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P R E F A C E  

Needless to say, the spoken language is the most important means of human informa- 
tion transmission. Hence man-machine interface through the spoken language becomes 
increasingly important as we enter the age of the so-called Information Society. Because 
of the depth and the width of the problems involved, however, full realization of such 
an interface calls for coordination of research efforts beyond the scope of a single group 
or institution. It is in this spirit that a nationwide research project was conceived and 
started in 1987 as one of the first Priority Research Areas supported by the Grant-in-Aid 
for Scientific Research from the Ministry of Education, Science and Culture of Japan. 
The project has been carried out by the collaboration of over 190 researchers in Japan, 
involving 90 expert members and over 100 collaborating members. 

In order to encourage mutual exchange of ideas and results through open discussion 
and publication, both among the members of the project and among researchers engaged 
in similar research projects in other countries, annual symposia have been held on specific 
topics. The present volume starts with an overview of the project, followed by 41 papers 
presented at these symposia, revised by the authors whenever necessary. It includes not 
only the reports of our members, but also 14 contributions from foreign experts who were 
invited to participate in these symposia to present their own work and to give valuable 
advices. The present volume is expected to serve as an important source of information 
on each of the nine topics adopted for intensive study under the project. As leader of 
the project, I am grateful to the Ministry of Education, Science and Culture for a special 
grant that made the publication possible. I would also like to thank all the contributors, 
both domestic and abroad, for their valuable efforts toward the advancement of science 
and technology for spoken language processing, and also the members of the editorial 
committee, Drs. K. Shirai, S. Kiritani and S. Sekimoto for their enduring efforts. 

Although the project was successfully terminated in 1990, research efforts will obviously 
be continued and expanded in the future. It is my sincere hope that this volume will 
serve as a milestone and as a guideline for further work in this important scientific and 
technological field of spoken language processing. 

Hiroya Fujisaki 
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1. I N T R O D U C T I O N  

Research on speech science and technology has been quite active in Japan for almost 
30 years, and has brought about significant contributions to the development of the field. 
One of the important factors that contributed to these high activities was the role played 
by the Technical Committee on Speech Research of the Acoustical Society of Japan, which, 
under the leadership of the present author, has been holding regular monthly meetings 
since 1973, where at least several reports of on-going research projects are presented and 
discussed. For the first several years, the activity of the committee was supported in part 
by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and 
Culture awarded to the present author for a project on the integration of various research 
activities in the field of speech. The annual funding was on the order of a few million 
yen (104 U.S. dollars). It was quite helpful for sustaining the activity of the committee 
(meeting and publication), and was instrumental in establishing a forum for information 
exchange among various research groups in the academic, governmental, and industrial 
circles. The committee, currently sponsored jointly by the Acoustical Society of Japan 
and the Institute of Electronics, Information and Communication Engineers of Japan, 
continues to be an important tie among various research groups in Japan. 

In spite of these activities, however, no nationwide project has been carried out in the 
field of speech processing to combine and coordinate research efforts by various groups 
toward a common goal. Although the Fifth Generation Computer Project, started in 1981 
under the sponsorship of the Ministry of International Trade and Industry, had in its early 
planning stage the computer input/output through speech and natural language as one of 
its important features, later dropped it completely and concentrated on hardware/software 
technologies for the realization of fast and efficient deductive inference. As a MITI project, 
it also emphasized industrial funding and participation but did not encourage academic 
involvement. 

When the author was consulted in 1984 by the Ministry of Posts and Telecommu- 
nications for proposals of long-range large-scale projects, one of his suggestions was to 
start a very long-range basic study toward the realization of "the interpreting telephony," 
to combine speech processing and natural language translation in a whole system. To 



the author's pleasure, the proposal was quickly adopted and a study group was formed 
to investigate the various possibilities, and an institute (Advanced Telecommunications 
Research International) was founded in April 1986. As a private enterprise, however, it 
consists solely of researchers drawn from industries but none from the academic circles. 

On the other hand, various national and international projects have been initiated in 
Europe as well as in the United States, such as the Alvey Programme, the GRECO project, 
the ESPRIT project, the DARPA Strategic Computing Project, etc. These projects, more 
or less stimulated by the initial plan of the Japanese FGCS Project, have been pushing into 
foreground speech and natural language interface as one of their main features. Unlike the 
FGCS project and the Interpreting Telephony Project of Japan, these projects have been 
carried out not by a single institution, but by a number of research groups/institutions 
working toward the realization of a common goal or at least nationally approved individual 
goals. In order to pursue a long-range goal by a nationwide cooperation of researchers, 
it seemed to be essential to ask for active participation of academic people - -  not only 
faculty members but also graduate students as potential researchers in every circle of the 
speech community m,  as well as researchers from other governmental institutions and 
private industries. 

It was with this realization that a proposal was drafted by the present author toward a 
national project on the realization of "Advanced Man-Machine Interface Through Spoken 
Language," to be supported by the Ministry of Education, Science and Culture. It was 
adopted in September 1986 as one of the Priority Areas under a newly created category 
of the Grant-in-Aid for Scientific Research, and was started from 1987. Like most of the 
research projects funded by the Ministry, the project was run for a period of three years, 
with the fourth year dedicated to summarize the outcome. 

2. A I M  OF T H E  P R O J E C T  

As soon as the Ministry of Education, Science and Culture announced its plan to 
create a new category of Grant-in-Aid for Scientific Research in October 1985 to support 
certain large-scale research projects of foremost importance as PRiority Areas, an informal 
discussion was held by several leading scientists in the field of speech technology in Japan 
to explore the possibility of starting a large-scale project under the new category. Through 
months of discussion it was agreed that a project involving essentially all the active 
research groups, rather than a few selected groups, would be essential to combine and 
coordinate individual research efforts at the national level and thus to boost the country's 
speech technology. It was also agreed that the project should have strong ties with related 
technologies such as natural language processing, artificial intelligence and knowledge 
engineering, and the new generation computer technology. Rather than selecting a few 
specific technical targets to be fulfilled within a span of several years, therefore, it was 
decided that the main goal of the project should be to establish a system of cooperation 
among individual research groups scattered all over the country, in which they are assigned 
different tasks that supplement each other and thus can avoid duplication of research 
efforts, by sharing common speech data, adopting standardized facilities and analysis 
techniques as much as possible, and exchanging their experiences and results whenever it 
is appropriate. 



These preparation led to a proposal, drafted and submitted by the present author 
with the collaboration of eleven other experts, to the Ministry in March 1986. Through 
stages of screening and hearing, the proposal was adopted in September 1986 as one of 
the Priority Areas to be started from April 1987. At the same time, a grant was given to 
start further planning and preparations for the project. 

Although several core projects have already been conceived and listed in the origi- 
nal plan, the formal procedure was to announce the Priority Area to accept individual 
proposals that would fit in the framework of "Advanced Man-Machine Interface Through 
Spoken Language," in order to provide an opportunity to include new proposals that would 
complement the core projects and thus would strengthen the whole plan. Following the 
Ministry's announcement in October 1986, applications were received by December, and 
notification of accepted proposals were made in May 1987, with certain modifications of 
the budget to suit the financial requirements and limitations of the Ministry. The current 
annual budget is approximately 108 U.S. dollars. 

3. ORGANIZATION 

The following eight areas were adopted for intensive research by the project. 

1. Advanced Techniques for Speech Analysis 

2. Advanced Techniques for Feature Extraction of Speech 

3. Advanced Techniques for Speech Recognition 

4. Advanced Techniques for Speech Understanding 

5. Advanced Techniques for Speech Synthesis 

6. Knowledge Processing and Conversational Techniques for Speech Interface 

7. Advanced Techniques for Speech Processing in the Presence of Noise and/or Inter- 
ference 

8. Evaluation of Techniques and Systems for Man-Machine Interface 

For each of these areas, a research group was organized from several members who were 
experts already working on related topics, and a larger number of collaborating members 
who were also actively involved in research but were in general less experienced. These 
members were mostly from academic institutions, but some were also from governmental 
research laboratories or private industries. These eight groups were the "core groups" 
and their research projects form the core of the entire project. In addition to these core 
projects, however, a total of seven research proposals were adopted. Each of these seven 
additional projects belonged to either one of the above-mentioned area, and was carried 
out keeping close contact with the core group of the respective area. In addition, a 
steering group was organized for the purpose of coordinating the individual projects and 
encouraging cooperation among various groups. The steering group, headed by the present 



author, consisted of the leaders of the eight core groups and eleven other advisory members 
who were experts either in speech technology or in related fields such as natural language 
processing and computer science. The number of researchers involved in the project varied 
slightly from year to year. As of November 1988, the entire project was carried out by a 
total of 185 researchers, consisting of 87 (expert) members and 98 collaborating members. 
The organization of the entire project at the time of its start is summarized in Table 1. 

Table 1. Organization of the Japanese National Project on Advanced Man-Machine In- 
terface Through Spoken Language 

Project Leader and Chairman of the Steering Group 
H. Fujisaki University of Tokyo 

Core Group 
1. Speech Analysis 
2. Feature Extraction 
3. Speech Recognition 
4. Speech Understanding 
5. Speech Synthesis 
6. Conversational Systems 
7. Speech Enhancement 
8. Evaluation and Assessment 

Group Leader 
S. Saito 
K. Shirai 
K. Kido 
M. Shigenaga 
S. Kiritani 
O. Kakusho 
K. Nakata 
S. Hiki 

Affiliation 
Kogakuin University 
Waseda University 
Tohoku University 
Yamanashi University 
University of Tokyo 
Osaka University 
Tokyo Univ. Agr. Tech. 
Waseda University 

Advisory Members of the Steering Group 
J. Oizumi (Chiba Inst. Tech.) 
M. Nagao (Kyoto University) 
J. Suzuki (Comm. Res. Lab.) 
K. Fuchi (ICOT) 
K. Nakajima (Electrotechnical Lab.) 
S. Furui (NTT) 

T. Sakai (Kyoto University) 
S. Itahashi (Univ. of Tsukuba) 
Y. Kato (NEC) 
A. Kurematsu (ATR International) 
A. Ichikawa (Hitachi Limited) 
M. Nakatsui (Comm. Res. Lab.) 

4. O U T L I N E S  OF CORE P R O J E C T S  

4.1. Advanced Techniques for Speech Analysis  

The core group in this research area consists of four expert members and six collaborat- 
ing members from three universities. The aim of the group is to explore and develop new 
techniques for the acoustic analysis of speech, especially for the analysis of time-varying 
characteristics, of individual variations, as well as for accurate analysis of both source and 
vocal tract characteristics. The group also collects and examines speech analysis software 
developed by other groups and distributes those that are suitable for the common use. 
The names, affiliations, and main tasks of the expert members are as follows (* indicates 
group leader): 



* S. Saito 
F. Itakura 
N. Miki 
K. Tamaribuchi 

Kogakuin University 
Nagoya University 
Hokkaido University 
Kogakuin University 

Analysis of time-varying characteristics 
Use of group delay spectrum 
Source and vocal tract estimation 
Acoustic and articulatory features 

4 .2 .  A d v a n c e d  T e c h n i q u e s  fo r  F e a t u r e  E x t r a c t i o n  o f  S p e e c h  

The core group in this research area consists of four expert members and four col- 
laborating members from two universities and one governmental institution. The aim 
of the group is to develop novel techniques for deriving both articulatory and auditory 
parameters that are linguistically important. 

* K. Shirai Waseda University Articulatory modeling and vector quantization 
T. Nakajima Electrotech. Lab. New methods for spectral analysis 
T. Kobayashi Hosei University Perceptually important parameters 
H. Kasahara Waseda University Hardware environments 

4 .3 .  A d v a n c e d  T e c h n i q u e s  fo r  S p e e c h  R e c o g n i t i o n  

The core group in this research area consists of seven expert members and 18 collabo- 
rating members from three universities and two other institutions. The aim of the group 
is to develop new technique for phoneme recognition, speaker adaptation, and phrase 
spotting. These techniques will eventually be combined to build a dictation system for 
carefully pronounced, grammatically correct sentences of Japanese, without resorting to  
specific information concerning the task. 

* K. Kido Tohoku University 
M. Kato Tohoku University 
H. Matsumoto Shinshu University 
J. Miwa Iwate University 
S. Makino Tohoku University 
J. Ujihara NHK 
M. N akatsui Comm. Res. Lab. 

Sound-phoneme-grapheme conversion 
Analysis of dialectal variations 
Techniques for speaker adaptation 
Speaker-independent phoneme recognition 
Techniques for phrase spotting 
Use of auditory parameters 
Use of articulatory parameters 

4 .4 .  A d v a n c e d  T e c h n i q u e s  fo r  S p e e c h  U n d e r s t a n d i n g  

The core group of in this research area consists of five expert members and five col- 
laborating members from three universities. The aim of the group is to develop new 
techniques for speech understanding of carefully spoken sentences from a vocabulary size 
of 200 to 1000 words. Although the three universities have already been working on their 
individual speech understanding systems, they will cooperate in adopting a common task 
and common speech data, so that a comparative evaluation will be possible of the three 
methods of approach. 



* M. Shigenaga 
I. Sekiguchi 
Y. Niimi 
Y. Kobayashi 
S. Nakagawa 

Yamanashi University 
Yamanashi University 
Kyoto Inst. Tech. 
Kyoto Inst. Tech. 
Toyohashi Inst. Tech. 

Controls for speech understanding 
Use of prosodic information 
Use of high-level knowledge 
Use of high-level knowledge 
System architecture 

4.5. Advanced Techniques for Speech Synthesis 

The core group in this research area consists of seven expert members and 10 collab- 
orating members from one university and two other institutes. The aim of the group is 
to develop new techniques for both speech synthesis by rule and speech synthesis from 
concepts, with special emphasis on natural language processing and prosody. 

* S. Kiritani 
S. Imaizumi 
H. Fujisaki 
H. Morikawa 
Y. Sato 
Y. Sagisaka 
N. Higuchi 

University of Tokyo 
University of Tokyo 
University of Tokyo 
University of Tokyo 
Fujitsu Limited 
ATR International 
KDD 

Synthesis of voice quality 
Synthesis of segmental features 
Natural language processing 
Text synthesis system 
Text synthesis system 
Synthesis prosodic features 
Synthesis prosodic features 

4.6. Knowledge Processing and Conversational Techniques for 
Speech Interface 

The core group in this research area consists of eight expert members and 17 collabo- 
rating members from four universities and two other institutions. The aim of the group is 
to develop advanced techniques for knowledge processing and for conversational modeling. 

* O. Kakusho Osaka University 
J. Toyoda Osaka University 
T. Kitahashi Osaka University 
M. Yanagida Comm. Res. Lab. 
R. Mizoguchi Osaka University 
K. Uehara Osaka University 
Y. Miyoshi Himeji Inst. Tech. 
Y. Kato NEC 

Supervision of group project 
Natural language processing 
Conversational modeling 
Knowledge base 
Knowledge processing 
Knowledge base 
Natural language processing 
Conversational system 

4.7. Advanced Techniques for Speech Processing in the Pres- 
ence of Noise and/or  Interference 

The core group in this research area consists of six expert members from five universities 
and another institution. The aim of the group is to develop advanced techniques for speech 
enhancement against noise, interference, and distortion. 



* K. Nakata 
H. Kobatake 
T. Ifukube 
M. Ebata 
A. Ichikawa 

Tokyo Univ. Agr. Tech. 
Tokyo Univ. Agr. Tech. 
Hokkaido University 
Kumamoto University 
Hitachi Limited 

Supervision of group project 
Speech enhancement 
Speech signal restoration 
Knowledge-based processing 
Speech through telephone systems 

4 .8 .  E v a l u a t i o n  o f  T e c h n i q u e s  a n d  S y s t e m s  f o r  M a n - M a c h i n e  

I n t e r f a c e  

The core group in this research area consists of four expert members and nine collabo- 
rating members from four universities and three other institutions. The aim of the group 
is to establish methods for evaluating both the objective performances of various speech 
processing techniques and the subjective acceptability of such techniques for man-machine 
interface in various environments. 

* S. Hiki Waseda University Assessment of techniques 
H. Kasuya Utsunomiya Univ. Psychological scaling 
K. Kakehi NTT Evaluation of transmission/processing 
H. Yamamoto KDD Evaluation of recognition/synthesis 

5. P R I N C I P L E S  O F  P R O J E C T  M A N A G E M E N T  

For the purpose of efficient utilization of the grant and available resources for the 
fulfillment of the goal, the steering committee has set up the following basic principles for 
the management of the projects. 

1. Common use of speech data 

2. Common use of software tools 

3. Standardization of workstations and other hardware facilities 

4. Establishment of a network among major participating groups 

5. Encourage information exchange and discussion within the project 

6. Encourage information exchange with large-scale projects of other countries 

7. Open publication of results 

5 .1 .  C o m m o n  U s e  o f  S p e e c h  D a t a  

Using common speech data is obviously indispensable for the objective comparison/ 
evaluation of various speech processing techniques and systems. Although previous efforts 
by Japanese electronics industries to collect speech materials for their common use have 
resulted in a database of isolated spoken words, and several other attempts are being 
made by individual organizations, no systematic effort has been made so far to construct 
a database of connected speech for the common use of research organizations at the 
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national level. In the current project, isolated utterances (109 syllables, 216 phonetically 
balanced words) and sentence/discourse material of the common Japanese were collected 
from 20 speakers (10 male and 10 female, from 20 years to 60 years of age), and made 
available to all the participating groups. 

5 . 2 .  C o m m o n  U s e  o f  S o f t w a r e  T o o l s  

Common use of software resources is another important factor for the efficient manage- 
ment of the total project. A working group was set up to survey and collect information 
concerning both existing software tools and those that are yet to be developed, and to 
encourage their exchange for the mutual benefit among all the groups. As it was already 
mentioned, the Speech Analysis Group was responsible for the standardization of software 
tools for speech analysis. 

5 . 3 .  S t a n d a r d i z a t i o n  o f  W o r k s t a t i o n s  a n d  O t h e r  H a r d w a r e  F a -  

c i l i t i e s  

Because of diversity of participating research groups, existing research facilities cannot 
obviously be standardized. However, a firm principle was set up to standardize worksta- 
tions and other equipments to be procured by the current grant, in order to maximize 
exchangeability of data and results. 

5.4 .  E s t a b l i s h m e n t  o f  a N e t w o r k  a m o n g  M a j o r  P a r t i c i p a t i n g  

G r o u p s  

It is hardly necessary to mention the advantage of having a high-speed data commu- 
nication network among participating groups scatted aU over the country. As a start, a 
network was established via commercial telephone lines among personal computers and 
workstations. 

5 .5 .  I n f o r m a t i o n  E x c h a n g e  a n d  D i s c u s s i o n  a m o n g  P a r t i c i p a t -  

i n g  G r o u p s  

In order to encourage information exchange and discussion among various participating 
groups, joint meetings of groups with common interests are held at intervals of three 
months. In addition, the steering committee holds several events and meetings a year 
for all the members of the project. In principle, a work presented at these meetings are 
printed as a research report. 

5.6 .  I n f o r m a t i o n  E x c h a n g e  w i t h  L a r g e - s c a l e  P r o j e c t s  o f  O t h e r  

C o u n t r i e s  

We consider that an in-depth discussion of various approaches and their results are of 
vital importance also at the international level, especially among researchers working in 
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somewhat similar large-scale projects, national or international. In order to encourage 
exchange at this level, an international symposium/workshop was held every year, where 
foreign experts were invited to participate and exchange ideas and results. The first of such 
symposia was held in Tokyo on 12 and 13 of January 1988, the second one in Hawaii during 
19 - 22 of November 1988, and the third one in Tokyo during 11 - 14 of December 1989. 
The major outcomes of the project have also been presented at international conferences 
including the First International Conference on Spoken Language Processing, held in 
Kobe during 18 - 22 of November 1990. 

5 . 7 .  O p e n  P u b l i c a t i o n  o f  R e s u l t s  

Because of the academic nature of the project, an open policy was adopted for the 
publication of results. 

0 O U T L I N E S  O F  C L O S E L Y  R E L A T E D  P R O J E C T S  A N D  

A C T I V I T I E S  

6 . 1 .  A d v a n c e d  N a t u r a l  L a n g u a g e  P r o c e s s i n g  

A national project has been conducted from 1986 to 1989 by the support of MESC 
toward the realization of advanced natural language processing. The project is similar 
in the number of researchers and in the annual budget as the above-mentioned 'spoken 
language' project, but deals exclusively with the written language. The project was run 
by six subgroups, working on the following themes: 

1. Studies of theoretical linguistics as a basis for machine processing of natural language 

2. Comparative studies of linguistic structures of various languages for machine pro- 
ceasing 

3. Studies on contextual information processing 

4. Studies on collection and processing of language data 

5. Studies on languages for information documentation 

6. Studies on natural language processing systems based on human processes of linguis- 
tic information. 

The subgroup on the last theme involved researchers in the fields of cognitive psychol- 
ogy, psycholinguistics, as well as computer science, and was headed by the present author. 
In view of the importance of crossfertilization of the two areas, i.e., the processing of the 
written language and the processing of the spoken language, a symposium was held to 
discuss topics of common interest for both areas. 
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6 .2 .  I n v e s t i g a t i o n  o f  P r o s o d i c  F e a t u r e s  o f  S p o k e n  J a p a n e s e  

Another national project was started in 1989 also by the support of MESC for the 
investigation of prosodic features of the spoken Japanese, with applications to the teaching 
of the Japanese language. The project consists of 10 subgroups: 

1. Collection and Analysis of Speech Data 

(1) Tokyo Dialect including Radio Announcers 

(2) Dialects of Eastern Japan 

(3) Dialects of Western Japan 

(4) Dialects of Ryukyu Islands 

2. Construction and Utilization of Database of Collected Speech Materials 

3. Analysis and Interpretation of Speech Data 

(1) Acoustic Analysis 

(2) Physiological Analysis 

(3) Linguistic Analysis 

4. Guidelines for Teaching Japanese 

(1) Teaching Japanese to Foreigners 

(2) Teaching Japanese to Native Speakers 

Although the emphasis of the project is on the study of prosody from linguistic, dialec- 
tal, and educational points of view, the database of the dialectal speech will be of great 
value also as a material for spoken language processing. 

6.3 .  I n d u s t r y - A c a d e m i a  C o o p e r a t i v e  C o m m i t t e e  o n  I n t e l l i g e n t  

P r o c e s s i n g  o f  S p o k e n  a n d  W r i t t e n  L a n g u a g e s  

Speech processing for man-machine interface almost invitably involves natural language 
processing. Or more precisely, the processing of the spoken language and the processing 
of the written language are quite closely related and share many important elements. 
For instance, a high-quality speech synthesis from text requires a deep understanding of 
the text based on syntactic, semantic, and discourse analyses. Unfortunately, however, 
speech processing and natural language processing have been studied quite separately in 
the past. 

In order to provide a forum for better and closer communication between researchers 
working in these two areas of study, as well as between researchers in the academia and 
those in the industries, an Industry-Academia Cooperative Committee was established 
in 1987 under the auspices of the Japan Society for the Promotion of Science. The 
committee consists of 28 members from the academia and 25 from the industries, and 
holds biomonthly meetings to discuss problems and topics that are of common interest to 
researchers in both fields. 
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7. C O N C L U S I O N  

An overview has been given on some Japanese efforts toward the realization of advanced 
man-machine interface through spoken language. Since most of the coordinated projects 
in Japan are rather new, much has to be learned from the experiences of national projects 
of other countries as well as of international projects such as the ESPRIT projects. I am 
pleased, however, that our emphasis on the integration of speech and natural language 
processing into one well-defined area of spoken language processing is being shared by 
other national and international projects. Although the project on "Advanced Man- 
Machine Interface Through Spoken Language" was terminated in March 1991, the ties of 
cooperation among various research groups, established both within and outside Japan, 
will surely be strengthend and even broadened through our continued efforts. 
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Composite Cosine Wave Analysis and its 

Application to Speech Signal 

Shuzo Saito and Kazuhiro Tamaribuchi 

Department of Electronics Engineering, Kogakuin University 
2665-1 Nakanocho, Hachioji, Tokyo, Japan 

A b s t r a c t  

A method for the analysis of the frequency components of an acoustic signal expressed 
in composite cosine waves is described. It is shown theoretically that three parameters 
of each of the frequency components of an input acoustics signal, that is the frequency, 
amplitude, and initial phase of each component, can be determined from 3m discrete 
sampled data points for an input signal composed of m frequency components, which not 
necessary have harmonic relations. This method of analysis is applied to speech signals 
and several results are described. 

I .  I N T R O D U C T I O N  

To analyze the frequency components of acoustic signals we have several calculation 
procedures, like Fourier analysis and so on. The digital Fourier transformation procedure 
(DFT) is regarded as a useful means for acoustic signals represented by time-sampled 
sequential data of the signal waveforms. The results of a DFT analysis, however, are 
expressed as a set of frequency components with a harmonic structure, a lot of frequency 
components with a harmonic relation are required to represent the result of the analy- 
sis, even if the input signal is composed of only two kinds of sinusoidal waves with an 
inharmonic relation. 

There is another approach to analyze the frequency components of an input signal for 
which the frequency components do not necessarily have a harmonic relation, i.e. by use 
of the autocorrelation functions of the signal. In this approach the results of the analysis 
include several errors caused by the calculating procedure, in which the integration over 
an infinite region is replaced by a summation over a finite region to cope with the discrete 
signal data. 

This paper reports an analysis method for acoustic signals which is able to determine 
the characteristics of the components of the signal from the discrete sampled data of the 
signal within a restricted region of analysis. It is shown theoretically that the required 
number of discrete data points of the signal in this analysis is only three times the number 
of frequency components, provided that the signal is composed from a finite number 
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of frequency components within the region of analysis. The validity of this method of 
analysis is verified by use of an artificial signal composed of five frequency components. 
Then several results using this method for a speech signal are described. 

2. T H E O R Y  O F  FREQUENCY A N A L Y S I S  

A composite cosine wave which is composed of m cosine waves, at the time r T  can be 
represented as follows: 

m--1 

f(r) = ~ an cos(rwnY + 4n) (I) 
n----O 

where an is the amplitude, w, the angular frequency, 4 ,  the initial phase and T the 
sampling interval. 

2.1 .  Determination of the Frequency Components 

To determine wn, the function Fo(r - s) is defined as 

1 
F~ - s) - ~(1 - 6,o){Fo_,(r - s) + F~ - s + 2)} + 6,of(r  - s) (2) 

where 6,o is Kronecker's de l ta ,  0 < s < [(3m + 1 ) / 2 ] -  1, s < r < 3m - 2s - 1, 

and []of [(3m + 1)/2] is Gauss's symbol. 

Fo can be calculated from 3m sequentially sampled data points being in the ranges of s 
and r indicated above. 

From eqs. (1) and (2) the following equation is derived : 

m - 1  

Fo(r - s) = ~ a.  cos(rwnT + 4, .)cos~ (3) 
n--0  

Since F ~  s) is a function of cos~ the following equations are ruth-order algebraic 
equations of cos(w~T). 

m - 1  

F,~(r - m) + ~ boF~ - s) = 0 (4) 
~ 

where r = m , m  + 1,. . . ,2m - 1,b, are constants, and s = 0 ,1 , . . . ,m - 1. 

From eqs. (4), the coefficients bo are determined and then used to solve the following 
equation: 

m--1 

: + b : "  = 0. (5) 
8=0  

Since the roots of eq. (5) are equal to cos(wnT), the frequencies can be determined from 
the following equations: 

zn = cos(wriT), (6) 

where n = 0,1, ..., m - 1. 
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2.2. D e t e r m i n a t i o n  of  the  I n i t i a l  P h a s e  a n d  A m p l i t u d e  

Since the values of Fo(r-  s) and cos(wnT)in eq. (3) can be determined, solutions 
for an cos(rwnY + ~n) can be derived and are denoted as An(r). Then the phase, ~ ,  is 
determined by use of An(r~) and An(r2) for rl and r2, where r~ ~ r2, m -  1 _< rl, r2 _< 2m, 
as follows: 

@n = arctan Sn(rl, r2)' 

where 
Cn(rl, r2) ---- A n ( r 1 ) c o s ( r ~ n T )  - A~(r2) cos(rl~.T), 
Sn(rl, r2) = An(rl ) sin(r2~nT) - A,(r2) sin(r~nT). 

Finally, the amplitude an is represented as 

An(r1) 
an = cos(rlwnT + ~bn) 

(8) 
(9) 

@ V E R I F I C A T I O N  O F  T H E  M E T H O D  O F  A N A L Y S I S  B Y  

A P P L Y I N G  I T  T O  A N  A R T I F I C I A L  S I G N A L  

The analysis procedure described above is applied to artificial signals composed of five 
sinusoidal frequency components with frequency lower than 5 kHz. The three parameters 
of the five frequency components are determined by use of a random variable with a 
uniform distribution. The artificial signal is fed to a 4.5 kHz low-pass filter, then sampled 
at 10 kHz, and its amplitude is quantized using 12 bits. 

The frequency component analysis is performed using 15 sequentially sampled data 
points of the waveform, that is 1.5 ms long. The analysis of the frequencies, initial phases, 
and amplitudes of the five frequency components is done with 64 bit double precision using 
an Eclipse MV/7800 computer. 

The results are shown in Table 1. It is seen that the results of the analysis of the 
components agree with the true values with an accuracy of 9 digits. In any result an error 
is observed at the 8th to 9th digit after the decimal point, which seems to be within the 
computation error of the computer. 

4.  R E S U L T S  O F  T H E  A N A L Y S I S  F O R  A S P E E C H  S I G N A L  

4.1. R e c u r s i v e  P r o c e d u r e  o f  C o m p o n e n t  A n a l y s i s  f o r  a S p e e c h  

S i g n a l  

In this analysis method, the number of sequentially sampled data points of a signal 
is taken as 3rn, that is three times of the number of frequency components ra. Apply- 
ing this method of analysis to a speech signal, it is necessary to determine the number 
of frequency components of the speech signal in advance. Although the number of fre- 
quency components for speech is essentially unknown, the necessary maximum number of 
frequency components can be estimated experimentally. 
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Table 1. Results of the analysis of a signal composed of five frequency components 

TRUE 

DOUBLE 

12 bits 

FREQUENCY[Hz] 
4110.5270386 
2830.0285339 
2501.2969971 
2253.0555725 

318.3174133 
4110.5270386 
2830.0285339 
2501.2969971 
2253.0555725 

318.3174133 
4110.8529017 
2829.9996775 
2501.2877524 
2253.0759978 

318.2913003 

PHASE[deg] 
65.7023621 
-6.4599609 

210.7960510 
5.6661987 

108.5696411 
65.7023621 
-6.4599609 

210.7960510 
5.6661987 

108.5696411 
65.6202150 
-6.4369952 

210.8099101 
5.6491724 

108.5781091 

AMPLITUDE 
0.0075531006 
0.5151557922 
0.4859390259 
0.3516044617 
0.1190757751 
0.0075531006 
0.5151557922 
0.4859390259 
0.3516044617 
0.1190757751 
0.0075929833 
0.5151029358 
0.4857993445 
0.3516911544 
0.1190958824 

TRUE �9 True values of the components of the input signal. 
DOUBLE �9 Resules for 64 bit double-precision data. 

12 bits �9 Resules for I,'2 bit quantized data. 

A speech signal is, however, substantially unstable, so it is necessary to use a kind of 
analysis-by-synthesis technique when applying this method of analysis to a speech signal. 
The first step is to analyze the speech signal with a maximum number of frequency 
components, then a speech-like signal is reconstructed using the result of the analysis and 
compared with the input speech signal, and then the error between the reconstructed and 
original signal is calculated. If the error value is less than the threshold value, then the 
analysis of the present sampled data is finished and one can proceed to the succeeding 
sampled data. But in the case that the error value is over the threshold value, the 
maximum number of frequency components is reduced by one and is the same analysis 
procedure repeated. This recursive procedure used for a speech signal is illustrated in 
Figure 1. The threshold value used mainly in this paper is 0.5 LSB. 

4 .2 .  Est imat ion  of the Max imum N u m b e r  of Frequency Com- 
ponents  

The effects of the maximum number of frequency components on the results of the 
analysis are measured for a maximum number of 10, 15, 20, 25, and 30, respectively. 
The speech signal of the Japanese word /namae / (name)  is used in this experiment. The 
setting of the sampling frequency and the amplitude quantization is similar to that in 
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the preceding experiments. The results are shown in Figure 2. It seems that a maximum 
value of 25 or 20 may be sufficient for speech analysis. 

4.3 .  C o m p a r i s o n  o f  t h e  A n a l y z e d  S p e c t r u m  w i t h  t h e  L P C  a n d  
F F T  P r o c e d u r e s  

Setting the maximum number of frequency components to 20, an analysis of the fre- 
quency components of several Japanese words is performed. The experimental conditions 
for the analysis are similar to the preceding ones. As an example the results of the anab 
ysis for Japanese vowel/ i /which is preceded by the consonant/s/ ,  are shown in Figure 
3. the frequency component analysis is done using 54 sequentially sampled data points, 
that is 5.4 ms long, of the / i / sound .  Similar analyses are executed by the LPC and FFT 
procedures for the same speech material and the results are shown in the same figure. 
The number of sampled data points used in the FFT analysis is 256 points, whereas that 
used in the LPC analysis is 54 points. 

Comparing the results derived from the three kinds of procedures, the frequency- 
spectrum envelopes estimated are very similar in general, but a few interesting differences 
are observed in the fine structures of the speech spectrum, especially between the com- 
posite cosine method and LPC. The effects of such spectrum differences on the speech 
quality should be checked using some synthetic procedures in the near future. 

4.4 .  D i s t r i b u t i o n s  o f  S e g m e n t  L e n g t h s  U t i l i z e d  f o r  F r e q u e n c y  

C o m p o n e n t  A n a l y s i s  

It is expected that the maximum number of frequency components may be a kind of 
measure for the temporal stability of the input signal in the composite cosine wave analysis 
method. So speech material similar to that referred to in section 4.2. were analyzed and 
the distributions of the segment lengths which are utilized in the frequency component 
analysis, are calculated. Speech material from nine speakers in six repetitions is used for 
this experiment. The experimental conditions are similar to those mentioned in section 
4.3.. 

The results are shown in Figures 4 (a), (b). The abscissa of each figure represents 
the number of frequency components in the analysis and the ordinate represents the 
percentage of the number of discrete sampled data points corresponding to the value of 
the abscissa when speaking the word. It should be noted that the percentage value used 
in the ordinate of this figures differs from that in Figure 2. The distributions shown in 
Figures 4 (a) and (b) are corresponding to those for different speakers and for one speaker, 
respectively. It is seen that fair differences are observed in the distributions for different 
speakers, but not in the distributions for one speakers. It is necessary to make further 
study of the individual differences contained in a speech signal using the composite cosine 
analysis method. 
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Figure 1. Analysis algorithm used for a speech signal. 
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5. C O N C L U S I O N  

The theory of the composite cosine wave method of analysis and its application to 
speech analysis are described in this paper. The validity of this method is examined in 
the case of steady acoustic signals containing five frequency components. The results 
show that not only the frequency, but also the initial phase and amplitude can be deter- 
mined with an accuracy of nine digits or more for analyzed data with double-precision 
representation. 

This analysis method is also applied to a signal for which the number of frequency 
components is unknown and for which the frequency components are unstable tempo- 
rally, like in speech. For this analysis, several modifications are added to the analyzing 
procedure and examined with Japanese speech signals. The results show that there are 
several uses of this method for fine analysis of the speech structure. It seems that the 
composite cosine wave method of analysis plays a role as a cooperative tool with other 
speech analysis procedures as LPC, FFT and so on, to achieve further advances in speech 
information processing. 
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S m o o t h e d  Group Delay  Analys is  and its 

Appl icat ions  to Isolated Word Recogn i t ion  

Harald Singer, Taizo Umezaki and Fumitada Itakura 

Department of Electrical Engineering, Nagoya University 
Chikusa-ku, Nagoya, 464-01 Japan 

A b s t r a c t  

In previous work [1, 2] the effectiveness of the smoothed group delay distance mea- 
sure was shown. The coefficients of the smoothed group delay spectrum (SGDS) were 
there calculated by multiplying the LPC Cepstrum coefficients with a smoothing weight 
function, i.e. the representation was in the time domain. 

In this paper, we calculated the SGDS coefficients using a DTFT (Discrete Time 
Fourier Transform) of the linear-prediction coet~cients, i.e. the representation is in the 
frequency domain. We report isolated-word recognition experiments with low bit quanti- 
zation of these SGDS coefficients. We show that the recognition accuracy can be main- 
tained using only 26 bits per frame, as compared to the conventional calculation with 
floating point accuracy. Using a bark scale representation the error rate can even be 
further reduced. 

1. INTRODUCTION 

For speech recognition, extraction of the relevant features of the speech signal, com- 
monly called analysis, is of vital importance for the recognition process. Important speech 
information removed at this stage cannot easily be recovered later on. 

Analysis and the subsequent similarity calculation have been intensively studied over 
the past years. One common standard is the LPC Cepstrum, which performs very well in 
a well-behaved environment. On the other hand, under adverse conditions, like variable 
frequency characteristics (different microphones, changing transmission lines, etc.), or 
additive noise, LPC based measures are strongly affected. 

To overcome this problem, weighting of the Cepstral coefficients has been proposed, 
with the objective to emphasize the spectral peaks and to separate the influence of neigh- 
boring poles. One of these proposed analysis methods is the smoothed group delay spec- 
trum [1]. It was shown that the Fourier coefficients G(n)  of the group delay spectrum 
are identical to the Cepstral coefficients weighted by a weighting function W ( n )  - n. To 
avoid overemphasis of the Cepstral components with large index n and problems with 
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truncation effects due to a finite number of coemcients, a generalized weighting function 
W(n) having the form of a Gaussian window has been proposed: 

n 2 
w ( . )  = ." exp(- ;j) (1) 

Multiplication with this Gaussian window in the quefrency domain is equivalent to smooth- 
ing with a Gaussian window in the logarithmic spectral domain. The necessity of smooth- 
ing the group delay spectrum can easily be seen from Figure 1. The peaks at the formant 
frequencies of the group delay spectrum, shown in Figure l d, are very sharp, which may 
be appropriate for estimation of the formant frequencies. For speech recognition, on the 
other hand, a broadening of the peaks is indispensable, since just a slight deviation in 
formant frequencies between two patterns would result in a large distance value. We can 
see that this smoothing is achieved by using Gaussian weighting according to eq.(1) (see 
Figure le). Optimal recognition results for this smoothed group delay spectrum were 
obtained for r =10.0 (corresponds to a window bandwidth of 300 Hz) and 8 = 1.0. This 
distance measure performs very well even under noisy conditions. 

Figure 1. Second v o w e l / a / i n  MIKASA. 

In section 2 of this paper we show that a similar (not identical) smoothed group delay 
function can be directly calculated from the LPC coefficients. We introduce the basic algo- 
rithm, give details on the databases and the pattern matching algorithm (standard DTW) 
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and report recognition results, comparing the new method with the above-mentioned 
smoothed group delay weighted LPC Cepstrum and the standard LPC Cepstrum (CEP). 
For ease of explanation we will call the smoothed group delay spectrum calculated by the 
Gaussian weighted LPC Cepstrum from now on simply weighted Cepstrum (WCEP) to 
distinguish it from the directly calculated smoothed group delay spectrum (SGDS). 

In section 3, we report the  results of modifications of the basic algorithm. A rough 
quantization in 1 to 3 bits per parameter and the use of the perception based bark scale 
are investigated. Finally, we discuss our findings in section 4. 

2.  B A S I C S  

2 . 1 .  B a s i c  A l g o r i t h m  

In the LPC analysis each frame of speech can be represented by a pth order all pole 
filter with transfer function 1 

H(z) = ~ (2) 
1 + ~ akz -k 

k - 1  

The LPC coefficients ak are calculated with the autocorrelation method. 
p 

With H(w) - H(z)lzfc#~ and A(w) - A(z)lz=#~ - ~ ake -jo'k, the phase O(to) of the 
k- -0  

transfer function H(z) can be written as 

Im{A(~o)} 
O(co) = - arctanRe{A(w)} (3) 

For the calculation of O(~), we used a discrete time Fourier transform (DTFT) with the 
Goertzel algorithm[3]. 

The group delay spectrum is defined as the derivative of the phase 

O0(~) I 
w(~o,) = aw ~:~, (4) 

Instead of this derivative we used the finite difference 

1 t "  "r(w)dw = O(t,,,i)- O(w,_,) 1 < i  < 
~ ( ~ , )  = - _ ~,_-------~ ,_~ ~ ,  - ~ ,_~  ' _ _ L, ( 5 )  

where L is the number of channels of the SGDS and wi > wi-1 with too >_ 0, toL _< ~r. 
The averaging operation in eq.(5) is equivalent to the multiplication of the Cepstral 

coefficients with a sinusoidal window. The logarithmic spectrum of the LPC Cepstrum 
and the group delay spectrum can be expressed as 

oo oo 

log IH(~)I = ~ ck cos k~, r(,,,) = ~ kc~cos(k,,,), (e) 
k - 0  b=-0 
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where ck are the Cepstrum coefficients. The phase O(w) is therefore 

fo~, fo ~, oo oo sin(k~o) eo 

/~=0 /:ffi--0 k = 0  

If we define ~(~o, B) as the difference equation smoothed group delay function, where the 
bandwidth is 2B we get 

B) = 

OO OO 

e(~o + B) - efo~ - B) k=0~ ck sin(k(w + B ) ) -  k=0 ~ ck sin(k(w - B)) 

2B 2B 

k=O = ~ sin(kB) 
B ~ c k  cos(k,,,) 

I:--0 

(8) 

If we compare eq.(6) with eq.(8) we see that we have in fact weighted the Cepstrum 
coefficients ck with the sinusoidal function s i n ( k B ) / B .  For 16 sampling points, B would 
be lr/32. The use of a sinusoidal window for smoothing was also advocated in [4], although 
the window length is different from our approach (here the window length is not limited). 
The effect of different values of B can be seen in Figure lf. 

An additional smoothing effect is achieved by multiplying the coefficients ak with an 
exponentially decaying window prior to the DTFT 

•k = ckak, c < 1.0, (9) 

which moves the poles zk of H(z )  away from the unit circle. The poles of .fl(z) axe then 
located at }t = ztc. The effect of this smoothing for different values of c on the GDS is 
shown in Figure lg. In Figure lh both types of smoothing were used with c = 0.9 and 
different values for B. 

The complete basic algorithm is depicted as a block diagram in Figure 2. In the 
recognition phase, we define the distance metric of the SGDS between to speech frames 
a s  

L 

d = (10) 
iffi0 

where ~R(wi) and ~(~oi) are the values of the ith channel of the reference pattern and the 
test pattern, respectively. 

2.2. 

2.2.1. 

Databases and Matching Algorithms 

Databases  

Database I consists of 550 Japanese citynames recorded twice and spoken by 5 Japanese 
male speakers. The second utterances were recorded 1 week after the first utterances. 

68 easily confusable pairs (see Table 1) were chosen for the recognition experiments. In 
preliminary experiments we found that nearly all errors occurred as a confusion of these 
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Figure 2. Block diagram of the basic algorithm (LPC parameters ak, smoothed LPC 
parameters ~k, phase O(w~), and smoothed group delay ~(wi). 

pairs. Therefore we only performed D P Matching between these pairs, to speed up our 
experiments. The analysis conditions for this database are shown in Table 2. 

Database 2 consists of 15 digits (see Table 3) recorded once and spoken by 50 Japanese 
male speakers. The analysis conditions for database 2 are shown in Table 4. 

The pattern matching algorithm is a standard endpoint constrained DP algorithm. 
Database 1 was used for intra-speaker recognition (speaker dependent) with reference 
patterns and test patterns from the same speaker. We also investigated inter-speaker 
recognition with reference and test patterns from different speakers. 

Database 2 was only used for speaker independent recognition. 10 speakers were des- 
ignated as reference speakers and their utterances were stored as reference templates, the 
other 40 speakers were test speakers. A variant of the popular K-mean algorithm was 
used: an "unknown" test pattern was DP-matched with all 10 15 reference templates 
and the calculated distances were saved. For each of the labels the 3 best results were 
averaged (K = 3). The label with the best averaged result was chosen as final result. 

2.2.2. Addit ion of Noise 

To investigate the robustness of the distance measure under noisy conditions, we added 
multiplicative signal-dependent white noise as follows: 

SNR[dB] 
~,  = S,(1 + AP~) with A = v ~  10- 20 (11) 

S, is the "clean" speech signal, ~, the noisy speech signal, A the relative noise amplitude, 
SNR[dB] the desired signal to noise ratio, and P~ a uniform distributed random number 
between -1 and 1. We only investigated two cases, namely no noise and SNR = 20dB. 

2 . 3 .  C o m p a r i s o n  o f  E x p e r i m e n t a l  R e s u l t s  

First, we tried to find an optimal value for the smoothing factor c. The number of SGD 
channels was fixed at 16. In accordance with ref.[5] an increase in the number of channels 
did not improve the recognition accuracy. Figure 3 shows the error rate for database 1 for 
different values of c. Both intraspeaker and interspeaker experiments were also performed 
with added segmental noise (see section 2.2.4). As a consequence, we choose c = 0.9 for 
all subsequent experiments (if not explicitly mentioned otherwise). This value was also 
confirmed in ref [5]. 
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Tab. I. Confusable pairs in database I 

wako: 
toba 
uji 
takahagi 
hirakata 
takikawa 
hukagawa 
toyosaka 
cyo:hu 
o:muta 
kakuda 
takayama 
sagae 
hukushima 
iwatsuki 
matsudo 
nagaoka 

ako" 
tosa 
huji 
takasaki 
hirata 
tachikawa 
sukagawa 
toyonaka 
ko:hu 
o:mura 
katsuta 
takahams 
sabae 
hukuchiysms 
iwakuni 
matsuto: 
takaoka 

oga koga 
tama zama 
kuji uji 
hsmsda yamada 
hirata hirara 
kuhiwara kuhihara 
yono ono 
mobara obsms 
o:tsu so:tsu 
to:no o:no 
mstsuzsks mstsubara 
takahsms nagahams 
umjo: anjo: 
utsunomiya ichinomiya 
kamogawa kakogawa 
tsushims kushims 
takaoka kuaoka 

toda noda 
sakai kuai  
kitami itami 
mikMa mitaka 
hino chino 
sunagawa sukagawa 
yuhio yachiyo 
oyama toyama 
o:tsu o:bu 
gobo: gojo: 
mstsuysms matsubara 
takayama wakayama 
hukui tsukumi 
ichinomiya nishinomiya 
ichikawa ichihara 
at.usi yuusi 
~IIZ~ sennan 

Tab. 2. Analysis conditions for database I 

sampling rate 10kHz 
sampling accuracy 12bit 
window type Hamming 
window length 25.6ms 
window period 8ms 
order of LPC 10 

kuji 

kamatshi 
mutsu 
chiba 
morioka 
o'd& 
okaya 
o:date 
o:me 
matsuzaka 
handa 
kiryu 
ito 
hammnatsu 
izumi 
kaga 

huji 
naha 
takaishi 
huttsu 
chita 
tomioka 
onoda 
okayama 
o:take 
ko:be 
matsuyama 
sand& 
chiryu 
mito 
takamatsu 
izumo 
saga 

Tab. 3. Labels in database 2 

0 zero, rei, maxu 5 go 
1 ichi 6 roku 

2 ni 7 nana,  shichi 

3 san 8 hachi 
4 yon,shi 9 kyuu, ku 

Tab. 4. Analysis conditions for database 2 

I sampling frequency 8kHz 
sampling accuracy 12bit 
window type Hamming 
window length 32ms 
window period 10ms 
order of LPC 10 
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We also found that not using the higher channels improved the recognition rate con- 
siderably (see Figure 4). The best results were obtained using only channels 1 to 11. At 
10 KHz sampling rate and evaluation of r(~i) at 16 equally spaced frequency points, the 
bandwidth of I channels corresponds to 5KHz/16 ~ 300Hz. Not using channels 12 to 16 
is thus equivalent to using a low-pass filter with cutoff frequency at 3.3KHz. The relevant 
information is apparently confined to the region up to around 3.3KHz. This result is 
interesting in view of the fact that telephonic speech uses the frequency range between 
300Hz and 3.4KHz. 

We then compared our results with standard LPC Cepstrum (CEP) and weighted LPC 
Cepstrum (8 = 1.0, r = 10.0 from eq.(1)), both with 16 parameters (channels) per frame. 
Figure 5 shows the recognition results for database 1 (intraspeaker only) and database 
2. Without noise the 3 methods have comparable results. With noise added, the score 
for CEP drops considerably. Especially database 1, with its many confusable consonants, 
is strongly affected by noise. Similar results have been reported in ref [5]. On the other 
hand, we could show that both WCEP and SGD are quite robust against white noise 
influences. 

Figure 5. Comparison of Cepstrum; weighted Cepstrum, and SGD. 

3. M O D I F I C A T I O N S  

3.1. Low Bit Quantizat ion 

Under the assumption that the essential features for speech recognition are the fre- 
quencies of the formants, we can further reduce the information contents by low bit 
quantization of the SGD parameters. Three problems have to be addressed: 

�9 How many bits per channel are necessary? 

�9 Where should the quantization thresholds be set for optimal recognition results? 

�9 Which value should be assigned to each quantization level? 

We tried to solve these problems heuristically, since minimum distortion is not necessarily 
equivalent to a maximum recognition rate. Quantization also works as an additional 
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smoothing effect, which can even raise the recognition score. The optimal quantization 
thresholds for quantization in 1,2 and 3 bits are shown in Table 5. Note that the LPC 
order is p = 10. The theoretical minimum for the group delay r(cai) can be shown to 
be - p / 2  (here - p / 2  = -5) .  It is obvious that the threshold values depend also on the 
smoothing factor c (here c = 0.9). 

Figure 6 demonstrates how the SGDS channels r(wi) were quantized according to Table 
5. Figure 7 shows how the formant structure is preserved even for quantization with 1 
bit. 

The recognition results for databases 1 and 2 are shown in Figure 8. Obviously, quan- 
tization with 1 bit is too rough, whereas 2 bits gives comparable results to calculation 
with floating point precision. 

Only using channels 1 to 11, as explained in section 2.3, gives better results than 
using all 16 channels also for the quantized SGDS. This signifies that one frame of speech 
can be represented by 22 bits. A hypothetical large-vocabulary recognition system with 
5000 words, average word length 0.5s and 125 frames/s would thus necessitate 5000 x 
0.5 x 125 x 22/8 Bytes ~ 1MByte of memory space. SGDS is thus well suited for the 
implementation of an inexpensive large-vocabulary recognition system. 

Tab. 5. Thresholds for quantization 

Bits Thresholds 
"'1 .... 0 

2 0 2.5 5 
3 -2.5 0 1 2 3 4 5 

3.2. Bark scale and Mel scale 

Many researchers suggest a perception based approach, using filterbanks which model 
the human hearing. In this paper, we simply use a bark scale, which models the critical 
bandwidth in the cochlea. Bark scale conversion can be applied either in the time (or 
quefrency) domain or in the frequency domain. We choose a frequency domain, that is the 
frequencies fi are now chosen equally spaced on the bark scale. Bark scale to frequency 
scale conversion is performed by 

fi = 600 sinh(m,/6), m, = 6 arcsinh(fi/600) (12) 

with fi hertz, rni in bark. 
Figure 9 shows the positive effect of "bark scale sampling". The first and second 

formant, which would have merged into one peak if sampled linearly on the frequency 
scale, are clearly distinct if bark scale sampling is applied. 

We also found that not using the first, the 15th and the 16th channel gave equal or 
better results. Since the data has not been high-pass filtered, deleting this first parameter 
is equivalent to a high-pass filter with 100Hz cutoff frequency. (For linear frequency 
spacing this equivalent high-pass filter would have a cutoff frequency of about 300Hz, 
eliminating also information on the first formant.) Not using channels 15 and 16 is 
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Figure 7. Time frequency pattern of FFT and SGD spectra. 
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Figure 8. Recognition results for quantized SGDS. 

Figure 9. Linear frequency scale versus bark scale. 
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equivalent to a low-pass filter with cutoff frequency of about 3500Hz, a result that is 
consistent with section 2.3. 

Table 6 compares the results for database 1. For "linear frequency sampling" (linear) 
only channels 1 to 11 were used, for "bark scale sampling" (bark) channels 2 to 14. 
The quantization thresholds were chosen according to table 5. The mel Cepstrum was 
calculated by warping the LPC Cepstrum coefficients according to an allpass filter with 
warping constant a = 0.45 [6]. 

Tab. 6. Recognition rate in % on database 1 (speaker dependent) 

SNR 
float 1bit 

SGD 
2bit 3bit 

LPC-CEP 
float 

bark 97.2 91.9 95.6 96.9 96.0 
No Noise 

linear 96.9 90.3 94.8 95.7 93.8 
bark 95.9 90.3 93.7 95.4 86.2 

2O dB 
linear 94.0 90.0 91.5 90.9 77.3 

4 .  C O N C L U S I O N S  

Our results showed that (after carefully tuning various parameters, like quantization 
thresholds, etc.) the recognition rates are better for the bark scale than for the linear 
frequency scale. We can thus conclude, that frequency domain techniques (the bark 
scaling, frequency weighting, and low bit quantization) can be easily used with the SGDS. 
Contrary to the Cepstrum representation, the SGDS can also be easily visuMized as a 
time frequency pattern and therefore easily interpreted. 

The low bit representation allows high-speed computation in the pattern matching 
stage of the recognizer. Furthermore, considerable (1 order of magnitude) saving of mem- 
ory space can be achieved, allowing an inexpensive implementation of a large vocabulary 
ASR. 
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PSE 

A b s t r a c t  

Giving a new definition of the speech power-spectrum envelope (PSE) characteristics, 
a PSE analysis method is proposed according to this definition. The application of a 2048 
point high-resolution FFT is studied and becomes the basis of the analysis, and is used 
in all the FFT and IFFT processing. 

In the method, first, the fundamental frequency, f0, is estimated by the Cepstrum 
technique. The PSE data series are obtained by sampling at intervals f0 along a linear 
frequency scale on the short term speech power spectrum. The cosine-series PSE model 
is proposed for representing the pole-zero structure by choosing the log power spectrum 
in the linear frequency domain. Parameters in the model are estimated by minimizing 
the error between the model and the PSE data series. Experimental results on nasal 
murmur sounds are shown in the form of a comparison with those of the LPC and Cep- 
strum method. An outline of the PSE analysis-synthesis system is given. The wave-form 
generation part is based on the superposition of the zero-phase impulse responses, and is 
able to synthesize a high quality female speech wave-form with very high pitch. 

1. I N T R O D U C T I O N  

Superior speech analysis techniques and descriptions of phoneme characteristics based 
on such techniques are key dements for future development of speech recognition. 

In the field of speech analysis, the following four subjects remain to be studied: (1) the 
problem of spectral pole-zero estimation (the zero is indispensable for describing the essen- 
tial characteristics of consonants [1]. (2) the essential relation between the fundamental 
frequency (pitch) and short-time power spectra, (3) the kinds of physical characteristics 
that the human speech hearing sense receives, and (4) mechanisms that extract an op- 
tional voice from mixed voices or noise (are their any constraints other than semantic or 
linguistic constraints?). 

In this paper, the authors, while remaining aware of the above four subjects, have 
returned to the basics of speech production, and have tried to develop a speech analysis 
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technique which is valid for both vowels and consonants. Here, they propose a power 
spectrum envelope (PSE) speech analysis technique which is based on a more exact and 
concrete definition of the power spectrum envelope [2]. 

With the PSE technique, the fundamental frequency plays a much more active role in 
speech analysis than it does with existing methods. 

0 N E W  D E F I N I T I O N  O F  T H E  S P E E C H  P O W E R  S P E C -  

T R U M  E N V E L O P E  ( P S E )  

Speech sound is produced by the speech organ (Figure l(a)).Voiced sounds, seen in 
terms of their functions, are composed of three types of characteristics: vocal chord wave 
characteristics, vocal tract characteristics, and radiation characteristics. These frequency 
characteristics are shown in Figure l(b). 

Vocal chord waves have a periodic wave form (fundamental frequency f0) which is called 
a sawtooth waveform. Their overall power spectrum has a smooth spectrum outline. But 
since their waveform is a periodic one, they have a line spectrum structure which starts 
with zero frequency and has energy only in a position which is a whole number multiple 
of the fundamental frequency. 

Vocal tract frequency transfer characteristics, which carry the phoneme information, 
have a continuous spectrum, the same as that of radiation characteristics. When the 
different types of characteristics are expressed in the form of time wave forms (impulse 
responses), the speech waves are produced by the convolutions of each impulse response. 
Therefore, the short-time power spectrum of voiced sounds has a line spectrum structure 
which s ta r t s  with zero frequency and has energy only in a position which is a whole 
number multiple of the pitch. 

Until now, the power spectrum envelope has been simply defined as a curved line 
smoothly connecting the peaks in the fine structure of the power spectrum. But generally, 
since determining where the peaks are is a problem, we cannot call this definition an 
exact one. By bearing in mind that, in the case of steady state voiced sounds, reliable 
data in the frequency area only exist in a position which is a whole number multiple 
of the fundamental frequency, we can redefine the speech power spectrum envelope as 
follows: the speech power spectrum envelope is expressed in the form of the PSE model 
whose parameters are estimated using the PSE data series which is extracted at the whole 
number multiple on the short-term power spectrum along the power spectrum. The above 
definition means that only reliable samples should contribute to the results. The object of 
most of the existing speech analysis methods is to extract what is also called "the power 
spectrum envelope". But if these methods are compared according to the redefinition 
above, it is seen that they differ from each other in the results. 

0 H I G H  P R E C I S I O N  F F T  T E C H N I Q U E  B Y  T H E  I N T E R -  

P O L A T I O N  E F F E C T  

Figure (b) shows an FFT analysis of a standard logarithmic power spectrum, using as 
an example a male speaker 's /e/ .  The figure shows the results of a 256 point FFT with a 
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waveform sampling frequency of 12 kHz and 256 point speech data cut out using a Hanning 
window (21.3 ms. length). The frequency resolution of the spectrum is (1/0.0213 = 43) 
Hz. When each frequency interval between two adjacent samples is interpolated, the 
frequency resolution can be expected to improve. This actually occurs very easily when 
the true waveform, being cut out using a Hanning window, is continued with zero data, 
and the total waveform time length is increased. Figure 2(a) shows the result of a 2048 
point FFT. In the method, the same wave data as in Figure 2(b) are continued with zero 
data for increasing the wave length (total 2048 points in about 171 ms.). The frequency 
resolution of the logarithmic power spectrum is 5.86Hz. 

By comparing the two figures, it can be seen that the interpolation effect enables the 
spectrum's fine structure to express itself extremely clearly. This tells us that it is now 
possible to give a concrete approach to the newly defined PSE analysis technique. 

For this paper, without sacrificing generality, we handled 12 kHz sampled data. For 
this reason, a 2048 points FFT and IFFT are applied in the whole process, such as the 
power spectrum conversion from the wave and the Cepstrum conversion from logarithmic 
power spectrum. 

0 S E L E C T I N G  T H E  P O W E R  S P E C T R U M  E N V E L O P E  S A M -  
PLE S E R I E S  B A S E D  O N  F U N D A M E N T A L  F R E Q U E N C Y  
I N T E R V A L  S A M P L I N G  

A flow diagram of the speech power spectrum envelope (PSE) analysis, proposed in 
this paper, is shown in the upper half of Figure 3. The upper part of the analysis flow 
diagram is divided into two parts. The first part starts with speech waveform processing 
and ends with finding the sampled spectral data series for fitting the following PSE model. 
The operations included are those numbered (1) to (5) in Figure 3. The second part starts 
with the sampled spectral data series and ends with the estimated PSE. This operation 
is numbered (6) in Figure 3. 

This section is an explanation of the five operations that make up the first part. Op- 
erations (1) and (2) are the operations that extract the logarithmic power spectrum. 
Then, (3) and (4) are the operations that use the Cepstrum technique to estimate the 
fundamental frequency. Each operation is explained below in detail. 

Opera t ion  (1). When the sampling frequency is 12 kHz, 384 speech waveform data 
points are cut out by getting the inner product with a Hanning window which is 
32 ms. long. By padding zeros after three data, 2048 waveform data points x(n) 
(n = 1 ,2 , . . . ,  2048) are prepared. 

Opera t ion  (2). The Fourier transform is applied to the wave form x(n) and the 
logarithmic power spectrum H(n) (n - 1 ,2 , . . . ,  2048)is calculated. H(n)is an even 
function. The frequency range of H(n) is from -6 to 6 kHz. 

Operat ion(3) .  The purpose of calculating the Cepstrum in the PSE analysis is to 
extract the fundamental frequency highly accurately. Whenthe frequency is higher 
than 4kHz, it often happens that the fine structure that appears in the logarithmic 
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power spectrum becomes disturbed. For that reason, the data from this area is 
removed by introduction of the following window function. 

cos(y/4000) + 1 when -4000 < y < 4000 
w(f) - 0 in the rest of the frequency range 

The inverse Fourier transform is, therefore, applied to the inner product of H(n) and 
w(f) to obtain the Cepstrum. 

Opera t ion  (4). The fundamental interval is given by the frequency value which cor- 
responds to the peak of the Cepstrum [3]. Since the frequency time resolution is 
equal to the speech wave sampling interval, it is 83 micro second, when the sampling 
frequency is 12 kHz. The present level of accuracy for simple peak detection, when 
the fundamental frequency is tentatively 100 Hz, is -i-0.8% within the range of 99.17 
to 100.83 Hz (between 1 / (0.01 +0.000083) and 1 / (0.01-0.000083)). 

To improve this level of accuracy in pitch frequency, a total of three samples-the sam- 
ple giving the maximum Cepstrum value and two neighboring samples in the upper 
and lower direction along the frequency axis - are used to obtain a more accurate 
quefrency value, which corresponds to the peak of the quadratic interpolation curve 
of the three samples. From this the fundamental frequency, f0, is determined. 

Opera t ion  (5). The logarithmic power spectrum envelope sample series, yi (i = 
0,1,2, . . .  , N -  1), is obtained by sampling H(n) at the positions of positive in- 
tegral multiples of the fundamental frequency f0 in the frequency range from 0Hz to 
the upper frequency limit F. 

0 T H E  P S E  M O D E L  A N D  T H E  E S T I M A T I O N  O F  I T S  P A -  

R A M E T E R  

5 . 1 .  M a k i n g  a m o d e l  o f  t h e  P S E  

The power spectrum envelope characteristics reflect the vocal tract characteristics. 
Therefore, their poles and zeroes should be expressed with equal weight in the logarithmic 
domain. 

ARMA is known as a pole and zero time domain model. The least-squares law is 
normally applied in the time domain for the parameter estimation. But some points 
about the criterion for evaluating the error between the data and the model are still 
unclear in the frequency domain. Moreover, generally, the problem of estimating ARMA 
parameters becomes a nonlinear problem requiring recurrent calculations, and causes it 
to be an unstable solution problem. 

In the frequency domain, the speech power spectrum envelope characteristics on a lin- 
ear frequency scale, G(z), are theoretically expressed by a rational function consisting of 
a polynomial numerator, P(z), which expresses the zero characteristics, and a polynomial 
denominator, Q(z), which expresses the pole characteristics. For this reason, the ampli- 
tude parameter estimation of each term generally becomes a nonlinear problem. But if 
we think of the logarithmic power spectrum envelope characteristics, then the mixture 
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of terms with different error criteria in the numerator and denominator disappears and 
becomes a homogeneous structure concerning pole and zero, as shown in the following 
formula: 

In G(z) = In P(z) - In Q(z) (1) 

In this formula, the poles and zeros work with the same error criteria. Here, since a 
logarithmic function is something which can be approximated by means of a finite-term 
polynomial, In P(z) can be represented by a polynomial with a finite terms. Since In Q(z) 
can be expressed in the same way, expressing In G(z), the difference between the two, by 
means of a polynomial with a finite number of terms is effective to the same degree. 

In this formula, is particular, we wish to point out that both the pole and zero error are 
evaluated in the same way when the logarithmic power spectrum envelope is represented 
by a finite-term polynomial. 

Now our object is how to model the vocal tract frequency characteristics within the 
-4 to 4 kHz range, where the frequency characteristics of the speech wave appear most 
reliable. Concerning the logarithmic power spectrum envelope characteristics, we can 
make the general judgment that: 

1. These characteristics are an even function; 

2. The linear-scale frequency characteristics of the MA process, that express zero, can 
be expressed by means of a cosine series; and 

3. The linear-scale frequency characteristics of the AR process, that express the poles, 
can be expressed by means of the inverse numbers of the cosine series. 

For the above reason, a finite-term cosine series is supposed to be suitable for the 
logarithmic power spectrum envelope (PSE) model. Figure 4 shows the first five cosine 
functions in the frequency range 0 to 4kHz. 

5.2. Estimating the parameters (Operation (6) in Figure 3) 
Let F be the upper frequency limit in the PSE model. However, since F is the integer 

N -  1 multiple of f0, its minimum value is higher than 4000Hz. Now, using the logarithmic 
power spectrum envelope's sampled data series yi, (i -- 0 ,1 , . . . ,N  - 1) of N (depend on 
f0 ) with bandwidth 0 to F ,  the amplitude parameter A~, (i = 0,1, ..., M) of the M-term 
cosine series: 

M 

Y(i) = ~ Ai cos i)~ (0 < )~ < r) ,  (2) 
i----0 

which represents the PSE model, is estimated by means of minimization of the squared 
error on the logarithmic power scale. Here, the y0 value is not reliable in real speech 
data, because HPF is normally used in the speech wave acquisition. Therefore, 0.99 �9 yl 
is substituted for it as an approximate value. 

The sum of the squared error, J,  between the data series yi and the PSE model Y(i) 
is: 

N - 1  

S = ~ (Y(6i ) -  yi)' where 5 = ~r/(N- 1). 
i = 0  
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To minimize the sum of the squared error, J,  the formulas are partially differentiated 
to Ao, A~, .... , AM, and each equation is set to zero. Then a set of simultaneous linear 
equations of the order M + 1 is obtained. By solving this set, Ao, A1, .... , A~t in eq. (2) 
are found. 

6.  O U T L I N E  O F  T H E  P S E  A N A L Y S I S - S Y N T H E S I S  S Y S -  

T E M [ 2 ]  

PSE analysis is a technique that can extract the pole and zero characteristics in a 
straightforward way. The speech, which is re-synthesized from the parameters obtained 
from it, is expected to be of very high quality. The synthesis part of this PSE analysis- 
synthesis system is shown in the lower half of Figure 3. 

In the system, the impulse response is obtained by a 512 point complex IFFT under 
the assumption of zero phase shift of the impulse response. So that, the real part of the 
input of the IFFT is the 512 point symmetric re-sampled exponent data of the PSE (linear 
power scale PSE) in the frequency range from -6000 to 6000 Hz. The imaginary part of 
the input is set to 0.  The real part of the output of the IFFT is the 512 point symmetric 
impulse response. 

Speech wave synthesis is done by pitch interval superposition of each impulse response. 
A high quality, clear female voice with high pitch (f0 is even more than 500 Hz) can be 
synthesized by the system. A comparison between the synthesized speech waveform and 
the original one is shown in Figure 5 as an example. This kind of voice has been very 
hard to synthesize by the existing LPC and other methods, in which the impulse-response 
phase shift is not definitely controlled. In the older vocal tract filter source model, the 
wave-form is obtained under the assumption of steady state in spite of the fact that both 
the vocal tract filter and source pitch parameter values are renewed frame by frame, 
simultaneously. 

0 E X A M P L E S  O F  N A T U R _ k L  S P E E C H A N A L Y S I S  A N D  

C O M P A R I S O N  W I T H  O T H E R  A N A L Y S I S  T E C H N I Q U E S  

In order to realize automatic speech recognition of unspecified speakers, many speech 
analysis techniques used until now have been tested to distinguish sounds in pairs. These 
tests have shown that there are some phonemes or syllable pairs that are very difficult 
to tell apart. An example of such a pair are the two nasal syllables /mo/  and /no/. 
Both the nasal consonant components and the vowel components closely resemble each 
other. Figure 6 shows examples of analyses using three different techniques, of the nasal 
consonant component of a male speaker's/mo/sound, while Figure 7 shows corresponding 
examples of the same male speaker's/no/sound. Part (a) of each figure shows the results 
of analysis using the PSE technique (number of terms: m=26); part (b) shows the results 
using the Ceptsrum analysis technique (number of terms: 54); and part (c) shows the 
results using the linear prediction analysis (LP/C) technique (number of terms: 18). To 

�9 / 

make the comparison easy, the analysis wmdgws are arranged identically, and in both 
figures the displays overlap with the short-time power spectra on the same scale. 
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According to the acoustic knowledge of speech, the feature that distinguishes the nasal 
c o n s o n a n t s / m / a n d / n / i s  the difference in the zero frequencies that correspond to the 
distance between the vellum (branch position to nasal tract) and the lips (in the case 
of /m/ )  and between the vellum and the tip of the tongue (in the case of /n / )  [1]. 
PSE analysis, consistent with the theory, shows clearly that the zero frequency for nasal 
m u r m u r / m / i n / m o / i s  480 Hz and the zero frequency for nasal m u r m u r / n / i n / n o / i s  
720 Hz. 

Also, the vertical lines with equal spacing seen in the results of the PSE analysis 
represent the fundamental frequency spaces and show that only the power spectrum data 
at these this positions is sam pied and used to estimate the power spectrum envelope. 
Although the zero is important, we know from observing the results of the other analysis 
techniques that it is hard to extract in the LPC. In the Cepstrum analysis shown in Figure 
7 (b), the zero is observed, but its value is only half that obtained by PSE analysis, despite 
the large number of terms value. This is because all the power spectrum data have in the 
parameter estimation with equal weight. 

With the LPC analysis, even though the number of terms used is a little more than 
normal, an estimation of the zero is not expected. 

8. C O N C L U S I O N  

It has been pointed out that the fundamental frequency, f0, of natural speech and the 
length of the vocal tract are interrelated, and that they work to normalize the difference 
of vocal tract shapes and contribute to the naturalness of vowels. But we can say that 
the participation of f0 in this case is a rather passive factor, which helps us determine a 
general framework that separates categories such as children, women, and men. 

In this paper, we claim, from the purely physical point of view of vocal chord wave 
periodicity under the steady-state assumption, that the only reliable PSE data is the very 
small amount of data sampled at the whole number multiple of f0 on the spectrum data. 
It is indispensable that information on f0, since it changes in every period, should be 
given before the PSE model introduction. 

Sounds other than pure voiced sounds also contain periodic components. Fundamental 
periods are also observed in the plosive wave forms of voiced plosives, of voiced fricatives, 
of course, and even of unvoiced sounds. When these latter sounds are observed within the 
Cepstrum domain, the Cepstrum peaks, which correspond to the fundamental periodic 
intervals, are sometimes much less clear than those of pure voiced sounds, but plural 
periodic components can often be seen. When this is the case, the maximum peak should 
be respected. When there are no eminent fundamental periodic components, we propose 
that the sampled data series be obtained by very short interval sampling of the power 
spectrum domain. The results become asymptotic to the results by Cepstmm analysis in 
that case. 

As an extension of the present paper, the authors have developed a non-steady-state 
based speech wave structure model. That led to a the synchronous pitch-pair PSE analysis 
valid for a non-steady-state speech wave with very rapid spectral transitions [4]. 

According to speech production theory, the zero of the spectrum is an important feature 
of consonants, because the vocal tract zero carries the information of the sound source 
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C e p s t r u m  
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Fig. 6 Comparison of Results from Three 
Different Speech Analysis to Same Nasal 
Murmur Imol. 

Fig. 7 Comparison of Results from Three 
Different Speech Analysis to Same Nasal 
Murmur/no/. 
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position in the vocal tract. But it has been rated as relatively unimportant according 
to the results of speech perception experiments until now. The authors will also give 
a great deal of attention to the pole-zero structure of phoneme pairs which are difficult 
to tell apart using the developed analysis techniques, and will try hard to discover the 
invarioot features of such pairs. It is an urgent necessity, they feel, to have phoneme 
feature descriptions that can deal more accurately and completely with the speech of 
unspecified speakers. 
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A b s t r a c t  

Conventional speech analysis methods based on linear prediction often fail to separate 
and estimate the source and vocal tract characteristics, especially in the case of voiced 
sounds, because of oversimplified assumptions regarding the voice source. We have already 
proposed a model that is capable of expressing a wide range of voice source characteristics, 
and demonstrated that source and vocal-tract parameters can be well separated and 
correctly estimated, for vowels and vowel-like sounds, by combining the proposed source 
model with linear predictive analysis. The present paper extends our approach to apply 
to a wider variety of speech sounds including nasal vowels and nasal consonants, by 
combining the proposed source model with ARMA analysis. The validity of the system 
was demonstrated by analysis of synthetic and natural speech. 

1.  I N T R O D U C T I O N  

Nearly all speech analysis methods in practical use today are based on the linear source- 
filter model of speech production, which states that voice source, vocal tract, and radiation 
can be modeled linearly and non-interactively. Conventional speech analysis methods 
model the combined effects of these three factors in one filter, while assuming white noise 
excitation. This approach results in simple calculations and has, for the all-pole case, 
gained a wide acceptance in the form of linear predictive analysis [1, 2]. The approach 
has also been extended to apply to a wider variety of speech sounds by the introduction of 
pole-zero modeling. There are, however, inherent weaknesses in this approach. A major 
inconsistency is that, while white noise excitation is assumed in the analysis, voiced 
speech is periodic. Consequently, impulse or pulse-like excitation has to be used in the 
synthesis. This is often a source of error in the estimation of the formant frequencies and 
bandwidths, since the estimated spectral envelope will describe not only the vocal-tract 
transfer function, but will also contain voice source information. Furthermore, the voice- 
source function, which often has rather complicated spectral characteristics, cannot be 
separated easily from a combined source-tract-radiation filter. The influence of the voice 
source on spectral envelope estimation can be summarized as follows: 
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(1) the estimation is affected by the location of harmonic peaks of the source spectrum, 

(2) the spectral characteristics of the glottal pulse is included in the estimated envelope, 

(3) zeros pertaining to the voice source may be mistakenly interpreted as vocal tract- 
~.~ros (a consequence of (2)). 

All these undesirable effects stem from the crude modeling of the voice source in con- 
ventional speech analysis methods. From this point of view, we have already proposed 
explicit modeling of the voice source in combination with conventional all-pole vocal-tract 
modeling, as a means of separating the voice source from the vocal-tract transfer function, 
we call this GAR (Glottal AR) modeling [3, 4]. In the present paper, a straight forward 
extension of the method is proposed to allow for pole-zero modeling of the vocal-tract 
transfer function (henceforth GARMA modeling). 

2.  A N A L Y S I S  M E T H O D  

Conventional methods for ARMA analysis of speech generally operate on an estimate of 
the vocal-tract impulse response, thus assuming impulse excitation of the vocal tract. As a 
consequence, the glottal source characteristics is incorporated in the "vocal-tract" impulse 
response. The poles and zeros of the combined impulse response are then estimated 
sequentially [5], or simultaneously [6] by iterative methods. In the present method, on 
the other hand, the glottal source and the vocal tract are represented by separate models. 
A parametric representation of the glottal-source signal is used in the ARMA estimation 
of the true vocal-tract characteristics. 

2.1. L e a s t - S q u a r e s  I d e n t i f i c a t i o n  of  a One - input ,  O n e - o u t p u t  
L i n e a r  M o d e l  

A linear, time-invariant, discrete-time model with one input and one output can be 
represented, in the time domain by 

p q 

8n "t- E aiSn_, ---- E bjgn_j,, (1) 
i--1 j--0 

where g is the input (glottal source), s is the output (speech) and p and q are the pole 
and zero orders of the model [7]. Taking the z-transform of eq. (1) gives 

A(z)S(z) = B(z)G(z), (2) 

2 where the z- Though it may look most natural to use the error criterion V = E e,, 
transform of en is 

B(z)a(z), (3) 
E l ( z ) - -  S ( z ) -  A(z) 

this leads to a non-linear minimization problem. Instead we use a modified criterion: 

E (z) = - B ( z ) a ( z ) ,  (4) 
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for which the error e~ is linear in the parameters ai and bj. The computation of this 
error measure is illustrated in Figure 1. Two special cases can be observed from eq.(4). 
By setting G(z) = 0 the equation reduces to conventional LPC, and by setting B(z) = 1 
we obtain the previously proposed GAR model. The minimum error is found in the 
conventional way by setting grad(V) = 0, and by solving the following system of linear 
equations for the parameters ai and bj: 

where, 

S,,j -x~,~ a 

N - 1  

s,,j = ~ ~ _ , ~ _ j ,  
n----O 
N - 1  

X i , j  = E 8 n - i g n - J  ' 
nmo 
N - 1  

Gi,j = E ~ n - i f f n - - j ,  
n=O 

[,~, a,, ]r a , . . . ,  ap , 

b = [ ~ , ~ , . . . , b q ]  T. 

1 < i , j  <p, 

I < i  < p ,  
O~_j~_q, 

O~_i,j~_q, 

The matrix is symmetric and can be efficiently inverted by standard methods such as the 
Cholesky decomposition method. 

g C~) ~ vocA~ ! 
7PACT 

elz) ~ A(z)" 
e(n) 

s(n) 

Figure 1. Computation of the error measure used in the analysis. 

2.2. Mode l ing  of  the  Voice Source 

The glottal-voice source consists of quasi-periodic pulses which are created by the 
vibrating vocal cords as air is pressed up from the lungs. It is desirable, from both the 
theoretical and the practical point of view, to obtain a parametric representation, i.e. 
a model, of the glottal source. Models for the glottal waveform, mostly defined in the 
time domain, have been proposed by numerous authors. These models emphasize, in one 
way or another, certain aspects of the voice source. Our proposed model incorporates 
important features of almost all the previous models as well as additional features [4], 
and can thus be applied to various types of voices and situations. The model, illustrated 
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GLOTTAL FLOW 

g( t )  t 
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I I I 

FLOW DERIVATIVE i l 
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g ( t )  = 

A - 2 A S - R a  t +  A+RRa t 2, 
R 

a( t  - R) + 3B F 2 F a  (t - R) 2 - 2 B F 3 F a  (t - R) 3 

_ 2(c-/~) ( t -  w) + c ~  p (t - w) ~, c 
D 

8, 

4AR S-6FB and # =  CD 
where a =  2R 2 - F ~ D -  3 ( T -  W) '  

T :  Fundamental Period. 

0<t_<R, 

R < t < _ W ,  

W < t < _ W + D ,  

W + D < t < _ T ,  

Figure 2. Waveforms and formulas for the glottal model. The differentiated glottal flow 
~(t) includes the radiation factor. 

by Figure 2, is composed of polynomial segments and can be fully described by the 
following six parameters: the open phase duration (W), the pulse skewness (S), the interval 
from glottal closure to maximum negative flow (D), the slope at glottal opening (A), the 
slope immediately before glottal closure (B), theslope immediately after closure (C). The 
notation g ( t )  in Figure 2 indicates the glottal flow derivative, i.e., the voice source model 
combined with the radiation characteristics, which can be modeled with good accuracy 
by a +6dB/octave spectral slope. 

2 . 3 .  J o i n t  E s t i m a t i o n  o f  t h e  V o i c e - S o u r c e  a n d  V o c a l - T r a c t  P a -  

r a m e t e r s  

In Section 2.1 it was shown that, with a suitable choice of error criterion, the AR 
and MA parameters can be simultaneously estimated in a linear procedure, provided that 
both the input g and the output s of the model are known. The input signal is obviously 
not known in advance. Therefore we use the previously described parametric waveform 
model as input, and employ iterative search for the model parameters which give the 
best description of the input signal in terms of the minimum prediction error as given 
by eq. (4). The procedure for estimating the glottal and vocal-tract parameters is based 
on Analysis-by-Synthesis [8] and consists of two types of error minimization: (a) local 
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minimization of V based on a linear, least-squares estimation of the AR parameters Pi 
and the MA parameters bj, under the assumption of a known input signal g(t), and (b) 
global minimization of V based on an iterative search for the optimum parameters of 
g(t). In each iteration of (b), the local minimization (a) is also carried out. The overall 
procedure, outlined in Figure 3, can be summarized as follows: 

(1) generation of the voice source signal, 

(2) estimation of the vocal tract transfer function using the generated source signal and 
the speech signal, 

(3) evaluation of the prediction error. The sequence (1)-(3) is iterated as the glottal pa- 
rameter space is searched for a parameter combination that gives the global minimum 
prediction error. 

RS~~H_E CORDED [- , - -  , ,  , 

COMPEN- EMPHASIS ' �9 ' TRACT SATION 
AR / ARMA " PARAMETERS~ 
IDENTI- 
FICATION 

PRE- ~ ~J MINIMI- ~ - ~  

VOICE i l l  . . . . . .  SOURCE ~...J 
PARAMETERS 

Figure 3. Block diagram of the parameter estimation process. 

Among many possible methods for non-linear minimization, we use, in this study, a 
simple relaxation method, which essentially examines one dimension at a time with a 
successively decreasing step-size. The analysis is carried out pitch-synchronously with 
adaptable frame length and frame step. Since the minimization is sensitive to the posi- 
tioning of the glottal model pulse it was found necessary to provide for pulse positioning 
with an accuracy of 1/10 of the sampling period (0.01 ms at 10kHz sampling frequency). 
To achieve pre-whitening of the inputs to the linear estimation procedure, both the speech 
signal and the voice source signal (g(t)) are preemphasized with the factor ( 1 - # z  -1) where 

is close to unity. 
In studies of the detailed waveform of the glottal source, it is important to assure 

freedom from the serious low frequency phase distortion that ordinary speech recordings 
often are subject to. We assume the phase distortion to be time invariant and carry out 
compensation, prior to the analysis, by filtering the time-reversed speech signal [9]. In 
the case of time-varying distortion it may instead be desirable to insert a simulation filter 
after the voice source model in the iteration loop. Such an arrangement does not require 
time-reversal of the signal. 
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3. A N A L Y S I S  OF N A S A L I Z E D  S P E E C H  S O U N D S  

Earlier studies have shown that nasalized vowels often can be distinguished from their 
oral counterparts by the presence of pole-zero pairs in the spectrum. One pole-zero pair 
is usually prominent and located between the second and third formant, while a second 
pair appears in the low frequency region [10]. 

3.1. Synthet ic  Speech 

Nasal vowels were synthesized using a terminal analog synthesizer with an excitation 
signal of the type shown in Figure 2, using five complex poles, one complex pole-zero pair 
for the nasal coupling, and a single differentiation (1 - Z -1) to simulate the radiation 
factor. Four systems were compared: 

(1) ARMA model with glottal waveform model (GARMA), 

(2) ARMA model with impulse excitation (ARMA), 

(3) AR model with glottal waveform model (GAR), 

(4) AR model with impulse excitation (AR). 

Table 1. Original and Estimated Values of Frequencies and Bandwidths of Poles (and 
Zeros) for a Synthetic Nasal Vowel/~/. 

FREQUENCIES/BANDWIDTHS (Hz) NORMALIZED 
POLES ZEROS ERROR 

662 1647 1709 2849 3551 4520 
AR 12--T 980 132 342 194 145 

681 1695 1757 2851 3551 4520 GAR 83 123 971 378 197 144 
661 1579 1783 2753 3501 4501 1998 ARMA 100 287 140 219 182 209 751 
689 1636 1942 2766 3502 4501 2256 GARMA 72 95 96 138 164 206 260 
690 1640 1940 2760 3500 4500 2260 ORIGINAL 70 100 110 130 160 200 250 

0.11 

0.07 

0.05 

0.001 

The systems (ARMA) and (AR) are evaluated using the same method as the (GARMA) 
and (GAR) systems but with the glottal model replaced by an impulse model. In the 
GARMA and ARMA systems the pole and zero orders were p = 12 and q = 2, while in 
the GAR and AR systems they were p = 12 and q = 0. Figure 4 shows the original and 
estimated spectral envelopes from analysis of the synthetic nasal vowel/~/. It can be 
seen from the figure that the ARMA model without an explicit voice source model, while 
performing better than the all-pole systems, is not capable of accurately representing the 
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Figure 4. Original and estimated spectral envelopes for a synthetic nasal vowel/~/using 
several AR and ARMA analysis methods. 

original vocal-tract transfer function. Table 1 lists the values of the frequencies and band- 
widths of the poles (and zeros) for the synthetic speech signal as well as their estimated 
values. The normalized prediction errors are also given in the table. 

3 .2 .  N a t u r a l  S p e e c h  

Experiments were also carried out on natural nasal vowels. Figure 5 shows spectral 
envelopes obtained by analysis, using several analysis methods, of the French nasal vowel 
/g e/ut tered by a male French speaker. For comparison, also the GARMA spectral en- 
velope, including the spectral characteristics of the estimated voice source and radiation 
models, is shown. It can be seen that this spectral envelope, which represents the to- 
tal system, agrees well with the FFT spectrum of the same speech segment. In Figure 
6, waveforms obtained from the analysis of Figure 5 are shown. The figure shows that 
the methods that employ a model for the voice source (GAR and GARMA) give smaller 
prediction errors than the other methods. 

4. C O N C L U S I O N S  

The present study has shown the feasibility of combining voice source estimation with 
vocal-tract estimation in analysis of voiced speech. Especially, it was shown that our pre- 
viously proposed G AR scheme for combining voice source modeling with linear predictive 
analysis can be generalized in a straightforward way to include pole-zero modeling of the 
vocal tract transfer function. The proposed system allows for simultaneous estimation of 
the voice-source and the vocal-tract ARMA parameters, based on iterative minimization 
of the mean-squared error. It is thus possible to separate the voice source from the vo- 
cal tract transfer function, which not only gives improved estimation of the vocal-tract 
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Figure 5. Estimated spectral envelopes for a natural nasal vowel using several AR and 
AtLMA analysis methods (vowel/&/, male voice). 
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pre-emphasized speech signal, 
estimated excitation signal, 
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prediction error. 

Figure 6. Results from analysis of the same vowel as in the previous figure using several 
AR and ARMA analysis methods. 
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transfer function, but also allows for a parametric representation of the glottal-source 
signal. 

Experiments on synthetic speech confirmed the validity of the method, and indicated 
improved performance over both ARMA analysis with an impulse model for the source 
and AR analysis, as shown by the better spectral fit and the smaller prediction error. The 
results from analysis of natural speech further confirmed these observations. 

References 

1. B. S. Atal and M. R. Schroeder: "Predictive Coding of Speech Signals," Reports of 
6th Int. Congr. Acoust., C-5-4, 1968. 

2. F. Itakura and S. Saito: "Analysis Synthesis Telephony Based Upon the Maximum 
Likelihood Method," Reports of 6th Int. Congr. Acoust., C-5-5, 1968. 

3. M. Ljungqvist and H. Fujisaki: "A Method for Simultaneous Estimation of Voice 
Source and Vocal Tract Parameters Based on Linear Predictive Analysis," Trans. 
Committee on Speech Research, Acoust. Soc. Japan, No. $85-21, 1985. 

4. H. Fujisaki and M. Ljungqvist: "Proposal and Evaluation of Models for the Glottal 
Source Waveform," Proc. ICASSP, 31.2, 1986. 

G. E. Kopec, A. V. Oppenheim and J. M. Tribolet: "Speech Analysis by Homomor- 
phic Prediction," IEEE Trans. Acoust., Speech, and Signal Processing, vol. ASSP-25, 
pp. 40-49, 1977. 

H. Morikawa and H. Fujisaki: "Adaptive Analysis of Speech Based on a Pole-Zero 
Representation," IEEE Trans. A co,st. Speech, and Signal Processing, vol. ASSP-30, 
pp. 77-88, 1982. 

0 K. J. Astrom and P. Eykhoff: "System Identification- A Survey," Automatics, vol. 
7, pp. 123-162, 1971. 

0 C. G. Bell, H. Fujisaki, J. M. Heinz, K. N. Stevens and A. S. House: "Reduction of 
Speech Spectra by Analysis-by-Synthesis Techniques," J.Acoust. Soc. Am., vol. 33, 
No. 12, 1961. 

9. M. Ljungqvist and H. Fujisaki: "Correction of Low Frequency Distortion in Speech 
Recordings and its Effect on the Glottal Wave Shape," Proc. Spring Meeting of 
Acoust. Soc. Japan, pp. 161-162, 1985. 

10. E. Bognar and H. Fujisaki: "Analysis, Synthesis and Perception of the French Nasal 
Vowels," Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing, 31.1, 1986. 



Recent Research Towards Advanced Man-Machine Interface 
Through Spoken Language, H. Fujisaki (Editor) 
�9 1996 Elsevier Science B.V. All rights reserved. 61 

E s t i m a t i o n  of  S o u n d  P r e s s u r e  D i s t r i b u t i o n  

C h a r a c t e r i s t i c s  in the  Voca l  Tract  

Nobuhiro Miki* and Kunitoshi Motoki** 

*Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan 
**Faculty of Engineering, Hokkai-Gakuen University, Sapporo, Japan 

A b s t r a c t  

In this report the characteristics of the sound pressure distribution in the vocal tract 
are described. Since it is very difficult to directly measure the sound pressure distribution 
in the real vocal tract, we made plaster replicas which duplicate the actual shapes of the 
oral cavities, and measured the complex sound pressure distribution. Vectorial maps of 
active and reactive sound intensity are shown. From the vectorial maps we can see the 
equi-phase and the equi-amplitude lines in the replicas. From the experimental results, it 
is shown that the wave front at high frequencies forms a quite complicated curve like a 
circular pattern, and the assumption of plane wave propagation is not always valid even 
at low frequencies especially around the tongue tip. 

1.  I N T R O D U C T I O N  

The characteristics of wave propagation in the vocal tract have been assumed to be 
those of plane waves because the wavelength of sound in the frequency range of speech 
is rdatively long compared with the cross-section size of the vocal tract. Based on this 
assumption, a model of the vocal tract is constructed as a cascade of connected uniform 
tubes having cross-sectional areas corresponding to the predetermined vocal tract area 
function. The vocal tract area function has been estimated from the results of analysis of 
real speech or direct acoustic measurement. Plane-wave propagation is implicitly assumed 
in these estimation algorithms. 

The distribution of sound pressure in the vocal tract model has been studied [1]. The 
real vocal tract, however, is regarded as a nonuniform acoustic circuit in which local 
reflection of sound may occur at any point. Thus we can imagine that the distribution 
of the sound pressure in the real vocal tract is different from that of a vocal tract model 
with plane-wave propagation. 

In this report we show the experimental results of the measurement of the complex 
sound pressure distribution in plaster replicas of the oral cavities. Complex sound pres- 
sure distribution means the spatial distribution of the amplitude and phase of the sound 
pressure for a pure tone. The replicas were made using impression material to copy the 



62 

actual shapes of the oral cavities. Two-dimensional measurement was performed in the 
vertical and horizontal planes in the replicas. 

By using the spatial distribution of the complex sound pressure, we can calculate the 
particle velocity and then obtain complex sound intensity vectors at each measuring point. 
The intensity vectors are composed of two parts. One is called the active intensity and 
the other is the reactive intensity. From the vectorial maps of the intensity we can see 
equi-phase lines, namely, wave fronts, and equi-amplitude lines. And if the rotation of 
the vectorial field of active intensity is zero, which implies that the particle trajectories 
are straight, the route of the acoustic power flow may be estimated as any continuous line 
tangential to the active intensity vectors. For these advantages and clear visualization, 
the measurement results are mainly shown in the form of vectorial maps of the complex 
intensity. 

0 M E A S U R E M E N T  O F  T H E  C O M P L E X  S O U N D  P R E S -  

S U R E  D I S T R I B U T I O N  

2.1 .  C a l c u l a t i o n  o f  t h e  c o m p l e x  s o u n d  i n t e n s i t y  f r o m  t h e  m e a -  
s u r e d  c o m p l e x  s o u n d  p r e s s u r e  d i s t r i b u t i o n  

In this section we describe the definition of the complex sound intensity and its proper- 
ties briefly. By omitting the time factor, the complex sound pressure p(r) (r is a position 
vector) in the replica can be represented as 

p(r) = P(r)e jr (1) 

where P(r) and ~b(r) are the spatial distribution of the amplitude and the phase of the 
sound pressure, respectively, and should be measured st many points in the replica. The 
particle velocity, v(r), is related to the complex sound pressure by Euler's equation: 

Vp(r) + j~p~(r) = 0, (2) 

where 0~ is the angular frequency and p is the air density. Using the above relation, v(r) 
is obtained as follows: 

u(r) = VxeJ"ix + ~eJS'iy + ~eJS'iz = { j V P ( r ) -  P(r)Vc~(r)}eJr (3) 

where Vk, Ok, ik (k = z, y, z) are the amplitude, phase, and unit vectors for each direction, 
respectively. The complex sound intensity, C(r), and active and reactive intensity, I(r) 
and Q(r) are defined by 

C(r) = p(r)v'(r)/2, (4) 

i(,) = (5) 
Q(r) = Im{C(r)}. (6) 

* denotes taking the conjugate of the complex value. From eqs. (1), (3), and (4), I(r) 
and Q(r) are written as 

I(r) = -P2(r)Vc~(r)l~p, (7) 
Q(r) = -VP2(r)/4wp. (8) 
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From eqs. (7) and (8), it is seen that the vectors I(r) and Q(r) are normal to the equi- 
phase and equi-amplitude lines, respectively. If the sound field can be assumed to be 
one-dimensional, I(r) and Q(r) should have the same tangential direction. The vectorial 
properties of I(r) and Q(r) can be examined by calculating their rotation and divergence 
[2, 3]. Particularly, the rotation of the active intensity is calculated as, 

V x I(r) = { I ( r ) x  Q(r)}4~p/P2(r) 
= {VyV~ sin(0y - 0,)ix + V,V, sin(0, - 0,)iy + g,V~ sin(0, - 0y)iz)wp. (9) 

If the rotation of the active intensity is zero, the phases of the velocity component to 
each direction are the same, and thus the particle trajectories are straight. When this 
condition holds, the direction of power flow at each point can be regarded as tangential 
to the active intensity vector. 

2 . 2 .  E x p e r i m e n t a l  s e t u p  

Figure 1 shows a block diagram of the measurement system. The replica is placed in 
a plane baffle. A uniform acoustic tube (area 5.5 cm 2) is connected to the replica and a 
speaker is attached at the end of the uniform tube. The speaker is driven by a pure tone 
from an analyzer. The complex sound pressure in the replica is picked up by a condenser 
microphone, Mic. #2, which is attached to a pole on a movable XYZ-stage. A probe 
tube for Mic. #2  is made of glass, with a diameter of 3.0 mm and a length of about 40 
cm. The front position of the end of the probe is measured on a vernier scale labeled on 
the XYZ-stage. A signal from Mic. #1, whose location is fixed at 100 mm distant from 
the replica-side end of the uniform tube, is used as a reference signal; the amplitude and 
phase in the replica are measured relative to the reference signal. Typical errors of the 
analyzer are 0.03 dB and 0.05 ~ The analyzer is controlled by a minicomputer. It might 
be possible to use the output signal from the analyzer as the reference signal. In that case, 
however, if the measurement circumstances, such as room temperature, slightly change 
between the start time and the end time of the measurement, the phase distribution is 
influenced by the small change in sound speed. This influence becomes greater as the 
length of the uniform tube becomes longer. Using the signal picked up near the replica, 
we can diminish this influence. 

2.3. Replicas of  the oral cavities 

Since it is very difficult to directly measure the complex sound pressure distribution 
in a real vocal tract, we made replicas duplicating the actual shapes of the oral cavities. 
Alginate impression material was used to obtain molds of the oral cavities and the replicas 
were formed with plaster. The impression material has sumcient fluidity and is gelatinized 
within 2 rain. Thus, it is not hard for subjects to keep the same articulatory position. 
The replicas were made for two male subjects (called replica (I) and replica (II)) with 
articulation o f /a / .  For the facilitation of measurement, the articulation is somewhat more 
enhanced than usual by lowering the mandible. The vertical distribution was measured 
for replica (I) and both the vertical and horizontal distributions were measured for replica 
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Figure 1. Block diagram of the measurement system. 

(II). The anterior-posterior spacing of the measurement positions is 2.5 mm for replica 
(I), 3.0 mm for replica (II), and vertical and horizontal spacings are 5.0 mm. 

3.  E X P E R I M E N T A L  R E S U L T S  A N D  D I S C U S S I O N  

Figure 2(a) shows the equi-amplitude and equi-phase lines in the vertical plane for 
replica (I). The measurement frequencies are 1.5 and 3.,5 kHz. The values of the amplitude 
and the phase are rdative to those of the farthest point from the lips. The interval 
between the solid lines for the phase is 4 ~ for 1.5 kHz and 20 ~ for 3.5 kHz. The interval 
for the amplitude is 1.0 dB for both frequencies. Dashed lines represent half values of 
the interval. At the frequency of 1.5 kHz, although each equi-line is not exactly straight, 
we can consider with rough evaluation that both the equi-amplitude and equi-phase lines 
are aligned along a vocal tract axis which may be determined by sight from the replica 
shape. Therefore, the wave of this frequency may justifiably be assumed to be a plane 
wave. In the figure for 3.5 kHz, the equi-phase lines are deformed much more; but again 
with rough evaluation, the phase characteristic of the wave may be assumed to be that of 
a plane wave to some extent. The equi-amplitude lines, however, show that there exists a 
significant pressure gradient in the vertical direction at the region from the tongue tip to 
the maxilla. The vertical distance is about 4 cm and is less than half the wave length. In 
this region the amplitude distribution along the anterior-posterior direction includes local 
maxima, and the vertical difference of these maxima amounts to 3.9 dB. As the plane wave 
characteristics should be evaluated from both the amplitude and phase characteristics, it 
is dimcult to recognize plane wave propagation in this region at 3.5 kHz. 
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Figure 2. (a) Complex sound pressure distribution. (b) Vectorial intensity maps. 
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Figure 2(b) shows the maps of the active and reactive intensity vectors corresponding 
to Figure 2(a). The vectors for 1.5 kHz are plotted with an anterior-posterior spacing of 
5.0 mm. The starting point of each arrow is the measurement position and the length 
of the arrow is proportional to the linear magnitude relative to the active intensity at 
the farthest point from the lips. The scaling factor of the reactive intensity relative to 
the active intensity is shown by the number preceded by "Int. Scale" if it is not 1. As 
mentioned in section 2.1, the active and reactive intensity vectors are normal to the equi- 
phase and equi-amplitude lines. Comparing Figure 2(b) with (a), we can dearly see the 
characteristics of the sound field above described, except that the amplitude and the phase 
at each point are not known directly. In the following discussion, the vectorial intensity 
maps are used to show the characteristics of the sound field. The amplitude is described 
in the text if needed. 

Figure 3 shows the results for replica(I) with frequencies of 2.0, 4.0 and 6.0 kHz. In 
the maps for 4.0 kHz, the active intensity is quite uniform; but similar to the result at 
3.5 kHz, a vertical gradient in the amplitude is seen in the region of the front of the 
tongue tip. The pressure gradient is also seen in the result for 2.0 kHz. At the frequency 
of 2.0 kHz, the vertical distance is less than a quarter of the wave length. It is usually 
assumed that the wave in a nonuniform acoustic tube is a plane wave if the diameter of 
the tube is shorter than half the wave length. This assumption is quite valid for the phase 
characteristics. As for the amplitude characteristics, however, this is not always valid, as 
seen in these experimental results. In the maps for 6.0 kHz, the active intensity vectors 
form a vortex above the tongue. It must be noted that the active intensity vectors under 
the condition of nonzero rotation do not represent the direction of the acoustic energy 
flow. This result implies that the equi-phase lines rotate clockwise around the center of 
the vortex. And the direction of the instantaneous particle velocity in the vortex region 
changes greatly with time. The phase characteristics are no longer like a plane wave. In 
the map for reactive intensity, we can see the complicated pressure gradients. The global 
minimum of the amplitude is at the center of the vortex formed by the active intensity. 
The decrease of the amplitude near the vortex center is very rapid. The vertical difference 
of the amplitude between this center and a point 5.0 mm upward from the center is about 
-23 dB. The measurement for replica(I) was performed by varying the frequency in 500 
Hz steps. The first appearance of a strong vortex was at 5.0 kHz with counterclockwise 
rotation. Thus the phase rotation may be in either direction with respect to the frequency. 

The measurement frequencies for replica(II) were determined in the following manner. 
The characteristics of the reflection coefficient at the junction between the replica and the 
uniform tube were measured first using 50 Hz steps. The method of this measurement is 
described in refs. [4] and [5]. The amplitude characteristics of the reflection coefficient 
were obtained as shown in Figure 4. Then the frequencies corresponding to the local 
minimum amplitude of the reflection coefficient and some other frequencies between the 
local minima, which are shown as arrows, were selected as the measurement frequencies. 

The vertical and horizontal intensity maps for these frequencies are shown in Figure 
5(a) and (b), respectively. In the vertical aspects, characteristics similar to those observed 
in replica(I) can be seen. The replica contour in the horizontal plane, which is located at 
mid-height in the vertical plane, is almost symmetrical. Corresponding to this physical 
figuration, up to 5 kHz, the active and reactive intensity vectors form quite symmetric 



67 

Figure 3. Intensity maps for replica(I) (vertical plane). 

fields though the fields, contain transverse amplitude gradients and phase rotation in the 
horizontal plane at higher frequencies. 

At 3.0 kHz, the horizontal differences of the local amplitude maxima near the lips region 
(the region near the anterior end of the replica contours) are 1.3 dB, and the tangential 
directions of the active and reactive intensity vectors at each point, except near the lips 
region, are approximately the same. The plane wave assumption seems to be valid in 
the horizontal plane. The vertical amplitude gradient, however, is relatively large and, 
as a whole, the entire sound field is not well explained by the progressive plane-wave 
assumption. 

At 4.3 kHz, it can be seen from the horizontal reactive intensity map that the trans- 
verse amplitude distribution varies greatly. The amplitude near the wide spread wall is 
about +17 dB higher than the central amplitude. In the vertical active intensity map, 
a weak vortex with counterclockwise rotation is hardly observable. The sound field is 
quite different from the plane wave both in the vertical and in the horizontal plane. At 
frequencies higher than 4.3 kHz, the appearance of a vortex is always observed in the 
vertical and/or horizontal plane. At 5.6 kHz, the symmetry of the intensity maps begins 
to break up; and the sound field is extremely complicated. 
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Figure 4. Amplitude characteristics of the reflection coefficient. Arrows indicate the 
measurement frequencies. 

4. C O N C L U S I O N S  

The characteristics of the sound field in the vocal tract are examined, based on acoustic 
measurement in replicas of the oral cavities. As result, the phase distribution can be ap- 
proximated by plane waves up to a frequency of about 4 kHz. The amplitude distribution, 
however, varies significantly at the region above the tongue tip in the vertical plane even 
at low frequencies of about 2 kHz. And at high frequencies, above about 4 kHz, the phase 
distribution start to rotate in the vertical and the horizontal planes, associated with an 
extreme amplitude decrease at the center of the phase rotation. 

The measurement was for two particular replicas and was in planes specified by sight. 
For more accurate evaluation of the sound field in the vocal tract, especially of the limit 
of the plane wave assumption, three-dimensional measurement in the whole region of the 
replicas with various articulatory shapes should be performed. We are now expanding the 
experimental device to enable this measurement. 
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Figure 5. (a) Intensity maps for replica (II) (vertical plane). 
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Figure 5. (b) Intensity maps for replica (II) (horizontal plane). 
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A b s t r a c t  

This paper describes a speech production model considering factors such as the impedance 
of the velum, the inflation of the vocal tract volume, and the effects of the subglottal sys- 
tem. Based on our measurements of acoustic waveforms and mechanical vibrations at 
several points of the vocal organ, we propose a speech production model having oral- 
nasal coupling through the velum even when it closes. We assumed that the velum is 
composed of two vibrating plates connected to each other by a spring and a mechanical 
resistance. A syl lable/bi /  is synthesized and examined, as an example, by the model, 
considering the velum leakage as well as a small inflation of the vocal tract volume by 
the inner air pressure just before the mouth opening. Concerning the speech production 
model, which has both a subglottal structure and a supraglottal one, it is shown that the 
waveform of glottal flow is changed, and synthesized vowels have zeros in their spectra 
because of an interaction between the sub- and supraglottal structures through the small 
opening area due to incomplete vocal cords closure. 

1. I N T R O D U C T I O N  

Human speech contains information regarding the physical individuality of the speaker 
as well as the linguistic information of speech. One of the possible ways to synthesize 
natural sounding speech is to develop a speech production model considering the acoustic 
properties of a human speaker, such as the influence on glottal vibration by the supra. 
and subglottal system, sound leakage from the oral cavity to the nasal cavity through 
the closed velum, inflation of the vocal tract volume by the inner pressure, and sound 
radiations from the nostrils, the face, and the neck as well as the mouth. 

