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Seeking the earliest use of the concept of logos, Detienne . . .

proposes that “on the one hand, logos was seen as an
instrument of social relations. . . . Rhetoric and sophistry began
to develop the grammatical and stylistic analysis of techniques
of persuasion. Meanwhile, the other path, explored by
philosophy led to reflections on logos as a means of knowing
reality: is speech all of reality? If so, what about the reality
expressed by numbers?” (Detienne, 1996, p. 17). If the question
were posed today, “How can knowledge be verbalized?” no one
would disagree that it is through logos, the word, whether
spoken or written. But what if we pose the question differently
and ask, “How can knowledge be visualized?”

(Bier, 2006, p. 270)

The dialectic of word and image seems to be a constant in the
fabric of signs that a culture weaves around itself. What varies
is the precise nature of the weave, the relation of warp to woof.
The history of culture is in part the story of a protracted struggle
for dominance between pictorial and linguistic signs, each
claiming for itself proprietary rights on a “nature” to which
only it has access.

(Mitchell, 1984, p. 529)

The unity of perception and conception . . . suggests that
intelligent understanding takes place within the realm of the
image itself, but only if it is shaped in such a way as to interpret
the relevant features visually. . . .. Visual education must be
based on the premise that every picture is a statement. The
picture does not present the object itself but a set of propositions
about the object.

(Arnheim, 1971, p. 308)
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Chapter 1
Introduction

A Reflection on Visual Studies in Mathematics
Education: From Purposeful Tourism to a Traveling
Theory

Fig. 1.1 Nikki’s thinking on an addition problem

This is awesome.
(Nikki, Grade 2, 7 years old)

As classroom observations and teacher interviews continued, it
seemed that [the ten middle grades] teachers described their
use of manipulatives as fun and distinct from their regular
teaching of mathematics. Although these distinctions emerged
subtly, a very clear indication of this occurred halfway through
the year. Describing a lesson with manipulatives, Joan said,

1F.D. Rivera, Toward a Visually-Oriented School Mathematics Curriculum,
Mathematics Education Library 49, DOI 10.1007/978-94-007-0014-7_1,
C© Springer Science+Business Media B.V. 2011



2 1 Introduction

“Sometimes I think that they are just having fun, but I don’t
mind because eventually we’ll get to the real math part”
(interview 2). Later in the same interview Joan stated, “When
we’re doing hands-on stuff they’re having more fun, so they
really don’t think about it as being math” (interview 2). . . .. Not
only did teachers appear to distinguish between “fun math”
lessons where manipulatives were used and “real math” lessons
where traditional paper-and-pencil methods were used, but they
also made distinctions between parts of individual lessons. For
example, the manipulatives may be used for exploration at the
beginning or “fun math” part of a lesson, or they may be used
in an activity or a game after the mathematics content was
taught; but during the teaching of specific skills or content,
paper-and-pencil methods were used to teach and practice the
“real math.”

(Moyer, 2001, p. 187)
The lesson of the dichotomies should now be clear: they demand
the “and” of intersection. Geometrical intuition never gets far
without analytic abstraction, and vice versa.

(Wise, 2006, p. 80)

In writing this book, I have definitely stood on the shoulders of giants whose works
on various aspects of mathematical visualization have enriched our understanding
of how students actually learn mathematics. The impressive critical syntheses of
research studies on visualization in mathematics by Presmeg (2006) and Owens and
Outhred (2006), which have been drawn from the annual peer-reviewed proceedings
of the International Group for the Psychology of Mathematics Education (IGPME)
over a period that spans three decades (1976–2006), provide a comprehensive list of
important contributors whose thoughts are reflected in various places in this book.
Twenty years ago, the Mathematical Association of America published a visual-
driven monograph edited by Zimmermann and Cunningham (1991) that consists of
reflective essays by, including references to other, researchers who then began the
exciting task of exploring ways to visualize abstract mathematical objects via the
power of computer software tools that could support and mediate in the development
of advanced mathematical concepts and processes.1 Many of their ideas have also
been incorporated in this book.

1Situating the nature and context of thinking that was taking place in the 1990s outside the
confines of mathematics education, Mitchell’s (1994) influential book, Picture Theory, cushioned
the decade point within the “pictorial [or iconic or visual] turn in contemporary culture, the widely
shared notion that visual images have replaced words as the dominant mode of expression in our
time,” which should then necessitate “a new initiative called visual culture (the study of human
visual experience and expression)” (italics added; Mitchell, 2005, p. 5). Mitchell, then, of course,
was not recommending but problematizing the proposed wholesale shift from word to image by
surfacing the reality-creating power of the latter via imaging technologies and the theories and
attitudes people have about pictures/visuals/images and their relationships with the correspond-
ing verbal representations. Brown’s (2002) thoughts below, which basically ground mathematics
as being prior to imagination, offer a complementary perspective to Mitchell’s thoughts about the
ontological power of images:
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In this prolegomenon, I revisit many of the same references, however, with an
eye on clarifying what and how I mean by my basic claim of Toward a Visually
Oriented School Mathematics Curriculum, which is also the title of this book. My
recent elementary and middle school classroom experiences (2005–2010) have also
significantly influenced the manner in which I developed many of the ideas that
contributed to this basic claim. In these classrooms, I had the immense pleasure of
working with students like second-grade Nikki in the opening epigraph who con-
structed and appropriated mathematical knowledge and reasoned mathematically
through an effective process that Barwise and Etchemendy (1991) have aptly called
heterogeneous inference, that is, the use of a “wide range of types of reasoning”
(p. 10) – from linguistic to nonlinguistic or visual – in sense making, representing,
and problem solving. Seven-year-old Nikki’s enthusiasm toward her visual process
in obtaining the sum of two whole numbers reminds me of the celebrated English
art critic and painter Berger who pointed out that

it is a platitude that what’s important in drawing is the process of looking. A line drawn is
important not for what it records so much as what it leads you on to see. Each confirmation
or denial brings you closer to the object, until finally you are, as it were, inside it: the
contours you have drawn no longer marking the edge of what you have seen, but the edge
of what you have become . . . a drawing is an autobiographical record of one’s discovery of
an event, seen, remembered, or imagined.

(italics added for emphasis; Berger quoted in Taussig, 2009, p. 269)

When Nikki drew her figures, regrouped a set of 10 sticks to form a new square, and
then recorded her actions symbolically, her visually derived mathematical under-
standing exemplifies in quite poetical terms how she has “become” and felt closer
and “inside” both the visual and symbolic forms she constructed for herself. Not
only with Nikki, I should say, but also with many of my young and older partici-
pants, I marveled at their “incorrigible tendency to lapse into vitalistic and animistic
ways of speaking” (Mitchell, 2005, p. 2) about the objects and images they use to
learn mathematics.

The 2-year professional development work that I conducted with in-service
teachers of Grades 5 through 8 in 2 school districts in Northern California, which
occurred during the time I was in my middle school classroom implementing my
longitudinal design research investigations, further strengthened many of the argu-
ments I present in favor of the basic claim. Like the teachers in Moyer’s (2001)
study in the opening epigraph, many of my teachers echoed the same perennial view
about the “fun” part of manipulatives and other visual strategies and tools without
connecting and embedding them to serious aspects of learning and doing mathemat-
ics. During the many hours I spent with them, I found myself repeatedly asking why
they held such a different view, which appears to be devaluing the epistemological

It is mathematics which inspires the imagination, as totally new forms and almost unbeliev-
able patterns and structures are revealed. These fruits of the imagination, verified through
the tough testing of logic and calculation, have what has been described as an “unreasonable
effectiveness in the physical sciences.”

(Brown, 2002, pp. 157–158)
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significance of visualizing in mathematical learning, including how I could assist
them to (help their students) see the power of structured visualizing in contributing
to a better and more meaningful understanding of school mathematical knowledge
(cf. Rivera, 2010b). At the outset, let me say that in the history of the present, such
views, which include mine, are emerging within the context of a struggle between
rational and sensuous modes of mathematical knowing. In the USA, in particular,
the tight alignment between and among mathematics instruction, classroom assess-
ment, and state mathematics standards and testing seems to imply the need for
definite and more predictable forms of mathematical knowledge that gestate and
ossify in the alphanumeric (i.e., rational). But recent classroom research knowledge
in mathematics education drawn from purposeful design experiments provides val-
idatory empirical and complementary proof of the central role of gestural, tactile,
and visual activity (i.e., sensuous) in rational mathematical activity.

In organizing such a re-visitation of referenced work, I have found it useful to
think in terms of the distinction that Damarin (1995) has pointed out concerning the
words traveler and tourist. Damarin writes:

A traveler and a tourist can visit the same city, but experience it very differently. A tourist’s
goals are typically to see all the sights, learn their names, make and collect stunning pictures,
eat the foods, and observe the rituals of the city. A traveler, on the other hand, seeks to
understand the city, to know and live briefly among the people, to understand the languages,
both verbal and non-verbal, and to participate in the rituals of the city. At the end of equally
long visits, the tourist is likely to have seen more monuments but the traveler is more likely
to know how to use the public transportation.

(Damarin, 1995, p. 29)

Hence, in this introduction, I engage in at least two complementary tasks. Section 1
rereads many of the findings drawn from various research investigations in visu-
alization and mathematics from the point of view of purposeful tourism, that is,
as comprising important, oftentimes disparate, pieces of work in an emerging land-
scape. Presmeg (2006) articulates this viewpoint in the following thought-provoking
passage that she expressed near the end of her comprehensive synthesis:

Where have we been and where are we going? At this point the diffused nature of the
continuing research on visualization would seem to be a disadvantage – but it is probably
necessary, as puzzle pieces are necessary in the completion of a whole picture.

(Presmeg, 2006, p. 225)

In Section 2, I begin to map out a traveling theory, one that attempts to resolve
Presmeg’s (2006) 13th Big Research Question in visualization in mathematics
education, that is,

What is the structure and what are the components of an overarching theory of visualization
for mathematics education?

(Presmeg, 2006, p. 27)

A full response, of course, is reflected in the succeeding chapters that focus on the
nature, role, and significance of visualization in various aspects of mathematical
activity. Section 3 provides an overview of the ideas that are pursued in Chapter 2.
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I hope that this introduction and the next one encourage readers to plough through
several hundreds of pages of thinking devoted primarily to issues in visualization
in mathematics learning and armed with the same excitement that McCormick,
DeFanti, and Brown (1987) felt in the late 1980s when they perceived (scientific)
visualization as having the capacity to “transform the symbolic into the geometric,”
“offer a method of seeing the unseen,” “enrich the process of scientific discovery,”
and “foster profound and unexpected insights” (p. 1). Section 4 provides a descrip-
tion of the students in my studies who benefited from my own excitement in this
research field and whose thinking and visual experiences provided much insight
and motivation that allowed me to test, refine, and test again many of the ideas I
pursue in this book.

1 Purposeful Tourism

As I was rereading the edited collection of essays by Zimmermann and Cunningham
(1991), I found myself generating the binary terms in Fig. 1.2a with the words on
the left of the slash seen together as characterizing the visual as it was perceived
back in the 1990s in mathematical discourse.2 Using what were then considered
current state-of-the-art educational software tools, most of the authors in this collec-
tion showcased the power of such tools in supporting growth in rigorous academic
or formal knowledge that covers concepts and processes in calculus, spatial geom-
etry, differential equations, differential geometry, linear algebra, fractals, complex
analysis, and stochastics and random phenomena. As editors of the monograph,
Zimmermann and Cunningham (1991) interpreted the role of visualization as a pre-
cursor for something more. In “process[es] of producing or using geometrical or
graphical representations of mathematical concepts, principles or problems, whether
hand drawn or computer generated” (p. 1), visualization could be seen

not [as] an end in itself but [as] a means toward an end, which is understanding. . . ..
Mathematical visualization is the process of forming images (mentally, or with pencil and
paper, or with the aid of technology) and using such images effectively for mathematical
discovery and understanding.

(p. 3)

There is, thus, a sense in which visual processes were viewed as being conceptually
prior to understanding and discovery. In the same volume, the widely cited essay by

2Certainly the visual/symbolic divide, O’Halloran (2005) notes, “has a long history” (p. 129).
O’Halloran’s trace begins with traditionalists during the time of Descartes who perceived the visual
as a heuristic tool and the symbolic as the rigid road toward a valid proof. She then points to Davis
(1974) as representative of mathematicians who hold the opposite view that visuals could be con-
sidered a valid form of proof leading to theorem-of-the-perceived kind of arguments. O’Halloran
also draws on the work of Galison (2002) who sees the divide as an oscillating phenomenon and
Shin (1994) who interprets mathematicians’ incredulity toward the visual medium as being all
about constructing diagrams that are loaded with errors, imprecise, narrowly generalizable, and
incomplete.
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informal and experimental/formal and proof-driven
intuitive/logical and analytic 

intuitive/counterintuitive
experiential/algorithmic

means/end 
forming and using images/making discoveries and developing understanding

geometric/symbolic
unseen/seen

spatial and kinesthetic/verbal, arithmetic, and algebraic
diagrammatic/symbolic and sentential

pictorial/linguistic
higher/lower cognitive demand

illustrative/generalizable
generative and mnemonic/proof
multiple paths/sequentially linear

generative/proof

Visual Verbal-algebraic
Abstracts spatial properties such as shape, 
position

Abstracts properties which are 
independent of spatial configuration such 
as number

Harder to communicate Easier to communicate
May represent more individual thinking May represent more socialized thinking
Integrative, showing structure Analytic, showing detail
Simultaneous Sequential
Intuitive Logical

a

b

Fig. 1.2 a Binaries associated with the visual/symbolic in mathematics. b Skemp’s binaries
associated with the visual/verbal in mathematics (Skemp, 1987/1971, p. 79)

Eisenberg and Dreyfus (1991) provided sufficient empirical evidence, which they
have drawn from their own and several other research investigations, about under-
graduate students’ “reluctance to visualize” in calculus in favor of more readily
manipulable and algorithmic-driven symbolic forms that appeared to characterize
the dominant content of mathematics in the 1990s.3

Skemp (1987/1971) has also noted the visual/verbal opposition in mathematics
in the 1970s. In one section (pp. 66–82) of his classic book, The Psychology of
Learning Mathematics, Skemp spoke about the opposition in terms of the advan-
tages and disadvantages of the two imagery systems and the various contexts in

3In the US history of school mathematics, in particular, it is interesting to note how nineteenth
century textbooks have found the use of manipulatives to be a valuable complementary pedagogical
tool to the inductive method espoused in arithmetic and problem solving (Michalowicz & Howard,
2003). But then its status, including visualization, more generally, seemed to have been afloat in
twentieth century algebra and geometry textbooks (Donaghue, 2003). Rousseau and Pestalozzi,
as well as the emphasis on real-life problem solving, influenced mathematics pedagogy in the
nineteenth century, which could not be upheld at least in the twentieth century context as a result of
the mathematics community’s preoccupation toward developing an axiomatic structural approach
to teaching mathematics.
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which we use them. Figure 1.2b is his list of such differences that he nevertheless
saw as being complementary.

Drawing on Presmeg’s (2006) synthesis of more than 150 relevant studies in visu-
alization in mathematics education, research reported at the IGPME appears thus far
to have been pursued along the following four (overlapping) dimensions, namely:
psychological; curriculum and instruction; technological; and semiotic. Presmeg’s
characterization of visualization involves simultaneous acts of creating a spatial
arrangement and constructing its image, that is,

when a person creates a spatial arrangement (including a mathematical inscription) there
is a visual image in the person’s mind, guiding this creation. Thus visualization is taken to
include processes of constructing and transforming both visual mental imagery and all of
the inscriptions of a spatial nature that may be implicated in doing mathematics.

(Presmeg, 2006, p. 206)

The term mathematical inscription refers to graphical representations (e.g., symbols
and diagrams in this book) that are necessary in mathematical practice and commu-
nication. Visual images are mental constructs that represent visual or spatial content.
Thus, a visualizer in Presmeg’s sense above engages in a mutually determining pro-
cess of image construction and externalization. That changes in the visualizer’s
image of some target content meant changes in the corresponding inscriptions as
well.

1.1 Psychological Dimension

This dimension emerged from Bishop’s work in the 1970s on visualization and
spatial thinking and prevailed through the late 1990s when much of theory
and research in mathematics education were immersed in the constructivist phe-
nomenon. Figure 1.3 provides a sample of topics that were reported under this
dimension. Three findings are worth noting.

First, developing mental images of mathematical objects, concepts, and pro-
cesses actually took more time and required greater cognitive load among learners
than using analytic methods and processes.

Second, encouraging the use of imagery in conceptualizing mathematical con-
cepts and processes has opened up a farrago of different types of images and imagery
systems or schemes, some more effective than others, including the view that more
sophisticated ones could be acquired or revised and improved through more learn-
ing. Also, it appears that while prototypical images were documented to exist and
could either support or hinder mathematics learning among different grade-level
groups, longitudinal studies could not establish empirical evidence for possible
developmental models or trends.

Third, the perceived phenomenon of reluctance toward visualizing in mathemat-
ics among students in various grade levels could not be analyzed in simple terms
since, Presmeg writes,
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1.  Levels of complexity of images in relation to geometric solids and nets
2.  Effects of parallel axes representations involving linear functions in visualizing the 
     concept of slope
3.  College students’ reluctance toward visual thinking and processing
4.  Role of imagery in mathematical reasoning of elementary students
5.  Different kinds of imagery schemes (figurative, operative, relational, and symbolic)
6.  Different types of imagery (concrete, kinesthetic, dynamic, memory image of formulas, 
     and pattern imagery)
7.  Individual children’s visualization of various aspects of content and processes in 
     mathematics
8.  Imagistic systems as a category of cognition and affect in mathematical learning
9.  Interpreting figural information and visual processing

10.  Interaction of students’ beliefs about mathematics, problem solving, and visualization
11.  Role of personal imagery and affect in learning mathematics and their relationships to 
      visualization

12.  Types of representations, representational systems, and visualization
13.  Gender differences in visualization
14.  Visualization in problem solving 
15.  Expert/novice views and uses of imagery in doing mathematics 
16.  Relationships between visualization, reification, generalization, and abstraction in 
      mathematical learning

Fig. 1.3 Psychology-driven topics in visualization

(f)or most people, the task itself, instructions to do the task a certain way . . . and
sociocultural factors including teaching situations . . . influence the use of visual thinking in
mathematics. However, there are a few people for whom visualization is not an option . . .

whereas some others do not feel this need at all.
(Presmeg, 2006, p. 216)

1.2 Curriculum/Instruction Dimension

There were very few studies that tackled this dimension. Presmeg used her 1991
study with 13 high school mathematics teachers and the role of visualization in
their daily instruction in noting the following three important findings: (1) teachers
with strong mathematical visual skills were not solely teaching visual skills to their
students; (2) teachers along the middle point of the mathematical visual skills con-
tinuum taught their students to value visual skills and strategies but only as a means
toward the end, which is generalization; and (3) teachers with weak to no visual
skills taught their students to silence their visual capacities in favor of rote mem-
orization and other procedural, symbolic skills. Those teachers who were strong
visualizers tried to connect mathematics with other areas of thinking and aspects
relevant to the real world and valued “creativity,” “openness to external and inter-
nal experience, self-awareness, humor, and playfulness” (Presmeg, 1991, p. 211).
Attention to curriculum was focused on how students effectively interpreted, drew,
and understood graphs appropriate at their grade levels by relying on their intu-
itions and images, including the important role of individually generated metaphors
in both the construction of generalizations and the development and retention of
meanings.
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1.3 Technological and Semiotic Dimensions

Advances in technological tools basically provided the impetus for conducting more
research in visualization in mathematics. While a few studies focused on students’
interactions with educational software, the dynamic aspect of emerging tools was
seen primarily as a means for “facilitating visualization processes” (Presmeg, 2006,
p. 220). Interest in the semiotic dimension began when researchers saw the sig-
nificant role of (representational) gestures in externalizing (mathematical) mental
images. In light of Presmeg’s discussion of research in these two dimensions, it
seems there is still much work that needs to be accomplished especially about ways
in which emergent findings could facilitate better mathematics learning for all stu-
dents. For example, under the technological dimension, we still need to understand
the important role of visualization in, say, instrumental genesis. Under the semiotic
dimension, we need to know how visual images and/or processes change as learners
transition from one type and/or phase in semiotic representation to another.

In this book, I address many of the same fundamental issues raised in each
dimension. Under the cognitive dimension, I am interested in ways in which visual
images transform from personal images (i.e., imaginals) and images-in-the-wild in
their initial states to their final state that I classify as visual representation. While
imaginals are subjectively constructed, images-in-the-wild have an Hutchinean4

content in them, which means to say that they emerge naturally among most stu-
dents during classroom activity. They also interact with, and undergo changes in,
form as a consequence of more structured learning relevant to some intended knowl-
edge. Goldin’s (2002) notion of representational systems or, simply, representation,
involves the presence of signs (or characters or inscriptions) with well-defined con-
figurations (or rules) for combining them and a structure that basically provides
meaning and fundamentally sets up the relationship between the relevant signs and
their rules. Clearly, computer-generated or manipulatives-based images exemplify
visual representations in Goldin’s sense, that is, they are structured visual images
that operate within well-defined schemes. However, everyday visual images (imag-
inals) or visual-images-in-the-wild do not have this formal or structured character,
at least not yet. Hence, it is interesting to understand how such images support, or
transition into, representational systems. Under the curriculum/instruction dimen-
sion, what instructional scaffolds enable the formation of visual representations in
mathematics? Under the technological and semiotic dimensions, how do we char-
acterize the different visuals that define various semiotic representations? Duval
(2006) gives an impressive account of the embedded nature of various semiotic rep-
resentations in any intended geometric knowledge, including transformations that
take place in the corresponding visual forms that accompany the representations. It
would be interesting to see how we can use such a model in other areas of school

4Hutchins (1995) spoke about “cognition in the wild” in ecological terms as a type of adaptive
thinking that occurs in its natural state within the context of culturally constituted activity (or
“lifeworld-dependent” as we refer to it in Chapter 2 and in succeeding chapters).
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mathematics such as number theory and algebra that are widely taught across the
globe from a symbolic and nonvisual context.

2 A Traveling Theory

The following seven chapters in this book address various aspects of a proposed
traveling theory that has guided my recent funded research in the classrooms. In
this section, I talk about background issues that led me to the notion of progressive
modeling.

2.1 Exploring Implications of Purposeful Tourism

Figure 1.4 illustrates how I perceive the relationships between and among the four
interpretive dimensions of research in visualization in mathematics learning and
teaching. At the outset, I see issues in the technology and semiotic dimensions
as fundamentally determining concerns that are then pursued in the cognitive and
instruction/curriculum dimensions insofar as learning, delivery, and packaging of
content matter. Various discussions and research investigations concerning visual
processes in mathematics are now brought to the table because (more) mathematics
learning is taking place in technological settings. Further, changes in technologi-
cal tools drive changes in semiotic resources and representations, and vice versa.
Consequently, the manner in which instruments and relevant knowledge (mediated
in signs) are learned is a concern in the cognitive dimension.

Technology and Semiotic
Dimensions 

Curriculum/
Instruction
Dimension

Cognitive
Dimension 

Fig. 1.4 Relationships of the
four interpretive dimensions
of research in visualization in
mathematics learning
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2.2 Exploring Implications of Instrumental Genesis

Several years ago, I collaborated with a high school mathematics teacher and
together we taught a precalculus class of 30 students concepts and processes in alge-
bra with the aid of a TI 89, a powerful graphic calculator that could model graphs,
simplify algebraic expressions, and solve equations. I refer readers to Rivera (2007a)
for an extensive discussion of findings since my primary aim at this stage is to estab-
lish a connection between this prior work and the proposed traveling theory that I
pursue in this book. The underlying theoretical framework of the Rivera (2007a)
study is instrumental genesis (IG), a Vygotskian-driven view in which students’
mathematical experiences are, in fact, mediated by, and structured through, physical,
semiotic, and other technological systems. Bruner (1978) also notes how “instru-
mental action is at the core of Vygotsky’s thinking action that uses both physical
and symbolic tools to achieve its ends” (p. 2). In the study and, in fact, throughout
the rest of the school year, I held the strong view that each time a student acquired
facility and competence with any visualizing tool, he or she would come to develop
appropriate schemes reflective of growth in knowledge. In relation to the TI 89, I
structured our classroom activities in such a way that as the students were compe-
tently learning to use the TI 89 and its various command menus and mathematical
functions, they were also developing a deep understanding of the intended mathe-
matical structures. My initial interest in IG was sparked by the theorizing offered
by researchers like Artigue (2002), Bartolini-Bussi and Boni (2003), and Mariotti
(2000, 2002) who saw the mediating capability of technological tools in enabling
the progressive evolution of mathematical thought, from the concrete to the abstract
or from material to theoretical knowledge. Knowledge is, thus, conceptualized as a
tool-mediated activity. Schemes are constructed as a result of learners’ expertise in
using a tool (i.e., instrumental schemes) and, thus, reflect structures that interweave
instrumental and intended mathematical knowledge.

In the Rivera (2007a) study, I gave an IG account of how my students’ schemes in
solving polynomial inequalities evolved over three phases that enabled them to suc-
cessfully transition from a visual, calculator-dependent process to a visual-algebraic
method that was as rigorous and valid as standard alphanumeric methods for solv-
ing such inequalities. The three phases relative to the students’ relationships with
the TI 89 were as follows: (1) full attachment; (2) partial detachment; and (3) full
detachment.

In the full attachment phase, their graphical method for solving polynomial
inequalities faithfully mirrored how they would actually solve them on their TI 89.
An illustration of a student’s work is shown in Fig. 1.5a, which shows details con-
cerning the graph of the relevant polynomial function but were really unnecessary
in solving the corresponding inequality.

In the partial detachment phase, their graphical solution method contained only
a rough sketch of the relevant function and its zeros on a drawn Cartesian plane
(see Fig. 1.5b for an illustration). This phase was facilitated by their deep under-
standing of the general structure of graphs of odd- and even-powered polynomial
functions.
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b

a

c

Fig. 1.5 a Danica’s solution of (x + 1)(x − 2)(x − 1)(x + 2) ≤ 0 (Rivera, 2007a, p. 295). b Kien’s
solution of (x − 1)4(x + 1)(3 − 2x) > 0 (Rivera, 2007a, p. 299). c Reuben’s solutions to two
polynomial inequalities (Rivera, 2007a, p. 299)
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In the full detachment phase, their graphical method exemplifies a full transition
to an abstract process that contained only the essential elements necessary in solving
polynomial inequalities. As demonstrated in Fig. 1.5c, Reuben used an empty num-
ber line to produce a rough sketch of some relevant graph with its zeros in order to
generate his solution to the inequality. Also, the dot above the x-intercept –1 in the
second graph in Fig. 1.5c symbolized for him that the graph of the function needed
to be tangent to the x-axis at the given point.

At the end of the teaching experiment, which took 21 sessions of 55-min each
to accomplish, both the teacher and myself felt awestricken by the event that took
place among our students in mathematical activity. Instead of witnessing students
who would simply establish a connection between visual and graphical methods for
solving a polynomial inequality, which exemplifies the view that the visual phase
basically provides the means toward the end, the symbolic phase, they demonstrated
a capacity for progressive visualization and progressive mathematization. The con-
ceptual transition that occurred in their mathematical thinking from the visual to
a classification I label visuoalphanumeric illustrates what I interpret from Goldin
(2002) to mean the transformation of visual images into more structured visual
representations.

The idea of progression in mathematical thought is not a novel one.5 Freudenthal
explicitly used the terms progressive schematizing and progressive formalizing in
1981. In 2002, the book edited by Gravemeijer, Lehrer, van Oers, and Verschaffel on
symbolizing, modeling, and tool use in mathematics education contained empirical
reports that exemplify the notion of progressive formalization or progressive under-
standing in mathematical activity. The piece de resistance in the theory of, and
empirical research surrounding, emergent constructivism by Cobb and colleagues
(Cobb, 2007) involves detailed evolutionary accounts of classroom mathematical
practices that fit squarely within the notion of progression of mathematical thought.
Fundamental to these researchers’ notion of progression is the view that mathemati-
cal signs are neither pre-determined nor arbitrary but negotiated and conventional. In
geometry, Pedemonte’s (2007) empirical work with 12th and 13th grade students in
Italy and France exemplifies the possibility of progressive argumentation that sees
a continuous relationship between conjecture and proof via abduction, induction,
and deduction. Thirty years ago, Mason’s (1980) notion of the spiraling of enactive,
iconic, and symbolic expressions already hinted at the significance of progressive
symbolization, where symbols are symbolic only when they have become enacted
and effectively iconicized. He writes:

Turning to enactive elements to explore the meaning of symbols or concepts; Using enactive
elements to try to get a sense of pattern; Asking for images, metaphors, diagrams to illustrate
what is going on; Crystallizing understanding in symbolic form; Practicing with examples
to move the symbolic form into enactive elements.

(Mason, 1980, p. 11)

5A similar progressive view is emerging in accounts of growth in scientific knowledge. For
example, I refer readers to Maienschein’s (1991) interesting analysis of drawings involving cell
development, which depicts visualizations that progressively shift from photographs (as presented
data) to diagrams (as represented data).
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Even Skemp in his 1971 book wrote about the process of progressive abstraction
in relation to the formation of mathematical concepts. He notes that our previous
experiences consisting of examples and nonexamples enable us to abstract simi-
lar and invariant properties, which then “progress rapidly to further abstractions”
(p. 10) that are themselves “becoming more functional and less perceptual – that
is, less attached to the physical properties” (p. 10).6 In 1974, Leushina (1991),
Soviet psychologist, discussed the role of the visual principle in teaching (preschool)
mathematics and, especially, the critical “role of language when using visuality in
mathematics lessons” (p. 166). Leushina also hinted at progression in mathematical
thought when teaching is able to achieve “unity” in “words and visual aids” which,
consequently, “brings about a close connection and proper correlation of the visual
and the abstract, [and] the specific and the generalized” (p. 166). In the passage
below, Leushina anticipates changes in visual representations as a consequence of
changes in young children’s development and the mathematics curriculum:

Visual aids should be used . . . by gradually increasing their complexity; proceeding from
specific, narrative objects to non-narrative objects; from material visual aids to materialized
aids, e.g., to conventional tables (such as a “number ladder”), models (e.g., a string of ten
beads), diagrams, etc. Visual aids should change not only from one age group to another,
but also based on the correlation between the concrete and the abstract at different stages
in the children’s mastery of the curriculum material. For example, at a certain stage specific
sets can be replaced by number tables or by numerals.

