous RIL are genetically identical, thus phenotypic variation within a RIL
should be due to non-genetic sources, whereas variation among RILs is due to both
genetic and non-genetic sources.

For many species, RILs are the easiest of the previously mentioned types
of population to generate. RILs derived from divergent inbred parents would be
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FIGURE2. Examples of gene expression profiles with potential expression level polymorphisms. The
dashed lines indicate one parental line (reference line); solid lines indicate the other parental line. The
vertical axis denotes (relative) expression levels where the expression level for the reference line with
no treatment (control) was adjusted to 0. The cutoff value for potential expression level polymorphisms
was assumed to be adjusted to 2-fold change.

expected to segregate for ELPs for a subset of genes controlling a complex trait.
Examples of potential types of ELPs are illustrated in Figure 2. A preliminary
genome-wide expression analysis can be conducted on potential inbred parent
lines to identify lines that exhibit maximum levels of ELPs under the experimental
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conditions being investigated (Figure 2). The lines showing the largest number of
potential ELPs can be used as parents to derive a segregating RIL population. The
expectation is that some, but not necessarily all, of the potential ELPs will supply
information that will allow e-QTL mapping.

Each individual in the segregating (RIL) population is genotyped with DNA
markers. The RIL population is then subjected to replicated experiments under
specific experimental conditions and treatments, and the expression profile of each
RIL is determined using microarrays. In order to properly assess the variation in
gene expression, ELP mapping requires multiple microarrays for every RIL in
the segregating population. At least two biological replicates per RIL for every
treatment in the experiment are required.

3.4. Implementation of ELP Mapping Using Existing Multiple
Trait Mapping Methodology

Because the expression of each gene is measured for each individual over
different treatment conditions, gene expression measurements can be viewed as
multiple evaluations of a trait in different environments. Multiple trait analysis
(Jiang and Zeng, 1995) is an extension of single trait QTL analysis to multiple
trait QTL analysis using composite interval mapping (CIM) (Zeng, 1993, 1994).
Within the context of traditional QTL mapping each individual’s phenotype is
denoted by the linear model, wp, where the subscript p distinguishes among the
multiple traits,

wp = b0p + b∗
px

∗ +
t∑
l=1

blpxl + ep (p = 1, . . . , P), (2)

and where b0p is the overall mean for trait p; b∗
p is the additive effect of the putative

QTL on trait p; x∗ is the number of alleles at the putative QTL; blp is the partial
regression coefficient of wp on xl ; xl is the allele of marker l (among t markers
used for controlling residual genetic variation) on the individual; and ep is the
residual effect on trait l for the individual. The residuals are correlated among the
P traits within individuals while they are independent among genetically distinct
individuals. Since multiple trait CIM accounts for the correlation structure among
the traits, it provides estimates of location for the genomic regions or QTL that are
associated with the multiple traits. Multiple trait CIM accommodates our proposed
setting and linear additive genetic model (1) for a simple biological model (Model
1; Figure 1), including statistical interactions between the treatment (stimulus)
and the regulatory loci. Jiang and Zeng (1995) suggest that the multiple trait CIM
approach can be used to test the gene-by-environmental interactions when the
same trait is assessed in different environmental conditions. Based upon this, we
tested the application of multiple trait analysis for ELP experiments based on a dye
swap microarray experiment for expression of a structural gene measured under
two treatments.

This experimental design provides four “traits” that can be described using
equation (1), and can be extended to include more complicated models. The four
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traits are the control and treatment measurements of a single gene’s transcript
under a two dye swap design, and are represented as follows:

w1 = 1

R

R∑
r=1

yi j111r = μ + αi + β j + τ1 + (ατ )i1 + δ1 + A1 + 1

R

R∑
r=1

εi j111r

w2 = 1

R

R∑
r=1

yi j221r = μ + αi + β j + τ2 + (ατ )i2 + δ2 + A1 + 1

R

R∑
r=1

εi j221r

w3 = 1

R

R∑
r=1

yi j122r = μ + αi + β j + τ1 + (ατ )i1 + δ2 + A2 + 1

R

R∑
r=1

εi j122r

w4 = 1

R

R∑
r=1

yi j212r = μ + αi + β j + τ2 + (ατ )i2 + δ1 + A2 + 1

R

R∑
r=1

εi j212r

(3)

4. SIMULATION STUDY

For many complex statistical methodologies, including QTL analysis, it is
difficult to analytically assess performance (i.e., how well the methods accom-
plish what they are created to do). Simulation studies provide a way to evaluate
the performance of such methodologies before actual biological experiments are
conducted (Broman and Speed, 2002). Based on the simplest biological model
(Model 1; Figure 1) data were simulated and used to investigate whether existing
multiple trait QTL mapping methodologies can be used to identify determinants of
expression level polymorphisms. We employed the JZmapqtl procedure (Basten
et al., 1994) in QTL-Cartographer (Basten et al., 2002), that was designed for
multiple trait composite interval mapping of traditional QTLs, to identify chro-
mosomal regions (e-QTL) that affect, control, and/or determine the expression of
structural genes (i.e., ELPs).

4.1. Simulation of RIL Genotypes

We simulated RIL populations consisting of 100, 200, 300, 400, 500, 700,
and 1000 progeny for the purpose of assessing the sample size required for e-QTL
detection, given the remainder of the parameters that characterize the genome.
Using the Arabidopsis genome as our model, we considered five chromosomes
with lengths of 135, 100, 100, 125, and 140 cM, and 120 markers were equally
distributed at 5 cM intervals over the genome. Two unlinked e-QTL were simulated
with equal additive effects of either 0.10 or 0.50. The regulatory locus was placed
98 cM from the top end of chromosome 1 and the structural locus was located 27 cM
from the top end of chromosome 2. The remaining chromosomes did not contain
any e-QTL and epistasis was not considered. Each structural and regulatory locus,
as well as each marker, was assumed to be biallelic with equal allele frequencies
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of 0.50. Genotypes of each marker linked to the e-QTLs and all other markers on
the five chromosomes were randomly simulated and assigned according to their
allele frequencies. We employed Kosambi’s map function assuming recombination
with moderate interference. The genotype of each linked marker on chromosomes
1 and 2 was assigned based on the recombination fraction and genotype of the
corresponding e-QTL.

4.2. Simulation of Gene Expression Simulation

For each individual RIL in the population, the gene expression measurements
were simulated based on the proposed mixed linear genetic model

yi jklm = μ + αi + β j + τk + (ατ )ik + δl + Am + εi jklm (4)

where i = 1, 2, j = 1, 2, k = 1, 2, l = 1, 2, and m = 1, 2; yi jklm is the gene ex-
pression level in original or log scale assessed under treatment k with dye l on array
m; αi , β j are the additive effects of the regulatory and the structural loci; i and
j correspond to the simulated genotypes; τ and δ are the effects of the treatment,
and dye, respectively; A is a random normal array effect with mean 0 and variance
σ 2
A = 1; and εi jklm is the measurement error distributed as a random normal with

mean 0 and variance σ 2
ε = 1. The array effect and measurement error are assumed

to be independent, and a range of parameter values (Table 1) for various examples
of potential ELPs were considered (corresponding to Figure 2) in our study.

Table 1
Parameter Configurations (1 Through 11 Refer to Figure 2) and Heritabilities of

Four Genes/Traits. The Regulatory e-QTL was Simulated 98cM from the Top End of
Chromosome 1; the Structural Locus was Simulated 27cM from the Top End of
Chromosome 2. The Dye Effect was Simulated with a Value of 0.20; and the

Variance of Both the Array Effect and the Measurement Error was 1. The Values of
the Interaction were Set to Satisfy: (ατ )11 + (ατ )12 + (ατ )21 + (ατ )22 = 0 and

(ατ )11 = (ατ )12= (ατ )21.

Additive Effect Heritability

Config. Reg. Struc. Trmt. Effect Interact. Trait 1,3 Trait 2,4

(1) 0.1 0.1 0.1 1.500 0.01 0.38
(2) 0.1 0.1 0.5 0.750 0.01 0.16
(3) 0.1 0.1 0.5 1.500 0.01 0.38
(4) 0.5 0.5 0.1 0.075 0.20 0.22
(5) 0.5 0.5 0.1 1.500 0.20 0.56
(6) 0.5 0.5 0.5 0.750 0.20 0.38
(7) 0.1 0.1 2.0 −1.875 0.01 0.40
(8) 0.5 0.5 2.0 −1.875 0.20 0.29
(9) 0.5 0.5 2.0 −3.000 0.20 0.56
(10) 0.5 0.5 2.0 −0.750 0.20 0.11
(11) 0.5 0.5 2.0 −0.075 0.20 0.18
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4.3. Multiple Gene/trait JZmapqtl Mapping

JZmaptqtl analysis was employed to analyze the simulated gene expression
data from the RILs, each with a regulatory genotype i and a structural genotype
j (Model 1; Figure 1). Four genes/traits were considered in a multiple trait setting
for all RILs in the population. The four states of a gene’s expression were the
result of two treatment conditions (τ ), and each of these samples were labelled
with each of the two dyes (δ). Specifically, four gene expression measurements
can be detailed as follows:

w1 = yi j111 = μ + αi + β j + τ1 + (ατ )i1 + δ1 + A1 + εi j111

w2 = yi j221 = μ + αi + β j + τ2 + (ατ )i2 + δ2 + A1 + εi j221

w3 = yi j122 = μ + αi + β j + τ1 + (ατ )i1 + δ2 + A2 + εi j122

w4 = yi j212 = μ + αi + β j + τ2 + (ατ )i2 + δ1 + A2 + εi j212 (5)

Heritabilities of the four traits were calculated under the various parameter config-
urations (Table 1). The simulated data were then analyzed by JZmapqtl procedure
in QTL-Cartographer version 1.61v (Basten et al., 2002). Model 6 was employed
with a walking speed of 1 cM and a window size of 10 cM. Among the results of
JZmapqtl is the assessment of the joint likelihood that there is no joint additive
QTL effect on the four traits/genes, and that there is no QTL by environment in-
teraction. This first hypothesis is the equivalent of testing for significant e-QTL
(both regulatory and structural), while the second hypothesis tests whether there
is a significant interaction between the e-QTL and the treatment. In the latter sit-
uation, variation in the expression of the structural gene may not be statistically
significant, but its expression may still be controlled by the regulatory gene.

Separate empirical thresholds based on 1000 permutations (Churchill and
Doerge, 1994) were estimated independent of QTL-Cartographer for both tests,
namely detecting significant e-QTL and significant interaction with between the
treatment and determinants of ELPs. When estimating permutation thresholds for
multiple genes/traits, it is essential that the randomizations maintain the correlation
structure between genes/traits within each individual.

Once significant e-QTLs were determined for each gene via JZmapqtl, the
resulting e-QTLs were compared to the actual genetic map. Because the biological
model that was used for the simulations (only Model 1; Figure 1 reported here)
was simple, JZmapqtl typically produced the same number of e-QTL as were
delineated in the simulation model. As the simulation model or true biological
system becomes more complex, the false positive rate for e-QTLs detected by
JZmapQTL is likely to increase.

The effective number of individuals required for a segregating population
of RILs was studied across 200 (repeated) data sets, which were repeatedly sim-
ulated under each parameter configuration and with each population size. The
statistical power to detect and locate determinants of ELPs was calculated based
on the proportion of multiple gene/trait analyses that significantly identified and
located e-QTL within a 1 cM neighborhood of their true locations. Furthermore,
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FIGURE 3. Statistical power and estimates with respect to sample sizes 100, 200, 300, 400, 500,
700, and 1000 based on 200 simulation runs for configuration 1. The regulatory locus was simulated
98cM from the top end of chromosome 1 having additive effect of 0.10 and treatment interaction; the
structural locus was simulated 27cM from the top end of chromosome 2 with additive effect of 0.10
and no treatment interaction. For (a), (d) the solid lines represent detection power for e-QTL; dashed
lines represent the detection power for interaction between e-QTL and treatment. For (b), (c), (e), (f)
the solid lines represent the sample mean of the estimates of location and additive effect; dotted lines
represent the respective 1-standard error limits.

the statistical power to detect the interaction between the e-QTL and the treatment
was estimated by examining how many times the interaction was significantly
detected out of 200 simulation repetitions. The sample means and standard devi-
ations over all 200 runs for the estimates of e-QTL positions and additive effects
were computed for further exploration of the properties of multiple trait CIM when
applied to gene expression data measured over a population of individuals. The use
of 200 runs for each simulation setting was determined by evaluating the results
of simulations conducted under 100, 200, 300, and 500 runs. The effective gain
in information between 200 runs and 500 runs was minimal, while the effective
savings of computational resources was significant.
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FIGURE 4. Detection power for location of regulatory locus with respect to sample sizes 100, 200,
300, 400, 500, 700, and 1000. The lines represent detection power for the regulatory locus under each
configuration. Solid lines denote relatively high power; dashed lines denote low power. Bold lines (solid
and dashed) represent the average power over the corresponding high and low power configurations.

4.4. Simulation Results

We present simulation results (Figures 3–5) for Model 1 (Figure 1) in our
investigation of JZmaptqtl to detect and identify e-QTL. The estimated power for
identifying the regulatory locus was higher than the power to detect the structural
locus, although their additive effects are same (0.10). This is most likely due to the
interaction between the regulatory gene and the treatment that was incorporated
into the linear additive model and the lack of inclusion of a similar interaction
term between the structural gene and the treatment. The standard deviation of the
estimates were much smaller for the regulatory locus than for structural locus, and
the sample bias of the additive effect is relatively large (0.20) for the regulatory
locus, relative to the structural locus (0.02). Both the parameter estimates and the
statistical power of the remaining parameter configurations (Table 1) supported
the conclusion that the precision of the estimates for the regulatory locus is better
than that for the structural locus (Table 2) under the conditions of our model.
However, because there was no interaction term between the treatment and the
structural locus, it is unclear whether this conclusion can be generalized to more
complex situations.
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FIGURE 5. Bias and standard deviation of location estimates with respect to sample size 100, 200,
300, 400, 500, 700, and 1000. The narrow lines denote each configuration; bold lines denote the average
values over all configurations. Solid lines denote configurations with additive effect = 0.50; dashed
lines are for those with additive effect = 0.10.

Table 2
Sample Means Corresponding to Estimates (Standard Error in Parentheses) over
200 Simulation Runs. Power is the Estimated Detection Power for e-QTL and

Statistical Interaction (in Parenthesis), and the Additive Effects are Denoted as Add.
The Configurations (C) 1–11 Correspond to Table 1.

Regulatory Structural

(C) Loc. (cM) Add. Power Loc. (cM) Add. Power

(1) 98.23 (0.99) .30 (.022) .92 (1) 28.81 (8.98) .13 (.035) .09 (0)
(2) 98.41 (1.80) .28 (.023) .78 (1) 28.49 (8.24) .13 (.038) .11 (.005)
(3) 98.17 (0.87) .30 (.024) .94 (1) 26.97 (5.00) .13 (.023) .09 (.005)
(4) 98.19 (1.92) .52 (.028) .76 (.04) 26.76 (1.78) .50 (.027) .78 (0)
(5) 98.06 (0.65) .50 (.029) .98 (1) 26.43 (1.94) .50 (.027) .73 (.005)
(6) 98.24 (1.09) .60 (.030) .91 (1) 26.63 (1.75) .50 (.028) .80 (.005)
(7) 98.00 (0.65) −.21 (.020) .98 (1) 27.56 (7.76) .13 (.048) .12 (.005)
(8) 98.07 (0.71) −.05 (.019) .98 (1) 26.84 (1.97) .50 (.028) .78 (0)
(9) 98.08 (0.50) −.10 (.015) .99 (1) 26.55 (1.87) .50 (.026) .76 (.005)

(10) 98.23 (1.89) .20 (.027) .76 (1) 26.64 (2.03) .51 (.026) .72 (0)
(11) 97.99 (2.13) .47 (.028) .74 (.02) 26.82 (1.88) .50 (.030) .75 (.005)
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The estimates of location and additive effects seem relatively unbiased except
for additive effects of the regulatory locus (Figure 3). As noted previously, this bias
may have been caused by specific effects in statistical model, such as the treatment
and the treatment by regulatory locus interaction. Despite the biased estimation of
the additive effect, e-QTL mapping via JZmapQTL detected regulatory locus fairly
well with good identification of the treatment interaction; however it showed poor
power to detect the structural locus, especially those with small effects. The relative
gain that is illustrated for regulatory locus location and effect over the structural
loci is most likely the result of the biological model that was used as the basis for
the simulation study. This biological model (Model 1), while simple (1 structural
locus, 1 regulatory locus), reflected a statistical interaction between the treatment
and the regulatory locus that the structural locus did not undergo. The interaction
between the regulatory locus and a treatment reflects that a determinant of an ELP
can be distinct from the transcript that is being regulated and may not encode the
mRNA that is changing.

Because a primary goal of ELP analysis is to identify regulatory loci at their
correct locations, we focused on the statistical power to locate regulatory e-QTL
under various configurations (Model 1; Table 1; Figure 2). The results of this
investigation divided the parameter configurations into two distinct groups based
on their statistical power. The high-power group includes configurations (1), (3),
(5), (6), (7), (8), and (9); the low-power group includes configurations (2), (4),
(10), and (11) (Figure 4; configurations refer to gene expression profiles in Figure
2). Specifics of the low-power group are that the interaction is small and trait
heritabilities of all genes/traits are less than 0.25. Interestingly, since the JZmapqtl
analysis, as applied to gene expression data, accounts for the statistical interaction,
it appears to some degree that it boosts the power to locate e-QTL that interact
with the treatment; however, the gain in power becomes less after a sample size of
500 is achieved. By examining the increasing pattern of the power, we found that
the continued gain in power becomes less after the sample size of 500 is achieved.
For a sample size of 500, the average power to locate e-QTL is 0.60, 0.90 over
each group, and 0.79 over all configurations.

We also investigated the relationship between the sample size and properties
of the e-QTL position estimates via bias and precision (Figure 5). The estimation of
the structural locus position revealed that both the bias and standard deviation were
large when the loci had small effects (0.10). However, estimates of the regulatory
locus position were relatively unbiased and obtained with higher precision than the
structural locus position estimates. Bias and poor precision can be addressed and
improved upon statistically by using a larger number of individuals in a segregating
population.

Based upon the JZmapqtl analyses, the power results from this simulation
study demonstrate that a multiple gene/trait QTL approach has great potential, but
is limited by the statistical model that is implemented for traditional QTL analy-
sis. Through further investigations we have found that increased replicates provide
limited additional improvement in statistical power. In order to improve upon the
limitations of using standard multiple trait QTL, as applied to microarray data, we
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propose (elsewhere) a novel statistical model that accounts for the genetic and ge-
nomic components of this analysis. The statistical power for all configurations can
be improved greatly if replicate gene features are employed, and if the technologi-
cal variation of the microarray experiments is acknowledged in the decomposition
of expression level polymorphisms.

5. DISCUSSION

Previous studies that have addressed genetical genomics (Jin et al., 2001;
Brem et al., 2002; Steinmetz et al., 2002; Wayne and McIntyre, 2002; Borevitz
et al., 2003; Schadt et al., 2003) have used gene expression data based on only
one parental line, or one treatment condition related to a complex trait. The e-QTL
investigation proposed here exploits gene expression levels quantified under dif-
ferent treatment conditions to identify determinants of ELPs. Our investigation and
suggested approach relies on an application of multiple trait interval mapping to
detect e-QTLs by providing a way to account for possible interactions between reg-
ulatory loci and the treatment. Compared to the standard interval mapping methods
(Schadt et al., 2003) that have been used to reveal regulatory and structural regions,
our approach provides a statistically more powerful avenue to detect and locate
e-QTL due to the benefit of treating the correlated gene expression measurements
within each gene as multiple traits and consideration of the statistical interactions
involving e-QTL.

Based upon the JZmapqtl analyses, the results from this simulation study
demonstrated that a multiple trait QTL approach has great potential, but is limited
by the statistical model that is implemented for traditional QTL analysis. Through
further investigation we found that increased replication provided limited addi-
tional improvement in statistical power. The statistical power for all configurations
can also be improved greatly if replicate gene features on an array are employed
and if the technological variation of the microarray experiments is acknowledged
in the partitioning of sources of variation in ELP data. In order to improve upon
the limitations of using standard multiple trait QTL methodology on microarray
data, we are developing a novel statistical model that accounts for the genetic and
genomic components of this analysis.

While both genetics and genomics have provided information on components
of regulatory systems, recent progress in technology and analytic methodology
is providing ways to analyze biological complexity at systems biological level
(Chong and Ray, 2002; Kitano, 2002; Jansen, 2003). The molecular dissection
of complex traits is one of the next greatest challenges to be addressed. A com-
prehensive understanding of regulatory networks determining complex traits is an
integral part of this approach. It will be interesting to determine what proportion
of ELPs are controlled by regulatory loci and how many are determined at struc-
tural loci. We may find that the QTL, which are known to come and go between
repeated experiments, environments, and conditions are actually more involved in
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gene regulation, and that these QTLs may tend to be regulatory e-QTLs rather than
structural e-QTLs.
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Chapter 8

Charting Contig–Component
Relationships within the Triticeae

Exploiting the Genome

Gerard R. Lazo, Nancy Lui, Frank M. You, David
D. Hummel, Shiaoman Chao, and Olin D. Anderson

1. INTRODUCTION

Expressed sequence tags (ESTs) in general reflect the diversity of gene ex-
pression in living organisms, and Triticeae ESTs in particular show this diversity in
plants. These sequences result from an established path in the laboratory: pieces of
single-stranded messenger ribonucleic acid (mRNA) are isolated from plant tissue,
converted into double-stranded complementary deoxyribonucleic acid (cDNA),
cloned into vector replicons, then transformed into Escherichia coli for replica-
tion. Deoxyribonucleic acid (DNA) is extracted from these clones and sequenced
using high-throughput methods resulting in pools of EST data (Adams, 1992).
Such methods mean that a given set of sequences, often called a “library”, shares
a common origin, i.e., they have the same species, cultivar, tissue, condition, and
stress attributes. Their characteristics represent a snapshot of the organism, cap-
tured at the point in time when the researcher isolated the mRNA.

Gerard R. Lazo and Olin D. Anderson United States Department of Agriculture, Agricultural
Research Service, Western Regional Research Center, Albany, California 94710-1105. Nancy
Lui, Frank M. You, David D. Hummel, and Shiaoman Chao University of California, Davis,
California 95616.

Genome Exploitation: Data Mining the Genome, edited by J. Perry Gustafson, Randy Shoemaker, and
John W. Snape.
Springer Science + Business Media, New York, 2005.

109



110 Gerard R. Lazo et al.

The abundance of EST data has increased dramatically in the past few years.
The plant tribe Triticeae includes several closely related crop plants of major
economic importance, including wheat, barley and rye (Barkworth et al., 1992,
Kellogg, 2002). Only a handful of ESTs from the species Triticum aestivum, bread
wheat, were available in the year 1998; now the numbers for this and other tribe
Triticeae species number over 750,000 (NCBI dbEST, 2003). The EST information
is available to the public through contributions submitted to the NCBI Genbank
resources (Boguski et al., 1993), and much of the accompanying Triticeae infor-
mation relating to these specific ESTs is available at the GrainGenes project site
(Matthews et al., 2003). These sequences have been applied to Triticeae genomics
in a wide variety of ways, including the development of molecular markers, place-
ment on physical and genetic maps, characterization as gene candidates, and used
for comparative studies between related species (Akhunov et al., 2003, Sorrells
et al., 2003).

To remove redundancy from within an EST data set, sequences are aligned
and clustered using various assembly algorithms, some of the more popular being
CAP3 (Huang and Madan, 1999), phrap (Green, 2003) and d2 cluster (Burke
et al., 1999). In building an assembly, a set of unique gene sets can be assembled
into “unigenes”, essentially representing a range of genes present in an organism
(Pontius et al., 2003, Liang et al., 2000, Quakenbush et al., 2000). The success of
an assembly relies on the quality of the sequence data and the various parameters
available within the software used to provide the established settings for sequence-
by-sequence comparisons.

A software tool has been developed to complement gene discovery efforts by
providing an overall visual representation of a sequence assembly, or clustering.
The software interacts with a relational database to point to other relevant pieces of
information. Rather than having to develop specific questions to query a relational
database, the display produces a global perspective of the data set and allows
orienting decisions based on attributes of the contributing data variables, allowing
the observer to make intuitive research decisions based on the clustering patterns
of the data elements. Data points may be selected individually or collectively to
follow in-depth information associated with the data points. With this tool it is
possible to pose a wide range of queries based on known data point features such
as those relating to library origin, metabolic pathway, map position, and the like.
Applications of this tool are primarily directed at EST analysis. This software has
also been modified to interact with data for microarray expression analysis, and
phylogenetic determination of genome sequences.

2. APPROACH

For use in the study of EST data a visualization tool was constructed, named
Contig Constellation Viewer (CCV), to relate to data variables of cDNA libraries
and their contributions toward assembled contigs. To relate to potential expression
profiles, the libraries can be sorted based on, for example, species, cultivar, tissue,
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FIGURE 1. Differences in CCV displays. The three display algorithms used above are Equal (A),
Proportional (B), andWeighted (C). All of the images above represent the same dataset. The numbers
shown in (A) represent the 3, 7, 14, 21, and 30 days post-anthesis cDNA library points equally spaced
around the circle with a single contig highlighted showing connections to the libraries having ESTs
in the contig (in this sample all libraries contribute to the contig). The numbers in (B) represent the
number of ESTs from each library found in Contig 8694. The numbers in (C) indicate the number of
ESTs sequenced in each library, thus there are 10,199 ESTs represented in the 2,051 contigs shown
for each data set representation above.

developmental stage, or stresses. Clustering patterns would reflect those contigs
with an abundance of ESTs important for the different sorted criteria. The orien-
tation of contigs displayed is dependent on the sorting order and the algorithm
utilized to represent the display. With the sampled assemblies, up to 50,000 con-
tigs were represented at a time with the visualization tool. The patterned layout of
contigs in the CCV display would provide an intuitive means to focus on contigs
representing interests for the researcher.

2.1. Display Settings

Three different display algorithm settings were applied, termed: equal, pro-
portional, and weighted. Each setting represented how the EST libraries placed
around the circumference of the graphical display influenced the spatial placement
of contigs within the circle. In the example provided in Figure 1, only five libraries
are displayed of the 152 libraries used in the assembly to simplify showing how
the differently applied algorithms affect placement of contigs within the display.
Each of the three samples represents the same data, but each algorithm applied
had benefits for navigating the contigs and associating supplemental information
available for each of the contigs. In this example, the five-library subset was also
selected to add some insight toward the expression of ESTs derived from cDNA
libraries prepared at different stages of kernel development (Tingey et al., 2003).

2.1.1. Equal Setting

This setting placed contigs within the display in a non-discriminant manner
with respect to the libraries contributing to contigs (Figure 1A). The placement of a
contig represented a clearmid-point cross-sectionbetween all libraries contributing
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at least one EST to the assembled contig. If every library represented in the display
had at least one EST member in a particular contig, that contig would be placed
at the center point of the CCV display as shown in Figure 1A.

2.1.2. Proportional Setting

This setting placed contigs in the display with respect to the number of EST
members from a given library represented in a contig (Figure 1B). If a single library
contributed proportionally 0.5, or one half, of the ESTs clustered into a contig,
the contig point would migrate 0.5 of the distance, between the relevant libraries,
towards the direction of the represented library. Similarly, the other library influ-
ences on point migration would be determined by the proportional representation
of the other libraries in the contig.

2.1.3. Weighted Setting

This Weighted setting is much like the Proportional setting in that the num-
ber of ESTs contributing to the contig is important. However, to account for
contributions from libraries from which few ESTs were sequenced, the con-
tig point migration is adjusted based on fractional representation of the ESTs
from a given library (Figure 1C). For instance, a single contig with ESTs de-
rived from two libraries, consisting of one EST from library A and nine ESTs
from library B, would be located midpoint if library A had a total of 100 se-
quences and library B had a total of 1,000; both libraries would be given a
weighted value of 0.01, each representing about one percent of the library in the
contig.

The above were only three of the settings initially tested. It would be possible
to add other sorting algorithms to provide different graphical perspectives.

2.2. Discerning Contig-Component Relationships

Because libraries represented in the CCV display can be sorted based on key
library components, or attributes, the display can be geared towards uncovering the
way contigs associate with these key attributes. Since contigs patterned as simple
intersections between libraries may not adequately explain contig-component re-
lationships, other algorithm settings can be used. Following are a few case studies
representing a range of applications.

2.2.1. Tissue Differentiation

The ordering of the libraries within the CCV display by tissue attributes
makes it possible to detect contigs that may be strongly associated with spe-
cific tissues. Sorting the libraries by tissue could be useful when a researcher is
focusing on contigs associated with tissue-specific expression or when hunting for
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genes that may carry tissue-specific promoters. As an example, Fusarium head
blight is a serious disease threat to the Triticeae agricultural crops, primarily
affecting the flowering parts of the plant (Cook, 1981). Attempts at construct-
ing or studying potential resistance mechanisms are focusing on expression in
the spike tissues. The sorting of spike and closely related tissues together in the
CCV display facilitates analysis of those contigs highly associated with those
tissues.

2.2.2. Developmental Expression

A single assembly may involve constructing contigs from sequences derived
from a wide range of libraries; there are about 152 different cDNA libraries con-
structed for T. aestivum. In some cases, cDNA libraries were constructed to cover
a very distinct set of developmental stages, for instance: 3, 7, 14, 21, and 30 days
after anthesis for the developing kernel (Tingey et al., 2003). Displaying only a
subset of these five libraries allows a visualization of contigs associated with each
stage of development, as well as those constitutively expressed (Figure 1). Visual-
izing the contigs in this fashion allow for stepwise selection of contigs specifically
associated between incremental steps. Likewise, such a collection could also be
compared to libraries for which several time points may have been pooled. The
ability to study library subsets, and depending on the range of stages from which
libraries have been constructed leads to the opportunities to study developmental
traits relating to flowering, nutrition, resistance/susceptibility, among other poten-
tial quantitative traits.