Observation of the radiation from other sources than the mouth was performed by the 
authors[I,2], and an attempt to make a speech production model considering part of these 
factors was reported previously[3]. In this paper, a modified model will be discussed. In 
this model the following factors are considered: sound leakage from the oral cavity to the 
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nasal cavity through the velum, inflation of the vocal tract volume when a stop consonant 
is produced, the subglottal structure and glottal leakage. 

0 S P E E C H  P R O D U C T I O N  M O D E L  C O N S I D E R I N G  T H E  
V I B R A T I O N  OF T H E  V E L U M  

2.1. Observat ion  of  sound and v ibrat ion of speech  

The sound and vibration at six points of the vocal organ was observed simultaneously 
in an anechoic room. These signals were separated from one another using a sound proof 
box and an isolation board, as shown in figure 112]. Japanese 100/CV/-syllables were 
spoken by six male speakers. The database contains waveforms of sound radiated from 
(a)the mouth, (b)the nostrils, and (c)the skin near the pharynx, and those of vibrations 
of (d)the cheeks, (e)the nose, and (f)the skin near the pharynx. 

Figure 2 shows a comparison of the sound pressure levels of radiations from the mouth, 
the nostrils, and the skin near the pharynx for various consonants and vowels. From figure 
2, it can obviously be seen that the sounds radiated from the nostrils, especially for the 
vowe l / i / and  a few voiced consonants, are not negligibly small. 

Figure 3 shows the power spectra of the v o w e l s / a / a n d / i / .  It should be noticed that 
the power in the higher frequency region above l kHz of sound from the nostrils is much 
weaker than that form the mouth. 

Figure 4 shows the waveforms of six signals accompanied with a voiced plosive/bi/ .  
It is seen that the sounds radiated from other sources than the mouth and all vibrations 
begin at a time about 100ms before the onset of sound from the mouth. This causes the 
buzz bar of the voiced plosive/b/.  The buzz bar is radiated from both the nostrils and 
the pharynx skin, but interestingly, the radiation from the nostrils is far larger than that 
from the pharynx skin. 

To cope with these phenomena, we propose a speech production model that has sound 
leakage from the oral cavity to the nasal cavity even when the velum is closed, and that 
has some amount of air flow which produces a vocal cords vibration before the mouth is 
opened. The leakage is assumed to be produced by the vibration of the velum. The air 
flow before mouth opening is assumed, in this model, to be a result of inflation of the 
volume of the oral cavity. 

2.2. A mode l  of  the  ve lum 

The velum has conventionally been treated as an on-off switch between nasal and non- 
nasal sound. However, the synthesized sounds by such a model are quite different from 
natural speech. For instance, the power spectra of synthesized sound from the nostrils 
of vowels are not restricted to below about lkHz, as shown in figure 3. Therefore, the 
system of velum and nasal cavity should work as a low-pass filter rather than a simple 
on-off switch. 

For vowels and non-nasal consonants, the velum works as a closed lid at the entrance 
of the nasal cavity. Let us assume that the velum is a vibrating plate, whose area, A~, is 
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Figure 1. Illustration of the observation of sound and vibration using a sound proof box; 
M: microphone, A: acceleration pickup. 
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sound pressure, (d), (e), and (f): acceleration of wall vibration (cm/sS). 
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Figure 5. Spectra of radiations from the mouth and nostrils; (a) for the velum model with 
a single vibrating plate, and (b) for the velum model with a double vibrating plate shown 
in figure 6. 

4cm 2, the stiffness per unit area, K~, is 8.45x104dyn/cm 3, the same as that of the vocal 
tract wall, and the density is lg/cm 3, which is approximately the same as the human 
average density. The effective thickness of the velum is assumed to be 0.15cm; i.e., its 
mass per unit area, Mr, is 0.15g/cm 2. To cause the relative levels of sound pressure 
of sounds from the mouth and nostrils for the synthesized vowel / i / a round  300Hz to be 
adjusted the natural ones, its mechanical resistance per unit area, R~, is set to 50g/s/cm ~. 
By this setting, the sound pressure from the mouth and nostrils are matched to those of 
natural speech around 300Hz, as shown in figure 5(a). But, the sound pressure level 
around 2000Hz of synthesized sound from the nostrils is still larger than that of natural 
sound, as shown in figure 3. The difference in the level between synthesized and natural 
sound is about 10~ 15dB. 

When the velum is assumed to be a simple vibrating plate, as mentioned above, the 
system of velum and nasal cavity is equivalent to a second-order LC type low-pass circuit, 
because the nasal cavity works approximately as a compliance in the high frequency 
region. Therefore, in order to simulate natural speech, the equivalent circuit of velum 
and nasal cavity should be a low-pass filter with a higher order than second order. From 
this consideration, we introduce a model of the velum which is composed of two vibrating 
plates connected by a spring and a mechanical resistance, as shown in figure 6(a), whose 
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equivalent circuit is shown in figure 6(b), where Ct~ is chosen so that the synthesized 
vowels / a /  and / i /  are as similar as possible to the natural / a /  and / i / ,  respectively. 
Figure 5(b) shows the spectrum of sound from the nostrils synthesized by the velum 
model of figure 6. It is seen that the power spectra around both 300 Hz and 2000Hz have 
a reasonable level. 
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Figure 6. (a) Velum model with a double vibrating plate, and (b) equivalent circuit of 
the double vibrating plate model. 

2.3.  Inf la t ion  o f  the  cav i ty  v o l u m e  

Next, we consider to produce the voiced plosives having a natural sounding buzz bar. 
To produce a buzz bar, for instance o f /h i / ,  before mouth opening, there should be some 
amount of air flow through the glottis. This causes some inflation of the vocal tract volume 
as well as vocal cords vibration[4]. We assume here that the pharynx is enlarged by about 
8.4cm 3 during buzz bar. Figure ? shows the waveforms produced for synthesizing/hi/ ,  
where (a), (b) and (d) are the waveforms corresponding to figure 4, (c) is the waveform 
corresponding to figure 4(f), (e) is the air pressure at the velum, and (f) is the glottal 
volume flow. A listening test was performed to evaluate the quality of synthesized sound. 
The result shows that the synthesized/bi/shown in figure 7 has a reasonable naturalness 
score. 

0 T H E  S U B G L O T T A L  S T R U C T U R E  A N D  I N C O M P L E T E  
C L O S U R E  OF T H E  V O C A L  C O R D S  

3.1.  M o d e l  o f  t h e  s u b g l o t t a l  s y s t e m  

The vocal system is composed of the subglottal system, glottis, and supraglottal sys- 
tem, which includes the vocal tract, the nasal tract, the velum, the mouth, etc., as shown 
in figure 8. The subglottal system, which consists of the trachea, the bronchi, and the 
lungs, can be treated as a whole as a non-uniform acoustic tube[5]. Figures 9(a) and (b) 
show the equivalent circuit of the subglottal system and its input impedance seen from 
the glottis side, respectively. There is some leakage of air flow at the glottis even when 
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Figure 7. Waveforms of sound pressure and acceleration of synthesized /hi/; (a) and 
(b)" sound pressure, (c) and (d): acceleration of the wall vibration (10'cm/s~), (e)" air 
pressure at the velum (cmH20), (f): volume velocity of glottal wave (103cm3/s). 
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Figure 8. A total system for speech production with subglottal system and glottal leakage. 

the vocal cords appear to be closed. Holmberg[6] reported that the ratio of leakage air 
flow, U0,,i,, to the peak to peak value of the glottal volume velocity, Ug~== - Ug,,,i., is 
about 0.38- 1. The reason for this leakage is that there is a gap between the arytenoid 
cartilages of the glottis and that a part of vocal cords closes incompletely when a soft 
voice is uttered. 

By the incomplete closure in the vocal cords, the air flow to the supraglottal system is 
changed, and the transfer function of the vocal tract is affected more or less by the sub- 
glottal system. Thus, the speech sound can be considerably affected by this phenomenon. 

3 . 2 .  T r a n s f e r  f u n c t i o n  

Figure I0 shows (a)the vocal tract transfer function, i.e., the ratio of the output vol- 
ume flow Io to the input flow Io, lo/I., for the vowel/a/, and (b)the output impedance of 
the subglottal system, i.e., the ratio V..b/lo, in the cases with and without the subglottal 
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Figure 9. (a): Equivalent circuit of the subglottal system, and (b): its impedance seen 
from the glottis. 

system, when the area of glottis, Ag, is varied from 0 to 0.25cm 2. It is seen that, when 
Ag is increased, the transfer function of the system with subglottal system has zeros at 
1470, 2270, and 3080Hz, while the one without subglottal system has no zero. Figure 
10(b) shows that V,,,b/I, has two zeros, which nearly coincide with the first and second 
formant frequencies of the vocal tract fo r / a / .  

3.3.  L e a k a g e  a r e a  

The leakage air flow is treated by introducing a leakage area Ag~ in two-mass model 
of vocal cords[7]. We assume that the areas of the lower and upper vocal cords, A01 and 
Ag2, are given as follows: 

I Agol + 2 Ig zl + Ag, 
Agl = Ao * 

Aool + 2/ozl >_ 0 
Aoo~ + 2/oz~ < 0 

Aoo2 + 2/oz2 + Ao~ Aoo2 + 2/oz2 _> 0 
Ag2 = Ao ~ Aoo2 + 2 lo z2 < O 

where/g is the length of vocal cord, and zl and z2 are the displacements in the opening 
direction of vocal cords. 

We synthesized vowels by this model with Ao, values of 0cm 2 to 0.06cm 2. Figure 11(a) 
shows an example of the area wave of Agl and Ao2 when Ag~ 2. 

Figures l l (b)  and (c) show the waveforms of the glottal volume velocity for the vowel 
/o / ,  where the Ag~ values are 0cm 2 and 0.06cm 2, respectively. 

By comparing the cases Ag~ 2 and A0o=0Cm 2, we can see that the glottal volume 
velocity, Ug, is not constant even when the upper or lower vocal folds are closed. The 
reason why it Occurs is that, as explained by Cranen et al.[8], there is an out-of-phase 
motion between the upper vocal cord and the lower vocal cord. 

Figure 12 shows the power spectra of the mouth radiation of the synthesized/a/ ,  in 
the cases without subglottal system (left) and with subglottal system (right). It is clearly 
seen that the spectra of the vowel with both the subglottal system and glottal leakage 
have some spectral dips due to zeros. In the region below lkHz, when A0o is 0.06cm 2, 
there are a few spectral dips not corresponding to the characteristics L / I ,  and V,~,b/I,. 
They must be caused by changed vibration of the vocal cords under the influence of the 
leakage area. Thus, when the area of incomplete closure, A0~ , is increased, the spectra 
and quality of sounds are varied considerably. 
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Figure 10. (a): Transfer function of a synthesis system with (solid curves) and without 
(broken curves) subglottal system for the vowel/a/, (b): frequency characteristics V,,b/I, 
with subglottal system for the vowel/a/. 

(b) Ags-O.06 (c) Ags=O.06 
( a )  "~ 5 5 Ag, Ag2 o~ ~) 
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Figure 11. (a): Waveforms of synthesized Aol and A02 when Ag, = 0.06cm 2, (b): glottal 
volume velocity U o for the vowel/a/without subglottal system, (c) U o with subglottal 
system. 
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Figure 12. Spectra of sound from the mouth for the synthesized vowel/a/;  left: without 
subglottal system, right: with subglottal system. 

4.  C O N C L U S I O N  

Observation has evidenced that the sounds radiated from the nostrils are unexpectedly 
large in most speech sounds. We proposed a speech production model to explain this fact 
by sound leak from the vocal tract to the nasal tract through the vibrating velum. The 
leakage sound is low-pass filtered by the closed and vibrating velum, then transferred 
to the nostrils and finally emitted from it. To produce a buzz bar of voiced plosives, we 
introduced an inflation of the volume of the pharynx cavity, which allows a limited amount 
of air flow and results in glottis vibration. This flow goes through the nasal tract and is 
emitted from the nostrils before the mouth is opened. Synthesized voices/a/ ,  / i /  and 
/bi/ ,  for example, were evaluated to be quite similar to natural speech. It is also shown 
that the subglottal system affects the sound quality whenever an incomplete vocal-cords 
closure occurs. 
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On the  A n a l y s i s  o f  P r e d i c t i v e  D a t a  such  as S p e e c h  

by  a Class  o f  Single  Layer C o n n e c t i o n i s t  M o d e l s  

Frank Fallside 

Cambridge University Engineering Department 
Trumpingdon Street, Cambridge CB2 1PZ, UK 

A b s t r a c t  

The class of single layer connectionist models analysed is 

L 

t r k =  ~ wiyk- i ;  wo = 1 
i--0 

Ok = f(ttk) 

where the non-linearity includes the logistic function ~ tr~ commonly used in error back 
N 

propagation analysis. In this {yk} is the input data, the weights, the nett input to the 
non-linearity and the output of the connectionist model. It is shown that when the input 
data can be modelled by a linear predictive or autoregressive process, with 

p 

ej = E aiyJ-i; ao = 1 
i -0  

a solution exists for the weights which minimises the cost function and hence an output 
error cost function. This establishes weight sets for linear predictive processes such as 
speech, leading in turn to sets of single layer connectionist models which provide a form 
of vector quantisation (VQ) analysis of speech. Examples are given of the analysis of 
speech and other data by the method and a comparison is made with the equivalent error 
back propagation analysis. 

1. INTRODUCTION 

Since the first application of linear predictive analysis to speech by Atal [1] its use has 
become widespread through the analysis of speech, for coding, recognition and synthe- 
sis; see for example successive Proceedings of the International Conference on Acoustics, 
Speech & Signal Processing (ICASSP). 

There has recently been an upsurge in interest in the analysis of pattern data by con- 
nectionist models/artificial neutral networks, see for example, Rumelhart & MacClelland 
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[2]. This has included the analysis of speech, e.g. [3], using the error-back-propagation 
algorithm. Most such studies preprocess speech into the frequency domain and employ 
spectral pattern data. 

It is of interest to study the direct analysis of speech, in the time domain, and this 
is the subject of the present paper. It is concerned mostly with the analysis of a class 
of single layer connectionist models, the relationship of the class to conventional linear 
predictive analysis and the relationship with the back propagation algorithm [2]. A few 
computational results are also given and some conclusions drawn on the application of 
the method to speech processing. 

The paper starts with a brief review of conventional linear predictive analysis. 

2 .  C O N V E N T I O N A L  L I N E A R  P R E D I C T I V E  A N A L Y S I S  

2 . 1 .  L i n e a r  P r e d i c t i v e  ( l p )  A n a l y s i s  

In the conventional lp analysis of a data sequence {yi}, and the general sample yi is 
estimated as ~i a linear combination of p past samples, the observations, see Figure 1, 

p 

~, = - ~ a j y ,_ j  (1) 
j = l  

Then the estimation error ei is given by 

e, = y , -  (2) 
p 

E ajYi-J (3) 
jffiO 

with ao = 1. To derive the lp coefficients, the sum of errors squared summed over some 
data length 

N~ 
2 E = ~ e, (4) 

NI 

is minimised with respect to the coefficients a l , . . . ,  ap. This can be done by setting partial 
derivatives of E to zero or by using the orthogonality principle. Following the latter, via 
Parsons [4] we can write the sequence of estimation errors as 

er = Yr q" a l Yr_ l 

e2 = Y2 + a l y l  

el = Yl + alyo 

+ a2yr-2 + "'" + apyr-p  

+ a2yo + "" + apy2_:, 
+ a2y_~ + . . .  + apy~_p 

(5) 

E = e T e  (7) 

or matrix in form 
e = y + X a  (6) 

Here we have reversed the normal order of the elements in the vectors, for convenience 
later, it has no effect on the results We now wish to find the conditions under which a 
minimises the errors squared summed over the data, E, with 
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where (T) denoted transpose. Consider any other weight vector b with resulting error 
vector f .  Now 

y = y + X b  (8) 
= e 4- X ( b - -  a )  (9) 

so 

~T~ : [e 4- X ( b  -- a)]T[e 4- X ( b - -  a)] 

-~ eTe  4- e T X ( b - -  a) 4- (b -- a ) T X T e  4- [ X ( b  -- a ) ] T [ X ( b - -  a)] (10) 

Now under the condition 

eqn (1 O) yields 

X T e  -- X T ( y  4- X a )  -- 0 (11) 

~T~ : e Te 4- I X ( b  -- a)l 2 

~_ eTe (12) 

with equality only for b = a. 
Thus under the condition (11), that e T x  ~- O, in the filter of eqn (3) each error el is 

required to be orthogonal to the observations y(i - 1), y(i  - 2) , . . . ,  y(i - p). 
Eqn (11) gives the normal equations 

X T X a  ---- - - X T y  (13) 

with the minimum cost function 
Emin - eTy  (14) 

as p simultaneous linear equation in a~. These can be solved in broadly one of two ways, 
depending on the limits N1 and N2. If N1 --* oo, N2 ~ co and the data is windowed such 
that it is only non-zero over N points, there results the autocorrelation analysis, and if 
N1 - 0 and N2 = N - 1 there results the covariance analysis [4]. 

2 . 2 .  S t r u c t u r e  o f  t h e  l p  F i l t e r  

The lp filter of eqn (3) 

y~ _ 1 (15) 
ei 1 + al z -1 + ' "  4- Aapz-P 

is essentially sequential or serial. Linear predictive analysis using the normal equations 
(13) is essentially a 'block' analysis using the entire data set N or can be sequential or 
serial in the PARCOR analysis [4] or variants, which take in one sample yi at a time and 
update the analysis of a. 

The structure of the analysis is shown in Figure l(b) where a (p4-1) point filter window 
is moved incremently along the N point data set to establish the N errors {ei}. 
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Figure 1. Linear prediction analysis (1)estimation (after Parsons(4)) (b) estimation error 
and observations. 

3.  A N A L Y S I S  B Y  A S I N G L E - L A Y E R  C O N N E C T I O N I S T  M O D E  

3 . 1 .  G e n e r a l  

The model to be considered is shown in Figure 2. At this stage it is linear and has an 
(L + 1) column weight vector W, with w0 = 1. For convenience we will also write 

W - [1 wl w 2 . . .  tOL] T 
= [1 w] T (16) 

For an (L + 1) column input vector 

yk-"  [yk Yk-1 Yk-2 . . .  Yk-L] T (17) 

the output model for the k-th window of data is 

irk = y T w  

= y k + z w  

where z is an L row vector {yk-1,. . . ,  Yh-L} of observations. 

3.2 .  L i n e a r  P r e d i c t i v e  A n a l y s i s  o f  D a t a  

Suppose we apply a data set {yi } of length N, to the network to form k and increment 
the data by 1 to form each new analysis frame, then 

min 0 "TO" = min ~ o~, (19) 
t o  t o  N 

= (y  + z w ) T ( y  + Z w )  
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Figure 2. Single layer connectionist model. 
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carries out a linear predictive analysis of the data, as in Section 2, with p = L l p  
coefficients. (We might note that if the complete data set y is windowed, the w would 
be those of the autocorrelation analysis and if it was not, and we made N + L samples 
available they would be those of the covariance analysis). 

The solution can also be obtained by a steepest descent or back propagation algorithm 
[2] with weight changes 

Awl = --r/crkyk_i 

Equally if the network has a non-linearity with 

(20) 

Ok = f(~rk) (21) 

then if the non-linearity is monotonic increasing and differentiable the weight changes 
can again be calculated. For example for the logistic function 

1 
f(o') = 1 + e -~ (22) 

The appropriate criterion is 

and 

z -  

1 
A w ,  = --r t(~ -- Ok)Ok(1  -- O k ) y k - i  (23) 

3.3. Analysis  of  Linear Predict ive  Data  

We now address a more general problem, where the data {yi} is known to represent 
a linear predictive, or autoregressive process with p < L. In other words where the 
connectionist model or filter is longer than the linear predictive filter which models the 
data. Such an example is speech, where it is known for example that an lp filter with 
p = 10 accurately models the data, and which might apply to a connectionist model with 
100 input nodes. 

As before the connectionist model of Figure 2 has 

r = Yk + Z w  

Now the Yi obey a linear predictive process with 

(24) 

ei = Yi + z a  

as in Section 2, or for the whole data set {y i} 

e =  y +  X a  

(25) 

(26) 
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As a result k, the minimisation min T and w are constrained. Since the data y can be 
modelled by an lp filter, let us look for a solution to the minimisation problem with 

to = IL + a a  (27) 

where 
a = [al . . .  ap] T (28) 

and where I L  is a unit L column vector and is a constant L x p matrix. As a result 
the output of the network is 

~k = Yk + z l L  + z a a  

= y T I L +  1 + z a a  

(29) 

(30) 

where yk is the L + 1 column vector of inputs to the net and IL+I is a unit L + 1 
column vector, and the vector of outputs for all the data {yi} is 

~r = y T I L +  1 + Z a a  

We now set up a sum of squares cost function 

(31) 

o'To " = ( y T I L .  1 -4- Z a a ) T ( y T I L + l  + Z a a )  (32) 

and seek the condition on that this is a minimum. Proceeding as in Section 2, let and 
suppose the correspondingly cost function is T .  Then from (32), 

o T o  = ( y T I L = I  + Z ~ a ) T ( y T I L + I  + Z / J a )  (33) 

= (o" + Z( fJ  - e t )a )Y(o  �9 + Z( / J  - or)a) (34) 
= o'To �9 q- o ' r z ( / ~  -- ot)a + a T ( ~  T -- o t T ) Z T o  �9 (35) 

+l(- + 

Now under the condition 

~ T z  = 0 (36) 

o T o  ___~ o.To..~. [O"- Z(~- -o t )a l  2 (37) 

>_ r (38) 

and equality holds only under .  Thus the condition (36) is the condition for minimisa- 
tion, that is orthogonal to Z. 
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3.4.  A Class  o f  Connec t ion i s t  Models  

We now seek out a part icular minimisation such tha t  is dependent  on e alone. Return- 
ing to the ou tpu t  of the network 

O" k = Y k  T I L + I  + Z a a  (39) 

o r  

o" k = [ Y k Y k - ~  . . .  Y k - L ] I L + I  

~11 ~12 . - . ~ l p  a l  

+ [ Y k Y k - l  . . .  Yk -L]  a21 a22 . . .  a2p a2 (40) 
: ".. : �9 

Ot L1 OiL2 . . .  OtL p a p 

Now since the connectionist filter is (L + 1) wide and the lp filter has p observations, 
there can be m = (L + 1) - p estimates within the connectionist filter. Thus  

ek 

e k - i  

O" k ~ e k - m + l  

Y k - ~  

Y k - L  

I L + I  --  - -  

0 
I L + I  + z a a  ( 4 1 )  

We now seek out the conditions on a that  #k is a function of the m vector e,~. Since 
the second and third terms in eqn (41) are functions of a then the last p elements of IL+1 

must be zero to null the y k - j  elements in the first te rm and we will describe the result as 
I L + I ,  P, v iz .  

Hence also 

Thus eqn (41) becomes 

I L + I  - -  I L + l , p  ( 4 2 )  

w = I L , p  + a a  ( 4 3 )  

O'k = e T I m  + z o t a -  ( z a ) T I , ~  (44) 

where I is a unit m column vector�9 
The condition sought is thus 

z a a  --  a T z T.Im - -  0 (45) 

o r  
Z a - - I T z  = 0  (46) 
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Now 

I,r~Tz 

P ~ 

r i...i ...... o1 .1 
1 ""... 

= , ~ '~ - .1 .  1 / 
L o .......... 

Z~m 

(47) 

(48)  

Hence the condition is a = S~, and so 

--  IL,p  + S m a  

This gives a solution for w which makes k a function of e,~ alone, in fact 

ak = e T lm 
m--1 

(49) 

= ( 5 0 )  
j=O 

The est imation error of the net, a k, consists of the sum of the m lp est imation errors 
from the L observations, as shown in Figure 3. 

observat ions 

k 

Figure 3. Est imation error and observations. 

3 . 5 .  M i n i m i s a t i o n  o f  C o s t  F u n c t i o n s  b y  t h e  C l a s s  

The  solution for w given in the previous section makes k a function of em alone. 
We now increment the da ta  {yi} through the network and set up a cost function. The  
value of the increment affects the cost function. For example with L = 6, p - 2, there 
are rn = L + 1 - p = 5 estimates in each window of data.  Accordingly if the da ta  is 
incremented by 1 we form sets of inputs, say 

aN = eN + eN-~ + eN-2 + . . .  + eN-4 
a N - 1  = e N - 1  + e N - 2  + . . .  + e N - 4  + e N - S  (51) 
etc. 

Then on setting up he cost function aTa ,  terms such as djej appear  with dj ~ 1. 
Choosing m as the increment it is seen that  dj = 1 and 

--. . . . . . .  )2 ara  (eN + + eN_m+l) 2 + (eN_~ + + eN-2m+~ + . . .  (52) 

since 



92 

o ] 
~r - I T e (53) 

o 
Without  pursuing the minimisation completely here we notice that  if the est imation errors 
are uncorrelated, if 

< e, ej > -  O; i ~ j (54) 

then the cost function 

= min O "TO" (55) 
Q 

---* rrdn e T e (56) 
G 

of Subsection 2.1. In other words if the est imation errors are uncorrelated, the minimi- 
sation or training of the connectionist model establishes the same coefficients a as does 
conventional lp analysis. 

It is well known that  for speech the estimation errors are not correlated but  tha t  the 
conventional lp analysis produces a useful parameterisat ion of speech and we might  expect 
the same for the connectionist analysis. 

3 . 6 .  P r o p e r t i e s  o f  t h e  C l a s s  

Some of these are best seen by example. Take the case L = 6 as shown in Figure 4 (a) 
and assume p - 2. Therefore the number of estimates in a connectionist frame of da ta  is 
m - L + l - p - 5 .  Hence 

r = ek + ek-1 + ek-2 + ek-s  + ek_4 

1 0 

1 1 

1 1 (58) 
IL ,p  --  1 , S m  - 1 

0 1 

0 1 

W "- IL ,p  + ,.qm[ala2] T (59) 

wl  I 

w2 1 

ws  = I 

w4 1 

w5 0 

we  0 

We note three features of the net 

al 1 + al 
al + a2 1 + a l  + a 2  

+ a l  -}- a2 = 1 + al + a2 (60) 
al + a2 1 + al + a2 
al + a2 al + a2 

a2 a2 
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(i) If we redraw the example net of Figure 4 (a) as in Figure 4 (b) we can  see how it is 
incorporating the constraints 

ei = Yi + aiyi-~ + a2yi-2 (61) 

and forming the output as the sum of m estimation errors e as a result, in 

O'k = ek -t- ek-1  + ek -2  4" ek -3  + ek_4 (62) 

(ii) A feature of the weight values is that they are a function of the two variables and 
the constant in [1ala2] T and that L + I - 2p of the weights from wp to WL_p have 
the same value of 

p 

wi = E aj; a 0 -- 1, p <_ i < L - p  (63) 
j r 0  

(iii) For a data  set of say N points, the first network window is (yl, Y2, ..YT), the second 
window, shifted along m = 5 points (ye, yT, ..y12) and so on, thus 

J -- (e3 + e4 + es + e6 + eT) 2 + (es + e9 + elo + el l  + e12)2 + . . .  

+(eN-4 + . . .  + eN-1 + eN)  2 

and if the ei are uncorrelated then 

J --, E = e~ + e~ + . . .  + e~v 

(64) 

(65) 

3 . 7 .  A l t e r n a t i v e  F o r m  o f  N e t w o r k  

Because of the form of the solution for the weights 

or viewed in another way, since 

Iv -- IL,p 4" S m a  

Ts 
Ck ---- I m  m 

= Yk "1" a l Y k - I  + a2Yk-2 

"1" Yk - I  "4" a l Y k - 2  -1" a2Yk-3 

-F Yk-L+p -F a l y k - L + p - I  -~ a2yk -n+p-2  -F " '"  -1" a p y k - L  

(66) 

+ �9149  + apyk_p 

+ -'-  + apyk-p-1 (67) 

r = Y k  + a IYk-1  + a2Yk-2 4- % Y k - p  (68) 
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k 

/ al  !1 

Yk-6 Yk 
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I (b) 

Figure 4. Examples L=6, p=2 (a) single layer model (b) single layer model with expanded 
weight values. 
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where 

and 

Yk = (Yk + Yk-1 + " "  + Yk-L+n) 
T 

= I m y  k (69) 

= (,, + ,,_, + . . .  + (70) 
This linear transformation of yi defines a new filter and connectionist model such as 

shown in Figure 5 for the L = 6, p = 2 case with 

Yk = (Yk + Yk-1 + Yk-2 + Yk-3 + Yk-4) (71) 

and 

= + + + ,,_, + ,,_,) 

This form of filter, eqn (67), can be solved for min J directly by the linear predictive 
analysis of Section 2. 

Again it can also be computed by steepest descent with 

Aa~ = --t/trkYk_~ (73) 

We notice that  if the e~ are uncorrelated, < eiej > =  0; i # j then 

J ~ e Te  (74) 

Then again the alternative form of the network solves the conventional |p problem, if 
the estimation errors are uncorre|ated. 

4 .  R E S U L T S  

A few preliminary results are now given. These are based on the two speech waveforms 
shown in Figure 6 (a), for the fricative SH and (b) for the voiced XX. 

4 . 1 .  Weights 
Results for the weights a for the two single layer connectionist models, which minimise 

J ,  for the two sounds given in Table 1. These were evaluated by an lp analysis of the 
alternative linear form of network of Subsection 3.7 for N - 255, p - 10 and values 
m - 1,2,10 corresponding to L - 9,10,19. In each case the Yk vectors of eqn (68) were 
Hamming windowed and the speech data was differenced. 

It can be seen that  the weight vectors for each sound, which would be constant if the 
e were correlated, are not particularly constant. Also we would expect them to be more 
constant in the case of the fricative SH, than the varied sound XX, since in the former 
case the excitation is less correlated. 

However it is well known that the coefficients a are sensitive to the excitation even in 
the m = 1, lp case and a strict constancy cannot be expected as a result. Also a rather 
longer dataset would be needed for the lack of correlation of e to make itself felt. 
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SH 

XX 

Table 1. Weight vectors a for the two waveforms. 

m 1 2 10 

a[0] 1.0(0X)e+00 1.00(~-+00 1 . ~ - + 0 0  
a[ 1 ] 1.9182e+00 1 .0612e+00 9.5530e-01 
a[2] 3.1613e+00 2.2368e+00 1.2481 e+00 
a[3] 3.6465e+00 1.7159e+00 6.5549e-01 
a[4] 3.3922e+00 1.8578r - 1.4257e-02 
a[5] 2.4098e+00 7 .7389e-01  -6.2322e-01 
a[6"] 1.4004e+00 6 .3805e-01  -5.4530e-01 
a[7] 6.1027e-01 4.7522e-02 -1.6082e-01 
a[8] 2.6004e-01 1 .7009e -01  1.5763e-01 
a[9] 8.8384e-02 8.7972e-03 2.0119e-01 
a[10] 8.1398e-02 7.3252e-02 3.4179e-01 

a[0]  1 .0000e+00 1.0000e+(X) 1.0000e+00 
a[1]  -5.7751r -1.3096e-01 -1.4638r 
a[2]  -2.7614e-02 9.9194e-01 4.7755e-01 
a [3 ]  1.3903r -6.1721e-01 1.2726e-01 
a [4]  5 .8045r  1.0194e+~ 7.3267r 
a[5]  -4.8825e-01 -1.1269e+00 -1.0681e+00 
a[6"J 1 .2586r  7.7592e-01 1.2313r 
a[7] 1 .7913e-01 -2.1720<:-01 4.2442e-01 
a[8] 7 .2381r  1 .1211r  3.6772e-02 
a[9]  -1.7274e-01 -5.1237e-02 -1.4219e-01 
a[10] 4 .9896e-01 2 . 6 4 6 1 r  7.2076e-02 

Table 2. Normalised output cost functions J~. 

m 1 2 10 

SH net input SH 2.9233r 1.6996e-02 3.3537r 
SH net input XX 3.1062e+01 1.7694e+01 7.1154<:+00 

XX net input XX 1.6661c-01 3.3856e-02 1.1707e-02 
XX net input SH 1.0611c+(X) 6.2910e-01 2.7708r 
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=1 
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Y k-6 Y k-5 Y k-4 Y k-3 y k-2 Y k-1 Yk 

Figure 5. Alternative form of network. 

4 . 2 .  C o s t  F u n c t i o n s  

A more practical test of the value of the class is how well they classify different sounds. 
This is investigated here in a preliminary way by computing the output cost functions 
and the results are given in Table 2. Here, using the values of a shown in Table 1 above, 
the value of the normalised output cost function J for the SH networks with input SH and 
then input XX are given for ra = 1,2,10 and then similarly for the XX networks. In each 
case the alternative form of networks was used, the Yk vectors were Hamming windowed, 
the speech data was differenced and J '  = J/(energy of Yk data). 

We see that for this limited set of data the nets are performing a useful classification of 
the two sounds. Also that where a net has its 'own' sound as input J '  is broadly constant 
as would be expected from Subsection 3.6. It would be precisely constant if the estimation 
errors were uncorrelated. 

These results are perhaps the most practical attributes of the class, suggesting that 
a form of connectionist vector quantisation (CVQ) structure as shown in Figure 7 is 
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(b) 

Figure 6. Speech data (a) SH (b) XX. 
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Figure 7. Sets of nets for connectionist vector quantisation (CVQ) classification. 

possible, where a set of connectionist models of the type studied are trained to span an 
appropriate region of a space, analogous to conventional VQ structures [5]. The codebook 
entry for the current speech data is then specified by the network ON,,,, with the lowest 
output cost function. Results for this will be published later. 

5.  C O N C L U S I O N S  

The paper has concentrated on the analysis of speech by connectionist models directly 
in the time domain, rather than in the frequency domain and including the constraint 
that the input speech can be modelled by a linear predictive process. 

It has focussed on a class of networks where the order p of the linear predictive process 
is specified and produced an analytical solution for the weights of this class to minimise 
the network cost function. It has shown that when the estimation errors are uncorrelated 
this solution is the same as that of conventional lp analysis. The class chosen forces the 
analysis to be pth order, the effect of varying p for given data to establish global minima 
has not been explored in this paper. 

The few preliminary results given show that the nature of speech, with its correlated 
excitation mitigates against the weight values of the class corresponding exactly to the 
conventional lp coefficients, as predicted by the theory. However as in the case of con- 
ventional lp analysis, good classification of sounds has been indicated by preliminary 
results and this in turn has suggested a form of connectionist vector quantisation (CVQ) 
structure. 

Finally theweight values of the class exhibit an interesting uniformity, which specula- 
tively might have a physiological analogue. 
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Abstract 

An optimal statistical method to recognize phonemes in continuous speech is discussed. 
The novelty of this method is the evaluation of the effectiveness of acoustic features in 
each acoustic level using the criterion of mutual information between acoustic feature 
vectors and phoneme labels assigned to speech wave. In the proposed method for phoneme 
recognition, the power and its variational pattern, the LPC Mel-Cepstrum and its pattern 
of temporal change are adopted as the acoustic features. Multi-level clustering is suitable 
to discriminate phonemes by detecting the most reliable features in that context and using 
on effective combination of the various acoustic characteristics. 

I. INTRODUCTION 

In order to construct a large-vocabulary continuous speech recognition system, it is 
very important to develop a highly reliable phoneme recognizer. 

Phoneme characteristics which are reliable enough for phoneme discrimination, do not 
necessarily correspond to the acoustic features obtained by short-time analysis of a frame. 
Therefore the temporal pattern of features over a suitable length for the features should 
be considered and the various kinds of contextual effects should be organized as compact 
as possible to classify phonemes. 

The proposed method is completely statistical, relying on the traditional clustering 
method. However, in this direction of approach, recently many new trials have been 
performed to perform clustering of the time frequency pattern of speech waves considering 
a large time span or more complex context, the speciality of our method is to do clustering 
based on the mutual information criterion. 
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2. C L U S T E R I N G  A N A L Y S I S  

2 . 1 .  A c o u s t i c  A n a l y s i s  

The total system is shown in Figure 1. One part is the Multi-level clustering of acoustic 
features which is optimized to give the maximum information characterizing the phonetic 
nature in a frame unit. The second part is phoneme recognition by accumulating the 
probability obtained for each frame. 

The speech database consists of 100 city names uttered twice by 12 male speakers, 
and the reference data which forms each codebook and phoneme dictionary is the first 
utterance of 6 speakers (group A). The second utterance of group A is used as the test 
data. And, further, the data uttered by the other 6 speakers (group B) is used in the 
speaker independent recognition test. The sampling frequency is 12.5kHz. The frame 
length is 20ms. and each frame is analyzed using 10ms intervals. Input speech is pre- 
emphasized by a differential filter and a Hamming window is applied. 

Level 1 Coding of the power-change pattern that shows the power pattern of the speech 
waves including the neighboring frames, the power pattern is vector-quantized using 
the optimal code book. this code is effective in classifying each frame into several 
groups which reduce the entropy of phonemic labels and makes the classification in 
the following level easier. 

Level 2 The LPC Mel-Cepstral coefficients are vector-quantized, from which the code 
book is made for each group classified by the power code of level 1. 

Level 3 The LPC Mel-Cepstrum changes are extracted using the regression coefficient 
of each order from neighboring frames. 

Level 4 The power code of each frame is concatenated to a group of power code appear- 
ance sequence in the neighboring frames. This means that new code is generated 
considering the dynamic features. 

The Phoneme label of each frame can be determined by combination of these four codes. 
The phoneme dictionary contains the conditional probability of the phonemes after the 
above four codes are given, and the conditional entropy of each code. To determine the 
optimal phoneme, the most important point is that an effective combination of the feature 
set to discriminate phonemes is very critically dependent on the context and different for 
every utterance even if the context seems to be the same. Therefore, a complicated 
combination of the codes of neighboring frames should be carefully examined in this 
process. 

2.2. Integration of C l u s t e r s  B a s e d  o n  M u t u a l  I n f o r m a t i o n  

The set of phonetic labels is denoted by X and the set of acoustic features by Y. If the 
code y~ E Y(I = 1, . . .  ,n) is obtained and the label xk E X ( k  = 1, . . .  ,m)  is observed, the 
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conditional probability P(xklyt) can be defined. The conditional entropy of X,  H(XIyt) 
is defined as 

F/$ 

H(XIyt) = ~ -P(xkly,)  �9 log P(xklyt). (1) 
k=-I 

and the mutual information I(X; Y) between acoustic feature and the phoneme label is 
calculated from the entropies H(X)  and H(XIY).  

There often occur several redundant clusters which represent the same categories of 
phonemes, and the separation of those clusters is useless for the phoneme recognition. 
Therefore, analyzing phonetic characteristics of each duster in detail, several clusters 
can be integrated. The following merging algorithm decreases the number of centroids, 
maintaining the value of mutual information between the class of acoustic feature and the 
phonemic label. 

s tep 1: f o r i = l t o n  
for k = i +  1 t o n  

P(Xlu, k) = P(Xlu,)+ P(Xluk) 
I ,k(xlg)  - H ( X ) -  H,k(Xlg) 

s tep 2: find i, k maximizing Iik(XlY ) (i = k = 1 , . . . , n  : i # k) 
P(Xly~k) = P(Xly~)+ P(Xlyk) 
n = n -  1 - ,  step 1 

n : the number of centroids 
P(XlYik) : conditional probability 
I~k : mutual information 
H~k(XIY) : conditional entropy when clusters i and k are merged 

2.3. P h o n e m e  Informat ion  in the  Power  

Figure 2 shows the result of vector quantization using the level 1 feature. In the first 
level, the role of the clustering is to make a rough classification of the phoneme groups. 
Then, in this level, phoneme categories which have the same characteristics are gathered 
into a smaller member of groups. The more the number of centroids increases, the more 
the mutual information and recognition rates increase, the recognition rate saturates at 
N = 128 when the simple clustering technique is applied (solid line). 

Starting from this situation the above merging algorithm is applied. The dashed line 
shows the result. The ability to classify phonemes is not very different for N = 16 and 
N = 128, and the performation reaches about 1.0 bit. In the following experiment, this 
set of code is adopted as level 1. 

3. C L U S T E R I N G  U S I N G  P O W E R  C O D E  S E Q U E N C E  

The power code represents the pattern of power change over 7 frames. However, we 
can find further contextual information in sequence of power code, since there are strong 
correlations or very frequent patterns in the consecutive power codes. 
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To extract such contextual characteristics, we propose an algorithm which introduces 
new clusters to maximize the mutual information using the combined pattern of power 
codes (p-code). We define a block of power codes If the same code continues for several 
frames, those frames will be aggregated into one block code (b-code). An example is 
shown in Figure 3. The following sequence which consists of five blocks (both the previous 
and succeeding two blocks of the analyzed frame) is considered, where the block code is 
exp ressed as C (h). 

Code ~ u e n ~  : (C(h - 2), C(h - 1), C(h), C(h + 1), C(h + 2)). 

If we select the position (k = 2 , 1 , - 1 , - 2 )  and the block code of the position j,  a new 
cluster can be generated. For example, (*,*,5,9,*) means that we use the cluster C(h) = 5 
and consider the class where the block code which follows No.5 is No.9. 

If j and k are prescribed, the probability of frame label x for the cluster i (code yi) is 
supposed to be Pjk(z[yi), the difference of the probability is defined by; 

AP(xly,) = PCxlY~)- Pjk(xly,). 

i : the cluster which should be divided ( 1 , . . . , n ) .  
j �9 the position of block code (2, 1, -1,-2).  
k : the block code prescribed at k ( 1 , . . . , m ) .  
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Figure 3. Acoustic features and block codes. 

The mutual information Iijk(XlY) given by the combination of i , j ,  k can be calculated 
using AP(XIY/). Therefore, if a set of i , j ,  k is found to maximize the mutual information, 
we select it as a new cluster. 

Example �9 (*, *, *, *), C(h) = 5 
with k = 1,j  = 6'3 
separated new cluster (*, C3, Cs, *, *) 
residual cluster (*, Cs, C5, *, *) 

After the global classification explained in section 2, still large ambiguity remains and 
the entropy is about 3.0 bit. For example, the content of cluster No.5 is the central part 
of vowel sounds but 10% of them comes from semi vowels. 

If we use the block codes is adopted as level 4. the number of clusters of level 4 is 256. 

4 .  R E C O G N I T I O N  E X P E R I M E N T  

To extract a certain phoneme characteristics of one frame, it is necessary to use in- 
formation from the adjacent frames. To make optimal phoneme decision depending on 
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neighboring frames, we consider the weighing the probability by the conditional entropy 
of each code. Then the probability based on the effective feature is emphasized by the 
lower entropy. 

M N 

C(x,)= 1-I I'IP(x, lYJk)/II(XlYik) (2) 
j = - M  k = l  

2 M + l  
N 
Yik 
P(xilVjk) 
n(xlY~k) 
C'(~) 

: the number of considered frames. 
: the number of features for recognition. 
�9 the code of features j at the frame preceding or succeeding j.  
: the conditional probability�9 
: the conditional entropy. 
: the score of frame label. 

The recognition rate at the frame level was 92.1% and 81.6% for vowels and all 
phonemes, respectively. The case of M - 7 gave the highest score. If weighing by 
the conditional entropy was not applied, the recognition rate decreased about 8% and 
10%, respectively. To obtain the final phoneme sequence, the phoneme segments should 
be determined. In the next experiment of phoneme recognition, we provide the segment 
marks manually. The most suitable phoneme sequences can be obtained by calculating 
the score of each phoneme in each segment from the results of the frame label output. 

The phoneme recognition rate varies according to the level I codes and if the difference 
of the scores between the 1st and 2nd candidates is larger, the result is more reliable. 
Therefore, first we select the phoneme segments where the score is high enough and a 
correct phoneme decision can be done, and under the phoneme context assumption that 
those phoneme segments are actually existing, other segments are recognized. 

Figure 4 shows a comparison of the recognition rate with and without considering 
the phoneme context. The recognition rate for consonants improves by considering the 
context, which is given usually by the preceding and following vowels. The recognition 
rates of vowels, all phonemes, and consonants were 94.8%, 90.0% and 86.9% for the second 
set of the first 6 speakers and in the speaker independent case 91.8%, 85.9% and 82.0%, 
respectively. 

5. S P E A K E R  A D A P T A T I O N  

5.1. Expression of Speaker Individuality 

The Phoneme recognition rate in the speaker independent case (group B) is consid- 
erably lower than that in the speaker dependent case (group A). Therefore, in order to 
improve the performance, a speaker adaptation method should be introduced there have 
been several researches on speaker adaptation in a vector quantization environment. In 
this paper, that one is considered with the same framework of the multi-level clustering 
scheme. The conditional probabilities stored in the phoneme dictionary must be speaker 
characteristics is a rather dimcult task, modification of the centroid vectors is attempted. 
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At first, the mean spectral differences AV/for the average vectors of the 5 vowels V/(i 
= 1, 2, 3, 4, 5) is calculated for a new speaker K. 

A vector S(K) = {AV1,... ,AVs} or its reduced expression by principal component 
analysis can represent the speaker individuality. For the calculation of AV/, utterance of 
10 words is used. 

Figure 5 shows the separability of speakers by S(K), that is the minimum ratio of 
two distances, one is with the talker K himself and the other is obtained between K and 
another talker nearest to K. 

The recognition rate of vowels when the individual dictionary is changed to is shown 
if Figure 6. The recognition date is inversely proportional to the distance IS(K) - S(J)I. 
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Figure 7. (a) Mutual information given by the level 2 feature. 

Figure 7. (b) Improvement of the recognition rate by the separation of dictionary. 
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5 . 2 .  A d a p t i o n  P r o c e d u r e  

Each acoustic feature space is divided into No groups by the speaker individuality 
parameter. In the next experiment, three clusters Cu(i = a, b, c) in level 1 are subjected 
to speaker adaptation, in which the main part of the speech frames corresponding to the 
steady part, the ascending and the descending part of vowels are included. Therefore, for 
each cluster of Cu, No groups of clusters of Level 2 are constructed. 

The centroids of cluster C2j which is in the central part of the vowels are modified by 
the average value of the data coded to C2j in the learning phase. 

Figure 7(a) shows that the mutual information given by the level 2 codes increases 
by the separation of the codebook into No groups (N~ = 4). And the vowel recognition 
rate by the level 2 feature is shown Figure 7(b). It is seen that the mutual information 
that decides the category of the vowel can increase by separating the dictionary of level 2 
corresponding to the speaker. Therefore, it is shown that multilevel clustering can be also 
applied for speaker adaption by introducing another parameter which represents speaker 
individuality. 

6.  C O N C L U S I O N  

A new method to organize a hierarchical phoneme recognizer for continuous speech 
was presented. The high performance of the system is due to the effective hierarchical 
clustering of acoustic features based on the mutual information between the acoustic 
feature and the phoneme label. And also two considerations concerning the context, one 
is the power pattern and the other is the phonemic one, were verified to be very useful 
for phoneme recognition. 

And, further, the possibility for speaker adaptation was shown in the same frame work. 
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Abstract 

Conventional quantification theory and a new theory are applied to investigate the 
dependence of vowel spectra on the phoneme environment. Conventional quantification 
theory assumes that the influence of multiple categories can be expressed as a linear 
combination of that of the single categories. In the new method, the theory is modified to 
deal with cross-category factors. Using this method, the multiple correlation coefficients 
are improved by 6 . 7  - 9.1% compared with the conventional linear method and some 
nonlinear categorical factors which affect the vowel distribution became apparent. 

1. I N T R O D U C T I O N  

It is well known that the spectrum of a phoneme is influenced by the manner and the 
place of articulation around it. However, the quantitative relation with these effects is 
not clear. It is very important to reveal it. If the relation between phoneme environment 
and spectra can be modeled effectively, it becomes possible to adjust reference according 
to the context and a high-performance speech recognition system may be realized. As 
for synthesis by rules, it becomes possible to adjust the target spectra according to the 
context and a high quality may be obtained. 

In this paper, we apply quantification theory to this problem. However, conventional 
categorical factor analysis methods, such as quantification theory [1], assume that the 
influence of multiple categories can be expressed as a linear combination of that of the 
single categorise. This assumption makes it difncult to construct a strict model because 
there are so many nonlinear factors with contextual influence. For example, the influence 
of the next preceding sound highly depends on the preceding sound. These relations must 
be dealt with nonlinear model. 

In this paper, we propose a nonlinear categorical factor analysis method and apply this 
method to vowel data in word speech. In the following section, conventional quantification 
theory is surveyed briefly, and then, a modified quantification theory which can deal with 
nonlinear factors is proposed. In section 4, an outline of the experiments using this theory 
is presented. In section 5, the experimental results are described. 
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2. C O N V E N T I O N A L  Q U A N T I F I C A T I O N  T H E O R Y  

In conventional quantification theory, the criterion variable (variable to be modeled) 
zi(i  = 1, 2 , . . . ,  N), is represented by summation of dummy variables, ~k(J = 1, 2 , . . . ,  J; k = 
1, 2 , . . . ,  Kj) ,  with coefficients called category weight, wjk(j = 1, 2 , . . . ,  N; k = 1, 2 , . . . ,  Kj), 
where ~'k depends on whether the data z i belongs to the k-th category of the j - th  item 
or not (if that is true, ~k = 1, else, ~k - 0), and N, J and K j  are the number of sample 
data, item and category of ]-th item, respectively. 

z i - "~ + ~ ~ wjk" ~jk + ei" (1) 
j I, 

Here, item means the view point from which data will be formulated. For example, 
if we attempt to formulate the variation of the vowel spectra with the kind of preceding 
phoneme and kind of of succeeding phoneme, then 'preceding phoneme' and 'succeeding 
phoneme' are items. Category means the kind of preceding phoneme and the kind of 
succeeding phoneme in this case. The category weights represent the intensity of the 
influence of the categories. They are c~Iculated by the least-squares method (LSM). In 
this model, the influence of multiple categorical factors on the variation of a criterion 
variable is represented as a linear combination of the influences of all categorical factors. 

3. N O N L I N E A R  Q U A N T I F I C A T I O N  T H E O R Y  

In case that the influence of some category highly depends on some of the other cate- 
gories, it is impossible to express the categorical effect by a linear model, so it is necessary 
to consider nonlinear factors. To extend the model to involve cross-terms seems to be a 
simple solution of this problem, 

k j l#j k 

In this case, however, the number of parameter becomes too large compared with the 
number of data to be analyzed. The matrix which is used in the least-squares method 
tends to be singular, and, in most cases, the equation cannot be solved. Even if the 
equation can be solved fortunately, the result is not reliable. 

It is required to select only effective parameters and reduce the number of parameters 
in order to perform a reliable factor analysis. This problem can be formalized in the 
framework of the combinatorial optimization problem. Here, we propose two parameter 
selection methods, on the basis of the best first search and on an apprxoximation of this 
algorithm. 

Before illustrating the methods, we describe the definition of the terms, operational 
symbols, and formulation which are used in the k.algorithms. 

N �9 Sample number. 
K �9 Total dummy variable number. 

X 3 . ,  xN)} T Data sample to be modeled. = , . .  

s = { ( e l  e2  e3 . . . , e N ) } T  " Error vector. 

E �9 power of error vector. E = e y .  e 
c~ �9 ]-th dummy variable of sample z i. 
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Dummy variables are prepared for all categories and for all possible combinations of 
categories. They are numbered sequentially. For example, in the case that  there are two 
items and there are two categories for each item, we prepare four dummy variables, c l - c4 ,  
for the single terms d11, d12, d21, d22 and four dummy variables, c 5 -  cs, for the cross terms 
d l l .  d21, d l l -d22 ,  d12. d21, da2. d22 �9 

II : Universal set of dummy variables. 
tos : Selected dummy variable set. 
tON : ton = ~'~ --toS 
~ k ( ~ )  or ~(~;=) : mod~l  

z i = ~ +  ~ w j . c ~ + e  i. 
(jlcie~) 

The formulation Ak(to) is used in the case of weight estimation, Ak(to; w) is 
used in case of error calculation with estimated weights w. k indicates the 
number of parameters. 

w r ~ k ( ~ )  < x :  
Estimate the category weights w by LSM with a k-parameter model )~k(w) and 
data z. 

e = ,Xk(w; w) < =:  
Calculate the error vector with a k-parameter model Ak(w; w) and data =. 

Using the above symbolic notation, the algorithms of the nonlinear quantification mech- 
anisms are expressed as follows. 

N o n l i n e a r  m e t h o d  I N o n l i n e a r  m e t h o d  II  

~s = {}; 
tO N - -  ~; 
f o r k - l t o K  { 

for all cj E tON{ 
w ~ ~k(~s u {cj})  < =; 

= ~( , .~  u {~j}; w) < ~; 
E j  -- eT . e; 

3 = argminEj; 
add c 3 to ws; 
remove c~ from WN; 

} 

ws is the final dummy variable set; 
w is the final category weight vector; 

~ s  = {}; 
WN = fl; 
for k = 1 to  K { 

y = ~k-~(~s; to) < x 
for all cj E tON { 

E j  - eT . e; 

3 = argmin Ej; 
add c 3 to tos; 
remove c 3 from aN; 

} 

tos is the final dummy variable set; 
w ~ A K ( ~ s )  < x; 
w is the final category weight vector; 
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Method I is constructed on the basis of the strict best first search algorithm. In this 
method, many times ([size of ~N] times) a k-parameter estimation problem must be solved 
using LSM to find the k-th dummy variable, therefore, this method is computationally 
expensive. The method II is an approximation of method I. Since this method require 
only 1-parameter estimation, the calculation speed is much higher than for method I. 

4 .  E X P E R I M E N T S  

Experiments are done to investigate the context effect on the vowel spectra in the 
stationary parts using the linear model and the nonlinear model. The criterion variables 
and dummy variables used in the experiments are as follows. 

A .  C r i t e r i o n  v a r i a b l e s  

Vowel spectra in the stationary parts are used. They are selected from 5240 word 
tokens (ATR word data base) which are spoken by one speaker (speaker id.: MAU). 

Speech is sampled at 12kHz and quantized into 16bit. Then, 13th order selective 
LPC analysis is performed in the 0-3 kHz band. Then, 20th order Cepstral coefficients 
are analyzed. Then, the first three principal components are calculated for each vowel. 
(Namely, the different eigenvectors are obtained for each vowel.) The eigenvalues of 
principal components are shown in Table 1. Proportions and accumulated proportions 
of them are shown in Table 2. These three principal components are used as criterion 
variables. 

Table 1. Eigenvalue of each principal compoment. 
Eigenvalue 

1st 2nd 3rd 
a 0.1270 0.0453 0.0280 
i 0.1007 0.0618 0.0326 
u 0.2029 0.0886 0.0708 
e 0.1083 0.0418 0.0384 
o 0.1860 0.0580 0.0472 

Table 2. Proprtion and accumulated proportion of each principal component. 
Proportion (Accumulated proportion) 

1st 2nd 3rd 
46.8 (46.8) 16.7 (63.5) 10.3 (73.8) 
36.5 (36.5) 22.4 (59.0) 11.8 (70.8) 
41.4 (41.4) 18.1 (59.5) 14.4 (73.9) 
44.5 (44.5) 17.1 (61.6) 10.4 (72.0) 
46.1 (46.1) 14.4 (60.5) 11.7 (72.2) 
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B .  I t e m s  f o r  d u m m y  v a r i a b l e s  

(1) Linear model (conventional quantification theory): 
(1-1) cV model items: place of articulation of the preceding consonant, 

manner of articulation of the preceding consonant. 
total number of dummy variables: 7(i,u), 8(a,e,o). 

(1-2) vcV model items: (1-1) + 
kind of preceding vowel of the preceding consonant 

total number of dummy variables: 13(i,u),14(a,e,o). 
(1-3) cVc model items: (1-1) + 

place of articulation of the succeeding consonant, 
manner of articulation of the succeeding consonant. 

total number of dummy variables: 15(i,u),16(a,e,o) 
(1-4) Vc model items: place of articulation of the succeeding consonant, 

manner of articulation of the succeeding consonant. 
total number of dummy variables : 8. 

(1-5) Vcv model items: (1-4)q- 
kind of succeeding vowel of the succeeding consonant. 

total number of dummy variables : 16. 
(2) Nonlinear model (nonlinear quantification theory): 
(2-1) NL1 model items: (1-3) + 

(method I) kind of preceding vowel of the preceding consonant. 
total number of dummy variables : 16 

(2-2) NL2 model same as (2-1). 
(method II) 

C .  C a t e g o r i e s  f o r  d u m m y  v a r i a b l e s  

The categories for each item are shown in Table 3. 

5. E X P E R I M E N T A L  R E S U L T S  

Figure 1 shows the multiple correlation coefficients versus the different principal com- 
ponents for the case of NL1 model. As fo r /a / ,  / i / a n d / e / ,  good values are obtained 
for the first principal components. As for /u / ,  good values are obtained for the first and 
second principal components. As for /o/ ,  all values are not so good. These results show 
that the main parts of the distributions of the v o w e l s / a / , / i / , / u / ,  a n d / e / c a n  be ex- 
plained in terms of the phonemic context. As f o r / a / , / i / a n d / e / ,  only a one-dimensional 
distribution can be modeled, and as for /u / ,  a two-dimensional distribution can be mod- 
eled effectively. As for /o/ ,  some other factor must be more essential, so it is impossible 
to model the distribution using only the phonemic context. 

Figure 2 shows the multiple correlation coefficients for the different models. The values 
for the Vc model and the Vcv model are very low. This fact shows that it is impossible to 
model the vowel distribution without considering preceding sounds. For most vowels, the 
the value for the cVc model is the best of all linear models (1-1)-(1-5), the vcV model is 
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Table 3. Relations between items~ cate$ories and phonemes. 
Item Category Phoneme 
Place of articulation 

Manner of articulation 

Kind of vowel 

Labial p, b, m, w, f 
Alveolar t, d, n, r, ts, z, s 
Palatal k, g, j, ch, sh, h(i) 
Glottal h(a, e, o) 
Fricative s, sh, ts, ch, f, h, z 
Plosive p, t, k, b, d, g 
Sonorant j, w, r 
Nasal n, m 
/ a /  a 
/ i /  i 
/ u /  u 
/~ /  e 
/ o /  o 
IN/  N 
Word initial < 
Word final > 
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Figure 1. Multiple crrelation coeffients obtained using the NL1 model, versus the differnt 
principal components. 
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the second best, and cV model is the third. Only for the vowel/u/ ,  the value of the vcV 
model is better than that of the cVc model. As for /u / ,  the influence of the next preceding 
sound is more important than that of succeeding sounds. As compared to the cV model, 
the cVc model improves the values of the multiple correlation coefficients by 14.7, 11.1, 
4.1, 10.4 and 10.3% f o r / a / , / i / , / u / , / e / a n d / o / ,  respectively. The model vcV improves 
the values by only 5.1, 6.4, 7.4, 5.9 and 2.2% as compared to the cV model. These results 
show that it is impossible to improve the multiple correlation in the framework of a linear 
model except for the vowel/a/ .  While, as for the nonlinear models, they improve the 
values by 14.6 - 23.4% as compared to the cV model. These results show the effectiveness 
of considering nonlinear factors. The values for the NL2 model are comparable to those 
for the NL1 model. Only a slight difference can be seen between them. Since the NL1 
model is computationally very expensive, the NL2 model is the best of all models which 
are tested in these experiments. 

Figure 3 shows the category weights obtained using the NL1 model for the first principal 
components of the v o w e l s / a / a n d / u / .  In this figure, the color of the box indicates the 
sign : white for positive and black for negative. The size of the box corresponds to 
the absolute value. The diagonal entries in the figures indicate the category weights for 
corresponding categories and the other entries are the weights for the cross terms of two 
corresponding categories. From Figure 3 (a), it is found that /a / ' s  whose preceding or 
succeeding sound is palatal, are distributed far from other/a/ ' s .  As for /a / ,  any nonlinear 
factor is not essential. From Figure 3 (b), it is fond t h a t / u / ' s  with a succeeding palatal 
are distributed far from o ther /u / ' s .  In case that the next preceding sound is a front 
vowel (/i /  or /e/),  the distribution tends to be similar t o / u / ' s  with a succeeding palatal. 
However, this feature appears in only case that the preceding sound is sonorant. 

6. C O N C L U S I O N  

A nonlinear categorical factor analysis method is proposed aiming at investigation 
of the influence of the phonemic context on the variation of vowel spectra. Compared 
with the conventional linear model, the multiple correlation coemcients are significantly 
improved. 

In our nonlinear model, categories which contribute to reduce the deviation from the 
estimated target are selected automatically. Thus, it become possible to reveal some 
important categorical factors which affect vowel distribution. 
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Abstract 

The present study aims to develop a new model for the acoustic feature system for 
speech recognition by machines. The concept of acoustic features is modified and de- 
veloped from that of distinctive features. It is usual for each feature to have a single 
correlation with some physical parameter in a general theory of distinctive features. Our 
model is, however, characterized by the following properties. (i) Each level of phonemes, 
allophones, distinctive features, acoustic features, acoustic parameters, and physical pa- 
rameters is prepared. (ii) Every feature is related to some subset of the set which consists 
of the the limited number of the acoustic parameters. (iii) Some acoustic parameters can 
be extracted from statistical analysis and several acoustic features can be detected using 
neural networks. (iv) Acoustic parameters of each subset and the acoustic features are 
organized in a hierarchical structure. The acoustic feature in a higher node should be 
applied earlier than lower features. Previous findings as well as a new acoustic feature 
model are discussed in this paper. 

1. I N T R O D U C T I O N  

The purpose of our project is to develop an effective model for automatic speech 
recognition systems by machines. One of the main concerns of our research is to develop 
fundamental concepts for phonetic and phonemic decoding from speech signals. We have 
been engaged in this field focusing our interest on taking advantage of distinctive features 
(1-10). A new acoustic feature model was developed to address this item and the aim 
of this paper is to present a brief discussion of the nature of our model. A brief sketch 
of the total model is as follows. The levels of physical parameters, acoustic parameters, 
acoustic features, distinctive features, allophones, and phonemes were prepared for speech 
analysis and recognition. The physical parameters are extracted from speech signals first 
and are then transformed into acoustic parameters. The acoustic parameters are detected 
by consulting the articulatory and auditory mechanism. Acoustic features consist of the 
acoustic parameters. Linguistic information such as phonological rules are treated in 
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higher levels of the distinctive features, allophones, phonemes, etc. The relationships 
between these levels are illustrated in Figure 1. 

0 T H E  L E V E L S  O F  P H Y S I C A L  P A R A M E T E R S  A N D  A C O U S -  

T I C  P A R A M E T E R S  

Physical parameters are pure physical dements and are first extracted directly from 
speech signals without special phonetic knowledge. These parameters are fundamental 
elements such as the FFT spectrum, the LPC parameters, the Cepstrum coefficient, etc. 
On the other hand, acoustic parameters are rather abstract elements which are trans- 
formed from relevant physical parameters with phonetic knowledge by expert systems, 
neural networks, statistical analysis, etc. The acoustic parameters are organized in a 
multilayer structure by consulting the articulatory and auditory mechanism. 

For example, some acoustic parameters can be examined by discriminant analysis. 
Selections of physical parameters for reduction of the dimensionality are necessary. From 
the heuristic point of view, a too fine description of the spectrum is noisy and harmful 
for discrimination. This can be interpreted in the Cepstrum coefficient domain as that 
lower coefficients are useful but higher ordered coefficients are not. Also, in the time 
domain, the coefficients of the frame near the burst point change quickly, but those at the 
transitory part change slowly between adjacent frames; therefore the former need to be 
evaluated in greater detail than the latter, or less frames can be placed at the transitory 
part than at the burst point. 

0 T H E  L E V E L S  O F  A C O U S T I C  F E A T U R E S  A N D  D I S T I N C -  

T I V E  F E A T U R E S  

The concept of distinctive features stems from quite old days and it is possible to find a 
similar and parallel concept of distinctive features as nowadays used in early works of not 
only Western writers but also in Oriental literature. One of the most important and epoch- 
making works for distinctive features is, however, ascribed to Jakobson, Fant and Halle's 
"Preliminaries to Speech Analysis (hereinafter PSA)" (19,52). In the framework of PSA, 
distinctive features are defined in terms of the auditory aspect as well as the acoustic and 
articulatory aspect. Later, the auditory definitions are omitted in Jakobson and Halle's 
"Fundamentals of Language" (1956). The notion of distinctive features has had essential 
influence on the generative phonology. In the early works of generative phonologists, they 
adopted the distinctive features of PSA. Later, they revized the distinctive features in 
many respects. The standard notion of generative phonology is well described in Chomsky 
and Halle's "The Sound Pattern of English (hereinafter SPE)" (1968). In the framework 
of SPE, the distinctive features are mainly described from an articulatory point of view, 
and the same inclination has been maintained in current approaches. This, however, 
does not mean that the acoustic and auditory aspects have lesser importance, but rather 
that it was difficult to give an exact and precise description of the acoustic and auditory 
characteristics of distinctive features at that time. 
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Figure 1. A new acoustic feature model, proposed in this paper (a), and speech recognition 
system using the acoustic feature model (b). 
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With regard to the Jakobsonian feature systems, one of the most important principles 
is to reduce the number of distinctive features as much as possible, for instance by using 
the same features for vowels and consonants. We would like to take the position, however, 
that for more phonetically oriented studies, such as speech recognition, it is more effective 
to increase the number of features. Foot has already pointed out this problem with regard 
to speech recognition. (14) 

Distinctive features are constructed from articulatory, acoustic, and auditory features. 
Acoustic features consist of acoustic parameters and are organized in a hierarchical struc- 
ture by consulting the articulatory and auditory mechanism. The concept of acoustic 
features is modified and developed from that of distinctive features. One of the main 
purposes of the present study was to develop a new acoustic feature system for machine 
recognition. The acoustic aspect has much importance, as well as the articulatory and au- 
ditory aspect. Therefore, we decided to develop an acoustic feature system based mainly 
on the Jakobsonian framework rather than on the generative phonology framework, since 
Fant discussed and improved the acoustic definitions and gave discussions of the fun- 
damental problems of distinctive features in various articles. These acoustic features, 
however, are not defined as phonologically motivated features. Phonological information 
is treated at higher levels, such as the distinctive features, allophones, phonemes, etc. 
Therefore, the acoustic features are not directly dominated by phonemes in this model. 

Acoustic features are considered to be highly multidimensional vectors in acoustic 
space, not only in linear space but also in nonlinear space. We expect, at the present 
stage, that several acoustic features can be extracted using statistical analysis or neural 
networks. Once a sufficient number of examples is observed, the established statistical 
analysis automatically leads to the solution and the solution is a physical realization of the 
acoustic features. The only necessary thing in this process is to decide on the observation 
method and the object to obtain the acoustic features. 

For example, automatic detection of the feature [burst] can be obtained by means of 
artificial neural networks (ANN). ANN is supposed to have advantages over HMM for 
treating the temporal relationships among acoustic events because of a self-organizing 
mechanism. At first, a given number of input patterns, each of which indudes the burst 
point at a different point, should be presented to the network. The network is trained 
to discriminate between those patterns in which the burst point occurs in the left half of 
the pattern ("left") and those patterns including the burst point at the right half of the 
pattern ("right"). In order to generate the input patterns, the following two structures 
are defined: 

(1) Detection window (DW): this is the portion of the input speech wherein the search 
for the burst point is to be performed. This window is centered around the burst 
point. 

(2) Shifting window (SW): this is the portion of the input speech which will serve as 
input to the network at any one time. It has the structure of an input pattern. 

Each input pattern is obtained by one shift of the SW within the DW. Consequently, a 
number of shifted input patterns, p, equal to the length in number of the analysis frames 
of the DW minus the length of the SW can be obtained. The generation process for 
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the training patterns starts at frame p/2 of the DW and continues alternating between 
a right shift of the SW and a left shift of the SW until p patterns are produced. For 
the construction of the test patterns the process starts from the leftmost frame of the 
DW and continues by right shifts until p patterns are generated. During the detection 
process these patterns are fed one by one to the network after training and the output of 
the network is observed for every pattern. The feature [burst] is assumed to be detected 
when the output of the network switches from "right" to "left". The burst point is then 
in the first frame of the right half (m/2) of the pattern. In the case when the detection is 
in the exact frame, this pattern should be the input pattern number p/2. 

4 .  T H E  L E V E L S  O F  A L L O P H O N E S  A N D  P H O N E M E S  

With regard to Japanese consonant systems, the difference of the phonetic values 
between allophonic variations of certain phonemes are quite large; we should, therefore, 
prepare the level of allophones in addition to that of phonemes. For example, a dental 
s top / t / i nc ludes  It, t r  ts] as positional variants. 

[t] : voiceless dental/alveolar plosive, 
[tc/tf] : voiceless alveolo-palatal/palato-alveolar atfricate, 
[ts] : voiceless dental/alveolar affricate. 

(When we take the position that permits the affricate p h o n e m e / c / , / t / i n c l u d e s  [t], 
and /c / inc ludes  [t);/tf] and Its] as allophones.) 

These allophones have, therefore, not only a different place of articulation but also a 
different manner of articulation. It would be very dimcult to find the common acoustic 
features among these allophones. It is effective, therefore, to prepare the level of allophones 
rather than to detect phonemes directly. 

Double strata of allophones were prepared. The main stratum consists of a broad 
transcription of allophones, which are so-called positional variations. The sub-stratum 
consists of a narrow transcription of allophones. The term "broad transcription" in this 
model is defined as a transcription which makes use of the main chart of the international 
phonetic alphabet (IPA) plus diacritics such as "palatalized", "voiceless", and "long" sym- 
bols. The narrow transcription is prepared for contrastive study to other languages, free 
variations such as individual differences, etc. Phonemes are defined as a set of allophones. 
The correspondence between allophones and phonemes would be adjusted by rules. 

Examples: phonemes allophones allophones contexts 
(main str.) (sub str.) 

/ t /  [ t f  ] [ c~ 1 /_[ i ] , [ i ]  
[ t~; ] 

[ ts ] [ ts ] /_[ru] 
[ t ] [ t l /oth~co~t~xt~ 

/ d /  [ d ] [ d ] /_[a],[e],[o] 
[ d ] [ z ] /_[i],[j] 

[ dz ] [ dz ] / _ [m]  
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5. THE HIERARCHY OF ACOUSTIC FEATURES 

So far, several kinds of feature hierarchies have been proposed. For example, Fant 
(1973) referred to the feature hierarchy depending on the economy of description in terms 
of the smallest number of features (14). Clements (1985) and Sagey (1986) discussed 
a feature hierarchy founded on phonological and phonetic aspects, mainly based on the 
articulatory point of view (15, 16). We have introduced another hierarchy, based on the 
auditory distance. 

Recent experiments on speech perception and speech recognition have revealed the fact 
that there exists a different tendency between human perception and machine recognition 
(Kitazawa and Tubach, 1987; Dantsuji and Kitazawa, 1988; Harada and Kawarada, 1988; 
Kitazawa, 1988, Kitazawa and Dantsuji, 1989, etc.). It is possible that a tendency to con- 
fuse voiced and voiceless plosives occurs quite frequently in the case of human perception. 
It is also possible that a tendency to confuse dentals (alveolars) and bilabials or velars 
and dentals (alveolars) occurs quite frequently, but confusion between bilabials and velars 
seldom occurs. Therefore, it would be possible to set up a kind of auditory distance based 
on these perceptual experiments. On the other hand, in the case of machine recognition 
confusion seldom occurs between voiceless plosives and voiced plosives. Confusion also 
occurs quite frequently between bilabials and velars. 

In order to do further and finer investigations, perceptual tests making use of sounds 
misjudged by machines as stimuli for human perception have been carried out. By these 
experiments, the tendency observed in the former experiments has been confirmed, viz. 
there occurs misjudgement between voiced and voiceless plosives with high frequency 
and there seldom occurs confusion between bilabials and velars. Therefore, it can be 
hypothesized that a kind of auditory distance should be based on the human perception 
confusion matrix. These properties indicate the possibility of establishing an auditory 
triangle in which the side between bilabials and velars is longer than the other two sides, 
between bilabials and dentals/alveolars and between dentals/alveolars and velars. This 
can be contrasted to the equilateral auditory triangle typically used by many phonologists. 
Furthermore, there is a possibility that we can hypothesize a different plane including 
velars in addition to the plane including bilabials and dentals/Mveolars. 

These properties can also be illustrated in a tree diagram. A lower (closer to the 
terminal) node indicates a shorter auditory distance and easier confusion. An upper 
(closer to the root) node indicates a longer auditory distance and less confusion. Therefore, 
in the case of human perception, the feature [compact] is located closer to the root, and 
the dimension differentiated by this feature is more essential. Velars are distinguished 
from both bilabials and dentals (alveolars) in this stage. The feature [voiced] is located 
closer to the terminal, and this implies that confusion between voiced and voiceless sounds 
takes place quite frequently. 

On the other hand, in the case of machine recognition, hitherto, the distinction be- 
tween voiced and voiceless sounds would be more sensitive than the distinction between 
places of articulation. This implies that another hierarchy would be set up in which the 
feature [voiced] is located closer to the root node than the features [compact] and [acute] 
in machine recognition. Therefore, we focus our research on finding useful cues to distin- 
guish places of articulation by reiterating experiments on human perception and machine 
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recognition, and are planning to improve the system by means of developing the data 
processor simulating the auditory mechanism. 

0 M U L T I L A Y E R  R E P R E S E N T A T I O N  A N D  T H E  C O M P E N -  

S A T O R Y  I N T E R A C T I O N  O F  A C O U S T I C  P A R A M E T E R S  

It is usual for each feature to have a single correlation with some physical parameter in 
a general feature theory. However, some researchers suggest new models with a complex, 
many-to-many relationship between features and physical parameters. In addition to this 
relationship, we have introduced a multilayer representation of acoustic parameters (5, 7, 
8) (Dantsuji and Kitazawa, 1987). In the case of an ordinary linear representation, even 
though it is possible to comprehend the order of the significance weight of each parameter, 
it is difficult to make manifest the correlation between parameters. 

One of the advantages of the multilayer structure is that we can express the correlation 
between parameters as well as the weight of the element. Acoustic parameters in the 
higher rows represent more important parameters for the relevant feature. The leftmost 
elements in the same row have greater weights than the rightmost elements. The length of 
the line indicates the magnitude of the correlation coeflident. The shorter the line between 
two parameters, the stronger the correlation between them. The apparent significancy 
can be controlled by considering the correlation between parameters. Every feature is 
generally assumed to be independent and no correlations between features are taken 
into consideration. The correlation between features can be managed by adjusting the 
correlation between acoustic parameters. 

The compensatory interaction of acoustic parameters for the multilayer structure can 
be illustrated as follows. Pi is the primary and the most important parameter, but 
sometimes, for a variety of reasons such as phonetic environments, the rate of speech, 
etc., this parameter is missing. In that case, another parameter Pj fills up this position 
and organizes a new multilayer structure. When this model is applied to a higher level, 
such as the phonemic level, it would be possible to recognize speech even if some segments 
are not clearly pronounced. We have also introduced a parameter sharing system (PSS). 
Some acoustic parameters are shared by several features. It is the significance weight of 
the parameters for the relevant feature that is different from each other. For example, 
features [Fi] and [Fj] share the same subset of the parameters Pi, P i+ l ,  ..., Pn. Pi is 
the most significant parameter for [Fi]. On the other hand, Pn is the most important 
parameter for [Fj]. The two features also differ in significance weights and hierarchies for 
other parameters. 

7.  A D A P T A T I O N  O F  T H I S  M O D E L  

As we have mentioned earlier, acoustic features are organized in hierarchical structures. 
Several features are ranked in the higher node and should be applied and extracted earlier 
than others. For example, we set up an acoustic feature [burst] for the distinctive features 
[-continuant]. This acoustic feature [burst] should be detected earlier than the place of 
the articulation features in the case of stop consonants. 
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Simpler types of this model for automatic speech recognition have been already exam- 
ined. Kawahara et al. (1988) and Doshita et al. (1989) reported the results for speaker- 
independent recognition of Japanese consonants in isolated syllables of/CV/(18),(19). In 
these reports the examined samples of stop consonants were followed by one of the five 
Japanese vowels. Each token was uttered by 17 - 84 male speakers. The total utterances 
were 3633 tokens for stop consonants, including both plosives and nasal stops. Speech 
samples were digitized in 12 bits at 18.5 kHz sampling rate. 

After detecting the acoustic feature [burst] (in this case manually), seven consecutive 
frames were picked out for analysis. For each frame the spectrum envelope was calculated 
by 26th-order LPC analysis and then transformed or merged into 28 variables correspond- 
ing to the critical bandwidth. Thus each frame was analyzed to produce 29 variables (28 
plus the mean square prediction error of the LPC analysis). 

At the level of phonemes these stop consonants were/2,  p, t, k, b, d, g, m, n,/. In 
this experiment, since each syllable was pronounced separately, it was assumed that the 
glottal s t o p / 7 / w a s  placed at the beginning of the syllable's initial vowel. In addition 
to the level of phonemes, following allophones of [p, pJ, t, t f, ts, k, kJ, ~, b, bJ, d, g, 
gJ, m, n, n] were tentatively prepared at the level of allophones. The recognition results 
using the pair-wise discrimination method are shown in Table 1. The recognition rate is 
92.1% for voiceless bilabial plosives (/p/),  91.1% for voiceless dental plosives ( / t / ) ,  94.9% 
for voiceless velar plosives (/k/), 92.5% for glottal stops (/2/), 90.1% for voiced bilabial 
plosives (/b/),  87.9% for voiced dental plosives (/d/),88.1% for voiced velar plosives (/g/), 
95.0% for bilabial nasals (/m/),  and 96.3% for dental/alveolar nasals (/n/).  The average 
recognition rate for all the stop consonants including both plosives and nasals reached 
more than 91%. It can be said that these phonemes are effectively recognized. 

Table I. Speaker Independent Recognition Rate for Japanese Consonants from 3633 
Utterances. 

CATEGORY 

PHONEME 

ALLOPH'ONE 

RATE (g) 

Voiceless Plosives 

p t k 7 

p pJ t tSts k k j ? 

92. 1 91.1 94.9 92.5 

Voiced Plosives 

b d 

b b s d 

g 

g gJ 

90.1 87. 9 88. I 

Nasal stops 

m n 

m n s 

Total 

95.0 96. 3 91.3 

8. SUMMARY 

The properties of our model for acoustic features have been clarified as follows. (i)Eas 
level of phonemes, allophones, distinctive features, acoustic features, acoustic parameters, 
and physical parameters is prepared. (ii)Every feature is related to some subset of the 
set which consists of the limited number of the acoustic parameters. (iii)Some acoustic 
parameters and several acoustic features can be extracted and detected using statistical 
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analysis or neural networks. (iv) Acoustic parameters of each subset and acoustic features 
are organized in a hierarchical structure. The acoustic feature in a higher node should be 
applied earlier than lower features. In order to examine this model, we have evaluated 
the speaker-independent recognition for Japanese consonants as preliminary research and 
have been able to obtain satisfactory results. 
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Abstract 

A hybrid coder is introduced for obtaining descriptions of speech patterns. This coder 
uses popular Vector Quantisation (VQ) techniques on mel-scale cepstral coefficients and 
their derivatives together with a Recursive Network (RN) for describing suprasegmental 
features of speech. These features have a purpose of focussing the search when Hidden 
Markov Models (HMM) are used for unit or word models. Preliminary experiments of 
speaker-independent connected digit recognition (unknown string length) using a popular 
data-base (TI) have given 0.4 error rate on words and 1.1 error rate on strings. 

1. INTRODUCTION 

The best results achieved so far in terms of absolute performances (overall word recog- 
nition rate on a widely used data.base) for speaker-independent Automatic Speech Recog- 
nition (ARS) of connected words belonging to a vocabulary used in many applications 
have been obtained by L.R.Rabiner [1] and G.Doddington [2] on connected digits. The 
best reported performances with strings of unknown length are 0.5% word error rate and 
1.5% string error rate. The two systems use multiple word models and different types of 
acoustic parameters. 

The purpose of this paper is to describe a system in which similar performances on the 
same task have been obtained using a single model is built using models of smaller units 
that can be phonemes, diphones or triphones. In order to achieve high performances with 
a unit-based model, a number of features had to be added to the basic acoustic parameters 
and coded with them. These features have been obtained with Recurrent Networks (RN) 
trained by examples. The acoustic parameters used were Mel-scaled Cepstral Coemcients 
(MCC), their time derivatives (indicated in the following as DMCC), the signal energy 
(e) and its time derivative (0e). MCC were computed every 10 msecs, and coded in order 
to produce a string lrl with symbols belonging to an alphabet El. DMCC were computed 
every 10 msecs, and coded in order to produce a string ~r2 with symbols belonging to 
an alphabet E2. The improvements are due to the way the output of RN, e and e have 
been coded in order to produce a string lr3 with symbols of an alphabet E3. The three 
descriptions are processed by a recognizer that uses Hidden Markov Models (HMM). 
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The details of RN as well as of the coder that produces the symbols of Ez will be de- 
scribed in the paper. This introduction will continue with a discussion on the motivations 
for the solutions that will be described. 

In designing units for ASR a number of choices have to be made by the designer. The 
first choice is the set of units. Triphones have been recently used for general models [3-4]. 
The problem with triphones is that there are at least tenths of thousands of such units 
and it is not clear what type of corpus should be used in order to train them for speaker- 
independent ASR. For a limited vocabulary (like in the case of digits) actually available 
data bases provide enough data to train any type of units relevant for the task. In spite 
of that, it is interesting to consider units (like the central part of fricative sounds) that 
can be assumed to have characteristics that are independent from the context. With such 
an assumption it is acceptable to train these units with samples from different contexts 
and assume that the model obtained in such a way can be used in contexts non available 
in the training set. 

Another interesting aspect is related to aUophones, that are different model of the same 
phoneme or diphone. The models are different because the acoustic parameters of a unit 
may be affected by the surrounding acoustic or phonetic context (for example certain 
acoustic characteristics may appear weak or absent in a phoneme at the end of a word). 
The need for introducing allophones may be suggested by recognition errors but also by 
the analysis of a sentence with general or p r i m a r y  phone t ic  fea tures  ( P P F )  that are 
detected by RN. Some of the features can be used for recognition. 

Another important design choice concerns the topo logy  of the HMM model and the 
tying of probability distributions. Information about model duration can be embedded 
into a model topology. Transitions between two speech pattern configurations can be 
modeled more accurately with subtle topologies and coding of the time evolutions of 
acoustic parameters. The use of D MCC and ~is just one simple way for representing 
speech signal dynamics. A far better way consists in coding speech with RNs that allow 
to analyze a long speech interval and detect significant changes in it by remembering 
the past with distributed internal memories providing information about signal history 
whose strength can be leaned automatically. These representations may not be used 
for recognition (espedally if the task is already well accomplished without them) but 
appeared to be very useful in grouping errors into classes that correspond to systematic 
deficiencies of the existing models and in suggesting topological improvements. 

A third important choice is in the t y p e  of probability distributions for the acoustic 
parameters. The use of a symbolic representation of a speech frame does not impose any 
constraint on the distribution but implies another choice which is that of the coder(s). 
Furthermore, probabilities for symbols that have never been seen on a transition during 
training should be assigned a defaul t  value in order to prevent the model to fail because 
symbols never seen in a model transition during training appear in the testing data. 
Default values can be lower than usual for those symbol which correspond to features 
reliably recognized by RN and that are contradictory for a certain model (for example 
the feature silence in the model of a diphthong). 

Other problems are encountered when HMMs are used for ASR. One of them is that 
probability distributions can be affected by segmentation errors. Some of the misrecog- 
nized cases can be recuperated by reducing segmentation errors especially during training. 
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Segmentation is improved by performing a sort of focus by inhibition. This is accomplished 
by presenting extremely low initial probability values for the symbols that are detected 
very reliably by RN and are incompatible with a model. This setting makes it very dif- 
ficult for a model to accept a description that contains symbols for which the model has 
inhibitors. 

The availability of features on a description of a speech may be very useful but also 
very dangerous especially if the descriptions are extracted by a device that is not error 
free. This probably explains why the attempt of recognizing connected digits with HMMs 
receiving inputs from Neutral Networks (NN) producing scores for phoneme hypotheses 
at their output has not been as successful so far as the use of pure acoustic parameters 
[5]. Nevertheless, a parsimonious use of features together with pure acoustic parameters 
is definitely beneficial because it allows to take into account events covering a large speech 
interval and to reduce errors due to statistical estimation with parameters produced by a 
wrong segmentation during training. 

The possibility of using knowledge in a coder or just for reasoning about model topol- 
ogy, allophones and tying suggests the introduction of a learning s t r a t e gy  in which the 
training set of a data base is subdivided into training subsets TS1, TS2,...,TSi...,TSI. TS1 
is used as first training set and TS2 is used as first test set. An analysis of the errors in 
TS1 and TS2 may suggest modifications on the model topology, the addition or deletion of 
new symbols in the coder, the introduction of some inhibitors in certain models (symbols 
for which initial values are extremely low) before retraining with a new training set TS12 
made by the union of TS1 and TS2. Retraining may not be necessary if all the errors in 
TS2 can be justified only in terms of topologies or inhibitors. 

2.  T H E  H Y B R I D  S P E E C H  C O D E S  

Many schemes have been proposed for ASR systems. The one shown in Figure 1 is 
one of them. It uses HMMs for representing speech units and emphasizes the fact that 
a strategy (Vitervi like for example) generates hypotheses by chaining units under the 
constraints imposed by a lexical representation. There are three components used by this 
strategy, namely its knowledge (the HMMs), the cons t ra in t  knowledge (represented 
by the portion of the lexicon made active by the lexical strategy) and a search algo- 
r i t hm that uses probabilities as hypothesis measures. A module applies its strategy to 
descriptions stored into a Short Term Memory (STM). The strategy uses constraints from 
knowledge of other units or from data written by other modules into the STM. 

The lexical module operates in a similar way but uses a different strategy based on 
fast word hypothesization and subsequent detailed scoring. Word hypothesization is con- 
strained by the language model. The type of constraint imposed by the sentence strategy 
is usually made of stochastic predictions based on the language model and the STM 
content while the constraint imposed by the lexicon on the unit model strategy is often 
deterministic. 

The language model maintains a data structure of sentence hypotheses based on scored 
lexical hypotheses under the control of a strategy that uses a stochastic language model 
and may also use constraints of other units, like a dialog model which dynamically modifies 
probabilities of expectations. 
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Figure 1. Automatic SPeech Recognition Model. 

The focus of this paper is on the speech descriptor which uses a speech coding strategy 
and a coding knowledge. 

The need of a speech descriptor is motivated by the large size of the pattern space 
of the speech signal. It is so large because it contains information that is redundant for 
recognition. A large pattern space size is not suitable to be effectively medelied by HMMs 
and to be used by the associated strategy. Furthermore, HMMs have to be t r a i n e d  and 
this is not practically feasible if the pattern space is large. 

In order to be processed by the unit module, speech descriptions are usually generated 
at fixed time frames (typically every 10 msecs). Descriptions may be of various nature, 
they can be represented by vectors of parameters or by symbols. Each time frame can be 
represented by more than one vector or more than one symbol. Using symbols corresponds 
to quantizing the parameters. The loss of information incurred in quantization may be 
beneficial because it eliminates redundancies and focuses on distinctions of perceptual 
importance. Furthermore, HMMs can be trained on symbols without having to make any 
assumption on the type of probability distributions. 

The coding knowledge can be determined by an estimation process combined with 
HMMs training [6]. Such an approach does not allow to discover properties that describe 
a given frame in the context of the history of a set of speech parameters. Relevant contexts 
can be decided based on a-prior knowledge (like the one required to compute the time 
derivative of a parameter) or can be learned automatically with RNs. The two approaches 
for determining the context of a description are used in the system described in this paper. 

An interesting problem to be addressed when coding speech for ASR with symbols is 
whether coder knowledge learning should be superv i sed  or unsuperv i sed .  In the first 
case speech segments should be labelled with the symbols that the coder should provide. 
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In some cases these symbols can be generated by algorithms without any learning. 
In the work described in this paper a hybr id  coder  has been used in which a first set 

of symbols belonging to an alphabet E1 is produced by unsupervised learning on vectors of 
M CCs, a second set of symbols belonging to an alphabet E2 is produced by unsupervised 
learning on vectors of D MCC and a third set of symbols belonging to an alphabet E3 is 
produced by a mixture of algorithms and a RN trained by supervised learning to generate 
hypotheses and gross phonetic categories. 

Figure 2 shows a block diagram of the hybrid coder. The signal z(t) is processed in 
order to obtain a sequence of spectra ft. This is done with Fast Fourier Transformation 
(FFT) but for other projects in our research an ear model is used [7]. Another module 
extracts a sequence A of acoustic Properties like zero-crossing rates, energy ratios and 
energy contour profiles as described in [8]. Two vectors of parameters are extracted 
for every frame, namely M (a vector of 8 MCC) and aM (a vector of 8 DMCC). The 
time sequences of these two vectors are coded using classical Vector Quantization (VQ) 
techniques to produce two strings ~rl and lr2 of signal descriptions [9]. Properties A and 
spectra are sent to the input of a RN which generates degrees of evidence for three basic 
features in a set F: 

F :  {sonorant (S), fricative (FR), plosive/silence/buzz-bar (PL)} (1) 

signal signal ~ extraction 
of acoustic processing x(t) parameters 

extraction ~ . ~  
of acoustic recurslve 
properties I network 

supresegm. 
descriptor 

Ms 

Figure 2. Hybrid coder. 

A suprasegmental descriptor produces also a description SD of the energy contour. 
There are two versions of this descriptor. One (DESCR1) is based on vector quantization 
of the signal energy e and its time derivative oe. The other (DESCR2) uses syntactic 
pattern recognition techniques for characterizing the energy contour in terms of long 
and short peaks and valleys [8]. The coder CD3 produces a symbol FR or PL if the 
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corresponding output of RN has the maximum evidence for a segment (note that this 
evidence depends on previous history). If S is predominant, then CD3 generates a symbol 
in a set of 30 depending on the signal level, its slope, whether the frame is on a peak or 
a valley and the peak/valley duration. A symbol in the description lr3 generated by CD3 
describes a frame in the context of its past history (taken into account by RN) and of the 
suprasegmental feature (described by SD) in which the frame is in. 

The peculiar characteristics of the hybrid coder are that raw parameter vectors (M 
and 0M) are used together with descriptions of the signal in terms of properties that 
are expected to be significant for certain speech units and cover a large time context. 
This knowledge is used to perform a focus by inhibition. For example, in the vowel of 
the word "two" the feature FR must be absent. When the corresponding speech unit is 
trained, the probability of the code for FR will be initialized to a much lower value than for 
other codes for which inhibition is not performed. Such a probability won't be increased 
by smoothing after training (or by other heuristic operations that are performed after 
training in order to compensate for the fact that some codes have never been observed 
just because the training set has a finite size), on the contrary it may be further lowered. 
Hybrid coding and focus by inhibition allow one to better heuristics than the ones that 
are usually applied for smoothing probability distributions. 

For the cases which focus by inhibition is not used, hybrid coding allows to exploit the 
advantages of relevant properties when they are reliable (when they have high probabilities 
for the expected unit transitions) or give more emphasis to codes of row data when 
property probabilities have rather uniform distributions. 

0 T H E  R E C U R R E N T  N E T W O R K  F O R  F E A T U R E  R E C O G -  
N I T I O N  

The recurrent network used for the hybrid coder has the architecture shown in Figure 
3. The input is made of four successive frames from twenty channels (the duration of 
each frame is 10 msecs.). Three channels have at the output of the logarithm of the broad 
band energy at low frequencies (200-900 Hz), intermediate frequencies (1-3 kHz) and high 
frequencies (3-5 kHz). Other three channels provide the signal energy, the energy of the 
signal derivative and the zero-crossing densities of the signal and its derivative. The 
remaining 13 channels provide the energy in reel-scaled frequency bands. 

All the inputs to RN are normalized to vary between zero and one. The motivation 
for choosing these inputs relies on the fact that the features the network is supposed to 
hypothesize depend on known acoustic properties in the time domain as well as in the 
frequency domain. The delays on the input modes allow the network to see four frames 
at a time which constitute an acoustic context. 

There are five hidden units receiving stimuli from all the 80 input nodes. The output 
of all the hidden units is fed back through a delay unit. The weight of the feed-back 
connection represents the characteristics with which each hidden unit has a memory of its 
past outputs. The three outputs of RN produce degrees of evidence for the three classes 
defined by the (1). 

The outputs of RN are displayed on neurograms like the one shown in Figure 4. Each 
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Figure 3. Structure of the recursive Network. 

vertical bar corresponds to a time frame. Its height is proportional to the degree of 
evidence of the corresponding feature. For each time frame, the evidence of the highest 
feature is always displayed, the other evidences are not displayed if they are below a 
threshold (i.e..6). 

Details on the training algorithm for the RN described in this Section can be found in 
[10]. 

The network was trained on 10 speakers (used also for training the HMMs) with a total 
of 77 digit strings per speakers. It was tested on 4 new speakers and then introduced in 
the coder for the HMMs. The frame error rate for the test set was 6.9%, it was, 6.7% for 
the training set. 

4 .  T H E  H I D D E N  M A R K O V  M O D E L S  A N D  T H E I R  U S E  

Each word of the lexicon is represented by a sequence of units as shown in Table 1. 
Each unit was initially represented by a Hidden Markov Model as shown in Figure 5. 
Symbols pij represent transition probabilities between states while pij represents a set 
of three vectors of probabilities (one vector per code-book). Each dement during the 
transition from state Bi to state Bj. 
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Figure 4. Example of a neurogram. 

Table 1. Digit vocabulary. 

1 WAH AHN N 

2 T TUW LNV 

3 TH "i'HR RIY IY 

4 FAO AOU R 

5 FAA AA AAYV 

6 S SIH IHK KS S 

7 S $EH EHV VAX AXN 

8 EY EYYT T 

g NAA AA AAY YN 

OH AO OW 

ZERO Z ZIY IYR RAO OW 
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P 11 P22 PS3 

pll ~ p22 ~ p33 

p13 \ p24 

P15 P24  

Figure 5. Structure of the Hidden Markov Model used for a unit. 

Tying of probability distribution is performed in such a way that the distributions 
associated to all arcs going to the same state are the same. This means, for example, that 
P23-- P33-- P13 -- P3. 

5. E X P E R I M E N T A L  R E S U L T S  

The experiments reported in this Section are based on a subset of the TI database [11] 
used as training set (TS1) and another subset (TS2) used as a test set. TS1 contains 616 
strings of digits (unknown length) pronounced by 14 speakers, while TS2 contains 300 
strings of digits (unknown length) pronounced by 14 speakers. 

The first experiment (EXP1) consisted in training the unit models with TS1 by using 
the coders shown in Figure 2 with CD3 just performing VQ on the signal energy e and 
its derivative ce. Training was accomplished with 0.2% word error rate and 0.8% string 
error rate. Recognition gave 2.7% word error rate and 7.3% string error rate. 

A second experiment (EXP2) was conducted with CD3 performing vector quantization 
on the outputs of RN and using these symbols in the description ~r3. Only the third 
codebook was retrained and the same number of errors although not always the same 
errors in the test  set as in EXP1 were found. 

A third experiment EXP3 was performed by coding e and ceby vector quantization 
only when the predominant output of RN was S and by generating a code corresponding 
to FR or PL When these outputs of the RN were predominant. A word error rate of 1.6% 
and a sentence error rate of 5.4% were found in TS2. 

In a fourth experiment, EXP4, inhibition was introduced by setting the probability of 
having FR or PL on the u n i t s / N / , / A O / , / W A H / , / I Y / , / E Y / a n d / N A A / e x t r e m e l y  
low (10 -32) in order to reduce the possibility of error alignments in recognition due to error 
alignments in training. The system was not retrained but the units containing stressed 
vowels were made longer by adding two more internal states B21 and B22 with proba- 
bilities associated to arcs reaching them equal to the probabilities of the corresponding 
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arcs reaching B2. Furthmore, an allophone T1 was introduced for the last phoneme of 
EIGHT. Lengthening the models reduced the error rate to 1.4% for wards and 4.4% for 
strings. Inhibition and the introduction of T1 allowed to reduce the word error rate to 
0.45% and the string error rate to 1.3%. 

Just for the sake of comparison, Maximum Mutual Information Estimation (MMIE) 
was used for training an eight state word model for each digit. Three codebooks were 
used, one for MCC a second for DMCC and a third for e and oe. Error rates on TS2 
were 0.9% for words and 2.1% for strings. Experiments are in progress with other types 
of feature coders. 

6. C O N C L U S I O N S  

The feasibility of hybrid coders has been demonstrated. The addition of acoustic 
properties to speech descriptions has produced improvements when HMMs axe used for 
recognizing speech from descriptions. Simple properties and features have been used in the 
experiments described in this paper. Other properties and features more useful for making 
fine distinctions between vowels, nasal and plosive sounds have been introduced and tested 
on isolated letters and digits pronounced by many speakers [10]. Their effectiveness has 
now to be tested with units used for the recognition of large vocabularies. 
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Abstract 

The acoustic-phonetic decoding (i.e. the transformation of the acoustic-phonetic con- 
tinuum of speech into a description under the form of discrete, linguistic units) represents 
an important step and a major bottleneck in the overall process of automatic speech 
recognition. 

This paper presents the problem and its difficulties together with the different families 
of solutions proposed so far. After a recall of the methods based on pattern matching 
techniques and stochastic models we introduce a class of methods based on artificial in- 
teUigence knowledge-based techniques. Such methods make an explicit use of all available 
types of knowledge that intervene in phonetic perception. We then present the use of 
neural connectionist models and discuss their interest for the problem. The presentations 
will be illustrated by practical examples drawn from different systems. 

I. INTRODUCTION 

The process of understanding a spoken sentence can be considered as a sequence of 
steps from the acoustic level up to the semantic level. In this overall organization the 
level of phonetic decoding (PD) represents an important step and a major bottleneck in 
the design of speech recognizers even for single speaker applications. We refer to phonetic 
decoding as to the different processes involved in the transformation of the continuous, 
acoustic data coming from a microphone into a description under the form of discrete, 
linguistic units such as phonemes, syllables, diphones, etc. 

A large number of methods have been proposed so far in order to solve this prob- 
lem. They will be briefly recalled in section 3, after a general presentation of the speech 
recognition paradigm given in section 2. In order to illustrate this presentation two par- 
ticular approaches will then be considered in more details, one based on knowledge-based 
reasoning (section 4) and the other using a connectionist model (section 5). 
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2. POSITION OF THE P R O B L E M  

2.1. The Speech Recognition Paradigm 

The speech signal can be regarded as the result of a hierarchical encoding process 
at successive levels among which the most important ones are pragmatic, semantic, syn- 
tactic, phonological, articulatory levels. This signal presents specific characteristics that 
make its interpretation difficult, especially: continuity (which necessitates to take segmen- 
tation decisions at one time or another), variability (which complexities the multi-speaker 
phonetic decoding of speech) and redundancy. 

One possible approach to the automatic recognition of speech consists in referring to the 
above mentioned encoding process and in taking into account the various corresponding 
knowledge pieces. This knowledge-based approach, though not the only one possible, has 
been widely used (1), (2). In this framework the importance of the acoustic-phonetic level 
is presently widely admitted (3). 

2.2. Variability of Speech 
A language such as French or English has a relatively low number of phonemes (about 

some tens) but the variety of corresponding acoustic speech patterns is very high and 
difficult to characterize for several reasons: 

- factors like speaking rate, loudness, prosody, etc. have an influence on speech sounds, 

- the acoustic patterns depend on the speech production manner, 

- coarticulation effects, context and speaker dependencies make the diversity of acous- 
tic realization very large. 

The contextual variability in the acoustic structure of phonetic segments is particularly 
important, due to several major processes (4)" 

- unvoicing of voiced glides in contact with a voiceless fricative or stop, 

- labial coarticulation: Figure 1 shows that the low frequency cut-off o f / s / i n  labial 
context o f / y / i s  brought down to the level o f / f / ,  

- tongue coarticulation, 

- nasal coarticulation, 

- differences in vocal tract length, 

- variations in the vocal source spectrum. 
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Figure 1. Example of phonological alteration ( / i / v s / s y / )  

2 . 3 .  A c o u s t i c - P h o n e t i c  D e c o d i n g  o f  S p e e c h  

The causes and examples of variability just described illustrate the difficulty of the 
acoustic-phonetic decoding of speech. However it is of primary importance to design ro- 
bust and efficient P D techniques since the overall performances of any sentence recognizer 
rely heavily on the quality of this decoding. 

The activity of P D comprises two complementary subtasks that can be carried out 
sequentially or concurrently, according to the approach: 

- a task of segmentation of the speech wave into acoustic segments, 

- a task of phonetic identification or labelling of these segments. 

An important point in the design of a phonetic decoder concerns the choice of a phonetic 
unit. Several units have been concurrently used so far: syllables, demi-syllables, diphones, 
triplets phonemes, aUophones. 

Syllables, diphones and demi-syllables present the interest of integrating information 
about transitions that constitute the most dimcult parts to identify in the speech signal. 
The use of allophones can to a certain extent simplify the process of automatic labelling 
but a trade-off has to be found since the number of allophones is almost unlimited (several 
thousand are necessary for obtaining good performances). Many systems use at one stage 
or another phonemes as a decoding unit, for several reasons. The phoneme is the basic 
unit of language production. It requires less training and storage space since the number 
of phonemes in a given language is rather low (less than 100). The phonological variations 
of phonemes can be predicted by contextual rules within and between sounds. 
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3. T E C H N I Q U E S  OF A C O U S T I C - P H O N E T I C  D E C O D I N G  

3 .1 .  F e a t u r e  S e l e c t i o n  a n d  E x t r a c t i o n  

Signal processing techniques (FFT, LPC, cepstrum, filter bank, auditory models, etc.) 
applied to a portion of speech signal yield a set of parameters which are specific to each 
technique. These sets or vectors of acoustic parameters can usually not be directly related 
to some phonetic knowledge: an interpretation of these vectors is requested. Phonetician 
experts have a long experience for relating acoustics to articulatory phenomena based on 
the study of speech spectrograms; position and trajectory of formants, bursts, VOT, etc. 
Such correlations must be computed in order to interpret the speech signal in terms of 
acoustic-phonetic elements. 

Phonetics has proposed models for phoneme classification from acoustic and articula- 
tory models. The classification system based on distinctive features is well-known (5). 
The distinctive features of this model constitute a minimal system for all languages but, 
unfortunately, they are not directly related to the acoustic reality and, therefore, cannot 
be practically implemented for automatic P D. 

However a feature-based approach to automatic PD has been very often used in all 
languages. We will briefly review in this section the different techniques that make it pos- 
sible to effectively combine features for labelling speech. Some of these acoustic-phonetic 
are redundant. Since speakers do not always articulate carefully all features are not al- 
ways present in the speech signal. It is therefore important to use a reasonable number of 
parameters (as far as it is computationally tractable) even though these parameters are 
not statistically independent. 

3 .2 .  S e g m e n t a t i o n  

Segmentation is a fundamental process of PD. A major issue concerns the choice of the 
segmental unit. The different units already mentioned have been used for this purpose: 

- phones (6): phones are subphonemic units which are then merged together in order 
to produce larger units; 

- phonemes (7), (8): a human listener is able to identify phoneme-like segments in 
continuous speech. However, segmentation at phoneme level is very difficult and 
introduces errors of under - and over- segmentation; 

- diphones (9), (10), demi-syllables (11), triplets (12) and syllables (12), (13), (14), 
(15), (16): such supra-phonemic units make it possible to incorporate coarticula- 
tory phenomena but their identification is complex and recognition errors can have 
dramatic consequences in the understanding process. 

Segments can be obtained synchronously by analysing fixed-length samples of speech 
(" centisecond" samples) (17) or asynchronously (18). 

The segmentation process is usually based on the study of the variations of a function 
measuring the discontinuities of the speech wave or its spectra. Articulatory criteria have 
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also been used (19). Segmentation refers to acoustic-phonetic knowledge that can alter- 
nativdy been explicited in a declarative way. This representation leads to segmentation 
systems based on parsers using rewriting rules (20), (21), and also to knowledge-based 
segmentation (22). This latter approach makes it easier to embed heuristic knowledge 
that a phonetician has and to enforce the segmentation algorithms through symbolic 
manipulation. 

Most speech segmenters use a bottom-up strategy going from acoustic data to abstract 
linguistic representations but some attempts have also been done toward a top-down 
segmentation based on a prediction of the phonetic string. 

3 .3 .  S e g m e n t  I d e n t i f i c a t i o n  T e c h n i q u e s  

We have seen in paragraph 3.1 that the identification or labelling of phonetic segments 
is often based on a set of acoustic-phonetic features extracted from a parametric repre- 
sentation of the speech wave. We will now review the different techniques, more or less 
related to classification and/or pattern recognition algorithms, that are usually used in 
PD systems: 

- vector quantization: this technique consists in taking into account the statistical 
properties of sounds in a represen tation space. It is widely used for speech coding 
and synthesis but it does also present some interest in PD for carrying out a first, 
rough classification of segments into broad classes (23). 