(Leushina, 1991, pp. 167–168)

But what is apparently a lacuna in both the research and professional literature,
which is addressed in this book, are sufficient longitudinal accounts of this progres-
sive modeling view, especially the changing roles and structures of visualization in
such a model. Also, my recent encounter with Millar’s (1994) longitudinal studies
with blind subjects enabled me to articulate, at least in metaphorical terms in this
book, what I thought was missing in progressive modeling accounts of mathematical
learning – that is, progression not only in form, content, and mathematical practices
but progression that results from, in Millar’s (1994) words, “the convergence and
overlap of complementary inputs” (p. 15) as well. Millar expressed this view based
on how her participants constructed some target knowledge by drawing on their
senses that neither “operate as completely separate systems” nor “convey precisely
the same information” (p. 15). That central to this effective progressive process is
the “integration of convergent multimodal information” (1994, p. 16) leading to the
acquisition of the relevant knowledge.

This book also addresses other fundamental concerns that are still in line with
our progressive modeling theory. Certainly, it is easy to persuade learners to visu-
alize, but there is a concern about how to instrumentally orchestrate the transition
toward more structured visualizing through sustained mathematical activity at both

6Skemp’s progressive model reflects inductive approaches to word learning whereas more recent
progressive accounts of Cobb and Gravemeijer ground their model in authentic (real and experi-
entially real) mathematical activity that sees changes in notating, symbolizing, and abstracting as
effects of mathematical reality construction.
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individual and classroom level. Here I am reminded of the important findings drawn
from the empirical work of Ng and Lee (2009) with 10- to 11-year-old Singapore
students, totaling 151, concerning the use of structured visual representations (i.e.,
rectangular models; see, for example, Fig. 2.11a–c) in solving simple and nonrou-
tine arithmetical problems. At the very least, Ng and Lee found that especially
among average-ability students, their ability to use such models should not be
viewed as “an all-or-nothing process” (p. 311). They have to be taught to “learn to
exercise care” in constructing such structured visuals and at the same time “deepen
their conceptual knowledge” of the relevant ideas and skills. Further, they should not
develop the practice that using such visual analogues is tantamount to replacing a
symbolic procedure and reproducing a pictorial-driven algorithm that works by rote
but instead should use them as “a problem-solving heuristic” (p. 311). Adding my
own interest in this issue, I refer readers back to the binaries listed in Fig. 1.2a, b and
Wise’s (2006) comment in the opening epigraph. It certainly would be interesting to
find ways that would allow us to go about blurring and moving past the conceptual
paralysis brought about by the perceived boundaries. Following Wise (2006), in this
book I demonstrate “the import of visualization” in school mathematics, not in the
context of “illustration but argument” (p. 81), that constructing and using visual rep-
resentations plays a central role in the constitutive practice of school mathematics.
I have already illustrated above one progressive account that did not jettison visual
images and processes in the symbolic domain of mathematical knowledge. At least
among those of us who participated in that particular study, it was seeing the visual
in the symbolic and the symbolic in the visual that characterized the progression
leading to the graphical solution process. A stronger view of this convergent mode
of seeing is exemplified in a recent study by Haciomeroglu, Aspinwall, and Presmeg
(2010) in which they demonstrate in the context of their clinical interviews with
three high-achieving university calculus students how a synthesized visual-symbolic
approach appears to be more powerful than either a solely visual or symbolic process
to learning and understanding mathematics.

I should also point out that my appropriation of the progressive modeling view
as it is used in this book has less the characteristics of typical emergent construc-
tivist projects as it is more sociocultural in context. Being a classroom teacher,
I note my openly partial disposition toward instructional approaches and orches-
trations that enable socioculturally embodied visualizing in producing meaningful
interpretive conditions and, consequently, structured visual representations, which
lead to growth and development in mathematical knowledge among my students.
An example of this “structured visual representation” is shown in Fig. 1.6, which
shows two institutionally constructed “illustrations that argue” why slopes of per-
pendicular lines are negative reciprocals of each other. While graphing tools enable
beginning algebra students to individually (and socially) “detect a pattern in their
slopes” (Tucker, 2010, p. 604) and verify an invariant property at least in the initial
stage of their learning, the purposefully drawn representations of Fig. 1.6 allow them
to understand the intentional relationships more rigorously based on institutional
expectations. Beyond recent exciting work on instrumental genesis in mathematical
contexts, it is worth noting that the decision-making strategies of expert players
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Fig. 1.6 Visual-symbolic
proof concerning the slopes
of two perpendicular lines
(Parker & Baldridge, 2008,
p. 164; Tucker, 2010,
pp. 605–605)

in areas such as chess and other sports such as soccer, which draw heavily on
sociocultural practices, have also been documented to be working within a similar
progressive modeling process (cf. Poplu, Ripoll, Mavromatis, & Baratgin, 2008).
Thus, the proposed traveling theory that I explore in this book represents a brico-
lage of various theoretical perspectives drawn from seeing mathematics and other
relevant professional disciplines in terms of culturally constituted activity.

2.3 Exploring Implications of O’Halloran’s Grammar
of Mathematical Visual Images

For O’Halloran (2005), mathematical discourse consists of three semiotic resources,
namely: language, mathematical symbolism, and visual images. Mathematics could
then be interpreted as a (social) multi-semiotic construction in which each resource
makes a significant contribution in the development of meaning. O’Halloran also
distinguishes between intra- and inter-semiotics. Intra-semiotics pertains to “the
grammars and functions” that are specific to individual resources, while inter-
semiotics refers to meanings that are drawn “from the relations and shifts between
the three semiotic resources” (p. 11).
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In relation to progressive models, at least based on how we describe them above,
it is interesting to document changes that take place at both intra- and inter-semiotic
levels. For example, an intra-semiotic account of progressive visualization could
focus on the convergence and transformations in relationships between and among
different types and levels of visual images, while an inter-semiotic account could
dwell on “code-switching” conditions between, say, the symbolic and visual compo-
nents of the relevant mathematical knowledge. In the above study on the emergence
of a solution process for solving a polynomial inequality, Fig. 1.5a–c from an intra-
semiotic perspective could be interpreted in terms of conceptual convergences and
shifts in visual image construction based on the students’ developing relationships
with the TI 89. However, there was not any noticeable change insofar as transitions
at the inter-semiotic level were concerned.

Bakker’s (2007) classroom-based research with a group of 30 eighth grade stu-
dents in the Netherlands provides an exemplar of multi-semiotic progressions in
both inter- and intra-levels. Based on data collected in a teaching experiment,
Bakker documents how the students developed their formal understanding of statis-
tical concepts relevant to sampling and distribution by initially constructing graphs
of their own choice (bar graphs) and then producing a standard distribution model
(dot plots resembling a pyramid and then a bell shape) over classroom time with
meaningful intervention from their teacher. Consequently, the linguistic expressions
they employed also underwent convergences and transitions. Initially they used
indices, metaphors, and other concrete predicates in describing graphs of sample
outcomes such as “more together, clumped, spread out, further apart,” which then
underwent some type of abstraction. In the final phase, they used the appropriate
statistical terms such as “spread, average, and bell shape.” Here, it is worth point-
ing out that Bakker’s exemplary work pushes O’Halloran’s multi-semiotic model
of mathematical discourse further in an interesting way. Following Peirce (1976),
Bakker roots the transitions in terms of a series of hypostasized abstraction (or
simply hypostasis), a process that involves “making a subject out of a predicate”
(Peirce, 1976) that consequently “simplifies mathematical thinking” (Levy, 1997,
p. 102). Like Skemp’s (1987/1971) account of progressive abstraction, a hyposta-
sis substitutes “an abstract noun in place of a concrete predicate” (Peirce, 1976,
p. 160) or “a predicate of a collection” of instances (Peirce, 1934, p. 373), which
explains the occurrence of transitions in various phases of mathematical thinking.
For Bakker, progressive diagrammatization, which is an instance of effective use
of visualizing in concept development, signals growth in students’ development of
mathematical reasoning and discourse. The changing visuals are accompanied by a
series of (hypostasized) abstractions.7

7Peirce’s hypostasized abstraction, this “essential part of almost every really helpful step in mathe-
matics” (1976, p. 160), is similar to Skemp’s (1987/1971) account of concept or word acquisition,
which involves the formal “naming” of a category (i.e., the subject) that represents a set of instances
having a shared common property or attribute (i.e., the predicate). For example, “twoness” is a
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3 Overview of Chapter 2

In Chapter 2, we begin to explore relationships between visualization and progres-
sive schematization. We develop initial characterizations of the general nature of
cognitive activity and link ongoing modeling action with progressive mathematiza-
tion. We discuss the distributed epistemic relationship between internal and external
representations, which is our initial bold attempt at conceptual molting past the
binaries (e.g., Fig. 1.2a, b) that have dominated earlier conversations regarding the
role of visualization in symbol-driven mathematical activity. We articulate tensions
in traditional conceptualizations of numerical- and visual-driven cognitive process-
ing of mathematical ideas and of everyday and mathematical ways of seeing as we
attempt to carve a more productive middle ground via the notion of interanimation.

Three general fundamental principles of visualization are stated, discussed, and
connected to the literature base on visualization in fields outside of mathematics
education. The connection to external disciplines (cognitive science, philosophy of
mathematics, science education, etc.) is an exciting and productive course of action
since the knowledge we acquire from various reported findings in these fields will
further enrich our understanding of the topic. The remaining sections address con-
texts, forms, and levels of visual representations in the general literature, including
instructional implications. Interspersed throughout the chapter are overviews of the
succeeding chapters that hopefully serve to clarify issues relevant to, and further
deepen readers’ understanding of, the proposed traveling theory.

4 A Note on Participants in My 4-Year Study

Throughout the book, readers will come across many instances in which I talk
about three different cohorts of students that participated in my longitudinal stud-
ies. Some background context is needed for readers to understand why I was able
to accomplish so much at a time when US school districts and educational policy

term – a “new abstract object” (Otte, 2003, p. 219) – that hypostasizes concrete instances involv-
ing any two objects (indeed for Peirce cardinal numbers represent hypostasized abstractions drawn
from a predicate of a collection. Peirce writes:

A term denoting a collection is singular, and such a term is an “abstraction” or product of
the operation of hypostatic abstraction as truly as is the name of the essence. . . . Indeed,
every object of a conception is either a signate individual or some kind of indeterminate
individual. Nouns in the plural are usually distributive and general; common nouns in the
singular are usually indefinite.

(Peirce, 1934, p. 299)

Otte (2003) provides additional examples such as the notion of a set “whose mode of existence
depends on the existence of other fundamental things . . . which is based on the existence of its own
elements” (p. 218). Imaginary numbers as an object were used to develop the theory of complex
functions. “Again and again,” Otte (2003) notes about hypostasized abstractions, “a construction
or an algorithmic procedure is taken as an object to be incorporated into another construction or
procedure” (p. 220).
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are too focused on rational-driven high-stakes testing that emphasizes “product over
process” approaches to mathematics learning at the expense of quality and more
meaningful experiences for K-12 students.

In Fall 2005, with funding from the National Science Foundation, I began a study
on pattern generalization involving increasing linear patterns among a group of
eager 29 sixth grade students (12 males and 17 females; mean age of 11 years)
whose mathematical competence by the California assessment standards was at
basic and below proficiency levels (i.e., not meeting previous grade-level state stan-
dards). Most of the student-participants in this class were of Southeast Asian origin.
I spent one full semester (close to 5 months) with them and, in collaboration with
the assigned sixth grade teacher, we explored activities that focused on integers and
increasing linear patterns.

In Fall 2006, 3 students from the above class moved to a different school and
were replaced with 6 seventh graders (14 males, 18 females). In collaboration with
the assigned seventh grade teacher, we explored once again concepts and processes
relevant to integers. Also, the study on linear patterns was extended to increasing
and decreasing sequences.

From Fall 2007 to Spring 2008, 15 students from the earlier 2-year study were
allowed to participate in the third (and final) year of the study. In this book, I refer
to them as my Cohort 1. Cohort 1 was then mixed with a mathematically strong
group of 19 seventh and eighth graders (12 males and 22 females of Southeast Asian
origin; “Cohort 2”). Together, they comprised an Algebra 1 class that I taught the
entire school year. Each student in this class had access to a graphing calculator and
all the relevant manipulatives and visual tools (e.g., paper folding) that were needed
to accomplish various design-driven tasks.

From Fall 2009 to Spring 2010, 21 Grade 2 students (7 girls, 14 boys; 20
Hispanic-Americans, 1 African-American; mean age of 7.5 years) participated in
a yearlong study on visualization and prealgebraic thinking. Their first-grade math-
ematical competence on the basis of four periodic district assessments that were
aligned with the California state standards indicate that among 18 of the 21 students
who came from the same school, 2 were advanced (performing above first-grade
state standards), 8 were proficient (meeting first-grade state standards), 4 basic
(not meeting first-grade state standards), 2 below basic, and 2 far below basic.
The remaining three students came from different school districts, so the only data
available were the results of the first benchmark conducted in second grade, which
indicate that 1 was advanced proficient, 1 basic, and 1 far below basic. In this
class, I worked with two Grade 2 teachers and together we implemented activi-
ties that provided all the students with every opportunity to learn both symbolic and
visual representations associated with the state-recommended second-grade mathe-
matics curriculum. The activities involved concepts and processes in number sense,
prealgebra, geometry, and statistics and data analysis.

Acknowledgment and Dedication I wish to express my gratitude to the National Science
Foundation (NSF) that provided funding for me to engage in longitudinal classroom work from
2005 to 2010 (under NSF Career Grant #0448649). Results that are reported in this book are all
mine and do not reflect the views of the foundation. This book is dedicated to the students and
teachers in my 2005–2010 study.





Chapter 2
Visualization and Progressive Schematization:
Framing the Issues
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Fig. 2.1 A paper-and-scissors activity that models the difference of two squares

Something clicked in my head right this minute when we did
that. I like factoring and it’s nice to know why it makes sense
like that.

(Jackie, Grade 7, 12 years old).
We can build visual images on the basis of visual memories but
we can also use the recalled visual image to form a new image
we have never actually seen. Certainly, imagery is used in
everyday life, . . ., nevertheless imagery has to be considered as
a major medium of thought, as a mechanism of thinking relevant
to hypothesis generation. Some hypotheses naturally take a
pictorial form.

(Magnani, 2001, p. 98)
(C)asting the virtual into physicality forces the illusion to
withstand the light of day – to test its honesty. Experiencing a
physical object . . . is a different sense of apprehension of the
object . . . . Viewing the physical object, we have a more
integrated idea of the whole object.

(Dickson, 2002, p. 221)

Jackie (Cohort 2) was in seventh grade when she joined my Algebra 1 class to
participate in a yearlong teaching experiment involving various aspects of alge-
braic thinking at the middle school level. Her earlier mathematical experiences had
solidified for her the impression that mathematics was something that she merely

21F.D. Rivera, Toward a Visually-Oriented School Mathematics Curriculum,
Mathematics Education Library 49, DOI 10.1007/978-94-007-0014-7_2,
C© Springer Science+Business Media B.V. 2011
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Fig. 2.2 Algeblocks for one-
and two-variable polynomial
expressions (© ETA/
Cuisenaire R©, 2010,
http://www.etacuisenaire.com/
algeblocks/algeblocks.jsp)

followed on the basis of rules that occasionally made sense to her. Her comment
in the opening epigraph came early in the fall semester when our class was explor-
ing factoring simple polynomials initially from a visual perspective. In a follow-up
activity, when I asked the class whether it was possible to factor a sum of squares,
all of them said no and explained that there was no way of reconfiguring the totality
of two squares having two different dimensions into a single rectangle (i.e., with no
overlaps).

Later, when the students learned to use algeblocks (Fig. 2.2), a three-dimensional
version of algebra tiles, the manner in which they explained the process of factoring
simple quadratic trinomial and cubic binomial expressions reflected a firm grasp
of a visual strategy. For example, the responses of two Cohort 1 Grade students,
Cheska and Jamal, in Fig. 2.3 had them associating the task of factoring a simple
polynomial expression in terms of whether it was possible to reconfigure the relevant
algeblocks into a single rectangle whose dimensions represent the factors of the
given expression. Also, when I asked them to factor x3 + 2x2, their initial approach
had them gathering algeblocks consisting of a cube and two squares and combining
them to form a cuboid with a square base x2 and a height of (x + 2). The visual
action allowed them to conclude the equivalent form x3 + 2x2 = x2(x + 2).

1 Nature of Cognitive Activity and Cognitive Action

I have found it interesting to recast the cognitive actions of Jackie, Cheska, and
Jamal from a Peircean perspective – that is, interpreting their thinking and infer-
ring as matters that involve signs and sign activity, respectively, in relation to the
concept and process of factoring. The signs they used, as a matter of fact, convey
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Cheska:

Jamal:

Fig. 2.3 Responses of Cheska and Jamal in relation to the primeness of x2 + 2x + 2

the meaning and content of their experiences through an impressive appropriation
of both internal and external semiotic resources. Jamal and Cheska used their exter-
nally drawn knowledge of algeblocks to explain the nonfactorability of a quadratic
trinomial expression in terms of an internally derived diagram (Fig. 2.3). Jackie
was successful in factoring all binomials of the difference-of-squares type because
the paper-and-pencil activity in Fig. 2.1 helped her construct a canonical image
of a rectangle with dimensions corresponding to the factors of a difference of
squares.

The students’ cognitive actions could also be interpreted as exemplifying what
Magnani (2004) calls model-based reasoning that, at the very least, involves the
“construction and manipulation of various kinds of representations” (Magnani,
2004, p. 516), which includes visual representations. Central to scientific work, in
particular, conceptual change processes, Magnani (2004) notes how scientists fre-
quently engage in both theoretical (internal) and practical (external) activities that
allow them to gain a concrete experience of a phenomenon undergoing observa-
tion and analysis. However, the reasoning that accompanies the manipulations has
oftentimes been analyzed solely as an internal phenomenon with very little value
accorded to actions such as thinking through doing and/or thinking with the use of
external representations.

Recent empirical work in school mathematics education has also begun explor-
ing a similar modeling perspective. For example, central to instrumental genesis in
technology-mediated learning of mathematics is the acquisition of intended mathe-
matical knowledge as a consequence of learning more about (“instrumentation”) and
beyond (“instrumentalization”) the tools and their built-in functions (e.g., Rivera,
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2005, 2007a; Trouche, 2003, 2005). Researchers who work in an emergent mod-
eling perspective ground initial mathematical activity in real or experientially real
settings, which provide learners with an opportunity to develop a “model of” some
(informal) intended mathematical knowledge that then becomes their basis in pro-
ducing a “model for” more (formal, general) mathematical concepts, processes,
and reasoning (e.g., Gravemeijer, Lehrer, van Oers, & Verschaffel, 2002; Stephan,
Bowers, Cobb, & Gravemeijer, 2003).

The following two related points below are worth noting early at this stage in
this book in light of how I situate the role of visualization in cognition involving
mathematical objects, concepts, and processes. First, cognitive activity is a dynamic
and distributed phenomenon, that is,

[it] is in fact the result of a complex interplay and simultaneous coevolution, in time, of the
states of mind, body, and external environment. Even if, of course, a large portion of the
complex environment of a thinking agent is internal, and consists in the proper software
composed of the knowledge base and of the inferential expertise of the individual, never-
theless a “real” cognitive system is composed by “distributed cognition” among people and
some “external” objects and technical artifacts.

(Magnani, 2004, p. 520)

One important implication of this distributed view on visualization in mathemat-
ical learning involves seeing “the cognitive system” as “instantiating the process
rather than cognition simpliciter,” that is, the product (Giere & Moffatt, 2003, p.
303).

Second, when a mathematician employs diagrams in his or her reasoning, the
visual process is part of this distributed epistemic phenomenon – that is,

a kind of epistemic negotiation between the sensory framework of the [mathematician]
and the external reality of the diagram. This process involves an external representation
consisting of written symbols and figures that for example are manipulated “by hand.” The
cognitive system is not merely the mind–brain of the person performing the [mathematical]
task, but the system consisting of the whole body (cognition is embodied) of the person
plus the external physical representation. In [mathematical] discovery the whole activity of
cognition is located in the system consisting of a human together with diagrams.

(Magnani, 2004, p. 520)

Thus, the term visualization as it is used in this book should not be viewed as a
thaumaturgical concept or a tool that is isolated and analyzed for the sole purpose of
developing and justifying an alternative mathematical practice distinct from current
institutional practices that continue to favor alphanumeric competence. I see it as
functioning within a distributed system that Magnani (2004) has clearly described
in the above two passages. Further, the dynamic nature of the system is compatible
with, and adaptive to, changes in representational competence or, in Freudenthal’s
(1981) words, progressive schematization.

In his August 1980 plenary address at the Fourth International Congress of
Mathematics Education, Freudenthal explained his idea of progressive schematiz-
ing, which I consider to be an integral element in any psychological account of
visual thinking in mathematics, in the following manner:
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The history of mathematics has been a learning process of progressive schematizing.
Youngsters need not repeat the history of mankind but they should not be expected either
to start at the very point where the preceding generation stopped. In a sense youngsters
should repeat history though not the one that actually took place but the one that would
have taken place if our ancestors had known what we are fortunate enough to know.
Schematizing should be seen as a psychological rather than a historical progression. . . . The
idea that mathematical language can and should be learned in such a way – by progressive
formalizing – seems even entirely absent in the whole didactical literature.

(Freudenthal, 1981, p. 140)

In present history, we are certainly fortunate enough to witness, and benefit from,
theoretical and methodological advances in the cognitive science of visualization
and learning technologies that we now find ourselves in a much better position to
realize Freudenthal’s vision of a mathematical language that could be learned from a
visually oriented progressive formalization perspective. In this context, visualization
is framed within, and pursued as, an epistemological process that lies at the kernel
of a conceptual and developmental account of alphanumeric competence.

Following O’Halloran (2005) and Millar (1994), progressive schematizing
involves a complex conceptual evolution and coordination of, and convergence
among, systems of semiotic resources. Progression at the intra-semiotic level occurs
within mathematical language, mathematical symbols, and visual images, while pro-
gression at the inter-semiotic level occurs between and among the three systems.
Since each type of semiotic resource contains information and several resources
that together convey redundancy of the same information in varying form and con-
tent, progression is a marked indication that some type of convergence is occurring.
To take a case in point, Jackie, Cheska, and Jamal acquired their algebraic compe-
tence in factoring in a progressive manner by drawing on their visual experiences
with the algeblocks that provided them with the necessary “insight, understanding,
and thinking” before they finally transitioned to “rote, routines, drill, memorizing,
and algorithms” (Freudenthal, 1981, p. 140). Factoring on a quadrant mat with the
algeblocks contained sufficient visual structural information that enabled them to
construct an analogous symbolic structure, which they conveyed through a diagram.
Progressively, the diagram emerged as a symbolic (algebraic) process that could
then handle all cases of factoring involving quadratic trinomial squares.

Following Bakker (2007), the use of symbolic forms associated with procedures
basically signifies successful hypostasis and increased “structuring of thought”
(O’Halloran, 2005, p. 2). Further, familiarity with the relevant concepts does not
necessarily imply the absence of visualization. For example, Fig. 2.4a–c shows the
written work of Jackie, Cheska, and Jamal on three assessment tasks that were given
to them toward the end of a teaching experiment on factoring. Clearly, they fully
transitioned to a routinized algebraic strategy they hypostasized as tic-tac-toe that
reflected their structural experiences with the algeblocks. The tic-tac-toe strategy
is a coded symbolic knowledge in algebraic form; it exemplifies a diagram, a type
of visual spatial representation in which the symbols, expressions, and other related
inscriptions are positioned and combined in a particular way that makes sense within
some stipulated rule.
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a

b

c

Fig. 2.4 a Ollie’s algebraic method on a factoring task. b Cheska’s algebraic method on a factoring
task. c Jamal’s algebraic method with no variables on a factoring task

In making visualization an integral element of progressive schematization in the
epistemology of school mathematics, I may have given the impression that I am
denying the possibility of different styles, abilities, preferences in learning, and cul-
tural variations in visual attention, thinking styles, and other perceptual processes
(cf. Mayer & Massa, 2003; Pylyshyn, 2006; Nisbett, Peng, Choi, & Norenzayan,
2001). Indeed, some learners are more verbal than visual, others more numerical
than pictorial, and still others preferring more abstract than concrete approaches.
In my Algebra 1 class, when I asked them to analyze the assessment task shown in
Fig. 2.5a at the end of a visual-driven teaching experiment on linear systems of equa-
tions and inequalities, about 44% suggested a visual approach (Fig. 2.5b) and about
56% offered a nonvisual (algebraic, numerical; Fig. 2.5c) solution. Hence, it is hard
to escape the ubiquity of the dual coding phenomenon – the verbal versus nonverbal
processing reality among individuals – that Paivio and his colleagues (e.g., Clark &
Campbell, 1991; Clark & Paivio, 1991; Paivio, 1986, 2006; Paivio & Desrochers,
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Consider the following linear system: 
2 3

2

y x

y x n

= −
= +

For what value or values of n will the linear
 system have no solution? Explain.              

For what value or values of n will the linear
system have an infinite number of              
solutions? Explain.                                      

a

b

c

Fig. 2.5 a An end-of-a-unit Algebra 1 assessment task involving a linear system of equations in
two variables. b Kirk’s visual approach to the Fig. 1.5a task. c Earl’s numerical solution to the
Fig. 1.5a task

1980) have empirically demonstrated in various activities, linguistic, mathematical,
and otherwise.

The claim concerning the existence of dual coding reminded me of three things.
First, I had students like Dina (eighth grader, Cohort 1) who consistently used
a numerical approach to generalizing patterns from sixth through eighth grade.
In sixth grade, when she extended and obtained a generalization for the pattern
in Fig. 2.6a, she initially noticed how each succeeding stage after the first kept
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increasing by two circles. In reconstructing the pattern on the table with actual chips
and extending it to include two additional stages (Fig. 2.6b), she apparently saw
nothing else (e.g., shape of the pattern) beyond the additive relationship. Her prefer-
ence in dealing with patterns numerically was, in fact, carried through all the 3 years
she was involved in our study. For example, Fig. 2.7 shows her written work on a

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5
Stage 6

Stage 7

Stage 8

Stage 1 Stage 2                       Stage 3                        Stage 4

a

b

Fig. 2.6 a T circle pattern. b Dina’s interpretation of the pattern in Fig. 2.6a in sixth grade



1 Nature of Cognitive Activity and Cognitive Action 29

Fig. 2.7 Dina’s written work on a linear pattern task in eighth grade

linear pattern in Grade 8. Her written response to item 1 in Fig. 2.7 conveys a surface
knowledge of the basic features of the pattern. In explaining her direct formula, C =
3P + 1, which she established numerically, she associated the coefficient 3 with the
constant addition of three circles and the constant, 1, to the “circle in the middle.”

Second, a neural basis for both dual coding in mathematics and visuospatial
processing relevant to various aspects of numerical calculations has now been
established following rigorous methodological protocols. The results provide very
interesting insights that enable us to understand the fundamental, genetic role of
visual thinking in mathematics. For example, a recent brain imaging study by Tang
et al. (2006) has shown that arithmetical processing in the brain appears to be
shaped by cultures. When the thinking processes of 12 adult Western participants
and 12 university Chinese students were compared in relation to a simple visually
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presented arithmetical task that asked them to determine whether a third digit was
greater than the bigger one of the first two in a triplet of Arabic numbers, they actu-
ally found “differences in the brain representation of number processing between”
the two groups (p. 10776). On this particular task, the Chinese participants pro-
cessed visually, while the Western participants processed verbally. Tang et al. (2006)
hypothesized that the visual dominance in number processing among the Chinese
participants could be explained by their reading experiences in school, which
involve repeatedly learning Chinese characters, and their early experiences in using
an Abacus that activated the production of mental images that are all visual in form.

A recent review of research studies on the role of visuospatial processing in
various aspects that matter to arithmetical computing by de Hevia, Vallar, and
Girelli (2008) presents converging evidence that infers a “close relationship between
numerical abilities and visuospatial processes” (p. 1361). For example, individuals
have been documented to be relying on a spatial mental number line when com-
paring and obtaining differences of two numbers. The line, which research shows
appears to be oriented from left to right, assists subjects in dealing with numerical
quantities and their relationships and magnitudes at least in approximate (and not in
exact) terms. Certainly, with more cultural learning, the relevant spatial properties
are expected to further develop and undergo refinement. Beyond studies involving
the mental number line, de Hevia et al. (2008) also underscore the significant role of
visuospatial representations in memory and arithmetical problem solving. Findings
include the following: (1) learners tend to keep numbers in an active state by draw-
ing on some form of visuospatial support; (2) mathematical prodigies develop and
use internal visual calculators that become evident when they solve numerical tasks
that require complex computations; (3) individuals perform arithmetical procedures
(e.g., obtaining the product of multi-digit numbers) by coordinating their stored
arithmetical facts and their spatial image of the process relevant to the operation, a
view that refines earlier interpretations which trace the process to be primarily work-
ing within a language-based semantic network (e.g., verbal rote learning of facts).

Third, in their recent extensive review of research concerning the imagery
and spatial processes of blind and visually impaired individuals, Cattaneo et al.
(2008) clearly articulate what I interpret from research among nonblind learners
of mathematics to be a problematic aspect of the constitutive nature of the “visual
experience.” Cattaneo et al. write:

The perceptual limitations of the congenitally blind are reflected at a higher cognitive level,
probably because their cognitive mechanisms have developed by touch and hearing, which
only allow a sequential processing of information. As a consequence, cognitive function-
ing of blind individuals seems to be essentially organized in a “sequential” fashion. On
the contrary, vision – allowing the simultaneous perception of distinct images – facilitates
simultaneous processing at a higher cognitive level.

