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Preface

The musculoskeletal system consists of the skeleton, muscles, cartilage, ligaments,
joints, and other connective tissue that supports and binds tissues and organs together,
and provides form, support, protection, stability, and movement to the body. Specific
subsystems like the spine provide both a vital central axis for the musculoskeletal
system and a flexible protective shell surrounding the most important neural pathway in
the body, the spinal cord. The musculoskeletal system is involved in various disease
processes associated with aging and degeneration of bones and joints, such as osteo-
porosis and osteoarthritis. Osteoporosis is a condition where bones become brittle and
fragile from loss of tissue due to hormonal changes, or deficiency in calcium or vitamin
D. Osteoporosis leads to an increased bone fracture risk, which is further exacerbated in
the elderly due to the loss of muscular strength and frailty. Osteoarthritis, or degen-
erative arthritis, is caused by inflammation and the eventual loss of cartilage in the
joints, which wears down with time. These are just a few relevant examples of the
conditions associated to the musculoskeletal system, not to mention therapeutic pro-
cedures in orthopedic surgery, and the related medical implants and devices where
imaging plays a crucial role in the planning, guidance, and monitoring phases. As a
specialty of diagnostic radiology, musculoskeletal imaging involves the acquisition,
analysis, and interpretation of medical images of bones, joints, and associated soft
tissues for injury and disease diagnosis and treatment. Given the increasing volume of
multimodal imaging examinations associated with musculoskeletal diseases and the
complexity of their assessment, there is a pressing need for advanced computational
methods that support the diagnosis, therapy planning, and interventional guidance, with
several related challenges in both methodology and clinical applications.

The goal of the workshop series on Computational Methods and Clinical Appli-
cations in Musculoskeletal Imaging is to bring together clinicians, researchers, and
industrial vendors in musculoskeletal imaging for reviewing the state-of-the-art tech-
niques, sharing the novel and emerging analysis and visualization techniques, and
discussing the clinical challenges and open problems in this field. Topics of interest
include all major aspects of musculoskeletal imaging, for example: clinical applications
of musculoskeletal computational imaging; computer-aided detection and diagnosis of
conditions of the bones, muscles, and joints; image-guided musculoskeletal surgery and
interventions; image-based assessment and monitoring of surgical and pharmacological
treatment; segmentation, registration, detection, localization, and visualization of the
musculoskeletal anatomy; statistical and geometrical modeling of the musculoskeletal
shape and appearance; image-based microstructural characterization of musculoskeletal
tissue; novel techniques for musculoskeletal imaging.



The 5th Workshop on Computational Methods and Clinical Applications in Mus-
culoskeletal Imaging, MICCAI-MSKI20171, was a full-day satellite event of the 20th
International Conference on Medical Image Computing and Computer-Assisted
Intervention, MICCAI 20172, held during September 10–14, 2017, in Québec City,
Canada. The workshop was a continuation of the former Workshop on Computational
Methods and Clinical Applications for Spine Imaging, CSI, which was after four
successful consecutive editions at MICCAI 2013, 2014, 2015, and 2016 opened up to a
wider community by broadening the scope from spine to musculoskeletal imaging,
therefore recognizing the progress made in spine imaging and the emerging needs in
imaging of other bones, joints, and muscles of the musculoskeletal system. We
received several high-quality submissions addressing many of the above-mentioned
issues. All papers underwent a double-blind review, with each paper being reviewed by
three members of the review committee. We finally accepted 13 papers collected into
soft-copy electronic proceedings distributed at the workshop and during the conference.

MICCAI-MSKI2017 was held on September 10, 2017, with the program consisting
of four oral sessions: Spine Imaging, Musculoskeletal Imaging, Anatomy Localization
and Rendering, and Bone Density Estimation. To gain deeper insight into the field of
musculoskeletal imaging and stimulating further ideas, two invited talks were held
during the workshop. In his morning talk entitled “Musculoskeletal Imaging: An
Overview,” Dr. Cristian Lorenz from Philips Research Hamburg, Germany, over-
viewed musculoskeletal imaging by covering the most important areas from fetal and
postnatal screening to poly-trauma, cancer, and interventional imaging, while providing
discussion over the corresponding clinical context and imaging modalities. In the
afternoon, Dr. Punam K. Saha from the University of Iowa, USA, gave a talk entitled
“Topologic and Geometric Approaches for In Vivo Quantitative Assessment of
Trabecular Bone Micro-Architecture,” in which he focused on osteoporosis and related
imaging, and presented the results of several human studies on this topic. The members
of the Organizing Committee selected one outstanding contribution for the
MICCAI-MSKI2017 Best Paper Award, which was given to the paper entitled
“Reconstruction of 3D Muscle Fiber Structure Using High Resolution Cryosectioned
Volume” by Otake et al. After the workshop, the authors were invited to revise and
resubmit their papers by considering the comments of the reviewers and the eventual
feedback from the workshop itself, to be considered for the publication in Springer’s
Lecture Notes in Computer Science (LNCS) series. All authors responded to the call,
and after reviewing the resubmitted papers, the members of the Organizing Committee
agreed that the revisions were of adequate quality, thus the papers now appear, in the
chronological order of the initial submission, in these LNCS proceedings.

Finally, we would like to thank everyone who contributed to this workshop: the
authors for their contributions, the members of the Program and Review Committee for
their review work, promotion of the workshop, and general support, the invited

1 http://mski2017.wordpress.com.
2 http://www.miccai2017.org.
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speakers for sharing their expertise and knowledge, and the MICCAI Society for the
opportunity to exchange research ideas and build the community during the premier
conference in medical imaging.

December 2017 Ben Glocker
Jianhua Yao

Tomaž Vrtovec
Alejandro F. Frangi

Guoyan Zheng
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Localization of Bone Surfaces from Ultrasound
Data Using Local Phase Information and Signal

Transmission Maps

Ilker Hacihaliloglu1,2(B)

1 Department of Biomedical Engineering, Rutgers University, Piscataway, USA
ilker.hac@soe.rutgers.edu

2 Department of Radiology, Rutgers Robert Wood Johnson Medical School,

New Brunswick, USA

Abstract. Low signal-to-noise ratio, imaging artifacts and bone bound-
aries appearing several millimeters in thickness have hampered the suc-
cess of ultrasound (US) guided computer assisted orthopedic surgery
procedures. In this paper we propose a robust and accurate bone local-
ization method. The proposed approach is based on the enhancement of
bone surfaces using the combination of three different local image phase
features. The extracted local phase image features are used as an input
to an L1 norm-based contextual regularization method for the enhance-
ment of bone shadow regions. During the final stage the enhanced bone
features and shadow region information is combined into a dynamic pro-
gramming solution for the localization of the bone surface data. Qualita-
tive and quantitative validation was performed on 150 in vivo US scans
obtained from seven subjects by scanning femur, knee, distal radius and
vertebrae bones. Validation against expert segmentation achieved a mean
surface localization error of 0.26 mm a 67% improvement over state of
the art.

Keywords: Ultrasound · Bone segmentation · Orthopedics
Local phase · Signal transmission

1 Introduction

In order to decrease the total amount of radiation exposure, caused by intra-
operative fluoroscopy, and provide real-time three-dimensional (3D) guidance,
ultrasound (US) has been incorporated as an alternative imaging modality into
various computer assisted orthopedic surgery (CAOS) procedures [1]. Neverthe-
less, due to the continuing challenges faced during the extraction of relevant
anatomical information from US data, most of the proposed US-based CAOS
guidance systems have not succeeded in clinical settings. Ultrasound images
typically contain significant speckle and imaging artifacts, which do not cor-
respond to any specific anatomy, complicating image interpretation and auto-
matic processing. Furthermore, orientation of the US transducer with respect
c© Springer International Publishing AG 2018
B. Glocker et al. (Eds.): MSKI 2017, LNCS 10734, pp. 1–11, 2018.
https://doi.org/10.1007/978-3-319-74113-0_1



2 I. Hacihaliloglu

(a) (b) (c) (d)

Fig. 1. Bone surface response appearance in ultrasound. (a), (b) High intensity soft tis-
sue interfaces above the bone surface with similar intensity profile as the bone surfaces
and reverberation artifacts inside the shadow region. (c) Separate low intensity spine
bone surfaces. (d) Low intensity bone surface obtained due to non-optimal orientation
of the US transducer.

to the imaged anatomy and the elevational beam width strongly influence bone
surface response profile and corresponding bone boundaries appear several mil-
limeters in thickness. In order to overcome some of these challenges bone seg-
mentation or enhancement methods have been proposed by various groups.
The previously proposed image-based segmentation or enhancement methods
can be classified into three groups: (i) methods using image intensity/gradient
information [2,3], (ii) methods based on local phase image features [4,5], and
(iii) hybrid approaches which combine the strengths of intensity and phase-based
methods [6–8]. Intensity-based approaches are not robust to low contrast bone
responses and high intensity soft tissue interfaces (Fig. 1). One of the distinct
features in bone US data is the shadow region. A large transition in acous-
tic impedance between the tissue and the bone causes most of the acoustic
signal to be reflected back creating a low intensity region extending from the
bone boundary to the bottom of the image. Incorporating this information into
their framework improved the accuracy and robustness of the proposed intensity-
and phase-based methods [3,6–8]. In [6], the percentage of overlapping surfaces
between the manual segmented and automatic method was 62.5%. The hybrid
approach proposed in [7] integrated machine learning into their framework. The
method was validated on 35 US scans obtained from a single subject achieving
an accuracy score of 86% for 1 mm tolerance with 0.59 mm localization error for
this tolerance. The computation time for the proposed method was 2 min. In [8],
computed tomography (CT) derived bone surfaces were registered to US derived
bone surfaces. The reported average surface fit error for the in vivo pelvis data
was close to 0.5 mm.

Although previously reported results provided promising outcomes, acqui-
sition of high quality US data in clinical settings continues to be and ongoing
challenge in US-based CAOS procedures effecting the accuracy and robustness of
the segmentation methods. In this work, we propose a bone localization method
which is accurate and robust to different US imaging artifacts. Local phase-based
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Fig. 2. Flowchart of the proposed bone localization method.

image features are utilized to enhance the bone surface response profile and sup-
press the soft tissue interfaces and imaging artifacts. The enhanced images are
used as an input to an L1 norm-based contextual regularization method which
emphasizes uncertainty in the shadow regions. The enhanced bone response and
shadow region images are incorporated into a dynamic programming solution
for localizing the bone surfaces. Qualitative and quantitative validation results
on scans collected from seven volunteers are presented. The proposed method is
also compared against previously developed intensity-based [3] and phase-based
[9] methods.

2 Methods

The flowchart of the proposed method is provided in Fig. 2 and is based on
our previous experience where local phase image features are used for bone
enhancement and/or segmentation.

2.1 Enhancement of Bone Surface Response

Bone surface response profile in US is highly affected by the orientation of the
beam with respect to the imaged bone boundary and the 3D anatomy of the
imaged surface. If the US beam is perfectly aligned and the attenuation from
soft tissue interface is low the bone response profile appears as a dominant ridge
edge along the scanline direction. However, while imaging complex shape bone
surfaces, such as spine, or if the attenuation from soft tissue interface is large the
bone response profile can be dominated by different edge profiles. The first step
in our framework involves the enhancement of the low intensity bone surfaces
by constructing a local phase enhancement metric, similar to [9], as:

USE(x, y) =
∑

r

∑
s �[ers(x, y) − ors(x, y)] − Tr�

∑
r

∑
s

√
e2rs(x, y) − o2rs(x, y) + ε

. (1)

Here o(x, y) and e(x, y) represent the even and odd symmetric filter response
and are obtained by filtering the B-mode US image, US(x, y), in the frequency
domain using Log-Gabor filter [10]. Since the first step in the proposed framework
is to provide an initial general ultrasound enhancement, in this new metric we are
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Fig. 3. Local phase image bone features. Top row shows the extracted local
phase image features where the enhanced USE(x, y) image was used to extract
LPT (x, y), LPE(x, y), LwPA(x, y), and LP (x, y) image features. Bottom row shows
the extracted local phase image features where the B-mode US(x, y) image was used
to extract LPT (x, y), LPE(x, y), LwPA(x, y), and LP (x, y) image features. Red arrows
point to bone surfaces and soft tissue interfaces where the improvement was achieved.
Distance map is shown on the far right. (Color figure online)

not using the absolute response values of the even and odd filter responses which
was done previously for enhancement of bone interfaces [9]. Filter orientations
and scale are represented with r and s respectively. ε is a small constant included
to avoid division by zero. Tr is a noise dependent threshold calculated as a
specified number of standard deviations above the mean of the local energy
distribution because of noise [11]. The standard deviation and mean of the local
energy is calculated for each orientation separately using the response of the
smallest scale filter [10].

Figure 3 shows that USE(x, y) results in the enhancement of low intensity
bone surfaces and soft tissue interfaces. Hacihaliloglu et al. [12] recently pro-
posed a tensor-based feature descriptor, called local phase tensor (LPT (x, y)),
for the enhancement of bone features while suppressing high intensity soft tissue
interfaces. The second step in the bone enhancement framework is to calculate
the LPT (x, y) image. LPT (x, y) is obtained using even and odd filter responses
which are defined as:

Teven = [H (USDB(x, y))] [H (USDB(x, y))]T ,

Todd = −0.5 × ([∇USDB(x, y)]
[∇∇2USDB(x, y)

]T

+
[∇∇2USDB(x, y)

]
[∇USDB(x, y)]T ).

(2)

Here Teven represents symmetric features and Todd represents the asymmetric
features. H , ∇ and ∇2 denote the Hessian, Gradient and Laplacian operations,
respectively. USDB(x, y) is obtained by masking the band-pass filtered USE(x, y)
image with a distance map which improves the enhancement of bone surfaces
located deeper in the image while masking out of soft tissue interfaces close to the
transducer. Band-pass filtering was performed using a Log-Gabor filter [12]. The
finalLPT (x, y) image is obtained usingLPT (x, y) =

√
T 2

even + T 2
odd×cos(ϕ). The

instantaneous phase obtained from the symmetric (Teven) and asymmetric (Todd )
features responses is represented with ϕ [12]. Investigating the obtained LPT (x, y)
image (Fig. 1) we can see that the descriptor enhances soft tissue interfaces close
the to bone surface as well. In order to provide an enhancement with less soft tissue
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interfaces and more compact bone representation, local phase energy (LPE(x, y))
and local weighted mean phase angle (LwPA(x, y)) image features are extracted
using monogenic signal theory where the monogenic signal image (USM (x,y)) is
formed by combining the bandpass filtered LPT (x, y) image (LPTB(x, y)) with
the Riesz filtered components as:

USM (x, y) =
[
USM1(x, y), USM2(x, y), USM3(x, y),

]

=
[
LPTB(x, y), LPTB(x, y)xh1(x, y), LPTB(x, y)xh2(x, y),

]
.

(3)

Here h1 and h2 represent the vector valued odd filter (Riesz filter) [13]. For band-
pass filtering α-scale space derivative quadrature filters (ASSD) are used which
are shown to produce produce improved edge detection results on simulated US
images [14]. The LPE(x, y) image is obtained by averaging the phase sum of the
response vectors over many scales using:

LPE(x, y) =
∑

sc

∣
∣USM1(x, y)

∣
∣ −

√
US2

M2(x, y) + US2
M3(x, y). (4)

In the above equation sc represents the number of scales. LPE(x, y) encodes the
underlying shape of the bone boundary by accumulating the local energy of the
image along several filter responses. LwPA(x, y) is calculated using:

LwPA(x, y) = arctan

( ∑
sc USM1(x, y)

√∑
sc US2

M1(x, y) +
∑

sc US2
M2(x, y)

)

(5)

during the calculation of the LwPA(x, y) feature map noise compensation is not
performed and the LwPA(x, y) image preserves all the structural details of the
US image such as the soft tissue interfaces and bone surface. The final improved
local phase bone image (LP (x, y)) is obtained using: LP (x, y) = LPT (x, y) ×
LPE(x, y)×LwPA(x, y). Figure 3 shows the obtained local phase feature images
(LPT (x, y), LPE(x, y), LwPA(x, y)). One common property of the extracted
local phase image feature images is that the enhanced bone surfaces are well
localized in all of the three images while soft tissue interfaces are not. Therefore,
the combination of these three phase feature images results in the suppression of
soft tissue interfaces while keeping the bone surfaces more compact and localized.
In Fig. 3 (bottom row) we also show the bone enhancement results obtained if
we used US(x, y) image as an input to the tensor-based phase descriptor. Red
arrows point to the enhanced soft tissue artifacts and missing bone boundaries
since. These are the locations in the B-mode US image (US(x, y)) where the bone
response is weaker compared to the soft tissue interfaces above the bone surface.
The obtained LP (x, y) image is used in the next section for the enhancement of
bone shadow region.

2.2 Enhancement of Shadow Region

Automatic identification of shadow regions is important since it can be used as an
additional feature to improve the robustness and accuracy of the segmentation
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(a) (b) (c) (d)

Fig. 4. (a) Enhanced bone shadow image BSE(x, y). (b) Bone probability image
obtained by masking LP (x, y) with BSE(x, y). (c) Bone localization presented as curve
BL(s). The curve BL(s) is overlaid on the actual bone surface for better representation.
(d) Localized bone surface is overlaid on the B-mode ultrasound image of in vivo knee.
(Color figure online)

or registration methods. The bone shadow enhancement is based on the mod-
ification of previously proposed US confidence map (CM) approach [15]. How-
ever, instead of using the US image intensity information we use LP (x, y) image
features. We achieve this by modeling the interaction of the US signal within
the tissue using scattering and attenuation information. The model, denoted as
US signal transmission map (USA(x, y)), maximizes the visibility of high inten-
sity features inside a local region and satisfies the constraint that the mean
intensity of the local region is less than the echogenicity of the tissue confin-
ing the bone. The scattering and attenuation effects in the tissue are combined
as: CMLP (x, y) = USA(x, y)BSE(x, y) + (1 − USA(x, y))ρ. Here CMLP (x, y)
represents CM image obtained from LP (x, y) using [15], ρ is a constant value
representative of echogenicity in the tissue surrounding the bone, and BSE(x, y)
is the enhanced bone shadow image which we are trying to calculate. In order
to calculate BSE(x, y), USA(x, y) is estimated first by minimizing the following
objective function [16]:

λ

2

∥
∥USA(x, y) − CMLP (x, y)

∥
∥2

2
+

∑

j∈χ

∥
∥Wj ◦ (Dj ∗ USA(x, y))

∥
∥
1
. (6)

Here ◦ represents element-wise multiplication, χ is an index set, and ∗ is con-
volution operator. Dj is calculated using a bank of high order differential filters
[17]. The filter bank results in the enhancement of bone features in the local
region while attenuating the image noise. Wj is a weighting matrix calculated
using: Wj(x, y) = exp(−|Dj(x, y) ∗ CMLP (x, y)|2). In (6), the first part mea-
sures the dependence of USA(x, y) on CMLP (x, y) and the second part models
the contextual constraints of USA(x, y). These two terms are balanced using a
regularization parameter λ [16]. After estimating USA(x, y), BSE(x, y) image is
obtained using: BSE(x, y) = [(CMLP (x, y) − ρ)/[max(USA(x, y), ε)]δ] + ρ. δ is
related to tissue attenuation coefficient (η), ρ is a constant value representative
of echogenicity in the tissue surrounding the bone, and ε is a small constant
used to avoid division by zero [16]. Figure 4 shows the enhanced bone shadow
image BSE(x, y) where the soft tissue interface above the bone surface is rep-
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resented with uniform intensity and the shadow region is represented with low
intensity values corresponding to a low probability value that the signal reach-
ing back to the transducer imaging array (high intensity denoted with dark red
and low intensity with blue color coding). Investigating the BSE(x, y) image we
can see that the transition from soft tissue interface to bone shadow region is
represented with a sharp intensity change clearly differentiating the two inter-
faces. The enhanced bone shadow region image (BSE(x, y)) and local phase
bone image (LP (x, y)) are used during the bone surface localization which is
explained in the next section.

2.3 Bone Surface Localization

The localization of the bone feature within a column s, denoted as BL(s),
is achieved by minimizing a cost function composed of two energy func-
tions denoted as internal energy (Eint(x, y)) and external energy (Eext(x, y)).
Eint(x, y) is obtained by masking the LP (x, y) image with the BSE(x, y)
image which provides a bone probability map (Fig. 4(b)). The external energy
(Eext(x, y)) is constructed by dividing the US image into three regions denotes
as bone region, boneless region and the jump region (the region between the first
two regions) (Fig. 4(c)). Eext(x, y) is constructed using these three regions as [3]:

Eext(i, j) =

⎧
⎪⎨

⎪⎩

ν||dBL
ds ||2 + ξ||d2BL

ds2 ||2 + ς; Bone region,

JumpCost; Jump region,

νD2
1 + ξD2

2; Boneless region.

(7)

Here ν and ξ are the weights of the smoothness (the first derivative of BL(s))
and the curvature (the second derivative of BL(s)), and ς is small negative scalar
ensuring larger connected bone regions to stay connected. Bone connectivity is
further maintained with the JumpCost constant which penalizes frequent jumps
between bone and boneless regions. As there is no bone information present
in the boneless region, first and second order derivatives are assigned constant
values D1 and D2. Dynamic programming optimization is used to solve:

BLmin(i, j) = Eint(i, j) + min
k

[
BLmin(k, j − 1) + Eext(k, j)

]
. (8)

BLmin(i, j) represents the minimum cost of moving from first column to
the pixel in ith row and j th column. Row index is represented with k.
The index of the pixel k, j with its minima is stored in Indexmin(i, j) =
argmink[BLmin(k, j − 1) + Eext(k, j)]. Dynamic programming provides a fast
optimization of the cost function. The final optimized bone localization if
obtained by tracing back from the last column of the US image using:

BLopt(s) =
{

NR + 1 s = NC;
Indexmin[s + 1, BLopt(s + 1)]; s = 1, . . . , (NC − 1). (9)

BLopt is the optimized segmentation path where the energy cost function is
minimized. The number of rows and columns are indicated with NR and NC of
the B-mode US image. NR and NC also indicate the last row and last column
in the US image. The final localized bone surfaces is shown in Fig. 4.
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2.4 Data Acquisition and Experiments

After obtaining the institutional review board (IRB) approval a total of 150
different US images, from seven healthy subjects, were collected using Sonix-
Touch US machine (Analogic Corporation, Peabody, MA, USA). Depending
on the anatomical region of interest two different transducers were used (C5-
2 curvilinear, L14-5 linear transducer). Depth settings and image resolutions
varied between 3–8 cm and 0.12–0.19 mm respectively. All the proposed image
enhancement and localization methods were implemented using MATLAB 2014a
software package and run on a 2.3 GHz Intel(R) CoreTM i5 CPU, 16 GB RAM
windows PC. The localized bone surfaces were compared to manual localiza-
tion results obtained from an expert user. The quality of the localization was
evaluated by computing average Euclidean distance (AED) between the two sur-
faces. We also compare the localization results against the methods proposed in
[3,9]. For bone shadow enhancement, λ = 2 and ρ, the constant related to tissue
echogenicity, was chosen as 90% of the maximum intensity value of CMLP (x, y).
LPT (x, y) images were calculated using the filter parameter values defined in
[12]. The CM(x, y) and CMLP (x, y) images were obtained using the constant
values as: η = 2, β = 90, γ = 0.03. For bone surface localization the constant
values were chosen as: ν = 50, ξ = 100, JumpCost= 0.8, ς = 0.15, D1 =D2 = 1.
These values were determined empirically and kept constant during qualitative
and quantitative analysis.

3 Results

Investigating the qualitative results we can see that the surfaces localized with
the proposed method have a good alignment with the expert manual localization
(Fig. 5). The combination of enhanced local phase bone features and shadow
region information provides a robust estimate even if (i) the shadow region had
intensity variations (Fig. 5; femur and spine), (ii) disconnected bone surfaces
(Fig. 5; spine), (iii) low intensity bone boundary (Fig. 5; radius, spine and femur),
and (iv) high intensity soft tissue interfaces (Fig. 5; femur, spine and radius).
The overall AED error for the proposed method was 0.26 mm (SD: 0.22). The
overall AED error for [9] and [3] were 0.78 mm (SD: 0.68) and 4.5 mm (SD:
4.39) respectively. The maximum AED was 1.36 mm for the proposed method,
and 19.08 mm for [3], and 4.2 mm for [9] (Table 1). Table 1 also shows the 95%
confidence level calculated for the localization results obtained for all the three
methods compared. We can see that the the proposed method outperforms [3,9].
The average computation time was 9.4 s.

4 Discussion and Conclusion

We have presented a method for accurate, robust and fully automatic local-
ization of bone surfaces in two-dimensional US data based on enhanced local
phase bone and shadow region information. The method was validated on 150
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Fig. 5. Qualitative results. First, third and fifth rows represent the B-mode ultrasound
image of in vivo radius, spine and femur respectively. Second, fourth and sixth rows
present the localization result. Green represents manual expert segmentation and red
is obtained using the proposed algorithm. (Color figure online)

in vivo US data, obtained from seven volunteers, and achieved an overall AED
error of 0.26 mm. We achieved a 67% improvement in terms of surface localiza-
tion over state of the art methods and 94% improvement compared to intensity-
based localization methods. Although we have not directly compared our method
to machine learning-based approaches [7] our reported localization results have
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Table 1. Comparative results of the proposed approach.

Proposed Phase symmetry [9] Dynamic programming [3]

Mean SD 95% CL Mean SD 95% CL Mean SD 95% CL

Femur 0.32 0.25 0.64 0.74 0.50 1.43 7.60 4.27 15.42

Radius 0.44 0.26 0.81 1.08 0.88 2.93 6.97 5.73 16.00

Tibia 0.22 0.24 0.56 0.68 0.42 1.58 6.69 0.41 11.20

Knee 0.19 0.16 0.42 0.83 0.88 2.5 3.29 4.23 11.96

Spine 0.34 0.17 0.53 0.73 0.65 1.95 1.77 1.61 5.25

Overall 0.26 0.22 0.63 0.78 0.68 2.21 4.50 4.39 13.79

(SD - standard deviation, CL - confidence level)

54% improved accuracy. However, the proposed shadow enhancement method
and local phase features extracted in the proposed work can also be incorpo-
rated into existing machine learning approaches as additional features which
could results in the improvement of the localization results reported for these
methods. The specific contributions include: (1) the use of α-scale filters for
extraction of bone phase features, (2) calculation of a new bone probability map
for improved bone surface localization, and (3) combination of enhanced bone
shadow features with three different image phase features for bone localization.
Previously, it was shown that by optimizing the filter parameter selection, using
information derived from the collected data, improvements can be achieved in
terms of surface localization and robustness to artifacts [9]. Therefore, the filter
parameter selection process should be automated. Another limitation of the pro-
posed method is the achieved mean computation time which was around 9.4 s.
This is a large computational cost considering that any intra-operative procedure
performed requires real time feedback. Future work will involve (i) improvement
of the computation speed, (ii) validation on more in vivo scans, and (iii) opti-
mization of the filter parameters. Finally, we would like to mention that although
there were no failed cases for the proposed method a more extensive validation is
required in order to fully address clinical challenges that can be faced during the
application of the method. Specifically, volunteers with high body mass index
will require a special investigation which we will be performing as part of our
future work.
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Abstract. Shape is an important characteristic of an object, and a fun-
damental topic in computer vision. In image segmentation, shape has
been widely used in segmentation methods, like the active shape model,
to constrain a segmentation result to a class of learned shapes. However,
to date, shape has been underutilized in deep segmentation networks.
This paper addresses this gap by introducing a shape-aware term in
the segmentation loss function. A deep convolutional network has been
adapted in a novel cervical vertebrae segmentation framework and com-
pared with traditional active shape model-based methods. The proposed
framework has been trained on an augmented dataset of 26370 verte-
brae and tested on 792 vertebrae collected from a total of 296 real-life
emergency room lateral cervical X-ray images. The proposed framework
achieved an average error of 1.11 pixels, signifying a 36% improvement
over the traditional methods. The introduction of the novel shape-aware
term in the loss function significantly improved the performance by fur-
ther 12%, achieving an average error of only 0.99 pixel.

Keywords: Convolutional neural networks · Vertebrae
Segmentation · Shape-aware · X-rays

1 Introduction

Deep learning has revolutionized the field of image classification [1–4], segmen-
tation [5–7] and many other aspects of computer vision. Segmenting an anatom-
ical body part in medical images is a challenging problem in the field. Although,
training a deep network requires huge amount of data, which is usually not avail-
able for medical images, recent techniques using data augmentation have shown
promising results for segmentation problem on medical images [8,9]. Shape char-
acteristics have long been used for image segmentation problems, especially
in medical images [10–13]. Medical image modalities, e.g. X-ray, dual-energy
X-ray absorptiometry, magnetic resonance imaging, often produce noisy cap-
tures of anatomical body parts, where segmentation must rely on the shape
information to produce reliable results. However, combining shape information
in a deep segmentation network is not straightforward. In this paper, we try to
c© Springer International Publishing AG 2018
B. Glocker et al. (Eds.): MSKI 2017, LNCS 10734, pp. 12–24, 2018.
https://doi.org/10.1007/978-3-319-74113-0_2
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solve the problem by introducing a novel shape-aware term in the segmentation
loss function. To test its capability of shape preservation, we adapted the novel
shape-aware deep segmentation network in a semi-automatic cervical vertebrae
segmentation framework.

Segmenting the vertebrae correctly is a crucial part for further analysis in
an injury detection system. Previous work in vertebrae segmentation has largely
been dominated by statistical shape model (SSM)-based approaches [14–22].
These methods record statistical information about the shape and/or the appear-
ance of the vertebrae based on a training set. Then the mean shape is initialized
either manually or semi-automatically near the actual vertebra. The model then
tries to converge to the actual vertebral boundary based on a search procedure.
Recent work [19–22] utilizes random forest-based machine learning models in
order to achieve shape convergence. In contrast to these methods, we propose a
novel deep convolutional neural network-based method for vertebrae segmenta-
tion. Instead of predicting the shape of a vertebra, our framework predicts the
segmentation mask of a vertebral patch. In order to preserve the vertebral shape,
a novel shape-aware loss term has been proposed. From a training set of 124
X-ray images containing 586 cervical vertebrae, 26370 vertebra patch-
segmentation mask pairs have been generated through data augmentation for
training the deep network. The trained framework has been tested on dataset of
172 images containing 792 vertebrae. An average pixel-level accuracy of 97.01%,
Dice similarity coefficient 0.9438 and shape error of 0.99 pixel have been achieved.

The key contributions of this work are two fold. First, the introduction of
a novel shape-aware term in the loss function of a deep segmentation network
which learns to preserve the shape of the target object and significantly improved
the segmentation accuracy. Second, the application and adaptation of deep seg-
mentation networks to achieve vertebrae segmentation in real life medical images
which outperformed the traditional SSM-based methods by 35%.

2 Data

A total of 296 lateral cervical spine X-ray images were collected from Royal
Devon and Exeter Hospital in association with the University of Exeter, UK.
The age of the patients varied from 17 to 96. Different radiographic systems
(Philips, Agfa, Kodak, GE) were used to produce the scans. Image resolution

Fig. 1. X-ray images and manual annotations: center (+) and vertebral boundary (−).
(Color figure online)
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varied from 0.1 to 0.194 mm per pixel. The images include examples of vertebrae
with fractures, degenerative changes and bone implants. The data is anonymized
and standard research protocols have been followed. The size, shape, orientation
of spine, image intensity, contrast, noise level all varied greatly in the dataset. For
this work, five vertebrae C3–C7 are considered. C1 and C2 have an ambiguous
appearance due to their overlap in lateral cervical radiographs, and our clinical
experts were not able to provide ground truth segmentations for these vertebral
bodies. For this reason they are excluded in this study, similar to other cervi-
cal spine image analysis research [15,23]. Each vertebra from the images was
manually annotated for the vertebral body boundaries and centers by an expert
radiographer. A few examples with corresponding manual annotations are shown
in Fig. 1.

The images were received in two sets. The first set of 124 images are used for
training and the rest are kept for testing. The manually clicked center points and
the vertebral boundary curves are used extract the vertebral image patch and
corresponding segmentation masks. Different patch size and rotation angles are
considered in order to augment the training data. After data augmentation, we
ended up with 26370 vertebra training patches. All the patches were then resized
to 64× 64 pixel patches. The corresponding vertebral curves were converted to
binary segmentation masks of the same size. A few training vertebra patches
and corresponding overlaid segmentation masks are shown in Fig. 2. Similarly,
vertebral patches were also collected from the test images. The orientation and
scale for the test vertebrae were computed by the manually clicked center points
only, shape information was not used. Our assumption is that the center points
will be manually provided at test time, making the process semi-automatic. Some
test vertebrae are shown in Fig. 3. Note the differences in intensity, texture,
and contrast, coupled with the possibility of surgical implants, making for a
challenging problem on real-world data.

3 Methodology

Several deep segmentation networks have achieved outstanding performance in
natural images [5–7]. However, medical images have their own set of challenges to
overcome. The UNet architecture have shown excellent capability of segmenting

Fig. 2. Training vertebra patches and corresponding segmentation masks (blue). (Color
figure online)
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Fig. 3. Examples of test vertebra patches.

different target objects in different medical image modalities [8,9]. Following the
literature, for our shape-aware vertebrae segmentation problem, we have chosen
a modified version of the original UNet [8] deep segmentation network.