- statistical pa t te rn  recognition: a large number of PD systems are classical pat- 
tern recognition systems. The identification of a segment is made by comparing this 
segment to a set of reference segments described by their acoustic and phonetic fea- 
tures with some statistical information. These techniques necessitate to define an 
efficient distance measure between patterns. Dynamic programming algorithms can 
be used in order to compensate for non-linear time distortions, especially for long 
units (diphones or syllables). The major importance of contextual phenomena in the 
speech production process (cf. section 2) makes it necessary to use an extremely large 
number of reference patterns (at least 10,000). That constitutes a basic limitation of 
the approach, especially for multi-speaker applications since the reference patterns 
are essentially speaker-dependent. 

- s t ructural  pa t te rn  recognition: structural pattern recognition is concerned with 
the description of complex patterns in terms of simple, primitive patterns. This 
technique has been used in PD (20), (21) but the limitations encountered in statistical 
pattern recognition still exist. Once again the problem of multi-speaker recognition 
is solved by clustering prototypes among a large number of different speakers. This 
solution is not satisfactory and drastically limits the use of pure pattern matching 
techniques in P D. 

- stochastic modelling: the acoustic-phonetic decoding of speech formally consists 
in finding the best string or lattice of speech units by optimally matching an in- 
put utterance against every possible concatenation of reference patterns or speech 
unit production models. This can be expressed in terms of stochastic processing, 
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espedally in the framework of Markov sources, more precisely with Hidden Markov 
Models (HMM) (24), (25). Initially proposed for larger units (i.e. words) the method 
can be generalized to phonetic decoding (26), (27). An important advantage of this 
approach is the possibility to capture in a statistical way broad speech and speaker 
variances. This is carried out automatically by processing huge amounts of speech 
data coming from a large variety of speakers. HMMs provide one of the most efficient 
framework for multi-speaker P D. However these models are purely mathematical, 
without any explicit use of phonetic knowledge. 

- k n o w l e d g e - b a s e d  r e a s o n i n g :  the explicit use of linguistic knowledge constitutes 
an alternative solution to the PD problem that will be presented in section 4. 

- connectionist modelling: a new class of models, based on networks of large num- 
bers of neuron-like processing dements, have recently appeared in various fields of 
automatic perception (28). Such connectionist models have encountered some suc- 
cess in limited applications of speech recognition, including phonetic decoding even 
though they have not yet definitively proved their superiority to more classical mod- 
els used so far. We will present in section ,5 a novel connectionist model based on 
cortical columns together with its application to various tasks in phonetic decoding. 

0 K N O W L E D G E - B A S E D  R E A S O N I N G  F O R  P H O N E T I C  

D E C O D I N G  

4 . 1 .  P o s i t i o n  o f  t h e  P r o b l e m  

We have just seen that the acoustic-phonetic decoding of a sentence can be carried 
out by purely mathematical models such as Markov models. However the interpretation 
of the speech signal necessitates to take into account knowledge and information that 
are not present in the signal itself. Therefore it is interesting to design PD methods 
which allow for the integration of some knowledge in the recognition process, possibly 
in conjunction with other models. This knowledge will usually be coded simultaneously 
under a procedural form (e.g. procedures for detecting a feature in the speech signal) and 
a declarative form (e.g. the knowledge used by some control structures for reasoning). A 
knowledge-based approach to PD makes it possible not only to take into account relevant 
knowledge (phonotactic constraints, allophonic variations, phonological constraints, etc.) 
but also to implement more realistic decoding strategies. 

The knowledge used by a human listener for decoding speech is mostly unconscious 
and implicit, and therefore quite impossible to formalize. It is then necessary to consider 
activities in which there exists conscious knowledge related to acoustics and phonetics. 
Speech spectrogram reading by skilled phoneticians represents a typical example of such 
activities. Early attempts at spectrogram reading were rather pessimistic and usually 
concluded on the enormous difficulty of the task due to the contextual variations of the 
acoustic signal (29). In fact recent studies have shown that the phonetic decoding was 
feasible without any high level linguistic knowledge with an average accuracy of 80-85%, 
i.e. far better than the one of present automatic systems (30), (4). Of course spectrogram 
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readers do not proceed in a way similar to the auditory system but the interest for an AI 
approach to P D is that the visual features used by these experts are clearly specifiable 
and that the knowledge involved in their reasoning is explicit. 

The knowledge and decoding strategies used by experienced spectrogram readers are 
not easy to elucidate, in-as-much as spectrogram decoding involves visual cues, and there- 
fore, requires perceptive knowledge and competence, which are by nature difficult to ex- 
plain and/or to convey. This led us to develop specific observation and analysis methods 
that are fully reported in (31). 

4 . 2 .  T h e  A P H O D E X  S y s t e m  

Overview of the  sys tem 

In order to illustrate some of the issues related to knowledge-based phonetic decoding 
we will now give functional and experimental data about the APHODEX system that we 
have been developing in Nancy for the past 4 years (32). 

APHODEX, Acoustic PHonetic Decoding EXpert, is an experimental tool designed 
for improving our knowledge about PD by the in-depth study of spectrogram reading 
activity. The knowledge gained from this study is coded in the system under three forms: 

- procedures for segmentation and labelling of segments into gross phonetic classes, 

- contextual production rules. Presently the knowledge base is made up of about 400 
rules and it is regularly augmented. 

A typical rule is as follows: 

IF LEFT CONTEXT /y u e ce o ace o u w f z/ 
RIGHT CONTEXT /f ig  d e a p t k b d g s v z m n r 1/ 
AND NOISE-LIMIT IS INCREASING 
AND FRICTION THRESHOLD [2800 - 3300[ 
THEN sl/zl. 

The value 1 associated with the two conclusions of the rule represents the certainty 
factor (ranging from-1 (false) to 1 (true)) of these conclusions. 

- decoding strategies that operate at two levels: 

�9 a global strategy which is roughly bottom-up from the speech signal to the gross 
phonetic labelling of a sentence and then mixed top-down and bottom-up for 
the refinement of the precise labelling. 

�9 a strategy used for propagating constraints during the reasoning process. 

The overall architecture of APHODEX is given in Figure 2. The inference engine of the 
system uses both forward and backward chaining and carries out approximate reasoning 
by combination of certainty factors. It is completed by a constraint propagation algorithm 
which controls that the constraints that appeared in most production rules under the form 
of left and right contexts are satisfied. 
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Figure 2. The architecture of APHODEX 

Exper imenta l  results 

The practical example shown in Figure 3 summarizes the different operations involved 
in the decoding of a sentence. 

The overall performances of APHODEX presently range around 70% of phoneme recog- 
nition for any male native French speaker. The recognition accuracy depends on the class 
of phoneme (it is far better for plosives, fricatives and vowels) since the knowledge base 
is not yet completed. 

5. C O N N E C T I O N I S T  M O D E L S  

5.1.  Overview 

The use of neural networks in ASR is still at an early stage but the intrinsic properties 
of such models are already attractive solutions for problems such as speaker variability or 
the incorporation of contextual information and of speech knowledge in the understanding 
process. 

Most of the work done so far in the use of neural networks is based on two models, 
i.e. Boltzmann machines (33) and multi-layer perceptrons (34). Both models are based 



IIII 
�9 I 

�9 Speech wave 

Spectrogram 

Hand labelling by 
a phonetician 

Phoneme latt ice  

�9 . .  . " 

i im �9 a l  
m , m =  

! ;1! 

iii,,, 
_IY 

zi 
i 

s i s  

NJ 
m s  

N] 

,! 
! 

! 

i 
P 
b 

Figure 3. Example of phonetic decoding by APHODEX for the French sentence "la bise 
et la soleil se disputaient" 

1 
! 

L _ _ _  

m 

L ~  



154 

on sophisticated learning algorithms that consist in determining the most appropriate 
network configuration for a given set of data. 

These models have sometimes been used for front-end processing, e.g. noise reduction, 
voicing and F0 determination, recognition of place of articulation (35), (36). However, 
the most common use is for the recognition of speech units, either whole words, isolated 
or connected (37) or phonetic units (38), (39) or else gross phonetic dasses (40). 

An important problem arises in the use of such models for taking into account the 
temporal sequentiality of speech. A partial solution consists in introducing some amount 
of feedback in the networks. It is also possible to take into account contextual informa- 
tion during the recognition. For instance, Bourlard (37) introduces the left and fight 
neighbours of a speech vector in the labelling decision concerning this vector. 

The various experiments carried out with these models have given good, sometimes 
excellent results, but not yet exceeding results obtained with other classical pattern recog- 
nition techniques. 

Another approach to connectionism is related to the definition of adaptive, associative 
networks. This approach, more closely related to ours, allows for a more natural use 
of time in the model. Such models have been used preliminary experiments in word 
recognition (41) and also for the implementation of a complete phonetic typewriter (42). 

Boltzmann machines and multi-layer perceptrons are made up of elementary neuron- 
like elements of very small size and limited processing power. We propose a new approach 
that consists in taking as elementary processors cortical columns. A cortical column 
corresponds to the association of about a hundred of neurons having a specific, functional 
activity and it was designed according to neurobiological data (43). 

Two architectural principles describe the cortical column: 

1. a column is organized in three layers, each layer performing specific operations on 
specific data. The upper layer (layers I to III of the cortex) carries out all the 
reciprocal but not the symmetrical relations with the other columns, including mem- 
orization abilities. The intermediate layer (layer IV) receives the information flow 
which codes the sensory stimuli from the external world, while the lower layer (layers 
V and VI) effects output toward the external world by various motor actions (speech 
production, etc.). 

2. the connectivity between columns can be summed up by compact neighboring con- 
nections and 2 long range connections, where 2 is the number of areas implicated 
in the stimulated process. Information propagates within areas with hypercubic 
connections, or inside an area from place to place with local connections. 

The operation of the model takes into account three levels of activity, representing 
inhibition (E0), active research (El), or action (E2). The output function of a column is 
expressed in a table where the states of activation of the upper and lower layers of the 
column are defined by its internal and external outputs (44). 

5 . 2 .  A p p l i c a t i o n  o f  t h e  C o r t i c a l  C o l u m n  t o  S p e e c h  R e c o g n i t i o n  

We have applied the model of cortical column to various problems of pattern recogni- 
tion, including printed character recognition and isolated word recognition. We will n o w  
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describe some experiments in acoustic-phonetic decoding of speech using the phoneme as 
processing unit. 

The decoding network that was built for this purpose is made up of some thousands 
of columns grouped into three areas (45): 

- a sensory area which performs several preprocessings of the input acoustic data, 

- a "motor" area which simply displays the phoneme that is recognized at a given 
instant in time, 

- an associative area which establishes the link between the sensory and motor func- 
tions and is therefore crucial for the recognition process. 

A central issue in the design of the system concerns the learning phase during which 
the associative area has to be differentiated into sub-areas corresponding to the different 
phonemes to be recognized. At the very beginning the associative area is not differentiated 
(i.e. it is made up of a single area). The learning algorithm consists of a differentiation 
mechanism which recursively splits a zone of the area into two zones of opposite activity 
(E0/E2) whenever the original zone is in state E1 when a certain phoneme is presented 
to the sensory area (46). 

5 . 3 .  E x p e r i m e n t a l  R e s u l t s  

Two different experiments were carried out in order to test the architecture and the 
learning algorithm just described. The first one concerns the recognition of 7 French 
vowels / a i o y e / ,  whereas the second one concerns the recognition of the 6 fricative 
consonants / f s v z z / .  

Recognition rates obtained for continuous speech pronounced without any precaution 
by a single speaker are respectively 87% for vowels and 96% for fricatives. The action of 
the differentiation algorithm on the associative area is illustrated in Figure 4 for vowels. 

Work is presently in progress in order to generalize the system and enhance the per- 
formances of the learning algorithm. 

6.  C O N C L U S I O N S  

We have presented in this paper different techniques of acoustic-phonetic decoding of 
speech, a fundamental problem in the framework of automatic speech recognition. 

The various approaches proposed to solve the problem have been first briefly recalled, 
including the Hidden Markov Model which appears to be particularly efficient. We have 
then proposed to consider the PD as a knowledge intensive process. The APHODEX pho- 
netic decoding expert system has been used in order to illustrate this approach. Results 
obtained show that the knowledge acquired from expert phoneticians can substantially 
improve the performances of the P D systems. The incorporation of this knowledge into 
efficient operational models such as HMM represents a good compromise for further devel- 
opments in the field (47), that will also largely gain from the use of new, parallel models 
such as connectionist nets. A particular example of such models, the cortical column was 
also presented as well as its application to phonetic decoding. 
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Figure 4. Division of the associative area for 7 French vowels 
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Is R u l e - B a s e d  A c o u s t i c - P h o n e t i c  S p eech  

R e c o g n i t i o n  a D e a d  End ? 

P. V. S. Ra~ 

' rata Institute of Fundamental Research, Bombay, India 

A b s t r a c t  

Speech recognition using Sub-Word Units and Hidden Markov Models has become 
very popular in the recent past in view of their versatility and good performance. Acoustic- 
phonetic rule based recognition, which has been the main stay for many years, appears 
no longer to be so attractive. In this paper, we attempt a study of all three approaches 
and their implications to determine whether the acoustic-phonetic approach has a future 
at all. We conclude on the basis of our analysis that it holds a potential for the future. 
We also visualize the prospect of an integrated approach which combines the strategies 
of all three. 

I. INTRODUCTION 

Speech recognition consists in assigning to the tune domain acoustic signal a se- 
quence of labels taken from a label bank or vocabulary consisting of a finite number of 
distinct labels. The labels could be sentences, words, phonemes and so on: any type of 
linguistically significant units. Recognition is feasible if there is some degree of consis- 
tency in the correspondence between the labels and their acoustic manifestations. This 
correspondence is complicated due to noise, articulatory laxity, speaking rate fluctuations, 
inter speaker differences and context dependencies in the acoustic signal. Segmentation 
of the continuous signal into units that correspond to any convenient type of units is 
therefore a non-trivial problem. Also, the contextual variability in the speech signal is 
much larger than can be conveniently dealt with as statistical variations. 

Choosing long segments as units of recognition would have the advantage that such 
context effects become relevant only near the segment boundaries and therefore can es- 
sentially be neglected. The number of labels, however, would be quite large. To reduce 
this number, it is essential to choose short segments. Context effects become very signif- 
icant in such a case; it therefore becomes necessary to incorporate knowledge concerning 
such context effects into the segmentation and recognition processes so that they can be 
effectively dealt with. 

Word based recognition systems fall in the former category while phoneme based acous- 
tic phonetic systems fall into the latter. Word based systems perform well for compact 
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vocabularies but problems arises as the vocabulary expands: the training procedure be- 
comes complicated and recognition accuracy falls due to confusion between similar words. 
Acoustic-phonetic systems perform reasonably well, but require higher level information 
to achieve high enough recognition scores. 

2. T Y P I C A L  S C H E M E S  

The difficulties cited above arises mainly due to the fact the units of recognition 
(phonemes, diphones, syllables or words) are defined apriori for reasons of linguistic sig- 
nificances; they are not necessarily ideal from the points of view of segmentation or 
classification. There would therefore appear to be an advantage in choosing units using 
ease of segmentations and classifications as the main interia. It would be convenient if, 
for the units chosen, context sensitivity is minimal and the number of distinct prototypes 
is small. 

2 . 1 .  S u b - W o r d  U n i t s  

The problem of segmentation is solved here by adopting intuitively self-justifying but 
pre-specified criteria for segmentation, based on some kind of dissimilarity measure. The 
resulting segments are subject to clustering and classification. Alternatively, segmenta- 
tion, clustering and classification are carried out in an integrated iterative loop for best 
results. This constitutes the training phase, which provides the sub-word unit prototypes. 

A lexicon is then built, which stores for each word in the vocabulary, one or more 
SUB-WORD unit strings (one for each variant of the spoken word). These are then used 
as templates for recognition. 

2 .2 .  H i d d e n  M a r k o v  M o d e l s  

While the speech signal is visualized as a sequence of locally stationary segments, 
actual segmentation is circumvented in this approach. The model represents each segment 
as a state; it permits a probabilistic spread in the duration of each segment as well as 
in the values of the parameters measured for each of the segments. Each 'word' in the 
vocabulary has an associated model of this type. Recognition consists in determining 
which among all the word models has the highest likelihood of producing the given word 
sample. 

2 .3 .  P h o n e t i c  F e a t u r e  A n a l y s i s  

The acoustic signal is visualized as being composed of a number of (poorly defined) 
segments each corresponding to one (or more) phonemes. The segments here are neither 
stationary nor invariant. 

The phonemes (or phoneme strings) are identified using the approach that experts use 
to read speech spectrograms. In other words, specific acoustic ones are sensed and these 
provide the means for inferring the presence (or absence) of phoneme types or individual 
phonemes. Early systems of this type primarily used quantitative statistical methods to 
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capture and use such (expert) knowledge. The more recent trend has been to use AI and 
expert systems techniques for achieving speech recognition. 

3. D I S C U S S I O N  

The beginnings of both the sub-word and HMM schemes can be traced to the earliest 
speech recognition schemes ever presented (the Phonetic Typewriter of Olson and Blar 
which used hardware to decompose syllables into minimally distinguishable states with 
variable duration and a semi-manual training scheme). 

The performance of both sub-word as well as HMM approaches has been very good 
(>95%) for small vocabularies (10 - 20 words). HMM recognition systems and sub- 
word systems where the sub-word are represented as HMM's perform well even for larger 
vocabularies. The scores improve further if higher level redundancies are made use of. 
Acoustic feature based systems, on the other hand, require to be augmented by strategies 
using higher level information before they can achieve performance levels comparable to 
the others. 

Acoustic feature based techniques have been in vogue since the early days of speech 
recognition; of late, however, there has been a growing feeling - at least among enthusiasts 
for the more recent techniques (such as sub-word unit and HMM approaches) - that such 
feature based techniques are unlikely ever to be able to match the performance of the 
modern schemes. Our attempt here is to examine whether there is a case in support for 
the feature based schemes in the current context. 

Sub-word units form an effective basis for recognition in the sense that individual 
words can be represented as mutually distinct strings of (sub-word unit) symbols. It is 
not clear, however, that such sub-word units can constitute an effective and universal 
(speaker-independent even if the language is specific) alphabet for speech. It is only then 
that it will be possible to train the system, say for new speakers, using a subset of the 
words in the vocabulary. 

HMM provides (a) a powerful system of representing words (or even sub-word units) 
and their variability (along the time axes as well as along the dimensions of the acoustic 
parameters measured) and (b) computationally efficient techniques for building up such 
models and using them for recognition. It is compatible with and can incorporate prob- 
abilistic (e.g. digram and trigram) models which capture the higher level properties of 
language. It can capture temporal pattern in the variation of the measurement parame- 
ters, but only if these are more pronounced than the statistical variations in their values. 
The model in fact treats the statistical fluctuations in the measured parameters during 
each sampled interval as independent of each other and seems to ignore the time-wise 
continuity constraint on the parameter values. HMM uses transitions between adjacent 
and proximal states and explicit duration information t represent systematic variations 
in the speech signal; its representational effectiveness might tend to decrease for short 
segments, as the number of states (per model) reduces. 

The individual states in each model are only locally defined and remain specific to that 
model, there is no convenient way of comparing states globally to form, say, an underlying 
common repertoire of states valid across words in the vocabulary. 
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Both sub-word and HMM approaches are statistical in nature and require very elabo- 
rate training. They do not utilize speech specific knowledge which is available; they have 
been termed ignorance models. 

Rule-based approaches, being inspired by human spectrogram reading, are based on 
formant tracking. The human listener, nevertheless, uses this information very success- 
fully. Spectrogram reading by experts employs strategies which are amenable to intro- 
spection. Even lower organisms are known to have 'feature extractors' which are sensitive 
to formant trajectories. These are strong 'existence theorems' which favour the rule-based 
approach. 

The acoustic-phonetic rule-based approach captures in a transparent way the corre- 
spondence between articulatory processes and their manifestations at the acoustic level. 
By providing for rules which can be quantitative or in-between, it can be much more flex- 
ible than any statistical system can be. It can capture and incorporate properties which 
might escape, say, the HMM approach. A common set of rules can, for instance, capture 
the wide variations between the speech of men, women and children. 

It uses a hierarchic approach in using available information, this is intuitively appealing 
and also known to be practically effective in introspective reading of spectrograms. 

It is amenable to easy integration with schemes for representing and utilizing higher 
level features of language and speech. 

A major objection to using expert systems for cognitive tasks arises from the fact 
that they do not work well in areas where the human uses tacit (as opposed to formally- 
required) knowledge. This objection is not applicable for spectrogram reading by experts 
which is subject to introspection and explication. 

It has become clear in recent times that word length units are inconvenient (and 
perhaps necessary) for accurate recognition even of continuous speech. It might seem 
that rule-based systems are restricted to phoneme-level recognition and the consequent 
limitations of variability and context effects. This is not so. Feature-based lexicons are 
possible even at word level. These lexicons can contain 'skeletons' for each word, which 
consist only of 'strong cue' features. Using these, one can perform a first-shot recognition 
of individual words. (This would be comparable to the process humans utilize during 
rapid reading, for recognizing words, even phrases.) This would yield either a single word 
or a short-list of words. Recognition at a more detailed level using additional (weaker) 
cues can then be done to deal with the short-list. 

4 .  C O N C L U S I O N S  

The above discussion seems to indicate that rule-based approaches stir have a future. 
In fact, rather than visualize the three approaches as being mutually exclusive, there is 
merit in recognizing their complementarity. In fact, they lay emphasis on three different 
(but important) facets of speech recognition: the units of representation (sub-word unit 
approach), modeling of the process (HMM) and the representation of speech specific 
knowledge (acoustic-phonetic rule-based approach). The sub-word and HMM approaches 
have already yielded the benefits deriving from a measure of integration. There is in 
existence, a system which uses a combination of HMM and acoustic cue-based approaches 
to improve performance. Integrating all three to take advantage of their combined strength 
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would be a very tempting prospect. 
Even short of integration, the phonetic feature-based work could provide the speech 

related input for the sub-word units and the HMM the mathematical models needed. 
As well as by formal training, HMM's can be extended even by incorporation of speech 
specific knowledge. 
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Speaker - Independent  P h o n e m e  Recogn i t i on  Us ing  

N e t w o r k  Uni t s  Based  on the  a pos t e r io r i  Probabi l i ty  

Jouji Miwa 

Faculty of Engineering, Iwate University, 4-3-5 Ueda, Morioka, 020 Japan 

A b s t r a c t  

This paper describes a method of speaker-independent phoneme recognition using net- 
work units based on the a posteriori probability. The method is called a model using 
network units for recognition of phonemes (NEUROPHONE). 

In this method, the convex characteristics of the time pattern of the a posteriori  proba- 
bility is adopted for the elimination of speaker individuality and coarticulation. The usage 
of the time pattern of the a posteriori probability is more suitable for the elimination than 
that of the distance. 

In the first stage of the method, the a posteriori probability for all phonemes is cal- 
culated frame by frame from a 5 channel spectrum of 5 speech frames using Bayes rule. 
In the next stage, the convex part of the time pattern of the a posteriori  probability is 
decided on as phoneme. The decision using the dynamic characteristics is more suitable 
for speaker-independent recognition than that with the static threshold. 

In the network units, phonemes are discriminated with a nonlinear function, such as a 
quadric function. The weight coefficients in the units consist of statistical values such as 
the mean vector, the eigenvector, the eigenvalue and so on, so that the calculation time 
of the weight is smaller than that of the neural networks. The outputs of the units are 
analog values and not deterministic values such as those of the neural networks. 

Recognition experiments are conducted with about 5300 phoneme samples in 166 
Japanese city names uttered by 5 male speakers. These experiments are carried out 
under the condition of automatic phoneme spotting and without knowledge of the follow- 
ing vowels. The recognition scores obtained are 70% for the speaker-dependent ease and 
66% for the speaker-independent case. 

1. INTRODUCTION 

A speech recognition system, especially when it has a large vocabulary and if of the 
speaker-independent type, is useful as man-machine interface. A recognition system based 
on the unit phoneme is more extensive for continuous speech recognition and is easier to 
use with changing dictionaries than one based on the unit word. But the realization 
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use with changing dictionaries than one based on the unit word. But the realization 
of a system based on the unit phoneme is difficult because of speaker individuality and 
coarticulation. 

For the elimination of speaker individuality and coarticulation, phoneme recognition 
using the dynamic feature, i.e. the convex time pattern of the parameter, is more suitable 
than recognition using the static feature. Some methods for phoneme recognition using 
the dynamic feature have been proposed [1-3]. But a dynamic feature such as the distance 
is sometime not suitable because of the folding effect at the portion of most likely being 
a phoneme in time. 

In this paper, the convex characteristics of the time pat tern of the a posteriori  probabil- 
ity is adopted for the elimination of speaker individuality and coarticulation for phoneme 
recogni tion [4-9]. A model of network units based on the a posteriori probability is 
applied for speaker-independent phoneme recognition. 

2. S C A L E S  F O R  P H O N E M E  R E C O G N I T I O N  U S I N G  D Y -  
N A M I C  P R O C E S S I N G  [10] 

Figure 1 shows an example of the acoustic parameter on the time axis. In the figure, two 
positions of the convex pattern are two phonemes; a difference of values of the parameter 
is effected by speaker individuality or coarticulation. At static processing for phoneme 
recognition, the portion over the threshold is only detected as phoneme so, that the first 
portion of the phoneme is correctly detected but the second portion of the phoneme since 
it causes a sake of the lower value than the threshold. At dynamic processing for phoneme 
recognition, the portion of the convex pattern is only detected as phoneme, so that the 
first and second portions of phonemes are correctly detected. 

Three scales of a measurement are compared for the dynamic feature, i.e. the distance, 
the conditional probability density, and the a posteriori probability. These are defined as 
follows. 

d = (z - ~)tC-~(x - p)12 + In(2~r)~ [CI�89 (1) 

p(xl~) = exp(-d) = exp(-(x - p)tC-'(x - p)12) 
(2~)~1CI�89 ' (2) 

p(zl,#) = p(v:)p(zloJ) = p(,,,)p(~lo:) (3) 
K 

p(z )  ~ p(wk)p(z[w,) 
k - I  

where z is the N dimensional vector of the acoustic parameters, p is the N dimensional 
mean vector, C is the covariance matrix of the parameters, p(~o) is the a priori probability, 
and K is the total number of phoneme categories. 

Figure 2 shows the characteristics of the distance, the conditional probability density 
and the a posteriori probability on the parameter axis. From the figure, the decision 
surface of the three cases is the same at static processing. 

Figure 3 shows the time pattern of the distance, the conditional probability density 
and the a posteriori  probability on the time axis. In the case of under-shooting, all time 
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Figure 1. An example of segmentation using the threshold or the convex characteristic. 
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Figure 2. Characteristics of the distance, the conditional probability density and the a 
posteriori probability on the parameter axis. 
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Figure 3. Time pattern of the distance, the conditional probability density and the a 
posteriori probability on the time axis. 

patterns are convex at the phoneme segment. In the case of over-shooting, the time pat- 
tern of only the a posteriori probability shows a convex pattern at the phoneme segment 
but the time pattern of the distance and the probability density show a concave pattern. 
So the a posteriori probability is a suitable measurement for the dynamic processing for 
phoneme recognition. 

0 M O D E L  O F  T H E  N E T W O R K  U N I T S  F O R  R E C O G N I -  

T I O N  O F  P H O N E M E S  

The covariance matrix in eqs. (1) and (2) is composed of the eigenvectors and the 
eigenvalues as. 

N 

C - ~ A,r (4) 
i-----1 

where Ai and Oi are i-th eigenvector and eigenvMue, respectively. The inverse matrix 
and the determinant are: 

N 

c - '  (5) 
i--1 

N 

ICl-' = 1-[ l/A,. (6) 
i---1 
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Figure 4. An example of phoneme space and the discriminant function. 

From eq.(2), the conditional probability function is calculated as. 

N 

e ~ ( -  ~ ( ( ~  - ~)'#~)~/(2,~,)) 
P(x l~ )  = ,=1 

(2~)~/~lCiV~ . (7) 

The modified conditional probability function is represented by the truncation of the 
matrix to order M: 

M 

~xp(- ~ ( ( ~  - ~)'~,)~/(2~,)) 
P(xl~) = ~=~ (2~)m~lClV ~ . (8) 

A model of the network units for recognition of phonemes (NEURO PHONE) is rep- 
resented by eq. (8). 

In the model, the nonlinear discriminant function is nonlinear i.e. quadric. Figure 4 
shows an example of phoneme space and the discriminant function. Figure 5 shows a 
model of the network units for phoneme recognition using the a posteriori  probability. 

4. PHONEME RECOGNITION SYSTEM 

Figure 5 shows a schematic diagram of the recognition system of phonemes using the 
convex time pattern of the a posteriori  probability. The recognition system consists of 
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four stages, i.e. the feature extraction, the calculation of the a posteriori probability, 
smoothing of the probability, and the spotting and decision of the phoneme. 

== .. w ~ a k  ~'o K 
bk X C k ( t ) - -  I2 q l , ( ' r ) b i ( t - - r )  d k ( i  ) r  

w/k ak ~ ...e 0 
i -  ! 

/ '7"x ", ~ , , , / . - ' ~ b ~  q,(,') ~ q 

" \    x3--J _3 -9  "~ 

a "--.. ~ -o  excitation / I ~-=  inhibition 

i 
i l  2 7-'i ,~,~ " 

~1 k m 
1" U • 

= l  - _-- e l  

z N n t t e  

eigen vector / 

Figure 5. A schematic diagram of the network units for recognition of phonemes. 

In the feature extraction stage, the input speech wave is digitized at 10 kHz and the 
input signal is analyzed every 10 ms frame and then the logarithmic spectrum using 5 
channel BPF is calculated from the 12 order LPC spectrum in every frame. The frequency 
range [10] of the 5 channel BPF is shown in table 1. Figure 6 shows as example the 5 
channel BPF spectrum and the LPC spectrum for/morioka/uttered by a male speaker. 

Figure 7 shows the examples of the mean vectors o f / p / , / t / , / k / a n d  silence for the 
standard pattern. The mean vectors consist of 5 channel spectrum of 5 frames. The 
patterns of the mean vectors o f / p / ,  / t /  and /k/ ,  discussed [11], are diffuse- falling, 
diffuse-rising and compact, respectively. 

In the phoneme spotting and decision stage, the portion of the phoneme is detected 
by peak picking of the smoothed a posteriori probability, i.e. the convex pattern. The 
segments of the phoneme are detected by picking of the convex and concave peaks of the 
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Figure 6. An example of the LPC spectrum and the 5 channel BPF spectrum for 
/morioka/uttered by a male speaker. 

Channel 
1 
2 
3 
4 
5 

Table 1. Frequency range of 5 channel B PF. 

Frequency range (Hz) lal Iol I"1 lil I~1 
250 - 600 F1 F1 F1 

500 - i000 F1 F2 F1 

900 - 1800 F2 F2 
1500 - 3000 F2 F2 

2500 - 4500 F3 F3 F3 F3 F3 

Figure 7. An example of the mean vectors f o r / p / , / t / , / k / a n d  silence. 
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difference of the smoothed a posteriori  probability. And the phoneme is decided on by 
the category of the convex pattern of the a poster ior i  probability under the conditions of 
maximum probability and duration of segment. 

Figure 8 shows an example of phoneme recognition using the a poster iori  probability. 
In the figure, speech is the word/morioka/ut tered by a male speaker and all phonemes 
are correctly recognized. 

c p ~ t ~  
, . ~  

�9 ~ .,. ., . r  ~  

bdg 

m n ~ N  

jw ~ 

o O - o  o ~ . . . .  

a o u ~ �9 / . - ' .  7 . - .  ~176 " "  -" ..... "" 
, - "-": ~' - ' h . . .  "" ,,., 

f Y . 
d~ . . . . . . .  -" "" 

40  t 4 8  

1 0 20'  30'  40  ~ e  6 9  '70 9 9  9 0  F'R I~M ( 
$P  E~k: :ER 2 3 1  klORD 1 2  M O R ] O K ~  0 8  F R # t H E S  

Figure 8. An example of phoneme recognition using the a posteriori  probability. 

5. R E C O G N I T I O N  E X P E R I M E N T S  

The recognition experiments are conducted with about 5300 phoneme samples in 166 
Japanese city names uttered by 10 male speakers. The samples of 5 speakers are used 
for closed test and the samples of the other 6 speakers are used for open test. These 
experiments are carried out under the condition of automatic phoneme spotting and 
without knowledge of the following vowels. The recognition scores obtained are 70% 
for the speaker-dependent case and 66% for the speaker-independent case. From the 
experiments, phonemes are automatically detected and are highly recog nized. Table 2 
shows a percentage of the correct, insertion and deletion phonemes every phonemes for 
speaker-independent case. 
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Table 2. Experimental results of phoneme recognition. 
independent case) 

(5 male speakers, Speaker- 

Phoneme 
| 

/~/ 
| 

/o/ 

Correct Insertion Deletion Samples 
i | i 

95% 5% 5% 1255 
| | | 

86% 12% 11% 500 
, / u /  71% , 19% 24% 328 , 

/ i /  85% 9% 11% i 551 
/e/  76% " 14% 15% ! 105 i 

i /J/ 4 8 %  1 2 %  2 0 %  ! 194 

L I w l  i 70% i s% ' ' ' ' j 1 5 %  , 169 ', 

/m/ 24% 36% ' 47% 311 
, , , , , , , 

/n l  35% 51% , 48% 157 
| , , , , l 

/ n /  30% 37% ' 35% 138 
i i l i l l 

/ b /  66% 19% I 24% 68 

, / d /  . 59% , t 7 %  , t5% , 54 . 

/ r /  36% 53% 44% t66 
| , , , 

/z /  25% 40% 58% 84 
, , , , | , | 

/h/ 27% 44% 60% 151 
i / s /  ,i 56% I, 14% ,' 32% ', 279 ', 

/c/ ,, 10% 23% 44% 164 
' / t /  5 5 %  ' 2 1 %  ' 4 3 %  ' 210 ' 
1 �9 , , , | | l 

; /k/  , 6 4 %  , 22% , 3 1 %  , 485  , 

60% 35% 40% i 20 I , IQ I  , , , 
. . . .  " 5329 I Mean 66% 18% 23% ~ ... 

6 .  C O N C L U S I O N  

In this paper, a method of speaker-independent phoneme recognition using network 
units based on the a posteriori  probability is proposed. In the method, the convex charac- 
teristics of the time pattern of the a posteriori  probability is adopted for the elimination 
of speaker individuality and coarticulation. The usage of the time pattern of a posteriori  
probability is more suitable for the elimination than that of the distance. 

The recognition experiments are conducted with about 5300 phoneme samples in 166 
Japanese city names uttered by 5 male speakers. These experiments are carried out under 
the condition of automatic phoneme spotting and without knowledge of the following 
vowels. The recognition scores obtained are 70% for speaker-dependent case and 66% for 
speaker-independent case. 

[Work supported by Grant-in-Aid for Scientific Research on Priority Areas, The Min- 
istry of Education, Science and Culture of Japan] 
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Abstract 
This paper presents an unsupervised speaker adaptation method from short utterances 

based on a minimized fuzzy objective function. In this method, the code spectrum for 
the templates is adapted to that of an input speaker by interpolating the estimated 
speaker-difference vectors at given points in the spectral space of the templates. The 
speaker-difference vectors are estimated so as to minimize the fuzzy objective function 
for the adapted reference codebook under some constraints. The fuzziness and constraint 
parameters are examined using 28-vocabulary SPLIT-based word recognition tests with 
reference patterns from a male speaker. The result showed that this method with a 
fuzziness of 1.5, gives a 9.0% higher recognition rate for the four male speakers with 1.8 
s of training samples than that based on minimum VQ distortion (F  - 1.0). Under 
the best conditions with 16 speaker-difference vectors, this method improved the average 
recognition rate for 20 male speakers from 92.5% with no adaptation to 97.5% with 3.6 s of 
training samples and to 98.5% with 28 word training samples. Furthermore, a sequential 
speaker adaptation, using input speech itself, attained a recognition rate of 97.4% for the 
male speakers. Finaly, a speaker normalization scheme based on fuzzy mapping with the 
adapted codebook was found to be effective for a non-SPLIT based recognition system. 

1.  I N T R O D U C T I O N  

Inter-speaker variation of speech is one of the important issues in designing a speech 
recognition system for use by unrestricted speakers, particularly for a large-vocabulary 
recognition system. Of several approaches to this problem, speaker adaptation or normal- 
ization is a practical solution to alleviate the speaker variabilities. Speaker adaptation 
algorithms are classified into supervised (or text-dependent) and unsupervised (or text- 
independent) ones. The former method requires users to speak specified texts, whereas 
the latter does not impose such a restriction upon users. Since the goal of speaker adap- 
tation is to realize a speech recognition system which operates as a speaker independent 
one, it is desirable to dynamically adapt to a new speaker during recognition without any 
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information about the input speaker nor the text spoken. This paper aims to realize such 
an adaptive speech recognition system. 

The inter-speaker differences of speech that affect the recognition performance comprise 
the static and dynamic characteristics. The approach studied here intends to eliminate 
the static spectral differences, which are mostly caused by the idiosyncrasies in a speaker's 
vocal apparatus. Although a speaker's learned characteristics, such as dialect, are also 
reflected in the spectra, this study will not be concerned with this problem since it might 
require phoneme information for adaptation. 

For supervised speaker adaptation, vector quantization codebook mapping techniques 
have been successfully applied for speaker adaptation [1-5]. In the unsupervised cases, re- 
cent studies have proposed VQ-based speaker adaptation techniques as well [6-7]. These 
studies have represented the adapted spectra in terms of estimated speaker-difference 
vectors in several spectral subspaces. These adaptation algorithms are not based upon 
any explicit criterion on adaptation. Recently, in the area of speechcoding, Shiraki and 
Honda [8] proposed a minimum vector quantization distortion criterion for speaker adap- 
tation. While this method is very effective to reduce VQ distortion, it requires even longer 
training samples to obtain a stable solution. This is because the standard VQ distortion 
criterion discards any information other than the distance between the input vector and 
the closest codeword. So, in order to realize a rapid speaker adaptation, this paper pro- 
poses an adaptation algorithm based on a minimized fuzzy objective function [9], which 
utilizes the relative position of the input vector to all the codewords. Furthermore, this 
method is applied in a sequential speaker adaptation scheme which successively modifies 
the reference spectra in parallel with recognition [10]. 

Following the algorithm, this method is applied to a small-vocabulary VQ-based word 
recognition system [9]. The reference pattern is created by a prototype male speaker, 
and only the spectral codebook is adapted to input speakers, keeping the word dictio- 
nary (code sequences) unchanged. The several parameters involved (e.g., fuzziness) and 
the effectiveness are examined using recognition test with 21 male and 4 female speak- 
ers. Finally, a speaker normalization method based on fuzzy mapping with the adapted 
codebook is compared with the speaker adaptation method [11]. 

2. F O R M U L A T I O N  OF S P E A K E R  A D A P T A T I O N  

2 . 1 .  S p e c t r a l  A d a p t a t i o n  M o d e l  

At text-independent speaker recognition, the recognition score has been found to be 
improved by utilizing the phoneme-dependent speaker characteristics in addition to the 
phoneme-independent ones[12]. This suggests that speaker differences of spectra need 
to be modeled depending on the phonemes or spectra. Thus, as shown in fig. 1, the 
present method represents the spectral differences between an input and the prototype 
speaker in terms of a small number of estimated speaker-difference vectors, which will be 
called "adaptation vectors", {Z~I, Z~2,... , AM} , at typical points, {vl, v2,'", VM}, in 
the spectral space of the prototype speaker. With these adaptation vectors, all the code 
vectors, {zl, z2,..., ZL}, are adapted to the input speaker by the following weighted sum 
of {Ak}; 
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\ IOi2 ~, ~O " A I \  

Figure 1. Conceptual illustration of spectral adaptation. 

M 
~j = zj + ~ wjkAk, (1) 

k=l 
where the weighting coefficient w./k is determined by the distance d(zj, vk) between zj 

and ~k as 

d(zj, ~,k)-P 
wjk  = M ' (2) 

k=l 
where 

d ( y i , ~ j )  = Iiy,- ~J[I. (3) 

This interpolation formula with p = 1.0 was first proposed by Niimi et al [4] and 
Shiraki et al [13]. The parameter p, which will be called the interpolation parameter, 
was introduced in the present study in order to adjust the continuity of the adapted 
vectors ~j in spectral space[6]. Furthermore, since p is included in the objective function 
for estimation, which will be described later, it also controls the smoothing region from 
which speaker-difference vectors will be estimated. Thus, a smaller p might result in 
smoother speaker-difference vectors. 

2.2. Criterion for Spectral  Adaptat ion  
In order to estimate the adaptation vectors from short utterances, the proposed method 

evaluates the goodness of adaptation in terms of all the distances from the input vector 
to the neighboring adapted code vectors {~j} instead of the nearest distance in vector 
quantization [8]. That is, the unknown adaptation vectors, {Ak}, are estimated so as to 
minimize the following weighted sum of all the distances between the input vector and 
every adapted code vector over all the training vectors, { Y l ,  Y 2 , " ' ,  YN}, i.e., the fuzzy 
objective function [14]; 
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V~Ul3 u 1 4 ~  V4 
/,./ . . . . . .  -.. Y2 

Figure 2. Comparison of distortions for two different vectors yl and y2 between hard and 
fuzzy decisions. 

N L 
, , ,3" d ( y , ,  ~ j ) ,  

iffil jffil 
under the constraint, 

(4) 

L 
uij = 1. (5) 

jffil 
In eq. (4), F is called the degree of fuzziness and controls the relative contribution 

of d(yi, ~j) to .IF through the membership functions, uij. F = 1 corresponds to a hard 
decision, i.e., the standard vector quantization. Figure 2 illustrates an example of the 
difference between hard and fuzzy decisions. Whereas vector quantization results in the 
same distortion by two different vectors Yl and Y2, the fuzzy decision can take their 
different positions into account using every distance to the neighboring code vectors. 

In addition to the above constraint, the mean norm of { Ak } is bounded by the following 
inequality to avoid an excessive spectral modification, especially for short training samples, 

1 M 
R = ~ ~ IlAkll ~ <_ y(E~ - E~). (6) 

k = l  

In this inequality, 7/is a norm constraint parameter to adjust the degree of restriction, 
and E~ is the vector quantization distortion of the training samples, {Yl,Y2, '",YN}, 
with the prototype speaker's codebook, and E~ is that produced in making the prototype 
speaker's codebook. 

3. A D A P T A T I O N  A L G O R I T H M  

3 .1 .  B a s i c  A l g o r i t h m  

The fuzzy objective function is minimized with respect to {Ak} and {u~j) under the 
norm constraint (6). Although this minimization problem is difficult to solve for both 
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{ Ak  } and {u~j } simultaneously, we can derive the optimum solution if one of these variable 
sets is fixed. 

With fixed { Ak }, the membership functions are given by 

d ( y , , ~ j ) ~ r  
u , j =  L �9 (7.) 

~"~ d(yi, ~,) ~'~r 
r----'l 

On the other hand, with fixed {u~j}, the vectors {Ak} are given by the normal equa- 
tions: 

M N L 
F 

E(w,  + . = = , j  . . (y,-  (8) 
r--1 i--1 j----1 

( k =  1 , . . . , M )  

where 

N L 
F W,k = ~ ~ u,j. w j,..wjk, (9) 

i=1 j=l 

and ~,k is Kronecker's delta; and A denotes a Lagrange multiplier associated with the 
constraint (6). Since R is proved to be a monotonic decreasing function of A, the norm 
constraint can be satisfied by adjusting the magnitude of A[15]. 

Thus, given a set of typical points {vl, ~2 ,"" ,  ~M} in the prototype speaker's spectral 
space, a local minimum solution for {Ak} is derived by the successive approximation 
procedure below, using the separate minimization steps above. In the subsequent iterative 
algorithm, the superscript (l) represents iteration number l, starting with l = 0 for the 
initial guess. 

(a) Set ~jo) = zj (i.e., A (~ = 0) and ,(o) = ,k.Then at step I " / =  1, . . . .  

(b) Calculate " (0 ~(t-1) =~j by substituting zj for ~j in eq. (7) and the vector quantization 
distortion E~. 

M 

(c) Put A = Ao~-'~ Wkk. 
k - I  

(d) Compute {a(k 0 } for {u}J ) } fixed from eq. (8). 

(e) If R < ,/(E~ - E=2), go to (f); otherwise, return to (d) with A = A. fl(fl > I). 

(f) Calculate the adapted code vectors eJ0 from eq. (1) and (2), and update the ~,(0's 
by 

, ( 0=  ~,(i-1) -t- Ak. (10) 
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(g) Compare J(~) to J~-')" if (jO-') _ jO))/ jO- ')  < S, stop; otherwise, return to (b) 
with 1 - l + 1. 

In the above algorithm, fl represents the step size to decrease the mean norm R(~) 
and / / i s  a convergence criterion. Thes~0Parameters will be determined experimentally. 
Although there is no assurance that J~: converges to the global minimum, the above 
iteration ensures that J~) is monotonically decreasing with I. 

The above algorithm, which will be referred to as the "single-step" adaptation, may 
fall into an undesirable local minimum for a larger M because of too much flexibility. 
Therefore, as in the stage-wise procedure in regression analysis[16], the single-step adap- 
tation with a fixed number of typical points can be applied in a step-by-step manner, 
increasing the number of typical points from 1 to M. This algorithm is called the "stage- 
wise" adaptation. A similar procedure was first applied in a speaker adaptation method 
based on a clustering technique by Shiraki et al [13] and Furui [7]. 

3 . 2 .  R e l a t i o n s h i p  t o  t h e  p i e c e w i s e  V Q - e r r o r  A v e r a g e i n g  m e t h o d  

When p is set to infinity, wj,. is equal to one if zj  is nearest to the typical point "k and 
otherwise zero; 

lim wj, = 5,k, (11) 
p---~oo 

where 

k = arg m)n d(zj, v,). 

Furthermore, in the case of F = 1.0 and r /= oo, eq. (8) becomes 

N 

E ~k" (Yi -- Z j) 
~ k  - -  i=1 

N 

i--1 

where zj is the best match codeword to the input Yi; 

(12) 

(13) 

j = arg rr~'n d ( y i ,  zj) .  (14) 
3 

Thus, the adaptation vector for the k-th typical point is equal to the average vector 
quantization error over the training vectors, Yi, quantized to zj 's  which are closest to 
the k-th typical point. As a result, the piecewise VQ-error averageing method previously 
proposed [6] is a special case of the present method. 

3 . 3 .  S e q u e n t i a l  S p e a k e r  A d a p t a t i o n  

Since the fuzzy objective function method is effective even for short training samples, 
it might be possible to implement a sequential adaptation algorithm which dynamically 
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Figure 3. Word recognition system with preadaptation or sequential adaptation to a new 
speaker. 

adapts to a new speaker using the input speech itself as he speaks to the system[10]. 
As illustrated in fig. 3, the spectral codebook for the reference patterns is successively 
updated by a new codebook at every short period which is adapted to a block of past input 
frames accumulated in a buffer. This scheme will be called sequential speaker adaptation, 
and the previous scheme a preadaptation which adapts a new speaker before recognition. 
In the sequential speaker adaptation, the number of typical points in the reference spectral 
space, the norm constraint, and the convergence threshold should be appropriately set 
depending on the duration and variation of buffered training samples in order to avoid an 
unreasonable modification of the codebook. 

4. D A T A  B A S E  A N D  R E C O G N I T I O N  P R O C E D U R E  

The speech data consist of two repetitions of 28 city names uttered by 21 male speakers 
and four female speakers. The speech signals were digitized at a sampling frequency of 
10 kHz with the frequency band limited to 4.2 kHz. The linear predictive autocorrelation 
method with 12 poles was applied to these speech data with a constant frame of 25.6 ms, 
a frame shift of 12.8 ms, first-order backward differences for preemphasis, and a Hamming 
window. The 1st to 15th LPC cepstral coefficients were used as the components of the 
feature vector. 

Figure 3 shows a SPLIT-based word recognition system [17] with preadaptation or 
sequential speaker adaptation processors [10]. The codebook with 128 codewords of the 
prototype speaker was obtained by the standard LBG algorithm [18] using the cepstral 
distortion measure. The set of typical points, {vk}, consisted of the nearest codeword in 
the codebook to those in a small-size codebook. For time alignment, an unconstrained- 
endpoint DTW algorithm was used. In the subsequent experiments, the reference patterns 
were created by one repetition uttered by a prototype speaker, whose vocal tract length is 
estimated to be close to the average for male speakers. The first repetition of each word 
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from other speakers was used as the training sample and the other as a test sample, and 
the training and test samples were also exchanged. In order to prepare training sets of 
different durations, all of the 28 word data (22 s on average) for each speaker were divided 
into 1/12-, 1/6- and 1/3-subsets (1.8, 3.6, and 7.2 s in average duration, respectively). 
The performance of the spectral adaptation is evaluated by recognition rates and/or the 
DTW distance (per frame) between the same words uttered by the reference and test 
speakers. 

5. E X P E R I M E N T S  

5.1. Effect of  Fuzziness  

First, the effects of fuzziness in the stage-wise adaptation was examined using the 
twelve 1/12-subsets and three 1/3-subsets of the training samples for the four female and 
four male speakers who result in the lowest recognition scores without adaptation. Figure 
4 shows the average recognition rates for the male and female speakers as a function of 
fuzziness. In this experiment, the number of typical points, interpolation parameter, and 
the norm constraint parameter were set to 16, 1.0, and 1.0, respectively. From these 
results, it is clearly shown that the fuzzy objective function criterion with F - 1.5 gives 
the highest recognition rates. In particular, for 1.8 s of training samples, this adaptation 
method improved the recognition rate for the male speakers from 87.5% for the standard 
vector quantization distortion criterion (F - 1.0) to 96.5% for F - 1 . 5 .  

Furthermore, in order to reduce the computational cost, the effect of pruning the 
membership functions is examined. The membership functions whose value is less than 
a threshold are removed from the summation in eqs. (8) and (9). Figure 5 shows the 
average recognition rates and the percentage of used membership functions with respect 
to the threshold under the above-mentioned best condition with 1/12-subsets of training 
samples. As seen this figure, when the threshold is set to the mean value of uij (i.e., l /L),  
the amount of computation can be reduced to about 20% of the full calculation without 
any performance degradation. 

5.2. Effect of  the  Interpolat ion Parameter  

In order to find an optimum value of the interpolation parameter, p, recognition exper- 
iments with several values of p were carried out using the same speakers and 1/3-subsets 
of the training data, as in section 5.1. In this experiment, stage-wise adaptation with 
M = 16, F = 1.5, and T/ = 1.0 was applied. Figure 6 shows the average recognition 
scores and DTW distances for the four male and four female speakers as a function of p. 
As seen in this figure, the effect of p on the recognition scores is not clear, especially for 
male speakers. However, the DTW distances tend to be smallest around p = 4.0. In the 
subsequent experiments, the value of p will be set to 2.0 for computational simplicity. 
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Figure 4. The average recognition rates for the 4 male and 4 female speakers as a function 
of the fuzziness for stage-wise adaptation with M = 16, p - 1.0, and r / -  1.0 using 1.85 
of training samples. 
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5 . 3 .  E f f e c t  o f  t h e  N o r m  C o n s t r a i n t  

In order to examine the effect of the norm constraint, an adaptation experiment was 
carried out using the same data as in section 5.1. In this experiment, since the norm 
constraint is expected to be effective for short training samples, single-stage adaptation 
with M = 16, p = 1.0, and F = 1.5 was applied. The DTW distance and the recognition 
rate as a function of rl are shown in fig. 7. As seen in this figure, the norm constraint, 
rl, is most effective for values from 1.0 to 2.0. Thus, this value will be set to 1.0 in the 
following experiments. It should be noted here that the normal equations for the hard 
decision, i.e. F - 1.0, were singular without the norm constraint. 

5 . 4 .  E f f e c t  o f  t h e  N u m b e r  o f  T y p i c a l  P o i n t s  

First, the single-stage and stage-wise adaptation algorithms were compared. The result 
showed that the stage-wise adaptation provides a slightly higher recognition rate than 
the single-stage adaptation. Therefore, the effect of the number of typical points was 
examined under stage-wise adaptation with F = 1.5, p = 1.0, and rl = 1.0 using the 
1/24-, the 1/12- and 1/3-subsets of the training samples. Figure 8 shows the average 
recognition rates as a function of the number of typical points for the four male and four 
female speakers. As seen in this figure, the recognition rate is improved as the number 
of the typical points increases, but tends to saturate or decrease beyond a small number 
of points for the shorter training samples. Thus, the number of typical points should be 
determined depending on the amount of training samples. 

5 . 5 .  E x p e r i m e n t s  o n  S e q u e n t i a l  S p e a k e r  A d a p t a t i o n  

In these experiments, the codebook was sequentially adapted before recognition of each 
test word using the past two words as training samples. According to the experiments 
in section 5.4, the number of typical points in the spectral space is set to eight if the 
number of training frames is less than 100, and otherwise it is set to 16. The convergence 
threshold, 6, is set to the slightly larger value of 0.1. The experiment was carried out 
for the four worst male speakers with a norm constraint, rl, of 0.5 and 1.0. Since the 
recognition rate depends on the order of test words, the recognition tests were conducted 
using three different sequences of test words. 

As a result, the average recognition rate for the four speakers, three word sequences, and 
two repetitions was found to be 96.3% for ~ - 0.5, which was 5% higer than that for rl = 
1.0. The lower rate for ~ = 1.0 is caused by excessive spectral modification, which depends 
on each test word. Thus, the smaller norm constraint of 0.5 is appropriate for sequential 
adaptation. Furthermore, in order to gain insight into the sequential adaptation process, 
fig. 9 shows an example of VQ distortions of each word produced by the following four 
codebooks: (1) the codebook without adaptation (short dashed line), (2) the preadapted 
codebook obtained by the 1/3-subset (dotted line), and (3) the codebooks before and 
after sequential adaptation (solid and dashed line, respectively). As seen in this figure, 
although the difference between VQ distortions before and after adaptation for each word 
does not converge to zero, the VQ distortion for each word before adaptation approaches 
that of the preadaptation codebook after about the fifth word. 
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Table 1. Average correct scores for the three 
speaker groups in various recognition experiments 
with a prototype male ~peaker. 

20 male 
Experimental Condition Speakers 

4 male 
Speakers 

4 female 
Spekaers 

Without Adaptation 92.7% 79.4% 76.8% 
Preadaptation (3.6s) 97.5 97.3 85.8 
Prea~taptation (22s) 98.5 98.2 87.1 
Sequential Adap. (2 words) 97.4 96.3 82.9 
Supervised Adap. (22s) 98.2 98.6 96.4 
Speaker Dependent 99.9 99.5 99.6 

5.6. Comparative Experiments 
First, the recognition experiments with speaker adaptation proposed here were carried 

out for the 20 male speakers as well as the four male and four female speakers under 
the following conditions: (1) without adaptation, (i.e., "speaker independent" recognition 
using references from a prototype speaker) (2) with preadaptation using the 1/6-subsets 
and 28 words, (3) with sequential adaptation with T/ = 0.5 as in section 5.5, (4) with 
a supervised speaker adaptation similar to the method by Shikano et al. [1], where a 
mapped codebook was created without iteration using all of the 28 word data, and (5) 
with speaker dependent reference. Table I compares the average recognition rates for the 
above experiments: the average recognition rate for the 20 male speakers increased from 
92.5% for no adaptation to 98.5% for the unsupervised adaptation with all of the 28 word 
data, which is almost the same as the average score of 98.2~ for the case of supervised 
adaptation. Furthermore, only the 1/6-subset of training data (3.6 s) attained an average 
score of 97.5%, close to the above score. For the female speakers, the unsupervised speaker 
adaptation also improved the average recognition score from 76.8% without adaptation to 
85.8% for the 1/6-subsets and 87.1% for all the training data. However, these scores are 
still much lower than that for supervised adaptation. Finally, sequential adaptation with 
I /= 0.5 improved the average recognition rate for the 20 male speakers to 97.4%, which 
is close to that obtained by preadaptation with the 1/6-subsets of training samples. 

5.7. Speaker Normalization by Fuzzy Mapping 
The speaker adaptation method presented above is the most suitable for the VQ- 

based recognition systems, such as the SPLIT or HMM method. However, this method 
can be applied to any other recognition scheme, such as a neural network, continuous 
HMM, or statistical methods by mapping the input spectra onto the reference spectral 
space utilizing a fuzzy mapping technique [5] with the adapted codebook [11]. First, 
in this mapping or "normalization" scheme an input vector is encoded by a fuzzy vector 
quantizer with the adapted codebook, {~j}, using eq. (7), generating a set of membership 
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functions, {uij}. Second, since each adapted codeword has a one-to-one correspondence 
with the original reference codeword, the mapped vector, Yi, is derived by decoding, {u6} , 
with the reference codebook: 

F uij.  z j  

Yi uij~uT = F , ( 15 )  
uij 

uij~uT 

where the summation is restricted to the terms whose u~j are less than a threshold, uz. 
Actually, this normalization scheme was compared with the adaptation scheme under 

the same experimental conditions as in section 5.6. As a result, the normalization scheme 
provided slightly higher recognition scores than the adaptation scheme. This impovement 
might be attributed to the fact that the mapped vectors are composed of the reference 
spectra themselves. Thus, although the normalization scheme needs an extra amount of 
computation for the fuzzy encoding and decoding, it is superior to the adaptation scheme 
in performance and applicability to various recognition methods. 

6.  C O N C L U S I O N  

This paper has presented an unsupervised speaker adaptation method based on a mini- 
mized fuzzy objective function. As a result of SPLIT-based word recognition experiments 
with 28 vocabulary words, the adaptation with 1.5 of fuzziness attained higher recognition 
scores than that with a minimum VQ distortion criterion. Particularly, using as short as 
3.6 s of training samples, this method attained high scores, close to those when using all 
of the training samples for male speakers. 

Furthermore, the sequential speaker adaptation by two successive words under the 
norm constraint of 0.5 was found to be as effective as a preadaptation method using 
about 10 words as training samples. Finally, it was shown that the speaker normalization 
scheme based on a fuzzy mapping technique with the adapted codebook is superior to the 
adaptation scheme. 

In future work, it is necessary to improve the adaptation accuracy for large speaker 
differences, such as those between male and female speakers. In addition, it is important 
to develop a method to eliminate speaker differences in dynamic characteristics due to 
coarticulation. 
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A b s t r a c t  

A Japanese text dictation system has been developed based on phoneme recognition 
and a dependency grammar. The phoneme recognition is carried out using the modified 
LVQ2 method which we propose. The linguistic processor is composed of a processor 
for spotting Bunsetsu-units and a syntactic processor with semantic constraints. In the 
processor for spotting Bunsetsu-units, using a syntax-driven continuous-DP matching 
algorithm, the Bunsetsu-units are spotted from a recognized phoneme sequence and then 
a Bunsetsu-unit lattice is generated. In the syntactic processor, the Bunsetsu-unit lattice 
is parsed based on the dependency grammar. The dependency grammar is expressed as 
the correspondence between a FEATURE marker in a modifier-Bunsetsu and a SLOT- 
FILLER marker in a head-Bunsetsu. The recognition scores of the Bunsetsu-unit and 
phoneme were 73.2% and 86.1% for 226 sentences uttered by two male speakers. 

1. I N T R O D U C T I O N  

A number of continuous speech recognition systems[I-6] have been reported. However, 
there still remain several problems in developing a continuous speech recognition system 
for ordinary Japanese text utterances. The traditional continuous speech recognition sys- 
terns only dealt with particular linguistic information in a specified domain. As necessary 
techniques for the construction of a Japanese text dictation system, we should develop 
the following methods: 

(1) A phoneme recognition method with high accuracy, 

(2) A Bunsetsu-unit spotting method with high accuracy and with a small amount of 
computation, where the Bunsetsu-unit is a unit which is uttered with one breath and 
is composed of a conceptual word followed by several functional words, and 

(3) An efficient parsing method taking into account syntactic and semantic constraints. 

In order to construct the system, we propose a modified LVQ2 method for the phoneme 
recognition, syntax-driven continuous-DP for spotting Bunsetsu-units and a CYK-based 
parsing method using semantic constraints for the syntactic processing. Finally, we will 
describe the perfomance of the system when text speech is uttered Bunsetsu by Bunsetsu. 
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0 O U T L I N E  OF T H E  J A P A N E S E  T E X T  D I C T A T I O N  SYS-  
T E M  

Figure 1 shows a schematic diagram of the Japanese text dictation system. The 
system is composed of an acoustic processor[7], a processor[S-10] for spotting Bunsetsu- 
units, and a syntactic processor with semantic constraints [11-13] . In this research the 
speech to be recognized includes spoken sentences whose syntax and semantic structures 
are syntactically and semantically reasonable. We use sentences from a scientific paper, 
where the sentences contain 843 conceptual words and 431 functional words. 

Bunsetsu 
/~.utomaton 

l~.ecognized Japanese Kanji-kana S~ring 

"N" 
Syntactic Processor J ' 

with semantic co'nstraints ~< 

Functional Confusion 
J J Structure, Matrix 

Bunsetsu unit 
Spotting Processor | 

"~ ' ~  Phon~m. Seque,,c. 
Acoustic Processor 

Continuous Speech 

Figure 1. A schematic diagram of the Japanese text dictation system. 

The input speech is analyzed using a 29 channel band-pass filter bank. In the acoustic 
processor a phoneme sequence is recognized from the input speech using the modified 
LVQ2 method[7] which we propose. 

The structure of Japanese sentences is effectively described by a two-level grammar 
which consists of an intra-Bunsetsu grammar[14] and an inter-Bunsetsu grammar[15]. Ac- 
cordingly, the analysis of the Japanese sentences is divided into two stages. The first stage 
is the extraction of the Bunsetsu-unit candidates from the recognized phoneme sequence. 
The second one is the analysis of the dependency structure between the Bunsetsu-unit 
candidates. The Bunsetsu-unit can be modeled by a finite-state automaton, which is con- 
venient to describe the syntactic structure. The test set perplexity[16] of the finite-state 
automaton is 230. 

The proposed linguistic processor can be extended so as to deal with ordinary Japanese 
text utterances, even if the number of conceptual words is increased. 
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0 P H O N E M E  R E C O G N I T I O N  U S I N G  A M O D I F I E D  L V Q 2  

M E T H O D  

The learning vector quantization(LVQ,LVQ2) methods were proposed by Kohonen et 
al.[17]. McDermott et al.[18] developed a shift-tolerant phoneme recognition system based 
on the LVQ2 method. In the LVQ2 algorithm proposed by Kohonen, two reference vectors 
are modified at the same time if the first nearest class to an input vector is incorrect and 
the second nearest class to the input vector is correct. We propose a modified training 
algorithm for the LVQ2 method. In the modified LVQ2 algorithm, n reference vectors are 
modified at the same time if the correct class is within the N-th rank where N is set to 
some constant. 

Figure 2 shows the process of the modified LVQ2 algorithm. In step 1, reference vectors 
are chosen using a K-Means clustering method from each class. In step 2, the nearest 
reference vector of each class to an input vector is selected. In step 3, the rank of the 
correct class is computed. When the rank of the correct class is n, we assume that the 
reference vector of the correct class is ram. In step 4, n is checked to see whether or not 
n falls in the range of 2 _ n _< N. In step 5, the check is made to see whether or not 
the input vector falls within the small window, where the window is defined around the 
midpoint of tax and m,.  In step 6, the i-th reference vector is modified according to the 
following equations. 

[rn/] '+1 = [mi - a ( n ) ( z  - m i ) ] '  ( i  = 1 , 2 , . . . ,  n - 1) ,  

[m. ]  '+' = Ira. + - m . ) l ' .  

The phoneme recognition system is similar to the shift-tolerant model proposed by 
McDermott et a1.[18]: 

(1) 8 mel-Cepstrum coefficients and 8 A mel-Cepstrum coefficients are computed for 
every frame from the 29 chanel B PF spectrum. Each reference vector is represented 
by 112 coefficients( 7 frames x 16 coefficients). Each class was assigned 15 reference 
vectors chosen by the K-Means clustering method. 

(2) A 7-frame window is moved over the input speech and yields a 112(16 x7) dimensional 
input vector every frame. 

(3) In the training stage the modified LVQ2 method is applied to the input vector as 
described above. 

(4) In the recognition stage we compute the distances between the input vector and the 
nearest reference vector within each class. 

(5) From this distance measure, each class is assigned an activation value a~ as follows: 

t)  = 1 - t ) /  d ( i ,  t ) ,  
i 

where d, c, and t are distance, class, and time, respectively. 
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Figure 2. Algorithm of the modified LVQ2 method. 

(6) The final activation a! is computed by summing 9 activation values as follows" 

4 

~r t) = ~ a,~(c, t + j ) g . ( j ) ,  
j - - 4  

where g~ is the weight of the Gaussian type window. 

(7) The class with the maximum activation value is regarded as phoneme candidate of 
each frame. The activation value is regarded as a posteriori probability P(Cklt~) of 
the phoneme Ck at the tk-th frame. 

(8) The optimum phoneme sequence is computed from the phoneme candidate sequence 
using dynamic programming and the duration constraints[19]. 



197 

4 .  P R O C E S S O R  F O R  S P O T T I N G  B U N S E T S U - U N I T S  

There are two traditional methods(methods 1 and 2) for extraction of the Bunsetsu- 
units, as shown in fig. 3. The first method(method 1) spots the Bunsetsu-units using all 
possible Bunsetsu-unit reference patterns. However, the method needs a large amount of 
storage and computation, since the number of Bunsetsu-units is huge in the Japanese text 
dictation system. On the other hand, the second one(method 2) detects the conceptual 
words and the functional words independently. However, the Japanese language has many 
functional words with short lengths such as copulae, endings of conjugated words, and 
auxiliary verbs. The current spotting method shows poor performance in spotting words 
having short duration and therefore insertion and deletion errors are common, although 
the amount of computation for this method is very small. The method(method 3) which 
we propose[8-10] is an intermediate one. This method spots the Bunsetsu-units based on 
a finite-state automaton representing the Japanese Bunsetsu-unit structure. We call this 
method a syntax-driven continuous-DP matching algorithm. 

<METHOD I> Entry all form of the conjugated word ia the dictionary 

1 l 
,r l , > 0  

KANGAE RAR~.NA I 

<METHOD 2> Spot a conjugated word by morphemes 
It /2 13 /4 

,. r_ T_ r j  tt, ,q,q>o 
KANGAE RAP~ NA I 

<METHOD 3> Syntax-driven continuous DP matching algorithm 
t, h z ,  

! 
> 0 

KANGAE RAP~ NA I 

Figure 3. An example of the Bunsetsu-unit spotting method. 

Because the word order of functional words is fixed, the intra-Bunsetsu grammar can 
be expressed as a finite-state automaton. Figure 4 shows the Bunsetsu-unit structure 
model for the Japanese text dictation system. The four arcs, "adverb", "verb/adjective 
", "noun", and "adnominaF, represent conceptual words and the other arcs represent 
functional words (or null transitions). Double circles in the figure indicate a terminal 
state. 

Figure 5 shows an example of processing with syntax-driven continuous-DP. The pro- 
cessing with syntax-driven continuous-DP starts with a conceptual word. If the proba- 
bility of the final phoneme of the stem of the conceptual word exceeds a threshold, the 
automaton generates the next word. The calculation of the probability for the next word 
is carried out using the final probability obtained at the previous stage as the initial 
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adverb .~ copula 
postposifion 2 

�9 erb aspect I S 
ective inflection form mood 

I10IlI1  su~lx 

copula formal noun 

postposition I 

formal 
adnominal noun 

Figure 4. The outline of the structure of a Bunsetsu-unit. 

value. In the same manner the calculation of the probability continues until each path 
reaches its terminal state, as shown in fig.4. If the probability at the terminal state 
exceeds a threshold, the Bunsetsu-units of every valid path to that terminal state are rec- 
ognized as candidates, and thus a Bunsetsu-unit lattice is made from an input phoneme 
sequence. Using syntax-driven continuous-DP the Bunsetsu-units are spotted from an 
input phoneme sequence and simultaneously the morpheme analysis is carried out. 

The results for conjugated word spotting[10] can be seen in fig. 6. This figure shows 
the relation between the number of candidates per 100 input phonemes and the detection 
score. Method 3 shows a performance similar to method 1. Method 2 detects 20 times 
more candidates compared to method 3 when the detection score is 90%. 

0 S Y N T A C T I C  P R O C E S S O R  W I T H  S E M A N T I C  
C O N S T R A I N T S  

Syntactic processing is applied to the candidates of the Bunsetsu-unit in the Bunsetsu- 
unit lattice detected by syntax-driven continuous-DP. The inter-Bunsetsu grammar is 
implicitly expressed as the correspondence of the markers in the functional structure of 
the Bunsetsu-unit candidates. The two partial trees are merged when the modifier's 
FEATURE marker set and the head's SLOT-FILLER marker set both contain the same 
syntactic markers. Figure 7 shows an example of the merging of the two partial trees. All 
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CD 

r162 

e- 

Input Pattern 

Figure 5. An example of the processing with syntax-driven continuous-DP. 

syntactic dependency, including modification, complement, object and subject are treated 
in the same framework. We use 95 functional features[11] as the FEATURE markers and 
the SLOT-FILLER marker. 

The algorithm[12,13] for parsing is based on the Cocke-Younger-Kasami(CYK) algo- 
rithm using the beam search. Multiple candidates for a sentence are obtained for one 
input phoneme sequence using this algorithm. The computation amount for the parsing 
is O(N3D2), where N is the length of the input phoneme sequence and D is the maximum 
number of the stored candidates. 

6 .  E X P E R I M E N T A L  R E S U L T S  

The training based on the modified LVQ2 method was carried out with speech samples 
of the 212 word vocabulary uttered by 7 male and 8 female speakers. The recognition 
experiments of 30 phonemes were carried out with speech samples of the 212 word vo- 
cabulary uttered by another 3 male and 2 female speakers. Table 1 shows the phoneme 
recognition scores. The result for N = 2 corresponds to the original LVQ2 method. 
The recognition scores for N >__ 3 are higher than the score for N = 2. This indicates 
superiority of the modified LVQ2 method to the original LVQ2 method. 

We applied this method to a multi-speaker dependent phoneme recognition task for 
continuous speech uttered Bunsetsu by Bunsetsu. Table 2 shows the phoneme recognition 
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Figure 6. The relation between the number of candidates per 100 input phonemes and 
the detection score when the phoneme recognition score is 85~163 

Table 1. Speaker-independent phoneme recognition scores for spoken words using the 
modified LVQ2 method and the method for selecting the optimum phoneme sequence. 

Rank of reference Phoneme recognition Deletion Insertion 
vector for training score score score 

N=2 83.1 2.0 11.3 
N=3 85.6 1.9 9.8 
N=7 86.5 1.7 9.0 
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I o~nsc~su^ ~ ounsotsuO 
fcatuce # 1: a < : ~  featuce # 1: c I~] 
fe=Lt:uce #2: b IiJ i fe=.tuce .0'2: f ~] 

Ounsetsu g 1 
feature # 1: e 
feature #2: f 
slot-tiger" #1: !" Bern=e= A ~j 

I ~ot-nu~ ~1: c r )~] 

=,ot-nn~ # 2 : g (  ) ~ i  

Figure 7. An example of merging two Bunsetsu-units. 

scores for 2 male speakers. The training, based on the modified LVQ2 method, was carried 
out using 70 sentences uttered by the two male speakers, where each of two speakers 
uttered 35 sentences. The recognition experiments were carried out with the other 113 
sentences uttered by each of the two speakers. The average phoneme recognition score 
was 86.1%. The average insertion and deletion scores were 7.7% and 3.9%. Table 3 shows 
the recognition scores of the conceptual word, the Bunsetsu-unit, and the sentence. The 
average recognition scores of the conceptual word, the Bunsetsu-unit, and the sentence 
were 85.7%, 73.2%, and 32.6%. Figure 8 shows examples of sentence recognition. Most 
sentence recognition errors were due to errors in recognition of functional words and in 
recognition of phonemes at the end of the sentence. 

Table 2. Multi-speaker-dependent phoneme recognition scores for continuous speech ut- 
tered Bunsetsu by Bunsetsu. 

Speaker 

A 
B 

Phoneme recognition 
sco:re 
84.4 
87.8 

Deletion 
score 
4.7 
3.0 

Insertion 
scoze 
5.8 
9.5 
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Table 3. Multi-speaker-dependent Bunsetsu-unit recognition scores for continuous speech 
uttered Bunsetsu by Bunsetsu. 

Speaker Conception word Bunsetsu-unit Sentence 
A 84.8 70.9 
B 86.7 75.6 

28.4 
36.7 

ddnino Imdmewffi oNkyogts~cuitaiunt deNkino oyodaru 
Phoneme: tatlqaido huiacwffi ~ g i z y , , t ~ - ! t a h i z  te.Nkino mmcvodeha 

ddnlno hzdmewa o ~ c u a l t a i s u r z  ~ o  oyodzqta 

tokmd otono oolmtadwz ~ nalmtzw'anaraa~ 

Pho#anz: hokuN otono ~ te.Nkiwa, nakut~ndas'aaal 

olmru or Nkutmflwa, deNkiws, zak'utewanaruai 

oNLTozi del~w, cukimouode~-u 
Phoneme: oNk~oni te~sio culdaonodeae 

oNk~ni deNkimo cukimouodezru 

konpyutamo disitL~giz~cm::o ~ g i r u .  
Phonemm koNpyukamo pizhteruizyucumo tataruuri 

koupyutamo dizitzrugiz~cumo atarasii 

Figure 8. Examples of sentence recognition. 
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7. C O N C L U S I O N  

We have developed a prototype of a Japanese text dictation system which is composed 
of an acoustic processor, a processor for spotting Bunsetsu-units, and a syntactic pro- 
cessor. We constructed the acoustic processor using the modified LVQ2 method. The 
modified LVQ2 method achieves a high phoneme recognition performance of 86.1%. The 
syntax-driven continuous-DP matching algorithm is used for spotting Bunsetsu-units. 
This method greatly reduces the computation amount and storage capadty necessary for 
spotting the Bunsetsu-units. Analysis of the dependency structure between the Bunsetsu- 
unit candidates is effectively carried out using the syntactic and semantic information. 
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Word Recognition Using Synthesized Templates 
Mats Blomberg, Rolf Carlson, Kjell Elenius, BjSrn GranstrSm and Sheri Hunnicutt 
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Royal Institute of Technology (KTH), Stockholm, Sweden 

A b s t r a c t  

This is an expanded version of a paper presented at the FASE SPEECH'88 meeting in 
Edinburgh. This paper also includes some new experiments along the same lines. 

1. I N T R O D U C T I O N  

With the ultimate aim of creating a knowledge based speech understanding system, we 
have set up a conceptual framework named NEBULA. In thin paper we will start by briefly 
describing some of the components of this framework and also report on some experiments 
where we use a production component for generating reference data for the recognition. 
The production component in the form of a speech synthesis system will ideally make the 
collection of training data unnecessary. Preliminary results of an isolated word recognition 
experiment will be presented and discussed. Several methods of interfacing the production 
component to the recognition / evaluation component have been pursued. 

2.  N E B U L A  

During the last years, many experiments have been carried out at our department con- 
cerning different aspects of speech recognition and speech perception. At the same time 
work on speech synthesis has been pursued. The speech recognition scheme, NEBULA, 
combines results and methods from these efforts into coherent system. The system is 
presented in Figure 1. 

2 . 1 .  T h e  f r o n t  e n d  

Using conventional signal processing techniques, we have earlier tried some of the proposed 
auditory representation in the context of a speech recognition system, Blomberg et al. [1]. 
Based on one of these models, the DOMIN model, we are currently working on a new 
primary analysis module. This peripheral auditory model explores the possibility for 
synchrony effects that will enhance spectral peaks and suppress valleys. At the same 
time, wide band effects will be taken into account. 
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motoric disability or in aphasia rehabilitation. These algorithms are currently being 
complemented with syntactic and semantic components, Hunnicutt [4]. 

2 . 5 .  T h e  i d e n t i f i c a t i o n  component 
There are presently two types of recognition techniques available for NEBULA. One 

if a whole-word pattern-matching based on filter bank analysis, cepstral transformations 
and non-linear time warping, described in more detail elsewhere, Elenius & Blomberg [5]. 
As in other systems of this kind, a separate training session is needed to establish acoustic 
reference data. In our system, the reference material is provided by the rule synthesis 
system. It will be possible to gave the reference generated during the recognition process 
and then take into account word juncture and word position effects, which is not easily 
achievable in conventional word-based speaker_trained systems. This is the method used 
in the present experiments. 

The second method is based on phonetic recognition using a network representation 
of possible realizations of the vocabulary. The acoustic analysis is the same as in the 
previously described method, but the phonetic decisions are based on comparisons to 
a library of synthetic allophones. The network approach enables handling of optional 
pronunciations. On the other hand, non-stationary parts of the speech wave may be 
better represented by a more detailed description of the time evolution of the utterance, 
as in the first method. A combination of the two methods would enable the advantages 
of both techniques to be used. 

2 . 6 .  W o r d  r e f e r e n c e s  f r o m  t e x t - t o - s p e e c h  s y s t e m  

The phonetic component of a text-to-speech system is used to create references from 
the cohort. The synthesis system has been described elsewhere, Carlson et al. [6]. It is 
based on rules and has a formant synthesizer as output module. These references are sent 
to the identification and verification part of NEBULA. 

3. U S I N G  S Y N T H E T I C  T E M P L A T E S :  P R E V I O U S  W O R K  

Use of synthetic speech as reference for aligning natural speech with dynamic program- 
ming techniques has been reported by many authors, i. e. , Woods et al [7], Chamberlain 
& Bridle [8], HShne et al. [9], Hunt [10]. The papers by Chamberlain and HShne are 
mainly concerned with the time-warping aspects of mapping long utterances (sentences) 
to each other. Hunt cites four reasons besides the obvious one of improving speech synthe- 
sis for the reach in this field. First he mentions the analysis by synthesis based technique as 
a good method for extracting formant frequencies, which seem to be better for indicating 
phonetic identity than the gross spectral shape, often used in speech recognition. Another 
property of synthetic speech is that it can be modified to match the voice of the current 
speaker. Synthesis can also be used to exploit knowledge that is available about natural 
speech such as duration and the context of a word. Finally he discusses the positive effect 
of the perfect consistency of synthetic speech. It can be used for speaker verification, 
where the speaker characteristics can be related to synthetic speech. In recognition the 
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consistency may be used to improve separation between words such as stalagmite and 
stalactite that have phonetically identical parts. After having compared synthetic speech 
(MITalk) to natural speech in some recognition experiments, he notes that aligning speech 
between natural speakers gives considerably better results than using synthetic speech. 
His conclusion is that the synthesis rules must be improved before the synthesis can give 
comparable results. 

4. SOME E X P E R I M E N T S  W I T H I N  N E B U L A  

In 1987 we reported on the ongoing work inside some of the clouds in the NEBULA 
scheme, Blomberg et al. [11]. At that time the experiments were run on three different 
computers and two different kinds of special hardware. This created practical problems 
and slowed down the continuation of the work. During the last year, both the synthesis 
and the recognition software have been implemented on our Apollo work stations. This 
has opened up new possibilities to make additional experiments along the same lines as 
before. The interactions between the different modules in NEBULA is now fast and easy. 
We will in this paper review the earlier work and report some results from a new test 
series. This paper also includes additional experiments that were not included in the 
written version that is published in the proceeding of the SPEECH'88 FASE symposium, 
Blomberg et al. [12]. 

4.1. Test vocabulary and subjects 

In all experiments reported in this paper, the lexical search was stimulated. In this 
case, the suggested preliminary analysis only discriminates between vowel and consonant 
and identifies the stressed syllables. A 26-word cohort was chosen which was of the type 
"VCVCC'VC. It was drawn from a corpus consisting of the most frequent 10, 000 words 
of Swedish. Ten male subjects were asked to read the 26 words from a list with little 
instruction except to pronounce each word separately. The vocabulary was recorded in a 
normal office room with additional noise from a personal computer. 

The word structure, in most cases, is a compound word with a disyllabic initial morph. 
The structure is rich enough to expose a variety of deviations among the subjects and a 
synthesized reference. These deviations generally occur across the compound boundary. 
Both deletions and insertions and hypercorrect pronunciations occur and 37 such devia- 
tions from the norm were identified among the total of 26 * 10 words recorded. Within 
the cohort there are many examples of morphological overlap as can be seen from the list 
of words in Table 3. One word pair (14 '~ventyrs' and 15 '~ventyr') differs in only one 
consonantal segment. 

4.2. Preliminary recognition results; experiment 1 

The recorded speech material was used as input to the pattern-matching verification 
component of Nebula, which in the first experiment consisted of the special hardware 
recognition system developed at KTH. The output from our hardware text-to-speech 
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system was recorded and used to train this system. No adjustments were done to the 
synthesis in this first stage. 74.6% of the test words were identified correctly. 

In addition to the synthesis, each speaker was used to create references for the other 
speakers. All the human speakers served better as reference speakers than the synthesis, 
and the correct result ranged from 79.1% to 93.6% with an average value of 89.5%. 

At an early point we noticed discrepancies in the durational structure of the synthetic 
and the human speech. Differences in segment duration will cause spectral differences that 
cannot be eliminated by a time warping procedure, since time dependent co-articulation 
and reduction rules are active in the synthesis system. The segmental durations for one 
speaker were measured and the durational framework for each word was imposed on the 
synthesis. The result showed an increase to 81.5% correct identification, which is slightly 
better than our worst human speaker. The results from our experiments are summarized 
in Table 1 and 2, and Figure 2. 

Figure 2. Recognition results in the experiments using different kinds of reference. 

4 . 3 .  A n e w  e n v i r o n m e n t ;  e x p e r i m e n t  2 

The new series of experiments use the same recordings as before, but different 
methods are used to create the spectral templates for the identification components. 

As a start, the old recordings of both the human speech and the synthesis were digitized, 
using 16kHz sampling frequency. The filter bank was simulated with the help of an FFT 
analysis followed by pooling of the spectral components into 16 bands, from 200 to 5000Hz, 
equally spaced along the Bank scale. The recognition system, now running in the Apollo 
work station, was used to repeat the same experiment as before. The result can be seen in 
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Table 1. The increased accuracy in the analysis gives a slightly better recognition result 
for the human speakers and the non-normalized synthesis. 

In the following experiment, all parts of the text-to-speech system were running in the 
same computer including the synthesizer. The result of 76.4% correct identification is 
presented in Table 1 under the name 'software synthesizer'. 

Table 1. Result from the recognition experiment 1 and 2. 

Reference patterns from Experiment I Experiment 2 

Human Speakers 89.5 90.7 
Synthesis 74.6 77.2 
Synthesis, Duration Adjusted 81.5 81.2 
Software Synthes~ --.- 76.4 

4 . 4 .  P a r a m e t e r  g e n e r a t e d  s p e c t r u m ;  e x p e r i m e n t  3 

The next experiment in this series included a different method to generate spectral 
frames. The control parameters to the synthesizer were used directly to generate the 
spectral shape. We can then by-pass several problematic areas in the analysis. The 
interaction between harmonics and formant peaks in the vowel spectrum can be avoided 
and the fricative noise spectrum is stable. Figure 3 gives an example of this method. The 
control frames to the synthesizer are used to generate the spectral representation in Figure 
3a. These spectral slices are transformed into 16 channels corresponding to the output 
from the filter bank used in the identification part of the recognition system, Figure 3b. 
To the left in Figure 3c is the synthetic reference for the first word, 'obekvgrn', in the 
vocabulary and to the right is the analysis of a speaker saying the same word. Several 
observations can be made. The noise level has a considerable influence on the spectrum. 
The speaker uses an unvoiced labiodental fricative instead of the voiced counterpart in 
the synthesis. We will return to a more detailed analysis later in the paper. 

The frame rate in the synthesis is 10 ms while the recognition system uses 25 ms be- 
tween each observation. The down-sampling was achieved by simply taking the maximum 
of two sequential spectral slices. The recognition result with this method was 78.4% cor- 
rect identification. An alternative method to use every other spectral slice gave a better 
result, 81.1%. Interpolation between two static spectra will give unwanted effects. If 
a resonance is moving too fast between two frames a double peak will be stored in the 
spectral representation. As an alternative, we used all synthesis frames and increased 
the frame rate in the verification part by two. The synthesis gave a slightly higher value 
82.4% correct. A repetition of experiment 2 using each of the human speaker as reference 
gave a mean of 92.8%. The two worst cases were 84.7% and 88.9%. These results are 
presented in Table 2 and Figure 2. 

In Figure 4 the distance between the correct and the best incorrect match is shown for 
both a typical human reference and the synthesis. We can observe that the distribution is 
different is at least two aspects. The data points axe closer to the diagonal in the synthesis 
case compared to the human case. This means the synthesis gives a less confident answer 
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Figure 3. Creation of special slices a)and transformation to filter bank representation b). 
Comparison between synthetic (left) and natural (right) spectral templates for the word 
'obekvam' c). 
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J ~ - ~ ,  NEBULA 

J ~  

J 

Figure 1. The speech recognition scheme, NEBULA. 

2 .2 .  F e a t u r e  e x t r a c t i o n  

At the output of the auditory model, the speech is represented as a continuous flow of 
information in multiple channels, Carlson et aJ. [2]. This makes it possible to use diverse 
analysis mechanisms which can be simple but should work in a coordinated structure. 
The process could include spectral transformations, lateral inhibition, temporal onset / 
offset effects, and a variety of phonetic-cue detectors. 

2 .3 .  T h e  l e x i c a l  c o m p o n e n t  

The low levels of NEBULA explore the descriptive power of cues, and uses multiple 
cues to analyze, classify, and segment the speech wave. These classifications are used 
during the lexical search, Carlson et al[3]. Additional information from a prediction system 
is also used in the lexical selection part of NEBULA. As a result of this component, we 
get a selection of possible words, a cohort. 

2 .4 .  H i g h  l e v e l  l i n g u i s t i c  p r o c e s s e s  

The mid-portion of NEBULA is currently represented by a syntactic component of the 
text-to-speech system, morphological decomposition in the text-to-speech system, and a 
concept-to-speech system. A special phase structure grammar is employed which takes 
account of word order, phrase order, and grammatical information. These parts were 
originally developed for a different purpose than speech recognition, but we expect them 
to be applicable in this area as well. 

One of several word prediction algorithms has been designed to find cohorts of possible 
words from partial information generated by a word recognition scheme. Other prediction 
algorithms are being used in handicap applications, to help persons with a speech or 
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Table 2. Result from the recognition experiment 3. 

Reference pattern 

Human Speakers 
25 ms and I0 ms sampling: 

Parameter Generated Spectrum 
20 ms, max of  two fzames: 

Parameter Generated Spectrum 
20 ms and I0 ms sampling: 

90.7 

78.4 

81.1 

92.8 

82.4 
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Figure 4. The distance between the correct stimulus and the correct reference, and be- 
tween the correct stimulus and the best incorrect match. Human reference a) and synthetic 
reference b). 

even if it is correct. Also the mean distances between the synthesized reference and the 
test vocabulary are 17% larger compared to the corresponding distances using references 
by human speakers. To reduce the distances to a comparable or smaller value and to push 
it away from the diagonal is a challenge for our continued work. 

A confusion matrix of the experiment 3 (20 ms frames) is shown in Table 3. We 
can observe that the word 'ingenting' has been over-represented in the responses. A 
comparison is made in Figure 5 between the tense vowel / e : /and  the l a x / I / f o r  the same 
speaker pronouncing words 13 : enighet and 3 : ingenting. It is obvious that the spectral 
shape of the main stressed vowel in this cannot be used as a distinguishing cue. However 
relative duration, coarticulation and diphthongization can give supportive information for 
vowel discrimination. 

As a complement to the case study of t h e / e : /  and / I /  mentioned above we made 
a statistical analysis of the energy distribution, see Figure 6. the figures are created 
by making a dimensional histogram of the energy/frequency distribution of the observed 
material. This distribution is then divided in 10% intervals, which are drawn in the graph. 
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Figure 6. Energy distribution for initial and final /e: /  (top) and initial and final /I/ 
(bottom). 

The 30%, 50% and 70% are marked with a thicker line. This method is used in our general 
work with our speech data-base [13]. The two phonemes were analyzed in initial and final 
position in the same recorded materials. A small difference in the higher formants can be 
seen as expected. If we compare the spectrum in initial and final position, we find a small 
difference in spectral slope which can be referred to the glottal source. Several studies at 
our laboratory have been dealing with these types of variations, [14]. 

4 . 5 .  I m p r o v e d  s y n t h e s i s ;  e x p e r i m e n t  4 

Detailed analysis of the results gave good information on basic errors in the synthesis. 
First the phonetic transcription was not according to the typical pronunciation of the 
speakers. T h e / g / i n  'enighet' was for example deleted by most speakers. This created 
most of the errors for this word. 
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The synthesis system used so far is based on smoothed square waves for most of the 
parameters. This has proven to be a good method for interpolation in many cases. It 
will automatically create reduction effects when the duration of a segment is short. The 
method is related to the thinking that the production of speech can be simulated by control 
step functions smoothed by the muscular/mechanical system of articulators. However, the 
frequency domain is probably not the correct domain for this smoothing. Articulatory 
parameters are more natural in this respect. As a alternative we are currently building a 
slightly different synthesis system where the parameters are specified by target values and 
the time it takes to reach this value. The movement towards a target can be interrupted 
by a new target. Unfortunately this method adds new demands on the system. Reduction 
does not come automatically as before. It has to be described in a more explicit way. On 
the other hand phonetic knowledge can be more accurately specified. 

As a final experiment word references from this new system was tested in a recognition 
experiment. Several new synthesis aspects were considered. Differrent allphones for the 
/ r / p h o n e m e  was used in the 'CV' or 'VC' position. The d iph thong / e : /was  adjusted. 
Figure 7 shows the synthesis spectrum fo r / e : / compared  to the energy histogram from 
Figure 6a. This experiment gave a result of 88.5% accuracy, which is better than the 
worst human reference and close to the second to last one. 

o . . . . . . . .  .~ . . . . . . . . .  .2. . . . . . . . .  .,3 . . . . .  ,,, . . . . . . . . .  ,~. . . . . . . . .  6 . . . . . . .  . .7 .  . . . . . . . .  8 k H z  

" . ! i 

. . . . . . . . . . . . . . . . . . . .  . . . . . . . . . .  . . . . .  i . . . . . . . . .  . . . . . . . . .  . . . . . . . . .  . . . . . . . . . .  

i ! i i i 

iiii!iiiii 
E s N I G H E t T .  R u l  F r o m e t  5 6  E l  

Figure 7. Comparison between syn the t i c / e : / and  energy histogram. 

4.6. Analysing identification results 

In order to analyze the recognition results we can use a program giving a display as 
seen in figures 8a and 8b. Before time aligning words by dynamic programming they are 
linearly normalized to a nominal length of 800 ms - or 80 cepstral frames, since frames in 
this experiment are calculated at 10 ms intervals. At the top we see the warping function 
as a thin line. The bold line is a cepstral difference function between the matched words 
calculated along the warping function. Below this plot we see the three energy functions 
displaying: 1) the rest word (bold), 2) the time warped reference word, and 3) the reference 
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word. Below these we see two 16 band spectral section of corresponding frames at a point 
along the time warp. The bold section belongs to the rest word and the other is from the 
reference. The time point is marked by a vertical bar in the warped difference function 
at the top. 

The display makes it possible to interactively analyze why words are misrecognized 
and what part of words are mismatched. It also gives a means of understanding what 
makes the test word more similar to an incorrect reference than to the correct one. In 
this case we are analyzing the test word '~ventyr' by speaker GF what was erroneously 
identified as the synthesized reference 'ingenting'. In Figure 8a we see result of matching 
'~ventyr' by GF to the synthesized version of the same word and in Figure 8b we see it 
matched to the synthesized word 'ingenting'. The special sections are from the first vowel 
as marked by the vertical bar in cepstral difference plot. The cepstral difference is larger 
between 'ae' and the synthetic 'i'. The corresponding plots of spectral sections show that 
in this case the synthetic 'ae'(8a) has too little low energy compared to the natural voice 
(the bold line). It should be stressed that during identification the matching is done in 
the cepstral domain, not in the frequency domain, and that one should be careful about 
conclusions drawn from looking only at spectral sections. 
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Figure 8. Plots showing word matching in the identification component. In 8a the test 
word 'aventyr' by speaker GF is matched to the same synthesized reference word and in 
8b the same word 'aventyr' is matched against the same synthetic word reference word 
'ingenting'. See section 4. 6 for more information. 
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4.7 .  Comparison between the experiments  

Figure 2 shows the results from all experiments. It can be seen that various improve- 
ments have successively raised the recognition accuracy. The increased frame rate gave a 
bigger improvement for the human references compared to the synthetic. 

5. C O N C L U D I N G  R E M A R K S  

In our paper we have reported on some experiments, which are part of a long term 
project towards a knowledge based speech recognition system, NEBULA. We have taken 
the extreme stand in these experiments of comparing human speech to predicted pronun- 
ciations on the acoustic level with the help of straightforward pattern matching technique. 
The significantly better results when human references are used was not a surprise. It 
is well known that text-to-speech systems still need more work before they reach human 
quality. However, the results can be regarded as encouraging. 

In the last experiments we reached an important goal in our work strategy. We have 
created an experimental system that gives us control of each separate module of the 
system. We can easily do a special comparison between synthesis and human speech. 
We can adjust the spectral shapes in order to adapt the synthesis to a specific speaker. 
This will give us valuable feed-back on both the prediction/synthesis component and the 
matching algorithm, and some information on how these components should interact when 
exposed to a variety of speakers. 
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1. INTRODUCTION 

A type of system popular today for Automatic Speech Recognition (ASR) consists 
of two components. An acoustic component matches the acoustic input to words in its 
vocabulary, producing a set of the most plausible word candidates together with a prob- 
ability for each. The second component, which incorporates a language model, estimates 
for each word in the vocabulary the probability that it will occur, given a list of previously 
hypothesized words. Our work focuses on the language model incorporated in the second 
component. The language model we use is based on a class of Markov models identified by 
Jelinek, the "n-gram" and "Mg-gram" models. These models produce a reasonable non- 
zero probability for every word in the vocabulary during the speech recognition task. Our 
combined model incorporates both a Markov 3g-gram component and an added "cache ~ 
component which tracks short-term fluctuations in word frequency. The addition of the 
cache component and the evaluation of its effects are the original contributions of this 
paper. 

We adopted the hypothesis that a word used in the recent past is much more likely to 
be used soon than either its overall frequency in the language or a 3g-gram model would 
suggest. The cache component of our combined model estimates the probability of a word 
from its recent frequency of use. The model uses a weighted average of the 3g-gram and 
cache components in calculating word probabilities, where the relative weights assigned to 
each component depend on the Part of Speech (POS). For purpose of comparison, we also 
created a pure 3g-gram model, consisting of only the 3g-gram component of the combined 
model. 

Our research was greatly facilitated by the availability of a large and varied collection 
of modern texts, in which each word is labelled with an appropriate POS. This is the 
Lancaster-Oslo/Bergen (LOB) Corpus of modern English. Part of this corpus (391,658 
words) was utilized as a training text which determined the parameters of both models: 
the standard 3g-gram model, and our combined model consisting of the same 3g-gram 
model along with a cache component. 

We required a yardstick with which to compare the performance of the two mod- 
els.The measure chosen is called "perplexity"; it was devised by F.Jelink, R.L.Mercer, 
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and L.R.Bahl[4]. The perplexity of a model can be estimated by the success with which 
it predicts a sample text (which should NOT be the one used to train the model). The 
better the model, the higher the probability it will assign to the sequence of words that 
actuary occurs in the sample text, and the lower the perplexity. 

Once the parameters of the two models, the pure 3g-gram and the combined, had been 
calculated from part of the LOB Corpus, we could have used any sample text from any 
source whatsoever to compare the perplexity of the models. We chose to use part of the 
remaining portion of the LOB Corpus because of the wide range of different types of text 
represented therein. The sample text we constructed (like the training text)includes such 
diverse types of written English as press reports, religious literature, love stories, and 
government documents. 

The results of the comparison between the two models exceeded our expectations. The 
pure 3g-gram model, as expected, had a high estimated perplexity:332. The estimated 
perplexity of the combined model, on the other hand, was 107. This more than three-fold 
improvement indicates that addition of a cache component to a 3g-gram language model 
can lead to dramatic improvement in the performance of the model, as measured by its 
perplexity. 

2. M A R K O V  M O D E L S  F O R  N A T U R A L  L A N G U A G E  

2.1 .  Mathematical Background 
An Automatic Speech Recognition (ASR) system takes an acoustic input, A, and 

derives from it a string of words WI, W2,..., Wntaken from the system's vocabulary, 
V.Formal]y, let WS - <  WI, W2, ..., Wn >denote one of these possible word strings and 
P(W,.q [ S) the probability that it was uttered, given the acoustic evidence A. Then the 
speech recognizer will pick the word string WS satisfying, 

P(I~S I A) = max P(WS I A) (1) 
w $  

i.e., the most likely word string given the evidence. From the Bayes Formula we have 

fl/S = {WSsuch thatP(WS). P(AIWS)is a maximum} (2) 

In this paper, we are concerned with the model that estimates P(WS), the probability 
of a given word string independent of the acoustic input. 

2.2 .  J e l i n e k ' s  T r i g r a m  M o d e l  

The trigram model is a Markov model, approximating P(W~ = W l< W~, ..., W~_~ >) 
by P(Wi = W/-2, W~_1). The latter, in turn, is estimated from the training text as 
the ratio of the number of times the word sequence < W~-2, Wi_~, W > occurred to the 
number of times the sequence < W/_2, W~_I > occurred: 

N(W,_2, W,_,, W) P(W, = W I W,_2, W,_,) ~ / ( W  I W,_2, W,_,) = N(W,_2, W,_,) (3) 
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In practice many trigrams that do not occur in the training text show up during the 
recognition task, and should therefore not have the zero probability assigned them by this 
formula. One way of dealing with this problem is to use a weighted average of trigram, 
bigram, and individual word frequencies: 

P(W, -- w I v _2, v _1) = q2f(w, - w I w,_2, w _1)+qlf(wi = W lWi-1)+qof(Wi = W) 
(4) 

where q0 + q~ + q2 = I and 
f ( w ,  = w I w,_2, w,_,) = N(W~_2, W,_I, W)/N(W'~_2, W'~_I), 
f(W~ = W IW'~_, ) = N(W'~_I, W)/N(W'~_~), and f(Wi_, = W) = N(W'~ = W)/NT, 
where NT =total number of words in training text. 

If q0 ~ 0, this smoothed trigram model guarantees that any word W that occurs at 
least once in the training text is assigned a non-zero probability. The values for q0, ql,and 
q2 are chosen in order to meet the maximum likehood criterion. 

2 . 3 .  T h e  3 g - g r a m  M o d e l  

The 3g-gram model (terminology of A. Martelli and of Derouault and Merisldo [1, 2]) 
is analogous to the trigrsm model; it employs grmnn~tical parts of speech-henceforth 
abbreviated "POS' .  

Let g(Wi) - g~ denote the POS of the word that appears at time i, let G be the set 
of POSs recognized by our model, and let gj be a particular POS whose probability of 
occurring we wish to predict. The model will give us an estimate P(g~ = g~ [g~-2,g~-~) 
of that probability based on the identity of the two preceding POSs. Note that many 
words belong to more than one POS category. For example, the probability that "light" 
will occur is the probability that it will occur as a noun plus the probability that it will 
occur as a verb plus the probability that it will occur as an adjective. Thus, the general 
3g-gram formula is: 

P ( W / -  W [< Wl,..., Wi-1 >) ~- Y~ P ( W  [ gj) . P(gi = gj [ gi-2,gi-1) 
ojEG 

"" ~ f (W l gj)" P(g, = g j  I g,-,, g=-~) (5) 
0iEG 

Given a sufficiently large training text, P(g~ = gj [gi-2,  gi-1) could be estimated for 
every POS g~ in G as f(g~ = gj I g~-2, g~-~). In practice, existing training texts are too 
small-many POS triplets will never appear in the training text but will appear during 
a recognition task. If we do not modify the procedure to prevent zero probabilities, a 
particular gj that actually occurs may have zero estimated probability. 

Recall that an analogous problem occurred with the trigram model. The solution we 
described was the "weighted average" approach, which uses bigram and singlet frequencies 
to smooth out the trigram frequencies.This solution is also applicable to the 3g-gram 
model-Derouault and Merialdo [1, 2] employed a variant of the weighted average 3g-gram 
approach. 

Their corpus consisted of 1.2 million words of French text tagged with 92 POSs. Only 
5 percent of the possible triplets occurred. Thus, the doublets were tabulated as well; this 
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time half of the possible pairs occurred. Instead of using individual POS frequencies as the 
third component of a weighted average, these researchers chose to add an arbitrary small 
value e - 10 -4 to the overall probability estimate of each word in order to prevent zero 
estimates for the probability of occurrence of any given word. Thus, they approximated 
the probability of occurrence of a word W at time i, given that W has part of speech gj, 
the two preceding parts of speech are gi-2 and gi-1, and vocabulary size is n, as 

P(W, = W I g(W) = gj, g~-2, g,-~) 
".' (1 - ne) f (W ] gj) x [ l , f(g, = gj I gi_,)12f(gi = gj lg j- , ) ]  + e, (6) 

e = 10 -4 ,11 + 12 = 1 
They experimented with two different ways of calculating l~ and 12. Derouault and 

Merialdo's first let 11 and 12 be a function of the count of occurrence of < gi-2,gi-1 >. 
Each possible history < gi-2, gi-~ > was assigned to one of ten groups, depending on how 
often it had occurred in the training text. Each of the groups had different values of 11 
and/2,  with the highest value of/2 occurring in the group for histories < gi-2, gi-~ > that 
never occurred in the training text. The other way in which these researchers calculated 
l~ and 12 was to allow them to depend on gi-1. 

Let h(< gi-2, gi-1 >) denote the parameter on which II and 12 depend. For Derouault 
and Merialdo's first approach, h = N(< gi-2,gi-1 >) = the number of occurrences of 
< gi-2,gi-~ > in the training text;for the second approach, h = gi-~ = the POS of 
the preceding word. They calculated l~(h) and /2(h) by the same algorithm in both 
cases, called the deleted interpolation method [,5]. Having sprit the training text into 
two portions in the ratio 3" 1, they used the larger portion to calculate f(g~ [ g~-2,g~-~) 
and f(g~lg~-~). They then set l~(h) and /2(h) to arbitrary values such that  l~(h) and 
/2(h) = 1, and iteratively reset them from the remaining portion of the corpus. Summing 
over all triplets < gi-2, gi-~, gi > in this portion, they defined 

S,(h) = ~ l , ( h ) f ( g ,  I g, -2,g,- , ) / [ l , (h) f (g i  I gi-2,g,-,) + 12(h)f(g, l g,_,)] (7) 
S2(h) = ~ 1 2 ( h ) f ( g i  I g i - , ) / [ l l ( h ) f (g i l g i -2 ,g i - , )  + 12(h)f(g, I g,-~)] (8) 

They then redefined 

l~(h) = S,(h)/(S~(h) + S2(h)), 
/2(h) = S2(h)/(Sl(h) + S2(h)) (9) 

Iteration continued until ll(h) and 12(h) converged to fixed values. Derouault and Merialdo 
found only a small difference between the performance of the model in which 11,12 depend 
on the count N ( <  gi-2,gi-~ >) and that in which they depend on the POS gi-~. Both 
models were superior to one in which coefficients were arbitrarily set to 11 = 0.99,12 = 0.01 
for all POS. 

2.4. Perplexity:  A Measure  of  the  Performance  of  a Language  
M o d e l  

We can view a language as a source of information whose output symbols are words. 
Unfortunately, we cannot know the probabilities P(wl,w2, ..., ton) for strings of a language. 
However, each language model provides an estimate P(wl,  w2, ..., ton) for such strings. 
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where kM, j "~- kc,  j = 1, 
instead of by f(W~ - W I g~ - g j )  alone. The values of kM,j and kc,.i are found by the 
method mentioned in 2.4. 

We must also specify how we estimated the POS component P(gi = gj J g i-2, g~-l) of 
both the 3g-gram and the combined models. This was done in almost the same way as 
was done by Derouault and Merialdo. We chose to use the variant of their model in which 
the 1-values depend on the previous POS gi-1. To ensure that no POS gj is ever assigned 
a probability of zero, we added an arbitrary small number 0.0001. We thus made the 
approximation 

P(gi = g j  I gi-2,gi-~) ~ l~(gi_~)f(gi = gj I gi-2,gi-~) + 12(gi-~)f(gi = gj I g,-~) + 0.0001 
(13) 

where l~(g~) +/2(gffi) = 0.9847 for all x (where 0.9847 = 1 - (no.of POSs) x 0.0001). 
The above description ignores the case where a word will be encountered in the sample 

text that is not in the system's vocabulary V. We estimated the probability that  such a 
word will occur by Turing's formula [9], which uses the frequency of unique words among 
all words in the training text;this yielded 0.035. 