(Cattaneo et al., 2008, p. 1360)

One (pedagogical) concern about using visual thinking in mathematics as a cogni-
tive strategy deals with the issue of how to cope with the “simultaneous perception
of images,” which could be an overwhelming experience for nonblind learners.
From a practical standpoint, unlike alphanumeric representations that tend to bolster
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some form of sequential learning, a visual approach to understanding mathemati-
cal objects, concepts, and processes necessitates extensive assistance in the zone of
proximal development. However, my own experiences with students like Jackie in
the opening epigraph provide me with sufficient empirical proof to say that encour-
aging visual thinking in mathematics is worth pursuing due to its positive effects
both in the short and the long haul.

Chapter 5 discusses the central role of visual thinking in the construction and
justification of simple and complex algebraic generalizations relative to linear and
nonlinear figural patterns. Chapter 7 addresses both physiological and sociocultural
dimensions of visual representation in mathematical knowledge acquisition. At this
stage, it simply suffices to say that while numerical-driven processes help students
fulfill aspects of school mathematical activity such as factoring and constructing a
direct formula, which may be institutionally sufficient (i.e., on the basis of the min-
imal competence required in state tests to be labeled mathematically proficient), the
absence of any visual-based processing might prevent many of them from tapping
onto their “natural” or “cultural” systems that would allow them to develop what
Freudenthal above considers to be valued noble acts of insights, understanding,
and thinking. Results of preinstructional clinical interviews with my Grade 2 stu-
dents, for example, indicate that young children seem to have an early visual-based
understanding of functions on the basis of their success in dealing with grade-level
appropriate visual growth-patterning tasks (Rivera, 2010c; see Rivera (2006) for a
brief synthesis of relevant work). If tapped effectively, the visual experience could
assist them in hypostasizing the symbolic meaning of functions early in their school
mathematics education. Here I am also reminded of Davydov (1990), who astutely
pointed out that alphanumeric expressions remain senseless entities unless they
are “placed under” a “real, object-oriented, sensorially given foundation” (p. 34).
Paivio (1971), in fact, has noted the flexible capacity of visual imagery in dealing
with several amounts of information at the same time, a view echoed by Cattaneo
et al. (2008) in the case of vision in neuropsychological terms.

2 Basic Elements and Tensions in a Visually Oriented School
Mathematics Curriculum

A thoroughgoing visually oriented school mathematics curriculum requires an
explanation. Traditionally, visual thinking has been associated with concrete rep-
resentations within a concrete-to-abstract continuum – that is, the visual or the
concrete phase assists in meaningful construction and appropriation leading to an
intended abstract knowledge in symbolic form. Figure 1.2a, b lists other binaries
associated with this continuum phenomenon. It is a fact that some mathematical
concepts (e.g., irrational and imaginary numbers) and processes (e.g., matrix mul-
tiplication) make sense only at the operative level in which they come to exist as a
result of having been constructed extensions at the abstract level. Dörfler (2008)
makes a useful distinction between referential and operative views of algebraic
notation. In the referential view, there is a close mapping between rules and sym-
bols and the arithmetical laws and experiences that govern them. In the operative
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view, there is no immediate appeal to any numerical arithmetical experiences. In
the referential domain, letters are generalized numbers. In the operative domain,
they are primarily signs without a referent but are capable of being manipulated
according to agreed upon rules at the abstract level (Dörfler, 2008, pp. 144–145).

However, in this book, I take the position that the abstract phase in the contin-
uum need not convey the absence of a visual representation. A more productive view
involves the necessity of employing a different kind of seeing. In fact, many canoni-
cal forms and diagrams in almost all areas of mathematics are visual (hypostasized)
abstractions of generalized concepts.

Figure 2.8 is a diagram of two-triangular relationships that illustrates the taken-
as-shared view of a smooth transition from the visual to the abstract in the case of
all referential content but a more perilous transition in the case of most operative
content. In fact, much of school mathematics content operates within the solid,
referential triangle. The conceptual tension begins when an operative content moves
through the continuum in which some mathematical concepts and processes could
not be sufficiently captured and described in visual terms unless, of course, some
constraints are imposed on them.

For example, in my Algebra 1 class, I used the pebble arithmetic activity in
Fig. 2.9a to explain the irrationality of

√
2. Unfortunately, my students never settled

their doubt about the number being nonterminating and nonrepeating when alterna-
tively represented by digits. While the activity in Fig. 2.9b convinced them that

√
2

was indeed a real number between 1 and 2 with an exact location on the number line
and that it made sense to visually see, manipulate, and operate numbers that involve√

2 and other irrational numbers for that matter, they were more interested in seeing
how one would go about constructing the alternative representation below.

1.41421356237309504880168872420969807856967187537694807317667973799073247
846210703885038753432764157273501384623091229702492483605585073721264412
149709993583141322266592750559275579995050115278206057147010955997160. . .

A follow-up activity we used in class involves finding the sum of the harmonic
series

∞∑

n=1

1

n
= 1 + 1

2
+ 1

3
+ 1

4
+ · · · .

Visual 
Abstract

 Referential Operative

Fig. 2.8 A two-triangular model of content in school mathematics
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Pebble Arithmetic Proof of the Irrationality of 2

An even number 2m means 2 horizontally aligned rows of m dots, say,

. . . . .    . . . . .

A square array of 2m x 2m means 4 square arrays, each consisting of m x m dots. Hence, every 
even square number is the sum of 4 square numbers.                                                                    

. . . . .    . . . . .

. . . . .    . . . . .
. . . . .    . . . . .
. . . . .    . . . . .
. . . . .    . . . . .

. . . . .    . . . . .

. . . . .    . . . . .

. . . . .    . . . . .

. . . . .    . . . . .

. . . . .    . . . . .

An odd number 2m + 1 means 2 horizontally aligned rows of m dots plus an isolated dot, say,

Then k2 is an even square. So, there is some number n such thet

Since h2 is smaller that k2, it means that a smaller square number than k2 is twice another
square number, but this contradicts the assumption we made about k2 being the smallest.

Then there would have to be a smallest square number that is twice another square number
since there is no unending sequence of ever smaller square numbers. Let k2 be the smallest. So

. . . . .   .   . . . . .

A square array of (2m+1) x (2m+1) means 4 square arrays, each consisting of m x m dots, plus
4 groups of m dots, plus a central dot. Hence, every odd square number is odd (why?).

. . . . .   .    . . . . .

. . . . .   .    . . . . .

. . . . .   .    . . . . .

. . . . .   .    . . . . .

. . . . .   .    . . . . .

. . . . .   .    . . . . .

. . . . .   .    . . . . .

. . . . .   .    . . . . .

. . . . .   .    . . . . .

. . . . .   .    . . . . .

. . . . .   .    . . . . .

Hence, even squares are even and odd squares are odd. But every even square is a sum of 

four squares. We are now ready to prove that 2 is an irrational number.

Proof:

If 2  = 
a

b
, (a, b ≠ 0 integers), then 2 = 

a2

b2
or a2 = 2b2. So, a2 is twice another square number.

Exploring 

k 

2 = 2(h2).

k 

2 = 4(n2).

Thus, there is no square number that is twise another.

Also, h2 = 2(n2).

2

1. Use a construction paper to outline a unit square. Then draw a diagonal to the square 
and cut along the diagonal. What is the length of the diagonal?  

2.  Obtain a piece of adding-machine tape and draw a number line that is sufficient enough to  
construct and label integers from –10 to 10. Then construct and label –9.5, –8.5,–7.5, …, 9.5.

3. Starting from 0, lay out the diagonal whose length is 2 on the number line. Estimate 

the numerical value of 2 . Can the value be 1.5? Why or why not? Which number is it closest to?

4. Construct 2 2 , 3 2 , and 5 2   on the same number line. Estimate their values. 

5. Construct 2 + 2 . Is it the same as 2 2 ? Explain.

6. Construct 
2 + 2

2
. Marian thinks that 

2 + 2

2
= 1 + 2. Is she correct? Why or why not? 

b

a

Fig. 2.9 a Pebble arithmetic proof of the irrationality of
√

2 (Giaquinto, 2007, pp. 139–141).
b Activity involving

√
2 (adapted from Coffey, 2001)
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1

1 2     3  4

Fig. 2.10 Visual illustration
of the sum of the first four
terms of the harmonic series∞∑
n = 1

1
n

Initially, the students used a centimeter graphing paper and constructed the picture
shown in Fig. 2.10. Then they confirmed that each shaded rectangle had an area
corresponding to a term in the given harmonic series. Next I asked them to imagine
a train of shaded rectangles beyond the picture they drew. I had them estimating
the amount of paint they would need to cover the entire shaded area. With the aid
of a graphing calculator, they started adding the terms one by one. After verifying
on the basis of a sufficient number of terms that the series would yield no finite
sum, they began to realize the difference between everyday and mathematical ways
of seeing.

The above experience allowed my Algebra 1 students to develop the view
that visually drawn constructions of some mathematical objects, concepts, or pro-
cesses despite being incomplete in form could also effectively assist in developing
structural awareness (Mason, Stephens, & Watson, 2009) of the corresponding
abstract knowledge. While their totality (i.e., essence) could not be fully appre-
hended through the sensory modalities alone, what is actually being sought is
intellectual insight drawn from one’s emerging structural awareness as mediated
by the relevant visual representation. Certainly, having structural awareness drawn
from visual forms would allow learners to construct inferences about the corre-
sponding abstract object, concept, or process. This perspective should assist us in
moving beyond dichotomous thinking relative to the symbolic/visual hierarchy in
mathematics. Brown (1999) is certainly correct in pointing out that some math-
ematical knowledge could not be primarily derived from sense experiences, as
follows:

All measurement in the physical world works perfectly well with rational numbers. Letting
the standard meter stick be our unit, we can measure any length with whatever desired
accuracy our technical abilities will allow; but the accuracy will always be to some rational
number (some fraction of a meter). In other words, we could not discover irrational numbers
or incommensurable segments (i.e., lengths which are not ratios of integers) by physical
measurement. It is sometimes said that we learn 2 + 2 = 4 by counting apples and the like.
Perhaps experience plays a role in grasping the elements of the natural numbers. But the
discovery of the irrationality of

√
2 was an intellectual achievement, not at all connected to

sense experience.
(Brown, 1999, pp. 5–6)
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His basic point is reflected via the dashed side of the operative triangle shown in
Fig. 2.8, which symbolically conveys the treacherous path that characterizes the
movement from the visual to the abstract or, more appropriately, from our everyday
sense of the visual to the mathematically visual.

However, aiming for structural awareness allows us to engage in a more rec-
onciliatory interanimated discussion of the perceived divide between the visual
and the symbolic or, in Brown’s terms, between sense experience and intellectual
achievement. This move toward interanimation is derived from the work of Warren,
Ogonowski, and Pothier (2005), who also saw the need to move past what they
perceive to be dichotomies in modes of thinking in school science. They speak of
interanimation in terms of some creative coordination, that is,

[it] denotes a process whereby a person comes to regard one way of conceptualizing, rep-
resenting, and evaluating the world through the eyes of another, each characterized by its
own objects, meanings, and values. As such, it resists the strong temptation to dichotomize
modes of thinking or being.

(Warren et al., 2005, p. 142)

The move toward structural awareness is, thus, seen as being initially rooted in
visual experience and, yet, serves as a route in gaining a better access of the cor-
responding abstract knowledge as well. Its essence, Mason, Stephens, and Watson
(2009) note, lies in a learner’s “experience of generality, not a reinforcement of par-
ticularities” (p. 17) that enables him or her to find meaning in manipulating both
representational contexts in a simultaneous fashion.

3 General Notion of Visualization in this Book

In this book, I share the view that visualization is about “the many ways in which
pictures, visual images, and spatial metaphors influence our thinking1” (Reed, 2010,
p. 3). Hence, in its raw form, it could be either internal (mental images) or external
(diagrammatic and spatial representations) (see Lohse, Biolsi, Walker, & Rueler,
1994 for an interesting classification of visual representations). Reed articulates it
clearly when he insists that

[l]anguage is a marvelous tool for communication, but it is greatly overrated as a tool for
thought. . . . Much of comprehending language, for instance, depends on visual simulations
of words or on spatial metaphors that provide a foundation for conceptual understanding.
Sometimes we are conscious of visual thinking. At other times it works unconsciously
behind the scenes.

(Reed, 2010, p. 3)

1Bees provide a nonhuman example of species that appear capable of distinguishing between
shapes and employing landmarks in tracing their route from some food source to their hive (Frisch,
1967).
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However, as a tool for mathematical thinking, visualization has to take a much
stronger sense in order to be significant and powerful. As I have used it over the past
several years as a cognitive tool in helping my students learn mathematics better,
I see visualization as a type of representation that employs “visuospatial relations
in making inferences about corresponding conceptual relations” (Gattis & Holyoak,
1996, p. 231). Thus, I do not associate visual thinking in mathematics in static terms
as merely about seeing images or pictures for the sake of having a visual or a sense
experience in order to make mathematics learning fun. It is, more importantly, a
concept- or process-driven seeing with the mind’s eye.

Visualizing with the aid of, say, algeblocks, fraction strips, drawn pictures, and
other manipulatives requires going beyond acknowledging that certain alphanu-
meric expressions could be mapped onto particular concrete images or diagrams.
It also means employing it as a perceptual tool for exploring, sense making, con-
structing, and establishing the corresponding conceptual relations, “demonstrating
and searching for a justification” (Malaty, 2008), and theorizing. Figure 2.11a–c
provides examples of a bar representational approach in making sense of word prob-
lems involving percents. The examples have been drawn from several elementary
school mathematics texts that are currently being used in classrooms in Singapore,
the Netherlands, and Japan.2 The rectangles shown are relation-based diagrams that
convey particular meanings relevant to the problems being investigated. Another
example is shown in Fig. 2.12. Parker’s (2004) visual strategy in making sense
of percent increase and percent decrease problems in prealgebra allows students
to see relationships between various symbols (percent, numbers, terms associated
with percent) involved in solving a particular type of percent problems. Kennedy’s
(2000) work with several groups of at-risk high school students emphasizes the
need for them to see concrete-to-abstract and numerical-to-algebraic relationships
between various manipulative models in integers (chips), fractions (strips and pat-
tern blocks), percents and decimals (fraction strips), and the continuous number line.
A fourth example is shown in Fig. 2.13 drawn from my second-grade class, which
shows how they employed visual representations in making sense of, and establish-
ing the conceptual relations involved in, adding, subtracting with regrouping, and
multiplying whole numbers appropriate at their grade level.

The activity of theorizing in visualization means establishing conjectures and
mathematical explanations, including “making speculative and intuitive work”
(Jaffe & Quinn, 1993, p. 2) that in most cases might not be the same thing as estab-
lishing rigorous mathematics in which case the focus is on formal deductive proof.
Visual theorizing shares many of the characteristics associated with the notion of
theoretical – that is, according to Jaffe and Quinn (1993):

2See Ng and Lee (2009), Murata (2008), and van Galen, Feijs, Figueiredo, Gravemeijer, van
Herpen, and Keijzer (2008) for an explanation of the role of rectangular, tape, and strip diagrams in
Singapore, Japanese, and Dutch textbooks, respectively. I should note the interesting similarity in,
and convergence toward, the use of visual approaches in teaching word problems in mathematics
(more generally) in these countries.
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a

b

c

Fig. 2.11 (continued)
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A school increased its staff by 35%. If 108 

staff members were working after the 
increase, how many were there originally?

Solution: 

Let x be the original number of staff members  

Original Increase Final Amount

100 10035 135

x
x

y
y108

100
x

=

135x

135

= 10800

x = 80

80x

y
= 135

108

108

y = 28

Check: 80 + 28 = 108

There were 80 staff members prior to the
increase.

On Labor Day, cell phone prices were 
marked down by 20%. The sale price of an 

item was $300. What was the original price 

of the item before the discount?
Solution: Let x be the original price in dollars  

20 80

300

100
x

= 80
300

= 30000

x = 375

20
y

= 80
300

y = 75

Check: 375 – 75 = 300 

The original price of a cell phone was $375
before the 20% decrease.

35

Original Final AmountDecrease

Fig. 2.12 Examples of Parker’s (2004) unitary diagrams for solving percent increase and percent
decrease problems

�
Fig. 2.11 a Visual approach to percent problems using unitary diagrams in a US version of a
Singapore mathematics text (Curriculum Planning and Development Division, 2008, pp. 51 &
99; Copyright belongs to the government of the Republic of Singapore, c/o Ministry of Education,
Singapore, and has been reproduced with their permission). b Visual approach to a percent problem
using a bar diagram in a US version of a Netherlands mathematics text (Mathematics in Context,
2006, p. 23). c Visual approach to a percent problem using a tape diagram in a US version of a
Japanese mathematics text (Tokyo Shoseki, 2006, p. 66)
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Eddie’s Visual Multiplication Involving Two Single-Digit Whole Numbers

Campos’s Visual Subtraction with Regrouping Involving Two Two-Digit Whole Numbers

Lana’s Visual Addition with Regrouping Involving Two Three-Digit Whole Numbers

Fig. 2.13 Grade 2 students’ visual approaches to adding, subtracting, and multiplying whole
numbers
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The initial stages of mathematical discovery – namely, the intuitive and conjectural work,
like theoretical work in the sciences – involves speculations on the nature of reality beyond
established knowledge. Thus we borrow our name “theoretical” from this use in physics.
There is an older use of the word “theoretical” in mathematics, namely, to identify “pure”
rather than applied mathematics; this is a usage from the past which is no longer common
and which we do not adopt.

(Jaffe & Quinn, 1993, p. 2)

4 The Meaning of Representation in this Book

In using the term representation, I acknowledge the intricate relationship between
its narrow and broad meanings [in Piaget’s (1951) sense]. In a narrow sense, it
refers to symbols that render an internal experience in some intelligible external
form with the primary intent to communicate (“this expresses what I think I see”).
In a broad sense, it conveys one’s current worldview, that is, his or her interpreta-
tion of his or her experience of a phenomenon under investigation (“this is how I
see”; cf. Pylyshyn, 1973) or, more concisely in Leyton’s (2002) sense, “representa-
tion as explanation.” For Vergnaud (2009), it is “a dynamic activity . . . a functional
resource [that] organizes and regulates action and perception . . . [and is] a product
of action and perception” (p. 93). Goldin (2002) offers a functional definition, that
is, representation consists of inscriptions (or signs), rules for combining them, and
a structure that allows the rules to make sense. Visual thinking, then, as a type of
inference-based representation could be either personally drawn (i.e., based on indi-
vidual subjective images) or externally mediated (i.e., based on what is acquired
by the learner in a distributed context through acting with other learners and act-
ing on institutional artifacts such as manipulatives and graphing calculators that, by
their very nature, are loaded with intentional knowledge), or both. With more for-
mal learning and socially structured experiences, it is likely the case that personal
or subjective visualization and institutional ways of seeing will become integrated
and more aligned than separate.

To illustrate, Fig. 2.14a shows the visual representations in written form of Jackie
(Cohort 2, seventh grader) on a patterning task that I gave to my Algebra 1 class
twice, before and after a month-long teaching experiment on linear patterning and
generalization. With no external influence by way of formal instruction, she initially
perceived and visually constructed an oscillating pattern of short and long shapes of
V in which “every odd numbered stage . . . takes up 2 squares” and “every even
numbered stage . . . takes up 4 squares.” The pattern she visualized after the teach-
ing experiment reflects an appropriation of an externally derived visual experience,
which explains her choice of a linear pattern and her use of algebraic symbols in
which she conveyed her algebraic generalization. Figure 2.14b shows the visual rep-
resentations in written form of Arman (Grade 2) on two addition problems before
and after a 3-week teaching experiment on addition of whole numbers of up to three
digits long. Prior to the teaching experiment, he would employ a count-all visual
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Beforea

After

Fig. 2.14 (continued)



42 2 Visualization and Progressive Schematization: Framing the Issues

Beforeb

After

Fig. 2.14 a Jackie’s written work on a free construction task after a teaching experiment on linear
pattern generalization. b Arman’s before and after visuals involving addition of whole numbers

strategy when adding whole numbers. He would initially draw all the required cir-
cles (or sticks) on the basis of the numbers that were presented to him and then
would patiently count all of them together. After the teaching experiment, his com-
bined visual/symbolic strategy reflected his understanding of the central role of
place value and regrouping in the addition process. The solutions offered by Jackie
and Arman exemplify what I consider in this book to be visual (and much later
visuoalphanumeric) representations.
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5 Three Fundamental Principles of Visualization

Visualization plays a fundamental role in any account of concept or process devel-
opment, including problem solving. The manner in which it is addressed, however,
depends on the role it plays in a particular theoretical paradigm, tradition, or orien-
tation. For example, while the perceptual basis of knowledge is central to empiricist
accounts, it is not so in the case of rationalist/nativist and historico-cultural tradi-
tions. Rationalist and nativist perspectives tend to have a taken-for-granted view of
visual images or impressions since the primary interest lies in articulating innate
structures that individuals are presumed to have at birth, which they use to acquire
more knowledge about their world. In the historico-cultural tradition, any meaning-
ful visualization, like all concepts, is cast in terms of its historically, socially, and
culturally constructed and negotiated nature.

In this section, the fundamental principles of visualization that I suggest, which I
have interpretively drawn from the general cognitive literature, are not aligned with
any particular tradition since the jury is still out about whether a single paradigm
could sufficiently characterize concept attainment within its stipulated rules and
principles. Nevertheless, there are some common principles on visual representation
that, albeit drawn from visual reasoning about everyday objects, are worth pursuing
in a developing theory of visualization in school mathematics. This section is also
meant for readers who are interested in how researchers outside of mathematics
education have pursued, investigated, and analyzed the phenomenon of visualization
with respect to objects and concepts that are not necessarily math related.

I should note that the last section in Chapter 3 revisits these same principles
with the goal of situating them within work done on visualization in relation to
mathematical cognitive activity. The need to have an extended discussion on these
same principles in Chapter 3 deals with the fact that visualizing about mathematical
objects, concepts, and processes is much harder than, and different from, visual-
izing about everyday objects, concepts, and processes. In the case of the former,
they are theoretically derived (e.g., finding the zeros of a quadratic function by the
quadratic formula), formal (e.g., variables and all definitions), and structurally com-
plex. Also, the mathematical tasks in which visualization is employed necessitate
a consideration of the intricate interconnectedness between and among the follow-
ing constructs: (1) actions of a learner (i.e., to interpret or to construct by way of
predicting, classifying, translating, or scaling); (2) situation (i.e., whether abstract
or contextualized); (3) variables (i.e., the data, whether concrete or abstract and dis-
crete or continuous, and the form, whether categorical, ordinal, interval, or ratio),
and; (4) focus (i.e., the location of attention) (cf. Lienhardt, Zaslavsky, & Stein,
1990).

We begin Chapter 3 with strong claims about the visual roots of mathematical
cognitive activity. Visual representations in mathematics are not simply personal
images or visual images-in-the-wild but convey explicit knowledge structures that
are constructed and negotiated in a lifeworld-dependent context. That is, the context
of visual representations is seen to operate within shared rules, habits of seeing, and
cultural practices. Further, the different kinds of visuals that are generated depend
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on the type of activity that is pursued, which could be imaginal (e.g., appeal to intu-
ition), formational (e.g., concept or process development), or transformational (e.g.,
problem solving). Since all visual representations are conveyed through signs, we
discuss different types of mathematical objects. Also, since all visual representations
operate within rules and structures, we articulate the figural nature of the concepts
that allow the objects to exist. Section 5 in Chapter 3 revisits the meaning of visual
thinking but developed in the context of mathematics.

Principle of acquisition: Individuals abduce the intended meanings of visual
representations involving everyday objects through the use of one strategy or a
combination of two or more strategies. Some documented strategies include learned
pairings; manipulating their corresponding iconic representations; associating with
a relevant experience; and establishing relational structural similarities. Abduction
refers to the logic that “covers all the operations by which theories and conceptions
are engendered” (Peirce, 1957, p. 237). That is, it “consists in studying facts and
devising a theory to explain them” and “its only justification is that if we are ever
to understand things at all, it must be in that way” (Peirce, 1934, p. 90). Abduction,
in fact, plays a central role in the development of mathematical concepts, processes,
and representations since it is primarily concerned with developing and establishing
inferences about rules (Thagard, 1978), rules and their extensions in simultaneity
(Eco, 1983), and structures (Mason, Stephens, & Watson, 2009).

Gattis (2004) was particularly interested in how spatial representations acquire
their meanings, but many of her claims also apply to visual representations in the
general case. The meanings of symbols are oftentimes acquired through learned
pairings, which involves explicitly learning the relationship between script and
sound or between word and picture. Iconic symbols allow a mapping to take place
between the elements of the image and the icon, especially if there is a good fit
or an isomorphism between the icon or the physical model and the correspond-
ing referent. However, no new information could be obtained beyond what icons
represent because they represent an already existing object. Especially in the case
of everyday objects, icons depend on physical resemblance and are not generally
useful in representing abstract concepts such as “goodness.”

Among abstract concepts, associations with a relevant experience significantly
matter more than physical semblance. For example, children associate growth
graphically with a vertical line or express feelings of warm and cold by imag-
ining fire and ice, respectively. But association as a strategy itself could also be
deceiving and limited and could possibly lead to misconceptions especially in
cases when multiple mappings are possible or when counterintuitive concepts are
involved.

Similarities of relational structure involve establishing relationships “between
objects, relations between them, and relations between relations” (Gattis, 2004,
p. 592). For example, interpreting a given spatial representation such as a map
or a graph involves mapping “conceptual elements to spatial elements, conceptual
relations to spatial relations, and higher-order conceptual relations to higher-order
spatial relations” (Gattis, 2004, p. 592). Relational structure activates relevant cog-
nitive processes such as metaphorical and analogical reasoning, which capitalize on
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similarities observed between and among objects, concepts, and relations. The nov-
elty of Gattis’s (2004) notion of relational structure stems from individuals’ typical
experiences with everyday diagrams in which only general meanings are available
and follow-up work is needed, which involves constructing and reasoning about
particular details. The details include establishing a mapping on three levels, that
is, object to object, relation to relation, and higher order relation to higher order
relation.

In Chapter 4, I discuss the mutually determining role of structured visual
representations and alphanumeric symbolization in the construction of visuoal-
phanumeric symbols. We begin the chapter by considering at least three types of
mathematical symbols – iconic, indexical, and symbolic – that appear to share many
of the same characteristics above that Gattis (2004) inferred in the case of every-
day objects and concepts. In the case of everyday and logic problems, Fig. 2.15 is
a schematic model that situates the use of visual imagery in the beginning phase
that is then carried through and progresses toward more verbal and other symbolic
forms. Certainly, it is easier to state a rule or express a relationship in verbal or
symbolic form. Further, the phenomenon of visual fading seems to occur in prob-
lem situations that are of the sequential reproduction type (i.e., sequential in the
sense that general principles have already been established and reproduced because
of the recognition of a familiar structure). However, the verbal or the symbolic
phase does not necessarily imply the absence of visual images. Such images, in
fact, basically support judgment, reasoning, and decision-making strategies. For
example, among chess masters, their verbal articulations represent “judgments on
more abstract representations of board positions” (Kaufmann, 1985, p. 62) without
needing to repeatedly employ specific visual strategies. Among expert soccer play-
ers (and coaches, in particular, who communicate with their players using slates
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Fig. 2.15 Schematic model
of visual–verbal
representation (Kaufmann,
1985, p. 63)
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or tablets), when presented with abstract representations of simulated visual soccer
scenes (i.e., concrete details were removed and crosses were used instead of play-
ers), they have been documented to make quick and effective (verbal) decisions
despite the absence of pertinent visual information (such as physical character-
istics and actions of players). Their expertise could be explained in terms of the
visual patterns and other relevant domain-specific knowledge that they have stored
in long-term memory (Poplu, Ripoll, Mavromatis, & Baratgin, 2008).

We offer a similar argument in the case of visuoalphanumeric symbols. Chapter 4
explores the different mathematical symbols in some detail, especially the contexts
in which they are used. Readers are introduced to the Wittgensteinian notion of
modes of signification that highlights the use of the same symbol (say, fractions
and variables) to convey different things. Throughout the chapter, we reinforce the
notion of progressive schematization in both intra- and inter-semiotic resources and
draw on many classroom instances in my middle and elementary school classes
for empirical evidence of salient points. In particular, I make a strong claim
about the necessity of transitioning from iconic and indexical representations and
actions to symbolic via psychological distancing (DeLoache, 2005) as a way of
supporting shifts that are needed in thinking from visual to abstract and from ref-
erential to operative (Fig. 2.8). One section provides an historical apercu of the
progressive evolution of symbolic thinking in algebra. The last section provides
the necessary context in understanding the ideas that are pursued in Chapter 5. In
this section, readers obtain an empirical account of the development of visuoal-
phanumeric symbols among my middle school participants who were involved in
a 3-year longitudinal design-driven research in pattern generalization activity. By
pattern generalization, I refer to actions of construction and justification of direct,
closed formulas relative to figural and numerical patterns (e.g., Figs. 2.6a, 2.7, and
2.14a, b).

In Chapter 5, readers are introduced to the meaning and significance of abductive
reasoning in induction and generalization processes. While the notion of abduction
is widely used in areas such as artificial intelligence, computer science, scientific
discovery, and, more recently, philosophy of science, there is very little work done
in cognitive science and mathematics education research that addresses abduction
as a tool for (causal) reasoning and understanding.3 Peirce writes:

How is it that man every came by any correct theories about nature? We know by induction
that man has correct theories; for they produce predictions that are fulfilled. But by what
process of thought were they ever brought to his mind?