3.1 Network Architecture

The UNet architecture consists of a contracting path and an expanding path
in the network. The contracting path reduces the spatial dimension of an input
image to a smaller version and the expanding path expands spatial dimension
and results in a segmentation map at the output. In the original architecture
[8], the spatial dimension output segmentation map is smaller than that of the
input images due to the use of convolution layers without padding. In our ver-
sion, we want to keep the spatial dimension of the input image and the output
segmentation map same. Our architecture has nine convolutional layers in the
contracting path. Each convolutional layer is followed by a batch normalization
and a rectified linear unit (ReLU) layer. Three 2× 2 pooling layers, one each
after two consecutive convolutional layers, reduce the input size of 64× 64 to
a smaller dimension of 8× 8 at the end of the contracting path. This data is
then forwarded through a mirrored expanding path of the network. The upsam-
pling after every two convolution layer in the expanding path is achieved by
a deconvolution layer with 2× 2 kernel size. The network shares intermediate
information from the contracting path to the expanding path by concatenation
of data. After each upsampling, the data in the expanding path is concatenated
by the corresponding data from the contracting path. This helps the network
to recover some of the information lost during max-pooling operation. Our net-
work takes a single channel vertebra patch of spatial dimension 64× 64 and
predicts a two channel probabilistic output for the prediction vertebra mask of
the same size. Figure 4 details the network diagram. The number of filters in
each convolutional/deconvolutional layer can be tracked from the intermediate
data dimensions in Fig. 4. The total number of parameters in the network is
24,238,210.

3.2 Loss Function

Given a dataset of training image (x)-segmentation label (y) pairs, training a
deep segmentation network means finding a set of parameters W that minimizes
a loss function, Lt. The simplest form of the loss function for segmentation
problem is the pixel-wise log loss:

Ŵ = arg min
W

N∑

n=1

Lt

(
{x(n), y(n)};W

)
, (1)
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Fig. 4. UNet architecture. (a) Network diagram (b) Legends.

where N is the number of training examples and {x(n), y(n)} represents n-th
example in the training set with corresponding manual segmentation. The pixel-
wise segmentation loss per image can be defined as:

Lt({x, y};W ) = −
∑

iεΩp

M∑

j=1

yj
i log P (yj

i = 1|xi;W ), (2)

P (yj
i = 1|xi;W ) =

exp(aj(xi))∑M
k=1 exp(ak(xi))

, (3)

where aj(xi) is the output of the penultimate activation layer of the network for
the pixel xi, Ωp represents the pixel space, M is the total number of segmentation
class labels and P are the corresponding class probabilities. However, this term
does not constrain the predicted masks to conform to possible vertebral shapes.
Since vertebral shapes are known from the provided manual segmentation curves,
we add a novel shape-aware term in the loss function to force the network to
learn to penalize predicted areas outside the curve.

3.3 Shape-Aware Term

For training the deep segmentation network, we introduce a novel shape-based
term, Ls. This term forces the network to produce a prediction masks similar to
the training vertebral shapes. This term can be defined as:

Ls({x, y};W ) = −
∑

iεΩ̂p

M∑

j=1

yj
i Ei log P (yj

i = 1|xi;W ); Ei = D(Ĉ, CGT ), (4)
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Fig. 5. Shape-aware loss: (a) Ground truth mask. (b) Predicted mask. (c) Ground
truth shape, CGT (green) and predicted shape, Ĉ (red). (d) Refined pixel space, Ω̂p:
false positive (purple) and false negative (red). (Color figure online)

where Ĉ is the curve surrounding the predicted regions and CGT is ground truth
curve. The function, D(·), computes the average point to curve Euclidean dis-
tance between the predicted shape, Ĉ and the ground truth shape, CGT . Ĉ is
generated by locating the boundary pixels of the predicted mask. The redefined
pixel space, Ω̂p, contains the set of pixels where the prediction mask does not
match the ground truth mask. These terms can also be explained using the toy
example shown in Fig. 5. Given a ground truth mask (Fig. 5(a)) and a predic-
tion mask (Fig. 5(b)), Ei is computed by measuring the average distance between
the ground truth (green) curve and prediction (red) curve (Fig. 5(c)). Figure 5(d)
shows the redefined pixel space, Ω̂p. This term adds additional penalty propor-
tional to Euclidean distance between predicted and ground truth curve to the
pixels that do not match the ground truth segmentation mask. In the case when
the predicted mask is a cluster of small regions, especially during the first few
epochs in training, Ei becomes very large because of the increase in the boundary
perimeters from the disjoint predictions. Thus, this term also implicitly forces
the network to learn to predict single connected prediction masks faster.

3.4 Updated Loss Function

Finally, the loss function of (1) can be extended as:

Ŵ = arg min
W

N∑

n=1

(
Lt

(
{x(n), y(n)};W

)
+ Ls

(
{x(n), y(n)};W

))
. (5)

The contribution of each term in the total loss can be controlled by introducing
a weight parameter in (5). However, in our case, best performance was achieved
when both terms contributed equally.

4 Experiments

We have two versions of the deep segmentation network: UNet and UNet-S,
where “-S” signifies the use of updated shape-aware loss function of (5). The
networks are trained for 30 epochs with batch size of 25 vertebra patches.
To update the network parameters, RMSprop version of mini-batch gradient
descent algorithm is used [24]. Each network took around 30 h to complete train-
ing in computer equipped with a NVIDIA Pascal Titan X GPU. In order to
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compare with the deep segmentation network-based prediction results, three
active shape model (ASM)-based shape prediction frameworks have been imple-
mented. A simple maximum gradient-based image search-based ASM (ASM-G)
[14], a Mahalanobis distance-based ASM (ASM-M) [15] and a random forest
based ASM (ASM-RF) [21]. The later two have been used in cervical vertebrae
segmentation in different datasets.

4.1 Inference and Metrics

At test time, 792 vertebrae from 172 test images are extracted based on the
manually clicked vertebral centers. These patches are forwarded through each of
the networks to get the prediction masks. These prediction masks are compared
with the ground truth segmentation mask to compute number pixels detected
as true positive (TP), true negative (TN), false positive (FP) and false negative
(FN). Based on these measures two metrics are computed for each set of test
vertebra patch and prediction masks: pixel-wise accuracy (pA) and Dice sim-
ilarity coefficients (DSC). For the ASM-based shape predictors, the predicted
shape is converted to a prediction map to measure these metrics.

DSC =
2TP

2TP + FP + FN
, (6)

pA =
TP + TN

TP + TN + FP + FN
× 100%. (7)

These metrics are well suited to capture the number of correctly segmented
pixels, but they fail to capture the differences in shape. In order to compare
the shape of the predicted mask appropriately with the ground truth vertebral
boundary, the predicted masks of the deep segmentation networks are converted
into shapes by locating the boundary pixels. These shapes are then compared
manually annotated vertebral boundary curves by measuring average point to
curve Euclidean distance between them, similar to (4). A final metric, called fit
failure [20], is also computed which measures the percentage of vertebrae having
an average point to ground truth curve error of greater than 2 pixels.

5 Results

Table 1 reports the average median, mean and standard deviation metrics over
the test dataset of 792 vertebrae for all the methods. The deep segmentation
networks clearly outperform the ASM-based methods. Even the worst version
of our framework, UNet achieves a 2.9% improvement in terms of pixel-wise
accuracy and an increase of 0.055 for Dice similarity coefficient. Among the two
version of deep networks, the use of novel loss function improves the performance
by 0.31% in terms of pixel-wise accuracy. In terms of Dice similarity coefficient,
the improvement is in the range of 0.006. Although, subtle, the improvements
are statistically significant according to a paired t-test at a 5% significance level.
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Table 1. Average quantitative metrics for mask prediction.

Pixel-wise accuracy (%) Dice similarity coefficient

Median Mean Std p-value Median Mean Std p-value

ASM-RF 95.09 90.77 8.98 0.881 0.774 0.220

ASM-M 95.09 93.48 4.92 0.900 0.877 0.073

ASM-G 95.34 93.75 4.48 0.906 0.883 0.066

UNet 97.71 96.69 3.04
<10−12 0.952 0.938 0.048

<10−12

UNet-S 97.92 97.01 2.79 0.957 0.944 0.044

Corresponding p-values between the two versions of the network are reported in
Table 1. Bold fonts indicates the best performing metrics. Interestingly, among
the ASM-based methods, the simplest version, ASM-G, performs better than
the alternatives. Recent methods [15,21], have failed to perform robustly on our
challenging dataset of test vertebrae.

The average point to curve error for the methods are reported in Table 2.
The deep segmentation framework, UNet, produced a 35% improvement over the
ASM-based methods in terms of the mean values. The introduction of the novel
loss term in the training further reduced the average error by 12% achieving the
best error of 0.99 pixels. The most significant improvement can be seen in the fit
failure which denotes the percentage of the test vertebrae having an average error
of higher than 2 pixels. The novel shape-aware network, UNet-S, has achieved
drop of around 37% from the ASM-RF method. The cumulative distribution of
the point to curve error is also plotted in the performance curve of Fig. 6. It
can be seen adaptation deep segmentation network provides a big improvement
in area under the curve. The boxplots of the quantitative metrics are shown
in Fig. 7. It can be seen that, even the worst outlier for shape-aware network,
UNet-S, have a pixel-wise accuracy higher than 70%, signifying the regularizing
capability of the novel term. Most of the outliers are caused by bone implants,
fractured vertebrae or abnormal artifacts in the images. A few examples for
qualitative assessment are shown in Fig. 8. Figure 8(a) shows an easy example
where all the methods perform well. Examples with bone implants are shown

Table 2. Average quantitative metric for shape prediction.

Average point to curve error (pixels)
Fit failure (%)

Median Mean Std p-value

ASM-RF 1.82 2.59 1.85 43.43

ASM-M 1.54 1.88 1.05 32.70

ASM-G 1.38 1.73 0.99 26.89

UNet 0.77 1.11 1.29
0.0043

8.59

UNet-S 0.78 0.99 0.67 6.06
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Fig. 6. Performance curve: cumulative distribution of point to curve errors.

in Fig. 8(b), (c). Figure 8(d), (e) shows vertebrae with abrupt contrast change.
Vertebrae with fracture and osteoporosis are shown in Fig. 8(f), (g). Figure 8(g)
also shows how UNet-S has been able capture the vertebral fracture pattern.
Figure 8(h), (i) show vertebrae with image artefacts. A complete failure case is
shown in Fig. 8(j). In all cases, the shape-aware network, UNet-S, has produced
better segmentation results than its counterpart.

5.1 Analysis on Harder Cases

Although statistically significant, the difference in performance between the
UNet and UNet-S is subtle over the whole dataset of test vertebrae. This is
because majority of the vertebrae are healthy and shape-awareness does not
improve the results by a big margin. To show the shape-awareness capability of
UNet-S a selection 52 vertebrae with severe clinical conditions are chosen. The
average metrics for this subset of test vertebrae between UNet and UNet-S is
reported in Table 3. An improvement of 1.2% and 0.02 have been achieved in
terms of pixel-wise accuracy and Dice similarity coefficient, respectively. The
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Fig. 7. Boxplots of quantitative metrics. (a) Pixel-level accuracy. (b) Dice similarity
coefficients. (c) Point to manual segmentation curve error.
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Fig. 8. Qualitative segmentation results: true positive (green), false positive (blue) and
false negative (red). (Color figure online)

difference over the whole dataset were only 0.31% and 0.006. The metric, point
to curve error produces the most dramatic change. The novel shape-aware net-
work, UNet-S, reduced the error by 22.9% for this subset of vertebrae with severe
clinical conditions. Figure 9 shows a few example of these subset of images.
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Table 3. Comparison of UNet and UNet-S.

Average quantitative metrics

Pixel-wise accuracy (%) Dice coefficient Point to curve error (pixels)

UNet 94.01 0.91 1.61

UNet-S 95.21 0.93 1.24

Fig. 9. Comparison of performance for vertebrae with severe clinical condition. (Color
figure online)

6 Conclusion

Deep segmentation networks have shown exciting application in different med-
ical image modalities. The shape of an anatomical object is very important for
automated computer aided diagnosis and injury detection. Our overarching goal
is to build a computer aided system that can help the emergency department
physicians to detect injuries with better accuracy. Towards this goal, in this
paper, we proposed a robust semi automatic vertebrae segmentation method
using deep convolutional neural networks that incorporate the shape informa-
tion in to achieve better segmentation accuracy. The proposed deep segmentation
method has outperformed the traditional active shape model-based approaches
by a significant margin. In order to incorporate shape information with the
mask prediction capability of the deep neural networks, a novel shape-aware
loss function has been formulated. Inclusion of this novel term in the train-
ing provided significant quantitative and qualitative improvements. A maximum
average pixel-level segmentation accuracy of 97.01%, Dice coefficient of 0.9438
and point to ground truth curve error of less than 1 pixel has been achieved over
a diverse dataset of 792 test vertebrae collected from real life medical emergency
rooms. Currently, we are working on a fully automatic localization framework
to locate the vertebral centers in arbitrary X-ray images. In the future, we will
be using the segmented vertebral column to automatically determine various
clinical conditions like misalignment of the vertebral body, osteoporosis, bone
density abnormality and type and severity of different vertebral fractures.
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Abstract. Quantification of fat and muscle on clinically acquired com-
puted tomography (CT) scans is critical for determination of body com-
position, a key component of health. Manual tracing has been regarded
as the gold standard method of body segmentation; however, manual
tracing is time-consuming. Many semi-automated/automated algorithms
have been proposed to avoid the manual efforts. Previous efforts largely
focused on segmenting two-dimensional cross-sectional images (e.g., at
L3/T4 vertebra locations) rather than on the whole-body volume. In
this paper, we propose a fully automated three-dimensional (3D) body
composition estimation framework for segmenting the muscle and fat
from abdominal CT scans. The 3D whole body segmentations are recon-
structed from a slice-wise multi-atlas label fusion (MALF) based frame-
work. First, we use a low-dimensional atlas representation to estimate
each class for each axial slice. Second, the abdominal wall and psoas
muscle are segmented by combining MALF with active shape models
and deformable models. Third, skeletal muscle, visceral adipose tissue
(VAT) and subcutaneous adipose tissue (SAT) are measured to assess
the areas of muscle and fat tissue. The proposed method was compared
to manual segmentation and demonstrated high accuracy. Then, we eval-
uated the approach on 40 CT scans comparing the new method to a prior
atlas-based segmentation method and achieved 0.854, 0.740, 0.887 and
0.933 on Dice similarity index for the skeletal muscle, psoas muscle, VAT
and SAT, respectively. Compared with the baseline, our method showed
significantly (p< 0.001) higher accuracy on skeletal muscle, VAT and
SAT estimation.

Keywords: Skeletal muscle · Psoas muscle · Visceral fat
Subcutaneous fat · Multi-atlas
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1 Introduction

Body composition of fat and muscle mass is an important biomarker in cancer
treatment. The quantitative measurement of body composition is related to the
efficacy and toxicity of chemotherapy, post therapy functional status, surgical
complication rates, length of hospital stay and overall survival [1]. In addition,
body composition estimation will lead to a more reliable replacement of basic
measures of healthy weight, such as body mass index. Manual delineation on
computed tomography (CT) images has been regarded as the gold standard
in body composition estimation [2]. However, manual tracing on muscle and
fat regions are time-consuming and cannot be easily applied to large cohorts.
Therefore, many automated or semi-automated methods have been proposed to
perform the segmentation. The previous studies estimated the body composi-
tion of muscle and fat based on the two-dimensional (2D) axial slice at the 3rd
lumbar vertebra (L3) position. However, single slice based estimation is a rough
approximation of the whole-body composition, which is sensitive to the slice
selection.

For fat segmentation, the Hounsfield unit (HU) intensity is typically used
to distinguish muscle and fat on CT images when performing the manual seg-
mentation (e.g., [−29, 150] for muscle tissue and [−190,−30] for fat tissue [3]).
Importantly, the compartment in which adipose tissue resides relates to the
clinical significance of that fat. For example, it is found that nonagenarian indi-
viduals with and without frailty syndrome presented marked differences in the
pericardial and visceral adipose tissue [4]. Therefore, to generate a meaningful
measurement, efforts are required to separate fat into visceral adipose tissue
(VAT) and subcutaneous adipose tissue (SAT). The VAT is the adipose tissue
included in intra-abdominal cavity, while SAT is the adipose tissue bounded
by the inner abdominal wall musculature and the skin surface [4]. Muscle seg-
mentation presents a greater challenge as the HU of muscle overlaps with other
abdominal organs and tissues. Moreover, the variable shape and location of mus-
cle make the segmentation even more difficult (Fig. 1).

Previous efforts were typically focused on segmenting either muscle or fat.
For fat segmentation, Yao et al. [5] separated the subcutaneous and visceral
fat by a single surface at the abdominal wall driven by active contour models
(ACM). For muscle segmentation, shape models are typically used. For instance,
Tsutomu et al. [6] incorporated a shape prior represented as logistic curves in
higher-order graph cut models to segment psoas from CT images. Chung et al.
[7] presented a muscle segmentation method in which a thresholded binary image
was warped to a mean shape prior by a free deformation model. Popuri et al. [3]
proposed a FEM-based registration model to perform template-based segmen-
tation of skeletal muscle. Although these methods achieved high accuracy, they
were based on 2D cross-sectional images taken at the 3rd lumbar vertebra (L3) or
the 4th thoracic vertebra (T4) locations rather than on whole three-dimensional
(3D) volumes. Zhang et al. [8] presented an atlas-based approach to segment
the musculature on CT volumes using five pre-defined muscle atlas models, and
then the initial segmentation was refined by an ACM. Xu et al. [9] proposed a
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Fig. 1. Illustration of challenges in muscle and fat segmentation. The sagittally recon-
structed images show differing fields of view while the axial images demonstrated the
large intra-slice and inter-slice variations in muscle and fat cross-sectional area on CT
images.

slice-wise method called augmented active shape model (AASM) that integrated
multi-atlas label fusion (MALF) and level set into the active shape model (ASM)
framework. To overcome the large intra-slice variations in the abdominal wall
along the cranial-caudal direction, this method pre-classified slice-wise images
to five exclusive classes using landmarks. However, for clinical data with large
variations on fields of view (FOV), such landmarks are not typically available
(Fig. 1).

In this study, we propose a fully automated framework to segment the skeletal
muscle, psoas muscle, VAT and SAT from clinically acquired CT scans. Briefly,
we first use a PCA-based low-dimensional representation to estimate the atlas
class for the target image. Second, the abdominal wall is segmented using AASM
under a slice-wise MALF framework. Here, the abdominal wall is characterized as
an enclosed region bounded by the inner surface and outer surface [9]. Then, the
psoas muscle is segmented using combination of MALF and a deformable model.
Finally, the skeletal muscle, VAT and SAT are extracted using the generated
abdominal wall mask and pre-defined HU ranges. The main novelty of our work
lies in the application of MALF on the challenging problem of muscle and fat
quantification. Considering different anatomies of target regions, an augmented
active shape model and a deformable model are used to refine and regularize
the initial results of MALF. The whole pipeline is fully automated, without the
need of user interaction or parameter adjustment, which gives it potential to be
applied in clinic.

2 Methods

The proposed pipeline is shown in Fig. 2. It integrates a slice-wise multi-atlas
label fusion framework with an active shape model and a deformable model.
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2.1 Atlas Class Estimation via PCA

Following [9], five atlas groups are pre-classified in the training slice images
for multi-atlas label fusion. Instead of detecting landmarks in testing CT vol-
umes, we use a PCA-based low-dimensional representation to decide the atlas
class for each testing image. As in [9], three biomarkers, i.e., xiphoid process
(XP), pubic symphysis (PS) and umbilicus (UB) are manually labeled on each
training volume. According to the relative locations of these biomarkers, train-
ing axial slices are separated into five exclusive atlas groups. Given a test slice
image, the goal is to assign the target image x into the most similar atlas class.
Firstly, we align all training images to the same space. Specifically, one image
is randomly selected and others are registered to it using an affine transform.
Then, an average image is generated from all registered images and all images
are registered to the average image again. Secondly, for a training image j, we
reshape it into a vector, thus this image is represented as a high-dimensional
data point aj ∈ R

D with its atlas class cj , where D is the total number of
pixels and cj ∈ {1, 2, 3, 4, 5}. We denote the aligned training data set as matrix
A = (a11, . . . ,a1n1, . . . ,a51, . . . ,a5n5) ∈ R

D×N , where N =
∑5

i=1 ni is the total
number of training images. Thirdly, by using PCA dimension reduction, the high-
dimensional data points A are transformed into a low-dimensional representation
Y = (y11, . . . ,y1n1, . . . ,y51, . . . ,y5n5) ∈ R

d×N , where d � D. The PCA is per-
formed by minimizing the cost function φ(Y) =

∑
i,j

(
d2ij − ||yi − yj ||2

)
, where

dij represents the Euclidean distance between the high-dimensional points ai

and aj . Finally, the target image x is projected to the low-dimensional space
and k-nearest neighbors in Euclidean distance are selected to estimate its class
by majority voting.

2.2 Abdominal Wall and Psoas Segmentation

Prior Probability Map Learned from MALF. For each axial slice of the
test CT volume, all the training images in the estimated class are considered
as atlases to perform slice-wise multi-atlas label fusion with respect to regions
of interest, i.e., the abdominal wall and psoas muscle. Each atlas is non-rigidly
registered to the target image with NiftyReg package [10]. Atlas labels are then
warped to the target image and combined using the joint label fusion algorithm
[11], yielding prior probability maps for the abdominal wall and psoas muscle.

Abdominal Wall Segmentation. In abdominal wall segmentation, we use
AASM [9] to search the optimal shape iteratively. In the training stage, an
active shape model and a local appearance model are trained from each atlas
class. In testing, the trained ASM, local appearance model and the probability
map generated from MALF guide landmarks along current contour move to new
positions. The AASM is actually a combination of level set and ASM. Specifically,
firstly level set evolution is applied on the probability map to move the current
contour. Then, the zero-crossing points along the normal direction of the zero
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Fig. 2. Flowchart of the proposed segmentation framework.

level set are collected as landmarks. These landmarks are updated with the active
shape search and active shape regularization. The new positions of landmarks
are used as the initialization of level set evolution for the next iteration. This
process goes iteratively until convergence.

Psoas Muscle Segmentation. For psoas muscle, we adopt a 3D deformable
model that integrates intensity statistical information, a prior probability map,
and a gradient map to refine the initial surface. Given a volume image I : x ∈
Ω → R defined on Ω ⊂ R

3, we denote the indicator function of psoas as u(x) =
{0, 1}, x ∈ Ω, which is obtained by minimizing the energy functional:

E(u) = λ1Edata(u) + λ2Eprior(u) +
∫

Ω

g(x)|∇u|dx. (1)

The first data term formulates the intensity statistics inside and outside the
region, i.e., Edata(u) = − ∫

Ω
u log pin (I(x)) + (1 − u) log pout (I(x)) dx, where
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pin and pout are intensity distributions of foreground and background pixels
defined by the initial psoas muscle region given by MALF. The second prior term
presented as Eprior(u) = − ∫

Ω
u log L(x) + (1 − u) log (1 − L(x)) dx is to provide

spatial constraints, where L(x) is the psoas muscle probability map learned from
MALF. The last weighted total-variation term acts as regularization term, where
g(x) = 1

1+β|∇I(x)|2 , β > 0. The energy function (1) is globally optimized in a
surface evolution way with the continuous max-flow algorithm [12,13].

2.3 Skeletal Muscle and Adipose Tissue Measurement

Using the segmented abdominal wall as a mask, skeletal muscle and fat tissue
in each axial slice are extracted based on pre-defined HU ranges according to
[3]. The region that locates inside the inner wall surface with HU [−190,−30] is
extracted as VAT, and the region resides outside inner wall surface within the
body mask with HU [−190,−30] is extract as SAT. The skeletal muscle tissue
is segmented inside abdominal wall mask with HU [−29, 150].

2.4 Baseline Method

We take the method of Zhang et al. [8] as baseline, which also focused on whole
CT volume segmentation and used slice-wise algorithms. Following [8], we used
fuzzy c-means and an active contour model (ACM) to segment VAT and SAT,
and then used an atlas-based method to segment skeletal muscle. To avoid the
effect of atlas model selection on muscle segmentation, the ACM was applied to
refine the results from our MALF as re-implemented.

All experiments in this paper were run on a machine with 8 cores of Intel
Xeon W3520 processors and 12 GB RAM available running Ubuntu 14.04.1 LTS
(64 bit). Algorithms were implemented in MATLAB 2014b environment. The
proposed segmentation method has been made available online in open-source1.

3 Experiments and Results

3.1 Data

Abdominal CT data on 60 patients from two clinical datasets were randomly
retrieved in de-identified form under IRB approval (40 patients from PHC and
20 from GIONC). Specifically, 20 scans from PHC were used for training, and
the remaining 20 PHC scans and 20 GIONC scans were for testing. The FOVs
of PHC scans ranged from 335 × 335 × 390 mm3 to 500 × 500 × 708 mm3, with
resolutions ranging from 0.65 × 0.65 × 2.50 mm3 to 0.98 × 0.98 × 5.00 mm3. The
FOVs of GIONC scans were from 346 × 346 × 165 mm3 to 412 × 412 × 505 mm3,
with resolutions from 0.65 × 0.65 × 1.50 mm3 to 0.85 × 0.85 × 5.00 mm3. All 60
scans were manually labeled by an experienced rater and HU values were used to

1 https://www.nitrc.org/project/showfiles.php?group id=385&release id=3557.

https://www.nitrc.org/project/showfiles.php?group_id=385&release_id=3557
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generate ground truth of skeletal muscle, psoas, VAT and SAT. Specifically, for
the 40 PHC scans, essential biomarkers, i.e., xiphoid process, pubic symphysis,
and umbilicus were identified, and the abdominal wall and psoas muscle were
delineated on axial slices spaced every 5 cm, generating 177 and 184 axial slices
for training and testing, respectively. Besides, 40 axial slices at the L3 position
of the 40 testing scans were extracted and labeled. Axial slices from the same
patient for training were not used for testing.

3.2 Experimental Setting

For all training and testing slices, a body mask was obtained by thresholding
the image to remove the background, then selecting the largest 3D connected
component to ensure that the CT table was excluded before image analysis. All
the images were centered after body extraction. A leave-one-out approach that
excluded slices from the same patient was used to optimize the parameters in
PCA dimension reduction on the training slices from PHC dataset. As a result,
9 modes of variation in the low-dimensional space and k = 3 neighboring images
are chosen to estimate the target image class.

In the AASM-based abdominal wall segmentation, 177 labeled axial slices
from 20 patients were used as training set (also atlases) to build the active shape
model with default parameters as in [9]. The parameters in energy function (1)
of psoas refinement were empirically set as λ1 = 0.1, λ2 = 0.01, β = 0.2.

3.3 Results

Automated results were validated against the manual labels on 184 axial slices
taken at different positions in 20 scans (Fig. 3). The Spearman’s rank corre-
lation coefficients between estimated cross-sectional tissue area (cm2) and the
truth were 0.91, 0.75, 0.99, and 0.99 for skeletal muscle, psoas, VAT and SAT,
respectively. Figure 4 shows qualitative segmentation results at different posi-
tions from one CT. Although there are large shape variations in axial slices
taken at different positions, the automated segmentations of the skeletal muscle,
VAT and SAT region match well with the manual label. Failures of the psoas
segmentation occur on the slices taken at the bottom position, where the psoas
muscle region is very small and difficult to detect (see Fig. 4, row 1, column 3).

In Fig. 5, we used the Spearman rank correlation to compare the estimated
tissue area by the proposed method with the ground truth on axial slices taken at
L3 position from 40 testing scans. Average tissue areas of three and five central
L3 slices were also measured.

In Table 1, we compared our method with the baseline method [8] on 40 L3 ax-
ial slices from testing scans. Both the proposed method and baseline focused on
whole CT scan segmentation and used slice-wise algorithms. The main difference
is that the baseline method used an active contour model to refine the initial
segmentation of the atlas method. As shown in Table 1, our method achieved
significantly (p < 0.001) higher Dice similarity index (Dice) values for the skeletal
muscle, VAT and SAT using Wilcoxon signed rank test.
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Fig. 3. Scatter plots showing the correlation between estimated tissue area by the
proposed method and the ground truth on 184 axial slices.

(a) (b) (c) (d) (e)

Fig. 4. Qualitative segmentation results on different axial slices from one subject:
manual label (green), automated label (red) and overlap (yellow). (a) Original image.
(b) Skeletal muscle. (c) Psoas muscle. (d) VAT. (e) SAT. (Color figure online)

Table 1. Comparison of tissue area estimation by the proposed method and
Zhang et al. [8] on 40 L3 axial slices.

Tissue Skeletal muscle Psoas muscle VAT SAT

Manual area (cm2) 142.7 ± 35.0 15.6 ± 5.9 168.4 ± 97.5 224.6 ± 126.5

Proposed Dice 0.854 ± 0.110 0.740 ± 0.259 0.887 ± 0.075 0.933 ± 0.046

Proposed area error (cm2) 17.1 ± 14.9 4.5 ± 7.1 12.0 ± 14.0 15.5 ± 14.4

Zhang et al. [8] Dice 0.758 ± 0.128 − 0.828 ± 0.054 0.852 ± 0.054

Zhang et al. [8] area error (cm2) 46.8 ± 27.7 − 46.6 ± 22.1 44.0 ± 21.7

Proposed vs. Zhang et al. [8] Dice

p-value

3.3 × 10−5 − 2.4 × 10−5 5.6 × 10−8

Proposed vs. Zhang et al. [8] area

error p-value

3.8 × 10−6 − 7.6 × 10−7 1.6 × 10−6
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Fig. 5. Scatter plots showing the correlation between estimated tissue area by the
proposed method and the ground truth. The first row shows tissue area estimated on
one slice at middle L3 position. The second and third row show the average tissue area
estimated at three and five slices at the L3 position, respectively.

4 Conclusions

We presented a segmentation pipeline to quantitatively measure the skeletal
muscle, psoas muscle, visceral adipose tissue and subcutaneous adipose tissue
from clinically acquired abdominal CT scans. The results on 40 subjects from
two separate clinical datasets demonstrated that the proposed framework was
able to achieve 0.854, 0.740, 0.887 and 0.933 Dice similarity coefficient for the
skeletal muscle, psoas muscle, VAT and SAT, respectively. This method is fully
automated, without the need of interaction or parameter adjustment, which
gives it potential to be applied in a clinical environment. Future work can be
the improvement of the proposed method by using shape prior in psoas muscle
segmentation.
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Abstract. The recommended exam for assessing chest trauma is a com-
puted tomography (CT) chest scan. Using multi-planar reconstructions
to evaluate a CT volume to assess the ribcage is a tedious and time-
consuming task. We have designed an application that provides an auto-
matically rendered unfolded unobstructed view of the entire ribcage using
an unfolded cylindrical projection. This paper describes the underlying
algorithm which has two main steps: ribcage segmentation and ribcage
unfolding. The unfolding technique we developed preserves the relative
size and location of the ribs and surrounding tissue, providing a natu-
ral anatomical reference for the reader. It also demonstrated usefulness
to identify other musculoskeletal conditions such us scoliosis, calcified
cartilage, bone tumours. To evaluate the usefulness of the application,
we evaluated it on 70 representative CT chest scans. The evaluation was
performed by a clinical expert who graded the specialized unfolded cylin-
drical projection view on a 5 point Likert scale according to the level of
diagnostic confidence. Results showed that 84% of the studies were clini-
cally useful (above grade 3). The algorithm is fully automatic and it runs
in an average time of 24 s. The evaluation described in this paper gives
positive initial feedback on the usefulness of the application. A recent
multi-reader clinical study showed that using the specialized unfolded
cylindrical projection view obtains similar diagnostic accuracy to con-
ventional multi-planar reconstructions while reducing the reading time.

Keywords: Rib fractures · Clinical application · Unfolded ribcage

1 Introduction

1.1 Clinical Motivation

Injury-related emergency hospital visits reach up to 37 million in the United
States [1] and 39 million in the European Union [2] each year. Fractured ribs
are the most common injury in chest trauma. Therefore, it is mandatory to
evaluate all ribs in any computed tomography (CT) image of the chest, and it is
c© Springer International Publishing AG 2018
B. Glocker et al. (Eds.): MSKI 2017, LNCS 10734, pp. 36–47, 2018.
https://doi.org/10.1007/978-3-319-74113-0_4



Unfolded Cylindrical Projection for Rib Fracture Diagnosis 37

of particular importance in trauma patients as 25% of injury-related deaths are
caused by chest trauma [3].

According to radiological guidelines the recommended exam for assessing
chest trauma is a CT chest scan. Diagnosing rib fractures using a CT scan is
a convenient single diagnostic exam, but it is tedious and time-consuming for
the reader. Each rib follows a diagonal orientation covering multiple CT slices.
Conventional tools require the user to continually create and adjust oblique
multi-planar reconstructions (MPRs) due to the curvature of the ribs. Moreover,
the full evaluation is performed one rib at a time from side to side.