We can now give the overall formula that we used: 

P(W  = w I g,-2 ,  

if W in V 

(1 - d) [[kM,j x f(Wi = W lgi = gj) + kcdCj(W, i)] 
giEG 

[llf(gi = g j  I g~-2, g~-a) + 12f(gi = f f j  I g~-~) + 0.00011] 

else d, 

where d = 0.035, kMj + kc,j = 1, la + h = 0.9847 (14) 

Only one major modification to this model proved to be necessary in practice. We were 
faced with severe memory limitations, which required that  we economize on the amount 
of data stored. For this reason, we decided to restrict the number of POSs for which 
200-word caches were maintained. To be given a cache, a POS had to meet two criteria. 
It had to 

1. comprise more than 1% of the total LOB Corpus 

2. consist of more than one word(for instance, the LOB category BEDZ was excluded 
because it consists of the single word "was") 

Only 19 POSs met these two criteria;however, these 19 together make up roughly 65% of 
the LOB Corpus. Thus, for POSs other than these 19, there is no cache component in 
the combined model; the estimated probability is identical to that of the pure 3g-gram 
model. 

Another problem was what to do when the recognition task is biginning and the cache 
for gj, containing the previous words that  belong to POS gj, is nearly empty, i.e. the 
number of words on which our estimate is based is far less than N.Arbitrarily, we set 
kc,j = 0 until the corresponding cache has 5 words in it; at that moment kc~i attains its 
maximum value. 
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0 I M P L E M E N T A T I O N  A N D  T E S T I N G  OF T H E  C O M B I N E D  
M O D E L  

4.1. T h e  LOB Corpus  and Texts  Extrac ted  from It 

The Lancaster-Oslo/Bergen Corpus of British English consists of 500 samples of about 
2000 words each. The average length per sample is slightly over 2000, as each sample is 
extended past the 2000-word mark in order to complete the final sentence. Each word 
in the corpus is tagged with exactly one of 153 POSs. The samples were extracted from 
texts published in Britain in 1961, and have been grouped by the LOB researchers into 
15 categories spanning a wide range of English prose [7, 8, 9]. These categories are shown 
in Table 1. 

Table 1. 

Symbol 
A 
B 
C 
D 
E 
F 
G 
H 
J 
K 
L 
M 
N 
P 
R 

Distribution of L O B Categories 
Descriprion Corous 

press reportage 44 
editorials 27 

press reviews 17 
religion 17 

skills and hobbies 38 
popular lore 44 

biography and essays 77 
misceilaneous 30 

learned writings 80 
general fiction 29 
Mystery fiction 24 
science fiction 6 

adventures and westerns 29 
love stories 29 

humour 9 

Trainig Text 
15 
9 
6 
,6 

13 
15 
25 
10 
27 
10 
8 
2 

10 
10 
3 

Para Setting & Testing Texts 
9 
5 
3 
3 
8 
9 

15 
6 

16 
6 
5 
1 
6 
6 
2 

The table above shows the 15 text categories. The column labelled "Corpus" gives 
the number of samples in each category in the original LOB Corpus. We extracted three 
different, non-overlapping collections of samples from the tagged LOB Corpus, and used 
each for a different purpose. All three were designed to reflect the overall composition 
of the LOB Corpus as closely as possible. The column labelled "Training Text" shows 
the number of samples in each category for the first of these collections; the last column 
applies to both remaining collections. 

The training text for our models was used for further parameter setting, including 
calculation of the 1-values in the Derouault-Merialdo formula (subsection 2.4), which give 
the relative weights to be placed on triplet and dcublet probability estimates for the POS- 
prediction portion of both models. It was also used to calculate the k-values, which give 
the relative weights to be placed on the cache component and the Markov component in 
the combined model. It contained 100 samples altogether. 

The third collection of samples formed the testing text. It was used to compare the 
combined model with the Markov model. It contained 100 samples distributed among the 
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LOB categories in exactly the same say as in the parameter setting text. Note, however, 
that only the categories and not the samples themselves are the same. 

4 . 2 .  I m p l e m e n t i n g  t h e  C o m b i n e d  M o d e l  

Because of memory limitations, it proved impossible to implement a cache for every 
one of the 153 POSs in the LOB Corpus. As was mentioned in 3.2, two criteria were used 
to select the POSs which would be assigned a cache: 

1. the POS had to constitute more than 1% of the LOB Corpus 

2. the POS had to contain more than one word or symbol 

The second criterion is obvious-if only one vocabulary item has a given POS, the cache 
component yields no extra information. The first criterion is based on the premise that 
rate POSs will be more spread out in time, so that the predictive power of the cache 
component will be weakened. 

4 . 3 .  T e s t i n g  t h e  C o m b i n e d  M o d e l  

Two parts of the LOB Corpus were used to find the best-fit parameters for the pure 
3g-gram model and the combined model, made up of the 3g-gram model plus a cache 
component. These two models were then tested on 20% of the LOB Corpus 100 samples 
as follows. Each was given this portion of the LOB Corpus word by word, calculating 
the probability of each word as it went along. The probability of this sequence of 230, 
598 words as estimated by either model is simply the product of the individual word 
probabilities as estimated by that model. 

Note that in order to calculate word probabilities, both models must have guessed the 
POSs of the two preceding words. Thus every word encountered must be assigned a POS. 
There are three cases: 

1. the word did not occur in the tagged training text and therefore is not in the vocab- 
ulary 

2. the word was in the training text, and had the same tag whenever it occurred 

3. the word was in the training text, and had more than on tag (e.g.the word "light" 
might have been tagged as a noun, verb, and adjective) 

The heuristics employed to assign tags were as follows: 

1. in this case, the two previous POSs are substituted in the Derouault-Merialdo weighted 
average formula and the program tries all 153 possible tags to find the one that max- 
imize the probability given by the formula 

2. in this case, there is no choice;the tag chosen is the unique tag associated with the 
word in the training text 
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3. when the word has two or more possible tags, the tag chosen from them is the one 
which makes the largest contribution to the word's probability 

Thus, although the portion of the LOB Corpus used for testing is tagged, these tags 
were not employed in the implementation of either model; in both cases the heuristics 
given above guessed POSs. A separate part of the program compared actual tags with 
guessed ones in order to collect statistics on the performance of these heuristics. 

5. R E S U L T  

5 . 1 .  C a l c u l a t i o n  o f  t h e  L - V a l u e s  

The first results of our calculations are the values/1(g~-1) and 12(g~_~), obtained it- 
eratively to optimize the weighting between the POS triplet frequency f(g~ [ g~-2,g~-l) 
and the POS doublet frequency f(gi [ gi-~) in the estimation of P(gi = gj [ gi-2,gi-~). 
As one might expect, 1~ (g~_~) tends to be high relative to 12(g~_~) when g~-I occurs often, 
because the triplet frequency is quite reliable in the case. For instance, the most frequent 
tag in the LOB Corpus is "NN', singular common noun;we have II(NN) = 0.57. The tag 
"HVG', attached only to the word "having", is fairiy rats; we have ll(HVG) = 0.17. 

5 . 2 .  C a l u c u l a t i o n  o f  t h e  K - V a l u e s  

For each part of speech gj, we calculated the weight kc,j given to the cache component 
of the combined model and the weight kM,j given to its Markov component. Recall that 
we originally created a different cache for each POS because we had hypothesized that the 
cache component would be more useful for prediction of content words than for function 
words. 

The optimal weights, calculated by means of the Forward-Backward Method and shown 
in Table 2, decisively refute this hypothesis. 

The pattern in Table 2 is just the opposite of what we had expected, with function 
POSs having significantly higher optimal weights for the cache component of the combined 
model than content POSs. This intriguing result is discussed in the Conclusion. 

5 . 3 .  P e r f o r m a n c e  o f  B o t h  M o d e l s  o n  t h e  T e s t i n g  T e x t  

We calculated the performance of the various models on the testing text of 100 samples 
from the LOB Corpus (230, 598 words); the most important results will be given first. 
The pure Markov model gives perplexity equal to 332 (average probability per word is 
0.003008). This compares unfavourably to Jelinek's value of 128. On the other hand, the 
combined model gives perplexity equal to 107 (average probability per word is 0.009341). 
This dramatic, more than three-fold, improvement can only be attributed to the inclusion 
of a cache component in the combined model. 

There were 230, 598 words in the testing text. Of these, 14, 436(6.2%) had never been 
encountered in the training text and were thus assumed not to be in the vocabulary (not 
recognized). Of the remaining 216, 162 words that had occurred at least once in the 
training text, 202, 882(93.8%) had tags that were guessed correctly (6.2% incorrectly). 
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Table 2. 

POS 
AT singular article 
ATI sing. or pl. art. 
BEZ is, 's 
CC cocrd, conjunction 
CD cardinal 
CS subord, conjunction 
IN preposition 
JJ adjective 

MD modai auxiliary 
NN sing. noun 

NNS pl. noun 
NP sing. proper noun 
PPS possessive det. 

P P3A pers. pron. 3rd pens. nom 
RB adverb 
VB verb base form 

VBD verb past tense 
VBG present part., gerund 
VBN past part 

Oprimal Weights by POS 
Descriprion Cache Component Markov Component 

0.999 
0.998 
0.999 
0.997 
0.783 
0.973 
0.919 
0.402 
0.989 
0.403 
0.498 
0.592 
0.997 
1.000 
0.660 
0.456 
0.519 
0.518 
0.325 

0.001 
0.002 
0.001 
0.003 
0.217 
0.027 
0.081 
0.598 
0.011 
0.597 
0.502 
0.408 
0.003 
0.000 
0.340 
0.544 
0.481 
0.482 
0.673 

The 14, 436 words that  never occurred in the training text were assigned the correct tag 
only 3676 times (25.4% correct, 74.6% incorrect). 

6. C O N C L U S I O N S  

The results listed in the previous chapter seem to strongly confirm our hypothesis that  
recently-used words have a higher probability of occurrence than the 3g-gram model would 
predict. When a 3g-gram model and a combined model resembling it but containing 
in addition a cache component were used to calculate the perplexity of a testing text, 
the perplexity of the combined model was lower by a factor of more than three. The 
importance of our results is in the trend the show, not in the precise values we obtained; 
these depend on the size and origin of both the training text and the testing text. 

Several ideas for improvement have occurred to us. It would make sense for the weight- 
ing of the cache component to depend on the number of words in the cache in a more 
sophisticated way than our current step-function heuristic. Another idea would be to 
extend the idea of a model that dynamically tracks the linguistic behaviour of the speaker 
or writer from the lexical to the syntactic component of the model. In other words, re- 
cently employed POSs would be assigned higher probabilities. One might also explore the 
possibility of building a morphological component so that the occurrence of a word would 
increase the estimated probability of morphologically related words. 

The line of research described in this paper has more general implications. Perhaps 
if we followed an individual's written of spoken use of language through the course of a 
day, it would consist largely of time spent in language "islands" or sublanguages, with 
brief periods of time during which he is in transition between islands. One might at tempt 
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to chart these "islands" by identifying groups of words which often occur together in the 
language. If this work is ever carried out on a large scale, it could lead to pseudo-semantic 
language models for speech recognition, since the occurrence of several words characteristic 
of an "island" makes the appearance of all words in that island more probable. 
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On the  Des i g n  of  

French 

a Voice-act ivated  T y p e w r i t e r  in 

J.-J. Mariani 

LIMSI-CNRS, BP 30, 91406 Orsay Cedex, France 

A b s t r a c t  

Designing a Voice-Activated typewriter in French necessitates a study both on how 
to realize the acoustic level recognition, and on how to obtain a model of the French 
language. Such a project was initiated at LIMSI 10 years ago. This paper will present 
the different steps that have been completed since the beginning of this project. 

First, a study on the phoneme-to-grapheme conversion, for continuous, error-free phone- 
mic strings, using a large vocabulary and a natural language syntax has been completed, 
and published in 1979. The corresponding results of this work has then been improved, 
with some attempts to convert phoneme strings containing (simulated) errors, while the 
methodology was adapted to the case of stenotype-grapheme conversion. 

Second, LIMSI is participating in the ESPRIT project 860 "Linguistic Analysis of the 
European Languages", In this framework, the approach for language modeling developed 
at LIMSI in the first project mentioned above has been studied, and compared width 
other approaches, that are closely related. This study has been conducted on 7 different 
European languages. This 4 year project is now approaching its end, and should be 
followed by ESPRIT Phase II project, with the goal of designing a speech-to-text and 
text-to-speech system, for the same 7 languages. 

Third, the link between the acoustic recognition and a language model close to the one 
used in the above studies was made, and resulted in a complete system ("HAMLET"), 
for a limited vocabulary (2000 words), pronounced in isolation. This work was conducted 
during my sabbatical year (1985-1986) at the IBM t.j. Watson Research Center. 

The part of this work concerning the design and realization of the Hamlet system has 
been conducted as a World Trade Visiting Scientist at the IBM TJ. Watson Research 
Center, in the Speech Group, from September 1985 to August 1986. The part of the work 
concerning the ESPRIT 291/860 project has been financed partially by the Commission 
of the European Communities. The part of the work concerning the MuPCD has been 
financed by the French Ministry of Telecommunication (Contract DGT/DAII 86.35.053). 

Fourth, a parallel development at LIMSI, with a similar approach, resulted in a VAT 
on a 5000 word vocabulary pronounced in isolation. This system takes advantage of 
the existence of a specialized DTW chip (MuPCD) that has been designed at LIMSI, 
with the BULL and the Veesys companies. The acoustic recognition has been presented 
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with the chip emulator in March 1987, and the complete system with the chip itself was 
demonstrated in Spring 1988. This work is presently extended to continuous speech. 

1. I N T R O D U C T I O N  

From the very first successful attempts, speech recognition systems have been improved 
independently along three axes: from speaker-dependent to speaker-independent, from 
isolated word to connected word, and, more recently, from small vocabularies (ten to fifty 
words) to large vocabularies of up to 20,000 words (L. Bahl, 1983, J. Baker, 1986, W. 
Meisel, 1986, R. Kurzweil, 1986, J.L. Gauvain, 1986, W. Drews, 1987, C. Vincenzi, 1987, 
A. Averbuch, 1987). The last results concern medium size vocabularies (1000 words), 
speaker independent, continuous speech recognition (k.F.Lee, 1988, D.B. Paul, 1988). 

At LIMSI, the idea of realizing a voice-activated typewriter for a very large dictionary 
was initiated in the early 70s. The very first experiment on this topic concerned the 
phoneme-to-grapheme conversion (that is the segmentation into words and the correct 
orthographic translation of those words) of an error-free continuous phoneme string ( the 
text was "La ch~vre de Monsieur Seguin'), using a simple heuristic: the choice should be 
made on the solution giving the smaller number of words for a given sentence (J. Mariani, 
1977). The conclusion of this work was to say that there was a need for a syntactic filter 
eliminating the incorrect word successions. 

This conclusion was followed by a cooperative project with a group working at CEA 
(Center for Nuclear Research) on Data Base query in natural language, using positional 
grammars trained on text corpora (A. Andreewski, 1972). As the first experiments demon- 
strated the effectiveness of the approach (A. Andreewski, 1978), the work was continued 
at LIMSI and resulted in an operational system for phoneme-to-grapheme conversion (A. 
Andreewski, 1979). 

Since that time, the system has been improved. It has been adapted to stenotype-to- 
grapheme conversion (G. Adds, 1988), and experimented on phoneme strings containing 
errors (D. Bellity, 1984). The basic methodology has also been used in the ESPRIT 
project 860 "Linguistic Analysis of the European Languages", and extended to different 
European languages (L. Boves, 1987). On the other hand, a similar approach for language 
modeling has been applied on real speech recognition, with a reduced lexicon, and isolated 
word pronunciation (J. Mariani, 1987, J.L. Gauvain, 1988). 

Presently, our Voice-Activated TypeWriter project forms with our Dialog project the 
two goals around which are organized our research in Speech Processing. 

0 S O M E  P R O B L E M S  R E L A T E D  T O  T E X T  D I C T A T I O N  

I N  F R E N C H  

2 .1 .  G e n e r a l  P r o b l e m s  

General problems concern the phoneme-to-grapheme conversion of the homophones in 
French, which seems to be more difficult than for other languages, even for isolated words. 



231 

On a general point of view, a basic dictionary of 22,000 words will gibe a full-form 
dictionary of 170,000 graphemic words. Doing the grapheme-to-phoneme translation of 
those words gives a dictionary of 90,000 phonemic forms. This means that, for a very large 
dictionary, as a mean, a phonemic word corresponds to two different graphemic words. 

The main problems are related to verb conjugation; this gives an average of 40 forms, 
and up to 3 different spellings of the same pronunciation, for all verbs. 

The mark of the plural of most of the substantives, most of the adjectives, and all the 
past participles (an -s at the end of the word) is never pronounced in isolation. The mark 
of the feminine for some substantives, most of the adjectives and the past participles (-e 
at the end of the word) is not pronounced in fluent speech, not even in isolation. 

The demonstrative adjective "ces" (those) and the possessive adjective "ses" (his) have 
the same pronunciation/se/,  but different spelling. 

If we consider now the case of continuous speech, the problem of segmenting the contin- 
uous phoneme string into words seems to be especially difficult in French. We conducted 
experiments on a simple sentence containing 9 phonemes, with the 170,000 word (full- 
form) lexicon. We obtained more than 32,000 possible transcriptions (segmental and 
orthographic translation) at the lexical level. Using phonological rules, syntax and se- 
mantics will still allow for two acceptable sentences that need a pragmatic analysis in 
order to get the right graphemic transcription (Figure 1). 

2 . 2 .  P r o b l e m s  d u e  t o  t h e  P r o n u n c i a t i o n  " I n  I s o l a t i o n "  

Some other problems are arising, if the pronunciation is made "in isolation". There 
are in French "liaisons" ("links") between words, i.e. phonemes that are pronounced at 
the junctions between two words, but wouldn't be pronounced at the end of the first 
word, or at the beginning of he second one, if the words were pronounced in isolation. A 
possibility is not to pronounce the liaison at the beginning of the following word, but it 
increases the size of the vocabulary, as all the possible liaisons at the beginning of the word 
should be included. A third one is to pronounce it as three words, but the pronunciation 
of the liaison in isolation will be quite unnatural. However, the liaisons help for certain 
graphemic conversions (such as deciding whether the form is plural or singular. 

In the same way, a vowel at the end of some words can be omitted, if the next word is 
beginning by a vowel, and this will result in an apostrophe. The possibilities here are also 
to pronounce the first word as it was not modified, but it will sound unnatural. Another 
one is to pronounce the two wards together, but here also it will enlarge the size of the 
vocabulary. A third one is to pronounce it as three words, with the word "apostrophe" in 
the middle, but it is also quite unnatural. 

2 . 3 .  O t h e r  P r o b l e m s  

As for other languages, the pronunciation of numbers is a problem, as recognizing the 
numbers 0 to 9999 is already recognizing a vocabulary of 10000 words! 
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%Words Number Mean Number Number 
of Words of forms/Word of Forms 

Verbs 10-15% 
Substantives 60% 
Adjectives 25% 
Adverbs and 5% 
Other 

3000 40 120000 
12000 2 24000 
5000 2,5 12500 
1000 1 1000 

Total 100~ 

Phonemic 

21000 157500 
22000 170000 

90000 

Figure 1. Problems related to the phoneme-to-grapheme conversion in French. (a) Infor- 
mation on the transcription of the basic dictionary into the full-form dictionary. 

Verbs: 
/kas / : casse,casses,cassent (break) 

Substantives 
Mascullne/feminine: 

singular/plural 
/task// : tasse,tasses (cup, cwps) 

/kansl/: canal (ca~al) 
/k~o / :  ~ u ~  C"~'~) 

Adjectives 
Masculine/feminine 

/ene/: a~n~ (olderChe)) 
/~n~,/: ~n~  (otd~,C~h~)) 

/gr i / :  grand (big (he)) 
/gr~d~/:grande (big (she)) 

singular/plur~ 
/grgda/: grande,grandes (big) 

/mital/:  mental (mental) 
/m~to/: mentaux (mental) 

Past Participles 
/kase/: cass6, cass~s, cass~, cass6es (broken) 

Figure 1. (b) Some usual homophones heterographs in French. 
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Phonemic string: 
Possible segmentations 
at the lexical level: 

Remaining possibilities 
with phonology, syntax 
and semantics 

/3emalopje/ ' (My foot hurts) 
J'ai real au pied 
Geai m~le au pied 
Geais ms lot p ieds 
J'hait mat l'eau piUer 
J'aime silo pill~ 
J'sirnes allo pill~ 
Jet malles hop y eat 
Gemme halles hopi et 
. , ~ 1 7 6  

J'ai mal su pied (My foot hurts) 
J'ai real sux pieds (My feet hurt) 

Figure 1. (c) Some problems related to lexical segmentation for continuous speech. 

Des:lde/(aome) 

Mon ami:/mS0ami/(my friend) 
Petit arni:/p~titami/(boy friend) 

Petits amis:/l~ti|ami/('boy friends) 
Le arrd:L'arrd(the friend) 

de ami:d'ami(from a friend) 

Figure 2. Problems of the Haisons and apostrophe in French. 
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3. P H O N E M E - T O - G R A P H E M E  C O N V E R S I O N  

As a consequence of the difBculty of phoneme-to-grapheme conversion for continuous 
error-free phoneme strings, illustrates in Figure 1, we experimented the use of a natural 
language syntactic parser (A. Andreewski, 1979). 

3.1. T h e  L e x i c o n  

The lexicon is composed of 170,000 words, It is a full-form dictionary, as all the 
different forms corresponding to the conjugation of a verb, for example, will be considered 
as different inputs in the dictionary. It has been obtained from a 22,000 word basic 
dictionary. Each graphemic word has been converted into its phonemic form by using 
an automatic phoneme-to-grapheme conversion software designed at LIMSI (B. Prouts, 
1980). It also gives the grammatical category of each word, its gender and number for 
the substantives and adjectives, the mode, time, person, group, transitivity, and root for 
the verb... 

3.2.  T h e  S y n t a x  

The syntax is positional.It is given by a 2D Boolean matrix giving the possibility of the 
succession of two grammatical categories and a 3D frequential matrix giving the frequency 
of the succession off three grammatical categories. 150 grammatical categories have been 
chosen, based both on linguistics, and on the results of experiments. The matrixes were 
trained iteratively on a set of texts. 

3.3. T h e  Tes t  

The test was obtained by segmenting into words a text of 1800 words, converting 
each word into its phonemic representation by the same grapheme-to-phoneme conversion 
software used for the lexicon. In that way, the liaisons are not taken into account. All 
punctuation marks are kept. Then all blanks were deleted, in order to get the error-free 
continuous phoneme string. 

3.4. T h e  C o n v e r s i o n  P r o c e s s  

The phonemic string is processed in the following way: all possible segmentation into 
wards, with regards to the lexicon, are tried and filtered by the 2D and 3D matrixes, 
without using the frequencies. When several possibilities are still existing, the one with 
the smaller number of words is kept. If there are still several possibilities, the frequency 
in the 3D matrix is taken into account. The one of lexical frequency was also mentioned, 
but wasn't actually implemented. 

3.5. Resu l t s  

The results of the experiment were the following (Figure 3): on the 1,800 word test, 75 
errors occurred (that is less than 5%): 13 homophones heterographs (plan / plant (map / 
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plant), Heures / heurts (hours I collisions), ~re / air / erre / h~re /aire (era / air / wanders 
/ wretch / area)...), 21 for singular ] plural, some of them being impossible to distinguish 
(plans [ plan d'~xbzution (maps [ map for execution), demande/demandes de permis 
(request ] requests for permission)...), 10 concerning the number of posterior adjectives 
(pdrim~tre de protection des monuments historique ] historiques (area of protection of 
historical [ historical monuments)), 13 syntax parsing errors (les baisses ont 6quip6 [ les 
baies sont 6quip~s (the falls hove equipped / the windows have equipped), et celles situ~es 
/ et sels situds (and those situated / and salts situatear)...), 4errors due to the heuristic of 
the 'smaller number of words" (st ddcors 6trangers / et des corps strangers (and foreign 
sceneries / and some foreign bodies), un temps froid ~ventd / un temps froid et vent6 
(a fanned out cold weather / a cold and ~ndy weather)). The processing time was 90 
words/minute on the IBM 370/168 of the CNRS computer center, functioning in time 
sharing. 

The conclusion of the experiment was to recommend the use of lexical frequency, 
and that acoustic and linguistic aspects should be processed all together, The automatic 
semantic analysis based on word co-occurence was another recommendation. 

LES EXEMPTIONS PREVUES PAR LE PRESENT ARRETE NE SONT PAS APPLICABLES AUX TRAVAUX CONCERNANT 

LES CONSTRUCTIONS FRAPPEES D'ALIGNEMENT ET SEL/SELLE/SELS (CELLES) SITUE/SITUES. (SITUES) DANS 

LE PERIMETRE DE PROTECTION DES MONUMENTS HISTOI:tlQUES/HISTORIQUE (HISTOR.IQUES) ET DES SITES 

CLASSES. 

The e=emptiona allowed bit the present decree are not applicable to the worl~ concerning the buildings that have to 

be aligned and salt/aaddle/salU (those) situated/situated (situated) in the area of protection of historical/historical 
(historical) monuments and landmarks. 

POUR LES CONSTRUCTIONS EDIFIEES SUE LE TERRITOII:tE DE LA VILLE DE PARIS, LA CONSULTATION S'EFFECTUE 

AU LIEU, JOUR/JOURS (JOUR) ET HEURE/HEURES/HEUR/HEURT/HEURTS (I-IEt/RE) FIXE/FIXEES/FIXES (FIXES) 

PAR ARRETES DU PREFET DE LA CENE/SCENE. 

For the constructions built on the district of the town of Paris, the tonsuring is made at the place, dait/da~ 
(dait) and hour/hours~fortune~collision/collisions (hour) fi=ed/fixed/fi=ed (j~ed) bit decrrm of the prefect of the 
Holit Communion/scene(Seine). 

Figure 3. Some examples of phoneme-to-grapheme conversion. The error of ambiguities 
are underlined, and followed by the right wording inside parenthes. 

3.6. E x t e n s i o n s  of  the  W o r k  

From those results, some improvements were introduced, such as increasing the size 
of the vocabulary to 270,000 forms, taking into consideration the liaisons and the eli- 
signs (apostrophe) and the corresponding phonological rules, and introducing a better 
algorithm for gender and number marking (J. Avrin, E. Bsaiis, 1983). Another attempt 
was to process phonemic isolated word containing errors, that were obtained by confu- 
sion matrixes, or by using existing phoneme recognizer prototypes, with the 270,000 word 
dictionary. It was found that the way of accessing the dictionary was critical, and that 
severe errors, or an overall phoneme error rate of more than 15%, would not allow the 
selection of the right word (D. Bellilty, 1984). 
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Pour ce rble militaire qu'elle a ~ assumer, la Syrie e t (est) ~dait  (aid~e) par l'Union Sovi~tique. l 'armement 
vibnt de l~-bu. Uu rble miUtaire predominant qui a model~ l'b:onomie comme le ulontrent (montre) ce raportage 
de Dominique Bromberger au moment oil l'on s'appr~te k tout revolt xu pla,u gouvernementaL Tel un chAteau-fort, 
le ba]_.__~ (paJais) du peuple, comprenez le balai (paJ~is) pr~identiel, surplombe Damas et r (ses) r 

For this military role that it has to assume, Syria and (is) helped (helped)by Soviet Onion. The arms come 
/ tom therv. A major military role that shaped the econom~l as it appear (appears) in this report.from Dominique 
B~omberger at a time where everything is to be changed at the governmental level. As a fortreu,  the broom (palace) 
o] the people, you should understand the presidential broom (palace), is overlooking Damas and those (its) barracks. 

Figure 4. Some results on Stenotype-to-grapheme conversion from real data. The errors 
are underlined and followed by the right wording inside parentheses. 

3.7. Adaptat ion to Stenotype-to-Grapheme Conversion 

Another use of those results was to adapt the system to stenotype-to-grapheme con- 
version. The goal was to realize a real time TV subtitles editor. The stenotype method 
allow an experienced typist to take dictation in real time of what is said. The keyboard 
has a number of keys corresponding to phoneme-like units, the difference between voiced 
and unvoiced phonemes (such as b and p) being absent. A syllable is typed at a time. 
Those peculiarities of the keyboard make it quite similar to a speech input, and some 
errors will correspond to what could be expected from a speech recognition device. The 
system has been realized and demonstrated. The 270,000 graphemic word dictionary has 
been translated in a stenotypic dictionary. It has 520,000 stenotypic forms due to the 
ambiguities of the keys. The error rate varies from 5 to 20%, on actual broadcast TV 
news, depending on the number of unknown words (proper names...). Some problems 
arise from the fact that the subtitles cannot appear exactly in real time as the syntac- 
tic parser needs a window of a few words to decide on the most likely parsing, and the 
corresponding wording (G. Adds, 1988). 

4. THE ESPRIT 291/860 P R O J E C T  

This project was launched in 1984, for two years (291), and was followed in 1985 by a 
three year contract (860), for a total of 4 years. The goal is the Linguistic Analysis of the 
European Languages, in view of their oral recognition or synthesis. This project involves 
8 laboratories (Olivetti (Italy) as a prime partner, LIMSI (France), Nijmegen University 
(The Netherlands), University of Bochum (FRG), Acorn Computer (UK), University of 
Madrid (Spain), University of Patras (Greece), CSATA (Italy)) studying 7 languages 
(Italian, French, Dutch, Spanish, Greek, German). An important part of the project was 
the building of a language model for the different languages. The approach that was 
chosen is the Markovian approach using 2D and 3D frequency matrixes on grammatical 
categories that was developed at LIMSI. As an alternative, LIMSI also experimented a 
different Markovian Approach called Binary-Rules, which focuses the language model on 
the ambiguities to solve. 
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The main results of this project are statistics on phoneme clusters, grapheme-to- 
phoneme conversion software, phoneme-to-grapheme conversion software, language mod- 
els and syntactic parsing, the integration of those different dements under a blackboard 
structure, and the definition of the quality of a language model (or of the difficulty of the 
language) (Bores, 1987, Vittorelli, 1987). 

On this last issue, some interesting results have been found. One, for example, is 
related to the experiments made to the phoneme-to-grapheme conversion using context 
dependent rewriting rules, at the phonological level (Figure 5). It shows that for Italian, 
a set of 67 rules is able to transcribe the words with 0.5% graphemic words not existing 
in the language, and 0.5% graphemic words missing in the ones that were transcribed. 
On the contrary, for French, a set of 586 rules will conduct to have 98% of the word 
generated not existing in the vocabulary, and 30% of the correct words missing in the 
resulting graphemic cohorts. Although this measure illustrates also the quality of the 
rules, it seems obvious that the Italian Language will require less linguistic process than 
the French language in order to achieve its translation from a phoneme string. 

This 4 year project is now approaching its end, and should be followed vy an ESPRIT 
Phase U project, with the goal of designing a speech-to-text system, for the same 7 
languages, using the Language Models developed in the 860 project. 

Lang. Nw/Nph Nfalse/Nw Nmiss/Nph +Ndif/Nph #Rules 

Dutch 6 90% 20% +0% 289 
English 10 90% 6% + 1% 530 
French 250 98% 30% +40% 586 

German 400 99% 10% +0% 551 

Greek 100 100% 2.5% +0% 394 

Italian 1 0.5% 0.5% +0% 67 
Spanish 1 7% 6% +0% 845 

Figure 5. Phoneme-to-grapheme translation for different languages. (Nph is the number 
of phonemic words as input. Nw is the number of graphenic words that were generated 
Nfalse is the number of graphemic words that are not in the language. Nmiss is the number 
of graphemic words that were not found in the resulting cohort. Ndif is the number of 
graphemic words corresponding to a phonemic word. Ndif/nph represents the increase of 
the size of the lexicon after phoneme-to-grapheme translation.) 

5. " T H E  H A M L E T " S Y S T E M  

The goal of that work was to integrate the different parts of an Isolated Word, Speaker- 
Dependent Voice Activated Typewriter (VAT) (lexical decoding, graphemic translation) 
on a stand-alone personal computer without using specialized Integrated Circuits to carry 
on the recognition task. The target vocabulary size was one to several thousand words. 

Another point of interest was to measure the ability of a "natural language" linguistic 
model to correct "acoustic" word recognition errors, as well as achieving phoneme-to- 
grapheme conversion. 
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The project was conducted in three steps" First, a language model was constructed. 
Then, speech compression and recognition techniques were tested in order to obtain ac- 
ceptable memory size and response time. Finally, the language model was introduced in 
the recognition process, and the whole system was tested. 

5 . 1 .  W h y  " H a m l e t "  

The name of the system was chosen as an illustration of the typical problem in the 
phoneme-to-grapheme translation of the phrase "To be or not to be" (that could be 
translated as "2B or not 2B" in an office dictation task (F. Jelinek, 1986)). As a second 
reference, the Guinness Book of Records has reported successful attempts to pronounce 
the 262 words of Hamlet soliloquy in less than 24 seconds. That is a pronunciation rate 
of 655 words/minute (to be compared with the world record for fastest typewriting by A. 
Tangora, at a rate of 147 words/minute). Unfortunately, however, the resulting text is 
completely undecipherable!... 

5 . 2 .  B u i l d i n g  U p  t h e  L a n g u a g e  M o d e l  ( F i g u r e  6)  

The semantic universe is related to the dictation of a research report in the field of 
speech technology in French. The training data is made up of an existing report of 20 
pages in length (15,000 words). 

During the training of the linguistic model, a page of this text corpus is analyzed 
using the language model built from the previous pages (for the first page, it will start 
from scratch). The text is first segmented into words, and each word is looked up in 
the lexicon. If it is found, its phonemic representation and grammatical category are 
given. If not, its phonemic representation is obtained by using an automatic grapheme- 
to-phoneme conversion software, and its grammatical category is inferred inductively by 
using a stochastic syntactic parsing method. The result of this analysis is "processed" (or 
"verticalized" (L. Bores, 1987)) text, where each graphemic word of the text is followed 
by its phonemic translation, its grammatical category, and the type of inference (lexical 
or syntactic) that was used to get the information. This text is manually corrected, and 
is used to update the lexicon, and the syntax, that will be used to process the next page 
in the same way. 

5 .3 .  G r a p h e m e - t o - p h o n e m e  c o n v e r s i o n  

Many grapheme-to-phoneme conversion programs have been written for speech syn- 
thesizers. The one we have developed here is based on phonological rules. It uses a set 
of declarative rules, the exceptions being considered as longer rules (Example: "eur" is 
pronounced / cer/ ,  but "monsieur" is pronounced / mesjr Those rules are then com- 
piled in a tree structure, in order to accelerate the conversion process. This conversion 
system has been adapted to the dictation task. For example, punctuation marks are not 
pronounced explicitly in speech synthesis, but will be pronounced in text dictation. 520 
rules have been defined, and tested on a set of 6 topics (on very different texts), giving a 
total of 5,000 words. 
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520 mles ~ n e  t ~ o  

~ ~ Graphemic Words 
Phonemic Words 
Grammatical Categories 
Type of Inference 

Analysis 

20 Pages 
! 5,000 Words 

Graphemic Word Trigrama 
Phonemic Word 
Grammatical Category Bigrama 
Counts 

Lexicon and 
Syntax Update 

- I - - t -  
Manual 
Corrections 

4 words 

1942 words ~ 

Figure 6. Building up the Language model. 

Analysis ] 

I [,,n~ [ 
1/2 Compression 

I 
Vector [ 

1/20 Quantisation I I I [F.~. 1 
Match [ 

Subvocabulary: 1.2% [ 

Match 
Phonemic Cohort 0.2% [ 

Access 
Graphemic Cohort 0.4% ] 

Phonotof~cal 
Analysis 

I 
Syntactic 
Parl0ng 

I 
Text 

Tra~n~ ins 

1 

) Training 

Prototypes 

1942 words 
60,900bytes 
31B YTES/Word 

Figure 7. The template training and recognition processes. At each stage of the decoding 
the compression rate from the whole template of word dictionary is given. 
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5.4. Pronunciat ions  Rules  

Following the peculiarities of French presented in 2., the following choices have been 
made: numbers are usually pronounced as digit strings, unless they are included in a 
word. The apostrophe in French is pronounced as a word. The "liaisons" between words 
are not pronounced. 

5.5. Phonological  Rules Used  in the Sys tem 

From the previous findings, some phonological rules have been defined and are used in 
the system. For example, a rule says that "an apostrophe must be followed by a vowel", 
or that "the possessive adjective "mort" cannot be followed by a feminine word beginning 
by a consonant". 12 different general rules have been defined. 

5 .6 .  T h e  L e x i c o n  

The words contained in the lexicon are defined by their graphemic form, their phonemic 
form, and their grammatical category. The 15,000-word text corpus, including a special set 
of "grammatical" words, gives about 2,55 different graphemic words, and 2,000 different 
phonemic words. Inorder to accelerate the look-up, the phonemic lexicon is translated 
into a free structure, as a "cohort model" (W. Marslen-Wilson, 1980). The analysis of 
the lexicon shows that about 10% of the words are proper names, acronyms, or foreign 
words. This shows that VAT systems must give the user the possibility of adding easily 
new words, that will not be found in the general dictionary of a given language. 

5 .7 .  T h e  G r a m m a t i c a l  C a t e g o r i e s  

160 grammatical categories have been defined, closely related to the categories used 
by other authors (A. Andreewski, 1972, A.M. Deroualt, 1985). They are obtained from 55 
basic categories, by adding gender or number information (for example, SMS: "Substantive 
Masculine Singular", LMS: "Article Masculine Singular", JOU: "Weekday"...). They are 
differentiated as "close categories" (such as JOU, or LMS), which already have all of their 
elements in the lexicon, since they are easy to find, or j 'open categories" (as SMS). This 
differentiation is used in all the inductive inference process during the training. 

5 .8 .  T h e  L a n g u a g e  M o d e l  

The language model is given by a Markov chain that gives the possibility of the 
occurrence of two (bigram) or three (trigram) successive grammatical categories (A. An- 
dreewski, 1972, L.R. Bahl, 1978, A.M. Deroualt, 1985). Those probabilities are obtained 
from the count of those occurrences in the training data (for example, if the grammatical 
category "article masculine singular" (LMS) has been found N times in the training text, 
and was followed P times by the "substantive masculine singular" (SMS) category, the 
corresponding probability of the Bigram LMS*SMS is computed as P/N). They are stored 
as a tree structure: each node of the 3-level tree contains a grammatical category, with 
the count of how many times this node has been accessed during the linguistic training. 
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5.9. Syntactic Parsing 
The syntactic parsing is done by using a Viterbi algorithm (G.D. Forney, 1973) applied 

on a lattice of the possible grammatical categories of each word of a sentence, obtained 
from the lexicon. This process can be extended to default parsing, if a word is unknown 
in the lexicon, or to phoneme-to-grapheme conversion through syntactic parsing (A. An- 
dreewski, 1979, A.M. Deroualt, 1985, L. Boves, 1987). 

5.10. Signal Acquisition 
The microphone is an omnidirectional Crown PZM microphone, which is placed on 

the keyboard. The ambient noise is that of a typical calm office environment. The signal 
processing is done on the IBM Personal Instruments card set, based on an IBM VLSI 
DSP chip. The sampling rate is 20 kHz, and each sample is coded on 12 bits. The speech 
spectrogram is obtained, after 512 point FFT, by a 20-filter Critical-Band Filterbank (E. 
Zwicker, 1981). Each value is logarithmically coded, the spectrogram is smoothed. The 
noise spectrum, obtained from the "silent" zones, is subtracted, and the amplitude is 
normalized. Endpoint detection is done by using several thresholds. 

5.11. Speech Compression 
Different speech compression algorithms have been tested on difficult vocabularies 

(minimal pair syllables and words) in order to measure the loss of recognition quality 
that is supposed to occur, due to the loss of information. On the contrary, it has been 
found that best recognition results were obtained with the highest compression rate. First, 
a non-linear time compression (Variable Length Trace Segmentation (j.L. Gauvain, 1872, 
M.H. Kuhn, 1983) is applied, and gives a typical compression rate of 2. The goal of this 
algorithm is to compress the steady parts of the signal. Then, Vector Quantization is 
applied (A. Buzo, 1979, J. Mariani, 1981,...). The Codebook has been built by using a 
covering method, and it contains 256 prototypes. Using those prototypes to encode the 
spectrograms gives a compression rate of 20. That is a total compression rate of 40. 

5.12. Reference Templates Training 
During the training phase, all the words of the phonemic vocabulary are pronounced 

once. They are compressed and stored in memory, with their phonemic label. The 
2,000 templates are stored in 60 KBytes of RAM memory (about 31 Bytes/word, on the 
average). Speaker adaptation on a small amount of speech data could be obtained through 
vector quantization (K. Shikano, 1986, H. Bonneau, 1987). 

5.13. Fast Match 
The first recognition step is used to eliminate most of the words of the lexicon. As the 

vocabulary is large, this step must be carried out rapidly. Two parameters are used: First 
the length of the word to be recognized is compared with the length of the templates (both 
after time compression). This process can only be achieved after complete pronunciation 
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of the whole test word. The second parameter is an "extended similarity" function, 
which is computed synchronously with the pronunciation of the test word, that gives the 
distance between segments of the test word and each of the prototypes in the Codebook. 
This similarity function is then used to compute a gross similarity measure between the 
test word and the templates, This Fast Match gives an average preselection of 24 words 
(1.2~163 For both matching processes, thresholds axe axe used to do word preselection. 

5 . 1 4 .  D e t a i l e d  M a t c h  

A more accurate recognition process is then applied to the preselected words. This 
matching uses an asymmetrical, test synchronous, Dynamic Time Warping algorithm, 
with slope constraints, and local and global rejection thresholds. The recognition score 
for each word is normalized in (0, 1). The average size of the phonemic cohorts is 4 words 
(0.2%). 

5 . 1 5 .  U s e  o f  t h e  L a n g u a g e  M o d e l  

The phoneme-to-grapheme conversion for each of the words in the phonemic cohorts 
uses the tree structured phonemic lexicon. The resulting graphemic cohort contains the 
graphemic words, with the corresponding recognition score, and the corresponding gram- 
matical category. The average size of the graphemic cohort is 9 words (0.4%). The choice 
of the graphemic word strings is made by using a Viterbi algorithm, and combining the 
acoustic distance measure and the probabilities of grammatical bigrams and trigrams 
obtained from the language model. 

5 . 1 6 .  R e s u l t s  

Tests have been conducted first with a 100-word text dictation test. At the acoustic 
level, 9 errors are reported (91%). The complete (trigram) language model corrects 6 
errors, and does not introduce any errors in the grapheme-to-phoneme conversion thus 
improving the recognition score to 97%. The incomplete language (bigram + trigram) 
model, where the pronounced text is not included in the training text data, corrects 5 
errors, giving a recognition score of 95%. This difference with the results obtained on the 
complete model shows that training needs more text data. Figure 8 gives some examples 
of graphemic transcriptions when the right word wasn't recognized in the first position. 

Further tests were conducted three months later, in order to test the variation of 
the reference templates, on the following 200 words of the text. Acoustic recognition 
results were 92.5% correct. Introducing the language model improves the results to 95%. 
Complete results for the 300-word test data axe given in Figure 9. 

The average recognition time is about 2 seconds, (1.8 s for the acoustic match, 0.2 s 
for the linguistic process). 
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Correct Sentence(CS): Titres et Travaus de 

Recognized Cohort(RC): titrr cld travaux de(3) 
titre clds avons(2) deux 

e_.t 2 
. . .  te(3) 

peut 
peu 

(Title and works of ...) 

Figure 8. (a) Example  giving the different g raphemic  words. The number of possible 
grammatical categories for each graphemic word is given.) 

CS: duns le cadre de ma th~e de docteur 

RC: duns le 4 te ma th~se ou docteur 

tant me carte de bus a.=gu laquelle 

banc eux par plus pus ... 

en peut capot peut la ... 

...... car ... de 

cadre 

(have been conducted on the problems related...) 

Figure 8. (b) Another  example  with two consecutive errors. (The number of possible 
grammatical categories for each word doesn't appear here.) 

CS: se sont portds vers lea probl~mes relatifs 

RC: se sont port,s air lee programme relatifs 
ce son porter faire lib probl~mes relatif 
ceux sons port~ea heure cl~ problbes 
CEE soit vers cl~s 
seul sans ... rues 
... ont ... 

. . o  

(In the framework of my thesis doctor...) 

Figure 8. (c) An example  where the language model  does not  succeed in correct ing the  
error: three recognit ion errors have been made  in a close interval,  and the first error  is 
made  on a word having the same grammat ica l  category as the  correct word. (Here,  a 
single graphemic word is given for each phonemic word.) 

Figure 8. Examples  of errors corrected by the  language Model,  or not.  (The word- 
candidates are ordered following their recognition score. The words finally recognized are 
in bold characters and underlined.) 
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Recognition mode: % correct 

Phonemic words 

Phonemic words with complete LM 
Graphemic words with complete LM 
Graphemic words with imcomplete LM: 
-Trigrams 
-Trigrams+bigrams 

92% 

98% 

95.7% 

92.7% 
95% 

Figure 9. Recognition results. The average recognition time is about 2 seconds, (1.8's for 
the acoustic match, 0.2's for the linguistic process). 

5.17.  D i s c u s s i o n  of  the  Resu l t s  

Analysis of the results in the first experiment (on 100 test-words) show that, if the 
recognition rate of the correct word in the first position is 91%, it goes up to 98%, if we 
consider the first 5 word-candidates. 

All the recognition errors have been made on 1 or 2-syllable words. As the shortest 
words, which seem to be more difficult to recognize, are also the most frequent ones, it 
should be noted that recognition rates on text dictation will be worse than when using the 
pronunciation of a lexicon. It should be also noticed that, as those short words are very 
common, they will be well represented in the language model, and thus, the language 
model will greatly help in correcting the "acoustic" recognition errors which are more 
frequent on those short words. 

The recognition rate doesn't vary when the size of the lexicon goes from 1500 words 
to 2000 word. Here also, it may be thought that, ass the lexicon is built up incrementally 
from successive pages of text, the shortest word which bring most errors and are most 
common ones will be rapidly included in the lexicon. Thus, one may think that the error 
rate will not increase linearly with the size of the lexicon. 

Finally, we see that the best results with "incomplete" linguistic training are those 
obtained with the grammatical "bigram + trigram" model, as, if some trigrams may be 
absent in the linguistic model, corresponding bigrams may have been learned. 

@ T H E  P R E S E N T  V O I C E - A C T I V A T E D  T Y P E W R I T E R  
P R O J E C T  

The present state of the project demonstrates a 5,000-word Voice-Activated Type- 
writer (Isolated Words, Speaker Dependent). It takes advantage of a custom VLSI, that 
has been designed at LIMSI. 

6.1. T h e  M u P C D  D T W  C u s t o m  V L S I  

The MuPCD DTW custom VLSI has been designed by a consortium including the 
BULL and Veesys companies, and LIMSI, on a contract of the French Ministry of Telecom- 
munication (DGT/DAII) (G. Qu not, 1986). The goal was to design an integrated drcuit 
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allowing for faster Dynamic Programming processes. This circuit is aimed at all ap- 
plications involving a pattern matching operation (Speech and Character Recognition, 
Stereovision, Scene Analysis, Operational Research...). In the field of Speech Recogni- 
tion, the goal was to increase the size of the vocabularies. The distance is a L-1 distance. 
The DP equation is programmable, and includes Isolated Word and Connected Word 
recognition algorithms. The circuit is available since December 1987. Its power is 10 
MIPS (Million Instructions per Second), or 30 MOPS (Million Operations per Second), 
as its Pipe-Line structures allows to process up to 3 operations in parallel. Using an 
optimal DP-matching equation, it allows for the recognition of 1,000 words in isolation, 
or 300 words continuously, in real time. The technology used is CMOS 2 microns. It 
includes 127,309 transistors, It has been used for DTW-based recognition, and therefore, 
is usable for Viterbi alignment in discrete HMMs. The design of a Pattern Recognition 
board (RdF), at the PC format, has been realized. A project aiming at integrating 4 to 
8 MUPCD on a single board at PC format is presently on its way. 

6.2. The Methodology for Large Vocabulary Recognition 

The system operates also in two-passes. After the vector quantization, a Fast Match 
is first applied to reduce the size of the vocabulary by selecting the words that axe the 
most similar to the one that is to be recognized, and then a Detailed Match is used, that 
gives the list of word-candidates with their recognition score (F. Simon, 1985). Here, the 
Fast Match is obtained through the simple summation of the scores on the diagonal of the 
distance matrix. The Detailed Match is obtained by a classical DTW algorithm. Both 
are recognized in the MuPCD custom DTW VLSI, which allows for a vocabulary of 5,000 
words in Real Time, using this non-optimal two-pass recognition process. The language 
model is then applied. A bigram model has been used, with 59 grammatical categories. 

6.3. Results (Figure 10) 

The system has been tested on the vocabulary corresponding to a text-book in French 
for foreigners. It has 5,127 phonemic words, corresponding to 6,7000 graphemic words. On 
a 1000 word text, the rough phonemic word recognition results were of 91%, and increased 
to 99% using the Language Model. The final results on graphemic words were of 75 errors 
(that is 92.5% correct), for one speaker. All tests were made on text data that were used 
for building the Language Model. The recognition time is 480 ms on the average (J.L. 
Gauvain, 1988). The system is now enlarged to continuous speech recognition, through 
syllables (J.L. Gauvain, 1986) and dissyllables as decision units, and HMMs. It will take 
advantage of the MultiMuped hardware under development, to achieve real-time. 

7. CONCLUSION 

We think that practical use of such systems in the future will necessitate easy speaker 
adaptation, and continuous speech recognition. 
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t '  i ~ t l v l t 6  cor l :~reLte .  1 . l e s  ~ (hommee) e t  t e s  e n l m u x  p4mvunt remuer,  ee mcx;volr, se c k x ~ r . d u  

m ~ r ~ t  . I l l  ~ ( h m s )  aont capables de f l l r e  des 9est+s de ta t+ te  et  dc ta ~ l n  . sl on Ignore 
un Mot &t reoger  , on p ~ t  ee ~ ( f a i r � 9  comprendre per des elgctcs �9 Z . mooslelJr Lec terc  � 9  f o r t  r I t  
�9 de to fo rce  , I t  � 9  rotmstu . A r ~ r l  Caro l  f l i t  des courses dQ d l x  ou qulnze k t t o m ~ t r t s  , I t  � 9  
r W ) l i l t l ~ t  . Im+<:Jame LKLerC coud ; e t t e  l e t  o d r o l t e  ; et e t t e  4 t a f t  a a l a d r ~ | t e  . te t r a v a i l  serml t  mint 
f l i t  �9 | l  rci:~ V l  b|ert ; ~ L tc te r r  l e t  h a b i t � 9  ; te f l l L e t t e  v~Jt  coucVe a ~ s l  ; e l l e  �9 encore 
IleOtes gauchN . 3 . c e t t e  ( co t )  JlZS (hcmme) i (a)  une Jme~e ptue c o u r t � 9  clue t,a, u t re  ; I t  cot  bo i tq~x  ; 

| t  b o | t e  de to Jcnbe 9auchl  ; un �9 [' l l .~ (u)  rendu I n f i r m :  . Lea mut |L~ l  ont perdu un ~ (b rae ) ,  
une Jmi:~ c~ un cM:|[ d~nz un , cc iden t  , 4 �9 le m l t r e  a r r t v e .  Lea enfants ee l+vent  . I J. ( I L l )  P m ~  

r de i x~ t  . te m l t r e  GuY ( c r l e )  t " as�9  " . dane te ~ ( f o r d )  , a u e l ~  (qu~tques) t 1 4 ~  
(6 t6vee)  n o ont pao r . te m i t r e  r~l>bte ; "�9 �9149  " . . .  " ~ (aeeted) to l  , 0 i n l e t  " . 

the co~ acn'.Jty. 1. the ~ (men) nnd the animals can n,o~, stir, move themselv~. The ~ (men) 
are able to m o w  their head and hand. if one Ignores a for~i~ word, he can be ~ (undentood) wing �9 
2 .  Mi=ter Loci�9 is strong, he has ~trength, he is robust. A~dr~ Caron ru~ ten or fifteen kilometo's , he is 
touSfi . M~ Leclerv is sla'lful ; the young ~ d  also want�9 sewing; she =till has clum~ motions. J . ~ (~ia) 
(man) at Oar) a leg shorter than the other; he Is wobbly; an accident ~ (has) made him handicaped . the 
di~abled pcnon~ have lost a ~ (arm), a leg or an eye In an accident. 4. the teacher arrives, the chikb'en 
stand up. lee (they) ~ (atay) xtanding, the teacher ~ (shouL 0 : "air down ". in the ~ n d  (back), 
(some) ~ (pupils) did not hear. the teaclzer repeats : "sit down" ... " ~  (sit) down, Daniel ". 

Figure 10. An example of text dictated. The errors  are under l ined  and  fo l lowed  by the 

right wording  inside parentheses .  
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Speech Recognit ion Using Hidden Markov Models:  

a C M U  Perspect ive  

Kai-Fu Lee, Hsiao-Wuen Hon, Mei-Yuh Hwang and Xuedong Huang 
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A b s t r a c t  

Hidden Markov models (HMMs) have become the predominant approach for speech recog- 
nition systems. One example of an HMM-based system is SPHINX, a large-vocabulary, 
speaker-independent, continuous-speech recognition system developed at CMU. In this 
paper, we introduce hidden Markov modeling techniques, analyze the reason for their 
success, and describe some improvements to the standard HMM used is SPHINX. 

1. I N T R O D U C T I O N  

Hidden Markov models (HMMs) have recently become the predominant approach to au- 
tomatic speech recognition. HMM-based systems make certain structural assumptions, 
and then try to learn two sets of parameters from training data. The forward-backward 
learning algorithm adjusts these model parameters so as to improve the probability that 
the models generated the training data. This seemingly simple technique has worked 
surprisingly well, and has led to many state-of-the-art systems [1-6]. 

At Carnegie Mellon, we have utilized the HMM technique and developed a state-of- 
the-art speech recognition system [5]. This system, SPHINX demonstrated the feasibility 
of accurate large-vocabulary speaker-independent continuous speech recognition. 

In the next section, we will describe the fundamentals of hidden Markov modeling. 
We will also examine the advantages of HMMs, and explain why they are particularly 
suitable for modeling time-varying signals such as speech. 

In Section 3, we will describe the three key factors for a successful HMM system: 
plentiful training data, a powerful learning algorithm, and detailed models. We will use 
SPHINX [5, 7], our large-vocabulary speaker-independent continuous speech recognizer, 
as an example to illustrate the contributions of each factor. 

Finally, we believe that HMMs have not yet realized their full potential, and there are 
still many unexplored areas that could further advance the state of the art. In Section 4, 
we will identify some of these areas that we are currently exploring at Carnegie Mellon. 

Speech recognition involves a search in a state-space for an optimal, or a near-optimal 
solution. 
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2. H I D D E N  M A R K O V  M O D E L S  

2.1 .  A B r i e f  I n t r o d u c t i o n  t o  H M M s  

Hidden Markov models (HMM) were first described in the classic paper by Baum [8]. 
Shortly afterwards, they were extended to automatic speech recognition independently at 
CMU [9] and IBM [10, 11]. It was only in the past few years, however, that HMMs became 
the predominant approach to speech recognition, superseding dynamic time warping. 

A hidden Markov model is a collection of states connected by transitions. Each tran- 
sition carries two sets of probabilities: a transition probability, which provides the prob- 
ability for taking this transition, and an output probability density function (pdf), which 
defines the conditional probability of emitting each output symbol from a finite alphabet, 
given that that the transition is taken. Figure 1 shows an example of a hidden Markov 
model with two output symbols, A and B. 

There are several types of hidden Markov models. The simplest and most natural one 
is discrete density HMMs, which are defined by: 

0.6 1.0 

E E:~ B02 0.4 07 

Figure 1. A simple hidden Markov model with two states, and two output symbols, A and 
B. 

�9 {s} - -  A set of states including an initial state SI and a final state SF. 

�9 { a i j }  - -  A set of transitions where 8 0 is the probability of taking a transition from 
state i to state j .  

�9 { b i j ( k ) }  - -  The output probability matrix: the probability of emitting symbol k 
when taking a transition from state i to j .  

The forward-backward algorithm is used to estimate a and b. We provide only a 
simplistic sketch here; details of the algorithm can be found in [7, 12]. The forward- 
backward algorithm adjusts a and b iteratively. For each iteration, the estimates from 
the previous iteration are used to count how frequently each symbol is observed for each 
transition, and how frequently each transition is taken from each state. These counts are 
then normalized into new parameters. Let c~j(k) represent the frequency (or count) that 
the symbol k is observed, and that the transition from i to j is taken, the new output 
probability b i j ( k )  is given by the normalized frequency: 

- c i j ( k )  (1) 
b~j(k) = r 

kin1 
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Similarly, transition probabilities are re-estimated by normalizing the frequency that a 
transition is taken from a particular state: 

K 

- k - - ,  ( 2 )  a i j  - -  K 

Vj' kS=l 

Baum [8] showed that re-estimating a and b, as shown in equations 1 and 2, will 
increase the likelihood of generating the training data, unless a local maximum has been 
reached. Although the forward-backward algorithm guarantees only a local maximum, it 
efficiently produces an approximation to the maximum-likelihood estimates (MLE) of the 
HMM parameters. 

2 . 2 .  A d v a n t a g e s  o f  H M M s  f o r  S p e e c h  R e c o g n i t i o n  

In the previous section, we have introduced the basic mechanism of hidden Markov 
models. It has been, and probably still is, surprising to many that such a simple modeling 
technique has led to the highest performance systems in almost every speech recognition 
problem today. In this section, we will try to explain why HMMs have worked so well. 

Hidden Markov models have a rich representation in their two sets of parameters. 
The output probabilities represent the acoustic phenomena. They could be based on 
either discrete densities, where speech is quantized into sequences of symbols from a finite 
alphabet (usually through vector quantization). Alternatively, they could be based on 
continuous mixture densities (usually Gaussian), where speech parameters are directly 
modeled. In either case, they have the power of modeling any arbitrary probability 
density function, given sumcient training data. The other set of parameters, the transition 
probabilities, represent timescale distortions. With a large number of states, duration of 
very fine phonetic events can be modeled. Yet, with the use of self-loops, the range of 
durations modeled is very large. 

�9 It requires minimal supervision - -  only an orthographic transcription of the speech 
is needed. 

�9 It has a mathematical basis, guaranteeing convergence to a critical point. 

�9 It scales gracefully to increased training, requiring only linearly more computation. 

Finally, the joint optimization of the two sets of parameters makes HMMs particularly 
suitable for modeling of time-varying signals. 

Speech recognition involves a search in a state-space for an optimal, or a near-optimal 
solution. HMM-based searches differ form bottom-up approaches, which propagate errors 
and cannot integrate top-down knowledge, and from top-down approaches, which are 
often intractable. It is possible to represent sounds, phonemes, syllables, words, and even 
grammar states in terms of HMMs. By integrating many knowledge levels into a unifying 
HMM framework, the HMM search is a global, goal-driven strategy, where all knowledge 
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sources participate in every decision. Finally, by using a probabilistic framework, we have 
a consistent scoring mechanism. 

In summary, hidden Markov models have a number of very powerful properties. The 
ability of HMMs to automatically optimize parameters from data is extremely powerful, 
the HMM integrated search that considers all of the knowledge sources at every step 
is very effective, and the absorption of faulty structural assumptions is most forgiving. 
By turning an unknown structure problem into an unknown parameter problem, and by 
automatically optimizing these parameters, HMM and maximum likelihood estimation 
are one of the most powerful learning paradigms available today. 

3. T H E  S P H I N X  S P E E C H  R E C O G N I T I O N  S Y S T E M  

In the previous section, we have explained why hidden Markov models are particularly 
suitable for modeling speech. The single greatest advantage of hidden Markov models is 
the existence of an automatic training algorithm. However, it does not imply that HMMs 
are completely self-organizing tools. In fact, the literature is full of examples where 
simple-minded HMMs produce very poor results. For example, the first recognition rate 
we attained on the 991-word, perplexity 60 task was only 58% [5] (compared to the recent 
result of 96%). In this section, we will examine a number of enhancements to the HMM 
paradigm. We will focus on the enhancements and effects on the speaker-independent 
SPHINX continuous speech recognition system. 

We believe that these enhancements can be categorized into: 

�9 Detailed speech models. 

�9 Large training databases. 

�9 Improved learning algorithms. 

In the next three sections, we will discuss how these factors contributed to SPHINX. 

3 . 1 .  D e t a i l e d  S p e e c h  Models 

By "detailed speech models, ~ we mean the expansion of the HMM parameters or 
modification of the HMM structures selectively. Intuitively, both should be helpful to 
HMMs. Expansion of the parameters should improve performance, assuming sufficient 
training data are available. Improving the HMM structures should also be helpful, since 
the HMM learning process assume the correctness of fixed underlying structures. 

However, we have found that the amount of improvement greatly depends on careful 
selection of the right parameters to expand, and the right structures to tune. In particular, 
we have found two types of improvements to be the most helpful: 

�9 Detailed models that compensate for the weaknesses of HMMs. 

�9 Detailed models that utilize our speech knowledge. 

In this section, we will examine how these enhancements improved the SPHINX Speech 
Recognition System. 
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Mult ip le  C o d e b o o k s  

Discrete hidden Markov models model speech as a sequence of vector quantized sym- 
bols. In other words, every frame of speech is reduced to a symbol from a finite alphabet. 
Typically a single codebook using stationary coefficients (FFT, LPC, etc.) is used. How- 
ever, it has been shown recently that the use of differential information and power infor- 
mation is extremely important [3]. Moreover, one of the serious problems with HMMs is 
that they assume that speech events are only dependent on the state, which causes the 
HMMs to have no vision of the past or the future. The inclusion of differential coefficients 
gibe HMMs more scope than a small 20msec frame. 

One possible approach to incorporate the differential and power coef[icients is to use a 
single monolithic codebook. However, in such a codebook with many dimensions, the VQ 
distortion is very large. Therefore, we used the multi-codebook approach [14]. Multiple 
codebooks reduce the VQ distortion by reducing the dimensions of the parameter space. 
We created three VQ codebooks, each with 256 prototype vectors, using: 

1. 12 LPC cepstral coefficients. 

2. 12 differential LPC cepstral coefficients. 

3. Power and differenced power. 

Because we use three VQ codebooks, our discrete HMM must produce three VQ sym- 
bols at each time frame. By assuming that the three output pdf's are independent, we 
can compute the output probability as the product of the three outputprobabilities. The 
use of multiple codebooks increased SPHINX's accuracy from 26% to 45% (no grammar), 
and from 58% to 84% (word pair grammar). 

Duration Modelin5 

For recognition, we have used a Viterbi search [15] that finds the optimal state sequence 
in a large HMM network. At the highest level, this HMM is a network of word HMMs, 
arranged according to the grammar. Each word is instantiated with its phonetic pro- 
nunciation network, and each phone is instantiated with the corresponding phone model. 
Beam search [16, 17] is used to reduce the amount of computation. 

One problem with HMMs is that they do not enforce any global durational constraints. 
For example, a 50-state word HMM may have reasonable state durations at all 50 states, 
but the word duration may be unreasonable. To add this higher-level constraint, we 
incorporated word duration into SPHINX as a part of the Viterbi search. The duration 
of a word is modeled by a univariate Gaussian distribution, with the mean and variance 
estimated from a supervised Viterbi segmentation of the training set. By precomputing 
the duration score for various durations, this duration model has essentially no overhead. 
This duration model resulted in a substantial improvement when no grammar is used 
(45% to 50 %), but not when a grammar is used. 
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Funct ion Word  and Phrase  Modelin~ 

One problem with continuous speech is the unclear articulation of function words, such 
as a, the, in, of, etc. Since the set of function words in English is limited and function 
words occur frequently, it is possible to model each phone in each function word separately. 
By explicitly modeling the most difficult subvocabulary, recognition rate can be increased 
substantially. We selected a set of 42 function words, which contained 105 phones. We 
modeled each of these phones separately. 

We have found that function words are hardest to recognize when they occur in clusters, 
such as that are in the. The words are even less clearly articulated, and have strong inter- 
word coarticulatory effects. In view of this, we created a set of phone models specific to 
function phrases, which are phrases that consist of only function words. We identified 
12 such phrases, modified the pronunciations of these phrases according to phonological 
rules, and modeled the phones in them separately. A few examples of these phrases are: 
is the, that are, and of the. 

Modeling these frequently of occurring words and phrases increased the number of 
parameters by a factor of five, and improved SPHINX's accuracies from 50% to 59% (no 
grammar), and form 85% to 88% (word pair grammar). 

Generalized Triphones 

The function-word and function-phrase dependent phone models provide better pre- 
sentations of the function words. However, simple phone models for the non-function 
words are inadequate, because the realization of phone crucially depends on context. In 
order to model the most prominent contextual effect, Schwartz, et al. [17] proposed the 
use of triphone models different triphone models is used for each left and right context. 
While triphone models are sensitive to neighboring phonetic contexts, and have led to 
good results, there are very large number of them, which can only be sparsely trained. 
Moreover, they do not take into account the similarity of certain phones in their affect on 
other phones (such a s / b / a n d / p / o n  vowels). 

In view of this, we introduced the generalized triphone models. Generalized triphones 
are created from triphone models using an agglomerative clustering procedure that clus- 
tering triphone models together using the following distance metric: 

(I~(V.(i))N~ �9 (l-[(Vb(i)) N'(O) 
D(a ,b )=  i i 

i .[(V~(i))N,(i ) (3) 
i 

where D(a, b) is the distance between two models of the same phone in context a and 
b. Po(i) is the output probability of cord word i in model a, and N.(i)  is the count of 
cord word i in model a. m is the merged model by adding N, and Nb. This equation 
measures the ratio between the probability that the individual distributions generated the 
training data and the probability that the combined distribution generated the training 
data. Thus, it is consistent with the maximum-likelihood criterion used in the forward- 
backward algorithm. 
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This context generation algorithms enables us to empirically determine how many 
models could be trained given training set. Generalized triphones further increased the 
number of parameters by a factor of five, and improved the results from 59% to 79% 
(no grammar), and 88% to 94% (word pair grammar). Details of the context-dependent 
models used in SPHINX can be found in [5, 18] 

Between-Word Coarticulation Modeling; 

Triphone and generalized triphone models are powerful subword model techniques be- 
cause they account for the left and right phonetic contexts, which are the principal causes 
of phonetic variability. However, these phones-sized models consider only intra-word con- 
text. A simple extension of triphones to models between-word coarticulation is problem- 
atic because the number of triphone model grows sharply when between-word triphones 
are considered. For example, there are 2381 within-word triphones in our 997-word task. 
But there are 7057 triphones when between-word triphones are also considered. 

Therefore, generalized triphones are particularly suitable for modeling between-word 
coarticulation. We first generated 7057 triphone models that accounted for both inter- 
word and inter-word tirphones. These 7057 models were then clustered into 1100 gener- 
alized triphone models. Few program modifications were needed for training, since the 
between-word context is always known. However, during recognition, most words now 
have multiple initial and final states. Care must be taken to to ensure that each legal 
sentence has one and only one path in the search. Details of our implementation can be 
found in [19]. The use of between-word coarticulation did not increase the number of 
parameters, since we felt that we could not reliably trained any more parameters using 
our training database. Yet, SPHINX's accuracies were improved from 73% to 78% (no 
grammar), and 94% to 95.5% (word pair grammar). 

3.2. Large  T ra in ing  D a t a b a s e  

A large database of 4200 sentences from 105 speakers were used to train SPHINX. 
Although this database is crucial to the success of SPINX, it is more important to derive 
a system configuration that has enough parameters to model the variabilities in the data, 
but not too many parameters that we cannot reliably estimate.For example, if we fix the 
system configuration and reduce the training data, results deteriorate much faster than if 
we use a configuration that is data-dependent (such as using fewer generalized triphones). 
This phenomenon is clearly demonstrated in Figure 2. 

Therefore, while HMM system benefit greatly from increased training, it is inadequate 
to simply increase the training data. Instead, data-dependent system configuration is 
needed to optimize the performance. We have described some of these techniques in the 
previous section, and we will outline our future work in Subsection 4.1 and 4.2. 
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Figure 2. SPINX accuracies with different number of training speakers and parameters 

3 . 3 .  B e t t e r  L e a r n i n g  A l g o r i t h m s  

Cor rec t ive  Tra in in~  

Hidden Markov models with maximum-likelihood estimation (MLE) constitute the pre- 
dominant approach to automatic speech recognition today. Indeed, the forward-backward 
algorithm is responsible for the success of SPHINX and many other systems. However, 
one of the problems with MLE is that it may produce inferior results when the underlying 
models are incorrect, which HMM's obviously are as models of tea/speech. Thus, alternate 
training algorithms that do not suffer from this problem may be desirable. We have only 
experimented with one variant - -  corrective training, which will be described below. 

Bahl et al. [20] introduced the corrective training algorithm for HMMs as an alternative 
to the forward-backward algorithm. While the forward-backward algorithm attempts to 
increase the probability that the models generated the training data, corrective training 
attempts to maximize the recognition rate on the training data. This goal has a definite 
practical appeal, since error rate, not sentence likelihood, is the bottom line for speech 
recognition. This algorithm has two components: (1) error-correction learning m which 
improves correct words and suppresses misrecognized words, (2) reinforcement learning 
- -  which improves correct words and suppresses near-misses. 

We extended this corrective training algorithm to speaker-independent continuous 
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speech recognition. We used a large training database and a cross-validated training 
procedure that fully made use of the training material. More importantly, we proposed a 
reinforcement learning method that hypothesized near-miss sentences by first formulat- 
ing a list of near-miss phrases using a DTW algorithm, and then creating the near-miss 
sentences by substituting phrases from the near-miss phrase list. 

Using this training algorithm, we were able to further improve our results from 78% to 
82% (no grammar), and 95.5% to 96.2% (word-pair grammar). More details about this 
work are described in the proceeding [21]. 

Semi-Continuous Modelinl$ 

The methodology described previously are based on discrete HMMs. Another type 
of HMMs is the continuous density HMM [22-24], which models the acoustic observa- 
tion directly by estimating continuous probability density functions without VQ. For 
speaker-independent speech recognition, a mixture of a large number of probability den- 
sity functions [4, 25] is generally required to model the characteristics of different speakers. 
However, such mixtures of a large number of probability density functions considerably 
increase not only the computational complexity, but also the number of free parameters 
that can be reliably estimated. In addition, continuous density HMMs are more fragile, in 
that inaccurate assumptions about the parameter distribution will lead to poor results [24, 
26]. Yet standard continuous mixture density HMMs have a large number of parameters, 
which gives us the unpleasant choice of simple but incorrect assumptions, or reasonable 
assumptions but untrainable parameters. 

On the other hand, the semi-continuous hidden Markov model (SCHMM) [27, 28] is 
a general model that includes both the discrete and the continuous HMM as its special 
forms, which provides a way to unify both acoustic (VQ) and phonetic (HMM) sources. 
The SCHMM was motivated by the fact that each VQ codeword can be represented 
by a continuous probability density function, and these continuous probability density 
functions can be unified with the HMM. The semi-continuous output probability is a 
combination of model-dependent weighting coefficients (discrete output probability of 
VQ codeword) with continuous model-independent codebook probability density functions 
(probability distribution of the codeword that generates the observed coefficients) [26, 29]. 
The semi-continuous output probability can be used to reestimate the HMM parameters 
together with the VQ codebook. The feedback from HMM estimates to the VQ codebook 
implies that the VQ codebook is optimized based on the HMM likelihood maximization 
rather than minimizing the total distortion errors from the set of training data. This 
feedback provides a way to unify both acoustic (VQ) and phonetic (HMM) sources. Under 
such a unified framework, the VQ codebook could be iteratively adjusted according to 
HMM parameters that are closely associated with phonetic information (HMM); and the 
HMM parameters could be, in return, iteratively updated based on the acoustic-related 
VQ codebook. 

In comparison to the conventional continuous mixture HMM, the SCHMM maintains 
the modeling ability of large-mixture probability density functions. In addition, the num- 
ber of free parameters and the computational complexity is reduced because all of the 
probability density functions are tied together in the codebook. The SCHMM thus pro- 
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vides a good solution to the conflict between detailed acoustic modeling and insufficient 
training data. In comparison to the conventional discrete HMM, robustness is enhanced 
bye using multiple codewords in deriving the semi-continuous output probability; and 
the VQ codebook itself is optimized together with the HMM parameters in terms of the 
maximum likelihood criterion. Such a unified modeling can substantially minimize the 
information lost in conventional VQ [30]. With the SCHMM, we were able to reduce the 
error rate (word-pair grammar) of SPHINX by 15-20%. 

3.4. The  S P H I N X  S y s t e m  

By discussing various methods of generating detailed HMMs, we have uncovered most 
of the SPHINX System. SPHINX is trained by first using a set of context-independent 
models. Next, the context-dependent (function word/phrase dependent, generalized tri- 
phone, and between-word triphone) models are trained. Then, the parameters are smoothed 
using deleted interpolation [31], and corrective training is applied to improve discrimina- 
tion. This training procedure is shown in Figure 3. 

The SPHINX System was trained on about 105 speakers and 4200 sentences. It was 
tested on 150 sentences from 15 speakers. These sentences were the official DARPA test 
data for evaluations in March and October 1987. The word accuracies for various versions 
of SPHINX with the word-pair grammar (perplexity 60) and the null grammar (perplexity 
997) are shown in Table 1. Here, word accuracy is defined as the percent of words correct 
minus the percent of insertions. These results do not include semi-continuous models, 
which are being incorporated at the time of this writing. 

4. F U T U R E  D I R E C T I O N S  F O R  S P H I N X  A N D  H M M  

While HMM-based systems have achieved record performance in many applications, 
they are still substantially worse than humans. The natural question to ask is: will HMMs 
approach human performance, or have they been pushed to the limit? We believe hidden 
Markov modeling is a powerful approach that has not yet realized its full potential. Our 
previous experience has indicated that HMMs benefited from: detailed speech models, 
large training databases, and powerful learning algorithms. We feel that many promising 
improvements lie ahead in all three areas. In this section, we will describe some of the 
promising areas that we are pursuing, and hoping to incorporate in the next generation 
of SPHINX-like HMM-based recognizers. 

4.1. Deta i l ed  Speech  Mode l s  

Subword Modelin~ 

In the forseeable future, we expect to continue to use context-dependent phonetic 
models. Currently, context-dependency includes only left context, right context, and 
word boundary. In practice, there are many other causes of phonetic variability, which 
can be classified into three categories: 
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Figure 3. The SPHINX Training Procedure. 
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['able 1. Results o: 
Version 

1 Codebook 
3 Codebook 
+Duration 
+Fn-word 
+Fn-phrase 
+Gen-triphone 
+Between-word 
+Corrective 

'various versior 
No Grammar 

25.8% 
45.3% 
49.6% 
57.0% 
59.2% 
72.8% 
77.9% 
81.9% 

s of SPHIN} 
Word Pair 

58.1% 
84.4% 
83.8% 
87.9% 
88.4% 
94.2% 
95.5% 
96.2% 

�9 Articulation-related variabilities are caused by the fact that our articulators cannot 
move instantaneously, and that the locations and movements of the articulators affect 
the realization of a phone. 

�9 Language-related variabilities are caused by attributes of specific languages. 

�9 Speaker-related variabilities result from differences in anatomical features. 

These three sources of variability modify various attributes and qualities of each phone, 
and we call the resultant of this transformation an allophone. The factors affecting the 
process of transforming a phone to an allophone is illustrated in Figure 4. 

First, we will use our speech knowledge to identify and model only the most rele- 
vant contexts. For example, in order to collect a large database for this training, we 
will not model speaker-related variabilities. We will model immediate phonetic context, 
word/syllable boundary, and stress. We will also selectively model other contextual ef- 
fects, such as non-neighboring phonetic contexts only when they are relevant. This strat- 
egy allows us to reduce an astronomical number of models into a more reasonable number 
(about 50,000). 

50,000 subword models are still two orders of magnitude more than our current system 
can learn. Since we do not expect to have two orders of magnitude more training data in 
the near future, we must further reduce these models to a more manageable level. One 
possibility is to extend the notion of bottom-up subword clustering as used in general- 
ized triphones [5, 18]. We call this set of phonetic models generalized allophones. The 
clustering procedure will combine allophone models in order to maximize the probability 
that they generated the training data. The precise number of generalized aliophones is 
data-dependent, and can be determined empirically. 

The bottom-up subword clustering process finds a good mapping for each of the 
50,000 allophones. However, if a context is not covered by these allophones, the context- 
independent phone model must be used instead, which will lead to substantially degraded 
performance. In other words, bottom-up clustering does not facilitate generalization; 
therefore, its utility will be determined by the allophonic coverage in the training data. 

Another approach that sacrifices some optimality to improve generalization is the use 
of decision trees [32-34] to cluster subword models. At the root of the decision tree is the 
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set of all allophones corresponding to a phone. The algorithm incrementally splits nodes 
in the tree by asking "questions." These questions might be general ones like "is the 
previous phone a front vowel," or specific ones like "is the next phone in the s e t / p  , t  ,k/  
or the s e t / b ,  d, g/." These questions will lead to a set of leaf nodes, which represent the 
contextual units to be used. This type of top-down subword clustering has two important 
advantages. First, if a new aUophone is encountered, we might still be able to reach a leaf 
node, if all questions are sufficiently general. Even if unanswerable question is encountered 
at an internal node, we can still use that node as a subword unit, which should be much 
more appropriate than backing off the context-independent phone. 

Second, since a child node must be somewhat similar to its parent node, we can improve 
trainability by interpolating each node with all of its ancestor nodes. One disadvantage 
of the that it improves recognition accuracy slightly [35]. 

We hope that by making subword models more consistent and detailed, we will not 
only improve performance, but also have models that are more vocabulary-independent. 
This issue is discussed in more detail in [36]. 

Linguistic 
Variability 

Articulation 
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Left phone 'tress 
Right phone ~yllabl 

Further contexts 
Articulator position 

Between-word context 
Word begin~end .~ 

Prosody " 
Intonation 
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Vocal tract length 
Size of 
�9 nasal cavity 

Speaker 
Variability 

Phone ~J Phone to Allophone [ k Allophone 
I Transformation[/ 

Figure 4. Sources of variability that affect the realization of a phone. 

4.2. Large Training Database 
It is well known that a fixed statistical learning system will improve with additional 

training, until all the parameters are well-trained. Thus, one might conclude that addi- 
tional training will help a speech recognizer only until an asymptote is reached. However, 
this statement is only true for a recognizer with fixed structures and parameter  size. In 
reality, we are free to improve the structures and to increase the number of parameters of 
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a recognition system, and we have seen that in so doing, the recognizer performance can 
be improved substantially. 

In the previous sections, we have presented some ideas on how to make phonetic models 
more trainable with more data. However, we aimed our research given the amount of 
training that is likely to become available in the next few years, or about tens of thousands 
of sentences. In the future, with the use of computers that have voice capabilities, data 
collection will become much easier. In a decade from now, we expect to see several orders 
of magnitude more training data. These data can be utilized to further refine the speech 
models. Table 2 shows the types of models that might be trainable with these future 
speech databases. 

Table 2. Types of models that might be trainable as the number of training sentences is 
increased in a speaker-independent database. 

N u m b e r  of Sentences  T y p e  of Mode l s  
> 100 Phonetic models. 
> 1,000 Phonetic models with simple contexts (e.g.triphones). 
> 10,000 Phone models with more context (e.g.stress, sylla- 

ble/word position). 
> 100,000 Longer (e.g.syllable) models; Rough speaker cluster (e.g. 

gender)models. 
> 1,000,000 Even longer (e.g.morph, word) models; Detailed speaker 

cluster (e.g. dialect) models. 

4 . 3 .  B e t t e r  L e a r n i n g  A l g o r i t h m s  

In our future research, we would like to improve HMM learning in three directions: (1) 
a more integrated learning framework, (2) use of discriminant learning, and (3) speaker 
adaptive learning. 

One of the main advantages of HMMs is the integrated approach, where output prob- 
abilities and transition probabilities for all units are learned to improve a global measure. 
However, if we examine systems like SPHINX, there are at least two areas that are de- 
tached, and learning does not take place. First, the vector quantization process is a 
preprocessing stage that uses a distance metric not related to the MLE criterion. As in- 
troduced in the previous section, the SCHMM has been used to rectify this problem. One 
issue that remains to be resolved with the SCHMM (or any continuous density HMM) 
is the model-assumptions problem. We hope to find models that are self-organizing, and 
not depend on the correctness of model assumptions. The second detached element is 
the pronunciation dictionary, which maps words to phone sequences. This dictionary is 
created from phonetic knowledge alone ". The integration of dictionary learning with 

* Although we map the phones to generalized triphones using a consistent distance metric, the original 
phone sequences are unrelated to the global optimization 
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HMM learning should lead to further improvements. We believe that unified modeling of 
acoustic and phonetic sources requires further exploration. 

The second area of research involves the incorporation of discrimination in the HMMs. 
To that end, we have used the corrective training algorithm [21]. Many other promising 
techniques, such as maximum mutual information estimation [24], and linear discriminants 
[6] have been introduced. We are beginning to investigate the incorporation of above 
techniques into SPHINX. We are also investigating the possibility of integrating HMMs 
with neural networks. A preliminary study of that has been reported in [37]. 

Finally, we have only addressed the issue of HMM learning when presented with a 
large amount of multi-speaker training data for a one-time training process. In reality, 
few applications require true speaker-independence. There are usually opportunities to 
adapt on a small number of utterances from each speaker. Our previous work on speaker 
adaptation [5, 38] has only led to modest error reductions (about 10%) with substantial 
adaptation (30 sentences). In the future, we must explore alternative approached that 
can incrementally adapt more accurately on less data. 

5. C O N C L U S I O N  

In this paper, we have presented the hidden Markov model methodology, and describe 
SPHINX, a large-vocabulary, speaker-independent, continuous speech recognition system. 
We discussed the key issues in designing SPHINX, and outlined areas of future research. 

We believe that hidden Markov models have benefited greatly from the use of detailed 
subword models, large training databases, and powerful learning techniques. Further, we 
believe that HMMs have not yet realized their full potential, and that by expanding in 
each of the three areas, more advances are yet to come. 

A c k n o w l e d g m e n t s  

The authors wish to thank the CMU Speech Group for their support and contributions. 
This research was sponsored by Defense Advanced Research Projects Agency Contract 
N00039-85-C-0163 

References 

1. Averbuch, et al.: "An IBM PC Based Large-Vocabulary Isolated-Utterance Speech 
Recognizer," Proc. ICASSP-86, pp.53-56, (1986) 

2. D. B. Paul, R. P. Lippmann, Y. Y. Chen, C. Weinstein: "Robust HMM-Based 
Techniques for Recognition of Speech Produced under Stress and in Noise," Proc. 
the Speech Technology Conference, (1986) 

3. Y. L. Chow, R. Schwartz, S. Roucos, O. Kimball, P. Price, Kubala, F., Dunham, M., 
Krasner, M., Makhoul, J.: "The Role of Word-Dependent Coarticulatory Effects in 
a Phoneme-Based Speech Recognition System," Proc. ICASSP-86, (1986) 



264 

4. L. R. Rabiner, J. G. Wilpon, F. K. Soong: "High Performance Connected Digit 
Recognition Using Hidden Markov Models," Proc. ICASSP-88, (1988) 

5. K. F. Lee: Automatic Speech Recognition: The development of the SPHINX System, 
Kluwer Academic Publishers, Boston, (1989) 

6. G. R. Doddington: "Phonetically Sensitive Discriminants for Improved Speech Recog- 
nition," Proc. ICASSP-89, (1989) 

7. K. F. Lee: Large-Vocabulary Speaker-Independent Continuous Speech Recognition: 
The SPHINX SYSTEM, PhD dissertation, Computer Science Department, Carnegie 
Mellon University, (1988) 

8. L. E. Baum: "An Inequality and Associated Maximization Technique in Statistical 
Estimation of Probabilistic Functions of Markov Processes," Inequalities, vol. 3, pp. 
1-8, (1972) 

9. J. K. Baker: "The DRAGON System n An Overview," IEEE Trans. on Acoustics, 
Speech, and Signal Processing, vol. ASSP-23, No. 1, pp.24-29, (1975) 

10. R. Bakis: "Continuous Speech Recognition via Centisecond Acoustic States," 91st 
Meeting of the Acoustical Society of America, (1976) 

11. F. Jelinek: "Continuous Speech Recognition by Statistical Methods," Proc. the 
IEEE, vol. 64, No. 4, pp.532-556, (1976) 

12. L. T. Bahl, F. Jelinek, R. Mercer: "A Maximum Likelihood Approach to Continuous 
Speech Recognition," IEEE Trans. on Pattern Analysis and Machine Intelligence, 
vol. PAMI-5, No. 2, pp.179-190, (1983) 

13. S. Furui: "Speaker-Independent Isolated Word Recognition Using Dynamic Features 
of Speech Spectrum," IEEE Trans. on Acoustics, Speech and Signal Process., vol. 
ASSP-34, No. 1, pp.697-700, (1987) 

14. V. N. Gupta, M. Lenning and P. Mermelstein: "Integration of Acoustic Information 
in a Large Vocabulary Word Recognizer," Proc. ICASSP-87, pp.697-700, (1987) 

15. A. J. Viterbi: "Error Bounds for Convolutional Codes and an Asymptotically Op- 
timum Decoding Algorithm," IEEE Trans. on Information Theory, vol. IT-13, No. 
2, April 1967, pp.260-269. 

16. B. T. Lowerre: The HARPY Speech Recognition System, PhD dissertation, Computer 
Science Department, Carnegie Mellon University, (1976) 

17. R. Schwartz, Y. Chow, O. Kimball, S. Roucos, M. Krasner, J. Makhoul: "Context- 
Dependent Modeling for Acoustic-Phonetic Recognition of Continuous Speech," Proc. 
ICASSP-85, (1985) 

18. K. F. Lee: "Context-Dependent Phonetic Hidden Markov Models for Continuous 
Speech Recognition," Proc. ICASSP-90, (1990) 



265 

19. M. Y. Hwang, H. W. Hon, K. F. Lee: "Modeling Between-Word Coarticulation in 
Continuous Speech Recognition," Proc. Eurospeech, (1989) 

20. L. R. Bahl, P. F. Brown, P. V. De Souza, R. L. Mercer: "A New Algorithm for the 
Estimation of Hidden Markov Model Parameters," Proc. ICASSP-88, (1988) 

21. K. F. Lee, S. Mahajan: "Corrective and Reinforcement Learning for Speaker-Independent 
Continuous Speech Recognition," Proc. Eurospeech, (1989) 

22. L. R. Rabiner, B. H. Juang, S. E. Levinson, M. M. Sondhi: "Recognition of Isolated 
Digits Using Hidden Markov Models With Continuous Mixture Densities," A T~T 
Technical Journal, vol. 64, No. 6, pp.1211-33, (1985) 

23. A. B. Poritz, A. G. Richter: "On Hidden Markov Models in Isolated Word Recogni- 
tion," Proc. ICASSP-86, (1986) 

24. P. Brown: The Acoustic-Modeling Problem in Automatic Speech Recognition, PhD 
dissertation, Computer Science Department, Carnegie Mellon University, (1987) 

25. D. B. Paul: "The Lincoln Robust Continuous Speech Recognizer," IEEE, pp.449-452, 
(1989) 

26. X. D. Huang, Y. Ariki and M. A. Jack: Hidden Markov Models for Speech Recogni- 
tion, Edinburgh University Press, (1990) 

27. X. D. Huang, M. A. Jack: "Semi-Continuous Hidden Markov Models with Maximum 
Likelihood Vector Quantization," IEEE Workshop on Speech Recognition, (1988) 

28. J. R. BeUegarda and D. Nahamoo: "Tied Mixture Continuous Parameter Models for 
Large Vocabulary Isolated Speech Recognition," Proc. ICASSP-89, pp.13-16, (1989) 

29. X. D. Huang, H. W. Hon, K. F. Lee: "Speaker-Independent Continuous Speech 
Recognition with Continuous and Semi-Continuous Hidden Markov Models," Proc. 
Eurospeech, (1989) 

30. X. D. Huang and M. A. Jack: "Semi-Continuous Hidden Markov Models for Speech 
Recognition," Computer Speech and Language, vol. 3, No. 3, pp.239-252, (1989) 

31. F. Jelinek and R. L. Mercer: "Interpolated Estimation of Markov Source Parameters 
from Sparse Data," in Pattern Recognition in Practice, E. S. Gelsema and L. N. 
Kanal, ed., North-Holland Publishing Company, Amsterdam, the Netherlands, 1980, 
pp.381-397. 

32. L. Breiman, J. H. Friedman, R. A. Olshen and C. J. Stone: Classification and Re- 
gression Trees, Wadsworth, Inc., Belmont, CA., (1984) 

33. S. Sagayama: "Phoneme Environment Clustering for Speech Recognition," Proc. 
ICASSP-89, (1989) 



266 

34. L. R. Bahl, et. ah "Large Vocabulary Natural Language Continuous Speech Recog- 
nition," Proc. ICASSP-89, (1989) 

35. K. F. Lee, S. Hayamizu, H. W. Hon, C. Huang, J. Swartz, R. Weide: "AUophone 
Clustering for Continuous Speech Recognition," Proc. ICASSP-90, (1990) 

36. H. W. Hon, K. F. Lee and R. Weide: "Towards Speech Recognition Without Vocabulary- 
Specific Training," Proc. Eurospeech, (1989) 

37. M. Franzini, M. Witbrock and K. F. Lee: "A Connectionist Approach to Continuous 
Speech Recognition," Proc. ICASSP-89, (1989) 

38. X. D. Huang, K. F. Lee and H. W. Hon: "On Semi-Continuous Hidden Markov 
Modeling," Proc. ICASSP-90, (1990) 



Recent Research Towards Advanced Man-Machine Interface 
Through Spoken Language, H. Fujisaki (Editor) 
�9 1996 Elsevier Science B.V. All fights reserved. 267 

P h o n e t i c  F e a t u r e s  a n d  L e x i c a l  A c c e s s  

Kenneth N. Stevens 

Research Laboratory of Electronics, Department of Electrical Engineering and 
Computer Science, Massachusetts Institute of Technology 
Cambridge, MA 02139, USA 

A b s t r a c t  

In the past one or two decades, there have been significant advances in our understand- 
ing of the acoustic properties that distinguish one class of speech sounds from another. 
These advances have arisen in part because of a better grasp of acoustic mechanisms 
of speech production and in part because of new findings in the areas of auditory and 
speech perception and auditory physiology. Thus, for example, a few years ago relatively 
gross methods of analysis of stop and nasal consonants were used, and these led to the 
development of algorithms yielding errors in identification of place of articulation for stop 
and nasal consonants (in consonant-vowel syllables) of about 10-15 percent (Blumstein 
and Stevens, 1979; Kewley-Port, 1983). More refined procedures based on time-varying 
changes with finer time resolution in the vicinity of the consonantal release have recently 
been used in some pilot work, and indicate significant improvement in these scores. Simi- 
lar refinements in procedures for measuring voicing for fricatives, the distinction between 
sonorant and nonsonorant consonants, and other properties have also been developed. 
As a consequence of this research, we are approaching the point where, on the basis of 
speaker-independent properties extracted from the speech signal, we are able to specify 
most of the relevant aspects of the aerodynamic and articulatory processes that produced 
speech sounds occurring in simple utterances. Independence of speaker in the specification 
of the properties is achieved for the most part by defining relational properties that are 
minimally dependent on a speaker vocal-tract size, laryngeal characteristics, and speaking 
rate. 

Recent years have also seen advances in our understanding of the distinctive features or 
of other attributes that can be used to represent words in the lexicon. We have a clearer 
idea of the acoustic correlates of the features, the relations between the features, and 
possible structures for the representation of lexical units in terms of features. (See, for 
example, Clements, 1985; Sagey, 1986.) An important advantage of a feature-based repre- 
sentation over a segment-based representation is that it provides a notation for capturing 
in a simple manner many kinds of variability that occur in speech. Thus, for example, the 
sequence of words did you might be spoken as either [didyu] or [diju]. A representation 
of these two versions in terms of features shows that a change from the [dy] sequence to 
the affricate [j] keeps most features intact, the only difference being in two features ( a 
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shift from [§ anterior] to [- anterior] and a shift from [§ sonorant] to [- sonorant], with 
a redundant introduction of stridency). (A more detailed discussion of an inventory of 
features is given below in Section 2.) 

The study of the distinctive features and their acoustic correlates has led to a modifica- 
tion in the way we analyze and interpret the stream of sound that constitutes the acoustic 
manifestation of an utterance. A conventional approach to this analysis has been to at- 
tempt to segment the signal into stretches of sound and to assign labels to these pieces of 
sound. In the modified approach, particular types of events or landmarks are identified 
in the signal, and acoustic properties of the sound in the vicinity of these landmarks are 
detected. These acoustic properties are correlates of the distinctive features in terms of 
which the lexical items are represented. The modified approach to extracting acoustic 
data from the acoustic signal is event- orientated rather than segment-orientated. 

Although researchers are developing a clearer understanding of the distinctive features 
and their acoustic correlates, the variability in the acoustic manifestation of words re- 
mains a significant stumbling block in developing speaker-independent continuous speech 
recognition systems and, indeed, to modeling the process of human word recognition. 
This variability in the acoustic pattern of a word arises from several sources, particularly 
the structural position of the word in a sentence, and the immediate phonetic context in 
which the word appears. 

We are still very far from a quantitative theory that explains the transformations that 
occur in the acoustic properties and in their timing when a word is produced in differ- 
ent contexts within a sentence. Thus, although we might be able to extract appropriate 
acoustic properties from the speech stream to tell us how the sound sequence was pro- 
duced, this pattern of acoustic properties and hence our inferences about the gestures 
used to generate the sound may deviate from the expected canonical patterns for the 
word. For example, the canonical lexical representation for the word did indicates that 
certain acoustic properties should appear near the end of the word indicating the manner 
and places of articulation of the stop consonant, but these properties are often not in 
fact present in sequences like did you or did it come (where [d] is often manifested as a 
flap without all the properties of an alveolar stop consonant). Or, to give another exam- 
ple, the intervocalic consonant in the word legal is presumably represented in the lexicon 
as a stop, whereas in fluent speech it often surfaces as a velar fricative. Until a theory 
that accounts for these types of variability is developed, attempts at speaker-independent 
speech recognition must rely on statistical methods involving training with large numbers 
of utterances. These methods are necessarily limited by the fact that, at least on the 
surface, the changes that occur are so variable and so pervasive that sufBcient training 
data are difficult if not impossible to collect. On the other hand, closer analysis suggests 
that the changes are sumciently regular that a non-statistical approach may be called for. 

1. F E A T U R E S  A N D  L E X I C A L  R E P R E S E N T A T I O N S  

The approach we propose to follow in developing a framework for lexical representation 
and lexical access is based on a representation of lexical items in terms of features. A 
principal reason for using a feature-based representation is that, as we have indicated 
above, phenomena of assimilation and lenition can often be described as modification or 
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spreading of a limited number of features. Another reason is that appropriately defined 
acoustic properties that are observable in the speech signal bear a rather direct relation 
to the features that specify lexical items. Other evidence for the role of features in lexical 
representation comes from experimental data on speech production, speech perception, 
and language learning. 

1 . 1 .  I n v e n t o r y  o f  F e a t u r e s  

A list of features that are agreed upon by at least some phonologists is given in Table 1. 
A complete list should probably contain three or four additional features, and there may 
be some disagreement as to what these additional features are. The inventory of features 
in Table 1 is similar to that proposed in 1968 by Chomsky and Halle, which in turn is 
a modification of the features originally described by Jakobson, Foot, and Halle (1952). 
Some of the Chomsky-Halle features were originally defined in terms of articulatory at- 
tributes, although the requirement that the features have acoustic or perceptual correlates 
was always assumed by Chomsky and Halle. In recent years there has been a continu- 
ing effort to develop acoustic-perceptual as well as articulatory correlates of the features. 
This effort has led to some modification of some of the features originally proposed by 
Chomsky and Halle. Phonological considerations have also led to some adjustments of 
the feature inventory. 

Thus, for example, our current view is that the feature [+ sonoroot] should be de- 
fined in such a way that it is redundantly [+ voice], since this definition can lead to a 
well-defined and perceptually more reasonable acoustic correlate of the sonorant feature. 
Another modification of the Chomsky-Halle features involves describing the laryngeal con- 
figuration. We have included the feature consonantal on the list, even though the value 
of the consonantal feature appear to be predictable from other features. (The role of this 
feature will be discussed later.) However, as our work proceeds, we are prepared to delete 
this feature if it does not perform a useful function. We expect that there will continue 
to be some adjustments of the feature inventory, but that, for the most part, the features 
given in Table 1 will not undergo significant revision. 

The features in Table 1 are organized into two sublists depending on the way they are 
implemented. The features listed in the left-hood column are identified as being repre- 
sented in the sound when the vocal tract is relatively unconstricted and the acoustic source 
that gives rise to the generation of sound is at the glottis. The spectrum of the sound 
that is generated during time intervals when the voice tract is relatively unconstricted is 
characterized by several prominent peaks or formants, particularly in the midfrequency 
range 700 to 3000 Hz. An additional spectral maximum (or additional maxima) will 
occur at low frequencies, with a degree of prominence that depends on the glottal and 
velopharyngeal configuration. 

In contrast to the features on the left of Table 1, the acoustic manifestation of the 
features in the right-hand column occur when the vocal tract is relatively constricted at 
some point along its length. The source of sound may be at the glottis or it may be in the 
vicinity of the constriction. The acoustic and articulatory correlates of these features are 
discussed in other publications (for example, Fant, 1973; Stevens, 1980; Stevens, 1983). 
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Table 1. List of distinctive features to be used as a starting-point in proposed research. 
The features in the left-hand column are implemented in the sound when the vocal tract 
is relatively open, and the features in the right-hand column are implemented when the 
vocal tract is relatively constricted. 

open vocal tract constricted vocal tract 

high 
low 
back 
round 
tense 
nasal 
breathy voice (spread glottis) 
pressed voice (constricted glottis) 
high pitch (stiff vocal cords) 
low pitch (slack vocal cords) 

continuant 
sonorant 
strident 
voiced 
consonantal 
labial 
coronal 
anterior 
velar 
lateral 
retroflex 
distributed 

1.2 .  L e x i c a l  R e p r e s e n t a t i o n  as  a M a t r i x  o f  F e a t u r e s  

A conventional way of specifying a lexical item is in terms of a matrix of features, as 
shown in Table 2 for the word pawn. In this representation, it is assumed that the lexical 
unit is specified as a sequence of segments, and that each segment is characterized by a 
bundle of features. (Only a partial list is given in Table 2.) At this level of representation, 
the features are assumed to be binary. A change in one feature (such as changing from 
[+ coronal] to [- coronal] in the third column of Table 2) can potentially change the 
representation to that of a different lexical item ( in this case, the word palm). In this 
example, we have specified a value for every feature in each column, although not every 
feature is distinctive; that is, there are some features which, when changed, could not 
specify a new lexical item. For example, changing [+ anterior] to [- anterior] in the third 
colunm (under [n]) has no meaning, since palatalized nasals cannot occur in this position 
in English. Furthermore, there are some feature combinations which are not allowed due 
to the inherent properties of the vocal tract. An example is that a nasal consonant cannot 
be [+ strident]. 

The convention of organizing the features into bundles of the type shown in Table 2 is 
an abstraction that does not capture directly the way in which these features are realized 
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Table 2. A conventional partial lexical representation for the English word pawn, in terms 
of segments and features. 

p ~ n 

h i g h  - -  - -  - 

l o w  - -  + - -  

b a c k  - -  + - -  

n a s a l  - -  - -  + 

s p r e a d  g l o t t i s  + - -  - -  

s o n o r a n t  - -  + + 

v o i c e d  - -  - I -  - I -  

s t r i d e n t  - -  - -  - -  

c o r o n a l  - -  - -  - F  

a n t e r i o r  + - -  + 

c o n t i n u a n t  - -  + - -  

in the sequence of articulatory gestures or in the stream of sound. There are two types 
of constraints that are imposed on the manner in which the features are implemented: 
(1) the nature of certain features leads to a requirement that some groups of features 
be implemented in the sound wave more or less together but that other groups of fea- 
tures within a column of Table 2 may be implemented at different times; (2) there are 
phonotactic and other constraints governing the sequencing of groups of features. 

0 MODIFIED FRAMEWORK FOR LEXICAL REPRESEN- 
TATION 

A conventional way of specifying lexical items is in terms of a sequence of phonetic 
units, or, more precisely, in terms of a matrix of features, much like the representation 
in Table 2. This way of representing the lexicon, however, bears a complex relation to 
attributes that are observable in the acoustic signal. There are several reasons for the 
lack of a direct correspondence between acoustic attributes and the abstract phonemic or 
feature-matrix representation. One reason stems from the fact that the acoustic properties 
that signal the presence of'features are not synchronous in time. That is, the acoustic 
properties associated with some features are not aligned with the acoustic properties 
for other features that  belong to the same segment. A second reason is that particular 
implementations of a word may involve changes in some of the features, and hence changes 
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in the acoustic properties, depending on the context. A third source for the lack of direct 
correspondence between sound and feature or phoneme is that the lexical representation 
is inherently binary or quanta, whereas acoustic properties that are correlates of the 
features can often be present with varying degrees of strength. Still another reason is 
a consequence of the potential redundancy in the lexical representation, particularly if 
it includes spedfications for all (or almost all) features of each segment. In view of 
this redundancy, it is to be expected that greater importance may be attached to some 
features than to others, and thus that the acoustic manifestations of different features 
may be permitted lesser or greater degrees of variability. 

These and other reasons suggest two approaches that might be followed in developing 
procedures for accessing lexical items that are represented in a form similar to that in 
Table 2. These two approaches are schematized in Fig. 1. One method (Fig. la) 
requires that the output of the initial acoustic analysis be modified or transformed in a 
way that takes context-dependent variation into account, to yield a representation that is 
in a phonemic form similar to that in Table 2. This phoneme-like representation is then 
matched against the stored lexical items. 

,..~l PERIPHERAL 
I PROCESSING. 

I APPLICATION 
OF RULES 

I rl 
PHONEME - LIKE 

REPRESENTATION 

"ABSTRACT" 
LEXICON 

PERIPHERAL 
PROCESSING c~176 I--- LEXICON t 

RULES 

"ABSTRACT" 
LEXICON 

Figure 1. Schematization of two approaches to lexical access. (a) Rules operate to modify 
the peripheral representation to yield a representation of segment-like units that are used 
to access the lexicon. (b) Rules operate on the abstract lexical representation to yield a 
"compiled" lexicon, and properties extracted through peripheral processing are matched 
against features in the compiled lexicon. In the case of the model in (a), the lexicon 
is accessed at the "abstract" level, whereas in (b), access is achieved at the level of the 
compiled lexicon. 

A second approach (Fig. lb) involves compiling from the abstract lexicon a represen- 
tation of each lexical item to yield a form that is closer to the acoustic representation 
that is the more abstract representation, and hence is more amenable to direct compar- 
ison between acoustics and lexicon. One version of this approach would represent the 
compiled lexical items in terms of sequences of spectral patterns (or of auditory repre- 



273 

sentations of these patterns), similar to the proposal of Klatt called Lexical Access From 
Spectra, or LAFS (Klatt, 1979). A modification of the LAFS approach would preserve in 
the compiled lexical item the feature-like aspects of the abstract lexicon, but would relax 
the requirements of time-synchrony of features and would provide some indication of the 
relative importance of different features (Stevens, 1986). Access to the lexicon would be 
achieved by extracting from the signal a set of acoustic properties that are correlates of 
the features, and matching these properties against the features in the compiled lexicon. 
Lexical access using such a modified feature-based lexicon has been called Lexical Access 
From Features, or LAFF (Klatt, in press). The proposal of Browman and Goldstein (in 
press) to represent lexical items in terms of a gestural score has attributes that are similar 
to the expanded feature-based representation in LAFF, although many details of the two 
representations are quite different. 

The thrust of the proposal research is based on the modified approach in Fig. l b, in 
which representations of lexical items in terms of features are compiled from the more 
abstract lexicon. 

2.1. A Framework of  Landmarks  to Form the  Ske le ton  of  the  
Lexical  R e p r e s e n t a t i o n  

Our current thinking regarding the form of the compiled lexicon and how it is accessed 
is based on a view of the production of speech and its acoustic manifestation as the 
generation of a sequence of acoustic landmarks or events or regions. These events are 
of several kinds, and they are identified on the basis of particular acoustic properties in 
the sound. Each of the events identifies a region of the acoustic signal around which 
certain additional acoustic properties are sampled to provide measures of the strength 
of particular features. The compiled lexicon contains pointers that indicate the relative 
positions of these landmarks in time, and specifies the features that are associated with 
the landmarks. 