(Peirce, 1995, p. 237)

In this chapter, we focus on patterns such as Fig. 2.6a and address the primary
dilemma of how to develop reasonable abductive inferences (i.e., rules) and, con-
sequently, algebraic generalizations on the basis of limited information (i.e., the

3Thagard’s (2010) recent theorizing concerning this topic involves understanding the implications
of embodied abduction, which involves “the use of multimodal representations” (p. 1). Embodied
abduction is inferred in many sections of this book.
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known stages in any pattern) that apply to the unknown stages (i.e., extensions).
Since patterns are structures, in this chapter, we provide a visually drawn empirical
account of progressive evolution of structural thinking and generalization involv-
ing patterns in both figural and numerical forms. We clarify what and how we
mean by patterns and further explore Peirce’s notion of abductive reasoning or,
simply, abduction. We then justify a stronger claim in which accounts of progres-
sive formalization, schematization, symbolization, and mathematization all involve
accounts of progressive abductions. In two sections, we distinguish between entry-
level abductions and later or mature abductions that produce visuoalphanumeric
representations. We also discuss constraints and difficulties in making abductive
transitions, which have implications in the content and quality of structural thinking
and generalization. We close the chapter by considering how visuoalphanumeric
representations in Algebra 1 and structured visual thinking at the elementary
level could support hypostatic abstraction and growth in functional thinking and
understanding.

Principle of reasoning: Many problem solvers employ imagistic reasoning in
organizing their thoughts and as an alternative to purely symbolic or linguistic
forms of reasoning. Imagistic reasoning oftentimes leads to meaningful associa-
tions, analogies, inferences, and relational structures. Yip (1991) observes that
professional engineers, physicists, scientists, and mathematicians sometimes expe-
rience difficulty in verbally articulating their “intuitive grasp” of a problem situation
but then still manage to convey their thoughts through graphs and visual, analogue,
and diagrammatic representations. Nersessian (1994), Buchwald (1989), Kaufmann
and Helstrup (1988), and Miller’s (1997) engaging description of Einstein’s propen-
sity for visual thinking in various aspects of his scientific achievements all provide
us with accounts of great scientists, mathematicians, and inventors who employed
imagery (e.g., visual, nonvisual such as spatial, etc.) and visual analogies primar-
ily in their process of discovery. For example, Hadamard, French mathematician,
frequently employed visual imagery “when matters became too complex” (quoted
in Kaufmann & Helstrup, 1988, p. 114). Einstein employed visual images in
developing a thought experiment that played a central role in his special theory
of relativity (Miller, 1997, p. 61). Buchwald’s (1989) historical account of the
wave theory of light in the 1830s includes a discussion of the significant role
of drawings in Augustin Fresnel’s polarization experiments. Inventors like Edison
employed heuristics that were hinged on a visual process that “manipulate(d) both
a device-like conception (mental model) and a set of physical artifacts (mechanical
representations) in order to create a new object” (Carlson & Gorman, 1990, p. 417).
Even in less dramatic cases, the comprehensive review of Kaufmann and Helstrup
(1988) and the case studies developed by Nersessian (1994) show convergence in
the use of imagery in problem solving among people of various abilities. Pinker
(1990) also notes that in cases involving quantitative information, most people pre-
fer to process them using graphic forms of representation than other nonpictorial
means such as tables of numbers and lists of propositions.

Antonietti, Cerana, and Scafidi (1994) also share the above views on the general
effectiveness of images in various contexts, especially the flexible power of images
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and their ability to assist people avoid the unnecessary use of procedures. However,
they are also quick to point out that

imagery is useful when subjects are aware of the goal, that is, when the free production
of mental images is oriented toward a specific endpoint. Imagery flows produced without
frames of reference . . . can generalize in a wide range of directions so it is probable that
subjects can follow an unproductive line of thinking.

(Antonietti et al., 1994, p. 188)

In everyday life, we face choices about whether to use visual representations
when, say, we are confronted with directions that have been expressed in words
such as the one shown in Fig. 2.16. It is, as Reed (2010) points out, a spatial task
that could be dealt with either verbally (by memorizing the steps) or visually (by
forming a mental map image). The use of visual strategies in communication, dis-
covery, problem solving, and interpretation exemplifies what I refer to as imagistic
reasoning. Following the manner in which Gattis (2002) defines spatial reasoning,
imagistic reasoning is the internal or external use of visual representations, such as
impressions and diagrams, to reason. In the case of internally drawn images, indi-
viduals outsource them through diagrams and/or gestures that convey some intended
meaning. Externally drawn images include physical models such as diagrams, pic-
tures, and other concrete semiotic resources such as manipulatives and imaging
software whose meanings have been constructed on the basis of rules that enabled
their reification.

Imagistic reasoning can also be about the nature and content of the visual itself.
However, it is the conceptual content of the visual representation that really matters.
In employing imagistic reasoning, individuals need to establish a valid and consis-
tent mapping between the visual representation and the corresponding concept and
then use the mapping to construct and justify inferences about a possible conceptual
relationship by manipulating what could be observed from the visual representation.

Four results in the general cognitive literature are worth pointing out in light of
their implications to visualization and mathematics.

1: Start out going SOUTHWEST on E REED ST toward S 8TH ST.

2: Merge onto I-280 N via the ramp on the LEFT.

3: Take the BIRD AVE exit.

4: Take the BIRD AVE ramp.

5: Turn RIGHT onto BIRD AVE.

6: BIRD AVE becomes S MONTGOMERY ST/CA-82.

7: Turn LEFT onto PARK AVE.

8: Turn RIGHT onto LAUREL GROVE LN.

9: End on this street.

Fig. 2.16 Example of a mapquest direction to travel by car from location A to B
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First, on matters involving nonspatial concepts such as time, age, and rate, Gattis
(2002) observed that the spatial reasoning of young children (ages 6 and 7 years old)
with little to no formal experiences in graphing appears to be “influenced by general
constraints in reasoning” and “these constraints precede the learning of graphing
[and more formal] conventions” (p. 1175).

Second, children’s knowledge acquisition processes involving everyday objects
involve marked transitions in orientation from (within and across) object properties
to object relationships (see, e.g., Gentner, 1983; Markman and Gentner, 2000).

Third, Antonietti’s (1999) investigation into college students’ use of visual rep-
resentations in various tasks (logical, mathematical, geometrical, and practical)
illustrates the view in which usefulness of imagery appears to be task dependent.
That is, an individual’s choice of using a visual representation seems to depend on
how he or she discerns the nature of the task. For example, if a task is perceived
to be involving numbers, like Dina in my study, who consistently approached every
pattern generalization task numerically, then he or she is likely to use a numerical
method without “tak(ing) advantage of possible intuitions suggested by visualiza-
tion” (Antonietti, 1999, p. 409). Antonietti also notes how students tend to perceive
visuals as helpful in dealing with situations that involve concrete situations but not
so in cases of abstract and conceptual problems.

Fourth, even when diagrams or pictures are shown with text, their level of com-
plexity and realism influences the content and quality of knowledge and comprehen-
sion that are acquired by individuals (Butcher, 2006). For example, more detailed,
schematic diagrams (e.g., Venn diagrams or the figural patterns in Chapter 5)
are much harder to deal with than are iconic and simplified diagrams. What is at
issue is the level of abstraction (i.e., transparency of relations) that is involved in
both picture types.

In Chapter 6, I analyze the relationship between visual thinking and diagram-
matic reasoning. Diagrammatic reasoning is viewed as a type of imagistic reasoning
that individual learners employ in establishing necessary mathematical knowledge.
It involves distributed actions of manipulating, discerning, interpreting, and infer-
ring relations on diagrams. A typical example is shown in Fig. 2.17, which shows
two diagrams in a school geometry text curriculum that have all the required infor-
mation needed to establish their deductive proofs. Talking about ancient Greek
mathematics and mathematicians, Netz (1999) refers to diagrams as “the metonym
of [their] mathematics” (p. 12), where diagrams and their corresponding proposi-
tions and proofs all convey the same meaning. In Chapter 6, however, we pursue
purposefully constructed diagrams in school algebra and number sense such as those
shown in Figs. 2.11a-c and 2.12 in order to demonstrate their significant role in pro-
viding students with structured images of symbolic forms and perhaps, more impor-
tantly, in “set(ting) up a world of reference” (Netz, 1999, p. 31) that allows them to
see the necessary conceptual relations. Readers are also referred back to examples
in previous chapters to establish the view that progressive diagrammatization can
support progressions in formalization, schematization, and mathematization of the
corresponding alphanumeric forms. Diagrams are, thus, seen beyond their typical
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1. Let M be the midpoint of the side AB of an equilateral triangle ABC. Let N be a point on BC 
such that MN  BC. Prove that BC = 4BN.

A
                   

M
                      

B

2. Let P be a point outside a circle . Let A be a point on such that AP is tangent to  . Let 

BC be a chord of  with C nearer to P than B such that BC || AP. Let the lines BP and CP meet

 again at K and L, respectively. Let line KL meet AP at point M. Prove that M is the midpoint 

of AP.

L

N

C

A M

P

K

C
B

Fig. 2.17 Two examples of geometric diagrams (Bautista & Garces, 2010)

meaning as signs that externalize conceptual relations to fulfilling a mediating role
in knowledge acquisition and development (cf. Stjernfelt, 2007).

Chapter 6 begins with a summary of cognitive issues relevant to the role of
the human visual system in diagrammatic activity such as our ability to discern
relationships in diagrams, the interpretive nature of seeing, and our predisposi-
tion to recall facts simply by recalling a diagram. Then we deal with fundamental
issues of existence and universality of diagrams that are always surfaced in any
account of diagrammatic activity in mathematics. We also discuss pedagogical
issues surrounding presented versus generated diagrams. In the last two sections,
we discuss different types of diagrams, address issues surrounding progressive dia-
grammatization, and explore the role of diagrammatic reasoning in mathematical
reasoning.
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Principle of individuation: While an individual’s ability to visually represent
is influenced by one’s visual system, it is also influenced by socially constituted
practices. Finke (1980) notes that while it is true that constructing images depend
on the knowledge and expectations individuals have about a target object or an
event, they also process them at varying levels of their visual system, some of
which operate independently of those knowledge and expectations. But socially
or culturally drawn visual practices exist, including recent visual-based tech-
nologies that cause particular groups to share similar visual representations and
strategies.

Thus, the visual images individuals construct have physiological, social, and cul-
tural origins, which “our adopted modes of representation guide our seeing itself”
(Wartofsky, 1978, p. 22). An empirical demonstration of this multigroundedness of
visualizing is seen in new and emerging technological tools that enable individuals
to have shared visual experiences, in effect, becoming inseparably intertwined with
their own visual images.

6 Context-Based Visual Representations

The principle of individuation has led me to consider the two issues in Chapter 7,
which focuses on blind-specific issues and cultural influences relevant to visual
attention, thinking, and performance. General, neuropsychological studies on non-
mathematical tasks done by Farah (1988), Bavelier, Dye, and Hauser (2006), and
Ward and Meijer (2010) empirically demonstrate some capacity for visual imagery
in the case of blind individuals (and “both better and worse visual skills” among
deaf individuals). There is, in fact, converging evidence drawn from a variety of
neuroimaging studies that also support this finding (see, e.g., Cattaneo et al. 2008
for a comprehensive review). For example, Ward and Meijer document the visual-
like experiences of their two blind participants when information was routed via an
auditory sensory substitution device. Recent neuroimaging results also show that
damages in particular visual pathways affect particular aspects of visual imagery
(shape, color, location, etc.; cf. Jeannerod & Jacob, 2004; Kosslyn, Ganis, &
Thompson, 2001). However, the production of (visual-like) images is still possi-
ble and could be seen as “the end product of a series of constructive processes
using different sources of information rather than mere copies of a perceptual input”
(Cattaneo et al., 2008, p. 1347). Thus, it is interesting to determine the nature and
content of representations that learners with varying levels of visual impairments
develop as they acquire knowledge of objects, concepts, and processes in light of
constraints in their physical systems that affect the way they perceive and engage
in imagistic reasoning. One important implication that could be drawn from these
studies involves understanding the epistemic significance of a sensuous dimension
to learning, which capitalizes on multisensory convergence.

Also, since much of learning mathematics involves a process of guided partic-
ipation, it is interesting to determine how individual visual representations could
be influenced by one’s own cultural practices (cf. Solomon, 1989). Crafter and
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de Abreu (2010) note that every representation of (mathematical) knowledge “has
a double character . . . the representation of something (and therefore a cultural
tool) and of someone (and therefore seen as associated to specific social groups”
(p. 105). More generally, “conventions,” Bishop (1979) writes, “are of course
learnt, as are the reasons for needing them, and the relationship between the pic-
tures and the reality that are conventionalizing” (p. 138). Miller (1990) makes
similar claims relative to the more fundamental matter of assigning images to
pictures. He notes the significance and robustness of “the convention of repre-
sentation” – that is, “it’s our understanding of the convention” that “allows us to
assign the role of image to a given configuration of pigment” (p. 2). Mishra, Singh,
and Dasen (2009) provide a nice example of the influence of conventionalizing
in visual representing in the context of Indian folks who live in different geo-
graphical locations. The authors claim that “the choice of a particular frame of
reference in language or cognition is encouraged by ecological conditions and is
reinforced by cultural practices of the given populations” (p. 388). Folks in rural
Nepal use the Himalayas as their reference point unlike their counterparts in the
Indian villages of the Gangetic plains who rely on an absolute frame and some
local landmarks and those in urban cities such as Varanasi who use a combined
egocentric–geocentric frame. Gooding’s reflections on “seeing biologically, see-
ing culturally, and seeing naturally” in scientific work might provide interesting
inroads concerning the role of cultural constructions of visual representations in
mathematical concepts, objects, and processes. Gooding writes:

There is an important difference between what appears to us naturally on the basis of innate
perceptual and cognitive functions (what humans can see naturally) and what is made to
appear natural on the basis of conventions that engage our innate capacities and learned
cultural preferences (what there is to see, according to science).

(Gooding, 2004, p. 557)

The point, of course, is not to set up a pernicious dichotomy but to acknowledge
the complicit functioning of both “common cognitive capacities” and “cultural con-
ventions” in the construction of visual representations, whether internal or external,
including the structures (syntactic aspect) and meanings (semantic aspect) that are
associated with them and render the character of being objective. Further, Gooding
poignantly articulates:

The objectivity of the relationship between an image and what it depicts cannot be defined
independently of the context in which that relationship is constructed and used. . . . It is
plausible to suppose that the effectiveness of a graphical convention depends on how well it
promotes the engagement of cognitive capacities that are not culture-specific by cognitive
skills that reflect local cultural conventions and preferences. This engagement is a cogni-
tive process mediated by cultural resources and social conventions and expectations. The
widespread use of a method of representation highlights the particular human cognitive
capacities that cultural conventions make use of.

(Gooding, 2004, p. 559)

While Tucker’s (2006) interest is in understanding the role of visualization in sci-
entific discourse, her suggestions below seem applicable in mathematics, which we
pursue in some detail in Chapter 7:
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I suggest that one way to advance the study of the role of visualizations in science involves
looking further at the social formation of communities of collecting and exchanging pic-
tures and understanding the historical (and increasingly institutionalized) mechanisms that
developed for framing some as “scientific” and some as “unscientific” objects. . . . Assessing
the history of scientific enterprises and responses to them compels us to look closely at the
social histories of individual images, including where they survive today and how and why
they came to be there.

(Tucker, 2006, p. 113)

The two complex issues that are pursued in Chapter 7 have much to inform
us about cultural and neurophysiological factors that influence the performance of
visual thinking in mathematical learning. Readers should be forewarned that the
findings discussed in this chapter have been drawn from investigations conducted
by experts in these fields, which certainly influenced various aspects of my own
research study that I have reported in the previous chapters. We begin the chapter
with a very interesting interpretive sociohistorical account that explains subtle dif-
ferences in visual attention and construction of concepts among students in diverse
classrooms. We also discuss the theory-laden and socialized nature of scientific
knowledge construction. Then we talk about accounts of differences in the way
mathematical objects and their images are perceived, captured, and interpreted as
a consequence of sociocultural modes of seeing that influence the nature and type
of mathematical content that is valued and produced. We also present a materialist
view of objects in mathematics, which sees visual forms of mathematical knowl-
edge as evocations of shared social and cultural feelings and practices. We then
give a cultural account of the nature of mathematical proofs in terms of particular
ontological perceptions of objects that influence the manner in which truths and the
empirical world are constructed. The remaining sections limn findings from research
conducted with individuals that have visual impediments at varying levels. We dis-
cuss perspectives drawn from a few studies that describe the nature of their image
construction and processing. The main point that is addressed deals with the need
to broaden our prevailing understanding of the sources and nature of visual rep-
resentations to include all aspects of our sensory modalities (i.e., auditory, haptic,
kinesthetic and, in some cases, olfactory) that provide redundant information and
need to converge and overlap in knowledge acquisition processes (Millar, 1994). We
close the chapter with a discussion on the significant role of multimodality learning
in mathematics.

7 Forms and Levels of Visual Representations

Are visual representations necessarily visual? In the case of externally drawn visual
representations such as manipulatives, diagrams, and images drawn from a graph-
ing calculator, the answer is perhaps obvious. But the answer is not definite in the
case of internally drawn images. In fact, cognitive science has not settled this issue
and research investigations in this area address more fundamental, and certainly
more difficult, questions such as the nature of representations that underlie mental
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imagery in neuroscientific terms. Despite the unsettling fact, I take the convergent
view of Chambers (1993), who claims that images are neither propositional nor pic-
torial but both, that is, “images are meaningful representations, that is, descriptive
information must accompany depictive information” (p. 79).

In mathematics, visual representations in the mind are seen as visual simu-
lations of the relevant objects, (numerical) processes, and relationships among
objects. This reminds of a situation in my Algebra 1 class when my students
tried to understand and remember the process of deriving the quadratic formula
x = (−b ± √

b2 − 4ac)/2a to obtain the roots of the equation ax2+bx+c=0, where
a, b, and c are real numbers and a �= 0. While they could recall the formula by
singing, a mnemonic strategy they acquired from the Internet, some of them ini-
tially understood and eventually remembered the derivation process by visualizing
a reenactment of the process as it is applied on a particular example (see Fig. 3.12).
Hence, the modality of visual images in mathematics could also be seen as being
meaningful in Chambers’s (1993) sense, that is, they are neither figural/geometric
nor numerical/algorithmic in form but could be both. More broadly, visual thinking
in mathematics encompasses the use of all types of symbols from personally con-
structed images and signs to alphanumeric expressions to diagrams that all convey
meanings that are used to reason.

In Chapter 8, I discuss a progressive modeling view on visualization – the travel-
ing theory proposed in this book – in relation to the development and understanding
of mathematical objects, concepts, and processes on the basis of the two-triangular
structure shown in Fig. 2.8. The traveling theory articulates the necessity of pro-
gressions in visualization from the referential to the operative. Consequently, visual
forms evolve as well from personally constructed images to visual representations
to what I refer to as visuoalphanumeric representations. The structures of such rep-
resentations, in fact, should convey the same power as their symbolic counterparts
that are routed in solely alphanumeric terms. As I have noted in the Introduction, an
effective visual process in mathematics enables personal or subjective visual images
to evolve into more structured visual representations (in Goldin’s (2002) sense)
before fully transitioning into visuoalphanumeric representations. The term visuoal-
phanumeric conveys the interanimated symmetric reversal phenomenon of seeing
the visual in the symbolic and the symbolic in the visual, a product of heterogenous
inference drawn from several sources.

Also embedded in the progressive model is the notion of structural awareness that
enables learners to use their visual representations in constructing and experiencing
generality and (hypostasized) abstraction and in connecting intended mathemati-
cal properties in their own mathematical thinking. Figure 2.18 is a diagram of
the progressive model that I extrapolate in further detail in this particular chap-
ter. Briefly, visual thinking in mathematics takes places initially at the referential
phase in which mathematical knowledge is seen as generalizations and (hyposta-
sized) abstractions of arithmetical relationships. Visuals are employed that allow
individuals to easily recognize relationships that are instantiated by and through the
images. With more learning, the circle of individuation, acquisition, and reasoning
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Fig. 2.18 A epistemological model of visual thinking in mathematics

grows in sophistication, leading to more formal types and specific forms of visual
representations at the operative phase.

The concentric circles in Fig. 2.18 incorporate, and visually convey, progres-
sive schematization in terms of local generalizations and (hypostasized) abstractions
that eventually reach a global state at the operative level. That is, once something
is generalized or abstracted from an object, an event, a process, or a relation,
it then becomes the basis that supports a later generalization or (hypostasized)
abstraction, and then again. Visual thinking is also seen initially as an individual
affair through the construction of subjective images that later evolves as a result of
frequent interactions with the community (in particular, the classroom). The com-
munity imposes its own practices at various levels of the epigenetic cycle, which is
then appropriated and internalized in varying degrees. However, despite the social
influence, individual learners interpretively reproduce4 what they find meaning-
ful to appropriate and internalize and so in some cases manage to retain some of

4Throughout this book, I emphasize the need to reconcile between individual construction and
sociocultural practices. Corsaro’s (1992) notion of interpretive reproduction is an approach that
“stresses both the innovative and creative aspects of” every individual learner’s “participation in
society and the fact that” he or she “both contribute to and are affected by processes of social
reproduction” (Corsaro, Molinari, & Brown Rosier, 2002, p. 323).
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Fig. 2.19 Arman’s count-all addition using circles only

Fig. 2.20 Arman’s visual
addition approach using
sticks and dots

their own impressions as a consequence of individuation. The overlapping regions
are meant to convey negotiated visual practices that evolve over time, while the
nonoverlapping regions represent practices that are kept at the individual and com-
munity levels. For example, it is common among children to be in possession of
mnemonic visual strategies or unintended knowledge (misconceptions, mispercep-
tions, etc.) that reflect variations in the established rules or personal constructions
with distinct uses that are in most cases at odds with the institutional practices of the
community.

8 Instructional Implications

Without a doubt, the hallmark of school mathematics is its symbol system so pre-
cise, economical, and universal that it bears little semblance to ordinary language
systems in whatever cultural context. “The grammar of mathematical symbolism,”
O’Halloran (2005) points out, is “based on a range of condensatory strategies which
facilitate rankshift for the rearrangement of relations” (p. 131). This explains why
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prevailing institutional practices and major stakeholders in school mathematics put
premium in alphanumeric proficiency over visually oriented approaches to learning
objects, concepts, and processes. Alphanumeric symbols capture the essence of an
object, a concept, or a process in some dynamic and observable semiotic form that
can withstand the critique of ambiguity and the messiness and arbitrariness of sub-
jective impressions and experiences that are oftentimes foreshadowed in most visual
representations.

In bridging internal and external phenomena, Bruner (1968) has suggested his
widely accepted representational stages of enactive, iconic, and symbolic phases,
which could be interpreted as a model of progressive schematization of visualiza-
tion in mathematical learning. At the very least, visual representations exhibit all of
Bruner’s stages in a more dynamic manner at varying levels of use. Gestural activity,
for example, is an enactive moment in which, say, a hand conveys a certain visual
image that could be symbolic. The enactive stage is the domain of visible actions,
while the iconic stage maps an internally constructed image to a relevant exter-
nal representation. The symbolic stage is the phase of (hypostasized) abstraction
that involves internalizing conceptual relations and formally naming them, which
underlie all visually grounded sign systems (cf. Bruner, 1990).

While the intent in Chapter 8 is to explain Fig. 2.18 as an epistemological
model that situates visualizing activity in mathematics in a much larger context
of progressive schematization, instructional implications have also been embed-
ded in the discussion. The final section in the chapter articulates the need for a
more “pleasurable” approach to teaching and learning school mathematics, a kind
of sensuous articulation of the “pleasures” that can be derived from developing
visuoalphanumeric representations in school mathematics.

9 Overview of Chapter 3

In Chapter 3, I explain the contexts of important terms we use throughout the book.
In doing so, readers obtain a more cohesive account of visual representations in
school mathematics and gain insights into how progressive schematization could be
achieved in a systematic manner. While such representations may initially emerge
as personally constructed images and images-in-the-wild, performing visual actions
within particular structures and customary ways of thinking allow such subjectively
drawn images to transform into more meaningful structured representations. To take
a case in point, Arman (Grade 2, 7 years old) initially added the two numbers sup-
plied in the word problem in Fig. 2.14b visually by drawing circles and counting
all. Later, when he learned to perceive whole numbers in terms of place value,
his pictures transitioned formally that allowed him to visually add more efficiently
using sticks and squares, as shown in Fig. 2.14b. How he developed such images
and the corresponding visuoalphanumeric method is the subject of mathematical
cognitive activity, which is rooted in explicit knowledge that is as much visual as it
is symbolic.
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Three contexts – imaginal, formational, and transformational – of mathematical
cognitive activity are discussed in some detail. The basic purpose is to show the
encompassing role of progressive schematizing in these contexts. Since we define
representations in terms of the coordination between and among signs, rules, and
structures, we make an analogous characterization of mathematical cognitive activ-
ity, that is, it basically consists of objects and the concepts that load them with
meaning and value. Mathematical objects are categorized into several types with
their visual essences explained in terms of their crucial role in depicting general
representations, in hypothesis generation (i.e., visual abduction), and in developing
structural awareness. Consequently, the nature of conceptualizing, and concepts for
that matter, is rooted visually.

The last two sections address what I mean by, including principles that sup-
port, visual thinking in school mathematics. Both sections offer a refinement of the
general ideas that have been raised and explored in Sections 3 and 4 in this chapter.



Chapter 3
Visual Roots of Mathematical Cognitive Activity

Fig. 3.1 Gemiliano’s visual solutions on two textbook subtraction problems

I can do this!
(Gemiliano, Grade 2, 7 years old)

The human mind is inclined, naturally, to visualize facts. We
think more easily with images because we are used to thinking
of material objects.

(Fischbein, 1977, p. 155)

More generally, to see means to see in relation.
(Arnheim, 1971, p. 54)

Fischbein (1977) in the opening epigraph is certainly correct in pointing out our
natural predisposition toward constructing images in order to make sense of some
knowledge that appears to us perhaps initially in either linguistic or alphanumeric
form. In the case of Gemiliano, he liked mathematics despite his many struggles
with its symbolic aspect because in most cases he understood what was happening,
at least visually. I should note that visualizing facts and images does not necessarily
imply the use of pictures alone. They could also be routed propositionally, that is,
in either linguistic or algebraic form. But whether those images take the shape of
pictures or language, I underscore a basic problem some learners have in the case
of school mathematical objects, concepts, and processes, that make sense despite
the absence of any natural mapping with the real world. Papert (2002) expressly
articulates in the following sentences this key problem in the context of algebra,
albeit the argument could also be applied to school mathematics, more generally:

59F.D. Rivera, Toward a Visually-Oriented School Mathematics Curriculum,
Mathematics Education Library 49, DOI 10.1007/978-94-007-0014-7_3,
C© Springer Science+Business Media B.V. 2011
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Language molded itself, as it developed, to genetic tools already there. The reason algebra is
less well aligned with genetic tools is that it was not allowed to align itself; it was made by
mathematicians for their own purposes while language developed without the intervention
of linguists.

(Papert, 2002, p. 582)

The basic goal in this chapter is to elucidate a unified account of the visual represen-
tational roots of mathematical cognitive activity. A necessary entry point involves
understanding contexts or situations that engender visualizing activity to take place
in mathematics. Perhaps Chambers’ (1993) reconciliatory view of meaningfulness
is a way of resolving the ongoing debate about whether images (or our modes of
thinking, in general; cf. Pylyshyn, 2006, pp. 427–474) are pictorial or propositional.
However, in school mathematics, meaningfulness of visual representations seems to
depend on an understanding of the more complex relationship between the nature of
the relevant mathematical content and the appropriate visual representations. Such
visual representations are, in fact, constrained and mediated by content that also
model (hypostasized) abstractions of some phenomenon. We dwell on this issue in
Section 1, which focuses on three contexts of visualizing in mathematical activity.

In Section 2, we discuss the nature of school mathematical knowledge via
Hoffmann’s (2007) recent essay on knowledge types in mathematics epistemol-
ogy. Hoffmann developed a useful categorization that allows us to distinguish
between implicit and explicit knowledge and, consequently, helps situate the nature
of mathematical knowledge in more realistic terms. In an oversimplified sense,
we locate mathematical knowledge within a lifeworld-dependent context that also
fits nicely within Radford’s (2002) reconceptualization of the classical semiotic
triangle (i.e., the triad of sign–object–interpretant) in terms of social-sign medi-
ated activity. I think the matter of where and how to root mathematical knowledge
needs to be settled in clear terms, at least provisionally in this book, so that the
claims on visualization I present and discuss in various places would make bet-
ter sense and could be analyzed and critiqued appropriately. We began Chapter 2
with reflections drawn from Peirce and Magnani in which thinking and inferring
are matters that primarily involve the use of signs in a model-based activity that
has a distributed nature. It is certainly an attractive thought. However, it needs fur-
ther explanatory unpacking, especially in light of anticipated critiques from skeptics
and, more importantly, Hoffman’s (2007) view of “the distinction between ‘implicit
knowledge’ and ‘cognitive ability’ ” that “both can easily be mistaken in empirical
research” (p. 188).

The ideas presented in the remaining sections hinge on the assumptions pre-
sented in Section 2 about the nature of mathematical knowledge in cognitive activity.
Section 3 deals with different mathematical objects that exist within a lifeworld-
dependent context that enables learners to develop necessary visual representations.
In Section 4, the nature of mathematical concepts is also clarified and aligned with
the manner in which mathematical objects have been characterized in the preceding
section. In Section 5, I discuss an appropriate definition of visual thinking in math-
ematics that I assume throughout the remaining chapters in this book. In Section 6,
we revisit the general principles of visualization pursued in the previous chapter and
incorporate findings from studies in mathematical thinking and learning.
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1 Three Contexts of Visualizing Activity in Mathematics

Kotsopoulos and Cordy (2009) implemented four teaching experiments involving
soap bubble film over six 40-min periods in Cordy’s Grade 7 class of 20 students.
They used soap bubbles in assisting the students to develop their understanding of
the mathematical properties relevant to three-dimensional objects such as volumes,
surface areas, and minimal surface areas. In the beginning phase, the students ini-
tially identified their conceptions relative to their experiences with soap bubbles
that allowed the authors to assess the extent to which their everyday senses reflected
the mathematical sense that was needed in formally understanding soap bubbles.
For example, none of the students identified important properties such as elasticity
and tension. When Cordy used a bubble blower wand to produce bubbles, the stu-
dents’ verbal descriptions began to surface notions of stretching and elasticity. With
more experiments, the conversation shifted to surface areas and the general shape
of bubble films in at least two different contexts (one of which included determin-
ing the shape of the film inside a cubical-shaped bubble blower). For Kotsopoulos
and Cordy, the activity enabled the students to come face-to-face with their internal
embodied sense of an object drawn from their actual experiences with, and casual
observations of, the object. In the authors’ sense, visualizing already connotes the
existence of a pre-existing image drawn from imagining whereas imagining tends to
be novel, unpredictable, and a precursor to understanding some necessary relations.