2.2.3. Treatment Differentiation

Many cDNA libraries have been constructed primarily to distinguish differ-
ences in expression between different conditions, and a variety of methods have
been developed to exploit these differences (e.g. differential display, microarrays,
subtractive hybridization). The CCV display can be adjusted to pool different treat-
ments and match them up against controls. There are publicly available libraries
that have been constructed against a range of pathogens and environmental stresses
allowing the possibility to categorize genes associated with different conditional
states of the plant.

2.2.4. Germplasm Differentiation

There may be situations where a comparison between different germplasm
may explain the differences in gene expression. It may be possible to identify genes
responsible for quality phenotypes, disease resistance, or differential expression
due to nutrition or stress conditions. In cases where phenotypes are multigenic,
a family of genes associated with a quality trait might be determined. The CCV



114 Gerard R. Lazo et al.

S00011 S00008
H602 If 

HJ If 2nd 

HJ shoot

HJ If 1st

AK If

3-15  DAP

HZ

HX

HV

HU

HT

HS

HF

HA
BCTaLr1

TA019E1X

Wh

Wh_dL

Wh_e

Wh_f

Wh_h

Wh_oh

Wh_r

Wh_SL

Wh_yd

Wh_yf

wle1n

wln96

wlsu2

wr1
wre1n

T. aestivum H. vulgare

FIGURE 2. A co-assembly of wheat and barley ESTs. Phrap assembly was performed on 776,000
ESTs from a total of 264 cDNA libraries from Triticum aestivum andHordeum vulgare species. Shown
are the 34 largest libraries, 17 from each species, with 19,493 contigs shown representing 280,226
ESTs. Each dot represents a contig, and libraries contributing to that contig using a weighted algorithm
represent its position. Highlighted is an H. vulgare library (HZ) showing all the contigs, which have
ESTs from that library present in the highlighted contig.

display allows for the sorting of assembled genes that are shared or differentiated
by germplasm.

As contigs can be assembled to differentiate germplasm, such as by cultivar
characteristics; the same display can also be used to differentiate germplasm by
species. Depending on the stringency of the assembly it may be able to distinguish
between genes shared, or highly similar between germplasm and species. In the
example provided, an assembly was set up to compare the species T. aestivum and
Hordeum vulgare (Figure 2). The general observation was that the species were
quite distinct, but there were many instances where the contigs formed contained
and shared ESTs derived from both species.
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2.3. Other Applications

2.3.1. Microarray Comparison

Microarray technology is rapidly becoming a primary means for measuring
gene expression due to capabilities to use high throughput means to create the
arrays and the ability to screen thousands of genes at one time (Fellenberg et al.,
2001, Li, 2001). The probes used to screen against microarrays are similar to the
building of cDNA libraries in that the probe material is derived from the isolation
ofmRNAunder a specified set of conditions.Microarray studies are just now under
development for study within the Triticeae species; however, to facilitate the study
of microarray expression analysis, the CCV display tool was initially set up to
read currently available data sets to perform mock microarray analysis without
the costly production of microarrays or building of RNA probes. For instance,
microarray experiments for the model organism Arabidopsis thaliana was used
for study and compared against a T. aestivum contig assembly (Figure 3). In this
case, the Triticeae contigs were matched to microarray probe sequences using
different threshold cutoff values. Also added, was a false-coloring overlay to give
a appearance similar to that associated with microarray analysis software. Though
the data is derived from another species, this is a feature may assist in pointing to
previously documented genes for which expression is somewhat understood and
may point to new or unrealized gene relationships based on expression profiles
and clustering.

2.3.2. Assembly Comparison

For phylogenetic studies, a series of stepwise calculations are performed
to build independent data assembly sets; migration of clusters, or changes in
the cluster members can be analyzed to determine sequence, or phylogentically-
dependent associations. Given another assembly, it may be possible to distinguish
sequences that are genome specific from within a polyploid environment. For
instance, T. aestivum is a hexaploid species having genome content from the A,
B. and D genomes. Using a combination of hexaploid, tetraploid, and diploid
species the display set would be sorted by species to observe genome-specific
clustering.By comparingdifferent assemblymethods, patterned changes in cluster-
ingmay lead to develop observations on genome evolution as determined by cluster
formation.

2.3.3. Other Comparisons

Through the assembly method, several representatives of a gene class may be
present in the display which may represent duplication of related sequences; this is
especially so in a polyploid organism. A simple query will show the placement of
the related sequences as distributed with the sorting criterion. A follow-up analysis
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FIGURE 3. Microarray Overlay Using CCV Display. Shown are data from 35 wheat cDNA libraries
which generated 11,758 contigs from 57,885 ESTs. Using false-coloring derived from a microarray
experiment on Arabidopsis thaliana, probes used in that experiment were best matched to wheat
contigs; the contig color represents co-expressed signals (yellow) compared to both the experiment
(green) and the corresponding control (red). The experiment shown involved inoculation of A. thaliana
with Heterodera schachtii nematode. Interestingly, three of the four differentially expressed signals
associated with root tissue corresponded to contigs for which ESTs were mapped to chromosome 2B in
wheat, a gene location associated with H. avenae interactions. Data was derived from the Nottingham
Arabidopsis Stock Centre.

of the contigs formed may point to the cause of contig divergence, possibly due
to sequence evolution and formation of homoeologous loci due to duplications or
rearrangements. Or it may simply be the lack of closing a gap between 5′ and 3′

sequences. However, by a thorough study of contig placements within the CCV
display, it may be possible to develop theories of gene adaptation, which can be
associated with certain tissues, or stages of development.
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With respect to the sorting criterion, contig-component relationships may be
displayed to relate clustering, or scattering. For instance, one may be interested in
how specific pathway-associated sequences are related to the libraries displayed.
By loading a list of identified pathway-classified contigs, only those contigs can be
highlighted and can relate candidate function to map position, metabolic pathway,
or other general interest queries. In some cases this is useful for assessing the
quality of the library. If the library was from a subtracted or normalized library,
the treatment can be easily compared to one that was not treated. This is sometimes
useful for determining if the library is yielding additional unique sequences, or if
the general background signals are being minimized.

3. SOFTWARE

The primary software interface is a Java applet (Java, 2003), which interacts
with information housed in a relational database. The relational database, mySQL
in this case (MySQL, 2003), houses the relevant information for relating contigs to
components of associated libraries. Supplemental information for contigs and their
sequences are also served through the relational database. For convenience, the
Java applet was served through an Internet browser interface as a client application.
On the server side, a Java servlet queried through a web server, such as Apache
(Apache, 2003), to retrieve data from the relational database. For each assembly
set up for study, a protocol was established for uploading the data sets.

4. DISCUSSION

Much of the genome sequence data needed is often housed in relational
databases and can be readily retrieved, but in order to query the database it is
important to know what questions need to be asked. From an object or relational
database perspective, the data is viewed very sparingly, derived solely from the
questions poised directly to the database. The CCV application presented here
attempts a global visualization of the database in a spatial array that can be further
queried in various ways making use of its links to a relational database. Curators
often conceive of the most probable queries, but many do not address the full
breadth of the queries that the researcher may have in mind, or be in search of. The
presented CCV tool attempts to provide an overview of the available data and by
ranking the library attributes by criteria of interest to the researcher, and provides
an intuitive interface that will help the researcher focus on those sequences or
candidates thatmaybemost applicable to the researchneeds. In considerationof the
enormous amount of EST information available, it appears to be a daunting task to
relate to sequences collectively by relating which attributes are most important and
are those sought by the researcher. The setup of the CCV interface attempts to give
the researcher an overview perspective of all available data in an assembly study
and relate it to a collection of attributes believed to be useful in sorting the data. The
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graphical interface simplifies the ability to create queries and provides an interface
to make general observations and develop new queries. The interface uses one
assembly and uses contigs for studying sequences based on their derived origins.

Considering that the over 780,000 sequences representing the Triticeae are
derived fromonly 256 cDNA libraries, it is still unclear towhat extent the expressed
portion of the genome is represented. It is possible to gauge these numbers from
model organisms with sequenced genomes, but even in these cases, the numbers
are still unclear. In surveying the expression association patterns with some of
the Triticeae assemblies, it appears clear that ESTs fall short of representing the
full diversity of expressed genes possible. For example, sequences from a cDNA
library derived from callus tissue in barley were found to have a high number
of EST sequences in contigs that were apparently callus-specific. Many of the
sequences here were apparently unique from those expressed in other tissues.
This suggests that an abundance of sequences derived from callus have not been
detected under classic mRNA conditional states of isolation. It is also suggested
here that callus-derived tissues may relate to a state where inhibitions of mRNA
transcription are released, allowing a diversity of sequences to be expressed and
detected, except out of context with respect to tissue, development, and the like.
Sequences of this sort may simply define the state of callus expression.

From the above simple observation, there still appears to be value in se-
quencing additional cDNA libraries under a wider range of expression profiles.
This would add additional value to the cDNA libraries by enabling the tracking of
added attributes, or variables, such as species, germplasm, tissue, developmental
stage, and stresses. Establishing new unstudied conditions for the production of
cDNA libraries would be useful for coaxing a genome to express sequences im-
portant to different states of being, including relationships to developmental stage,
stresses, or tissue types.

The computational design presented here was an attempt to condense large
datasets into a manageable and discernable environment using visualization meth-
ods. The approach used here was different in that contigs could be viewed based
on their sequence construction from assembly algorithm programs, allowing each
contig to be related in context to other assembly contigs based on their sources
and attributes. The end result is a global display of the assembly experiment, with
the ability to study more in detail the clusters that are formed by connecting to an
accompanying relational database, which contains supplemental information for
the experiment. If needed, a subset of the assembly could be displayed to uncover
noted interactions. The global visualization in many cases simplified access to
the data that normally would require several directed queries to uncover the same
information. In other cases the visualization provided a display that would prompt
the user to intuitively query for data, which would not be obvious starting from a
“command-line” type query. In some sense the visualization of the data analysis
duplicates the use of housed database information, but provides a different per-
spective of the data set, and provides an interface by which to view and query the
data. There is a need for database tools that go beyond a simple listing of query
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results. Tools need to be designed to allow the user a chance to interact and explore
in a quest for gene discovery.
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Chapter 9

Protein Family Classification with
Discriminant Function Analysis

Etsuko N. Moriyama and Junhyong Kim

1. INTRODUCTION

Rapid progress in multiple genome projects continues to feed databases in the
world a large volume of sequence data. In this “post-genomic” era, more efficient
and reliable sequence annotation, especially functional annotation of protein
sequences, is crucial. Although experimental confirmation is ultimately required,
computational annotation of protein sequences has been routinely done, and it is in-
corporated into major protein databases (e.g., SWISS-PROT: http://www.expasy.
org/sprot/, PIR-PSD: http://pir.georgetown.edu/pirwww/search/textpsd.shtml).
Due to a rapidly growing number of new sequences, increasingly more database
entries contain only computational annotations.

In this paper, we first discuss the disadvantage commonly found in various
existing protein classification methods. Next we introduce a set of new methods
that can classify protein family sharing very weak similarity. Finally, we describe
an algorithm that combines strengths from various protein classification methods
to obtain an optimum power for protein classifications.
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Table 1
Protein Classification Tools.

Tool Description Reference

BLAST Local sequence similarity search tools (blastn, Altschule et al.
blastp, etc.) (1990)

PRINTS/SPRINT Protein fingerprint database (searched by Attwood et al.
FingerPRINTScan) (2002)

PROSITE Database for biologically significant sites, Falquet et al.
patterns and profiles (2002)

Pfam Multiple alignment and profile HMM database Bateman et al.
(searched by HMMER) (2002)

PSI-BLAST Position specific iterative BLAST using position Altschul et al.
specific scoring matrix (1997)

SMART Domain architecture research tool (profile HMM database) Letunic et al.
(2002)

1.1. Protein Classification Methods

In order to improve the power of computational annotations, various methods
have been developed. Computational annotation (or classification) methods rely on
finding similarity between a query (new protein) sequence and protein sequences
in databases with known (preferably experimentally confirmed) functions. The
most popularly used method is the Basic Local Alignment Search Tool (BLAST)
by Altschule et al. (1990). It searches databases for sequences with local similarity
to the query. When more distant similarity is sought, pattern or profile, rather than
the sequence itself, is used for the database search. Table 1 lists some methods
frequently used for protein annotation and protein family classification.

Except BLAST (including PSI-BLAST), all of the search tools listed above
have their own pattern, profile, or motif database. These patterns/profiles are gener-
ated from alignments of known protein sequences. Since functionally more impor-
tant regions (e.g., catalytic domains, binding-domains) are considered to be under
stronger selective constraints, multiple alignments from proteins with known func-
tions are expected to contain conserved regions related to those functions. When
distantly related sequences are compared, only functionally critical sites, rather
than a large region, might be conserved. Furthermore, some amino acids may be
substituted with others (usually with other biochemically similar amino acids) as
long as the protein function is maintained. Pattern and profile search methods al-
low such flexibility and they are more sensitive to weakly conserved sequences
than simple similarity search methods. Even when regular BLAST search fails
to identify any significantly similar sequence to the query from the database, pat-
tern/profile search methods frequently can detect a signature pattern/profile related
to a known function.

1.2. Pros and Cons for the Current Protein Classification Tools

Due to the differences in their underlying techniques and also in their fo-
cuses (e.g., family coverage), each method (and database) has different strengths
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[OPRD_HUMAN]

[GSTALIVMFYWC]-[GSTANCPDE]-{EDPKRH}-x(2)-[LIVMNQGA]-x(2)-[LIVMFT]-
[GSTANC]-[LIVMFYWSTAC]-[DENH]-R-[FYWCSH]-x(2)-[LIVM]

PROSITE: PS00237

FIGURE 1. An example entry from the PROSITE pattern database. This is one of the pattern entries
for G-protein coupled receptors (PS00237). A G-protein couple receptor sequence (a human opioid
receptor entry from SWISS-PROT: OPRD HUMAN) is shown under the PROSITE pattern entry. Each
dot represents one amino acid. Seven cylinders in the middle indicate predicted seven transmembrane
regions. The circled area on the sequence corresponds to the PROSITE regular expression pattern entry
spanning 17 amino acids.

and weaknesses. In order to take maximum advantage from these various in-
formation sources, usually it is necessary to conduct multiple pattern/profile
searches. Integrated databases, e.g., InterPro (http://www.ebi.ac.uk/interpro/) and
MetaFam (http://metafam.ahc.umn.edu/), were developed to facilitate such tedious
procedures.

One of the problems inherited in all of these pattern/profile search methods
and databases is that their patterns are in general derived from relatively short
regions. It is particularly the case in the PROSITE patterns. PROSITE patterns are
expressed in regular expressions as shown in Figure 1. If the query is only a partial
sequence (e.g., EST), and if it does not contain the region where the pattern was
derived, this method fails to identify the query correctly. The regular expressions
also allow only limited flexibility.

PRINTS uses also very short conserved motifs. But it tries to overcome this
problem by identifying multiple motifs covering a larger region than a single motif.
Figure 2 above shows one example PRINTS entry that includes seven fingerprint
motifs.
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FIGURE 2. An example protein fingerprint from the PRINTS database. This is “5-hydroxytryptamine
1A receptor signature” (5HT1ARECEPTR). This PRINTS entry includes seven motifs or “fingerprints.”
The alignment below (including four 5-hydroxytryptamine 1A receptor sequences) shows the locations
of these seven fingerprints (the boxes 1–7).

Profiles (used in PROSITE/Profile and PSI-BLAST) express the flexibility
in amino acid substitutions at each position in a series of scoring matrices, “Posi-
tion Specific Scoring Matrix” (PSSM). The profile hidden Markov model (profile
HMM) is a probabilistic model of sequences and used in Pfam and SMART. Pro-
files and profile HMMs cover the entire region of alignments, usually much longer
than regions covered by PROSITE/pattern or PRINTS. Figure 3 below shows an
example profile HMM from a Pfam entry.

An inherent problem in these methods is that they rely on multiple alignments
for generating the patterns and profiles. However, generating multiple alignments
themselves becomes problematic when extremely distant sequences are involved.
Furthermore, diagnostic patterns and profiles cannot be easily identified from a
multiple alignment that includes extremely diverged sequences.

Yet another problem shared by existing classification methods is that the
patterns, motifs, and profiles need to be identified from already known protein
sequences. Since subsequently found proteins are classified based on these pat-
terns/profiles, possible initial sampling bias will be reinforced.

1.3. G-protein Coupled Receptor Super Family

A good example representing such extreme diversity is the G-protein coupled
receptor (GPCR) super family. Many medically and pharmacologically important
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FIGURE 3. An example entry from Pfam. A part of a G-protein coupled receptor entry (7tm 1) is
shown in the box. Two circled numbers correspond to the “emission probability” for a glycine at the first
amino acid position and an alanine at the second position, respectively. Note that the amino acids “G”
and “N” are the majority at the first and second positions in the alignment above, respectively, and the
“emission probabilities” for these two amino acids are the largest at each site. The diagram above is the
transition structure of the HMM model used in HMMER (the HMM program package used in Pfam).

proteins are included in this family: e.g., acetylcholine receptors, dopamine re-
ceptors, and opioid receptors. Therefore, classifying this protein family and find-
ing new members of this family is one of the most important topics in medical
genomics.

The GPCR protein family is one of the most diverse protein families. The
family is classified into five major classes (A-E) as well as other minor classes
and putative and “orphan” groups. The members of this family share one structural
feature, seven-transmembrane regions as shown in Figure 4. Beyond this structural
similarity, the members, especially those in different classes share very low se-
quence similarity. The seven transmembrane regions contribute to the low sequence
similarity because many of the hydrophobic amino acids within the region are in-
terchangeable as long as they are hydrophobic and do not disrupt the structural
conformation. On the other hand, the loop regions between the transmembrane
regions can be varied in length. Therefore, transmembrane and loop regions con-
tribute to the low sequence similarity in different ways. The low sequence similarity
and heterogeneity created by repeated transmembrane and loop regions creates the
most difficult situation in generating multiple alignments, and no reliable multi-
ple alignment can be generated from the entire super family. The GPCR protein
family presents one of the most challenging properties for protein classification
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FIGURE 4. A model of G-protein coupled receptors. The seven transmembrane regions are shown in
cylinders with numbers 1–7.

methods. There is no single pattern or profile representing the entire GPCR fam-
ily. And even if the query is predicted to belong to the GPCR super family, ex-
treme divergence among families sometimes prevents further classification. In
such cases, the query sequences are called “orphan” GPCRs. For example, the cur-
rent GPCRDB (“Information system for G protein-coupled receptors (GPCRs)”:
http://www.gpcr.org/7tm/) contains about 4,650 GPCR entries, and more than 300
entries are designated as “orphans” or “putative/unclassified” GPCRs.

At varied degrees, such situations are shared with many other transmembrane
proteins. We can expect that when we develop methods that can successfully
classify this particular protein family, such methods can be applied easily for
many other protein families. We therefore use the GPCR protein family in our
study to evaluate performance of various classification methods.

2. DISCRIMINANT ANALYSIS

In Kim et al. (2000), we described a new method of protein classification
that relies on neither multiple alignments nor pattern/profile database search. The
new method uses a set of variables extracted from each protein sequence, and
classifies them by using a “nonparametric” linear discriminant analysis. It is a
linear discriminant analysis optimized with nonparametric “runs” criterion, instead
of relying on parametric equations commonly used. This was because we wanted to
avoid assuming any unreasonable statistical distribution. In this paper, we include
other parametric and nonparametric discrimination methods and compare their
performance for the GPCR family classification.

2.1. Input Variables

Instead of using multiple alignments, a set of variables extracted from each
protein sequence is used in discriminant analyses. We used the same set of variables
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described in Kim et al. (2000). They include “amino acid index” and three peri-
odicity statistics based on hydrophobicity and polarity.

In order to obtain “amino acid indices” from protein sequences, first a linear
discriminant analysis is done based on 19 amino acid frequencies. The linear
discriminant score (we call it “amino acid index”) obtained from each protein
sequence can be used as a single variable representing 19 amino acid frequencies.
Note that using “amino acid index” instead of each amino acid frequency separately
reduces the dimensionality from 19 to 1.

Other three variables are:

i) Log of the average periodicity of the GES scale,
ii) Log of the average periodicity of the polarity scale, and
iii) Variance of first derivative of the polarity scale.

Distributions of the GES hydropathy index (Engelman et al., 1986) and po-
larity along each protein sequence are examined using sliding window analysis
(window size = 16 amino acids). And the “average periodicity” is calculated by
counting how many times the property crosses over a neutral value (−0.5 for the
GES and 8.325 for the polarity) and normalized by protein lengths.

Figure 5 in the next page shows how these four input variables discrimi-
nate GPCRs from non-GPCRs. Note that although the figure shows only two-
dimensional variable spaces, good discriminations between GPCR proteins (shown
with “G” in the figure) and non-GPCR proteins (shown with “R” in the figure)
were observed from any combination of the four variables.

2.2. Datasets

A training dataset containing 750 of known GPCR sequences (randomly
sampled from GPCRDB) and 1,000 of non-GPCR sequences (randomly sam-
pled from SWISS-PROT) were prepared. A smaller dataset including 100 each
of GPCR and non-GPCR sequences were also prepared independently as a test
dataset.

2.3. Discrimination Methods

In addition to the “nonparametric” linear discriminant analysis (nonparamet-
ric LDA) method described previously (Kim et al., 2000), we included four other
parametric and nonparametric discrimination methods:

i) Linear discriminant analysis (LDA),
ii) Quadratic discriminant analysis (QDA),
iii) Logistic discriminant analysis (LOG), and
iv) K-nearest neighbor method (KNN).

S-Plus statistical package with the MASS library (Venables and Ripley, 2002)
was used except for the nonparametric LDA.
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FIGURE 5. A multi-plot for the four input variables used in discriminant analyses. LD1: “amino acid
index”, V2, V3, and V4: hydrophobicity and polarity periodicity statistics. 1,750 proteins in the training
dataset (described in the text) are plotted. “G” in grey color: GPCRs, “R” in black color: non-GPCR
random proteins.

2.4. Performance Comparisons for the GPCR Protein
Family Classification

Table 2 lists the results of GPCR classification by various discriminant analy-
ses compared with other protein classification methods. Each method was trained
on the training dataset described above, and their classification performance was
tested on both of the training and test datasets. The cross-validation (“leave-one-
out” test) was performed only for the three parametric discriminant analysis meth-
ods and nonparametric KNN method.

All of the four parametric and nonparametric methods performed similar
to or better than previously described methods (PROSITE, Pfam, PRINTS, and
nonparametric LDA) with % true positives higher than 98%. Surprisingly both non-
parametric methods, KNN and nonparametric LDA, did not perform particularly
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Table 2
Performance Comparisons for the GPCR Classification.

Against Against Cross-
training dataset test dataset validation

% % % % % %
Method True + False + True + False + True + False +

LDA 98.7 3.3 100 1 98.7 3.6
QDA 98.5 3.0 100 0 98.5 3.0
LOG 98.0 2.8 100 0 97.7 2.9
KNN (k = 10) 98.7 3.2 99 0 98.3 3.4
Nonparametric LDA 98.1 3.6 99 0 — —
PROSITE/pattern 93.5 0.1 84 0 — —
PROSITE/profile 98.8 0 94 0 — —
Pfam 98.4 0.3 94 0 — —
PRINTS 99.2 0.3 98 0 — —

Note: “%True +”: percent true positives, “% False +”: percent false positives. For KNN analysis, k was varied
between 5 and 20, but the performance with k = 5, 10, and 15 was similar. See Kim et al. (2002) for the PROSITE,
Pfam, and PRINTS entries used in the analyses.

better than parametric discriminant analysis (DA) methods, although we cannot
guarantee any assumption underlying parametric methods (e.g., normal distribu-
tion, consistent covariance matrices). The false positive rates among DAs and
KNN were also very similar to each other, but about 10 times higher than other
methods (PROSITE, Pfam, and PRINTS). Classification of the independently pre-
pared test dataset and the results of cross-validation were consistent with the
classification results on the training dataset itself. As described before, classi-
fication by PROSITE/pattern search showed the lowest performance. It clearly
indicates the limitation of searching short and less flexible regular expression
patterns.

On the other hand, all of the DA and KNN methods outperformed other
methods when tested on short sequences. Short subsequences (from 50 to 400
amino acids) were randomly sampled from the test dataset, and classification
performance was compared among the nine methods listed in Table 2. Figure 6
in the next page compares % identifications by DA, KNN, and other methods.
With test sequences with 50 or 75 amino acids in length, we could still obtain
higher than 70% of positive identification by DA and KNN methods. In particular,
nonparametric methods (KNN and nonparametric LDA) showed true positive rates
higher than 80% if sequences were longer than 75 amino acids. On the contrary,
Pfam, for example, could identify fewer than 50% of GPCR sequences when their
length was 50 amino acids. Both PROSITE/pattern and PRINTS showed the lowest
performance especially when sequences are short (300 amino acids or shorter).
These observations were again consistent with the short patterns or fingerprints
these classification methods use.
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FIGURE 6. Performance comparison among classification methods against short protein sequences.

3. DEVELOPMENT OF A HIERARCHICAL CLASSIFICATION
ALGORITHM

Our study showed that each protein classification method has different
strength and weakness. All discrimination methods we examined (parametric
or nonparametric) showed better performance even when protein sequences are
extremely short. On the other hand, in general, these discrimination methods
had much higher false positive rates. We should note that we simply relied on
SWISS-PROT annotations to identify GPCRs in this study. Therefore, it is possi-
ble that there are some miss-identifications. Currently used methods (represented
by PROSTIE, Pfam, and PRINTS in this study) have very low false-positive rates.
However, they perform best when properties of query and training datasets are con-
sistent, as shown in their weak performance against partial sequences. Therefore,
these methods are not likely to identify new protein sequences if they are not closely
related to any existing protein family or any existing protein family member. These
methods also rely on the quality of multiple alignments among training sequences.

The ideal protein classification method should have reasonably low false pos-
itive rates but needs to be sufficiently flexible, so new types of proteins can be still
identified or classified. In order to realize such optimal means of protein classi-
fication, we are currently developing an integrated algorithm that compliments
weakness of various methods by combining various methods systematically and
effectively.
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FIGURE 7. A hierarchical protein classification algorithm.

The flowchart shown in the next page presents a simple example of such
hierarchical algorithm to identify potentially new GPCR sequences. In this hi-
erarchical algorithm, more “non-specific” DA methods are first used to identify
any possible candidate for GPCR proteins and discriminating them from “least
likely to be GPCR” proteins. In the next step, other more stringent methods (e.g.,
PROSITE, Pfam, and PRINTS) can be used to filter out “more likely to be GPCR”
data. The remaining dataset could contain both actual “false positives” and also
some new members of the GPCR family. Another level of DA or other clustering
methods could be used to select such possible candidates and to perform more
detailed classification.

Further examinations of various DA and other multivariate methods are re-
quired to identify which “non-specific” methods should be incorporated in this
algorithm. It is also possible to create another hierarchical level among these
“non-specific” methods to lower the false positive rates.

Our goal is to develop an integrated hierarchical algorithm that can take ad-
vantage from various protein classification methods. This algorithm can be applied
for any kind of protein families, and incorporating DA and other flexible methods,
we can apply this algorithm even for partial or short sequences as found in EST
databases. It will be also useful to identify particular protein coding sequences
from short fragments (e.g., exons) from genomic data.

4. REFERENCES

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J., 1990, Basic local alignment search
tool, J Mol Biol. 215:403; http://www.ncbi.nlm.nih.gov/BLAST/.

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J., 1997,
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic
Acids Res. 25:3389; http://www.ncbi.nlm.nih.gov/BLAST/.



132 Etsuko N. Moriyama and Junhyong Kim

Attwood, T.K., Blythe, M., Flower, D.R., Gaulton, A., Mabey, J.E., Maudling, N., McGregor, L.,
Mitchell, A., Moulton, G., Paine, K., and Scordis, P., 2002, PRINTS and PRINTS-S shed light on
protein ancestry, Nucleic Acids Res. 30:239; http://www.bioinf.man.ac.uk/dbbrowser/PRINTS/.

Bateman, A., Birney, E., Cerruti, L., Durbin, R., Etwiller, L., Eddy, S.R., Griffiths-Jones, S., Howe,
K.L., Marshall, M., and Sonnhammer, E.L.L., 2002, The Pfam protein families database, Nucleic
Acids Res. 30:276; http://pfam.wustl.edu/index.html.

Falquet, L., Pagni, M., Bucher, P., Hulo, N., Sigrist, C.J., Hofmann, K., and Bairoch, A., 2002, The
PROSITE database, its status in 2002. Nucleic Acids Res. 30:235; http://www.expasy.ch/prosite.

Kim, J., Moriyama, E.N., Warr, C.G., Clyne, P.J., and Carlson, J.R., 2000, Identification of novel
multi-transmembrane proteins from genomic databases using quasi-periodic structural properties.,
Bioinformatics. 16:767.

Letunic, I., Goodstadt, L., Dickens, N.J., Doerks, T., Schultz, J., Mott, R., Ciccarelli, F., Copley, R.R.,
Ponting, C.P., and Bork, P., 2002, Recent improvements to the SMART domain-based sequence
annotation resource, Nucleic Acids Res. 30:242; http://smart.embl-heidelberg.de/.

Engelman, D.M., Steitz, T.A., and Goldman, A., 1986, Identifying nonpolar transbilayer helices in
amino acid sequences of membrane proteins, Annu. Rev. Biophys. Biophys. Chem. 15:321.

Venables, W.N., and Ripley, B.D., 2002, Modern Applied Statistics with S. Fourth Edition, Springer,
New York.



Chapter 10

Exploiting Natural Variation
to Understand Gene Function in Pine

David B. Neale and Garth R. Brown

1. INTRODUCTION

Plant biology has entered into the functional genomics era. A finished genome
sequence has been completed for the model dicot Arabidopsis thaliana (The Ara-
bidopsis Genome Initiative, 2000) and is nearing completion for the model mono-
cot Oryza sativa L. (Yu et al., 2002; Goff et al., 2002). The task of understanding
the function of all 30,000± genes in these model plants has already begun. These
model species possess all the desirable attributes for functional genomic analy-
sis, e.g., rapid generation time, small genome size, well-characterized mutants
and facile transformation. In Arabidopsis, genetic analyses are almost always per-
formed on two major ecotypes, Columbia and Landsberg. Likewise in rice, a small
number of varieties from two subspecies (indica and japonica) are most routinely
used. The limitation that arises from concentrating functional genomic analyses
to just a few genotypes is that the functional significance of naturally occurring
allelic variation on plant phenotypes eludes understanding. From the perspective
of the plant breeder, understanding of the function of a genetic locus is much less
important than understanding the functional differences among alleles at a locus.
To address questions of the functional significance of allelic variation, studies must
be performed on a large number of diverse genotypes.