We postulate that there are four kinds of events in the speech stream that are salient, 
and that provide a skeleton for constructing a lexical representation. Two of these are 
(1) events that occur when a complete closure of the vocal tract is formed or released, 
and (2) events concomitant with the buildup or release of pressure above the vocal folds. 
The first is associated with the feature [- continuant], and the second is associated with 
a change from [+ sonorant] to [- sonorant] or vice versa. These two kinds of acoustic 
events can be detected in the sound more or less independently of the presence of other 
features, although the detectability of the events may be influenced by features that are 
being implemented concomitantly. The features continuant and sonorant, therefore, have 
a special status in the lexical representation and in the acoustic speech stream. Most 
approaches to labeling of databases identify these landmarks in the signal (Leung and 
Zue, 1984; Glass and Zue, 1988). 

A third primary or acoustic event or landmark is (3) the occurrence of a sequence of one 
or more nonsyllabic segments, i.e., segments involving an articulatory movement that leads 
to a relatively constricted voice tract. The acoustic property associated with a nonsyUabic 
region is a reduction in low-frequency amplitude in relation to the adjacent vocalic region, 
but an optimal procedure for detecting such a region may involve a somewhat modified 
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technique, possibly based on the output of an auditory model. It should be noted that 
the interval between two sonorant boundaries in the lexicon (defined by a change from 
+ to - on the left and - to + on the right) is always a nonsyllabic interval. Likewise, 
a [- continuant] event occurs only within or at the edge of a nonsyllabic interval. Thus 
nonsyllabic intervals are already identified in cases where continuant and sonorant events 
are marked, and it is necessary to independently specify a nonsyllabic interval only for [+ 
sonorant, + continuant] consonants (i.e., for the consonants/w y r / i n  English) when they 
occur in positions that are not adjacent to continuant or sonorant markers. For example, 
in utterances like away, a nonsyllabic marker indicates t h e / w / ,  whereas in senate or in 
fashion the nonsyllabic interval internal to the word is identified by the continuant or 
sonorant markers. 

Still another primary acoustic landmark (4) indicates the presence of a syllabic peak, 
when the vocal tract has a maximum opening. This landmark is detected on the basis of 
measures of low-frequency amplitude and of formant trajectories. It is always located in 
a region whose edges are defined by nonsyllabic or by sonorant or continuant markers. 

The representation of a lexical item, then, has a basic structure that involves specifi- 
cation of the sequence of the four types of landmarks or regions: continuant, sonorant, 
nonsyllabic, and syllabic. Two of these (continuant and sonorant) designate events that 
occur over brief time intervals, whereas the other two (nonsyllabic and syllabic) designate 
locations where valleys or peaks occur in certain acoustic parameters. 

Some examples of this basic structure are shown in Fig. 2. The continuant and 
sonorant pointers are indicated by vertical lines. Implosions and releases for [- continuant] 
consonants are designated by C"I and C"2 respectively, and transitions from sonorant to 
nonsonorant and vice versa are designated by $1 and 3"2. We use a convention of placing 
a [- continuant] symbol immediately adjacent to the right of a 6'1 pointer and to the 
left of a 02 pointer, and showing the transitions between sonorant and nonsonorant by 
a +- or a - +  sequence. The designation [- syllabic] appears in the lexical representations 
only when there is no continuant or sonorant pointer to indicate a valley between syllabic 
peaks. The exact locations of the pointers [+ syllabic] and [- syllabic] are not crucial, and 
correspond roughly to maxima and minima in amplitude ( as defined with appropriate 
frequency weighting). 

In the examples in Fig. 2, the word rabbit illustrates situations where S and C pointers 
are coincident, and the aspirated stop consonant in pawn illustrates a sequence of a 6"2 
and S 2 pointer. 

2.2.  A s s i g n i n g  Features  at  t h e  P o i n t e r s  or in t h e  R e g i o n s  

In the speech signal, there are particular properties or events that correspond to each of 
the pointers or regions in the basic structure of a lexical item. The acoustic manifestations 
of other phonetic features relating to place and manner of articulation occur at locations 
in the sound wave defined by these pointers or regions. 

In the case of regions that are [+ syllabic], we assume that there are no narrow con- 
strictions in the vocal tract. The list of features that can be implemented during the 
syllabic interval is reasonably extensive, and these features may be specified at the edges 
of the region or more centrally within the region. It is basically the list in the left-hand 
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CONTINUANT 

C1 
$1 

C2 C1 C2 
$2 

p a n 

SONORANT - - + + 

SYLLABIC 

CONTINUANT 

SONORANT 

SYLLABIC 

r z b ~ t 

- + 

+ - - + + -  

Figure 2. Framework of lexical representations for the words pawn (top) and rabbit 
(bottom). The phonetic transcription is indicated for reference. The labels for the events 
are C1 (stop implosion), C2 (stop release),S1 (transition from sonorant to nonsonorant), 
and $2 (transition from nonsonorant to sonorant). A nonsyllabic mark is indicated only 
when C or S events do not identify the presence of nonsyllabic interval. 

column of Table 1 above. There are more constraints, however, on the location of these 
features within the syllabic region in English in the proposal lexical representation. For 
example, the features breathy voiced and pressed voiced are not distinctive for vowels in 
English, but can operate redundantly in some consonantal contexts. Thus, [+ breathy 
voice] can be indicated on the plus side of the sonorant boundary for a voiceless aspirated 
stop consonant or for an [h]. The acoustic correlate of this feature has been discussed in 
several publications (Bickley, 1982; Ringo 1988; Klatt and Klatt, submitted). Likewise, 
the feature nasal is only designated in the lexicon at a boundary of the syllabic region 
that is [- continuant] but remains as [+ sonorant]. That is, nasality in vowels only occurs 
adjacent to nasal consonants in the lexicon. Features such as high and back may also be 
designated at the boundary of a syllabic region, if a consonant adjacent to the syllabic 
region imposes such a constraint. For example, an alveolar consonant tends to be [- back], 
and the glides [w] and [j] are [+ high], with [w] designated as [+ back] and [hj] as [- back]. 

An example of the proposed lexical representation during the syllabic interval for the 
word pawn is given in Fig. 3. We observe the designation [+ breathy voice] at the be- 
ginning of the interval, and the specification [-I- nasal] and [- back] just before to the 
postvocalic continuant boundary. These features are normally associated with the conso- 
n a n t s / p / a n d / n / ,  but their acoustic manifestation occurs within syllabic interval. 

A number of constraints are associated with the continuant and sonorant events in the 
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CONTINUANT 

SONORANT 

SYLLABIC 

HIGH 

LOW 

BACK 

NASAL 

BREATHY VOICE 

C1 
$1 

C2 
$2 

+ 

C1 C2 

Figure 3. Proposed lexical representation during the syllabic interval is shown below the 
basic framework for the word pawn. 

lexical representation, requiring particular features to be associated with each of these 
events. For example, the presence or absence of the feature voice is designated only at a 
sonorant boundary. The acoustic correlate of voicelessness is the absence of low-frequency 
energy due to glottal pulses during a portion of the nonsonorant region adjacent to the 
sonorant boundary. (A detailed discussion of issues associated with voicing is beyond the 
scope of this paper.) Likewise, the feature strident is only designated in the [- sonorant] 
region, and, except for Is], this designation is almost always at the sonorant boundary. 
(For example, [a~ks] is possible, but not [a~kf], although [wit#] is an exception.) A third 
feature that is represented in the sound at certain sonorant boundaries is consonantal. 
The acoustic correlate of this feature is a rapid change in the first-formant frequency on 
the sonorant side of the boundary-an indication of the formation of a narrow constriction 
in the midline of the vocal tract. 

Place features for consonants (such as the features labial, coronal and anterior) are 
constrained to be designated at particular points or regions in the [- syllabic] region de- 
pending on the status of the continuant and sonorant boundaries. For example, at a 
continuant boundary these place features are designated adjacent pointer, whereas when 
there is neither a sonorant nor a continuant boundary, the designation of the place fea- 
tures is linked to the [- syllabic] designation, which would be in the vicinity of the point 
where the first-formant frequency ( and also the amplitude of the first-formant peak) is a 
minimum. 

Examples of the compiled representations for some lexical items are given in Fig. 4. 
The representation of each item has been divided into four sections to indicate the natural 
groupings of the features. In the upper section the three features specifying the pointers 
or landmarks are listed. Below this section, we specify features that are represented in 
the sound during the syllabic interval, when the source is at the glottis, whether these 
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SONORANT 

SYLLABIC 

HIGH 

LOW 

BACK 

NASAL 

BREATHY VOICE 

VOICED 

STRIDENT 

CONSONANTAL 

LABIAL 

CORONAL 

ANTER1OR 

VELAR 
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SYLLABIC 
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NASAL 

BREATHY VOICE 

VOICED 

STRIDENT 
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LABIAL 

CORONAL 
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VELAR 

RETROFLEX 

§ - , -  

§ 

§ - -  

b �9 t 

�9 - -  § § . - -  ~ ,  

§ 

§ § i .  .g. 

. . .  . .  . . .  . .  

§ § § 

§ § 

§ § 

§ § 

Figure 4. Tentative partial lexical representation of the items for which the framework 
was shown earlier in Fig. 2. The list of features is not complete, and some entries may 
need to be revised. 

features are normally associated with vowels or with consonants. The features in the 
next grouping, consisting of voicing, stridency, and consonantality features, are usually 
specified only at a sonorant boundary. The consonantal place features are grouped at the 
bottom of each item in Fig. 4. The locations of the entries for these features are directly 
tied to the pointers in the uppers section, as has already been discussed, since the acoustic 
properties corresponding to these features are represented in the sound in time intervals 
that are defined by these landmarks. 

A glance at the examples in Fig. 4 indicates that many positions in the matrix are left 
blank. Some of these blanks occur because the feature is irrelevant (e.g., the feature nasal 
is irrelevant during a nonsonorant interval, or the tongue body features for a reduced 
vowel are left unspecified). Others are left blank by convention (e.g., breathy voice is left 
blank, or is assumed to be negative, unless it is specifically marked "+') .  Not aU of the 
details of these conventions for marking features in the lexicon have yet been worked out. 
The examples in Fig. 4 are given to indicate the present status of our thinking about 
lexical representations. 

It is important to observe that the compiled representation can be derived from the 
more abstract representation in terms of segments and features (i.e., of the type in Table 
2) by application of a set of rules. Thus the same basic information is carried by both 
representations. In the case of the compiled items, some of the acoustic structure of the 
word is made more explicit, particularly the distribution of acoustic events and acoustic 
properties over time. An example of the detail contained in the compiled lexical represen- 
tation is the different specification for consonants depending on syllable position. Thus 
for the word spawn, the continuant and sonorant events for the unaspirated stop conso- 
nant are simu]taneous in the lexicaJ representation, and the feature [+ breathy voice] is 
not marked (as it is in pawn). For a syl]able-ilnal voiceless stop (as in the word soap), 
the feature [+ breathy voice] is again not marked in the lexical item. These different fes- 
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lure specifications for segments depending on syllable position can help to resolve word 
boundary ambiguities that exist when only a phonetic representation of an utterance is 
available (Church, 1987; Harrington and Johnstone, 1987.). For example, one or more 
entries in the compiled lexical representation of the words in the sequence gray train would 
be different from those in great rain or saw Sally from sauce alley. 

0 A C C E S S I N G  T H E  L E X I C O N  F R O M  A C O U S T I C  P R O P -  
E R T I E S  

The compiled lexical representation of the type shown in Fig. 4 designates, in some 
sense, a canonical form for each lexical item. In order to access lexical items in this form 
from acoustic data derived from an incoming acoustic signal, the first step is to determine 
from acoustic measurements the four major types of landmarks or regions described above: 
the continuant, sonorant, and nonsyllabic events and the syllabic regions. Once these 
events and regions are identified, additional acoustic properties are measured in order 
to establish the strength with which other features are represented in the sound. These 
patterns of graded acoustic property values are compared with specifications in the lexicon 
(which are binary, but perhaps with some indication of relative importance, as discussed 
below) to determine the best-matching item. 

As we have seen, a particular acoustic realization of a lexical item in a sentence context 
may show evidence for modification of some of the features and the landmarks. The 
changes are, of course, not random, but are characterized by certain principles. Thus, 
for a given lexical item, there is a tendency for the implementation of some features (for 
example, features for stressed vowels and for consonants in prestressed position) to remain 
invariant independent of context, and for others to undergo some change with context and 
with speaking style. Among the features that undergo change, some are redundant, and 
the lexical access process should not be impeded substantially by these variations. An 
example is the feature [- continuant] that characterizes the [g] in the word legal. For other 
features, some knowledge of the possible changes (as well as changes that are not allowed) 
may need to be built into the description of the compiled lexicon. These features may be 
subject to certain kinds of modification, and this fact should be noted in the lexical entry. 

As an example of this second type of feature, consider the lexical entry for the word 
about. The compiled description of this word shows both an implosion and a release for 
the final stop consonant. Depending on the context in which it is produced, this consonant 
may not be released. On the other hand, if the speaker chooses to release this consonant, 
the information available in the release burst can contribute correct access of the word. 
This optional implementation of a word-final stop consonant is a rule that applies across 
many different lexical items. 

In the compiled lexicon that we are considering here, we will need to mark in some way 
features that have this attribute of being subject to modification but also contributing 
information if they are implemented. In the case of the example about, the final coronal 
stop can undergo many other modifications, as we have seen, including a change in place 
of articulation or possibly glottalization (such as [ ~bfiutpi:t~r ] for about Peter) or 
flapping ([ ~b~ut~m~xt ]) for about a mile. In all of these realizations, the [- continuant] 
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feature is realized in the sound, and it is the place features coronal and anterior that are 
subject to modification. Similar changes (except for glottalization) occur in the consonant 
/n / ,  as in can Peter or run a mile. During the matching process that occurs when the 
lexicon is being searched, the criterion for matching is relaxed when a feature that is 
marked in this way is encountered. In this same lexical about, it is expected that the 
place and manner features for the consonant [b] and the features for the stressed vowel 
would usually be marked in the compiled lexicon as being represented in the sound of a 
robust manner. In a sense, then, the location of a stressed syllable is identified in the 
lexical representation by an indication that certain features within the syllable are not 
subject to variation. 

Needless to say, it is a challenging task to find ways of labeling the compiled lexical 
items so that the features that are almost always well-represented in the sound and features 
that are prevented from occurring are distinguished from features that are subject to 
modification in particular phonetic environments or for particular speaking styles. The 
objective is to have a single entry indicating the phonetic description of each item in 
the lexicon (leaving aside for the time being the problem of dialectal variation). This 
entry should be derivable directly from the more abstract representation of the item by 
application of a set of rules. We hope to be able to account for so-called allophonic 
variation, or feature modification of various kinds, by appropriate notations on particular 
features in each lexical item. 

4.  C O N C L U D I N G  R E M A R K S  

We have suggested an approach to lexical access in which the lexicon is searched directly 
from a representation in terms of features rather than phonetic segments. The lexical 
representation highlights the fact that some distinctive features are manifested in the 
sound as well-defined landmarks or events, and that the implementation of other features 
is tied in a systematic way to acoustic properties in the vicinity of these landmarks. 
The kinds of variability that occur in the acoustic manifestation of a word can usually be 
succinctly described in terms of modification of a few of the features that specify the word. 
Consequently, the match between the acoustic properties and the lexical representation 
deteriorates only partially when contextual influences modify the features that are used 
to produce the word. Clearly, many questions must be answered before all the details of 
the proposed approach to lexical access can be worked out. 
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A b s t r a c t  

A large-vocabulary (with 1019 words and 1382 kinds of inflectional endings) continu- 
ous speech recognition system with high prediction capability, applicable to any task and 
aiming to have unsupervised speaker adaptation capability is described. Phoneme identi- 
fication is based on various features. Speaker adaptation is done using reliably identified 
phonemes. Using prosodic information,phrase boundaries are detected. The syntactic 
analyzer uses a syntactic state transition network and outputs the syntactic interpre- 
tations. The semantic analyzer deals with the meaning of each word, the relationship 
between words, and extended case structures of predicates. Recognizing noun phrases 
first, predicates are predicted, and vice versa. 

1.  I N T R O D U C T I O N  

For a continuous speech recognition system with a large vocabulary, some of the fol- 
lowing problems, from an acoustic point of view, become more serious. (1) Most of the 
words in a sentence are pronounced rapidly and unclearly. (2) As a consequence, the effect 
of coarticulation becomes dominant. (3) Uncertainty of word or phrase boundaries. (4) 
These tendencies may appear even if a sentence is pronounced slowly and become more 
difficult when speaker independency is required.In order to cope with these difficulties, 
recently HMM techniques have been used intensively and good results have been obtained 
(for example ref.[1]). 

On the other hand, we can easily understand spoken sentences. This may be due to 
the fact that, using various knowledge, we can predict not only the following words but 
also the meaning of the sentences and the context of the topic.However, it is very dimcult 
for a mechanical speech recognition system to predict the following words, because the 
knowledge which the system has is poor and it must treat phoneme or word strings with 
erroneous phonemes or words.Therefore, an approach to these problems using syntactic 
and semantic aspects may be more fundamental and important, although language has a 

*Now at School of Computer and Cognitive Sciences, Chukyo University, Kaizu-cho, Toyota, 470-03 
Japan 
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statistical aspect.So, putting emphasis on linguistic processing and prosodic information, 
the authors have been trying to construct a fundamental continuous speech recognition 
system with high prediction capability and applicable to any task[2-6]. Since recently 
the authors are trying to construct a system with a vocabulary size of 1019 words, 1382 
kinds of inflectional endings, and a perplexity of about 280 with the grammar by refining 
espedally the semantic information of each word, the dependency relationships between 
words, the extended case structures, and adding an assodative function[9,10].The se- 
mantic information is expressed in terms of semantic attributes and effectively used for 
prediction in universally applicable forms. The recognition procedures are syntactically 
and semantically excuted in parallel, and words or phrases are recognized after various 
kinds of linguistic prediction. The acoustic analyzer has a phrase boundary detector[l 1], 
and is aiming to have unsupervized speaker adaptation capability[12]. 

This paper describes mainly some attempts to detect phrase boundaries and to predict 
predicates and noun phrases using semantic information. 

2.  A C O U S T I C  P R O C E S S O R  

The acoustic processor consists of a phoneme identifier and a phrase boundary detec- 
tor. Speech waves are sampled at 10 kHz, 12 bits, and after filtering with (1 - z -1) or 
adaptive inverse filters, LPC and PARCOR analyses are executed every 10 ms. 

2 .1 .  P h o n e m e  i d e n t i f i c a t i o n  a n d  c h a r a c t e r i s t i c  p h o n e m e s  

Before phoneme identification, taking the maximum slopes of the speech waveform 
envelope into consideration, speech waves are segmented globally into segments which 
contain usually one phoneme. In order to identify phonemes - the Japanese five vowels 
/a,i,u,e, o/, /s,h,r/, the unvoiced stop consonant group/p,t,k/(designated a s / P / ) ,  the 
nasal group /m,n, 0/and N/(/N/),  the buzz bar(/B/) and the silent part ( / . / ) - ,  at 
first, various kinds of preliminary phoneme identification methods are carried out every 
10 ms, speaker independently, using various characteristic features extracted from LPC 
spectra, vocal tract area functions, waveform envelopes, and numbers of zero-crossing. 
The phonemes identified with high reliability are marked with *. The characteristic 
phoneme string of each word, which consists of reliably identifiable vowels,/s/, and silence, 
is used effectively for pre-selection of candidate words. 

2 .2 .  A d a p t a t i o n  t o  a n e w  s p e a k e r  

After processing each input sentence spoken by a new speaker, the reliably identified 
phonemes, marked with *, are collected and the vocal tract area functions and 20 spectrum 
components or Cepstrum coefficients of these phonemes are used, respectively, as training 
data for two kinds of neural networks and reference patterns. Thus, the neural networks 
and the reference patterns for the new speaker are obtained. These networks and reference 
patterns may be revised sometimes by adding new reliable parameters of phonemes marked 
with *. Thus listening to several free sentences spoken rather slowly by a new speaker, 
the system gradually adapts its neural networks and reference patterns to a speaker. 
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2.3. D e t e c t i o n  of  P h r a s e  B o u n d a r i e s  

One of the difficult problems in speech recognition is the fact that most boundaries 
between successive words or phrases are entirely unknown to the system. Division of 
a sentence into a sequence of words or phrases by detecting word or phrase boundaries 
is desired for obtaining good performance. So the authors have tried to take prosodic 
information into account for the detection of phrase boundaries in any sentence. 

In order to detect phrase boundaries, first, CV (consonant-vowel) or V syllable bound- 
aries are detected, since in Japanese phrase boundaries coincide with the boundaries of CV 
or V syllables. Extraction of dips in the waveform envelope is useful for detection of CV 
boundaries, since boundaries between CV syllables show dips in the waveform envelope. 
Also, when a syllable boundary in a vowel concatenation coincides with a phrase bound- 
ary, the syllable boundary usually shows a dip in the waveform envelope as a consequence 
of a somewhat loose coupling due to the phrase boundary. So, first, as candidate phrase 
boundaries, syllable boundaries are extracted. In order to decide on phrase boundaries, 
it may be useful to examine whether each syllable boundary has any of the following six 
features. 
(1) A valley in the fundamental frequency contour 

In general, the fundamental frequency contours in a declarative sentence display a 
sequence of figures with a " ~ "  shape and phrase boundaries exist usually in the valleys 
of the sequence of such figures. But, by the effect of mutual relation of accent patterns 
between successive phrases or the modifying relation between phrases, there are cases 
where no apparent valley between phrases appears in the fundamental frequency contour. 
(2) A local variation in the fundamental frequency contour 

Even if a valley in the fundamental frequency contour is not detected at the phrase 
boundary, a phrase boundary may be found at the place where a local variation in the 
fundamental frequency contour has a characteristic variation, such as (i) the contour is 
almost fiat, or (ii) the contour changes from decreasing to increasing or becomes fiat. 
(3) A gradual slope of the valley in the waveform envelope 

When the slope of the valley in the waveform envelope is not steep the valley tends to 
be a phrase boundary. 
(4) A long interwl of silence 

When the modifying relation between successive phrases is weak or when there is a 
pause for breath, there is a rather long interval. So when such a silent stretch is long, 
there is a high probability that it is a phrase boundary. 
(5) A valley in the pseudo-fundamental frequency contour 

A pseudo-fundamental frequency contour is defined as a contour which connects each 
fundamental frequency at a point having maximum value within the speech waveform 
envelope in an interval between successive dips in the waveform envelope. The place 
having the minimum value of the pseudo-fundamental frequency contour may be a phrase 
boundary. 
(6) Long distance from the adjacent phrase boundaries 

Any place far from a candidate phrase boundary and having a gradual slope in terms 
of the fundamental frequency contour, is possibly a phrase boundary. 

If a syllable boundary has one of these six characteristic features, a score of z l" is 
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Table 1 Parts of s 
Part of speecfi 
Noun, Pronoun 

Pre-noun(Attribute) 
Adjective 

Verb 
Conjunctive 

Auxiliary verb 

Symbol Part of speech Symbol 
Noun Adnominal PP 
PREN Particle Predicate PT 
ADJ Case PC 

VERB Terminal PF 
CONJ Conditional CADV 

Adverb Statal SADV 
AUX Degree DADV 

given to the syllable boundary. Using linear discriminant functions composed of these 
six parameters, and the variation of the function's values, the detector expresses the 
possibility of a phrase boundary with scores independently from individuality. Scores 
which the detector has given to 710 syllable boundaries, contained in the total 66 sentences 
uttered by six adult males, have been examined. The total number of phrase boundaries 
is 186. For 6 out of the them syllable boundaries have not been detected and so also not 
the phrase boundaries. One phrase boundary had score 0. To 354 (63%) out of a total of 
524 syllable boundaries a score 0 has been given. 

It is impossible to detect all phrase boundaries accurately by this method, but most of 
the remaining ones may be at the syllables' boundaries next to the ones pointed out by 
the method; and even if the detector cannot point out all the correct phrase boundaries, 
there may be at most only two phrases between adjacent detected phrase boundaries, and 
this may happen in cases where a preceding phrase strongly modifies the following phrase, 
or concatenation of two specific accent patterns exists. But even in such cases correct 
phrases may be extracted by the matching process in the linguistic processor. 

3. K N O W L E D G E  R E P R E S E N T A T I O N  

The system has a knowledge source which contains syntactic, semantic, and vocabulary 
information in universally applicable forms. 

3 . 1 .  S y n t a c t i c  K n o w l e d g e  

Most of the fundamental grammar in the Japanese language is included in the system. 
However, some changes concerning categories and word inflections were made in order to 
facilitate machine recognition. 

3.1.1. Words and phrases 

Words are classified as shown in table 1. Pronouns are included in the category of 
nouns. In this classification, some parts of speech are divided into several groups with 
reference to their syntactic roles and semantic features. 

In Japanese, a sentence can be divided into phrases, each of which consists of conceptual 
and functional words. The conceptual words convey a concept by themselves, such as 
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nouns, verbs, adjectives, etc. Functional words give a conceptual word or phrase a function 
to modify the following phrase. Auxiliary verbs, particles, and their combinations are 
included in this class. These two kinds of words usually appear as combined forms in a 
sentence. The combined form is called a phrase and some modifying relation is established 
between the phrases. The syntactic function of a phrase is classified into three types: (i) 
modification of a nominal word or p h r a s e -  adjective modification, (ii) modification of 
a verbal or adjective word or p h r a s e -  adverbal modification, (iii) termination (end of a 
sentence). 

3.1.2. Classification of inflectional forms 

In Japanese, there are many types of inflections, and further, each inflectional word 
has various inflectional forms and represents various aspects and meanings. In our system, 
these are classified as shown in table 2, and 1382 kinds of inflectional endings are prepared 
with semantic markers. 

Table 2 Inflectional form 
Form Symbol Form 

Adverbial modification RY Imperative 
Adjective modification RT Interrogative 

Conclusive END Pause 
Conditional COND 

Symbol 
IMP 
INT 

PAUSE 

3.1.3. Syntactic  state transition network 

The conjunctive relations among the parts of speech in Japanese are represented by a 
syntactic state transition network as shown in fig.1. 
This network is useful for an agglutinative language such as Japanese, which has loose 
constraints on the order of phrases. The perplexity of the system with this grammar is 
about 280 for the task domain of fairy tales, a vocabulary size of 1019 words, and 1382 
kinds of inflectional endings. In fig. 1, SOC,SVP, etc., enclosed by large circles, represent 
syntactic states reached after recognition of a phrase. N, A, etc., enclosed by small circles, 
represent syntactic states reached after recognition of a conceptual word. SOS and EOS 
represent the beginning and the end of a sentence, respectively. The symbol along an arc 
from a large circle or SOS to a small circle shows the part of speech of a conceptual word. 
The functional word X in X/Y along an arc from a small circle to a large one or EOS 
shows a particle or nil(~) when X is not an inflectional word, and Y shows a syntactic 
function. That is, MODN at Y means the modification of a noun, MODV that of a verb, 
MODA that of an adjective, and MODP that of a predicate, while EC and ES show the 
ends of a clause and a sentence, respectively. When X is an inflectional word, X shows 
its inflectional form category(table 2) and is enclosed in parentheses. In this case, X is an 
auxiliary verb, a particle PF or a combination of these. Y is the same as described above. 
Auxiliary verbs and particle PFs do not appear explicitly in fig.l, but are embedded in 
the Xs in parentheses. 
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(PAUSE)/EC NOUN 
(RT)/MODN NOUN I ] ~/MODN, 

Z/(INT) IES 

_ I . . . .  \ \ 1 ~ ' / . , , { .  ~ . .  ADJT,  (END)/ES 
~0~ .... JUMP _ ~  (INT)/ES i 

I _ coNJ ,,L, II ,  (E"D)/E.SJll 
( > . . . . .  II  (I"T)/ESll 

i ,~, ,o j / 

Fig.1 Syntactic state transition network. 

Thus, this network is effective for processing sentences in terms of phrases, because it 
indicates modifying relations between phrases, has much freedom for the order of phrases 
and expansibility, can insert semantic, associative prediction anywhere, and the system 
can process input sentences syntactically and semantically in parallel from left to fight, 
right to left, or any island. Thus, words or phrases are recognized after syntactic and 
semantic prediction. 

3.2. Semantic Expression of Words 

The meaning of each word and the case structures (with somewhat extended forms) 
of verbs, predicate adjectives, and predicate nouns are taken into consideration. 
(i) Nouns 

From a semantic point of view, nouns are classified globally into nine categories, which 
are the highest-level attributes of meaning. These are Life, Thing, Abstract, Action, Re- 
lation, Location, Time, and Quantity, and they are marked by *. A noun has certain 
attributes which represent a higher-level concept of the noun, such as *Human, *Con- 
veyance, *Language, *Work. Therefore,nouns are classified with a hierarchical structure 
of attributes. To predict predicate nouns, case structures of nouns are also prepared, as 
shown in table 3. "- not " in the table means that "female, child" must be excluded from 
*Human. 
(ii) Verbs 
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table  ~ C~ 
Noun 

old man 

~e structt 
Case  

Agent 
At time 

re of the noun "old man". 
Attributes of nouns that  shoulda 
be attached to the case 
* Human (- not female, child) 
* Time (at,~(empty)) 

Each verb ( in general, predicate ) has an inherent case structure which plays a very 
important role in representing its meaning in a sentence. Normally, a case takes the 
form "noun + particle" in Japanese, which constitutes a phrase, and this c a s e  structure 
is prescribed for each verb. Thus, the concrete meaning of a verb is represented by the 
meaning of each case, or the meaning of the phrase adopted to each case, in addition to 
the meaning of the verb itself. Table 4 shows, as an example, the case structure of the 
verb "cut".  Thus, the case "Instrument" in the case structure of "cut" should have a 
lower-level attr ibute "*Cutlery" with the preposition "with". Thus the verb "cut" is not 
predicted when in the case of an "Instrument",  a vehicle, such as a car or an airplane, 
appears. 

To each verb some of 31 attributes, such as "Action, Change (of state), Movement, 
Contact, Perception, Thinking, are also given and used to represent the modifying relation 
between an adverb and a verb. 

Case structu 

Verb Cases 

cut 

Agent 
Object 

Instrument 
Somebody 
At location 

At time 

re of the verb "cut".  
Attributes of nouns that  should 
be attached to the case 
* H u m a n  

* Thing, * Life 
* Thing, * Cutlery (with) 
* Human (with) 
* Location (at,on,in,~) 
* Time (at,~) 

(iii) Adjectives 
Adjectives are also classified into 25 kinds of semantic attributes, such as "Feeling, 

Character, Weather, Hight, Color", according to their meaning. These attributes are put 
to the attributes of nouns. For example, to "*Human ' (an  attribute of human beings) 
"Feeling", "Character",  etc. are attached. Thus "gentle" and "kind" have "Feeling" and 
"Character" as attributes, respectively, and can modify " boy " which has " *Human " 
as an attribute, but "hot",  having an attr ibute "Weather", cannot. 

Table 5 shows the case structure of the predicate adjective "kind" which is used in a 
sentence as follows: 

The modifying relationships with arrows in (S1) are indicated along arcs in the network 
shown in fig.1. Further explanations of meanings of other parts of speech are described 
in refs, [4] and [8]. 
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Table 5 Case structure of the adjective "kind". 
Adjective Ca~e Attributes of nouns that 

kind 

Agent 
Other 

Comparison 
At location 

At time 

should be attached to the case 
* Human, God 
* Human (to) 
* Human, God (than) 
* Location (at, on, in,~b) 
* Time (at,~b) 

KARE WA JIMUSY0 DE t/ATASHI NI SHINSETSU DESITA. 
- - - - - - - - - - - - - -  -- -- ---- -- - - - -  - - - -  -- -- . . . . .  - - . . . . . .  ...D,,... m . .  m . . . . . . . . . . . . . . . . . .  

I I I .............. ~ ~  

I . . . . . . . . . . . .  : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :  1 
Agent At l o c a t i o n  Other P r ed i ca t e  a d j e c t i v e  
he a t  the  o f f i c e  to  me was kind.  

( He was kind to me at  the  o f f i c e . )  
- - - -  - -  = -  - -  = -  . - = -  = .  = . . . . . . . . .  m = . . .  = . . . . . . . . . . . . . . .  = .  o 

I___~ '1' ~ . . . . .  I I 
I . . . . . . . . . . . . . . . . . . .  I 

( s l )  

e P R E D I C T I O N  O F  N O U N S  A N D  O T H E R  W O R D S  B Y  

T H E  R E L A T I O N S H I P  B E T W E E N  A D J A C E N T  W O R D S  

Usually the number of nouns occupies 50% or more of a 0% vocabulary, and also nouns 
have an important roles in case structures, when there is some relationship between two 
adjacent words. In our system, for the following cases universal relationships are written 
using the semantic attributes of each word: 

"noun + TO(and) + noun", "noun + YA (or) + noun", "noun + NO (of) + noun", 
"adjective + noun", "pre-noun + noun", " adjective form of a verb + noun", "adverb 
+ verb", "pre-noun + pre-noun', etc.(TO,YA,NO:particles). For example, in the case 
of concatenation "noun+TO(and)+noun" both nouns may have the same semantic at- 
tributes, and the conjunction "adjective + noun" has the relationship described in section 
3.2(iii). 

Moreover, cooperation between adverbs and conflectional endings(in English, for exam- 
ple, "if ... then", a style appearing in subjunctive mode) is also taken into consideration. 
These relationships are written in semantically universal forms and may be used for pre- 
dicting or checking each other. 

0 P R E D I C T I O N  O F  P R E D I C A T E S  B Y  C A S E  

S T R U C T U R E S  

It is very important for a continuous speech recognition system to be able to predict 
following words and decrease the number of candidate words as much as possible. Espe- 
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cially in Japanese, it is essential to be able to predict the main predicates, because verbs, 
adjectives, and auxiliary verbs inflect, and in our system about 90 inflectional endings 
(which are composed of ending of a verb, and some auxiliary verbs, particles, or their 
combination) can follow a predicate verb, and about 23 inflectional endings may follow a 
predicate adjective, and also a predicate is usually placed at the end of a sentence. 

The prediction of a predicate is done using the noun phrases which compose the case 
structure of the following predicate. That is, processing an input sentence from left to 
right, noun phrases are successively recognized and the kind of case for each noun phrase 
is decided. Thus, only the predicates that can have such a case structure are selected. 
(i) Prediction of verbs 

Processing an input sentence from left to right, noun phrases are successively recognized 
and the kind of case for each noun phrase is decided. Thus only verbs that can have such 
a case structure are selected. For example, in the sentence: 

KARE WA HASAMI DE HANA WO KIRI MASITA. 

I I . . . . . . . . . . . . . . . . . . . . . . . . . . .  I I 
I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I 

Agent Instrument  Object Verb 
He with s c i s s o r s  f lowers  cut 

(He cut flowers with sissors. ) 

-T . . . .  i . . . . . . . . . . . . . .  

. . . .  L _ : : : : : : :  . . . . . . . . . . . .  I 

(s2) 

If "He" has been recognized and a verb should be predicted, then verbs such as "go, have, 
live, cut, think etc.", which can have "*Human" as an attribute of the case "Agent", are 
predicted. In this situation, many verbs may become candidates. But if the next phrase 
"HASAMI DE (with scissors)" has been recognized, verbs such as "go, have, cut, etc.", 
which have the case "Instrument", remain, and verbs such as "live" which do not have 
the case "Instrument" will be omitted. Moreover, "scissors" has an attribute "*Cutlery 
(with)", which is a kind of "Instrument (*Thing)", so verbs which have only the attribute 
"*Cutlery" with the preposition "with" (in Japanese DE (particle)) among the various 
kinds of instruments are selected. Therefore, verbs such as "go, have, think etc." will be 
rejected, and a small number of verbs such as "cut, trim" will remain. 
(ii) Prediction of predicate adjectives 

If in the sentence ($1) "he (Agent), to me (to Other) or at the office(At location)" have 
been recognized, adjectives such as "kind, cold-hearted" will be predicted and adjectives 
such as "white, hot" will be omitted. 
(iii) Prediction of predicate nouns 

Predicate nouns are also predictable by using case structures of nouns. For example, in 
the sentence ($3) "old man" may be predicted by hearing "doctor" from the case structure 
of "old man" shown in table 3, if the doctor is not female. 
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ISHA WA OZIISAN DESI TA. (S3) 
- - - T - - - _ _ _ - - - - Y - i  . . . . . . .  

Agent P r ed i ca t e  noun p h r a s e  
The  d o c t o r  an  o l d  a a n  was  
( T h e  d o c t o r  e a s  an  o l d  a a n .  ) 

I . . . . . . . . . . . . . .  1' 

6.  P R E D I C T I O N  O F  N O U N  P H R A S E S  B Y  P R E D I C A T E S  

Noun phrases and predicates have very close relations, and by recognizing a predicate 
first, noun phrases may be predicted. In the case of languages such as English, in which 
a main predicate usually follows a subject at an early stage, following noun phrases are 
predictable. On the other hand, in the case of Japanese, in which a predicate is placed at 
the end of a sentence, it is difficult to recognize a predicate first. However, in our system, 
segmentation of the last predicate phrase is rather easy owing to the phrase boundary 
information, so it is possible to recognize predicates first and proceed the recognition 
process by stepping backward from the node EOS(end of sentences) in the syntactic state 
transition network. 

0 R E C O G N I T I O N  P R O C E D U R E S  W I T H  B O T H  F O R W A R D  

A N D  B A C K W A R D  P R E D I C T I O N  

By starting one of two recognition processes from left to right (forward) and the other 
from right to left (backward), it may be possible to verify each recognition result mutually 
or to reject words or phrases which have no relation to each other. However, there may 
be some problems with complex or compound sentences. 

8 .  F U R T H E R  P R E D I C T I O N  P R O C E D U R E  

From the above discussion it becomes possible to predict noun phrases even in the 
case of left to right (forward) processing. That is, if one or two noun phrases have 
been recognized, some predicates are predicted. Even if the predicates have not been 
recognized, using case structures will make possible the prediction of noun phrases placed 
between already recognized noun phrases and the predicted predicates. 

This procedure becomes straightforward by preparing four-items of the case structure: 
"a semantic attribute of a noun + a case particle (PC in table 1) + a kind of case + 

a predicate having such a case structure ". Using these four-items of the case structure, 
case particles following a noun, noun phrases following a noun phrase, predicates relating 
to a noun phrase or noun phrases relating to a predicate are predictable. 
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9. A S S O C I A T I V E  F U N C T I O N  

Besides the various kind of information described above, it may be supposed that we 
have an assodative function with which we can assodate already recognized words or 
sentences with certain concepts or words and help ourselves to understand sentences. So 
we have examined words associated with words in the dictionary and have constructed an 
associative-words dictionary. Moreover, we have defined a distance between associative 
words based on associative information, and composed a distance-between-associative- 
words matrix [9]. 

10 .  E X P E R I M E N T A L  R E S U L T S  

Six sentences from the fairy tale "The three little pigs" uttered by 6 adult males 
having different accent patterns, have been used to adjust both the rules and three- 
layer neural networks for phoneme identification, and these thereafter are used speaker 
independently. The sentence recognition rates(including the top three) for a total of 
72 sentences(including the above 36 sentences) uttered freely by the same 6 males are 
shown in table 6 for each speaker. In the table, system (1) does not use any associative 
function, system (2) uses the associative-word dictionary, and system (3) uses both the 
associative-word dictionary and the distance-between-associative-words matrix[10]. 

For 9 new sentences of another fairy tale, containing 3-9 phrases, uttered by two 
new speakers, the sentence recognition rates were (1) 38.9%, (2) 38.9% and (3) 50.0%, 
respectively. The very low 9%recognition rate with system (1) is mainly due to low 
phoneme identification, which is caused by the few training samples. 

Table 6 Sentence recognition rates[%] 
System Speaker Average 

NK IT MA FU KO SE 
(1) 16.6 33.3 16.6  50.0 50.0 33.3 33.3 
(2) 16.6 58.3 25.0 75.0 75.0 75.0 54.2 
(3) 33.3 83.3 58.3 83.3 91.7 75.0 70.8 

11 .  C O N C L U S I O N  

The strategy of semantic processing will be used task independently and also adapted 
to most languages. On the other hand, for a specific task, by using information particular 
to the task, the predictability will increase and the performance of the system may be 
much improved. 

Now the recognition results are not sufficient. This is mainly due to the poor phoneme 
identification scores. For further development it is essential to identify each phoneme 
more accurately, and implement more various semantic knowledge. 

The authors wish to hearty thank the students in our laboratory for their help. 
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Syntax/Semantics-Oriented Spoken-Japanese 
Understanding System: SPOJUS-SYNO/SEMO 
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A b s t r a c t  

This paper describes a syntax/semantics driven spoken-Japanese understanding system 
named "SPOJUS-SYNO/SEMO ". First, this system makes word-based hidden-Markov- 
models (HMM) automatically by concatenating syllable-based (trained) HMMs. Then a 
word lattice is hypothesized by using a word-spotting algorithm and word-based HMMs 
for an input utterance. In SPOJUS-SYNO, the time-synchronous left-to-right parsing 
algorithm is executed to find the best word sequence from the word lattice according 
to syntactic and semantic knowledge represented by a context-free semantic grammar. 
In SPOJUS-SEMO, the knowledge of syntax and semantics are represented by a depen- 
dency and case grammar. This system was implemented in the "UNIX-QA" task with a 
vocabulary size of 521 words. Experimental results show that the sentence recognition/ 
understanding rate was about 87% for six male speakers for the SPOJUS-SYNO, but was 
very low for the SPOJUS-SEMO. 

1. INTRODUCTION 

In speech understanding systems, there are two basic control strategies for the syntactic 
analyses. One is a left-to-right parsing control strategy. This strategy has been used for 
a syntactic analysis of text inputs or speech inputs. The standard parsing algorithms 
are based on Earley's algorithm (top down), the CYK algorithm (bottom up), and the 
Augmented Transition Network grammar. The other control strategy is an island-driven 
strategy. This strategy is attractive for speech understanding systems, because candidate 
words obtained from speech input are not always correct. However, the latter consumes 
much computation time. 

There are also the other basic choices for the parsing strategy. They are a backtrar.king 
search versus a parallel search. In speech understanding systems, the most optimal word 
sequence should be found in a word lattice, since the detected words are not perfect and 
have scores of reliability. In such a case, the parallel search is suitable and is usually 
implemented as a beam search [1,2]. The beam search is more efficient than a best-first 
(A*) search. 
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Before constructing a speech understanding system, we compared the left-to-right and 
top down parsing strategy with the island-driven and bottom up strategy by using a sim- 
ulated phoneme recognizer [3]. Both strategies adopted the beam search. The syntactic 
constraint was represented by a context-free grammar. The word lattice for an utterance 
was generated by a word-spotting algorithm from an ambiguous phoneme sequence. The 
input of the parsers consists of a word lattice of candidate or spotted words, which are 
identified by their begin and end times, and the score of the acoustic phonetic match. 
Recently, Ward et al. have also studied a similar comparison [4]. They found that the 
island-driven parser produces parses with a higher percentage of correct words than the 
left-to-right parser in all cases considered. However, they did not use the grammatical 
constraints expressed in a context-free grammar, but trigram models of sentences with 
lexical and semantic labels. Their evaluation criterion was the rate of correctly recog- 
nized words. Our criterion was the rate of correctly recognized sentences. Therefore, our 
conclusion is not comparable with their results. 

From the simulation experiments we found that (1) the left-to-right and top down 
parsing strategy was superior to the island-driven and bottom up strategy in terms of 
the processing time, (2) the recognition accuracy was almost the same for both strate- 
gies, and (3) when the initial part of an utterance was noisy, the island-driven strategy 
became superior to the left-to-right strategy. According to these comparison results, we 
developed a left-to-right parsing oriented spoken-Japanese understanding system named 
SPOJUS-SYNO. Many successful continuous speech recognition systems such as BYB- 
LOS [5], SPHINX [6], and SPICOS [7] have adopted phoneme models based on HMM. 
The SPOJUS-SYNO used syllable-based HMMs as the basic unit of speech recognition. 
This system was implemented in the "UNIX-QA" task with a vocabulary size of 521 
words. The experimental results show that the sentence understanding rate was 87% for 
six male speakers. 

We also developed a semantic-oriented speech understanding system. The knowledge 
of syntax and semantics are represented by a dependency grammar (Kakari-Uke) between 
phrases and a case grammar among phrases. This system uses the same word lattice 
as SPOJUS- SYNO, obtained by the syllable-based HMM word-spotting algorithm. We 
show that the performance was very low in comparison with SPOJUS-SYNO. 

2. S P O J U S - S Y N O  [S] 

2.1. System Organization 

Figure 1 illustrates the system organization. First, this system makes word HMMs au- 
tomatically by concatenating syllable-based (trained) HMMs. Japanese comprises about 
110 syllables, each of which is composed of a consonant and a vowel (CV), a syllabic nasal 
(N), a vowel (V), or a consonant, a semivowel and a vowel (CYV). We adopted a contin- 
uous output observation HMM with a discrete duration probability [8] [15]. This model 
consists of five states or four transitions. The four parameter set of duration (transi- 
tion) and output probabilities (the mean vector and covariance matrix of feature vectors) 
were calculated using the Baum Welch estimation algorithm. Then a word lattice is hy- 
pothesized by a word-spotting algorithm and word-based HMMs. A hypothesized word 
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consists of a beginning frame, an ending frame, a matching score (probability) and a word 
name. Finally, a time-synchronous left-to-right parsing algorithm is executed to find the 
best word sequence from the word lattice according to syntactic and semantic knowledge 
represented by a context-free semantic grammar. 

{utterrance} 

1 
Acoustic Processor 

1 
{time sequence of feature parameter} 

(LPC Mel Cepstrum) 

1 
Word Spotter ~, 

automatic construction 
of word HMM 

{Word Lattice} 

1 
Syntax Analysis 

I 

i ! 
I 

i 
i 

[i 
| 

i 
| 

I 

| . . . . . . . . . . . . . . . . .  

Syllable 
HMM 

I 

i 
i 
0 
I 
| 

i 
I 
I 
I 
I 
! 

Lexical 
Entries 

Syntax Knowledge 
(Context Free Grammar) 

| . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~ . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . .  .i 

{ recognized sentence} 

Fig.1. System Organization of SPOJUS-SYNO. 

2 .2 .  S e n t e n c e  r e c o g n i t i o n  a l g o r i t h m  f r o m  a w o r d  l a t t i c e  [9] 

(a )Represen ta t ion  of the g r ammar  

The syntactic knowledge in terms of the "task" is given by the grammar. This grammar 
is represented by the context-free grammar as shown in Fig.2. A variable with the affix 
"~" is a non-terminal symbol, and a variable with "," a word class (a kind of non-terminal 
symbols). A word class means the set of words with the same syntactical category. The 
numbers of the rows and columns define the position of a production rule. They will be 
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0 1 2 3 4 

8 @S ---* @NP 
16 @S ----* @NP 
24 @S ----* *AUX 
32 O N P  ----* * D E T  
40 @NP " O N P 2  
48 @NP2 ---- - ,*ADJ 
56 @NP2 : a N P 3  
64 O V P  .~ * V E R B  
72 @VP ----* * V E R B  
80 @VP ---* * V E R B  
88 @PP ----, * P R E P  
96 @NP3 ~ @NP3 
104 @NP3 ~ *NOUN 

�9 NOUN----, JOHN 
�9 NOUN ~. MARY 
�9 NOUN----, MAN 
�9 NOUN----, I 
�9 NOUN----, TENNIS 
�9 NOUN----, GAME 
�9 AUX -----, WILL 
�9 AUX ~. CAN 
�9 VERB ~ KNOW 
�9 VERB ~ PLAY 
�9 VERB .~ PLAYED 
�9 D E T  ~. T H E  

�9 D E T  ~. A 
�9 A D J  ., BIG 

�9 A D J  ----, Y O U N G  
�9 P R E P  ----* BY 
�9 P R E P  ----* O F  
�9 P R E P  ----, W I T H  

@VP 
,AUX 
@VP 
@NP2 

ONP2 

@PP 
@NP 
@NP 
@PP 

~}VP 

Fig.2 An Example of a Context-Free Grammar. 
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used in the parsing algorithm described in the next section. 

(b)Time-synchronous context-free parsing algorithm 

In the LITHAN speech understanding system [1], we proposed an efficient context-free 
parsing algorithm which is similar to the Earley algorithm [10]. We also use a modified 
algorithm. 

Let the position of a production rule be represented by it's number. For example, the 
number "8" denotes OS, "9" ONP, and "19" @VP in the above grammar (see Fig.2). 
The basic problem is formalized as follows: Which words are predicted as the succeeding 
words when a partial sentence is given ? For example, when the partial sentence "MARY 
WILL PLAY" is given, which words could appear on the right-hand side ? In this case, 
the partial sentence is derived by the following production rules: ~S-* ~NP �9 AUX 
@VP-* ~NP2 �9 AUX @VP-* @NP3 �9 AUX @VP-* �9 NOUN �9 AUX @VP-* MARY �9 
AUX @VP-* MARY WILL @VP-* MARY WILL �9 VERB, MARY WILL �9 VERB @PP 
or MARY WILL �9 VERB @NP-* MARY WILL PLAY, MARY WILL PLAY OPP or 
MARY WILL PLAY @NP. Therefore the succeeding words could be predicted from @PP 
and @NP. Of course, "MARY WILL PLAY" may be regarded as a complete sentence in 
the first alternative derivation. "BY", "OF", "WITH", "THE", "A", "BIG", "YOUNG", 
"JOHN", "MARY", "MAN", " I ' ,  "TENNIS", and "GAME", are predicted. 

We can memorize the application order of the production rules by the sequence of 
positions in the grammar. For the above example, "MARY WILL PLAY" is derived by 
the sequences "16"-* "17"-* "17 40"-* "17 41"--, "17 41 56"--, "17 41 57"- ,  "17 41 57 
104"-, "17 41 57 105"-, prediction of .NOUN- ,  "18"--, prediction of .AUX-* "19"- ,  
"19 64, "19 72" or "19 80"- ,  "19 65", "19 73" or "19 81"- ,  prediction of .VERB. For 
convenience sake, we call this sequence "grammar path". The recursive algorithm for 
parsing or prediction is given below: (PARSER) 

1. Enter the given grammar path into the "path list". 

2. If the path list is empty, stop. Otherwise, select a grammar path from the path list. 
Increase the number of the most right hand side in the grammar path by 1. This 
number indicates the next processed position in the grammar. 

If the variable on this position is a terminal symbol, predict the word (terminal 
symbol) and generate the grammar path. Then go to step 2. 

If the variable on this position is a word class with the affix " , " ,  predict the set 
of words for the word class and generate the grammar path. Then go to step 2. 

If the variable on this position is a non-terminal with the affix "~" ,  the produc- 
tion rules with the same non-terminal at the left hand side are predicted, that 
is, the head positions of these rules are concatenated at the most right hand side 
of the grammar path. Enter these paths into the path list. Then go to step 2. 
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If the variable on this position is empty, eliminate the number of the most right 
hand side in the grammar path and enter this path into the path list. Then 
go to step 2. In this procedure, we should pay attention to the representation 
of left recursion in a production rule, e.g.,ONP3--, ~NP3 OPP--, ~NP3 ~NP3 
OPP -... Therefore we must restrict the application of such a rule. Although 
the times of the application are generally restricted , we restrict the length of 
the grammar path. 

Next, we extend this parsing/prediction algorithm with the time-synchronous context- 
free parsing algorithm. We already proposed the basic idea, which combined the word 
spotting algorithm with a syntactical constrained connected word recognition algorithm[Ill. 
We call it "Augmented Continuous DP Matching Algorithm". In the literature, the syn- 
tactic knowledge was represented by a finite state automaton or regular grammar. This 
algorithm was time-synchronous in terms of the ending frame of spotted words [Backward 
Algorithm W*]. We proposed another efficient time-synchronous parsing algorithm, S* 
[Forward Algorithm, [9]], which was time-synchronous in terms of the ending frame of 
generated partial sentences. This algorithm executes the prediction of words at the right- 
hand side of a partial sentence and the concatenation of a spotted word (candidate word) 
at the same time. 

If all possible partial sentences are taken into consideration, the computation time 
or necessary memory space will become large. Therefore, we select a few best partial 
sentences and abandon the others. We proposed this pruning technique in the LITHAN 
speech understanding system [1]. In general, this search technique is well known as "beam 
search [2]". The number of partial sentences which cover the same range of the utterance, 
is restricted to less than a pre-set value, that is, the width or radius of the beam search. 
The sentence with the highest score which covers the whole of the utterance, is decided 
as the recognition result. 

This forward algorithm S* is described in brief below. 

[1] At the initial step, the partial sentence is set to "empty", and i=1. 

[2] The algorithm predicts words for a partial sentence which covers the start to the i-th 
position of the input sentence. 

[3] The algorithm expands the partial sentence (concatenation of the partial sentence 
and a predicted word which is found in the word lattice) and sorts the expanded 
partial sentences in terms of corresponding scores. 

[4] If "i" is the last position in the input sentence, the best word sentence is regarded 
as the recognition result. Otherwise, i= i+ l  and go to step [2]. Figure 3 illustrates 
this procedure. 
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3. E X P E R I M E N T A L  R E S U L T S  w i t h  S P O J U S - S Y N O  

3 . 1 .  S p e e c h  m a t e r i a l  a n d  f e a t u r e  p a r a m e t e r s  

Six male speakers uttered 216 words, 80 loan (foreign) words, and 70 sentences in a 
soundproof room, respectively. These words and 20 sentences were segmented into syllable 
units by inspection and were used for training syllable-based HMMs. The other fifty 
sentences as test data were related to the content of "Question or Demand for Electronic 
Mail", which was a part of the task of UNIX-QA. The speed of utterances ranged from 
8 to 9 morae per second (about 16 to 18 phonemes per second). This is moderately 
fast. The utterances were sampled/digitized with an accuracy of 12 bits / sampling by 12 
kHz and analyzed using a 14 order LPC. We obtained 14 LPC cepstrum coefficients and 
signal power for every 5ms. These coefficients were transformed to 10 LPC mel-cepstrum 
coefficients. The vocabulary size of a part of the task is 521 words. The related sentences 
are generated by the context-free grammar which is represented by 534 rewriting rules, 259 
non-terminal symbols, 268 word classes (a kind of non-terminal symbols), and 600 direct 
rewriting rules from word classes to terminal symbols. The average branching factor 
is about 26 (static) or 14 (dynamic). The perplexity is about 10.0 [12]. The number 
of plausible sentences in this subtask is about 10 to the power 37. Experiments were 
performed in multi-speaker mode and speaker-adaptation modes with speaker adaptation 
using isolated words and/or sentences. 

3 . 2 .  W o r d  s p o t t i n g  r e s u l t s  

Table 1 shows the evaluation results of the word spotting performance after speaker 
adaptation using spoken sentences. The rate in the column of the n-th rank shows the 
percentage accuracy with which an input word is correctly identified as one of the best 
n spotted words in the neighborhood. The number of missing words denotes the total 
number of undetected input words in the total of 50 sentences. In comparison with the 
simulated of phoneme recognizer (see Table 2), our syllable HMM-based word spotting 
is superior to the performance of the word spotting of the simulator in the case of 80% 
phoneme recognition rate. 

3 . 3 .  S e n t e n c e  r e c o g n i t i o n  r e s u l t s  

The sentence recognition results are summarized in Table 3. For six male speakers, our 
system obtained an average sentence recognition rate of 60% in multi-speaker mode and 
69% and 75% in speaker-adaptation mode using isolated words and sentences, respectively. 
One third of the errors were caused by confusion between semantically similar prepositions, 
such as "wa" and "ga ' ,  "ni" and "he" or "mo" and "o ' ,  and similar nouns, such as 
"messages" and "dengon'. Therefore, a preposition word and an alternative preposition 
word combined with the preceding noun were spotted again, and a more reliable word 
detection was performed. Using this mechanism, the sentence recognition rate improved 
to 85%. This improvement suggests that a one-pass algorithm directed by a context- 
free semantic grammar may improve the sentence recognition accuracy. The sentence 
understanding rate was about 87% in speaker-adaptation mode using spoken sentences. 
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Table 1 Evaluation of word lattice by SPOJUS. 

upper: multi-speaker mode, 
middle: speaker-adaptation mode using isolated words, 
lower: speaker-adaptation mode using sentences. 

detection rate(% missing average number of 
speaker topl I tovz top5 top10 (total) spotted words 

32.8 I 46.5 63.0 70.6 8 6962 
SN 38.9 j 54.i 69.2 77.0 6 7763 

49.0 J61.9 73.4 80.1 5 6962 

TI 

HU 

KO 

MA 

SE 

average 
! 01.4 

57.5 79.8 86.8 2 6395 
74.8 84.5 89.1 2 6077 
79.2 88.6 93.8 2 4818 
44.2 65.2 78.7 4 8278 
68.6 80.5 89.3 1 7724 
69.8 81.1 90.2 3 6987 
53.0 71.3 81.7 4 7087 

w ~ , s ~  m,'mm l / g /  
6314 
5762 
6436 
6049 
5323 
9086 
8588 
7645 
7374 
7086 
6249 

Table 2 Evalution of the lattice obtained by simulation 
(phoneme recognition rate 80%, omission, insertion error rate 5%). 
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Table 4 shows the sentence recognition rates for the word lattice obtained from the 
simulated phoneme recognizer (see Table 2). We find that our system is superior to the 
simulated recognizer. 

Table 3 Sentence recognition / understanding rates by SPOJUS-SYNO 
(beam search width-45). 

speaker multi-mode 
SN 50.0% 
TI 74.5 
HU 63.0 
KO 63.0 
MA 65.3 
SE 46.7 

average 60.5 

adaptation- mode 
by words 

50.0% 
78.7 
71.7 
71.7 
79.6 
60.0 
68.7 

by sentences 
64.6% 
89.4 
76.1 
78.3 
85.7 
86.7 
80.1 

understanding 
70.8% 
93.7 
91.3 
84.7 
93.8 
86.7 
86.8 

Table 4 Sentence recognition results by simulation 
(phoneme recognition rate=89%). 

beam sentence 
width recognition rate 

40 52.0% 
80 62.0% 

4. SPOJUS-SEMO[13] 

In this section, we describe our speech understanding system,which consists of three 
stages (see Fig.4). In Japanese there are four levels of hierarchy: syllables, words, phrase 
( 'bunsetsu" in Japanese), and sentences. At the first stage, candidate words are recog- 
nized by concatenating HMM-based syllables and by checking a word dictionary. In this 
stage, a word lattice is made from words recognized with good scores. At the second stage, 
phrases are recognized using automaton-controlled Augmented Continuous DP matching 
[11]. This automaton represents the Japanese intra-phrase grammar. In this stage, a 
phrase lattice is made for the next stage. Finally, the best phrase sequence is selected by 
a backward KAKARI-UKE parsing algorithm that uses a dependency grammar between 
Japanese phrases and a case grammar among phrases. 
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The sentence recognizer gets the sentence recognition result by selecting phrases in the 
phrase lattice and concatenating them. Our system uses the backward KAKARI-UKE 
parsing algorithm that we proposed before[14]. In this algorithm, partial sentences are 
hypothesized and grown from right to left. In Japanese, verbs are located at the last 
phrase of the sentence. If we make partial sentences from left to right, we cannot use a 
dependency grammar for every phrase of the partial sentence because Japanese phrases 
have a dependency on other phrases on the right side (see Fig.5). For example, if the i-th 
phrase is the object of the j-th phrase (i<j), the dependency grammar cannot work until 
the analysis reaches the j-th phrase. This is the reason why our system makes partial 
sentences from right to left. 

We define semantic features or markers to represent the meaning of the nouns. Every 
noun has one or more semantic features. For example, the word 'printer' has two semantic 
features, 'con' and 'sys', which represent a concrete thing and a part of a computer system. 
Every verb has some syntactic structure and semantic restrictions to objects. Although it 
is called valency grammar, it uses semantics. In a word dictionary this kind of information 
is described as follows: 

�9 { hum } send { mail }[ to ]{ hum,  loc } 
�9 { hum } tell { hum }[ that ]{ s } 
�9 { hum } write { mail } 

In this example, the semantic features 'hum', 'mail', 'loc', and 's' represent human, 
mail, location, and sentence, respectively. 

We define four key words related to the UNIX mail task. They are 'mail', 'message', 
'file', and 'command'. Actually forty-four sentences of a total of fifty test sentences contain 
one or more key words. If a speech understanding system has detailed information about 
key words it is easy to prefer the sentences that contain those words. And this helps the 
system produce only meaningful sentences. 

0 COMPARISON OF THE PERFORMANCES OF SPOJUS- 
SYNO AND SPOJUS-SEMO AND DISCUSSIONS 

Table 5 summarizes the sentence recognition results with SPOJUS-SYNO and SPOJUS- 
SEMO using common word lattices for 300 sentences uttered by five male speakers. Three 
different kinds of context-free grammar for the SPOJUS-SYNO were used. From this ta- 
ble we can conclude that the recognition performance depends on the perplexity and the 
syntax and semantic grammar-driven parser is superior to the semantic-driven parser. De- 
tailed descriptions and discussions are available in the literature [16,17]. Recently we also 
developed the SPOJUS-SYNO-X, which was based on a one-pass Viterbi algorithm di- 
rected by a context-free semantic grammar, and obtained a sentence recognition accuracy 
of 90%, as expected in section 3.3 [18]. 
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spoken sentence 

syllable-based i 
word spotting 

syllable HMM 
lexicon 

word lattice 
'bunsetsu' recognition L+ 
by automaton-controlled 
Augmented Continuous DP 
matching 

I 'bunsetsu' lattice 
'bunsetsu' sequence 
selectin by 

'KAKARI-UKE' analysis 

t 
sentence recognition result 

'bunsetsu' grammar 
(finite automaton) 

- -  'KAKARI-UKE' rule 
case grammar 

Fig.4. System Organization of SPOJUS-SEMO. 
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Step Kakari-Uke Structure of Generated Partial Bunsetu Strings 
i ,, 

-1- "T-" 

4 

- - r  --r  TF" 

--1- --r- ~ - f -  

- l -  -'1- ~ ~l- 
-r" "rT ~ 

-T  - ~  - = - - , - r r  
! 

i 

l ~ -  t - �9 " i " ~  r r  ~ L _ _ _ _ } ~ !  

T -r ] ' "  ~ - ~ ~  .... 

Fig.5. Generation of K~k~ri-Uke Structure by Baf.kwerd K~kari-Uke P~rsing. 
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Table 5 Sentence recognition results with SPOJUS-SYNO/SEMO 

method 

SPOJUS-SYNO 

SPOJUS-SEMO 

perplexity 

10.0 

50.7 

sentence 
recognition rate 

68.7% 
41.8% 
27.4% 

17.9% 

language model 

semantic grammar (CFG) 
syntax and case grammar (CFG) 

syntax only (CFG) 
dependency grammar 

and 
case grammar 
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Abstract 

This paper describes a method for the discourse analysis performed in the speech 
dialogue system we are developing. The purpose of the analysis is to provide the system 
with top-down predictions. The predictions include words and syntactic rules likely to 
be used in the next utterance. Contextual information is analyzed in terms of topics 
and discourse goals. The transition of topics through a conversation is represented as 
an AND-OR tree of which the nodes correspond to topics. The prediction of topics is 
done by an expansion of the currently focused node. The structure of discourse goals is 
analyzed by a grammar as described in a context-free grammar. The terminal symbols 
of this grammar correspond to discourse goals of utterances. The top-down application 
of this discourse grammar hypothesizes discourse goals likely to appear in the utterance, 
each of which is translated into syntactic rules. The simulation of the dialogue system 
using typed input has proved that these top-down hypotheses reduce the vocabulary size 
effectively by about 60%. 

1. I N T R O D U C T I O N  

The recent advance in speech science and related technology has made it possible to 
build continuous speech recognition systems working in real time. Using such systems 
as an interface, we can construct man-machine dialogue systems [1,2]. In the speech 
dialogue system, discourse analysis, that is, the analysis of structures of dialogues, plays 
an important role in interpreting utterances. 

This paper describes a method for the discourse analysis performed in the speech 
dialogue system we are developing [3]. The purpose of the discourse analysis is to provide 
the system with top-down hypotheses on words likely to appear in utterances of the 
partner in a dialogue. 

The task performed by the man-machine dialogue is to make plans; for example, plans 
for seeing the sights of a city. The system is supposed to have a relational database 
about the sights of the city. A user (speaker) can access the system by voice and can 
collect information necessary to make plans. The speech dialogue system consists of three 



312 

components: a speech interface, a dialogue controller, and a planner. The speech interface 
recognizes utterances from users and passes their semantic interpretations to the dialogue 
controller. The dialogue controller analyzes the structure of the conversation and returns 
to the speech interface top-down expectations of what would be said next. The planner 
gives to the controller a guide line on how it should carry out a conversation with users 
as well as helps users to make plans by supplying information requested and suggesting 
some tour plans. 

The discourse analysis is performed in terms of topics and discourse goals based on 
the work in ref.[4]. The transition of topics through a conversation is represented by an 
AND-OR tree. In this formulation the prediction of topics likely to be mentioned in the 
next utterance is equivalent to the determination of which node of the AND-OR tree is 
to be expanded next. 

Each utterance in a dialogue has its own purpose (speaker's intention). The purpose of 
an utterance is called discourse goal. Since successive utterances are grouped to achieve a 
larger goal, discourse goals of a conversation can be described by a context-free grammar, 
which we call discourse grammar. The top-down analysis of a sequence of utterances 
(a partial dialogue) by this grammar predicts discourse goals the next utterances could 
express. 

A simulation of the dialogue system using typed inputs has proved that these top-down 
hypotheses can reduce the search space for recognizing utterances by about 60%. 

2.  R E P R E S E N T A T I O N  O F  T H E  C O N T E X T  

Figure 1 illustrates an example of dialogues which the system could have with users. 
This example shows that the conversation is developing in two different modes: the 

U101 
$101 
U102 
$102 

U103 
$103 

U104 
$104 

U105 
$105 
U106 
$I06 

I'd like to do a few day sights in Kyoto. 
Which are you interested in, temples, gardens, or traditional artifact? 
I've heard Kyoto is famous for gardens. 
I see. I introduce two day tour for visiting gardens. The gardens in 
what eras would you like to visit? 
Muromachi, Momoyama and Edo. 
O.K. Famous gardens in Muromachi era are the stone garden of Ryoanji 
temple, Kinkakuji temple and Ginkakuji temple. 
What is the stone garden? 
It is made of a few large stones and white sand only. It is believed that 
the simplicity of the garden is related to "Zen'. 
That 's great! Who built it? 
I'm sorry, it is not known. 
Who built Ryoanji? 
It's believed that Katsumoto Hosokawa did. 

Figure 1. An example of a dialogue. 
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system-initiative and the user-initiative mode. In the system-initiative mode, the sys- 
tem, repeating questions to the user, elucidates the specification of his sightseeing tour, 
that is, the period of the tour, hotels to stay, places to visit, and so forth, and then offers 
some candidates for these items. In the user-initiative mode, the user, asking detailed 
information on these items, decides what is worth to involve in his plan. The questions 
issued by the user in this mode are interpreted as retrieval commands for the relational 
database. Responses of the system are generated based on the retrieved information. 

2.1. Topic transit ion tree 

It has been known [5] that topics in a goal-oriented dialogue move according to a task- 
dependent tree structure. In fact the topics in the illustrated example are specialized 
along the structure as shown in fig.2, which we call the topic tree. The nodes of the topic 
tree are entities related to the database such as names of relational tables, items included 
in the tables, and values of items. These correspond to topics the system can understand. 

As we have reported in ref.[3], however, an AND-OR tree is more suited for repre- 
senting movements of topics than a simple tree. In the AND-OR tree, which we call a 
topic transition tree, AND-nodes represent topics introduced by the user, and OR-nodes 
represent topics introduced by the system. If the user inquires about two or more sights 
(each assumed to be a topic), the system must offer information on all of them. On the 
other hand, even if the system proposes two or more candidates for a visit, the user is 
not interesting in all of them, and might move to the other topics. An AND-OR tree is 
suited to reflect this difference. The topic transition tree can be considered as a trace of 
a subtree of the topic tree. 

2.2. Discourse goals 

Each utterance in a conversation has its own purpose(speaker's intention). In the 
dialogue illustrated in fig.l, the utterance U101 inquires to make plans for sightseeing and 

s ightseeing 

t e  el 

e r a ~ B c  ooI e ~ra style ce 

K a m  M o m o y a m a  

Figure 2. A part of the topic tree. 
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presents information on the period of the tour. The following four utterances, $102 to 
U103, have the larger purpose that the system tries to find out what places the user wants 
to visit. The next utterance, $104, proposes candidate sights to visit. In the utterances 
following $104, the user asks questions on those sights to judge which of them are worth 
visiting, and the system provides some information on them. Thus, the discourse goals in 
the dialogue form a hierarchical structure, like a tree. 

This hierarchical discourse structure can be described by a context-free grammar in 
which the terminal symbols are discourse goals corresponding to a single utterance and 
the nonterminal symbols are larger discourse goals corresponding to a group of utterances. 
Figure 3 shows an example of the grammar for discourse analysis. Underlined strings indi- 
cate terminal symbols. For example, the terminal symbol 'prst-alt' (present alternatives) 
represents the discourse goal of an utterance, like $102 in fig.l, used to present multiple 
choices, and the terminal symbol 'slct-alt' (select alternatives) represents the discourse 
goal to select one of the alternatives presented. 'rqst-spec' (request for a part of specifi- 
cation) is a discourse goal of wh-questions issued by the system, and 'ans-spec' (answer a 
part of specification) works as an answer to 'rqst-spec'. 

An utterance could have different discourse goals in different contexts, and a discourse 
goal could be expressed by various forms of utterances. Thus the relation between utter- 
ances and discourse goals is a many to many correspondence. 

3. A N A L Y S I S  O F  T H E  D I S C O U R S E  S T R U C T U R E  

Figure 4 shows the flow of the discourse analysis. It involves bottom-up and top-down 
analyses. The bottom-up analysis performs the semantic analysis of an input utterance 
and then produces bottom-up hypotheses, that is, candidates for topics and discourse 
goals of the utterance. The top-down analysis predicts topics and discourse goals likely 
to appear in the current utterance referring to the context so far restored, which is rep- 
resented by the AND-OR tree of topics and the parsing history of discourse goals. The 

(1) mk-plan 
(2) exm-spec 
(3) dcd-spec 

(4) exm-plan 

(5) exm-plan- 1 
(6) dcd-cand 
(7) aqr-knwldg 
(8) response 

exm-spec, exm-plan 
-4 exm-spec, exm-spec I dcd-spec, exm-spec I dcd-spec 
--, prst-alt I prst-alt, slct-alt I prst-alt, chng-spec I 

rqst-spec, ans-spec I rqst-spec, chng-spec 
exm-plan, exm-plan I 
{rqst-cand,} prst-cand, exm-plan- 1 

--, dcd-cand I exm-plan-1, exm-plan-1 
--. (apr-knwldg).{, response} 
--, rqst-knwldg, ans-knwld~ I recommend 
--, accept [reject 

Figure 3. A subset of the rules for the discourse analysis. { } indicates an optional term, 
and (x), indicates a null string or the repetition of z as many times as necessary. Rule 
(2-3), for example, refers to the second rule with the third alternative on the right-hand 
side. 
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bottom-up hypotheses are matched against the top-down predictions. The best match 
gives the interpretation of the utterance, which is preserved as contextual information. 

3 . 1 .  B o t t o m - u p  a n a l y s i s  

The first stage of the bottom-up analysis is the semantic analysis of utterances, while 
the syntactic analysis of them is supposed to finish in the speech interface. It is performed 
based on the case grammar. Case frames associated with verbs are used to represent the 
meaning of sentences in the case grammar. They are described by a set of slots, each 
indicating one of the relations between the verb and a noun phrase, like an agent, object 
or instrument. The semantic analysis assigns noun phrases included in an utterance to 
some slot of the case frame of the main verb based on semantic markers of the noun 
phrases. The semantic interpretation of an utterance is represented by a list of four 
terms, a main verb, a case frame with slots filled, aspect information, and the style of a 
sentence. 

The head nouns of the case slot fillers (noun phrases) are proposed as candidates for 

semant ic  
r ep resen ta t ion  
of u t t e r ances  

B O T T O M - U P  D I S C O U R S E  [ 

�9 ANALY SIS  &: M A T C H I N G  ]- 
I 

1 
con tex tua l  in format ion  

A N D - O R  t ree  ~z 
discourse  parse  t ree  

topic t ree  & 
discourse g r a m m a r  

I T O P - D O W N  D I S C O U R S E  

ANALYSIS  

top-down linguistic 
hypo theses  

D I S C O U R S E  T O  L I N G U I S T I C  

T R A N S L A T I O N  

Figure 4. Flow of the discourse analysis 
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the topic of the utterance being analyzed. Those cases corresponding to topic, object and 
purpose are given a higher priority than others. 

A lexicon is prepared to make bottom-up hypotheses on discourse goals. It contains 
the relation of a discourse goal with a verb, the aspect of the verb, and the style of a 
sentence including the verb. Bottom-up hypotheses on the discourse goal are built up 
by consulting this lexicon. It is generally difficult to uniquely determine the topic and 
discourse goal of an utterance only by the bottom-up analysis. 

3 . 2 .  T o p - d o w n  a n a l y s i s  

As mentioned in section 2.2, a grammar for the discourse analysis is formulated by 
a context-free grammar. Thus an analysis of the conversation so far carried out results 
in a tree structure. Leaves of a discourse parse tree correspond to utterances. Figure 5 
shows an example of a top-down discourse analysis. It illustrates a discourse parse tree 
resulting from the utterances U101 and $102 shown in fig.1 and discourse goals possible 
to be expressed by an utterance following $102. The rules (1), (2-1), (2-3), (3-1), (2-2), 
((3-2) or (3-3)) are used in the analysis of utterances U101 and $102. The last stage 
of the rule applications is ambiguous and incomplete. It is ambiguous in that there are 
two applicable rules, (3-2) and (3-3), and incomplete in that all terminal symbols of the 
right-hand sides of the applied rules are not used. Thus the next discourse goal would be 
'slct-alt' if the rule (3-2) is applied and 'chng-spec' if the rule (3-3) is applied. 

mk-p lan  

exm-spec 

exm-spec exm-spec  
(2-3) (2-2) 

dcd-spec dcd-spec 
(s- l)  

prs t -a l t  
J 

prst-a l t  

U101 $102 

�9 (s-2), (s-a) 

slct-al t  
chngrspec 

! 

! 

(v o2) 
Figure 5. An analysis of a discourse structure and a prediction of discourse goals. 
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The movement of topics through a conversation is stored in the topic transition tree. 
Thus, for the top-down prediction of topics it is necessary to determine which node of this 
tree is to be selected or expanded next. New nodes which will result from the expansion 
can be found by referring to the topic tree because the topic transition tree is considered 
a trace of a subtree of the topic tree. In this connection, the concept of a focus is very 
important. The focus means the topic currently focused. We define it as the last of the 
topics which either the system or the user has uniquely mentioned. 

Which node is to be selected or expanded depends on the discourse goal of the next 
utterance. Figure 6 shows the relation between discourse goals and topics in the top- 
down prediction. In order to shift the focus to nodes at higher levels than the currently 
focused node, it is necessary that all the topics under the new focus have terminated. 
The conditions for a topic to terminate can be stated as follows. (1) A node with AND 
successors can terminate only when all the successors have terminated. (2) A node with 
OR successors can terminate when one of the successors has terminated. 

3 . 3 .  T r a n s l a t i o n  o f  d i s c o u r s e  h y p o t h e s e s  i n t o  l i n g u i s t i c  h y p o t h e -  

s e s  

A topic can be expressed by several words. For example, the topic 'garden' can be 
expressed by two Japanese words, 'niwa' (Japanese origin) and 'teien' (Chinese origin). 
So we have a table by which real words can be looked up from conceptual topic words. 
By using this table top-down hypotheses on the topic are translated into words likely to 
appear in utterances. 

As mentioned in section 3.1, we have the lexicon describing the relation between a verb 
and discourse goals which the verb can express. This lexicon is also used to translate top- 
down hypotheses on the discourse goal into linguistic ones. First, a set of verbs capable 
of expressing a hypothesized discourse goal is found by consulting this lexicon, and then 
semantic categories of those nouns which can occur together with these verbs are obtained 
by looking up case frames of these verbs. 

discourse goals node to select or expand 
slct-alt 
ans-spec 
chng-spec 

rqst-cand 
rqst-knwldg 

select one of successors of the focus. 
expand the focus. 
expand a node at a higher level or select and ex- 
pand one of successors of the focus. 
move the focus to a node at a higher level. 
expand the focus. 

Figure 6. The relation between discourse goals and topics in the top-down prediction. 
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4. T H E  E F F E C T  OF T H E  D I S C O U R S E  A N A L Y S I S  

The speech dialogue system reported here has not been completed. So we simulated 
the dialogue system using typed sentences in order to measure the effect of the discourse 
analysis described in the previous sections. The dialogue controller accepted a dialogue 
consisting of typed sentences and generated top-down discourse hypotheses every time a 
sentence was input. Using the linguistic constraints translated from these hypotheses the 
linguistic processor of the speech interface analyzed the sentence following the input one, 
and predicted words possibly following each word of the analyzed sentence. 

The average number of predicted words, a kind of branching factor, was computed as 
a measure of the effect of the discourse analysis on the speech recognition. Assuming 
the vocabulary consist of about 600 words of which about 360 are nouns, a conversation 
composed of 60 sentences was analyzed. The average number of predicted words was 240. 
This means that the discourse analysis has reduced the vocabulary size by 60%. 

5. C O N C L U S I O N  

The method for the discourse analysis performed in the speech dialogue system we 
are developing, has been reported. The contextual information is analyzed in terms of 
topics and dialogue structures. The discourse analysis involves bottom-up and top-down 
analyses. The bottom-up analysis proposes candidates for topics and discourse goals based 
on the semantic representation of an utterance being analyzed. The top-down analysis 
makes hypotheses on topics and discourse goals referring to the contextual information. 
The bottom-up hypotheses are matched against the top-down hypotheses. The best match 
gives the interpretation of an utterance. 

The top-down hypotheses are translated into hypotheses at the linguistic level, which 
are given to the speech recognition system. A simulation of the dialogue system using 
typed sentences has proved that these hypotheses can reduce the search space for recog- 
nizing utterances. 
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A b s t r a c t  

This paper describes a polynomial voice source model and a formant trajectory model 
for a Hi-Fi speech synthesizer. The voice source model represents time derivative of the 
glottal volume velocity waveform as a polynomial function. The formant model describes 
the formant trajectories as the summation of temporal functions: a second order delay 
function which represents vowel-to-vowel transitions, and two first order delay functions 
which represent the effects of surrounding consonants on the vowel formant trajectories. 
The models were tested through perceptual experiments for synthetic speech at slow and 
fast speaking rates. Results suggest that the models work well particularly at slow rates. 
Some additional strategies seem to be needed to improve the intelligibility of consonants 
at fast rates. 

1. P O L Y N O M I A L  G L O T T A L  S O U R C E  M O D E L  

Although techniques for speech synthesis by rules have been significantly improved, 
synthesis of natural sounding speech with various voice qualities still remains a seemingly 
unattainable goal. Many researchers have been trying to reach this goal by developing 
voice source models by which intra- and inter-speaker variability in voice quality can be 
controlled [1- 7]. 

For instance, Fant et al. [2,3] have introduced a four parameter model describing 
the time derivative of the glottal volume velocity waveform and have tried to synthesize 
female voice quality with high fidelity. Fujisaki and Ljungqvist [4] have proposed a seven 
parameter model, which might have more flexibility than other glottal source models. On 
the other hand, Klatt [5] and Hasegawa et al. [6], have insisted that an additive noise 
component must be included into the glottal source model to synthesize female voice 
quality with sufficient naturality. Although these studies provide a fruitful discussion 
on advanced techniques of Hi-Fi speech synthesis, there are few results reported on how 
naturally and how variously the voice quality can be reproduced by these glottal source 
models. 
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In this study, we examined how naturally and how variously a seven-parameter poly- 
nomial model can represent the voice quality of five male and two female speakers. 

1 . 1 .  M e t h o d  

1.1.1. Data  recording 

The following speech materials were recorded and analyzed. 

(1) Sustained vowels and vowel sequences. 

(2) Three sentences consisting only of vowels and semi-vowels. 

These materials were recorded from 5 male speakers M1, M2, .. Ms, and 2 female speak- 
ers F1 and F2, who had no laryngeal pathology. Each speaker uttered each item three 
times at three loudness levels and at three pitch levels. The speech signal was recorded 
on a PCM Data Recorder using a high quality condenser microphone (B&K2234) whose 
frequency characteristic was fiat (within ldB) in the range 10Hz to 10kHz. An electroglot- 
togram (EGG) [8] was also recorded simultaneously to indirectly observe the vocal cord 
vibration. The EGG signal yielded the glottal closure intervals which were used for a 
pitch-synchronous covariance LPC analysis [7,8]. 

The speech material reported here is vowe l / a /u t t e r ed  at normal pitch and normal 
loudness for each speaker. 

1.1.2. Inverse  fil tering 

In order to estimate the glottal volume velocity waveform, formants were estimated 
based on a covariance LPC analysis with pitch synchronous frames corresponding to the 
glottal closure intervals derived from the EGG signal [7,8]. The glottal closure intervals 
were derived in the same way reported in other sources [7], that is, an interval was 
determined as to begin at a positive peak in the EGG time derivative and the end at the 
following negative peak, the length being To(n) for the nth pitch period. The beginning 
of the actual analysis frame was shifted by a time dt later, according to the time delay 
it took for the sound wave to propagate from the glottis to the microphone, positioned 
15cm away from the lips. 

Because the formant trajectories obtained in this manner sometimes revealed cycle by 
cycle fluctuations, especially for the female voice, the formant frequencies and bandwidths 
were modified manually using an interactive program. This program displayed the speech 
waveform and its power spectrum, the inverse filtered waveform and its power spectrum, 
and the EGG time derivative, which indicated the glottal closure intervals. The optimal 
formant frequencies and bandwidths were searched manually so as to minimize ripples in 
the inverse filtered waveform during the glottal closure intervals and also the formant-like 
peaks in their power spectrum. 

The time derivative of the glottal volume velocity waveform was estimated via inverse 
filtering in which only one set of the lower five formant frequencies and bandwidths selected 
from a steady portion of each utterance was used. In other words, cycle by cycle variation 
in formant trajectories was avoided. 
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1.1.3. The  p a r a m e t e r  es t imat ion  of the  glot ta l  source mode l  

The inverse filtered waveform, or time derivative of the glottal volume velocity wave- 
form, was approximated in each cycle by the following polynomial function, 

g(t) = 2 + b  0 < t  < t ,  
= b tl < t < t2 (1) 
= c ( t - t , )  3+d(t-t ,)  2+e( t - t , )+b  t2 < t < T  

where t = 0 is the negative peak in the inverse filtered waveform, and t = T is the 
duration of one pitch. The parameters tl, t2, a, b, e, d, and e were determined based 
on the least-squares error criterion for the actual inverse filtered waveform gi(t) and the 
model g(t). One example, from a female speaker, is shown in Fig. 1. 

2 

2nd order 
polynomial 

I 
MERSUREO 
MOOEL 

0 t I t~ T 

3rd order ] 
polynomial 
! 
I0 20 

TIME (ms) 

Figure 1. The polynomial model of the glottal source adapted to a measured glottal 
source waveform obtained by inverse f i l ter ing/a/ut tered by F2. 

1.1.4. Perceptual experiments 

Three perception experiments were performed to examine how naturally and how vari- 
ously the voice quality could be reproduced by the polynomial model of the glottal source. 
The subjects were 6 students with normal hearing capacity. 

Experiment I was carried out to examine how dosdy the voice quality of the original 
vowel was reproduced by the polynomial model of the glottal source. The subjects rated 
the degree of resemblance between the original vowel and the vowel synthesized using the 
polynomial model. For the sake of comparison, they also rated the resemblance between 
the original vowel and the vowel synthesized using Rosenberg's Type B model of the 
glottal source [1]. The rating was performed in a paired comparison method using a scale 
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with 7 successive categories, 1:completely different, 2:very different, 3:different, 4:neutral, 
5:similar, 6:very similar, 7:perfectly the same. 

Experiment II was carried out to examine how variously the voice quality of vowels 
uttered by five male speakers M1, .., M5 were reproduced by the glottal model using a 
multi-dimensional scaling method [9,10]. Five vowel samples of 0.5 s in length, O1, 02, .. , 
Os, corresponding to the five male speakers M1, M2, .. , Ms, were resynthesized using one 
pitch interval extracted from the inverse filtered waveform. Then, using one pitch interval 
from the polynomial model of the glottal source adapted to each vowel, five vowels G1, G2, 
�9 . , G5 having a length of 0.5 s were synthesized. The pitch and its fluctuation were the 
same for all samples as those observed f r o m / a / u t t e r e d  by M1. The constant intervals 
corresponding to the glottal closure periods were lengthened or shortened to align the 
pitch for all samples. 

The listening subjects rated the dissimilarity in voice quality for each of all the possible 
pairs of O1, 02, .., and G1, G2, .. , Gs. The ratings on dissimilarity were then analyzed 
using the multidimensional scaling method INDSCAL, included in the ALSCAL program 
[10], and the similarity among these 10 vowel samples was represented by the mutual 
distance in two-dimensional space. 

Experiment III was carried out to examine the perception effects of fluctuations in the 
waveform (W), pitch (V) and amplitude (A) of the glottal source on the naturalness of 
the synthetic vowels. Five kinds of synthetic v o w e l s -  P1, P2, .., Ps - -  were generated 
containing various fluctuations observed in the original vowel P0. P1 contained W+P+A;  
P2:P+A; P3:P; P4:A; and Ps:no fluctuation. Here, waveform variation means the cycle to 
cycle variation in the modeled glottal voice source. The pitch fluctuation was the cycle 
to cycle variation in the intervals between negative peaks in the inverse filtered vowel 
waveform. The amplitude fluctuation was the cycle to cycle variation in the amplitude of 
the negative peaks in the inverse filtered vowel waveform. 

All possible pairs of P0, P1, .. , and Ps were made and presented to the listeners in 
random orders. Each listener selected the one member of each pair felt to be more natural 
than the other. 

1 . 2 .  R e s u l t s  a n d  D i s c u s s i o n  

1.2.1. E x p e r i m e n t  I 

The results of the perception judgments on the degree of resemblance between the 
original vowels and the synthetic vowels are shown in Fig. 2. The samples used were 
/ a /  uttered by five male speakers and 2 female speakers. The symbol G indicates the 
vowel synthesized using the polynomial model, and R represents the one synthesized with 
Rosenberg's glottal source model. 

As shown in Fig. 2, for all speakers the ratings for the synthetic vowels synthesized 
with the polynomial model of the glottal source (G) are higher than those for the vowels 
synthesized with Rosenberg's model (R). This result shows that the polynomial model of 
the glottal source is better than Rosenberg's model at reproducing the voice quality of 
the vowels for which glottal source models are adapted. 

For the vowels uttered by the male speakers, M1, M2, .., Ms, the medians of the 
ratings for the polynomial model scatter between 5:similar and 7:perfectly the same. 
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Figure 2. The results of perception judgments on the degree of resemblance between 
original vowels and synthetic vowels with the polynomial model of the glottal source (G), 
and that between original vowels and synthetic vowels with Rosenberg's voice source (R). 
Category 7 represents the greatest possible resemblance. 

Those for Rosenberg's model lie between 3:ditferent and 5:similar. This result indicates 
that the polynomial model of the glottal source can reproduce the voice quality of the 
male speakers analyzed here. 

For the female speaker F1 the median of the rating scores for the polynomial model is 
6:very similar, while the median of the ratings for Rosenberg's model is 2:very different. 
On the other hand, for the female speaker F2 the median of the ratings for the polynomial 
model is 4:neutral, and the median for Rosenberg's model is 3:ditferent. These results in- 
dicate that the polynomial model of the glottal source can reproduce some female voice 
qualities. Figures 3(a) and 4(a) show the inverse filtered waveform and its model repre- 
sentation for F1 and F2, respectively. Figures 3(b) and 4(b) show their power spectra. 
The polynomial model of the glottal source for F1 reproduces the voice quality of the 
original vowel very well, while that for F2 does not. 

In Fig. 4(a), the inverse filtered waveform or the measured glottal source have positive 
main lobes which skew right, and this characteristic is not represented well enough in the 
model. The intervals which are approximated by the constant b in the model contain 
waveform fluctuations in the measured glottal source. The negative peaks in the model 
source are too sharp compared to those of the measured glottal source. In Fig. 4(b), 
the harmonics higher than 2kHz in the power spectrum of the measured glottal source 
are not clear. On the other hand, the model shows dear harmonics for the higher range 
than 2 kHz. These discrepancies are not so large in F1 as shown in Fig. 3, although the 
waveform fluctuation in the intervals which are approximated by constant b in the model 
are not approximated well. 
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Figure 3. The measured glottal source waveform and its model representation (a), and 
their power spectra (b). Female speaker F1. 
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The skewing and waveform fluctuation observed in Fig. 4(a) might be effects of the 
source-tract interaction [11-13]. The disappearance of harmonics higher than 2 kHz might 
be due to the turbulence noise. These effects are not approximated in the polynomial 
model of the glottal source, thus the voice quality of F2, which reveals these effects dearly, 
cannot be reproduced with high fidelity. 

1.2.2. Exper imen t  I I  

The result of Experiment II is shown in Fig. 5. In this figure, the similarity between 
the 10 synthetic samples were represented by their mutual distance in two-dimensional 
space. 

Figure 5 shows that there are three types of similarity between On synthesized from 
the inverse filtered waveform and Gn synthesized from the model. Here, n indicates the 
speaker number. Type 1: for M,, O and G are relatively close. Type 2: for M2, M4 and 
Ms, O and G are close in Dimension D,, but distant in D2. Type 3: for Ms, O and G 
are distant in D,, but close on D2. This result indicates that the voice quality of each 
speaker has various aspects, some of which can be reproduced by the polynomial model 
of the glottal source, and some of which cannot. 

Figure 5 also shows that the voice samples 0 . ,  resynthesized from the inverse filtered 
waveform, scatter in two-dimensional space, while Gn, resynthesized from the model, 
scatter in a one-dimensional manner on the line $1 and separate into two groups G2, G3 
and (74 versus G1 and Gs. In other words, the two-dimensional variability of the voice 
quality is maintained in On, but is reduced to one dimension in Gn. 

These results must be interpreted through an examination of the acoustical and per- 
ceptual meanings of dimensions D1 and D2, or $1 and $2. According to our preliminary 
examination, $1 may indicate the contrast between ~strained" versus ~asthenic" voice 
quality, or in another definition, a "hyper-fuctional/tense ~ versus "hypo-functional/lax" 
quality. G1 and G5 have stronger harmonics in the high frequency range than the others. 
On the other hand, $2 may indicate a "breathy/noisy ~ versus "rough ~ quality. These 
results indicate that the polynomial model of the glottal source can reproduce the voice 
quality represented by $1, but not that represented by $2. 

1.2.3. Exper imen t  I I I  

Figure 6 shows the results of Experiment III, which was carried out to examine the 
perception effects of fluctuations in the waveform (W), pitch (V) and amplitude (A) 
of the glottal source upon the naturalness of the synthetic vowel. In this experiment, 
five synthetic vowels --/>1, />2, .., Ps - -  were generated containing various fluctuations 
observed in the original vowel/a/ ,  P0, uttered by F1. Then, all possible pairs of P0,/>1, 
�9 . ,  />5 were presented to four listeners in random orders. Each listener selected the one 
from each pair which was felt to be more natural than the other. The selection rate for 
the six samples is shown in Fig. 6. 

As shown in Fig. 6, the original voice sample P0 was selected as most natural. Al- 
though there were slight differences between the listening subjects, P1, which contained 
fluctuation in waveform, pitch and amplitude, was selected as second in naturalness. P2, 
which possessed fluctuation in pitch and amplitude, had almost the same selection rate 
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Figure 5. Two dimensional representation of the similarity between vowels resynthesized 
from the inverse filtered waveform On and those from the polynomial model G~. Here, n 
indicates the speaker number Mn, n = 1, 2, .., 5. D1 and D2 are the dimensions extracted 
by the INDSCAL analysis, while $1 and $2 are their rotated version to interpret the 
configuration. 

as P1. Although P3, containing only pitch fluctuation, had a lower selection rate than PI 
and P2, it showed a higher rate than P4, which possessed only amplitude fluctuation and 
Ps which had no fluctuation. 

This result indicates that fluctuation in pitch, amplitude and waveform affects the 
naturalness of synthetic vowels in this order. Proper modeling of the pitch fluctuation 
is quite important, because synthetic vowels without any pitch fluctuation here sound 
quite unnatural. On the other hand, waveform fluctuation in the glottal source did not 
largely affect the naturalness compared to pitch fluctuation in this study. However, the 
effect of waveform fluctuation on the naturalness might have been underestimated in this 
study, because a cycle by cycle estimation of the model parameters sometimes emphasizes 
waveform variation, which may generate a hoarse-like voice quality. 

1 .3 .  C o n c l u s i o n s  

The present study gave the following results. 

(1) For male voices, the polynomial model of the glottal source can reproduce to some 
extent the voice quality of the original vowels for which the model parameters are 
adapted. In a simple paired comparison based on a successive category method, 
Experiment I, the degree of resemblance between the original vowel and a synthetic 
one using the model was quite high. However, a detailed examination of the voice 
quality based on the multi-dimensional scaling method, Experiment II, showed that 
some aspects of the voice quality still remain unrepresented in the model. 
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Figure 6. The rate of selection as the more natural vowel in paired comparisons by four 
subjects. The tested fluctuations were waveform variation (W), pitch fluctuation (V) and 
amplitude fluctuation (A). P0: original vowel/a/ut tered by F1; P1 :synthetic vowel which 
contained W+P+A; P2:P+A; P3:P; P4:A; Ps:no fluctuation. 

(2) For voices which contain turbulence noise in the high frequency range, and those 
which contain waveform perturbation and skewing possibly caused by source-tract 
interaction, the polynomial model fails to reproduce good voice quality. 

(3) Proper modeling of pitch fluctuation is important for the naturalness of the synthetic 
v o i c e .  

0 F O R M A T  T R A J E C T O R Y  M O D E L  W I T H  V A R I A B L E  
S P E A K I N G  B.ATE 

In order to improve the quality of speech generated by a formant synthesizer, several 
models describing formant trajectories have been proposed. For instance, some studies 
have used smoothed step functions [14-17], where the step inputs represent putative tar- 
gets of vowels [15-17] or even of consonants [16]. Some studies propose a linear summation 
model of the target formant frequencies of vowels and temporal functions representing the 
effects of adjacent consonants [18,19]. Although these models seem able to describe some 
phenomena in formant trajectories, for instance the undershoot at fast speaking rates, 
there have been very few assessment results showing the ability of these models to syn- 
thesize high quality speech with variable speaking rates. 

On the other hand, as a basic issue in speech research, there are still numerous dif- 
ferences between the conclusions of studies on the effects of speaking rate [20-33]. Some 
studies [21,22] indicate that increased rates of speech result in systematic deviations in the 
obtained formant values from their putative targets, that is, "vowel reduction". Others 
[23-25] claim that such "vowel reduction" does not always occur at fast speaking rates. 
Still other studies claim that adjustments in speaking rate are achieved by strategies which 
differ between speakers [26,27] and by the carefulness of their articulation [28]. According 
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to electromyographic investigations [29,30], control of the speaking ra te  is achieved via a 
reorganization of motor commands. 

One approach to this issue is to construct a model, by which we can test if undershoot 
or reorganization is necessary in generating high-quality speech at various speaking rates. 

In this study, we proposed a functional model which describes formant transitions as the 
summation of two kinds of temporal functions: one represents vowel-to-vowel transitions, 
and the other represents consonant-to-vowel or vowel-to-consonant transitions. The model 
was assessed via an intelligibility test. 

2 . 1 .  M e t h o d  

2.1 .1 .  M o d e l  of  f o r m a n t  t r ans i t ion  

The trajectory of the nth formant, F~(t), in a vowel segment is expressed as 

F . ( t )  = V . ( t )  - C , ( t )  - C . ~ ( t )  (2) 

Here, U,,(t) is the step response of a second order delay function which represents a 
vowel-to-vowel transition; Cnp(t) is a first order delay function which represents the effect 
of a preceding consonant; C,I( t  ) is a first order delay function which represents the effect 
of a following consonant. 

To generate U.(t), the putative target frequency Rij  of each vowel in the sequence 
V~CeV2CtV3, (i = 1 ,2 ,3 , j  = 1,2,3) is assumed to be set at t~ as a step input. The suffix 
i represents vowel number, j indicates form.ant number. For the back vowels/a, u, o/, j 
represents the j th lower-formant frequency. For the front vowels/i, e/, Ri,1 is the lowest, 
P~,2 the third and P~,3 the second one. This numbering is adopted to take into account 
the continuity in formant trajectories [15,17]. 

Let Wj(t) represent the step response of a second order delay function, expressed as 

W'j(t) = Rxj 4- ai(t)(P~d - Ri-,d) 
a , ( t )  = 1 - {1  + b j ( t ) ) ~ x p ( - b j ( t ) ) = ( t  - t , )  

b~(t)  = ( t  - t , ) l g ~  

u ( t - t ~ )  = 1 t > t i ,  = 0  t < ti 

(3) 

gj:time constant representing the transition speed 
For transitions from a back vowel to a front vowel, or vice versa, W~(t) and W3(t) 

intersect with each other. Such intersections never occur in actual speech, due to the 
coupling between the two resonance frequencies. Therefore, the resonance frequencies 
Wj(t) are modified accounting for the coupling between W2(t) and W3(t) as follows [15,17]. 

u,  = w , ,  u ,  = h ( w , w ~ )  0.~, u~ = ( w , w , ) ~  

h = s ~ q = (W2W2 4- W3W3)IW2W3 
s = q - ( q 2 - 4 ( 1 - k ~ ) ) ~  k = 0 . 2  

(4) 
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Two functions representing the effect of a preceding consonant C,,p,i(t) and the effect of 
a following consonant C.j, i( t)  upon the formant trajectories in the segment V/are assumed 
as follows. 

= f o r  t , , ,  < t < t j , ,  

= - t ) / g l } ,  for t , , ,  < t < t1, ,  

tp/ : initial time of vowell~ 

tji : final time off// 

9p, 91 : time constant representing the decay speed. 

(5) 
(6) 

In this report, only the temporal parameters, ti: onset time of the targets for vowel 
V/, t~: initial time of V/and tSi: final time of V/are variable depending on the speaking 
rate. This means that possible changes or "reorganization" in the vowel targets or other 
parameters such as gp and g! were not taken account of in this report. 

2.1.2.  E s t i m a t i o n  of  m o d e l  p a r a m e t e r s  

The details of the recordings and the analyses of the speech material used for the 
modeling have been reported in other papers [31-34]. 

For the estimation of the model parameters, we assumed that the following is valid for 
vowels spoken clearly and slowly. 

(1) The effects of surrounding consonants on the vowel formants decrease at the vowel 
midpoint, so we can set C~p,~(t) = C.i , i( t  ) = O. 

(2) If the vowel segment is long, the formant frequencies f~(t)  obtained by analysis are 
close to the putative targets, or R/,j. 

According to Assumption (2), P~,j is set to the formant frequencies f , ,(t) obtained by 
analysis at the midpoint t~ of vowel V~. U,,(t)is calculated using Eqs. (3) and (4), and 
then, the temporal function X~ (t) = U~ (t) - f,, (t) can be calculated. 

As shown in Fig. 7, X~(t) is large at the initial point of vowel V~ and decreases rapidly 
to zero. After the midpoint, it increases to its maximum at the endpoint of ~.  Thus, 
X,,(t)  can be approximated by the two first-order functions C~p,i(t) and C,~j,i(t ). C,~j,,i(t) 
is large at the beginning of I//and then decreases exponentially, while C.f, i( t)  is small at 
the midpoint and increases exponentially to its maximum at the end of I//. 

To determine C~p,~(t) and C,,y,i(t), tp,i, the initial point of ~ is set at the point where 
the intraoral pressure starts to drop rapidly, or the release point of the consonant, and 
tl,i , the final point of ~ ,  is set where the intraoral pressure starts to rise due to the vocal 
tract closure for the stop consonant. For c,,p,i, g~ is adjusted so as to minimize the square 
error between X,,(t)  and C~p,~(t) for the initial haft of the segment ~ ,  and for c~y,~, 9y is 
adjusted so as to minimize the square error between X,,(t)  and C~y,~(t) for the final half 
of the segment I~. 

Figure 7 (a) shows an example of the model functions estimated fo r / ab iba / spoken  
slowly and clearly. The uppermost curve is the original speech waveform, the second 
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Figure 7. Model formant trajectories F.(t) ,  and those obtained by analysis f,,(t) for a 
slow (a)  and a fast (b) utterances of /abiba/ .  "A ~ indicates f,,(t), and M F.(t) .  See text 
for details. 

curve is the intraoral pressure measured simultaneously [31-34]. X,,(t) is shown by three 
kinds of dotted lines according to the formant number. In the lower section, the formant 
frequencies f . ( t ) ,  obtained by analysis, and the model formant frequencies are shown 
together with U.(t). During the vocal tract closure, F.(tI,~_~ ) and F.(tp,~) are linearly 
interpolated. Figure 7 (a) shows that F.(t)  fits well with f,,(t). 

2.1.3. Speech synthes is  by rules at variable speaking rate 

For the synthesis of speech at various speaking rates, rules for generating ti, t~,i, and 
t l,i should be constructed. We do not discuss such rules here. Instead, we discuss how 
well such a model predicts the formant trajectories observed in actual fast speech. For 
the assessment of the model proposed here, we compared speech samples actually uttered 
at a fast rate (FO), which was twice as fast as the slow rate examined, with synthetic 
speech generated based on a model where ti, tp,i, and tt,i w e r e  adapted to the fast speech 
FO. The other parameters were set to the same values, obtained from the slow utterances 
(SO), from which the model parameters were estimated. 

Figure 7(b) shows one example of a fast / ab iba /u t te red  by the same speaker as in 
Fig. 7(a). Here, ti, tp,i, and tl,~ are adapted to the actual utterance o f /ab iba / .  P~J 
for the vowel V~ (initial / a /  in this case) are set to the actual average values of ./'1, 
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f2 and f3 obtained by the analysis, because the vowel reduction for 1/1 cannot fully be 
estimated without the preceding phonemes. Figure 7(b) shows that the model formant 
trajectories F,,(t) for fast/abiba/predict  some of the gross characteristics in the fl and 
the/2 transitions well, but fail to represent the large downward shift in f3. 

2.1.4.  Intel l ig ibi l i ty  test  

To assess how well the model could generate formant trajectories, an intelligibility test 
was carried out for two kinds of synthetic speech (G and M), and also for the original 
speech samples (O) from which model parameters were extracted. These speech samples 
were synthesized or recorded at two speaking rates, slow(S) and fast (F). The speech 
samples tested consisted of the following six groups. 

SO: Original speech samples uttered slowly and clearly, from which the model parameters 
were extracted. 

FO: Original speech samples uttered fast, from which the temporal parameters for the 
synthetic fast speech (FM, FG) were extracted. 

SG: Synthetic slow speech, generated using the formant frequencies fn(t) obtained from 
SO by analysis and the glottal source obtained from the polynomial glottal source 
model. 

FG: Synthetic fast speech generated in the same way as SG. 

SM: Synthetic slow speech generated using the model formant trajectories F~(t) and the 
model glottal source. 

FM: Synthetic fast speech generated in the same way as SM. 

Each group of consisted of 48 ~ C ~  samples, where I/1 and V2 were one of /a ,  i, u,/, 
I/1 = V2, and C was/b,  d, g, r/. For SO and FO, ~Cv~ and ~CIV'3 were extracted from 
the original utterances/korewa V1CpV2CIV3 desu/. For the synthetic speech SG, FG, SM 
and FM, V1CvV2C !]/3 was synthesized to simulate the effects of articulatory undershoot, 
and then the segments ~ C p ~  and ~ C 1 ~  were extracted. 

The subjects for the listening test were five adults with normal hearing who were not 
familiar with the purpose of this study, two phoneticians, one speech pathologist, one 
speech scientist and one graduate student majoring in speech science. The listening test 
was carried out only once to avoid possible adaptation to the synthetic speech. Each 
subject was instructed to transcribe each speech sample in phonetic symbols or in the 
Roman alphabet. 