This has motivated us to develop a clinical application that provides an
automatically rendered unfolded unobstructed view of the entire ribcage using
an unfolded cylindrical projection (UCP). This specialized UCP view can be
browsed as a volume, allowing the clinician to quickly assess the ribcage [4]. The
clinical application is interactive, allowing the user to triangulate the position of
suspected fractures from the unfolded view to the conventional MPR views to
confirm diagnosis.

1.2 State of the Art

Currently there are two commercial applications with a similar purpose. On the
one hand, Siemens’ syngo. CT application traces the centreline of each rib to
define a curved planar reformation (CPR) image for each rib [5]. The displayed
image is a composite of the collection of CPR images of the ribs plus a CPR
of the spine. The advantage of this approach is that non-displaced fractures are
easily visible. The disadvantage is that straightening the ribs complicates the
understanding of their relative position and hides other musculoskeletal condi-
tions (e.g. scoliosis).

On the other hand, Carestream’s Radial View application provides an
unfolded maximum intensity projection of the ribcage. The advantage of this
approach is that a projection gives an excellent overview of ribcage. The dis-
advantage is that maximum intensity projection of ribs hides non-displaced
fractures.

Our solution makes improvements on the state of the art by: (1) removing
obstructing objects from the projection, (2) improve sensitivity to subtle non-
displaced fractures, and (3) preserving the relative size and location of the ribs
and surrounding tissue.

2 Data

Landmarks Classifier Training. We used a retrospective in-house database of
369 CT datasets for landmark classifier training. On these datasets, key anatom-
ical markers were collected as ground truth. The ground-truth covers a wide
range of anatomies, contrast and non-contrast acquisitions, from multiple scan-
ner vendors.
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Fig. 1. Overview of the ribcage segmentation process (part 1). See Sect. 3.1 for details.

Segmentation Atlas. Since the main requirement for this tool is computational
efficiency, we used a single non-contrast CT dataset as segmentation atlas. We
selected an average size individual with no fractures or other evident pathology.
On this atlas, several structures were manually segmented by a clinical expert:
ribs, spine, sternum, scapulae, clavicles, kidneys. Additionally, anatomical mark-
ers were manually collected in the thorax to aid initial alignment (Sect. 3.1).

Testing Database. We used a database of 70 CT studies provided by our
clinical collaborators. From this database, we used 44 datasets for algorithm
optimisation (seen datasets), leaving 26 datasets for blinded evaluation (unseen
datasets). From the seen datasets, six datasets were manually labelled for ribs
and spine to provide a quantitative reference.

3 Methods

3.1 Ribcage Segmentation

Anatomical Landmarks Detection. Using technology developed within our
research group [6,7], we are able to accurately and efficiently detect anatomical
landmarks on novel datasets of any anatomical location (Fig. 1). The method
localizes landmarks using a random forest classifier comprising long-range inten-
sity features [8], histogram of oriented gradients (HOG) features [9], and atlas
location features. The classifier was trained off-line on a large sample of data
(Sect. 2).
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Fig. 2. Overview of the ribcage segmentation process (part 2). Note in the bottom row
the areas where vessels/cables were removed (yellow arrows). See Sect. 3.1 for details.
(Color figure online)

Thorax Bounding Box. To bound the segmentation of the ribs, we prede-
fine a thorax box in a synthetics atlas. Using the landmarks detected on the
novel volume (previous step), we compute a transformation from synthetic atlas
space to novel patient space. The bounds are mapped using this transformation.
Everything outside the thorax bounds is discarded from subsequent processing
(Fig. 1).

Estimate Threshold Value. Even though CT intensity values are relatively
calibrated, the values may change in the presence of contrast or pathology. To
obtain an initial mask with a raw segmentation of the bone, we vary the threshold
value in a case-by-case basis. To define this value, we create a sphere centred
at each of the thorax skeletal landmarks and sample intensity values within it.
We then compute the 70th percentile of the sampled values. Using this value
as a lower threshold, we obtain a mask that contains everything from bones
to vessels/cables. In certain cases, it also includes lung fluid, heart chambers,
kidneys and/or liver (Fig. 1).

Atlas Based Segmentation. The landmarks detected on the novel dataset
are used to initialize the atlas based segmentation. We use non-rigid registration
based on a demons algorithm [10] to warp the segmentation atlas to the novel
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dataset. With the obtained warp field, we warp the wanted labelled masks: ribs,
spine and sternum. These three labelled masks will be used on following pro-
cessing steps. Additionally, we remove from the initial raw mask any identified
object that is not a rib: clavicles, scapulae, kidneys, spine and sternum (Fig. 1).
This outputs a clean mask that contains mainly ribs with other non-identified
objects (e.g. vessels/cables).

Rib Tracing. Due to the similarity of ribs with each other, it is a challenging
task for the registration alone. As a result, the warped ribs will be missing
sections, specially distally to the spine. To complete the ribs we run a tracing
algorithm that adds the missing sections. The tracing starts with the warped
ribs as seeds and searches for a path forwards (i.e. away from the spine) and
downwards. This naive tracing approach allows to keep computation time low.
As a disadvantage, the tracing will stop at the presence of fractures. This is
mitigated by seeding all possible sections of ribs with the wrapped rib. The path
can follow any location along the full thickness of the potential rib (i.e. it is
not constrained to the centrelines). As a final stage, the paths are thickened by
dilation and intersection with the input mask (Fig. 2).

Vessel/Cable Removal. Despite the multiple steps above, portions of vessels
and/or cables may remain in the rib mask (specially in contrasted studies). To
remove this portions of vessel/cables, we run a vesselness filter [11] and extract
only areas with very high response. We then find connected components with
very high intensity values and remove them from the initial rib mask. We finalize
with morphological operations to polish the ribs after removal (Fig. 2).

3.2 Ribcage Unfolding

In order to unfold the ribcage, we want to find a three-dimensional manifold
that intersects all the structures of interest and defines the points to be sampled
from the volume. To generate this manifold, we define a camera axis along the
patient’s superior-inferior axis. The axis is located inside the thorax. We use the
segmented spine and sternum to define a top coordinate and a bottom coordinate
of the camera axis.

Along this axis, we define a collection of points O(1...n). Each point corre-
sponds to a horizontal row of pixels in the output image. For each point Oi,
we define a perpendicular plane Pi and tilt it based on an angle α. The tilting
makes the ribs more horizontal in the output image. We then define a collection
of rays Rj in plane Pi, rotating in the plane around Oi. Each ray corresponds
to a column of pixels in the output image. We intersect each ray with the seg-
mented ribs (Sect. 3.1) and choose a mid point. At that position the intensity
is sampled and displayed in the two-dimensional (2D) image. Rays that do not
intersect are interpolated from neighbouring positions (Fig. 3).
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Fig. 3. Overview of the ribcage unfolding process. See Sect. 3.2 for details.

4 Evaluation

4.1 Qualitative Results

We evaluated the clinical application in 70 representative CT chest scans. The
qualitative evaluation was performed by a clinical expert who graded the spe-
cialized rib view on a 5 point Likert scale according to the level of diagnostic
confidence. This grading scale followed the criteria below.

• Gold standard - grade 5: The reader can confidently make a diagnosis
without any review of the MPRs. No artifacts present.

• Diagnostic confidence - grade 4: The reader can confidently make a diag-
nosis with limited or no review of the MPRs. Little to no artifacts present
and there are no artifacts obstructing any relevant anatomy.

• Moderate confidence - grade 3: Helpful to make a diagnosis but a clinician
would need the MPRs for confirmation. Some artifacts are present but do not
obscure significant areas of relevant anatomy.

• Low level of confidence - grade 2: Unacceptable. Minimally helpful and
artifacts render the projection unacceptable.

• Very low level of confidence - grade 1: Indisputably unacceptable.
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The evaluation database was split in seen datasets and unseen datasets (as
explained in Sect. 2). Results of the grading can be found in Table 1. Figure 4
shows the layout of the clinical application. This layout is maintained on
Figs. 5 and 6 which include illustrative example cases.

Table 1. Summary of qualitative evaluation.

Grade Description Scoring results on datasetsa

Seen (n = 44) Unseen (n = 26) All (n = 70)

5 Gold standard 0.0 0.0 0.0

4 Diagnostic confidence 59.1 69.2 62.9

3 Moderate confidence 29.5 7.7 21.4

2 Low level of confidence 11.4 7.7 10.0

1 Very low level of confidence 0.0 15.4 5.7
a in percentage w.r.t. total number of cases.
Bolded cases considered clinically useful = 84.3%.

4.2 Quantitative Results

From the seen datasets, six cases were manually labelled to provide a quantita-
tive reference. The labels were separated as ribs and spine. We compared the
automatically generated masks with the manually generated masks using the
following metrics: DICE (overlap), sensitivity and specificity. The masks were
clipped to the same thorax bounding box for metric calculation. The results are
summarized in Table 2.

Fig. 4. Layout of the clinical application: the top displays the unfolded cylindrical
projection view. The bottom displays three conventional multi-planar reconstructions
(axial, sagittal, coronal) and a single oblique multi-planar reconstruction. Use this
figure as guidance for Figs. 5 and 6.
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Distal fracture, grade 4

Proximal fracture, grade 4

Cartilage calcification, grade 3

Fig. 5. Snapshots of two cases with fractures (top and middle) and a case with cartilage
calcification (bottom).
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Removed vessels, grade 4

Removed cables, grade 3

Scoliosis, grade 3

Fig. 6. Snapshot of a case with successfully removed vessels (top), a case with success-
fully removed cables (middle) and a case with scoliosis (bottom).
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4.3 Discussion

Unfolded cylindrical projection views were obtained for all cases without any
user interaction. Results showed that overall 84% of the studies were clinically
useful (summing cases above grade 3 in all datasets). Low scores were mainly due
to segmentation inaccuracies. Some cases still include remains of the scapulae
or contrast bolus (vessels) that obscure the ribs. We plan to add editing tools
for the user to remove these type of segmentation errors. Finally, the unfolding
generates a new type of view unfamiliar to clinicians. This explains the lack of
gold standard cases (grade 5). Therefore, the application was designed to use
the specialized rib view for quick assessment and navigation, while the fractures
can be confirmed on the conventional MPR views.

Regarding the quantitative results, the dice scores for the spine were higher
than scores for the ribs. However, the sensitivity and specificity values of the ribs
were high. This can be explained by two aspects: (1) the automatic segmentation
obtained slightly thicker ribs than the manual segmentation, and (2) the stopping
point of the rib (towards the sternum) can be arbitrarily decided, hence including
more or less of the costal cartilage (Fig. 7).

As with any clinical application, computation time is a very important factor.
Our application runs in an average time of 24 s, as measured in 48 cases in a
personal computer with similar specifications to a radiology work-station.

A clinical study using this application has been recently completed. The study
found that using UCP allows for similar diagnostic performance with respect to
conventional MPRs for the detection of rib fractures, good inter-reader agree-
ment and an important reduction in evaluation time [12].

Axial Coronal Sagittal

Fig. 7. Case 1 from Table 2. We show the manual labels of the spine (blue) and ribs
(green). The differences between the automatic and the manual labels are displayed in
yellow. Notice that most of the differences are due to thickness, costal cartilage and
morphological operations (specially in the spine). (Color figure online)
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Table 2. Summary of quantitative evaluation.

Case Ribs Spine

DICE Sensitivity Specificity DICE Sensitivity Specificity

1 0.692 0.982 0.982 0.843 0.837 0.974

2 0.748 0.994 0.987 0.897 0.944 0.983

3 0.663 0.995 0.981 0.910 0.932 0.989

4 0.758 0.995 0.987 0.936 0.933 0.991

5 0.688 0.996 0.984 0.920 0.933 0.986

6 0.722 0.993 0.985 0.923 0.915 0.990

Masks clipped to the same thorax bounding box for metric calculation.

5 Conclusion

We developed an application that generates a 2D image that displays the entire
ribcage. The application was evaluated in 70 chest CT datasets.

The unfolding technique we developed preserves the relative size and location
of the ribs and surrounding tissue, providing a natural anatomical reference for
the reader. It also demonstrated usefulness to identify other musculoskeletal
conditions such us scoliosis, calcified cartilage, bone tumours.

A recent multi-reader clinical study showed that using the specialized UCP
view obtains similar diagnostic accuracy as conventional MPRs while reducing
the reading time.
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1 Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
robert.korez@fe.uni-lj.si

2 CHU Sainte-Justine, University of Montréal, Montreal, Canada
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Abstract. To evaluate spinal deformities, the Cobb angle is the main
diagnostic parameter that is usually measured on two-dimensional coro-
nal radiographic (X-ray) images. In this paper, we propose a method
for the evaluation of the three-dimensional (3D) Cobb angle from 3D
spine mesh models with varying face-vertex density. For the upper-end
and lower-end vertebra mesh models, the location of the vertebral body
center and mesh faces that belong to the vertebral body surface are
identified by unsupervised classification of mesh faces of the vertebral
body, which serve only as training data, and subsequent supervised clas-
sification of all mesh faces. Adjacent mesh faces are then labeled with
the same class, and after comparison to mesh faces in the training data,
we label the mesh faces of the superior and inferior vertebral endplate.
Finally, planes are fitted to the superior endplate of the upper-end verte-
bra and the inferior endplate of the lower-end vertebra, which define the
3D Cobb angle. The method was tested on 60 triangular mesh models of
the scoliotic spine, and each mesh model was generated at 17 different
face-vertex densities. For meshes with the mean face edge length below
6mm, the proposed method was accurate, with the mean absolute error
of 3.0◦ and the corresponding standard deviation of 2.2◦ when compared
to reference measurements.

Keywords: Spine modeling · Adolescent idiopathic scoliosis
Triangular mesh models · Automated measurements

1 Introduction

Scoliosis is one of the most common spinal deformities, described as an abnormal
lateral and rotational curvature of the spine [1]. One of the earliest methods
for the quantitative evaluation of spinal curvature was proposed by Cobb in
1948 [2], and is referred to as the Cobb angle. It is usually evaluated from two-
dimensional (2D) anteroposterior radiographic (X-ray) images of the spine as the
angle between the line along the superior endplate of the upper-end vertebra and

c© Springer International Publishing AG 2018
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(a) (b)

Fig. 1. (a) An illustration of the Cobb angle measurement between the superior end-
plate of the upper-end vertebra and the inferior endplate of the lower-end vertebra.
(b) A flowchart of the proposed algorithm. The inputs of the algorithm are triangular
mesh models of the upper-end and lower-end vertebra. For each model we estimate
the parameters of the planes that are fitted to superior and inferior endplate of the
upper-end and lower-end vertebra, respectively, and the Cobb angle is then estimated
from the normal vectors of the corresponding planes.

the line along the inferior endplate of the lower-end vertebra of the deformity
(Fig. 1(a)). Although several other methods for quantitative evaluation of spinal
curvature have been proposed since [3], the Cobb angle is still the most preferred
and established diagnostic parameter for evaluating scoliotic deformities.

Adolescent idiopathic scoliosis is the most common type of scoliosis, and it
appears more likely to girls than boys with a 6 : 1 ratio, and with a 10 : 1 ratio in
severe cases [4]. The main diagnostic criterion for scoliosis is that the Cobb angle
exceeds 10◦ on an anteroposterior spine radiograph. Nowadays, however, with
the availability and common usage of three-dimensional (3D) imaging techniques,
such as computed tomography (CT) or magnetic resonance (MR), measurements
of the Cobb angle are often performed in 3D, which proved to be superior to mea-
surements performed in 2D [3]. To address this issue, planes are, instead of lines,
defined along the vertebral endplates, which may be very challenging considering
the 3D nature of the images and a relatively complex structure of the spine. On
the other hand, automated measurements based on image analysis and processing
techniques usually require prior segmentation of vertebrae to perform quantita-
tive measurements. As the results of vertebra segmentation are binary masks that
can be represented as triangular mesh models in 3D, it is also valuable to develop
algorithms that perform measurements based on 3D mesh models.
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Recently, Huo et al. [5] described a method for the 3D Cobb angle measure-
ment from CT images using a mesh model of the spine. However, their method
is limited by the manual selection of end vertebrae of the deformity as well as by
the manual determination of the initial seed vertex of the mesh. In this paper,
we propose an alternative algorithm for the evaluation of the 3D Cobb angle
from 3D spine mesh models.

2 Methodology

The proposed algorithm for 3D Cobb angle measurement is divided into seven
steps that are shown in Fig. 1(b). The inputs of the algorithm are the upper-
end and lower-end vertebra mesh models. For each mesh model we estimate the
location of the vertebral body center that is further used to identify the mesh
faces that belong to the vertebral body surface. For this purpose, we perform
unsupervised classification of mesh faces of the vertebral body that serve only as
training data for the subsequent supervised classification of all mesh faces of the
vertebra. Adjacent mesh faces are then labeled with the same class, and after
comparison to mesh faces in the training data, we label the mesh faces of the
superior and inferior vertebral endplate. Finally, planes are fitted to the superior
endplate of the upper-end vertebra and the inferior endplate of the lower-end
vertebra, which define the 3D Cobb angle.

2.1 Vertebral Body Center Detection

The proposed detection of the vertebral body center is, with the difference that
it is adapted for a 3D mesh model, based on the work of Štern et al. [6], who
proposed an automated algorithm for the detection of the spinal centerline in
CT and MR spine images. As a 3D mesh model of the vertebral body is a closed
surface, any line orthogonal to any mesh face intersects with the vertebral surface
at least twice, i.e. in a pair of two opposite faces that intersect with this line
when it passes inside and outside of the vertebral body. As the vertebral body
is approximately a cylindrical structure, these opposite mesh faces have normal
vectors with approximately opposite directions. Moreover, it is expected that the
centerline of the vertebral body is in the middle of each line connecting any two
opposite vertebral body mesh faces. However, as an arbitrary line can intersect
with the vertebral surface more than twice (i.e. passes further through pedicles
and processes), more candidates for the opposite face can exist.

The 3D mesh model of the k-th vertebra is a triangular mesh structure com-
posed of a vertex set Vk and a face set Fk:

Vk =
{

vi | i = 1, 2, . . . , Nv

}
,

Fk =
{

fi | i = 1, 2, . . . , Nf

}
, fi =

{
vp, vq, vr

}
.

(1)

For each mesh face fi we perform a search in 3D for the opposite mesh face f∗
i ,

and the candidates for the opposite mesh face are all faces fj ∈ FC,i that fulfill
the following three criteria:
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• normal vector nj of the candidate opposite face fj is oriented in the approx-
imate opposite direction of normal vector ni of face fi;

• the Euclidean distance from the center ci of the face fi to cj is between
dvb,min and dvb,max;

• the Euclidean distance from cj to line li = ci + t · ni, t ∈ R, is less then
rvb,min.

Among all candidates in FC,i, the opposite mesh face f∗
i is the one that yields

the minimal dot product between normal vectors ni and nj of faces fi and fj ,
respectively:

f∗
i = arg min

nj→fj

(
dot(ni,nj)

)
, j = 1, 2, . . . , J, (2)

where J is the number of candidate mesh faces in FC,i. The vertebral body center
is located where the lines connecting every pair {fi, f

∗
i } of opposite mesh faces

most often intersect. For the purpose of finding the location of these intersections,
a new 3D image is initialized with zero values in the same coordinate system as
the observed vertebra – the 3D accumulator A. Each line connecting a pair of
opposite mesh faces {fi, f

∗
i } is first transformed with the Bresenham algorithm

[7] to determine M discrete points pm = (xm, ym, zm), m = 1, 2, . . . ,M , along
the line, and then assigned a weighting function, which is normally distributed
according to the Euclidian distance D between the centers ci and c∗

i of the
opposite mesh faces, and scaled by the dot product dot(ni,n

∗
i ) between the

corresponding normal vectors ni and n∗
i . The 3D accumulator value A(pm) is

then increased by the value of the weighting function at each point pm, m =
1, 2, . . . ,M , along the connecting line:

A(pm) = A(pm) − dot(ni,n
∗
i ) · exp

(
− (d(ci,pm) − D/2)2

2(D/6)2

)
, (3)

where d(ci,pm) is the Euclidian distance between ci and pm. The resulting
3D accumulator A represents a probability map of likelihoods of image voxels
to belong to the vertebral body center. However, the highest likelihoods may
be located also within the vertebral processes due to their cylindrical shape.
To address this issue, the 3D accumulator is filtered with a mean filter of size
KX ×KY ×KZ , determined according to the minimal average size of the human
vertebral body. The center of the vertebral body cb is identified as the voxel with
the highest filtered value of the 3D accumulator.

2.2 Superior and Inferior Endplate Labeling

Mesh vertices are first transformed from the image-based coordinate system V
to the coordinate system of the mesh V ∗ by means of the principal component
analysis (PCA). Vectors {e∗

x,e∗
y,e

∗
z} that define the new coordinate system are

principal components estimated by PCA, which rotates the vertebra mesh model
so that e∗

z is nearly parallel with normal vectors to the vertebral body endplates.
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For the purpose of labeling the superior and inferior endplate of the given
3D vertebra mesh model, mesh faces that belong to the vertebral body surface
have to be identified. By following a set of rays that are represented as cylinders
originating from the detected vertebral body center, we can identify whether the
vertebral body center is located within these cylinders. By using the spherical
Fibonacci mapping, we first yield a set of points on a unit sphere with a nearly
uniform distribution. This point set represents unit vectors of the set of rays, and
each unit vector defines the orientation of the corresponding cylinder of radius rc
and height hc, where hc is the maximum Euclidean distance from the detected
vertebral body center cb. As mesh faces fcyl,j ∈ Fcyl with corresponding centers
ccyl,j that are located within the cylinder are also candidates for the vertebral
body surface, we select for each i-th ray face fbody,i, which is the face with the
minimal Euclidean distance between its center and the detected vertebral body
center cb:

fbody,i = arg min
ccyl,i→fcyl,i

(
d(cb, ccyl,j)

)
, j = 1, 2, . . . , J. (4)

The resulting mesh faces fbody,i ∈ Fbody represent the boundaries of the vertebral
body, i.e. its surface.

However, as the vertebral body is not a fully closed surface, some faces may
not belong to the vertebral body but to other vertebral structures. On the other
hand, there are mesh faces of the vertebral body that may not be detected. We
can predict where the vertebral body surface is by least square ellipsoid fitting
to the set of centroids Cbody of mesh faces Fbody in the PCA-based coordinate
system, resulting in three eigenvectors {e1,e2,e3} and ellipsoid radii {r1, r2, r3}.
Due to the elliptical shape of vertebral endplates, ellipsoid fitting is most accurate
in the X∗ − Y ∗ plane. From the cross products of all pairs of eigenvectors, we
find the pair for which its cross product is most parallel to the Z∗-axis, i.e. to
the unit vector (0, 0, 1), by:

{e∗
i ,e

∗
j} = arg max

{ei,ej}

(
|dot (cross(ei,ej), (0, 0, 1))|

)
, i, j ∈ {1, 2, 3}, i �= j. (5)

From the projecting ellipse, defined by eigenvectors {e∗
i ,e

∗
j} and corresponding

radii {r∗
i , r

∗
j } to the X∗ − Y ∗ plane, we determine the vertebral body surface.

Each mesh fbody,i ∈ Fbody (4), for which the projection of the center c∗
body,i to the

X∗ − Y ∗ plane is located within the projecting ellipse, is included the training
set of mesh faces Ftrain for the determination of vertebral endplates (Fig. 2(a)).

Mesh faces Ftrain (5) can be, again by assuming that the vertebral body is
cylindrically shaped, classified in three groups: faces FB,TOP of the top elliptical
planar surface (i.e. the superior endplate), faces FB,BOTTOM of the bottom ellip-
tical planar surface (i.e. the inferior endplate), and faces FB,SIDE of the curved
surface (i.e. the vertebral body wall). If the main axis of the cylinder represent-
ing the vertebral body is aligned with the direction of the Z∗ axis, then normal
vectors (n∗

B,x, n∗
B,y, n

∗
B,z) of FB,TOP , FB,BOTTOM and FB,SIDE are represented

by (0, 0, 1), (0, 0,−1) and (x∗, y∗, 0), respectively. The appropriate feature for
classification of mesh faces Ftrain is therefore n∗

B,z, i.e. the Z∗ component of
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(a) (b)

Fig. 2. (a) An illustration of mesh faces Fbody (green and blue) and Ftrain (gray and
blue). [Note that the blue color represents the intersection of Fbody and Ftrain.] (b) An
illustration of mesh faces FB,TOP (blue), FB,BOTTOM (green) and FB,SIDE (gray)
estimated with k-Means++. (Color figure online)

the normal vector, which is performed by the unsupervised learning method k-
Means++ [8]. However, as the vertebral body is not perfectly cylindrical and
not perfectly aligned with the Z∗ axis, values n∗

B,z are arranged around corre-
sponding cluster centers with some variance. To avoid poor clustering, we seed
the initial values of clusters by choosing (1,−1, 0) for the initial cluster centers
as the main axis of the vertebral body is nearly aligned with the Z∗ axis. To
emphasize the distances between cluster centers, we transform n∗

B,z → n′
B,z with

a function f : n′
B,z = f(n∗

B,z), which should be an odd function to preserve
the sign of n∗

B,z. By applying k-Means++ classification we therefore yield three
clusters and corresponding cluster centers. The cluster with the highest value of
the cluster center represents faces FB,TOP , while the cluster with lowest value
of the cluster center represents faces FB,BOTTOM (Fig. 2(b)).

In the next step, we classify mesh faces that belong to the whole vertebra
in sets FV B,TOP , FV B,BOTTOM and FV B,SIDE according to n′

V B,z (Fig. 3(a)).
By applying a linear classifier, adjacent faces (i.e. faces that share a com-
mon edge) that belong to the same class are collected into groups of faces
FA,1, FA,2, . . . , FA,J . The groups that results in the largest number of adja-
cent faces from the training data represent the superior and inferior endplate
(Fig. 3(b)):

FSUP = arg max
FA,j

(
count(FA,j ∩ FB,TOP )

)
, j = 1, 2, . . . , J,

FINF = arg max
FA,j

(
count(FA,j ∩ FB,BOTTOM )

)
, j = 1, 2, . . . , J.

(6)
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(a) (b)

Fig. 3. (a) An illustration of mesh faces FV B,TOP (blue), FV B,BOTTOM (green) and
FV B,SIDE that were estimated with a linear classifier. (b) An illustration of mesh faces
FSUP (blue) and FINF (green) estimated from faces FV B,TOP and FV B,SIDE . (Color
figure online)

(a) (b)

Fig. 4. (a) An illustration of the plane estimated with the random sample consensus
(RANSAC) algorithm on mesh faces FSUP of the superior endplate of the upper-end
vertebra (top) and FINF of the inferior endplate of the lower-end vertebra (bottom).
(b) An illustration of the 3D Cobb angle measurement.

2.3 3D Cobb Angle Measurement

By applying the random sample consensus (RANSAC) algorithm [9] with error
tolerance ed on mesh faces FSUP and FINF (6), we estimate the parameters of
the planes along the superior endplate of the upper-end vertebra (Fig. 4(a)) and
the inferior endplate of the lower-end vertebra, resulting in normal vectors nsup

and ninf , respectively. The 3D Cobb angle is finally measured as (Fig. 4(b)):
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αCobb = arccos
(
dot(n′

sup,n
′
inf )

)
, (7)

where n′
sup is the projection of nsup to the Y −Z plane of the upper-end vertebra,

and n′
inf is the projection of vector ninf to the Y − Z plane of the lower-end

vertebra.

3 Experiments and Results

The performance of the proposed method was evaluated on 60 spines that were
diagnosed with adolescent idiopathic scoliosis (Sainte-Justine Hospital Research
Center, Montréal, Quebec, Canada), with mean reference Cobb angle measure-
ments of 48.8◦ (range: 15.2–80.9◦). The spines were imaged with biplanar radio-
graphy and corresponding triangular mesh models between vertebral levels T1
and L5 were obtained by biplanar stereo-reconstruction [10] and kriging inter-
polation method [11]. For each spine, 17 mesh models with different face-vertex
density (i.e. with a different mean face edge length ranging from 1.58 to 6.85 mm)
were generated and used for the performance evaluation.

For the vertebral body center detection (Sect. 2.1), dvb,min = 12 mm,
dvb,max = 60 mm, rvb,min = 1.2× mean face edge length were used for the
opposite mesh face determination, and mean filter of size KX × KY × KZ =
15 × 9 × 9 mm3 for the accumulation of lines between the opposite mesh faces.
For superior and inferior endplate labeling (Sect. 2.2), rc = 1.2× mean face edge
length for cylinders representing rays, function f : n′

B,z = f(n∗
B,z) = (n∗

B,z)
5

for emphasizing the distances between cluster centers, and ed = 1.35 mm for
RANSAC error tolerance.

The proposed method was successfully applied to the 3D mesh models of
all 60 spines. Detailed statistical analysis of the obtained results is presented in
Table 1.

4 Discussion

In this work, we described a semi-automated method for measuring the Cobb
angle from 3D mesh models of the spine. The only manual input to the method is
the selection of the upper-end and lower-end vertebra in the (scoliotic) deformity.
Apart from that, the method is fully automated, and, according to the obtained
results, yields relatively accurate 3D Cobb angle measurements.

From the results in Table 1 we can conclude that the results of the proposed
method are comparable to reference manual measurements at different face-
vertex densities that correspond to the mean face edge length ranging between
1.58 and 5.90 mm, as the comparison resulted in an average mean absolute error
(MAE) of 3.0◦ and corresponding standard deviation (SD) of 2.2◦. Once the
mean face edge length exceeds approximately 6 mm, the agreement with reference
measurements is lower, which can be observed in a higher MAE, maximal error
and the corresponding SD. It appears that at such face-vertex density there
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Table 1. Statistical analysis of the obtained 3D Cobb angle measurements at different
mean face edge lengths of corresponding 3D spine mesh models, and comparison against
reference Cobb angle measurements.

N = 60 scoliotic spines Comparison to reference Cobb angles

Mean face edge
length (mm)

Mean Cobb
angle (◦)

Mean absolute
error (◦)

Maximal error
(◦)

Standard
deviation (◦)

1.58 48.0 2.9 7.7 2.1

1.91 48.3 3.2 9.0 2.1

2.26 48.2 3.0 7.1 2.0

2.60 48.1 3.1 8.1 1.9

2.93 48.1 2.7 7.6 2.0

3.28 48.3 2.8 9.4 2.0

3.61 47.9 2.7 9.0 2.0

3.94 48.5 2.9 8.4 2.0

4.27 48.7 2.8 10.3 2.1

4.60 48.5 3.3 9.7 2.2

4.93 48.5 3.3 9.0 2.4

5.25 48.9 2.8 8.7 2.3

5.57 47.9 2.9 10.2 2.3

5.90 48.1 3.5 11.8 2.9

6.21 49.0 4.0 25.4 4.0

6.53 48.5 4.0 13.7 3.0

6.85 47.0 4.1 31.3 4.7

are few spine mesh models in the database that do not fit well the vertebral
body. Considering that the smallest vertebral body is T1 with a mean width of
23.5 mm, length of 15.0 mm and height of 15.1 mm height for females [12], it is
expected the that the mesh model with a mean face edge length in the range of
vertebral body dimensions would be inaccurate, and consequently the resulting
Cobb angle measurements would also be incorrect. Nevertheless, the accuracy
and robustness of the proposed method at lower face-vertex densities, i.e. of
up to 6 mm of face edge length, are valuable in terms of reducing the running
time of the algorithm due to its quadratic time complexity. On average, the
running time was estimated to 40 s (Intel(R) Core(TM) i7 - 4720HQ processor)
for a single spine mesh model at the highest face-vertex density.

A method that performs Cobb angle measurements from 3D mesh models
of the spine was also proposed by Huo et al. [5], however, the obtained results
cannot be directly compared to their method due to the different spine database,
different techniques for mesh model reconstruction, and different face-vertex den-
sities of the mesh models. However, Huo et al. obtained SD between 4.56 and
4.67◦ when measuring the Cobb angle on a database of 22 spines, which is higher
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than SD of around 2.0◦ that was obtained by the proposed method. Neverthe-
less, the most noticeable difference is in the level of automation of both methods.
While both methods require manual identification of the upper-end and lower-
end vertebrae, the method of Huo et al. additionally requires manual selection
of the seed vertex to estimate the parameters of each plane that represents a
vertebral endplate. The proposed method, on the other hand, is after the iden-
tification of the upper-end and lower-end vertebrae completely automated.

5 Conclusion

We presented a method for measuring the 3D Cobb angle from a 3D triangular
mesh model of the spine. The results obtained on a database for 60 scoliotic
spines indicate that the method is relatively accurate and robust, and up to
a certain level also relatively insensitive to the face-vertex density of the spine
mesh model.
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Abstract. A recent research direction for the localization of anatomical
landmarks with learning-based methods is to explore ways to enrich the
trained models with context information. Lately, the addition of context
features in regression-based approaches has been tried in the literature.
In this work, a method is presented for the addition of context features
in a regression setting where the locations of many vertebral landmarks
are regressed all at once. As this method relies on the knowledge of
the centers of the vertebral bodies (VBs), an automatic, endplate-based
approach for the localization of the VB centers is also presented. The
proposed methods are evaluated on a dataset of 28 lumbar-focused com-
puted tomography images. The VB localization method detects all of the
lumbar VBs of the testing set with a mean localization error of 3.2 mm.
The multi-landmark localization method is tested on the task of localiz-
ing the tips of all the inferior articular processes of the lumbar vertebrae,
in addition to their VB centers. The proposed method detects these land-
marks with a mean localization error of 3.0 mm.