David B. Neale Institute of Forest Genetics, University of California at Davis, Environmental
Horticulture Dept., Davis, California 95616 Garth R. Brown Institute of Forest Genetics,
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This leads to the application of association studies such as those frequently
used in human genetics to identify disease-causing alleles for complex diseases
(Risch, 2000; Cardon and Bell, 2001).

1.1. Association Mapping in Plants

The association mapping approach has just recently been applied to plants.
Since the late 1980s, plant geneticists have used the quantitative trait locus (QTL)
mapping approach to dissect complex traits in plants and in many cases have found
markers linked to alleles of economic importance that can be used in marker-
assisted breeding (Kearsey and Farquar, 1998; Paterson, 1998). However, the res-
olution of QTLs is poor (10–20 cM), making it a challenge to identify the gene(s)
underlying QTLs. Positional cloning of QTLs has been accomplished in a few
cases (Frary et al., 2000), but the task is enormous. A solution to this problem is to
increase the amount of genetic recombination in the mapping population so that
QTLs can be resolved to smaller chromosomal segments. The association mapping
approach accomplishes this by taking advantage of historical recombination in a
natural population as opposed to the small amount of recombination that occurs
following a generation or two of crossing in standard QTL mapping populations
(Lander and Schork, 1994).

The association mapping approach to dissecting complex traits and discovery
of alleles for plant breeding will be applied to many crop plants in the near fu-
ture (Rafalski, 2002). To date however, this approach has been used only in maize
(Remington et al., 2001; Thornsberry et al., 2001).Due to the large size of themaize
genome (2.5 × 109 bp), it is currently not feasible to construct a high-density SNP
(single nucleotide polymorphism) map such that a genome-wide scan can be per-
formed to search for QTLs. The alternative is to use a candidate gene approach
where SNPs in a select set of genes are associated with phenotypes. This approach
assumes some a priori knowledge of the function of candidate genes. The first
demonstration of association mapping in plants was by Thornsberry et al. (2001)
who found that SNPs in theDwarf8 locus ofmaize associatedwithflowering time in
a population of 92maize inbred lines.One limitation of the associationmapping ap-
proach is that false associations between SNPs and phenotypes are possible due to
population structure and admixture. This possibility is likely in maize due to its do-
mestication history. These questions were addressed in a companion study (Rem-
ington et al., 2001), where SSR markers were used to test for population structure.
Population structure and admixture is likely to complicate association mapping in
many of the inbred crops that have gone through severe domestication bottlenecks.

2. PINE IS A MODEL SPECIES TO UNDERSTAND ALLELIC
EFFECTS ON PHENOTYPES

Pines (Pinus) are not generally thought of as good experimental plants for
functional genomic analyses. Pines have long generation times, large genomes
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FIGURE 1. Gymnosperms, including pines, appeared much earlier in evolutionary history than
angiosperms.

(1.0 × 1010 bp), few characterized mutants and are often difficult to transform.
In spite of these limitations, pines have a number of attributes that make them
an excellent model for understanding the effects of allelic diversity on plant phe-
notypes. An association mapping approach is highly amenable to pine due to its
evolutionary history, life history characteristics and reproductive biology.

2.1. Pines Are Evolutionarily Much Older than Crop Species

The gymnosperms evolved in the Carboniferous Period whereas the an-
giosperms did not appear until the Jurassic Period, more than 100 million years
later (Figure 1). Pine first appeared during the Cretaceous and it was also the period
of theirmajor radiation. Thus, pines, ofwhich there aremore than 100 species, have
been on earth for about 100 million years. Climatic conditions were very tropical
during the Palaeocene and early Eocene that favored development and expansion
of angiosperms and pushed pines into refugia. This period of fragmentation led to
secondary centers of diversity and radiation, such as in Mexico.

There was a significant drop in temperatures at the end of the Eocene that
caused widespread extinction of angiosperms and re-colonization of mid-latitudes
bypines. ThePleistoceneEpochwas a timeof expansion and contractionof glaciers
and thus the distributions of all flora. Pines forced into glacial refugia would have
suffered losses of genetic diversity due to genetic drift. So even though pines may
have passed through bottlenecks during their evolutionary history, many of the
extant species have been on earth continuously for 100 million years or more,
longer than most crop species.

2.2. Pines Are Mostly Undomesticated and Are Found in Large
Random-Mating Populations

The domestication and breeding of pines is still in its infancy (Zobel and
Talbert, 1984). The first attempts at genetic selection and breeding of pines did not
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begin until themid-twentieth century, centuries later than the domestication ofmost
agricultural crops. Therefore, pines have generally not suffered losses of diversity
due to domestication. Many pine species have very large and often continuous
populations. Some examples are Scots pine (Pinus sylvestris L.) in Europe and
Asia and jack pine (Pinus banksiana Lamb.) and lodgepole pine (Pinus contorta
Dougl.) in North America. However, pine populations in some parts of the world,
notably around the Mediterranean, have been drastically reduced or altered due
to over-harvesting and/or fire. The implications for association mapping are that
in pine populations one might expect to find abundant allelic diversity that has
resulted primarily from the forces of natural selection over a very long period of
evolutionary time.

Pines have amixedmating system (selfing and outcrossing) butmost offspring
result from outcrossing (Muona, 1990). Pollen and seed dispersal distances are
also quite large. Collectively, these life history traits all lead to very large effective
population sizes. The implication for association mapping is that individuals can
be sampled from populations lacking large amounts of population structure and
that these individuals will not be inbred.

2.3. Clonal Replication Permits Precise Evaluation of Phenotypes

The greatest experimental challenge in association mapping in humans is
evaluation of the phenotype, which is always difficult in human genetic studies.
Precise evaluation of phenotype is difficult in most animal systems due to prob-
lems in minimizing environmental variation. In plants, cloning or development
of inbred lines is often possible which allows the establishment of replicated ge-
netic tests. In pines, members of an association population can easily be cloned by
methods such as somatic embryogenesis (SE) and rooted cuttings (Figure 2). SE
can produce thousands of individuals per clone but is very costly. Rooted cuttings
generate smaller numbers of individuals per clone but are much less expensive
to produce. Once clones are produced it enables the evaluation of multiple phe-
notypes measured over time and space. Destructive sampling is possible on some
individuals of the clone without losing the clone for future phenotypic evaluations.

Clonal tests can be established at multiple sites to test for G × E interactions
and can also be measured over many years to address developmental questions.
In summary, clonal replication of members of an association mapping population
in pine enables precise and thorough evaluation of phenotypes that is not always
possible in animal systems or even all crop plants.

2.4. Direct Determination of Haplotype

Statistical tests for association between genotype and phenotype can be per-
formed using individual SNPs or based on the complete haplotype. Haplotype-
based tests are considered to be more powerful. The problem is in how to deter-
mine or estimate the haplotype from zygotic data. In inbred crops, the problem
can be avoided if individual plants are completely homozygous (Rafalski, 2002).
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FIGURE 2. Clonal replication of loblolly pine by rooted cutting propagation.

However, using inbred material may not be optimal for association mapping be-
cause genetic diversity could be lacking.

A unique aspect of pine seed biology permits direct determination of haplo-
types from individual trees. The pine seed endosperm (called megagametophyte) is
haploid and results from the samemeiotic event as the egg (Figure 3). DNA is easily
isolated from the megagametophyte and DNA sequencing is performed on the hap-
loid DNA templates to discover SNPs. By sequencing multiple megagametophytes
from individual trees it is possible to determine both haplotypes. Alternatively,

FIGURE 3. Pine seed showing 1n megagametophyte and 2n embryo.
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diploid DNA can be sequenced in addition to one megagametophyte and the al-
ternative haplotype can be inferred by subtraction. The implication for association
mapping is that all haplotypes in a population can be determined directly, without
error that is associated with haplotype estimation.

3. ASSOCIATION MAPPING IN LOBLOLLY PINE

Our ongoing research interest is in the genetic dissection of complex traits in
forest trees. Nearly all traits of economic importance in forestry are quantitatively
inherited, yet there is little understanding of the individual genes that control these
traits. In loblolly pine (Pinus taeda L.), we seek to identify the genes controlling
complexwood property traits.We have used theQTLmapping approach to identify
chromosomal regions harboring QTL for both physical wood properties (wood
density and microfibril angle) and chemical wood properties (percent lignin and
cellulose) (Groover et al., 1994; Sewell et al., 2000, 2002; Brown et al., 2003).
The mapping experiments have been repeated in different families and across
different environments, therefore a fairly comprehensive picture has emerged as
to the (1) number, (2) location and (3) size of effect of QTLs controlling these
traits. However, the genes underlying these QTLs are still unknown. Positional
cloning of QTLs in the large genome of loblolly pine is not feasible, therefore we
have chosen to use a candidate gene-based association mapping approach toward
identifying the genes underlying these QTLs.

3.1. Clonal Association Mapping Populations and Phenotypic Evaluations

A clonal association mapping population was assembled from 10 different
clonebanks and clonal seedorchards belonging to theWeyerhaeuserCompany.The
clone banks and seed orchards were located throughout the southeastern United
States. Conscience effort was made to minimize genetic relatedness among indi-
viduals selected from the population. The trees varied in age but most were more
than 15 years old. A sample of 425 clones were selected each with two copies
(ramets) per clone (∼850 trees in total).

Wood samples were taken from all trees by 5 mm increment cores. The
wood samples were evaluated for several wood property traits including (1)
wood specific gravity, (2) percent latewood, (3) microfibril angle and (4) per-
cent lignin and cellulose. All of these traits had previously been mapped by QTL
analyses.

3.2. SNP Discovery, Nucleotide Diversity and Linkage Disequilibrium

A list of candidate genes for the wood property traits was assembled (Table 1).
These included (1) nine genes coding for enzymes in the phenylpropanoid pathway
leading to the synthesis of ligninmonomers (pal, c4h-1, c4h-2, 4cl, c3h-2, ccoaomt,
ccr, comt-2, cad ), (2) three genes coding for enzymes involved in supplying methyl



Exploiting Natural Variation to Understand Gene Function in Pine 139

Table 1
Estimates of Nucleotide Diversity for Chemical and Physical Wood Property

Candidate Genes in Loblolly Pine.

Gene Locus Length θTOTAL

phenylalanine ammonia-lyase pal-1 438 0.0034
cinnamate 4-hydroxylase c4h-1 1718 0.0036
4-coumarate:CoA ligase c4h-2 912 0.0033

4cl 1716 0.0051
coumarate 3-hydroxylase c3h-2 1334 0.0010
caffeoyl CoA O-methyltransferase ccoaomt 529 0.0060
cinnamoyl CoA reductase ccr 616 0.0068
caffeate O-methyltransferase comt-2 1275 0.0031
cinnamyl alcohol dehydrogenase cad 391 0.0040
S-adenosyl methionine synthetase sam-1 784 0.0038

sam-2 463 0.0016
glycine hydroxymethyltransferase glyhmt 573 0.0054
LIM transcription factor ptlim1 428 0.0017

ptlim2 453 0.0027
cellulose synthase cesA3 998 0.0022
arabinogalactan proteins agp-like 890 0.0020

agp-4 402 0.0192
agp-6 865 0.0103

Total 14785 0.0042

groups to the phenylpropanoid pathway (sams-1, sams-2, glyhmt), (3) two genes
coding for transcription factors (ptlim-1, ptlim-2), (4) a gene coding for a cellulose
synthase (cesA3) and (5) three genes coding for arabinogalactan proteins (agp-like,
agp-4, agp-6). DNA sequence contigs could be found for all of the genes at the
loblolly pine xylem EST database (http://pinetree.ccgb.umn.edu/).

SNP discovery was performed by direct sequencing of PCR amplicons from
one ormore fragments of each of the candidate genes.Apanel ofmegagametophyte
DNA samples, one from each of 32 trees of the association mapping population,
was used for SNP discovery. Approximately 15 kb of 5′ untranslated, exon, intron
and 3′ untranslated sequence was searched for SNPs. In a preliminary analysis to
identify SNPs, sequences were aligned using the Sequencher software and SNPs
identified visually (Figure 4).

The frequency of SNPs in coding regions was 1/91 versus 1/37 in non-coding
regions (Table 2). The average frequency was 1/60 and is identical to that found
in one maize study (Ching et al., 2002), but less than that found in another study
(Tenaillon et al., 2001). SNP frequency in soybean (Zhu et al., 2003) is considerably
less than that in loblolly pine or maize (Table 2).

Estimates of average (coding and non-coding) nucleotide diversity in loblolly
pine varied more than 12-fold among genes (range = 0.0017 − 0.0192). There are
potentially many mechanisms responsible for differences among genes, neverthe-
less natural selection or genetic drift must be acting differentially among genes.
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FIGURE 4. SNP haplotypes of the 4cl gene among a sample of 32 loblolly pine megagametophytes.

The average nucleotide diversity in loblolly pine (0.0042) is somewhat less than
that for maize but greater than that in soybean.

The extent of linkage disequilibrium (LD) is important to estimate as it deter-
mines the marker density that is needed to identify associations with phenotypes.
LD varies among genes in loblolly pine but on average LD decays to r 2 ≤ 0.20
within ∼1000 bp (Figure 5). The limited estimated LD in loblolly pine is not
unexpected due to its highly outcrossed mating system and evolutionary history.
The implication for association mapping in loblolly pine is that genome-wide as-
sociation studies would not be feasible at this time due to the high marker density
that would be required and that although associations may be difficult to establish
using a candidate gene approach, once established the marker should be physically
very close to the functional polymorphism.

There are very few genome-wide studies of LD in plants, although one excep-
tion is that in Arabidopsis thaliana. Nordborg et al. (2002) found that LD decays
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Table 2
Estimates of Nucleotide Diversity in Plants

bp/SNP

Length N Coding Non-coding Total 	total Reference

loblolly 14,785 32 91 37 60 0.0042 This study
Scots 2,045 20 — — — 0.0017 Dvorynk et al.,

2002
maize 6,935 36 124 31 60 — Ching et al.,

2002
maize 14,420 25 — — 27.6 0.0096 Teniallon et al.,

2001
soybean >76,000 25 503 283 308 0.00097 Zhu et al.,

2003

within ∼250 kb in this selfing annual plant. Thus, genome-wide association map-
ping inArabidopsis thaliana is probably quite feasible. In other plants, LDhas been
estimated within individual genes or at specific chromosomal regions. Remington
et al. (2001) also found that LD was variable among genes in maize but on average
decays within ∼1500 bp. Tenaillon et al. (2001) found that LD decayed even more
rapidly in a more diverse set of maize accessions (∼100–200 bp). In soybean, LD
is more like that in Arabidopsis, decaying only within ∼50 kbp. Clearly, LD varies
among species depending on their evolutionary histories as well as among genes
or regions of the genome within species. The choice of population within which
to estimate LD will also greatly affect estimates.
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FIGURE 5. Average rate of decay of linkage disequilibrium (r2) in loblolly pine.
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Table 3
Association Tests of SNP Genotype with Wood Property phenotype in loblolly pines

GENE SNP PHENOTYPE F Pr > F

4cl C/G ewsg (11–15) 4.11 0.043
%lw (3–5) 6.16 0.014
%lw (11–15) 9.72 0.002

c4h-1 C/A ewsg (3–5) 3.55 0.029
C/T ewsg (3–5) 3.04 0.049

lwsg (11–15) 3.02 0.050

comt-2 C/T ewsg (11–15) 4.20 0.041
C/T ewsg (11–15) 6.61 0.011

emfa (11–15) 3.90 0.049

agp-like C/A %lw (11–15) 4.19 0.016

3.3. Associations between SNP Genotype and Phenotype

We have identified a total of 245 SNPs among the 18 wood property candi-
date genes. A subset of the 50 most informative and potentially functional SNPs
were typed in the full set of 425 clones from the association mapping popula-
tion. SNP genotyping was performed using the Template-directedDye-terminator
Incorporation and Florescence Polarization detection (FP-TDI) assay (Gill et al.,
2003). Wood property phenotypes were also evaluated for all 425 clones. Esti-
mates are based on the mean of two ramets per clone. A statistical adjustment
was performed to account for differences among clonal means due to test site
differences.

ANOVA (SAS) was used to test for statistical association between 15 SNPs
and 8 wood property phenotypes (120 tests in total). Those tests with P ≤ 0.05 are
shown in Table 3. These are preliminary results and no adjustments were made to
account for multiple testing. The C/G SNP found in the 4cl gene was associated
with average earlywood specific gravity in rings 11–15 and with average percent
latewood in both rings 3–5 and rings 11–15. QTLs for both earlywood specific
gravity and percent latewood map near the 4cl gene on linkage group 7 (Brown
et al., 2003). Both the C/A SNP and the C/T SNP found in the c4h-1 gene were
associated with earlywood specific gravity. A QTL for earlywood specific gravity
was found at the same map position as the c4h gene on linkage group 3 (Brown
et al., 2003). The two C/T SNPs found in the comt-2 gene also associated with
earlywood specific gravity and a QTL is located fairly close to comt-2 on linkage
group 11. Although preliminary, these results suggests that allelic variation in
genes coding for enzymes in the phenylpropanoid pathway may be responsible for
differences in the density of wood in loblolly pine. These findings await further
testing and verification, but do suggest that association mapping can be applied
to pine and that alleles can be discovered that may have significant economic
value.
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4. SUMMARY

Plant and animal breeders have made tremendous progress using phenotypic
selection and quantitative genetic theory. Genetically improved varieties have re-
sulted without any knowledge of the specific genes affecting desirable phenotypes.
Genomic technologies now make it possible to identify the loci affecting pheno-
types and measure the relative effects of different alleles. Breeders will soon have
the option to select directly on genotype. However, there will be considerable chal-
lenges in accurately estimating the effects of many different alleles on complex
trait phenotypes. Because of their evolutionary history, life history and reproduc-
tive characteristics, pines provide an excellent model system to begin to establish
relationships between genotype and phenotype. Knowledge gained from pines
will not only be used in applied forest tree breeding but might also serve for basic
discovery that can be transferred to other plant and animal systems.
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Chapter 11

Merging Analyses of Predisposition and
Physiology Towards Polygene Discovery

Daniel Pomp, Mark F. Allan, and
Stephanie R. Wesolowsk

1. INTRODUCTION

Most quantitative traits are exceptionally complex, with relatively equal con-
tributions of genetic susceptibility and interacting environmental factors. Predis-
position to a phenotypic range for a complex trait such as body weight results from
combinations of relatively small effects of DNA variations within a large number
of unidentified polygenes, known as quantitative trait loci (QTL). Over 200 QTL
have been reported for growth and body composition traits in the mouse, likely
representing at least 50 to 100 distinct genes (Figure 1). While molecular biology
has yielded significant gains in understanding complex traits such asweight regula-
tion at the metabolic and physiological levels (e.g. leptin, melanocortin and insulin
pathways), the genetic architecture of obesity predisposition remains essentially
undefined. This large gap between our extensive knowledge of physiologicalmech-
anisms underlying body weight, and our embryonic understanding of how genetic
predisposition is manifested, impairs identification of genes underlying relevant
QTL and inhibits gene-based development of diagnostic and therapeutic tools.

We propose a central hypothesis that the majority of genes controlling pre-
disposition to complex traits such as body weight and obesity are involved in
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FIGURE 1. Mouse Body Weight Predisposition Map. The current status of mapped quantitative trait
loci (QTL) for fatness (orange), body weight and weight gain (violet), serum cholesterol (green),
heat loss (red) and levels of mRNA or proteins for candidate genes with physiological relevance to
obesity (black). All body weight and weight gains are from animals of 6 weeks of age or older.
Lengths of chromosomes and QTL map positions are according to the Mouse Genome Database. It
is emphasized that QTL map positions may be inherently inaccurate (in some cases 95% confidence
intervals for a QTL include a majority of a chromosome. Only QTL mapped with at least genome-wide
5% significance levels were included in the map, but several suggestive QTL were included when
their map positions reaffirmed map positions of other QTL from independent experiments. Symbols
for QTL are as presented in the literature (see Elo (2003) for full list of references). If authors did not
provide symbols, those suggested by Chagnon et al. (2003) were used. Adapted from Elo (2003).

trans-regulation of the primary physiological pathways directly regulating energy
balance phenotypes. This hypothesis has been formulated based on several ar-
eas of accumulated data. First, few causative mutations have been found within
energy balance candidate genes despite significant detection efforts in humans
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(Chagnon et al., 2003). Second, studies localizing QTL regulating mRNA or pro-
tein levels of such candidate genes have primarily identified trans-acting regulation.
And third, recent genome-wide evaluations have found that trans-acting loci are
the primary drivers of variation in gene expression in yeast (Brem et al., 2002;
Yvert et al., 2003), Drosophila (Montooth et al., 2003) and mice (Schadt et al.,
2003a). We contend that the paradigm of “Quantitative Genomics”, whereby large-
scale sub-phenotyping at the transcriptional, proteomic and metabolomic levels is
performed within the context of a QTL mapping population, will be a powerful
force in dissecting the genetic architecture of complex trait predisposition.

2. SIGNIFICANCE

Carcass and body composition traits constitute extremely important consid-
erations of modern livestock production systems where consumer health concerns
and marketing perspectives play increasingly prominent roles. The problem of
excess fat in livestock and poultry carcasses is ubiquitous and has serious conse-
quences for the animal industry at four levels: health perceptions of consumers;
wasteful production of an undesired biological component; labor costs associated
with trimming waste fat; and lower biological efficiencies of fatter animals (Eisen,
1989).

An estimated 65% of U.S. adults are overweight, and 31% are obese, with
higher percentages in femaleminority populations (Flegal et al., 2002).Overweight
and obese conditions substantially increases risk of hypertension, dyslipidemia,
type 2 diabetes, coronary heart disease, stroke, gallbladder disease, sleep apnea, os-
teoarthritis and respiratory problems, and endometrial, breast, prostate, and colon
cancers, combining to form the single largest cause of death in developed countries
(NHLBI, 1998).

Understanding the roles of specific loci in genetic susceptibility to obesity is
critical to improving human health and quality of life. As Comuzzie and Allison
(1998) stated, “One of the greatest challenges in biomedical research today is the
elucidation of the underlying genetic architecture of complex phenotypes such as
obesity.” Unfortunately, little progress has been made despite significant research
attention.A tremendous gap exists between our embryonic knowledge of the nature
of genetic predisposition to obesity and our bourgeoning understanding of its
physiological and molecular underpinnings. Given the ∼75 billion dollar annual
health costs associated with obesity (Finkelstein et al., 2003) finding novel targets
for pharmacological intervention and pharmacogenomic management is critical.
Enhanced understanding of how complex traits are controlled will also aid in
elucidating the nature of predisposition for other diseases, including certain forms
of cancer, and will be broadly applicable to many important phenotypes.

3. BACKGROUND

Asignificant heritable component for diseasewas formally recognized as long
ago as the turn of the 20th century, when Sir Archibald Garrod (1902) described
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the heritable nature of alkaptonuria. Since then, well over 5,000 genetic disorders
exhibiting Mendelian inheritance have been described and the molecular basis for
many of these has been identified. These diseases have phenotypes, which fall into
discrete classes (e.g. afflicted vs. not afflicted). In contrast, most economically
relevant traits in animal agriculture, and most common human maladies such as
obesity, exhibit continuous phenotypic variation and a predominantly multifacto-
rial and polygenic basis (Festing, 1979; Rich, 1990). While certain rare mutations
have been identified accounting for a small minority of extreme phenotypes (e.g.,
Animals: McPherron and Lee, 1997; Humans: Chagnon et al., 2003), the actual
identity of genes segregating and contributing to common phenotypes in popula-
tions is essentially unknown.

Location of polygenic factors controlling inheritance of quantitative traits
can be established by tracking the segregation of closely linked markers (QTL
mapping). This dates back to early work by Sturtevant (1913) with Drosophila,
Haldane et al. (1915) with mice and Sax (1923) with Phaseolus vulgaris. For
the subsequent 70 years, analyses continued to use visible phenotypic markers
and protein variants. However, DNA marker analysis of quantitative traits has
recently gained prominence with development of ubiquitous and polymorphic
marker systems (e.g. Dietrich et al., 1996) and powerful statistical methodologies
(e.g. Lander and Botstein, 1989; Zeng, 1993; Zeng, 1994; Haley et al., 1994). The
first extensive use of DNA markers was in plants, where large suitable families
could be generated (Paterson et al., 1988; Martin et al., 1989). The feasibility of
performing QTL mapping in mammals was first demonstrated using rats (Hilbert
et al., 1991; Jacob et al., 1991), but the mouse has subsequently dominated research
in polygenic analysis including body weight regulation (Brockmann and Bevova,
2002).

Over 200 QTL for growth and obesity-related traits have been localized in the
mouse, representing a comprehensive and exhaustive portrait of the predisposition
map for mouse body weight regulation. For simplicity and convenience, we have
graphically summarized the ∼50 papers contributing this information in Figure 1
(see also Table 3 in each of Rocha et al., 2004a,b). However, few (if any) of these
QTL have been unequivocally cloned, dramatically limiting the ability to harness
this critical mass of information for the betterment of human health. This scenario
is all the more surprising due to the fact that advancements in knowledge on the
endocrine, biochemical and molecular underpinnings of obesity represent a signif-
icant success story in modern biology, sparked originally by study of spontaneous
mutations causing obesity (e.g. Zhang et al., 1994; Michuad et al., 1994; reviewed
by Chua, 1997) and later by targeted single gene mutations in a multitude of genes
with relevance to energy balance (see reviews by Bray and Tartaglia, 2000; Barsh
and Schwartz, 2002). This frustrating gap in our knowledge of physiological mech-
anisms underlying obesity, and the nature of genetic predisposition to obesity, was
insightfully summarized by George Bray and Claude Bouchard (1997), who wrote:
“Unfortunately, the spectacular gains in understanding the biology of energy bal-
ance of the last few years have not yet translated into significant advances on the
genetic front. This is particularly striking when one realizes that so far there is
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not one single obese human being whose excess body fat can be explained by a
specific mutation in one of the genes exerting its effects in relevant energy balance
pathways”.

In recent years there have been a few reports of single genemutations resulting
in human obesity (e.g., Farooqi et al., 2003; reviewed by Chagnon et al., 2003), and
we have seen a somewhat promising trend in the ability to elucidate the underlying
identities of QTL including those underlying obesity-related traits (see review by
Korstanje and Paigen, 2002). However, the painstaking and difficult nature of the
process bodes poorly for rapid progress (Nadeau and Frankel, 2000). This dilemma
grows in parallel with the continued rapid pace of discovery in understanding
energy balance mechanisms (e.g. Schwartz et al., 2003; Wang et al., 2003b).

4. TRANSCRIPTOMEMAPPING: A NEW EXPERIMENTAL
PARADIGM FOR ANALYSIS OF COMPLEX TRAIT GENETICS

A new paradigm for bridging the gap between our knowledge of the physi-
ology and predisposition of obesity is the combining of QTL mapping with large-
scale gene expression analysis. Transcriptome mapping (Williams et al., 2002b),
also called “genetical genomics” (Jansen and Nap 2001; Jansen 2003), treats gene
expression levels of any particular gene measured across different individuals as
an expression-level polymorphism that in principle reflects the underlying genetic
variation (Dumas et al., 2000; Jansen and Nap, 2001; Doerge, 2002). This type
of analysis was actually pioneered by Damerval et al. (1994) and de Vienne et al.
(1994) using proteomic evaluation (and later extended by the same group to the
transcriptome (Consoli et al., 2002)) in an F2 population of maize (Zea mays L.).
Transcriptome mapping has been highlighted as a powerful mechanism to dissect
complex traits and make more efficient the selection of candidate genes underlying
predisposition loci, with recent successful implementation in yeast (Brem et al.,
2002; Yvert et al., 2003),Drosophila (Wayne and McIntyre, 2002; Montooth et al.,
2003) and mice (Hitzemann et al., 2003; Schadt et al., 2003a,b).

A critically important question that transcriptome mapping promises to help
answer regards the underlying nature of obesity QTL. Are primary obesity QTL
represented by sequence variation within genes with major roles in energy balance
pathways or, as first proposed several years ago (Pomp, 1999), do they regulate such
genes in a trans-acting manner? Although a plethora of candidate gene analyses
in humans has provided mixed results (e.g. MC3R: Farooqi et al., 2003; UCP2:
Esterbauer et al., 2001; LEPR: Heo et al., 2001), the latter speculation is strongly
supported when the transcriptome/proteome mapping paradigm has been applied
on a modest basis by examining one or a few transcripts/proteins at a time. For
example, mapping for determinants of levels of plasma leptin, IGF-1 and IGF-1
binding proteins has identified multiple QTL for each trait, but none coinciding
withmap positions of the structural genes themselves inmice (e.g.Mehrabian et al.,
1998; Brockmann et al., 2000; Rosen et al., 2000) or humans (Hixson et al., 1999).
Koza et al. (2000) identified several trans-acting QTL for induced Ucp1 mRNA
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levels in mice, and we have found similar results for control of hypothalamic
mRNA levels of Rpl3, Oxt and Timp2 (Wesolowski et al., 2003; Wesolowski and
Pomp, Unpublished Data). In pigs, Rohrer et al. (2001) identified only trans-acting
QTL influencing plasma FSH levels.

Although these very limited findings provide a tantalizing glimpse into the
nature of complex trait predisposition and the underlying QTL, transcriptome
mapping offers the potential for several orders-of-magnitude greater power and
resolution. In yeast, for example, Brem et al. (2002) found QTL for 570 expressed
genes in a cross between laboratory and wild strains. Of these, 36% were ap-
parently due to polymorphisms within the gene themselves, while the remainder
was controlled by a small group of trans-acting modulator loci each regulating
from 7 to 94 genes of related function. Similar findings were reported by Schadt
et al. (2003a) in their mouse study where they further found that the stronger
the evidence for an expression QTL, the more likely it would map within the
structural gene itself. This latter result is expected as DNA mutations within
a gene and affecting the expression of that gene should be easier to identify
than second-order effects. However, it should be noted that in such cases, the
causal polymorphism may be closely linked to, but not part of, the gene whose
expression is being evaluated. Also, such results could possibly be artificially
be created by polymorphisms influencing hybridization efficiency, although this
would be more likely when shorter oligonucleotide probes are employed in a
microarray.