2.1.5. Four factors accounting for intelligibility 

The following four factors were used to interpret the intelligibility of the six groups of 
speech, as shown in Fig. 8. 

al: the decrement in percent due to the shortening of the segmental duration in fast 
speech 
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Figure 8. Four factors accounting for the intelligibility. 

a2: the decrement due to the omission of reorganization when the model is applied to fast 
speech ( -as : the  increment due to reorganization in fast speech) 

a3: the decrement due to the lack of plosive source for the stop consonants for the slow 
speech 

a~: same as a3, but for fast speech 

a4: the decrement due to the formant model mismatch 

The factor al accounts for the decrement between the intelligibility of SO and that of 
FO. Because the speech samples FO have shorter duration, smaller formant transitions and 
also a larger undershoot or vowel reduction than SO, the intelligibility of FO may decrease 
largely compared to that of SO. However, if the speaker reorganizes the articulation for fast 
speech to increase intelligibility against the disadvantages mentioned above, this factor 
(reorganization:-a2) might raise the intelligibility. As a result, the difference between FO 
and SO should be al - a 2 .  

For SG, the intelligibility may be a3 lower than that of SO, because SG is synthesized 
without a plosive source. And, for the same reason, the intelligibility of FG may be a~ 
lower than that of FO. a~ may be different from a3 because the original fast speech may 
have only weak plosion or even no plosion. 

The intelligibility of SM may be a4 lower than that of SG due to the mismatch of the 
formant model. The intelligibility of FM is assumed to be a4 + a2 lower than FG, where a4 
represents the effect of the failure of the model to adapt to slow speech, and a2 represents 
the effect of the failure of the model to predict the formant trajectories in fast speech 
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since it was devised based on slow speech. In other words, the factor as represents the 
fact that the model does not take into account possible changes in articulation between 
two speaking rates, that is, reorganization. 

2 . 2 .  R e s u l t s  a n d  d i s c u s s i o n  

Figure 9(a) shows the average intelligibility of the three vowels/a, i ,u/for each subject 
in the six speech groups. The box-whisker graph in this figure shows the minimum, 
25%-tile, median, 75%-tile and the maximum of the inteUigibility scores, averaged for the 
three vowels with reference to each of the five subjects. Figure 9(b) shows the average 
intelligibility of the four consonants/b, d, g, r / fo r  the six speech groups. Table 1 shows 
the four factors estimated from the results shown in Fig. 9 based on the relationships 
shown in Fig. 8. 

As shown in Fig. 9(a), the medians of the inteUigibilities for the six speech groups are 
SO:100.0%, SG:100.0%, SM:100.0%, FO:92.7%, FG:91.7% and FM:93.8%. The inteUigi- 
bility of FM is 93.8%, which is better than those of FO and FG. 
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Figure 9. The average intelligibility of the three vowels (a), and of the four consonants 
(b). 

This result indicates that the use of a formant model with a model voice source does 
not decrease the intelligibility (a4, a 3 ,  a ~  - -  0.0, as shown in Table 1). The disregard of 
reorganization in the formant model slightly increases the intelligibility (a2 - -2.1). Con- 
cerning the vowels, it can be suggested that the formant model maintains or even slightly 
improves the intelligibility compared to the original speech at slow and fast speaking rates. 

On the other hand, as shown in Fig. 9(b), the medians for the consonants are SO:91.7%, 
SG:81.3%, SM:83.3%, FO:79.2%, FG:68.8% and FM:62.5%. The four factors accounting 
for the intelligibility are al - 20.8, a2 - 8.3, a 3  - "  10.4, a~ - 10.4 and a4 - -2.0,  as 
shown in Table 1. 

For the consonants, the use of a model voice source without plosion decreases the intel- 
ligibility by about 10%. The use of the formant model slightly increases the intelligibility 
by about 2% (a4 - -2.0). The disregard of reorganization may reduce the intelligibility 
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Table 1. Four factors estimated from the medians of the intelligibility. V:for 3 vowels, 
C:for 4 consonants. 

Factor V C /b/ /d/ /g/ /r/ 

al 5.2 20.8 16.6 8.3 50.0 16.6 
a2 -2.1 8.3 8.2 -8.3 -8.2 8.3 
a3 0.0 10.4 25.0 16.7 0.0 0.0 
as' 0.0 10.4 0.0 33.4 0.0 8.4 
a4 0.0 -2.0 -16.6 8.3 16.6 8.4 

a~a2 7.3 12.5 8.4 0.0 42.8 8.3 
a4+a2 -2.1 6.0 -8.4 0.0 8.4 16.7 

by about 8%. Also, al is estimated to be 20.8, which means that the decrement in the 
intelligibility due to speed or shortening in the fast speech is large. For the consonants 
in the slow speech, the formant model works well on average and even slightly improves 
the intelligibility compared to SG. However, for the fast speech the formant trajectories 
predicted by the model decrease the intelligibility by about 6%. 

2.3. C o n c l u s i o n  

In this section, a model of formant trajectories at various speaking rates is proposed, 
and the intelligibility of VCV speech samples synthesized based on the model is reported. 
The intelligibility of vowels on average was 100% at a slow speaking rate and was about 
93% at a fast rate, which 

was about twice as fast as the slow rate. The intelligibility of the consonant, was 83% 
for the slow rate and about 63% for the fast rate. It was found that the formant model 
slightly improves the intelligibility of vowels at both speaking rates and that of consonants 
at the slow rate compared with the speech synthesized using formant trajectories obtained 
by analysis. However, for the consonants in the fast speech, the formant model decreases 
the intelligibility by about 6%. The use of a model voice source without plosion decreases 
the intelligibility by about 10%, and the disregard of reorganization was estimated to 
reduce the intelligibility by about 8% for the consonants. 

References  

1. A. E. Rosenberg, "Effect of glottal pulse shape on the quality of natural vowels," J. 
Acoust. Soc. Am., 49 (2), pp.583-598, (1971) 

2. G. Fant, J. Liljencrants and G. Lin, "A four-parameter model of glottal flow," STL- 
QPSR, 4/1985, pp.1-13, (1986) 



337 

3. G. Fant and Q. Lin, "Frequency domain interpretation and derivation of glottal flow 
parameters," STL-QPSR, 2-3/1988, pp.1-21, (1988) 

4. H. Fujisaki and M. Ljungqvist, "A comparative study of glottal waveform models," 
IEICE Technical Report (EA85-58), pp.23-29, (1985) 

5. D. H. Klatt, "Acoustic correlates of breathiness: First harmonic amplitude, turbulent 
noise, and tracheal coupling," J. Acoust. Soc. Am., 82(S1), p.$91, (1987) 

6. K. Hasegawa, T. Sakamoto and H. Kasuya, "Effects of glottal noise on the quality 
of synthetic speech," Proceedings of ASJ Spring Meeting, pp.205-206, (1987) 

7. S. Imaizumi, and S. Kiritani, "A study of formant trajectories and voice source char- 
acteristics based on the dosed phase analysis," Preprints of the Second Symposium 
on Advanced Man-Machine Interface Through Spoken Language (1988) 

8. D. Childers and J. Larar, "Electro-glottography for laryngeal function assessment 
and speech analysis," IEEE Trans. BME-31, 12, pp.807-817, (1984) 

9. J. B. Kruskal, "Nonmetric multidimensional scaling: A numerical method," Psy- 
chometrika, 29, pp.115-219, (1964) 

10. Y. Takane, F.W. Young and J. de Leeuw, "Nonmetric individual differences multi- 
dimensional scaling: an alternating least squares method with optimal scaling fea- 
tures," Psychometrika, 42, pp.7-67, (1977) 

11. M. Rothenberg, "Acoustic interactions between the glottal source and vocal tract, 
in Vocal Fold Physiology," Ed. K. N. Stevens and M. Hirano, (Univ. Tokyo Press, 
Tokyo), pp.305-328, (1981) 

12. T. Ananthapadmanabha and G. Fant, "Calculation of true glottal flow and its com- 
ponents," STL-QPSR 1/1982, pp.1-30, (1982) 

13. T. Koizumi, S. Taniguchi and S. Hiromitsu, "Two-mass models of the vocal cords 
for natural sounding voice synthesis," J. Acoust. Soc. America, 82(4), pp.1179-1192, 
(1987) 

14. J. Liljencrants, "Speech synthesizer control by smoothed step functions," STL-QPSR 
4/1969, pp.43-50, (1970) 

15. H. Fujisaki, M. Yoshida, Y. Sato and Y. Tan,be, "Automatic recognition of connected 
vowels using a functional model of the coarticulatory process," J. Acoust. Soc. Jpn, 
29, pp.636-638, (1974) 

16. S. Yokoyama and S.Itaha~shi, "Approximation of formant trajectory by second order 
system with applications to consonants," Proc. Acoust. Soc. Japan, pp.89-90, (1975) 

17. Y. Sato and H. Fujisaki, "Formulation of the process of coarticulation in terms of 
formant frequencies and its application to automatic speech recognition," J. Acoust. 
Soc. Jpn, 34,3, pp.177-185, (1978) 



338 

18. D. J. Broad and R.H. Fertig, "Formant-frequency trajectories in selected CVC ut- 
terances," J. Acoust. Soc. Am.,47, pp.1572-1582, (1970) 

19. D. J. Broad and F. Clermont, "A methodology for modeling vowel formant contours 
in CVC context," J. Acoust. Soc. Am., 81(1), pp.155-165, (1987) 

20. J. L. Miller, "Effects of speaking rate on segmental distinctions," (Perspectives on the 
study of speech. P. D. Eimas and J. L. Miller Eds., Lawrence Erlbaum Associates, 
New Jersey), pp.39-74, (1981) 

21. B. Lindblom, "Spectrographic study of vowel reduction," J. Acoust. Soc. America, 
35(11), pp.1773-1781, (1963) 

22. T. Gay, "Effect of speaking rate on diphthong formant movements," J. Acoust. Soc. 
Am, 44, pp.1570-1573, (1968) 

23. R. R. Rerbrugge and D. Shankweiler, "Prosodic information for vowel identity," J. 
Acoust. Soc. Am, 61, p.$39, (1977) 

24. T. Gay, "Effect of speaking rate on vowel formant movements," J. Acoust. Soc. Am., 
63(1), pp.223-230, (1978) 

25. D. O'Shaughnessy, "The effects of speaking rate on formant transitions in French 
synthesis-by-rule," Proc. 1986 IEEE-IECEJ-ASJ, Tokyo, pp.2027-2039, (1986) 

26. D. P. Kuehn and K. L. Moll, "A cineradiographic study of VC and CV articulatory 
velocities," J. Phonetics, 4, pp.303-320, (1976) 

27. Y. Sonoda, "Effects of speaking rate on articulatory dynamics and motor event," J. 
Phonetics, 15, pp.145-156, (1987) 

28. J. E. Flege, "Effects of speaking rate on tongue position and velocity of movement 
in vowel production," J. Acoust. Soc. Am., 84(3), pp.901-916, (1978) 

29. K. Harris, "Mechanisms of duration change," (in Speech Communication 2, G. Fant 
Ed.,Almqvist & Wiksell), pp.299-305, (1974) 

30. T. Gay, T. Ushijima, H. Hirose and F. Cooper, "Effect of speaking rate on labial 
consonant-vowel articulation," J. Phonetics, 2, pp.47-63, (1974) 

31. S. Imaizumi, S. Kiritani, H. Hirose, S. Togami and K. Shirai, "Preliminary report 
on the effects of speaking rate upon formant trajectories," Ann. Bull. RILP, 21, 
pp.147-151, (1987) 

32. S. Imaizumi and S. Kiritani, "Effects of speaking rate on formant trajectories and 
inter-speaker variations," Ann. Bull. RILP, 23, pp.27-37, (1987) 

33. S. Imaizumi and S. Kiritani, "Perceptual evaluation of a glottal source model for voice 
quality control," Proc. 6th Vocal Fold Physiology Conference, Stockholm, pp.l-10, 
(1989) 



339 

34. S. Imaizumi and S. Kiritani, "A generation model of formant trajectories at variable 
rates," (in Talking Machines: Theories, Models, and Designs, C. Bailly, C. Benoit 
Eds., North-HoUand, Amsterdam), pp.61-75, (1992) 



340 

Recent Research Towards Advanced Man-Machine Interface 
Through Spoken Language, H. Fujisaki (Editor) 

�9 1996 Elsevier Science B.V. All rights reserved. 

A Sys tem for Synthesis  of  High-Qual i ty  Speech 

from Japanese  Text 

Hiroya Fujisaki, Keikichi Hirose, Hisashi Kawai and Yasuharu Asano 

Faculty of Engineering, University of Tokyo 
Bunkyo-ku, Tokyo, 113 Japan 

Abstract 

A text-to-speech conversion system for Japanese has been developed for the purpose of 
producing high-quality speech output. This system consists of four processing stages: (1) 
linguistic processing, (2) phonological processing, (3) control parameter generation, and 
(4) speech waveform generation. This paper focuses on the second and the fourth stages, 
especially on the generation of phonetic and prosodic symbols. The phonetic symbols are 
those having one-to-one direct correspondence with the pronunciation. These symbols are 
converted from the input orthographic text via phonemic symbols mainly using the word 
level linguistic information. The prosodic symbols, representing the prosodic structure 
of the text, are, on the other hand, generated using the linguistic information of a wider 
range, even to a paragraph. Rules for generating prosodic symbols were constructed based 
on the analysis of natural speech. As for the fourth stage, a new type of terminal analog 
speech synthesizer was designed. It consists of four paths in cascade of pole/zero filters 
which are, respectively, used for the synthesis of vowels and vowel-like sounds, the nasal 
murmur and the buzz bar, the frication, and plosion. The validity of the approach has 
been confirmed by the improvements both in the prosodic and in the segmental quality 
of synthesized speech. 

1. INTRODUCTION 

It is widely admitted that communication through speech can provide the most efficient 
and flexible means for the man-machine interface. The current technology for speech 
synthesis and speech recognition, however, is not suffident to fully realize the inherent 
advantage of speech over the written language. As for the speech synthesis, in spite of 
many significant contributions in recent years, the quality of speech from conventional 
text-to-speech conversion system still needs to be improved. Among various factors, the 
following two are considered to be primarily responsible. 

(1) Insufficient use of linguistic information. In conventional text-to-speech conversion 
systems, a full syntactic analysis of a sentence is often circumvented and is replaced 
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by the analysis of local dependencies within a phrase. Furthermore, few existing 
systems deal with linguistic information beyond the level of a sentence. Since the 
prosodic features of an utterance are deeply influenced by the syntactic structure 
of a sentence as well as by the structure of the discourse in which the sentence is 
produced, the lack of proper linguistic analysis will mainly lead to a poor quality of 
synthetic speech. 

(2) Oversimplified configuration of the synthesizer. Speech synthesizers used in conven- 
tional text-to-speech conversion systems are based on a rather rude approximation of 
the process of speech production and hence fail to produce a close approximations to 
the actual speech signals. This leads mainly to the poor quality of synthetic speech. 

These considerations have led us to design and construct a text-to-speech conversion 
system with special emphasis on the synthesis of natural prosody from high-level linguistic 
information and on the development of a terminal analog speech synthesizer capable of 
producing higher segmental quality than has been accomplished before. 

@ P R O S O D I C  F E A T U R E S  A N D  L I N G U I S T I C  I N F O R M A -  
T I O N  

In view of the importance of the time contour of the fundamental frequency (henceforth 
F0 contour) among various prosodic features of Japanese, we have been intensively working 
on the analysis and synthesis of Fo contours. A quantitative model has been presented 
which generates F0 contours of sentences from a small number of discrete commands, viz., 
the phrase commands and the accent commands 1,2. Detailed analysis was conducted on 
the F0 contours of spoken sentences in Japanese, and the relationships between the F0 
contours and their underlying linguistic information were revealed 3-0. Based on these 
studies, we have proposed a set of rules for generating prosodic symbols from the syntactic 
structure of the input text 7-13. 

2.1. M o d e l  for F0 contour  generat ion 

The F0 contour of an utterance can be regarded as the response of the mechanism 
of vocal cord vibration to a set of commands which carry information concerning lexical 
accent, and the syntactic and discourse structure of the utterance. Two different kinds of 
command have been found to be necessary; one is an impulse-like phrase command for the 
onset of a prosodic phrase, while the other is a stepwise accent command for the accented 
mora or morae of a prosodic word. The consequences of these two types of commands have 
been shown to appear as the phrase components and the accent components, each being 
approximated by the response of a second-order linear system to the respective commands. 
If we represent an F0 contour as the pattern of the logarithm of the fundamental frequency 
along the time axis, it can be approximated by the sum of these components. The entire 
process of generating an F0 contour of a sentence can thus be modeled by the block 
diagram of Figure 1 2. 

The analysis and synthesis of F0 contours were conducted using this model. For the 
analysis, an observed F0 contour need to be decomposed into the phrase and the accent 
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Figure 1. Block diagram of the functional model for the process of generating sentence 
F0 contours. 

components. This is accomplished by finding, by the method of analysis-by-synthesis, the 
optimum set of model parameters that gives the minimum mean-squared error between 
the observed F0 contour and the model-generated F0 contour. The phrase and the accent 
commands obtained as the result of such a decomposition are then used to examine the 
relationship between the linguistic information and the F0 contour. 

2 . 2 .  P r o s o d i c  u n i t s  o f  s p o k e n  J a p a n e s e  

As the minimal prosodic unit of spoken Japanese, we introduce the "prosodic word," 
which is defined as a part or the whole of an utterance that forms an accent type, and 
is usually composed of an independent word and the succeeding sequence of dependent 
words. As will be discussed later, a string of prosodic words, under certain conditions, 
can form a larger prosodic word due to "accent sandhi." On the other hand, a phrase 
component of the F0 contour of an utterance defines a larger prosodic unit, i.e., a "prosodic 
phrase," which may contain one or more prosodic words. Generally, a prosodic word never 
extends over two prosodic phrases. Furthermore, in longer sentences, several prosodic 
phrases may form a section delimited by pauses. Such a section is defined as a "prosodic 
clause." As for the syntactic units, we adopt "bunsetsu," "ICRLB," clause and sentence, 
where "bunsetsu" is defined as an unit of utterance in Japanese, and, in most cases, 
consists of an independent word and succeeding dependent words. The word "ICRLB" is 
an abbreviation for "immediate constituent with a recursively left-branching structure," 
which is a syntactic phrase delimited by right-branching boundaries and contains only 
left-branching boundaries. Roughly speaking, the parallelism shown in Figure 2 exists 
between the hierarchy of syntactic units and the hierarchy of prosodic units s'e. 

2 . 3 .  C h a r a c t e r i s t i c s  o f  P a u s e  a n d  P h r a s e  C o m p o n e n t  

A pause is always accompanied by a phrase command, while a small phrase command 
usually occurs without a pause. There exists roughly a linear relationship between the 
duration of the pause and the magnitude of the command of the accompanied phrase 
component. Three ways are possible for starting a new phrase component: 



343 

SYNTACTIC U N ITS PROSODIC UN ITS 

ICRLB 

a.NsErsu I" "l__ WORD / 

Figure 2. Hierarchy of the syntactic units and that of the prosodic units, and their 
relationship. 

(1) preceded by a pause during which the immediately preceding phrase component is 
completely reset, 

(2) preceded by a brief pause but the immediately preceding phrase component is not 
reset so that the new phrase component is superposed on the old one, 

(3) simply added to the old one without pause. 

Prosodic boundaries marked by these different ways are henceforth named TypeI, Type 
II, and Type III boundaries. Analysis of the F0 contours was conducted on the spoken 
sentences of the news and weather forecast uttered by professional announcers. The results 
indicate that sentences and prosodic clauses are marked by prosodic boundaries of Type 
I and Type II, while prosodic phrases are marked by Type III boundaries. 

The occurrence of these prosodic boundaries is primarily determined by the syntactic 
structure, and most probably coincides with syntactic boundaries. It is, however, also 
subject to other factors such as style of speaking, respiration, etc. As for the syntactic 
boundaries at which prosodic boundaries may occur, we may distinguish four different 
boundary types (1) between sentences, (2) between clauses, (3) between ICRLB's, and 
(4) within an ICRLB. The relationships between these syntactic boundaries and the three 
types of prosodic boundary are listed in Table 1 s,11. 

The correspondence between the syntactic boundaries and the prosodic boundaries is 
not one-to-one but is rather stochastic, and the probability that a prosodic boundary 
occurs at a given syntactic boundary is influenced also by the depth of the syntactic 
boundary s,12. Figure 3 shows an example of the result of the analysis along with the 
syntactic tree of the sentence. Each leaf of this syntactic tree is a prosodic word. The 
number on each leaf of the syntactic tree denotes the number of generations from the 
primal predicate of the sentence, i.e., the number of right-branches contained in the pass 
from the root to the leaf. Let us denote the "depth of a boundary" by j - i+  1(= k), where 
i and j ,  respectively, denote the numbers on the leaves at the left side and at the right 
side of the boundary. Using this notation, we can define the "left-branching boundary" 
as a boundary at which k = 0 and the "right-branching boundary" as a boundary at 
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Table 1. Classification of syntactic boundaries and their manifestations a~ prosodic bound- 
aries. 

PROSODIC BOUNDARIES 

BETWEEN 
SENTENCES 

SYNTACTIC BOUNDARIES 

BETWEEN 
CLAUSES 

WITHIN A SENTENCE 

WITHIN A CLAUSE 

BETWEEN ICRLB'S ~ WITHIN AN ICRLB" 

TYPEI (PHRASE RESETTING 
WITH PAUSE) 100% 20=/= 

TYPE II (PHRASE ADDITION 
WITH PAUSE) 30"/= 5% 

TYPE III (PHRASE ADDITION 
WITHOUI" PAUSE) 50=/= 85'/= 

~ AN IMMEDIATE CONSTITUENT WlTH A RECURSIVERY LEFT-BRANCHING STRUCTURE. 

15% 

2 ~ 0  
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Figure 3. The F0 contour and the syntactic tree of a Japanese sentence. The meaning of 
the sentence is "For the past several years people in this apartment house complex have 
been annoyed by the stained water coming out of the taps." 
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which k > 0. The results of the analysis indicate that longer pauses and larger phrase 
commands tend to occur at boundaries with larger k. 

2 . 4 .  C h a r a c t e r i s t i c s  o f  A c c e n t  C o m p o n e n t  

For the ease of representation, let us henceforth denote a prosodic word with a rapid 
downfall in the F0 contour by "D-type prosodic word" or merely by "D" and denote one 
without any downfall by "F-type prosodic word" or "F ' .  In Japanese with the Tokyo 
dialect, the manner of accentuation of the prosodic words can be classified into three 
groups: 

(1) having a rapid downfall of the constituent independent word, such as in the case of 
"Fujisan-ga," 

(2) having a rapid downfall of the succeeding dependent word, such as in the case of 
"tomodachi-sae," and 

(3) having the F-type accent, such as in the case of "otohto-no." 

The grouping depends on (1) the accent type and the grammatical conditions of the 
independent word, and (2) the characteristics of accentuation of the dependent word. 
The rules for the determination of accent types of prosodic words have been studied and 
summarized 14. 

When the prosodic words are uttered in isolation, there is a significant difference be- 
tween the accent commands for D and F, being higher for D and lower for F. When more 
than two prosodic words are uttered in connected speech, however, they interact with 
each other and their accent commands change both in amplitude and in shape, depending 
on their accent types, the syntactic structure of the phrase in which they exist, and the 
focal conditions. 

In order to clarify the rules underlying these changes, the F0 contour analysis was 
conducted on utterances of sentences including noun phrases and verb phrases by a male 
speaker having the Tokyo dialect 4,s,9. The phrases are composed of two or three prosodic 
words. Utterances for all the possible combinations for accent types, syntactic structures, 
and focal conditions were recorded and analyzed. The following characteristics were found 
for ICRLB phrases. 

(1) In a phrase consisting only of D-type prosodic words, the accent command for the 
first word is essentially of the same amplitude as that when the word is uttered in 
isolation, while the accent commands for all the other words are suppressed. An 
example for three prosodic words is shown in panel (a) of Figure 4. When both the 
second and third prosodic words are of the F-type, they are concatenated to form 
one prosodic word with a low accent command. 

(2) In a phrase of DFD, each of the two prosodic words of the D-type has a high com- 
mand, while the word of the F-type has low one. 

(3) In a phrase of FD or FFD, the F's have as high commands as the succeeding D. A 
new prosodic word is formed by concatenation of F and D. 
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Figure 4. Results of the F0 contour analysis for the noun phrase "aomorino (W1) anino 
(W2) amaguo (W3)" uttered in four different manners: (a) without any obvious focus, (b) 
with focus on W1, (c) with focus on I412, (d) with focus on W3. The meaning of the phrase 
is "a raincoat of my brother in Aomori." 

(4) In a phrase consisting only of F's, they are usually concatenated to each other to 
form a new prosodic word. 

(5) When a focus is placed on a prosodic word with a low accent command, its amplitude 
becomes higher (Panels (b), (c), (d) of Figure 4). If a phrase contains D-type prosodic 
words, the manner of concatenation is affected by the focus. 

For phrases with right-branching boundaries, the characteristics of the accent compo- 
nent are somewhat different. For instance, a low phrase command often occurs at the 
right-branching boundary, and it usually prevents mutual interactions between the accent 
components of the prosodic words on both sides of the boundary. 

3. R U L E S  F O R  G E N E R A T I N G  P R O S O D I C  S Y M B O L S  

The term "prosodic symbols" is a generic name for the symbols necessary for the 
synthesis of the prosodic features of speech. In the present text-to-speech conversion 
system, they are pause, phrase and accent symbols. The pause symbols represent the 
duration of pauses and are necessary for the decision on the timing of the constituent 
syllable templates. On the other hand, the phrase symbols and the accent symbols, 
respectively, represent the magnitude of the phrase commands and the amplitude of the 
accent commands of the F0 contour model, and are necessary for the decision on the 
timing and the magnitude/amplitude of the commands. Based on the results obtained in 
the previous section, prosodic symbols are selected as shown in Table 2. The symbols P0 



347 

and A0 are those for resetting the components to zero. The pause symbol S1 represents 
a pause between sentences. The pause symbols $2 and $3 occur at syntactic boundaries 
and are, respectively, followed by the phrase symbols P2 and P3. The phrase symbols 
P1, P2 and P3, respectively, correspond to the prosodic boundaries of Type I, Type II 
and Type III. The accent symbols can be classified into two groups, viz., those for D-type 
prosodic words and those for F-type prosodic words. The accent symbols D H and FM, 
respectively, correspond to the accent commands for D-type and F-type prosodic words 
uttered in isolation 15. 

Table 2. Prosodic symbols and their values at the speech rate around 7 mora/sec. 

PAUSE PHRASE 

SYMBOL VALUE SYMBOL VALUE 
$1 700 P0 -0.50 

$2 300 P1 0.35 

$3 100 P2 0.25 
P3 0.15 

ACCENT 

SYMBOL VALUE SYMBOL VALUE 
DH 0.50 FH 0.50 

DM 0.35 FM 0.25 

DL 0.15 FL 0.10 
(A0 = -DH, -DM, -DL, -FH, -FM, -FL) 

Based on the investigations on the pause duration and the F0 contours, rules were 
constructed for the generation of the prosodic symbols 11,13. The rules for the generation 
of the pause and the phrase symbols are as follows: 

(1) Generate P1 at the beginning of the sentence. Generate P0 at the end of the sentence. 
Generate $1 between P1 and P0 (between sentences). 

(2) Generate $2P2 at a clause boundary. If the distance from the preceding P1/P2 is 
shorter than L1 morae, generate P3 only. 

(3) Generate P3 at an ICRLB boundary. If the distance from the preceding P1/P2/P3 
is shorter than L1 morae, omit P3. 

(4) Generate $3P3 at a boundary between parallel expressions. If the distance from the 
preceding P1/P2/P3 is shorter than L1 morae, omit $3. 

(5) If an ICRLB is longer than L2 morae, insert P3's so that the length of all the prosodic 
phrases in the ICRLB are shorter than L2 morae. The insertion is conducted so that 
all the resultant prosodic phrases have similar lengths. 

(6) If a clause is longer than L3 morae, insert S3's at ICRLB boundaries where insertions 
are allowed. 

For a normal speech rate of 7 morae/s, L1, L2 and L3 are, respectively, set equal to 5, 15 
and 40. 

In the following rules for the generation of accent symbols, X denotes a prosodic word 
of any accent type, X + denotes a sequence of one or more X's, X ~ denotes a sequence of 
zero or more X's, x denotes a sequence of any combinations of D's and F's, n denotes 
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the position of the prosodic word to be processed, and W,~ denotes the prosodic word 
to be processed. The symbols +Emph, 0Emph, and -Emph, respectively, indicate the 
prosodic words to be emphasized, not to be emphasized, and to be suppressed due to 
focal conditions. The rules are applied within the scope of one ICRLB. The rules for F + 
sequences of prosodic words are as follows. 

(1) For Wl,  generate FM if the focal condition is +Emph or 0Emph, and generate FL 
if the focal condition is -Emph. If W1 is at the start of a sentence and the focal 
condition is -Emph, convert the P1 preceding the sentence to P2 and insert P3 just 
after W1. 

(2) For W,, (n > 1), always generate FM. If the focal condition is +Emph, insert P3 just 
before W,~. 

The rules for F*Dx sequences are as follows. 

(1) For W1 of F*, generate FH if the focal condition is +Emph or 0Emph, and generate 
FM if the focal condition is -Emph. If the focal condition is +Emph, convert all the 
0Emph's for x into -Emph. If W1 is at the start of a sentence and the focal condition 
is -Emph, convert the P1 preceding the sentence to P2 and insert P3 just after W1. 

(2) For W,,(n > 1) of F*, generate FH if Wn-1 is FH, and generate FM if Wn-1 is FM. 
If the focal condition is +Emph, convert all the 0Emph's for x into -Emph's. 

(3) Always generate DH for a D following F ~ If the focal condition is +Emph, convert 
all the 0Emph's for x to -Emph. If Wn for D is at the start of a sentence and the 
focal condition is -Emph, change the P1 preceding the sentence to P3 and insert P2 
just after W~. 

(4) Generate DH for D in an x sequence if the focal condition is +Emph, generate DM 
if the focal condition is 0Emph, and generate DL if the focal condition is -Emph. If 
the focal condition is +Emph for W~, convert 0Emph's for prosodic words following 
W~ to-Emph.  

(5) Generate FM for F in an x sequence if the focal condition is +Emph or 0Emph, and 
generate FL if the focal condition is -Emph. If the focal condition is +Emph, insert 
P3 just before W~. 

4. T E R M I N A L  A N A L O G  S Y N T H E S I Z E R  

A speech synthesizer of the terminal analog type is based on the simulation of the 
acoustic process of speech production and thus is capable of producing high-quality speech. 
Therefore, we have adopted this type of synthesizer as the final stage of the text-to-speech 
conversion system. 

Because of the simplification in the realization of both the excitation sources and the 
vocal tract transfer functions, certain limitations exist on the quality of speech synthesized 
by conventional terminal analog speech synthesizers. One of the most used terminal analog 
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Figure 5. Examples for the prosodic symbols together with the phonetic symbols gener- 
ated by the rules, and the synthesized F0 contour. 

synthesizers is the one developed by D. Klatt 13, where vowels and vowel-like sounds are 
generated by a circuit of in cascade connected pole filters, and fricatives are generated by 
a circuit with parallel connection. Although, the transfer function of the vocal tract can 
be represented either by cascade connection or parallel connection of pole/zero filters, the 
former has the advantage over the latter that a better simulation of the vocal-tract transfer 
function is available, since it represents the transfer function by the product of pole and 
zero filters and has characteristics close to that of the actual vocal tract. Moreover, relative 
gain control of each filter can be conducted automatically for the cascade connection. 

Based on these considerations, we have developed a new terminal analog synthesizer 
for high-quality speech, as shown in Fig. 617-19. This synthesizer consists of four paths 
of in cascade connected pole/zero filters and three source waveform generators. Nasal, 
vowel, fricative, and stop paths are, respectively, for the synthesis of the nasal mur- 
mur or the buzz bar, vowels or vowel-like sounds, the frication, and the plosion. The 
glottal waveform generator generates the voice source waveform (first derivative of the 
volume velocity) for the vocal path and the nasal path. The waveform is approximated 
by polynomials developed by one of the authors and controlled by three parameters: the 
fundamental frequency, skew and open quotient 2~ A random noise generator generates 
white Gaussian noise for the fricative path. This noise waveform is also supplied to the 
vowel path to produce the /h / -sound and devoiced vowels. An impulse from the impulse 
generator is fed to the stop path producing plosion for stop consonants. 
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Figure 6. Configuration of a terminal analog speech synthesizer with four paths of in 
cascade connected pole/zero filters and with three source waveform generators. Symbols 
F1 - Fs and/)1 - Ps indicate pole filters, while symbols Z1, Z2 indicate zero filters. 

It is well known that Japanese vowels, typically back vowels, may be nasalized when 
attached to nasal murmur. Figure 7 shows the spectrum and its envelope for the vowel 
part of the ut terance/ma/extracted by the analysis-by-synthesis method. The result 
indicates that pole-zero pairs exist below the first formant and between the second and 
third formants 22. Spectral analyses were also conducted for other utterances of various 
CV and VCV combinations using the LPC method and the analysis-by-synthesis method. 
Based on the results, the combination of pole and zero filters was decided on for each 
path of the synthesizer, as shown in Figure 6. 

Precise simulation of the generation process of speech is possible using the proposed 
synthesizer. Figure 8 shows the waveforms of (a) natural speech and of (b) synthetic 
speech for /ks / .  Stop, fricative and vowel paths are necessary for this synthesis. Various 
CV utterances were synthesized and the result indicated the advantages of the proposed 
synthesizer over the conventional ones. 

5. S Y S T E M  C O N F I G U R A T I O N  

Based on the results obtained by the investigations above, a system has been con- 
structed for the synthesis of high-quality speech from Japanese text 1~,1~'19,2a. As shown in 
Fig. 9, this system is based on the rule-synthesis of F0 contours and on the concatenation 
of stored syllable templates. Roughly speaking, it consists of four stages, viz., stages for 
linguistic processing, phonological processing, control parameter generation, and speech 
waveform generation. The major functions of the system are as follows: 
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Figure 7. Spectrum and its envelope for the vowel part of the ut terance/ma/extracted 
by the analysis-by-synthesis method. Frequencies of five formants/'1 - Fs are, respec- 
tively, 720 Hz, 1230 Hz, 2760 Hz, 3440 Hz, 3780 Hz, while those of two pole-zero pairs 
P1, Z1, P2, Z2 are, respectively, 283 Hz, 300 Hz, 2251 Hz, 2370 Hz. 
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Figure 8. Waveform of (a) natural speech and of (b) synthetic speech for/ka/ .  
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Figure 9. Block diagram of the system for synthesizing speech from Japanese text. 
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(1) Detection of word boundaries and identification of each lexical item. This is in- 
evitable, since Japanese orthographic texts do not explicitly provide information of 
the word boundary. Ambiguities in word boundaries are minimized using rules for 
grammatical conjunction. 

(2) Syntactic, semantic and discourse analyses to derive linguistic information, such as 
syntactic boundaries and focus locations. 

(3) Determination of phonemic representations for words not registered in the lexicon, 
such as new compound words and new symbols. 

(4) Context-dependent conversion of voiceless-to-voiced consonants a 2nd consonant 
gemination. 

(5) Conversion of phonemic symbols to phonetic symbols using allophonic rules. 

(6) Determination of accent types for unregistered words (mostly compound words) and 
prosodic words. This is done by applying accent sandhi rules and default accentuation 
rules. 

(7) Generation of prosodic symbols using the syntactic structure and the indices of word 
importance. 

(8) Selection of standard syllable templates as specified by the phonetic symbols. Time- 
patterns for the vocal-tract transfer function parameters and source intensities are 
generated by concatenating the selected templates. 

(9) Generation of F0 contours using the F0 model and the prosodic symbols. 

(10) Generation of the speech waveform by controlling the terminal analog speech syn- 
thesizer as indicated by the parameters for the vocal-tract transfer function and for 
the glottal source waveform. 

The above functions (1) and (2), (3) to (7), (8) and (9), and (10), respectively, belong to 
the stages for linguistic processing, phonological processing, control parameter generation, 
and speech waveform generation. 

6. C O N C L U S I O N S  

In view of the reasons why the quality of synthetic speech is limited in the current 
technology, an intensive study was conducted on the synthesis of prosodic features using 
high-level linguistic information and on the improvement of the terminal analog synthe- 
sizer. Based on a quantitative analysis of the relationship between linguistic information 
and the F0 contour of natural speech, rules were constructed for generating the prosodic 
features of speech. A novel terminal analog synthesizer was also proposed and constructed, 
which has an individual path for each type of speech with a different generation process. A 
total system for text-to-speech conversion was constructed for weather forecast sentences 
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in Japanese and the quality of the synthetic speech indicated the validity of the prosodic 
rules and of the proposed synthesizer. 

This work was supported by a Grant-in-Aid for Scientific Research (No.01608003) from 
the Ministry of Education. 

R e f e r e n c e s  

1. H. Fujisaki and S. Nagashima, "A Model for Synthesis of Pitch Contours of Con- 
nected Speech," Annu. Rep. Eng. Res. Inst., Univ. Tokyo, 28, pp.53-60, (1969) 

2. H. Fujisaki and K. Hirose, "Analysis of Voice Fundamental Frequency Contours for 
Declarative Sentences of Japanese," J. Acoust. Soc. Jpn. (E), vol.5, No.4, pp.233- 
242, (1984) 

3. K. Hirose and H. Fujisaki, "Analysis and Synthesis of voice Fundamental Frequency 
Contours of Complex Sentences," Proc. of 11th International Congress on Acoustics, 
Paris, pp.84-87, (1983) 

4. H. Fujisaki, K. Hirose, N. Takahashi and M. Yoko'o, "Realization of Accent Compo- 
nents in Connected Speech," Trans. of the Committee on Speech Research, Acoust. 
Soc. Jpn., $84-36, (1984) 

5. H. Fujisaki and H. Kawai, "Realization of Linguistic Information in the Voice Funda- 
mental Frequency Contour of the Spoken Japanese," Proc. IEEE ICASSP 88, $14.3, 
pp.663-666, (1988) 

6. H. Fujisaki, K. Hirose and N. Takahashi, "Manifestation of Linguistic and Para- 
linguistic Information in the Voice Fundamental Frequency Contours of Spoken 
Japanese," Proc. International Conf. on Spoken Language Processing, Kobe, 12.1, 
(1990) 

7. K. Hirose, H. Fujisaki and M. Yamaguchi, "Synthesis by Rule of Voice Fundamental 
Frequency Contours of Complex Sentences," Proc. IEEE ICASSP 84, San Diego, 
2.13, (1984) 

8. K. Hirose, H. Fujisaki and H. Kawai, "Generation of Prosodic Symbols for Rule- 
synthesis of Connected Speech of Japanese ," Proc. IEEE ICASSP 86, Tokyo, 45.4, 
pp.2415-2418, (1986) 

9. K. Hirose and H. Fujisaki, "Accent and Intonation in Speech Synthesis," Journal of 
IEICE, vol.70, No.4, pp.378-385, (1987) 

10. H. Kawai, K. Hirose and H. Fujisaki, "Linguistic Processing in Text-to-Speech Syn- 
thesis," IEICE Tech. Report, SP88-10, pp.73-80, (1988) 

11. K. Hirose, H. Kawai and H. Fujisaki, "Synthesis of Prosodic Features of Japanese 
Sentences," Preprints of the Second Symposium on Advanced Man-Machine Interface 
Through Spoken Language, Hawaii, pp.3.1-13, (1988) 



355 

12. K. Hirose, H. Fujisaki, H. Kawai and M. Yamaguchi, "Speech Synthesis of Sentences 
Based on a Model of Fundamental Frequency Contour Generation," Trans. IEICE, 
vol.J72-A, No.l, pp.32-40, (1989) 

13. H. Kawai, K. Hirose and H. Fujisaki, "Rules for Generating Prosodic Features for 
the Synthesis of Japanese Speech," IEICE Tech. Report, SP88-129, pp.57-64, (1989) 

14. Y. Sagisaka and H. Sato, "Accentuation Rules for Japanese Word Concatenation," 
Trans. IECE Jpn., vol.J66-D, pp.849-856, (1983) 

15. H. Kawai, K. Hirose and H. Fujisaki, "Quantization of Accent Command Amplitude 
for Rule Synthesis of Fundamental Frequency Contours," Trans. of the Committee 
on Speech Research, Acoust. Soc. Jpn., SP86-93, (1987) 

16. D. Klatt, "Software for a Cascade/Parallel Formant Synthesizer," J. Acoust. Soc. 
Am., Vol. 67, No. 3, pp.971-995, (1980) 

17. H. Fujisaki, K. Hirose, H. Kawai and Y. Asano, "A system for Synthesis of High- 
quality Speech from Japanese text," Preprints of the Third Symposium on Advanced 
Man-Machine Interface Through Spoken Language, pp.12.1-16, (1989) 

18. H. Fujisaki, K. Hirose and Y. Asano, "Terminal Analog Speech Synthesizer for High 
Quality Speech Synthesis," IEICE Tech. Report, SP90-1, pp.1-8, (1990) 

19. H. Fujisaki, K. Hirose, H. Kawai and Y. Asano, "A System for Synthesizing Japanese 
speech from Orthographic Text," Proc. IEEE ICASSP 90, Albuquerque, $6a.5, 
pp.617-620, (1990) 

20. H. Fujisaki and M. Ljungqvist, "Proposal and Evaluation of Models for the Glottal 
Source Waveform," Proc. IEEE ICASSP 86, Tokyo, 31.2, pp.1605-1608, (1986) 

21. H. Fujisaki and M. Ljungqvist, "A New Model for the Glottal Source Wave form and 
Its Application to Speech Analysis," Trans. IEICE, vol.J72-D-II, No.8, pp.1109-1117, 
(1989) 

22. E. Bognar and H. Fujisaki, "Analysis, Synthesis and Perception of the French Nasal 
Vowels," Proc. IEEE ICASSP 86, Tokyo, 31.1, pp.1601-1604, (1986) 

23. K. Hirose, H. Fujisaki and Y. Asano, "A System for Speech Synthesis from Ortho- 
graphic Text of Japanese," IEICE Tech. Report, SP90-42, pp.23-30, (1990) 



356 

Recent Research Towards Advanced Man-Machine Interface 
Through Spoken Language, H. Fujisaki (Editor) 

�9 1996 Elsevier Science B.V. All rights reserved. 

A Text-to-Speech System Having Several Prosody 

Options: GK-SS5 

Ryunen Teranishi 

Kyushu Institute of Design, Shiobaru, Minami-ku, Fukuoka, Japan 

Abstract 

This paper describes an original text-to-speech system, especially focusing on the struc- 
ture and function of the recently finished prosody options. In order to synthesize supra- 
segmental features, an original parser based on the special bunsetsu (=phrase) grammar 
is used, and the prosody information is deduced automatically from the input text, which 
is written with kana letters and separated in each bunsetsu. For the pitch pattern com- 
position from the above-mentioned prosody information, the "Fujisaki model" is applied. 
Recently, the system has been equipped with several options which make it possible to as- 
sign or to change the prosody style of the synthetic speech, systematically. These are the 
breath group option, the speed option, the rhythm option, the rising intonation option, 
and the pitch pattern expanding/flattening option. After many trials of the synthesis 
experiment with this system having these options, it is found that most of prosody styles 
and the variations which appear in the text reading mode speech are synthesized, but 
prosody styles in another speech mode, viz. conversation mode are hardly synthesized, 
and only acted conversation style can be simulated. 

1. INTRODUCTION 

Studies of by-rule-synthesis in Japanese have progressed remarkably, and several com- 
mercialized text-to-speech systems in Japanese have shown up one after another quite 
recently. Though they axe not quite satisfactory for practical use in daily life, they seem 
to have reached a fair grade and they axe expected to be improved and advanced more and 
more in the future. However, in the present state they have the following common faults: 
(1) they tend to misread kanji characters, (2) so far as concerning the intelligibility of the 
synthetic speech, they are not so nice yet; the syllables are not so articulate nor natural, 
comparing to those of real human speech, and (3) the supra-segmental features, viz. the 
prosody of the synthetic speech is still poor; they are fixed in a stereotyped pattern and 
cannot be changed at the user's will. 

Because of these circumstances, a project concerning by-rule-synthesis in Japanese, 
focusing on the prosody problems, has been started at Kyushu Institute of Design in 1980 
[1]. The structure of the system altered several times, seeking for a handy form suitable 
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for the purpose. We did not aim to make a system for practical use, but intended to 
construct a system with which we can easily conduct various experiments, through which 
we learn how to simulate the natural prosody in Japanese. 

Therefore we designed it avoiding troublesome problems which are thought as sec- 
ondary items from the viewpoint of the prosody research. So, in order to simplify the 
input system, the symbols to be input were restricted to only kana letters, which are sim- 
ilar to phonetic signs. The system is equipped with a word dictionary, which can be used 
not only for finding the accent of the word, but also for finding the class of the word for 
syntactic analysis, which is required for deducing the prosodic information automatically 
from the input sentences. 

Concerning the segmental features of synthetic speech, we intended to utilize the es- 
tablished technology intensively, so we applied the LSP analysis and synthesis method. 
In our system, the principle of synthesis of the segmental features is based on the con- 
catenation of the phonetic-unit data which are expressed in the LSP parameters. First 
we took phonemes as the unit, later this was changed to syllables, since then we were 
able to utilize the fine glide data included in each syllable, which were extracted from the 
spoken real human speech.Since then the system has settled using the LSP method and 
the CV unit system since 1985 [1]. Depending on the outcome of our research study done 
in recent years, we have finished equipping the system with prosody options with which 
the user can assign or change the prosody of the synthetic speech systematically. We call 
this newest version of the system GK-SS5 [2]. 

2. O U T L I N E  O F  T H E  S Y S T E M  

Before describing the prosody options precisely, it would be better to give an outline 
of the whole system, because in this context it is easy to comprehend the role of the 
options. The outline of the system has been given already in other publications [1, 2], so 
the description is kept simple, here. 

The hardware of the system can be any personal computer using "MS-DOS" and 
which is equipped with a DA converter. In my laboratory, a PC-9801VX of NEC with 
the high-speed processor 98XL-03 and extended with a 2 MB RAM board is utilized for 
the purpose. A "Sound Master" of Canopus Elec. Co. is installed in the computer as the 
DA converter. The whole system can be divided into four functional parts, as shown in 
Figure 1 (a). 

| | 
Input ~ Linguistic 

Text Processor I 
<parsing) 

i 
Dictionaries 

| @ HLioguis io H Processor H 
(prosody set) 

'ie 

| | 
Syllable (LSP 
& Other) Data 

Editor 
I 

Syllable Data ..... 
Table 

, =  

| | 
HLSP ~ Dutput 

Synthesizer Speech 
D/A Converter 

| 

Figure 1. (a) Block diagram of the text-to-speech system GK-SS5 
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file (TX) 
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I 

file (TS) ~) 
I 

PARSINGr 
syntactic analYsiS of the sentences 

I 

file (TZ) @ 
I 

PUTACC" ] 
modif~ accents after word connectio 

I 
file (T~) @ 

I 
PUTPR03" 
deduce and assign the prosody marks 

i 
fi le (TL) 

i | 
EPOT31: 
assign parameters in the Fujisaki model, 
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assign parameters for other culculations 

I 
file (TM) 

I | 
CHAINV: edit LSP data of the syllables, 
assign the fundamental (buzz) frequencies, 
calculate the buzz/hiss source intensities 

I 

file (P98) 
l | SYNDAISYNDA287: 

calculate wave form after LSP synthesis 
I 

file (DA) 
i | 

DA converter i i LOw ]._ 
"Sound Master" Pass out put 

(ofCanopusCo.)l 1 Filter 

Figure 1. (b) Flow chart of the text-to-speech system GK-SS5 

The software, which consists of 7 main procedure blocks and 2 tables (word dictionary 
and syllable data table), is stored on a 2HD type diskette. Figure 1 (b) shows the main 
flow of the synthesis process with the procedure blocks. A given text file at the input 
terminal is transformed to speech signals at the output terminal, as it is passed through 
each procedure block and the form and the file name converted from one to the next 
block. The upper half on the left side of the blocks in the picture deals with the linguistic 
process, and the lower half on the left side participates in the linguistic-phonetic process, 
while the right side upper conducts the phonetic-acoustic process and the right side lower 
the acoustic process. 

At the first procedure block (PUTTANGO) in Figure 1 (b), each bunsetsu comprising 
the input text file is analyzed into an independent word and particles with the aid of 
a word dictionary. At the 2nd block (PARSING), each sentence in the text is analyzed 
into syntactic components, and the relations between them are defined using the bunsetsu 
grammar. At the 4th procedure (PUTPRO3), in accordance with the sentence structure 
and other factors, for example the rest breath volume, the sentence is divided into several 
breath groups, and to each of them a "phrase command" mark is attached for producing 
the pitch pattern. Before this work, each word is already marked "word accent" using the 
stored dictionary at the 3rd procedure block (PUTACC), and some of them are modified 
with a programmed rule, when the word is connected to the other. Thus the output file 
of the 4th block is composed of syllable code strings (including pauses) with (utterance- 
of-"phrase) command" marks and "accent (of word) command" marks. 
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The main work of the blocks in the right half in the picture is as follows: composing 
a pitch pattern using rules along the syllable code strings at the 5th block (EPOT31), 
editing or arranging the syllable data fetched from the stored table (NOBIT2), in which 
they are described using LSP parameters, and calculating the wave form of the synthetic 
speech at the last block (SYNDA). 

3. P R O S O D Y  O P T I O N S  A N D  P O S S I B L E  S T Y L E S  

It seems that the important factors featuring the prosody style in text reading by 
a machine which simulates human recitation, are as follows: (1) breath group setting, 
after consideration of both of the sentence structure and the assumed speaker's breath 
condition, in other words, the decision rules when to put a pause and how long to continue 
the pause. (2) pitch (fundamental wave frequency) pattern, or the rules how to intone 
the voice pitch frequency during speech, (3) speed of the speaking, (4) rhythm rules for 
the recitation, (5) sound intensity pattern along the speech. 

In the previous system, the above-mentioned factors were regarded as constant and 
the prosody control rules were tied to only one specific style, so that the user could not 
alter the prosody of the synthetic speech at his will. However, the system have been 
improved to one having prosody options, so the user can now choose a prosody style, or 
assign parameters relating to some prosody style. This is the most remarkable point of the 
system GK-SS5. The whole option system consists of several sub-options, viz. (1) breath 
capacity option, (2) speed option, (3) rhythm style option, (4) rising intonation option, 
(5) pitch pattern expanding or flattening option, and (6) intensity pattern modification 
option. Figure 2 shows a flow chart and the contents of the option system, which is 
installed in the 4th (PUTPR03), the 5th (EPOT31), and the 6th (CHAINV) procedure 
blocks shown in the Figure 1 (b). Whenever the program execution comes to those blocks, 
the user can assign or change the parameter values of the items shown in Figure 2, if he 
likes to. 

3 .1 .  M a x i m u m  B r e a t h  G r o u p  O p t i o n  

The prosody of text recitation is principally determined by two factors. One is the 
syntactic and/or semantic structure of the given sentence, and another is the speaker's 
breath condition, reflecting his physical and/or emotional state. Breath capacity is one 
of the most important points concerning the latter factor, and it can be expressed as the 
maximum duration of speech, or maximum number of morae (or syllables) within one 
expiration, when it is assumed that the speaking speed is kept constant. 

With the first option in the Figure 2, the user can assign the reading style which seems 
suitable for the text. The style is controlled by two factors similar to those controlling 
human recitation, i.e. the given sentence and the breath capacity. In the previous system, 
there was a breath group limiter, of which the limit value was fixed assuming only about 
2.5 s after some speech data. The prosody produced with this condition sounds quite 
nicely as far as the text is a simple story like a fairy tale, but it sounds unnatural when 
the text is an intricate article and explains some complicated subject, because the short 
breath group tend to split the sentence at unsuitable points. Then, the longer value (4 
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s) was added for reading an intricate text. Assigning the value long or short is left to 
the user's will. Table 1 shows the effect of the breath capacity option expressed as the 
speakable maximum number of morae within a breath, at the standard speech speed, i.e. 
180 ms per mora. The long breath style is set as the default choice. 

$ @ 
PROSODY STYLE OPTION 

Maximum Breath GrouLgption: ,Lon~.(4 sec.) / Short(2.5 sec.) 
$ 

. .  R.e.a_dj.n.g..S_p.e_ed_ .(.R.e.cor_d.s./M.o_r_a_). O.p_tj_o.n.'.l.5_-7,30~60 records < 1 record=6 ms) 
$ 

Rhythm Style (6 types) Option" Beat" ,No / Weak / strong 
................................. ?.e.p.e.a_tj V_g. ?.e.g_uj.arj .:..*_Ke.g uJ .at./. J rr_e_g.uJ .at._ 

$ 
Rising Intonation ( i f  assigned with "?") and the Extent Option" 

Delay Time of the Adding Accent" ,Standard / Arbitrary (0~200%) 
$ 

Magnitude of the Adding Accent: 
$ 

,Standard / Arbitrary(O.3~I.5) ] 
| 

| 
Pitch Pattern Expanding/Flattening: ,Normal/Arbitrary(n=+l.O~=l.O) 

Intensity Pattern Modificationl xNormal/Arbitrary (m=?O 
) 

"x" attached item means default choice 

Figure 2. Structure and order of the options pertaining to the prosody style 

The pitch pattern of the synthetic speech is produced in accordance with Fujisaki's 
model, and computed after the formula he has shown [3], using specific values of the 
utterance and accent component. In this system, each parameter value in the formula is 
set as the value shown in Table 2. As is shown there, in the short breath style the phrase 
component is 1.4 if it is an initial item in the breath group, otherwise 0.7. In the long 
breath style, those values are the same except for the case which occurs after a phrase size 
limiter (the newly set limiter, see Table 1); in that case the value becomes 1.1. The accent 
component value is 0.3 or 0.2 depending on the combined conditions, in both styles. 

Figure 3 shows an example of the pitch pattern difference between the short breath style 
(upper picture) and the long breath style (lower). The resultant prosodies differ clearly, 
and the latter (lower) sounds more natural, because the sentence is a little intricate. 

Table 1. Limit number of morae in the standard reading speed 

Short Breath Style Long Breath Style 

Maximum Morae in A Breath Group 
Maximum Morae in A Phrase 
Minimum Morae at A Sentencefinal Breath Group 
Minimum M0rae in A Breath-Gr0up=Final Phrase 

15 25 
- 15 

5 5 
5 5 
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Table 2. The parameter values in the Fujisaki's model formula 

' Short Breath Sty'le' 'Long Breath Style 

Fmin 
Api 

Aaj 
TBi 
T : j  
T2j 

~J 
8 

701lz same to the lef t  
(when i=1) 1.6 same to the lef t  
(when i>1) 0.7 0.7 or 1.1 

0.3 or 0.2 same to the le f t  
(~hen i=l) I/~i-0.12 same to the left 

12 ms after = same to the left 
12 ms afte~ =x same to the lef t  

(when i=l) 2 .5~8.3/s  same to the left  
(vhen i>l) 2.5/s 2 .5~8.3/s  

20.O/s same to the lef t  
0.9 same to the left 

= means a syllable boundary changing low pitch to high 
== means a syllable boundary changing high.pitch to low 

HO~ 1 Moreover, in order to build this tower the used materials .like Iron are 

:7151  ka  r no  ko  no  t o  u wo  t su  ku  r u  t l l  me  I l i  t l u  ka  I t l i  te tsu n i l  do  no  za i  r yo  u w i l  

r U J: 9 t~ 
150"1 -  . . A . . . . . . . .  A . . . . . . .  A . . . . . . . . .  

i I - • J  Moreover, in order to build this tower the used matedals like iron a r e  

~50]si ka mo ko no to u wo tsu ku ru ta me ni tsu ka Ira te tsu na do no za i ryo u wa 

$0  " " �9 A , , . . . . .  , , . .  , , �9 �9 �9 �9 �9 �9 �9 �9 , .  �9 �9 �9 �9 �9 

Figure 3. Example of the pitch pattern difference caused by the difference of maximum 
breath group length 
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3 . 2 .  R e a d i n g  s p e e d  o p t i o n  

According the second option in the Figure 2, the user can choose and assign any speed 
from 11 morae per second to 2.8 morae per second. As default assignment, a standard 
speed (in this system 5.6 morae per second) is set. For speed increasing, the LSP data 
of each syllable are thinned homogeneously and compressed. The synthetic prosody is 
modulated automatically after speed assignment, so it sounds quite natural at each speed. 
This option has been set since 1985, improved since 1988, and already explained precisely 
[2]. 

3 . 3 .  R h y t h m  s t y l e  o p t i o n  

The rhythm principle of spoken Japanese, especially for text recitation, is well-known 
as the "isochrony of morn' .  We will call this the first principle. However, another principle 
is proposed by Teranishi [4] and others. 

Almost all the Japanese recite texts in this style whenever they are in one group and 
reading the text in chorus. We can hear a typical example in a common class room. 
Individual persons also uses this style commonly whenever he or she wants to speak very 
slowly. Then it seems that people tend to comply with the first principle at quick or 
moderate speaking speed, and with the second principle at moderate or slow speed. So 
at moderate speech speed, both the two types, based on the two principles, are possible 
to exist, and one of them is chosen by the speaker depending on various circumstances. 

With the third option in the Figure 2, the user can choose and assign one of the 6 
prepared rhythm styles, which are based on the first or second or the mixed principle. 
The prepared rhythm styles are defined as shown in the Table 3. Style I is set as the 
default choice. 

Beat : D n'D2 
! 

o 
A 
o 

Without" 1" I ! 
! 
! 
! 

Weak ', 1"1.5 
I 
u 
! 

Strong ,, 1:2 
! 

Table 3. List of 6 kinds of rhythm 

D3 ', Dn'Dz'D3 or ', Rhythm type No. 
! ! 

, (DI-o-D2 } :D~ , 
A a 

D3 =D2 ', 1" 1" 1 ', Regular(in-temp0) I 
D~=DI+Dz : 1"1:2 : Irre#ular / I  

L I 

D3=92 ' 2 5 1 5 ' Irregular TIT 
D~=D t+De , 2.5:2.5 : Regular(in-temp0) 
D3 =D2 i 3: 2 i Irregu I ar V 
D~-DI+D~ : 3:3 : Regular(in-temp0) VI 

Let us assume that to each morn of input sentence a morn number in a given bunsetsu, 
the number 1 or 2 is attached alternately and repeatedly from the head of each bunsetsu, 
as shown in Figure 4. Each means the 1st or 2nd morn in the cluster. If the bunsetsu 
consists of an even number of mora~, it is divisible by 2, so it does not leave an odd morn, 
but if it consists of an odd number of morae, it cannot be divided by 2, and an odd morn 
is left. This odd morn is numbered as the 3rd. In the Table 3, the duration of the 1st, 
2nd, and 3rd morn are expressed as D1, D2, and D3. 

Figure 4 shows the feeling of the resultant 6 rhythm style, using the same sentence. 
Rhythm style I is an extreme form of the "isochronal morn" and style VI is an extreme 
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Input 
Sentence 

Mora Number 

Without Beat 
Regular 

I 

Without Beat 
Irregular 

II 

With Beat 
Irregular 

yamano kino hano u e ni yasun de i masitaga, kazeni yurio tosarete, o o zei 

1 2 3  12 12 1 2 3  1 2 1 2  1 2 1 2 3  1 2 3  1 2 1 2 1 2 3  1 2 1 2  

yamanokinohano u eni yasun de imasitaga kazeniyuri otosarete, o o zei notomodati 

�9 . . - . .  �9 . . . A  . . . . . . . . .  A .  . . . . . .  . - . A  . . . . . . . . .  
r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

yamano--kinohano u eni-- yasun de imasitaga-- kazeni--yurio tosarete-- o o zei 

. . . . . . . . . . .  A . . . . . . . . .  A . . . . . . . . . .  A . . . .  

yama- no- kino- hano- u e - ni- yasu- n de- i ma- sita- ga- kaze- ni- yuri- o 
~ P ~ - ~ - ~ r  f ~ - l ~ -  ; ~ - ~ b x r - ~ $ -  b t : - / ~ -  ; ~ - t ~ - ~ - ~  

. . . . . .  .m. ~X._ . .~ . . : . . .~ . . . .~ . . : . . .~ . . : . . .~ . . : . . .~ . . . . . .~  �9 ~.  : . . . .~.  : . . .~. .  : . . . .~  . . . . .~.  :..._~....~. : . . . ~ .  
With Beat yama- no-- kin0- hun0- u e - n i-- yasu- n de- i ma- s ita- ga . . . .  kaze- n i-- 

Regular ~ P ~ - O - - ~ O - ~ O - - )  ~ . - |~ . -  ; ~ ' - A , - ~ - ~ , ~ -  b f ~ - ~ - -  ; ~ - I ~ . -  
IYpVI @.  @ @* @. @- @ |  @.  @.  |  @ @ @. @ 

Figure 4. Example pat terns of a recited sentence in 6 classes of rhy thm style 

form of the "isochronal beat" or "isochronal cluster". If we listen them after order of the 
rhy thm number  I, III, V, II, IV, VI, the feeling of the rhy thm shifts quite smoothly. 

3.4. Rising intonation and the extent option 

According to this option, the user can assign various styles of the rising intonation. The 
rising style specification is assigned in three steps. At the first step, the rising intonation 
has to be assigned with the special mark "?" in the text,  instead of the period mark 
".". This means, unless the question mark shows up the ordinary falling intonation is set. 
After this assignment,  the user is asked precise specification about  the style he wants to 
make. 

Principally the rising intonation style is actualized by adding an accent component  
to the sentence's final mora. Within this style, there are many variations, which convey 
various kinds of feeling, however, they can be systematically arranged with 2 parameters  
relating to the accent component  to be added. So there are 4 possible types of pitch 
pat tern  for the sentence's final 2 morae, which are related to the accent to be added. 
Thus,  the two parameter  values, the value of the delay timing (this brings prolongation in 
the last mora) and the magni tude of the added accent component ,  with good consideration 
for the pitch pat tern  of the sentence's final pitch pat tern  type of the given sentence. In 
case of the default of this specification, the prepared s tandard values shown in the Table 
4 are set automatically.  

Figure 5 shows some examples of rising intonation pat terns  of the same sentence speci- 
fied with different parameter  values,which are as follows: (left to right) prolongation; 0%, 
50%, 50%, magni tude  (Aaj) 0.3+0.9, 0.3+0.9, 0.7+0.9. 
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Table 4. Standard values of accent component and delayed timing for generating the 
rising intonation 

type of the magnitude of the adding timing delav of the adding 
endin~ 2 morae accent, component, ( A a j )  accent in percent, a~e 

�9 - . . -  I 0.7 10 X 

�9 �9 �9 . -LL I [  0.9 50 X 

�9 - -  - - ] ] I  0.9  20 Y, 

�9 �9 -'_F 13/ o.9 30 x 

( H z )  

~S@ 

s  

a) 

o bo �9 ga na I 
'~'@ 'l@@ 

[Hzjl c8=) 

bo �9 ga na I 
SO 'S@ 'J.@@ ' ~g,~4) ~0  

re(:. 

o bo �9 ga na I 
L 

' ~ O  ' =o  ' l e e  ' S g r  
r e c .  rec . .  

Figure 5. Example of the pitch pattern difference, within the rising intonation style, 
caused by the different parameter values of the added accent component. The literal 
meaning of this sentence is "You don't have the memory ?" 
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3 .5 .  P i t c h  p a t t e r n  e x p a n d i n g / f l a t t e n i n g  o p t i o n  

The user can modify the composed pitch pattern to expanding or flattening, by means 
of assigning two specific values of the continuous two variables "m" and "n". The variable 
"m" is the applicable lower limit frequency of the modification, and can be chosen as any 
value above 70 Hz. The other variable, "n", is the modification coefficient, of which the 
role is shown in the equation f '  = f(f/m) n. Here f is each frequency comprising the 
original pitch pattern, and f '  is each frequency in the modified new pattern. The user 
can assign any value between -1 and +1 as "n'. In case of the default of this assignment, 
n = 0 is set, and it is clear from the equation that no modification happens in this case. 

4.  C O N C L U D I N G  R E M A R K S  

After many trials of the synthesis experiment with system, especially with the help 
of a combination of various optional parameter assignments, it is found that most of the 
prosody styles which appear in text reading mode speech can be synthesized, but the 
prosody styles in other speech modes, viz. conversation style can be simulated manual, 
not by rules from the input text. However, it is believed that to make it by rules may be 
possible by adding a few more paralinguistic marks to the input letters. It is also found 
that the rising intonation option and the pitch pattern expanding option are useful in 
simulating such a prosody style. 
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A Prolog-Based Automatic  Text- to-Phoneme 

Conversion System for British English 

J. Laver, J. McAUister, M. McAllister and M. Jack 

Centre for Speech Technology Research, University of Edinburgh, Edinburgh, UK 

A b s t r a c t  

One of the challenges facing phonetics in the area of speech technology is the task 
of making speech knowledge explicit in a rule based form such that a computer can 
read text out loud in an intelligible fashion. The applications of a text-to-speech system 
of this sort are potentially very numerous. This paper describes a system, written in 
Prolog (extending to over 3,000 clauses) for automatic text-to-phoneme conversion for 
British English, offering details of modules for textual anomaly normalisation, word level 
pronunciation assignment, syntactic processing and word boundary phonology. Results 
of evaluation studies of the text-to-phoneme system are included. 

1. INTRODUCTION 

An automatic text-to-speech (TTS) system is a computer system which can take writ- 
ten text as input, and produce audible and intelligible speech as the output. There are two 
major components in such a system: a linguistic processor for converting the orthographic 
text to a phoneme string annotated for intonation, and a synthesiser for converting this 
string into speech sounds. In this paper, detailed consideration will be given only to the 
linguistic processor and comments on intonation and synthesis will be largely omitted. 
The internal strategy of the linguistic processor (text-to-phoneme) described here consists 
of a number of operations: 

1. Preprocessing of the text to regularise anomalous forms such as acronyms. 

2. Examining each word in the input text to establish its morphological make-up. 

3. Stripping off any suffixes for separate treatment. 

4. Looking up the pronunciation and grammatical category of the remaining morpho- 
logical core of the word. 

5. Assigning word-stress. 
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6. Making appropriate morpho-phonemic adjustments to the pronun- ciation of the 
whole recomposed word. 

For those cases where the word is not morphologically complex or is not  represented in 
the main dictionary of the system, then the pronunciation is generated by using a set of 
grapheme-to-phoneme spelling conversion rules. In addition, the overall intonation and 
rhythm of the utterance is generated on a phrasal basis partly with the help of a syntactic 
parsing mechanism. The structure of the system is illustrated overleaf. 

Text in normal orthography is input to the system via a keyboard or is read from 
a file. Textual Anomaly Normalisation (Laver 1988) identifies any orthographic strings 
which do not conform to the system's limited notion of what constitutes a 'word' (e.g. 
digit sequences, abbreviations) and converts them into a form which is capable of being 
processed by the other modules of the system. The Syntax module performs an analy- 
sis of the sentence which will be used both by the Word Level Pronunciation modules 
and by the Intonation Assignment. The output of Textual Anomaly Normalisation is 
passed to a group of modules whose task is to generate the pronunciations of individ- 
ual words. Morphological Analysis determines the morphological structure of words and 
assigns a pronunciation to each morph, either through dictionary lookup or (where this 
fails) by grapheme-to-phoneme conversion. In some instances, it is necessary to select 
between a pair of alternative pronunciations (for example, in the case of the noun and 
verb interpretations of the word house). This is one of the tasks of the Phonological 
Disambiguation module, which also resolves ambiguities in the suprasegmental properties 
of allies. Morph Boundary Phonology introduces phonological modifications which arise 
when particular morphs are concatenated (for example, the change f r o m / k / t o / s /  at 
the morph boundary when the sumx ity is added to the stem electric). In cases where 
lexical stress pattern is not marked in the dictionary, this is determined by rule in the 
Lexical Stress Assignment module. Vowel quality changes associated with stress and other 
phonological factors are introduced by the Vowel Reduction module. Finally, Intonation 
Accent Placement identifies those syllables in the sentence which should bear the major 
fundamental frequency movement. The resulting annotated phonemic string can then be 
passed to a speech synthesiser which produces audible output. We can now examine the 
structure of the main modules of the linguistic processor in more detail. 

2.  T E X T U A L  A N O M A L Y  N O R M A L I S A T I O N  

The purpose of the textual anomaly normalisation process is to intercept and treat 
anomalous textual strings, i.e. strings which do not conform to the conditions of neu- 
trality which characterise the input to the other modules of the system. This definition 
assumes preprocessing mechanisms for receiving textual data into the system, segmenting 
the character stream into strings, and separating the core textual strings from any meta- 
textual characters (such as punctuation) which may be appended to them. The Prolog 
interpreter environment provides facilities such that any program which expects input 
from the keyboard can have data directed to it from a file or the output of another oper- 
ating system function. Therefore, the preprocessing and anomaly normalisation module 
is constructed as if input is always from the keyboard, and these system facilities are 
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invoked when this is not the case. The segmentation of the character stream into strings 
is primarily performed on the basis of 'orthographic islands', i.e. any strings delimited 
by space, tab or newline characters. (These characters form the set responsible for the 
production of white space in a printed version of a text). The only exception to this 
simple mechanism is the provision of a strategy to recombine words which have been 
hyphenated across a line break. The identification, removal and labelling of meta- tex- 
tual characters from the extremes of strings has to take into account several interacting 
factors. Single quotes, for example, are sometimes used abutted to the beginning of oth- 
erwise neutral strings as an indication of an abbreviated form of a commonplace word 
(e.g. 'cause for because).  The anomaly dictionaries must be consulted prior to stripping 
non-alphanumeric characters in case those characters are a valid part of a known anomaly. 
Various abbreviations, acronyms, trade and technical names contain non- alphanumeric 
characters at their extremes, most commonly abbreviations terminated by a full stop. 
The closing item of paired punctuation characters (e.g. brackets) should only be stripped 
after a valid occurrence of the appropriate opening item. Non- alphanumeric characters 
which might form a valid part of a number string should not be removed where they abut 
digits in the text string. The precedence of these strategies is of particular importance as 
they can, at times, suggest contradictory actions. 

Anomalies found in the anomaly dictionary are returned as a triple containing the 
dictionary entry and empty affix lists. Lower case strings are returned as themselves for 
decomposition. Special rules are invoked to deal with the pronoun I and the capitalised 
article A at the start of a sentence. Individual upper or lower case letters are given 
their letter name pronunciation, marked as proper nouns and returned as triples. Capital 
initial strings at the start of sentences are decapitalised if not found in the proper name 
dictionary. Capital initial strings elsewhere in sentences are marked as proper names 
whether found in the anomaly dictionary or not. In the case of any other anomalies, 
marked affixes are stripped, and the transcript of each alphabetic or numeric sub-string 
or each character name are appended into in the triple format. This mechanism allows 
the normal morph boundary phenomena to apply to the composite pronunciation. 

Number strings may be divided into unit-based and unitless numbers. Integers, real 
numbers, fractions, ranges, factorials and comparators are all unitless. Of the unit-based 
number strings only quantity strings and currency strings have true, identifiable units. 
The remainder - sequence numbers, percentages, ordinals, times and dates - have what 
may be regarded as 'pseudo-units'. This distinction is made because, rather than the 
sparse set of combinations currently parsed by the system, it should be possible to combine 
every unitless type with the two true unit-based types. The omission of these combinations 
has been done on probabilistic grounds. The likelihood of say, a factorial expression of 
currency such as $14! is extremely low. 

In order to evaluate the module, a set of anomaly-rich texts were taken from news- 
papers, technical journals, and other paper copy textual media. These texts were used 
as input data for the preprocessor and anomaly normalisation module, first in isolation 
then as part of the full system. In this way, separate judgements could be made on the 
accuracy of textual string separation and anomaly detection and the appropriacy of the 
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anomaly normalisation procedure selected. The results are shown below. 

Anom~l 7 Type No. tested No. correct Accuracy[ 
Meta-textuals 95 95 100% 
Capital-initials 87 87 100% 
Digit-bearing 35 34 97% 
Hyphenation 15 15 100% 
Other 24 24 100% 
Proper names 72.5% 
Strings in Dictn.ry 84.5% 
Strings not inDictn.ry 86.5% 
Number strings 100% 

3. W O R D  L E V E L  P R O N U N C I A T I O N  A S S I G N M E N T  

The philosophy adopted in the system has been to assign pronunciation by dictionary 
lookup wherever possible, and to resort to grapheme-to-phoneme rules only when the 
latter approach failed. It is well-known that, in English, morph boundaries frequently 
block the operation of grapheme-to-phoneme rules (Lee, 1969); for example, the rule 
which states that the sequence sch is pronounced/s k / ( a s  in school) does not operate 
in the word mischance because of the presence of the morph boundary between the s 
and the c. In order to determine the morphological structure of the word, it is analysed 
by the Morphological Decomposition module, which has access to a morph dictionary 
containing information about word stems, as well as to a list of the affixes used by the 
system. If no satisfactory analysis of the word can be found, all or part of it may be 
passed to the Grapheme-to-Phoneme module whose task is to arrive at a segmental tran- 
scription of the word, unmarked for stress and containing full vowels. Ambiguities in the 
pronundations of words, as listed in the morph dictionary, or in the labels attached to 
affixes, are resolved by the Phonological Disambiguation module. Three final adjustments 
must be made to the segmental representations of words before they leave Word Level 
Pronunciation Assignment: modifications at morph pronunciation of the plural marker; 
lexical stress assignment, in cases where stress is unmarked in the dictionary or when 
the presence of certain affixes will result in stress shift; and reduction of certain vowels 
in unstressed syllables. The Morph Boundary Phonology, Lexical Stress Assignment and 
Vowel Reduction modules are responsible for these operations. 

The morph dictionary consists of about 7,500 entries and was constructed by analysing 
the first 15,000 words in the American Heritage Word Frequency Book (a frequency- 
ordered list) into constituent m0rphs. In addition, some polymorphemic words which 
were exceptions by the criteria of other modules were included in the dictionary. For 
example, the word finish is considered by some writers to be polymorphemic (cf forms 
such as final, infinite). However, it is included in our dictionary because, as far as 
our system is concerned, the sUtfLX ish signal an adjective (e.g. peckish, loudish). The 
dictionary contains almost 7,000 entries which are free forms of various kinds and over 500 
bound stems. Each dictionary entry details (in the form of a Prolog list) the orthographic 
transcription of the word (a Prolog string), its phonological transcription (a list of Prolog 
atoms), grammatical category information (a Prolog list, which will be empty if the form 
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is a bound root), information about the morphological status of the form (i.e. whether it 
is free or bound) and a variable number of flags relating to aspects of the processing of 
the word. An example of a dictionary entry, for the word crown,  is shown below: 

["crown", [k, r, au, n], [noun(~), verb( [main, bse] )], free]. 

4 .  M O R P H O L O G I C A L  D E C O M P O S I T I O N  M O D U L E  

The task of the morphological decomposition module is to provide a morphological 
analysis which will lead to correct segmental pronunciation. For example, the word 
mishap  will be pronounced /" m i sh a p/  if the morph boundary is not identified. 
It also assists correct lexical stress assignment. For example, the word eng ineer  will 
be stressed on the first instead of the third syllable if the suffix -eer  is not identified. 
Similarly, it offers grammatical category information, certain affixes providing islands of 
reliability for the syntax module (e.g. the suffix i ty  unambiguously signals a noun). 

The mechanism itself is the least important part of the module. The only important 
decision here has been to strip suffixes before prefixes. The morph dictionary provides 
the Morphological Decomposition module with information about any words that are 
considered to be exceptions for any reason. The dictionary has the highest precedence in 
decomposition; that is, if a word is found in the dictionary then no further decomposition 
will be attempted. The affix lists define the prefixes and suffixes which the system uses. 
These lists contain the orthographic and phonemic transcriptions of the affix, its word 
class properties, its stress properties and its weighting. The stem adjustment module 
ensures that stems are correctly adjusted when an affix has been removed. For example, 
the double orthographic consonant in runn ing  is due to the presence of the s u f ~  ing. 

Evaluation has been carried out using a composite list made from two machine-readable 
dictionaries plus a list of the word types in a large corpus of running text (over a million 
word tokens). The number of word types in this composite list was in excess of 85,000. 
From this list, 500 words were randomly selected. The 500 words were passed through 
the morphological decomposition module and the outputs were examined. The module 
performed at a 69.6% level of accuracy. 

5.  M O R P H  B O U N D A R Y  P H O N O L O G Y  

The Text-to-Phoneme conversion system is one whose linguistic processing is firmly 
centred on a morphological analysis of words input to it. This strategy yields a great deal 
of information about the stress pattern and possible word classes of a word and allows 
a more compact storage of segmental information. Pronunciation data are linked to the 
morphs that make up words and not the words themselves, thereby giving a generative 
expansion of the number words which can be handled against the number items stored. 
Component transcriptions, however, are generic across many instantiations of a morph 
and as such often need adjustment to take into account their phonological context. 

For example, the past tense marking suffix -ed is stored with a transcription o f / i  d/, 
but it may take other forms in different contexts. Consider the word fated,  famed  and 
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faced. After morphological analysis, these give the stems fate, fame and face, respec- 
tively, followed by the suffix ed. Their pronunciations undergo transformations based 
on a pattern matching algorithm using a set of rules represented as facts in the Prolog 
database. The pattern matching algorithm (or 'engine') deals with the data structure of 
the decomposed word independently from the structure of the phonological rules. This 
allows both structures to be changed independently at any time without imposing con- 
straints on the other. As well as comparing the segment sequences on either side of each 
morph boundary within the word with the patterns in the rules, the engine also allows 
word-final sequence to be matched against specifically marked rules. 

6. L E X I C A L  S T R E S S  A S S I G N M E N T  

The task of Lexical Stress Assignment (LSA) is to mark primary and secondary stress 
on the phonemic string which is passed to it by the Morph Boundary Phonology mod- 
ule. There is a strong theoretical and computational link between LSA and Phonological 
Disambiguation, on the one hand, and Vowel Reduction, on the other. The input to the 
Lexical Stress Assignment module is in the form of a Prolog list which contains both mor- 
phological and phonological information. Fudge (1984) defines the stressable portion 
(SP) of a word in terms of its morphological structure. The SP of a word is found by 
removing any affixes which bear the 'sn' accentual property label. For example, the word 
inversion is specified as follows: 

[[[i, n], sr v]], 
[[v, ~O, sh]], 
[[[~, n], psi, [[verb ([main, ]), noun(fl)], 
[adj (bse), noun ([])]]], 
[[z], sn, [[noun ([]), noun (~)], 
[verb (main, bse]), verb ([main, gen])]]]]] 

For the word inversions,, the SP is inversion. The 'get.sp' predicate in the LSA 
program removes all the information relating to -s from the suffLx list, and primary stress 
is assigned to inversion. 

A distinction is maintained in the LSA module between morphologically complex SPs, 
which contain suffixes and/or prefixes, and morphologically simple SPs, which do not. 
The latter, which the system can recognise by virtue of their empty prefix and suffix 
sub-lists, are assigned primary stress on the basis of phonemic information (specifically, 
the number and perhaps also the composition (or 'weight') of the syllables in the SP). In 
English, syllables consist of an obligatory peak (usually a vowel, although/m, n, r / and  
/1 /may function as peaks) and optional preceding and/or following consonants. These 
optional consonant sequences are termed the onset and coda, respectively. 

The basic rules for secondary stress placement use as the relevant criteria position of 
primary-stressed syllable relative to the beginning of the word and syllable weight, and 
are as follows: 

1. If the second syllable receives primary stress, there is no secondary stress (e.g. 
lapel/l  @ "p e 1/, v e r a n d a / v  @ "r a n d @/, A m e r i c a / @  "m e r i k @/). 
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2. If the third syllable receives primary stress, the first syll able receives secondary 
stress, (e.g. a l u m i n i u m / ' a  I y u " m i  n i @ m/,  p a n o r a m a /  'p a n ~ " r a a  m @/). 

3. If the fourth (or later) syllable receives primary stress, t h e  weights of the preceding 
syllables must be considered as fo llows: call the syllable receiving primary stress 
syllable n . If syllable n-2 is strong, assign primary stress to syUab le n-2 (e.g. 
encyc lopaed ia  /i n ' s  ai k 1 @ "p ii d i @/); otherwise, stress syllable n-3 (e.g. 
p h a r m a c o p o e i a / ' f  aa m @ k @ "p ii ~ / ) .  

The domain of the secondary stress rules is the whole word, not just the SP. 

7. GRAPHEME-TO-PHONEME RULES 

The final version of the grapheme-to-phoneme rules were tested on a total of 2409 free 
forms listed in the dictionary. When the outputs of the grapheme-to-phoneme module 
were compared with the dictionary transcription (on a segment by segment basis, ignoring 
markers) 75% were correctly transcribed. Some of the mismatches are due to the presence 
of reduced forms in the dictionary. Accordingly, the 611 entries which did not agree with 
the dictionary transcriptions were passed through the lexical stress assignment and vowel 
reduction modules and the total number of correctly transcribed items was then 2244 
(93%). 

8. WORD BOUNDARY PHONOLOGY 

Word boundary phonology is a term used to denote those changes which words undergo 
when they are uttered in connected speech. For example, the citation form (i.e. the form 
produced when the word is spoken in isolation) of the word ten  i s / t  e n/  whereas in 
connected speech this would change as in ten  miles as [ ' t  e m "m ai 1 z]. Two kinds of 
change may be expected depending on the quality of a following consonant: 

1. If a following word begins with / k / o r / g / ,  the final segment of the word ten  is 
realised a s / n g / :  

ten  cats  [ ' t  e ng "k a t s]; 
ten  geese [ ' t  e ng "g ii s]. 

2. If the following word begins w i t h / p / , / b / ,  o r / m / ,  the final segment of the word 
ten is realised a s / m / :  

ten  people  [ ' t e m ' p i i p @ l ] ;  
ten  boys  [ ' t  e m "b oi z]; 
ten  men  [ ' t  e m "m e n]. 

Similar kinds of processes are found when word-final /n/ is  followed by dental consonants 
( / t h / , / d h / ) .  A more general way of describing this kind of effect is to say that a word- 
final nasal segment assimilates to the place of articulation of the initial consonant of the 
following word. Assimilation is a common process in the production of connected speech, 
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affecting even carefully articulated, formal utterances such as those produced by television 
newsreaders (Brown 1977). 

The rules were the result of a survey of several linguistics texts: e.g. Gimson (1980) 
and Brown (1977). Since the task of the rules is to convert the phonological input to its 
phonetic counterpart, in the form of a printed string representing many of the segmental 
characteristics of the eventual output of the system, a phonetic transcription is introduced 
in this module. Such a modification is necessary because elements such as the dental 
nasal, which do not function at the phonemic level in English, are frequently realised at 
the phonetic level. 

9. V O W E L  R E D U C T I O N  R U L E S  

In English, many vowels in unstressed syllables (that is, in syllables not assigned pri- 
mary or secondary stress) are realised at the phonetic level as the central vowel / ~ / .  
Consider, for example, the second vowel in each member of the following word- pairs: 

invoke [i n "v ou k] 
maintain [m ei n "t ei n] 

invocation ['i n v ~ "k ei sh ~ n] 
maintenance  ["m ei n t O n O n s] 

While the first member of each pair contains a full vowel, in the second syllable, the 
vowel in the second member is reduced. Similarly, some unstressed vowels are realised as 
[i]: 

recite [ri "s ai t ] 
allege [~ "1 e jh] 

recitation ['r e s i "t ei sh ~ n] 
allegation ['a I i "g ei sh O n] 

This phenomenon is known as vowel reduction. 
The corpus used in testing the vowel reduction module consisted of the 286 words cor- 

rectly assigned stress in the LSA evaluation (see Section 6). These words were processed 
by the Vowel Reduction module and the results assessed for the correctness of vowel qual- 
ity. It should be noted that correctness' here was interpreted in the light of the input 
passed to the program by higher-level modules such as Grapheme-to-Phoneme Conversion 
and Morph Boundary Phonology. In the test, 258 words (91%) were processed correctly. 

10 .  S Y N T A X  

The nature of other modules in our system, particularly the morphological and into- 
nation modules, places rather unusual constraints on the type of syntactic analysis which 
is required. In order to handle unrestricted text, which is not necessarily grammatical 
(in the sense of constituting valid English sentences), the syntactic analysis must provide 
extremely wide coverage of grammatical and quasi-grammatical sentences and sentential 
fragments. However, unlike most practical parsing systems, the parser must work without 
the benefit of fully specified lexical entries, since relevant syntactic information such as 
subcategorisation possibilities for verbs is not currently available from the TTS lexicon 
(and perhaps not from any morph- based lexicon). Moreover, for morphologically simple 



375 

words which are not members of bne of the closed word classes, and for many morphologi- 
cally complex items with syntactically ambiguous affixes, the parser must choose between 
a variety of different word class hypotheses which in the worst case might encompass 
noun, verb, adjective and adverb. 

As the combination of all these factors would cause massively nondeterministic be- 
haviour in the operation of many normally well-behaved sophisticated parsing formalisms, 
our syntactic analysis is based on a framework of simple phrase structure grammar. A 
highly sophisticated theory of grammar would also be largely redundant, since the syn- 
tactic analysis required by the intonation module need not be very detailed. 

The grammar is written in an extended DCG notation which is easily understood by 
linguists, and is then translated before run time into a more efficient Prolog representation. 
The basic parsing strategy is a bottom-up, left-corner one, pursuing alternative parses 
serially which also has considerable predictive power, and is based on the BUP parser 
(Matsumoto et al 1983). The parser also keeps track of both failed and successful goals 
at run time by building a well-formed substring table (wfst), containing both types of 
information: this strategy significantly decreases the search space at any given point in a 
parse. 

11 .  S Y S T E M  L E V E L  E V A L U A T I O N  

In addition to the individual evaluations of specific modules which are reported above, 
an evaluation of the system as a whole has been conducted. A corpus of 100 sentences was 
constructed by selecting 50 sentences from recent newspapers and journals and 50 Harvard 
sentences. The 'newspaper' sentences (mean length 20.48 words) were considerably more 
complex than the Harvard sentences (mean length 7.92 words). 

The segmental outputs were then examined by hand. The number of words in each sen- 
tence which were assigned an inappropriate segmental pronunciation (taking into account 
phonemic context) was calculated, and the results are presented below. 

Source Total Words %age 
words incorrect correct 

Newspaper sentences 

Harvard sentences 

1024 97 90.5 

396 12 97.0 

Total 1420 109 92.4 

12 .  F U T U R E  W O R K  

The architecture of the text-to-phoneme conversion system described in this paper has 
been shown to be sufficiently robust to permit extension of the coverage of the system 
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to a "whole language" level. This does not include the highly specialised vocabularies of 
science or medicine nor the unusual phonology of a complete set of proper names. The 
eventual objective of the project will be for the system to be able to produce an intelligible 
version of any grammatical sentence capable of being written in ordinary English. 
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Abstract 

This is a brief summary of analysis procedures and results from studies of speech 
prosody and individual variations in text reading. Within a larger perspective we want to 
derive rules for good reading performance and rules related to voice types, sex, age, and 
reading style. We shall here discuss segmentation problems and provide data on objective 
and subjective studies of syllabic stress, speech rhythm, and the realization of phrase and 
sentence boundaries. 

The general principles for the organization of our data base and of the search for 
durational rules have been developed by Carlson and GranstrSm [1 - 4]. A first report 
on segmentation issues and on observations of individual speaker variations were given 
by Fant, Nord, and Kruckenberg [5, 6]. Results from studies of syllabic stress and phrase 
boundary marking have recently been reported [7 - 9]. A more comprehensive report on 
our work will appear in the STL-QPSR, 2/1989, Fant and Kruckenberg [10]. 

1. SEGMENTATION 

We start out with a provisional phonemic transcription and segmentation, [2], which 
conforms with the letter-to-sound rules of the RULSYS synthesis. A combination of an 
initial automatic segmentation and a following careful manual correction and editing with 
oscillograms and spectrograms as a visual reference, see Figure 1, produces a temporally 
defined string of phoneme segments which is the basis for the durational studies. 

This process is apparently not unproblematic. Phonemes may be so weakly mani- 
fested and be subjected to such extreme temporal spread that signal-driven segmentation 
strategies fail. 

We often have to decide that a phoneme be given a zero duration but we retain its 
positional address. Irrespective of drop outs and fuzzy realizations, our system allows 
us to analyze and describe contextual and individual variations by rules. This seems 
preferable to attempting an initial narrow phonetic transcript thus avoiding ambiguities 
and inconsistencies of subjective notations. 

A few examples follow. Boundaries are more clearly realized by changes in "manner" 
cues than in "place" cues. Thus, it is easy to find the boundary between a fricative and a 
vowel, but we have no consistent rules for defining boundaries between adjacent vowels or 
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between voiced consonants such a s / v / , / j / ,  a n d / r / a n d  their combinations with vowels. 
A voiced intervocalic stop is not always associated with a stop gap, and phonemically 
unvoiced stops may attain voicing in unstressed positions. Lack of oral closure may 
affect nasals as well as stop sounds. An incomplete glottal abduction in a n / h / c a u s e s  
a continuation of voicing which obscures the segmentation. Here we are concerned with 
a class of articulatory reductions which tend to reduce temporal contrasts, especially 
between consonants and adjacent vowels. The notion of "articulatory contrast" and its 
consequence "dynamic contrast" is an important production parameter to consider. 

Two adjacent unvoiced stops may share a single stop gap. As a rule we then assign 
one half each of the stop gap to the two phonemes. The boundary between a vowel and 
a following nasal may be hard or impossible to locate if the nasal element is realized by 
nasalization only. This happens frequently when the nasal is followed by an obstruent. In 
general, because of segmentation uncertainties, durational data on the sum of successive 
phonemes, e.g., a vowel plus a following consonant, are more reliable than data on the 
separate parts. However, in spite of all these difficulties, trained members of our group 
perform more consistent segmentations than one could anticipate, [2]. 

These phenomena are further illustration in [5], see also the incomplete closure of the 
voiced s t o p / g / i n  the spectrogram of Figure 1. 

2 .  SYLLABIC STRESS 

Swedish is a stress-timed language with sequences of unstressed syllables alternating 
with stressed syllables. A stressed syllable carries a nucleus of a long vowel followed 
by one or two short consonants, or no consonant, or the vowel is short and is followed 
by a long consonant or a consonant cluster. A stressed syllable also carries one or two 
contrasting tones, accent 1 or accent 2. Duration appears to be the main correlate of stress 
in Swedish, at least it is more readily quantifiable than associated F0-measures. The zone 
of durational increase with increasing stress is the entire syllable but a larger part of the 
lengthening is confined to the vowel and the following consonant. This VC-nucleus will 
serve as our major objective reference. An unstressed g c  has a typical duration of 110 
ms and a stressed V : C = 235 ms when the vowel is long, and g C  :=210 ms when the 
stressed vowel is short. In order to normalize durational measures, we first make statistics 
of the speaker's typical VC-  durations for stressed and unstressed conditions, To and Tu. 
These are assigned normalized values of 2 and 1, respectively. Any duration measure T 
is then by linear interpolation converted to a normalized syllable index 

Sd = 1 + ( T -  T,,)/(To - T,,) (1) 

A similar process was carried out for Si values calculated on the basis of complete syllables 
and also for vowel-to-vowel units. These measures came out rather close to the VC-based 
Si. Local F0 rises and falls within a stress domain were also highly correlated with the Si 
values. 

From listening tests we derived subjective syllable stress ratings. These were linearly 
transformed into the same frame with subjective response S, = 2 for typically stressed 
syllables. As a result, we could compare objective and subjective values within a common 
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frame. As seen in Figure 2, the overaU correlation is very good. The temporal profile for a 
sentence is quite similar except that final lengthening did not induce the listeners to apply 
a higher score. An additional subjective test directed to quiet reading and introspection 
instead of listening also gave quite similar results. However, control experiments showed 
that listening performance was not essentially a top-down procedure. The listeners proved 
to be able to accurately follow individual variations of stress patterns. 

3 .  I N T E R S T R E S S  I N T E R V A L S  A N D  R H Y T H M  

A substantial amount of work has been devoted to the study of interstress intervals, 
defined by the time from the onset of a stressed vowel to the onset of the next stressed 
vowel in the sequence. The durations of such stress feet were related to the number of 
phonemes and syllables in the foot. Excluding feet spanning syntactic boundaries, we 
found evidence for a linear regression 

T~ - A + nB (2) 

where n is the number of phonemes, B is a constant durational increment of about 55 ms 
per extra added phoneme and A is a constant which includes all the durational increase 
within the stressed syllable. It is of the order of 50-200 ms dependent on speaker and 
speaking style. The incremental constant B is more stable and ranges from 50 to 65 ms. 
The foot length T~ ranges from 250 ms to 1000 ms with an average of about 550 ms, 
corresponding to n = 7.4 phonemes or close to three syllables. 

A decomposition of the constant A showed that a trained reader prolonged the stressed 
vowel by about 60 ms, the following consonant by 65 ms, and the next consonant by 35 
ms, whilst the consonant preceding the stressed vowel gained 15 ms only. A larger part of 
the lengthening associated with stress is that contributed by consonants. This also holds 
for individual variations. Vowel lengthening is usually less than the sum of consonant 
lengthenings. Similar conclusions arise from the Carlson and GranstrSm study [2]. 

A study of stress intervals spanning pause gave interesting results. We found a co- 
variation with negative correlation between pauses duration and final lengthening. De- 
composing the interstress interval into sound and silence, we first calculated the amount 
of terminal lengthening as the amount that the sound duration exceeded the duration 
expected from the number of phonemes in non-spanning contexts, Eq. (2). The sum of 
the terminal lengthening and the duration of the pause is a net measure of the deviation 
of the interstress interval from that in a non-spanning context. In rhythmical reading it 
comes close to the average duration of the whole ensemble of non-spanning feet, about 
550 ms. An example is shown in Figure 3. 

Isochrony is thus physically manifested at phrase boundaries rather than in the unin- 
terrupted sequence of stresses. We are thus in a position to substantiate and extend the 
conclusions of Lea [11] and Allen [12] as follows. 

Speech rhythm is preserved by an inner clock which synchronizes on the average of non- 
spanning stress intervals. One such clock unit or silent foot is added at phrase boundaries. 
It is realized as a combination of pause and terminal lengthening. According to our 
findings, rhythmical reading preserves similar conditions at sentence boundaries, where 
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Figure 3. Duration of interstress intervals and related time intervals as a function of the 
number of phonemes involved.Filled circles refer to intervals not spanning boundaries. 

the duration of pause and terminal lengthening tend to sum up to the integer multiples 
of the basic rhythm interval, usually two units. 

However, deviations do exist. Phrase boundaries may be marked by terminal length- 
ening only, especially in case of vocalic juncture, where a local F0-minimum also appears. 
The terminal lengthenings then are usually shorter than the clock unit. The presence of 
the terminal lengthening may conveniently be related to the interstress interval. 

A study of 16 speakers' performance in realizing phrase boundaries in reading showed a 
large spread of the duration of the spanning interstress intervals. However, on the average, 
the sum of pause and terminal lengthening tended to come close to the ensemble mean of 
the subjects' average non-spanning foot. 

Subjective scalings of each speaker's phrase boundary marking were performed. A 
linear increase of subjective rating versus the spanning interstress duration measure was 
observed, see Figure 4. The slope of the regression line tended to become less steep under 
conditions when both the left and the right syllable at the boundary were stressed. 

The ratio of accumulated pause time to accumulated net reading time was found to be 
a characteristic individual feature ranging from 15 to 30%. One interesting observation 
from our study is that speakers who make relatively short pauses tended to have relatively 
longer net speaking time. 

This trend is opposite to expectancy but could illustrate one more instance where parts 
of speech combine in a compensatory fashion. 
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A b s t r a c t  

Any practical speech understanding system must be able to deal with a wide range of 
grammatically ill-formed utterances, both because people regularly form ungrammatical 
utterances and because there are a variety of forms that cannot be easily included in the 
current grammatical models. In this paper, we will describe some language phenomena 
commonly considered grammatically ill-formed in real language usage and present some 
relaxation mechanisms based on preference semantics proposed by Wilks. 

I .  I N T R O D U C T I O N  

Among the components included in a Speech Understanding System (SUS) is a gram- 
mar, which specifies much of the linguistic structure of the utterances that can be ex- 
pected. However, it is certain that a SUS will often receive ill-formed input, both be- 
cause, unlike written text input, a SUS takes a multiple number of hypotheses as input 
for a particular voice input and because people regularly form ungrammatical utterances. 
Furthermore, there are a variety of forms that cannot be easily included in the current 
grammatical models (i.e. extra-grammatical). Therefore, a SUS requires, at the very 
least, some attempt to interpret, rather than merely reject, what seem to be grammati- 
cally ill-formed utterances. 

In this paper, we will first describe some language phenomena commonly considered 
ungrammatical or extra-grammatical. We will then discuss some relaxation mechanisms 
directed at integrating them as much as possible into the conventional syntax-based frame- 
work of grammatical processing performed by a SUS. This parser is called FIeP (FIeP is an 
acronym for Flexible Parser). FIeP has been intended to primarily focus on the relaxation 
mechanism and its use of syntactic knowledge. 

In the remainder of this paper, we will consider an alternative model of parsing gram- 
maticaUy ill-formed utterances, a model which addresses many of the issues suggested 
from the development of FIeP. This model is speculative, since it is currently not sup- 
ported by an implementation. At this point, the model's major value is that it suggests 
the kind of computational model which may form the basis for the development of broader 
models of parsing and more general techniques for building a SUS. 
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2.  S Y N T A X  B A S E D  A P P R O A C H :  F I e P  

This section will introduce the types of ill-formed utterances we have studied, propose 
some relaxation mechanisms aimed at solving them, and discuss how these mechanisms 
are used. At the end, some limitations inherent to FIeP will be discussed and extensions 
suggested. 

2 . 1 .  L a n g u a g e  P h e n o m e n a  

There are a number of distinct types of grammatically ill-formedness, and not all types 
are found in all types of communication situations. The grammatically ill-formed utter- 
ances treated within FleP include syntactic constraint violations, especially, co-occurrence 
violations, extraneous forms, and some kinds of conjunctions. 

(1) Co-Occurrence Violations 
Our first type of grammatically ill-formedness is concerned with co-occurrence restric- 

tions within an utterance. The most common form of co-occurrence violation is agreement 
failure between subject and verb, or determiner and head noun as in: 

He want to have a_ cups of coffee. 

Violations as the above involve coordination between the underlined words. Such 
phenomena do occur naturally. For example, Eastman and McLean [3] analyzed 693 
English queries to a database system, although the queries are not spoken inputs but 
written text inputs. In this experiment, co-occurrence violations, including subject/verb 
disagreement, tense errors, apostrophe problems, and possessive/plural errors arose in 
12.3% of the queries. 

(2) Extraneous Forms 
Another type of ungrammaticality occurs when a speaker puts unnecessary phrases in 

an utterance. In other words, people often repeat words, break off what they are saying 
and rephrase it, or put some interjected phrases in the utterance. 

(a) Repeated words: 
I would like to have two cups - -  two cups of  coffee. 

(b) Broken-off and restarted utterance: 
Can I -  Would you give me a cup of coffee f 

(c) Interjected phrases: 
I want the book titled, you know, Feigenbaums's the handbook of artificial intelligence. 
In the experiment described above, extraneous forms occurred in as little as 1.6parse 

extraneous forms may not be a critical requirement for a SUS. However, in human commu- 
nication with the aid of spoken input rather than written text input, it is not uncommon 
for people to form this kind of language phenomenon because of a change of intention in 
the middle of an utterance, an oversight, or simply for emphasis. 
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(3) Conjunctions 
The use of conjunctions is not ungrammatical, but it is generally not included in 

grammars. This is because conjunctions can appear in so many places that their inclusion 
would dramatically increase the size of the grammar. Several types of conjunction we have 
considered are as follows: 

(a) Simple form of conjunction: 
John washes his face and reads a newspaper in the morning. 

(b) Gapping: 
He chooses a rose and she a poppy. 

(c) Hacking: 
John enjoyed and my friend liked the party. 

(d) List form of conjunction: 
John 9ets up, washes his face and reads a newspaper in the morning. 

2 . 2 .  T h e  M e c h a n i s m s  a n d  H o w  T h e y  A p p l y  

In this section, we will propose some relaxation mechanisms which can address the 
language phenomena discussed above. All of the mechanisms follow a general paradigm, 
wherein a 'normative' grammar is assumed. The normative grammar specifies a set of 
acceptable inputs to the parser. We have chosen the Definite Clause Grammar (DCG) 
model [8] as the tool in which to express our ideas. This framework may be as follows: 

(1) Co-Occurrence Violations 
First of all, FIeP processes an input using a 'normative' grammar. During parsing, if 

FIeP finds a co-occurrence violation in the input utterance, the grammatically applicable 
condition on the right-hand side of a generalized phrase structure rule is marked with 
a 'relaxable point'. At this time, the condition is not considered until after all possible 
analyses have been attempted, thereby insuring that the input sentence will be handled 
correctly. When all possible analyses have failed, the parser checks and sees the relaxable 
point and locally relaxes the condition allowing the acceptance of the violation. 

(2) Extraneous Forms 
If no relaxable point was found in the 'normative' grammar, although FIeP could not 

parse the utterance, it then assumes that the input utterance may include an extraneous 
form. Extraneous forms may be inserted at almost any place in an input utterance. We 
can not manually add rules for handling extraneous forms to the normative grammar. 
Extraneous forms, thus, must be dealt with as they arise by relaxation mechanisms. 

(a) Repeated Words and Interjected Phrases 
When the parser finds extraneous forms in the input sentence, which cannot be ac- 

cepted by the normative grammar, it skips a word, creates a 'backtracking point', and 
analyzes the rest of the sentence. If the parser fails to analyze the remaining of the sen- 
tence, it returns to the backtracking point, skips one more word, and attempts to continue 
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parsing. FleP repeats this step until an extraneous form is deleted from the input. 

What is ~ ~  Jan Nelson's college degree? 
\ 

backtracking point 

(b) Broken-off and Restarted Utterance 
It is relatively straightforward for FIeP to simply ignore interjected phrases, such as 

'if any', 'please', or 'I think', and repeated words. More troublesome are broken-off and 
restarted utterances. 

In the example described in section 2.1, the first fragment 'Can I' is not a complete 
utterance, so the same technique as proposed above is being attempted and fails due to 
the missing constituents. In this case, FleP returns to the backtracking point, 'unreduces' 
all the previously skipped words in the input, skips the word prior to the backtracking 
point, and attempts to continue parsing. This process is repeated until the utterance does 
not have an incomplete fragment. ~ 

~ ~  Would you give me a cup of coffee? 

backtracking point 

(3) Conjunctions 
In addition to these techniques, FIeP can handle some types of conjunctions in a rather 

simple and reasonable way. As was described above, conjunctions, similar to extraneous 
forms, are not included in a 'normative' grammar. So, the mechanism for treating con- 
junctions is quite different from the one for treating co-occurrence violations or extraneous 
forms. At this point, we will consider the elided constituent in a conjunction, which is of 
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the form: 

A X and Y B. 

For example 

John washes his face and reads a newspaper in the morning. 

A X Y B 

where the underlying deep structure is of the form: 

f 
A X B and A Y B. 

Conjunctions are, thus, treated by FIeP as follows: processing proceeds normally until 
a conjunction is encountered. If the conjunction appears, processing is suspended and a 
particular process (called a demon) is activated. The demon, at first, saves the history 
of the parse up to that time, and analyzes the string following the conjunction by use of 
its sub-grammar. The demon, then, reactivates the parser using the history of the parse 
which has already been saved. For instance, in the example above, processing proceeds 
until the conjunction 'and' is encountered. The action of the demon is, therefore, to 
unreduce the elided constituent complementing the information of A (in this example, 
'John'). 

2.3. Limitations of the Syntax-Based Approach 

Although we have attempted to incorporate sentential level relaxation mechanisms 
into a DCG model, we have found that this (syntax-based) parsing paradigm itself is not 
well-suited to the kinds of grammatically ilbformed utterances discussed above. 
The reasons are as follows: 

First, semantic information is very important in recovering from many types of un- 
grammatical input, and this information is not flexibly available in a purely syntactic 
DCG model. It is true that semantic information can be brought to bear on DCG based 
parsing, either through the semantic granunar based approach [9] in which joint semantic 
and syntactic categories are used directly in the DCG, or by allowing 'extra tests' on the 
right-hand side of a generalized phrase structure rule [8] depending on semantic criteria. 
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However, the natural way to use these techniques is to employ the semantic information 
only to confirm or disconfirm parses arrived at on syntactic grounds. So, the rigidity of 
the DCG formalism makes it very difficult to bring the available semantic information to 
bear effectively on extra-grammatical input. 

Second, FleP cannot infer an alternative interpretation if its initial conjecture was 
incorrect. Furthermore, since the ability of variant syntax is limited, FIeP can handle 
variations in only a subset of the total classes of syntax its parsing mechanism handles. 
Thus, FleP cannot understand utterances with arbitrary out-of-order words and missing 
words. The parser's problem in each case is to put together a group of recognizable 
sentence fragments without the normal syntactic glue of function words or position cues 
to indicate how the fragments should be combined. 