In my Grade 2 class, Fig. 3.2 illustrates examples of the students’ initial images of
well-known unit fractions drawn from the activity of constructing fractions. Results
of this activity show that young learners hold different conceptions of the same unit
fraction despite the simplicity of the corresponding symbolic form and that their
personally constructed images do not always align with the intended knowledge
(i.e., the institutional version).

Many middle school teachers complain that students too frequently make the
mistake of concluding that am = a · m, where a and m are real numbers. Two
popular errors are 23 = 6 and 20 = 0. Two recent studies on students’ under-
standing of exponential expressions of the type am, where a is an integer and m a
whole number, suggest that their preformal understanding of such expressions is
rooted in a numerical view of exponents as repeated multiplication (Pitta-Pantazi,
Christou, & Zachariades, 2007; Weber, 2002). In my Algebra 1 class, I used the
paperfolding activity in Fig. 3.3 in assisting my students to deal with the common
misconception that am = a · m for all values of a and m. For example, they initially
acquired the image that 23 meant 8, and not 6, layers of paper and two trifolds, 32,
produced 9, and not 6, layers. After empirically testing the proposition on a few
specific instances, they felt convinced that am �= a · m in most cases of a and m.

When I asked for a different explanation, Demetria (eighth grader, Cohort 1)
used the example 23 �= 2 · 3 and argued that 2 · 3 meant “two groups of three”
while 23, which equals 2 · 2 · 2, meant “two groups of two groups of two” or “two
groups of four.” When we tested the same visually drawn argument in several more
examples, they began to view exponential expressions in a different way with most
of them developing the particular sense that am and a · m would not behave the
same way in most cases of a and m. Interestingly enough, young children as early
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Fig. 3.2 Grade 2 students’ initial images of several unit fractions

as 6 years of age have been documented to have an intuitive (or implicit) sense of
the difference between linear and exponential situations at least in the context of
everyday, informal growth tasks in which they tend to produce a higher forecast for
exponential than for linear growth (Ebersbach, Van Dooren, Van den Noortgate, &
Resing, 2008).

My Algebra 1 class also found it interesting when we associated the expression
a0, where a �= 0, with an unfolded piece of paper, which meant one full layer with
no fold. Hence, when they simplified algebraic expressions such as (2x2yz)0 and
(2xy/5x2y−1)0, their typical response was “a piece of paper” that meant the value 1.
In this situation, perhaps it could be easily argued that the initial visual representa-
tion was pictorial and that the final one was propositional, that is, the form of the
visual transitioned from picture to a statement about number. However, there are
other mathematical situations in which it is not quite simply possible to determine
the actual visual in simple terms so that the issue of whether a visual is pictorial
or propositional becomes secondary or is difficult to assess for meaningfulness. For
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Fold a piece of paper into two equal parts once. Keep folding equally into two parts and record 

your results below.

Number of Folds Number of Layers of Paper

0

1

2

3

4

5

6

A. If you fold a paper for the seventh time, how many lay ers are there?

B. If you fold a paper for the ninth time, how many layers are there?

C. What does “row 0” mean in the table above? 

D. What does 2 n mean in terms of the above activity?

E. Jaime claims that 2n = 2 ⋅ n for any whole number n. Is he correct? Why or why not? 

F.  How do we use paper folding to show 3 0, 31, 32, 33, etc.? True or False: 3 m = 3 ⋅ m.

G.  How do we use paper folding to show 4 0, 41, 42, 43, etc.? True or False: 4 m = 4 ⋅ m.

Fig. 3.3 Paperfolding activity involving exponents

example, when my Algebra 1 students tried to explain how they would simplify a
rational expression such as (2/x) + (2/x2), those who were unsuccessful said “I don’t
see it,” which conveyed the difficulty of associating a corresponding image to the
expression, whether in words or in pictures. Even with the aid of a graphing calcu-
lator, their reaction on the graphical relationship between the two addends and their
sum never came close to their feeling of excitement when they used fraction strips
in initially simplifying, say, (1/2) + (1/4), which actually shares a similar procedural
structure with the given rational expression.

There are at least three kinds of visual activity relevant to school mathematical
learning. Level 0, the first one, is imaginal. It is rooted in individual experiences
and sense perception; it taps onto subjectively constructed or personally embodied
images and intuitions (Kitcher, 1983; Schnepp & Chazan, 2004) that engender learn-
ers to “entertain possibilities for action1” (Nemirovsky & Ferrara, 2009, p. 159).

1Two points are worth noting. First, Miller (1990) spoke about visualizing that arises from “non-
veridical perception . . . simply the experience of visualizing something . . . in the absence of an
actual object, scene, or person” (p. 4). For example, in (pure) mathematics, it is common among
mathematicians to visualize objects that have no corresponding physical existence. However, their
reification rests on an axiomatic, deductive system, which then allows us to classify them under
structured visual representations. Second, the manner in which we characterize Level 0 visual-
izing is different from Nemirovsky and Ferrara’s (2009) notion of mathematical imagination.
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The linguistic expressions used involve, at the very least, “indices, predicates, and
metaphors” (Bakker, 2007, p. 23). Mathematical intuition for Kitcher (1983) “serves
as a mode of basic knowledge” and is “a prelude to mathematical knowledge”
(p. 61). In imaginal activity, individual learners are provided with a basis in devel-
oping plausible reasoning, the domain of guessing, and creative mathematically
founded reasoning (Lithner, 2008). What is, thus, expected to occur among learners
in Level 0 visualizing is for them to construct in imaginals tentative and, in some
cases, surprising relations. Like Kitcher’s (1983) mathematical intuition, imaginals
do “not warrant belief, although [they] may play an important heuristic role and also
serve as part of a warranting process” (p. 61).

For example, the initial responses of the students in the study of Kotsopoulos
and Cordy (2009) reflect their imaginal ideas of soap bubbles in the absence of for-
mal instruction. Another example is taken from my sixth-grade class. When my
Cohort 1 students were learning to think about fractions in multiplicative terms
(e.g., 1/4 is one-half of 1/2; 5/7 means 5 copies of 1/7) by paper folding, the
class initially encountered a situation on halving that confused them. When I asked
them to fold a rectangular piece of paper into two equal parts to convey 1/2, they
inferred differences in the areas when the folding was done lengthwise, crosswise,
and diagonalwise. (Interestingly, my Grade 2 students experienced the same con-
ceptual difficulty.) This situation became a context for a Level 0 visualizing activity
when the students began to simultaneously draw on their paperfolding experiences
and intuition in establishing the same area for all three folds without entertaining
any formal recommendation that in effect told them how the fraction ought to be
visualized in the first place.

The second kind of visual activity is still basic but more structured than imag-
inals, that is, formational. Here, the “having (of) a visual experience” is a way
of reifying or producing a visual analogue of mathematical objects, concepts, or
processes in some structured image format. Hence, the “seeing” is loaded with
intentionality (Rodd, 2000, p. 238). The imaginal aspect in constructing a forma-
tional image lies in how a structured (say, culturally constituted) visual conveys the
impression of “at-homeness” that enforces itself “upon us as being true” (Kitcher,
1983, p. 61). Formational images could be drawn from any of the following con-
texts: prototypical; metaphorical, and; metonymic (Presmeg, 1992). For example,
my Algebra 1 and Grade 2 students used fraction strips (Fig. 3.4) in developing
one sense of fractions (i.e., as parts relative to a whole unit) that enabled them to
develop a prototype model of unit fractions. In my Algebra 1 class, the students used

I share their view that imagination causes individual learners to “entertain possibilities for action”
(p. 159), including the distinction they developed between pure and empirical possibilities with
the latter referring to actions drawn from empirical evidence and the former to actions based on
an unconditional acceptance of some assumptions. But then they went a step further in situating
“mathematical imagination” under pure possibilities that have all the qualities of “logical necessity
in all its deductive and inductive modalities” (Nemirovsky & Ferrara, 2009, p. 160). In my classi-
fication, what they consider to be mathematical imagination is a negotiated form of visualization,
which could be either formational or transformational in context.
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Fig. 3.4 Fraction strips
(http://www.superteacherwork
sheets.com)

a graphing calculator to obtain the graphical behavior of linear and quadratic func-
tions. In my Grade 2 class, the students drew sticks and dots to gain visual insight
into complex addition and subtraction processes with regrouping (Figs. 1.1 and
3.1).

Students in other studies have also been documented to use visual metaphors in a
formational sense. For example, Chiu (2001) lists images drawn from several stud-
ies that individuals employed in making sense of mathematical objects, concepts,
and processes. For example, (1) sets were perceived as containers (object); (2) a
polygon was viewed as a roundtrip path that starts and ends at the same location
(concept); and (3) multiplying two positive integers a × b were seen in terms of the
action of replacing the original a pieces with b copies (process). Cai (2000) doc-
uments American sixth-grade students’ predisposition toward drawing formational
images (versus their Chinese counterparts who were drawn to using alphanumeric
expressions) that enabled them to successfully solve process-driven problems. A
significant number of 151 Primary 5 children (mean age of 10.7 years) in a study
by Ng and Lee (2009) effectively employed a rectangular modeling approach sim-
ilar to the ones shown in Fig. 2.11a–c when they solved arithmetical problems
that involve part–whole and comparison relationships. When the 34 graduate stu-
dents in a study by Zahner and Corter (2010) were presented with six probability
problems, they “spontaneously” (i.e., with no prompt) developed schematic, picto-
rial, and nondiagrammatic (e.g., listing) “external inscriptions” or images in solving
them.

Hence, a visual activity of the formational kind in mathematics means having a
visual experience in which the primary goal involves, following Arnheim (1971) in
the opening epigraph, developing intentional conceptual relationships or a targeted
structural awareness of the relevant elements in an object, a concept, or a process.
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In formational activity, the imaginal forms relative to individual learners’ personal
or subjective experiences confront the visual representations that are valued by the
mathematics community (cf. Duval, 2000). Pylyshyn’s (2007) sense of formational
visualizing below captures the essence of what we consider to be visual-images-in-
the-wild:

“What?” I hear you say. “How about imagining an object described by basonic string theory
that has 25 dimensions?” “Okay,” I reply, “as soon as you show me what it looks like I will
imagine it.” That’s what imagining, in the sense of “visualizing,” means – it means having
a visual experience.

(Pylyshyn, 2007, p. 56)

The purposeful action of “showing what it looks like” could then facilitate a struc-
tured visual experience, that is, a visual representation in Goldin’s sense. For
example, when my Cohort 1 students were in sixth grade, we used two-sided col-
ored chips in making sense of the fact that a × −b = −ab, where a and b are whole
numbers, which then became our basis in establishing why −b × a = −ba = −ab
(by commutativity) and −b × −a = ba = ab (by patterning). In seventh grade,
Cohort 1 used a number line as a second approach in understanding why the prod-
uct of two negative integers had to be positive, which also meant teaching them the
appropriate way of applying the visual actions on the number line. In eighth grade,
both Cohorts 1 and 2 used algeblocks in reestablishing the double-negatives rule
for multiplication that also required them to model a correct sequence of concrete
actions with the algeblocks.

Soto-Andrade (2008) provides an interesting account of a visual experiment that
he conducted with his college-level students. Initially, he asked them to obtain the
sum of powers of 1/4, that is,
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Using a calculator, they estimated the sum to be about 0.332. He then asked them
what that value meant in visual terms. The visual images that the students produced
and shared with one another (Fig. 3.5a) provided them with a visual experience
that empirically illustrated why the series seemed to have a sum that is one-third
the area of one original square. Cellucci (2008) offers another visual interpretation
of the above series using an equilateral triangle (Fig. 3.5b). In all three figures,
the visual experience is tied to developing a visual understanding of the necessary
structural relationships that could not be immediately and conveniently accessed in
symbolic form.

Presmeg’s (1992) empirical work with 54 high school students and, more
recently, Ng and Lee (2009) in the case of 151 middle school students, however,
remind us of constraints in the use of formational images. When prototypical and
metaphorical diagrams are used in metonymic terms, which involve manipulat-
ing a concrete figural case as an instance of a more general relationship, students
might be misled into making false claims on the basis of the particular relations
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a

b

Fig. 3.5 a Students’ visual interpretations of
∞∑

n=1

(
1
4

)n
using a square (Soto-Andrade, 2008).

b A visual interpretation of
∞∑

n=1

(
1
4

)n
using an equilateral triangle (Cellucci, 2008)

they infer on the specific case. The most recent synthesis of research offered by
Owens and Outhred (2006) in relation to geometric objects and concepts also indi-
cate that even in relatively simple cases where students employ formational images
to help them learn mathematics better, they need to (1) learn to attend to the more
important aspects of such images; (2) overcome initial static perceptions in favor of
abstract dynamic ones; and (3) acquire appropriate (mathematical) conventions in
developing and labeling them both for practical (“better performance on problems”;
efficient and systematic labeling) and conceptual (“recognize critical and noncritical
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features”) purposes (pp. 90–97). Relative to the use of visual models in arithmetical
problem solving, Ng and Lee (2009) recommend that teachers may need to “offer
children a set of correct solutions” in order for them to “compare and contrast” with
the incorrect ones so errors are articulated and that they are assisted in “improv[ing]
upon their model drawings” (p. 311).

The third kind of visual activity is transformational, which may include either
an imaginal or a formational aspect. The above situation with my Algebra 1 stu-
dents and their experiences relative to the paperfolding activity in making sense of
exponents and various situations involving exponents provide a good example of
this transformational sense of visualizing in mathematical learning, which I classify
under the category of scenario visualization. Presmeg’s (1992) notion of pattern
imagery, that is, image schemes that embody “the essence of structure without
detail” (p. 603), falls under this category as well.

Arp (2008) writes:

Scenario visualization is a form of conscious cognitive visual processing that enables one to
select visual information while bracketing out irrelevant visual information. It also allows us
to transform and project visual images into future scenarios, as well as coordinate and inte-
grate visual information, so that the perceiver has a coherent picture of both the imagined
and real worlds.

(Arp, 2008, p. 165)

Arp (2008) provides a provocative telling of the history of advances in tool making
beginning with the hand ax to the eventual construction of a javelin from a sce-
nario visual perspective. He claims that the tools underwent several transformational
phases because of changes in, and better knowledge of, the immediate environment,
including anticipated possible scenarios that necessitated refinements in tool use and
tool characteristics. In scenario visualization,

(i)t is not the having of visual images that is important; it is what the mind does in terms
of actively selecting and integrating visual information for the purpose of solving some
problems relative to some environment that really matters.

(Arp, 2008, p. 116)

Scenario visualizing in mathematics occurs when students develop a visual strat-
egy in planning their succeeding steps toward solving a problem or when they are
in the process of developing an inference. By inference, we appropriate Norman’s
(2006) view that defines it as “a type of mental act whose outcome is a pos-
sible change in belief” (p. 18). For example, prior to formal algebra, which
utilizes alphanumeric symbols, Singapore and Japanese children learn to process
word problems using scenario visualization in the form of diagrams such as the
ones shown in Fig. 2.11a–c. In Fig. 2.12, Parker’s students use scenario visu-
alizing in solving problems relevant to percent increase and percent decrease,
which are typically solved symbolically in all prealgebra textbooks with the use of
variables.

Many metaphorical-based reasonings also reflect the use of scenario visualiza-
tion. For example, Chiu (2001) notes the prevalent use of process-driven metaphors
in the form of visual scenarios among the children and adults in her study when
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they tried to solve arithmetic problems involving positive and negative integers. My
precalculus class of 10th- and 11th-grade students developed an abstract graphi-
cal process for solving simple and complex polynomial inequalities that used their
knowledge of graphs of polynomial functions and an empty number line (Fig. 1.5c;
Rivera, 2007a). In my Algebra 1 class, their visual experience with a0, where a �= 0,
as conveying an unfolded piece of paper allowed them to infer the fact that a nonzero
base that is raised to 0 would always yield the numerical value 1, which they used in
follow-up tasks such as simplifying expressions like (2xy)0 − (3x)0 + 2(1/3y)0. Also,
when they used the transformation application program on their graphing calcula-
tors to scenario visualize transformations of graphs of linear and quadratic functions
(Fig. 3.6) in a dynamic manner, the visual experience enabled them to make gen-
eralizations about the graph of a · f (x ± b) + c relative to f(x), where f (x) = x and
f (x) = x2.

Suffice it to say, imaginal, formational, and transformational visualizing contexts
allow students to use visual images “to see the unseen” (McCormick, DeFanti, &
Brown, 1987, p. 1), in particular, “to see in relation” (Arnheim, 1971, p. 54).
However, developing an image of the “unseen,” whether internally derived or exter-
nally drawn, also depends on the content of the relevant mathematical knowledge
and the value accorded by the community that supports its construction. Referring
to Fig. 2.8, visualizing depends on whether the target object, concept, or process is
referential or operative. Most reference-based visualizing activities appeal to imag-
inal and formational images since the relevant content could easily be represented
in iconic terms, that is, the conceptual components of their structures have strong
physical fidelity with the corresponding visual components of the pictorial represen-
tation (see, e.g., Chiu, 2001). But in many cases of operative content, they appear
to defy simple categorizing in imaginal, formational, or transformational contexts
since the “seeing” that is involved is oftentimes hinged on an abstract process. A
classic extreme example of this situation is the case of irrational numbers.

In this section, we discussed in some detail the imaginal, formational, and trans-
formational contexts of visual activity in school mathematics. The next important

Fig. 3.6 Transformation graphs on the TI-84+
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issue involves clarifying sources of visual activity, which we link to the complex
nature of school mathematical knowledge.

2 Explicit and Implicit Knowledge in Mathematics

Hoffmann (2007) uses the following situation with a 4- or 5-year-old child in
pointing out a distinction between implicit and explicit knowledge:

When you ask [the] kid to count as far as [he or she] can, [he or she] might come to six
before it gets difficult. But ask [him or her] to count wood blocks and [he or she] might
come without any difficulties to 26 . . . . The disturbing question is: Does the child know
the numbers from 1 to 26, or does [he or she] not? If [he or she] knows the numbers, why,
then, is [he or she] not able to count them without having the wood blocks in front of [him
or her]? And if [he or she] does not know these numbers, it should be impossible to count
anything.

(Hoffmann, 2007, p. 185)

Through many years of my own work with learners from different age- and grade-
level groups on matters relevant to pattern generalization, I have on a number of
occasions found myself in a similar situation where interviewees would claim they
knew what was taking place in their patterns but were relatively unsuccessful in
describing them in a representational form that Lee (1996) refers to as algebraically
useful, that is, patterns whose structures could be conveyed by a direct formula. Even
Radford’s (2008) notion of algebraic generalization involving patterns necessitates
closure in the form of a direct expression.

The “disturbing question” is resolved, which Hoffmann explains in the context
of the counting child, once we make a distinction between implicit and explicit
knowledge. That is, the counting child has implicit knowledge of counting numbers
but could only demonstrate explicit knowledge – or cognitive ability – of count-
ing with the wooden blocks. In the context of my research, some interviewees
had implicit knowledge of patterns but harbored a constrained and less-developed
explicit knowledge or cognitive ability for pattern generalization in either Lee’s or
Radford’s sense.

Hence, a fundamental assumption in this book is that whenever we talk about
visual representations and visual structures in the context of mathematical cognitive
activity, we refer to the relevant explicit knowledge. Further, when we analyze an
individual’s cognitive ability or his or her cognitive activity, then we mean his or her
relationship with the relevant explicit knowledge, which furnishes him or her with
images that may or may not align with images he or she has in his or her implicit
knowledge. Implicit knowledge is located in the mind, whereas cognitive ability
or cognitive activity is situated in a cognitive system that has the nature of being
dynamic and distributed (in Magnani’s, 2004 sense). Two consequences are worth
noting. First, the phenomenon of having a variety of cognitive abilities could be
explained in terms of different environments in which cognition takes place. Second,
the following view by Giere and Moffatt (2003) can help explain both the important
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role and positive status (i.e., the veracity) of explicit knowledge in mathematical
cognitive activity:

[T]he importance of distributed cognitive systems is simply that they make possible the
acquisition of knowledge that no single person, or a group of people without instruments,
could possibly acquire. And combining representations in ever simpler forms makes it pos-
sible for individuals with only the power of a pattern-matching brain to comprehend and
appreciate what has been learned. This is a cognitive scientific explanation for how forms
of external representation can provide scientific results with the power to persuade others of
their veracity. . . . [R]esults do not come to be regarded as veridical because they are widely
accepted; they come to be widely accepted because, in the context of an appropriate dis-
tributed cognitive system, their apparent veracity can be made evident to anyone with the
capacity to understand the workings of the system.

(Giere & Moffatt, 2003, p. 305)

Drawing on the empirical work of Reber (1989), Hoffmann also notes that much
of implicit knowledge is far richer than, and is always ahead of, explicit knowl-
edge. But he also sees the development of cognitive ability to be a precondition
for developing implicit knowledge, which explains why “working with things –
concrete objects or representations – is far more important for the development
of knowledge than anything else” (p. 193). The transition from external to implicit
knowledge takes place through a process of internalization that is driven by repeated
experiences that are themselves rooted in cognitive activity.

Now that we have clarified the distinction between implicit knowledge and cog-
nitive ability or explicit knowledge, it certainly makes sense to think of cognitive
systems (1) in Peircean terms as semiotic systems whose explicit relationships can
be known through their signs and representations and (2) in a Freudenthalian con-
text as involving the progressive schematization of signs. In any cognitive system,
objects and relationships among them are explicitly known. Also, cognitive activity
involves processes that are either internal (mental) or external (social), or both. For
example, in the case of the counting child, when he or she competently counts with
the blocks, then he or she has a cognitive ability to count with blocks. When he or
she is able to count numbers on his or her own without the blocks, then he or she has
implicit knowledge of counting numbers. This particular situation exemplifies how
cognitive ability can precede implicit knowledge, in which case the latter knowledge
has clearly been abstracted from the concrete activity with the blocks. Certainly, we
can have an implicit knowledge of something, but considering the manner in which
we characterize the nature of cognitive ability, it depends on, and is constrained
by, the relevant concrete activity. For example, counting numbers does not require
a concrete activity, but counting with blocks does. Thus, we take it that learners’
fundamental source of visualization is drawn in cognitive activity, which involves
explicit knowledge.

When a child is able to count with blocks in cognitive activity, the knowledge
that he or she uses is considered collateral. Collateral knowledge is a Peircean
term that refers to those “forms of knowledge that remain hidden though being an
essential condition for a cognitive activity” (Hoffmann, 2007, p. 188). Also when
learners say they know something about an object, “the only thing we can know
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is that all knowledge about [the] object depends on the cognitive means that the
involved persons have at their disposal” (Hoffmann, 2007, p. 189). Thus, objects
are lifeworld-dependent in the sense that they make sense on the basis of hypothe-
ses and the “customary ways” in which people “structure the activities that take
place within” them (Hoffmann, 2007, p. 189).

Three important consequences are worth noting. First, we take a pragmatic
standpoint on foundational issues relevant to neurophysiological sources of visual
images. In Chapter 2, although I included internally drawn images as a source of
visualization, I meant for them to have an interpretive quality that can undergo exter-
nalization in cognitive activity and, thus, analyzed as “thoughts in signs” (Peirce,
1958b, 5.251) within a lifeworld-dependent context. That is, they make sense and
exist within a type of seeing that we shall refer to as epistemically drawn images.
Hence, the following provocative thoughts by Jacob and Jeannerod (2003) should be
interpreted as seeing from an organic point of view, which we oppose on pragmatic
grounds:

Many of the things human can see they can also think about. Many of the things they can
think about, however, they cannot see. For example, they can think about, but they cannot
see at all, prime numbers. Nor can they see atoms, molecules and cells without the aid
of powerful instruments. Arguably, while atoms, molecules and cells are not visible to the
naked eye, unlike numbers, they are not invisible altogether; with powerful microscopes,
they become visible. Unlike numerals, however, numbers – whether prime or not – are
simply not to be seen at all. Similarly, humans can entertain the thought, but they cannot
see, that many of the things they can think about they cannot see.

(Jacob & Jeannerod, 2003, p. ix)

Certainly, numerals are visual representations of numbers and, thus, could be seen
as such. But, in a lifeworld-dependent context – perhaps an imagined reality (fol-
lowing Malone, Boase-Jelinek, Lamb, & Leong, 2008) – one can choose to “see”
prime numbers, and all other types of numbers and numerical relationships for
that matter, in which case the corresponding visual representations are considered
interpretive signs based on some conceptual facts that perform a mediating role.
That is, they, including our experiences with them, become intelligible through
signs.

For example, in my Algebra 1 class, the students’ visual representation of a prime
number refers to a single rectangle whose only dimensions are 1 and the number
itself. This particular concrete model of a prime number allowed them to see how
it compared with a composite number that has at least two rectangles with differ-
ing dimensions of length and width. The Fibonacci sequence is another example
of a mathematical concept that mathematicians and nonmathematicians alike have
inferred, say, on the fruitlets of a pineapple, on a shell spiral, and in the family tree
of honeybees. In such cases, the concrete objects represent useful (and approximate)
images to individuals who perceive and sense the corresponding concepts either in
terms of facts about them or as mediated in some form.

In Dretske’s (1969) classification, visual representations in mathematics are sec-
ondary forms of epistemic seeing, which involve seeing facts relevant to the objects
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that can never be perceived in organic form. We manipulate, operate, and act on what
we construct to be their visual forms in the same manner as we would on their cor-
responding conceptual content or facts. Doing this allows us to develop and further
enrich the content of our explicit knowledge in cognitive activity. Grelland (2007)
has a useful term for this kind of cognitive action, that is, “linguistic empiricism,”
which takes into account the mutually dependent relationship between intuition and
formalism. In physics, especially, it is common practice to view the mathematical
component of a theory to be providing the formal structures that assist in calcula-
tions and the physical component to what is sensed by the “the mind of the scientist
(under the denotation of ‘physical intuition’)” (Grelland, 2007, p. 258). However,
while some physical phenomena could be easily imagined such as fluid and classical
mechanics, there are other phenomena that defy sense experiences such as energy
in classical physics, including some that are simply “unphysical” such as aspects
of electromagnetic field and quantum mechanics. In these latter cases, physicists –
in particular, theoretical (versus experimental) physicists in the sense of Jaffe and
Quinn (1993) – manipulate and perform experiments on the corresponding math-
ematical objects and their structures as a whole that then enable them to make
observations in relation to a proposed theory.

Second, we are now in a better position to talk about misperceptions (miscon-
strued perceptions) or aconceptions (the absence of a particular conceptual content
that matters to mathematics). Malone, Boase-Jelinek, Lamb, and Leong (2008) were
disappointed when a majority of 720 Australian students “misperceived” the correct
reflection of the vertical flag along the angled mirror shown in Fig. 3.7. The digital
responses were all drawn in the same screen panel that shows a good percentage
of the students producing an incorrect image. For Malone et al. (2008), the students
who exhibited a misperception “perceived via a single sensory modality (e.g., seeing

Fig. 3.7 720 Australian
students’ response on a
reflection task (Malone et al.,
2008)
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in mathematics or hearing in music) something that (was) different from reality or
an imagined reality (e.g., visualizing a rotated shape in mathematics)” (p. 1).

However, what constitutes “reality” is relative to one’s position in this reality,
whether real or imagined, which would then force us to dwell on irresolvable,
philosophical ontological issues. In place of reality, we focus on cognitive activ-
ity in a lifeworld-dependent context, which addresses issues relevant to the content
of visualization as it is routed in explicit knowledge. Hence, when students mis-
perceive in cognitive activity, then we can assess the difference between their
perceptions and imaginals and the customary habits, hypotheses, and shared collat-
eral knowledge and (visual) representations that have been violated in the lifeworld
context.

Pursuing an alternative analysis of those students who produced “incorrect”
images in Fig. 3.7, perhaps the issue is not a simple matter of misperception but
a lack of explicit knowledge or expectation in terms of some anticipated model
of perception that students, as a matter of fact, acquire through more learning in
cognitive activity. Oftentimes, the “reality” that Malone et al. (2008) refer to privi-
leges institutional mathematical knowledge, which tends to assume notions that are
counterintuitive to knowledge drawn from everyday objects and relations.

The reflection concerning lack of explicit knowledge came to me at least on two
different occasions with two different grade-level groups whose thoughts on a few
patterning tasks were assessed prior to formal instruction. First, in sixth grade, a
good number of my Cohort 1 students extended the pattern in Fig. 2.6a in the same
manner shown in Fig. 3.8. When a colleague and I reported our results, we received a
concern from a reviewer who thought that patterns with three to four initial instances
were not well defined and that our results were suspect on the basis of the students’
misperceptions about such patterns. In other words, the reviewer’s perception of
Fig. 2.6a pattern involved several different possible extensions, which evidently was
not in the repertoire of existing collateral knowledge of our Cohort 1 of sixth graders
who were limited to just one way of seeing the pattern.

Second, Table 3.1 shows the results drawn from individual clinical interviews that
I conducted with my Grade 2 class relative to the semi-free patterning task shown
in Fig. 3.9 prior to formal instruction, indicating nine different extensions that were
all flawed primarily because the students failed to see and articulate a reasonable
structure for their constructed patterns. None of them paid attention to the shapes
of the two initial stages in the semi-free pattern. Even when the interviewer asked
them to determine what stayed the same and what changed from one step to another
in their pattern, none actually saw any kind of change, which prevented them from
establishing the correct value in stage 10 of their pattern.