Recently,Yvert et al. (2003) determined thatmost gene expression differences
in a cross between laboratory and wild strains of yeast mapped to trans-acting
loci. Furthermore, trans-regulatory variationwas broadly dispersed across different
classes of genes with a wide variety of functions. And further compelling evidence
that obesity QTL may be represented by sequence variation within trans-acting
loci that regulate genes with major roles in energy balance pathways, is provided
by the recent study of Montooth et al. (2003) usingDrosophila. In that experiment,
trans-regulatory variation was found in metabolic enzyme activity for each key
determinant of metabolism and respiration measured.

The study by Schadt et al. (2003a) specifically targeted dietary-induced obe-
sity in mice and identified two promising candidates potentially representing the
MMU2 QTL described by Lembertas et al. (1977). This distal region of mouse
chromosome 2 is one of the most relevant to obesity predisposition in the mouse
genome (see Figure 1 and Chagnon et al., 2003). Not only is this region well
populated with multiple body weight and fatness QTL, from crosses employing
different approaches and genetic backgrounds (Lembertas et al., 1997; Mehrabian
et al., 1998; Rocha et al., 2003a.b), QTL harbored in this region have among the
largest effects of any body weight and obesity polygenes ever localized (Pomp,
1997; Rocha et al., 2003a,b).

In regard to regulation of body weight and obesity, critical questions remain
to be answered after these pioneering, yet quite preliminary, initial studies using
the transcriptome mapping paradigm. For example, will expression QTL represent
genes with primary (cis) or secondary (trans) roles in energy balance? A second
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important question to address is whether expression QTL directly underlie obesity
QTL? And more globally, can the transcriptome mapping paradigm indeed create a
more successful environment for routine cloning of obesity predisposition genes?

4.1. Expected Outcomes From the Transcriptome Mapping Paradigm

Establishment of a robust system that can genetically map loci that modulate
the steady-state levels of any gene showing transcript level variation between pop-
ulations with divergent phenotypes is expected to provide a wealth of information
regarding genetic architecture of complex traits. A hypothetical snap-shot of the
types of outcomes this research paradigm can provide is summarized in Figure 2,
where the X-axis represents the known genetic map position of each gene rep-
resented on a large-scale expression microarray, and the Y-axis represents the
estimated genetic map location of the single QTL that explains the most variation
in expression levels for each gene on the X-axis. Based on the early transcriptome
mapping efforts, three patterns of transcript regulation are being revealed, with a
fourth pattern possible.

First, a large number of genes plotted along the diagonal will suggest that their
transcript levels are cis-regulated (i.e. the location of their QTL transcript regula-
tors genetically map to the physical location of the genes themselves). We would
speculate that these are due to promoter polymorphisms or other variants within
the genes themselves that affect transcript level. This “cis-diagonal” (Williams
et al., 2002b) can immediately uncover high-quality candidate genes potentially
representing QTL for growth and obesity phenotypes, especially when the map
position of the expression QTL falls under the QTL peak for the end-point pheno-
type (e.g., weight, fat, intake). A second class of genes would be those controlled
by unlinked trans-regulators. These will be evidenced by the genetic locations of
the controlling QTLs being different than the physical location of the genes they
regulate. Evaluation of the trans-regulating patterns of expression phenotypes will
add immense value to selection of candidate genes representing QTL, by im-
plicating pathways and mechanisms underlying the mechanism of action of the
QTL. The third, and potentially most interesting class of genes, is QTL transcript
modulators that would regulate the steady-state transcript levels of tens or even
hundreds of genes spread across the genome. These master transcript modulators
would be identified by the horizontal strips of plotted QTL modulators, indicating
the presence of one or a few tightly linked regulatory genes. This class of results
will represent two important findings. First, the QTL may be in a key gene within
a pathway that, when perturbed by a polymorphism, causes a cascade of effects
that are evidenced by multiple expression changes in other genes. Second, the
QTL may represent a key genetic control switch such as a transcription factor
or helicase, a polymorphism within which could cause a multitude of changes in
expression of genes throughout the genome. A speculative fourth class of genes
would be those representing potential “expression neighborhoods” (Oliver et al.,
2002; Spellman and Rubin, 2002), although evidence for such results has not yet
been observed in the transcriptome mapping experiments conducted to date.
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FIGURE 2. Hypothesized results of mRNA expression profiling across a genotyped quantitative trait
locus (QTL) mapping population. The X-axis is the general map position of each expressed sequence
tag (EST) or gene in the expression array. TheY-axis is the generalmap position of theQTL that explains
the most variation in expression levels of each EST or gene in the expression array. Four generalized
scenarios are described. Predominantly, levels of expressedgeneswill be controlled by trans-actingQTL
(scattered yellow diamonds). Cis-acting QTL (diagonal red circles) may represent genetic variation
within the regulatory or coding regions of the expressed genes themselves. In addition, a single QTL
may result in changes in expression levels of many unlinked genes (horizontal blue triangles), either
due to direct pleiotropy or to multiple changes in a regulatory cascade resulting from alternation
of expression in a single key gene. Finally, clusters (small green dots) of gene expression changes
could result from changes due to linkage of multiple expressed genes to a single regulatory QTL, or
alternatively as a result of coordinated expression neighborhoods. Special thanks and acknowledgement
to Rob Williams, David Threadgill and colleagues for useful discussions.

We expect these efforts to begin to enable development of an initial framework
for understanding the genetic architecture of obesity predisposition. Such studies
should greatly facilitate testing our hypothesized structure for such architecture
(Figure 3), whereby genes controlling predisposition to complex traits such as
body weight and obesity are, for the most part, involved in trans-regulation of the
primary physiological pathways directly regulating phenotypes involved in energy
balance.



FIGURE 3. Hypothesized genetic architecture for obesity predisposition. Simplified and generalized
components of example pathways (out of many that combine to regulate obesity) are illustrated. We
hypothesize that each of these pathways consists of a complex regulatory cascade with the coordinated
and interactive expression of genes playing significant roles in the physiology of the pathway, under
the regulation of predisposition genes (quantitative trait loci; QTL) and non-genetic (environmental)
influences. In other words, key genes in physiological pathways would for the most part not possess
relevant heritable variation; such variation would instead reside within loci that regulate expression
levels of these key physiological genes. There could be several potential modes of regulation and
complexity for QTL that control expression or activity of physiological genes. QTLA (blue): QTL can
regulate transcription of a physiological gene. For example, a transcription factor within which genetic
variation leads to variability in activity or expression levels. QTLB (green): QTL can regulate post-
translational modification of the physiological gene. For example, a kinase or a phosphatase within
which genetic variation alters activity and subsequently changes the activity of the physiological gene.
QTLC (yellow): QTL can be pleiotropic factors that regulate multiple physiological genes. QTLD (red)
and QTLE (orange): QTL can act epistatically to regulate other QTL. For example, certain genetic
variation within a QTL is required in order for variation at a second QTL to exert an influence on the
expression or activity of a physiological gene (QTLD), or effects of multiple QTL must combine in
order to regulate a physiological gene (QTLE). QTLF (pink): cases where heritable genetic variation
does exist directly in the physiological genes, either within regulatory or coding regions, contributing
to phenotypic variability in expression or activity of that gene (e.g. POMC, MC4R).
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4.2. Future Directions for Transcriptome Mapping

No published study to date has evaluated multiple tissues in transcriptome
mapping. We expect that evaluation of highly relevant yet diverse tissue types will
expose different sets of transcript QTLs, even when analyzing the same transcript
populations.Discovery of similarities (or differences) across tissueswill add power
to experimental findings, providing validation especially for cis-acting QTL, and
revealing important underlying biology for the traits of interest.

Extension of the paradigm of transcriptome mapping to the proteome and
metabolome would also be unique. Although experimental issues (i.e., lack of
genome-wide reagents) would render such extension to initially be on a limited
scale, it would represent an important test to determine if QTL profiles underlying
protein levels parallel those controlling transcription. The question of whether
microarrays are valid indicators of actual protein levels (and hence biological
activity) is still of major importance, and such results would test and extend this
question in regard to comparison of the underlying polygenic control at each step
of the central dogma of biology. In regard to metabolomics, discovery of QTL
controlling carbohydrate, glucose, lipid and fatty acid metabolism would have
particular relevance to obesity research. Our preliminary efforts in this regard
have revealed a large number of QTL underlying de novo fatty acid synthesis
(Allan, 2003; Allan and Pomp, unpublished data).

5. STATISTICAL ISSUES

Although transcriptome mapping does not present the need for development
of new statistical paradigms relative to traditional transcriptome analysis and QTL
mapping, several sophisticated analyses will be required to extract full value from
the enormous amount of collected data, and gain valuable insight into genetic
control of gene expression.As recently notedbyArielDarvasi (2003), “I expect that
the combining of genetic information and gene expressionwill hasten the daywhen
genomics delivers on its promise to improve health care. But we must continue
striving to develop and apply sophisticated analytical tools for interpreting the vast,
complex data sets that are being produced with modern genomic technologies.”

Traditionally, these would include analysis of sex-interaction in genetic con-
trol of the transcriptome, determination of the role of genomic imprinting in control
of genome-wide gene expression, and evaluation of within- and between-founder
line genetic variance. Perhapsmore importantly, transcriptomemapping represents
an extremely challenging scenario for thorough implementation of multiple trait
analyses. Initially, this may be best implemented for specific situations, such as
genes that are part of the same known pathway, and genes measured in different
tissues. Also, when single-trait expression QTL appear to map to the same region,
multi-trait analyses can be used to improve precision and significance.

Most QTL analyses have ignored the potential role of gene interactions in
the control of trait variation. However, there is mounting evidence that analyses
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specifically testing for epistasis can both identify QTL that are not otherwise found
and explain a greater proportion of the genetic variation (Shimomura et al., 2001;
Leamy et al., 2002; Carlborg et al., 2003). In the context of understanding the
genetic control of the transcriptome and proteome, it is critical that we extend
analyses to include epistasis as this is likely to play an important role in interpre-
tation of the network of gene interactions that contribute to obesity.

When transcriptome mapping is implemented within a very large structured
pedigree, the opportunity exists to merge traditional quantitative genetic analyses,
such as genetic parameter estimation, with QTL analysis. This would enable esti-
mation of genetic correlations among, and heritabilities of, the sub- (e.g., transcrip-
tional, proteomic, endocrine) and end-point phenotypic traits. As with multi-trait
analysis, data reduction is likely required to make this effort feasible and enable
extraction of meaningful information. For example, heritabilities can be measured
for all endpoint phenotypes, and for all sub-phenotypes for which at least one
significant QTL is identified. Genetic correlations can then be estimated for the
following sets of traits: A) between each pair of endpoint phenotypes; B) between
each sub-phenotype for which heritability is estimated significantly different from
zero; and between traits in categories A and B.

Genetic parameter estimation will add unique value to this research paradigm.
A strong heritability of a sub-phenotype should coincide with presence of strong
evidence for QTL, providing validation of the process. More importantly, genetic
correlation between a sub-phenotype and body fat levels will be critical to differ-
entiate among, and rank, multiple linked transcriptional and/or proteomic QTLs
that could represent positional candidate genes for obesity predisposition. Finally,
it is interesting to speculate that genetic correlation analysis can be a useful method
for clustering of array results and identification of biologically relevant pathways.
This clustering would be an extension of the stratification of obesity phenotypic
classes based on combined expression phenotypes (Schadt et al., 2003a) and the
use of principal components analysis recently proposed by Lan et al. (2003).

Both QTL analysis and genetic parameter estimation, in the context of tran-
scriptome mapping, have immense computational requirements. It is likely that
such efforts, when carried out on a large scale, will require recoding of existing
programs to run on supercomputers.

6. IMPLEMENTATION

Analysis of complex trait genetic architecture using “QuantitativeGenomics”,
manifested through the transcriptome (and/or proteome andmetabolome)mapping
paradigm, can be applied to essentially any QTL mapping experiment where sam-
pleswith spatial and temporal biological relevance have been stored in an appropri-
ate manner. In regard to obesity, we are applying this approach using the polygenic
obese M16 line of mice (Hanrahan et al., 1973; Eisen, 1986) and its non-obese ICR
control line (Figure 4). Having identified differences between the lines for a wide
variety of traits including transcriptional, proteomic and metabolomic phenotypes
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FIGURE 4. Application of the transcriptome mapping approach to body weight and obesity using an
F2 cross between a line selected for rapid weight gain (M16, top left) and its unselected control line
(ICR, top right). Individuals in the segregating F2 population (images here are graphical representations
created fromapicture of a singlemouse)will be phenotyped for bodyweight, body composition and feed
intake. Additionally, tissue samples from F2 individuals will be assayed using a microarray containing
most expressed murine genes. Alternative parental line forms of DNA markers will segregate and can
be tracked in the F2 population, facilitating a QTL analysis for both weight and composition end-point
phenotypes and gene expression sub-phenotypes.

with relevance to energy balance (Pomp et al., 2002; Allan, 2003), we have estab-
lished a large F2 QTL mapping population and have phenotyped all ∼1,200 mice
for growth, fatness and feed consumption. Tissueswith relevance to energy balance
have been stored for sub-phenotyping, while DNA has been extracted and an initial
panel of 80 genome-wide informative microsatellites has been genotyped. Further-
more, the F2 was designed to provide for large 3/4- and 1/2-sib families to enable
genetic parameter estimation for all phenotypes measured across the population.
By applying large-scale transcriptional (e.g., Affymetrix, Santa Clara, CA), pro-
teomic (e.g., BD Biosciences (BD Powerblot), San Diego, CA) and metabolomic
(e.g., Lipomics Technologies, West Sacramento, CA) phenotyping to the M16 x
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ICR F2 QTL mapping population, our goal is to advance the positional cloning
of obesity polygenes and begin to understand the genetic architecture of obesity
predisposition.

A much broader and extremely powerful platform would be provided by de-
velopment of a large cohort of recombinant inbred lines (RIL) developed from a
multi-way cross of strains representing the majority of phenotypic diversity avail-
able in mice (Williams et al., 2002a). A set of 1000 RIL originating from a cross
of 8 inbred lines (see Vogel (2003)) would theoretically achieve 0.1 cM precision
(∼100,000 bp) when mapping QTL with additive effects of > 0.25 SD. Applying
transcriptome mapping to this organized assortment of defined recombinational
breakpoints would dramatically increase the rate of positional cloning of genes un-
derlying QTL, and would significantly enhance the understanding of the genetic
architecture of complex trait predisposition for a wide variety of agriculturally and
biomedically relevant phenotypes.

It is prudent to acknowledge that, despite the potential power and breadth
of the transcriptome mapping approach, it has important drawbacks and limita-
tions that can and will restrict its utility. We will use examples from recent and
well characterized gene discoveries in livestock species to generally illustrate the
limitations of transcriptome mapping, assuming hypothetically that this approach
were able to have been applied in each case.

One important issue is that some QTL may not be manifested by changes in
steady-state levels of mRNA. Not only would transcriptome mapping fail to iden-
tify correct candidate genes underlying such QTL, it may in fact mislead the inves-
tigator into examining the wrong candidates. For example, the double muscling
phenotype in cattle is known to be caused by mutations in the myostatin gene, but
these mutations are not manifested by changes in mRNA levels but rather by alter-
ations in protein function (Kambadur et al., 1997). Transcriptome mapping would
not have identified myostatin as a candidate gene in a resource population segre-
gating the double muscling phenotype, while any other expression QTL falling on
the cis-diagonal (see Figure 2), in the chromosomal region where double muscling
had been mapped to, may have been falsely identified as candidate genes. The
approach would still, however, provide important information on transcriptional
changes that are downstream from the QTL’s effect and which are important in the
context of understanding the overall genetic architecture of the trait.

Since the transcriptome mapping approach relies on gene expression pheno-
types, it is critical that selection of both spatial (what tissue) and temporal (when
the tissue is collected) coordinates captures as much significant biology as pos-
sible. An example of this is clearly demonstrated in the recent finding of a QTL
represented by a regulatory mutation in IGF2 causing a major effect on muscle
growth in pigs (Van Laere et al., 2003). Given that this mutation is manifested by
gene expression changes in postnatal skeletal and cardiac muscle but not in fetal
muscle or postnatal liver, transcriptome mapping would have been of immediate
assistance in finding this mutation only if postnatal muscle was evaluated. In cases
such as obesity, multiple tissues are implicated in control of specific pathways
that contribute to the end-phenotype, and expression of many genes will vary over
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time and across environments (e.g., diet). Thus, a thorough transcriptome map-
ping effort would constitute a massive undertaking involving multiple tissues, time
points, environments and genetic backgrounds that, combined with the high cost
of microarrays, is likely beyond the scope of most research budgets.

Given that significant effort and expense are invested in data collection using
transcriptome mapping, it is therefore imperative that data and results be made
broadly available to the research community. One such powerful and useful en-
vironment is provided by WebQTL (Wang et al., 2003a; http://www.webqtl.org/).
WebQTL is a web-based package for complex trait analysis, and a tool for multi-
dimensional searches among large data sets derived from high-throughput analysis
techniques. Furthermore, exploring these data sets in a systematic way will be a
challenge. This challenge has already been partially addressed by those describing
molecular biology and genetics of simpler eukaryotes. For example, the GRID is
a database for genetic or molecular interactions among products of yeast genes
(Breitkreutz et al., 2003). Such tools and others like themwill be directly applicable
to exploration of obesity-related interactions uncovered in transcriptome mapping.
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Chapter 12

Mining the EST Databases to Determine
Evolutionary Events in the Legumes
and Grasses

Jessica A. Schlueter, Phillip Dixon, Cheryl Granger,
and Randy C. Shoemaker

1. INTRODUCTION

Gene and genome duplication have long been accepted as a driving force in
the evolution and expansion of eukaryotic genomes (Stebbins, 1950; Ohno, 1970).
These phenomena, whole genome/polyploidy events, are seen across numerous
eukaryotic species and are highly prevalent within the plant kingdom. Gene du-
plication is seen as a mechanism for the creation of genetic diversity, genome
expansion, and creation of new gene functions. It also often leads to silenced
genes or pseudogenes (Pickett and Meeks-Wagner, 1995).

Duplication can occur by a variety of mechanisms: duplication of regions
or segments of chromosomes, tandem duplication, dispersed duplication, re-
verse transcriptase mediated DNA insertion from RNA intermediates, and whole
genome duplication or polyploidy. After a polyploidy event, duplicated regions
begin to diverge from one another at both the sequence and chromosomal levels
(Pickett and Meeks-Wagener, 1995), a process referred to as ‘diploidization’
(Stebbins, 1966). This is a concept originally envisioned by Clausen in
1941.
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‘Diploidization’ is caused by additions, deletions, mutations, and rearrange-
ments that rapidly inhibit non-homologous pairing of 2chromosomal tetravalents
(Ohno, 1970). In addition, duplicated genes may undergo a change in function or
silencing of one of the copies (Pickett and Meeks-Wagner, 1995). Despite these
numerous genomic changes, it is often possible to detect homoeologous chromo-
somal regions from ancient duplication events in diploid species.

Through the analysis of duplicated genes it may be possible to gain an un-
derstanding of the mechanisms and processes of diploidization and genome evo-
lution. For example, insights into the evolutionary history of Arabidopsis have
been brought to light through studies focusing on duplicated genes and genome
segments. In 1994, Kowalski et al. found single copy markers in Brassica oleracea
mapped to duplicate regions in the Arabidopsis genome. Comparative genomics
between Arabidopsis and soybean and Arabidopsis and tomato showed strong evi-
dence for segmental and possible whole genome duplication in Arabidopsis (Grant
et al., 2000; Ku et al., 2000). Blanc et al. (2000) suggested that Arabidopsis could
actually be a degenerate tetraploid. Analysis of the whole Arabidopsis genome se-
quence has revealed that more than one large-scale genome duplication may have
occurred, although the exact number of rounds is still debated (The Arabidopsis
Genome Initiative, 2000; Vision et al., 2000; Simillion et al., 2002; Blanc et al.,
2003).

As data from the rice genome sequencing projects have been compiled, it has
become apparent that rice also has extensive gene duplication, possibly the result
of a massive genome duplication event (Yu et al, 2002). The general belief in the
existence of a simple diploid plant species is probably a false one, with most all
plant genomes being the result of extensive duplication and reshuffling.

2. EVOLUTIONARY HISTORY OF LEGUMES AND GRASSES

Monocot/dicot divergence is thought to have occurred approximately 200
MYA (Wolfe et al., 1989, Goff et al. 2002). Despite the breadth of genetic and
genomic research being conducted on many key plants, e.g., soybean (Glycine
max L.), maize (Zea Mays L.) and, rice (Oryza sativa L.), and barrell medic, the
evolutionary history of their genomes remains relatively unresolved. While whole
genome sequence will provide a fuller picture of the history of these genomes,
the ongoing EST projects provide an excellent resource to detect genome events.

Considerable differences exist in the size of these plant genomes. The size
of the genome is independent of chromosome number. The soybean genome
(2n = 40) is comprised of about 1.1 Mbp/C, making it about twice the size of
the Medicago (2n = 16) genome (Arumganthanan and Earle, 1991). The maize
genome (2n = 20) is approximately six times larger than the genome of rice
(2n = 24) and approximately twice the size of the soybean genome (Arumgan-
thanan and Earle, 1991).

Most genera of the Phaseolae have a genome complement of 2n = 22, sug-
gesting that soybean may have been derived from a diploid ancestor (n = 11) which
underwent aneuploid loss to n = 10 and subsequent tetraploidization followed by
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diploidization (Lackey, 1980). More than 90% of soybean RFLP probes detected
more than two fragments, further suggesting that large amounts of the soybean
genome may have undergone some form of genome duplication (Shoemaker
et al., 1996). Combined data from nine different mapping populations uncov-
ered extensive homoeologous relationships among linkage groups (Shoemaker
et al., 1996). The detection of ‘nested’ duplications suggested that at least one of
the original genomes of soybean might have been duplicated prior to the major
tetraploidization event (Shoemaker et al., 1996; Lee et al., 2001).

Both soybean and barrel medic belong to the large flowering family Fabaceae
and share the distinguishing ability to symbiotically fix nitrogen. The evolutionary
history of Medicago is not as well studied as that of soybean. There is, however, evi-
dence of gene duplication in Medicago; glutathione synthetase exists in two copies,
most likely through a tandem duplication (Frendo et al., 2001). Additionally, Med-
icago chromosome 5 exhibits orthology with another region on the same chromo-
some showing evidence of segmental duplication (Gualtieri and Bisseling, 2002). It
has been suggested that Medicago has a simple genome structure, with only tandem
and segmental duplications (Kulikova et al., 2001). However, prior to genome se-
quencing, the Arabidopsis genome was considered a true diploid with only 15% of
the loci being duplicated (McGrath et al., 1993). Now, whole genome duplications
are well accepted as a driving force in the evolution of the Arabidopsis genome (The
Arabidopsis Genome Initiative 2000; Vision et al., 2000; Simillion et al., 2002;
Blanc et al., 2003). As the genome sequence of Medicago becomes available, it is
possible that the same will be true as with Arabidopsis. Although extensive regions
of synteny may not be commonplace among legumes, microsynteny may be ob-
served frequently. Yan et al. (in press) estimates that only about half of 50 soybean
contigs evaluated showed some degree of microsynteny with Medicago.

The grasses have had more extensive comparative genetic studies than the
legumes. In 1993, Ahn and Tanksley showed homoeologous relationships between
rice and maize through comparative genetic maps. Further, microcolinearity in
markers is observed in the grasses (Devos and Gale, 1997). This colinearity is
conserved over 60 million years and allows the combination of numerous genetic
maps into one grass map, a tool for comparisons of homoeologous regions (Moore
et al., 1995).

Evidence of duplicated genes in maize has been documented as early as 1951
(Rhoades). This has been further supported by multiple-copy RFLP’s showing
conserved order on homeologous chromosomes (Helentjaris et al., 1988). More
than 72% of the loci in maize are estimated to exist in duplicate (Ahn and Tanksley,
1993). Further, the results of Ahn and Tanksley showed that major chromosomal re-
arrangements have occurred as the genome rediploidized. Helentjaris et al. (1988)
suggested that maize is an allopolyploid with an ancestral haploid chromosome
number of five. Maize has also been proposed to be a segmental allotetraploid,
with divergence of the diploid progenitors approximately 20 million years ago
with a tetraploid event 11 to 16 million years ago (Gaut and Dobley, 1997; Gaut
et al., 2000).

The rice genome, however, has been considered a simple diploid, similar
to Medicago. A molecular mapping study in rice found that only 20% of the
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markers were multiple-copy (McCouch et al., 1988). The few that were identified
in more than one copy were attributed to transposon activity (McCouch et al.,
1988). However, there is now extensive evidence of a chromosomal duplication
between chromosomes 11 and 12 of the rice genome (Nagamura et al., 1995). Both
of the rice genome sequencing groups have identified multiple gene duplications
in the rice genome (Yu et al., 2002; Goff et al., 2002). Further, Salse et al. (2002)
has identified duplicated rice sequence that exists in only one copy in Arabidopsis
suggesting rice has chromosomal duplications.

Recent genome projects have generated an unprecedented number of genic
sequences for soybean (Shoemaker et al., 2002), barrel medic (Gyorgyey et al.,
2000), maize (Lunde et al., 2003), and rice (Ewing et al., 1999). The sequences
generated by these projects represent a largely untapped resource for dissection
of gene families, construction of phylogenetic trees and studies of evolutionary
histories of genomes.

3. IDENTIFICATION OF DUPLICATED CONTIGS

Tentative contigs for Glycine max, Medicago truncatula, maize, and rice
were obtained from the TIGR genome database, available at http://www.tigr
.org/tdb/agi/. Each tentative contig (TC) is comprised of several EST’s that are
related to one another by contiguous overlapping arrangements. A TC is subject
to change as new EST’s are added to the database and TC’s are re-established. For
this analysis the sets assembled on May 13, 2002 were used in all analyses.

Each species-specific TC set was ‘piped’ through the program Orffinder, part
of the EMBOSS bioinformatics package (Rice et al., 2000). Once all possible
open reading frames (ORF’s) were obtained, a perl script was used to obtain the
longest orf for each TC. These species-specific long orf TC’s were used in a
similarity search against themselves using a tblastx search algorithm (Altschul,
1990). Parsing was done to identify potential paralogs or pairs using the program
MuSeqBox (Xing and Brendel, 2000) to tabularize the BLAST output and then a
perl script. The perl script identified potential paralogs with a query and subject
coverage of greater than or equal to 80% and by having only the query and the
subject fit the criteria. Identified paralogs were required to be reciprocal; if a
identified b, then b must identify a. The criteria used identified pairs that are
doubles and not triples, etc.

Potentially paralogous TCs comprised of ESTs of mixed genotype were re-
contiged with CAP3 (Huang and Madan, 1999) with a 40bp overlap and 95%
similarity requirement. ForG. max, the acceptable genotype was a combination of
Williams and Williams82; forM. truncatula, the genotype Jemalong; for Z. mays,
the genotype B73; and for O. sativa, the genotype Nipponbare. Williams and
Williams82 are near-isogenic lines and should not introduce genotype specific
polymorphisms except for the introgressed region. If any contig contained two or
fewer EST’s, the contig and its associated pair were removed from the data set.

These recontigged TC consensus sequences plus TIGR TC consensus se-
quences, used for contigs that were not of mixed genotype, comprised the complete
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Table 1
Paralogs Identified Through Analyses of EST Collections.

TIGR Total Paralogs Percent
TCs Singletonsa ESTs Identified Genotypeb Genotype

Glycine max 20,642 29,039 236,461 256 55% Williams/
Williams82

Medicago
truncatula

16,086 17,658 164,304 291 91% Jemalong

Zea mays 17,465 12,930 148,429 95 32% B73
Oryza sativa 13,745 18,456 103,340 50 86% Nipponbare

aSingletons are the number of single ESTs not placed in a TIGR TC.
bPercent genotype reflects the percent of the genotype in the total ESTs.

set of genotype specific potential paralogous TCs (gpTCs). Each gpTC was run
through the program Orffinder and the abovementioned perl script to obtain the
longest putative open reading frame.

Each gpTC longest orf was imported into MegAlign, a sequence alignment
program part of the Lasergene package (DNASTAR, Inc). Alignments were done
between pairs using the Wilbur-Lipman method with default parameters on virtu-
ral translations of the potential open reading frames. Once a common translated
(protein) sequence was found, the alignment was back translated to DNA, cropped
to between the start and stop codons, and saved in GCG MSF format. If the full
sequence between start and stop codons was not available, then the region in each
gpTC showing full overlap was used. If the open reading frame was not found
with the longest orf obtained above, a blastx was performed with the original
gpTC consensus sequence against the NCBI nonredundant database to obtain the
most likely open reading frame. That open reading frame was used for the virtual
translation in MegAlign and analysis proceeded as above.

Over 250 potential duplicated genes were identified for both soybean and
Medicago (Table 1). Surprisingly, for maize, a known ancient polyploid, only 95
contigs were identified as potential duplicates. This might be an artifact of the
BLAST stringency, but is most likely due to the limitation placed on genotype;
only 32% of the maize EST’s were B73. The low number of potential paralogs (50)
identified for rice may not be due solely to genotype limitation but instead may
be due to the limited number of EST’s available for this study. Further, this low
number may reflect a genome that has experienced segmental duplications rather
than whole genome events (Table 1).

4. PAIRWISE DISTANCE MEASURES AND MIXTURES
OF NORMAL DISTRIBUTIONS

Pairwise distance measures were obtained by the program Diverge, part
of the GCG package (Wisconsin Package). Diverge calculates synonymous and
nonsynonymous distances using the methods of Li et al. (1985) as modified by
Li (1993) and Pamilo and Bianchi (1993). This method was chosen because it
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Table 2
Characteristics of Paralogs and Distance Estimates.