Third, DCGs naturally operate in a top-down left-to-right mode, although a bottom- 
up capability is essential for many relaxation mechanisms, and directional flexibility often 
enables easier and more efficient operation of the mechanisms. Of course, the top-down 
left-to-right mode of operation is a characteristic of the DCG interpreter, not of the 
DCG formalism itself. In the bottom-up mode, all the fragments can be recognized 
independently, and purely semantic constraints can also be used to assemble them to a 
single interpretation on the basis of semantic considerations. 

Finally, in the case of out-of-order words, a parser which relies heavily on a strict left-to- 
right scan will have much greater difficulty than one with more directional freedom. Thus, 
a parser which scans fragments, and subsequently attempts to assign them appropriate 
syntactic categories from the surrounding input, is more amenable to this type of recovery 
than one dependent upon rigid word order constraints. 

3. S E M A N T I C S  B A S E D  A P P R O A C H  

Given the importance of both the relaxation mechanism and its use of semantic knowl- 
edge, the best way to address the issues described in the last section is through exper- 
imentation in the context of a real domain. That is, we must develop an alternative 
parsing model for grammatically ill-formed inputs and implement a system which tests 
this model. Based on such experiments, we can develop broader models and characterize 
the usefulness of different relaxation mechanisms. 

3.1. Language  P h e n o m e n a  

Our second parser is intended to parse grammatically ill-formed utterances in a lan- 
guage with a relatively free word order, like Japanese, although FIeP has been specialized 
for a language with a rigid word order, like English. In Japanese, an utterance begins 
with a certain number of noun phrases followed by a verb phrase. Almost all nouns and 
noun phrases have one or more postnominal sumxes marking case relationships. A verb 
phrase is always placed at the end of the utterance. The verb phrase consists of a verbal 
root and one or more ordered suffixes marking tense, aspect, modality, voice, negativity, 
politeness level, question, etc. 

In this experimental system, we will consider the following grammatically ill-formed 
utterances: omission of a postnominal suffix, extraneous forms, and free word order. 
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(1) Omission of a Postnominal Suffix 
It is not uncommon for the native user of Japanese to omit a postnominal suffix from his 

utterance, either by mistake or in an attempt to be cryptic. Furthermore, the postnominal 
suffix is too short for a SUS to be recognized correctly. However, fortunately, a Japanese 
postnominal sufl~, by itself, does not always provide all the necessary information for case 
assignment. Conversely speaking, the omission of postnominal sumxes is usually (though 
not always) recoverable by using semantic features of nouns and the case frame of each 
verb. 

For example, in an ill-formed utterance 

Watashi jitensha gakkou iku. 
(D (bicycle) (school) (go) 

where the semantic features of the nouns 'watashi', 'jitensha', and 'gakkou' are 'HU- 
Man', 'PROduct ' ,  and 'LOCation', respectively. Each verb then must have a case frame 
specifying which cases are required or allowed with it. The case frame of the verb 'iku' 
specifies that 'Agent' must be a 'HUMan'; 'Agent' moves to the 'Locational Goal' where 
the locational goal of this action is 'LOCation'; an 'INstrument' for the action 'iku' must 
be a 'PROduct' .  These case relationships are represented as follows: 

HUM 

i' 
A 

IN 

PRO 

l 

LG 

LFc 

How is the case frame of the verb to be matched with each semantic feature of the 
noun in the utterance? In this example, we can pattern match 'watashi' with 'Agent', 
'jitensha' with 'INstrument', and 'gakkou' with 'Location', respectively. Furthermore, in 
order to specify the case relationships of the verb 'iku', 'Agent' requires the postnominal 
suffix '-wa', 'INstrument'  usually requires '-de', and 'Location Goal' must be marked by 
'- ni'. Finally, we can infer the following complete utterance: 

Watashi-wa jitensha-de gakkou-ni iku. 

(2) Extraneous Forms 
Since the language phenomena of an extraneous form in Japanese are similar to those 

in English described above, we will not go into any more detail. 
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(3) Free Word Order 
The relatively free word order of Japanese further complicates the situation, as in the 

six sentences listed below, which are all grammatical and all mean "I go to school by 
bicycle ", but each with different noun phrases given prominence. In this paper, we will 
not deal with the differences in meaning of these utterances. 

a. Watashi-wa jitensha-de gakkou-ni iku. 

b. Watashi-wa gakkou-ni jitensha-de iku. 

c. Gakkou-ni watashi-wa jitensha.de iku. 

d. Gakkou-ni jitensha-de watashi-wa iku. 

e. Jitensha-de watashi-wa gakkou-ni iku. 

f. Jitensha-de gakkou-ni watashi-wa iku. 

3 . 2 .  P r e f e r e n c e  S e m a n t i c s  

Now we will introduce a method of parsing grammatically ilbfornmd utterance by 
use of preference semantics, proposed by Wilks [7]. The preference semantics approach 
is different from a conventional selection restriction approach. The selection restriction 
approach embodies a binary principle of well-formedness, that is, a semantic marker either 
fits a selection restriction or it does not. Whereas the preference semantics approach 
adopts a different, unary principle of weU-formedness. That is, even if a preference in a 
sentence is violated, an interpretation is still produced for the utterance as if it is welb 
formed. The decision whether to accept the interpretation or not depends on whether 
there axe other possible interpretations for that utterance. So, the difference between 
the selection restriction approach and the preference semantics approach is the criterion 
for ill-formedness. In the former approach, an interpretation can be treated as ilbformed 
by examining it alone. Whereas in the latter approach, the interpretation can only be 
considered as ill-formed after comparing it with the other interpretations. 

3 . 3 .  B l a c k b o a r d  M o d e l  

The blackboard model is a popular problem solving vehicle for expert systems. We 
have adopted its concept and utilized it for parsing grammatically iU-formed utterances. 
The blackboard model is usually described as consisting of three major components: 

(a) Knowledge Sources 
The semantic knowledge needed to parse an utterance is partitioned into knowledge 
sources, which are kept separate and independent. 
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(b) The Blackboard Data Structure 
The states of parsing the data are kept in a global database, called the blackboard. 
Knowledge sources produce changes in the blackboard that lead incrementally to a 
semantic interpretation of the utterance. Communication and interaction among the 
knowledge sources take place solely through the blackboard. 

(c) Control 

The knowledge sources respond opportunistically to changes in the blackboard. 

3 . 4 .  A M o d e l  o f  S e m a n t i c s  B a s e d  L a n g u a g e  A n a l y s i s  

Analysis of a Japanese utterance by our model proceeds in several stages. First, the 
input is broken into fragments (at conjunctions, postnominal suffixes, etc.). To each 
fragment (i.e. phrase) are assigned its own semantic features, one semantic feature for 
each head word in the fragment. The head word is the most important word in the 
fragment, and its semantic feature expresses the most general semantic category under 
which the word sense in question falls. Now, the dictionary may contain several semantic 
features for each word, representing its different senses, but we will focus on a restricted 
type of communication situation in a limited domain. Thus, we assume that each noun 
has only a single semantic feature. 

The semantic feature of a noun can be used to correlate the meaning of different words 
in an utterance. These case relationships can be inferred from the semantic features of the 
nouns. Hereafter, we will call them semantic roles. For example, if the semantic feature 
of the noun is 'HUMan', such as 'watashi' (I), the noun may be 'Agent', 'Object1' (the 
direct object of a stative verb), 'Object2' (the direct object of a nonstative verb), etc. 
If the semantic role of the noun is 'ACTion', such as 'benkyou' (study), it may be used 

'Non-locational Goal', etc. Note that, in as INstrument, 'MoTive', 'Object1', 'Object2', 
our notation, the semantic role correlating with the subject is marked by the suffix '1', 
whereas the same semantic role modifying the object has the suffix '2'. 

For each noun in an utterance, our model produces an ordered list of semantic role 
candidates along with the semantic feature on which they depend. They are arranged in 
the order of frequency in use. This  structure is called a semantic role lattice. Figare 1 
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shows a sample utterance with the corresponding semantic role lattice. 

fragment watashi radio ongaku kiku 
(I) (radio) (music) (listen) 

semantic HUM PRO ABS 
feature 

candidate 
semantic 
roles 

A Ol 02 
Ol 02 Ol 
02 IN NG 
: A NL 
, , �9 

Fig.l Semantic role lattice 

The next step is to build from the semantic role lattice a complete semantic interpre- 
tation of an entire utterance. To do this, we have defined some interesting constraints for 
semantic role lattices. These constraints are used to reject inappropriate semantic roles 
in the lattice. Examples of these constraints are as follows: 

(1) Each semantic role cannot appear more than once in the same utterance. 

(2) The direct object of a stative verb ('O1') and the agent of a nonstative verb ('A') 
cannot appear in the same utterance. 

(3) Either 'A' or 'O 1' must appear in the utterance. 

(4) Noun phrases with the same semantic role, although their suffixes are different, cannot 
appear in the same utterance. 

Applying these constraints to the semantic role candidates associated with each word, 
we can get the following combinations of semantic roles, that is, case frame candidates of 
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the verb: 

A ~ Ol 02 
Ol ~ 02 ~ 01 
02 IN ~ NG 

A NL 
a) 
b) 

A ~ 0 1 ~ 0 2  c) 
Ol ~ 02 ~ Ol 
02 ~ IN NG d) 

A NL e) 

With these semantic role candidates, we must determine the 'preferable' case assign- 
ment among them. The verb 'kiku' has the following possible case frames: 

i) 2) 3) 

I 

A 

IN 
_I I I l 

PTn 

02 A 02 

[ l 
O2 

4) 

I l _I 
PTn 

5) 

l I 
LGI 

A CTs A CTs 02 

6) 

A 

LS2 

IN 

Case frame (1) can match with candidate (c) completely, whereas case frame (3) can 
partially match with candidates (a), (b), or (c), respectively. For example, the result of 
matching (a) with (3) turns out to be the following case assignment of the utterance. In 
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this case, we can consider that the noun 'radio' is an extraneous form of the utterance. 

watashil ongaku kiku 

A 

02 

Case assignment (6) can also partially match with candidate (c). In this case, we 
consider that the noun corresponding to the semantic role 'LS2' (i.e. Location Source) is 
missing. 

watashi radio 

A 

ongaku 
I 

LSi 

02 

IN 

The following case assignment has a larger number of satisfied preferences, or greater 
'semantic density', so it is preferred. In the case of the assignments shown above, all of 
them contain some failed preferences, but the following assignment is accepted because 
there are no other competing assignments. 

watashi 

I I IN 

N 

radio ongaku kiku 
I 

02 

4. RELATED WORKS 

Kakigahara at ATR Interpreting Telephony Research Laboratories has already dis- 
cussed a method of generating a Japanese sentence by inferring postnominal suffixes from 
the valency pattern of a verb in a utterance [5]. The valency pattern for each verb specifies 
the relationship between the semantic features of nouns and their possible postnominal 
suffixes. For example, the valency pattern of the verb 'nagetukeru' (throw at) has the 
valency pattern: 

N[HUM] '-ga' + N[CON] '-wo' + N[CON] '-ni' + V. 
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where 'N' is the noun, 'V' is the verb, and 'HUM' and 'CON' axe semantic features of the 
associated nouns. 

Kakigahara's method of selecting the correct postnominal suffix proceeds in two steps: 
(1) generate a meaningful utterance by inferring suitable postnominal suffixes for a given 
sequence of nouns and a verb by use of the valency pattern, and (2) compare each inferred 
postnominal suffix with the corresponding candidates in the phrase lattice output by the 
SUS to select the most appropriate one. 

In his study, he assumed that the task domain is rather restricted, so as not to cause 
ambiguity in the utterance. Furthermore, his selection mechanism of valency patterns is 
binary, that is, a semantic feature either fits a valency pattern or it does not. With the 
binary principle, there is an absolute criterion for ill-formedness: a semantic interpretation 
can be labelled ill-formed by examining this interpretation alone, without applying any 
other relaxation mechanism. Consider the following utterance, which means 'The dog 
throws a bali at the wall'. 

Inu-ga ball-wo kabe-ni nagetukeru. 
('dog') ('ball') ('wall') ('throw at') 

The best reading of this utterance shows a conflict between the valency pattern of the 
verb 'nagetukeru', expecting a 'HUMan' agent as subject, and the actual data, because 
the subject ('inu') is an 'ANimal'. Although this utterance is semantically in-formed in 
the real world, whether that (semantically violated) reading is acceptable or not depends 
on what the parser believes the state of the world to be, and how far it can be extended 
by rules with the aid of the knowledge structures available. In other words, if we apply 
Kakigahara's method to a different task domain, we must set the system up with other 
types of semantic features, depending on the state of the task don~in. 

Whereas we think much of semantic roles rather than semantic features in our model, 
the utterance described above may be accepted, if either there are no other interpretations 
of the utterance or if aU the other interpretations of the utterance have more semantic 
violations. 

5. C O N C L U D I N G  R E M A R K S  

Any practical speech understanding system must be able to deal with a wide range of 
grammatically ill-formed utterances. This paper proposed a taxonomy of the usual forms 

, of grammaticMly i]]-formedness in real language usage and presented some relaxation 
mechanisms for them. We also discussed that the preference semantic approach provided 
the best framework among the commonly used relaxation mechanisms. It is our hope that 
by pursuing the approaches described above we can obtain a parser that has robustness 
in more genera] language settings. 



400 

References 

1. K. Jensen, G. E. Heidorn, L. A. Miller and Y. Ravin: "Parse Fitting and Prose 
Fixing: Getting a Hold on Ill-Formedness," AJCL, vol.9, No.3-4, pp.147-160, 1983. 

2. S. C. Kwansny and N. K. Sondheimer: "Relaxation Techniques for Parsing Gram- 
matically Ill-Formed Input in Natural Language Understanding Systems," AJCL, 
vol.7, No.2, pp.99-108, 1981. 

3. C. M. Eastman and D. S. McLean: "On the Need for Parsing Ill-Formed Input," 
AJCL, vol.7, No.4, pp.257, 1981. 

4. D. S. McLean and C. M. Eastman: "A Query Corpus Containing Ill-Formed Input," 
Technical Report 8~-CSE-9, Southern Method-ist University, 1984. 

5. K. Kakigahara and T. Aizawa: "Completion of Japanese Sentences by Inferring 
Function Words from Content Words," Proc. COLING 88, pp.291-296, 1988. 

6. D. Fass and Y. Wilks: "Preference Semantics, Ill-Formedness, and Metaphor," AJCL, 
vol.9, No.3-4, pp.178-187, 1983. 

7. Y. Wilks:A Preferential, "Pattern-Seeking, Semantics for Natural Language Inter- 
face," Artificial Intelligence, vol. 6, pp.53-74, 197,5. 

8. F. C. N. Pereira and D. H. D. Warren: "Definite Clause Grammars for Language 
Analysis - -  A Survey of the Formalism and a Comparison with Augmented Transition 
Networks," Artificial Intelligence, vo1.13, pp.231-278, 1980. 

9. G. G. Hendrix: "Human Engineering for Applied Natural Language Processing," 
Proc. IJCAI-5th, pp.183-191, 1977. 



Recent Research Towards Advanced Man-Machine Interface 
Through Spoken Language, H. Fujisaki (Editor) 
�9 1996 Elsevier Science B.V. All fights reserved. 401 

A Dialogue Analyzing Method Using a Dialogue 
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A b s t r a c t  

This paper describes a dialogue analysis system focusing on conversational coherence. 
Although conversational coherence has diverse components, we deal with it from three 
points of view: structural coherence, cohesion, and coherence of the dialogue contents. 
The system produces a structure which characterizes the input dialogue. The analysis 
scheme employs a dialogue model on the basis of utterance pairs and utterance groups, 
which are recognized in terms of the planning by the participants and changes in topic. 
The relationships between utterances are recognized by integrating the three compo- 
nents of "coherence", formalized as the dialogue model.During the process, when needed, 
omissions, references, implications, etc. are resolved so as to maintain coherence of the 
utterance contents. 

The reasoning mechanism for understanding a dialogue realized in this scheme, is sim- 
ilar to the human's. It generates hypotheses about the problems, then provides evidence 
for the hypotheses. During the process of structural determination, the dialogue structure 
is partially reconstructed if the process fails to maintain coherence, where the reconsidered 
parts are as small as possible. 

1. I N T R O D U C T I O N  

Analyzing utterances in a dialogue can be viewed as recognizing the conversational 
coherence in it. Along this direction, we have developed a system for analyzing dialogue 
in Japanese. The system understands the dialogue by recognizing its structure so as to 
maintain conversational coherence. 

There are two major approaches to understanding a dialogue or discourse in general. 
One is to understand the intention and the semantic and pragmatic contents of individ- 
ual utterances or groups of utterances in a specific domain [2][3]. This requires various 
knowledge, such as "common sense" and "domain knowledge". The other is to recog- 
nize structural relationships among groups of utterances in order to explain linguistic 
phenomena [4]. The former approach discusses the semantical aspects of conversational 
coherence, while the latter one discusses the structural aspects. 
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A comprehensive dialogue system, however, should include a mechanism for integrating 
both these approaches. Grosz [5] studied relationships between discourse structures and 
intentions, but failed to construct a precise mechanism for analysis. Although the work 
presented here is similar to Grosz's in basic approach, it investigates a theory of analysis 
which stresses structural coherence and cohesion through an integration of the coherence 
involved in the contents of the dialogue. 

We are also developing a reasoning mechanism to realize the theory. Considering the 
importance of the coherence of structure and cohesion, we provide a model of the dia- 
logue structure on the basis of the relationships between paired utterances (e.g. question 
and answer) and utterance groups consisting of paired utterances. These considerations 
delineate dialogue regularity as structural rules and heuristic principles. The heuristic 
principles can specify the integration of structural coherence and cohesion in terms of the 
linguistic concepts "topic" and "focus". 

The process of determining the structure often necessitates supplementation of in- 
formation. For example, determination of omitted words (this linguistic phenomenon 
frequently appears in Japanese), reference resolution, and utterance implication resolu- 
tion are needed. The information is derived from several pragmatic rules based on the 
cooperation principles proposed by Grice [1]. 

The effectiveness of the process is strengthened by introducing a dialogue model and 
constraint propagation and satisfaction [9] , as will be discussed in sections 5.2 and 5.3. 
Thus, we have established an elaborate mechanism in which the two kinds of approaches 
to dialogue understanding are integrated, that is, a mechanism capable of dealing with 
the two different aspects of coherence in a natural way, as will be discussed later. 

The features of the reasoning mechanism described in this paper can be summarized 
as follows. 

�9 First this mechanism reasons out the relationships between utterances and the pre- 
ceding dialogue using abduction, and then verifies the reasoning in the succeeding 
process. This is similar to the process by which people understand dialogues. 

�9 Most of the processes are invoked on demand in order to minimize the amount of 
computation. 

2. B A S I C  C O N C E P T S  OF T H E  S Y S T E M  

2.1. Conceptua l  Structure  of  the  S y s t e m  

A block diagram of the analyzing system is shown in Figure 1. The semantical repre- 
sentation of the utterance is obtained in terms of a network produced by the "Sentence 
Analyzer". In our research, a network representation is used for both the input and the 
inner representations. The "Dialogue Structure Builder" analyzes the dialogue structure, 
and the "Information Supplementer" is equipped with heuristics for supplying missing 
information. 

The conversational coherence is transformed to the "Dialogue Model", expressed in 
the form of rules, procedures, and heuristics. It is interpreted in terms of style, cohesion, 
and meaning of utterances. 
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2.2. Basic Concept of the Reasoning Mechanism 

The framework of the reasoning scheme employed here, which discerns the utterance's 
position in the dialogue, is shown in Figure 2. The details will be described later, along 
with some examples. Candidates for the next utterance's position are produced from 
the preceding dialogue. The most appropriate hypothesis is selected using structural 
rules which express the relationships between the utterance's positions and the superficial 
character itself of the utterances. The rules have default expressions that mean "if A then 
is possible B" in the form of "A -M--. B'.  Assuming that a hypothesis holds, the structure 
is extended. In this process the hypothesis is confirmed if it is verified by constraints 
and procedures. On the other hand, if this process fails to maintain coherence, another 
hypothesis will be selected. 

| | 
l ~onversa~iona~ 1 

cohereece 

I o,,,o,u, ,o,,, 
i I 

loo , ,o,i 

i  it,,,no,3 
§ 

i ialogue Structure Builder 

~ e  Informa(ion Supplementer 
di structure 

Fig.1 Block diagram of 
the a,uaJ~:i.ug 

generation of I 
candidates for position , I [  preoedingj 

' I I  dialogue _1 
i i 

[ (evidence of hypothesis) " di~ogue str,__._cL,re 

[resele�9 ] i hyp'othesis 'l 
Fig.2 Reasoning m.echanism 
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2.3. Dialogue Example 

To illustrate the approach to the analysis, an example will be given. The example 
conversation has two participants C (clerk) and T (tourist) and it concerns a registration 
for a sightseeing tour. The utterances enclosed in parentheses are in Japanese. 
TI: I would like to register for a sightseeing tour. 
(kankou tua- no moushikomi wo shitainodesuga.) 
C2: Which tour do you prefer? 
(dono tua- ni nasaimasuka.) 
C3: We have half-day tours and full-day tours. 
(hanniti tua- to itiniti tua- ga arimasuga.) 
T4: Which one goes to the best-known places? 
(dono tua- ga yu-meina basyo he ikimasuka.) 
C5: Are you interested in the fine arts? 
(bijyutu ni kyoumi ga oaridesuka) 
T6: Yes, I love European paintings. 
(had, yo-roppa no kaiga ga sukidesu.) 
C7: Well, a half-day tour goes to some famous art museums. 
(soredeshitara, hanniti tua- ga yu-meina bijyutukan ni ikimasu.) 
T8: Then I'd like the half-day tour. 
(deha hanniti tua- ni shimasu.) 
C9: Could you write the telephone number of your office on this form please? 
(kaisha no denwa bangou wo kono youshi ni okakikudasai.) 
TI0:  Do you have a pen? 
(pen ha arimasuka) 
C11: Here you are. 
(korewo douzo.) 
T12: At what time does it start? 
(nanji ni hajimarimasuka) 
C13: It starts at nine in the morning. 
(asa no 9-ji desu.) 

3. DIALOGUE MODEL 

Utterances of two participants often form pairs, such as a question and an answer, 
a request and a consent. These pairs of utterances are the structural elements of the 
dialogue. Some of the pairs form an utterance group, sharing a topic. These groups serve 
as semantic elements of a dialogue and are referred to as "dialogue units". The nature 
of the pairs and pragmatics of the relationships within and between units of utterances 
provide the basis of the analysis of the dialogue structure in this paper. 
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3 . 1 .  U t t e r a n c e  P a i r  a n d  D i a l o g u e  U n i t  

Our dialogue analyzing system works on the two levels of dialogue structure, the "ut- 
terance pair" and the "dialogue unit". A dialogue unit normally consists of a few paired 
utterances. 

To identify these levels of hierarchical structure we employ two sorts of relationships 
observed in a dialogue. One is a correspondence between a pair of utterances (e.g. a 
question and an answer), which identifies the "utterance pair". The other is a semantic 
identity among a group of utterances, which identifies the "dialogue unit". 

The utterance types which stand for the former sort of relations (referred to as ptype(s)), 
are classified into the following five types: 

�9 information transmission (INFOTRAN), 

�9 response (RESPONSE), 

�9 Yes/No-information request (YN-INFREQ), 

�9 WH-information request (WH-INFREQ) and 

�9 act request (ACTREQ). 

These types are discerned by syntactic cues in utterances. Syntactic types of utterances, 
such as declarative sentence, interrogative sentence, imperative sentence, or other id- 
iomatic expressions are examples of syntactic cues. these syntactic types are referred to 
as stype in this paper. Other cues, such as expressions closing a sentence and modal terms 
(e.g. "possible" or "desirable), are also useful in identifying these types. Combinations of 
utterances which are expected to form basic pair relations are listed below: 

RESPONSE 
YN-INFREQ INFOTRAN 
WH-INFREQ INFOTRAN 

ACTREQ RESPONSE 
INFOTRAN RESPONSE 

The utterance types which stand for the latter sort of relations (referred to as retype) 
are classified into three types: GOALPRE, TOPICPRE and CONTI. These types con- 
cern pragmatics and planning of the dialogue and are defined as follows. The utterances 
whose retypes are either the goal presentation (GOALPRE) or the topic presentation 
(TOPICPRE) open dialogue units. Succeeding utterances which are chained by a pair 
relation, are included in the same dialogue unit. The type of these utterances is "contin- 

�9 

uation" (CONTI). They dmcern the "dialogue unit", which is structured by chaining or 
embedding paired utterances as follows: 

(Dialogue unit made by a link of two utterance pairs:) 
WH-INFREQ TI2: At what time does it start? 

~pair 
INFOTRAN C13: It starts at nine in the morning. 
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~pair 
RESPONCE T14: Is that so? 

(One paired utterance is embedded in another:) 
WH-INFREQ T4: Which one goes to the best-known places? 
YN-INFREQ C5: Are you interested in the fine arts? 

~pair [[pair 
INFOTRAN T6: Yes,I love European paintings. 
INFOTRAN C7: Well, the half-day tour goes to some famous art museums. 

3 . 2 .  F o c u s  a n d  T o p i c  

The linguistic concepts "focus" and "topic ~ are useful in analyzing a dialogue struc- 
ture. The definitions of these concepts so far proposed seem to be unclear. In this 
paper we will determine FOCUS partly from syntactic information. The notion of topic 
involves continuation of the speaker's attention. FOCUS, as used here, refers to the lin- 
guistic unit to which attention is directed. We basically relied on the method proposed 
by Kameyama [11] to identify FOCUS. Roughly speaking, the following items are checked 
to see whether or not they could be FOCUS in turn: 

(1) items in question in an interrogative sentence; 

(2) items which represent a subject of conversation; 

(3) items which arouse sympathy in the listener; 

(4) grammatical subjects; 

(5) grammatical objects. 

According to this, we will give a more precise idea of the relation between FOCUS and 
TOPIC. When a FOCUS is referred to by a pronoun or an omitted word in succeeding 
utterances, it turns into a TOPIC. In other words, we assert that a FOCUS involves local 
and explicit attention whereas a TOPIC involves global and underlying attention. 

3.3. Relationships Between Dialogue Units 

The set of relationships that can hold between dialogue units is considered to represent 
the underlying structure of a dialogue. The relationships between the dialogue units that 
form the dialogue structure are classified as follows. 

Sub/ssue Relation: when a succeeding dialogue unit decomposes the issue of the preced- 
ing one, the succeeding unit has a sub/ssue re/ation to the preceding one. More specifically, 
if a succeeding utterance opens a new unit when the pair started by the preceding utter- 
ance has not yet been completed and if it has the same topic, the succeeding unit is a 
subissue of the preceding one. 
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Joining Relations: two units which Contain the same topic have a joining relation. 
Shift Relation: when an object in a preceding unit becomes the topic of a succeeding one, 
the succeeding unit has a shift relation to the preceding one. 

The dialogue structure of the example dialogue discussed above is depicted in Figure 
3 in terms of the paired utterances and dialogue units. 

dialogue beginning J 

unit (1) ,, 
Tt (GOALPRE) 

ACTREQ 
unit (2) 

C2 (GOALPRE)-T8 
WH-INFREQ INFOTRAN 

.3 
INFOTRAN 

unit (3) 
T4 (GOALPRE) -C7 
WH-tNFREQ INFOTRAN 

unit (4). , 
C5 (GOALPRE}-T6 
YN-INFREQ INFOTRAN 

, unit (5) 
C9 (GOALPRE) 
ACTREQ 

m . .  unit (6) 

T10 (GOALPRE) -Cli 
ACTREQ RESPONSE 

joining 

, unit (7) 
I'12 (GOALPRE) - a 3  
~-INFREQ INFOTRAN 

Fig.3 Dialogue structm~ 

TOPIC 

registration 
for a 

sightseeing 
tour 

fine arts 

write 
number 

~ pen 

l 

time 

.1 
3 . 4 .  P r e d i c t i o n  o f  S u c c e e d i n g  U t t e r a n c e s  a n d  S t r u c t u r a l  R u l e s  

As described in section 2, some preceding utterances require subsequent utterances of 
specific types in order to complete pairs. For instance, a question requires an answer. 
These requirements can be represented as candidates for the structural position of the 
succeeding utterance. In order to determine the most appropriate position, structural 
rules based on a certain regularity of speech in a dialogue are applied to the syntactic 
information of the utterance. 

The table in Figure 4 shows expected pairings between the preceding utterances and 
the succeeding ones which are needed for forming paired utterance or dialogue units. 
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Candidates for the position of the succeeding utterance are arranged in order of probability 
or priority for the hypotheses. Among the candidates the most appropriate requirement 
imposed by the preceding utterances would be a feasible hypothesis of the structural 
position of the succeeding utterance. The requirement of forming a pair will be removed 
when the pair is completed. Likewise all the requirements within a dialogue unit will be 
removed when the unit is closed. 

preceding utterance 
mtype ptype 

beginning 

GOALPRE :t-INFREQ 

ACTREQ 

__ structural level (U : unit P:pair) 

succeeding utterance 
. retype ptype side effect 

TOPICPRE INFOTRAN 
F CONTI INFOTRAN make pair, fix 
U GOALPRE :I:-INFREQ topic hold, 

fix (shift) 

GOALPRE ACTREQ male subissue 
unit 

GOALPRE :t:-INFREQ topic indirectly 
head (shift) 
make subiFsue 

gaiT, 

P OONTi RESPONSE make pair, fix 

LI GOALPRE :I:-INFREQ make subissue 
unit 

QOALPRE ACTREQ make subissue 
unit 

note" "fix" shows the hypothesis has been finalized 
leans YN or WH 

Fig.4 Ut~auce position ex-pectation(z~,quJ:emeut) 
On the other hand, the same requirement posed by the succeeding utterance may be 

applied to the preceding utterance. For instance, a RESPONS utterance requires the 
preceding utterance to be of either YN-INFREQ or ACTREQ type. 

In order to reason about the position in the dialogue structure and to single out a 
proper candidate, certain structural default rules have been formalized. Some of them are 
as follows: 
SR1 INFOTRAN(U)-M--. stype(U, declarative) 
SR2 WH-INFREQ (U, X) -M--. stype(U, WH-interrogative, X) 
SR3 YN-INFREQ (U)-M--. stype(U, YN-interrogative) 
SR4 ACTREQ(U, Action) -M--. stype(U, imperative), verb(U, Action) 
SR5 ACTREQ(U, Action)-M~ stype(U, declarative), modal(U, desirable), end(U, hes- 
itation), verb(U, Action) 
SR6 ACTREQ(U, Action)-M--. stype(U, YN-interrogative), modal(possible), agent(U, 
listener), verb(U, Action) 
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3 . 5 .  H e u r i s t i c  P r i n c i p l e s  

The relations between topic, focus and dialogue structure, and other dialogue regular- 
ities are formalized as heuristic principles, as follows: 
HP1 .  The priority of requirements is as follows: 

�9 requirement concerning pair ~- requirement concerning unit, 

�9 requirement occurred later ~- requirement occurs earlier. 

HP2 .  When an utterance whose mtype is either GOALPRE or TOPICPRE opens a unit 
which is not a subissue of any unit, its FOCUS becomes a TOPIC. 
HP3 .  A word which is referred to by a pronoun or zero pronoun must appear in one of 
the following dialogue units: 

�9 the current unit, 

�9 the unit which is related to the current unit by a subissue, joining or shift relation. 

HP4 .  The structural position of a unit is confirmed when another unit which has a 
subissue relation to that unit is identified. 
HPS.  Joining and shift relations (described in section 3.3) are established between two 
units which have the same level (i.e. degree of nesting by subissue re/ation and are adjacent 
to each other. 
HP6 .  Requirements imposed on the preceding utterance by the succeeding one should 
be satisfied. 

4 .  I N F O R M A T I O N  S U P P L E M E N T  

As is well known, utterances tend to provide insufficient information and are ambigu- 
ous. Nevertheless people can understand dialogues. This is because they use knowledge, 
whether it is "common sense" or domain specific. Our system concentrates on lexical 
knowledge, including information concerning the usage and meaning of words. 

4 . 1 .  C o h e r e n c e  i n  t h e  P a r t i c i p a n t ' s  K n o w l e d g e  

Hirai and Kitahashi [8] have formulated several pragmatic rules representing knowl- 
edge shared by communicating persons in order to determine omitted words and resolve 
references. Their formulation is used in our system. 

4 . 2 .  L e x i c a l  K n o w l e d g e  

Lexical knowledge is considered necessary both to recognize answers to questions and 
to capture implications of utterances. We represent the "concrete meaning" of nouns and 
verbs from a functional point of view in order to describe presuppositions and effects of 
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actions. The process of implication resolution using this lexical knowledge is illustrated 
in section 5.3. 

As has often been pointed out, the intention of a speaker can frequently be different 
from the superfidal meaning of an utterance. The utterance T10 in the example suggests 
an indirect intention. What does participant T want to imply by the utterance T10? 
In order to determine the implication of the utterance T10, the following information is 
necessary to supplement the typical lexical definition of "pen" and "have". 
~ p e n ~  
func (pen, write ((agent, X), (locate, Y), (object, Z), (instrument, pen))) 
<<give>> 
presuppose (give ((agent, K), (goal, L), (object, M)), have ((agent, K), (object, M))) 
effect (give ((agent, K), (goal, L), (object, M)), have ((agent, L), (object, M))) 

5.  A N A L Y S I S  M E C H A N I S M  

A dialogue structure and utterance contents are represented by networks. A network 
consists of nodes and links which represent concepts and the relations between nodes, 
respectively [12] . Inference is performed by attaching or removing the nodes and links 
and matching subnetworks. They are classified into two groups. One is a set of general 
processes activated in any case. The other is a set of processes which are executed only 
when the general process fails to maintain coherence. The processes are attached to the 
node at which the processes are involved. 

5.1. Representation of t h e  U t t e r a n c e  C o n t e n t s  and Dialogue 
S t r u c t u r e  

The network representing a dialogue structure and utterance contents consists of some 
of the following five kinds of nodes. 

(1) mtype, 

(2) ptype, 

(3) stype, 

(4) additional information node: modal concepts, closing expressions, tense, idioms, 
social relationships, 

(5) node containing propositional contents of utterances: predicate, case elements. 

Every node is expressed by a triple consisting of the following three elements: 

(1) A concept name, 

(2) Names of an object and other information: "*" represents undecided, which means 
that it may be bound to any object which meets conditions concerning the concept 
names of "*". 
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(3) A performable procedure: the procedure discussed here is performed when reconsid- 
eration is required. For example, the procedure "supplementary lexical knowledge" 
might derive more information from lexical knowledge. 

The network of the utterance T1 is represented in Figure 5. 

substitution 
dialogue ,[ (30ALPRE I open I def]  [TOPICPRE] 
beginning mcype . I . .  sibstJtutJon 

[AOTREQ I def] [INFOTRAN] 
, ~type 

(personl$1omitted]a.g~l~registerl ]stype (declarative] 

tour I] object T ' ~  modal [desirable] 
[event~adj end [hesitation] 
(event I sightseeing I ] 

Fig.5 Representation of T1 
Matching between subnetworks is a basic procedure in this analyzing process. In order 

for two concepts or two names to match, they are not necessarily identical to each other 
as far as one has 'similar' or 'isa' relations to the other. 

(a) [personl*]--*[be interestedl*]~[artlfine arts] 
agent object 

(b) [personl*]-~[lovel*]~-[fine artslpainting]~[place]European] 
agent object adj 

The networks a) and b) match since they are linked by the relations similar(be inter- 
ested, love) and isa(painting, fine arts) in the semantic thesaurus. 

5.2.  G e n e r a l  P r o c e s s  

When the Dialogue Structure Builder receives an utterance represented by a network 
from the Sentence Analyzer, it tries to reason out the structural position of the utter- 
ance. To put it concrete, the reasoning out of the structural type (mtype and ptype) is 
achieved by applying the structural rules and heuristic principles to the candidates for 
the assumption of the prior order. 

We will show the analyzing process of the following utterances C5 and T6 as an exam- 
ple. 
C5: Are you interested in the fine arts? 
T6: Yes, I love European paintings. 

First, the process tries to find the candidates for the structural position, which are 
obtained from the table in Figure 4 by referring to the Pair column, imposing the priority 
conditions in HP1. The first prior requirement for C5 is INFOTRAN to the utterance 
T4, and the second priority is RESPONSE to the utterance T1. In this case, there is no 
structural explanation for these candidates. In detail, there is no structural rule (described 
in section 3.4) that explains any of the two positions. Consequently, the nextction prior 
requirement (SUB) GOALPRE to the utterance T4 is selected because the structural rule 
SR3 explains that the ptype of the utterance C5 is YN-INFREQ. This hypothesis for the 
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structural position is confirmed by the side effect which is attached, as shown in the table 
in Figure 4. In this case, the topic 'sightseeing tour' is realized to be held indirectly. When 
the indirect relation between the topic and the utterance is recognized in the succeeding 
process, this hypothesis will be verified. The requirements of the unit and of the pair 
to the participant T produced by C5 are mtype: GOALPRE and ptype: INFOTRAN, 
respectively. In the same manner, the utterance T6 is assumed to be INFOTRAN and 
form pair with C5, using the rule SR1. In order to evidence this position of T6, matching 
is tried between the subnetworks C5 and T6. Since the matching succeeds, as described 
in section 5.1, by the side effect column in the table, this structural position is concluded 
to be definite. 

5 . 3 .  I m p l i c a t i o n  R e s o l u t i o n  

Many researchers [10] have been studying the issues on indirect requests. Indirect 
requests stemming from the speaker's respect for the listener usually produce an utterance 
posing the listener's intention or ability instead of asking the request itself. Therefore it 
might be a question about preconditions for the request contents. This pragmatic pattern 
of request is formalized as a structural rule as follows: 

SR7 ACTREQ (U, Action)-M-, stype (U, YN-interrogative), 
agent (U, listener), presuppose (Action(X), V(Y)), verb 

(u, v) 
We will show how to discern the implication of utterances which request indirectly 

with utterances T10 and Cll .  
T10: Do you have a pen? 
Cl1:  Here you are. 

Although T10 is recognized to be YN-INFREQ in the general process, the succeeding 
utterance Cll  is RESPONSE representing an action of "giving". In this case, the utter- 
ance of the RESPONSE type expects the preceding utterance to be of the ACTREQ type. 
However, this requirement cannot be satisfied, and coherence is not maintained by HP6. 
As a result, the system starts the procedure involved in the node for the utterance whose 
position has not yet been decided. In detail, since the performable procedure attached to 
the node for the predicate "give" is "supplementary lexical knowledge", lexical informa- 
tion of "give" which is described in section 4.2 is derived and the structural position of 
the utterance T10 is considered again. Then the ptype of the utterance T10 is assumed 
to be ACTREQ by the structural rule SR7. 

6.  C O N C L U S I O N  

We have presented a theory of dialogue analysis using conversational coherence from 
three points of view: structural coherence, cohesion, and coherence of dialogue contents. 
It differs from the current dialogue theories dealing with conversational coherence in that 
the three different aspects of coherence are integrated and treated by a similar reasoning 
mechanism. This mechanism generates hypotheses using default rules and incomplete 
information, and supports or reconsiders them with constraints. This work, in a general 
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sense, could be viewed as an approximate theory of disambiguation, which encompasses 
several kinds of ambiguities encountered in natural language analysis. 

This framework for a dialogue analysis system is required to investigate the reconstruc- 
tion of dialogue structures. If the analyzing process fails to maintain coherence, it runs 
some processes to reconstruct partial dialogue structures to the minimal extent. 
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A b s t r a c t  

The authors have been involved in the development of a speech understanding system 
called SPURT-I, which accepts utterances describing simple scenes. In order to realize 
communication through spoken language, it has to accept discourse. To this end, the 
authors are currently developing a speech understanding system with a discourse man- 
agement system. This paper describes the current status of the development of a new 
version of the system. The discourse management system takes care of the identification 
of the correspondence between a requirement and a response based on the SR plan and 
two kinds of stacks. The interaction between the discourse management system and two 
other subsystems is also discussed. 

I. INTRODUCTION 

We have been developing a speech understanding system SPURT-I (Speech Under- 
standing system with Rule-based and Topic-directed architecture [1, 2]. The basic as- 
sumption of our approach is that acoustically close phoneme sequences rarely correspond 
to semantically similar words. Although this assumption makes acoustic processing easier, 
language processing becomes more difficult. 

SPURT-I accepts utterances describing simple scenes. In order to realize communica- 
tion through spoken language, it has to accept discourse. To this end, the authors are 
currently developing a speech understanding system with a discourse management sys- 
tem. One of the characteristics of discourse is that the user does not always respond to 
a question posed by the system. When the system asks a question, for example, the user 
may ask another question instead of answering if he/she does not know what to answer 
or may answer incorrectly. Furthermore, the representations of the answers take various 
forms. Therefore, the system has to identify whether the utterance is an answer or a 
question and which question it corresponds to when it is an answer. 

Sentences appearing in a discourse have several particular properties in addition to 
those presented above. They sometimes do not follow legal syntax. They often include 
anaphora or omission of words. Although these are important issues in discourse analysis, 
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Utterances of the user 
(a) Requirement: stimulus to the system. 
(b) Response: answer to the question or requirement of the system. 
(c) Confirmation: acknowledgement to the response of the system. 
(d) Statement: auxiliary information. 

Utterances of the system 
(a) Requirement: stimulus to the user. 
(b) Response: answer to the question or requirement of the user. 
(c) Evaluation: evaluation of the response of the user. 
(d) Statement: auxiliary information. 

Figure 1. Categories of utterances. 

this paper deals only with the issue discussed earlier, since other research groups take care 
of them. 

The discourse management system has two other functions. One is to predict the type 
of response of the user in order to give useful information to the language processing 
subsystem, and the other is to standardize the information obtained from the user before 
giving it to the problem solver. In order to perform these three functions, we introduce the 
SR plan, which represents fundamental relationships between requirements and responses 
and has a two-stack architecture for managing them. This paper describes the details of 
the management system [3, 4]. 

2. B A S I C  C O N C E P T S  

2.1. Character is t ics  of  a Discourse  

This paper deals only with discourses with definite purposes, such as those appearing 
in consultation, information retrieval, CAI and so on. In such discourses, utterances are 
classified as shown in Figure 1. 

A sentence in an utterance can be divided into one of the above categories; however, 
an utterance usually contains more than one sentence. So, let us investigate what types 
of sentences are contained in an utterance. A discourse with a definite purpose contains 
either a stimulus (requirement) to the opponent or a response to the stimulus given by 
the opponent or both explicitly or implicitly. Communication is thus performed by giving 
stimuli or responses to each other, and some sentences effecting this interaction, such as 
confirmation, statement, or evaluation, are given in an utterance if necessary. 

2.2. Overv iew of  the Discourse  U n d e r s t a n d i n g  S y s t e m  

A block diagram of the total system is shown in Figure 2. The discourse management 
system is located between the speech understanding system and the problem solver. Two 
problem solving systems, i.e. ITS (Intelligent Tutoring System) and registration desk 
system, are considered in our research, but this paper deals only with the former task. 
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Figure 2. Block diagram of our total systems. 

System SR plan 
Requirement of the system 
Response of the user 
(Evaluation of the system) 

User SR plan 
Requirement of the user 
Response of the system 
(Confirmation of the user) 

Figure 3. The structure of SR plans. 

Discourse processing is tightly connected to the ASP (ASsociation-based Parser) [5, 6], 
which recognizes utterances of the user. The discourse management system has various 
knowledge for discourse processing, some of which is also useful for the ASP, so the two 
subsystems share parts of their knowledge bases. 

An utterance of a user who uses the problem solving system, is used as input for the 
acoustic processing subsystem, named SPREX (SPeech Recognition EXpert) [7, 8], and 
it is converted to a sequence of phonemes. Then, the phonemes are used as input for the 
ASP to identify the utterance. The discourse management system accepts the utterance 
and generates appropriate responses by interacting with the problem solver. 

3.  D I S C O U R S E  M A N A G E M E N T  S Y S T E M  

3 .1 .  O u t l i n e  

A discourse management system has a knowledge base of the possible interaction be- 
tween the user and the problem solving system. We call the interaction pattern the SR 
(Stimulus and Response) plan, which will be discussed later. We have two kinds of SR 
plans: one is for the user and the other is for the system. Figure 3 shows the structure of 
the SR plan. 

The discourse management system employs two stacks for manipulating SR plans. 
Requirements or questions (SR plans) are pushed onto the stack. When a response is 
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S-QUIZ <Questions> 
1. SP-ASK-COMPONENT to ask objects or locations of an action 
2. SP-ASK-REASON to ask reason of an action 
3. SP-ASK-FACT to ask whether a fact is true or not 

S-COMMAND 
4. SP-COMMAND 

<Order> 
to order the student to do some tasks 

S-EXPLAIN <Explanation and requirement> 
5. SP-AFTER-EXPLAIN to confirm whether the student understands 

correctly or not 
S-DEMAND-U.SPEECH<Requirement to the user's utterance> 
6. SP-CONFIRM to confirm the correctness of system's 

unders tanding  
7. SP-SUPPLEMENT to ask missing information 
8. SP-DISAMBIGUATE to ask for disambiguation 

Figure 4. System's SR plan. 

given, the topmost element is usually popped and stored in the history data base. In 
ordinary cases, a response corresponds to the latest requirement independent of the history 
of requirements and responses. This shows the adequacy of a stack structure. However, 
there may be some cases where a response corresponds to a requirement in a position 
lower than the topmost element. The process in such a case will be discussed in section 
4.2. The system has a stack for system SR plans and one for user SR plans. These two 
stacks help to simplify the management process of the interaction. 

3 . 2 .  S i t  P l a n  

The SR plan represents some procedures useful for identifying interactions based on 
stimulus and response. Figures 4 and 5 show examples of SR plans for the system and 
user, respectively. The following is a common procedure for the system SR plan. 

Step I: Identify the SR plan corresponding to the requirement of the problem solver. 
Step 2: Send the content of the utterance to the utterance synthesizer. 
Step 3: Predict the possible types of responses to the utterance, consulting the SR plan, 

and send the information to the ASP. 
Step 4: When the result of the analysis of the user's utterance is given by the ASP and 

it is a response, standardize the result and send it to the problem solver, asking 
its evaluation. When it is not a response, this plan is suspended. 

Step 5: When the response turns out to be correct from the result of the evaluation, this 
SR plan is popped from the system stack. Otherwise, this plan is suspended. 
Some SR plans may terminate at step 4. 

The procedure for the user SR plan will not be given. 
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U-DEMAND-K.BASE <Requirement concerning knowledge base> 
1. UP-ASK-DEFINITION to ask definition of terms 
2. UP-ASK-COMPONENT to ask objects or locations of an action 
3. UP-ASK-REASON to ask reason of an action 
4. UP-ASK-FACT to ask whether a fact is true or not 
5. UP-ASK-WAY to ask how to do 

U-COMMAND 
6. UP-COMMAND 

<Order> 
to order the system to do some tasks 

U-DEMAND-S.SPEECH<Requirement to the system's utterance> 
7. UP-ASK-UTtERANCE to ask what  the system said 
8. UP-ASK-CONFIRM-UTTERANCE 

to confirm what the system said 
9. UP-ASK-MEANING to ask the meaning of the system's 

utterance 

Figure 5. User's SR plan. 

After the requirement 
of the system 

(1) Response to it 
(2) New requirement 

After the response of 
the system 

(1) Its confirmation 
(2) Response to the suspended 

requirement of the system 
(3) New requirement 

Figure 6. Expectation of user's utterances. 

@ B E H A V I O R  O F  T H E  D I S C O U R S E  M A N A G E M E N T  S Y S -  

T E M  

4 . 1 .  I n t e r a c t i o n  w i t h  t h e  A S P  

In SPURT-I, the ASP plays an important role in identifying utterances correctly. The 
ASP employs various knowledge, such as syntax, semantics, and association relations 
between topic and vocabulary. In the previous implementation, the ASP accepted ut- 
terances describing simple scenes, where expectations were done using the association 
relation mentioned above. Our new discourse understanding system can often expect 
the user's utterances, since major parts of them are responses to the requirements of the 
system. Figure 6 shows expected utterances of users. 

The discourse management system predicts the user's utterances according to the infor- 
mation shown in Figure 6. Then, it sends to the ASP templates of the expected responses 
of the user, which are written in the system SR plan, or templates of possible require- 
ments of the user, which are written in the user SR plan. The ASP can perform top-down 
analysis of the input utterance utilizing this information. 

An example of a system SR plan, SP-ASK-FACT, is shown in Figure 7. As shown 
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System: Ikou suru toki, sono kou no fugou wo kaemasuka? 
(Do you change the sign of the term when you move it?) 

type-1 [affirmative, negative] 
type-2 [repetition] 
type-3 act:[guess] 

obj:([repetition]) 

hai, iie (yes, no), etc. 
kaemasu (I change), etc. 
kaeru to omoimasu (I am not sure but 

I change the sign), etc. 

Figure 7. Description of SP-ASK-FACT. 

in the figure, an SR plan has some templates of expected responses, which are used for 
identifying the correspondence between requirement and response. "Repetition ~ in the 
figure indicates that the response consists of a repetition of the words contained in the 
utterance of the system. So, it is instantiated when the request of the system is given. 

Top-down analysis is thus introduced in the ASP. However, there exist at least two 
shortcomings in this formulation. 

(1) There is no ordering of multiple templates. 
(2) There is no expectation which requirement (user SR plan) comes next. 

In order to overcome these difficulties, we introduce bottom-up analysis. When a word 
lattice is given, the ASP scans all the candidate words to find some keywords which 
remind of some templates. For example, the template "UP-ASK-REASON" is expected 
when the keyword "why ~ is found in the word lattice. When a template is expected 
in the bottom-up analysis, top-down analysis can be done as described above. If many 
templates are expected, they are ordered according to some heuristics. The success of the 
analysis using the template expected indicates that the utterance is of a type of directly 
inferred from the template. When the top-down analysis fails, the next probable template 
is sent and the process is repeated. If all the expectations fail, then complete bottom-up 
processing using the dependencies between the words, is performed. 

4.2. Extension of the Stack Manipulation 

The stack manipulation discussed thus far makes the latest SR plan active, in other 
words, the user's response is considered to correspond to the latest requirement, which is 
the topmost element of the stack. However, this manipulation is no longer valid in the 
following cases: 

(1) When the user responds to a previous requirement of the system. 
(2) When the system asks another question without answering the question posed by 

the user after he/she answered incorrectly to the previous question of the system. 

Figure 8 shows an example of type (1). 
In this example, U5 corresponds not to $4, which is on top of the system stack, but 

to $1 located under $4. To cope with such a case, the management system does not 
pop the requirements having incorrect answers. If and only if the utterance of the user 
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$1: Houteishiki X-2=7 wo tokinasai. 
(Solve the equation X - 2 = 7.) 

U 2 : 5  dato omoimasu. 
(I think it is 5.) 

$3: Chigaimasu. 
(You are incorrect.) 

$ 4 : - 2  wo ikousuruto X=7-2 desu ka? 
(Do you have X = 7 - 2 when you move 
the term -2 to the other side?) 

U5: Wakatta! X=9 desu ne. 
(Igotit! X=9.)  

( reqit iremen t ) 

(response) 

(evaluat ion)  

(requirement)  

(response) 

Figure 8. An example requiring irregular manipulation of the stack. 

cannot be recognized, whether it is a response to the topmost SR plan of the system 
stack or a new requirement to the system, the management system goes down the system 
stack to see if there exists a requirement corresponding to the utterance. When such a 
requirement is found and the utterance is a correct answer to it, all the elements higher 
than this requirement are popped including itself. The second case is concerned with the 
user stack. It can be detected as a case where the system neglects the requirement of the 
user. When the requirement of the user is confirmation of his/her answer, the user SR 
plan is popped, considering the system giving an implicit (negative) answer to it. This 
irregularity is rather easy to deal with, since it is caused by the system intentionally. 

4.3. Detai led Description of the Behavior of the System 

Let us take an example of a discourse in which an ITS is teaching a user to solve 
linear equations, as shown in Figure 9. In the rest of this subsection, the behavior of the 
discourse management system is described. 

Suppose that the management system is requested by the problem solver, ITS in this 
case, to pose the question if X - 2 is the solution of the equation 6 - 2X = 3X - 4. This 
is a requirement asking a fact, so the system SR plan SP-ASK-FACT is activated and 
pushed onto the system stack. Then, the content of the utterance is sent to the utterance 
synthesizer and $1 is uttered. Next, templates of the expected response are generated 
according to the information written in SP-ASK-FACT. In this case, templates of affir- 
mative, negative, assertion of a fact (noun phrase), or guess of a fact are expected. Then, 
they are instantiated according to the situation, especially using the words appearing 
in theu t te rance  of the system. For example, "assertion of a solution" and others are 
obtained in this case and they are sent to the ASP. 

The next utterance, U2, is successfully analyzed and is recognized as a response to $1. 
Then it is sent to the problem solver to see if it is correct or not. Since it is an incorrect 
answer, the SR plan is not popped, though a corresponding response is obtained. The 
problem solver sends the content of the next utterance to the discourse management 
system, the type is recognized as SP-COMMAND SR plan by the system and it is pushed 
onto the system stack. The content is further sent to the synthesizer and $3 is uttered. 
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$1: Dewa, tsugi no toi ni kotaenasai. X=2 wa,houteishiki 6-2X=3X-4 no kai desuka? 
(Now, answer the following question. 
Is X=2 a solution of the equation 6-2X=3X-4?) 

U2: Kai dewa nai. 
(It isn't a solution.) 

$3: Houteishiki ga yoku wakattenai youdesune. Tatoeba, X=3 ga 2X+1=5 no kai ka 
douka shirabemasu. X=3 wo sahen no 2X+1 ni dainyuusite kudasai. 
(It seems to me you don't understand linear equations well. For example, let's 
examine whether X=3 is the solution of 2X§ Substitute X with 3 of 
the left hand side 2X+ 1.) 

U4: Mazu, 3 wo 2 ni kakeru no desune? 
(Well, I multiply 2 by 3, don't I?) 

$5: Sou desu. 
(Yes.) 

U 6 : 7  desu. 
(It is 7.) 

Figure 9. Example of a simple discourse. 

The template "assertion of numerals" and others are expected according to the in- 
formation in SP-COMMAND, but the analysis fails, since U4 is not a response but a 
new requirement. Then, templates of possible requirements are generated according to 
bottom-up processing. In this example, UP-ASK-FACT is identified, since the utterance 
is of the form "fact + interrogative" and is pushed onto the user stack, suspending the 
system stack. At this moment, therefore, UP-ASK-FACT is active and SP-COMMAND is 
inactive. The result of the analysis of U4 is sent to problem solver, it evaluates U4, and $5 
is uttered. Then, the system expects utterance of confirmation, such as "wakarimashita (I 
see)", "wakatta (I've got it)" and so on, but it fails, since U6 is not a confirmation. Then 
it tries to identify whether it is a response to the suspended requirement. In this case, 
SP-COMMAND is the candidate, so the templates expected according to the plan, such 
as "assertion of numerals", are sent to the ASP again. The analysis in the ASP succeeds 
this time. 

5. CONCLUDING REMARKS 

We have discussed a speech understanding system with discourse management ca- 
pability. The basic mechanism of the discourse management subsystem is a two-stack 
architecture based on SR plans. Currently, the whole system is being implemented in 
Common Lisp and Flavors on Symbolics 3620. 
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A b s t r a c t  

Current state-of-the-art speaker-independent continuous speech recognizers are able to 
achieve word recognition rates well above 90 percent with lexicons of 1000 words or less 
using grammars with perplexity 60 or less. Performance of these systems decreases rapidly 
as the perplexity of the grammar increases. As we allow users more flexibility in interacting 
with recognition systems, the size of the lexicons and perplexity of the grammars increase 
greatly. Allowing spontaneous speech instead of read speech compounds the problems 
even more. Other sources of knowledge may be available to help constrain the ever more 
complex search spaces in such systems. When recognition systems are used in performing 
problem solving tasks, predictable features of the user's behaviour can be used to aid 
recognition. We describe a system (MINDS) which uses additional constraints based 
on dialog interactions. The constraints are applied in a manner that allows optimum 
performance when users behave predictably, and degrades gracefully when they do not. 
We also present an evaluation of the system's performance to show the utility of the 
additional knowledge sources. 

1.  O V E R V I E W  

One of the biggest problems in computer speech recognition is coping with large search 
spaces. The search space for speech recognition contains all the patterns assodated with 
words in the lexicon as well as all the legal word sequences. The most widely used 
recognition systems are hidden Markov model (HMM) based. In these systems, typically, 
each word is represented as a sequence of phonemes, and each phoneme is associated with 
a sequence of Markov states. As search space size decreases, recognition performance 
increases. Knowledge can be used to constrain the exponential growth of a search space 
and hence increase processing speed and recognition accuracy [6, 11, 17]. Currently, the 
most common approach to constraining search space is to use a grammar. The grammars 
used for speech recognition dictate legal word sequences. Normally they are used in a 
strict left to right fashion and embody syntactic and semantic constraints on individual 
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sentences. These constraints are represented in some form of probabiUstic or semantic 
network which does not change from utterance to utterance [3, 11, 12]. 

As we move toward habitable systems and spontaneous speech, the search space prob- 
lem is greatly magnified. Habitable systems permit system users to speak naturally. 
Grammars which try to cover even naturally elicited syntactically accurate sentences 
have perplexities that are an order of magnitude larger than the perplexities of grammars 
typically used by speech recognizers. Spontaneous speech grammars will have even larger 
perplexities. Spontaneous speech is ungrammatical and contains much editing. These 
edits can occur anywhere within a sentence and are often preceded by interjections. Ad- 
ditionally, spontaneous speech exhibits human noise in the form of filled pauses. Finally, 
the above phenomena are compounded by the presence of multiple sentences uttered with- 
out pausing at sentence boundaries and silent pauses within incomplete phrases. Hence, 
the notion of a well formed sentence exhibiting typical syntactic regularities is not appli- 
cable when processing spontaneous speech. These problems point to the need of using 
knowledge sources beyond typical syntax and semantics to constrain the pattern matching 
process in speech recognition. 

There are many other knowledge sources besides syntax and semantics. Typically, these 
are clustered into the category of pragmatic knowledge. Pragmatic knowledge minimally 
includes inferring plans, using context across clausal and sentence boundaries, determin- 
ing local and global constraints on utterances and dealing with definite and pronominal 
reference. Work in the natural language community has shown that pragmatic knowledge 
sources are important for understanding language. People communicate to accomplish 
goals, and the structure of the plans to accomplish them are well understood [7, 18-21] [1, 
4, 5, 9, 16]. When speech is used in a structured task such as problem solving, pragmatic 
knowledge sources are available for constraining search spaces. 

In the past, pragmatic, dialog level knowledge sources were used in speech to either 
correct speech recognition errors [2, 8] or to disambiguate spoken input and perform 
inferences required for understanding [12, 14, 15]. In these systems, pragmatic knowledge 
was applied to the output of the recognizer. 

In this manuscript we describe an approach for flexibly using contextual constraints 
to dynamically circumscribe the search space for words which can be matched against a 
speech signal. We use pragmatic knowledge to derive constraints about what the user 
is likely to say next. Then we loosen the constraints in a principled manner. Hence, 
we generate sets of predictions which range from very specific to very general ("layered 
predictions"). To enable the speech system to give priority to recognizing what a user 
is most likely to say, each prediction set dynamically generates a grammar which is used 
by the speech recognizer. The prediction sets are tried in order of most specific first, 
until an acceptable parse is found. This allows optimum performance when users behave 
predictably, and displays graceful degradation when they do not. The implemented sys- 
tem (MINDS) uses these layered constraints to guide the search for words in our speech 
recognizer. For our recognizer, we use a modified version of SPHINX (Lee, 1988) large 
vocabulary, speaker independent, continuous speech recognition system. 

The following section places the research described in the context of the overall MINDS 
system architecture. The following two sections describe the methods used to generate 
predictions and use them to guide recognition. We then present the results of two studies 



426 

which illustrate both perplexity reduction and performance improvements resulting from 
the use of predictions. Finally, we describe our current work in progress. 

2 M I N D S  S Y S T E M  A R C H I T E C T U R E  

The MINDS system uses pragmatic knowledge sources predictively to drcumscribe 
the search space for words in a speech signal [10, 22]. The pragmatic knowledge sources 
are embodied in an elaborate dialog model. The dialog model infers plans, performs 
plan tracking, deals with clarification subdialogs and dynamically computes constraints 
using local and global focus, or contextual information propagated from prior information 
seeking stages. To allow for diverse user behavior, MINDS uses a principled, general 
algorithm for relaxing constraints. Constraints are organized into sets that are successively 
more general, called "layers". When some constraints are violated, we use the non- 
violated constraints to reduce search space. Additionally, the flexible use of constraints 
allows the use of knowledge sources that are less certain to be true. Users that behave 
consistently can benefit greatly from enhanced recognition and the system will show a 
graceful degradation on those who do not. 

To enable the MINDS system to generate predictions and use them to guide the speech 
recognizer, we have partitioned the system into interacting modules, as seen in Figure 1. 
The bf speech module is composed of a modified version of SPHINX speaker-independent, 
continuous, large vocabulary speech recognizer. This version of SPHINX uses finite state 
grammars to constrain search. The grammars are dynamically generated after each utter- 
ance by the dialog module and sent to the completion module. Hence, the speech module 
receives input from the completion module and the speaker. It sends its output to both 
the completion module and the display module. 

T 
DATABASE ,..._I + .~ DIALOG 

I [d. 
r 

DISPLAY 

"7 cOMPLETION -7 SPEECH 
I 

Figure 1: MINDS System Modules. 

The comple t ion  modu le  is composed of a semantic parser, representations of the 
domain, the database, and the finite state grammar. The completion module communi- 
cates with the speech module, the database, and the dialog module. It takes the speech 
output, parses it and performs any necessary disambiguation. Then it takes its semantic 
representation and communicates it to the dialog module and generates a database query. 
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Once the predictions are generated, the completion module indexes them into precompiled 
portions of the finite state, semantic grammar and places restrictions on the expansions 
of the rewrite rules embedded in the finite state nets. The nets are then merged. 

The dialog modu le  is composed of a domain knowledge base, a hierarchical represen- 
tation of possible domain problem solving plans, and a set of heuristics for propagating 
constraints, inferring plans and tracking plans. The dialog module receives input from 
both the completion module and the database module so that it can track all information 
communicated. The dialog module is responsible for generating layered sets of predic- 
tions. It communicates these to the completion module so they can be expanded into 
potential surface forms. 

The d a t a b a s e  modu le  is composed of the Informix T M  relational database manage- 
ment system filled with a domain database, an "expert" interface to the database, and a 
natural language generator. The database module receives input queries from the com- 
pletion module. If these are either ambiguous or computationally expensive, the "expert" 
interface has the option of querying other system modules or the user for clarification / 
further specification. The "expert" interface translates query inputs into a form necessary 
for the database. Additionally, it translates the output into a semantically meaningful 
form. The output is then sent to the dialog module while the natural language generator 
produces the sentential output which is then communicated to the display module. 

The display m o d u l e  is composed of four displays. Two displays are maps which 
display the current version of the world and can zoom into areas of interest to the system 
user. The third display depicts detailed information previously communicated in the 
dialog, while the fourth display is devoted to communicating with the user and all the 
system modules. The fourth display contains a type in window which also displays the 
generated natural language database response as well as spoken utterance. Additionally, 
it contains windows for displaying clarifications requested by other system modules, and 
a window for displaying the test  set perplexity of the just parsed utterance. This module 
communicates with all other modules and knows the complete system state. 

When spoken information is input to the system, it is first processed by the speech 
module using the predictions generated earlier. Its output is sent to both the display 
module (where it can be corrected if necessary) and the completion module. The com- 
pletion module performs a semantic parse on the information and generates a database 
query. The semantic parse is sent to the dialog module and the database query is sent to 
the database module. The dialog module then determines which possible plan steps were 
activated by the input and uses the database response to gather further context. It then 
generates a new set of layered predictions and passes these back to the completion module 
for expansion and use by the speech module. Each of the system modules described above 
run in a distributed environment. 

In the next section we describe the use of plans to limit search space and the algorithms 
which enable the MINDS system to generate layered sets of predictions. 
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0 P L A N  B A S E D  C O N S T R A I N T S :  P R E D I C T I O N  G E N E R -  

A T I O N  

The idea underlying the MINDS system is that tracking all information communicated 
(user questions and database answers) enables a system to infer a set of possible problem 
solving plans and to track progress through these plans. In the convention of NeweU 
and Simon (1972) these plans are represented as hierarchically organized goal states. 
For example, in the domain of dealing with disabled ships, a goal state would be finding 
a replacement ship. As each new input sentence is spoken, the system analyzes the 
utterance to determine the concepts expressed, and uses these concepts to activate goal 
states. To derive plan based constraints on future utterances, active goal states are 
assessed to determine legal next states. For example, when finding a replacement ship, 
some of the legal next states which follow a question about the ships in some region are 
questions about more ships in the region, questions about availability of these ships, and 
questions about the ships' equipment. Because speech systems use grammars to guide word 
transactions, we associated a list of required and optional concepts with each goal state 
(e.g. concepts associated with a goal state for ship equipment include equipment, weapons, 
aircraft, electronics, etc.). The list of possible next states is used to generate a set of 
possible concepts which could be spoken in the next utterance. This set is then limited 
by local and global focus which takes into account prior context, rules about reference, 
etc. The speech recognizer only searches for surface forms expressing concepts in this set. 

3 . 1 .  L a y e r e d  P r e d i c t i o n s  

Plan based constraints are quite effective in reducing search space by delimiting the 
types of information likely to be communicated [10, 22]. But plan based constraints are 
based upon inferring user plans. Usually it is not possible to either definitively select a 
single plan step given an input utterance. Similarly, users may exhibit unexpected behav- 
ior by either violating the hierarchical nature of a plan or leaving plan steps incomplete. 
As both domain size increases and spontaneously generated speech is used for generating 
queries, these problems become magnified. 

To overcome the problem of multiple active plans and unexpected user behavior, we 
instituted three procedures. First, we designed an algorithm to select "the best" plan 
step or goal state from the list of possible goal states activated by the preceding utterance 
and database response. Here we preferred goal states that were both complete and most 
likely to follow given previous goal states activated. Second, we maintained a list of all 
other active goal states, including those which were not hierarchically embedded. These 
activated states were used to generate some alternate predictions about what the user 
could say. Third, we generated sets of layered predictions about the content of the follow- 
ing utterance. The predictions ranged from very specific to very general. These layered 
predictions were rank ordered to reflect both amount of constraint provided as well as 
the reliability of the knowledge sources used to generate them. It should be noted that 
the least constraining prediction layer allowed all domain concepts. This means that the 
system could cope with any statement the user might say even if it's not included in the 
system grammar. However, the system cannot cope with words which are not included 
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in the system lexicon. 
By layering predictions, we allow the system to reparse a speech signal with a different 

grammar until such time as a good parse is received. The ability to reparse an utterance 
also enables us to use less reliable knowledge sources to further constrain our predictions. 
Hence, we added two additional knowledge sources to the system: user domain expertise 
models and preference orderings for conjunctive goals. 

Observing that system users with significant domain expertise solved problems using 
very different plans than novice users, we attempted to model the effects of expertise 
by constructing domain knowledge models of novice, intermediate and expert system 
users. Our user models were represented as subsets of the domain knowledge base. The 
knowledge differed primarily by the existence of relations between domain objects. For 
ezample, an ezpert user would know that each class of ships has a set of default equipment 
and is suited for particular types of tasks, while a novice user might not be aware that 
shiptypes are divided into ship classes. The user models were then used to construct 
schemas which specified which goal states were exclusive. To further the last ezample, a 
control schema for an ezpert user would show that if the user asked about a shipclass they 
would not ask about default equipment. These models were hand coded from the training 
set data. 

Similarly, we used the training data to derive probabilistic orderings on conjunctive 
subgoals. These orderings told us which conjunctive goals would be executed first, second, 
etc.. The orderings were computed across individuals (although our training data only 
came from two people). However, there is no reason why these could not be automatically 
obtained for individual system users in future systems. 

Thus, the MINDS system used the following knowledge sources to derive predictions 
about the content of a user's next utterance: 

1. knowledge of problem solving plans represented as a hierarchical goals, 

2. semantic knowledge about the application domain's objects, attributes and their 
interrelations (a domain knowledge base), 

3. domain independent knowledge about methods of speaking, appropriateness of ref- 
erences and partial utterances (local and global focus) 

4. dialog history knowledge about information previously communicated, 

5. discrete models of user domain expertise as described above, and 

6. information about user preferences for ordering conjunctive subgoals 

These knowledge sources were used by the prediction module to perform iterative anal- 
yses of the dialog after each input/database response pair and generate sets of restrictions 
on the next utterance. The predictions generated. Each successive layer is less constrain- 
ing than the prior layer. 

The most constraining prediction set is generated using all knowledge sources listed 
above. The next set does not use user models and uses a larger non-overlapping set of 
goal states. Further sets are generated by moving upward in the goal hierarchy, allowing 
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more plans to be executed. The prediction sets become successively more general, hence 
the term "layered". Ultimately, the entire system grammar will be used. If this fails, an 
"allword" recognition is attempted where any word sequences are allowed (providing of 
course that the words are in the system lexicon). 

3 .2  D e r i v a t i o n  o f  P r e d i c t i o n s  

To illustrate how the information contained in a goal state or plan step is used to 
generate predictions, we present simplified, although prototypical representations of both 
a plan step and the control information which encodes our "less reliable" information 
about users. These are depicted in Figures 2 and 3, respectively. 

:Next-states 
:Parent 
:Children 
:Control 

] 

[Shipclass 
:Concepts-Requited ((Shipclass single-use Chile-restrictions* 

(knoxclass perryclass))) 
Concept Times-used Restriction-pointers 

:Optional-Concepts ((Region single-use Chile-restrictions* 
(persian-qulf))) 

:Optional (Not for expert-user) 
True/Nil/User-consideration 
(Find-Replacement) goal-state 
(Find-Replacement) 
(~on~) 
(none) 

, - Computed by local and global context 

Figure 2: Example Goal State Schema. 

[Control00030- for Find-replacement 
:Exclusive (( Ship class Equipment)) 
:Omit (Shiptype) 
:order ((.90 Shipclass .I0 Mission-Info) 

(.90 Mission-Info .I0 Shipclau)) 
] 

Figure 3: Example Control Schema. 

The  concepts - requi red  and opt ional -concepts  slot values are used to specify the 
concepts relevant when a user transits to the goal state. The number of concepts per goal 
state and the number of goal states a user could progress to next determine the size of the 
lexicon the speech recognition system must analyze. The cont ro l  slot contains a pointer 
to a control  schema whenever the child slot is not empty. 

Control schemas predict whether any child states are likely to be omitted and any 
preferred orderings on the states for a specific system user. They are used to generate the 
most constraining prediction layers. 
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As seen in Figure 3, there are three slots in a control schema. The o rde r  slot stores 
information about preferred orderings among non-optional, conjunctive subgoal states. 
The exclusive slot stores pairs of goal states which are exclusive because the information 
in the first allows the user to infer the information in the second. The omi t  slot store a 
list of goal states the user omits because they are unaware of the domain concepts. 

Control schemas are attached to parent goal states to predict which child states will 
be visited. Hence, they are also used to dynamically compute the value of the optional 
slot for each child schema. When a state is predicted to be omitted, the optional slot 
value becomes true for that cycle of input and database response. The op t iona l  and 
concep ts - requ i red  slots are important for determining when a goal state is complete. 

3.2.1 A lgo r i t hm for Pred ic t ion  Gene ra t ion  

These structures are used to derive predictions in the following process. When an 
incoming utterance and database response are processed, we select the most likely plan 
steps executed. If a plan step is not complete, then our most constraining prediction set 
reflects the assumption that the user will complete the plan step. The other prediction 
layers do not change. If one or more plan steps are complete, we identify the next goal 
states to which a system user could transit. Identifying possible next states is the basis 
for each layer of predictions. Next, we take all of the possible next plan step which would 
follow from the just completed step and store them. Following this, we apply our less 
reliable knowledge sources to further prune the set of next, most likely steps. To do this, 
we first use any and all knowledge of user ordering preferences and states which could 
be omitted. Then we back off first on the ordering information and then on the states 
which could be omitted. Then, since all goal states and possible problem solving plans are 
represented in a hierarchical manner, we progressively move up a layer in the hierarchy 
of incomplete, yet active plan steps or goal states to determine state to which the user 
could next progress. Once we have determined the next states, we can take the concepts 
associated with the states and compute restrictions on their expansions, restrictions on 
references given the state and the context, and restrictions on partial utterances. 

Once the predictions are generated, they are expanded into potential surface forms 
and used by the speech recognition module to guide the pattern matching process, as 
described below. 

4 U S E  O F  P R E D I C T I O N S  T O  G U I D E  R E C O G N I T I O N  

The idea behind the MINDS system is to use pragmatic knowledge to reduce the 
amount of search performed by the speech recognizer thereby reducing the recognition 
errors caused by ambiguity and word confusion. Hence, pragmatic knowledge is used 
predictively. These predictions take the form of semantic concepts with restrictions on 
their children and restrictions on methods of referencing the concepts. The underlying 
motivation for using a semantic representation was that speech recognizers 

The algorithm is somewhat simplified for purposes of this discussion. A forthcoming 
paper will discuss predictions re: clarification subdialogs and non-hierarchical open focus 
spaces, can be guided by using a semantic grammar. Furthermore, a semantic grammar 
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can be represented with non-terminal rewrite rules which group semantically related sur- 
face forms. Thus, once the layered predictions are generated, appropriate portions of the 
semantic grammar are "activated" and restrictions are placed on the expansion of rewrite 
rules as dictated by the predictions. The expanded "active" grammar is then used to 
guide the speech recognizer. 

4 . 1 .  E x p a n d i n g  P r e d i c t i o n  i n t o  P o t e n t i a l  S u r f a c e  F o r m s  

To expand the prediction sets, we must relate the abstract concepts to words sequences 
which represent the conceptual meaning of the concepts. 

For each concept, we have a partially precompiled set of possible surface forms which 
can be used in actual utterances. These individual concepts usually expand into noun 
phrases. 

In addition to the individual concepts, we have a complete semantic network grammar 
which is indexed according to the combinations of semantic concepts expressed. The se- 
mantic network grammar is partitioned into subnets. A subnet defines allowable syntactic 
surface forms to express a particular combination of semantic concepts. For ezample, all 
the ways for asking about a ship's mission are grouped into subnets. The subnets are also 
partitioned along syntactic lines, such as ellipsis (a partial utterance), single anaphora 
(we, he) plural anaphora (they, them, those) and definite reference (the). This multidi- 
mensional indexing allows predictions about syntactic forms as well as concepts. Thus, 
the surface forms associated with each combination of semantic concepts are segmented 
into a number of subnets. 

The grammar is precompiled into finite-state networks. The nodes of the nets represent 
non-terminal categories which expand into words. This also allows us to add additional 
words to the system lexicon without modifying the grammar. 

4.1.1. Algor i thm 

As illustrated above, the grammar is multidimensionally segmented into subnets. Our 
algorithm for using this information to translate each set of layered predictions into a 
form usable by the speech recognition module is as follows. 

First we find the set of subnets which contain one or more of the predicted semantic 
concepts. Forms that violate predictions on ellipsis or anaphora are pruned from this set. 
This set defines the nets to be active for the next utterance. Once the set of subnets is 
defined, we look for all the semantic concept categories, and check if their membership 
has been reduced by the predictions from the dialog module. This step represents a 
restriction on concept words that are active. The module then forms an active lexicon list 
and grammar based on the resulting subnets and restrictions derived from this algorithm. 

The final expansion of predictions brings together the partitioned semantic networks 
that are currently predicted and the concepts in their surface forms. Through an exten- 
sive set of indexing, we intersect all predicted concept expressions with all the predicted 
semantic networks. This operation dynamically generates one combined semantic net- 
work grammar which embodies all the dialog level and sentence level constraints on the 
sentences which can be matched. 
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This operation is repeated for each set of predictions and results in a set of layered 
semantic networks. These networks are used by the recognizer to guide the pattern 
matching process. 

To illustrate this point, let us assume that the frigate "Spark" has a disabled sps-48 
radar. One layer of our predictions expects the user to ask when it will be repaired. The 
dialog tracking module predicts the "shipname" concept restricted to the value "Spark", 
the estimated time of repair concept and the %hip-capabilities" concept, restricted to 
radar and SPS-48. Single anaphoric reference to the ship is also expected, but ellipsis is 
not meaningful at this point. The current damage assessment dialog phase allows queries 
about features of a single ship. 

During the expansion of the concepts, we find the word nets such as "the ship", "this 
ship", "the ship's", "this ship's", "it", "its", "Spark" and "Spark's". We also find the 
word nets for the raAar capabilities such as "sudace search radar", "sps-48", "radar", 
etc., and word nets for repair questions. 

We then intersect these with the sentential forms allowed during this dialog phase. 
Thus we obtain the nets for phrases like "Display / list etr / estimated time to repair / 
estimated repair time / projected time for repair on / for surface search radar / sps-48 / 
radar / sps-48 surface search radar", and "Display / what is / its / Spark's / this ship's 
/ the ship's etr / projected repair t i m e / ' ,  and many more. This semantic network now 
represents a maximally constrained grammar which reflects the constraints embodied in 
this layer of predictions. 

4 . 2  R e c o g n i z i n g  S p e e c h  U s i n g  D y n a m i c  N e t w o r k s  

As explained above, predictions are used to define an active set of subnets and an 
active set of words to be used in processing the next utterance. We use the SPHINX 
system as the basis for our recognizer. It has been modified to use finite state nets to 
control word transitions instead as opposed to word-pairs or bigrams. SPHINX creates 
word models by concatenating Hidden Markov Models of phonemes. These word networks 
are precompiled. 

During recognition, the speech module performs a time-synchronous beam search. The 
search traces through the active nodes of our nets to control word transitions. As the 
search exits a word it forms a set of words to transit to form successor states in the nets. 
Only the active finite state nets and active words are used to compute the successor word 
set. The search then transits to the words in this set. Paths faring below a threshold 
score are pruned. The network is used to allow only "legal" transitions. It does not affect 
the score of a path but simply restrict words which can continue the path. 

The recognizer is given several sets of predictions which are successively more gen- 
eral (less constraining). The most constraining set is used first. If no string is found 
which exceeds a threshold score, the input is reprocessed using the next more general set 
of predictions. If an acceptable recognition is not found using the most general set of 
predictions, the entire set of nets is used. 

After input has been processed, the word string with the best score is passed back to 
the system for parsing. In addition to the word string, the subnet matched, the overall 
score and individual word scores are passed back. 
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5 R E S U L T S  

The above described use of plans in speech recognition is currently embodied in the 
MINDS system (Young and Ward, 1988; Young, Hauptmann and Ward, 1988; Haupt- 
mann and Young, 1988). MINDS is a multimedia interactive dialog system where users 
solve problems by interacting with a database. Users can speak, type or point to in- 
put information and both the system and the user can initiate clarification dialogs when 
appropriate. It uses an adapted version of the SPHINX (Lee, 1988) speech recognition 
system with a 1000 word vocabulary. Its task domain is naval resource management. Here 
users must query a relational database to determine whether a disabled vessel should be 
replaced with another vessel, scheduled for a later repair, or whether the mission should 
be delayed. 

To test the ability of our layered predictions to both reduce search space and to improve 
speech recognition performance, we performed two experiments. The first experiment 
assessed perplexity reduction enabled by the predictive use of pragmatic knowledge. The 
second experiment measured improvement in recognition rates resulting from the use 
of layered predictions. Both studies used an independent test set. This means that 
the utterances processed by the system to obtain the experimental results had not been 
previously seen by the system. Furthermore, the test set did not include any clarification 
dialogs. 

5.1 Test  and Training Sets 

Our test data (10 scenarios) were adapted versions of three problem solving sessions 
taken from the TONE database. The TONE database is a set of transcripts from NAVAL 
personnel solving problems about what to do with a disabled vessel. The personnel must 
determine whether to delay a mission, find a replacement vessel or schedule a repair for 
a later date. They use a database to find necessary problem solving information. In 
addition to the three scenarios from the TONE database, we created seven additional 
sessions by paraphrasing the original three. These scenarios were not used to train upon. 

Our training data were five different problem solving scenarios from the TONE database. 
The training scenarios were used for writing grammars and developing user models. Prob- 
lem solving plans were derived from an abstract description of the stages and options 
available to a problem solver. The abstract plan descriptions were provided by the Navy. 

Our database was different from the one used in gathering the TONE transcripts. 
While it contained the same fields, the information about particular ships differed across 
the two databases. To enable testing with the TONE transcripts, we had to adapt the 
test scenarios. Our adaptations consisted of the following: 

- Shipnames were changed to correspond to those in our database. 

- Lexical entries not in our lexicon (such as 'employment schedule') were replaced with 
equivalent concepts in our lexicon (such as 'mission' and 'mission importance'). 

- Database inconsistencies were resolved in favor of the CMU database. For example, 
if in the naval database, ship X required capability Y for its mission but in the CMU 
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database ship, X required mission capability Z, all references in a scenario to Y were 
replaced with references to Z. 

These adaptations have minimal impact on the integrity of the data. 

5 . 2  R e d u c t i o n  i n  S e a r c h  S p a c e  

Our first experiment was designed to test the search space reduction resulting from 
applying pragmatic constraints. Thus, we used all 10 of our test scenarios. The scenarios 
contained an average of 9 sentences. 

To measure the constraint imposed by the knowledge sources, we use an index called 
perplexity. This is an information theoretic measure that is widely used in speech systems 
to characterize the constraint provided by a grammar. Perplexity represents the geometric 
mean of the number of alternative words at any point. Search space size for a given test 
sentence is computed by raising perplexity to the number of words in a sentence. 

To measure the reduction in perplexity and search space it was necessary to collect 
test set perplexity measurements for each of the parsed sentences in two conditions: 

- Total domain grammar alone 

- Using predictions 

Test set perplexity is the perplexity of the actual sentence parsed. It is different than 
total grammar perplexity because it takes into account only those alternatives which are 
legal next words given the grammar. 

To measure the perplexity of all the sentences in each of the test scenarios using the 
entire system grammar is relatively straight forward. However, measuring the test set 
perplexity of sentences which are parsed with layered predictions is not. Since prediction 
layers fail, we must report the perplexity of the layers which were successful. However, 
since some layers are non-overlapping, the number we report is the perplexity of the 
successful prediction layer merged with all the unsuccessful layers attempted. 

As seen in Table 1, test set perplexity was reduced in excess of an order of magnitude, 
from 279.2 to 17.8. 

Put differently, the knowledge sources reduced the search space for lexical entries by 9 
orders of magnitude on the average 8 word sentence when the predictions were expanded 
into potential surface expression forms for future utterances. 

Table 1: 

Reduction in "'] 
Branching Factor and Search Space ! 

Consu'aims used: grammar layered predictions[ 

Test Set Perplexity 279.2 17.8 [ 

Search Space 3.81 x 1019 1.01 x 109 ] 
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5.3 Recognition Performance 
To evaluate the effects of using layered predictions on recognition performance we used 

10 speakers (8 male, 2 female) who had not been used to train the recognizer. Each 
speaker read 20 sentences from the adapted test set provided by the Navy. Each of these 
utterances was recorded. The speech recordings were then run through the SPHINX 
recognition system in two conditions: 

- using the system grammar (all legal sentences) 

- using the successful prediction layer merged with all unsuccessful layers 

The results can be seen in Table 2. 
As can be seen, the system performed significantly better with the predictions. Error 

rate decreased by a factor of five. Perhaps more important, however, is the nature of 
the errors. In the "with predictions" condition, 89 percent of the insertions and deletions 
were the word "the". Additionally, 67 percent of the substitutions were "his" for "its". 
Furthermore, none of the errors in the "with predictions" condition resulted in incorrect 
database query. Hence, semantic accuracy was 100%. 

Table 2: 

Recognition 
Performance 

Constraints used: 

Test Set Perplexity 

grammar 

242.4 

layered predictions 

18.3 

Word Accuracy 82.1 96.5 

8 5 %  

0.0% 

8.5% 

9.4% 

Semantic Accuracy 

Insertions 

Deletions 

Substitutions 

100% 

0.5% 

1.6% 

1.4% 

6 S U M M A R Y  

In summary, by identifying and using knowledge sources which can intelligently re- 
duce search space, we progress toward developing robust, interactive problem solving 
environments where speech is the primary mode of communication. One such knowledge 
source is pragmatics. The use of layered predictions derived from pragmatic knowledge 
sources appears to be a powerful technique for improving speech recognition and reducing 
search space. Layered predictions allow the recognition system to capitalize upon prag- 
matic knowledge sources without impairing the system's ability to recognize less likely 
utterances. The more consistent the users' behavior, the better the recognition. As user 
behavior deviates, recognition accuracy degrades gracefully and the system is capable 
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of recovering and generating further pragmatic predictions based upon both the users' 
expected and less expected behavior. However, as domains continue to scale up and 
we begin to process spontaneously generated speech, additional knowledge sources will 
become increasingly important. 
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Abstract 

Noise elimination/reduction or speech enhancement is a very necessary pre-processing 
technique in every practical application of speech recognition. For this purpose, a method 
is proposed which combines the data clustering function of vector quantization with the 
pattern classification function of neural networks. 

The method is effective for a noise elimination, for example, in the range of an average 
SNR from 9 to 2dB with the learning at an SNR of 5dB. The features of the method are: 

(1) the use of different effective parameters for clustering and classification, respectively, 
and 

(2) the rejection of non-speech segments both in learning and classification, to avoid con- 
fusion. Applications for recognition and coding are discussed. The large-vocabulary 
case is beyond the scope of the present paper and now under study. 

1. OBJECTIVES OF RESEARCH 

Noise elimination/reduction or speech enhancement is a very necessary pre-processing 
technique in every practical application of speech recognition. "Speech enhancement 
" is defined here as the reduction or elimination of noise directly from speech wave- 
forms, and the reproduction of speech waveforms which sound noise free. "Noise reduc- 
tion/elimination ~ means here to derive any parameters effective for speech recognition or 
synthesis, which are robust against the noise mixed with the speech. 

Previous work on noise reduction or speech enhancement is mostly based on iterative 
adaptations of noise canceling filters using two separate microphones [1 - 3]. Our method 
studied here is using only one microphone, and a quite different and new one. 

2. OUTLINES OF THE METHOD 

Our method of noise elimination is designed for the use of one microphone and based 
on the combination of two functions of new technologies: clustering of continuous input 
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speech data into a finite number of code vectors by "vector quantization" (VQ) and 
classification of noisy patterns into clustered categories defined by the VQ by "neural 
networks" (NN). 

Speech data flow continuously in time and consecutive segmental analysis of 20-30 ms. 
duration is assumed. The noise elimination process is carried out segment by segment. 
The noise elimination process is prepaired and performed using the following four steps, 
shown in Figure 1. 

.o~.e~... I ~ cod. sook 

2 ' /  ........ L.B .G .  A l g o r i t h m  ) ! 

V e c t o r  Code ' 

I ( T e a c h i n g  Data f o r  NN ) 

( A u t o  C o r r e l a t i o n  ) Noisy 

Speech 

Parameters 

Recognition 

Synthesis 

L Coding 

Speech 
Figure 1. Noise elimination process by vector quantiz.~tion and neural networks. 

(1) Vector quantizatio n of noiseless speech. 

(a) Generation of code vectors by the regular LBG algorithm with speech samples 
for learning [4, 5]. 

(b) Quantization of the speech samples using the codebook vectors, and generation 
of the desired output for NN training. 

(2) Learning/training of the neural networks. For classification (VQ) of noisy speech,neural 
networks are trained at a typical SNR condition with the back propagation algorithm 
and the desired outputs [6, 7]. 

(3) Vector quantizing of noisy speech. The above-mentioned trained neural networks 
classify the noisy input speech, segment by segment, and output a sequence of code 
numbers. 

(4) Retrieve any desired pre-analyzed speech parameters. The desired speech parameters 
can be retrieved using the output code number of the NN as an index. The retrieved 
speech parameters have been pre-extracted from each segment of noiseless speech 
from which each code vector is derived, respectively. 

Then, if the neural networks can classify each noisy segment correctly, the final speech 
parameters are noise free in quantized accuracy, and noise cannot disturb the results at all. 
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The point is how well neural networks can classify noisy speech into correct categories, 
segment by segment, after the learning, and a series of experiments are carried out to 
study this point. 

0 P R E L I M I N A R Y  S T U D I E S  O N  V O W E L S  C L A S S I F I C A -  
T I O N  B Y  N E U R A L  N E T W O R K S  

Preliminary experiments are carried out to specify the configurations of the neural 
networks, the input parameters, and to confirm the idea of noise elimination by five 
Japanese vowels classification. 

3.1.  Configuration of the neural networks 

Concerning classification of five Japanese vowels, the number of categories of the pat- 
terns to be classified is relatively small, i.e. five. 

It is concluded after the experiments that the following simple Perceptron type of two- 
layer NN, as shown in Figure 2, is good enough for the classification both in noiseless and 
noisy conditions. 

(1) aU connections are feed forward and only to the next layer, 

(2) the number of neural units in the hidden layer is relatively small, presumably greater 
than the number of output categories and less than twice that number. 

3.2.  Input  parameters  for the VQ and N N  

(1) VQ: LPC Ceps t rum coefficients. 

Several parameters are compared with each other as input for VQ clustering. Our 
criterion for the choice is simple: we select the parameters which show the best corre- 
spondence to the phonemic segmentations which are made manually, by inspections of 
the various types of analyses. 

As shown in Figure 3, the LPC Cepstrum coefficients show the best correspondence 
and are chosen as input parameters for the vector quantization. 

(2) NN: Quasi-normalized auto-correlations. 

In all experiments,random noise is assumed and generated in a computer and added 
to digitized speech data with controlled amplitude in order to get a given average SNR. 

LPC based parameters cannot be used at a very low SNR as inputs for noisy speech 
classification because they are seriously distorted by the existance of heavy noise. Input 
parameters for noisy speech classification must themselves be as robust as possible. Con- 
cerning auto-correlation,as far as the noise is independent of the signal and additive, the 
effect of noise is simply a linear addition of ther auto-correlation of the noise itself to that 
of the signal [8]. 
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Figure 2. Configuration of two-layer Perceptron-type neural networks. 

Furthermore, auto-correlation of random noise is mostly concentrated in the first, zero- 
time delay term, as shown in Figure 4. Quasi-normalized auto-correlation coemcients are 
used. Quasi-normalization means the normalization using the maximum value in the 
range of consideration excluding the first (zero-time delay) term. 

3.3.  C las s i f i ca t ion  and no i se  e l i m i n a t i o n  

Errorless classification by neural networks is possible for a single speaker's five Japanese 
vowels under noiseless conditions. 

Concerning the classification of noisy vowels,the range of good performance is rather 
limited around the learning condition, but the results are far better than those of the usual 
classification using pattern matching by the Euclidean distance. Therefore, our idea of 
noise elimination is confirmed in principle. 

4. M A I N  E X P E R / M E N T S  A N D  T H E I R  R E S U L T S  

4.1.  C o n d i t i o n s  of  t h e  e x p e r i m e n t s  

(1) Digital data: 15kHz sampling and 12 bit linear A/D conversion 

(2) Analysis: 20ms (300 samples) duration and 10 ms (150 samples) shift. 
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Figure 3. The correspondenma between code vectors and manual phonemic segmentations 
of the word "AOENDO" by the vector quantization of various parametera. Marked * are 
code vector segments. R: autoamelation, K: PARCOR, and C: LPC Cepstrum. 
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Figure 4. Examples of the auto-correlation of random noise. 

(3) Vector Quantization: Inputs are the LPC Cepstrum coefficients of the 1st to 19th 
order. 

(4) Neural Networks: Inputs are quasi-normalized auto-correlations of the 1st to 19th 
order. 

4.2. The  small vocabulary case 

(1) Subject: The word "AOENDO" (green peas) spoken by a male speaker. The number 
of analyzed frames is 88, and the number of code vectors is 16. 

(2) Neural networks: Two-layer Perceptron with 20 inputs and 16 outputs. The number 
of neural units in the hidden layer is 18. 

(3) Noiseless speech: Perfect classification is obtained after enough learning. 

4.3. Classification of noisy speech by trained N N s  

(1) Learning: NNs have been trained at an average SNR of 5dB in 5000 to 10000 times. 
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(2) Testing speech: The average SNR ranged from 10 to ldB with ldB steps. 

(3) The results: The rate of correct classification into VQed categories reaches higher 
than 98% on the average, in the range of SNR of 9 to 2dB,as shown in Figure 5. 

10 

I )~ .... Without Rejection 
~ .... With Rejection 

i !  / 
10 8 6 4 2 

o f  T e e t  Speech ( dB ) 

Figure 5. Error rate and its reduction by the rejection of non-speech segments in the 
neural networks classification. Error rate = No. of error frame / No. of speech frame. 

First, a speech/non-speech decision is made in each segment, and non-speech segments 
are rejected in learning and classification. This process can reduce errors in classification, 
as shown in Figure 5, due to the elimination of confusing learning of a non-speech segment 
as a speech segment. 

4 . 4 .  R e s u l t s  

Noise is adequately eliminated in a relatively wide range at low SNR, i.e. below 10dB, 
around the learning condition. A typical example of the original noiseless speech,noisy 
speech and noise eliminated speech is shown in Figure 6. This is only for the purpose of 
demonstration of the noise elimination,the residuals of the original noiseless speech are 
used as input for noise eliminated, synthesized speech. 
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Figure 6. A typical example of noisy speech and noise eliminated speech at SNR = 2dB. 
Top: original noiseless speech. 
Middle: noisy speech with average SNR - 2dB. 
Bottom: noise eliminated speech (synthesized). 

4.5. The  large vocabulary case 

(1) Vocabulary: Subject of the analysis are several decades of words of one male speaker. 
The number of analyzed segments is about 1000 in total, and the number of code 
vectors is 128. 

(2) Neural Networks: Two-layer Perceptron with 20 inputs and 128 outputs. The number 
of units in the hidden layer is 128 or 256. 

(3) Inputs: The parameters used in VQ clustering and NN classification are the same as 
in the previous small-vocabulary case. 

(4) Results: No perfect classification can be obtained even in the noiseless case after 
enough learning. A three-layer NN or a multi-staged of two-layer NN are now under 
consideration and a series of learning and classification experiments are in progress. 

5. C O N C E I V A B L E  A P P L I C A T I O N S  

The following are examples of conceivable applications of the noise elimination process 
described above. 

5.1. Recogni t ion  I n p u t  t o  a n  H M M  

The direct application of the noise elimination process for speech recognition is shown 
in Figure 7. The application is direct and the concept is easy to under- stand. But 
experiments are not carried out yet. 
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Figure 7. Application of the noise elimination process to speech recognition 

5.2. Coding Coding of noisy input speech 
An other interesting application of noise elimination is, as shown in Figure 8, coding 

of noisy speech. The noise elimination process can extract noiseless spectrum data from 
noisy speech in quantized form by retrieving of the LPC Cepstrum, PARCOR, LPS or 
any desired parameters. 
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U ' Pitch and Amplitude ! and Source-  i' 
[ I [ 
J Wave s j I Estimation L. 

Synthesized 
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Source-  i Synthes i s  ~ 1  Wave~o~s  

[ P i t c h a n d  [ 

Synthesis 

Coding 

J 
J 
J 
i 
i 
o 
i 
i 
J 
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i 
i 
i 
J 

Decoding ~--J 

Figure 8. Application of the noise elimination process to noisy speech coding. 

Then, if the data of the excitation source can be extracted from noisy speech properly, 
noiseless speech could be reproduced from noisy speech by synthesis. 

One possibility of the method is as follows: waveforms of the excitation source can be 
described by three data; the unit waveform of the excitation source, the pitch period or 
exciting timing and the source amplitude. As for the first one, the unit waveform, a pulse 
(voiced) or a random noise (unvoiced) is conventionally used, and this is one of the main 
reasons why the synthesized speech does not sound natural or human-like. 

One possible alternative for the unit waveform of excitation is extracted from residuals 
of each segment from which each code vector is derived, that is,to pick out a typical pitch 
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period of the residuals derived from the speech of that segment, and they are written in 
the cod~book of the excitation waveform with the same code number of the spectrum. 

The vector quantization of the spectrum quantizes not only the spectrum but also the 
unit waveform of excitation. Then the difficult problems remained are how to estimate the 
excitation timing and the source amplitude from the noisy speech. One feasible solution 
is to take a simple running average of the input noisy speech and detect the position 
of its peaks and measure the amplitude of each peak. The method is simple but very 
effective for noisy speech. Needless to say, some detailed adjustments or modifications are 
necessary in the practical use of the method. 

An experimental example is shown in Figure 9, and the overall synthesized (simulation 
of coded-and-decoded) speech is shown in Figure 10, with the original noiseless speech. 
As expected from the figures, the synthesized speech sounds very natural and noise free. 
This type of application is quite new and also interesting from a practical point of view. 

~  " /I 
vv ,-, ~'i i-" -V t >me 

=-I /~ ] / f ' -x  ~ 

! \ - >time 

~i 1 I I  I t .~x~i I,!1,-,_. _,~.7} t . ! l ~ j  . o L " "  ~ l ' v  - - .  ~ '  ~ v ' v  - . -  time 
I i 

Figure 9. An example of synthesized excitation wavefonzm. 
Top: residuals of the original speech. 
Middle: running average of noisy speech. 
Bottom: synthesized excitation waveforms. 

6. C O N C L U S I O N S  A N D  F U R T H E R  P R O B L E M S  

Random noise mixed with speech is adequately eliminated by the combined use of 
vector quantization for data clustering and neural networks for pattern classification. 
The typical range of noise elimination is a SNR of 9dB to 2dB when learning at 5dB. The 
method can be applied not only for speech recognition but aJso for noisy speech coding. 
A problem remained unsolved the expansion of these results from the small vocabulary 
case to the large-vocabulary case and this is now under study. 
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Figure I0. An example of noisy speech and its coded-decoded synthesized speech at SNR 
= 2dB. 
Top: original noiseless speech. 
Middle: noisy speech with SNR = 2dB 
Bottom: synthesized (coded-decoded) speech. 
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Nonstationary Noise Environments 
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A b s t r a c t  

The progress in the speech processing technique makes it more and more complicated 
and it tends to lose robustness against noise distortion. A speech recognition system is 
usually used under noisy environments and effective noise processing techniques are de- 
sired to be developed. This paper presents a study on speech/nonspeech discrimination 
under real life noise environments. This paper propose several acoustic parameters as fea- 
tures effective for speech/nonspeech discrimination. Experiments to test  the performance 
of the speech/nonspeech discrimination system which are based on the proposed feature 
parameters are also discussed. 

1. I N T R O D U C T I O N  

The speech recognition technique has made rapid progress and it is now put to prac- 
tical use. However, the performance of speech recognition systems degrades severely by 
additive noise. This is because the processing in the speech recognition system becomes 
more and more complicated with the progress in speech technology and, as a result, its ro- 
bustness against noise distortions tends to be lost. It should be robust against background 
noise, and, for this purpose, noise processing techniques are desired to be developed. This 
paper presents an important part of a noise processing system. To keep the performance 
of speech recognition systems high in a real life noise environment, precise detection of 
speech segments and speech enhancement (or restoration of the speech spectrum) are very 
important. This paper deals with the former problem. Considerations on feature parame- 
ters for speech/nonspeech discrimination are given. Experiments to test  the performance 
of the proposed speech/nonspeech discrimination system are also demonstrated. 

2.  N O I S E  P R O C E S S I N G  S Y S T E M  

In many cases, background noise in a read life environment can be modeled as a sum 
of stationary continuous noise and isolated noises such as door dicks, footsteps, barking, 
and so forth. Speech is also nonstationary and usually isolated. If we assume that there 
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is no overlapping between speech and isolated noise, an observed signal z(n) is simply 
modeled a~ the sum of a stationary background noise d(n) and an isolated signal s(n), 
which may be isolated speech or isolated noise. That is, 

z(n) = s(n) + d(n). (1) 
With thie assumption, the signal s(n) can be identified as a nonstationary region in 

the stationary background noise d(n). Therefore, the noise processing problem becomes 
to detect nonstationary regions in z(n) and to restore speech signal by reducing the dis- 
turbances by the background noise if the detected region contains speech signal. Figure 
1 shows the block diagram of the noise processing system under development. Its pro- 
cessing steps consist of three parts. The first processing step is the precise segmentation 
of the nonstationary signal. A new segmentation method has been developed by which 
nonstationary segments can be detected precisely. The next step is the speech/nonspeech 
discrimination for the nonstationary segment detected by the first processing step. If 
the segment includes speech, the third processing step begins to work. It is the speech 
enhancement stage, and stationary noise d(n) is removed to restore the speech waveform. 
This paper treats only the second processing step. 

noisy speech input ) 

~ x(n) 

i ~ 1 7 6  1 nonstationary signal 

NO 

sy 
~ speech 

I speech enhancement 1 

i I 

discard 

Figure 1. Noise processing system. 
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@ F E A T U R E  P A R A M E T E R S  FOR S P E E C H / N O N S P E E C H  
D I S C R I M I N A T I O N  

A detected nonstationary segment is disturbed by a stationary background noise. The 
degree of disturbance on the nonstationary signal characteristics depends on the relative 
power levels of the two signals. It is natural that the acoustic characteristics of the 
nonstationary signal are well preserved if the signabto-noise ratio (SNR) is high. A vowel 
has generally much a larger power than any consonant. This means that characteristics 
of vowels are preserved much better than those of consonants. It is hard to specify 
acoustic characteristics of all sorts of isolated noises in a real life environment. Therefore, 
we can say that whether the nonstationary signal has voweblike characteristics or not 
gives the primary clue to the speech/nonspeech discrimination. The speech/nonspeech 
discrimination subsystem processes a subregion of the detected nonstationary segment 
where the power level of z(n) is above a threshold L. The threshold level is determined 
so that the power level of most vowel segments exceeds it. 

The fundamental feature parameters for speech/nonspeech discrimination adopted in 
our system are: 

(1) periodicity 

(2) pitch frequency (f0), 

(3) optimum order of the prediction model (po), 

(4) Q of the first formant (QI) and 

(5) minimum LPC cepstrum distance between the 5 vowels (d,ain). 

These feature parameters reflect the similarity to vowel characteristics. Kamiya and 
Tanaka have proposed the sum of the absolute values of the Cepstrum coefficients as 
a feature parameter for speech/nonspeech discrimination. In our system, not only the 
spectral information but also other acoustic features are adopted, so that the system 
works well under various noise environments. 

The speech/nonspeech decision is made in two steps. At the first step, a frame by 
frame decision is performed. If the feature parameters extracted from an analysis frame 
satisfy the following conditions at the same time: 

(1) periodicity, 

(2) f~ < fo < fH, 

(3) PL < Po < PH, 

(4) QL < Q,, and 

(5) d~.~ < dH, the subsystem assigns the frame to the category speech. That is 

if (1) n(2) n (3)n (4)n (5) is true, then the analysis frame is of speech 
The following items are examined for overall decision: 
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(6) smoothness of the change of pitch frequency, 

(7) smoothness of the change of the optimum order of the linear prediction model, and 

(8) percentage of the frames assigned to the category of speech (r). 

If the changes of f0 and po are both smooth and the percentage r is lager than a 
predetermined threshold, the whole of the detected nonstationary segment is classified as 
speech. The smoothness measures of fo and po are given as follows. 

and 

where, 

and 

n2 

z~---nl 

n 2 - n l  + 1 '  

n2 

dpo(.) 
S p  ~ lrl,~-nZ 

n 2 - n l  + 1 '  

dfo(n) = Ifo(, ' ,)- f o ( - -  1)1, 

= 1)1. 