The common pattern structure in Fig. 3.8 among my Cohort 1 students and the
lack of any pattern structure in the case of the Grade 2 class in Table 3.1 could
be interpreted not in terms of misperceiving patterns but a lack of more explicit
knowledge about how such patterns could be dealt with. In fact, when I asked a
subset of those sixth graders in eighth grade to construct and establish a pattern
relative to the task shown in Fig. 3.9, they produced several different ones that were
all consistent and valid (Fig. 3.10). Hence, visualizing images and representations
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Pattern from Figure 2.6a

Tilly’s Extension:

Anna’s Extension:

Shayna’s Extension:

Duy’s Extension:

Fig. 3.8 Four sixth-grade students’ extensions of the pattern in Fig. 2.6a

has to take into account the lifeworld-dependent context of objects, concepts, and
processes that are learned and negotiated in cognitive activity.

The preceding situations with my Algebra 1 and Grade 2 classes lead us to our
next point. Third, many reported studies in visualization and school mathematics
learning describe different types of visualization and visual strategies as they occur
in particular formational or transformational contexts (see, e.g., the different types
of imagery identified in Brown & Presmeg, 1993; Dörfler, 1991; Presmeg, 1986; the
different types of visual strategies in Campbell, Collis, & Watson, 1995; the local
versus global kinds of visual reasoning by Hershkowitz, Friedlander, & Dreyfus,
1991; and the range of imagery forms in the context of a spatial problem-solving
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Table 3.1 Grade 2 students’ extensions relative to the semi-free task shown in Fig. 3.9 (n = 21)

Student Responses Frequency

1, 3, 4, 5, 6, could not do stage 10 10
1, 3, 3, 4, 5, could not do stage 10 2
1, 3, 5, 7, 9, could not do stage 10 2
1, 3, 3, 4, 5, stage 10: 10 2
1, 3, 5, 6, 7, could not do stage 10 1
1, 3, 1, 1, could not do stage 10 1
1, 3, 6, 9, 19, could not do stage 10 1
1, 3, 6, 10, 12, could not do stage 10 1
1, 3, 1, 5, could not do stage 10 1

Below are the first two stages in a growing pattern of squares. 

Stage 1

For Grade 8 Students

1. Continue the pattern until stage 5.

2. Find a direct formula in two different ways. Justify each formula.

3. If none of your formulas above involve taking into account overlaps, find a direct 
formula that takes into account overlaps. Justify your formula.
4. How do you know for sure that your pattern will continue that way and not some other way?

5. Find a different way of continuing the pattern and obtain a direct formula for this pattern. 

For Grade 2 Students:

Let us begin with a square and call it step 1. 

Now suppose step 2 looks like as shown. How many squares do you see? 

1. How might step 3 appear to you?  Show me with the blocks. 

2. Show me steps 4 and 5. How many squares do you see? 

3. Pretend we don’t have any more blocks and suppose we skip steps. If someone asks 
you how step 8 looks like, how might you respond? Can you describe or draw for me?  
4. If someone asks you how step 10 looks like, how might you respond? Can you 
describe or draw for me?

Stage 2

Fig. 3.9 Semi-free pattern task
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Twelve Responses with Formula s = 2n – 1

Four Responses with Formula That Followed the Form B = 2s – 1

One Response with the Formula s = 4x – 3

One Response with the Formula s = 2n – 1

Fig. 3.10 Eighth-grade students’ extensions of the pattern task in Fig. 3.9

task by Owens, 1999). While such studies provide important insights into the perva-
siveness of visual actions in mathematics, the most crucial issue at this time is how
to account for progressive growth in visual representation, say, in transition accounts
from explicit to collateral to implicit knowledge. As students’ thinking about mathe-
matical objects, concepts, and processes evolves from the referential to the operative
(Fig. 2.8) or from everyday ways to mathematical ways of seeing, the “centrality
of visual reasoning” (Alcock & Simpson, 2004, p. 1) in such epistemically drawn
images or secondary forms of seeing is highlighted and sustained in a develop-
mental manner. Figure 3.11a–c, for example, illustrates how Gemiliano’s formal
knowledge of subtraction with regrouping evolved over a span of three phases, with
the alphanumeric phase (Fig. 3.11c) drawing and relying on the earlier dominant
visual phases (Fig. 3.11a, b). Figure 3.11a encouraged Gemiliano to merely engage
in a count-all counting strategy in the units place (1, 2, 3, . . ., 10, 11). In Fig. 3.11b,
he employed a count-on strategy instead (10 + 1) that allowed him to understand
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a

b

c

Fig. 3.11 a Gemiliano’s initial visual regrouping with circles. b Gemiliano’s second visual
regrouping with a stick. c Gemiliano’s numerical regrouping method

the standard numerical algorithm. We consider Fig. 3.11c to be an example of a
visuoalphanumeric representation that involves seeing the visual in the numeric.
Another evidence of this progressive view is shown in Fig. 2.4a–c, which shows my
Algebra 1 students’ diagrammatic method for factoring quadratic trinomials.

3 Mathematical Objects in Cognitive Activity

So, what are mathematical objects in cognitive activity? At the very least, they are
all lifeworld-dependent objects – that is, they exist insofar as customary ways and
hypotheses allow them to get reified in cognitive activity. In reifying, all objects are
loaded with intentional content, which means a relationship exists between an object
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and its conceptually assigned meaning. Hence, within a lifeworld-dependent con-
text, objects are symbols that stand for something. They offer, in a Gibsonian sense,
affordances that cause those who use them to entertain, perform, or perceive some
probable action.2 However, we note that it is what individuals do with them through
purposeful symbolic action in cognitive activity that they become (fully) symbolic
(Rakoczy, Tomasello, & Striano, 2005; Uttal, Scudder, & DeLoache, 1997). We clar-
ify the psychological dimension after we identify the kinds of mathematical objects
that students deal with in cognitive activity.

There are at least five types of mathematical objects, namely: concrete objects;
graphic or virtual objects; relational objects; epirelational objects; and alphanumeric
objects.3 At the very least, they exist as models that, in Fischbein’s (1977) sense,
have been purposefully constructed to “have an heuristic capacity as scientific mod-
els do” (p. 155) – that is, the “capacity to stimulate the process of reasoning and to
permit its progress by their own means” (p. 164) – with roles that include “facili-
tat(ing) the interpretation of certain given facts” and providing “help [in] solv[ing]
problems according to the original facts” (p. 155).

What is common across all the object types is the fact that they “are genera-
tive, internally consistent, and internally well-structured” (Fischbein, 1977, p. 155);
hence, they are useful visual representations (following Goldin, 2002). Fischbein
(1993), in a later paper, gives these models or objects the character of being gen-
eral representations in the sense that, while they may appear to refer to particular
concrete objects or mental images, they really are not. For example, when we manip-
ulate a certain geometric object and make a claim about its shape, we are, as a
matter of fact, referring to the relevant infinite class of objects (p. 141), that is, what
Norman (2006) considers to be the representational scope of the object (p. 30).
Also, the general representational quality of the objects enables learners to develop
structural awareness of the corresponding concepts or processes.

Concrete objects are those physical objects and tactile manipulatives that are
found in almost all mathematics classrooms. They are primarily used to assist stu-
dents gain access to abstract concepts and, in Dickson’s (2002) words, “test their
honesty” (p. 221) by routing the students to familiar and interesting objects. For

2Gibson (1986/1979), of course, was referring to visual perception involving everyday objects in
a person’s (or an animal’s) environment. Land, for example, naturally affords particular kinds of
animals to physically move or pose in ways that adapt to their intentions. In the case of mathemat-
ical objects, visual affordances of objects require an interpretive act of discerning and constructing
some intention relevant to the objects.
3Begle’s (1979) notion of mathematical objects had him classifying various kinds of mathematical
ideas, as follows: (1) facts (notation-based and deduced ones); (2) concepts; (3) operations (assign-
ment of meaning from object to object); and (4) principles (relationships). Leushina (1991) also
wrote about mathematical objects but in the context of visual aids. Leushina’s classification of aids
depends on “how the surrounding reality is reflected,” as follows: (1) natural; (2) representational;
and (3) graphic. My notion of mathematical objects does not conflate object and the meanings,
associations, and ontological sources we derive from them. I leave aside conceptual meanings and
intentions in favor of what I consider to be the raw dimension in which inscriptions and physical
or material manifestations generally are reified forms of their ideal referents.
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example, in my Algebra 1 class, the students used algeblocks to learn simple poly-
nomial expressions and operations (Fig. 2.2). In my Algebra 1 and Grade 2 classes,
the students used fraction strips (Fig. 3.4) to learn part–whole relationships and
establish rules for combining fractions. Binary chips are also popular in middle
school classrooms and are used to represent positive and negative integers. In geom-
etry, three-dimensional solids and expertly constructed plaster models are used to
describe parts of solids and surfaces and relationships between and among them.
In my Grade 2 class, the students initially worked with pattern blocks to help them
perform composition and decomposition of shapes. Overall, the tactile dimension
in all concrete objects enables learners to “experience” and “apprehend” the “inte-
grated idea” of their total nature. Further, their physical character, as Dickson (2002)
has eloquently pointed out, “relates to us as physical beings. Only the physical
object has life. Only the physical object has the power to resonate with our lives”
(p. 221).

Graphic and virtual objects are objects that are generated with the use of tech-
nological tools such as applets, animations, virtual-based manipulatives, graphs of
algebraic functions on a graphing calculator, and geometric objects drawn on com-
puter graphics software like curves and surfaces in single- and multi-object graphics
worlds. Palais (1999) points out the significance of computer-generated images in
not only allowing computers to “produce such static displays (i.e., the concrete
objects) quickly and easily, but in addition it then becomes straightforward to create
rotation and morphing animations that can bring the known mathematical landscape
to life in unprecedented ways” and help “obtain fresh insights concerning complex
and poorly understood mathematical objects” (pp. 647–648). Also, compared with
static objects, Taylor, Pountney, and Malabar (2007) point out that the “dynamic,
evolving process” in most animations helps students “construct mental models of
various ‘processes’ . . . as well as the details of calculations” (p. 251). However,
they also stress the need for an effective combination of animation and interaction
in mathematical learning.

Relational objects are diagrams or inscriptions that model a structure, display
relationships, express concepts and (hypostasized) abstractions in some detail,
and facilitate problem solving, reasoning, and discovery (Dörfler, 2007; Glasgow,
Narayanan, & Chandrasekaran, 1995; Tversky, 2001). For example, Ng and Lee
(2009) characterize the rectangular models used in the Singapore mathematics
curriculum for problem solving (e.g., Fig. 2.11a–c) as “visual analogues that cap-
ture all the information” relevant to the problems and whose structures are “made
overt” through the rectangles that explicitly indicate the necessary relationships (pp.
284–285). Relational objects appear in schematic form with labeled components
and clearly defined spatial relations among the components. Additional exemplary
examples include those figures that accompany geometric theorems, which express
relationships between vertices and segments in a particular way (e.g., Fig. 2.17).
Abstract algebra, statistics and data analysis, discrete mathematics, design theory,
graph theory, and real analysis use a significant amount of relational objects.

Epirelational objects pertain to objects that are known through special relation-
ships that are inferred among their parts. For example, π is an epirelational object
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whose approximate value could be visualized by physically measuring and calculat-
ing the ratio of the circumference and diameter of a circle. The whole number part
in π can be visually verified by initially measuring the length of the diameter of a
circle with a piece of string and then showing that its circumference is slightly more
than three times the diameter by tracing three copies of the string on the circumfer-
ence (see Fig. 3.13a). Phi, φ, whose exact value is (1 + √

5)/2, is another example
of an irrational number that could be visualized by obtaining the ratio of the length
and width of a Golden Rectangle (see Fig. 3.13b). Visualizing such ratios requires
inferring particular relationships between parts unlike, say, every square root of a
nonperfect square number that could be easily depicted by taking the length of
the segment corresponding to the hypotenuse of the relevant right triangle. Many
analytic concepts such as functions (try f (x) = 1 if x is rational and f (x) = 0
otherwise), the integral, and continuous and differentiable functions have no corre-
sponding canonical images that could capture their complex nature as a whole in
sufficient form (Giaquinto, 1994).

Alphanumeric objects refer to variables, numerals, and combinations of vari-
ables and numerals that are used to describe any of the above objects. For example,
algeblocks (Fig. 2.2) as concrete objects could be expressed alternatively as poly-
nomials. Most algebraic and transcendental functions are relational and/or graphic
or virtual objects that have corresponding alphanumeric descriptions in the form of
equations. Kirshner and Awtry (2004) note the “effects of visual salience” (versus
the associated conceptual content) of alphanumeric forms and rules in mathematics
learning, which could be one way of explaining students’ errors when they manip-
ulate symbols in algebra. “Visually salient rules,” Kirshner and Awtry point out,
“have a visual coherence that makes the left- and right-hand sides of the equa-
tions appear naturally related to one another” (p. 229). For example, the identities
a(b+c) = ab+ac, (xy)m = xmym, and (a/b)(c/d)=ac/bd (b, d �= 0) appear to be visu-
ally salient for many students, while the identities (a + b)2 = a2 + 2ab + b2, x0 = 1
(x �= 0), and (a/b)/(c/d)=ad/bc (b, d �= 0) are not. Drawing on their empirical work
with 114 Grade 7 students (mean age of 12 years) who have not had any formal
instruction in algebraic rules, Kirshner and Awtry found that students tend to ini-
tially engage in “visual pattern matching” rather “immediately and spontaneously”
(p. 243). Further, they tend to overgeneralize the “context of application” (p. 246) of
visually salient rules (e.g., extend the power rule (xy)2 = x2y2 to (x+y)2 = x2 +y2),
which does not appear to be the case with less and nonvisually salient ones because
the latter type “forces students to attend more fully to the structural descriptions”
(p. 246).

The quadratic formula, x =
(
−b ± √

b2 − 4ac
)

/2a, which assists in obtaining

the roots of a quadratic equation of the type ax2 + bx + c = 0 (a �= 0), exempli-
fies a type of object that is both alphanumeric and epirelational. When the ancient
Babylonians sometime in 1700 B.C. dealt with quadratic equations of the simple
type x2 + bx = c, they, in fact, considered it to be a visual (i.e., geometric) problem
(Katz, 1999, pp. 27–28). The epirelational aspect arises in the visual demonstra-
tion of the solution, which involves the following steps below (Fig. 3.12a is the
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Fig. 3.12 a Visual demonstration of the quadratic formula (Katz, 1999, p. 28). b Visual and
alphanumeric models for solving simple quadratic equations
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corresponding generalized geometric model and Fig. 3.12b is a particular instance
of a visual solution to a quadratic equation):

(1) The equation in geometric form means we have an original figure O that consists
of a square having side x and a rectangle having dimensions b and x with a
combined area of c units.

(2) Take half of b, b/2, and then reconfigure O so that the two smaller rectangles
are on two adjacent sides of the square.

(3) Add a small square to O having side b/2 and, thus, area b2/4 to complete the
new square N with dimension (x + (b/2)).

(4) Add b2/4 to c.
(5) Take the square root of the value obtained in step 3 in order to obtain the length

of the side of square N and do the same process in step 4.
(6) Subtract b/2 to obtain the correct value of x.

The visual power of the geometric demonstration is actually in steps 2, 3, and 5. In
taking half of b and reconfiguring O so that the two halved rectangles now appear on
two adjacent sides of the original square, we actually obtain N with side (x + (b/2))
by necessarily adding a small square with area b2/4. Further, applying the square
root process necessarily helps in determining the length of the side of N.

Drawing on my work with elementary and middle school children and under-
graduate students, something more actually needs to take place between learner
and object. Uttal et al. (1997) and Rakoczy et al. (2005) point out that compre-
hending objects “as symbols rather than as substitutes for symbols” (Uttal et al.
1997, p. 37) and symbolic action, respectively, are necessary components in any
interaction between learner and object.

Uttal et al. (1997) used a scale model activity to assess whether children between
2.5 and 3 years of age would see a relationship between a scale model of a room
and the actual room in the context of a retrieval task. In the activity, a child is
shown a situation in which an experimenter hid a small version of a toy in the
scale model. The child is then brought to the actual room to locate the larger
version of the toy. Next, the child goes back to the scale model to retrieve the hid-
den toy. For Uttal et al. (1997), the scale model is a symbol for the actual room
in the sense of the former “standing for” the latter, and they interpret children’s
success in the retrieval task as an indication that the children are able to compre-
hend the symbolic and abstract relationship between the scale model and the actual
room.

For Rakoczy et al. (2005), when children perform symbolic action on an object,
it means they are acquiring “processes” relevant to “cultural learning” on the basis
of their “nascent understanding of intentional action and on cultural scaffolding”
(p. 69). Beyond the view of Uttal et al. (1997) in which objects are symbols,
Rakoczy et al. (2005) point out that “it is people who mean and refer, using symbols
as their instruments for doing so” (p. 70). This reminds me of the Peircean concept



84 3 Visual Roots of Mathematical Cognitive Activity

of interpretant that oftentimes gets lost in semiotic accounts of sign or symbol for-
mation that tend to dwell exclusively on relationships between a signifier (object)
and signified (referent). The notion of interpretant conveys the importance accorded
to an individual’s personal meaning, but Rakoczy et al. (2005) situate such meanings
in cultural activity and load objects with “intentional affordances”; what children do
with objects is reflective of what they intentionally read and imitate from others in
social activity. Further, while the objects above, except in most cases of virtual and
epirelational objects, may have natural meanings associated with them by virtue of
“causal and covariational regularities in the external world” (p. 70), all symbolic
actions are nonnatural in the sense that

Exploring Pi
a

A. Draw a big circle on a construction pad. Construct a diameter and use a piece of string 
to measure its length. 

1. How many copies of the string do you need to measure the “perimeter” of the circle? 
Fill in the blank: The circumference of a circle is slightly more than ______ times its diameter.

2. Now draw two other circles having different diameters and follow the same procedure 
above. What can you infer about the circumference of a circle relative to its diameter?

B. You will need to measure at least 10 different circular objects.  Carefully measure the 
circumference of each object with a piece of string.  Then use a metric ruler to measure 
the length of string in millimeters.  Also measure the diameter of each object in millimeters. 

Create a spreadsheet with three columns.  In column A, enter the circumferences of the 
items you measured.  In column B, enter the diameter.  In column C, create a formula for 
the value of  π using the circumference and diameter.  (= A1/B1)   

Your spreadsheet should look like this:   

A B C
1 27 8 3.375
2 13 4 3.25
3

Use your spreadsheet to answer the following questions. 

1.  What is the value of   used by your spreadsheet?  

2.  How close are your calculations to the actual value of π?  To how many decimal 
places are your calculations correct? 

3.  What could cause your calculations of    not to be exact?  

4.  What could make your calculations more exact? 

5.  Suppose you created another spreadsheet with the same columns as this one.  The 
new spreadsheet calculates the diameter when given the circumference and the value of π. 
What formula would you enter in column B? 

6.  If you create another spreadsheet that calculates the circumference when given the 
diameter and the value of π, what formula would you enter in column A? 

Fig. 3.13 (continued)
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1. In rectangle ACDF below, AF = CD = 2 units. Show that rectangle ACDF is a Golden 
Rectangle by following the steps below.

A B C

F E D

a. Consider the 2 x 2 square ABEF. Locate the midpoint of FE and label this point M. 

b. Draw MB  and obtain its length.  

c. Verify with a ruler that MB  and MD  have the same length. Note that another way of
verifying this is to see that diagonal MB  has been projected onto MD     . 

d. Obtain the ratio of the length FD  to the width DC . This verifies that rectangle ACDF is
a Golden Rectangle.    

2.  Using the same figure above, show that rectangle EDCB is also a Golden Rectangle.  

3. Draw a 4 x 4 square S. Construct a rectangle R that will be joined to S on one of its 
sides so that the resulting (bigger) rectangle B is a Golden Rectangle. 

b. Verify that B is indeed a Golden Rectangle.

4. Generalize. Begin with a square whose side has a length of x units. Show how we can 
construct a rectangle on one side of the square so that the resulting rec
Golden Rectangle. Then verify that the resulting rectangle is indeed a Golden Rectangle. 

tangle is a 

b

Fig. 3.13 a Middle school level activity exploring π (Curriculum and Development Division
(2008) and http://stamford.region14.net/webs/greesonl/upload/pi_handout.pdf). b Algebra 1 activ-
ity exploring φ

they are not out there in the world, but rather are socially constituted through the way
persons use and interpret them. Symbols are objects with derived intentionality that is con-
ferred on them through the attitudes, actions, and practices of persons that possess intrinsic
or original intentionality.

(Rakoczy et al., 2005, p. 70)

What should be clear at this stage is that mathematical objects are visual repre-
sentations in some way or another. Concrete, graphic and virtual, and relational
objects are externalized as figures in some format, while alphanumeric objects
utilize everyday numerical and alphabets. Most epirelational objects involve a con-
structive process in which case the visual experience is felt through a complex
synergy among elements in several dimensions. For example, the two activities
in Fig. 3.13a are often used in middle school mathematics classrooms that allow
students to visually construct the idea that π exists as a constant ratio for any num-
ber of circles with a known circumference and a given diameter. Figure 3.13b is
an interesting Algebra 1 activity that provides students with a visual experience
of simultaneously constructing Golden Rectangles and verifying that φ, which is
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approximately equal to 1.618, is indeed the length-to-width ratio of such rectan-
gles. In both activities, the elements involve the use of alphanumeric and concrete
objects. Further, the reification process involved in the development of the corre-
sponding visual representations requires students to pay attention to the associated
conceptual meanings that are purposefully constructed through instrumental action.
In other words, they need to act on them in ways that share the intentions of, say,
the lifeworld-dependent context that allow those objects to exist in the first place.

4 Mathematical Concepts in Cognitive Activity

If all mathematical objects convey conceptual content, then what is a mathemat-
ical concept? Mathematics education researchers have talked about the nature of
a mathematical concept in several different ways; however, in light of the overall
goal in this book, we focus on the definitions suggested by Davydov (1990) and
Fischbein (1993). We begin with two powerful perspectives on concepts that we
assume, that is, the notions of (1) concept image and concept definition by Tall and
Vinner (1981), which Fischbein (1993) uses in constructing his version of a figural
concept, and (2) conceptual fields by Vergnaud (1996, 2009), which focus on the
triad of scheme, situation, and linguistic/symbolic representations that characterize
concept development.

For Tall and Vinner (1981), a conceptual image refers to “the total cognitive
structure that is associated with the concept, which includes all the mental pictures
and associated properties and processes. It is built up over the years through expe-
riences of all kinds, changing as the individual meets new stimuli and matures”
(p. 152), while a concept definition takes the shape of “words used to spec-
ify that concept” (p. 152). Concept definitions produce concept images and are
acquired in several different ways (through rote work or in some meaningful con-
text) or evolve as a personal reconstruction that may differ from a formal concept
definition.

For Vergnaud (1996), his conceptual field refers to “a set of situations, the mas-
tering of which requires several interconnected concepts. It is at the same time a
set of concepts, with different properties, the meaning of which is drawn from this
variety of situations” (p. 225). Thus, concepts take meaning in a complex domain
such as space that involves knowing and understanding the relevant qualitative and
quantitative dimensions.

While the above definitions of concepts in mathematics acknowledge the crucial
role of structures or situations in giving meaning and form to the relevant concepts,
Davydov and Fischbein offer perspectives that address the relationship between
object and concept in more explicit terms.

Davydov (1990) initially analyzed the meaning of concepts from an empiri-
cal perspective in which generalizations and (hypostasized) abstractions take place
through a process that surfaces essential common attributes among objects. He
then critiqued the empirical model because it favored the sequence of perception–
conception-critique that he found problematic in many aspects such as the phases
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being viewed separately with no guarantee of a successful transition or passage from
one phase to the next. In the sequence, perception provides “the raw material” that
is drawn from “isolated, sensorially perceived objects and phenomena in the world
around us” (p. 17), while conception signals the stage in which visual images are
perceived, compared, and captured in verbal form. A conception is marked by the
acquisition of important, primary, fundamental, and general attributes drawn from
a set of objects and carefully delineated from, and compared with, secondary, indi-
vidual attributes. Expectedly, a concept evolves after all the attributes have been
ordered and the important ones have “become genuinely abstract – abstracted from
any particular forms of their existence” (p. 18). A concept, in its final form, is thus
seen as a nonvisual, abstract universal, and rational generality (p. 246). A typical
example of this empirical approach is the manner in which children’s concepts of
numbers, properties, and operations are oftentimes depicted, that is, they initially
occur when the children begin to count discrete objects, which they then combine
in ways that allow them to induce the relevant properties and operations.

Dayvdov (1990) developed a dialectical model as a counterstance to the obser-
vation that language emerges from empirical thought as a result of the “method
of obtaining and using sensory data” (p. 248). For him, thought is not nakedly
empirical but “is rational cognition” (p. 248). He writes:

Consequently, with respect to the activity of social man in general it is impossible to apply
the category of “sensory cognition” as a particular and special level that precedes “rational
cognition.” Cognition on the part of socialized humanity acquired a rational form from the
very beginning.

(Davydov, 1990, p. 248)

In light of the above assumptions, Davydov does not distinguish by level between
the sensory and the rational. This explains why he considers a concept as a concrete
(hypostasized) abstraction, that is, it is an instance that has properties of being a
particular case and containing a universal property. He writes:

A concept functions here as a form of mental activity by means of which an idealized
object and the system of its connections, which reflect in their unit the generality or essence
of movement of the material object, are reproduced.

(Davydov, 1990, p. 249)

Further, we come to know the relevant properties and attributes of this ideal object
and relationships among ideal objects through “cunning” that allows us to

reveal the properties of objects and recreate relationships and connections with one another
through them. One thing becomes a means of embodying the properties of other things,
functioning as their standard and measure. ...Different symbol systems (materials ones,
graphic ones) are means of “standardizing” and, thus, idealizing material objects, means
of translating them to a mental level. . . . The functional existence of a symbol involves
its . . . being a means, a tool for portraying the essence of other sensorially perceived things
– that is, of their universal [essence] . . . . Disclosure and expression in symbols of the medi-
ated being of things, of their universality, is a transition to the theoretical reproduction of
reality.

(Davydov, 1990, p. 251)
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Davydov’s (1990) view of concept as concrete abstraction shares views offered by
Mandler (2007, 2008) in relation to the “highly global, rather sketchy and abstract”
nature of object-concepts observed in infants. That is, when infants initially confront
an object, they tend to pay less attention to details since they appear to be more
interested in what the object does in some context in which it is seen. Through more
experiences and over time, a detailed characterization of the object is constructed.

Davydov’s notion of concrete abstraction was, in fact, the basis of an experimen-
tal curriculum he developed with Russian colleagues that focused on demonstrating
the possibility of an “ascent from the abstract to the concrete” (p. 355) or, in
Mandler’s (2008) sense, a “top-down” approach to concept formation. In the first
semester of first-grade students’ mathematical experiences, for example, they did
not deal with the concept of numbers at all but came to know facts about quantity
by “singl(ing) it out in physical quantities and becom(ing) familiar with its basic
properties” (p. 359). They also learned to compare things (i.e., “more” to “less”) in
relation to an identified unit of measure and eventually transitioned to the use of let-
ters and (relational) symbols. Thus, formal mathematical concepts emerged on the
basis of the students’ informal, everyday experiences that were rooted in the visual
and the concrete.

Davydov’s (1990) beginning approach to numbers among young children echoes
basic findings in current psychological research that confirm the initial structure
of preschool children’s number sense as comprising of protoquantitative concepts
that are not numerically precise. For example, they “express quantity judgments in
the form of absolute size labels such as big, small, lots, and little” (Resnick, 1989,
p. 162), which they also use on tasks that involve making comparisons that they
accomplish at a perceptual level.

A similar approach to concept acquisition, development, and formalization can,
in fact, be done in the upper grades. For example, in my Algebra 1 class, the stu-
dents initially explored simple polynomial expressions as volume quantities through
algeblocks. Next, they compared quantities and saw differences between and among
cubes and right rectangular prisms of various dimensions. The quantitative experi-
ence allowed them to see differences, say, between expressions x2y and xy2 that later
became their basis in understanding the significance of a unit – that is, the ideal
object – in adding and subtracting polynomials (see Sophian, 2007, pp. 64–83 for
an interesting interpretive analysis of the concept of a unit based on the El’konin–
Davydov curriculum). Hence, for them, it made sense to combine, say, 3xy2 − 5xy2

on the basis of seeing xy2 as a common unit unlike the case of, say, 3xy2 + 3x2y that
involves two different units. Further, it was their clear concept of a unit drawn from
their experiences with the algeblocks that enabled them to make sense of adding
and subtracting rational and radical algebraic expressions later in the year. To illus-
trate, when they simplified rational expressions in both arithmetical (e.g., 8/3 − 2/3)
and algebraic contexts (e.g., (1/x) + (1/x2)), they initially parsed the expressions
by identifying a common unit, which also explained the significance of finding a
least common denominator (see pp. 218–220 of this book). The activity in Fig. 2.9b
uses

√
2 as the basic unit that enabled them to perform operations involving

√
2.

They also used the unit concept in making sense of basic transformations of graphs
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involving linear and quadratic functions. With the use of a graphing calculator, they
compared the graphs of g(x) = a · f (x ± b) ± c with the basic “unit” graphs of
f (x) = x and f (x) = x2.

Fischbein’s (1993) notion of a figural concept fuses both object and concept in a
way that is compatible with Davydov’s (1990) view of ideal objects and his critique
of the empirical sequence. In mathematics, we do not simply conceptualize from a
perceptual image and then develop a concept in words since “images and concepts
interact intimately” (Fischbein, 1993, p. 145), especially in geometrical situations.
Fischbein (1993) writes:

Is the course of the reasoning process determined essentially by conceptual constructions
(symbolized or mediated by imaginary means) or vice versa: is it the play of images which
pushes forward the reasoning process in its creative attempts? The most plausible hypoth-
esis seems to be that we deal in fact with one game in which active conceptual networks
interact with imaginative sources. Moreover, we have reasons to admit that, in the course of
that interplay, meanings shift from one category to the other, images getting more general-
ized significance and concepts largely enriching their connotations and their combinational
power.