G. max M. truncatuala Z. mays O. sativa

Average 474 bp 618 bp 379 bp 380 bp
Paralog Length

Average 85% 82% 88% 88%
Protein
Identitya

Average 92% 90% 93% 93%
Protein
Similaritya

Average 82% 80% 86% 82%
Nucleotide
Identitya

Synonymous 0.007 ± 0.010 0.007 ± 0.007 0.007 ± 0.007 0.012 ± 0.012
Distance to to to to
Rangeb 2.59 ± 1.648 2.88 ± 1.701 2.39 ± 1.717 2.91 ± 3.226

a Protein identity and similarity was determined by virtual translation of paralogous pair and alignment by the program
Water, part of the GCG package (Wisconsin Package). Nucleotide alignment was performed by the program Water
to determined nucleotide identity.
b Synonymous distance range is the smallest Ks standard ± deviation to the largest Ks standard ± deviation.

is based upon Kimura’s (1980) method for distinguishing between transitions
and transversions, thereby allowing for unequal rates of nucleotide substitutions.
Diverge provides an estimate of the number of synonymous nucleotide substi-
tutions per synonymous site (Ks), nonsynonymous nucleotide substitutions per
nonsynonymous site (Kn), as well as the standard deviations for both the Ks and
Kn. Table 2 shows characteristics of the paralogs used to determine the Ks and Kn
distance measures as well as the range of synonymous distances obtained.

As seen in Table 2, a wide range in standard deviations (sd) was observed that
increased as synonymous distances increased. To reduce this effect, both the Ks
and sd of Ks were natural-log transformed to allow the sd to be similar across all
Ks. Ks values less than 0.05 were removed as done by Kondrashov et al. (2002).

It is assumed that major genome events can be represented as a normal dis-
tribution of synonymous distances, and multiple events as a mixture of normal
distributions. To determine the most likely number of distributions, or compo-
nents, of synonymous distances, maximum likelihood statistics were utilized.

A module was written for the statistical software Splus (Mathsoft) to calculate
the most probable mixture of distributions that fit the data ranging from one to five
components. For each number of potential components, 100 replications were done
to determine the most probable fit and to calculate a log likelihood statistic. Two
times the change in log likelihood from a simpler model to a more complex model
follows a Chi-square distribution with a range of 4 to 6 degrees of freedom and
allows the determination of a p-value. Statistical significance was set at p < 0.05.
Each normal distribution of synonymous distance is comprised of clusters of gene
pairs that are assumed to correspond to a large genome event, i.e., duplication.
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Across all species, there is evidence for more than one normal distribution
within the data. The legumes soybean and Medicago both support a trimodal
distribution with high statistical significance (p = 0.005 and p = 0.025, respec-
tively). Figure 1 shows the corresponding normal distributions for soybean and
Medicago. The mean for each distribution is the mean of the synonymous distances
contained within that distribution. While both soybean and Medicago fit trimodal
distributions, the corresponding means are not directly shared between the two.
There is no statistical support for a four-component model in either species. Unlike
the legumes, the grasses do not share the same number of distributions. Maize
supports a trimodal distribution (p = 0.05), and rice a bimodal distribution (p =
0.005). The resulting distributions as well as the means for each are shown in
Figure 3.

As saturation is reached in the synonymous distance estimates for all species,
at approximately 1.0, the predicted distributions become broader and encom-
pass a greater range of synonymous distances. If we assume that the synony-
mous distance measures represent the rate of nucleotide substitution, each normal
distribution is representative of gene pairs evolving at a similar rate. Relative
dates of genome events can be determine by utilizing the means of these normal
distributions.

5. COALESENCE ESTIMATES

Assuming that the average synonymous substitution rate is linear relative to
time, and that the rate is equal across all paralogs, then the relative ages for each
observed event can be determined. An estimated synonymous substitution rate of
6.1 × 10−9 substitutions per synonymous site per year (Lynch and Conery, 2000),
and 6.5 × 10−9 substitutions per synonymous site per year (Gaut et al., 1996) were
used to determine genome events in the legumes and grasses, respectively. These
rates were assumed to be representative of the synonymous substitution rates of
our identified paralogs (Gaut and Doebley, 1997).

Under these assumptions, the three statistically significant normal distribu-
tions, or genomic events, in soybean are estimated to have occurred approximately
15, 40, and 104 million years ago (MYA) (Figure 1). The three significant distri-
butions observed in Medicago correspond to genomic events occurring at 26, 51,
and 117 MYA (Figure 1).

If the distributions observed in both soybean and Medicago are overlaid
(Figure 2), events that occurred in concert should have very similar distributions.
Doyle and Luckow (2003) estimated that soybean and Medicago had already di-
verged between 50 and 60 MYA. Therefore, events predating the divergence of the
two genera should coincide. Very probably, the 104–117 MYA coalescence times
represent a single event that occurred while the two genera shared a common
lineage. Therefore, the two genera diverged after that date.

The detection of large, relatively well-maintained duplicated segments in
the soybean linkage map (Shoemaker et al., 1996) suggests that the youngest
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FIGURE 1. Histogram of the percent of identified pairs for both soybean and Medicago (secondary
y-axis) based upon estimated synonymous distance measures. The curves are normal distribution
densities (y-axis) for the statistically significant number of distributions. Beside each curve are the
mean of synonymous distances under that curve as well as the correspondingly calculated coalesence
estimates in million years ago (MYA).
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FIGURE 2. Normal distribution densities for both soybean and Medicago. Light grey curves corre-
spond to soybean distributions. Black curves correspond to Medicago distributions. The dates next to
each curve are the coalesence estimates in million years ago (MYA).

genome duplication is relatively recent. Our results suggest that after the diver-
gence of soybean and Medicago, soybean underwent two major genome events
(15 MYA and 40 MYA). Study of relationships within gene families has long sug-
gested that soybean is an ancient polyploid (Lee and Verma, 1984; Hightower
and Meagher, 1985; Grandbastien et al., 1986; Nielsen et al., 1989; Granger
et al., 2002). Hybridization-based genetic maps are consistent with these find-
ings (Shoemaker et al., 1996; Lee et al., 1999; Lee et al., 2001). Shoemaker et al.
(1996) observed nested duplications, suggesting that one of the soybean genomes
involved in the recent tetraploidization event could have undergone duplication
prior to tetraploidization. This can be supported by the existence of the two peaks
at 15 and 40 MYA, both occurring after the predicted divergence of soybean and
Medicago.

Medicago probably underwent a major genome duplication event just af-
ter separation from soybean, at approximately 51 MYA. However, the ‘event’ at
26 MYA is represented as a broad peak (Figure 1) and may not represent a major
event but may result from numerous chromosomal events spread over time. This
would be consistent with the hypothesis that Medicago has not undergone a re-
cent whole-genome duplication event. However, considering the 51 MYA event,
Medicago is most likely an ancient polyploidy.

We should consider that a molecular clock is only a relative measure of
time. An alternative hypothesis to the one proposed above is that the genomes
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of soybean and Medicago have very different evolutionary rates. The two most
ancient peaks observed for each species might actually be events that occurred in
concert with one another. Under this hypothesis, the 117 MYA and 51 MYA events
in Medicago could coincide with the 104 MYA and 40 MYA events in soybean,
respectively. These duplication events would have occurred prior to divergence
of soybean and Medicago. Then soybean, approximately 15 MYA, underwent
an independent large-scale event, whereas Medicago experienced ongoing small-
scale duplications. Regardless, the two hypotheses both support the paleopolyploid
history of soybean, with at least one early duplication event occurring in both
soybean and Medicago prior to their divergence.

The maize genome is proposed to be a segmental allotetraploid (Gaut and
Doebley, 1997). Based upon examination of 14 sequences, they estimated that the
maize genome underwent a tetraploidization event approximately 11.4–16.5 MYA,
with the beginning divergence of the two diploid progenitors occurring approxi-
mately 20.5 MYA (Gaut and Doebley, 1997).

Our analysis of 95 pairs of maize gene duplicates yields three normal dis-
tributions representing at least two large genome duplication events at approx-
imately 16, 62, and 127 MYA (Figure 3). Although our results do not support
the hypothesis of Gaut and Doebley (1997), a detailed examination of the his-
togram yielding the 16 MYA distribution results in two peaks with coalescence
times corresponding to the earlier study (data not shown). However, these two
peaks are not supported statistically. It is possible that the bimodal distribution
observed by Gaut and Doebley was actually a single distribution, a single genome
event.

The bimodal distributions of genetic distance between duplicate rice genes
(Figure 3) are consistent with the established view of rice genome evolution. Rice
is likely an ancient polyploid or the product of large-scale segmental duplications,
e.g., between chromosomes 11 and 12 (Nagamura et al., 1995; Livingstone and
Rieseberg, 2002; Yu et al., 2002). The sharp peak yielding a date of 6 MYA may
be indicative of segmental duplications observed between chromosomes 11 and
12. The broad peak corresponding to a date of 59 MYA most likely represents a
series of small-scale duplications occurring over time. Although clusters of gene
pairs are observed under the broad distribution the treatment of each cluster as
individual events is not statistically supported.

The cereals probably shared a common ancestor up until 55—70 MYA, after
which the grasses began to evolve along separate pathways (Kellogg, 2001). At
some time prior to 29 MYA, the rice lineage separated from the maize lineage
(Zhang et al., 2001; Thomasson, 1987). The peak at 62 MYA in corn is very
sharp and strongly supported statistically. Even though the peak representing the
59 MYA distribution in rice is supported as the most probable, it is shallow and
broad and likely represents a series of small-scale events.

Two scenarios are possible from an analysis of this data: 1) rice and maize di-
verged prior to the 62 MYA event observed in maize, and rice underwent a series of
small-scale duplications, or less likely, 2) rice and maize shared a common genome
at approximately 59– 62 MYA, at which time that genome underwent a large-scale
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FIGURE 3. Histogram of the percent of identified pairs for both maize and rice (secondary y-axis)
based upon estimated synonymous distance measures. The curves are normal distribution densities
(y-axis) for the statistically significant number of distributions. Beside each curve are the mean of
synonymous distances under that curve as well as the correspondingly calculated coalesence estimates
in million years ago (MYA).
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duplication event (Figure 4). If the second hypothesis is true, it would mean that
the two genomes are undergoing radically different evolutionary trajectories. A
larger sample size could resolve this issue.

A few caveats of distance measures should be addressed. First, an overes-
timation of “time since divergence” can occur due to asymmetrically bounded
variables (non-elastic boundary at the present and an elastic boundary at the past)
(Rodriguez-Trelles et al., 2002). Secondly, reduction in the precision of estimates
of divergence can also be caused by variation in rates of sequence substitution
(Wray, 2001) and rates of substitution may vary with functional differentiation,
something often associated with gene duplication (Ohta 1994; Pickett and Meeks-
Wagner 1995). Third, low numbers of ESTs in contigs can result in incomplete
coverage of the coding region and can result in biased distance measures. Finally,
ancient duplications become saturated at synonymous sites. This leads to poten-
tially skewed estimates of the relative numbers of synonymous and nonsynony-
mous substitutions among duplicated genes in ancient duplications and may con-
tribute to inaccuracies in the estimation of divergence times (Ohta, 1994). Several
of these experimental errors can be minimized. Utilizing EST contigs with large
numbers of EST’s increases the probability of obtaining the full coding region.
Also, as the number of gene sequences increases, as is possible with analysis of
large datasets such as ours, the accuracy of the divergence estimates also increases
(Nei et al., 2001).



Mining the EST Databases to Determine Evolutionary Events in the Legumes and Grasses 175

6. POSITIVELY SELECTED GENES

Figures 5 and 6 depict a scatter plot of synonymous distances vs. nonsyn-
onymous distances for all four species and allows us to determine the selective
pressures the duplicated pairs experience. When the synonymous distance is greater
than the nonsynonymous distance, the genes experience negative or purifying se-
lection. Synonymous distances that are approximately equal to nonsynonymous
distances are indicative of neutrality. Positive selection is indicated when the non-
synonymous distance is greater than the synonymous distance, i.e., more mutations
result in protein sequence changes conservation of protein sequence. As seen in
Figure 5, the vast majority of genes experience purifying selection. A closer exam-
ination of synonymous and nonsynonymous distance does identify genes showing
positive selection (Figure 6).

Each gene of each pair was searched against the NCBI non-redundant database
using the tblastx algorithm and an E cutoff value of 1×10−10. The top five queries
identified were then parsed from the blast output and classified into the appropriate
first level MIPS (Munich Information Center for Protein Sequences) categories
(Mewes et al., 2002). An additional category of nodulation/nitrogen fixation was
added for legumes.

Table 3 shows the MIPS functional classification of each gene potentially
under positive selection. There does not seem to be any correlation between the
classifications across all species. However, the classes under positive selection
are those most involved in cellular trafficking, communication, and control of
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FIGURE 5. Nonsynonymous distance measures as a function of synonymous distance measures of all
genes for all studied species. Each point is a duplicated gene pair. The line denotes neutral evolution,
when synonymous distance is approximately equal to nonsynonymous distance.
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FIGURE 6. Nonsynoymous distance measures as a function of synonymous distance measures for
more recently duplicated genes in all studies species. Each point is a duplicated gene pair. The line
denotes neutral evolution.

gene expression. What is striking is that there are no structural genes found under
positive selection in any of the species. This may be indicative of the cellular
architecture being highly conserved while the underlying networks change more
over time. Interestingly, in Medicago the largest number of positively selected

Table 3
Functional Classification of Genes Under Positive Selection.

MIPS Classification G. max M. truncatula Z. mays O. sativa

Transcription — 1 — —
Protein Synthesis — — — —
Protein Destination — 1 1 —
Transport Facilitation 1 — — —
Energy — — — —
Metabolism — — — —
Cell Communication/Signaling — — — 1
Cell Growth/ Division/DNA Synthesis — — — —
Nodulation/Nitrogen Fixation — 3 — —
Unknown — 4 — —
Average Synonymous Distancea 8.31 9.29 0.90 0.00
Average Nonsynonymous Distanceb 14.6 17.27 0.98 2.12
Ratio (Nonsynonymous/Synonymous)c 1.76 1.86 1.09 NA

a Average of the synonymous distances of all genes under positive selection
b Average of the nonsynonymous distances of all genes under positive selection
c Ratio based upon the average synonymous and nonsynonymous distances
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genes are involved in nodulation and nitrogen fixation. This may be the result
of complementary changes in nodulation/nitrogen fixation genes in response to
changes in the symbiotic bradyrhizobium. It should be noted that the Medicago
EST libraries are largely biased to roots compared to the soybean libraries, whereas
relatively few EST’s were derived from soybean roots or nodules.

Considering the ratio of nonsynonymous to synonymous distances, the
legumes have a larger ratio than the grasses. Possibly, the legume genes showing
positive selection have experienced a greater divergence, or the positively selected
genes in the grasses have diverged to a point of no longer being recognized as
pairs. This may also be due to differences in rates of evolution, or the evolutionary
trajectories between the grasses and the legumes.

7. SUMMARY

Discovering the evolutionary histories of complex genomes is not a trivial
task. However, as more sequence information accumulates, the picture begins
to become clearer. The genomes of both legumes and grasses show evidence of
gene and genome duplication. The purpose of this study was to utilize publicly
available EST data to determine the evolutionary genetic history of several major
plant species. Duplicated transcripts were identified and analyzed to gain insight
into the modes and mechanisms of gene and genome evolution processes and to
estimate coalescence times for the duplicated genes.

Whole genome duplications are also subject to varying levels of selective
pressure. Ahn and Tanksley (1993) suggested that after whole genome duplica-
tion chromosomal rearrangements accumulated in maize. In other words, genome
duplication is followed by genome rearrangement. This was supported in a study
involving recently synthesized polyploids in the Brassica (Song et al., 1995). Our
results support these hypotheses by showing that most genes are not under posi-
tive selection after duplication but do indeed experience purifying selection. We
do, however, observe some genes under positive selection, these being primar-
ily involved in cellular signaling, transport, and transcription, but not structural
functions.

After duplication, genes undergo one of several fates. Both may retain func-
tion, they may diverge to have different functions, or one may be lost while the
remaining gene continues its original function (Pickett and Meeks-Wagner, 1995).
Maintenance of duplicated sequences within paleopolyploids suggests the involve-
ment of negative selective pressures in their evolution. We observed this in our
study.

As suggested by Lynch and Conery (2000), genes experience a brief relaxation
in purifying selective pressure immediately after duplication. During this period
most copies are silenced with the few remaining paralogs experiencing strong
purifying, or negative, selection. Further, it has been suggested that during this
relaxation in selection pressure, duplicated genes affect the fitness of the organism,
leading to a temporary advantage for gene duplication (Kondrashov et al., 2002). It
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has been hypothesized that the relaxation in purifying selection is the main driving
force of duplicate gene evolution, while positive selection plays a less prominent
role (Kondrashov et al., 2002). Kondrashov et al. also showed that among genes
with similar levels of divergence, duplicated pairs evolved faster than single copy
genes (2002).
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Chapter 13

A Biologist’s View of Systems
Integration Systems Biology

The Pathogen Portal Project

R. Lathigra, Y. He, R.R. Vines, E.K. Nordberg,
and B.W.S. Sobral

1. INTRODUCTION

Biological data sets are growing exponentially as a result of whole genome
sequencing projects and other high-throughput functional data generated by tran-
scriptomic, proteomic and metabolomic technologies (Eckart and Sobral, 2004).
Many of the pathogen genomes belonging to the Centers for Disease Control (CDC)
and the National Institute of Allergy and Infectious Diseases (NIAID) priority lists
have been sequenced and annotated, however, their sequences and annotations re-
quire continuous updating as biological knowledge increases. To date, there are
no agreed upon standards in the bioinformatics community for data display and
interoperation and, as a result, data are difficult to gather, underutilized, and sub-
optimally organized. Data have to be formatted and reformatted for analysis and
management during the process of annotation while data analysis requires mul-
tiple tools that are not interoperable. Meanwhile, life scientists need to process
even more data and convert them into information about genetics and biochem-
istry. Not all individual scientists have the necessary information technology (IT)
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background and support to fully exploit the available information. In order to max-
imize the knowledge gained through new technologies, a comprehensive national
strategy should be established to integrate pathogen-related data from different
sources and to provide mechanisms for efficient data analysis, visualization, and
sharing (Eckart and Sobral, 2004).

CDC lists more than 40 bacterial or viral pathogens according to their priority
for bioterrorism potential (http://www.bt.cdc.gov/agent/agentlist-category.asp).
NIAID provides a similar list for research priority including emerging infectious
diseases (http://www.niaid.nih.gov/biodefense/bandc priority.htm). Although the
CDC and many other websites contain general background information about these
pathogens and diseases, the information is in flat-file format, not machine readable,
and sometimes hard to query for specific information. Some information, such as
molecular mechanisms for pathogenesis, is not always available at these sites.

Many excellent pathogen-related databases and software tools are currently
available, however, these databases and software tools are not typically interoper-
able across pathosystems or data types and furthermore many good software tools
use a Unix command line interface that tends to inhibit many biologists from using
the programs. Hence, a framework that allows interoperation of pathogen data and
tools from different sources would be of value in infectious diseases research and
in the development of associated counter-measures.

The Pathogen Portal Project (PathPort) at Virginia Bioinformatics Institute
(VBI) is a collaborative data collection and software development effort to ac-
quire, curate, and provide up-to-date pathogen information to infectious disease
researchers and to provide a method for interoperation of data and tools from
different sources. The PathPort project goal is to provide a bioinformatics infras-
tructure for data acquisition, storage, analysis, visualization, and dissemination of
host-pathogen data, thereby helping infectious diseases research advances. The
PathPort infrastructure is open, flexible, and easily extendable to support evolving
community data and tools. This was achieved by developing VBI’s ToolBus client-
side interconnect technology (Eckart and Sobral, 2004; Eckart, et al., 2002) and by
leveraging Web Services (Gardner, 2001) based on eXtensible Markup Language
(XML) (Achard, et al., 2001). The first data and tools available through PathPort
are genomic and functional genomic data.

PathPort runs individual Web Services (Gardner, 2001) on the server side and
ToolBus as a client-side interface to interconnect different data and tools. ToolBus
is platform independent due to its Java2 implementation, providing simultane-
ous support for different operating systems including Linux/Solaris, Windows,
and Mac OS X. Data communication between different tools and services is
based on community XML standards, a universal format for structured docu-
ments and data on the Web (Gardner, 2001) that is actively supported by the
Interoperable Informatics Infrastructure Consortium (I3C) (Interoperable Infor-
matics Infrastructure Consortium; http://www.i3c.org) among others. ToolBus
supports the dynamic discovery of web-services and loading plug-ins, as well as
the saving and loading of work sessions, which can be shared with colleagues
via e-mail as .zip file attachments. PathPort provides an open framework to
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support XML-based data and tool interoperability and its application to molecular
and cellular data sets for key host-pathogen-environment interactions. The Path-
Port/ToolBus software and source code are freely available for non-commercial
uses at http://www.vbi.vt.edu/pathport.

2. ILLUSTRATION OF PATHPORT

Two illustrations of the PathPort system are shown below. The first demon-
strates how the tools of PathPort system were used to further our own research on
Brucella, a CDC Category B pathogen that causes brucellosis in humans and other
mammals. The second pertains to pathogen background information.

2.1. Use of PathPort for Genome Annotation and Comparison

Genome annotation can begin once the sequence of a genome has been de-
termined. Genome annotation is a process of identifying genes and assigning fea-
tures, functions, and attributes to specific DNA sequences in silico, using various
database searches and prediction programs. Following analysis by gene predic-
tion programs, BLAST/FASTA similarity alignments are run to identify orthologs
and paralogs. Identified hits are subjected to multiple sequence alignment, fol-
lowed by phylogenetic analysis to determine relatedness and ancestry. Deduced
protein sequences are also analyzed against the Cluster of Orthologous Groups
(COG) (Tatusov, et al., 2000) database, PFAM (Bateman, et al., 2002) to identify
conserved protein domains, and Gene Ontology (GO) (Consortium GO, 2001)
categories to determine the putative function of a gene product. Differences in
the genomes of related organisms can be elucidated by comparative genomics ap-
proaches. Identified differences can be of great value in the evaluation of proteins
as candidates for novel vaccines and for generation of new molecular diagnostic
techniques.

This approach to annotation was used to discover genes uniquely present on
chromosome II of Brucella suis by using several, interoperable PathPort analysis
tools. Brucella spp. are intracellular facultative pathogens that cause brucellosis
in humans and many mammals. The B. melitensis and B. suis genomes have been
sequenced while the B. abortus genome has been sequenced and its annotation is
in progress.

As outlined above, we began genome annotation by analysis with the gene pre-
diction program GLIMMER (Delcher, et al., 1999), followed by BLAST/FASTA
analysis, multiple sequence alignments, and phylogenetic tree analysis. PathPort
provides a number of gene prediction programs as web-services to perform genome
annotation. “Features” of the sequence were identified during annotation and these
were stored in a VBI-designed, Oracle relational database. These features then
become available through the VBI’s Distributed Annotation System (Eckart and
Sobral, 2004) (Dowell, et al., 2001) (VBI-DAS) viewer (Figure 1). Different feature
types appear in different colors based on choices made by the user. The positions
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FIGURE 1. Genome annotation. Glimmer9 was selected as shown in the background screenshot as a
genome annotation tool. Glimmer gene predictions were then displayed in a DAS-viewer. The DNA
and Annotation viewer shows the genome represented as a circle on the left-hand side. An internal arc
can be dragged around the circle. The region covered by the arc is shown on the right of the circle as a
linear segment. In this example with Brucella abortus, the position of an ORF as predicted by Glimmer
is noted as a horizontal bar (circled near position 701.9). Clicking on the location of the ORF spawns
a window showing details about the features associated with the ORF. Features can be added, edited,
or deleted as part of the genome annotation process.

and directions of transcription-translation are depicted as solid colored arrows per-
taining to the feature. Any linear and circular sequences, with XML formats, that
match DAS.dtd can be viewed using the VBI-DAS viewer. On circular genomes,
an internal arc within a circle can be dragged around the circle for selecting spe-
cific regions to display as linear segments in the same viewer. A graphical interface
showing regions of identity/similarity helps annotators assign functions based on
computer predicted functions. As mentioned previously, clicking on the ORF will
spawn a window where all the features for the ORF can be added as part of the
annotation process.
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Individual features include a promoter location, ribosome-binding site, start
and stop position of a gene, or an open reading frame (ORF). Clicking on the feature
tag spawns a window that displays more details. The architecture of ToolBus is
modular so several tools can be used simultaneously. Thus, genes predicted by gene
prediction programs and viewed in the DAS viewer can be “grabbed, dragged,
and dropped” into fields for BLAST/FASTA analysis without reformatting the
data. BLAST/FASTA results can be selected, dragged and dropped into fields for
“multiple sequence alignment” (MSA) either at the DNA level or the protein level.
A hydrophobicity plot of each protein can be viewed from the MSA.

Differences between chromosomes II of B. abortus and B. suis were dis-
covered using comparative genome analysis tools. These two chromosomes were
compared using MUMmer (Delcher, et al., 2002), and results were displayed in a
Parallel Sequence Comparison viewer or a Perpendicular Sequence Comparison
viewer (a MUMmer view) (Figure 2). Areas where gene inversions or deletions
may have occurred were easily discernible on the Perpendicular viewer. Select-
ing a position of gene inversion in one viewer is automatically displayed in the
alternate comparison viewer through a built-in dynamic linking of the two com-
parison viewers. Clicking on a region of the comparison viewer spawns a window
showing details of relatedness. As shown in Figure 2, presence of unique genes
can be easily identified by the lack of homology lines linking the two genomes in
the Parallel viewer. Similarly, lack of homology due to presence or absence of a
gene can be identified by a break in the diagonal line seen in the Perpendicular
viewer (Figure 2). Using such whole genome comparison tools in conjunction with
BLAST/FASTA analysis, we identified 28 genes that are uniquely present onB. suis
chromosome II as compared to B. abortus.Molecular diagnostic technologies rely
on the ability to identify unique genes present in a pathogen and designing gene
specific primers for PCR amplification. Dragging and dropping gene sequences
into the Primer3 (Rozen and Skaletsky, 2000) design software available in PathPort
can generate primers and probes for any gene. An example of primers designed
to PCR amplify one of the unique genes of B. suis is shown in Figure 3. The
presence or absence of a gene(s) in a virulent and avirulent organism (e.g., E. coli
O157:H7 EDL933 and E. coliMG1655, respectively) can be investigated through
whole genome comparison tools as shown above. Genomic sequence comparisons
can be performed on a sequence of interest using the VBI-DAS database, which
contains genome sequences for Archaea, prokaryotes, eukaryotes, and viruses that
have been downloaded from the National Center for Biotechnology Information
(NCBI genomes. http://www.ncbi.nlm.nih.gov/Genomes/index.html).

2.2. PathPort As a Pathogen Information Resource

In preparation for a bioterrorism attack, personnel involved in the ensuing
response would benefit from preemptively knowing the properties of the organisms
that can be used as Biological Warfare Agents (BWA), what procedures can be
used for rapid identification of the BWA, and what prevention measures should
be implemented to contain the outbreak of the associated disease. An educational
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FIGURE 2. Genome Comparison. Chromosome II of Brucella suis and Brucella abortus are selected
for comparison using either the Parallel Sequence Comparison View (left hand side) or the Perpen-
dicular Sequence Comparison View (MUMmer view) (right hand side). Genome differences in the
Perpendicular view are shown as breaks within the diagonal line, whereas they are shown as white
space in the Parallel view. The exact location of a unique region on Chromosome II of B. suis is shown
as a feature in the foreground screenshot.

resource containing pertinent information about pathogens with potential use as
BWAs would be very useful for healthcare workers, emergency response teams
and relevant Federal agencies.

PathPort contains a Pathogen Background Information (PathInfo) tool and its
related PathInfo viewer (Figure 4A). PathInfo currently includes publicly avail-
able information for over 20 pathogens (Table 1). PathInfo contains sections on
taxonomy, physical characteristics, epidemiology, host information, transmission
mode, carriers, and laboratory procedures for rapid diagnosis of the pathogen. This
information has been collected and annotated by a team of graduate students and
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FIGURE3. Probe design. The probe design model/view is based on Primer39. Probe design results can
be viewed in both graphic and table views. The graphic view provides an intuitive graphic representation
of the probe design result. It shows the length and sequence of the target, the position, length, and
sequence of the PCR primers and/or hybridization probes. The table view displays the same information
in a tabular format and includes details about melting temperature and other parameters as selected by
the user during primer design.

doctoral-level biologists who will also regularly update it to ensure that the latest
data are presented. Furthermore, before being made available to the public, the
quality and comprehensive nature of the information for each pathogen is verified
by an “outside expert” in the field. A major advantage of PathInfo is its ability to in-
tegrate information from diverse sources, allowing for a complete compilation and
computer access of pathogen information at one site. Resources being surveyed
for information include: peer-reviewed journals, books, and websites. The infor-
mation in PathInfo is thoroughly referenced, allowing the user to review the source
of the data and for quick access, “hotlinks” to website references (or PubMed ab-
stract in the case of journal articles) are used in PathInfo when possible. Where
applicable, photographic images and diagrams are incorporated in PathInfo (with
the requisite permission from publishers/owners) to more fully illustrate important
points.

PathPort biologists also collect, annotate, and review information regarding
pathogenesis and host/pathogen interactions for these pathogens at the molec-
ular level. This information is available through the PathPort Protein Network
(ProNet) viewer (Figure 4B). This curated information conforms to a defined
XML format (http://www.vbi.vt.edu/pathport/xml/molecules/molecules.dtd) that
can be downloaded and viewed by users. The network of proteins involved in



190 R. Lathigra et al.

FIGURE4. PathInfo and ProNet. (4A). The “Pathogen Background Information” tool is highlighted in
the background screenshot. The screenshot in the foreground shows several topics for which background
information is available as tabs. The left panel provides the hierarchy structure of the selected tab
information. The right panel shows the detailed information for a specific topic selected by clicking
from the left panel. (4B). Protein-protein interactions are depicted in a pathway form. Pathway tool
(selected) is shown in the background screenshot. The ProNet viewer (foreground screenshot) shows
interactions between bio-objects (proteins), with location noted, in pathways as nodes and directed
links between bio-objects. When available, pictorial representations of the pathway are provided in
ProNet (e.g. right-most screenshot). The image shows the internalization of the lethal factor of B.
anthracis into the cytoplasm of a host cell.

pathogenesis (both pathogen and host) is illustrated in a diagram as a stepwise
progression. Clicking on the last entity of the protein network spawns another
window to depict sub-interactions if they are present. Each entity of the network
is color coded to indicate its cellular location in the pathway (for example, extra-
cellular, intracellular, inside the Golgi apparatus, endoplasmic reticulum). Clicking
on any entity in the pathway reveals additional information (its own pane) about
the protein as well as related bibliography. Clicking on the reference identifier
dynamically links the user to PubMed for easy retrieval of the reference.