Keywords: Regression · Localization · Lumbar · Vertebral body
Inferior articular process

1 Introduction

Back pain in general and low back pain in particular constitutes a major pub-
lic health problem, exhibiting epidemic proportions [1]. The computer-assisted
diagnosis of pathologies of the lumbar spine involves the analysis of images com-
ing from a series of standard imaging modalities. Computed tomography (CT)
images can be used for the diagnosis of spondylolysis, spondylolisthesis and
osteoporosis, as this imaging modality permits the measurement of the bone
mineral density of the vertebral bodies (VBs). This work focuses on the task
of the localization of the lumbar VBs in CT images and the localization of key
land-marks on the vertebral processes.

c© Springer International Publishing AG 2018
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The proposed framework can facilitate subsequent automated procedures,
such as the segmentation of the vertebrae, the automatic assessment of skeletal
vertebral pathologies and the analysis of the spinal shape. In the case of vertebral
segmentation, a large number of proposed methods employ some form of active
shape models or active appearance models [2,3]. The initialization step of these
model-based approaches is typically based on the localization of the centers
of the VBs. Using more landmarks than just the center of the VBs can add
robustness to this initialization step. Furthermore, the detection of vertebral
landmarks can function as the building block for the automated assessment
of pathologies concerning the global spinal shape (scoliosis, lordosis) and the
grading of spondylolisthesis: In [4], an automated method for the measurement
of spondylolisthesis was presented, based on the identification of the endplate
regions. For this application, the localization of the edges of the endplates in the
coronal direction could provide a more direct method for the measurement of
the anterior shift.

Localization of anatomical landmarks is a fundamental problem in medical
image analysis and a plethora of methods have been proposed in the literature.
In recent years, these tend to be based on machine learning tools and they can
be roughly categorized into classification-based methods and regression-based
methods. A popular research direction is the addition of context information in
the model that is constructed by these learning-based methods. For the problem
of object segmentation, a principled method for achieving so is the auto-context
framework [5]. Recently, there have been attempts to apply this framework for
the localization of landmarks with random forest regressors. In particular, in
[6] the authors showed that the extraction of context features from the dis-
tance maps of a traditional random forest regressor can improve the landmark
localization accuracy. Following this research direction, in the present work this
method of adding context information is applied to a multiple-landmark local-
ization task, where the locations of more than one landmark are regressed all at
once by random forest regressors. We show that the proposed method is able to
detect robustly key landmarks of the vertebrae, despite the similar appearance
of neigh-boring vertebra. As the proposed method assumes that the centers of
the VBs have been already detected, we also present an endplate-based method
for the detection of the lumbar VB centers. We evaluate both of the methods in
a dataset of 28 lumbar-focused CT images.

2 Method

The proposed framework consists of two modules. The first module deals with
the localization of the VBs and the estimation of the pose of the vertebrae. It
performs this task via the detection of the vertebral endplates on a spline-based
unwrapping of the input image. The second module deals with the localization of
key landmarks of the vertebrae, based on the estimation of the VB centers and
the vertebral pose by the first module. It employs two levels of random forest
regressors. The two modules are described in Sects. 2.1 and 2.2. For the rest of
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this section, it is assumed that a number of CT images of the lumbar spine are
available for training. A training image will be referred to using the notation:

Ii : Ωi ⊂ R
3 → R, i ∈ {1, . . . , N}. (1)

A testing image will be denoted with IT . Every training image is accompanied
with annotations of the centers of all the VBs within the field of view. We denote
the set of the annotations of the training image Ii with:

Ai =
{
(c1, v1), . . . , (cmi

, vmi
)
}
, (2)

where cj ∈ Ωi, vj ∈ L, L = {S2, S1, L5, L4, L3, L2, L1, T12, T11, T10}. We reduce
the set of the spinal levels to T10, since the dataset that we used for the exper-
iments does not capture any vertebrae at higher spinal levels. Finally, it is
assumed that the field of view covers at least the S1 – L1 region.

2.1 Localization of Vertebral Bodies and Estimation of Their Pose

The localization of the lumbar VBs is performed in four steps, summarized
in Fig. 1. Firstly, a first-level detection of the centers is performed using the
method proposed in [7]. This method employs a random forest classifier and in
the present work it is used for a first-level detection of the VB centers of the
levels L. At training time, it constructs a label-map for every training image,

Fig. 1. A flowchart of the steps of proposed pipeline for the localization of the lumbar
vertebral bodies (VBs). From left to right: a first-level detection of the VB centers is
performed using the method of [7]; the original image is resliced along the curve that
passes through the first-level detections; a mean-intensity profile is calculated along
the axial center of the resliced image and the peaks of the mean-intensity profile that
correspond to endplate locations are identified using a k-nearest neighbors classifier.
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using the ground-truth annotations of the VB centers. A random forest multi-
label classifier is trained on the label-maps, using as features the mean intensity
of displayed boxes (Haar-like features). At testing time, the generated proba-
bility map for every vertebral level is assumed to follow a normal distribution.
The mode of the distribution for every generated probability map separately is
retrieved with the mean-shift mode-seeking algorithm [8].

Secondly, the original CT image is resliced along the curve that passes
through a set of VB center locations by performing an image deformation known
as curved planar reformation[9]. At training time, these locations are the ground
truth VB center annotations whereas at testing time they are the first-level VB
center detections. The reslicing is carried out using the method of [10], which
firstly calculates a B-spline that passes through the first-level detections and
then constructs a local coordinate system (LCS) on every point of the B-spline.
In the rest of this paper, the resulting deformed image will be referred to as the
spline-unwrapped image.

Thirdly, for every slice of the spline-unwrapped image, the mean intensity
of a region around the middle point of the slice is calculated. The result of
this operation is a univariate signal, referred to as the mean-intensity profile
(shown in the top plot of Fig. 2). For the training phase, it is denoted with
si : Oi ⊂ N → R. For a testing image, it is denoted with sT .

Fig. 2. The mean-intensity profile and the detection of the endplates. Top: The mean-
intensity profile of a testing image with all the local maxima (peaks) in black dots;
Middle: The out-put of the k-nearest neighbors classifier, which classifies the peaks in
“endplate” and “non-endplate”. Bottom: The same endplate positions, on the spline-
unwrapped image. The prediction of the vertebral body center is the average position
of the bottom and top endplate on every lumbar level.
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Lastly, the locations of VB centers are inferred from the positions of the
vertebral endplates in the mean-intensity profile, using an approach very similar
to those of [11,12]. Unlike [11], we do not attempt to detect periodic patterns
in the mean intensity profile but we just locate its local maxima. As in [12],
the basic observation for the detection of the endplates is that their locations
correspond to local maxima (peaks) in the mean-intensity profile. Unlike [12],
we do not make any assumptions concerning the orthogonal symmetry of the
vertebrae in order to fine tune the VB center estimations and we just average
the locations of the bottom and top endplates. Furthermore, we attempt to add
robustness to the identification of the peaks that correspond to endplates by
training a k-nearest neighbors classifier specifically for this task. In detail:

• At training time, for every mean-intensity profile si, we locate the positions
of those peaks Pi = {p1, . . . , pqi}, p1 ∈ Oi which are anatomically superior
to the annotation cS1 . Hence, S1 is used as an anchor vertebra. For every
peak position pξ we compute three simple features: (a) the value of the peak
si(pξ); (b) its left prominence eξ and (c) its right prominence Eξ. The left
prominence is defined as:

eξ = max
{
si(pξ) − si(ρ), ρ ∈ Oi, si ↗ [ρ, pξ]

}
, (3)

where the ↗ denotes that si is increasing in the specified interval. The
right prominence Eξ is defined symmetrically. A binary label is provided for
every peak, marking whether it corresponds to an endplate position or not.
A k-nearest neighbors classifier is fit to this training set.

• At testing time, the peaks of mean-intensity profile sT after the S1 first-
level detection are identified (Fig. 1) and the three features are computed as
in training. The trained k-nearest neighbors classifier classifies these peaks as
corresponding to endplates or not. Finally, the estimates for the centers of
the lumbar VBs are given by simply averaging the endplate positions. The
pose of every vertebra is given by the LCS (computed at the second step) of
the point of the B-spline which is closest to the VB center estimation.

2.2 Localization of Vertebral Landmarks

The objective of the second module is to locate a given number of vertebral
landmarks on each level of the lumbar spine separately. We are interested in the
lumbar spinal levels L′ = {L5, L4, L3, L2, L1}. Let v ∈ L′ be one such level. For
simplicity, it is assumed that same number Mv = M of landmarks is desired
to be found on all the levels. Therefore, it is assumed that the annotations Bv

i

of the M landmarks of the vertebra at level v of every training image Ii are
available. This ordered set of annotations is denoted as:

Bv
i = (cv

1, . . . , c
v
M ) , cj ∈ Ωi. (4)

The VB center annotations for the lumbar region of (2) are incorporated in the
ordered sets Bi as its first elements, i.e. cv

1 = cv for all the levels, where cv is
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annotation for the VB center. Hence, given a testing image IT , the task is to
localize the M landmarks on each level v ∈ L′. This is accomplished with two
layers of random forest regressors, combined in an auto-context fashion [5]. The
two layers are described in detail in the following two sections. The pipeline is
summarized in Fig. 3.

(a) (b) (c) (d)

Fig. 3. Overview of the second module. (a) The image is aligned according the pose
of the vertebra and a region of interest around the vertebra is isolated. (b) First layer:
a random forest generates the distance maps to the landmarks of this spinal level.
(c) Second layer: similarly to the first layer, distance maps are generated by a random
forest. The distance maps of the first layer are used as additional images for the calcu-
lation of context features. Also, a vote map for every landmark is calculated. (d) The
mode of each vote map is located using the mean shift algorithm.

First Layer: Multi-landmark Localization Using Appearance Features.
The first layer employs a traditional multi-landmark regression-based method.
One random forest regressor is trained for each lumbar level. Since each of these
regressors is being utilized independently of all the others, let’s assume that
interest is on a specific level v ∈ L′.

• At training time, the images Ii are rotated according to the poses of the
vertebrae at level v, so that all the vertebrae at level v are aligned, and a
region of interest ROI is constructed around the VB center. The training set
is sampled from all the ROIs. For every training sample, the displacements
to the M landmarks are computed, hence it is paired with 3 ∗ M continu-
ous values. A random forest is trained to regress these displacements. The
traditional Haar-like features are used (as in [6,7,13]), which are based on
the mean intensity value of randomly displayed boxes. The following feature
types are considered:

f(x;B1, B2,o1,o2, s) =
1

|B1|
∑

y∈B1

I(x+o1+y)− s

|B2|
∑

y∈B2

I(x+o2+y), (5)
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(a) (b) (c)

Fig. 4. Illustration of the problem with the single regressor approach on three testing
cases. In cases (a) and (c) the level of interest is L1, and in (b) it is L2. The region of
interest is represented by a red overlay. The blue-red colormap corresponds to the vote
maps. On (a), the vote map retains its maximum value around the correct location.
On (b), the vote map still gets its maximum on the correct location (the bottom peak),
but it can no longer be considered unimodal. On (c), the problem is clear, as the mode
with the highest value (top peak) does not correspond to the ground truth location
(bottom peak).

where s ∈ {0, 1}, B1, B2 are the sizes of two 3D boxes and o1, o2 are 3D
offsets. A specific number of these features is sampled at the beginning of
the random forest training and the parameters of the features are sampled
uniformly from an interval of allowed values. In each leaf node of the decision
trees of the trained random forest, two vectors of dimension 3∗M are stored:
the mean displacements of the training samples that arrived on this leaf and
their variance along every dimension.

• At testing time, the first module estimates the VB center of IT at level v
and the relevant pose. Then, IT is aligned according the detected pose, a ROI
is generated around the detected VB center and a testing set is sampled from
inside this ROI. In a traditional single-layer approach, every testing sample
would be parsed by every tree of the forest and it would cast M votes for the
locations of each of the M landmarks. The aggregation of the votes from all
the testing samples results in M maps, which in this work will be referred to
as vote maps. The location of the each of the M landmarks would be inferred
from its vote map, via a mode-seeking algorithm. A drawback of this approach
is that the vote maps are not guaranteed to be unimodal. In fact, it is to be
expected that the vote map will have a high value on not only the target
landmark at level v but possibly on the homologous location of neighboring
vertebra. This is partially addressed by the fact that only a ROI around the
detected VB center of the testing image is considered. However, the problem
is not fully eliminated, since it is not possible to know in advance how large
this ROI should be. This is illustrated in Fig. 4. The problem is most apparent
in Fig. 4(c), where the maximum of the vote map occurs on the wrong level.
A mode-seeking algorithm would fail in that case.

Second Layer: Addition of Context Features. The problem of the concur-
rent appearance of modes on neighboring spinal levels is addressed by the addi-
tion of context features. These context features are similar to the ones introduced
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in [6], where context information is extracted from the distance maps. In [6] one
random forest regressor is constructed for every landmark. This would not scale
well to the current task, as |L′| ∗ M regressors would have to be trained on
every layer. Therefore, the context features are used here by a multi-landmark
regressor.

• At training time, every tree of the first layer makes three predictions (one
for each spatial dimension) for the displacement of each training sample to
each of the M landmarks. The mean value of Euclidean distance of these
three predictions over all the trees is called a distance map. At this point, an
important decision to be made is which part of the training image should be
considered for the computation of the distance maps. A simple choice is to
use the same ROI as the one used for the training of the first layer. However,
such a setup will bias the second layer into expecting that the VB center
lies exactly at the center of the sampling ROI. In order to remove this bias,
a modification to the standard Auto-context framework is introduced. For
every ground truth annotation cv

1 of the VB centers, W randomly displaced
locations are generated:

c̃v
1,w = cv

1 + dw, dw ∈ [−d, d]3, w ∈ {1, . . . , W}. (6)

The displacements dw are sampled randomly from the space [−d, d]3. Then,
W ROIs Rw ⊆ Ωw, w ∈ {1, . . . , W} around each c̃v

1,w are generated. The
regions Rw of the training image Ii are parsed by the random forest of the
first layer in order to compute the W ∗M distance maps Dm

i,w : Ωi → R
+. The

value of distance maps Dm
i,w outside of Rw is set to a fixed, large value. For

the training of the second layer, each training image Ii is taken into account

Fig. 5. Qualitative comparison of the voting maps of a single random forest layer (top
row) with the voting maps after the second layer of the proposed method (bottom
row). From left to right: sagittal cuts of different testing images for levels L1 to L5,
respectively. Notice that the images have been automatically aligned around the ver-
tebra of interest. In can be observed that the voting map is more concentrated in the
two-layered approach and it is has exactly one mode around the correct landmark
location.
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W times, each time paired with the M distance maps Dm
i,w. As in the first

layer, a pool of Haar-like features is sampled before the training of the forest
starts, with the difference that the intensity image I(·) of (5) can be replaced
by one of the Dm

i,w. When this happens, the resulting Haar-like feature is
able to capture context information from the distance maps of the first layer
(context feature). The total number of context features is set beforehand as
a hyperparameter.

• At testing time, the distance maps of the testing image are generated by the
first layer, using the same testing ROI as in the first layer. The testing image is
paired with the generated distance maps and it is passed to the second layer,
so that both appearance features (computed on the original testing image)
and context features (computed on the distance maps) can be calculated.
The testing pipeline proceeds with the computation of the vote maps. For
every testing sample, the vote generated by each tree of the forest for each
landmark is taken into account separately, provided that the variance of the
displacement is below a certain threshold. As it is illustrated in the second
row of Fig. 5, the resulting vote map is unimodal. The mode of every vote
map is estimated using the mean-shift algorithm [8]. Finally, the estimated
modes are rotated back to the original image space in order to provide the
localization of the landmarks.

3 Experiments and Results

3.1 Dataset and Experimental Setup

The proposed methods are evaluated on a dataset of 28 CT images. The intra-
slice slice spacing is in the 0.29–0.42 mm range, the inter-slice spacing is 0.7 mm
and the slice size is 512 × 512. All of the images capture at least the S1 –
L1 levels, which is typical for scans of the lumbar spine. The thoracic region is
captured up to the T10 level some cases. No implants are presented in any of the
images. There are cases with mild scoliosis, osteophytes and fractures vertebrae.
For every lumbar vertebra, five manual annotations are made: the center of the
VB and the tips of the four inferior articular processes. There are four inferior
articular process on a typical lumbar vertebra: a bottom-left, a bottom-right, a
top-right and a top-left. We will refer to their tips as landmarks A, B, C and D
respectively. Sagittal and coronal view of two example annotations for landmarks
A and B are shown on Fig. 6(a) and (b).

All of the images are resampled to an isotropic spacing of 1 × 1 × 1 mm. We
randomly select 20 images to be used for the training phase of the proposed
methods. The held-out eight images will be used for evaluation. The hyperpa-
rameters are set through a leave-one-out cross-validation iteration on the training
set. The K parameter of the k-nearest neighbors classifier of the first module is
set to 15. For the second module, they are as following: for the random forest of
the first layer, 50 trees are trained, the size of the feature pool is 10000 and on
every node the search space is 200 features. The size of the ROI around every
vertebra is 120 × 150 × 80 mm. The training set of every tree is a random 1%
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Fig. 6. (a) The sagittal and the coronal views of the annotation of the tip of the
bottom-left inferior articular process (landmark A) of an L3 vertebra. (b) The sagittal
and coronal views of the annotation of a bottom-right inferior articular process (land-
mark B) of an L2 vertebra. (c) The three-dimensional bounding boxes of the manual
annotations for the inferior articular process (blue dots) and their detections (red dots).
The localization errors have been exaggerated. (Color figure online)

subset of the voxels inside the ROIs. At testing time, all the voxels inside the
ROI are used. For the second layer, the parameters W , d of (6) are set to 5 and
8 mm, respectively. The size of the feature pool of the random forest is now 11000
features: 10000 intensity-based plus 200 from the each of the five distance maps.
For the vote maps, votes with a predicted variance of more than 15 mm in any
spatial dimension are ignored.

3.2 Evaluation

For the evaluation of the first module, two metrics are used: (a) the rate of
successful detections and (b) the displacements to the manual annotations of
the VB centers of the lumbar spine (localization error). A VB center detection
is considered successful when it lies within 10 mm from the respective manual
annotation. The detailed evaluation for every lumbar spinal level is presented in
Table 1, where the rate of successful detections is labeled as “Id. rate”. All of
the lumbar VB of the eight testing images are detected successfully. The mean
localization error is 3.2 mm, with a standard deviation of 2.0 mm and a median
value of 2.8 mm. The evaluation of the first-level detections obtained with the
method of [7] is also presented in Table 1.

Table 1. Localization performance of the first module for the vertebral body centers.
A detection is considered successful if it lies within 10 mm from the manual annotation
(Id. rate). The mean, standard deviation and median of the localization errors are
computed on the successful detections only. The first-level detections are the output of
the method [7]. The endplate-based detections are the output of the first module.

First-level detections Endplate-based detections

L1 L2 L3 L4 L5 L1 L2 L3 L4 L5

Id. rate (%) 75.0 62.5 62.5 75.0 100 100 100 100 100 100

Mean (mm) 3.7 6.7 8.1 7.6 5.0 2.8 3.4 3.8 3.1 2.9

Std. (mm) 2.1 3.5 3.3 3.2 1.8 1.3 2.3 1.5 2.6 1.5

Median (mm) 3.4 6.1 6.9 7.6 5.2 2.4 2.4 4.0 1.7 2.7
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Table 2. Localization errors of the second module for the five landmarks of L1 – L5.
In the case of L4, one testing case has been omitted because it was not possible to
annotate all its articular processes due to a vertebral fracture. Hence, there are seven
testing images on this spinal level.

VB center A B C D Overall

L1-level landmarks

Loc. error < 6 mm (%) 100 100 100 100 100 100

Mean (mm) 1.8 2.8 3.0 2.6 3.4 2.7

Std. (mm) 0.6 1.4 1.3 1.1 1.5 1.3

Median (mm) 1.7 2.6 2.7 2.6 2.9 2.7

L2-level landmarks

Loc. error < 6 mm (%) 100 100 100 100 100 100

Mean (mm) 2.4 2.2 2.1 3.1 2.6 2.5

Std. (mm) 1.1 0.8 0.8 1.2 1.4 1.1

Median (mm) 2.8 2.2 2.0 2.8 2.4 2.3

L3-level landmarks

Loc. error < 6 mm (%) 100 100 87.5 87.5 100 95.0

Mean (mm) 2.7 3.4 3.7 3.6 2.8 3.2

Std. (mm) 0.9 1.6 1.5 1.9 0.9 1.5

Median (mm) 2.4 3.1 3.1 3.1 2.7 2.9

L4-level landmarks

Loc. error < 6 mm (%) 100 87.5 87.5 87.5 87.5 88.6

Mean (mm) 1.9 4.0 3.4 3.5 3.4 3.2

Std. (mm) 1.0 1.7 2.3 1.9 2.9 2.2

Median (mm) 1.7 3.2 2.1 3.5 2.4 2.4

L5-level landmarks

Loc. error < 6 mm (%) 100 75.0 100 100 100 92.5

Mean (mm) 2.7 4.5 3.4 3.4 2.9 3.4

Std. (mm) 1.6 1.6 1.3 1.3 1.1 1.5

Median (mm) 2.4 4.7 3.8 3.3 2.9 3.0

For the evaluation of the second module, the localization error metric is
also used. The localization errors for each lumbar level are presented in Table 2,
along with the rate of the detections with a localization error of less than 6 mm.
Overall, the proposed method achieves a mean localization error of 3.0 mm,
with a 1.6 mm standard deviation and a median value of 2.7 mm. 95.4% of the
detections have a localization error of below 6 mm. Regarding the training of
the second layer, we experimented with removing the randomly displaced ROIs
of (6) and train instead using ROIs centered around the VB centers. With that
setup, the localization error increases to 3.4± 1.8 mm.
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Table 3. Dice coefficients for the bounding boxes from the five landmarks over each
spinal level.

Dice coefficients L1 L2 L3 L4 L5 Overall

Mean 0.87 0.90 0.90 0.90 0.87 0.89

Min. 0.80 0.86 0.87 0.80 0.82 0.80

Max. 0.94 0.95 0.96 0.95 0.92 0.96

As an additional metric for the quality of the detections, their bounding
boxes are also considered. In particular, the extreme locations of the five land-
marks in the each of the three spatial dimensions define six bounding planes
and therefore a 3D bounding box. Coronal projections of such bounding boxes
are depicted in Fig. 6(c) for both the manual annotations (blue box) and the
automatic detections (red box). The evaluation metric is the Dice overlap coef-
ficient of the bounding box of the manual annotations and the bounding box of
the detections. The achieved scores on this metric are presented in Table 3. The
mean dice coefficient, across all the spinal levels, is 88.8%.

4 Conclusion

The repetitive nature of the spine poses an additional difficult to the task of
landmark localization, as neighboring vertebrae often have very similar appear-
ance. However, a fully automatic method for localizing vertebral landmarks is
highly desirable, as it can provide as a robust initialization step for model-based
segmentation methods and it can facilitate the assessment of certain vertebral
pathologies. In this work, a pipeline for the detection of lumbar vertebral land-
marks is proposed. The proposed pipeline starts with the detection of VB cen-
ters and proceeds with the localization of landmarks on each lumbar level. For
evaluation, the pipeline was applied for the localization of the VB centers and
the inferior articular processes on a dataset of lumbar-focused CT images. The
experimental results suggest that the proposed method can detect reliably the
vertebral landmarks on all the levels of the lumbar spine. Even though in our
experiments we focused on the articular processes, we expect that the proposed
method can be applied for different vertebral landmarks as well, such as key
endplate landmarks for the measurement of spondylolisthesis. In the future, we
plan to explore such a direction. Future research also includes the more extensive
evaluation of the proposed methods on larger datasets and the investigation of
ways to improve the localization accuracy, for example by fine-tuning the detec-
tions in a multi-scale fashion and by introducing context features from different
vertebral levels.
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Abstract. Magnetic resonance imaging (MRI) is routinely employed
to assess muscular response and presence of inflammatory reactions in
patients treated with metal-on-metal hip arthroplasty, driving the deci-
sion for revision surgery. However, MRI is lacking contrast for bony struc-
tures and as a result orthopaedic surgical planning is mostly performed
on computed tomography images. In this paper, we combine the comple-
mentary information of both modalities into a novel framework for the
joint segmentation of healthy and pathological musculoskeletal struc-
tures as well as implants on all images. Our processing pipeline is fully
automated and was designed to handle the highly anisotropic resolu-
tion of clinical MR images by means of super resolution reconstruction.
The accuracy of the intra-subject multimodal registration was improved
by employing a non-linear registration algorithm with hard constraints
on the deformation of bony structures, while a multi-atlas segmentation
propagation approach provided robustness to the large shape variability
in the population. The suggested framework was evaluated in a leave-
one-out cross-validation study on 20 hip sides. The proposed pipeline has
potential for the extraction of clinically relevant imaging biomarkers for
implant failure detection.

Keywords: Muscoloskeletal imaging · Multimodal segmentation
Multimodal registration · CT · MR · Arthroplasty

1 Introduction

In the past 20 years, metal-on-metal (MoM) hip arthroplasty has been one of
the most effective surgical interventions for improving life quality. However,
this implant type is associated with a non-negligible rate of failure (8% at
12 years from primary surgery [1]), due to adverse tissue inflammatory reactions
and increased muscle atrophy [2]. Routine assessment of periprosthetic muscle
response to the implant is performed on magnetic resonance (MR) images [3],
c© Springer International Publishing AG 2018
B. Glocker et al. (Eds.): MSKI 2017, LNCS 10734, pp. 72–84, 2018.
https://doi.org/10.1007/978-3-319-74113-0_7
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whereas computed tomography (CT) imaging is preferred for surgical planning
and post-operative follow-up, thanks to its improved contrast for bone and
implant [4]. The two modalities provide complementary skeletal and muscular
information, which are presently assessed independently in clinical practice. In
this context, a single framework merging this information by means of joint auto-
mated segmentation could be beneficial for both early detection of implant fail-
ure and planning of revision surgery. By providing spatial relationship between
muscle, bone and implant simultaneously, the combination of the two imaging
modalities could help link implant position (not MR visible) with muscle damage
(estimated on MR) to better characterise pain origin. Moreover, it could favour
a patient-specific planning of surgical approach to minimise damage to healthy
bone and muscular tissue.

In the musculoskeletal clinical field, manual segmentation is still the most
frequently adopted solution in clinical routine for delineating regions of inter-
est [5], despite the variety of image-based anatomical models and segmenta-
tion techniques presented in the literature. Methods for automated segmen-
tation of hip bony structures in CT images are typically based on statistical
shape models [6,7], atlas-based segmentation propagation [8] or, more recently,
hybrid approaches [9]. Segmentation of muscles on MR images is more prob-
lematic, because of their large inter-subject shape variability and the lack of
image contrast between different muscular structures. A common approach for
thigh muscles is the incorporation of atlases as priors into conventional segmen-
tation techniques such as active contours or level-set algorithms [10,11]. Remark-
able results were also presented by Gilles et al. [12], who introduced a method
to automatically segment hip muscles and bones on MR images by means of
deformable multi-resolution simplex meshes. The performances of all discussed
methods are strongly reliant on the variability encompassed in the training data
set and they are often not suitable for pathological conditions. Klemt et al.
[13] addressed this issue by developing a robust automated segmentation frame-
work for abductor muscles on MR in both healthy subjects and patients with
MoM prostheses. However, little work combining multimodal imaging for the
segmentation of musculoskeletal structures has been proposed so far and it is
often limited only to spine applications. An example is the method presented by
Castro-Mateos et al. [14], which is based on a fast mesh-to-image registration to
extract a surface model of CT-derived vertebrae and MR-derived intervertebral
discs. Whilst being very suitable for bony structures, the applicability of this
method to patients with hip arthroplasty would be hindered by the presence
of metal artefact in the images and by the greater morphological and textural
variability of muscles.

Taking advantage of the complementary information derived from CT and
MR, we propose a fully automated joint segmentation framework of both modal-
ities from patients treated with MoM arthroplasty. Our processing pipeline was
designed to handle clinical data, characterised by highly anisotropic resolution
and presence of severe metal artefact induced noise, and allows for a three-
dimensional representation of patient-specific musculoskeletal hip anatomy.
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Key contributions of this work include the use of super resolution reconstruction
(SRR) to improve clinical MR image quality; moreover, the development of a
robust intra-subject multimodal registration allowed preservation of the rigid
structure of bones, while deforming the muscles. Finally, a multi-channel multi-
atlas based segmentation propagation guaranteed robustness to the large shape
variability in the population.

2 Materials and Methods

2.1 Dataset and Templates Creation

Our dataset includes retrospectively collected images of 11 MoM hip implanted
patients (7 females and 4 males, 10 unilateral and 1 bilateral replacement)
who had both a CT and an MR scan acquired on the same day. For the MR
acquisitions, a Siemens MAGNETON Avanto 1.5T scanner was employed for
all patients, using the MARS MRI protocol proposed in [15], which is char-
acterised by rapid 2D MRI acquisition but high voxel resolution anisotropy.
This includes the collection of two T1-weighted Turbo Spin Echo (TSE) images:
a high-resolution axial acquisition (TE= 8 ms, TR = 509 ms, typical imaging
resolution = 0.78 × 0.78 × 7.02 mm3) and a high-resolution coronal acquisition
(TE= 7.1 ms, TR = 627 ms, typical imaging resolution = 1.25×1.25×6.00 mm3).
Eight CT images were acquired on a Siemens SOMATOM Sensation 16 CT Scan-
ner, while three on a Siemens SOMATOM Definition AS machine (tube voltage
in [80, 120] kVp). The images were processed (see Sect. 2.2), split along the left-
right axis of symmetry and separated according to the presence of implant. Man-
ual segmentation of pelvic bones, femora and implant were performed on CT,
while Gluteus Maximus (GMAX), Gluteus Medius (GMED), Gluteus Minimus
(GMIN) and Tensor Fasciae Latae (TFL) were individually manually delineated
on the MR. As a result of these processes, we built two template data sets, com-
posed of 10 implanted and 10 non-implanted hip sides respectively - for the sake
of simplicity we will refer to the latter as the healthy data set despite the presence
of metal artefact generated by the implanted side. Each template includes a CT
image, a registered super-resolution reconstructed MR image and the respective
joint manual segmentation of bones, muscles and implant. Within each dataset,
the templates were robustly aligned onto the average space based on the method
proposed in [13].

2.2 Pipeline for Automated Segmentation

A schematic representation of our processing framework is presented in Fig. 1.
The pipeline was implemented in NiPype [16], combining registration and seg-
mentation utilities of NiftyReg1, NiftySeg2 and FSL3 software packages with

1 https://cmiclab.cs.ucl.ac.uk/mmodat/niftyreg.
2 http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftySeg.
3 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki.

https://cmiclab.cs.ucl.ac.uk/mmodat/niftyreg
http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftySeg
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
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Fig. 1. Proposed pipeline for joint automated segmentation of computed tomogra-
phy (CT) and magnetic resonance (MR) pelvic images. The two modalities are first
processed independently to enhance the image quality. Intra-subject multimodal reg-
istration is then performed to align them through a non-linear deformation with rigid
constraints in bony structures. The registered CT and MR are split along the axis of
symmetry and a multi-atlas based segmentation propagation approach is applied to
obtain the automated segmentations of each side, which are finally recombined into
the full field of view.

super-resolution reconstruction and the proposed novel multimodal registration
framework. Our method is composed of three main blocks which are performed
sequentially: image quality enhancement of each modality, intra-subject MR-to-
CT registration, and atlas-based segmentation.

Image Quality Enhancement. In the first block, we aim at improving the
quality of the clinical images for improved registration steps. The axial and the
coronal MR images are first corrected for bias field effects [17]. In order to com-
pensate for the highly anisotropic resolution of clinical MR images (up to a factor
of 10), we combine both MR acquisitions into a 1 × 1 × 1 mm3 resolution image
using the SRR algorithm presented in [18]. To ease the subsequent registration,
the CT is also resampled to the same resolution using a cubic interpolation
scheme. An initial estimate of bones segmentation on the CT is extracted by
registering the templates to the target space and consequently propagating and
fusing their segmentation, allowing the creation of masks for femur, pelvis and
implant to be used in the intra-subject registration.
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Intra-Subject MR-CT Registration with Bone Rigid Constraints. The
subsequent step in our processing pipeline is the registration of the SRR MR
image to the respective CT. Multimodal registration for hip musculoskeletal
structures is challenging and no standard method has been proposed yet. A
simple affine transformation is not sufficient to guarantee an accurate align-
ment of the images, due to differences in the patient’s pose in the scanners. On
the other hand, high frequency deformations should be curbed when dealing
with intra-subject registration to prevent non-physiological deformation. The
applied transformation should embed a rigid behaviour for bones to preserve
their shape, while allowing non-linear deformation of fat and muscular tissue.
To tackle the discussed issues, we designed a registration pipeline composed
of two steps. Firstly, the two images are affinely registered using a symmetric
block-matching algorithm [19], in order to provide an initial global alignment.
Subsequently, the non-linear registration is performed by imposing locally rigid
hard constraints directly on the transformation through the following method,
which we developed from the mathematical formulation proposed in [20]. Given
a reference space X with the associated intensities R(X) (i.e. a reference image
R), a set of masks Mj defined in the reference space labelling the rigid struc-
tures, and a floating image F defined in the floating space Y , we defined our
registration problem as the optimisation of the transformation φ : X → Y such
that:

max
φ

[
(1− α− β) D(F (φ(X)), R(X)) − αPL − βPB

]

subject to φ(x) − Ajx = 0 ∀x ∈ Mj ⊂ X,
(1)

D is a measure of similarity between the reference and the warped floating image,
while PL and PB represent the linear elasticity and the bending energy penalty
terms [21], whose contribution to the total cost function is weighted by α and
β respectively; Aj refers to a rigid transformation applied within the j-th mask.
In order to guarantee inverse-consistency and symmetry of the registration [22],
we exploit a scaling-and-squaring exponentiation of a stationary velocity field
encoded by a cubic B-spline parametrisation defined over a set of control points
{μ}. The transformation is optimised within a conjugate gradient scheme, and
the rigid behaviour in the mask areas is ensured through the following steps:

Algorithm 1. Apply rigid constraints
Compute the gradient G(μ) of the cost function ∀μ ∈ {μ},
for each mask Mj do

Least square regression of G(μ), ∀μ ∈ Mj to fit a rigid transformation Aj

Set the gradient to Aj(μ) ∀μ ∈ Mj

end for
Perform a line search along the direction of G.