(Fischbein, 1993, p. 145)

Figural concepts are, thus, “simultaneously conceptual and figural” (Fischbein,
1993, p. 160); they are “abstract, general, ideal, pure, logically determinable entities,
though they still reflect and manipulate mental representations of spatial properties
(like shape, position, metrically expressed magnitudes)” (Fischbein, 1993, p. 160).
Further, we work with an image on the basis of what is allowed by the corresponding
concept. Fischbein (1993) also points out that the development of figural concepts,
like Davydov’s idealized objects, “is not a natural process” (1990, p. 161) and, by
nonnatural, it conveys the same meaning as Rakoczy et al. (2005) who trace such
processes as “not out there in the world, but rather are socially constituted through
the way persons use and interpret them” (p. 70) in a lifeworld-dependent cognitive
activity.

5 Visual Thinking in Mathematics

For Peirce, the German mathematician Karl Weierstrass was basically responsible
for the jettisoning of imagery in mathematics: “The whole Weierstrassian mathe-
matics is characterized by a distrust of intuition.” The Weierstrassian perspective,
Peirce points out, “betrays ignorance of a principle of logic of the utmost practical
importance; namely that every deductive inference is performed, and can only be
performed, by imagining an instance in which the premises are true and observing
by contemplation of the image that the conclusion is true” (Peirce quoted in Houser,
1987, p. 18). In 1872, Weierstrass was the first to construct and justify a nonvisual
example of a continuous function that was nowhere differentiable at any point.

Davis (1993) traces the “historical decline of the image” in geometry beginning
with the successful algebraization of geometry in the seventeenth century through
Descartes. What followed next were the powerful conceptual inventions in the
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nineteenth century of objects at infinity and complex geometries in projective geom-
etry, which could not be represented visually, and the full acceptance of abstract
deductive systems as a result of non-Euclidean geometries that, in effect, celebrated
the demise of a “unitary view of truth” (p. 334). Also, the disappointment with the
geometric image was felt with the discovery of analytic concepts such as continu-
ous, nondifferential functions whose complex nature defied any suitable canonical
graph that contained all the required properties. Hence, the adage “appearances can
be deceiving” took on more meaning and prestige that further supported the “devi-
sualization” and “despatialization” of geometry. Despite the negative history, Davis
(1993) remains hopeful that “vision can yield something deeper than formulaic-
deductive mathematics and hence can contribute to a wider view of mathematics”
(p. 336).

For Katz (2007), algebra in an historical context could be interpreted primarily
as solving for unknowns. Its beginnings could be traced to the Babylonians and
Greeks who developed it in the context of geometric problems that were visual in
nature. Later, the Islamic influence transformed algebraic practices symbolically,
which favored the use of variables to solve numeric problems. The third phase in
the development of algebra was motivated by concerns in physics in which alge-
braic methods were used to solve for unknowns that represented curves of geometric
figures. In this phase, functions and their graphical representations became fully
developed concepts that seem to have been a driving force behind our recent journey
back to the fold of the image.

“The limits of deductivism are at last,” Rival (1987) writes, “dawning on math-
ematicians, thanks largely to computers [and] combinatorics” (p. 44). The history
of the cultural present is characterized by revolutionary advances in technological
tools that also contribute significantly to new emerging epistemic practices that see
visual thinking in mathematics in a central role.

We now define visual thinking in mathematics, as follows:

Visualization in mathematics is a situation-specific epistemo-ontological capacity of form-
ing and transforming figural images in a lifeworld-dependent activity.

While the above definition should be clear on the basis of the preceding discussions,
a summary explanation for ostensive purposes is instructive.

First, the italicized definition is reflective of the conceptual constraints in, and
assumptions about, visualization that are specific to mathematics as discussed
above. At the very least, it incorporates the following characterization offered by
Arcavi (2003):

Visualization is the ability, the process, and the product of creation, interpretation, use of
and reflection upon pictures, images, diagrams, in our minds, on paper or with technological
tools, with the purpose of depicting and communicating information, thinking about and
developing previously unknown ideas and advancing understandings.

(Arcavi, 2003, p. 217)

Second, the italicized definition does not make any claim that privileges internal
constructs in either mentally or explicitly constructing a relevant object, which
seems to be the suggestion of Zazkis, Dubinsky, and Dautermann (1996) in their
definition below:
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Visualization is an act in which an individual establishes a strong connection between an
internal construct and something to which access is gained through the senses. Such a con-
nection can be made in either of two directions. An act of visualization may consist of any
mental construction of objects or processes that an individual associates with objects or
events [i.e., some dynamic, external phenomena] perceived by her or him as external [i.e.,
anything that an individual accesses through sensory/motor experiences]. Alternatively, an
act of visualization may consist of the construction, on some external medium such as
paper, chalkboard, or computer screen, of objects or events that the individual identifies
with object(s) or process(es) in her or his mind.

(Zazkis, Dubinsky, & Dautermann, 1996, p. 441)

What our definition above does emphasize is a capacity that is not merely an act
that is added to our repertoire of knowing but conveys a mutually determining
phenomenon of acting and knowing. This shares Magnani’s (2004) view of dis-
tributed cognition as a “simultaneous co-evolution of the states of mind, body, and
external environment” (p. 520). Thus, visualizing involves knowing that something
occurs as a result of performing action(s) on a target object, concept, or process.
For example, my Algebra 1 students acquired their understanding of the proof of
the Pythagorean theorem in two ways as shown in Fig. 3.14. First, they laid down

A. Use Four Copies of the Same Right Triangle (Classic Approach)

B. Use Two Copies of the Same Right Triangle (Garfield’s Approach)

Fig. 3.14 Two visual explanations of the Pythagorean theorem
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four copies of the same right triangle in a particular manner one at a time on a table,
which then allowed them to establish an algebraic proof by equating the sum of
the individual areas and the area of the larger square. Second, they laid down two
copies of the same right triangle on the table and established the theorem by relat-
ing the sum of the areas of the three right triangles and the area of the trapezoid.
The mathematical activity in this case exemplifies an instance of visualization in
which both knowing and acting in a distributed context enabled successful knowl-
edge construction. O’Regan (2001) describes this way of visualizing as a “practical
kind of knowledge,” of “knowing that certain laws of co-variance apply between
our actions and the resulting changes in the sensory input” (p. 278). He makes the
following observation about “seeing,” which summarily explains what we mean by
our capacity to visualize in mathematics in a distributed context:

It’s like the feel of driving a car – you’re not able to describe verbally every single aspect
of the experience. Nevertheless all the things you can do, like press on the accelerator and
know the car will whoosh forward, constitute the “what-it-is-likeness” of driving a car.

(O’Regan, 2001, p. 278)

Third, Giaquinto’s (2007) definition below leaves out psychosocial factors that
matter in visual thinking about figural concepts:

Visual thinking [is] thinking that involves visual imagination or visual perception of external
diagrams.

(Giaquinto, 2007, p. 1)

However, he points out two important aspects of visualizing in mathematics, that is,
discovery (without necessarily having to prove) and explanation (such as “help(ing)
make a theorem that one already knows more intuitive” (Giaquinto, 2005, p. 78)).
He writes:

In general, visualizing provides an almost effortless way of acquiring new information, and
its results often come with a degree of immediacy, clarity, and forces that makes visual-
ization apt as a means of discovery and explanation. Thus the epistemic value of visual
thinking in mathematics becomes obvious, once we give due importance to discovery and
explanation.

(Giaquinto, 2007, p. 264)

Both aspects of discovery and explanation fall under the general description of theo-
retical mathematics that is concerned with conjectural and intuitive work and, thus,
are incomplete. But their value is seen in terms of providing the conceptual elements
that engender the emergence of rigorous mathematical work. Rigor could take the
form of a formal deductive proof (cf. Jaffe & Quinn, 1993). For example, Fig. 3.14
provides illustrations in visual form that provide support leading to a rigorous proof.
In my Algebra 1 class, we initially used the visual activity in Fig. 3.15 to discover
a relationship between the hypotenuse of a right triangle and its two sides. We then
followed it up with the activity in Fig. 3.14 that provides an effective visual explana-
tion of the famous theorem in two interesting ways, which then led to an algebraic
proof.

Rigor at the elementary level could mean conceptually establishing the valid-
ity of some procedural knowledge. For example, in my Grade 2 class, the visual
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Fig. 3.15 A visual discovery
activity involving the
Pythagorean theorem
(O’Daffer & Clemens, 1992)

experience with sticks and dots shown in Fig. 3.11a helped the students obtain
a more systematic algorithm for subtraction when regrouping objects became a
necessity. However, compared with Fig. 3.11a, the visual explanation in Fig. 3.11b
assisted the students to see the connection between the visual and the corresponding
alphanumeric algorithm shown in Fig. 3.11c.

Fourth, we acknowledge the significance of a domain of situations that often-
times goes without saying in constructing mathematical knowledge. For example,
Vergnaud (1996) characterizes children’s mathematics as pertaining to a domain of
cognitive processes that includes object identification and properties, construction
of relations and transformations between and among objects, and comparison and
combinations of the relevant quantities and magnitudes (p. 224).

Fifth, visualizing as an acquired epistemo-ontological habit that learners draw
in a lifeworld-dependent activity is made in light of Duval’s (2006) analysis of
the differences between common and mathematical ways of comprehending fig-
ures (p. 115), which also makes sense in the case of visualizing. For example,
there is a difference between seeing a roof corresponding to the top part of a
table as a representation of a quadrilateral and seeing parts of the quadrilateral as
consisting of four sides represented by four line segments. In the former, one appre-
hends perceptually (i.e., a figure as a single gestalt), while in the latter, discursively
(i.e., the figure either as consisting of several constituent gestalts or as subconfig-
urations). Epistemo-ontological habits refer to matters involving how we see and
what we see. My sense of epistemology is Foucauldian, that is, it pertains to both
senses of savoir and connaissance with the latter focusing on the relationship of
the individual to an object and the rules governing that relationship and the for-
mer to the historical, necessary conditions that make the latter possible (Foucault,
1982).
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Thus, epistemo-ontological habits of forming and transforming figural images
are subject to a set of situations (following Vergnaud) that is reified in local (class-
room and teacher practices) and institutional rules. Forming and transforming a
figural image refer to the having of a visual experience and the inferring in sce-
nario visualization, respectively, in the context of cognitive activity. Clarifying the
source of cognitive activity allows us to deal with the predicament pointed out by
Nemirovsky and Noble (1997) about the difficulty of categorizing a visual represen-
tation in terms of whether it is an internal or an external phenomenon by situating the
sources of construction and justification of figural images in a lifeworld-dependent
context that focuses on explicit knowledge. In other words, what is constructed
in the mind and outside the mind are mutually determining actions in cognitive
activity.

6 Revisiting Principles of Visualization from a Mathematical
Point of View

In Chapter 2, we discussed in some detail the following three principles that matter
in visualization involving everyday objects: acquisition; reasoning; and individua-
tion. In this section, we revisit the three principles and highlight matters relevant to
visualizing in mathematical cognitive activity.

Principle of Individuation: Much of one’s visual processes in relation to school
mathematical content is derived in a lifeworld-dependent context that focuses on
exact mathematical knowledge. At least two decades of research in numerical cogni-
tion have provided interesting foundational accounts of the existence of biologically
and behaviorally determined core representational structures in mathematics among
preverbal infants and preschool children (see, e.g., Cordes, Williams, & Meck, 2007;
Dehaene, 2001; Gelman & Gallistel, 1978; Pica, Lemer, Izard, & Dehaene, 2004;
Simon, 1997; Spelke, Breinlinger, Macomber, & Jacobson, 1992). Dehaene (1997),
for example, has empirically demonstrated the number sense claim in which prever-
bal infants seem to be in possession of a mental number line that enables them to
make approximate sense of numbers nonverbally. He also noted that increased facil-
ity with acquired language and explicit representations extends the core structures
that produce explicit mathematical knowledge involving exact numbers and numer-
ical understanding. In a synthesis of research on children’s mathematics, Resnick
(1989) also echoes the shared view that the “culturally transmitted formal sys-
tem” of counting provides “the first step in making quantitative judgments exact”
(p. 163).

The school mathematics curriculum consists of mathematical objects, concepts,
processes, and explicit knowledge whose figural images have an exact nature. The
principle of individuation addresses the concern in which the aspect of acquisi-
tion entails exact mathematical understanding, which can be “hard” to learn in the
same sense that Feigenson, Dehaene, and Spelke (2004) described why numbers are
“hard,” as follows:
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(N)umber is hard when it goes beyond the limits of these [core representational] systems.
When one attempts to represent an exact, large cardinal value, one must engage in a pro-
cess of verbal counting and symbolic representation that children take many years to learn,
that adults in different cultures perform in different ways, and that people in some remote
cultures lack altogether. When humans push number representations further to embrace
fractions, square roots, negative numbers and complex numbers, they move even further
from the intuitive sense of number provided by the core systems.

(Feigenson et al., 2004, p. 313)

Hence, there should be no confusion in interpreting the context in which the
principle of individuation has been conceptualized in relation to visualizing in math-
ematics. In any lifeworld-dependent activity, there are particular sociocultural forms
of symbol systems that provide the foundation for exact mathematical practices,
which also influence the nature and content of the corresponding figural images
whether in an imaginal or a formational or transformational context.

Principle of Acquisition: Visual representations of mathematical objects, con-
cepts, and processes acquire their meanings in a lifeworld-dependent context. While
most everyday objects are acquired naturally (in the sense of Rakoczy et al., 2005),
all mathematical objects are acquired purposefully in a nonnatural manner. They do
not merely convey signs that reflect “internal cognitive processes” but evolve “as
tools or prostheses of the mind to accomplish actions as required by the contextual
activities in which the individuals engage” (Radford, 2002, p. 241). Further, visually
forming and transforming mathematical objects is not so much about capturing what
they “represent” as it is more about “what they enable us to do” (p. 240). This insight
has been drawn from Radford (2002) who situates the emergence of signs and think-
ing in a social-sign mediated context. Certainly, there have been documented cases
in which some learners in classroom situations have produced individual images
(i.e., imaginals) that in many cases have resulted in the construction of inventive
concepts and strategies (cf. Resnick, 1989). However, meaningful figural images
are oftentimes shared in cognitive activity in relation to some mathematical content.

The task, as it were, involves finding ways in which personal, subjective imag-
inals and images-in-the-wild could be “progressively transformed by the students”
(Radford, 2002, p. 240) as visual representations that share the complex concep-
tual content of the corresponding institutional context (i.e., as figural images). This
transformation is likely to take place through activities that (1) enable students to
engage in explicit knowledge construction and cognitive praxis and (2) are framed
“by social meanings and rules of use” that provide them with “social means of
semiotic objectification” (Radford, 2002, p. 241). Certainly, the social practice of
acquisition should not be interpreted as a simple matter of reducing images to con-
vey “direct imprints of the external environment” but more in terms of a “[cognitive]
encounter between the individual’s subjectivity and the social means of semiotic
objectification” (Radford, 2002, p. 260), that is, an act of “meshing” the “personal
and interpersonal tones within the limits of the contextual possibilities” (Radford,
2002, p. 260).

Principle of Reasoning: The nature and content of imagistic reasoning depend on
the type of mathematical object, concept, or process that is pursued. Imagistic and
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symbolic reasoning co-emerge in cognitive activity. Imagistic reasoning is used in
imaginal, formational, or transformational contexts. It is useful in developing initial
relationships, hence, imaginal. It is useful in illustrating a mathematical definition
or concept, hence, formational. It is helpful in establishing visual inferences and
justifications and in problem-solving contexts through scenario visualizing, hence,
transformational. By reasoning, we mean “a personal-level psychological process
consisting of inferences” (Norman, 2006, p. 18) with inference tied to the epistemic
value of justifying belief (ibid., p. 11).

A good example of imagistic reasoning that infers at the elementary level is
shown in Fig. 3.11b. Compared with Fig. 3.11a, Fig. 3.11b enabled my Grade 2
students to infer the actual steps in the subtraction algorithm with regrouping with-
out getting distracted by the large number of circles that are drawn in the case of
Fig. 3.11a. Another good example is shown in Fig. 3.16, which shows a pebble arith-
metic demonstration that the sum of any number of even numbers is an even number
(Livingston, 1999, p. 869). Step 1 in the pebble proof is formational in which every
even number can be represented by an equal number of white and black circles. Step
2 visually demonstrates an alternative way of looking at even numbers, that is, by
regrouping the circles and forming a one-to-one map between the white and black
circles. In bringing the circles together in step 3, the one-to-one map between the
white and black circles establishes the even parity of the sum.

Figure 3.16 is a visual inference whose primary epistemic value is to justify a
belief that would eventually be transformed in symbolic form corresponding to a
“formal” proof of the proposition. In a related sense, Polya (1988) notes: “When
you have satisfied yourself that the theorem is true, you start proving it” (p. 181).
Thus, when individuals use imagistic reasoning, the visual route provides them
with feelings of accessibility, certainty, clarity (Norman, 2006, p. 25), correctness,
confidence, and satisfaction (Alcock & Simpson, 2004).

Also, the effectiveness of imagistic reasoning lies in providing a gestalt-like
experience in understanding the relevant figural image. Livingston (1999) articulates
this condition in relation to Fig. 3.16. He points out that the “the reasoning involved

Step 1:

Step 2:

Step 3: 

Fig. 3.16 A pebble arithmetic demonstration that the sum of any number of even numbers is even
(Livingston, 1999, p. 869)
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in the [visual] demonstration is neither ‘in’ nor not ‘in’ the proof figure” (p. 869) as
it is more about developing its meaning via simultaneously coordinating the “mate-
rially definite writings (in this case, arrangements of dots),” “see(ing) through the
notational particulars (the dots) to what they represent,” and “organiz(ing), rear-
rang(ing) and rework(ing) such displays to find gestalts of reasoning and practice
adequate to a stated theorem” (p. 869).

7 Overview of Chapter 4

In Chapter 4, we establish the visual roots of mathematical symbols. We begin by
understanding the symbols that are used in school mathematics and claim that at
least three kinds exist depending on how they are interpreted and used in context.
While almost all symbols are, indeed, symbolic, other symbols could also be iconic,
and still others indexical. Despite the impression that their meanings differ, they
could all be grounded visually. Progressive mathematization, however, is a theory
that anticipates transitions and growth in symbol use, from iconic and/to indexical
and then to symbolic, leading to visuoalphanumeric representations. We illustrate
such transitions in the number sense and algebra strands of the school mathematics
curricula.





Chapter 4
Visual Roots of Mathematical Symbols

A symbol is symbolic if it describes or expresses or stands for an
idea but has not yet become an enactive element. It can only
become an enactive element if it has meaning, in other words, if
there is associated with it at least one icon, an image, metaphor,
picture or sense with itself [that] captures a pattern or
relationship. Thus the state of being symbolic is highly relative.

(Mason, 1980, p. 11)
It is one of the essential advantages of the sign . . . that it serves
not only to represent, but above all to discover certain logical
relations – that it not only offers a symbolic abbreviation for
what is already known, but opens up new roads into the
unknown.

(Cassirer quoted in Perkins, 1997, p. 50)
The differences between sign-types are matters of use, habit, and
convention. The boundary line between texts and images,
pictures and paragraphs, is drawn by a history of practical
differences in the use of different sorts of symbolic marks, not by
a metaphysical divide. And the differences that give rise to
meaning within a symbol system are similarly dictated by use;
we need to ask of a medium, not what “message” it dictates by
virtue of its essential character, but what sort of functional
features it employs in a particular context.

(Mitchell, 1986, p. 69)

In my Algebra 1 class, solving for the unknown in a linear equation occurred when
they had to deal with reversal tasks in patterning situations such as item 4 in Fig. 4.1.
Figure 4.2 shows the written work of Dung (eighth grader, Cohort 1), who under-
stood the process of solving for the unknown in the context of finding a particular
stage number p whose total number of objects is known. As shown in the figure, he
initially took 1 away from 73 and then divided the result by 3. For Dung and his
classmates, this particular process of undoing has been drawn from their everyday
experiences in which doing and undoing form a natural and intuitive action pair.
When my Cohort 1 participated in a teaching experiment on patterning and general-
ization in sixth grade, the first time I saw them use the undoing strategy occurred in
the context of the patterning activity shown in Fig. 4.3. When they were confronted
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Consider the following pattern sequence below.

1. What stays the same? What changes?

2. Find a direct formula that allows you to obtain the total number of circles C at any stage n in 
the sequence. Explain why you think your formula makes sense.  

3. How many circles are there in stage 37? Explain. 

4. What stage number contains 73 circles altogether? How do you know for sure?

Fig. 4.1 Circle fan pattern task (pattern drawn from Beckmann, 2008, p. 496)

with the situation in item 21, the first thought that came to them was to take away the
height of the original cup hold and then divide the result by 3. At this stage in their
learning, they interpreted their constructed formula as a recording of their actions on
a problem that they then conveyed in mathematical form. Hence, because a formula
signified a process of doing, which mathematically meant performing a sequence
of arithmetical operations leading to a total value or an output, reversing the steps
in the formula or undoing by taking the opposite enabled them to determine the
relevant input.

In the same Algebra 1 class, I wanted to determine the extent to which the
students were capable of generalizing the undoing process above in the following
two situations: (1) Ax ± B = ±C and (2) A(Bx ± C) = ±D. However, instead of
using a patterning context, I asked them to use algeblocks (Fig. 2.2). While they
considered the task to be trivial in the case of situation (1), in which case they did
not even use algeblocks, they found situation (2) interesting. Using algeblocks, they
saw the significance of the distributive property of multiplication over addition in
seeing the equivalence of A(Bx ± C) = ABx ± AC that then allowed them to treat
the resulting equation as a case similar to situation (1). In the third phase of the
activity, I asked them to find a way of solving for x when the situation involved case
(3), that is, Ax ± B = Cx ± D. We initially focused our attention on the equation
5x + 4 = 3x + 8. Working in pairs, the students first gathered five yellow squares
and four green cubes and set them aside. Then they gathered three yellow squares
and eight green cubes and pulled them aside. In thinking about a possible strategy,
several pairs saw that since there were three common yellow squares in both piles,
they argued that taking them away from either pile would not affect the equation. As
they were demonstrating with algeblocks, I was recording on the white board what
they were saying, as follows:
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Fig. 4.2 Dung’s written work on the pattern task in Fig. 4.1

5x + 4 = 3x + 8,

− 3x − 3x,

2x + 4 = 8.

Another pair immediately argued that since the resulting equation resembled
situation (1), then solving for x in the final stage would involve demonstrating
the undoing process. We tried the same strategy over several more examples until
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Fig. 4.3 Stacking cup task (MiC, 2003, p. 20)

it became evident that the algeblocks-induced process worked in all cases of
situation (3).

The examples we used were also planned carefully. Following Harel (2007), I
wanted them to transition to a nonreferential symbolic way of thinking about lin-
ear equation solving. In the sequence shown in Fig. 4.4, the coefficients changed in
complexity and magnitude. The basic intent was to assist them to shift their atten-
tion from performing actions on and with the blocks to manipulating the coefficients
numerically using the addition property of equality. This concern addresses the issue
of “operating on unknowns” that Filloy and Rojano (1989) have pointed out as cru-
cial when students solve linear equations in a single variable involving case (3). In
phase 2 of Fig. 4.4, they needed to see, for example, how taking away −2 green
cubes (or −3 cubes) and adding 2 green cubes (or 3 green cubes) in the top equation
were equivalent actions. The examples in phase 3 of Fig. 4.4 focused on two cases,
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Phase 1 Phase 2 Phase 3

5x + 4 = 3x + 8

3(x – 2) = 4(1 + x)

–3x + 4 = –2x + 3

4x – 3 = –2x + 1

17x + 9 = 3x – 7

2 – 23x = 5x + 7

4 – 2(1 – x) = –3x
2M – 3N = 4; N

3(2x– 1) –2(1–x) = 4(x –2) –4(1–x)

Fig. 4.4 Three phases of examples involving linear equations

namely: (1) linear equations with large coefficients that could not be easily repre-
sented and accomplished with algeblocks and (2) linear equations that necessitated
the application of the distributive property rule.

Unlike the students in the study of Filloy and Rojano (1989) who initially
approached situation (3) by trial-and-error methods, my students used a visual
model (algeblocks) in making sense of an emerging formal strategy. The formal
strategy, as a matter of fact, could be characterized by the co-emergence of visual
and alphanumeric strategies that led to the intended nonreferential algebraic pro-
cess for solving linear equations involving one unknown. There were two apparent
visual strategies that my students employed in cognitive activity, that is, externally
and physically manipulating the algeblocks and internally performing actions of
taking away and undoing.

For Wittgenstein (1961), every symbol consists of a sign and a mode of signi-
fication. A sign refers to sounds, marks, or inscriptions that are perceived from a
symbol. A mode of signification means that every symbol derives its content in rela-
tion to some situation that allows it to be used in a particular way. That is, “(i)n
order to recognize a symbol by its sign we must observe how it is used with a
sense” (Wittgenstein, 1961, 3.326), which means understanding how it is “used sig-
nificantly in propositions” (Wittgenstein, 1973, p. 59) with propositions referring to
“situations” (Wittgenstein, 1961, 4.03) or “pictures of reality” (Wittgenstein, 1961,
4.01). His famous example involves the two uses of the word “green” in the sentence
“Green is green” in which the first word is a (proper) noun, while the last word is
an adjective; “these words do not merely have different meanings: they are different
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symbols” (3.323). Another example is taken from my Algebra 1 class: “Zero is not
the zero of the function f (x) = x + 1.”

Among my Algebra 1 students, the equation Ax + B = C was a mathematical
proposition that depicted at least two different situations. The first situation was in
the context of patterning activity, say, Dung’s work on item 4 in Fig. 4.2, in which
the variable p (sign) referred to stage number (symbol) and the numerals 3, 1, and
73 to various aspects (symbols) in the given patterning task. The second situation
was in the context of solving for x (sign) that represented an unknown value to be
determined (symbol) by an arithmetical process of undoing with A and B (signs)
standing for coefficients (symbols) and C (sign) the constant term (symbol) in the
equation. The above two situations demonstrate Wittgenstein’s (1961) point about
signs as possibly referring to different symbols (3.321).

Four points are worth noting at this stage. First, different symbols that have the
same sign are prevalent in the school mathematics curriculum. For example, a frac-
tion is associated with the sign (a/b), but it could mean different things depending on
the sense or the context of use. It could be parts of a whole unit; parts of a discrete
group of objects (in a set context); a measurement value (as a point on a number
line); a ratio; and a division problem. In my Algebra 1 class, we interpreted nonunit
fractions as copies of their respective unit fractions. For example, (1/4) was seen as
a half copy of (1/2), (1/9) was a one-third copy of (1/3), and (3/4) was three copies
of (1/4). This multiplicative view of fractions emphasizes the general concept of a
unit that we talked about in some detail in Chapter 3. It is also the basis of an empty
fraction strip approach that my students used in making sense of rational algebraic
expressions and their operations. Another example involves letters or variables in
school mathematics. Parker and Baldridge (2004) point out that their meaning could
be interpreted in any of the following contexts: naming an object (e.g., A and B as
points on a line in geometry); abbreviating words (e.g., t stands for time in hours in
word problem solving); representing a frequently used number (e.g., π ); represent-
ing specific but unknown numbers (e.g., solutions in conditional equations); and
developing statements and identities that are true within their domain (e.g., direct
formulas in patterns, algebraic identities, and variable-based theorems such as the
Pythagorean theorem).

Second, we emphasize the inter- and intra-semiotic emergence and comple-
mentary nature of visual thinking and alphanumeric symbol representation in the
development of mathematical symbols. While the title of this chapter focuses on
visual roots of mathematical symbols, it does not in any way suggest preferring
the visual and neglecting the alphanumeric. In fact, visually drawn symbols have
as many limitations (and successes) as their corresponding alphanumeric symbol
representations. For example, in my Grade 2 class, adding and subtracting whole
numbers by primarily drawing sticks and dots (e.g., Figs. 1.1 and 3.11a, b) was not
efficient in the long haul and confused some of them who could not draw clearly and
count correctly. Especially in the case of subtraction of two two-digit whole num-
bers, in comparison with Fig. 3.11b, the visual strategy in Fig. 3.11a could not easily
support the transition to the alphanumeric model since the students were too busy
counting all the dots in the unit place and taking away. Various research studies have
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also consistently shown that overemphasizing alphanumeric acquisition translates to
mere procedural knowledge among students.

In my Algebra 1 class, while the cognitive peg of their knowledge involving
solutions of linear equations was visual, which they used to easily transition into
alphanumeric form, I was aware that the visual process alone would not work for
more complicated cases of linear equations. Also, the basic process of undoing in
a simple linear equation, which is appealing in visual form, would not work in all
kinds of equations. For example, some of my Algebra 1 students near the end of
the school year tried to solve a quadratic equation by an undoing process. Figure 4.5
shows the work of Emma, who, in a clinical interview, tried to reverse the operations
in her quadratic equation (see item 4) as her way of determining the values of the
unknown.

The foregoing situation with Emma leads us to our next point. Third, Filloy and
Rojano (1989) raise an interesting issue about cut points when students transition
from one mode of thought to the next. In their study, in particular, they suggested
a cut in the arithmetic-to-algebraic thinking among their students who solved linear

Fig. 4.5 Emma’s reversal
strategy in solving a quadratic
equation
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equations involving case (3). That is, while solving case (1) equations by undoing
could be accomplished by applying basic arithmetical processes, solving case (3)
equations would initially involve “operating on the unknowns” – the terms Ax and
Cx – that fall “outside the domain of arithmetic” (p. 19).

Filloy and Rojano’s notion of abscission points also applies in some cases of
visual-to-alphanumeric symbol transitions such as the above situation with Emma or
when students deal with epirelational objects. The cut in this case could be explained
in terms of Berkeley’s (2008) notion of representational power, that is, “any set of
symbols [should] have the necessary flexibility to make manifest all the things that
it needs to for the task at hand” (p. 97). Berkeley (2008) uses the representational
power of Arabic over Roman numerals as an example. Unlike Roman numerals,
Arabic numerals could deal with situations that involve 0 and place value in which
positions matter.