From a single session of reviewing pathogen background information, the user
is able to gather detailed information pertaining to the organism, the associated
disease, diagnostic methods, and the mechanism of pathogenesis. This type of
system enables researchers to readily identify proteins that could be targets for
immune intervention or for small molecule inhibitors or for rapid diagnostics
based on either immunological or nucleic acids based technologies.
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Table 1
Pathogen Information Currently Available in PathPort and the Status of Curation

(Eckart and Sobral, 2004).

Associated CDC / NIAID Curation Status

Pathogen Disease Category In process Final2

Prokaryote
Bacillus anthracis Anthrax CDC-A / NIAID -A

√
Brucella spp. (B. melitensis,
B. abortus, and B. suis)

Brucellosis CDC-B / NIAID-B
√

Burkholderia mallei Glanders CDC-B / NIAID-B
√

Burkholderia pseudomallei Meliodosis CDC-B / NIAID-B
√

Chlamydia psittaci Psittacosis CDC-B
√

Clostridium botulinum Botulism CDC-A / NIAID-A
√

Coxiella burnetii Q fever CDC-B / NIAID-B
√

E. coli O157:H7 HUS, diarrhea CDC-B / NIAID-B
√

Francisella tularensis Tularemia CDC-A / NIAID-A
√

Mycobacterium tuberculosis
(MDR)

Tuberculosis NIAID-C
√

Rickettsia prowazekii Typhus fever CDC-B / NIAID-B
√

Salmonella spp. Diarrhea CDC-B / NIAID-B
√

Shigella dysenteriae Diarrhea CDC-B / NIAID-B
√

Vibrio cholerae Cholera CDC-B / NIAID-B
√

Yersinia pestis Plague CDC-A / NIAID-A
√

Eukaryote
Coccidiodes immitis Valley fever − √
Cryptosporidium spp. Diarrhea CDC-B / NIAID-B

√
Phytophthora infestans Potato/tomato blight − √
Phytophthora sojae Soybean root rot − √
Plasmodium falciparum Malaria − √

Virus
Crimean Congo
Hemorrhagic Fever

Hemorrhagic fever NIAID-C
√

Eastern Equine Encephalitis Encephalitis CDC-B / NIAID-B
√

Hemorrhagic Fever Viruses3 Hemorrhagic fever CDC-A / NIAID-A
√

Highly Pathogenic (HP)
Avian Influenza virus

Influenza − √

Powassan Encephalitis − √
Variola major / minor Smallpox CDC-A / NIAID-A

√
Venezuelan Equine

Encephalitis
Encephalitis CDC-B / NIAID-B

√

Yellow Fever Yellow fever NIAID-C
√

3. OTHER PATHPORT TOOLS FOR FUNCTIONAL ANNOTATION

Identification of genes expressed by the pathogen and the host and the con-
tribution of the environmental signals will vastly increase our knowledge of the
dynamic interaction of the specific pathosystems. Genes identified to be specifi-
cally expressed in an in vivo environment could be targets for intervention strategies
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either as vaccine candidates or targets for small molecule inhibitors. Transcription
analysis can increase our understanding of how a pathogen responds to both in vitro
and in vivo specific stimuli (Conway and Schoolnik, 2003). In combination with
proteomics and metabolomics data, a clearer picture of the inner workings of cells
and pathogens is likely to emerge. In the context of gene regulatory networks, such
network hypotheses can also be used to support functional annotations of genomes.
Very few pathogen-specific gene chip arrays are commercially available, therefore,
researchers are currently relying on pathogen-specific oligo-based microarrays. In
future months, software including OligoArray (Rouillard, et al., 2002) will be
provided within PathPort to facilitate microarray design. Corresponding tools for
visualization and analysis of microarray data will also be incorporated. A rela-
tional database is being developed with PathPort to store all of the experimental
microarray data enabling storage of large microarray data sets and comparison
between different microarray groups. To confirm results obtained from transcrip-
tional profiling experiments, RT-PCR can be used. To design PCR primers for this
purpose, the Primer312-based primer/hybridization oligo design tools in PathPort
are currently fully implemented.

The connections between gene regulatory networks, the proteins being ex-
pressed at any given point in time, and the metabolites being generated during
host-pathogen-environment interactions have to be established. It is becoming in-
creasingly clear that such connections could lead to new discoveries and the estab-
lishment of new pathways for protein interactions. How can these types of data be
mined to establish such connections? Special plug-in tools called group suggestors
are available through PathPort/ToolBus allowing the user to search for connections
between different data types. Interesting data associations are suggested as pos-
sible ToolBus groups and these groupscan be compared via user generated Venn
diagrams that allow the elucidation of commonalities and differences between
groups in negative and positive visual spaces. Such group suggestors are likely to
play a significant role in the search for new interaction pathways and further the
understanding of the interrelationship between seemingly disparate data.

4. DISCUSSION

The detailed PathPort/ToolBus framework has been described previously
(Eckart and Sobral, 2004; Eckart, et al., 2002). Web-services and XML are uti-
lized in PathPort to support remote data access and analysis, while client-side
Java applications are performed for information visualization. Other approaches
have also been developed based on centralization of one or more aspects of the
system workflow. For instance, Grid middleware such as Avaki (Grimshaw, 2003)
and Globus (Foster, and Kesselman, 1998) use a single unified virtual computer
system to share data and resources among a variety of computer systems and or-
ganizations. Web-based portals such as BioASP (BioASP, http://www.bioasp.nl)
and BioMed Grid Portal (Biomed Grid Portal BI, http://bmg.bii.a-star.edu.sg) also
use a single system to combine databases and analyses, but are not provided with



The Pathogen Portal Project 193

strong dynamic and interactive visualization. Grids and Web-based portals are
typically built around a single database and support a limited number of tools that
are not so flexible and extensible. Centralization of only analysis and visualization
components of the workflow forms another system called “super applications,”
(e.g. J-Express Pro (MolMine)). Super applications do not support the process
of data acquisition and do not support plug-ins for new analysis or visualization
components. PathPort employs ToolBus as a client-side interconnect allowing data
from different sources to be connected with a number of visualization tools on the
desktop, while running Web-services on the server-side to provide data access and
analysis. Therefore, PathPort is not limited to a single server or virtual organization
for data access and analysis.

The BioWidgets (Fischer, et al., 1999) and ISYS (Siepel, et al., 2001) are
two component-based programs freely available for non-commercial uses. The
BioWidgets toolkit is a collection of Java Beans used for development of graph-
ical application and/or applets in the genomics domain. BioWidgets wires com-
ponents directly to one another to provide top-level controls. The components in
BioWidgets require customized, tight integration resulting in less flexibility and
more development time. ISYS is a decentralized platform with a component-based
approach for the integration of heterogeneous bioinformatics software tools and
databases. ISYS is also written in Java and supports web-based resources including
databases, analysis tools or websites. In many cases, ISYS allows separate compo-
nents to share data and exchange services by implementing a system architecture
similar to that in PathPort. Like ToolBus in PathPort, the ClientBus in ISYS is the
central part responsible for all communication between components.

The main difference between ISYS and PathPort is that PathPort uses stan-
dard XML-based Web Services making the system easily scalable and extensible.
Current emphasis is on the use of XML technologies. PathPort XML-based data
formats allow for easy data communication between different machines and data
transformation involving varied formats. PathPort does not require data reformat-
ting between different tools for the same set of data and specific data can also
be selected and drag-dropped into several analysis tools. Furthermore, different
data can be grouped and compared for common or differential annotations. Entire
PathPort work session(s) can be saved for subsequent analysis or alternatively, the
data can be compressed and electronically sent to collaborators allowing them to
view and/or continue analysis of the data.

It is noted that the ToolBus architecture is a universal integration system and
can be used to integrate any data and analysis resources via a XML-based web
service system. ToolBus is currently used in PathPort for interoperable pathogen-
oriented data and tools. PathPort’s first year efforts have focused on genomic data
and related information such as DNA sequences, genome annotations, genome
comparisons, and phylogenetic relationships. Current and future focus will be
on microarray oligo design and analysis, proteomics data, metabolomics data,
geospatial data, and other environmental data. Corresponding tools will also be
developed as needed to integrate and analyze these additional data types allowing
relationships between these data to be discovered and shared by users. Distributed
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biological data management and analysis necessitates the development of stan-
dards for molecular and cellular data, especially in terms of communication
standards.

The I3C is committed to bringing public and private members together to
develop XML-based standards for life science data (Interoperable Informatics
Infrastructure Consortium; http://www.i3c.org). VBI is part of a collaboration to
improve the current DAS system for standardized distribution of genome sequence
information. The development and use of PathInfo and ProNet XML DTDs at VBI
also provides possible solutions for standardization of distributed pathogen back-
ground information and molecular interactions in systems other than bioterrorism
such as plant pathogens or food-borne pathogens. There is also a critical need to
develop annotation standards and knowledge representation ontologies for molec-
ular and cellular data. Current efforts include the Gene Ontology (GO) Consortium
(Consortium GO, 2001), the COG database (Tatusov, et al., 2000), the InterPro
database (Apweiler, et al., 2001) and the Sequence Ontology database (Sequence
Ontology Database, http://song.sourceforge.net/).

PathPort/ToolBus was designed as a scalable, extendable, framework for inte-
gration of highly curated pathogen related data and genome analysis/visualization
tools. We have used a limited set of tools to demonstrate integrative uses of Path-
Port/ToolBus. The PathPort tools used in the Brucella spp. genome annotation and
comparison are available as stand alone applications or super applications that can
be found on the web, however, the major advantage of PathPort/ToolBus is its pro-
vision of these tools as a single, interoperable resource. Pathogen-related informa-
tion is scattered throughout the literature and at numerous websites (for example,
http://www.bt.cdc.gov; http://www.e-bioterrorism.com; http://www.bioterrorism.
uab.edu; http://www.ci.berkeley.ca.us/publichealth/bioterrorism/bioterrorismmain.
html). The information available at these sites contains information of limited
use to researchers working on fundamental problems in infectious diseases.
None of these sources provide information about the molecular interactions
that take place during pathogenesis and they lack detailed information about
the newest diagnostic methods. The pathogen information provided through
PathPort’s PathInfo and ProNet databases provides a current, expertly curated
compilation of data regarding the organism, its associated disease, standard and
novel diagnostic methods, and when available, information and visualization
tools for the mechanism of pathogenesis. In summary, we know of no other single
system with similar data or interoperable analysis and visualization tools such as
those provided by PathPort/ToolBus, to aid in infectious diseases research and
development.

ToolBus can be freely downloaded at the VBI PathPort official website
(http://www.vbi.vt.edu/pathport) under non-commercial license. An evaluation li-
cense is available for potential commercial users. The ToolBus download also
includes a variety of ToolBus visualizers, most of which are made available under
the terms of the Lesser GNU Public License (LGPL) (http://www.gnu.org/copyleft/
lesser.html). It is noted that some visualizers may have more restrictive licenses
(e.g., the WebWindow visualization plugin).
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Chapter 14

Alignment of Wheat and Rice Structural
Genomics Resources

Daryl J. Somers, Sylvie Cloutier, and Travis Banks

1. INTRODUCTION

Whole plant genome sequences hold substantial promise as the next genetic
resource to change agricultural sciences. Recently, the draft rice sequence was
released with efforts from Syngenta (Goeff et al. 2002) and the International Rice
Genome Project (http://rgp.dna.affrc.go.jp/IRGSP/) (Yu et al. 2002). Monsanto
and the Clemson University Genome Institute (CUGI) have also played a large
role in both sequencing and rice genome organization. As a cereal geneticist, this
is an exciting time, as we now consider how to use the rice genome sequence to
understand genome organization and gene regulation in wheat, barley and maize.

Researchers have examined wheat for decades in an attempt to locate genes
and QTLs on genetic maps that give us insight into which chromosomal regions
control the traits important for grain production, processing and nutrition. These
same QTLs have been examined further to devise and/or validate molecular breed-
ing strategies to accelerate development of improved wheat varieties through
marker-assisted selection (MAS). Since rice and wheat are similar cereal grain
crops, the colinearity of genes and gene sequence are sufficient to align the chro-
mosomes of each species (Devos and Gale, 2000).

The logical next step in wheat genomics is locating wheat QTLs onto rice
chromosomes and ultimately associating wheat QTLs with rice genome sequence
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and candidate genes. As this type of alignment matures and is refined, identifica-
tion of genes controlling traits in wheat will improve, leading to careful genetic
engineering of wheat with a higher end use value or consistent production.

Over the last four years, a vast amount of wheat EST sequencing has been
completed and released to the public domain. In March 2003, there were >415,000
wheat EST sequences (http://www.ncbi.nlm.nih.gov/). The wheat research com-
munity is fortunate that much of this sequencing was coordinated and that there
was deliberately a large number of wheat accessions that were used as template
for the cDNA library construction and EST sequencing. This leads immediately to
mining of the databases for allelic variation and single nucleotide polymorphisms
(SNPs). SNPs represent the most basic form of DNA polymorphism and they are
useful in all the traditional molecular marker applications, from mapping to genetic
diversity studies.

Bread wheat (Triticum aestivum) has the genome constitution AABBDD and
provides a novel challenge in SNP discovery and analysis since it is a polyploid
species, carrying three progenitor genomes derived from T. monococcum (AA),
T. speltoides (BB) and T. tauschii (DD). ESTs in wheat will originate from all three
genomes and in order for SNP diagnostic tests to be useful as genetic markers they
should have a strong degree of locus specificity. Therefore, SNP mining strategies
and detection platforms need to account for this added layer of complexity.

Given the size of the wheat genome, estimated to be 1.6 billion bases per 1C
(Arumuganathan and Earle, 1991) distributed in 21 linkage groups, the efforts to
align wheat and rice genomics resources will be time consuming and expensive.
It will be critical to share the workload across the international wheat community
in a coordinated fashion in order to ensure our accuracy and success.

2. PRIMARY STRUCTURAL GENOMICS RESOURCES

A short description of the basic wheat and rice structural genomics resources is
needed in order to follow the interrelationships of the wheat and rice genomes. The
primary goal of linking the structural genomics resources is to discover candidate
rice genome sequence spanning a wheat chromosome interval for the purpose of
gene discovery.

2.1. Genetic Maps

Wheat and rice have been mapped genetically with DNA-based markers for
over 15 years. Much of the earlier work was based on RFLP markers, and eventu-
ally, cDNA probes were used on both maps. The cDNA probes, which represent
genes, could be cross hybridized to both species, and thus the colinear relation-
ship between wheat and rice, and in fact, many other cereals, was developed
(Devos and Gale, 2000; Bennetzen, 2002; Sarma et al., 2000). Microsatellites rep-
resent a profound change in marker technology. They are typically locus specific,
codominant, polymorphic and PCR-based. These attributes make microsatellites
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highly amenable to plant breeding and high throughput structural genomics stud-
ies. Microsatellite-based maps are now high density and together with cDNA RFLP
maps, provide a good alignment of wheat and rice maps with good resolution.

2.2. QTL Mapping

Once genetic maps were available, QTL analysis followed and genes control-
ling end use quality, stress resistance, growth habit and disease resistance as exam-
ples were located onto chromosomes. The QTL analysis is a statistical association
of alleles identified along the length of a chromosome with a phenotype. Often,
comparative mapping studies show genes from syntenic chromosome regions of
wheat and rice, controlling similar traits. QTL analysis in wheat provides the tar-
gets of possible map-based cloning efforts. For example, the genes controlling
vernalization, grain hardness, and photoperiod sensitivity have been examined ex-
tensively. Similarly, genes controlling leaf rust (Feuillet et al., 2001) and Fusarium
resistance (Somers et al., 2003; Anderson et al., 2001) are good targets as these
genes may elucidate the mechanisms of disease resistance.

2.3. EST Sequences

There are >415,000 wheat EST sequences in the public domain as of March
2003. This genomics resource was developed by coordinated efforts including the
International Triticeae EST Consortium (ITEC), the NSF funded EST sequencing
project in Albany, CA (http://wheat.pw.usda.gov/NSF/), and a substantial public
release of sequences into NCBI from Dupont in late 2002. The EST sequences are
a rich source of information with respect to allelic variation and gene expression
influenced by both biotic and abiotic stress. The ESTs are useful for discovering
SNPs, as there are now bioinformatics approaches to mining the EST database
for this type of allelic variation (Marth et al., 1999; Yuan et al., 2001; Somers
et al., 2003). The current collection of >415,000 EST has now been assembled
into contigs (http://wheat.pw.usda.gov/ITMI/2002/WheatSNP.html), which gives
insights into the number of genes coded in the wheat genome and present in the
cDNA libraries. The statistics of the Dec 2002 EST assembly show 39,813 contigs,
50,116 singletons. The ESTs in this collection have been used for chromosome
bin mapping using a unique set of deletion lines derived from Chinese Spring (CS)
wheat described below.

2.4. Chinese Spring Deletion Lines

The polyploid nature of wheat permits the development of unique cytogenetic
stocks such as nullisomic, tetrasomic, substitution and addition lines. Having mul-
tiple copies of genes on different genomes maintains the viability and fertility of
these types of lines. A novel set of CS lines developed by Endo and Gill (1996) at
Kansas State University, contain terminal disomic deletions. The breakpoints on
the chromosomes are random and the breakpoints are identified in a physical sense
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by measuring chromosome sizes at metaphase under a microscope. A set of >100
of these lines have been selected that have single breakpoints each and the collec-
tion of lines represents breakpoints across the genome. This set of lines has been
used in Southern analysis with ESTs as probes to map the physical location of EST
sequences to physical bins in the wheat genome (http://wheat.pw.usda.gov/NSF/).
In total, >6,200 Loci have been mapped into chromosome bins. The CS deletion
lines are being distributed worldwide and are being used to map other markers
such as microsatellites into these bins, which helps align the genetic and physical
maps of wheat (Somers et al., PAG XI, 2003, http://www.intl-pag.org/).

2.5. Large Insert Libraries

Large insert libraries are an important resource for physical mapping, map-
based cloning, genomic sequencing as well as genome evolution and comparative
genomic studies (Anderson et al., 2003, Dubcovsky et al., 2001, Tranquilli et al.,
1999). Yeast Artificial Chromosome (YAC), Bacterial Artificial Chromosome
(BAC) and cosmid libraries have all been used for these purposes. In the last decade,
a large number of BAC libraries were constructed because of their large size, their
plasmid nature and therefore the ease of manipulation and stability of the clones.
Many rice BAC libraries were constructed (Chen et al., 2002; Tao et al., 1994;
Tao et al., 2002; Yang et al., 1997; Zhang et al., 1996). Also several wheat BAC
libraries were constructed in diploid, tetraploid and hexaploid wheat (Lijavetzky
et al., 1999, Liu et al., 2000, Moullet et al., 1999). A list of Triticeae large
insert libraries can be found at http://agronomy.ucdavis.edu/Dubcovsky/BAC-
library/ITMIbac/ITMIBAC.htm.

In rice, BAC libraries were fingerprinted and BAC clones were assembled
into contigs (Presting et al., 2001). The minimum tilling path was constructed
and sequencing of the entire rice genome is near completion. Hexaploid wheat
has a genome size 40 times greater than rice (Arumuganathan and Earle, 1991).
So far, the sequencing of its entire genome has not been contemplated. However,
global fingerprinting of the D-genome is underway and would provide the basis
for genomic sequencing of a diploid progenitor. Regions comprising important
agronomic traits such as the HMW glutenins and the hardness locus have been
sequenced in T.tauschii (Anderson et al., 2003, Tranquilli et al., 1999).

Because of the size of wheat BAC libraries, clones cannot be individually
screened. Many strategies and tools have been designed to overcome this difficulty.
High-density filters where clones are double-spotted in a predetermined pattern
using high-precision robotic equipment have been generated for many available
wheat BAC libraries. These filters can be hybridized with probes to identify clones
of interest. A drawback of this method is that the larger the size of the library,
the larger the number of filters required. A 4 × 4 pattern is the most commonly
used density. To print a 500,000 clone library at this density, a total of 27 filters
would be required. One way to cope with the large size of the wheat BAC libraries
is to increase the density on the filters. Chalhoub (personal comm) reported that
sensitivity was still good at a density of 6 × 6. At that density, a 500,000 clone
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FIGURE 1. Screening of the BAC pools using a pair of primers designed to target the grain softness
protein (GSP) gene. A. Panel of 48 of the 171 super plate pools showing three positive pools (
).
B. Screening of the ten corresponding plate pools, 16 row pools and 24 column pools indicating the
address of the positive BAC clone (
) which is plate 8, row 4 and column P (column 24). G = Glenlea.

library can be printed onto 12 filters only. Considering that current BAC libraries
of diploid wheat comprise 150,000 to 300,000 clones, tetraploid wheat comprise
500,000 clones and hexaploid wheat comprise 600,000 to 1.2 million clones, in-
creased density on the BAC filters will not only be advantageous but will be a
prerequisite to perform such screening of the libraries. High-density filters of the
hexaploid wheat BAC library of Glenlea were generated using a 5 × 5 gridding
pattern. Sensitivity at that density was still excellent. However, filter hybridization
still remains labor intensive and the screening of BAC filters for the identification
of clones of interest is likely going to be restricted to specific cases.

Pooling of BAC clones is an efficient method to screen large number of clones
by PCR (Nilmalgoda et al., 2003). We devised a BAC pooling strategy that allows
the screening of the 650,000 clones of the Glenlea library in a total of 221 PCR
reactions performed in two steps. The first step consists of 171 PCR reactions of the
super plate pools (SPPs). The second round of PCR is 50 reactions representing the
10 plate pools, 16 row pools and 24 column pools for each positive SPP. These 221
reactions allow the identification of the positive clone amongst the entire library
(Figure 1). This method is simple and efficient providing that the clone(s) targeted
can be screened by PCR.

2.6. Rice Genome Sequence

A draft sequence of two subspecies of rice (Oryza sativa L. spp japonica,
Oryza sativa L. spp indica) was completed and released by Goff et al. (2002) and
Yu et al. (2002) respectively. The japonica genome is estimated to be 430 MB
in length containing 32,000–50,000 genes and the genome sequence covers 93%
of the total. Wheat, barley and maize ESTs were compared via TBLASTN to the
japonica genome sequence and 98% of the ESTs found a homologue in the rice se-
quence. Similarly, the indica genome sequence is estimated to be 466 MB contain-
ing 46,000–55,000 genes and 92% of the genome has been sequenced. Sequence
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comparisons were made to Arabidopsis in this case, and not to other cereal
genomes. The rice sequence from IRGSP is available at http://btn.genomics.org.cn/
rice.

Assuming that wheat chromosome regions can be aligned with syntenic re-
gions of the rice genome, then it should be possible to predict genes and gene
sequences in certain regions of wheat chromosomes. The most anticipated aspect
of this type of orthologous genome alignment is searching for candidate genes for
wheat QTLs using the rice genome sequence. Sequencing the wheat genome, or
portions of it, is feasible, particularly if gene rich islands can be identified among
wheat BAC clones, to restrict the amount of sequencing. But, undoubtedly, there
will be regions of the wheat genome not amenable to sequencing and the rice
genome sequence will be utilized. We have developed a software tool, based on
all the publically available information and bioinformatics resources described
above. This effort is described below and investigates whether wheat/rice synteny
is robust enough to facilitate wheat candidate gene discovery within QTL regions.

3. SNPs IN WHEAT ESTs

Single nucleotide polymorphisms (SNPs) are regarded as the next type of
molecular marker most useful for genetic studies. Allelic variation at such loci
is restricted to four alleles, and the vast majority of SNP loci in wheat have just
two alleles. So, the allelic variation for SNPs is minimal, but 1) the immense
number of SNPs present 2) the ability to mine SNPs from the EST database and
3) high throughput detection platforms, make SNPs a very attractive marker type
in genetic studies. Mining SNPs from the EST database is a bioinformatics and
PCR-based challenge (Marth et al., 1997; Somers et al., 2003). In most cases, the
EST sequence quality data is not publicly available and assembly of wheat ESTs
creates contigs with copies of ESTs derived from homoeologous and paralogous
loci. Molecular marker diagnostic tests should be locus specific and polyploidy
presents the challenge of developing these types of tests. Fortunately, the assembly
of the EST sequences aligns EST sequences from homoeologous and paralogous
loci. This provides the opportunity to design PCR primers capable of amplifying
with locus specificity.

3.1. Nested PCR Analysis of SNPs

A technique such as nested PCR can be used, where primers flanking the SNP
amplify the locus from one genome and a third primer interrogates the SNP on the
amplicon (Figure 2). Detection platforms for SNPs are varied. Our lab has chosen
to use nested PCR followed by single base extension using the SNAPshot TM kit
(Perkin Elmer). This assay is desirable, because it begins with genome specific
PCR then uses dye-deoxy-terminators to colour-code the allele present in the DNA
sample. The products of the single-base extension are separated by electrophoresis
on an ABI3100 capillary electrophoresis genotyper. The presence of SNPs in
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FIGURE 2. Cartoon of nested PCR in hexaploid wheat. Three primers are used, the flanking primer 3′
ends anneal to nucleotide positions (
) that are specific to the A, B or D genome. The internal primer
3′ end anneals to a SNP (�) that differs among wheat accessions.

wheat ESTs (Somers et al. 2003) and the EST assembly in the public domain
(http://wheat.pw.usda.gov/ITMI/2002/WheatSNP.html) can be used in a practical
sense to design diagnostic tests for known functional genes.

3.2. Development of Genome-Specific SNPs

Three copies of a given gene are often found in hexaploid wheat, each one cor-
responding to one of the genomes. These homoeologous copies can differ greatly
due to evolution but can sometimes share a high level of homology. The large num-
ber of wheat ESTs available often permits the identification of the three genome-
specific copies based on SNPs. The following example, based on an NBS-LRR se-
quence, illustrates this fact. The 2,836 nucleotide sequence of clone GLN164A08
was BLASTed against the contig assemblies. The best match corresponded to
contig-6605.1 (Dec02 assembly). SNPs can be easily visualized (Figure 3). EST

      *       760         *       780         *       800   
contig6605 : ATAAGCGCGGAAACGTCATGGAGAGATCCATTGTTGATCC*TCTT*AGACT*GTTGTTCA :  795 
CSPBJ22873 : ATAAGCGCGGAAACGTCATGGAGAGATCCATTGTTGATCC*TCTT*AG------------ :  664 
CSPBJ22401 : ATAAGCGCGGAAACGTCATGGAGAGATCCATTGTTGATCC*TCTT*AGACT*GTTGTTCA :  385 
SUMBM13655 : ATAAGCGCGGAAACGTCATGGAGAGATCCATGGTCGATCC*TCTT*AGACT*GTTGTTCA :  272 
U20CA63685 : ATAAGCGCGGAAACGTCATGGAGAGATCCATTGTTGATCC*TCTT*AGACT*GTTGTTCA :  243 
STECA65855 :-ATAAGCGCGGAAACGTCATGGAGANATCCATTGTTAATCCCTCTTTAGACTTGTTGTTCA :   60 
MERAL82541 :------------------------AGATCCATGGTCGATCC*TCTT*AGACT*GTTGTTCA :   34 
U19CA64611 :----------------------------------------CCTCTT*AGACT*GTTGTTCA :   19 
CSPBE40684 :------------------------------------------------------------- :    - 
CSPBF20214 :------------------------------------------------------------- :    - 

7

GLN164A08  :GATAAGCGCGGAAACGTCATGGAGAGATCCATTGTTGATCC*TCTT*AGACT*GTTGTTCA :  641

     *      1880         *      1900         *      1920    
contig6605 : TCCTCGAGCTGTGAGAGAGACCACACATCATCAAGTATAACAAGAACTGGTCCTCGGTCCC : 1905 
CSPBJ22873 : ------------------------------------------------------------- :    - 
CSPBJ22401 : ------------------------------------------------------------- :    - 
SUMBM13655 : ------------------------------------------------------------- :    - 
U20CA63685 : ------------------------------------------------------------- :    - 
STECA65855 : ------------------------------------------------------------- :    - 
MERAL82541 : ------------------------------------------------------------- :    - 
U19CA64611 : ------------------------------------------------------------- :    - 
CSPBE40684 : TCCTCGAGCTGTGAGAGAGACCACACATCATCAAGTATAACAAGAACTGGTCCTCGGTCCC :  326 
CSPBF20214 : TCCTCGAGCTGTGAGAGAGACCACACATCATCAAGTATAACAAGGACTGGTCCTCGGTCCC :   88 
GLN164A08  : TCCTCGAGCTGTGAGAGAGGCCACACATCATCAAGTATAACAAGGACTGGTCCTCGGTCCC : 1751

FIGURE 3. Partial alignment of wheat ESTs from contig 6605.1 with NBS-LRR clone GLN164A08.
Genome-specific SNPs are in bold face. Primer sequences are underlined. Variety nomenclature is a
three-letter code representing the accession or library followed by the GenBank accession number.
CSP is Chinese Spring; SUM is Sumai 3; STE is Stephens; MER is Mercia; U19 and U20 are from
two different library of unknown accession; Contig6605 is the consensus sequence; GLN164A08 is
the NBS-LRR clone from Glenlea wheat. Consensus sequence base positions are on top. Base position
for each EST is on the right.
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FIGURE 4. PCR amplification of Chinese Spring and its 21 nulli-tetra lines using genome-specific
SNP primers designed for the NBS-LRR gene located on homoeologous group 5 chromosome.
The 5A-specific amplicon was obtained with primer pair F1128T/R2280GC; the 5B-specific am-
plicon used primer combination F1128C/R2280GC; and the 5D-specific amplicon was generated
with F1128C/R2281TT. Primer sequences are as follows: F1128C: 5′-AGGGACCGAGGACCAGTC-
3′; F1128T: 5′-AGGGACCGAGGACCAGTT-3′; R2281TT: 5′-CGTCATGGAGAGATCCATTGTT-
3′; R2280GC: 5′-GTCATGGAGAGATCCATGGTC-3′.

containing SNPs can often be grouped into two or three clusters within a contig.
Primers for genome-specific SNPs of this sequence were designed and tested us-
ing the CS nulli-tetra series (Figure 4). The amplification obtained confirmed that
homoeologous copies of clone GLN164A08 were located on chromosome 5A, 5B
and 5D. Each copy differed from one another by a small number of conserved
single nucleotide polymorphism.