Differently to current approaches such as [23] where a locally rigid behaviour
can be promoted by the addition of a penalty term to the cost function (soft
constraint), in our approach the rigid constraints are strictly embedded into
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the transformation model, not in the optimisation scheme (hard constraint).
Thus, chain rule provides an analytical formulation of the conjugate gradient
thereby avoiding constrained optimisation. Using the proposed method on a
coarse-to-fine pyramidal approach, smooth transitions in the deformation field
are maintained by the cubic B-spline parametrisation and the stationary velocity
field exponentiation, while forcing rigid behaviours within the masks. To reduce
the effect of undesired high-frequency components in the transformation, we set
one control point every five voxels, and the masks are dilated at each pyramidal
level to account for the local support of the control points. We underline that
we extract the robust range of the intensity distributions for both the reference
and the floating image, and we perform all the registration steps by flooring or
ceiling all intensities outside this range, so as to decrease the influence of metal
artefact induced noise.

Once registered with the proposed method, the CT and the MR are merged
into a single four-dimensional (4D) volume. In order to employ the appropriate
template dataset for the atlas-based segmentation – i.e. healthy or implanted –
we developed a symmetry and implant detection algorithm. Based on left-right
axis flip and rigid registration, it extracts the sagittal axis of symmetry from the
inertia tensor of the image intensities. The 4D volume is split along this axis and
each hip side is automatically classified according to the presence of implants.

Atlas-Based Segmentation. Each split hip side is segmented by means of
multi-atlas segmentation propagation and label fusion. All the templates are reg-
istered to the target 4D image in a three-step process (rigid, affine and non-linear
registration as implemented in NiftyReg). The transformation of the affine and
the non-linear steps is initialised as the least trimmed squares average affine from
all the template transformations estimated at the previous step. Since our tem-
plates were previously aligned to their mid-space (Sect. 2.1), this initialisation
provides robustness against global failed registration. Notably, the non-linear
step is a multi-channel registration, where both modalities contribute jointly and
equally to the optimisation of the transformation. Using the estimated transfor-
mation, the segmentation of each template is propagated onto the target space.
The candidate segmentations are then fused into a consensus through the STEPS
algorithm [24], specifically modified to manage a multi-channel local similarity
measure. The final segmentation is obtained by merging back the two hip sides
and their estimated segmentation, providing a multi-label image that highlights
different bones, muscles and implants on both the CT and the MR.

3 Validation and Experiments

3.1 Intra-Subject Registration Evaluation

The first set of experiments we performed aimed at identifying the optimal set of
regularisation parameters α and β as shown in (1) for the intra-subject registra-
tion. Normalised mutual information (NMI) was used as measure of similarity,
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Fig. 2. Example of qualitative registration assessment with default NiftyReg regular-
isation parameters. The same axial and coronal slices are reported for the reference
computed tomography, the super-resolution reconstructed magnetic resonance (MR)
after affine registration, the super resolution reconstruction (SRR) MR after rigidly
constrained non rigid registration and the SRR MR after standard non-linear regis-
tration. For these latter cases, the transformation Jacobian determinant maps are also
displayed, showing the effect of the rigid constraints. Yellow arrows indicate exem-
plary areas where the proposed approach visually recovers a better alignment than
the standard fully non-linear registration (e.g. in the femoral head size). (Color figure
online)

since it is best suited for multimodal registration. For the sake of comparison,
we performed the same study using the standard non-linear registration without
the application of the rigid constraints, while keeping all the other parameters
unchanged. Although this variant would assume non-rigid deformation of the
bones, which is neither anatomically nor clinically correct, such a comparison
allows us to verify whether our implementation also improved the registration
results compared to the classical approach.

The choice of the best parameters was based on both qualitative and quanti-
tative analysis. The former included visual assessment of the alignment between
the CT and the registered MR and of the transformation Jacobian maps. An
example of this comparison is reported in Fig. 2, where the Jacobian determinant
maps clearly show how the standard registration algorithm fails in recovering a
rigid behaviour within the bones, as opposed to the proposed method.
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Fig. 3. Target registration error (TRE) analysis. Top figure: comparison of TRE root
mean square error (RMSE) values obtained from the rigidly constrained non-linear
registration and the standard one with varying regularisation parameters α - linear
elasticity weight - and β - bending energy weight. TRE RMSE from affine registration
is shown as well. Table: highest RMSE for each set of parameters. Starred values
indicate the sets for which the rigidly constrained registration provided significantly
lower RMSE than the standard (Wilcoxon rank sum test, p < 0.05). Highlighted in
red are the results for the selected best set of parameters. Bottom figure: manual
selection reproducibility error for the 10 landmarks and for the two modalities. List of
landmarks abbreviations: greater trochanter (GT), tensor fasciae latae (TFL), anterior-
inferior iliac spine (AIS), gluteus maximus (GMAX), ischium (Isc). Each landmark is
identified in each side and it is categorized as healthy (H) or implanted (I) side. (Color
figure online)

A quantification of the registration accuracy was obtained through landmarks
analysis. Specifically, we labeled 5 landmarks (3 in bone, 2 in muscles) per hip
side which could be conveniently located in both modalities and which cover
the full field of view. The target registration error (TRE) was computed as the
distance between the CT and the respective warped MR landmark. In order to
limit the bias from the manual landmark choice, we repeated the selection twice
at different times, we estimated the TRE for each selection and then computed
the average TRE for each landmark and for each subject (reproducibility errors
for the manual selection are shown in the bottom-left panel of Fig. 3). For each
subject we extracted the root mean square error (RMSE) of the TRE across the
ten landmarks and we compared the distribution of the RMSE with respect to
the registration parameters. A summary of the obtained results is presented in
Fig. 3. Overall the proposed method not only provided clinically plausible regis-
tration results, but also produced a more accurate alignment of the considered
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Fig. 4. Example of automated segmentation obtained with the proposed automated
pipeline. Top row shows the central axial and coronal slices for one of the subjects for
both computed tomography and magnetic resonance, while the second row reports the
same images overlaid with the segmentation result. A three-dimensional rendering of
the full segmentation is also displayed on the bottom left for the same subject.

landmarks compared to a standard non-linear registration algorithm. The best
set of parameters was identified as the one minimising the highest TRE RMSE
among all the landmarks, so as to guarantee a reasonably good alignment across
the whole field of view. We therefore concluded that the optimal results for the
intra-subject registration resulted from the use of normalised mutual information
with α = 0.2 and β = 0.01.

3.2 Leave-One-Out Cross Validation

The proposed pipeline was validated through a leave-one-out cross-validation
(LOOCV) experiment on the template datasets, by calculating the Dice score
between the automated segmentation result and the corresponding manual
ground truth for each label and for each subject. The goal of the LOOCV was
to compare the achieved results using both modalities jointly to those obtained
using only the CT or only the MR images. We recall that the manual seg-
mentation of muscles was not available for the CT, and similarly bones and
implant labelling on the MR. Therefore only the available labels were consid-
ered in the single-modality experiments. For each analysed type – i.e. only CT,
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only MR, combined modalities for healthy and for implanted sides – the seg-
mentation propagation and label fusion parameters were tuned to maximise the
lowest average Dice Score across subjects and across labels. An example of the
obtained automated segmentation is shown in Fig. 4.

The median Dice score for bones, muscles and implant extracted from the
three LOOCV experiments are reported in Table 1. It can be observed that the
multimodal and the single-modality approaches perform similarly with compa-
rable Dice score values. Overall bone structures were better segmented than
muscular ones, due to their lower shape and texture variability. Although the
obtained results appear slightly lower with the proposed approach, the observed
differences were statistically significant only in one case – i.e. for muscular struc-
tures in the healthy side – while for all the other cases the null hypothesis of
same underlying distribution was accepted (Wilcoxon rank sum test with 5%
significance level). This difference could arise from the need of finding a trade-
off in the segmentation propagation and label fusion parameters to achieve a
good accuracy in both skeletal and muscular structures for the 4D case. This
might go at the expense of a slight reduction of performances with respect to
the single-modality case, where the parameters are tuned only for the bones and
implant (CT) or for the muscles (MR). Nonetheless, only the proposed frame-
work is able to provide consistent and unified solution to the segmentation of
both the CT and the MRI. The use of independent approaches to segment the
muscles in the MR images and the bones and implants in the CT image would
indeed not guarantee non-overlapping regions of interest. As an example, on our
dataset we evaluated that on average 2% of the voxels labeled as muscle on
the MR overlapped with CT-labeled bone voxels in our manual segmentation,
while the proposed method guarantees no overlap by design. Without the use of

Table 1. Median Dice score values and 95% confidence intervals for bones, implant and
muscles: comparison between single- and multimodality results. Wilcoxon rank sum test
was performed to test the null hypothesis of same distribution for the multimodality-
and the respective single-modality-derived Dice scores (obtained p-values are reported
and starred (*) are the cases of rejection of the null hypothesis with 5% significance
level). N.A. indicates cases where the manual segmentation was not available.

Healthy side

CT MR Multimodal p-value

Bones 0.95 [0.74, 0.97] N.A 0.94 [0.74, 0.96] 0.164

Muscles N.A 0.88 [0.74, 0.95] 0.85 [0.70, 0.92] 0.007∗

Implanted side

CT MR Multimodal p-value

Bones 0.87 [0.63, 0.93] N.A 0.85 [0.53, 0.90] 0.365

Muscles N.A 0.84 [0.60, 0.93] 0.77 [0.41, 0.90] 0.054

Implant 0.91 [0.77, 0.95] N.A 0.91 [0.69, 0.93] 0.970
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a registration framework able to deal with the rigid nature of the bones while
non-linearly deforming the surrounding soft tissue, it would be more challenging
to accurately highlight the muscles in the CT space or the bones in the MR
space, due to their poor contrast for these structures.

4 Conclusion

We presented a fully automated processing pipeline for the joint segmentation
of bones, abductor muscles and implant on CT and MR images from hip arthro-
plasty patients. The combination of the two modalities enables accurate joint
delineation of healthy and pathological musculoskeletal structures and of their
spatial relationship.

As for other atlas-based approaches, the performance of our method could be
improved by enlarging the template data sets to better encompass the popula-
tion variability. Moreover, the presence of metal artefact-induced noise strongly
affects the accuracy of both intra- and inter-subject registration; hence future
developments of the processing pipeline will introduce novel metal artefact reduc-
tion techniques as an image quality enhancement step for the CT. In conclusion,
the proposed pipeline is a promising tool towards patient-specific 3D visual-
isation of musculoskeletal structures, and towards the extraction of clinically
relevant imaging biomarkers to detect implant failure. Thanks to our processing
steps, the implant can be outlined also on the MR image, where it is typically
obscured by the metal artefact. This could help identify the muscles that are
at greater risk of developing atrophy due to the presence of the implant, and
therefore inform the decision-making process for revision surgery.
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Abstract. Three-dimensional (3D) muscle fiber architecture is impor-
tant in patient-specific biomechanical simulation. While several in-vivo
methods using diffusion tensor imaging and ultrasound have been demon-
strated their feasibility in reconstruction of the fiber architecture, the
main challenge is the lack of gold standard. Although physical measure-
ment from cadavers has been considered as the accurate way of determin-
ing 3D muscle fiber architecture, its downsides include error in the man-
ual tracing and the labor intensive process allowing only sparse sampling
of a particular muscle. We propose an alternative method of obtaining a
dense fiber architecture of multiple muscles in close proximity using high
resolution cryosectioned images. Similar to the diffusion tensor imaging,
we first extract the local orientation at each voxel using the structure
tensor analysis and then tractography algorithm is applied to obtain
stream lines. The proposed method was applied to all muscles around
the hip joint and the masticatory muscles. Qualitative comparison with
the anatomy textbook indicated that the proposed method reconstructed
a plausible muscle fiber architecture. We plan to make the reconstructed
fiber architecture of whole body muscles publicly available in order to
serve for the biomechanics community.
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High resolution cryosectioned images
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1 Introduction

While the Hill-type muscle model that simplifies three-dimensional (3D) muscle
architecture as a few strings with the mechanical property of muscle-tendon
complex has successfully demonstrated usefulness of biomechanical simulation
in a number of applications including human gait [1] and surgical simulation [2],
limitations of the simplification include (1) the lack of ability to represent changes
of the line-of-action during movement due to wrapping over the bones or other
muscles [3] and (2) difficulty in determining the parameters of each string which
in reality represents a cluster of muscle fibers [4]. Thus, 3D volumetric muscle
models containing the muscle fiber architecture [3,5] have been investigated to
improve accuracy in musculoskeletal simulation.

In order to model the patient-specific muscle fiber architecture, diffusion
tensor imaging (DTI) and ultrasound [6,7] have been employed and evaluated
against a ground truth obtained from cadaveric specimens [8,9]. The direct mea-
surement of a fixed cadaver using a coordinate measurement machine (CMM)
provides reliable ground truth, however, it has the following downsides: (1) the
number of measurable fibers is limited due to the large amount labors, resulting
in a sparsely sampled fiber model, and (2) difficulty in measuring multiple con-
tiguous muscles while keeping their original shape since dissection of the muscle
is inevitable. Since muscles often function as a group, the spatial relationship of
the fiber architecture between neighboring muscles is important.

In this study, we propose an approach to reconstructing dense muscle fiber
architecture of multiple muscles in one subject using a dataset of high resolu-
tion cryosectioned images. The method computes the gradient-based structure
tensor to obtain local orientation and computes tractography similar to the one

(d)

(e)(a) (b) (c)

Fig. 1. Cryo-section images contained in the Visible Korean Human [11,12]. (a) Axial
and coronal slices of the female pelvis dataset. (b) Male whole body dataset, and
(c) its segmentation mask. The artifact correction (see text for details) has been applied
to (a) and (b). Volume rendering and its projection view (ray-sum rendering) of (d) the
gluteus maximus and (e) gluteus medius muscles.
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proposed by Wang et al. [10] in the optical coherence images of the brain. We
demonstrate and qualitatively evaluate the proposed method for muscles in the
hip and head regions.

2 Method

2.1 Dataset

The dataset we used in this study is the Visible Korean Human (VKH) [11,12],
which consists of a series of photographs of cryosection of human cadavers.
Among several datasets in VKH (different genders and type of anatomies), we
used two datasets in this study: (1) The male whole body dataset containing 8506
RGB images with 0.2 mm slice interval, 0.2 × 0.2 mm2 in-plane resolution, the
matrix size of 2468×1407 and covering the entire body from the top of the head
to the tip of the foot [11], and (2) female pelvis dataset containing 2508 images
with 0.1 mm interval, 0.1× 0.1 mm2 in-plane resolution with 3520× 1943 matrix
and covering from the top of the pelvis to about 8 cm inferior to the greater
trochanter [12]. Both datasets contain segmentation masks of anatomical struc-
tures including muscles, bones, vessels and other organs (937 and 154 structures
for the male whole body and female pelvis datasets, respectively) which were
manually traced by experts at 1.0 mm interval (i.e., every 5 slices for the male
dataset and every 10 slices for the female dataset). B-spline interpolation was
performed to the segmentation mask to obtain a slice interval corresponding to
the RGB images and then the mask was applied to extract the target muscle
and stuck to obtain a volume with isotropic voxels (Fig. 1(d), (e)). Note that
the structures visible in the cryosection images in this scale are not the individ-
ual fibers, but the edges between muscle fascicle (bundle of muscle fibers) and
surrounding connective tissues. Our goal is to reconstruct the direction of the
fiber fascicle, which is equivalent to the direction of each fiber, by detecting the
orientation of those edges.

2.2 Correction of Artifact

Despite careful calibrations in terms of geometry and color to keep the pixel
size and color response constant throughout the dataset, we observed a slight
discontinuity of the color balance at every few slices as shown in Fig. 2(a), which
appears as an artifact in the coronal slice and was enhanced when we observed
the dataset in a projection view (Fig. 2(b)). This artifact is likely to be origi-
nated from the slice-by-slice color adjustment process. In order to avoid accuracy
degradation in our texture analysis to extract the 3D orientation, we propose an
artifact correction process as detailed in the following. The repetitive artifact in
z-direction (out-of-plane direction) is corrected by applying a low-pass filter in
the frequency domain.



88 Y. Otake et al.

(a) (b) (c)

Fig. 2. Example demonstration of the effect of the proposed artifact correction method.
(a) Coronal slice of the original RGB volume and a zoomed-in view of the yellow
rectangular region. The red arrows indicate the artifact especially distinct in the view.
(b) Anterior-posterior projection view, where the artifact appears more distinct. (c) The
grayscale converted volume after the proposed artifact correction. The effect of the
artifact correction is clearly demonstrated. (Color figure online)

We denote the original image and its Fourier transform as h(i, j, k) and
H(x, y, z), respectively. The high frequency region in z-direction near the z-
axis of H(x, y, z) was zero-masked by multiplying a mask volume defined as the
following:

M(x, y, z) =

{
0, if

√
x2 + y2 < tr and |z| > tz,

1, otherwise,
(1)

which represents a zero-valued cylinder along z-axis with radius of tr and filled
by one in between −tz < z < tz. tr and tz are the cut-off frequency which we
experimentally determined as 0.2 and 0.08 (cycles per millimeter) in this study.
An inverse Fourier transform of the masked volume, F−1(H(x, y, z)M(x, y, z)),
provides a volume after the artifact correction. In this study, we corrected artifact
in the R-, G-, and B-plane separately.

2.3 Computation of Structure Tensor

The RGB volume after the artifact correction was then converted into gray-scale
using rgb2gray() function in Matlab 2016a (The MathWorks Inc., Natick, MA,
USA) which follows the equation: grayvalue = 0.2989R + 0.5870G + 0.1140B.
The local orientation of the muscle fiber around each voxel was estimated by the
gradient-based structure tensor [13]. The structure tensor of a volume-of-interest
centering at (i, j, k) is defined by:

J(i, j, k) =

⎡
⎣Jxx(i, j, k) Jxy(i, j, k) Jxz(i, j, k)

Jyx(i, j, k) Jyy(i, j, k) Jyz(i, j, k)
Jzx(i, j, k) Jzy(i, j, k) Jzz(i, j, k)

⎤
⎦ , (2)
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where Jxy = { d
dxG(i, j, k;σ1) ∗ I(i, j, k)}{ d

dyG(i, j, k;σ1) ∗ I(i, j, k)} represents a
multiplication of Gaussian weighted first derivative with respect to the x and y
axes. The other element follows the same notation. In order to obtain a smooth
tensor field, we apply another Gaussian filter to each element of J(i, j, k) with
a standard deviation of σ2. While σ1 needs to be adjusted based on the amount
of image noise, σ2 determines smoothness of the tensor field which affects the
following tractography algorithm. We empirically found that σ1 = 1 mm and
σ2 = 3 mm are suitable in our dataset, thus are used in the experiment below.
An example visualization of the computed structure tensor field is shown in
Fig. 3(b). The structure tensor becomes a pin-like shape when the volume-of-
interest exhibits a sheet-like texture (the “pin” directs perpendicular to the
sheet), while it becomes a disk-like shape for a line-like structure (the disk
spreads in the plane perpendicular to the line). When comparing with DTI,
since the diffusion happens in the direction along the line for a line-like struc-
ture, we proposed the following conversion process of the structure tensor field
in order to employ tractography algorithms commonly used in DTI, which we
call an inverse of the structure tensor:

λ′
1 = λ1, λ′

2 = λ1 + λ3 − λ2, λ′
3 = λ3, (3)

where λ1, λ2, λ3 represent eigenvalues of the original structure tensor (λ1 >
λ2 > λ3) and λ′

1, λ′
2, λ′

3 represent eigenvalues of the inverted structure tensor
(which ensures λ′

1 > λ′
2 > λ′

3). Then, the eigenvectors corresponding to the
largest and smallest eigenvalues are swapped. The idea behind this inversion
process is to generate a diffusion-tensor-like tensor from the structure tensor by
converting the “pen”-tensor to the disk and the “disk”-tensor to the pen (note
that the metric called linear measure [14], cl = (λ1−λ2)/λ1, becomes the planar
measure, cp = (λ2 − λ3)/λ1, and vice versa after this inversion).

(a) (b) (c)

Fig. 3. Computation and visualization of the structure tensor. (a) Grayscale volume
after artifact correction. Visualization of the (b) structure tensor and (c) its inverse
computed in the right gluteus maximus muscle. Each tensor is represented as an ellip-
soid whose principal axes correspond to the tensor’s eigenvector system (its length
shows the absolute value of the tensor’s eigenvalue and the orientation is its eigenvec-
tor). The color indicates the linear measure, (λ1 − λ2)/λ1 [14], of each tensor. (Color
figure online)
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2.4 Computation of Tractography

From the inverted structure tensor field, tractography is computed. In this study,
we performed the tractography algorithm and visualization of the results in 3D
Slicer1[15] via the SlicerDMRI project2.

3 Results

The tractography computed on 24 muscles around the hip joint in the female
pelvis dataset is shown in Fig. 4 together with the list of each muscle’s name.
Figure 5 shows the results of four representative masticatory muscles (masseter,
buccinator, lateral and medial pterygoid) from the male whole body dataset. The
illustrations from an anatomy textbook [16] are shown next to each visualization
in order for the visual evaluation of the validity of the computed fiber bundles. In
order to further explore an application of the proposed method, we performed a
fiber clustering method [17] which applies the spectral clustering on a similarity
metric between fibers. The similarity metric used here is the fiber distance error
defined as the mean distance between pairs of corresponding points on the fibers.
Figure 6 shows an example where the fibers in the gluteus medius muscle were
clustered into five clusters and visualized fibers in each cluster with one color.

(a) (b) (c)

Fig. 4. Results of the computed fiber architecture of the muscles around the hip joint.
(a) Anterior view. (b) Posterior view. (c) List of muscles and the corresponding color
shown in (a) and (b). The relationship of the three-dimensional fiber architecture of
multiple muscles is able to be analyzed. (Color figure online)

1 http://www.slicer.org.
2 http://dmri.slicer.org.

http://www.slicer.org
http://dmri.slicer.org
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(a) Masseter (b) Buccinator and pterygoid

(c) Lateral and medial pterygoid (d) Lateral and medial pterygoid
(view from the left side) (view from the back)

Fig. 5. Results of the computed fiber architecture of the masticatory muscles. The
tractography (right) was visually compared with an anatomy textbook [16] (left). The
color of the fibers indicates the fiber’s orientation averaged over the entire line (red,
green and blue components correspond to the x, y, and z direction, respectively). (Color
figure online)

(a) (b) (c) (d)

Fig. 6. Result of the fiber clustering [17] of the right gluteus medius muscle. The muscle
fiber bundles computed by the proposed method were clustered into five clusters. (a) to
(d) show the views from different angles rotated by 45 degrees each. All fiber bundles
in each cluster was visualized with one color. The anterior region acting for flexion and
internal rotation is represented as clusters 3, 4 and 5, while the posterior region acting
for extension and external rotation is represented as clusters 1 and 2. (Color figure
online)
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4 Discussion and Conclusion

We proposed a method to reconstruct a dense 3D fiber architecture of multiple
muscles in one functional unit using a high resolution cryosectioned volume.
The manual tracing in cadaver specimens, which is currently considered as a
gold standard, requires a large amount of labor and is subjected to the error
in the tracing by the CMM and imposes deformation that is implausible in in-
vivo situation. On the other hand, the proposed method allows to reconstruct
a large number of fibers of multiple neighboring muscles without the effect of
deformation.

A straightforward application of the reconstructed fiber architecture is biome-
chanical simulation. The simulation with volumetric muscle models has been
drawing attention partly due to the rapid increase of computing power allowing
simulation of behavior of more detailed structure. The patient-specific charac-
teristics of fiber arrangement is critical in such simulation environment. Patient-
specific biomechanical simulation may help, for example, understand the stress
balance at the knee joint in loading position by comparing the fiber arrangement
in magnetic resonance (MR) images acquired with an open-gantry MR scanner
that allows scanning by the standing position.

The result of fiber clustering in Fig. 6 shows several clusters which may be
corresponding to each functional unit within a muscle. For example, the anterior
fibers in the gluteus medius are argued to help to rotate the hip joint medially,
while the posterior fibers help to rotate laterally. Such detailed analysis of the
fiber architecture in each muscle may elucidate other functional units which are
yet to be identified.

Limitations of this study include the lack of the analysis of variability among
subjects. It is clearly not easy to obtain high resolution cryosectioned images of
many subjects. We plan to use two subjects (male and female)[18] and analyze
inter-subject variability, which will allow us to explore possibility for performing
a patient-specific adaptation using a simple local scaling based on a few mea-
surements (e.g., height, weight, thigh length, etc.) similar to [1]. We also note
that a non-rigid registration of the muscle’s outer shape extracted automatically
from patient-specific images such as CT [19] may allow a more accurate patient-
specific adaptation of the muscle fiber arrangement. Another potential limitation
concerns quantitative evaluation. Due to the lack of the gold standard, quantita-
tive evaluation of the proposed method is quite challenging. The manual tracing
of each fiber in the cryosection volume is one possible solution to obtain the
ground truth, though visually tracking one muscle fiber over a number of slices
is troublesome due to ambiguous boarders between the neighboring fibers. Ani-
mal or cadaver studies subsequent cryosection could be another option though
the accuracy of physical tracing of fibers and muscle’s deformation become error
source in that case. Further investigation on quantitative evaluation is in our
future work.
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Abstract. Accurate boundary delineation and segmentation of patho-
logical spines is indispensable in spine-related applications that rely on
the knowledge of vertebral shape. However, exact vertebral boundaries
are often difficult to determine due to articulation of vertebrae with each
other that may cause vertebral overlaps in segmentations of adjacent
vertebrae. To solve this problem, we propose a novel method that con-
sists of two steps. In the first step, the probability maps that determine
vertebral boundaries are obtained from a two-way convolutional neural
network, trained on normal thoracolumbar spines. In the second step, a
collision-based model that consists of (at least two) consecutive vertebra
mesh models is initialized close to the observed vertebrae and vertices
of each mesh are displaced towards the detected boundaries. As this can
lead to mesh collisions in the form of vertices of one mesh penetrat-
ing the adjacent one (and/or vice versa), these vertices are efficiently
detected and then driven out of the adjacent mesh while locally pre-
serving the shape of the corresponding mesh. By applying the proposed
method to 15 three-dimensional computed tomography images of the
lumbar spine containing 75 normal and fractured vertebrae, quantitative
comparison against reference vertebra segmentations yielded an overall
mean Dice similarity coefficient of 93.2%, mean symmetric surface dis-
tance of 0.5 mm, and Hausdorff distance of 8.4 mm.

Keywords: Image segmentation · Computed tomography
Pathological spine · Two-way convolutional neural network
Collision-based model

1 Introduction

Accurate boundary delineation and segmentation of vertebrae in three-
dimensional (3D) computed tomography (CT) images is essential to the clinical
diagnosis and treatment of pathological conditions that affect the spine. However,
exact vertebral boundaries are often difficult to determine due to articulation of
vertebrae with each other that may cause vertebral overlaps in segmentations of
adjacent vertebrae. Thus, despite an increasing interest in vertebra segmentation
in recent years, accurate segmentation methods of pathological spines are still
lacking.
c© Springer International Publishing AG 2018
B. Glocker et al. (Eds.): MSKI 2017, LNCS 10734, pp. 95–107, 2018.
https://doi.org/10.1007/978-3-319-74113-0_9
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Related Work. In the past decade, several automated and semi-automated
vertebrae segmentation methods that directly or indirectly address the verte-
bral overlap have been developed. Kim and Kim [1] proposed a fully automated
method that was based on constructing 3D fences to separate vertebrae, and
then the region growing algorithm was applied within the constructed 3D fences
to obtain the final segmentation. Klinder et al. [2] carried out segmentation
of vertebrae by using an ensemble of shape-constrained deformable models [3],
where vertebrae models were interacting with each other throughout the adap-
tation to target vertebrae. A statistical multi-vertebrae anatomical model that
treated the shape and pose of each vertebra independently was developed by
Rasoulian et al. [4], and by the nature of the model definition, vertebral over-
lap was avoided. Recently, in the work of Castro-Mateos et al. [5], vertebral
overlap was addressed with the statistical interspace model, which provides the
neighboring relationship between regions in different objects of a multi-object
structure by learning the statistical distribution of the interspace between them.
The limitations of the aforementioned studies are: (i) manual interactions were
often required [4,5], which can be labor-intensive, time-consuming and error-
prone, especially when observing large datasets, (ii) statistical shape modeling
cannot always capture shape features of pathological samples as they may be
suppressed by shape features of a considerably larger number of healthy samples
[2,4,5], (iii) the complexity and variability in the appearance of vertebrae and
their surroundings cannot be handled by low-level appearance representations,
such as intensities [4], valley-emphasized Gaussian intensities [1] or intensity
gradients [2,5], and (iv) vertebral overlaps were not completely prevented [2].

To overcome the above mentioned limitations, we combine recent devel-
opments in machine learning (i.e. deep learning) and shape modeling (i.e.
deformable models), and propose a novel method for fully automated segmen-
tation of vertebrae from 3D CT pathological spine images. In the first step,
the probability maps that determine vertebral boundaries are obtained from a
two-way convolutional neural network (CNN), trained on normal thoracolumbar
spines. In the second step, a collision-based model that consists of (at least two)
consecutive vertebra mesh models is initialized close to the observed vertebrae
and vertices of each mesh are displaced towards the determined boundaries. As
this can lead to mesh collisions in the form of vertices of one mesh penetrating
the adjacent one (and/or vice versa), these vertices are efficiently detected and
then driven out of the adjacent mesh while locally preserving the shape of the
corresponding mesh. The proposed method was evaluated on a publicly available
database of 15 CT images of the lumbar spine and demonstrated highly accurate
segmentations of 75 normal and fractured vertebrae.

2 Methodology

The proposed method consists of two consecutive steps. In the first step, a test-
ing image of the pathological spine is run through a two-way CNN that is trained
on a repository of training images of normal spines, resulting in three probability
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maps that represent likelihoods of image voxels to belong to the anterior arch
(i.e. vertebral body), posterior arch (i.e. spinous, transverse, superior articular
and inferior articular processes, and pedicles) and background. By thresholding
the anterior arch probability map and using simple morphological operations
on the obtained binary image, centroids of vertebral bodies are coarsely deter-
mined. In the second step, a collision-based model is initialized as a mesh union
of (at least two) consecutive vertebrae with the mean pose and shape obtained
from the repository of training meshes of normal vertebrae, and placed in the
vicinity of the target vertebrae using the previously determined centroids. The
segmentation of target vertebrae is performed by an iterative approach where
the model is deformed toward high-magnitude gradients of the augmented back-
ground probability map, and mesh collisions in the form of one mesh penetrating
the adjacent one (and/or vice versa) are prevented.

2.1 Two-Way CNN

In the field of medical imaging, CNNs are currently one of the main tools used
for solving challenging tasks that have traditionally depended on experts for
solution [6]. Such tasks include object detection and identification [7], image
segmentation [8] and assessment of condition severity [9]. Without relying on
handcrafted features, CNNs have the ability to learn features for a specific task
directly from the raw image data, and since features are learned in hierarchy of
increasing complexity and abstraction, they provide robustness and flexibility.
The proposed two-way CNN architecture is, similarly as first proposed in [10]
and later adopted in [11–13], made of two paths in order to perform voxel-
wise classification based on appearance (i.e. local path) and spatial location (i.e.
global path) details around the voxel of interest.