4. E X P E R I M E N T S  

4 . 1 .  E x p e r i m e n t a l  C o n d i t i o n s  

The purpose of this paper is to show the effectiveness of the adopted acoustic param- 
eters for speech/nonspeech discrimination. Nonspeech signals used in the experiments 
include various office room noises, computer room noises, sounds of musical instruments, 
barking, chirping of insects, and so on. Total number of nonspeech signal is 120. Test 
signal is sampled at 10kHz with 12bits accuracy. The length of the analysis frame and 
its interval are 25.6ms and 12.8ms, respectively. The autocorre]ation function of the pre- 
diction residual is used for periodicity judgment. The threshold level for the decision is 
0.25. The pitch frequency is obtained for every analysis frame whether the maximum 
peak value of its autocorrelation functions greater than the threshold or not. The lower 
and the higher boundaries of the pitch frequency of typical speech are assumed to be 80 
and 350Hz, respectively. The optimum order of the prediction model is defined in the 
experiments as the order which gives the minimum for the AIC criterion. From a prelim- 
inary experiment, it was shown that the optimum order of the linear prediction mode] is 
typically 12 and it lies usually between 8 and 15, which are adopted as the lower and the 
higher boundaries of the optimum order of the speech mode]. The Q of the first formant 
is obtained from the pole of the linear prediction mode]. 
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Figure 2. Comparison of spectral patterns between speech and nonspeech. Left" door 
click and/u/, right: barking and/e/. 
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Figure 3. Distributions of each feature parameter. Upper left: percentage r, upper right: 
pitch frequency, lower left" optimum order, lower right: Q. 
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Figure 5. An example of system output for musical sound of a guitar. 
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4 . 2 .  D i s t r i b u t i o n  o f  e a c h  f e a t u r e  p a r a m e t e r  

There are many kinds of noises in real life environments whose instantaneous spectra 
are similar to those of vowels. Two examples are shown in Figure 2. A door click and 
barking show vowel-like spectra in their transient states. The feature parameters (a) 
- (d) are selected so that they make up for the defectiveness of the LPC Cepstmm 
distance measure. Distributions of the adopted feature parameters are shown in Figure 
3. Solid lines and dotted ones correspond to speech and nonspeech, respectively. These 
figures show that speech and nonspeech are well separated to each other by these feature 
parameters. Musical sound is periodic and its pitch frequency is usually in the pitch 
frequency range of typical speech. And, moreover, the spectral patterns of some musical 
instruments are very similar to those of speech. However, they are identified correctly by 
evaluating the ~ of the first formant. The ~ of music sound is usually smaller than that 
of speech. The prameter value ~L is experimentally determined as 1.4. 

4 . 3 .  S p e e c h / n o n s p e e c h  d i s c r i m i n a t i o n  

Figures 4 and 5 show examples of outputs of the proposed system. Figure 4 shows an 
example for female speech/koganei/. In this example, every feature parameter satisfies 
the condition of speech. On the other hand, Figure 5 shows an example of sound of 
a guitar. From the figure, it is known that the LPC Cepstrum distance ren~ins small 
throughout the signal segment and the pitch frequency and the optimum order of the 
prediction model also remain in the reasonable range of speech. We can see, however, 
that the distribution of the Q of the first formant is different from that of speech. Mean 
value of the Q is apparently smaller than that of speech, by which it was classified into 
the category of nonspeech. 

Table 1 shows the result of speech/nonspeech discrimination. The results shown in the 
upper half of Table I are correct classification rates when one feature parameter assigned 
by a small circle was used. These results show that almost all speech is classified correctly 
and about half of nonspeech signals are categorized into speech. However, the adopted 
feature prameters are shown to be compensative to each other. Correct classification rates 
when four or five feature prameters were combined are shown in the lower part of Table 
1. 

From experimental results, we can say; 

1) Male voice is easy to recognize as speech. 

2) On the contrary, female voice is difficult to classify into speech. It is because the 
distributions of the proposed feature prameters of the female voice are wider than 
those of male voice. Especially, the optimum order of the linear prediction model 
changes its value widely in the case of female speech. 

4 . 4 .  S p e e c h / n o n s p e e c h  d i s c r i m i n a t i o n  u n d e r  s t a t i o n a r y  n o i s e  

The background stationary noise is not considered in the experiments described in the 
section 4.3. However, such background noise must be considered in a real life environment. 
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Table 1. Correct classification rate in percent. Small circle (o) show the adopted feature 
paxameters for speech/nonspeech discrimination. 

Adopted feature parameters Correct classification rate [%] 
(a) (b) (c) (d) (e) Male speech Female speech Non-speech Mean 
o 100 95 57 76 

o 100 95 43 67 
o 100 98 44 69 

o 100 98 41 67 
o 100 95 63 79 

o o o o 1 0 0  8 8  8 8  91  

o o o o 1 0 0  8 8  9 0  9 2  

o o o o 1 0 0  9 0  9 1  9 3  

o o o o 1 0 0  8 8  9 1  93  

o o o o l O 0  9 0  8 7  91  

o o o o o 100 85 94 94 

(a) percentage of periodic region, (b) pitch frequency, (c) optimum order of the linear 
prediction model, (d) LPC cepstrum distance, (e) Q of the first formant. 

Table 2. Correct classification rates when speech and nonspeech axe disturbed by white 
noise. 

i 

S / N ratio Classification rate [%] 
Signal 10dB 5dB 0dB 

Male speech 100 100 8 8  

female speech 84 80 71 
n o n s p e e c h  94 94 96 

Tota l  94 92 87 
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Experiments to test the usefulness of the proposed features under stationary background 
noise contamination were performed. A white noise was used as a contaminating noise 
and feature parameters were extracted from the non-stationary signal disturbed by the 
white noise. Table 2 shows the results. The experiments show that the proposed system 
keeps its performance well if the signal-to-noise ratio is equal to or above 5dB. It means 
that the proposed features are robust against noise disturbances. 

5. C O N C L U S I O N  

Feature parameters for discrimination between speech and nonspeech signal have been 
studied. Periodicity, pitch frequency, optimum order of the linear prediction model and 
the Q of the first formant have been investigated as acoustic feature parameters effective 
for the discrimination of speech/nonspeech. 

Experiments to test the performance of the system have been made, whose results show 
that the proposed system works well and especially male speech is classified correctly. 
However, classification of female speech is not accurate. The reason has been given. 
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Spatially Selective Multi-Microphone System 
Hikaru Date and Tomio Watanabe 

Department of Information Engineering, Yamagata University, Yonezawa, 992 Japan 

1. I N T R O D U C T I O N  

The present paper introduces "spatial selectivity", a new concept in sound reception, 
the principle behind its realization, and several results of computer simulation which 
manifest the foundation of the design. 

Spatial selectivity of a microphone system is defined as a function which rejects all 
sound signals coming from the external region specified by the system. 

Its practical applications include the suppression of howling in public address systems 
and conference telephony, the improvement of the signal-to-noise ratio of microphone 
output to automatic speech recognition machines, and the improvement in separability of 
the signal picked-up from a particular musical instrument from that of other instruments 
played simultaneously in the same studio. 

The reason is quite simple; most unwanted signals such as noise, reflected sound, 
radiated sound from loudspeakers in public address systems, etc., come from distant 
sources or images, therefore these can be effectively eliminated by a microphone system 
with appropriate spatial selectivity. 

2. P R I N C I P L E  

The principle of spatial selectivity is a direct consequence of the representation of the 
sound field by an integral equation. Figure 1 shows a closed region with its boundary 
surface and related vectors. The sound pressure, ~(r t), is given by the well-known 
Kirchhoff equation: 

O~o R2c t0-t-R/c 
(1) 

where ~" in the Green's function is an observation point inside the closed region, ~'0 in 
the Green's function refers a source point,/~ = r  ~'0, and R = IRI. 

Transposing the left side term to the right side and the volume integral term on the 
right side to the left side, we get: 
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Figure 1. Vectors, boundary surface,and closed region for integral representation of the 
sound field. 
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(2) 

The value of the left side of this equation is zero if there is no source in the closed 
region. Therefore, we can receive sound signals coming from sources inside the closed 
region only, if we measure the sound pressure at an arbitrary point ~" inside the closed 
region, and at the same time measure the pressure, the pressure gradient normal to the 
boundary surface and the time derivative of the pressure at the boundary by appropriate 
means, and then process these signals according to Eq.(2). Other signals coming from 
the outer region of the boundary surface are eliminated at the output of the system. In 
other words, we can get a spatially selective sound receiving system. 

2 . 1 .  D i s c r e t e  A r r a n g e m e n t  o f  M i c r o p h o n e s  

In order to realize such a system, we use a spherical surface as the boundary and divide 
it ideally into M domains of the same shape and with the same area. And we let ~" be the 
center, 0, of the sphere. Then, the right side of Eq.(2) can be approximated by a(rq, t), 
defined as 

M 

~(,..o, t) = ~(o, t) - ( I l M )  ~ [~(0,~,10~) + ~, + (~l~)(O,~,l~o)],o=,_o/o , (3) 
d=l 

where a is the radius of the sphere and c is the sound velocity. 
Figure 2 shows as example the microphone arrangement when a regular dodecahedron 

is used for equal division of the sphere: boundary microphone pairs C'i or Di, where i = 0 
to 5, are located at the center of each regular pentagon on the boundary in order to pick 
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up the sound pressure and the pressure gradient normal to the boundary: a microphone 
0 is placed at the center of the regular dodecahedron. 

f 2 

I ~ �9 

Y 

Figure 2. Location of microphones for the case of a dodecahedron. 

2.2. Signal Process ing  

Figure 3 shows a block diagram of the signal processing system, whose function is the 
same as Eq.(3). It consists of adders, constant multipliers, differentiators, and a single 
delay. Therefore, this block diagram can be easily realized in either analog or digital form, 
according to the precision required. 

3. S I M U L A T I O N  

3.1. R e l a t i v e  G a i n  

Figure 4 shows the center and boundary of the sphere, the sound source Q, and related 
vectors used in the simulation. The output of the system for a spherical wave incident 
from a sound source which is at finite distance rq can generally be expressed as 

a(rq, t) = (1/rq)- exp { j ( ~ t -  krq)}. {RelativeGain} (4) 

This means that the "Relative Gain" is the system output normalized by the output 
of the center microphone proportional to the sound pressure and it can serve as a suitable 
criterion for representing the spatial characteristics of the system. 

3.2. Spatial  Cut-off  Characterist ics  

Figure 5 shows the simulation results for the case of the dodecahedron-type division 
of the sphere, that is, M = 12. The ordinate is the relative gain and the abscissa is 
the normalized distance of the sound source, KQ, i.e., the distance rq multiplied by the 
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Figure 3. Block diagram for signal processing in the multi-microphone system with range- 
dependent sensitivity. 
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Figure 4. Relationship of vectors for analyzing the range-dependent sensitivity. 

wave number. The parameter K is the normalized radius of the sphere, that is, the 
sphere radius a multiplied by the wave number. Very sharp spatial cut off characteristics 
are obtained. Because the cut off position of the so-called "passband" lies on the points 
KQ - K, the cut off positions coincide with the sphere boundary. The slope of the cut off 
characteristics is about 35dB per octave distance, which is sharp enough for eliminating 
external noise in most cases. It was also found, in another simulation, that the value of 
the slope increases as M increases, for example, 11.5dB per octave distance for M - 4, 
and 37.5dB per octave distance for M - 20. These two properties of the cut off position 
and slope are essentially independent of frequency. 

On the other hand, however, the minimum value of the so called "stopband', which is 
obtained when KQ approaches infinity, increases as K increases, that is, as the frequency 
or the radius increases. This means that the spatial selectivity is more significant at lower 
frequencies than higher frequencies. This property is very convenient for suppression of 
acoustic noise, which usually has a greater power spectrum in the lower frequency band 
than in the higher frequency band. 
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Figure 5. Spatial cut off characteristics of the system with twelve boundary microphone 
pairs. 

3.3. Response  for Plane Wave Incidence 

Figure 6 shows the relative gain as a function of the normalized radius K for all types 
of regular polyhedrons when a plane wave is incident, that is, when rq i8 equal to infinity. 
This corresponds to the relative gain of the stopband in the last figure. The more M 
increases, the more attenuation is obtained. Furthermore, we find these curves can be 
divided into three groups, i.e., the first is M - 4, the second is M = 6 and 8, and the 
third is M = 12 and 20. This is due to similarities of the geometrical properties within 
each group and is interesting for the design of this multi-microphone system. 

3.4. Modification to Close-talking Microphones 

We can give a directional property to the spatial selectivity of the system if we let the 
sensitivity of one or several boundary microphones increase or decrease. Figure 7 shows 
an example of this property. In this case, one boundary microphone pair is removed. 
The upper curve corresponds to the direction of the removed microphone pair and the 
lower curve to the other directions. This suggests one possibility for realizing a new type 
of close-talking microphone with high suppression characteristics for noise incident from 
distant sources. 

Figure 8 shows equicontours for the spatial distribution of the relative gain when one 
of the twenty boundary microphone pairs is removed, that is, with M - 19. A gradual 
change in the relative gain near the multi-microphone system promises us the realization 
of close-talking microphones which are easy to use. 

Figure 9 shows an example of the directional pattern of the relative gain, where KQ/K, 
that is the distance from the microphone system normalized by the sphere radius, is the 
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Figure 6. Relative gain for plane wave incidence as a function of sphere radius multiplied 
by wave number. 
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Figure 7. Range-dependent sensitivity characteristics when one boundary microphone 
pair is removed. 
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-20dB 

Figure 8. Equicontours of the relative gain spatial distribution for M - 19. 

parameter. A clear dependency of the relative gain on both the normalized distance and 
the direction of the sound source can be seen. 

Figure 10 illustrates the maximum relative gain in the directional patterns with various 
normalized distances as a function of K. Obviously, these values correspond to the excess 
values of the howling margin, compared with a non-directional microphone located at the 
center of the multi-microphone system when the other conditions are kept equal. We can 
expect a very high howling margin value when the distance is over ten times greater than 
the sphere radius. 

4 .  C o n c l u s i o n  

The concept of spatial selectivity, the principle behind its realization, and the results 
of computer simulation have been discussed. The possibility of developing a new type of 
close talking microphone was also discussed. 



468 

/ . ~ '  J -  

~ 2 J . . I . I  

| . I 

--~. ...... ~ , . , _ , -  . . /  

Figure 9. An example of the directional characteristics of the relative gain.  
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Figure 10. Reducation of noise output of the multi-microphone system for isotropic inci- 
dence of a noisy wave from various distances. 0 dB refers to the output of a non-directional 
microphone when the other conditions are kept equal. 
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Abstract 

Methods of classifying Japanese syllables are discussed with regard to their use in 
evaluating the performance of speech processing techniques for both synthesis/recognition 
systems and user's speaking/listening characteristics. Firstly, by taking into account of 
the initial/intervocalic contrast of utterance, sixteen intervocalic syllables are added to 
the traditional list of one-hundred Japanese syllables which has been used in articulation 
test for sppech transmission channels. Then, by rearranging these syllables based on 
place/manner of articulation and by supplementing missing kinds of combinations of the 
p r y i n g  consonant and following vowel, more than sixty new syllables which can be 
pronounced in the loanwords are derived. A revised version of the text ("The North 
Wind and the Sun") as Japanese specimen for illustrating the International Phonetic 
Alphabet as an application of the classification of Japanese syllables by the International 
Phonetic Association, which contains a greater variety of syllables, is proposed. 

1 LEVELS OF CLASSIFYING JAPANESE SYLLABLES 

Purpose of this trial of dassifying Japanese syllables is two-fold. The first is to rear- 
range systematically the traditional Japanese syllables by combining with new ones found 
in loanwords, which have become indispensable in speaking/listening and even to speech 
synthesis in modern Japanese 1), 2). The second is to provide various kind of lists of 
Japanese syllables according to the different rules of adding new syllables to the tradi- 
tional ones, so that the most suitable one can be chosen for each purpose of evaluation of 
speech processing techniques. 

The rules used in each level of adding syllables are as follows: 

Level 0: This is the basic list of the traditional list of one-hundred Japanese syllables 
which has been widely used in articulation test for speech transmission channel and 
also for speech synthesis/recognition systems. They have been composed by utilizing 
the fifty Japanese Kana chart which correspond to a set of syllables consisting of 
<unvoiced consonant + vowel> (except ~p]) and <semi-vowel [w, j] + vowel>, and 
by adding their voiced counterparts and <consonant + semi-vowel [j] + vowel> 
counterparts. 
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Level +1 :  For the consonants [g], [dz] and [d~] which are found in word (or phrase) initial 
utterances, the intervocalic counterpart [rj], [z] and [~] are introduced, and 16 new 
syllables are added. (They are underlined in Table 1.) 

Level +2 :  By separating If] found when followed by the vowel [i] from Is] in t h e / s /  
row of the fifty Japanese Kana chart, and by supplementing the missing kinds with 
following vowels [i] for [s] and [e] for [f], new syllables are derived. The same rules are 
applied to the initial and intervocalic voiced counterparts, adding six new syllables 
in this level. 

Level +3 :  By separating the consonants in t h e / t / r o w  into It], [ts] (when followed by 
vowel [u]) and Its] (when followed by [i]), and supplementing missing kind of vowels, 
nine new syllables are introduced. 

Level +4 :  T h e / h / r o w  is decomposed into [hi, [~;] and [r rows, and nine new syllables 
are derived. All the syllables adding in these levels are often found in the speech 
sounds of loanwords. 

Level +5 :  New sounds [kw], [gw], and [v] which are found only in the utterance of 
loanwords are derived, and 13 syllables are added. 

Level +6 :  For the syllables consisting of <consonant + vowel> with [t], [d], [r and [v], 
16 possible counterparts of <consonant + semi-vowel [j] + vowel> are added. 

Level +7 :  For the syllables consisting of <consonant + semi-vowel LJ] + vowel> with 
eight kinds consonant, namely [p], [b], [k], [g], [rl, [m], [n] and [tj], a missing kinds 
with following vowel [el are supplemented. 

The number of syllables introduced in Level +2 through +7 for the speech sounds 
of loanwords are 61. (They are underlined in Table 2.) The total number of Japanese 
syllables becomes 177 when they are added to Level 0 and + 1. These levels are introduced 
in the order of familiarity in the modern Japanese speech, but any combination of the 
levels can be adopted according to the purpose of its use. 

2 S E L E C T I N G  T E X T  F O R  T E S T  M A T E R I A L  

In order to derive a revised version of the text ("The North Wind and the Sun") as 
Japanese specimen for illustrating the International Phonetic Alphabet by the Interna- 
tional Phonetic Association 3), firstly, the text of the English specimen was translated into 
modern Japanese. Then, some of the words in the text were replaced by alternative ones 
so that the text contained a greater variety of syllables of the Level +1 list of Japanese 
syllables. The text was intended to be kept in the style of narration which is natural to 
both young and old adults. (The English text and Japanese text, in both Japanese letters 
and phonetic symbols, are shown in Table 3.) 

The revised text has following features regarding the distribution of vowels, consonants 
and syllables 4): 
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Table 1. List of Japanese syllables in Level 0 and Level +1. 

~OTATION" [PHONETIC SYMBOL] KANA 
/PHONEMIC SYMBOL/ ROMAN REPRESENTATION 

UNVOICED CONSONANT �9 VOWEL, SEMI-VOWEL + VOWEL (44 SYLLABLES) 

[ a]a~ 
I ' a l  a 

[ka] ~, 
/ ka / ka 

[ s a ]  
/ sa / sa 

[ Ca] fa 
/ ta / ta 

C n a ] * z  
/ na / na 

[ha  ] t~ 
/ ha / ha 

Cma] 
/ ma / ma 

[ja] ~P 
/ ' j a  I ya 

[ r a ]  
Ira I ra 

[ v a ] ~  
/ va / va 

[ i ] ~ , ,  
/ ' i /  i 

[ki]~ 
/ ki / ki 

[ l i ] b  
/s jJ / (si) 

shi 

[ v i ] ~  
I ci I ( t i )  

chl 

C n i ] ~ .  
/ nl / ni 

C ci ] T~ 
/ hi / hi 

[ , i  ] ,~ 
1 - , 1 1  mi 

[ r i ] ~  
/ r i  / r1 

[ u]~ 
/ ' u /  u 

[ku] < 
/ ku / ku 

[ su ] "J" 
/ su / su 

Cuu] o 
/ cu / (tu) 

Csu 

l'nu] & 
/ nu / nu 

C~u ] z~ 
/ hu / hu 

fu 

[.u] tz 
/ mu / mu 

Cju]@ 
/ ' j u  / yu 

[ru] 
/ ru / ru 

C e]JL 
~ ' e l  �9 

[ ke ] 1:~ 
/ ke / ke 

[ s e ] ~  
/ se / se  

C t e ]  "C 
/ te  / te 

Cne] J~ 
/ ne / no 

[ h e ] ~  
/ h e /  he 

(me] ab 
I me I me 

[ r e ]  ~t 
I re I re 

C o ] ~  
/ ' o /  o 

[ko ] ~. 
/ ko / ko 

[ s o ] ~  
/ so / so 

[ t o ] ~  
I to / to 

C n o ] ( O  
/ no / no 

[ h o ] n l  
/ ho / ho 

[mo]~ 
/ no / mo 

[Jo] J: 
/ ' j o  I yo 

Cro]~ 
/ ro / ro 

NUMBER OF [PHONETIC SYMBOLS] 
/PHONEMIC SYMBOLS/ 

IN PRECEDING CONSONANT 

/ ' /  "5 

[ k] :5 
/ k/ "S 

[s] :4 [z] :I 
/ s /  :S / j /  :1 

[ c] "3 C V] "I C u] : i  
I t l  :3 1 c l  2 

Cn] :5 
/ n/ "S 

[ h] "3 [ r "I ( ~3 : I  
/ h/ :5 

[ m] :5 
/ m/ :5 

[ j ]  :3 
/ ' /  :3 / J/ :3 

[ r ]  :5 
I r l  :5 

[v] :I 
I ' /  :1 1 v/ : I  

VOICED CONSONANT �9 VOWEL, /p /  § VOWEL (33 SYLLABI,E~) 

Cga] ~ CEI ] ~ C~u] r C~e] ~ Czo] 
/ la / la / l i  / l i  / lu / lu / le / le / go / lo 

. . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  q . . . . . . . . . . . . . . .  . .  . . . . . . . . . . . . . .  �9 . . . . . . . . . . . . . . .  

[ na ] ~ [ n i ]  ~ [ nu ] ,~ [ he ]  I']r [ no ] ~. 
/ Is / la / l l  / I I  / lu / lu / le / le / go / lo 

C , a ]  ~' E e l ]  U, C e u ] ' J "  C t e ] - ~  C,o '3  

/ za / za / z 3 i  / ( z i )  / zu / zu / z e /  ze / zo / zo 
(dX) (du) 
J* 

. . - .  . . . . . . . . . . .  4 . . . . . . . . . . . . . .  " 4  . . . . . . . . . . . . . . .  P . . . . . . . . . . . . . .  �9 . . . . . . . . . . . . . .  

[ z a ]  ~' [ ~ a ]  l~ [ z u ]  t" [ z e ]  ~' [ z o ]  ~" 

/ za / za 

[ d a ] ~  
/ da / da 

l" pa ] t~ 
/ pa / pa 

Cba]~ 
/ ba / ba 

/z,l l  / ( z i )  
,1i 

(di) 

[ pi ] T.~ 
/ pl / pl 

[bi]~ 
/ bi / bi 

I zu I zu 

[ p u ] . ~  
/ pu / pu 

( b u ] . r , :  
/ bu / bu 

/ ze / ze 

[ d e ]  "~ 
/ de / de 

[ pe],~ 
Ipel 

[be]'< 
/ b e /  be 

[a ] B ] (u ] (e ] 
/a / / i  / /u / /e / 

17 14 15 15 

/ zo / zo 

f d o ]  ~" 
/ do / do 

[ p o ] ~  
/ po / po 

( b o ] ~  
/ bo / bo 

[o ] 
/o / 

16 

NUMBER OF FOLLOWING VOWELS 

I [  g] :5 
/ z/ :5 

*[ o] :5 
/ 1/ :5 

IC,] :4 SC4] : l  

/ z /  : 5 / j /  : I  

*C z] :4 *C 3] :I 

/ ~ :5 / J/ "1 

[ d] :3 
/ d/ :3 

[ p] :5 
/ p/ :5 

[ b] :5 
/ b/ :5 

| :  INITIAL 
8: INTERVOCALIC 

7'7 
NUNBEI OF SYU, ABLES 

(CONSONANT § VOGEL, 
SEMI-VOWEL �9 VOWEL) 
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UNVOICED CONSONANT + SENT-VOWEL + VOWEL (21 SYLLABLES) 

[kja ] ~ 
/kja / kya 

C~a] L,~ 
/sja / sya 

sha 

Cva] ~ 
/cja I I;ya 

cha 

C ~,a ] t.:.~ 
/nja / nya 

Cca] ~ 
/hja / hya 

[mja ] ~P 
/mja / mya 

[rja ] ~) ~P 
Ir,~a / rya 

Ckju ] ~ 
/kju / kyu 

Czu ]  l , ~  
Isju I syu 

shu 

Cvu]  ~ 
/cju / tyu 

chu 

/nju / nyu 

C c u ]  ~ 
/hju / hyu 

C,ju ] a~ 
/ ~ u  / myu 

Crju ] ~ 
/ r ju I ryu 

[kjo ] ~ J: 
/kjo / kyo 

[ fo] U,~ 
/s jo / syo 

sho 

[ ~ o ]  ~ 
Icjo / tyo 

cho 

/njo / nyo 

[co]~ 
/hjo / hyo 

Cmjo ] ;~ J: 
/mjo / myo 

Cryo ] ~) ,~ 
/ryo / ryo 

Ckj] :3 
/ k/ / j /  :3 

C z] :3 
I s /  / j / : 3  

C V ] : 3  
/ c/ / j /  :3 

Cr] :3 
/ n/ / j /  :3 

[ c] :3 
/ h/ / j /  :3 

C,,J] :3 
/ I /  / j / : 3  

CrJ] :3 
/ r /  / j /  :3 

IOICED CONSONANT + SENI-VOWEL + VOWEL, IpI + SENT-VOWEL + VOWEL (18 SYLLABLE3) 

/r / Cya /zju / ~ u  /glo / gyo 
. . . . . . . . . . . . . .  �9 . . . . . . . . . . . . . .  q . . . . . . . . . . . . . . .  i -  . . . . . . . . . . . . . .  b . . . . . . . . . . . . . .  

[nda ] @.~, 
/gja / gya 

[~] ~ 

/zja / zya 
(dya) 

,ia 

/zJa / zya 
Ja 

(dya) 

CpJa ] ~ '~  
/p~ja / pya 

CbJa ] ~ .  
/bja / bya 

/r~u / cyu 
[ ~ ]  I:,~ 

/zJu / zyu 
(du) 
j .  

/zju / zyu 
Ju 

(dyu) 

/p,~u / pyu 

/b,~u I byu 

[nJo ] ~' J: 
/zjo I cyo 

/zJo / zyo 
(dyo) 

Jo 

C.~o] tT, J: 
*J J: 

/zJo / zyo 
jo 

(dyo) 

CpJo ] ~ 
/pJo / pyo 

CMo 3 ~Z 
/bJo / byo 

Ca ] Ci ] Cu ] 
/a / / i  / /u / 

13 0 13 

NUMBER OF FOLLOWING VOWELS 

Ca ] Ci ] C, ] 
/a / /1 / /u / 

30 14 "28 

NUMBER OF FOLLOWING VOWELS 

Ce ] 
/e / 

0 

Ce ] 
/e / 
15 

Co ] 
/o / 

13 

Co ] 
/o / 

29 

I Cr.j] "3 
/ k/ / J/ :3 

*CoJ] :3 
/ k/ / j /  "3 

sC ~1:3 

/ z /  / . I /  :3 

�9 C ~] :3 

/ z /  / J /  :3 

(pJ] :3 
/ p/ / .i/ :3 

Coj] :3 
/ b /  / .1 /  :3 

| :  INITIAL 
�9 : Ir l 'D VOCALIC 

39 

NUNBEI OF SYLLABLES 
(COJSONANT § SEMI-VOWEL § VOWEL) 

116 

NUNBa OF SYLLABLES 
(TOTAL) 
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T a b l e  2. L i s t  o f  J a p a n e s e  sy l l ab l e s  in  L e v e l  0 t h r o u g h  + 7 .  

NOTATION: CPHONETIC SYNBOL] KANA (KATAKANA: LOAN VORO) 
/PHONENIC SYNBOL/ RONAN REPRESENTATION 

C pa ] ;~' C pi. ] ~F C pu ] ~ I C ee ]  ,"< , C po ] I~' 
/ pa / pa / pJ. / pi / pu / pu ! / pe / pe ; / po / po 

C ba ] |~" C b i ] ~ C bu ] ~ C be ] "<. C bo ] I~ 
/ ba / ba / bi / bi / bu / bu / be / be / bo / bo 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Cpja ] T..F-~, [pju ] T~@ ['pJe "] ~'x [pjo ] T..~J:" 
/pja / pya /p~u / pyu /p~e / pye /pjo / pyo 

Cb,~a ] Uc@ Cb,ju ] ~@ ~bJe ] ~'x Cbjo ] UcJ: 
/bja / bya /bju / byu /b,~e / bye /bjo / byo 

C Ca ] )'~ C ti ] -~r [ Cu ] F~ C t e ]  ~ C Co ] 
/ ta / ta / ti / ti / tu / tu / te / te / to / to 

C da ] )"~ C di ] ~,1' [ du ] l:') C de ] "~ C do ] ~' 
/ da / da / di / dl / du / du / de / de / do / do 

"'~j;, '~'~. ' ;~" . . . . . . . . . . . . . . .  ! " ; : ; : ~ , " ] "~ ;7 " ' ? j~ '~ '~ -~ ; "  "'[?~'~o'~'~-~;" 
/ t j a  / tya /t~u / tyu / t~e  / tye /t~o / t~o 

[dJa ] "~,('Y i [d:iu ] -~=  [d.te ] -~,l'x [d.qo ] .,~.(s 
/dja / dya /dJu / dyu / d j e /  dye /cUo / dyo 

Ctfa]  ~ 
/cja / Cya 

cha 

/zja / zya 
(dya) 

Ja 
I 

C s a ]  
I sa I as 

/ ca / Csa / c1 / tsL / cu / (Cu) / ce / Cse i / co / Cso 
Csu 

C e a ] ~ "  [ e i ] ~ ' ~  : C , u ] ~ "  C e e ] ~  C * o ] ~  

/ za / za / zi  / z~ / zu / zu / ze / ze / zo / zo 
(du) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~, . . . . . . . . . . . . . .  

Ct~t ] ~ ! C~u ]  ~@ [ ' ~ e ) ~ z  C~o]  ~J: 
/ c1 / ( t i )  /c ju / tyu /c je / tye / ~ o  / tyo 
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t 
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Table 3. The English text and the revised Japanese text. 

(The Principles of the International Phonetic Assosiation) 
The north wind and the sun were disputing which was the stronger, when 

a traveller came along wrapped in a warm cloak. They agreed that the 
one who first succeeded in making the traveller take his cloak off 
should be considerd stronger than the other. Then the north wind blew 
as hard as he could, but the more he blew the more closely did the 
traveller fold his cloak around him, and at last the north wind gave up 
the attempt. Then the sun shone out warmly, and immediately the 
traveller took off his cloak. And so the north wind was obliged to 
confess that the sun was the stronger of the two. 

2 . .  ' ~ . P .  ~ ~ ~ ' 

kitakazeto taIjo:Oa do~rlra�a ~ujolkade 1:arasottelru tokoroe, 

tabibito�a atatakas~:na gaito:ni krum~tte jattekim~/~ta, sokode, sono 
, , P �9 �9 

tabibitono gaito:o sakini nu�aseru koto�a d~k~taho:oa, ~Vjolnodato 
ju'kot~ni ~ij6:to kimema~ta, ma~u k~takazega, tabibitoni mukatte 

l �9 Q se:Ippal haoeIlku ~ki~ykem~I~ta. XlkaI~, ~keba~vkuhodo, tabibitowa 

gaito'o mas~mas9 I~kk~rito karadani matoi~vk~runode, k~takazewa 
�9 , . I �9 , .  �9 

hetohetoni k~tab~rete, t~:to" aklramema~ta, tsurj:],n:], taIjo:�a, tabibitono 
l �9 P uekara d$iwa51wato atatak~i h~kar~o sosoguto, tatf~ma~ tabibitowa 

�9 P . �9 ~annenna�ara, taljo:no h~'ga ~aito o nuglmaXlta, sorede, k~takazemo ' " "  
. , .  �9 , �9 P �9 

ts~joz to mztomenakereba narzmasende~ta. 
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Consonants, several samples of each of the 21 kinds of Japanese consonants, as well as 
choked sound and syllabic nasal, are found among the 202 consonants in the text. 

Vowels, vowels in the text, 282 in total, show a distribution of the five Japanese vowels 
similar to ordinary Japanese speech. More than ten examples are found for each of the 
elongated and diphthongized vowels. Examples of devoicing of [i] and [u] are also found 
to be more than ten for each. 

Syllables, total number of syllables in the sentence is 212. At least one example is 
found for all 44 kinds of syllables consisting of <semi-vowel [w, j] + five vowels> and 
<unvoiced consonant + five vowels> (except [p]). Examples are found for the 17 kinds 
of syllables all 23 kind of syllables consisting of <voiced consonant + vowel> (plus [p]). 
On the other hand, syllables consisting of <consonant + semi-vowel [j] + vowel> are not 
included in the text. 

In addition to these phonetic or phonemic features, the text as test material has to be 
designed as a typical example of Japanese sentences with regard to words, phrases, closes 
and sentences. The different words among the 136 words in total, in this text are 71. 
They can be grouped into 53 phrases each having a down skip of word accent. The text 
consisted of 6 sentences, five of them having two douses. The Average number of words 
in a sentence is nine. Examples of all types of word accent are found. These features 
reflect the statistic characteristics of Japanese speech 5), 6). 

The use of the text will be examined in detail through the acoustical analysis of the 
utterances by speakers of standard Japanese. 

References  

1. S. Hiki: "Advanced methods of evaluating techniques for speech processing," Preprint, 
The First Symposium on Advanced Man-Machine Interface Through Spoken Lan- 
guage, pp.69-76, 1988. 

2. S. Hiki: "Classification of Japanese syllables including speech sound found in loan- 
words," Research Report PASL No.01-8-1, pp.1-16, 1989. 

3. The Prindples of the International Phonetic Association, being a description of the 
International Phonetic Alphabet and the manner of using it, illustrated by text in 
51 languages, International Phonetic Association, 1949. 

4. S. Hiki: "Selecting sentence text for test material taking "The North Wind and the 
Sun" as an example," Research Report PASL No.01-8-3, pp.1-8, 1989. 

5. H. Sato: "Statistical analysis, of Japanese phoneme concatenations for speech syn- 
thesis," Trans. IEICEJ and AS J, SP82-77, pp.609-616, 1983. 

6. K. Itoh and H. Sato: "Phoneme occurrence characteristics in Japanese conversational 
speech," Proc. Fall Meeting of the AS J, pp.151, 1988. 



Recent Research Towards Advanced Man-Machine Interface 
Through Spoken Language, H. Fujisaki (Editor) 
�9 1996 Elsevier Science B.V. All fights reserved. 479 

A Study of the Suitability of Synthet ic  Speech for 

Proof-Reading in Relat ion to the Voice Quality 

Hideki Kasuya 

Faculty of Engineering, Utsunomiya University 
2753 Ishii-rnachi, Utsunomiya, 321 Japan 

A b s t r a c t  

Even if synthetic speech is intelligible and natural-sounding, its voice quality must stir 
be evaluated in terms of the suitability for individual applications; particular the voice 
quality of synthetic speech may be a severe burden for the users. We first summarize sev- 
eral human factors pertaining to the voice quality of synthetic speech which we thought 
important from our interviews with professional users of synthetic speech, working at the 
proof-reading department in a newspaper company, where synthetic speech has exten- 
sively been used as an aid for the proof-reading of manuscripts in a computer. This paper 
describes new findings obtained from perceptual experiments on the subjects' preference 
for voice quality of synthetic speech, primarily focusing on the suitability of pitch char- 
acteristics, speaker's sex, and speaking rate, in the task where subjects were asked to 
proof-read a printed text while listening to the speech. 

1. INTRODUCTION 

Most of the research on the evaluation of synthetic speech produced by rules has primar- 
ily focused on intelligibility test at the levels of phonemes, syllables, words, and sentences. 
It was not only concerned with the measurement of the extent to which the linguistic infor- 
mation has been correctly transmitted to the subjects, but also with improvement of the 
intelligibility resulting from a priori knowledge about linguistic structures and pragmatics 
[1-8]. 

There are some reports on the evaluation of the naturalness of synthetic speech, most 
of which are related to preference test performed on multiple synthetic speech samples 
and to the diagnostic evaluation in terms of the degree of manifestation of segmental and 
prosodic features in synthetic speech [5, 6]. 

Little research, on the other hand, has been reported on the suitability of synthetic 
speech for a specific application. Even if synthetic speech is intelligible and natural- 
sounding, its voice quality must still be evaluated in terms of the suitability for a specific 
application; particular the voice quality of synthetic speech may be a severe burden for 
the users. 
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In this paper, we will first summarize several human factors involved in the use of 
synthetic speech which we thought important from our interviews with professional users 
of synthetic speech, working at the proof-reading department in a newspaper company, 
where synthetic speech is extensively used as an aid for the proof-reading of manuscripts 
in a computer. This paper describes new findings obtained from perception experiments 
on the subjects' preference for voice quality of synthetic speech, primarily focusing on 
the suitability of pitch characteristics, speaker's sex, and speaking rate, in the task where 
subjects were asked to proof-read a printed text while listening to the speech. 

2. H U M A N  F A C T O R S  I N V O L V E D  IN T H E  P R O O F -  R E A D -  
I N G  T A S K  

There are many applications of Japanese synthetic speech produced by roles in real 
use. One typical example can be seen in a newspaper company, that has made full use of a 
Japanese text-to-speech synthesis system as an aid for proof-reading of a text. The major 
specifications of the synthesis system employed at this newspaper company are: (1) a 
diphone-type synthesizer with C V / V C / W  sound segments as the unit for the synthesis, 
(2) LPC parameters for spectral representation, (3) eight variable speaking rates, (4) 
option of a male or a female voice, and (5) a loudspeaker or a headset output. Operators at 
the proof-reading department are engaged in the proof-reading of manuscripts at computer 
voice terminals about four hours a day with adequate intermissions. We interviewed 
several operators and a head of the department being responsible for the whole system. 
Human factors extracted from the interview are summarized as follows: 

(1) Male voices are exclusively used by all the operators except when interference with 
other voice terminals may take place because of the use of all the terminals, although 
the naturalness of the synthetic female voice is nearly the same as that of the male 
voice. 

(2) A speech synthesizer should be able to produce a wide variety of voice qualities from 
which the users will benefit for a change of pace. 

(3) The operators do not care about unnaturalness of synthetic speech, as long as its 
intelligibility is assured, since they can adapt themselves to a computer voice. 

(4) Controllability of the speaking rate is very helpful. 

(5) Operators are forced to considerably slow down the work when errors occur result- 
ing from inadequate linguistic analysis of a text, e.g. errors in syntactic boundary 
assignment, phonetic transformation, accentuation, etc. 

(6) It is helpful to have additional pauses at Uproper places" in a sentence. 

(7) Use of a headset hastens fatigue. A loudspeaker at the terminal is exclusively used 
unless interference with other terminals is expected. 

(8) Four hours a day suffices. 
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The first through third items are all related to the voice quality of synthetic speech and 
the fourth to the prosodic properties. From these we felt that the pitch characteristics 
as a constituent of both voice quality and prosodic properties play important roles in 
promoting usability of synthetic speech for a specific task, such as the proof-reading in the 
newspaper company. We tried to discover from perception experiments in a laboratory 
(1) an adequate range of the average pitch frequency for each of the male and female 
voices, (2) preference for a male or a female voice, and (3) a suitable dynamic range 
of pitch variations, assuming that the synthetic speech is used at proof-reading under 
the same working conditions as those in the newspaper company mentioned above. The 
adequate speaking rate was also studied. 

@ P I T C H  F R E Q U E N C Y  C H A R A C T E R I S T I C S  S U I T A B L E  

F O R  P R O O F - R E A D I N G  

3 .1 .  A n a l y s i s - S y n t h e s i s  S y s t e m  

Since none of the Japanese speech synthesizer products currently available provides 
the ability of flexible pitch control, a PARCOR analysis-synthesis system was employed 
to generate speech material for the experiment. The major specifications of the system 
used are: analysis window lengths of 20 ms for males and 10 ms for females, an inverse 
filter of the 12th order, a frame rate of 10 ms, a sampling frequency of 10 kHz, and a 
quantization accuracy of 12 bits. The pitch frequency was measured by a flexible pitch 
extractor based on the autocorrelation method with nonlinear preprocessing [9]). Pitch 
frequency errors and inadequate PARCOR parameters were corrected by hand. The pitch 
contours thus obtained were further modified according to the experimental conditions for 
the synthesis. In the synthesis routine, the spectral and pitch parameters were updated 
synchronously with the pitch using a linear interpolation method. The excitation source 
was an impulse train for voiced and white noise for unvoiced. 

3 .2 .  S p e e c h  M a t e r i a l  

Two male (K and I) and two female (U and Y) public radio announcers read a written 
text of about 12 s at their comfortable pitch, loudness, and speaking rate. While the 
speakers K and U had relatively low fundamental frequencies, I and Y showed rather high 
fundamental frequencies in each of the sex groups. The text was selected from the radio 
n e w s .  

3 .3 .  M e t h o d  

Three perception experiments were carried out: (1) subjective judgments on the suit- 
able average pitch frequency of the individual announcers for the proof-reading task (Ex- 
periment I), (2) preference test for a male or a female voice (Experiment II), and (3) 
measurements of the preferable dynamic range of pitch frequency variations (Experiment 
III). The effect of the environmental noise level on the preference was also examined. 
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Experiment I 

The speech samples consisted of synthesized speech utterances with five different pitch 
contours for the individual speakers. The pitch contours included the original and four 
modified contours, being raised or lowered by 0.2 octave/step. The average pitch frequency 
of the samples ranged from about 90 to 180 Hz for the males and from 160 to 300 Hz for 
the females, as shown in Table I. It is confirmed that the intelligibility of the synthesized 
speech with modified pitch contours is well preserved within the used pitch range. 

32 male and 22 female subjects participated in the perception experiments. They proof- 
read a printed text while listening to the synthesized speech samples in an office with a 
background noise level of 50 dBA and in a sound-proof room at 20 dBA. Each of the 20 
texts (5 pitch contours x 4 announcers) included different errors that were intentionally 
added considering types of errors commonly encountered in many Japanese word processor 
products. The subjects were asked to rate the speech samples on preference scale, giving 
1 to the worst and 3 to the best of the five different pitch patterns of the individual 
speakers. They were instructed to imagine that they were engaged in the proof-reading 
while listening to each of the speech samples about four hours every day as a professional 
operator. They were also asked to pay much attention to the difference in pitch. 

Experiment II 

On the basis of the judgments made in the first experiment, the subjects were required 
to state their preference for a male or a female voice in the same task. 

Experiment III 

The pitch contour of a sentence utterance was decomposed into its phrase and accentual 
components, assuming that the phrase component could be approximated by a line on 
a logarithmic frequency scale [10]. The frequency range of the arr.entual components, 
that were obtained by subtracting the phrase component from original pitch contour, 
was decreased by 24 or 43%. These modified accentual components were again added to 
the phrase component, thereby producing two different pitch contours. Speech samples 
were synthesized with the three pitch contours, i.e. the original and the two compressed 
contours. Eight female subjects gave their preference values for the three pitch patterns 
under the same instructions as for the other two experiments. 

3.4. Results and Discussion 

The results of Experiment I are illustrated in Figure 1, where the preference score is 
normalized to I0 points as the maximum for the individual speakers and the two dashed 
vertical lines are the average pitch frequencies of the original male and female utterances. 
Irrespective of the speakers' sex, the score rapidly decreases as the average pitch frequency 
increases. The reasons for their taking a dislike to higher pitch frequencies were related to 
fatigue, irritation, annoyance, and so on. Very low average pitch frequencies also gained 
a low preference score because of what was felt a depressed quality. For the two male 
speech samples the judgments are nearly the same for male and female listeners and the 
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Table 1. Relationship between the amount of pitch shift and average pitch frequencies 
Speaker Amount of Average pitch 

pitch shift (oct.) frequency (Hz) 
-0.2 96.6 
0.0 110.4 

K 0.2 127.7 
0.4 146.8 
0.6 168.8 

-0.6 97.4 
-0.4 112.0 

I -0.2 128.7 
0.0 147.0 
0.2 170.2 

-0.4 169.2 
-0.2 194.6 

U 0.0 221.3 
0.2 257.6 
0.4 296.0 

-0.6 164.3 
-0.4 189.0 

u -0.2 217.5 
0.0 247.1 
0.2 288.1 

preferred average pitch frequency is between 110 and 130 Hz. This is also the case for the 
two female speech samples, where a pitch range between 190 and 220 I-Iz is preferred. It 
should be noted that the subjects gave higher scores to lower average pitch frequencies 
than the original one for one male and two female announcers. Little difference was 
observed in the judgments for quiet and somewhat noisy environments. 

In Experiment II, 22 out of 32 (69~ male subjects and 19 out of 22 (86%) female 
subjects preferred male voices in the proof-reading task. 

The preference rate for male voices was the same for the sound-proof room and the 
office environment. Most of the subjects answered that the male voice was more suitable 
for the task because of the same reasons as mentioned at Experiment I. The results 
are quite similar to those founed at the interviews with the operators in the newspaper 
company. 

In Experiment III, seven out of eight subjects voted for the pitch contour with the 
accefltual component compressed by 24% and the other for the one compressed by 43%. 
The original pitch contour gave an impression of somewhat exaggerated quality, resulting 
in the least preference. Almost all the subjects felt sleepy or bored by the overly flattened 
pitch pattern. 

We may conclude from the experiments that a male voice quality with a low average 
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Figure 1. The normalized preference score as a function of the average pitch frequency: 
(a) the scores of the male subjects for the male speech samples in the office and (b) in the 
quiet room, (c) the scores of the female subjects for the male speech samples in the office 
and (d) in the quiet room, (e) the scores of the male subjects for female speech samples 
in the office and (f) in the quiet room, and (g) the scores of the female subjects for the 
female speech samples in the office and (h) in the quiet room. 
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pitch frequency with a moderate extent of pitch variations is suitable for the proof-reading 
task. This preference is primarily related to the task conditions, which the subjects were 
asked to judge in terms of every day use of the synthetic speech as a professional operator. 

4. S P E A K I N G  R A T E  

4.1. E x p e r i m e n t a l  M e t h o d  

A sequence of randomly ordered four digit numbers were synthesized at five different 
speaking rates with a commercially available speech synthesizer. Five subjects, who had 
no experience in listening to synthetic speechs, were asked to find wrong numbers in a 
written text while listening to the sequences of four numbers read by a synthesizer. Each 
of the texts included wrong numbers at error rates of 5 and 15%. After the listening 
sessions, they rated the speaking rates in terms of their preference, giving 1 to the worst 
and 3 to the best. The experiments were performed over six days. 

4.2. Resu l t s  and Discuss ion  

The results are illustrated in Figure 2, where the preference score is again normalized 
to 10 as a maximum, and no. 1 is the slowest (5.7 morae/s) and no. 5 the fastest rate (11.3 
morae/s). To see the overall trends of the judgments, the ones made on two consecutive 
days were summed over all the subjects. As the error rate of the text increases, slower 
speaking rates are preferred. Although we expected a shift of the preferred speaking 
rate to a higher rate as the subjects get accustomed to the task and synthetic speech, 
little change was observed over the repetitions. This is again due to the task condition 
given to the subjects that they should imagine to be engaged in the same task every day. 
Higher speaking rates certainly improved the efficiency of the task but required much 
concentration and produced fatigue. 

The results of the judgments of the five subjects could be classified into two groups, 
as shown in Figure 3; group 1 preferred speaking rates of no. 2 and no. 3, but group 2 
did No. 1 as well. Since the preferred speaking rates depend on the listeners, the ability 
of a variable speaking rate is indispensable for speech synthesizer products. 

5. SUMMARY 

People being professionally engaged in the proof-reading of manuscripts with synthetic 
speec~ produced by rules, provided significant human factors in terms of a suitability 
assessment of a synthesizer. Many human factors were related to the control of prosodic 
properties and voice quality of synthetic speech. 

From the subjective judgments on the preference for three prosodic features and the 
voice quality, i.e. average pitch frequency, dynamic range of pitch variations, speaking 
rate, and sex of a speaker, it was concluded that a male voice with a relativdy low 
average pitch frequency with rather small pitch changes was well accepted by users for 
the proof-reading task. This preference was considered to be related to the every day use 
of synthetic speech for the proof-reading task. 
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Improving Synthetic Speech Quality by Systematic 
Evaluation 
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Institute of Phonetic Sciences, University of Amsterdam 
Herengracht 338, 1016 CG Amsterdam, The Netherlands 

A b s t r a c t  

In the joint Dutch research program for developing a high-quality text-to-speech 
synthesis system, much emphasis is put on systematic speech quality evaluation. This is 
not just done to produce performance figures, but even more so to support the developers 
of the various linguistic and acoustic synthesis modules by indicating to them ways for 
improvement. This approach compares favourably with most other projects in which no 
diagonistic testing is done at all, or once in the final phase in order to produce (incompa- 
rable) performance figures which do not lead to further improvements. The joint project 
is sponsered by SPIN (Dutch National Program for the Advancement of Information 
Technology). 

1. I N T R O D U C T I O N  

A complete text-to-speech synthesis-by-rule system consists of many different com- 
ponents originating from such diverse areas as text processing, language processing, and 
signal processing. By improving the performance of single components one hopes to 
improve the performance of the total system. However, more often than not, different 
experts in the various fields develop single components and leave the remaining prob- 
lems to others. For instance the acoustic front end presupposes a correct phonetic input, 
whereas grapheme-to-phoneme conversion can easily introduce errors here. The intona- 
tion module requires correct stress markers, whereas rules to define the position and the 
character of those markers are not yet fully developed. The morphological decomposition 
requires error-free word sequences, and the text expander requires knowledge about how 
to interpret the text. Should, for instance, the digit sequence 14.18 be pronounced as a 
number, as a money value, or as a time indicator? 

Whenever performance figures are given at all, they mainly represent the results of 
one final test. Such results specify in an absolute or relative way (in comparison to 
some reference system, such as LPC-resynthesized utterances) the achieved quality of the 
system, whereas a further diagonistic analysis of the results seldom leads to subsequent 
modifications of the system. 
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Especially in the recently started joint Dutch research program for developing a high- 
quality text-to-speech synthesis system (Pols, 1988), we hope to be able to follow a differ- 
ent line. In an initial evaluation the speech quality at the start of the project is specified 
(van Bezooijen and Pols, 1987; van Bezooijen, 1988). During the run time of the project, 
subjective tests will be performed regularly to evaluate the progress, but even more so to 
derive information about how to proceed. At the completion of the project a final test 
will be performed to measure the improvement and to compare, if possible, the results 
with similar systems in other languages. 

A somewhat similar approach is followed in the ESPRIT project SPIN (Speech Interface 
st Office Workstation) in as far as rule synthesis for French and Italian is concerned 
(Pols et sl., 1987; van Son et al., 1988). In ESPRIT project SAM (Mulitilingual speech 
input/output assessment, methodology, and standardization) (SAM-partners, 1988) the 
methodologies for evaluating speech recognizers and speech synthesizers will be further 
developed and, whenever possible, standardized. 

Of course one must realize that, so far, most tests for evaluating the speech quality 
of text-to-speech synthesizers operate at the segmental level only. We will review those 
segmental tests, but we will also indicate how tests at the supra-segmental level are going 
to be developed for sentence intelligibility, global speech quality judgement, and prosodic 
evaluation. 

Another level of evaluation and testing of course involves linguistic processing where 
results on paper generally suffice to indicate the performance, such as text preprocessing, 
syntactic analysis, or morphological decomposition. However, even here an acoustic real- 
ization and a listening test are sometimes required, for instance to find out whether an 
incorrect segmentation of a word in morphological components will nevertheless result in 
a correct pronunciation. 

0 S H O R T  O V E R V I E W  OF T E S T  M E T H O D S  F O R  S Y N -  
T H E S I S  E V A L U A T I O N  

2 .1 .  P u r p o s e  

Once the purpose of a test is identified it will also be easier to choose the appropriate 
speech material and the method of evaluation. I would like to distinguish four different 
purposes for developing speech quality tests: 

- global testing 

- diagnostic testing 

- objective testing 

- application-orientated testing 

Global tests are mainly executed to describe and compare system characteristics in 
general terms, whether or not in comparison with a reference system or a competing 
system. The frequently used Mean Opinion Score (MOS) in telecommunication (Goodman 
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and Nash, 1984) is the ultimate example of this, but also a preference judgement by paired 
comparison, or a magnitude estimation on an 'acceptability' or a 'natur&lness' scale are 
examples belonging to this category. 

Diagnostic tests are performed with specific aims in mind and require a careful choice 
of the test material. An intelligibility test at the segmental level requires an approach 
totally different from an acceptability judgement about a number of different algorithms 
to generate prosodic contours in long sentences. 

Objective tests, implying the use of physical means without using listener judgements, 
are presently virtually non-existent in speech synthesis evaluation. However, in evaluating 
the performance of analog and digital speech communication channels this approach is 
quite common. I just have to refer to the Articulation Index (AI) (Kryter, 1962), the 
Speech Transmission Index (STI) (Steeneken and Houtgast, 1980), or the signal-to-noise 
measure used in coding evaluation. The ESPRIT-SAM project intends to start research 
in this area of objective synthesis testing. 

Application-specific tests represent again a different line of performance evaluation. 
Most laboratory conditions will then have to be abandoned; it frequently implies the 
use of task-specific test material, naive, untrained listeners, probably noisy, reverberant 
listening conditions, perhaps interaction in a dialog-type application with or without 
automatic speech recognition, etc. Examples so far are scarce (Hampshire et al., 1982) 

2 .2 .  Test  M e t h o d  

From telecommunication testing, psycholinguistics, psychoacoustics, speech au- 
diometry, speech perception, language acquisition, and probably other areas, we have 
good knowledge about a great variety of subjective test methods. I give a brief overview 
here only. 

Segmental intelligibility method. This method involves the phonemic level but is gen- 
erally measured at the word level by using simple syllable or word forms of the type CV, 
CVC, or VCV (V=vowel, C=consonant). Well-known examples of this method are the 
Modified Rhyme Test (MRT) (House et al., 1965), the Diagnostic Rhyme Test (DRT) 
(Voiers, 1977), and the use of Phonetically- Balanced (PB) CVC words. There are many 
aspects of these tests that require careful consideration, e.g. : 

- the use of words in isolation, or in a (fixed or variable) carrier phrase 

- the use of closed (MRT 6 alternatives, DRT 2 alternatives) or open response sets 

- the word type (e.g. CV, CVC, or VCCV) 

- the use of meaningful or nonsense words 

- equal phoneme probability or phonetically balanced 

- language dependence, especially relevant for rhyme tests. 

Supra-segmental intelligibility requires more complex test stimuli, such as word stress, 
word duration, syllable structure, sentence accent, and intonation. From speech audiome- 
try, sets of carefully designed short sentences in various languages are available. However, 
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for synthesis evaluation these sentences are less appropriate because the set is fixed and 
sentences are easily remembered, whereas also the grammatical structure is too simple 
and with insufficient variation. In the next paragraph we will discuss some alternative 
structures for this sentence material. 

Paired comparison allows for a direct judgement of pairs of stimuli that only differ in 
one specific attribute, such as duration rules or intonation contours. 

Ma~;nitude estimation involves the judgement of stimuli according to one or more at- 
tributes along, say a seven-point scale. Semantic scaling theory can be applied to process 
this type of data. 

Psycholinguistic tests are also used sometimes to evaluate the quality of synthetic 
speech. Some examples are 

- word recall in fixed or free order 

- lexical decision (word vs. non-word; sentence vs. non-sentence) 

- word monitoring 

- phoneme monitoring 

- word gating 

Speech interference test are tests in which word or sentence intelligibility is measured 
against a level of masking noise (Nakatani and Dukes, 1973). Sorin (1982/83) calls this the 
Equivalent Signal-to-Noise Ratio method (ESNR) in her study about the contribution of 
pitch contours to the identification of resynthesized sentences. Other similar approaches 
are the speech reception threshold SRT (Plomp and Mimpen, 1979), and the monosyllabic 
adaptive interference tes t  MASIT (Eggen, 1988). 

Subjective ratings and questionnaires can be used to evaluate the 'linguistic' and 'psy- 
chological' aspects of speech understanding: can the sentences be reproduced, how large is 
the memory load, can one listen to synthetic speech for extended periods of time, can one 
reproduce the gist of a story, and what about the sudar.e properties, can one comprehend 
the prose, do children have more difficulty with synthetic speech? Dave Pisoni and his 
co-workers at Indiana University certainly have most experience with this type of testing, 
although it is still in its infancy. 

2 . 3 .  T e s t  M a t e r i a l  

From the short overview of the test methods given above it will be clear that these 
various tests use a great variety of speech material, ranging from syllables and words to 
sentences and paragraphs. Above (under 'segmental intelligibility') we have given already 
some characteristics of word material, here we will concentrate on llcgtggr~ material. 

Phonetically-balanced short, simple, and meaningful sentences have been developed for 
English (Egan, 1948), French (Combescure, 1981), and Dutch (Plomp and Mimpen, 1979). 
The English ones became known as the Harvard Psychoacoustic Sentences (Example: 
Cook the corn in a large pot of water). In order to lower the predictability and in order 
to make them more difficult to remember with repeated presentation, Nye and Gaitenby 
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(1974) developed syntactically correct, but semantically anomalous senteaces of the type 
'The late voice knew the table'. These sentences were called the Haskins sentences. 

Pisoni and colleagues have used both types of sentences repeatedly to measure the 
word recognition in sentence context for various synthesis systems. For an overview, see 
Pols (1987). 

For sentence verification tasks, 3- and 6-word sentences have been used, such as 'Mud 
is dirty' and 'Birds fly south for the winter', representing true sentences, and 'Rockets 
move slowly' and 'Beer is a popular contact sport' representing false sentences. Both a 
true-false reaction and a transcription were required from the subjects (Manous et al., 
1985). 

Various partners in the ESPRIT-SAM project have recently started a renewed dis- 
cussion on the structure of sentence test material for synthesis evaluation. The idea of 
anomalous sentences is attractive since: 

- it is a far more natural task than nonsense word identification although it is of course 
no real language communication either. 

- it hopefully allows for controlled predictability. 

- it allows for controlled complexity, for instance in terms of number of words per 
sentence, number of syllables per word, word frequency, grammatical structure, etc.. 

- it creates a very large and always different reservoir of sentences by starting from a 
(fixed) vocabulary from which words are randomly selected to create specific gram- 
matical structures. 

- it might be possible to develop really comparable sentences in different languages, at 
least in terms of word type and grammatical structure. 

Presently, within SAM, we consider five different grammatical structures, instead of 
just one as in the Haskins sentences. Each grammatical structure will also require a 
different intonation contour, so, also in that respect we can run a more thorough test. 
Since presently none of the rule synthesizers is able to use semantic knowledge, it does not 
matter that the sentences are meaningless. Because of memory overload for the listener 
we probably will have to limit the number of words per sentence to seven. 

One must keep in mind the purpose of the sentence material discussed here: evaluat- 
ing word intelligibility in sentence context. So it would not be very appropriate to start 
studying phoneme confusions from the misidentified words. On the other hand the sen- 
tence intdligibility for real meaningful sentences will be higher than for these anomalous 
sentences because of semantic and pragmatic knowledge that normally can be effectively 
used by the listener. 

It"is interesting to realize that once this sentence material will be fully developed, it 
probably means that this test method is ahead of rule synthesizer development itself, 
since I do not know yet of any text-to-speech synthesis system able to extract from text, 
and able to generate, a number of different and appropriate prosodic realizations. This 
situation is contrary to that for speech recognition, where already connected word and 
continuous speech recognizers are available, at least as laboratory prototypes, whereas no 
evaluation methods at that level are available yet. 
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3. S O M E  E X A M P L E S  OF S Y S T E M A T I C  E V A L U A T I O N  

3 . 1 .  S e g m e n t a l  I n t e l l i g i b i l i t y  

None of the presently available rule synthesizers, whether they are diphone-based 
or anophone-based, have such a good segmental quality that one could further neglect 
this level and concentrate completely on higher level processing. All present systems will 
gain speech quality by improving segmental intelligibility. This was true for every system 
that we evaluated so far: 

- the dyadic rule synthesizer (Olive, 1980). By systematic evaluation and subsequent 
improvement of a great number of CV and VC dyads, both the initial (58.2%) and 
final consonant (73.5%) intelligibility could be raised to 83% (Pols and Olive, 1983). 

- the phoneme intelligibility scores for various diphone-based synthesis systems in sev- 
eral different languages (French, Dutch, Italian) all show room for further improve- 
ment (Pols et al., 1987; van Bezooijen and Pots, 1987; van Sol et al., 1988). The 
absolute scores (see Table 1) are not really important since these strongly depend 
upon the exact experimental conditions (such as word structure (CVC vs. VCCV 
and CWC) ,  and presentation rate), but also the listeners, specific characteristics 
of the synthesizer (such as prediction order, window size, and band-width) and the 
complexity of the language. But as long as the intelligibility scores for rule synthesis 
are quite a bit lower than those for the same words resynthesized, one knows that 
further progress can be made. More specifically, one of the synthesizers required 
improvement of r-diphones, whereas for certain consonant clusters it might be better 
to use tri-phones or quadro-phones. 

- in an interactive process the segmental intelligibility of the Dutch allophone-based 
system will be improved step by step. The initial intelligibility was unacceptably low 
(van Bezooijen and Pols, 1987), but by modifying the rules and by running small 
specific tests, for instance for medial plosives only, the system will gradually improve. 

Considering the overall consonant error rates reported for DECtalk (13.2 and 17.5% 
for Paul and Betty, respectively), while using the modified rhyme test with an open 
response set (Logan et al., 1985), I am almost certain that even this system would benefit 
substantially from further improvements at the segmental level. 

Both for a French (van Son and Pols, 1988) and for two Dutch systems (van Bezooijen, 
1988), the intelligibility of consonant clusters is almost unlimited, so the test was restricted 
here to initial and final clusters. However, for French medial (within-word) dusters were 
taken into account. See Table 2 for some overall results. These data still have to be 
studied in more detail in order to specify in which way the necessary improvements can 
be made more effectively. 

3 . 2 .  S u p r a - S e g m e n t a l  I n t e l l i g i b i l i t y  

Relatively few results have so far been achieved with this level of speech quality 
evaluation. Greene et al. (1984) used the Harvard and Haskins sentences to evaluate 
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Table 1. Phoneme and word intelligibility scores (averaged over 8 subjects) for VCCV 
and CVVC words, for PCM speech, LPC-resynthesized speech and Italian rule-synthesized 
speech. 

V C C V VCCV 
PCM 89.1% 86.9% 94.0% 79.7% 57.8% 
LPC-15 resynth. 90.2% 79.4% 91.2% 79.9% 52.5% 
Italian rule synth. 89.5% 68.3% 78.1% 87.8% 45.0% 

C V V C CVVC 
PCM 94.3% 90.4% 84.1% 88.2% 63.2% 
LPC-15 resynth. 88.4% 90.8% 85.3% 87.5% 60.2% 
Italian rule synth. 74.4% 86.5% 84.9% 76.4% 44.4% 

Table 2. Some overall intelligibility results for initial, medial, and final consonant clusters 
for French. Scores are averages for 8 subjects. 

PCM LPC-resynth. rule-synth. 
Initial clusters(72) 92.0% 86.7% 62.5% 
Medial clusters(70) 85.8 % 84.5 % 76.6 % 
Final clusters(48) 98.2% 96.3 % 70.7% 

Table 3. Word intelligibility scores in 'Haskins-type' sentences for natural and synthetic 
speech. 

Nye and Gaitenby (1974) 
Pisoni and Hunnicutt (1980) 
Greene et al. (1984) 
Manous et al. (1984) 
Hazan and Griee (1988) 

natural synthetic 
95% 78% Haskins lab. system 

97.7% 78.7% M1Talk-79 
97.7% 86.8 / 75.1% Paul / Betty DECtalk 
97.7% 64.0% Speech Plus 
98.1% 76.6% JSRU synth.-by-mle 
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DECtalk (two voices: Paul and Betty). The same did Manous et al. (1984) for Speech 
Plus Prose-2000 prototype. In 1980, Pisoni and Hunnicutt had already done this for 
MITalk-79. Very recently, Hazard and Grice (1988) ran a pilot test with newly devel- 
oped English sentences with the same grammatical structures as the Haskins sentences: 
'The ADJ NOUNI VERB the NOUN2'. Table 3 summarizes the results of these various 
studies. It will be possible to do more interesting tests as soon as sentences with several 
different grammatical structures become available; these will require different prosodic 
characteristics and will introduce more variations for the listeners. 

3.3. Quality Judgement of Intonational Aspects in Speech 

In recent attempts to improve substantially the prosodic characteristics of rule- 
synthesized speech, Terken systematically studied natural speech and came up with better 
rules for intonation. These were evaluated by listening experiments with rule-synthesized 
diphone speech (Collier and Terken, 1987). For French, and meanwhile for several other 
languages as well, a set of 20 sentences were created. These sentences, in principle, 
should allow for testing several text-to-speech modules such as phonetic rules, diphone 
catenation, and prosodic processing (SAM Extension phase report, 1988). The corpus 
contains simple as well as complex sentences, with words of various complexity in terms 
of length, stress, affix structures, morphological struc- ture, phoneme realization, etc. 

3.4. Quality Judgement of Prosodic Analysis from Text 

Kager and Quene (1987) are developing an algorithm that, directly from Dutch 
text, derives pause locations and can indicate which words should get sentence accent. 
A first performance check was done by comparison with actual realizations of a specific 
speaker. However, a better check would be to run listening experiments on acceptability 
in order to study perceptual tolerance. These experiments are presently in preparation. 

4. C O N C L U S I O N  

Although phoneme and word intelligibility of most rule synthesis systems is not 
yet good enough, there is a growing need for intelligibility and acceptability tests at the 
sentence level. The use of unpredictable, anomalous, short and rather simple, sentences 
seems to be a good choice at the intelligibility level. Grammatically more complex and 
longer sentences are generally required for naturalness and acceptability judgements. Only 
multilingual standardization will allow for comparison of performance figures. 
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A b s t r a c t  

This paper discusses various aspects which should be considered when speech databases 
are created. It includes choosing the word sets and speakers, presentation of text and ut- 
terance timing, recording medium, microphone, editing, and labeling. It also mentions 
utilization of speech databases, i.e., recognition performance indeces, choosing the vocab- 
ulary subsets, and controlled distribution of the database. 

1. I N T R O D U C T I O N  

As information processing technology develops, the associated input/output modal- 
ities have changed from being totally dependent on the characteristics of the machine 
to accomodating the characteristics of human beings. Speech is the principal human 
input/output modality. 

It was in about 1960 when we first began to use synthetic speech as an output modality. 
It was in 1972 when speech recognition devices were first commercialized. However, auto- 
matic recognition of continuous speech uttered by an unknown speaker and the synthesis 
of continuous speech with natural voice quality remain to be developed in the future. 

To promote speech processing studies, a lot of speech data of various kinds spoken 
by many people are required; to develop speech processing systems, it is necessary to 
compare and estimate the performance of various analyses, syntheses, and recognition 
methods. The best way to do so, known today, is to analyze, synthesize, and recognize 
common speech data according to each method and compare the results. A collection of 
speech data used for this purpose is generally called a speech database or specch corpus. 

2.  P R O G R E S S  O F  S P E E C H  D A T A B A S E  W O R K  I N  J A P A N  

The necessity of common speech data has been pointed out, but it took a long time to 
realize such a data corpus in Japan. 

"A revised version of a paper in Preprints of the First Symposium on Advanced Man-Machine Interface 
Through Spoken Language, Tokyo, (Jan. 1988). 
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ETL (Electrotechnical Laboratory, Agency of Industrial Science and Technology, Min- 
istry of International Trade and Industry) initiated research on a speech database in Japan 
[I]. It developed a speech database with labeling on each subphonernic unit [2]. Tohoku 
University keeps discrete word utterances on optical discs [3]. 

A working group of 15 persons coming from various Japanese research institutes and 
private companies has been involved in the development of a speech corpus for common 
use. This work has been supported by JEIDA (Japan Electronic Industry Development 
Association). Their efforts resulted in the JEIDA Japanese Common Speech Data Corpus. 
The corpus is composed of 323 items uttered by 75 male and 75 female speakers. All items 
are uttered four times by each speaker, producing 193,800 samples in all, contained on 68 
video cassettes [4-8]. The data corpus has been distributed to 50 organizations involved in 
speech research in Japan. The corpus has been transferred recently to 76 DAT cassettes. 

ATR Interpreting Telephony Research Laboratories started developing speech databases 
in 1986. They plan to include 5000 important words as well as telephone conversational 
speech spoken by professional news announcers. The data are labeled by phonemes [9]. 

A research project on "Advanced Man-Machine Interlace through Spoken Language" 
was started in 1987 as one of the priority areas supported by the newly created Grant- 
in-Aid for Scientific Research from the Ministry of Education, Science and Culture of 
Japan. The project considered a speech database as one of the impotant research areas. 
Continuous speech data were collected [10]. 

Another priority area research project on "Prosodic Features of Spoken Japanese" 
was started in 1989. The project aims to collect samples of various Japanese dialects 
and create speech databases which are expected to be useful for speech research and 
education. A compact disc which contains the famous Japanese folk tale "Peach boy" 
uttered in standard Japanese and in various dialects, and a weather forecast uttered 
in standard Japanese was produced. A TV announcer and speakers from 20 dialectal 
districts utter 61 items in all. 

Trends in other countries can be found elsewhere [11-14]. 

3. O U T L I N E  OF S P E E C H  D A T A B A S E S  

A speech database would be utilized for speech synthesis and speaker identification as 
well as speech recognition. Speech synthesis can be divided into two major sub-areas: 
synthesis-by-rule or text-to-speech synthesis and the analysis-synthesis method. The for- 
mer accepts as its input written text and it is not directly concerned with the speech 
database. The latter needs to rely on a common speech database for its performance 
evaluation. In this case, the content of the database should be organized so that it is 
suitable for analysis-synthesis system evaluation. It would be possible to use a speech 
database which is prepared for speech recognition, at least in part for that purpose. 
Speaker recognition involves two major areas, i. e. that which is p e d o r ~  irrespective 
of the utterance content and that which uses predetermined key words. It seems that a 
speech database for speech recognition can be used for both areas, at least in part. In the 
following, a speech database for speech analysis and recognition will be described. 

A speech database is necessary and important for the following two reasons. First, 
speech researchers need to evaluate various speech analysis methods and speech recog- 
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nition algorithms in order to develop better ones. Second, potential users of speech 
recognizers need to evaluate the performance of available speech recognizers in order to 
choose the most suitable one. Such evaluation entails the availability of a speech database 
for common use. 

The following is required for a speech database to be easy-to-use and valuable. The 
database must be unbiased in the sense that the utterance text, the speakers, the recording 
conditions, etc. must be comprehensive; it must contain enough speech samples. Speech 
databases for recognizer performance assessment may be divided into two categories: 
those for speaker-dependent recognizers and those for speaker-independent recognizers. 
The database for the former use must contain two or more tokens per item, whereas one 
token per item would suffice for the latter. 

4. CREATING SPEECH DATABASES 

As is well known, there are several levels of speech utterance modes. 

(1) Syllablewise utterance. 

(2) Discrete words: digits, city names, family names, basic words, etc. 

(3) Connected words: telephone numbers, etc. 

(4) Sentence and a collection of sentences. 

There could be other utterance modes such as phrasewise speech and continuous speech. 
Let us concentrate on item (2) in this section. 

4.1. Choosing the Word Sets 

There are alternative ways of selecting the sets of words to be used for database pur- 
poses. The following three ways are typical with regard to their practical use for speech 
recognition and their familiarity to many people. 

(1) Last names: For example, we can select those last names which have a high frequency 
of occurrence in Japan, such as Tanaka and Sato. 

(2) Place names: Mainly we can include the 47 prefecture names, 646 city names and 
the names of the 23 wards in Tokyo. By elimination of duplicate entries, the total is 
676 place names. 

(3) Frequently used applications vocabulary: There are two main examples of this cate- 
gory. 

(a) Bank services: Besides the digits, the following words and phrases are used 
frequently: Yes, No, Begin, End, Repeat, Correction, Please, etc. 

(b) Word processing: If we consider the case of spoken control operations, we need 
several dozen control words. These may include: Transfer, Insert, Delete, Cor- 
rection, New Line, New Page, Left (open) parenthesis, Right (close) parenthesis, 
Space, Frame line, Word enrollment, Execute, Cancel, etc. 
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If we compare the frequency of occurrence of the items of (1), (2), and (3) in novels 
and newspapers, we find many syllables that do not occur in (1), composed of last names. 
In that sense, place names are better for a database. Frequently used applications vo- 
cabularies (3) are used in practical applications and are especially suitable to evaluate 
speaker independent speech recognition. However, the words used in each system are 
not necessarily common, and that makes it difficult to choose a fairly standardized word 
set, especially for word processors. Further discussion is needed about word processors 
concerning how to select the phrases or words for the function. 

4 . 2 .  C h o o s i n g  t h e  S p e a k e r s  

The database should be varied yet comprehensive; therefore the speakers have to be 
from several categories (not all young, not all old, etc.). The following categories should 
be represented: 

(1) Sex: We need both male and female speakers. 

(2) Age: The data should include speakers in their 20's, 30's, 40's, 50's, and 60's. 

(3) Occupation: It should be varied. 

(4) Region: Place of birth and the place where the speakers lived prior to the age of 12 
should be varied. 

(5) Standard and non-standard language: We cannnot avoid having dialect effects, but 
we wish to have the speech database consist of standard Japanese as a first step. 

Among these items, the most important factors which make a difference in voice quality 
are sex and age. In order to take these factors into account, the following is suggested for 
the speaker dependent database: 50% male and 50% female voices. 

It is desirable that the distribution of age is roughly proportional to the Japanese 
population statistics. 

5.  R E C O R D I N G  A N D  E D I T I N G  O F  S P E E C H  S A M P L E  

5 . 1 .  P r e s e n t a t i o n  o f  T e x t  a n d  U t t e r a n c e  T i m i n g  

There are several ways to display speech text and utterance timing. 

(a) Word list and no timing display. 

(b) Word list and timing through headphones. 

(c) Displaying text and utterance timing on the display terminal. 

Any one of these ways can be used, depending on the facilities of the recording place. 
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5 .2 .  R e c o r d i n g  M e d i u m  

Special care must be taken to determine the recording medium. There are several 
kinds of recording media: 

(1) Analogue audio cassettes: 
Analogue cassettes are most popular but they are not suitable for speech database 
storage, because they have many problems such as print through and sound quality 
deteorioration with multiple dubbing. 

(2) DAT cassettes: 
DAT cassettes have many advantages over analogue cassettes, including a digital 
dubbing facility; a weak point is the dimculty in recording label information. 

(3) Compact discs (CD): 
Compact discs have properties similar to DATs and the durability and ease of han- 
dling are much better. CDs are suitable for mass production, while its recording 
must be ordered to a professional company. 

(4) CD-ROMs: 
CD-ROMs have properties similar to CDs with the additional capability of storing 
text and label information, but they require AD/DA conversion. 

(5) Optical Discs (MO): 
Some types of optical discs can be produced in a laboratory, but they are not suitable 
for mass-production. 

(6) Magnetic tape for computer use 

Computer magnetic tape is suitable for speech database storage; however, the durabil- 
ity is not so good as imagined, if kept unused for a long time. Open reel magnetic tape 
has high compatibility among various computers, but cartridge tapes are mostly machine 
dependent, though easier to handle. Also it is desirable to use a high enough sampling 
rate, so that the user can choose any sampling rate s/he wants. 

At present DAT, CD and CD-ROM seem to be suitable storage media for speech 
databases. Speech databses on D ATs or CDs are especially suitable for performance 
assessment of speech recognizers. Utilizing a DAT/CD interface to a workstation or a 
personal computer makes it more useful to use DAT/CDs as speech database media. 
Such an interface often has a hardware down-sampling function, which is quite useful. 

5 . 3 .  M i c r o p h o n e  

Condenser microphones have good frequency characteristics, but dynamic microphones 
are preferred for speech recording at broadcast stations. So a dynamic microphone is rec- 
ommended for the recording. Since two-channel recording is possible with D AT recorders, 
a condenser microphone can be used for the second channel. 
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5.4. Edit ing  

The raw recorded data could be used directly as the data corpus, but it usually contains 
such undesirable signals as erroneous utterances, noise of shuffled paper and coughing, 
and, often, corrected utterances appear at the end of the recording. It must be edited 
and only the desired speech kept in the recording. The editing process is one of the most 
time consuming aspects of the speech database preparation. In order to simplify and 
shorten the editing process as well as to decrease the editing costs, simple editing can be 
performed removing noises and erroneous utterances, and inserting correct utterances on 
the right position. Extremely long silent intervals must also be shortened. 

5.5. Label ing 

Labeling speech segments is one of the significant aspects of a speech database. Al- 
though the speech data corpus itself is useful for speech research, labeing makes it far more 
useful. Generally the unit of labeling is chosen from such possible ones as paragraph, sen- 
tence, phrase, word, syllable, or phoneme. It is not so difficult to detect boundaries 
between paragraphs, sentences or phrases, since there would be breath intervals; and the 
labeling is easy. Word boundaries are not often clear, but it would be easier to detect 
those boundaries than those between syllables or phonemes. It is fairly difficult to detect 
syllable or phoneme boundaries and operators who perform the segmentation and labeling 
are not always in agreement. Moreover, it is impossible to do the process automatically 
using a machine. It seems plausible to divide the process into two parts. First let a ma- 
chine segment and label speech automatically, as far as possible, and then an experienced 
operator can correct the errors. This semi- automatic process seems realistic. 

Smaller segments than a phoneme could be used as a unit of segmentation and labeling. 
As a rule a phonemic interval can be said to be composed of three segments, these are 
the transition-stea~iy-transition parts, and each segment is adopted as a unit of segmen- 
tation and labeling. This smaller unit is claimed to be acoustically more compact than 
a phonemic segment. However, it becomes necessary to transform ordinary phonemic 
transcription to this subphonemic transcription, though this process is relatively uncom- 
plicated [2]. 

Another proposal is to transcribe speech in multiple ways using acoustic phonetic sym- 
bols for various data access requests and for the convenience of fine acoustic phonetic data 
analysis. Three types of categories are proposed for multiple transcription, i.e., linguistic 
and phonemic categories, acoustic event categories, and some allophonic variation cate- 
gories [10]. 

0 O U T L I N E  OF T H E  S P E E C H  D A T A B A S E  OF T H E  "SPO- 
K E N  L A N G U A G E "  P R O J E C T  

The "Spoken Language" project considered a speech database as one of the important 
research areas. The outline of the database is as follows. 

(1) Vowels and numerals (37 items similar to the JEIDA auxiliary list) for utterance 
practice. 
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(2) 216 phonetically balanced words: Same as the ATR list. 

(3) 110 monosyllables: Same as the JEIDA list. 

(4) Continuous speech: 

(a) University of Tsukuba list (70 short sentences): The sentence head word is 
composed of two to four syllables including all possible accent types (5 rain.). 

(b) Interrogative sentences (11 items): Same as the JEIDA auxiliary list (45 sec.). 

(c) Sentences for speech quality test (7 sec.): Sentences composed of those syllables 
chosen from a set of 20 syllables with high occurrence in daily conversation (1 
rain.). 

(d) Story: Aesop's fable "North wind" (50 sec.). 

(e) Weather report: Containing basic words (50 sec.). 

(f) Narrative sentences: For intonation studies (1:30 sec.; 2:40 sec.). 

Quantity of the data: 

(a) Four utterances per item. 

(b) Two hours of speech per person. 

(c) 10 male and 10 female speakers: 20 to 60 years of age. 

The speech data has been recorded on video cassette tapes with PCM recording, which 
has been carried out using a common dynamic microphone in a sound proof room or an 
ordinary quiet room. The speech data has been converted to DAT recently. 

7. U T I L I Z I N G  T H E  S P E E C H  D A T A B A S E  

7.1. P e r f o r m a n c e  I n d e x e s  

It is necessary to define suitable performance indexes in order to compare the results 
of performance evaluations based on the speech database. There are many ways to define 
performance comparison indexes. However, among these, the most important ones are 
the following: recognition accuracy, recognition time, and the variability of performance 
data for different speakers. Performances within and beyond the limits of the vocabulary 
should be defined separately. 
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7.1.1. Basic Recognition Performance Indexes: 

(1) For discrete words: 

Index A: Performance indexes within the vocabulary 
Correct response rate: 
N-rank correct response rate: 
Error rate: 
N-rank error rate: 
Rejection rate: 
Recognition rate: 
Error recognition rate: 

(C1/Ta)*100 (1) 
(Cn/Ta)*100 (2) 
((Ta-C1-Ra)/Ta)*100 (3) 
((Ta-Cn-Ra)/Ta)* 100 (4) 
(Ra/Ta)*100 (5) 
(Cl/(Ta-Ra))*100 (6) 
((Ta- C 1-P~) / (Ta-Ra))* 100 (7) 

Index B: Performance indexes beyond the vocabulary: 
Correct rejection rate: (Rb/Tb)*100 (8) 
False acceptance rate: ((Tb-Rb)/Tb)*100 (9) 

where, 
Ta, Tb: the number of test samples in Index A and B, respectively, 
Cn: the number of correct responses within rank n, 
Ra, Rb: the number of rejected samples in Index A (undesirable) and 
in Index B (desirable), respectively. 

(2) For connected word utterances:  

Basically, it is necessary to compute the performance ratios as for isolated words, but 
using the connected series of words as a string (treated as one unit). This amounts to 
computing string error rates; we must take deletions and insertions as mistakes. The 
following figure is suggested as "word-wise recognition rate", including deletions and in- 
sertions: 
Word recognition rate = ((C1-D)/(Ta+I-Ra))*100 
where, 

D: the number of deletions, 
I: the number of insertions. 

For both isolated and connected words, the setting of the rejection parameter is impor- 
tant. If it can be set such that there are no rejections (Ra=0), then we do so, and we use 
the figure n=l  as a comparative figure. Other procedures will not be useful for compara- 
tive purposes. 

7.1.2. Recognition Time 

The recognition time is to be measured after the speech utterance, and before we get 
output from the recognizer. We cite the average figure for comparative purposes, and also 
the largest and smallest figures as well as the variance. 
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7.1.3. Recognition Data for Speakers 

Usually is cited the performance data averaged over several speakers for comparison 
purposes, as well as the largest and smallest figures to indicate the range and the variance. 
Besides the measures described above, we can consider other comparisons, such as those 
that deal with the effects of noise or the influence of level fluctuations. However, these 
are secondary items, discussed later. 

7 .2 .  C h o o s i n g  t h e  V o c a b u l a r y  S u b s e t  

Assuming that the database user wants to use a partial database, there are several 
alternative procedures for choosing subsets: 

(a) Choosing the vocabulary subset according to a particular rank order, regardless of 
the character of the speech. For example, by place location, north to south, or by 
size of the population, large to small. 

(b) Choosing the subset by the length of the word. For example, by the number of 
phonemes or the number of syllables. 

(c) Choosing the subset by considering the frequency of occurrence of the phonemes or 
syllables. For example, (cl) seek to distribute the frequency of phonemes or syllables 
uniformly or (c2) provide the same distribution as in a large vocabulary set. 

(d) Choosing the subset by clustering based on the distance between words. For example, 
creating a cluster of similar vocabulary words based on the distance measured when 
using DTW matching of speech patterns, or on the Hamming distance of a series of 
phonemes. 

The choice of the most appropriate procedure will depend on the purpose of the use 
of the database. For example, (a) and (c) are suitable for small vocabulary subsets, and 
(b) and (d) are suitable for subsets which have similar vocabulary, and (c) is considered 
applicable in the case of basing the recognition algorithm on units of phonemes. 

In procedure (cl), the numbers are determined based on a criterion for the information 
entropy of the occurrence frequency of the syllables. To keep the entropy as large as 
possible, we eliminate words, one after another, from the 676 word vocabulary. The first 
eliminated word is set as that with number 676, and the last to be eliminated would be 
number one [15]. 

7 .3 .  C h o o s i n g  t h e  S p e a k e r  S u b s e t  

Another consideration is the preferred procedure for choosing the speaker subset. At- 
tributes of the speakers are listed on the speaker's card. We choose a subset based on 
considerations of the speaker's age and sex; the details are to be discussed later. 
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8.  C O N T R O L L E D  D I S T R I B U T I O N  O F  T H E  D A T A B A S E  

Currently the speech databases are maintained on DAT tape. In the future they will 
be transferred to compact discs and digitized for CD-ROMs. 

(1) Care of the tapes: Several submaster tapes are prepared in addition to the set of 
master tapes. The primary storage location for the master tapes is considered to 
be in Tsukuba, but submaster tapes and tapes to be circulated are stored in several 
places (Tokyo, Osaka, etc.) for convenience. It is necessary to consider the matter 
of deterioration of the recorded material, but we still feel that it will be adequately 
durable. 

(2) Lending: In the case of lending the tapes, it is necessary to have some rules to have 
smooth circulation of the database. 

(3) Other: It is desirable to establish some committee responsible for overall management 
and control. 

9 .  F U T U R E  P R O S P E C T S  

Up to now, we have focused mainly on isolated-word speech and have also considered 
some connected digits. In the future we should look more at connected speech; also 
research is needed concerning speech over telephone lines and in noise. 
Three years ago, when we started this research, DAT processors were not available, but 
they are now reas available, and they have become a very strong recording medium for 
speech databases. The compact audio disc, which has noncontacting playback, is even 
more promising. Currently there are some problems as the difficulty of recording and the 
associated costs. However, it seems to be a promising recording medium. CD-ROMs will 
be more widely use soon. 

We could not fully examine speech synthesis. As speech response units become more 
widely used, promoting research regarding the standardization of performance compar- 
isons for them becomes necessary. 

10 .  C O N C L U S I O N  

Problems in creating common speech databases have been discussed. Specifications for 
speech databases were presented. A database has been partially realized. There remain 
many tasks to be done, as shown below. 

(1) Expansion of the specifications: 

(a) Increase in number of speakers, tokens and words. 

(b) Choice of continuous speech texts and data collection. 

(2) Consideration of environmental conditions. 

(a) Environmental noise. 
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(b) Telephone line speech. 

(c) Stress of the recognizer users. 

(3) Improvement of the process of data collection 

(a) Presentation of the utterance text. 

(b) Recording medium choice. 

(c) Microphone placement to remove respiratory noise. 

(4) Standardization concerning speech synthesis. 

(5) Semi-automatization of the editing and labelling process. 

(6) Accessibility of the speech database. 

Speech database efforts in Japan have hitherto concentrated on the word level; contin- 
uous speech databases need to be prepared. 
Recently, the Committee for the Investigation of Continuous Speech Databases of the 
Acoustical Society of Japan was established in 1990. The members are mostly from 
universities with some from national research institutes, and private enterprises. The ob- 
jective of the committee is to investigate design methods for continuous speech databases 
and to propose a task setting for the databases, choosing suitable texts and programs for 
actual database creation. 
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Transcription and Al ignment  of  the T I M I T  

Database  

Victor W. Zue and Stephanie Seneif 

Spoken Language Systems Group, Laboratory for Computer Science 
Massachusetts Institute of Technology, Cambridge, MA 02139, USA 

Abstract 

The TIMIT acoustic-phonetic database was designed jointly by researchers at MIT, TI 
and SRI. It was intended to provide a rich collection of acoustic phonetic and phonological 
data, to be used for basic research as well as the development and evaluation of speech 
recognition systems. The database consists of a total of 6,300 sentences from 639 speakers, 
representing over 5 hours of speech material, and was recorded by researchers at TI. 
This paper describes the transcription and alignment of the TIMIT database, which was 
performed at MIT. 

1. B A C K G R O U N D  

When the DARPA Strategic Computing speech program was first formulated in 1984, 
the consensus of the research community was that the amount of speech data available 
is woefully inadequate. As a result, a significant effort on database development was 
mounted in order to provide the research community with a large body of acoustic data 
for research, system development, and performance evaluation. One such database is the 
so-called TIMIT acoustic-phonetic database. The TIMIT database was designed jointly 
by researchers at MIT, TI, and SRI. It consists of a total of 6,300 sentences from 630 
speakers, representing over 5 hours of speech material, and was recorded by researchers at 
TI. This paper describes the transcription and alignment of the TIMIT database, which 
was performed by researchers at MIT. 

Each speaker in the TIMIT database recorded 10 sentences drawn from three different 
corpora as follows. Each speaker read two sentences, designated as $1 and $2, which 
were designed by Jared Bernstein of SKI in order to compare dialectal and phonological 
variations across speakers. Five sentences, designated as SX sentences, were drawn from 
a small set of sentences designed at MIT. The remaining three sentences for each speaker, 
designated as SI sentences, were selected from the Brown corpus by Bill Fisher of TI [1]. 

There are a total of 450 "MIT" sentences used in the TIMIT database. These were 
generated by hand in an iterative fashion, with the goal that they should be phonetically 
rich. Care was taken to have as complete a coverage of left- and right- context for each 
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frequently-occurring low-level phonological rules were adequately represented. To aid in 
the sentence generation process, we made use of an on-line, Webster's Pocket Dictionary 
containing nearly 20,000 words. Words or word-sequences containing particular phone 
pairs could be accessed from this dictionary automatically, which greatly facilitated the 
database design process. We performed a detailed analysis of the resulting sentence set, 
as well as the SI sentences that make up the remainder of the database.  The interested 
reader should consult Lamel et al. [3] for further information about the corpora. 

2 .  T H E  A C O U S T I C  P H O N E T I C  L A B E L  S E T  

All of the recorded sentences were provided with a time- aligned sequence of 
acoustic-phonetic labels. The label set is intended to represent a level somewhat interme- 
diate between phonemic and acoustic. Our motivation was that clear acoustic boundaries 
in the waveform should all be marked, and that the criteria for positioning the boundaries 
between units should in part be based on our ability to mark them consistently. Table 1 
lists all of the acoustic-phonetic labels that were used. Most of these labels are phonemic, 
although several symbols have been included for labelling acoustically distinct allophones 
as well as other special acoustic events. 

2 . 1 .  S t o p s  

Stops are characterized by a sequence of two events: a closure and a release. This 
departure from phonemic form is, we believe, important in order to preserve a boundary 
marking the onset of the release. There are six closure symbols for the stops. The closure 
region for affricates is identical with that of the corresponding alveolar stop. (e.g., the 
/ ~ / i n  "chat" is represented as [t~ 

There are two major allophones for the stops. The glottal stop, [ ~ ], is often inserted 
preceding a word-initial vowel. Sometimes a / t / c a n  also be realized as a glottal stop, as 
in "cotton". The symbol [c ] is used to label a flap, which can either be an underlying 
/ t / o r / d / .  We make a separate flapping decision for every p h o n e m i c / t / a n d / d / ,  based 
on listening and the spectrographic evidence. We allow flapping to occur in environments 
for which theory is violated, if in fact we be.lieve that flap is what was heard/seen. 

2 . 2 .  N a s a l  a n d  S e m i v o w e l s  

We recognize four allophones for the nasals, three of them are the syllabics, [ m, n, 1~ 
]. If there is any evidence of a preceding schwa, the non-syllabic form is preferred. The 

alveolar n a s a l , / n / c a n  be realized as a nasal flap, denoted by the symbol [ ? ]. Sometimes 
an underlying/nt /sequence is realized as a nasal flap, as in "entertain". 

The liquid,/1/, has a syllabic allophone, denoted as [1]. Again, a non-syllabic form is 
preferred whenever a preceding schwa is observed. 
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Table I. A list of the acoustic phonetic symbols used for the transcription of the TIMIT 
database. 

P h o n e t i c  Symbol M a p p i n g  
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2 . 3 .  V o w e l s  

Two vowels,/i o/, are represented by symbols that included their corresponding off- 
glides. This is because they are usually realized as diphthongs in American-English. The 
four d i p h t h o n g s , / a u / , / a " / ,  / ~'/, a n d / e  U/, are each represented as a single label, with 
no separate region defined for the off-glide portion. The retroflexed vowel /3" / is also 
represented as a single unit. This represents a departure from the International Phonetic 
Alphabet, which would represent this steady-state vowel as the sequence A r / .  

Reduced vowels are represented by four separate allophones: back schwa ([ a ]), front 
schwa ([ ~ ]), retroflexed schwa ([ ~ ]), and voiceless schwa ([ ~. ]). The decision for [~ ] vs 
[ t ]  is based on whether the second formant is closer to the first or to the third. A low 
third formant leads to/~r/. Schwas can often be devoiced in words such as "secure". 

English does not distinguish phonemically between the fronted vowel / 5 /  and the 
standard back /u / ;  however the difference in F2 for the two forms can be as much as 800 
Hz. We felt it was unsatisfactory to group two forms with such diverse formant frequencies 
into the same vowel category. The decision is made as for schwa: if F2 is closer to F1, 
it's considered a back /u / .  Similar trends of fronting are also observed f o r / o / a n d / u / i n  
certain environments; however, the effect is most dramatic fo r /u / .  

At present, we make no attempt to provide further sub-phonemic characterizations for 
vowels other than this front/back distinction f o r / u / a n d  the four schwas. For instance, 
many vowels are nasalized when they are followed by a nasal, or lateralized when followed 
by an /1 / .  Such information would surely be useful, but the decision-making process is 
prone to judgement error, and would require a significant increase in time and effort. 

2 . 4 .  O t h e r s  

We make a distinction between two types o f / h / :  voiced ([ fz~ ]) and unvoiced ([hi). 
The decision is based mainly on an examination of the waveform for clear low-frequency 
periodicity, and spectrogram for voicing striations. The voiced form is most common 
between two vowels. 

Our label set includes a category "epenthetic silence,"(], which we use to mark acousti- 
cally distinct regions of weak energy separating sounds that involve a change in voicing. 
These short gaps are typically due to articulatory timing errors. The most common oc- 
currences of such gaps are between a n / s / a n d  a semivowel or nasal, as in "small", "swift", 
or "prince". Two other non-phonetic symbols are included: # is used to mark regions 
preceding and following a sentence, and 0 is used to mark pauses within a sentence. 

3 .  C R I T E R I A  F O R  B O U N D A R Y  A S S I G N M E N T S  

The acoustic-phonetic transcription for the TIMIT sentences is time aligned with 
the speech waveform. The alignment is useful in that specific acoustic events can be 
accessed conveniently based on the transcription. We must stress, however, that the 
aligned transcription is intended to establish a correspondence between the transcription 
and important acoustic landmarks. One should not directly associate a region between 
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two time markers as a distinct phonetic unit, since the encoding of phonetic information 
in the speech signal is extremely complicated. 

In most cases, the boundaries between two acoustic-phonetic events are clear and 
weU-defined, such as that between a stop closure and its release. However, there are a 
number of cases where the exact placement of a boundary is problematic (as is the case 
between a semivowel and a vowel), or cases where it's not dear whether a region should 
be represented as one or two acoustic-phonetic units (as is the case for diphthongs). In 
these cases, we tried to define a set of criteria that would be systematic and least subject 
to human error, in order to produce boundary positionings that were as consistent as 
possible. 

As mentioned previously, we decided that the boundary between the closure interval 
and the release of a stop is an important one that should be assigned. It is certainly a 
very distinct landmark in the waveform. Anyone interested in studying the burst charac- 
teristics of a stop would then be able to focus on just that region that includes only the 
released portion. In a strictly phonemic representation, the closure and release would be 
represented as a single unit, and therefore that critical boundary would remain unmarked. 

A problematic boundary is one that separates a prevocalic stop from a following 
semivowel, as in "truck." Typically, part of the / r /  is devoiced, and therefore is ab- 
sorbed into the aspiration portion of the stop. If listening were the only criterion, then 
the left boundary of the / r /  would occur somewhere in the aspiration, and the fight 
boundary would occur somewhere after voicing the onset. A clear acoustic boundary at 
the point of voice onset would remain unmarked. It would also be difficult to decide 
where to mark the boundary between the stop burst and the aspi ra ted/ r /por t ion.  Since 
voice-onset time (VOT) is a parameter that has been a focus of many research efforts, it 
seems unsatisfactory not to include a reliable mechanism for measuring VOT based on 
the labelled boundaries. Therefore, we adopted the policy of always absorbing into the 
stop release all of the unvoiced portion of a following vowel or semivowel. 

The boundary between many semivowels and their adjacent vowels is rather ilbdefined 
in the waveform and spectrogram, because transitions are slow and continuous. It is not 
possible to define a single point in time that separates the vowel from the semivowel. 
In such cases, we decided to adopt a simple heuristic rule, in which one-third of the 
vocalic region is assigned to the semivowel, thus giving the vowel twice the duration of 
the adjacent semivowel. Previous investigators have also made use of such consistent rules 
for defining acoustically ambiguous boundaries [4]. 

One obscure condition is a / t s / o r / d z / s e q u e n c e ,  where typically there is little or no 
spectral change to characterize a boundary between the homorganic stop and fricative, 
yet the onset of acoustic energy of the unit is sufficiently abrupt such that a / t / i s  heard. 
Our convention here is that, if a c l e a r / t / i s  heard, the early portion of t h e / s / i s  marked 
as a / t / r e l ea se .  

When gemination occurs, we do not attempt to mark a boundary between the two units. 
This situation occurs exclusively at word boundaries, as in "some money. ~ Furthermore, 
in the case of a stop-stop sequence where the first stop is unreleased, the closure interval 
is assigned to the first stop and the release to the second one. 
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0 P R O C E D U R E S  F O R  T R A N S C R I P T I O N  A N D  ALIGN-  
M E N T  

The transcription and alignment process involves three stages: 

1. An acoustic-phonetic sequence is entered manually by a transcriber as a string. 

2. The speech waveform is aligned automatically with the acoustic-phonetic sequence, 
using an alignment program developed at MIT. 

3. The boundaries generated automatically are then hand- corrected by experienced 
acoustic phoneticians. 

4.1. Transcription 

In both stages 1 and 3, the labeller makes her/his acoustic-phonetic decision based 
on careful listening of portions of the speech waveform, as well as visual examination 
using displays such as the spectrogram and the original waveform. The process takes 
place within the SPIRE software facility for speech analysis, a powerful interactive tool 
that is welbmatched to this task [2]. Stage 1 requires less intensive use of SPIRE than 
Stage 3, because it is only necessary to record what was heard, without identifying the time 
locations of the events. Furthermore, minor errors of judgement made at this stage can 
be readily corrected in stage 3. The labels can be entered either by typing or by mousing 
a displayed set. Figure 1 shows the SPIRE layout used for entering the transcription. 
The completed transcription is shown in the top window of this display. 

In general, we try to label what we hear/see, rather than what we expect. Thus, if 
a person says "imput" for "input", the nasal will be marked as a n / m / .  However, in 
conditions of ambiguity, the underlying phonemic form is selected preferentially. 

4.2. Automat i c  Al ignment  

The alignment of a phonetic transcription with the corresponding speech waveform 
is essential for making use of the database in speech research, since time-aligned phonetic 
transcriptions provide direct access to specific phonetic events in the waveform. Tradi- 
tionaUy, this alignment is done manually by a trained acoustic-phonetidan. This is an 
extremely time-consuming procedure, requiring the expertise of one or a very small num- 
ber of people. Therefore, the amount of data that can be labelled is limited. In addition, 
manual labelling often involves decisions which are highly subjective, and thus the results 
can vary substantially from one person to the other. 

Transcription alignment of the TIMIT database makes use of CASPAR, an automatic 
alignment system developed at MIT. Descriptions of preliminary implementation of the 
system can be found elsewhere [5, 6]. Basically, the alignment is accomplished by the 
system in three steps. First, each 5 ms frame of the speech data is assigned to one 
of five broad-class labels: sonorant, obstruent, voiced-consonant, nasal/voicebar, and si- 
lence, using a non-parametric pattern classifier. The assignment process makes use of a 
binary decision tree, based on a set of acoustically motivated features. Each sequence 
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Phonetic S4KlU~nce Layout 

Figure 1. SPIRE layout for entering the a~ustic-phonetic transcription. 

of identically-labelled frames is then collapsed into a segment of the same label, thus es- 
tablishing a broad-class segmentation of the speech. The output of the initial classifier is 
then aligned with the phonetic transcription using a search strategy with some look-ahead 
capability, guided by a few acoustic phonetic rules. For those segments which correspond 
to two or more phonetic events after preliminary alignment, further segmentation is done 
using specific algorithms based on knowledge of the phonetic context. In some cases 
heuristic rules are invoked (as between a vowel and a semivowel) to assign consistent, but 
somewhat arbitrary boundaries. 

Over the past two years, two major modifications of CASPAR have taken place. First, 
the alignment of the broad-class acoustic labels with the phonetic symbols has been cast 
into a probabilistic framework. By using a large body of training data, a set of robust, 
context-dependent and durational statistics were obtained. Second, a fourth module has 
been added to the system to improve the resolution of the boundaries. This module 
computes appropriate acoustic attributes at a high analysis rate using different window 
shapes that depend on the specific context. The boundaries are then adjusted on these 
attributes. 

In a formal evaluation, it was found that CASPAR can correctly perform over 95% 
of the labelling task previously done by human transcribers. The boundary locations 
produced by the system agree well with those produced by human transcribers. For 
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Phone t i c  Tr~nscription Layout 1 

Figure 2. SPIRE layout showing the alignment produced by CASPAR. 

example, over 75% of the automatically generated boundaries were within 10 msec of a 
boundary entered by a trained phonetician. 

Figure 2 displays the output for the sentence, "She had your dark suit in greasy wash 
water all year." For this example, most of the boundaries have been found correctly 
by CASPAR. Note, however, that boundaries are missing in the [ifi~e] sequence of "She 
had." The waveform displays the word "dark" and the [s] of "suit." Note that the initial 
boundary of the first [d] is slightly too far forward in time. 

4 . 3 .  P o s t - P r o c e s s i n g  

The final step is to correct by hand any errors in the automatically aligned acoustic- 
phonetic sequence. Some of the errors are due to the fact that C ASPAR is not able to 
determine certain boundaries, such as some of those between two vowels. In other cases 
the boundaries may have been misplaced. 

Hand correction of the aligned transcription is based on critical listening of portions 
of the utterance as well as visual examination of the spectrogram and the waveform. The 
spectrogram covers close to 3 seconds worth of speech at one time, whereas the waveform 
is displayed on a much more expanded time scale. For example, to accurately mark the 
onset of the release of a stop, the cursor is first positioned on the spectrogram at the 
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Phonetic Trantcrlption Layout 1 

Figure 3. SPIRE layout showing the aligned transcription following post-processing. 

approximate point in time. The waveform display automatically moves to synchronize in 
time with the cursor, and a fine-tuning of the boundary can be achieved by mousing the 
exact time point in the waveform. 

The mouse can be used with ease to move an existing boundary to a new point in 
time, to erase a boundary, or to insert a boundary. Furthermore, a spedfied mouse click 
on any segment allows the labdler to change the acoustic-phonetic label assodated with 
that segment. This step is sometimes necessary to correct an error of judgement in stage 
1. 

An example of the screen layout used for the correction process is shown in Figure 
3. The boundary for the [d] burst onset has been corrected. Missing boundaries were 
inserted for the [ i5~] sequence. In addition, the boundaries associated with the first [w] 
were extended on both sides, and an epenthetic silence was inserted between the [~] and 
the following [w]. 

5. C O N C L U D I N G  R E M A R K S  

Once the acoustic-phonetic transcription has been aligned, it is rather straight- 
forward to propagate the alignment up to the orthographic transcription as well as the 
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intermediate phonemic transcription. A time-aligned orthographic transcription is use- 
ful when searching for a specific word, while a tiara-aligned phonemic transcription can 
be used to relate the lexical representation of words to their acoustic realizations. For 
example, the lexical representation of the word sequence "gas shortage" contains a word- 
f ina l / s /and a word-initial/~/, whereas its acoustic realization may simply be a long [~]. 
In this case, the time-aligned phonemic transcription will map the long to [~] both the 
underlying fricative. Researchers interested in studying the frequency of occurrence of 
certain low-level phonological rules will thus be able to derive the information from these 
transcriptions. 

We have developed a system that maps a time-aligned acoustic-phonetic transcription 
to the phonemic and orthographic transcriptions [7]. However, the alignment effort for 
these transcriptions lags somewhat behind the phonetic alignment. In the interest of 
expeditiously making as much data available to the interested parties, we have decided 
to provide these other transcriptions in future releases. 

The transcription and alignment of the TIMIT database is a sizable project. At this 
writing, all of the sentences have been processed and delivered to the National Bureau of 
Standards. A significant portion of the database is now available to the general public 
via magnetic tapes, and plans for distributing them by way of compact disc is well under 
way. Despite our best intention to provide as correct a set of transcriptions as possible, 
however, errors undoubtedly exists. We urge users of this database to communicate errors 
to us whenever possible, so that future users can benefit from this effort. 

Finally, we would like to thank Dave Pallett, Jim Hieronymus, and their colleagues at 
NBS for the cooperation, patience, and good humour that they provided. Their help, par- 
ticularly regarding data transfer, verification, distribution, and fending off eager inquiries, 
have been indispensable to this project. 

The development of the TIMIT database at MIT was supported by the DARPA-ISTO 
under contract N00039-85-C-0341, as monitored by the Naval Space and Warfare Systems 
Command. Major participants of the project at MIT include Corine Bickley, Katy Isaacs, 
Rob Kassel, Lori Lamel, Hong Leung, Stephanie Seneff, Lydia Volaitis, and Victor Zue. 
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