4. WHEAT/RICE VIRTUAL MAPPING (WRVM)

The availability of the draft genome sequence of rice offers the opportu-
nity to take this information and apply it to the study of other grasses. Rice
has a small genome of approximately 430 MB with 12 chromosomes and re-
cent efforts by the International Rice Genome Sequencing Project (IRGSP)
have placed the vast majority of the genome sequence into the public domain
(http://rgp.dna.affrc.go.jp/IRGSP/). Initially, Clemson University Genomics In-
stitiute (CUGI) determined a genome-tiling path of rice BAC clones and these
clones were taken by various IRGSP partners, sequenced and released. The tiling
paths of BACs were then assembled into contigs and aligned against a rice ge-
netic map to give an ordering of the contigs along the rice genome. The ge-
nomic information by itself is of limited value, however organizations such as
The Institute for Genomic Research (TIGR) have analyzed this data to mine
for secondary sequence information such as introns, exons, and repeat sequences
(ftp://ftp.tigr.org/pub/data/Eukaryotic Projects/o sativa/annotation dbs/). The au-
tomated process used by TIGR to predict gene-coding regions has identified over
72,000 potential genes in rice. TIGR acknowledges this as an overestimation due
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to duplication of some genes since BACs overlap. As rice is an established model
species, we can anticipate that other grass species may have a similar number of
genes, many of which will be highly related.

The large size of the wheat genome means that an effort to sequence the entire
genome is not in the immediate future. This leaves the wheat research community
without a ‘directory’ to locate the position of wheat gene sequences on the wheat
genome. To overcome this limitation we can use the information extracted from
rice and combine it with other Triticeae resources such as the EST bin-mapping
project by the USDA, in-house mapping of genetic markers to the bin map, and the
large amount of publicly available EST sequence data to develop a gross physical
map of the wheat genome.

The syntenic relationship between rice and wheat is the basis for the Wheat
Rice Virtual Map (WRVM). Though separated by millions of years of evolution,
both rice and wheat contain genomic structure from the ancestral parent from which
both species evolved. Each of the bread wheat genomes is extremely homologous
to one another and each of these genomes can be viewed as a shuffled and diverged
version of the wheat/rice ancestral parent. The rice genome can also be considered
a diverged and re-ordered wheat/rice ancestral parent (Devos and Gale, 2000).
Despite insertion, deletion and inversion events in the genomes of rice and wheat
there is still underlying conservation of the genes and gene-order between the
species. The wheat virtual physical map takes advantage of the conservation of the
genes and their ordering along the genome to predict the location of wheat genes
on the bin map based on the experimentally derived EST bin locations and the
gene neighbours of the wheat EST rice homologs.

The 6,218 ESTs placed into the wheat bin by Southern hybridization
(http://wheat.pw.usda.gov/NSF/progress mapping.html) were compared against
the set of predicted rice genes from TIGR using the BLASTN program (Altschul,
et al., 1997). Any wheat sequences having greater than or equal to 100 nucleotides
identical to a rice gene with an alignment expect value of <= 1e-50 were consid-
ered to be homologous sequences. Of the 6,218 ESTs, 2,221 wheat sequences were
found to have rice homologs. These rice genes will be referred to as ‘anchors’ from
here on. The contig sequences from the wheat EST assembly project represent a set
of wheat genes. The 419,347 wheat EST sequences from Genbank are represented
by 89,929 sequences from the assembly project (http://wheat.pw.usda.gov/ITMI/
2002/WheatSNP.html), each of which was compared against the putative rice gene
collection from TIGR using BLASTN. A total of 62,824 of these found a rice ‘hit’
with the default BLASTN cutoff values. The rice anchor sequences are used to
‘bring’ the surrounding rice genomic sequence to the same wheat bin as the wheat
homolog of the rice anchor sequence. Any of the wheat contigs from the Wheat
EST assembly project that have a best match to one of the rice genes in the sur-
rounding genomic sequence brought to the bin are considered to be located in that
bin. In this way the wheat ESTs are given a physical location and a virtual map of
the wheat genome is constructed (Figure 5). The user is then able to search for the
location of an EST by specifying a Genbank accession number or sequence and
optionally a wheat marker that has been placed on the bin map.
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RICE WHEAT

rice 1 = wheat mapped1

rice 2 = wheat ?

rice 3 = wheat ?

rice 4 = wheat mapped 2

FIGURE 5. Mapping of rice segments to wheat bins. A portion of rice genomic DNA (solid rectangle)
contains 4 rice genes. Two of the genes are homologous to bin mapped ESTs (rice 1 and rice 4). These
are the rice anchor sequences. Both of the mapped wheat ESTs are in the same bin on the long arm
of the wheat chromosome and therefore bring in the section of rice genomic DNA to that bin. If any
of the 89,929 wheat representative sequences have a best match to rice gene 2 or 3 they are virtually
mapped to the same bin as the rice section.

For a variety of reasons (discussed below) an EST can be found at a number
of locations on the virtual map. To further delimit the results returned, the user can
specify a marker that has been bin mapped so only EST positions that are in the
same bin as the marker are presented. This allows the user to take a gene of interest
and see if it is located near a marker for a trait, such as disease resistance. The
markers were not mapped to the same resolution as the USDA ESTs and therefore
the mapped location of an EST can differ from the predicted position, though
the bin of the predicted gene will be wholly contained within the bin having the
marker.

This approach to constructing a wheat virtual map has some limitations. First,
many of the genes that are of interest to researchers may not be present in rice and
therefore the wheat gene will not be on the map. Also, functional homologues of
the wheat genes may exist in rice but there may be so much sequence divergence
that the software does not recognize their relationship. Another limitation of the
map is that bin-mapped wheat ESTs have been assigned to many different bins on
different chromosomes. This may represent members of the same gene family that
are detected by the same Southern probe or gene duplications that do not represent
syntenic regions. In either case the map will assume synteny between that wheat
region and rice and the software will construct potentially false map locations.
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5. IMPLEMENTATION OF ‘WRVM’

Eleven wheat ESTs were mapped via SNPs on reference populations and
then bin mapped to vaidate the WRVM. When a sequence is found on the map, the
justification for the positioning of that sequence is given as the number of anchor
sequences that have brought the rice homolog of the wheat EST into that bin. The
greater the number of anchor sequences the stronger the likelihood that the regions
are truly syntenic and the mapping is correct. The number of anchors returned for
a sequence is dependent on the size of the region around the virtually mapped EST
brought to the bin. The larger the region to search for anchors the stronger the
mapping can be, but it also increases the number of false mappings presented to
the user.

Of the 11 EST sequences placed on the bin map, 10 were found on the
virtual map (Table 1). Six out of 10 of these, BM140481, BM134420, BE497718,
BF202619, BE499017 and BE418437 are believed to have been mapped correctly.
For example, BM140481 was placed by Southern hybridization onto the long arm
of chromosome 1A. The virtual map placed this EST into bin 1AL3-0.61-1.00,
a bin comprising the last 39% of the long arm of chromosome 1A. BM134420
was mapped to the long arm of chromosome 2B and was placed by the software
on the long arm of chromosome 2D in bin 2DL3-0.48-0.76. When delimiting by
a marker the virtual map assumes that homoeologous chromosomes are identical
so the long arm of 2B is identical to the long arms of 2A and 2D. BE499017
was found by the software in the experimentally derived bin, as was BE418437.
The incorrect mapping of the other 4 sequences, particularly those sequences with
multiple anchors, may be due to genome duplication where the SNP marker was
not specific for the duplicated gene but the region contained enough homology to
allow for interaction with a Southern probe. BQ619858 is a good example of this
scenario as the EST had 6 anchors to a bin other than the one it was mapped to.
It is also possible the EST bin mapping data is incorrect. False map locations can
also be due to single gene duplications or the virtual map assuming relationships
between rice and wheat sequences that do not exists. In either case the result is
the software displaying incorrect syntenic relationships leading to false positions
and an overall increase in the complexity of the map. Given the current structural
genomics resources integrated in this project, the software does succeed at directing
the user to the most likely wheat/rice alignment.

6. SUMMARY

A time line for large scale sequencing of the wheat genome or gene rich
regions and accurate annotation of the sequence is difficult to predict. This sort of
resource would lead directly to gene discovery in wheat for many disease resistance
and seed quality traits. As a bridge to this scheme, the rice genome sequence
indirectly provides insight into genes and DNA sequence in the vicinity of wheat
QTLs.
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Table 1
Virtual Positions of Bin Mapped Wheat ESTs Based on Homology to Predicted Rice

Open Reading Frames.

a Neighbour BAC+-2

# of Delimiting Best match # of
Genbank Exp. Bin Best match Anchors Marker incl. marker Anchors

BM140481 C-1AL-1.00 4DS2-0.82-1.00 2 Gwm357 1AL3-0.61-1.00 1
10BQ619858 C-1AL-1.00 C-3AL3-0.42 2 Gwm357 None 0
BM134420 C-2BL-1.00 2DL3-0.48-0.76 7 Gwm55 2DL3-0.48-0.76 7
BE497718 2DS-0.47-1.00 2BL6-0.89-1.00 3 Gwm102 None 0
BF482680 C-4BS-0.57 4DS2-0.82-1.00 2 Gwm113 None 0
BG909876 C-5AS-0.40 2AS5-0.78-1.00 1 Barc180 None 0
BF202619 6BL-0.40-1.00 C-6AL4-0.55 2 Wmc182 None 0
BE499017 7BS-0.27-1.00 4AL4-0.80-1.00 2 Wmc76 7BS1-0.27-1.00 1
BQ239140 7BL-0.78-1.00 NO HIT
BE418437 7DS-0.61-1.00 4AL5-0.66-0.80 3 Barc70 7DS4-0.61-1.00 2

b Neighbour BAC+-10000

# of Delimiting Best match # of
Genbank Exp. Bin Best match Anchors Marker incl. marker Anchors

BM140481 C-1AL-1.00 4DS2-0.82-1.00 2 Gwm357 1AL3-0.61-1.00 1
BQ619858 C-1AL-1.00 C-3AL3-0.42 6 Gwm357 None 0
BM134420 C-2BL-1.00 2DL3-0.48-0.76 10 Gwm55 2DL3-0.48-0.76 10
BE497718 2DS-0.47-1.00 2BL6-0.89-1.00 3 Gwm102 None 0
BF482680 C-4BS-0.57 4DS2-0.82-1.00 2 Gwm113 None 0
BG909876 C-5AS-0.40 2AS5-0.78-1.00 1 Barc180 None 0
BF202619 6BL-0.40-1.00 C-6AL4-0.55 6 Wmc182 None 0
BE499017 7BS-0.27-1.00 4AL5-0.66-0.80 4 Wmc76 7AS5-0.59-0.89 3
BQ239140 7BL-0.78-1.00 NO HIT
BE418437 7DS-0.61-1.00 4AL5-0.66-0.80 6 Barc70 7DS4-0.61-1.00 5

a (Neighbour BAC+-2)—The accession number of the wheat EST is given in the first column with the experimentally
determined bin map position in the second. The best match is the location of the EST with the highest number of
anchor sequences. Column 5 has the name of the marker that was used to limit the search results for any bins wholly
contained within the bin containing the marker. Each of the chosen markers are located in the same experimentally
determined position as the EST. The final column is the number of anchor sequences that justify the prediction of
the EST being in the same bin region as the marker. Anchor sequences are taken from two rice BACs upstream of
the virtual hit through to two rice BACs downstream.

b (NeighbourBAC+- 10)—The same as above except that the anchor sequences are taken from the 10 BACs upstream
through 10 BACs downstream of the virtual hit on the rice genomic sequence. Increasing the genomic area around
the hit to search increases the number of anchors for 3/4 of the correctly mapped ESTs.

To build the structural genomic relationship between wheat and rice, many
components are integrated including wheat microsatellite maps, a wheat EST bin
map, wheat microsatellite bin map, a contig assembly of >415,000 wheat ESTs,
ordered rice.

BACs, and the draft rice genome sequence. All of this is tied together in a
piece of software written by Travis Banks which can be upgraded as more quantity
and accurate information is developed.



Alignment of Wheat and Rice Structural Genomics Resources 209

When these genomics resources are improved and the interrelationships are
refined, the prospect of discovering candidate wheat ESTs or genes in QTL inter-
vals using the rice genome sequence will improve. We are currently investigating
wheat chromosome regions controlling FHB resistance, wheat midge resistance,
and will examine regions controlling seed quality characteristics in the future.
Ultimately, wheat gene discovery is refined to a wheat BAC contig where BAC
sequencing will be required. The 3.1X hexaploid wheat BAC library at AAFC
is providing a direct flow of research from wheat-fine mapping (based on rice
sequences) to BAC clone isolation and sequencing.
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Chapter 15

Computational Identification of
Legume-Specific Genes

Michelle A. Graham, Kevin A. T. Silverstein, Steven B.
Cannon, and Kathryn A. VandenBosch

1. IDENTIFICATION OF SEQUENCES OF INTEREST
FROM PUBLIC DATABASES

One of the biggest challenges facing biologists today is the sheer amount of
sequence information available. There are more than 1.4 million sequences in the
GenBank nonredundant database and more than 16.3 million sequences in dbEST
(National Center for Biotechnology Information [NCBI], April, 2003). To access
sequences of interest from within GenBank, two main options are available. The
first is to use the BLAST algorithm to query a previously identified sequence of
interest against any of the GenBank sequence databases (Altschul et al., 1997).
This will identify sequences with similarity to the query sequence. Results can be
delimited by species of interest and by degree of similarity to the query sequence.
The second option for accessing sequence data from GenBank is to query the
database using keyword searches. In this case, searches can be limited by species
of interest and/or by keywords anywhere in the sequence annotation. Both meth-
ods have distinct advantages and disadvantages. BLAST can be used to identify
all sequences that have sequence similarity to a specific nitric oxide synthase, a
calmodulin binding protein. However, a keyword search would be necessary to
identify all other classes of proteins that may also bind calmodulin.
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Once sequences of interest have been identified, other problems can arise.
Many sequences lack informative annotation. These include ‘putative’ or ‘hypo-
thetical’ sequences identified from genomic DNA that are predicted to encode a
gene. Other sequences may be incorrectly annotated or may be annotated by their
expression pattern in a particular species. A second problem is sequence redun-
dancy. In the case ofMedicago truncatula, there are 443 EST contigs whose ESTs
are represented more than fifty times in dbEST (TIGR Medicago truncatula Gene
Index 6; http://www.tigr.org/tdb/tgi/mtgi). The results of BLAST and keyword
searches often fail to answer basic biological questions: Where is the gene ex-
pressed? How related are orthologous genes? Is the mRNA alternatively spliced?
Is the gene part of a gene family? Given these problems, it can be difficult to frame
biological questions that will yield clear answers. The focus of this paper will be
to use sequence databases to ask important questions about legume biology.

2. IMPORTANCE OF LEGUMES

Grain legume species such as peas, beans, and lentils account for over 33%
of human dietary protein nitrogen and needs worldwide (Vance et al., 2000). Other
legumes, such as alfalfa, clover, and barrel medics (M. truncatula) are widely used
as animal fodder. Legumes are important sources of protein, oil, mineral nutrients,
and nutritionally important natural products, such as flavanoids. One important
feature of legumes is their interaction with Rhizobium bacteria. Ongoing commu-
nication between plant andRhizobium is essential in development and maintenance
of the nodule, a plant organ found only in legumes and a small number of related
taxa (Doyle and Luckow, 2003). Through this symbiotic interaction, legumes sup-
ply usable nitrogen to both natural and agricultural ecosystems. Legumes also form
symbiotic associations with mycorrhizal fungi, which aid in mineral acquisition
from the soil. While these interactions are beneficial to the plant, many fungal and
bacterial pathogens also exist which can have a large impact on crop yields. The
many uses of legumes and the variety of symbiotic and pathogenic interactions
found provide numerous targets for functional genomics research.

3. DATABASES OF EXPRESSED SEQUENCE TAGS

Currently, expressed sequence tags (ESTs) are being collected from three
legume species. There are 308,582, 181,444, and 36,210 EST sequences available
for soybean, M. truncatula, and Lotus japonicus, respectively (NCBI, April,
2003). Once the individual EST sequences are generated, they are assembled into
contigs, which represent the minimally redundant set of a species’ expressed genes.
Different research groups have used different algorithms to assemble the ESTs
into contigs (VandenBosch and Stacey, 2003). The Institute for Genomic Research
(TIGR) has clustered the ESTs from a variety of species, including the three
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legume species, into minimally redundant unigene sets (TCs; Quackenbush et al.,
2001).

3.1. Data Mining the TIGR Gene Indices

Using the TIGR Gene Indices, researchers can query ESTs by gene product
name, using an ortholog from the Eukaryotic Gene Orthologs (EGO; Lee et al.,
2002) database, or by expression pattern. In addition, ‘Electric northern blots’
can be performed using Boolean operators. This allows the user to select contigs
shared between libraries or contigs that are unique to a specific experimental con-
dition. Using Boolean searches, Federova et al. (2002) identified 340 TCs with
nodule-specific expression patterns from the TIGR M. truncatula Gene Index 4.
Many of the genes identified shared sequence similarities with nodulins, planta-
cyanin, calmodulins, purine permease, and an embryo-specific protein. In addition,
a family of 114 TCs with weak similarity to the early nodulin ENOD3 was also
identified, which will be discussed in detail below. One of the drawbacks of this
approach is that genes expressed at low levels may not be accurately reported. To
determine the validity of using in silico analyses to predict gene expression, the
expression patterns of 91 TCs were examined by northern blot. TCs composed of
more than five ESTs did indeed have nodule enhanced expression patterns.

3.2. Data Mining theM. truncatulaMtDB Database

In M. truncatula, sequencing has focused on ESTs representing different
stages of development, different organs, and responses to microbial interactions
such as symbiotic nodulation, colonization or pathogen infection. One goal of the
NSF-funded M. truncatula Consortium was to build a database, MtDB, (Lamblin
et al., 2003; http://www.medicago.org/MtDB) for Medicago EST sequences that
was easily accessible, flexible, and could be used to answer basic biological ques-
tions of interest to researchers. The Center for Computational Genomics and Bioin-
formatics (CCGB, University of Minnesota) have separately clustered and assem-
bled the Medicago ESTs into a unigene set, housed within MtDB. The database
will also contain additional genetic, genomic, and biological information about
M. truncatula. Like the TIGR Gene Indices, MtDB can be searched for contigs
made up of combinations of ESTs from particular libraries. In addition, users can
limit their searches by the BLAST results of the contigs. For example, to search
for legume-specific genes involved in nodulation, a user can easily search for con-
tigs expressed exclusively in nodules that have BLAST hits to legume species but
not nonlegume species. In the mycorrhizal root libraries, some of the ESTs might
not be of Medicago origin since the endophytic fungal symbiont might have also
contributed to the polyA RNA pool used for library construction. A user could
search for contigs from mycorrhizal root libraries with BLAST homology to fungi
but not plants to identify these sequences. A similar approach can be utilized to
identify ESTs corresponding to pathogens in the pathogen inoculated libraries.
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One important feature of MtDB is the ability to check the quality of the
contigs. A user can compare equivalent contigs identified from TIGR and MtDB.
Since the contigs were assembled using different algorithms (Cap4 and Phrap),
some contig differences may exist. The results of the comparison include ESTs
that are shared between the two contigs and ESTs that are unique to each contig.
The equivalent contigs query can also be used to identify contigs within MtDB that
are likely part of a gene family or represent alternative splice products. Finally,
users can view a graphical representation of an MtDB contig to determine if the
assembly is correct. Each of the four nucleotides is represented in a different
color and sequence quality is indicated by the height of the base. With this contig
representation, problems in contig assembly can often be easily recognized.

4. IDENTIFICATION OF LEGUME-SPECIFIC GENES

With the database tools in place, we could begin to ask questions about
legume biology. As mentioned previously, the formation of Rhizobium-induced
nitrogen-fixing nodules is a phenomenon unique to legumes and a small number
of related species (Doyle and Luckow, 2003). In addition, legumes can synthesize
isoflavanoids not found in other plant species. While many of the genes involved
in these processes were likely adopted from other pathways shared between many
different plant species, some of the genes may be unique to legumes or may have
diverged so much within legumes that they appear unique. The goal of this project
was to identify sequences from M. truncatula, soybean, and L. japonicus that
appeared to be legume-specific. Preliminary results from this study were reported
in an overview of the Medicago genome project (VandenBosch and Stacey, 2003).
As a working definition, legume-specific genes have no sequence homology, below
a specified threshold, to any publicly available sequences of nonlegumes. Note that
putative legume-specific genes may ultimately have nonlegume homologs from
species that aren’t represented in the sequence databases.

4.1. Using BLAST to Identify Legume-Specific Genes

To identify legume-specific genes, the NCBI BLASTN and TBLASTX pro-
grams were used to compare the TIGR Medicago, soybean (Glycine max and
Glycine soja), and Lotus TCs against the TIGR maize (ZmGI), tomato (LeGI),
rice (OsGI), and Arabidopsis (AtGI) Gene Indices (Table 1; Quackenbush et al.,
2001; http://www.tigr.org/tdb/tgi). The Gene Indices included both TC and single-
ton EST sequences. By using a limited dataset of nonlegume species, we hoped
to quickly and efficiently eliminate as many TCs as possible that had homology
to sequences from nonlegumes. If a legume TC had BLAST homology to any se-
quence from one of the four nonlegume species with an E-value more significant
than 10−4, it was not considered legume-specific and was removed from the list
of putative legume-specific genes. Using this two-step BLAST approach, we were
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able to eliminate approximately 90% of TCs from Medicago, soybean and Lotus
that did not appear to be legume-specific.

With a smaller subset of putative legume-specific TCs remaining, we could
use more stringent and computationally intensive searches to identify homologous
sequences from nonlegume species. At each of the following steps, either the
number of sequences in the nonlegume dataset was increased or the stringency of
the BLAST search was changed from BLASTN to BLASTX or TBLASTX. In all
cases, legume TCs with homology to nonlegume sequences with an E-value more
significant than 10−4 were not considered legume-specific.

The next step was to take the remaining 3,973 legume-specific TCs and com-
pare them to the GenBank protein database (nr) using BLASTX. BLASTX trans-
lates a legume TC in all six reading frames and compares the results to a protein
database. An additional 340 TCs were identified with homology to nonlegume se-
quences, leaving 3,633 legume-specific TCs. Next, the remaining legume-specific
TCs were compared to the remaining nonlegume plant Gene Indices available at
TIGR. This included the Gene Indices for barley,Chlamydomonas reinhardtii, cot-
ton, grape, ice plant, lettuce, Pinus spp., potato, rye, sorghum bicolor, sunflower,
and wheat. Comparisons were made using TBLASTX, which translates the query
and target sequences in all six reading frames and compares all 36 combinations to
find possible homology. Another 283 legume TCs with homology to nonlegume
sequences were identified.

All of the BLAST searches described to this point involved nonlegume se-
quences that most likely represent real genes. This includes expressed genes, such
as ESTs, genes that have been identified experimentally, and also genes that have
been predicted from genomic sequences. Gene prediction programs use different
algorithms to identify coding and noncoding sequences. It is unlikely that any
gene prediction software could identify all potential genes. Therefore, it was nec-
essary to search the remaining legume-specific TCs against the available genome
sequences of Arabidopsis thaliana (The Arabidopsis Genome Initiative, 2000;
Bevan et al., 2001) and Oryza sativa (Goff et al., 2002; Yuan et al., 2003). Using
TBLASTX, the 3,352 remaining legume-specific TCs were compared against the
rice and Arabidopsis genomes. Unlike previous searches, the sequences were fil-
tered prior to BLAST to remove low complexity sequences. This resulted in the
removal of an additional 37 legume TCs.

For the last steps, it was important to compare the remaining legume-specific
TCs with the largest dataset, NCBI’s EST-others, which contains all EST se-
quences except for those from human and mouse. With more than 16 million
sequences, this was by far the most computationally intensive search. If the same
machine was used for this step as had been used previously, a TBLASTX search
of the remaining 3,315 legume-specific TCs would have taken more than six
weeks. Therefore, we used the DeCypher R© Bioinformatics Accelerator running
the Tera-BLASTTM hardware accelerated version of BLAST (TimeLogic, Crystal
Bay, NV) which was housed in CCGB at the University of Minnesota. Using
this system, we were able to run Tera-BLASTN and Tera-TBLASTX against
EST-others in less than three hours. After successive BLAST searches, 1,028,
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1,997, and 101 legume-specific TCs remained from Medicago, soybean, and Lotus,
respectively.

4.2. Are the Identified Legume-Specific TCs Really Legume-Specific?

One area of concern was that some of the legume-specific TCs might be
too short to give informative BLAST hits. Hits could also be missed if a TC’s
sequence corresponded to the untranslated portion of the gene and not to the
protein-encoding portion of the gene. Since the untranslated portions of the gene
do not encode a protein, they are less likely to be conserved among species. To
get around this problem, the remaining 3,126 putative legume-specific TCs were
compared to the original set of legume TCs using TBLASTX at different stringency
levels (Figure 1). If a legume-specific TC had a BLAST hit only to itself or to
another legume-specific TC, it was retained as legume-specific. However, if a
legume-specific TC had a BLAST hit to a TC with homology to nonlegumes, it
was given lower priority. Based on the small inflection at 1.00E−20, this value
was chosen as the cutoff for further restricting the legume-specific TCs. Using this
cutoff, 2,525 legume-specific TCs remained. Of these, less than 5% had significant
sequence homology to legume sequences in the GenBank nonredundant database.
Sequence homologies include: late nodulins (Vicia faba), hypothetical proteins
(Galega orientalis,Glycinemax, andCicer arietinum), nodule-specific protein and
seed albumin PA1 (Pisum sativum), MtN1 and MtN17 (M. truncatula), leginsulin
and 1,3-β-glucanase (Glycine max) and TrPRP2 (Trifolium replens).
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FIGURE1. The effect of different E-values when using BLASTX to compare putative legume-specific
TCs against all legume TCs. Putative legume-specific TCs with BLAST hits to TCs with homology to
nonlegume sequences at a particular E-value are removed. Stringency of the cutoff increases from left
to right across the x-axis. The arrow indicates a small inflection in the graph at 1.00E−20. This cutoff
was used to further restrict the number of legume-specific TCs.
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5. HOW CAN A GENE’S FUNCTION BE DETERMINEDWHEN
BLAST FAILS TO FIND A HOMOLOG?

5.1. Single Linkage Clustering

In order to identify legume-specific TCs that were members of a gene family
or that had homologs among the other examined legume species, single linkage
clustering was performed. TBLASTX was used to compare all legume-specific
TCs against themselves using an E-value cutoff of 10−6. If the BLAST reports of
two TCs had a least one TC in common, the TCs were combined into a group. For
example, if the BLAST report of TC1 overlapped with BLAST report of TC2, and
the BLAST report of TC2 overlapped with the BLAST report of TC3, all three
TCs and the TCs included in their BLAST reports would be put in a single group.
Using this technique, 124 different groups representing 439 TCs were identified
(Table 2).

Surprisingly, of the 2,525 TCs that were clustered, only 31 groups were
identified that contained TCs from both Medicago and Glycine. Since sequences
from both species were well represented, this result was unexpected. In an effort to
explain the lack of homology between Medicago and Glycine, the tissue source of
ESTs within legume-specific TC was examined in each of the species (Figure 2).
In Medicago, 69% of ESTs from legume-specific TCs corresponded to nodule or
root cDNA libraries. In contrast, only 16% of ESTs from legume-specific TCs in

Table 2
Identification of Homologous Legume-Specific TCs using Single Linkage Clustering.

Groups of Homologous Genes Identified Across Species Number of Groups Identified

Medicago truncatula and Lotus japonicus 2
Medicago truncatula and Gycine max/soja 30
Medicago truncatula, Glycine max/soja, and Lotus japonicus 1

Homologous groups identified within Medicago truncatula
2 TCs per group 27
3 TCs per group 4
4 TCs per group 7
5 TCs per group 1
7 TCs per group 1
10 TCs per group 1
125 TCs per group 1

Homologous groups identified within Glycine max/soja
2 TCs per group 55
3 TCs per group 4
4 TCs per group 1
5 TCs per group 1
15 TCs per group 1

Homologous groups identified within Lotus japonicus
2 TCs per group 2
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soybean came from nodule or root libraries. Instead, more than 50% of the legume-
specific soybean ESTs came from shoot libraries. A similar result was observed
when the distribution of ESTs from all nonhomologous Medicago and soybean TCs
was examined (data not shown). This suggests that the lack of homology between
the two species is due to tissue bias in the EST sequencing projects rather than
species differences. Using single linkage clustering, a gene family of 125 Med-
icago TCs was identified. Some of the TCs within this group had weak (>10−5)
similarity to nodule-specific cDNAs GoAT-Ldd1 (Galega orientalis; Kaijalainen
et al., 2002), cysteine cluster proteins (CCPs,Vicia faba, Frühling et al., 2000) or
ENOD3 (Pisum sativum, Scheres et al., 1990). Each of these TCs had a small
open reading frame of approximately 70 amino acids. The 5′ end of the predicted
protein contained a cleavable signal peptide, while the remainder of the protein
contained two cysteine clusters (Figure 3). Each cluster was composed of two cys-
teine residues, almost always separated by five amino acids. When the TCs were
used as query sequences for TBLASTX analysis of the Medicago singletons, more
than 150 singleton sequences were identified that were members of this large gene
family. Together, all the members of the family account for 6% of the ESTs identi-
fied from the mature and senescent nodule libraries (GVN and GVSN). Sequence
alignment of the CCPs reveals the high degree of sequence divergence between
members of the gene family (Figure 3). This group was simultaneously identified
by Fedorova et al. (2002) because of its nodule-specific expression pattern and
also by Mergaert et al. (2003) who used BLAST to query the Medicago ESTs for
sequences with homology to cysteine cluster proteins identified by Györgyey et al.
(2000).