Training. In each epoch of the training stage, thousands of pairs of image
patches are extracted around randomly selected voxels from the repository of
training images of the normal spines, and sent through a two-way CNN in order
to learn its weights and biases θ. In detail, let pair (L,G) denote the collection
of all extracted pairs of image patches in the current epoch. For each randomly
selected voxel v, two image patches L ∈ L and G ∈ G of size 27 × 27 × 27 and
55×55×55, respectively, are extracted around the voxel v and sent through two
paths of different operations (i.e. convolution, pooling). In the first (local) path,
patch L is sent through nine convolutional layers with small kernels (i.e. of size
3×3×3) and residual connections, each followed by a parametric rectified linear
unit (PReLU). In the second (global) path, patch G is sent consecutively two
times through three convolutional layers with kernels of size 5 × 5 × 5, 4 × 4 × 4
and 3×3×3, respectively, each followed by a PReLU, and a (max) pooling layer
with pool of size 2× 2× 2 and stride of size 2× 2× 2. To achieve that outputs of
both paths have the same size, the final layer of the second path is a transposed
(convolutional) layer with kernels of size 3 × 3 × 3, followed by a PReLU. The
resulting outputs of both paths are jointly sent through three fully connected
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Fig. 1. A schematic illustration of the applied two-way convolutional neural network
architecture.

layers, each seen as a convolution one with kernels of size 1×1×1 and followed by
a PReLU. The outputs of the last fully connected layer correspond to particular
segmentation classes (i.e. anterior arch, posterior arch and background) and are
finally fed to a softmax function to obtain the predicted posterior probabilities
that the group of voxels (of size 9 × 9 × 9) around the randomly selected voxel
v belongs to each of the segmentation classes. The two-way CNN architecture
is in detail illustrated in Fig. 1. By interpreting the probabilities of the CNN
as distributions over the segmentation classes, a natural training criteria is to
maximize the probability of all classes in the training repository, i.e. to minimize
the negative log-likelihood probability for each segmented image in the training
repository. The optimal weights and biases θ of the CNN are obtained using the
hybrid scheme [13] between the dense training scheme on a whole image [14] and
the commonly used training scheme on individual patches.

Testing. In the testing stage, the two-way CNN with optimally learned weights
and biases θ is applied on the testing image I of the pathological spine in order
to obtain three probability maps A, P and B that represent likelihoods of image
voxels to belong to the anterior arch, posterior arch and background, respectively.
In detail, the input image I is first fragmented into I non-overlapping blocks of
size 9 × 9 × 9. For each block, two image patches Li and Gi, i ∈ I, of size
27 × 27 × 27 and 55 × 55 × 55, respectively, are extracted around its central
voxel. By sending Li and Gi through the trained two-way CNN, probability
maps Ai, P i and Bi are obtained and assembled into probability maps A, P
and B, respectively. A testing image with corresponding probability maps is
shown in Fig. 2.

2.2 Collision-Based Model

Initialization. A collision-based model is initialized as a mesh union of two
consecutive vertebrae with the mean pose and shape obtained from the repos-
itory of training meshes of normal vertebrae, and denoted by M = M1 ∪ M2

with vertices M = M1 ∪M2 and faces F = F 1 ∪F 2. In order to place mesh M
in the vicinity of target vertebrae, the probability map A (Sect. 2.1, Fig. 2(b)),
which is obtained from the two-way CNN, is thresholded into vertebral bod-
ies and background. Then, the obtained binary mask is processed with simple
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(a) (b)

Fig. 2. The results of the trained two-way convolutional neural network applied on a
testing image of the pathological spine. (a) A testing image, shown in the mid-sagittal
cross-section. (b) The corresponding probability maps that represent likelihoods of
image voxels to belong to the anterior arch (left), posterior arch (middle) and back-
ground (right). The colors range from dark blue for low probabilities to dark red for
high probabilities of voxels to belong to each segmentation class. (Color figure online)

morphological operations, such as hole filling, dilation and erosion, to obtain
multiple connected components with their centers of masses coarsely defining
the centroids of all visible vertebral bodies in image I. Finally, the centers of
masses of M1 and M2 are jointly repositioned near previously determined cen-
troids of two consecutive vertebral bodies, and the repositioned mesh union is
denoted by X = X1 ∪ X2 with vertices X = X1 ∪ X2 and faces F .

Segmentation. The segmentation of the target vertebrae is performed by an
iterative approach, where vertices X of mesh X are deformed toward high-
magnitude gradients of probability map B. However, along the high-magnitude
gradients that represent vertebral boundaries, holes or protuberances that are
not part of the vertebrae may appear due to the two-way CNN mispredictions.
Therefore, probability map B is augmented with image I as B′ = (1+α ·B)�I,
where � is the element-wise multiplication and α is the weighting factor.

In each iteration, the deformation of vertices X is represented as an opti-
mization problem, where each vertex is iteratively driven by the information
from B′ towards vertebral boundaries and constrained by the topology of mesh
M with mean pose and shape. The optimization problem is formulated as

X∗ = arg min
X ∈R|X |×3

|X |∑

i=1

(
wi

∥∥∥projg(x∗
i )

(x∗
i − xi)

∥∥∥
2

+ β
∑

j∈N (xi)

‖(xi − xj) − (mi − mj)‖2
) (1)

and
x∗
i = xi + arg max

j∈J

{
Fi(xi + j δ n(xi)) − D δ2 j2

}
δ n(xi), (2)
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Fi(x) = 〈n(xi), g(x)〉 , (3)

wi = max
{

0, arg max
j∈J

{
Fi(x∗

i ) − D δ2 j2
}}

, (4)

where xi ∈ X is the current vertex position, n(xi) is the mesh outwards normal
at xi, J is the sampling parcel that represents the discrete search profile along
n(xi), D and δ serve to penalize large distances between xi and x∗

i , g(x) is the
gradient of the augmented probability map B′ at location x, N (xi) is the set of
vertices in the one-ring neighbourhood of xi (i.e. set of vertices connected to ver-
tex xi), mi ∈ M , β is the weighting factor and proj is the vector projection [3].
To solve (1) for X, the conjugate gradient method is used.

The optimization problem can however lead to mesh collisions in the form of
one mesh (e.g. X1) penetrating the adjacent one (i.e. X2), and/or vice versa. To
avoid such a scenario, we introduce a novel step in the iterative approach where
vertices from X1 that penetrate X2 are efficiently detected and then driven out
of X2 by the as-rigid-as-possible modeling [15] that locally preserves the shape
of X1.

Let vertices Y = Y 1∪Y 2 denote the solution of the optimization problem (1)
at each iteration, and let Y = Y1 ∪Y2 denote the corresponding mesh with faces
F . To determine if Y1 penetrates Y2, vertices from Y 1 have to be tested whether
they are inside Y2. Firstly, for a vertex y1,i ∈ Y 1, a ray r1,i(t) = y1,i + td1,i is
shot out of y1,i in a random direction d1,i. Secondly, for each face f2,j ∈ F 2,
j = 1, 2, . . . , |F 2|, the matrix equation in the form

[
−d,y

(2)
2,j − y

(1)
2,j ,y

(3)
2,j − y

(1)
2,j

]
· [t, u, v]T = y1,i − y

(1)
2,j (5)

is solved for t, u, v ∈ R, where y
(k)
2,j ∈ Y 2, k = 1, 2, 3, are three vertices that

define face f2,j [16]. It can be concluded that if u, v ≥ 0 and u + v = 1, then
ray r1,i intersects face f2,j . Let N1,i denote the number of faces that ray r1,i

intersects. Finally, it can be concluded that if N1,i ≡ 1 mod 2, then vertex y1,i

is inside Y2 (Algorithm 1).
Based on the above, let Y ′

1 ⊂ Y 1 denote vertices that are inside Y2. The most
straightforward way to drive vertices Y ′

1 out of Y2 is an iterative approach where
vertices Y ′

1 are firstly displaced for a small distance in the inward direction along
the corresponding vertex normals and then tested whether they are still inside
Y2. However, such primitive deformations of mesh Y1 can significantly change
its topology (e.g. spikes jutting out of the mesh) and the outcome is a mesh that
may not represent anatomically correct vertebral boundaries. To avoid such a
scenario, vertices Y ′

1 are rather displaced by the as-rigid-as-possible modeling
[15] that locally preserves the shape of Y1.

The as-rigid-as-possible modeling is a powerful deformation technique that
produces anatomically natural-looking results with guaranteed convergence. The
main principle used is that small local parts of the mesh change smoothly and
as rigidly as possible. Let Z1 denote initial vertices, i.e. Y 1, and let Z ′

1 denote
displaced vertices, i.e. (Y 1\Y ′

1) ∪ Y ′′
1 , where Y ′′

1 denotes vertices Y ′
1 that were
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Algorithm 1. Test if a vertex is inside a mesh
input: vertex y1,i ∈ Y 1, mesh Y2 with vertices Y 2 and faces F 2

output: boolean b

1: set b = false, N1,i = 0
2: shot a ray r(t) = y1,i + td, t ∈ R, out of vertex y1 in a random direction d
3: for all faces f 2,j ∈ F 2 do

4: solve
[
−d,y

(2)
2,j − y

(1)
2,j ,y

(3)
2,j − y

(1)
2,j

]
· [t, u, v]T = y1,i − y

(1)
2,j for t, u, v ∈ R, where

y
(k)
2,j ∈ Y 2, k = 1, 2, 3, are three vertices that define face f 2,j [16]

5: if u, v ≥ 0 and u + v ≤ 1 then
6: set N1,i = N1,i + 1
7: end if
8: end for
9: if N1,i ≡ 1 mod 2 then

10: set b = true

11: end if

displaced for a small distance in the inward direction along the corresponding
vertex normals. To achieve that the topology is preserved in small local neigh-
bourhoods of displaced vertices, the as-rigid-as-possible modeling of vertices Z′

1

is represented as an optimization problem and formulated as

Z ′∗
1 , {R∗

i } = arg min
Z ′

1∈R
|Z ′

1|×3

{Ri},Ri∈R
3×3

|Z ′
1|∑

i=1

(
∑

j∈N (z ′
1,i)

wij

∥∥∥
(
z′
1,i − z′

1,j

)

− Ri (z1,i − z1,j)
∥∥∥
2
)

,

(6)

wij =
1
2

(cot αij + cot βij) , (7)

where z1,i ∈ Z1, z′
1,i ∈ Z ′

1, αij and βij are the opposite angles of the mesh
edge defined between vertices z1,i and z1,j , N (z′

1,i) is the set of vertices in the
one-ring neighbourhood of z′

1,i and Ri is the rotation that best approximates
the transformation that takes vertex z1,i to z′

1,i (Fig. 3). To solve (6) for Z ′
1 and

{Ri}, a two-step alternating minimization strategy is used [15]. In the first step,
vertices Z ′

1 are considered as fixed so that the rigid transformations are the only
unknowns, and they are determined by

Si =
∑

j∈N (z ′
1,i)

wij(z1,i − z1,j)(z′
1,i − z′

1,j)
T = U iΣiV

T
i , (8)

Ri = U iV
T
i , (9)
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(a) (b)

Fig. 3. (a) One of the meshes in the mesh union configuration with few vertices (in
red) that were penetrating the adjacent mesh (not visible). (b) The resulting mesh after
iteratively displacing the penetrated vertices for a small distance in the inward direction
along the corresponding vertex normal using the as-rigid-as-possible modeling. [Note
that for a clear visualization, we manually displaced a few vertices on the superior
endplate, and the demonstrated situation is unlikely to occur.] (Color figure online)

where U iΣiV
T
i is the singular value decomposition of Si. In the second step,

with the given set of rigid transformations, vertices Z′
1 are determined by min-

imizing (6). These interleaved iterations are repeated until the minimum is
reached. The resulting mesh Z1∪Z2 with mesh vertices Z1∪Z2 finally represents
the segmentation of two consecutive vertebrae.

3 Experiments and Results

3.1 Spine Image Database

The proposed method for segmentation of pathological spines in CT images was
trained (i.e. the two-way CNN training and the creation of mesh unions of two
consecutive vertebrae with the mean pose and shape) on two and tested on one
publicly available databases of 3D CT images that are part of the SpineWeb,1

a collaborative platform for research on spine imaging and image analysis. The
first (training) database consists of 10 axially reconstructed CT images of the
lumbar spine with a total of 50 normal lumbar vertebrae, in-plane voxel size
of 0.282–0.791 mm and cross-sectional thickness of 0.725–1.530 mm [17]. The
second (training) database consists of 10 axially reconstructed CT images of the
thoracolumbar spine with a total of 170 normal thoracic and lumbar vertebrae,
in-plane voxel size of 0.313–0.361 mm and cross-sectional thickness of 1 mm [18].
The third (testing) database consists of 15 axially reconstructed CT images of the
lumbar spine with a total of 75 normal and fractured lumbar vertebrae, in-plane
voxel size of 0.289–0.803 mm and cross-sectional thickness of 1.105–1.892 mm
[19]. The incidence of crush, biconcave and wedge fractures is 11% (i.e. eight out

1 Accessible via http://spineweb.digitalimaginggroup.ca.

http://spineweb.digitalimaginggroup.ca
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of 75 vertebrae), 35% (i.e. 26 out of 75 vertebrae) and 11% (i.e. eight out of 75
vertebrae), respectively. For all databases, a reference manually defined binary
segmentation mask was available for each vertebra in each image.

3.2 Experimental Setup

Two-Way Convolutional Neural Network. Since the two-way CNN is able
to learn useful features from scratch, only minimal image preprocessing was
applied (on training and testing databases). Firstly, all images were resampled
to an isotropic resolution of 1 × 1 × 1 mm3 per voxel (using linear interpolation)
since the kernels of the CNN need to correspond to the same real-size patterns
for all images. Secondly, images were smoothed using a Gaussian kernel of size
0.5 mm. Finally, the obtained intensities were linearly mapped to interval [−5, 5].
To train the two-way CNN, in each out of 40 epochs, 80k pairs of patches were
extracted around randomly selected voxels from images in the first and second
database. The CNN was trained via the stochastic gradient descent method and
accelerated by the Nesterov momentum with its parameter set to 0.9. To avoid
overfitting, training was augmented by the dropout (the outputs of last two fully
connected layers were randomly set to zero with probabilities of 0.5) and batch
normalization.

Mean Pose and Shape Mesh Union. For each i-th lumbar vertebrae pair
(i = 1, 2, . . . , 5, corresponding to pairs T11-L1, L1-L2, L2-L3, L3-L4 and L4-
L5), the mean pose and shape mesh union Mi ∪ Mi+1 of corresponding two
consecutive vertebrae was constructed. Firstly, the marching cubes algorithm
was applied to each binary mask Bjk that represents the reference segmentation
of j-th vertebra (j = 1, 2, . . . , 6, corresponding to one thoracic and five lumbar
vertebrae) in k-th training image (k = 1, 2, . . . , 10, corresponding to 10 images
in the second database). Secondly, each resulting mesh Mj,k was isotropically
remeshed [20] so that the number of vertices was independent of the size of j-
th vertebra and voxel size of k-th image. Thirdly, the coherent point drift was
applied to establish pointwise vertex correspondences among meshes {Mj,k}10k=1

of j-th vertebra. Finally, the joint pose+shape modeling [21] was used to include,
in addition to shape variations, pose variations in i-th vertebrae pair {Mi,k ∪
Mi+1,k}10k=1, yielding the mean pose and shape mesh union Mi ∪Mi+1 for each
vertebrae pair.

Collision-Based Model. The collision-based model was initialized as the mean
pose and shape mesh union Mi ∪ Mi+1 corresponding to i-th observed lumbar
vertebrae pair was aligned with the centroids of corresponding vertebral bodies
that were determined by processing two-way CNN probability maps (the thresh-
old for the probability map A was experimentally set to 0.9). The segmentation
parameters that guide the model toward vertebra boundaries were experimen-
tally set to α = 1, δ = 1 mm, |J | = 51, i.e. the length of the discrete search
profile was 25 mm in the inward and outward direction, D = 2.5 mm−2 and
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Table 1. The segmentation results of the proposed method with and without collision
detection in terms of mean ± standard deviation of the Dice similarity coefficient
(DSC), mean symmetric surface distance (MSD) and Hausdorff surface distance (HD).

Level With collision detection Without collision detection

DSC (%) MSD (mm) HD (mm) DSC (%) MSD (mm) HD (mm)

L1 94.3± 2.2 0.4± 0.1 6.4± 2.2 94.1± 2.4 0.4± 0.1 6.8± 2.7

L2 93.8± 2.0 0.5± 0.2 8.0± 2.6 93.6± 2.2 0.5± 0.2 11.0± 3.3

L3 93.9± 1.6 0.5± 0.1 7.4± 3.5 93.4± 2.3 0.5± 0.2 10.7± 3.6

L4 92.2± 2.2 0.6± 0.2 10.0± 3.9 91.3± 3.0 0.7± 0.2 14.1± 4.5

L5 91.8± 1.8 0.6± 0.1 10.4± 3.2 91.4± 2.8 0.6± 0.2 12.8± 5.0

All (normal) 93.6± 2.0 0.5± 0.2 8.5± 3.8 93.0± 2.7 0.5± 0.2 10.7± 4.6

All (fractured) 92.9± 2.3 0.5± 0.2 8.4± 3.1 92.5± 2.8 0.5± 0.2 11.4± 4.5

(a) (b)

Fig. 4. The segmentation results of the proposed method (a) with and (b) without
collision detection, shown in mid-sagittal cross-sections (top) and in three dimensions
with superimposed color-coded symmetric surface distances against corresponding ref-
erence segmentations (bottom). The colors range from blue for short to red for large
surface distances (up to 11mm). The arrow indicates inaccurate delineation of the pos-
terior arch due to the collisions that occur during the deformation of vertices towards
vertebral boundaries. (Color figure online)

β = 25. The number of iterations was set to 5 for the deformation (2)–(4) and
as-rigid-as-possible modeling (7)–(9) of mesh vertices. For each resulting mesh
pair Zi ∪ Zi+1, only Zi+1 was used to generate the binary mask of the final
segmentation since Zi was used to eliminate mesh collisions.
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3.3 Results

The vertebrae segmentation performance was evaluated on the third database
that consists of lumbar spine images with normal and fractured vertebrae by
computing (with respect to the reference manual segmentations) the Dice simi-
larity coefficient (DSC), mean symmetric surface distance (MSD) and Hausdorff
surface distance (HD) in terms of mean ± standard deviation. For all vertebrae,
DSC of 93.2± 2.2%, MSD of 0.5± 0.2 mm and HD of 8.4± 3.4 mm were obtained.
Detailed results of the proposed method with and without collision detection are
presented in Table 1 for all vertebrae levels and in Fig. 4 for a randomly selected
vertebra.

4 Discussion

In this paper, we propose a novel method for fully automated segmentation of
vertebrae from 3D CT pathological spine images that combines recent develop-
ments in machine learning and shape modeling. A two-way CNN is first used
to determine vertebral boundaries, and then a collision-based model is used to
obtain final segmentations without vertebral overlaps. Similarly as in the method
proposed by Castro-Mateos et al. [5], a limitation of the proposed method is that
during the segmentation of vertebra L5 (i.e. pair L4–L5), there is no guarantee
that L5 segmentation results did not over-segment sacral vertebra S1. A feasi-
ble solution would be either to include vertebra S1 as an additional label into
the training of the two-way CNN or the lumbosacral vertebra pair L5-S1 into
the collision-based model. Despite this minor limitation, the proposed method
demonstrated highly accurate segmentations of normal and fractured vertebrae.

Directions for future work include the application of the proposed method for
the evaluation of vertebral fractures, as well as its extension to other anatom-
ical structures (e.g. carpal bones or multiple abdominal organs) and imaging
modalities (e.g. magnetic resonance).
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Abstract. Accurate segmentation of the spine in computed tomography
(CT) images is mandatory for quantitative analysis, e.g. in osteoporosis,
but remains challenging due to high variability in vertebral morphology
and spinal anatomy among patients. Conventionally, spine segmentation
was performed by model-based techniques employing spine atlases or
statistical shape models. We argue that such approaches, even though
intuitive, fail to address clinical abnormalities such as vertebral fractures,
scoliosis, etc. We propose a novel deep learning-based method for seg-
menting the spine, which does not rely on any pre-defined shape model.
We employ two networks: one for localisation and another for segmenta-
tion. Since a typical spine CT scan cannot be processed at once owing to
its large dimensions, we find that both nets are essential to work towards
a perfect segmentation. We evaluate our framework on three datasets
containing healthy and fractured cases: two private and one public. Our
approach achieves a mean Dice coefficient of ∼0.87, which is comparable
but not higher than the state-of-art model-based approaches. However,
we show that our approach handles degenerate cases more accurately.

Keywords: Spine segmentation · Automated segmentation
Deep learning · Fully convolutional network

1 Introduction

Spine segmentation is a crucial component in quantitative medical image anal-
ysis. It directly allows detection and assessment of vertebral fractures and indi-
rectly supports modelling and monitoring of the spinal ageing process. In this
work we propose a method based on “deep-learning”, that generates precise
spine segmentations on computed tomography (CT) images. It overcomes the
drawbacks of earlier segmentation approaches and thus can be used in clinical
settings. Particularly, our approach is capable of handling scans with varying
fields-of-view (FOV) and degenerate spine or vertebrae.
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Fig. 1. Schematic outline of the proposed approach.

Previous works often deal with spine segmentation in a multi-step approach
incorporating spine localisation and vertebra detection followed by the segmenta-
tion [1,2]. Various traditional computer vision techniques have been successfully
applied, such as active shape models and snake-based methods [3,4], level sets [5]
or graph-based approaches using normalized-cuts [6]. Most of these methods rely
on prior knowledge in the form of spine atlases or statistical shape models which
are used to provide a good initialisation. Such models reach state-of-the-art per-
formance on healthy spines with no signs of osteoporotic fractures, attaining
Dice coefficients (DICE) of over 0.9. However, osteoporotic patients often suffer
from severe vertebral fractures in various stages and spinal deformities such as
scoliosis. In such cases, model-dependent segmentation might fail due to the high
variability of the unique shape of a fracture or deformity that does not resemble
a mean shape model. A shape model is also restricted by its mesh interpola-
tion algorithm, which makes extreme deformations unfeasible. Moreover, CT
images acquired for preoperative planning due to other diseases in the thoracic
or abdominal area have the spine in them as a consequence. Such opportunistic
scans have varying FOVs, spatial resolution, and image reconstruction, in addi-
tion to variations in scan enhancements due to contrast agents. Model-based
approaches, which rely on good initialisations, could fail in such cases either
due to lack of landmarks for registration, uneven intensities, and noise. This
calls for data-driven approach based on supervised learning that does not rely
on pre-defined models, but learns the variability by training on several kinds of
contingencies.

Machine learning-based approaches have proven to fulfill these requirements,
given that enough data is available for their training. Glocker et al. [7] and Suzani
et al. [8] attempt the vertebra detection problem on arbitrary FOVs using ran-
dom forests and multi-layer perceptrons respectively. More recently, Chen et al.
[9] try to make use of the omni-present convolutional neural networks (CNN),
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with a clever cost formulation, to detect vertebrae. Eventually the CNNs have
gained large popularity also for image segmentation through the concept of fully-
convolutional networks (FCN) allowing pixel-to-pixel training and inference on
(nearly) arbitrary sized inputs [10]. The standard FCN architecture of a con-
tracting and an expanding path with shortcut connections is exploited in recent
works on segmentation in the context of medical imaging [11–13]. However, these
approaches cannot be directly extended to obtain a dense segmentation of a spine
scan due to the sheer spatial resolution of a scan. For instance, the segmentation
net used in [10] works on inputs containing ∼2.5 × 105 pixels; a typical whole
spine CT scan is about 100–1000 times larger, thereby making a straightforward
extension of an FCN non-viable.

We combine the FCN architecture with a domain-specific data-preprocessing
pipeline and data-augmentation scheme to propose a robust and scalable frame-
work for spine segmentation in CT images. The method builds on the following
key elements:

1. A low-resolution attention FCN for spine localisation that works on two-
dimensional sagittal slices of a scan.

2. A high-resolution segmentation FCN for fine segmentation that takes three-
dimensional patches as input.

3. A smart patch extraction strategy to incorporate the FOV invariance and
bypass memory limitations.

4. A domain-specific data augmentation to increase the training set size and
incorporate the typical biological variance.

Our approach is free from predefined shape models and is purely data-driven,
and is thus highly generalisable across varying FOVs, spinal deformities, and
spatial resolutions given sufficiently diverse training data. Methodological details
are presented in Sect. 2. We evaluate our method on a large private dataset
of 56 (a) healthy and (b) fractured patients. We also compare our approach
against the state-of-the-art methods on a publicly available dataset from the
2014 MICCAI Workshop on Computational Methods and Clinical Applications
for Spine Imaging (CSI2014) [14]. Our approach achieves a comparable mean
DICE of around 87%, while perfectly segmenting fine details of normal as well
as deformed vertebrae. Details of the experiments follow in Sect. 3.

2 Methodology

We present our approach to spine segmentation in two stages. Firstly, a two-
dimensional (2D) FCN which provides a low-resolution localisation of the spine.
Secondly, we present the 2D-three-dimensional (3D) FCN that generates high-
resolution binary segmentations. Fusing the predictions of both the networks
results in a good segmentation of a spine volume. An overview of our approach
is shown in Fig. 1.
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Fig. 2. Attention-net. The network utilizes 10 convolutional layers with stride 1, kernel
sizes and dilation factors are denoted in the image. Moreover, the first 4 conv-layers
are followed by max-pooling. Numbers above blobs represent number of features in
the hidden feature space. Observe the drop in spatial resolution from the input to
the output slice, thereby providing a low-resolution attention map for a given sagittal
slice. Every n-th sagittal slice from the scan volume is considered for inference, thereby
reducing the number of forward passes for scan, which makes the attention generation
very fast. Consequently, the original scan resolution is restored by interpolation in all
three directions.

2.1 Localization: Attention-Net

We exploit the structure and position of the spine in a scan, that are generally
invariant, to obtain a rough localisation of the spine. The network performing this
task is called the attention net. Since sagittal view provides significant context
on the spine’s location, the attention net operates fully in 2D on sagittal slices.
The net is fully convolutional and outputs a 2D map of lower dimension than the
input. Every value (∈ [0, 1]) in the predicted 2D map corresponds to a 16 × 16
region in the input, and represents the percentage of foreground voxels (‘spine’
voxels) in that region. Figure 2 illustrates the architecture of the attention-net.
A 2D patch of 160 × 160 (padded to size 720 × 720) predicts a maps of size
10 × 10. Since context is of utmost importance for determining the presence
of spine, we increase the receptive field with dilated convolutions [15] in the
downstream convolutional layers. We incorporate the resolution reduction in
the third dimension by working only on every nth sagittal slice. At the end,
given an input volume, the attention net works on sagittal slices and predicts
a lower-resolution volume (called the attention map) whose values indicate the
presence of spine. The attention map is then up-sampled to the input dimension
for further use.

Training and Inference. The ground truth for training is obtained from the
available spine segmentations. Every volume is down-sampled by a factor of
16 × 16 × n (n = 8, in our experiments), each voxel representing the ratio of
spine-voxels to total-voxels in its corresponding 16 × 16 region. The network is
trained to minimise the mean-squared error between predicted map and ground
truth. During training, given a scan volume, we train on large patches randomly
sampled from sagittal slices with data augmentation through rigid transforma-
tions (2D rotations by ±20◦ and scaling of these axes by ±40%); we advocate
the use of patches as incorporation of invariance to arbitrary FOVs. During test
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(a) (b)

Fig. 3. Attention maps. (a) and (b) show two computed tomography scans overlaid
with the response of the Attention-Net aggregated over all slices in the direction of
view. Notice that the response is focused predominantly on the spine. This attention-
map is Gaussian smoothened, thresholded, and converted to a binary mask, which is
then fused with the Segmentation-Net’s response.

time, the patches are sampled from every n-th sagittal slice with overlap such
that the entire slice is covered. The predicted low-resolution attention map for
each of these patches is up-sampled to the resolution of the scan volume, and
filtered with a 3D Gaussian kernel, N (0, Σ). Figure 3 shows an attention map of
two test cases. For better visualisation of the 3D map, the response is aggregated
in the direction of view and overlaid on the mid-slice. Observe that the net suc-
ceeds in localising the spine. This attention-map is thresholded and converted
to a binary mask, which is then fused with the Segmentation-Net’s response as
elaborated in the following sections. The threshold-value and the covariance of
the Gaussian smoothing (Σ) are tuned on the validation set.

2.2 Spine Segmentation: Segmentation-Net

Precise segmentation can be obtained when the receptive field of the network
if small enough that it focuses on minute details, while being large enough to
capture sufficient context. We achieve this by incorporating a patch-based app-
roach. Such an approach also alleviates the restriction that the limited memory
of a GPU imposes on the volume that can be processed by the network. We
propose a segmentation net that is fully convolutional and a combination of 2D
and 3D convolutions, building on the versatile ‘U’ architecture commonly used
for segmentation [12,16]. A detailed view of the network’s architecture is shown
in Fig. 4. The input to the network is a 3D block from the scan, having larger
receptive field in the sagittal view (for example, an input block could be of size
188×188×12, with the first two dimensions corresponding to the sagittal view).
At an isotropic resolution of 1 mm3, the receptive field for predicting one voxel’s
label has a size of ∼ 18.4 × 18.4 × 0.8 cm3. The output is a dense pixel-wise
segmentation of dimensions equal to that of the input.



Attention-Driven Deep Learning for Pathological Spine Segmentation 113

Fig. 4. Segmentation-net. The network has a five-level downsampling path, each level
consisting of two convolutions with a ReLU activation and a max-pooling, and a
symmetric upsampling path, which are connected by skip connections for recovery of
high resolution. Notice the utilisation of a combination of two-dimensional and three-
dimensional convolutions to process higher information in the sagittal direction, while
conglomerating information from the adjacent slices. The size of the inputs and outputs
is parameterised by the dimensions of the smallest blob on the path as x, y ≥ 4, z ≥ 3.

Training and Inference. We use a segmentation-centric loss function of DICE
[13] as the objective function. At the training time we randomly sample patches
from the input volumes and apply online generated elastic and rigid deformations
to them as a form of data augmentation. Specifically, we apply rotations along
the sagittal plane by ±2◦ and scaling by ±10% along with minute contrast
adjustments. Employing dropout after the convolutions on the lowest level of
the contracting path gave a significant performance improvement. At the test
time, the patches are extracted uniformly with overlap such that the resulting
segmentations cover the entire test scan.

To conclude the approach: given a scan volume, the segmentation-net pro-
vides its dense segmentation. Since the latter splits the volume in sub-blocks,
we observe that the context in these blocks is insufficient for perfect segmenta-
tion. We therefore observe several false positives in the form of stray segmenta-
tion, wherein, in addition to spine, other regions such as parts of the rib cage,
pelvic bone, sacrum etc. are also segmented. The thresholded binary attention-
map, which localises only the spine, is used as a mask over the output of the
segmentation-net to clear away the stray segmentations1, resulting in the final
segmentation map.

1 A cascaded fusion of these nets was also tried where the patches for the segmentation
net are obtained only from the region proposed by the attention map. We observed
that the accuracy of this approach was not superior to our approach of late-fusion.
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3 Experiments and Results

Implementation Details. The two networks in our approach are implemented
as standalone modules. Given a scan, the inference in both the nets run in
parallel, and their responses are combined. As a preprocessing step, the CT
volumes are subjected to anisotropic diffusion filtering in order to smoothen the
homogeneous regions and improve the details around the edges. Both the nets
were implemented in Caffe [17]. Adam solver was employed for optimising the
loss. The nets were trained till convergence with initial learning rates of 10−5 for
segmentation net and 10−4 for the attention net. When implemented on a Nvidia
Titan X GPU with 12 GB RAM, the training of the segmentation net converged
in two days while that of the attention net took one day. The convergence was
faster in the latter case owing to a significantly lower number of parameters.

Data. We evaluate our framework on three datasets: (Dataset 1) forty five
patients without fractures but varying age from 25 to 69 years, (Dataset 2)
eleven cases with vertebral fractures, to evaluate the performance on deformed
vertebrae, and (Dataset 3) the spine segmentation challenge of the CSI2014
dataset containing twenty CT scans, for comparison with other model-based
techniques. Datasets 1 and 2 are private in-house datasets gathered from our
picture archiving and communication system. The scans were acquired over a
period of two years for various patient examinations and not specifically for
the spine analysis, which results in a high diversity in terms of patient-age,
abnormalities, FOV, and scanner calibrations. The ground truth segmentation
for this data was obtained by first using the approach in [1]2 and then manually
corrected by a medical expert. Experiments on these datasets are therefore close
to the clinical scenario.

Dataset 1. This is employed to validate the generalisability towards varying
BMDs and scanner calibrations. It includes healthy controls (HC) with no frac-
tures, which have been acquired with varying scanner settings (fields-of-view,
spatial resolution, etc.). Thus, there is a significant variation in the Hounsfield
units (HU) of the scans. We reserve three volumes as a validation set and another
three volumes for testing, the remaining thirty nine are used for training.

Dataset 2. We utilise this to evaluate the performance on fracture cases (Fx).
For this experiment we fused the forty five cases of Dataset 1 with eleven cases
from this dataset, all of which have fractures. On top of the splits defined for
Dataset 1, we add six fractured cases to the training set, two to the validation
set, and two to the test set.

2 We would like to thank Klinder et al., the authors and our industry partners (Philips,
Hamburg, Germany), for providing us with the segmentation of Datasets 1 and 2
based on their approach in [1].
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Dataset 3. As a final experiment, we intend to compare our algorithm with
the other best-performing segmentation algorithms. For this task, we choose the
public dataset of the segmentation challenge in CSI2014. This contains a total
of 20 scans, 10 for training and 10 for testing. Of the test set, five scans are of
healthy subjects less than 35 years old, and five other scans are of osteoporotic
spines aged above 55 years. From the 10 training volumes we reserve one for
validation and use the remaining nine for fine-tuning of the model pre-trained
on the Dataset 2. We refer the reader to [14] for a detailed description of the
dataset.

Results. The results of the experiments on the Datasets 1 and 2 are reported
in the Table 1. Our method reaches good results both for healthy and frac-
tured cases, proving to generalise well to a wide range of data. In both cases
we observed the segmentation net suffer from stray segmentations which were
mostly filtered out by the attention net, steadily improving the DICE by 1–
10%. The resulting segmentation of our method are visualised in Fig. 5, com-
paring it to a well-known model-based segmentation approach [1]. Notice the
over-segmentation of the vertebral process regions (top row, HC) in the model-
based approach. This is expected as the process of a vertebra has very high
variability from patient-to-patient. Such a variability cannot be captured by an
atlas or a shape model. Such over-segmentation does not occur in our approach.
The bottom row illustrates our approaches performance on a fractured vertebra.
Observe how the model-based segmentation fails to capture the deformities. This
illustrates the restriction the interpolation algorithm in such approaches fails to
capture extreme deviations from the mean shape. Our approach, however, suc-
cessfully segments the degenerate vertebra as it learns to segment on the edges
and is not hindered by any shape priors. We attribute the bleeding in the ver-
tebral process regions (Fig. 5, bottom row) to predictions of the neighbouring
slices; we do not observe this artefact consistently in our results.

The results of the experiment on Dataset 3 are reported in Table 2. We com-
pare our approach with two methods that have been deemed best performing
according to the challenge organisers. Korez et al. [4] use a mean shape model
based strategy followed by an efficient interpolation theory oriented mesh defor-
mation, and performed best on healthy cases. Forsberg [2] performed well on
fractured cases. It uses a multi-atlas based segmentation followed by a B-spline
relaxation to adapt for the variability of vertebral structures. Observe that our
algorithm achieves a comparable performance with the state-of-art in the healthy
cohort. The performance on the fractured cases is not up to the mark; we identify
the cause to be following:

Table 1. DICE for Datasets 1 and 2. The performance of our method is consistent
among HC and Fx cases.

Dataset DICE (%)

Dataset 1 (HC) 87.60 ± 5.0

Dataset 2 (HC+Fx) 85.91 ± 4.8
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Fig. 5. Comparison of the proposed method (red) and Klinder et al. [1] (blue) to the
ground truth (yellow contour). Top row: Test cases from the Dataset 1. Our method
performs better in matching the actual vertebra shape and does not suffer from over-
segmentation. However, it does not always provide structurally consistent results; for
example, the first and the last vertebra in the left-most image are not fully segmented.
Bottom row: Fractured cases from the Dataset 2. Our model-free approach is able to
capture the unique deformation of the fractured vertebra, opposed to the model-based
method. (Color figure online)

Table 2. Comparison of the performance of our approach with other state-of-the-art
methods on the benchmark dataset of the 2014 MICCAI Workshop on Computational
Methods and Clinical Applications for Spine Imaging, on healthy and osteoporotic
test sets.

Approach DICE (%)

HC Osteoporotic

Forsberg [2]a 92.1 ± 3.0 87.8 ± 1.5

Korez et al. [4]a 94.7 ± 4.0 88.2 ± 3.0

Our approach 92.1 ± 1.6 83.7 ± 4.7
a In these methods, DICE was computed at
vertebra level and aggregated; our DICE is
computed on the entire spine.
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The fractured vertebra in the test set are treated by cement injection inside
the vertebra (for example, case 26 and case 30 have cementing in T12 and L3
vertebrae). This procedure causes distinctive artefacts in the image, as opposed
to untreated fractures. As there was not a single case of a cement-treated fracture
in our training set and since our approach is purely data-driven, our method does
not perform as expected. This can be observed by observing a more detailed view
on the performance metric of the osteoporotic set, where we obtain a highest
DICE of 89.4% and a median DICE of 85.5%. However, this performance can be
easily improved by adding more representative data into the training set.

4 Conclusion

In this paper we propose a model-free deep learning based framework for patho-
logical spine segmentation in CT images. Our method uses a pair of fully-
convolutional networks that complement one another: The first network pro-
vides a coarse localisation of the spine in the form of an attention map, while
the second network provides precise high-resolution segmentations. Both these
are fused to obtain the final segmentation map of the spine. We evaluate the
method on three datasets and obtain promising results indicating applicability
in a clinical setting. Our main conclusions are the following: (1) Our approach
based on neural networks is far more robust, generalisable, and precise on fine
details as a consequence of its dependence on every voxel and its surrounding,
unlike the traditional models that depend on predefined shapes and edges for
fine-tuning, (2) our approach successfully segments healthy as well as fractured
vertebrae, given both cases are sufficiently represented in the training set, (3) our
approach achieves Dice coefficients of above 90% for healthy cases and above 80%
for osteoporotic cases on the CSI2014 dataset. We believe that its performance
can be further improved with a larger and more representative dataset. Lastly,
(4) we remark that our approach fails to incorporate information pertaining to
structural consistency of a spine. This results in a peculiar behaviour where our
method fails to segment parts of a vertebra or sometimes entire vertebrae at
the start or end of a spine. This can be observed in Fig. 5 (top row). We intend
to investigate ways in which such global structural regularity can be imposed
during the training phase of our networks.

As part of future work, we plan to employ a graphical model to split the
binary segmentation into different vertebrae, thereby labeling the segmentation,
based on a conditional random field-based approach.

Acknowledgements. This work was funded from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme
(GA637164–iBack–ERC-2014-STG).
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Abstract. Automatic segmentation of femurs in clinical computed
tomography remains a challenge. Joints degraded by old age are a par-
ticularly challenging dataset to segment. The objective of this study is
to evaluate existing methods and propose an alternative method for
segmentation of femurs in clinical computed tomography datasets for
joints degraded by old age. Bilateral hip computed tomography scans
of three cadaveric specimens (six femurs) were available for this study.
Deformable registration using an affine selection criterion was used for
atlas-based segmentation. For comparison, the six femurs were also seg-
mented with two graph-cut algorithms. An automatic graph-cut segmen-
tation algorithm was only able to separate the femur from the pelvis in
two of the six femurs due to a limitation of graph-cuts. The atlas-based
method produced consistent automatic segmentations for all degraded
joints. In conclusion, atlas-based femur segmentation performs consid-
erably better than an automatic graph-cut algorithm when applied to
degraded joints.

Keywords: Atlas-based segmentation · Graph-cut · Femur
Computed tomography

1 Introduction

Clinical computed tomography (CT) is a versatile imaging modality used to
stage surgery and investigate the source of abdominal pain. During these com-
mon applications, quantitative image data of bones are inadvertently captured.
As a consequence of its applicability, CT generates a large collection of clini-
cally relevant bone data that is not yet effectively used. This collection of bone

c© Springer International Publishing AG 2018
B. Glocker et al. (Eds.): MSKI 2017, LNCS 10734, pp. 120–132, 2018.
https://doi.org/10.1007/978-3-319-74113-0_11
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image data can be used to answer population-level questions about bone health
and develop novel screening technologies. Of particular interest is the automatic
assessment of femurs in clinical CT to opportunistically screen for osteoporosis
[1]. Femoral fractures account for 72% of all fracture-related healthcare costs [2],
posing a strong incentive to help detect fractures before they happen. A robust
and automatic segmentation of the femur would be required for high-throughput
assessment of bone health.

Many techniques for segmenting femurs in medical image data have been
proposed in the past. For example, Zoroofi et al. [3] proposed a method employ-
ing standard image processing techniques. More precisely, the image data is
smoothed with a Gaussian filter, histogram-based thresholding is applied, and
the segmentation is cleaned using morphological operators. Kang et al. [4]
employed a region growing technique using locally adaptive thresholding. The
resulting segmentation was cleaned using both morphological closing and slice-
wise contour closing.

More advanced techniques based on the energy minimization framework of
graph-cuts [5] yield improved segmentations compared to simple intensity thresh-
olding. In Pauchard et al. [6], a user interactively applies brush strokes to the
image data enforcing hard constraints on foreground and background voxels. The
edges of the bone are segmented using the standard boundary term for graph-
cuts. Krčah et al. [7] proposed an automatic graph-cut segmentation method.
Here, a modified sheetness measure based on Descoteaux et al. [8] is used to
increase the contrast at the surface of the bone. The graph-cut algorithm makes
use of this enhanced contrast and the quantitative nature of Hounsfield units
to segment bone structures. A morphological erosion is applied to disconnect
the femur and the pelvis if they are connected. The boundary between the two
articulating bones is determined by another, separate graph-cut algorithm.

However, the aforementioned techniques have difficulty separating well-
connected joints, a problem generally seen in older populations. Extensive man-
ual correction is often necessary but not feasible for high-throughput applica-
tions. Within this context, atlas-based approaches could overcome the problem
of well-connected joints and improve segmentation accuracy by including shape
information. The basic idea of atlas-based methods is to register an atlas dataset
with a corresponding segmentation of the structure of interest to an individual
dataset. The result of the registration is used to transform the segmentation to
the reference image.

Previously, Ehrhardt et al. [9] used Thirion’s demons [10] to segment full
pelvis and femur CT scans and to identify anatomical landmarks. The authors
pointed out that the femur-acetabulum connection was particularly difficult to
segment. Whitmarsh et al. [11] proposed a multi-atlas-based method using free-
form deformations with label fusion to produce a highly accurate segmentation.
Local-weighted voting was used to generate the final segmentation. However,
the image volumes were artificially restricted to the joint and computed on
relatively young subjects, reducing the applicability of the algorithm to clini-
cally relevant scans. Additionally, it has been shown that label fusion with an
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increasing number of atlas images can have both decreasing performance and
increased computation time [12], which was not considered in the work of
Whitmarsh et al. [11].

The objective of this study is to develop an automated method for segment-
ing femurs in clinical CT datasets with a special focus on degraded joints. Two
existing segmentation techniques using the graph-cut framework are explored for
full femur segmentation. A limitation of graph-cut based methods due to the con-
formity of the femoroacetabular joint is presented. An atlas-based segmentation
method using a selection criterion is proposed.

2 Materials and Methods

2.1 Data Acquisition

Bilateral hip CT scans were acquired from three cadavers using a GE Revolution
CT Scanner (GE Healthcare). In-plane resolution was 0.684 mm by 0.684 mm
with a slice thickness of 0.625 mm. The scan volume begins above the iliac crest
of the pelvis and stops in the proximal tibia containing the entire femur. Recon-
structed volumes contained 291 million voxels on average. A slice of the greyscale
image data and a direct volume rendering of the image data is shown in Fig. 1.

(a) Coronal slice of the greyscale data. (b) Direct volume rendering.

Fig. 1. Computed tomography scan volume.

The age and sex of the three cadavers were 86, male; 72, female; and 90,
female. The cause of death of all cadavers was respiratory and related to old
age. No cadavers had metal in the scan volume (such as an implant). All of
these specimens display degraded joints due to age (see Fig. 2). As a result of
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(a) Axial. (b) Coronal. (c) Sagittal.

Fig. 2. Contact between femur and pelvis.

this, there is large contact between the femoral head and the acetabulum of the
femur in two of the three specimens. In the third case, the contact between the
femur and acetabulum is very small, but present. A quantitative measure of joint
degeneration was not made.

2.2 Pre-processing

Each CT image was resampled to an isotropic resolution of 0.625 mm using
cubic interpolation. After this, the image volume was split sagittally creating
two volumes with one volume containing the left femur and the other volume
containing the right femur. The left femurs were mirrored in the lateral-medial
direction to match the anatomical orientation of right femurs. Similar to a pre-
vious study [11], a mask of the subject’s body was defined using a threshold of
−200 Hounsfield units. This mask of the body was used to restrict the registra-
tion domain.

2.3 Manual Segmentations

Each femur was semi-automatically segmented using the graph-cut method
described by Pauchard et al. [6], implemented in the freely available software
MITK-GEM1. In this interactive method, a brush is used to define regions of
foreground (femur) and background (tibia, pelvis, muscle, fat, and air). Fore-
ground strokes were interactively placed in each dataset in the diaphyseal corti-
cal bone and in the sagittal, coronal, and axial slices of the proximal and distal
femur. Background strokes were placed in the sagittal, coronal, and axial slices of
the tibia and pelvis including joint space. Background strokes were also places
on muscle, fat, and air. After rough foreground and background definition, a
graph-cut algorithm is used to obtain the final segmentation.

Because the segmentations produced by MITK-GEM included joint space
(see Fig. 3), the six MITK-GEM segmentations were manually corrected by a
medical imaging expert. Furthermore, rough edges in the manual segmentation

1 https://simtk.org/projects/mitk-gem.

https://simtk.org/projects/mitk-gem
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(a) Manual segmentation (white) over-
laid with the MITK-GEM segmenta-
tion (red).

(b) Axial slice of the MITK-GEM seg-
mentation overlaid on the image data.

Fig. 3. Visualization of MITK-GEM segmentation for the specimen with the least
contact between femur and pelvis. (Color figure online)

were smoothed with an image-closing operator (spherical kernel of diameter three
voxels). These manual segmentations were used as the ground truth for evalua-
tion as well as for multi-atlas segmentation.

2.4 Atlas-Based Segmentations

The objective of atlas-based segmentation is to find a mapping of voxels in an
atlas image to voxels in a fixed image. If a correspondence can be found, then a
segmentation defined in the atlas image can be mapped to the fixed image and
used as a segmentation of the fixed image. This mapping is typically solved for
using linear and non-linear (deformable) intensity-based image registration.

The previously described CT datasets of the six femurs and the corresponding
manual segmentations were used as the basis for the multi-atlas-based segmen-
tation. The deformation field was solved by applying an affine transform for
a rough initialization followed by a deformable registration using B-spline free-
from deformation. Normalized cross correlation was used as the image similarity-
metric.

A selection criterion was used to rank the affine registered atlases compared
to the query image, where only the atlas with the best registration metric after
affine registration was selected for subsequent non-linear registration to save
computation time while increasing the chance of achieving a good non-linear
registration. The final spacing of the B-spline control points was 5 mm. A multi-
resolution registration scheme with six levels was used and the spacing between
B-spline control points was decreased by half at each level of the pyramid. The
registration domain was restricted to a mask of the bone and soft tissue as
described in Sect. 2.2. The open-source software Elastix [13] version 4.82 was
used for registration. Parameter files can be found in the Elastix database3.

2 http://elastix.isi.uu.nl.
3 http://elastix.bigr.nl/wiki/index.php/Par0046.

http://elastix.isi.uu.nl
http://elastix.bigr.nl/wiki/index.php/Par0046
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2.5 Evaluation

Leave-one-out-cross-validation was used to evaluate the multi-atlas-based seg-
mentation method described in this work. Given a query femur, the remaining
five atlas images were used as described in Sect. 2.4 to produce an atlas segmen-
tation.

Obviously, a contralateral femur exists for any query image in the multi-
atlas dataset, which might bias the evaluation. To investigate this potential
bias, leave-one-out-cross-validation of atlas-based segmentation was conducted
with and without the contralateral femur in the atlas. Thus, two atlas-based
segmentations were generated for each case, one with the contralateral femur in
the atlas (con.) and one without the contralateral femur in the atlas (alt.). The
two segmentation cases will validate that the affine selection criterion can select
the best atlas for a given image while removing evaluation bias.

For comparison purposes, the segmentations resulting from applying the
graph-cut algorithm described by Pauchard et al. [6] (MITK-GEM) - prior to
manual correction - were also quantitatively evaluated. Finally, all six femurs
were segmented using the graph-cut method of Krčah et al. [7], the source code
of which is publicly available4. Thus, four segmentation results – Atlas (con.),
Atlas (alt.), MITK-GEM, and Krčah – were available for each femur and com-
pared to the manual segmentation.

For all cases, the Dice similarity coefficient [14] and the Hausdorff distance
[15] were used for quantitative comparison to the ground truth segmentation.
The Dice similarity coefficient is a measure of mean overlap between two seg-
mentations and is expected to be very large (close to 1.0) given the small surface
area to volume ratio of a femur [16]. The Hausdorff distance is a complementary
statistic to the Dice similarity coefficient because it measures the worst possible
error between two segmentations. The Hausdorff distance is regarded as a very
harsh metric and identifies segmentations that may have large local differences
but are otherwise well segmented.

3 Results

The Dice similarity coefficient and Hausdorff distance comparing the four algo-
rithm segmentations to the manual segmentation are presented in Tables 1 and 2,
respectively. The MITK-GEM method had the best results with an average Dice
similarity coefficient of 0.994 and an average Hausdorff distance of 4.58 mm. The
Krčah method had the worst results with an average Dice similarity coefficient
of 0.801 and an average Hausdorff distance of 102.40 mm. For the atlas-based
method, removing the contralateral femur from the atlas increased the average
Hausdorff distance from 5.95 mm to 8.53 mm and decreased the average Dice
similarity coefficient from 0.978 to 0.969. The contralateral femur always had
the best image similarity metric after the affine registration (data not shown).

4 https://github.com/mkrcah/bone-segmentation.

https://github.com/mkrcah/bone-segmentation
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Table 1. Dice similarity coefficient for each method.

Sample Leg Atlas (con.) Atlas (alt.) MITK-GEM Krčah

1 Left 0.982 0.976 0.997 0.988

1 Right 0.983 0.972 0.997 0.987

2 Left 0.978 0.969 0.996 0.674

2 Right 0.977 0.968 0.993 0.657

3 Left 0.974 0.967 0.994 0.745

3 Right 0.973 0.964 0.988 0.755

All four algorithms have Dice similarity coefficients above 0.95 when the pelvis
and the femur are separated in the final segmentation.

The Krčah method successfully separated the femur from the pelvis in two
of the six femurs, both in the specimen with the least contact between the femur
and pelvis. Figure 4 shows an axial slice of the successful Krčah segmentations
overlaid on the greyscale data. No joint space between the femur and acetabulum
of the pelvis is included in the successful Krčah segmentations. Figure 5 shows
each segmentation method overlaid on the image data at the proximal, middle,
and distal femur for a specimen with a well-connected joint. Joint space was
included in all MITK-GEM segmentations including the specimen with the least
contact between the femur and pelvis, visualized in Fig. 2. Figure 5(m) shows a
large volume of joint space included in the Krčah segmentation when it fails to
separate the femur and pelvis. Figure 5(g) shows a poor atlas-based segmentation
result where the segmentation leaks from the femur into the pelvis. A surface
rendering for each segmentation overlaid on the manual segmentation is shown
in Fig. 6 for a femur that is well-connected to the pelvis. Figure 6(d) shows the
full pelvis connected to the femur when the Krčah method fails.

4 Discussion

In this study, an automatic method for segmenting femurs in clinical computed
tomography using a multi-atlas-based approach is proposed. The age of the
cadavers presented a particularly difficult dataset due to contact between the
femur and pelvis. Segmentations obtained using graph-cut methods consistently
include joint space in the segmentation. The automatic graph-cut method of
Krčah et al. [7] was unsuccessful in separating the femur from the pelvis in four
of six femurs. In contrast, the atlas-based segmentation method with a selection
criterion generated more consistent results.

Screening technologies and population-level health assessment require robust
and automatic segmentation of the femur for high-throughput assessment of bone
health. Algorithms for segmenting femurs from clinical CT must be accurate for
the full range of anatomical variation expected in the population. The CT dataset
used in this study consisted of three cadavers with degraded joints due to age,
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Table 2. Hausdorff distance for each method (in mm).

Sample Leg Atlas (con.) Atlas (alt.) MITK-GEM Krčah

1 Left 4.19 12.56 4.59 3.42

1 Right 3.59 3.80 4.19 4.38

2 Left 6.03 7.29 3.95 171.45

2 Right 9.56 6.16 5.04 180.64

3 Left 5.63 7.02 4.68 127.13

3 Right 6.73 14.38 5.00 127.36

an expected population when performing opportunistic screening. Two cadavers
had large contact areas between the femur and the acetabulum of the pelvis.

The difficulty of segmenting the femur arose from the connection in the
femoroacetabular joint. The femoroacetabular joint is a ball-and-socket joint
where contact between the femur and the acetabulum of the pelvis has a large
surface area with identical voxel intensities. Conceptually, this surface can be
visualized as a surface patch on a sphere with a large solid angle. The geom-
etry of the joint makes it particularly difficult to separate the femur from the
acetabulum when the joint has been degraded due to age.

Two existing methods using the graph-cut framework were used for femur
segmentation in this challenging dataset. The automatic graph-cut method of
Krčah et al. [7] failed to separate the femur from the pelvis in four of the six
femurs. Both successful segmentations were from the specimen with the least
contact between the femur and the acetabulum of the pelvis. No joint space
was included in successful Krčah segmentations. The semi-automatic graph-cut
method of Pauchard et al. [6] produced femur segmentations with joint space
in the segmentation for all six femurs, including the less connected specimen.
The discrepancy between graph-cut methods can be explained by the modified

(a) Right femur. (b) Left femur.

Fig. 4. Visualization of the successful Krčah segmentations.
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(a) Manual. (b) Manual. (c) Manual.

(d) Atlas (con.). (e) Atlas (con.). (f) Atlas (con.).

(g) Atlas (alt.). (h) Atlas (alt.). (i) Atlas (alt.).

(j) MITK-GEM. (k) MITK-GEM. (l) MITK-GEM.

(m) Krčah. (n) Krčah. (o) Krčah.

Fig. 5. An axial slice from the proximal femur (left), the diaphysis (middle), and the
distal femur (right) for each segmentation overlaid on the image data of sample 3,
left leg.
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(a) Atlas (con.). (b) Atlas (alt.). (c) MITK-GEM. (d) Krčah.

Fig. 6. Visualization of algorithm segmentations (red) overlaid with manual segmen-
tation (white). (Color figure online)

sheetness filter which increases contrast in the joint space as well as the inclusion
of background hard links in the pelvis and joint space.

However, bone structures in contact have identical voxel intensities and con-
trast cannot be enhanced. This is a limitation of the graph-cut framework where
connected bone structures cannot be separately segmented. To overcome this
limitation, Krčah et al. [7] implemented a post-processing step to separate con-
nected bone structures. The initial segmentation is eroded with a spherical kernel
to separate connected bones. If a segmentation is split into multiple parts after
erosion, the boundary between the separated parts is determined by another, sep-
arate graph-cut algorithm. However, when the femur and pelvis are segmented
as one bone structure, an annulus of joint space can be included in the initial
segmentation if the joint space is narrow (see Fig. 5(m)). The thin annulus of
joint space between the femur and pelvis is segmented similar to marrow space
in the diaphysis. This greatly increases the effective contact area in the joint
and makes it impossible for the spherical kernel to separate the connected bone
structures. Even if the bone structures could be separated, this large annulus of
joint space would be classified as belonging to either the femur or pelvis segmen-
tation, or possibly split between both. The inclusion of joint space is a limitation
of graph-cut based femur segmentation when the femoroacetabular joints is well-
connected. Formulating the original graph-cut problem as a multi-label problem
with neighbouring bones as separate labels may prevent this problem.

The two graph-cut methods and the atlas-based method for femur segmenta-
tion with and without a contralateral femur were compared with a correspond-
ing manual segmentation. The semi-automatic method of Pauchard et al. [6]
showed the best performance both in terms of Dice similarity coefficient and
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Hausdorff distance. However, the method of Pauchard et al. had a systematic
bias to include joint space in the femur segmentation. Additionally, this method
was used as the basis for generating the ground truth segmentations, thus the
metrics are biased towards favouring the method of Pauchard et al. Finally, this
method is not automatic and requires user interaction while the proposed atlas-
based approach is fully automatic. For high-throughput application to clinically
relevant CT datasets with joints degraded by old age, the proposed atlas-based
method outperformed the automatic method of Krčah et al. [7]. Atlas-based seg-
mentation with a selection criterion showed more consistent separation of the
femur from the pelvis than the automatic graph-cut method of Krčah et al. [7].

The proposed atlas-based method using an affine-registration selection cri-
terion was specifically designed as an alternative to graph-cut based methods
and to overcome the segmentation problems arising from large contact areas by
including shape information. Overall, the atlas-based method produced more
reliable results for the challenging CT dataset than the automatic graph-cut
method. On the contrary, the atlas method results in segmentation errors where
the femur segmentation leaks into the pelvis (see Fig. 5(g)). This is a fundamen-
tal limitation of atlas-based registration for femur segmentation. It is unknown
if label fusion can overcome segmentation leakage in degraded joints.

The accuracy of the atlas-based segmentation was seen to depend on the
composition of the atlas. The average Hausdorff distance increased by 2.58 mm
when the contralateral femur was removed from the atlas. Decreased performance
is expected since contralateral femurs are anatomically similar in size and shape,
but will vary locally in density, osteophytic growths, and geometric conformity.

It must be highlighted that this is not the first work proposing an atlas-based
method for femur segmentation [9,11]. Atlas are a favoured technique for femur
segmentation because they can use shape information to better separate the
femur from the pelvis. However, using a selection criterion for ranking atlases
against a query image is a computationally fast method of utilizing all atlases
in a multi-atlas. A selection criterion avoids a full-resolution registration of each
atlas image to the query image while selecting the best atlas for the query image.
To improve segmentation accuracy, a larger number of images with a broader
anatomical range could be included in the atlas. The number of images needed
in the atlas would depend on the variability of femur anatomy in the target
population under study. For opportunistic screening of osteoporosis, the target
population includes healthy individuals across all ages as well as osteoporotic
individuals. Furthermore, combining atlas selection with label fusion and a larger
atlas could increase the segmentation accuracy of the proposed atlas-based seg-
mentation algorithm while decreasing the computation time relative to naive
label fusion techniques [12]. A detailed analysis of computation time is needed.

Finally, the dataset used in this study presents limitations. The dataset was
small limiting the generalizability of the method. The cadaveric data was cap-
tured under ideal conditions with no motion artifacts, ideal subject positioning,
near-isotropic voxel spacing, and at a very high resolution. Future work could
look at the sensitivity of this method to the parameters listed above.
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In conclusion, multi-atlas-based segmentation with a selection criterion is a
promising alternative and provides more consistent femur segmentations than
typically used graph-cut methods in a challenging CT cadaveric dataset.
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Abstract. Osteoporotic vertebral fractures (VFs) are under-diagnosed,
creating an opportunity for computer-aided, opportunistic fracture iden-
tification in clinical images. VF diagnosis and grading in clinical prac-
tice involves comparisons of vertebral body heights. However, machine
vision systems can provide a high-resolution segmentation of the verte-
brae and fully characterise their shape and appearance, potentially allow-
ing improved diagnostic accuracy. We compare approaches based on ver-
tebral heights to shape/appearance modelling combined with k-nearest
neighbours and random forest (RF) classifiers, on both dual-energy X-
ray absorptiometry images and computed tomography image volumes.
We demonstrate that the combination of RF classifiers and appearance
modelling, which is novel in this application, results in a significant (up to
60% reduction in false positive rate at 80% sensitivity) improvement in
diagnostic accuracy.

Keywords: Osteoporosis · Vertebral fracture · Shape modelling

1 Introduction

Osteoporosis is a common skeletal disorder characterised by a reduction in bone
mineral density (BMD). This is commonly assessed using dual-energy X-ray
absorptiometry (DXA); a T-score of < −2.5 (i.e. more than 2.5 standard devia-
tions below the mean in young adults) [1] is used as a criterion suggesting osteo-
porosis. It significantly increases the risk of fractures, most commonly occurring
in the hips, wrists or vertebrae. Approximately 40% of postmenopausal Cau-
casian women are affected, increasing their lifetime risk of fragility fractures to
as much as 40% [1]. Osteoporosis therefore presents a significant public health
problem for an ageing population. However, between 30–60% of vertebral frac-
tures (VFs) may be asymptomatic and only about one third of those present on
c© Springer International Publishing AG 2018
B. Glocker et al. (Eds.): MSKI 2017, LNCS 10734, pp. 133–147, 2018.
https://doi.org/10.1007/978-3-319-74113-0_12
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(a) (b) (c)

Fig. 1. Example vertebrae visualized on GE Luna iDXA images. (a) Mild scoliosis or
incorrect positioning of the patient may cause tilting of the vertebrae relative to the
beam direction, leading to the appearance of end-plate curvature although no fractures
are present. (b) Osteoporotic vertebral fractures lead to loss of vertebral height and
changes in texture due to the presence of micro-fractures; the upper end plate is not
symmetrical with the lower and appears blurred. (c) Spondylosis also results in changes
in vertebral shape and texture, due to the growth of osteophytes on the anterior portion
of the end-plates and sclerosis, i.e. the high-intensity region within the vertebral body,
below the anterior portion of the upper end-plate.

images come to clinical attention; they are frequently not reported by radiologists
[2]. Many of these cases involve images acquired for other clinical indicators, so
identification may be opportunistic. For example, computed tomography (CT)
is arguably the ideal modality for opportunistic identification, due to the large
number of procedures (4.3 million per year within the UK National Health Ser-
vice [3]) and high image quality. However, a recent audit at the Manchester Royal
Infirmary (MRI) revealed that only 13% of VFs visible on CT images were iden-
tified [4], similar to rates reported in the literature [2]. Proposed reasons for such
low rates [2] include the difficulty of identifying vertebral height reduction on
axial images. Routine coronal and/or sagittal reformatting has been proposed,
and is being adopted, but reporting rates remain low [2,5]. The potential utility
of computer-aided VF assessment (VFA) systems is therefore considerable.

Several authors have investigated the use of methods based on statistical
shape models (SSMs) [6] to segment vertebrae in both radiographs, e.g. [7],
and DXA images, e.g. [8,9]. In particular, the random-forest regression voting
constrained local model (RFRV-CLM)[10] has been used for both semi- and
fully automatic vertebral body segmentation in both DXA [11–13] and CT [14]
images, providing superior segmentation accuracy on more severely fractured
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vertebrae compared to previous work using active appearance models (AAMs)
[15]. However, all of these approaches share the common aim of providing a high-
resolution segmentation of the vertebrae, typically as landmarks annotated on
the vertebral body outline.

Several procedures for manual VFA have been described in the literature; see
[16] for a recent review. Most attempt to remove the subjectivity of qualitative
assessment [17] by defining fractures in terms of height reduction at the posterior,
middle and anterior parts of the vertebral bodies, e.g. [18]. However, non-fracture
deformities can affect vertebral shape, as shown in Fig. 1. In particular, tilting of
the vertebrae can mimic the appearance of depressed end-plates. VFA therefore
requires a subjective assessment of whether any apparent shape change is due
to osteoporotic fracture or some other cause. The algorithm-based quantitative
(ABQ) method for VFA [19] defined a heuristic for this process. The result is a
complex procedure that involves consideration of multiple, interacting factors,
including the apparent shape of each vertebra and the spine as a whole, which
is difficult to translate into a machine vision algorithm.

Whilst machine vision based VFA methods suffer from difficulties in terms of
replicating such complex, heuristic approaches, they have a potential advantage
in that techniques based on SSMs can provide a precise mathematical descrip-
tion of the entire shape of a vertebra, and quantitatively compare this between
vertebrae. We investigate the interaction of these two effects by constructing VF
classifiers based on comparing the parameters of shape and appearance models
of vertebrae using both k-nearest neighbours (kNNs) and random forests (RFs)
[20]. These methods are compared to simple, height-based classifiers on two data
sets; 320 DXA VFA images and spinal mid-line sagittal images projected from
402 CT volumes. When RFs were used to classify appearance model parame-
ters, significant reductions in false positive rate (FPR) of ≈30% and ≈60% were
achieved at 80% sensitivity for VF identification from automatic and manual
landmark annotations, respectively, on both data sets.

2 Method

2.1 Data Collection and Manual Annotation

The picture archiving and communication server (PACS; Centricity Universal
Viewer, GE Healthcare, Little Chalford, Buckinghamshire, UK) at the MRI was
queried to produce a list of CT scans acquired during May and June 2014 and
January to September 2015. Scans from non-trauma patients that included any
part of the thoracic or lumbar spine and were of patients over 18 years of age,
were selected. This gave a list of 868 patients’ scans. The PACS was also queried
for non-trauma CT scans during January to April and July to December 2014
in patients over 60 years of age that contained osteoporotic VFs, producing a
second list of 132 patients. The sagittal reformatted volumes from both lists were
downloaded in DICOM format. 402 volumes were selected to form a training set,
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(a) (b) (c)

(d) (e)

Fig. 2. (a) An example coronal maximum intensity projection of a computed tomog-
raphy volume. (b) Manual annotations of the neural arch. (c) Extrapolated piecewise-
linear curve and the ±5 mm range (dashed line) over which sagittal rasters were
summed to produce the sagittal projection (d). (e) Manual landmark annotation.

including the 132 fracture-rich images to ensure high fracture prevalence. The
remaining images were reserved for future validation purposes. The 402 image
list was divided into quarters for four-fold cross validation, with the fracture-rich
images distributed evenly. Each volume was up-sampled to give isotropic voxel
dimensions using tri-cubic interpolation.