A second interesting group bore a lot of similarity to the nodule-specific CCPs.
This group contained ten TCs from Medicago and two TCs from soybean. When
the cut-off for single linkage clustering was lowered to 10−4, this group would
cluster with the nodule-specific CCPs. Like the nodule-specific CCPs, members
of this group had a cleavable signal peptide and two cysteine clusters. However,
none of the members in this group had significant BLAST hits. In addition, all
members of the group appeared to have seed-specific expression patterns.

5.2. Motif Searching

Many of the groups of legume-specific genes we identified had little sequence
homology to characterized genes or gene products. Hence, we sought alternative
methods to hypothesize the functions of these families. Motif-searching can be use-
ful in characterizing genes when BLAST fails to find a homolog. Unlike BLAST,
motif-searching algorithms weigh highly conserved residues more heavily, al-
lowing a multilevel consensus. In addition, they require no minimum word-length
match (a consecutive string of matched bases) and the more sequences that are built
into the motif, the better it becomes at finding a match in a query sequence. One op-
tion for motif-searching was to characterize legume-specific TCs using a collection
of known motifs. Programs such as PROSITE (Falquet et al., 2002), InterProScan
(Mulder et al., 2003), PRINTS (Attwood et al., 2003), PFAM (Bateman et al.,
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2002), SMART (Letunic et al., 2002), TIGRFAMs (Haft et al., 2003), and PANAL
(Silverstein et al., 2000) can be used to search a query sequence for conserved
motifs that have been identified from other proteins. A second option was to
determine whether some motifs that were conserved among a group of legume-
specific genes bore any similarity to parts of previously characterized proteins.
If there was a common theme among the hit proteins, this would provide a hint
of possible function. The following procedure was used to model, identify, and
refine motifs shared within each group of legume-specific TCs having three or
more sequence members:

1. TBLASTX of legume-specific TCs was used to identify singleton se-
quences that could also belong to each group.

2. Each TC and singleton within a group was translated in all six frames.
3. The entire set of translated sequences was modeled as an ungapped

position-specific scoring matrix (PSSM) using the MEME program (Bailey
and Elkan, 1994). This program uses an expectation maximum algorithm
to identify optimal-width motifs among the protein sequences. In this step,
most of the incorrect frames from the translations of Step 2 fail to have a
conserved motif. This allows us to quickly identify and remove them.

4. The motifs generated in Step 3 were used by the MAST (Bailey and
Gribskov, 1998) program to scan all the sequences in Swiss-Prot/TrEMBL
(Boeckmann et al., 2003), a comprehensive non-redundant collection of
known protein sequences.

5. All sequences from Step 4 that have significant scores are added to the
original set of legume-specific sequences.

6. Steps 3–5 are repeated until (i) no more significant hits are found, or (ii)
the sequences from Step 5 have clearly begun to dominate the PSSM (in
which case further iterations would not help us with our initial set).

The procedure outlined above yielded interesting results for many of the
groups that had no significant BLAST homology. For the nodule-specific CCP
group, three motifs with 20, 14, and 15 amino acids respectively were identified
(the first motif was the signal peptide). The first round of motif scans yielded strong
hits to one sequence from Galega orientalis, five each from Pisum sativum and
Vicia faba, and a sequence from Trifolium replens. The second round yielded one
more strong hit to a fragmentary sequence from pea (labeled Nodulin-14), and
moderate hits to a half dozen scorpion potassium-channel blocking neurotoxins.

For the seed-specific CCP group, the first round yielded a single 24-amino
acid motif shared with a protease inhibitor from pear. Adding this single sequence
yielded about a hundred significant hits to plant protease inhibitors, plant and
insect defensins, and scorpion sodium-channel blocking neurotoxins. There are
3D structures for representatives of each of these categories of hits, and they are
all known to share a common knottin fold (Thomma et al., 2002).

Other groups with no BLAST homology were identified that did have con-
served motifs. One group shared domains with several Arabidopsis and Flaveria
“ZF-HD homeobox proteins”. A second shared a few motifs with B-like cyclins
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from Medicago sativa and M. varia. A third group shared three long motifs com-
mon to Globulin-1/Vicilin storage proteins in wheat, most nuts, oily seeds and
legumes.

6. FUTURE GOALS

Using the available sequence databases and various computational algo-
rithms, we have identified approximately 2,500 genes fromM. truncatula,Glycine
max/soja and L. japonicus that appear to be legume-specific. Currently, cDNA
clones of the legume-specific genes from Medicago are undergoing full-length
sequencing, which could help in further elucidating their function. In addition,
sequencing of the M. truncatula genome will also provide information about the
location and organization of these genes in the genome and can also be used to
identify elements in the promoters that could determine the expression patterns of
these genes.

Our next step is to confirm that the identified legume-specific genes are in
fact legume-specific. This will be done using DNA from various plant species
that aren’t well represented in the sequence databases, including divergent legume
species and taxa that are sister to the legumes (Doyle and Luckow, 2003). Finally,
we hope to use molecular techniques to further characterize the expression of a
subset of these genes and to determine their function in legumes.
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BRAHMS and BeerGenes: Information
Management for Genetic Research on
Barley and Oat

Jean Gerster, Nicholas A. Tinker,
Yella Jovich-Zahirovich, Anissa Lybaert, Shaolin Liu,
Stephen J. Molnar, and Diane E. Mather

We have developed a relational database, BRAHMS (Bioinformatic Resource
for Avena and Hordeum Metabolic Sequences), to support an inter-institutional
research project on sequence-based marker development for oat (Avena
sativa L.) and barley (Hordeum vulgare L.) and a web interface, BeerGenes
(http://gnome.agrenv.mcgill.ca/BG/), to provide public access to a subset of the
data contained in the BRAHMS database. Our research integrates sequence and
metabolic pathway data obtained from public databases with sequences obtained
from libraries and PCR experiments in our laboratories in order to develop ge-
netic markers that reflect differences in genes that may influence grain quality in
oat and barley. BRAHMS houses sequence information from public repositories
such as GenBank, as well as sequences and mapping data derived from our project
research. We regularly download the current contents of public nucleotide and pro-
tein databases and conduct local BLAST homology searches. We then incorporate
the results into our database. BRAHMS links DNA sequences to information about
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products for which they code (if known) and relates gene products to information
about genetic loci as well as to the biochemical pathways in which they are in-
volved. For sequences generated in the laboratory BRAHMS contains information
regarding the details of the experiments from which these sequences were ob-
tained. Information on QTLs that have been detected for grain and malt quality
traits in barley are also entered into BRAHMS. At present BRAHMS contains
information on 785 metabolic public web interface, BeerGenes allows any user to
search for barley grain and malt quality QTLs by genomic region (BIN or BINs) or
by trait. This facilitates positional comparisons of QTLs with each other and with
candidate genes. As our research continues we are developing additional tools to
share more of BRAHMS’ capabilities with other researchers, pathways, 107 gene
products, 4,700 DNA sequences, 208 QTLs and 43 other loci. A private web inter-
face allows BRAHMS to be used in collaborative research between laboratories
at McGill University and the Eastern Cereal and Oilseed Research Centre.



Microcolinearity in the Allotetraploid
Gossypium hirsutum

C. Grover, H. Kim, R.A. Wing, and J.F. Wendel

Gossypium is an interesting genus from the perspective of genome size evolution.
Despite its relatively young age (5–10 million years old)1 and conserved comple-
ment of genes, DNA content varies more than three-fold within the genus, from
2–7 pg (2C content)2. In an effort to determine the dynamics of genome size evolu-
tion in Gossypium, we have embarked on a comparative BAC sequencing project.
Here we present preliminary results from the allotetraploid cotton, Gossypium
hirsutum. BACs containing homologous genomic regions from the A genome
(2C = 3.8 pg)2 and the D genome (2C = 2 pg)2 were randomly sheared and the
fragments were cloned and sequenced. Comparisons of assembled sequences indi-
cate a high degree of conservation between the two genomes, with fourteen genes
predicted in this region, thirteen of which have moderate to high homology with
annotated genes in GenBank. In addition, we uncovered three shared transposable
elements, two transposable elements that are unique to the D genome, and one
that is unique to the A genome. Numerous other indels distinguish these genomes,
including the differential insertion of a fragment of the chloroplast gene ycf2. In
contrast to expectations based on genome sizes, there is no size divergence in
this specific 100 kb+ region, with less than 1kb difference due to indels. Future
plans include extending our analysis to the model diploid parents, phylogenetic
outgroups, and other genomic regions.
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Determining the Chromosomal Location
of the Wheat Leaf Rust Resistance Gene
LrW1

C. Hiebert, J. Thomas, and B. McCallum

Leaf rust, caused by Puccinia triticina Eriks., is a disease of wheat (Triticum
aestivum L.) that causes significant annual yield loss. Host genetic resistance has
been successfully implemented as a disease control strategy. However, pathogen
evolution results in virulent races rendering many resistance genes ineffective over
time. Therefore new sources of resistance must be identified and characterized. One
critical step in characterization is genetic mapping of new leaf rust resistance genes.
We studied a previously identified gene temporarily named LrW1. To assign LrW1
to a chromosome we used haploid deficiency mapping. We generated putative
aneuploid hybrids by crossing a haploid isogenic line carrying LrW1 (n) with
a leaf rust susceptible pollinator (2n). Hybrids were inoculated at the two leaf
stage with P. triticina virulence phenotype MBDS. The hybrids were resistant to
leaf rust unless the resistant parent failed to transmit the chromosome containing
LrW1. Leaf rust susceptible hybrids were identified and chromosome deficiencies
determined with microsatellites. Three susceptible hybrids were found and each
was deficient for most of chromosome 5B. Using an F2 population segregating
for LrW1, a microsatellite on chromosome 5BS was shown to be linked to LrW1
(14.1 cM). We concluded that LrW1 is located on chromosome 5BS.
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Characterization of EST Libraries
from Drought-Stressed Leaves and
Penetrated Roots of Rice

Md S. Pathan, William G. Spollen, Mark Fredricksen,
Hans J. Bohnert, Deshui Zhang, and Henry T. Nguyen

Rice (Oryza sativa L.) genotypes, IR62266-42-6-2 and CT9993-5-10-1-M, are
well documented for their high osmotic adjustment and root penetration ability,
respectively, traits which confer tolerance to drought. We constructed separately a
subtracted and an un-subtracted cDNA library from drought-stressed leaf tissues
of IR62266, an indica rice. A third library was constructed from penetrated root
tissues of CT9993, a japonica rice. All the libraries were sequenced from the 5′

end. The combination of the two drought-stressed leaf libraries had 1911 unique
genes out of 2472 ESTs. Of the unique sequences, 354 were novel as determined
by BLAST search of GenBank. Some sequences showed similarities with cDNAs
of known stress-related proteins, including catalase, glyceraldehydephosphate de-
hydrogenase, and a putative phytochrome-associated protein. Out of the 963 ESTs
in the CT9993 library, 670 were unique, and 28 of these were novel. Several
clones in the CT9993 library showed homology with cDNAs coding for ascorbate
peroxidase, peroxidase, xyloglucan endotransglycosylase, S-adenosyl methionine
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synthase, and other stress-related proteins. The association of the predicted gene
product functions with possible mechanisms of OA and root penetration will be
considered.



The Phylogenetic Utility of N-Length
DNA Strings in Plants

Ryan Rapp and J. Gordon Burleigh

The advent of the genomic era has produced a large amount of DNA sequence data
from many organisms. Unfortunately, much of the sequence data are not useful
for traditional phylogenetic analysis based on comparisons of homologous loci.
We examine a method for utilizing this genomic information to resolve ancient
evolutionary divergences using distance matrices based on the relative frequencies
of DNA strings of length n. This method allows one to incorporate information
from all non-repetitive DNA sequences into a phylogenetic analysis, and it avoids
errors associated with mistaken sequence alignments and orthology. However,
the utility of n-length string frequencies as a phylogenetic character is largely
unknown, especially in plants. We attempt to address the following questions: 1)
Is the frequency of n-length DNA strings phylogenetically informative in plants?
2) What is the basis of the phylogenetic signal within the data? 3) What are
the appropriate statistical assays to evaluate the phylogenetic signal? We present
the novel program, Fingerprint, to construct distance matrices based on n-length
strings, and implement it to show the presence of a phylogenetic signal within
land plants. We propose explanations for this signal and describe a new statistical
methodology to analyze the robustness of the data.
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Telocentrics as a Breeding Tool
in Wheat

Erica Riedel and Julian Thomas

In a highly studied species like wheat, the rate at which useful traits are discovered
exceeds the ability of a breeding program to introduce new variability. This is
especially true where the new allele is difficult to select for. In the case of antibiotic
resistance to the wheat midge, direct selection for Sm1 requires close scrutiny of
wheat heads in the presence of a heavy midge infestation while indirect selection,
using DNA markers, is possible only where there is suitable polymorphism. Even
where feasible, either method is costly enough to restrict the size of the population
that can be processed. As a cost effective alternative, we have introduced a relevant
telocentric into elite populations segregating for the trait. Since Sm1 is located on
2BS, all the euploid progeny of a hybrid between telo 2BL and a wheat midge
resistant line will necessarily be resistant. Data on the transmission of 2BL through
ovules (∼50%), through pollen (∼25%) and on its effect on seed yield (low in the
ditelo) show that, even with no selection, homozygous resistant types will dominate
such segregating populations by F6 (>90%).
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Comparative DNA Sequence Analysis
of Wheat and Rice Genomes

Mark E. Sorrells and Mauricio La Rota

The use of DNA sequence-based comparative genomics for evolutionary stud-
ies and for transferring information from model species to related large-genome
species has revolutionized molecular genetics and breeding strategies for crop
improvement. In this study, 2835 ESTs that have been physically mapped us-
ing wheat (Triticum aestivum L.) deletion lines and segregating populations were
compared to the public rice (Oryza sativa L.) genome sequence data from 2251
ordered BAC/PAC clones using NCBI BLAST. A rice genome view of homol-
ogous wheat genome locations shows strong similarities between the previously
published comparative maps based on RFLPs and the DNA sequence-based com-
parative map, but at a much higher resolution revealing numerous discontinuities.
The physical locations of non-conserved regions do not seem to be conserved
across all rice chromosomes. Several wheat ESTs having multiple wheat genome
locations seem to be associated with the non-conserved regions of similarity be-
tween rice and wheat. The inverse view showing the relationship between the
wheat deletion map and rice genomic sequence location revealed extensive con-
servation of gene content and order at the resolution conferred by the chromosome
deletion breakpoints in the wheat genome. However, using only single copy genes,
deletion bins in the most conserved regions often contained sequences from more
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than one rice chromosome. This suggested that there has been an abundance of
rearrangements, insertions, deletions, and duplications that, in many cases, will
complicate the use of rice as a model for cross-species transfer of information in
non-conserved regions.



Marker Assisted Backcrossing—Some
Lessons from Simulation

Julian Thomas and Daryl Somers

Marker assisted backcrossing accelerates restoration of the background of the re-
current parent by selecting an individual which has inherited the target trait from
the non-recurrent parent, but which also has fixed more marker alleles from the
recurrent parent than are expected on average. Obviously, a polyploid or large
genome, in which total recombination length is high, will require more markers
for good genome coverage than a small or diploid genome. At the same time
however, spacing the markers closer than 50 cM will yield increasingly redundant
information as linkage comes into play. We present the results of simulated exper-
iments in which all markers were independent (consistent with spacing at about
50 cM intervals) with the number of markers ranging from 10 (∼500 cM) to 100
(∼5,000 cM). These simulations lead to three general conclusions. Firstly, marker
assisted backcrossing works much better for small genomes than for large ones.
Not only are fewer markers required but also, on average, the restitution of the
best individual is more complete. Secondly, we found that increasing the number
of individuals examined was an inefficient strategy for increasing the expected
rate of restitution for large genomes. Typically, average restitution of the recurrent
genotype was increased by about 1 marker per doubling of the population starting
at 25 individuals and ending at 3200. Thirdly, the degree of restitution obtained
in a single trial was quite variable compared to that observed on average. This
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means that an observed restitution might easily be noticeably better or notice-
ably worse than expected. Predictions from the model were in reasonable agree-
ment with the degree of restitution recorded in an actual backcross experiment in
wheat.



Ceregenedb: A Database of Coding
Sequence Conservation Between Rice
and Nonrice Cereals and Arabidopsis

Shibo Zhang, Brian C. Thomas, and Peggy G. Lemaux

The completed draft sequence of the rice (Oryza sativa L.) genome from
both subspecies, indica and japonica, has provided the first platform in the
grass family from which to analyze conservation of individual genes at both
the DNA and protein levels. Because of the unavailability of full-genome se-
quence from other cereals, we used the UniGene sets of three nonrice cere-
als (barley, 6,965 sets in total; wheat, 12,467; maize, 9,897) and Arabidop-
sis (26,792) available in NCBI (http://www.ncbi.nlm.nih.gov/UniGene/) as their
coding sequence representatives, comparing them with rice genome and pro-
tein sequences. From each species, there are two types of Unigene sets: CDS-
type with full-length or nearly full-length mRNA sequences and EST-type
with about 400-600 bp of expressed sequence from a gene. Each UniGene
set sequence was analyzed for conservation with rice at both DNA and pro-
tein levels, using BLASTn against the rice indica genome sequence from
BGI (http://btn.genomics.org.cn/rice/index.php) and BLASTx against the rice
protein database in GRAMENE (http://www.gramene.org/perl/protein search),
respectively. Based on current data, analysis of our results indicates that
there are ∼10% of CDS-type UniGene sets from each nonrice cereal that
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do not have identified rice homologues; most of these sequences are re-
lated to seed proteins, seed development, and resistance of the seed to insect
and fungi. From Arabidopsis, there are ∼30% of CDS-type sequences that
do not have identified rice homologues. A specialized, searchable database,
CereGeneDB (http://genomics.enr.berkelev.edu.BarlevTag.unigene result.pl) has
been established that contains the results of the blast comparisons described
above. The data are stored in a SQL-based database, and a web interface
(http://genomics.cnr.berkeley.edu/BarleyTag/unigene result.pl) was developed to
aid in searching the results from the database. Its availability will facilitate making
detailed comparisons of the protein and DNA data available for these plant species.
Queries can be performed using various options, including species, percent iden-
tity, length of a match, sequence type (CDS or EST), or by key word. The database
will be continuously updated as additional sequence information becomes avail-
able. We believe this database will be a useful resource for the research community
to study comparative and evolutionary genomics in the grass family and between
monocots and dicots and to aid in cloning genes, using rice as a reference.
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GLIMMER, 185, 186
Globulin-1/Vicilin storage proteins, 223
Globus, 192
Glycine max, 214, 215, 217–219, 223
Glycine soja, 214
Gossypium hirsutum, 231
GPCRDB, 126, 127
GrainGenes, 110
GRAMENE, 245
GRAS-like genes, 60
Greedy algorithms, 14, 24–26
Greedy closure evolutionary algorithm, 25,

26
Greedy closure genetic algorithm, 14
Green revolution, 64
GRID, 158
GT-AG U2-type introns, 68
GUI, 83

Haplotype, 136–138, 140
Haplotype-based tests, 136
Hd1, 7
Hd6, 7
Hd3a, 7
HMMER, 5
Homoeologous chromosomal regions, 164, 165
Homoeologous loci, 116
Hordeum vulgare, 114
Human Genome Initiative, 64
Hybridization-based genetic maps, 171

IGF2, 157
IGF-1 and IGF-1 binding proteins, 149
Immersive environments, 83
Indica, 1, 7, 9
INE, 3, 6, 8, 9
Information technology (IT), 183
Integrated databases, 123
INtegrated Rice Genome Explorer, 3, 6
Integrated System, 35, 40, 43
International Rice Genome Sequencing Project

(IRGSP), 3, 4, 197, 204
International Triticeae EST Consortium, 199
InterPro, 123
InterproScan, 38, 39, 220
IRGSP (International Rice Genome Sequencing

Project), 3, 4, 197, 204
ISYS, 35, 43–46

Japonica, 1, 7, 9
JAVA, 78, 80, 85
Java2, 184
Java applet, 117
Java Beans, 193
JAVA Servlet technology, 36
JDBC, 40, 42
Juvenile wood, 49
JZmapqtl procedure, 97, 99
JZmaptqtl analysis, 99, 103

K-nearest neighbor method, 127
KEGG, 76, 77
KOME, 3, 7, 8

LeGI, 214, 215
Legume Information System (LIS), 35
Legume-specific genes, 211–212
Library, 109–118
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Linear discriminant analysis, 126–127
Linear discriminant score, 127
Linkage disequilibrium, 138, 140, 141
LINUX, 43
Logistic discriminant analysis, 127
Lotus japonicus, 212, 215, 217, 218
LrW, 233

Machine learning, 13, 19, 22, 29
MAGE, 43
Maize gene duplicates, 172
Malt quality QTLs, 230
MAML, 43
Map-based cloning, 199
MapViewer, 36
Marker assisted backcrossing, 243
Marker-assisted breeding, 134
Marker-assisted selection (MAS), 197
MAST, 222
Mature wood, 49
MaxdView’s, 44
Medicago, 164–167, 169–172, 175–177
Medicago EST sequences, 166, 177, 213, 220
Medicago truncatula, 39, 166, 167, 217
Megagametophyte, 137, 139, 140
MegAlign, 167
MEME, 222
Mendelian inheritance, 148
Meristematic transcriptome, 57
Metabolic feedback cycle, 82
Metabolome, 154, 155
MetaFam, 123
MetNetDB, 77–80
MIAME standards, 41–43
Microarray analysis, 92, 94, 110, 115
Microarray(s), 113, 115, 136
Microsatellites, 198–200, 208; see also SSR
Minimal-weight spanning tree, 24
Minimum tilling path, 200
Mis-annotations, 64
MMU2 QTL, 150
MOBY, 35, 45
Molecular clock, 171
Monocot/dicot divergence, 164
MOTIF, 3, 5, 8
Motif-searching, 220
Mouse Genome Sequencing Consortium, 89
mRNA, 109, 115, 118
MtDB, 213–214
Mu-transposon, 14, 18
Multiple sequence alignments, 185, 187
Multiple trait CIM, 96, 97, 100

Multiple trait interval mapping, 104
Multiple-trait QTL analysis, 91, 96, 97, 103, 104
MUMmer, 187, 188
MuSeqBox, 166
Mutant analysis, 89
Mutation, 15, 16, 18, 20, 25
MYB transcription family, 57
Myostatin gene, 157
MySQL, 117
MZEF, 5

NCBI, 214, 216
NCBI nonredundant database, 167, 175
NCGR, 34
Nested PCR, 202, 203
Non-specific methods, 131
Nonparametric linear discriminant analysis, 126,

127
Nonsynonymous distances, 167, 175–176
Nonsynonymous nucleotide substitutions per

nonsynonymous site, 168
Nylon arrays, 41

Obesity, 145–158
OligoArray, 192
Oracle, 38, 39
Oracle relational database, 185
ORF (open reading frame), 186–187
Orphan GPCRs, 126
Oryza sativa, 1, 133, 201, 215, 216, 235, 241,

243
OsGI, 214, 215
Over-training, 22, 28

PAC, 3, 4, 6, 8
PANAL, 222
PathDB, 35
PathInfo viewer, 188–190, 194
Pathogen Background Information (PathInfo)

tool, 185, 188, 190, 194
Pathogen-related databases, 184, 194
PathPort, 184–185, 187–189, 191–194
PathPort Protein Network (ProNet) viewer, 189,

190, 194
PathPort/ToolBus, 192–194
Pathway-classified contigs, 117
Pathway/genome database, 78
Pattern and profile search methods, 122
PCR amplification based protocol, 54
PCR-based, 198
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PCR primers, 18–20
Perl script, 166–167
Perpendicular Sequence Comparison viewer,

187, 188
Pfam, 122, 220
Phaseolae, 164
Phaseolus vulgaris, 148
Phenotypic diversity, 157
Phenylpropanoid pathway, 138–139, 142
Phrap, 110, 114, 214
Phylogenetic tree analysis, 185
Phytophthora infestans, 39
Phytophthora sojae, 39
Pib, 7
Pigs, 150, 157
Pinus sp., 134–137, 215, 216
P. banksiana, 136
P. contorta, 136
P. sylvestris, 136
P. taeda, 136

PIPELINE, 3, 8–9
Pisum sativum, 217, 220, 222
PLACE-SignalScan, 5
Plotted QTL modulators, 151
Poplar, 51–53, 58–60
Position-specific scoring matrix (PSSM), 124,

222
Primer3 design software, 187, 190, 195
Printrepeats, 5
PRINTS, 122–124, 148–151, 220
ProfileScan, 5
Prokaryotic metabolism, 78
Proportional setting, 112
PROSITE, 220
PROSITE patterns, 123, 124, 129
PROSITE/Profile, 124, 129
Protein assay, 89
Protein coding regions, 65
Protein databases, 121
Protein structure analysis, 89
Proteome, 149, 154–156
PSI-BLAST, 122, 124
PSORT, 5
PttCDKA, 55
PttCYCH, 55
Puccinia triticina, 233

QTL (quantitative trait locus/loci), 89, 91, 134,
138, 142, 145–158, 197, 199, 202, 207, 209

QTL-Cartographer, 97, 99
QTL mapping, 146–149, 152, 154–157
QTL transcript modulators, 151

Quadratic discriminant analysis, 127
Quantitative Genomics, 147, 155
Quantitative trait locus/loci: see QTL

Reaction of interest (ROI), 83–85
Recombinant inbred lines (RIL), 8, 94, 96–99
Recombination congenic strains (RCSs), 94
Regulatory locus, 91–94, 96, 97, 100, 101, 103,

104
Regulatory regions, 65
Relational database, 110, 117, 118
RepeatMasker, 5
Rhizobium, 212, 219
Rhizobium-induced nitrogen-fixing nodules, 214
Rice, 197–209
Rice anchor sequences, 205, 206
Rice blast resistance gene, 7
Rice Full-length CDNA Project, 7
Rice Genome Annotation Database, 3, 6
Rice Genome Automated Annotation System

(RiceGAAS), 3, 5
Rice Genome Research Program, 2, 3
Rice Genome Simulator Project, 3, 9
Rice Microarray Opening Site, 3, 7
RiceHMM, 5
RIL: see Recombinant inbred lines
RT-PCR, 192

Scope delimiters, 38, 39
Scorpion sodium-channel blocking neurotoxins,

222
Segmental duplication, 165, 167, 172
Senescent nodule libraries, 220
Sequence redundancy, 212
Sequencher software, 139
SeqViewer, 36
Serial Analyses of Gene Expression, 41
Signal transduction cycle, 82
Sim4, 67
SINA, 58
Single gene mutations, 148–149
Single linkage clustering, 218, 220
Single nucleotide polymorphism (SNP), 134,

136–142, 198, 199, 202–205, 207
Single point mutation, 16, 18
Single regulatory locus, 94
Single tournament selection, 16
Single-trait expression QTL, 154
Sm1, 239
SMART, 122, 124, 222
SNAPshot, 202
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SNP: see Single nucleotide polymorphism
Somatic embryogenesis (SE), 136
SOSUI, 5
Soybean genome, 164–165, 171
Sp17, 7
Spidey, 67
Spliced alignments, 65–70, 74, 75
SplicePredictor, 5
Splus, 168
Spontaneous mutations, 148
SSR, 134
Standard deviation of the estimates, 103, 104
Standard deviations, 100–103, 168
Stress-related proteins, 235–236
String evolver, 15–18, 20, 28
Structural genomics, 198–199, 207–208
Structural locus, 91–94, 97, 98, 100, 101, 103,

104
Sub-point phenotypic traits, 155
Subtractive hybridization, 113
Swiss army algorithm, 14
SWISS-PROT annotations, 130
Swiss-Prot/TrEMBL, 222
Sybase, 36, 38, 39
Symmetric multiprocessing mode (SMP), 38–39
Synonymous and nonsynonymous distances,

167–171, 173–177
Synonymous nucleotide substitutions per

synonymous site, 168
Synonymous substitution rate, 169, 174

TAIR, 79
Tandem duplication, 163, 165
TBLASTN, 201
TBLASTX, 214–218, 220, 222
TCA cycle, 79
Template-directed Dye-terminator Incorporation

and Fluorescence Polarization detection
(FP-TDI) assay, 142

Tentative contig (TC), 166
Tera-BLASTTM, 216
TIGR (The Institute for Genomic Research), 5,

204–205, 212–216
TIGRFAMs, 222
Time since divergence, 174
TMEV, 42
ToolBus client-side interconnect technology,

184–185, 192–194
Tos17 Mutant Panel Database, 3, 7, 8
Trans-regulatory variation, 150
Transcriptome mapping, 149–151, 154–158
Transcriptome mapping approach, 156, 157

Transcriptome mapping paradigm, 150, 151
Transcriptome/proteome mapping paradigm,

149
Transmembrane and loop regions, 125–126
Trifolium replens, 217
Triticeae, 109, 110, 113–115, 118
Triticum sp.
T. aestivum, 109, 114, 198, 233, 241
T. monococcum, 198
T. speltoides, 198
T. tauschii, 198, 200

tRNAscan, 5
Tubulins, 55
Two point crossover, 15, 16, 18, 20

Unigenes, 110
Unlinked trans-regulators, 151

Vicia faba, 217, 220, 222
Virtual reality (VR), 82–83

Web-enabled hyperlinks, 34
WebQTL, 158
Weighted setting, 112
Wheat EST sequencing, 198, 199, 205
Wheat midge resistance, 209
Wheat Rice Virtual Map (WRVM), 204–205,

207
Wheat virtual map, 206
Wheat virtual physical map, 205
Whole genome shotgun sequencing, 5
Wilbur-Lipman method, 167
WIT Project, 78
WRVM: see Wheat Rice Virtual Map

X-Genome Initiative (XGI), 35, 37–40, 46
x2-statistics, 17–18
X-Windows, 42
Xa21, 7
XML-based Web Services, 193

Yeast Artificial Chromosome (YAC), 2, 4, 6, 8,
200

Zea mays, 14, 19, 149
ZF-HD homeobox proteins, 222
ZmGI, 214, 215