To avoid the difficulties of performing a high-resolution annotation of land-
marks on vertebral bodies in 3D, analysis was limited to a single, two-dimensional
(2D) image produced from each volume using the procedure described in [14].
The orientation of the subject within the CT scanner was highly constrained,
allowing production of a maximum intensity projection showing an approximately
anteroposterior view without registration. Landmarks were manually annotated
on the MIP images at the distinctive, U-shaped structure on each vertebra where
the laminae join to form the spinous process of the neural arch (Fig. 2(a), (b)).
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A piecewise-linear curve was defined through the points and extrapolated ver-
tically to the boundary of the volume (Fig. 2(c)). For each axial slice from the
original volume, all anteroposterior raster lines (i.e. rasters of sagittal slices) that
passed within Dt of this curve were averaged to give a single raster line of a sagittal
image. Repeating for all axial images gave a single, thick-slice, 2D sagittal image
that showed the midplane of each vertebra (Fig. 2(d)). The thickness Dt = ±5 mm
was chosen by manual inspection to optimise endplate visualisation.

The images derived from CT volumes were projected onto the spinal mid-
line, and so were unaffected by issues such as mild scoliosis. DXA images are
projections through the full body, and so will show the tilting of the vertebrae
encountered in this condition, making accurate diagnosis based on vertebral
shape more difficult. Therefore, a second data set of 320 DXA VFA images
scanned on various Hologic (Bedford, MA, USA) scanners was also used. This
comprised: 44 patients from a previous study [21]; 80 female subjects in an
epidemiological study of a UK cohort born in 1946; 196 females attending a
local clinic for DXA BMD measurement, for whom the referring physician had
requested VFA (approved by the local ethics committee).

Manual annotation of 33 landmarks on each visualized vertebra from T7 to
L4, for the DXA images, and T4 to L4, for the CT midline images (Fig. 2(e)),
was performed by a trained radiographer. The vertebrae were also classified by
an expert radiologist into five groups: normal; deformed but not fractured; and
mild (grade 1), moderate (grade 2) and severe (grade 3) fractures using the
Genant definitions [18].

2.2 Height-Based Fracture Classification

A baseline for VF classification accuracy was derived by applying a simple clas-
sifier, based on six-point morphometry, as described in [13]. The anterior ha,
middle hm and posterior hp heights of each detected vertebra were calculated
from the relevant landmarks, together with a predicted posterior height hp′ ,
calculated as the maximum of the posterior heights of the four closest verte-
brae. The wedge rw = ha/hp, biconcavity rb = hm/hp, and crush rc = hp/hp′

ratios were derived, and the data were whitened by subtracting the medians of
each ratio and dividing by the square-root of the covariance matrix, calculated
using the median standard deviation. The data contained far more normal than
deformed or fractured vertebrae, so this process whitened to the distribution of
the normal class. A simple fracture/non-fracture classification was performed by
applying a threshold tclass to r2c + r2b + r2w; deformed vertebrae were counted
correct when classified into either class.

2.3 Shape and Appearance Model Based Classifiers

SSMs provide a linear model of the distribution of a set of landmarks in an image.
The training data consists of a set of images I with manual annotations xl of a set
of N points l = 1, . . . , N on each. The images are first aligned into a standardised
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 3. Point sampling strategies, using (a) a single vertebra, (b) a triplet and (c) a
vertebra plus its neighbouring end-plates (nEP). Texture sampling strategies in the
single vertebra case. (d)–(f) Sampling using Delaunay triangulation with increasing
wframe. (g)–(i) Sampling using Delaunay triangulation with increasing wborder. (j)–
(l) Patch-based sampling with increasing wpatch.

reference frame using a similarity registration, giving a transformation T with
parameters θ. The concatenated, reference-frame coordinates of the points in
each training image define its shape. The SSM is generated by applying principal
component analysis (PCA) to the training shapes [15], generating a linear model
where the position of point l is given by

xl = Tθ(x̄l + Pslbs), (1)

where x̄l is the mean point position in the reference frame, Ps is a matrix of
modes of variation, Psl is the sub-matrix of Ps relevant to point l, and bs

encodes the shape model parameters. The matrix Ps is orthogonal and so

bs = PT
sl(T

−1
θ (xl) − x̄l). (2)

A compact description of the shape in a query image can therefore be derived by
annotating the landmarks, performing a similarity registration into the reference
frame of the model, and applying (2) to generate the vector bs.

The SSM considers only the distribution of landmarks on a shape. However,
with reference to osteoporosis and potentially confounding pathologies, infor-
mation is also present in the pixel intensities. Osteoporotic VF proceeds as a
cascade of micro-fractures in the vertebral end-plates [16] leading to a blurred
appearance (Fig. 1). Appearance models (APMs) such as those used by AAMs
[15] adopt the same PCA-based linear modelling approach as the SSM to char-
acterize both shape and intensity information. Each training image is resampled
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into the reference frame by applying Ir(m,n) = I(T−1
θ (m,n)), where (m,n) spec-

ify pixel coordinates. The reference frame width wframe acts as a free parameter
controlling the resolution. The intensities of each pixel within an image patch
covering the points are then concatenated into a vector g, and PCA applied as
before to generate a linear model based on modes of variation Pg

g = Tφ(ḡ + Pgbg) and bg = PT
g (T−1

φ (g) − ḡ), (3)

where Tφ represents an intensity normalisation. Correlations may exist between
the shape bs and intensity bg parameters, and so the models are concatenated
and a further PCA performed to extract the independent modes of variation of
both shape and intensity Pc, referred to as appearance modes

b = Pcc where b =
(
Wsbs

bg

)
. (4)

The weights Ws scale the relative magnitude of the shape and intensity param-
eters, and are derived by sampling the change in g per unit change in bs in the
training images.

Two approaches for sampling the intensities contributing to g were tested
(Fig. 3). The first used a Delaunay triangulation of the landmarks to define a
region of interest, with an optional, additional border of width wborder to ensure
the whole edge was included. However, most relevant intensity information was
expected to be located close to the end-plates i.e. the site of the fractures. There-
fore, an alternative strategy that involved sampling a square patch of width
wpatch around each landmark was also implemented. Multiple approaches for
defining the landmarks used were also tested (Fig. 3), including sampling from a
single vertebra, a triplet of neighbouring vertebrae, and a vertebra plus the clos-
est end-plates of its neighbours (nEP sampling). The latter were intended to aid
in identification of tilted vertebra, since these are distinguished from fractures,
in clinical practice, by the symmetry of adjacent end-plates (Fig. 1).

The SSM or APM extract all significant shape and intensity information
from an image as a compact vector of features. A variety of classifiers could
then be applied to compare the features of a query image to those of anno-
tated and diagnosed training images. Two were studied here. First, kNN was
applied, measuring Euclidean distance in the feature space of b or bs to identify
NkNN neighbours. However, kNN has the drawback that all features are con-
sidered; some will not be relevant to fracture status and so will potentially act
as confounding information. To determine whether this effect was significant,
classification was also performed using RFs. Since each split node considers a
single feature, an RF has the capability to identify only those features relevant
to the target. In both cases, the problem was treated as a regression task. The
gold-standard diagnosis was translated into a numerical score with 0= normal,
1= deformed but not fractured and 2, 3, and 4= mild, moderate and severe frac-
ture. The output of the kNN was the mean of this score across the identified
neighbours, and RFs were trained as regressors to predict the score. This created
a potential problem as it assumed that deformed vertebrae are intermediate in
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Fig. 4. Flow-chart summarising the various algorithmic choices. See main text for
description.

shape between normal and fractured ones, which may not be the case. However,
it more accurately represented fracture status as a position within a continuum,
rather than discrete classes. The alternative, treating the problem as an explicit
classification task, was investigated using a multi-class RF classifier. However,
this led to significantly worse accuracy and full results are not reported here. As
with the height-based classifier, a simple fracture/non-fracture classification was
performed by thresholding the kNN or RF output.

Figure 4 summarises the various algorithmic choices that were evaluated.
During testing, a 2D query image was input. This was either a DXA image or a
thick-slice sagittal midline projection from a CT volume, produced as described
in Sect. 2.1 using manual annotations of neural arch landmarks. The authors
have previously described an algorithm that can automatically produce these
projections [14]. This was not considered here due to lack of space. Landmark
points outlining each visualised vertebral body, annotated either manually or
using an automatic approach as described in Sect. 3, were then input (choice 1).
The feature space (shape or appearance) and sampling procedure (single verte-
bra, nEP or triplet) were then chosen as described in Sect. 2.3 (choice 2). Shape
modelling required sampling only from the landmark points; appearance mod-
elling required sampling from both the points and image intensities. For each
visualised vertebra in the query image, the chosen model was fitted to the sam-
pled data. The resultant shape or appearance features were then passed to a
kNN or RF classifier (choice 3) to obtain the final classification for each verte-
bra. All combinations of feature space, sampling procedure and classifier were
evaluated. Model and classifier training was performed using manual annotations
but otherwise followed a similar work-flow.
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3 Evaluation

Throughout the evaluation, classifiers were trained and tested in a leave-1/4-
out procedure using the data from all vertebral levels. During SSM and APM
training, the number of modes of variation was constrained to model 98% of
the variation in the data. Free parameters were empirically optimised on the CT
midline images and manual annotations, such that the DXA images served as an
independent evaluation set. Initially, the shape and appearance model parame-
ters were optimised in combination with a kNN classifier. The latter had only
one free parameter, NkNN , greatly reducing the dimensionality of the parameter
space compared to using a RF. Receiver operator characteristic (ROC) curves
showing sensitivity against false positive rate (FPR) were generated by vary-
ing tclass, and the parameters leading to the highest value at which sensitivity
equalled FPR were selected, giving wframe = 80 pixels, wborder = 30 pixels for
triangulated intensity sampling, wpatch = 24 pixels for patch-based sampling,
and NkNN = 10. This was repeated for all sampling strategies described in
Sect. 2.3, and the optimae were consistent. In general, dependence on the param-
eters was weak for all except wframe. A second round of parameter optimisation
focused on the RF, using the optimised parameters for SSM/APM described
above. The same ROC-curve based pattern search procedure was used to opti-
mise the number of trees ntree, the maximum depth of each tree Dmax, and the
minimum number of training samples nmin allowed at a split node, leading to
ntree = 200, Dmax = 30 and nmin = 1.

Finally, semi-automatic annotation of the vertebrae in both the DXA and CT
midline images, the latter projected using the manual neural arch annotations,
was performed using a RFRV-CLM, initialised using manual annotations of ver-
tebral centre points, following the procedure described in [12,14]. The classifiers
were then applied to the automatic annotations using the optimised parame-
ters. Classification accuracies for the optimised procedure with all combinations
of features, classifier, patch and intensity sampling procedure and manual or
automatic annotation were then compared.

Figures 5 and 6 show the evaluation of various sampling, feature extraction
and classification procedures for the CT and DXA images, respectively, com-
pared to baselines established by the six-point morphometry approach. A uni-
versal trend was noted across all experiments; accuracy for triplet sampling was
always significantly worse than the alternatives (full results are not shown for
this reason). Triplet sampling results in more modes of variation and so more
features in b and bs, and adding the neighbouring vertebrae spreads the training
data across the feature space depending on the fracture status of the neighbours.
Both reduce data density. In contrast, whilst 6-point morphometry benefits from
comparison of posterior vertebral heights between neighbours to identify crush
fractures, where the height is reduced throughout a vertebral body, shape models
can extract equivalent information from a single vertebra through quantification
of its aspect ratio. Triplet sampling therefore adds little information, but makes
it more difficult for a classifier to extract the information present.
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Fig. 5. Receiver operator characteristic curves for vertebral classification on computed
tomography midline images. (a), (b) Point sampling from single vertebrae. (c), (d) Point
sampling from vertebrae plus neighbouring end-plates. “Tri” refers to intensity sam-
pling from Delaunay triangulated regions, “patch” to sampling from patches around
each landmark point, “shape” to shape and “app” to appearance features.

Differences between the remaining sampling/modelling/classification proce-
dures were usually small and frequently not significant, but the optimal proce-
dure was always significantly better than 6-point morphometry. Several trends
emerged from the results. On CT images (Fig. 5), there was little evidence of
additional information in appearance compared to shape features. The kNN
classifier showed a marked reduction in performance when triangulated inten-
sity sampling was used, adding large numbers of uninformative appearance fea-
tures (Fig. 5(a), (c)). The RF classifier also showed some evidence of this effect,
with the combination of triangulated nEP sampling and appearance features
resulting in performance no better than the baseline (Fig. 5c). However, the
RF, in general, resulted in better accuracy than the kNN classifier and did
not lose accuracy when nEP sampling was used, or when using appearance
features if the number of features was controlled using patch-based sampling
(Fig. 5(b), (d)).
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Fig. 6. Receiver operator characteristic curves for vertebral classification on dual-
energy X-ray absorptiometry images. (a), (b) Point sampling from single vertebrae. (c),
(d) Point sampling from vertebrae plus neighbouring end-plates. “Tri” refers to inten-
sity sampling from Delaunay triangulated regions, “patch” to sampling from patches
around each landmark point, “shape” to shape and “app” to appearance features.

DXA images (Fig. 6) represented a more challenging task since, being pro-
jections of the full vertebral body, the shape as visualised in the images was
more complex, and the image quality was lower. Increased noise on individual
features resulted in kNN outperforming RF when single-vertebra sampling was
used (Fig. 6(a), (b)), with accuracy gains resulting from using appearance as
long as the length of the feature vector was controlled by using patch-based
sampling (Fig. 6(b)). However, using shape information from neighbouring ver-
tebrae through nEP sampling, to deal with cases where the vertebrae were tilted
relative to the beam direction, allowed the RF to achieve equal or better perfor-
mance on shape alone (Fig. 6(d)).

Figure 7 shows results from the optimised procedure, using patch-based sam-
pling and RF classification, for both manual and automatic annotations on both
image sets. Each experiment was repeated five times, using the stochastic nature
of RF training to support error estimation, and the figures show the mean
and (where shown) standard deviation of the repeats. As described above, nEP
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Fig. 7. Receiver operator characteristic curves for random forest classification with
patch sampling in computed tomography midline (a), (b) and dual-energy X-ray
absorptiometry (c), (d) images, from manual (a), (c) and RFRV-CLM (b), (d) anno-
tations, compared to 6-point morphometry. “Shape” refers to shape and “app” to
appearance features.

sampling resulted in increased accuracy for both image types when classifying
from manual annotations (Fig. 7(a), (c)). However, this requires accurate anno-
tations of all vertebrae in the triplet, increasing the risk of a fit failure being
present in the automatic annotations. Single-vertebra sampling was therefore
more accurate on RFRV-CLM annotations of CT images and appearance pro-
vided no additional information over shape (Fig. 7(b)). However, the difficulties
of the classification task in DXA images, described above, resulted in higher
accuracies when nEP sampling and appearance parameters were used, to dis-
ambiguate tilted vertebra and confounding pathologies (Fig. 7(d)). At 80% sen-
sitivity, the optimal classifier reduced the FPR from 4.4% to 1.7% for manual
and from 12.7% to 8.8% for automatic DXA annotations. For CT images, FPR
was reduced from 8.9% to 3.3% for manual and 9.7% to 7.0% for automatic
annotations. These equate to a significant (p < 0.01) reduction in FPR of ≈30%
for automatic, and ≈60% for manual annotations.
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4 Conclusion

We have evaluated several different methods for osteoporotic VF classification
in DXA VFA and CT midline images. In this context, the 6-point morphometry
approach can be viewed as the construction of a low-parameter shape model
based on hand-crafted modes of variation. Since these reflect the clinical def-
initions used in fracture grading [18] they are guaranteed to be informative.
A SSM or APM can extract all statistically significant shape and appearance
information from the images as a compact feature vector, but not all of these
features are guaranteed to be informative in terms of fracture classification. The
way in which the subsequent classifier handles non-informative dimensions of the
feature space therefore influences accuracy. Straightforward application of kNN
considers all features equally, whilst a RF considers only the most informative
at each split node, and so is more robust to non-informative features.

The results showed that statistically significant gains in classification accu-
racy can be achieved by applying kNN or RF classifiers to shape or appearance
model features. The optimal procedure across both CT and DXA was to apply a
RF classifier to features sampled from a vertebra and the closest end-plates of its
neighbours with manual landmark annotations, but fitting errors in automatic
annotations resulted in single vertebra sampling being more accurate for CT
images. Evidence for improved performance when using appearance, as opposed
to shape, features was generally weak and inconsistent. However, it did not result
in significant reductions in classifier performance. In conclusion, the combination
of appearance features and RF classification with patch-based nEP sampling, for
manual annotations, and single vertebra sampling, for automatic annotations,
provided optimal results. Significant accuracy gains compared to 6-point mor-
phometry were achieved for both manual and automatic annotations on both
DXA VFA and CT images using these approaches.

This work used a single model/classifier for all vertebral levels between T4
(for CT) or T7 (for DXA VFA) and L4, inclusive. Vertebral shape varies gradu-
ally across the spine, and so further improvements in accuracy might be gained
through using multiple, level-specific classifiers. Roberts et al. [9] achieved higher
classification accuracies on DXA VFA images using this approach, and so we
intend to investigate this in future work. However, the use of level-specific clas-
sifiers requires a reasonably accurate method of level detection if combined with
an automatic vertebral segmentation method, which may prove challenging given
the similarity between vertebra.
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Abstract. This paper addresses the challenging problem of segmenta-
tion of intervertebral discs (IVDs) in three-dimensional (3D) T2-weighted
magnetic resonance (MR) images. We propose a deeply supervised multi-
scale fully convolutional network for segmentation of IVDs in 3D MR
images. After training, our network can directly map a whole volumetric
data to its volume-wise labels. Multi-scale deep supervision is designed
to alleviate the potential gradient vanishing problem during training. It
is also used together with partial transfer learning to boost the training
efficiency when only small set of labeled training data are available. The
present method was validated on the MICCAI 2015 IVD segmentation
challenge datasets. Our method achieved a mean Dice overlap coefficient
of 92.0% and a mean average symmetric surface distance of 0.41 mm.
The results achieved by our method are better than those achieved by
the state-of-the-art methods.

Keywords: Intervertebral disc · MRI · Segmentation
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1 Introduction

Intervertebral disc (IVD) degeneration is a major cause for chronic back pain
and function incapacity [1]. In clinical practice, spine magnetic resonance (MR)
imaging (MRI) is the preferred modality in diagnosis and treatment planning
of various spinal pathologies such as disc herniation, slipped vertebra and so
on, not only because MRI is non-invasive and does not use ionizing radiation,
but more importantly because it offers good soft tissue contrast that allows for
visualization of disc’s internal structure [2].

Accurate IVD segmentation from spine MR image is therefore very important
for correct diagnosis and treatment planning [1,3]. Traditionally, most quantita-
tive studies on IVD degeneration have been done by manually segmenting the
data, which is tedious, time-consuming and error-prone. On the other hand, a
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fully-automatic system for IVD identification will significantly reduce the time of
the diagnosis. An automatic system might also help reduce errors caused by sub-
jective factors and improve the consistency of diagnosis standards. In this way, it
can immediately benefit clinical applications and spinal biomechanics research.

In the literature, different methods have been proposed of IVD segmentation
[4–8]. There exist methods based on watershed algorithm [4], atlas registration
[5], graph cuts with geometric priors from neighboring discs [6], template match-
ing and statistical shape model [7], or anisotropic oriented flux detection [8].
Most of these methods work only on two-dimensional sagittal images and only a
few methods [7] address the challenging three-dimensional (3D) IVD segmenta-
tion problem. See [9] for a comprehensive review of existing IVD segmentation
methods.

Recently, machine learning-based methods have gained more and more inter-
est. For example, Zhan et al. [10] presented a hierarchical strategy and local
articulated model to detect vertebrae and discs 3D MR images and Kelm et al.
[11] proposed to use iterated marginal space learning for spine detection in com-
puted tomography (CT) and MR images. A unified data-driven regression and
classification framework was suggested by Chen et al. [12] to tackle the problem
of localization and segmentation of IVDs from T2-weighted MR data, and Wang
et al. [13] proposed to address the segmentation of multiple anatomic structures
in multiple anatomical planes from multiple imaging modalities via a sparse
kernel machines-based regression.

The more recent development on deep neural networks, and in particular on
convolutional neural networks (CNN), suggests another course of methods to
solve the challenging IVD segmentation problem [14–22]. Contrary to conven-
tional shallow learning methods where feature design is crucial, deep learning
methods automatically learn hierarchies of relevant features directly from the
training data [15]. More recently, 3D volume-to-volume segmentation networks
were introduced, including 3D U-Net [20], 3D V-Net [21] and a 3D deeply super-
vised network [22].

In this paper, we propose a deeply supervised multi-scale fully convolutional
network (FCN) called “DSMS-FCN” for fully automatic IVD segmentation in
3D T2-weighted MR images. After training, our network can directly map a
whole volumetric data to its volume-wise label. Multi-scale deep supervision is
designed to alleviate the potential gradient vanishing problem during training. It
is also used together with partial transfer learning to boost the training efficiency
when only small set of labeled training data are available.

The paper is organized as follows. In Sect. 2, we will describe the proposed
architecture and algorithm. The application to the MICCAI 2015 IVD segmen-
tation challenge dataset will be presented in Sect. 3, and we conclude with a
discussion in Sect. 4.

2 Method

Figure 1 illustrates the architecture of our proposed neural network for the auto-
matic IVD segmentation in 3D T2-weighted MR images. Our network employs a
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Fig. 1. A schematic illustration of our proposed network architecture. For each block,
the digits above indicate the number of feature stack while the numbers below represent
the data size.

deeply supervised multi-scale fully convolutional network. In this section, firstly
the detailed architecture of our proposed model is elaborated, and then we will
introduce the multi-scale deep supervision. Finally, partial transfer learning,
which is designed to boost the training efficiency, will be described.

2.1 3D FCN with Skip Connection

Our proposed network is inspired by 3DFCN [23] but with significant differences.
Similar to 3DFCN, our network is also a 3D fully convolutional network and con-
sists of two parts, i.e., the encoder part (contracting path) and the decoder part
(expansive path). The encoder part focuses on analysis and feature representa-
tion learning from the input data while the decoder part generates segmentation
results, relying on the learned features from the encoder part. Our network can
take arbitrary-sized volumetric data as input and outputs voxel-wise segmenta-
tion probability map in the same size as the input.

Different from 3DFCN, long and short skip connections, which help recover
spatial context lost in the contracting encoder, are used in our network as shown
in Fig. 1. The importance of skip connection in biomedical image segmentation
has been demonstrated by previous studies [24]. Skip connections have been
widely used in many different convolutional neural networks including Resi-Net
[25] and 3D U-Net [20].

In 3DFCN [23], big kernel sizes (e.g. 5×7×7) are utilized in the convolutional
layers. However, previous studies have shown that small kernel size are more
helpful for training of deep neural network [26]. For this reason, in our network,
kernel size of 3 × 3 × 3 and strides of 1 are utilized for all convolutional layers,
and kernel size of 2×2×2 is used in all max pooling layers. Batch normalization
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(BN) [27] and rectified linear unit (ReLU) are adopted to speed up the training
and to enhance the gradient back propagation.

2.2 Multi-scale Deep Supervision

Training a deep neural network is challenging. As the matter of gradient van-
ishing, final loss cannot be efficiently back propagated to shallow layers, which
is more difficult for 3D cases when only a small set of annotated data is avail-
able. To address this issue, we inject two down-scaled branch classifiers into our
network in addition to the classifier of the main network, which is another dif-
ference between our network and 3DFCN [23]. By doing this, segmentation is
performed at multiple output layers. For the classifier at the coarse scale which
is closer to the encoder part, it generates segmentation results with the coars-
est resolution, while the classifiers at the middle and the fine scales generate
segmentation results with the intermediate and the finest resolutions, respec-
tively. As a result, classifiers in different scales can take advantage of multi-scale
context, which has been demonstrated in previous work on segmentation of 3D
liver CT and 3D heart MR images [22]. Furthermore, with the loss calculated by
the prediction from classifiers from different scales, more effective gradient back
propagation can be achieved by direct supervision on the hidden layers.

Specifically, let W be the weights of main network and w = {w0, w1, ...
wM−1} be the weights of classifiers at different scales, where M is the number
of classifier branches. For the training samples S = (X,Y ), where X represents
training sub-volume patches and Y represents the class labels while Y ∈ {0, 1}.

Lcls(X,Y ;W,w) =
M−1∑

m=0

∑

(xi,yi)∈Sm

αmlm(xi, yi|W,wm), (1)

where S = {S0, S1, . . . , SM−1}; S0 is a sub-volume patch directly sampled from
a training image while Sm contains the examples (xi, yi) at scale of m > 0, which
is obtained by downsampling S0 by a factor of 2m along each dimension; wm is
the weights of the classifier at scale of m; αm is the weight of lm, which is the
loss calculated by a training sample xi, yi at scale of m.

lm(xi, yi|W,wm) = − log p(yi = t(xi)|xi;W,wm), (2)

where p(yi = t(xi)|xi;W,wm) is the probability of predicted class label t(xi)
corresponding to sample xi ∈ Sm.

The total loss of our multi-scaled deeply supervised model will be:

Ltotal(X,Y ;W,w) = Lcls(X,Y ;W,w) + λ(ψ(W ) +
∑

m

ψ(wm)), (3)

where ψ() is the regularization term (L2 norm in our experiment) with hyper
parameter λ.
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2.3 Partial Transfer Learning

It is difficult to train a deep neural network from scratch because of limited
annotated data. Training deep neural network requires large amount of anno-
tated data, which are not always available, although data augmentation can
partially address the problem. Furthermore, randomly initialized parameters
make it more difficult to search for an optimal solution in high dimensional
space. Transfer learning from an existing network, which has been trained on a
large set of data, is a common way to alleviate the difficulty. Previous studies
[28] demonstrated that transferring features from another pre-trained model can
boost the generalization, and that the effect of transfer learning was related to
the similarity between the task of the pre-trained model and the target task.
Furthermore, the same study also demonstrated that weights of shallow layers
in deep neural network were generic while those of deep layers were more related
to specific tasks.

To best utilize the advantage of transfer learning, we need to transfer from
a model trained on a related task. In this paper, a pre-trained model in our
previous work was adopted [29], which is designed for the task of segmentation
of the proximal femur from 3D T1-weighted MR Images. More specifically, the
weights of the main network are initialized from our previous model [29], while
the weights of all branch classifiers are initialized from a Gaussian distribution
(μ = 0, σ = 0.01).

2.4 Implementation Details

The proposed network was implemented in python using TensorFlow framework
and trained on a desktop with a 3.6 GHz Intel(R) i7 CPU and a GTX 1080 Ti
graphics card with 11 GB GPU memory.

3 Experiments and Results

3.1 Data Description

The training data provided by the MICCAI 2015 IVD challenge organizers con-
sist of 15 3D T2-weighted turbo spin echo MR images and the associated ground
truth segmentation [9]. These 15 3D T2-weighted MR images were acquired from
fifteen patients in two different studies. Each patient was scanned with 1.5 Tesla
MRI scanner of Siemens (Siemens Healthcare, Erlangen, Germany). The pixel
spacings of all the images are sampled to 2× 1.25× 1.25 mm3. There are 7 IVDs
T11-L5 to be segmented from each image. Thus, in each image these IVD regions
have been manually identified and segmented.

The MICCAI 2015 IVD challenge organizers also released two test datasets.
Each test dataset consists of five 3D T2-weighted turbo spin echo MR images.
Thus, in this paper, our network was trained on the fifteen 3D training data
first, and are then evaluated on the ten test data.
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3.2 Training Patches Preparation

In order to enlarge the training samples, data augmentation was utilized. Specif-
ically, each training data was rotated (90, 180, 270) degrees around the y axis of
the image and flipped horizontally (taking the z axis as the vertical direction).
After that, we got in total 120 images for training our network.

Our network takes a fixed-sized sub-volume as input, and employs end-to-end
learning and voxel-wise inference. During training, sub-volume patches with the
size of 16 × 256 × 128 was randomly cropped from 120 training examples whose
size are about 40 × 300 × 300. In each epoch of training, 120 training images
were randomly shuffled and then sub-volume patches was randomly cropped with
batch-size of 2 by 5 times from each volumetric training image. Before fed into
the network for training, each sub-volume patch was normalized by zero mean
and unit variance. In total, for each epoch of training, we trained the network
using 1200 (120 × 5 × 2) sub-volume patches.

3.3 Training

We trained our network for 10,000 iterations after partial transfer learning.
All weights were updated by the stochastic gradient descent (SGD) algo-
rithm (momentum= 0.9, weight decay= 0.005). Learning rate was initialized as
1 × 10−3 and halved by every 3,000 times. In our experiment, we used three
branch classifiers at three different scales. The loss weights of three classifiers
α0, α1 and α2 are 1.0, 0.67 and 0.33, respectively. The hyper parameter λ was
chosen to be 0.005.

3.4 Testing

Our trained models can estimate labels of an arbitrary-sized volumetric image.
Given a test volumetric image, we extracted overlapped sub-volume patches with
the size of 16× 256× 128, and fed them to the trained network to get prediction
probability maps. For the overlapped voxels, the final probability maps would
be the average of the probability maps of the overlapped patches, which were
then used to derive the final segmentation results. After that, we conducted
morphological operations to remove isolated small volumes and internal hole.

3.5 Valuation

The segmented results were compared with the associated ground truth segmen-
tation. For each test image, we evaluated both the surface distance as well as
the volume overlap measurements of results obtained by different segmentation.

In [9], to compute the average absolute distance (ASD) between the ground
truth IVD surface and the automatically segmented surface, surface meshes from
binary IVD segmentation were generated first using the Matlab toolbox Iso2mesh
[30]. In contrast, in this study, we adopted the average symmetric surface distance
(ASSD) as introduced in [31] to measure the surface distance. More specifically,
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Table 1. Results on the Test1 dataset from the MICCAI 2015 intervertebral disc
segmentation challenge.

Parameters Mean ± STD

Dice overlap coefficients (%) 91.4 ± 0.5

Jaccard (%) 84.2 ± 1.0

Precision (%) 94.2 ± 2.5

Recall (%) 88.9 ± 2.3

ASSD (mm) 0.44 ± 0.055

STD - standard deviation
ASSD - average symmetric surface distance

ASSD is given in millimeters and based on the surface voxels (instead of sur-
face meshes as in [9]) of two segmentation A and B. Surface voxels are defined
by having at least one on-object voxel within their 26-neighborhood. For each
surface voxel of A, the Euclidean distance to the closest surface voxel of B is cal-
culated using the approximate nearest neighbor technique [32] and stored. The
same process is then applied to surface voxels of B to A in order to symmetry.
The ASSD is then defined as the average of all stored distances, which is zero
for a perfect segmentation.

Given two binary segmentations of a test image, we compute following volume
overlap measurements including Dice overlap coefficient [33], Jaccard coefficient
[33], precision and recall.

3.6 Results

Table 1 shows the results of our method when evaluated on the Test1 dataset of
the MICCAI 2015 IVD segmentation challenge and Table 2 shows the results of
our method when evaluated on the Test2 dataset of the MICCAI 2015 IVD seg-
mentation challenge. A mean Dice overlap coefficient of 92.0% and a mean ASSD
of 0.41 mm were achieved by our method. Furthermore, slightly better results

Table 2. Results on the Test2 dataset from the MICCAI 2015 intervertebral disc
segmentation challenge.

Parameters Mean ± STD

Dice overlap coefficients (%) 92.6 ± 1.1

Jaccard (%) 86.4 ± 2.0

Precision (%) 93.8 ± 1.5

Recall (%) 91.4 ± 1.6

ASSD (mm) 0.38 ± 0.045

STD - standard deviation
ASSD - average symmetric surface distance
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Fig. 2. Qualitative comparison of the results achieved by our method on the Test1
dataset (top two rows) and ground truth segmentation (bottom two rows). For each
case, two slices are shown.

were obtained when our method was evaluated on the Test2 dataset than when
our method was evaluated on Test1 dataset. Without using any time-consuming
registration step or incorporating any advanced shape prior, our method achieved
results that were better than those achieved by the state-of-the-art methods [9].
For example, the best segmentation method in the MICCAI 2015 IVD segmen-
tation challenge was the on submitted by Korez et al. [34] where a mean Dice
overlap coefficient of 91.8% was reported. Figure 2 shows examples of automatic
segmentation achieved by our method on the Test1 dataset and Fig. 3 shows
examples of segmentation achieved by our method on the Test2 dataset.

Implemented with Python using TensorFlow framework, our network took
about 40 s to test one volumetric MR image with size of 40 × 300 × 300.
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Fig. 3. Qualitative comparison of the results achieved by our method on the Test2
dataset (top two rows) and ground truth segmentation (bottom two rows). For each
case, two slices are shown.

4 Conclusion

In this paper, we proposed to use a deeply supervised multi-scale fully convolu-
tional network to solve the challenging IVD segmentation problem. The present
method was evaluated on the MICCAI 2015 IVD segmentation challenge datasets
and the results achieved by the present method were better than those achieved
by the state-of-the-art methods.

In comparison with 3DFCN as introduced by Chen et al. [23], where they
incorporate neither skip connection nor multi-scale deep supervision, our method
achieved much better segmentation results. More specifically, evaluated on the
Test1 and Test2 datasets of the MICCAI 2015 IVD segmentation challenge, their
method achieved a mean Dice overlap coefficient of 88.4% and 89.0%, respec-
tively. In contrast, evaluated on the same two datasets, our method achieved
a mean Dice overlap coefficient of 91.4% and 92.6%, respectively. The results
demonstrated that the incorporation of skip connections and the multi-scale
deep supervision, when combined with partial transfer learning, did improve the
performance of a 3D FCN.
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