In the case of solving quadratic equations, in particular, using the visual approach
shown in Fig. 3.12b might have sufficient representational power in dealing with
“friendly” coefficients; however, it could not be sustained in most other cases of
ax2 + bx + c = 0 in which case the quadratic formula yields the most repre-
sentational power. Also, prior to solving quadratic equations, when my Algebra
1 students were learning to factor general quadratic trinomials, the visual activity
with the algeblocks was helpful in dealing with simple trinomials (Fig. 4.6a) whose
factored form is of the type (ax + b)(cx + d), where (a,b,c,d) are positive integers
since all the blocks could be reconfigured in the first quadrant. However, the visual
activity became cumbersome to use and thus less effective when they had to deal
with most other cases of trinomials such as the ones shown in Fig 4.6b, c since alge-
blocks had to be added and subtracted in different quadrants, which required a clever
strategy in most cases. In these latter cases, the representational power that comes
with manipulating algeblocks was diminished because the visual activity contained
too much detail that the students had to acquire, which distracted them from obtain-
ing a general process. Consequently, they refined the knowledge they acquired from
the visual process involving simple trinomials (Fig. 4.6a) so that what eventually
emerged was the rectangular tic-tac-toe method shown in Fig. 2.4a–c, a visuoal-
phanumeric method that still retained the basic elements of the visual approach (in
terms of the overall structure of the diagram) but was sufficiently flexible at the
alphanumeric level in dealing with most trinomials. Thus, it suffices to say that in
many simple cases, the students used algeblocks to conceptualize the factoring pro-
cess involved. However, in most cases, the visuoalphanumeric approach provided
the most representational power.

Fourth, consistent with our proposed traveling theory of progressive schema-
tization, intra-semiotic changes or transitions in symbolic notation and use (in
Wittgenstein’s sense of the symbol) are most likely to occur in various stages
of learning and understanding mathematical concepts, objects, and processes. For
example, Bialystok and Codd (1996) provide an interesting summary of empir-
ical studies conducted with children that shows (1) transitions in their notation
use (numerals) with more knowledge of a number system (counting) and (2) a
developmental pattern in terms of the notations they use to represent quantity from
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a

b

c

Fig. 4.6 a Factoring case 1 quadratic trinomials with algeblocks (© ETA/Cuisenaire R©, 2005, p.
115). b Factoring case 2 quadratic trinomials with algeblocks (© ETA/Cuisenaire R©, 2005, p. 115).
c Factoring case 3 quadratic trinomials with algeblocks (© ETA/Cuisenaire R©, 2005, p. 115)

idiosyncratic (personal) to analogical (dashes; marks) to the conventional sym-
bolic form of numerals. But we emphasize repeatedly that a meaningful progressive
account for learners has to consider changes, transitions, and connections between
and among intra- and inter-semiotic resources.

This chapter is divided into three sections. In Section 1, we discuss the visual
roots of mathematical symbols in relation to at least three modes of signification,
namely Peirce’s icons, indices, and symbols. In Section 2, we further explore



108 4 Visual Roots of Mathematical Symbols

visuoalphanumeric symbols in relation to objects in school algebra. In Section 3,
we raise some issues concerning intra- and inter-semiotic transitions. In Section 4,
we illustrate the formation of visuoalphanumeric symbol sense that my Cohort 1 stu-
dents developed in the course of learning about pattern generalization in purposeful
cognitive activity over 3 years of design-driven experiments.

1 Mathematical Symbols and Their Signs and Modes
of Signification

Wittgenstein’s (1961) notion of mode of signification in relation to symbols and
signs provides the necessary link between a sign and its object. While Peirce was
instrumental in transforming what was once considered a triangular view of signs –
that is, signs in relation to a signifier and signified (Fig. 4.7a) – to what is now
accepted as the pyramid of sign, signifier, signified, and interpretant (i.e., effect
on the knower; Fig. 4.7b), Wittgenstein’s mode of signification further refines our
understanding of the semiotic pyramid.

There are different modes of signification. Peirce identifies three important
modes: iconic; indexical; and symbolic. Symbols in an iconic mode are determined
by their physical similarity or resemblance with a situation. They are what they are
“quite regardless of anything else” (Peirce, 1958b, 5.44) and, hence, are not subject

Sign

Signifier

a

b

Signified

Sign

Signifier

Interpretant 

Signified

Fig. 4.7 a Classic
signifier-signified
relationship. b Peircean
semiotic triangle
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to reflection. Symbols in an indexical mode derive their use or meaning through
association with a situation or one’s experiences with them. They are products of
our “experiences,” where their “effects on us” exceed “our effects on them” (Peirce,
1958b, 5.45). Symbols in a symbolic mode are produced through conventions and
rules that are shared in a situation. While they have no need to be similar (iconic) or
have an analogical relation with their referents (indexical), they assert their nature
and purpose by fueling their “sanction to action” (Peirce, 1958b, 8.256). How to
choose which mode is appropriate for a given object, concept, or process in fact
depends on what is negotiated among students in cognitive activity, which implies
a collective sense or shared intentionality of “seeing as.” This is a sociocultural
response and one that shares and extends the perspective offered by Legg (2008) in
an interesting comment below.

As Wittgenstein said, all seeing is seeing-as. And of course every “seeing-as” presupposes
the possibility of a “seeing-not-as.” In this way, then, a seeing is a doing. As Wittgenstein
also noted: “An aspect is subject to the will. If something appears blue to me, I cannot see
it red, and it makes no sense to say ‘See it red;’ whereas it does make sense to say, ‘See it
as . . .” And that the aspect is voluntary (at least to a certain extent) seems essential to it.

(Legg, 2008, p. 226)

Many concrete and relational objects are iconic. They resemble the objects they sig-
nify. Some icons have structural resemblance with their objects, while others have
pictorial resemblance (Legg, 2008, p. 208). Fraction strips (Fig. 3.4), for example,
are pictorial symbols of the part–whole notion of fractions. In structural resem-
blance, only relationships among the parts in an icon need to behave in the same
manner as the parts in the actual object. “Every pictorial resemblance is,” Legg
points out, “a structural resemblance, so structural is a generalization of pictorial
resemblance” (2008). In my Grade 2 class, squares, sticks, and dots (e.g., Figs. 1.1,
2.20, and 3.11a, b) conveyed to my students structural relationships involving place
value relative to a decimal numeral system with one square representing a hun-
dred or 10 sticks, one stick representing a 10 or 10 dots, and one dot representing
a unit. In school discrete mathematics, a good example of the use of an icon that
has only structural resemblance is the topological transformation of the famous
Seven Bridges of Koenigsberg (Fig. 4.8a) in graph-theoretic terms. In Fig. 4.8b,
vertices and edges represent bridges and connections between and among bridges,
respectively. In school geometry, the monotonic structure in which theorems and
definitions are oftentimes stated enables the construction and reification of the cor-
responding pictorial symbols. There are also simple iconic symbols such as using
color to convey a shared quality of an object. Such icons satisfy Peirce’s view in
which “an icon is a sign fit to be used as such because it possesses the quality sig-
nified” (Peirce quoted in Legg, 2008, p. 208). Binary or two-colored chips that are
used to model integer operations, for example, are simple icons with one colored
side representing positive integers and the other colored side the negative integers.

The minus sign is an example of an indexical symbol. The minus sign as an oper-
ation is an index that conveys a complete turnaround on a number line. For example,
in Fig. 4.9a, the expression 7 – 3 means the turtle starts at 7 facing the positive axis,
“turns around,” and then moves 3 units forward facing the negative axis. The minus
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Fig. 4.8 a A map of the Seven Bridges of Koenigsberg (Permission granted from http://en.
wikipedia.org/wiki/File:Konigsberg_bridges.png) b A topological graph of the map in Fig. 4.8a

sign that is associated with negative integers is an index that conveys moving back-
ward on a number line. For example, in Fig. 4.9b, the expression 7 − −3 means the
turtle starts at 7 facing the positive axis, “turns around,” and then “moves backward”
3 units still along the positive axis. In the context of binary chips, the minus sign as
an operation conveys a “taking away” action. For example, in Fig. 4.10a, 5 – 2 means
“take away” 2 white circles from 5 white circles. The negative sign associated with
negative integers conveys the use of the colored side of the binary chip. For example,
in Fig. 4.10b, −8 − −3 means “take away” 3 black chips from 8 red chips.

With indexical symbols, Legg (2008) writes, the “brutely [i.e., unmediated]
dyadic sign-object relationships” (p. 208) are known through “direct reference,”
say, through demonstrative and ostensive actions on the corresponding signs. Unlike
icons that are monads, that is, the property (or properties) of their signs could exist
with or without their objects, indices require both sign and object to exist in order
for the relationship to make sense. Atkin (2005) also notes that indices stand for
objects “through some existential or physical fact” (p. 163) that causally connects
the former with the latter. Indices “assert nothing” and merely “show or indicate
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Fig. 4.9 a Number line model for 7 – 3 = 4. b Number line model for 7 – −3 = 10

their objects rather than describe them” (p. 165). They are not icons and symbols
and, thus, have only a “secondness” quality (unlike icons, which are classified
as having “firstness” or symbols, which have “thirdness”). In other words, while
some indices may have some iconic or symbolic elements that could describe them
more fully, they do not matter since it is the causal relationship that matters more
than anything else. In my Algebra 1 class, for example, one index that the stu-
dents found useful was the nth-root radical symbol n

√ , which conveyed to them
the action of “dividing every exponent by n” on the basis of the horizontal bar that
gave them a cue to divide the exponent(s) of the radicand by its index. To illus-
trate:

√
24 means initially dividing the exponent 4 by the index 2 so that

√
24 = 22;

3
√

23 · 56 = 2 · 52;
√

3 · 22 = 2
√

3; etc.
Most mathematical objects (i.e., concrete, graphic and virtual, relational, epire-

lational, and alphanumeric) are symbolic and triadic. That is, any knowledge that
is acquired between a sign and its object is mediated by rules and conventions that
govern the relationship and should be learned correctly (Legg, 2008, p. 207). In
Chapter 3, all mathematical objects are lifeworld dependent; hence, the possibility
of their reification rests on the relevant intentional content and action that shape
their images, meanings, and particular significance in some mathematical content.
Further, we situate students’ symbolic action on those objects within a much larger

take awaya

b
take away

Fig. 4.10 a Binary chip
model for 5 – 2 = 3. b Binary
chip model for
−8 – −3 = −5
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goal of cultural learning that the students internalize as they acquire knowledge
about the objects in cognitive activity. In other words, the lifeworld-dependent
nature of the objects loads them with intentional action and cultural scaffolding
that purposefully lead to the acquisition of the relevant mathematical knowledge.

DeLoache (2005) points out, including Vygotskian scholars and practitioners,
how our experiences are routed symbolically and how any account of human devel-
opment is also about how individuals come to understand and use objects in a
symbolic manner. The aspect of rules and conventions in characterizing mathemati-
cal objects as symbolic could either be individually constructed or be institutionally
drawn. However, in mathematical cognitive activity, the most productive individual
intentions are those that share, or are aligned, with institutional intentions (Radford,
2002). For Rakoczy, Tomasello, and Striano (2005), symbols are “objects with
derived intentionality that is conferred on them through the attitudes, actions, and
practices of persons that possess intrinsic or original intentionality” (p. 70). Hence,
what is symbolic is seen as “an act that assumes a background of shared rules and
practices as an interpretive framework” (2005).

Symbols, whether iconic, indexical, or symbolic, have a dual representational
nature (DeLoache, 2005, p. 51), that is, the corresponding sign possesses concrete
characteristics and bears an abstract relation to its object depending on the mode of
signification. Issues with dual representation have been documented among young
children who deal with iconic symbols such as large-scale photograph copies of
their feet or pictures of objects. When they fail to distinguish between a symbol
and its object (e.g., putting their feet on a photocopy or gesturing to indicate an
attempt to pick up an object from a photograph), they tend to either focus exclu-
sively on the object or the symbol or treat the symbol and the object to be one
and the same thing. Beginning algebra learners go through a similar phase. For
example, in my Algebra 1 class, the irrationality of

√
2 became an issue because

some wanted to “see” it in its precise physical form or some others wanted to know
where in the corresponding sign would they be able to get a glimpse of its expanded
representation.

DeLoache points out the need for individuals to psychologically distance them-
selves in order to achieve dual representation and, thus, overcome symbol realism,
“the tendency to treat entities which are patently symbolic . . . as if they possessed
the properties and the causal efficacy of the objects which they denoted” (Werner
and Kaplan quoted in DeLoache, 2005, p. 58). In the case of the irrationality of√

2, the distancing occurred among my Algebra 1 students as soon as they began
to reflect on Brown’s (1999) point in relation to the activity involving the harmonic
series (see pp. 32–34 of this book).

In some cases, students manifest symbol attachment, a tendency to rely on the
entities themselves at the expense of acquiring their abstract relation to the objects
they denote. For example, during the first quarter of the school year in my Grade 2
class, many students could not name the correct whole number after “xty-nine” on
their own because they relied too much on the number line, a concrete object that
they used to help them count quickly. When my Cohort 1 students were in sixth
and seventh grade and participated in a teaching experiment on integers, some of
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Multiples of 2:

Multiples of 3:

LCM: 6 (Smallest common length after building 2-chains and 3-chains)

Fig. 4.11 Least common multiple (LCM) of 2 and 3 is 6

them consistently added and subtracted integers with either the binary chips (in
sixth grade) or the number line (in seventh grade) like the child counting with the
blocks in Hoffmann’s (2007) essay, which prevented them from fully understand-
ing, and appreciating the power of the symbolic rules. In my Algebra 1 class, when
the students acquired a way of obtaining the least common multiple of two posi-
tive integers by building chains of unit cubes (Fig. 4.11) and the greatest common
factors of two positive integers by algeblocks (Fig. 4.12), some of them had diffi-
culty transitioning to the abstract phase because their images were pegged to either
the cubes or the blocks. For example, some students were successful in obtaining
the least common multiple of (2a,2b), where a < b and a and b are whole numbers,
because they used the unit cubes to model specific cases but failed on more com-
plex cases such as (2a·3b·5c, 2d·3e·5 f ), where a, b, c, d, e, and f are whole numbers
and a<d, b>d, e≤f. When asked to explain their difficulty, they expressed their dis-
appointment at not being able to form chains of unit cubes because they found the
numbers too large to model with unit cubes.

Psychological distancing in mathematical cognitive activity is crucial in sit-
uations when students employ, say, manipulatives in either iconic or indexical
context to explore, generate hypotheses and pattern-imagery schemes, and develop

Fig. 4.12 Greatest common factor (GCF) of 6, 9, and 12 using algeblocks (© ETA/Cuisenaire R©,
2005, p. 76)
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structural awareness in order to progressively move toward more symbolic or for-
mal concepts and processes. Uttal, Scudder, and DeLoache’s synthesis of existing
research on the use of manipulatives in mathematics classrooms paints a bleak
picture, which is as follows:

Unfortunately, however, research on the effectiveness of manipulatives has failed to demon-
strate a clear, consistent advantage for manipulatives over more traditional methods of
instruction. Meta-analyses of the literature have shown at best inconsistent and rather lim-
ited effects. In addition, several intensive, longitudinal studies of the use of manipulatives
in individual classrooms have shown that children do not readily acquire new mathemati-
cal concepts from using manipulatives. Extensive instruction and practice may be required
before manipulatives become effective. In some cases, manipulatives seem to do as much
harm as good.

(Uttal et al., 1997, p. 38)

On the basis of their work with various groups of young children, Uttal et al.
(1997) infer that the “relation between manipulatives and their intended referents
may not be transparent to children” (p. 44). Further, they note that the concrete-
ness factor does not favorably translate into better learning for children; “it is the
concreteness of the model that makes it difficult to use as a symbol” and “mak-
ing symbols concrete and interesting as objects in themselves may decrease the
chances” that they will “treat them as representations” (p. 45). They also note that
multiple kinds of manipulatives for the same referent might be more distracting than
helpful to children.

In light of the above constraints, Uttal et al. (1997) see teachers’ instruc-
tion as instrumental in helping students move progressively toward the intended
relation between manipulatives (signs) and referent (object). Ploetzner, Lippitsch,
Galmbacher, Heuer, and Scherrer (2009) offer a similar recommendation in relation
to their study that investigated 111 eleventh graders as they acquired their under-
standing of virtual objects, in particular, line graphs involving motion phenomena,
in dynamic and interactive visual settings. They note that while line graphs provide
good examples of iconic symbols, students still need to be taught psychologically
distancing strategies such as “learn(ing) how to identify relevant components of the
visual display, as well as how to relate spatially and temporally separated compo-
nents to one another” so that they are able to “fully process interactive and dynamic
visualizations” (Ploetzner et al., 2009, p. 64).

2 A Progressive Formal Account of Symbols: Focus
on School Algebra

In this section, we explore in some detail visuoalphanumeric symbols in school
mathematical practices. Such symbols are the “fruits” of progressive mathematiza-
tion. For our purpose, we exemplify these symbols in the context of school algebra,
which most teachers consider to be variable driven and visual free. Our initial dis-
cussion below takes us back to the history of algebra viewed from the perspective
of Katz (2007).
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Katz (2007) paints a very interesting history of algebra. He notes that alge-
bra in its early phase of development was actually concerned with solutions
of equations. Solving for unknowns in equations involved manipulations, using
either symbols or words, that generalize arithmetic operations. Reflecting on
the history of algebra from its beginnings with early Egyptians to the present
time, Katz (2007) saw changes in our perceptions and practices concerning
the nature of unknowns to include numbers, geometric quantities, and algebraic
functions.

Katz proposes four stages in the evolution of algebraic practices relevant to solv-
ing equations. The first stage involves solving for unknowns using proportions.
What was interesting about the proportion stage was the extent to which this pan-
cultural method was also evident among the early Egyptians, the Chinese, and the
Indians. The Egyptians used the “false position” method, while the Chinese and
Indians employed “the rule of three.” The algebra content in Europe at the begin-
ning of the thirteenth century also emphasized the proportion method in solving
equations. The early Babylonians began to concern themselves with other types of
equations beyond what could be solved by the proportion method. Motivated by
concerns about land division, their algebra was geometric in content as it has been
documented in clay tablets. Thus, the geometric stage, which took place in early
Babylonia and Greece, was about solving for unknowns in which the quantities
were geometric in content. What distinguished the Greeks from the Babylonians
was the introduction of axioms that enabled them to manipulate different geometric
situations in algebraic terms.

When Islamic mathematicians appropriated algebra, Katz notes a shift occurred
from the geometric to the numerical equation solving stage. The content of alge-
bra books during this time focused on algorithms that were used to solve linear,
quadratic, and systems of linear and/or quadratic equations whose solutions were
numbers and not geometric quantities. Even when they established methods for
simplifying and operating on polynomial expressions, including rules in dealing
with positive and negative exponents, “the goal of these manipulations was to solve
equations” (Katz, 2007, p. 8). Consequently, algebra in Europe in the twelfth and
thirteenth centuries was also numeric.

There were changes, however, in the sixteenth century. While the focus remained
on refining existing appropriated algorithms for solving equations, new ones
emerged. Complex numbers came into existence and common mathematical words
were assigned abbreviated symbols.

In the early seventeenth century, mathematicians became concerned with mat-
ters involving astronomy and physics. This meant that the types of numbers that
mattered to them, in particular, to Galileo and Kepler, were curves such as those
that involved the conic sections. This was, according to Katz, the dynamic function
stage in which concerns in physics and motion drove the changes in the kinds of
unknowns they wanted to solve. When Pierre Fermat employed algebra to repre-
sent curves and Rene Descartes used it to solve geometric problems, these methods
furnished mathematicians, in particular, Newton, and scientists with techniques for
representing motion.
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Much of eighteenth-century mathematics focused on strengthening the link
between algebraic and geometric methods (early part) and refining the tools (later
part). But the primary focus was clear, that is, it was all about addressing dilem-
mas in physics and solving equations whose solutions were not merely numbers but
curves and functions.

While Katz’s historical account of the development of algebra in four stages is
a powerful telling of ongoing shifts between numeric and geometric objects, it is
also interesting to interpret such shifts within Freudenthal’s (1981) interpretation
of the history of mathematics as being about “a learning process of progressive
schematizing” (p. 140), which made him suggest that our students.

need not repeat the history of mankind but they should not be expected either to start at the
very point where the preceding generation stopped. In a sense [they] should repeat history
though not the one that actually took place but the one that would have taken place if our
ancestors had known what we are fortunate enough to know.

(Freudenthal, 1981, p. 140)

Visuoalphanumeric symbols are derived from the above perspectives of Katz
and Freudenthal. Katz’s historical account, on the one hand, provides a compelling
story of how algebra progressed as a consequence of its numerical and geometri-
cal foundations that mutually determined the evolution of its content and symbols.
Freudenthal, on the other hand, saw progress in the history of mathematics and
emphasized the need to move forward in our understanding of mathematical knowl-
edge not by repeating “the one that took place” but by appropriating the one that
would have taken place in light of what we are fortunate enough to know.

Visuoalphanumeric symbols incorporate both visual and alphanumeric compo-
nents. While it seems easy either on the surface or at least initially to categorize
such symbols as being either visual or alphanumeric, they are actually, like the three
Peircean modes of signification, irreducible to one another with each component
playing a significant role.

To illustrate, consider once again the situation in the introduction when my
Algebra 1 students tried to make sense of what it meant to solve the equation
5x + 4 = 3x + 8 or, more generally, Ax ± B = Cx ± D. Figure 4.13a shows how
they visually solved the specific equation by utilizing algeblocks in the initial stage
and the process of undoing in the final stage. Figure 4.13b shows how I recorded
with the use of alphanumeric objects what I saw them do at every stage. Repeatedly
doing this over several more examples that grew in complexity (Fig. 4.4) eventually
led to a shared institutional mathematical practice – that is, a collateral knowledge
in cognitive activity – that could not be simply characterized as an algebraic method
involving alphanumeric symbols alone. Thus, while there was evidence of visual
fading in the abstract phase, it does not actually fade but becomes embedded in the
alphanumeric symbols. Mason (1987), like Wittgenstein’s view of signs, considers
symbols to be “artifacts resulting from recording perceptions on paper, mere ves-
tiges of a complex inner experience” (p. 75). We extend the experience to include
institutionally drawn experiences and visual symbols.
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5x+4 = 3x+8

–3x        –3x

2x + 4 = 8

2x = 8 –4 = 4

x =  
4

2
 = 2

a b

Fig. 4.13 a Visual process used in solving. b Alphanumeric process in solving 5x + 4 = 3x + 8
5x + 4 = 3x + 8

Another illustration that involves visuoalphanumeric symbol is shown in
Fig. 4.14. When my Cohort 1 participated in an earlier teaching experiment on inte-
gers in sixth grade, we used binary chips to explore integer operations. In a written
assessment, I asked them to obtain answers to a set of integer expressions and also
to explain how they arrived at them. While on surface they appeared competent in
obtaining the answers, their written explanation conveyed the use of visual thinking
in relation to the given problems.

An interesting aside is worth discussing at this stage. Certainly, the argument
in favor of visuoalphanumeric symbolic practices could simply be dismissed as
something that teachers already know and do. Unfortunately, this is not the case.

Dave: Jenna:

Raleigh: Dede:

Fig. 4.14 Students’ written work on integer problems
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4–x = 5

 –6x = 24

 –x = 7

12–x = 7

 –32 = –8y

5x = 40

Fig. 4.15 Linear equation
tasks in Vlassis’s (2008)
study

To illustrate, Vlassis’s (2008) account of the role of mathematical symbols in the
development of number conceptualization began with a historical and psychological
analysis of a particular case, that of the minus sign. While she discussed the impor-
tance of both concrete and sociocultural contexts in her analysis, none of the
characterizations (or functions) of the minus sign (which she refers to as “nega-
tivity”) that comprised her theoretical framework actually addressed either concrete
or sociocultural meanings associated with the negative sign. Hence, when she asked
her sample of 17 eighth graders (eight of low ability; five of medium ability; four of
high ability) to solve for the unknown in each equation in Fig. 4.15, their responses
reflected an overvaluing of alphanumeric control in solving for the unknowns. It
seems to be the case that they never used visual symbols when they first learned
about negative integers and formal algebra in seventh grade. Also, the interview
protocol did not mention the use of relevant concrete objects. So, for example, in
the case of the equation 4 − x = 5, the main sources of difficulty that Vlassis iden-
tified were all numerically driven. In the interview below with a low-ability student
whose answer was x = 0, he or she resorted to trial and error.

Interviewer: Why have you put x = 0?
Student: I just couldn’t find the answer. I couldn’t find four minus something to

make five; you can’t find it with five.
Interviewer: Ah I see, you found four minus something equals five strange?
Student: Yes.

In my Algebra 1 class, the above equation would have been a simple case of sit-
uation (1), which would involve undoing, that is, taking away 4 from 5 and then
dividing the result by −1.

The reported case involving the equation –x = 7 was even more troubling. While
some students gave the correct answer of −7, they did not understand how it came
to be that way and did not have other means of explaining why it had to be so.
Consider the interview below with a medium-ability student:

Interviewer: You need to write out the equation again, replacing x with its value
of −7. So write out the whole equation, and when you get to x, put −7 instead.

Student: I’ll end up with −7 = 7. My solution isn’t right!
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Interviewer: But have you replaced just x itself with −7? What does your
equation start with?

Student: x.
Interviewer: What’s the first thing that you see in your equation?
Student: . . . −x.
Interviewer: No. You shouldn’t put −7 instead of –x, but instead of x alone.

What is there in front of x?
Student: Minus.
Interviewer: Write it down, and then put the value of x.
Student: 7.
Interviewer: Be careful: your value for x is −7!
Student: Yes, but the minus sign is already written.
Interviewer: Is it the same minus as the minus sign in front of 7? In the equation,

the first thing you see is a minus sign. Write it down. Afterwards, you have x,
and the value of x which you have found is −7. Write down this value.

Student: Then I’ll have 7, because a minus times a minus makes a plus.
Interviewer: Ok, but I want to see the two minus signs.
Student: But then I’ll have − −7!
Interviewer: And what do you need to do in algebra when you have two signs

in a row?
Student: Use brackets.

What was actually valued in the discussion above, including the interpretive analysis
that followed, was the significance of understanding the role of brackets in making
sense of the correct answer. But the situation would have been easily resolved if
the activity was accomplished with the action of undoing and/or with the aid of
algeblocks: since −x = 7 meant − 1 · x = 7, divide 7 by −1, so x = −7. Also, − −7
meant pulling 7 green cubes in the negative region to the opposite region, hence
x = 7 (Fig. 4.16).

Fig. 4.16 Demonstrating −−7 = 7 using algeblocks
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3 Some Issues in Inter- and Intra-semiotic Transitions

All visuoalphanumeric symbols that are used in a formational context exist primar-
ily to fulfill the function of reification. In fact, all definitions and theorems used
in school mathematics are better understood when visuoalphanumeric objects are
used to demonstrate them. However, the situation is different and sometimes more
difficult in many transformational contexts. Using visuoalphanumeric symbols in
problem-solving situations might serve a heuristic function, but there is always a
foreshadowing of doubt that comes with the “fallibility of intuitions” that guides the
construction of such symbols (Brown, 2005, p. 65).

In cases when the relevant domains are finite, as in many problem situations
in K−12 discrete mathematics and data analysis and probability, or in cases when
the theorems or propositions have a simple structure such as those found in school
geometry, it might perhaps suffice to construct an isomorphic or a homomorphic
visuoalphanumeric symbols (Barwise & Etchemendy, 1991) that could then be
manipulated leading to a picture-based explanation.

However, in cases when propositions involve domains that are infinite such as the
ones shown in Figs. 4.17 and 4.18, the visuoalphanumeric symbols are not really
proofs in the rigorous sense (Cellucci, 2008; Jaffe & Quinn, 1993). The pebble
arithmetic demonstration in Fig. 3.16 is an exclusively visual representation of a
particular case and does not provide a rigorous proof involving the general case.
Visuoalphanumeric or visual symbols in such contexts play an important role in
developing structural awareness (Mason, Stephens, & Watson, 2009) and relevant
pattern-imagery schemes (Presmeg, 1992) or in conveying an observation about an
intuition. They alone, however, are not able to express the full range of their cor-
responding generalities. Hence, in such cases, visuoalphanumeric symbols are not
“representation(s) in any strict sense, but rather something like a telescope that helps
us to ‘see’ . . . a device for facilitating a mathematical intuition” (Brown, 2005, p. 66)
and, thus, offer us with an “explaining in the sense of making a fact more intuitively
compelling to a person than it was before” (Giaquinto, 2005, p. 79).

The nature of the mode(s) of signification of visuoalphanumeric symbols
depends on their location on the visual–abstract spectrum in Fig. 2.8. Certainly,
students make individual decisions in terms of how such symbols appeal to them,

Fig. 4.17 Simple cases of picture proofs (Brown, 1997)
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Fig. 4.18 Complex cases of picture proofs (Brown, 1997)

which also means to say that the modes themselves are not pre-determined in one
way or another. Presmeg (2008), for example, captures this condition in relation to
the quadratic formula as follows:

The roots of the equation ax2 + bx + c = 0 are given by the well known formula
x = (−b ± √

b2 − 4ac)/2a. Because symbols are used, the interpreted relationship of this
inscription with its mathematical object may be characterized as symbolic, involving con-
vention. However, depending on the way the inscription is interpreted, the sign could also
be characterized as iconic or indexical. The formula involves spatial shape. In my original
research study of visualization in high school mathematics, many of the students inter-
viewed reported spontaneously that they remembered this formula by an image of its shape,
an iconic property. However, the formula is also commonly interpreted as a pointer (cf. a
direction sign on a road): it is a directive to perform the action of substituting values for the
variables a, b, and c in order to solve the equation. In this sense the formula is indexical.
Thus whether the inscription of the formula is classified as iconic, indexical or symbolic
depends on the interpretation of the sign.

(Presmeg, 2008, p. 4)

However, based on my own classroom research, it is more productive to think
in terms of transitions in modes of signification, where visuoalphanumeric symbols
evolve from being solely visual images to their “full expressions” (Peirce, 1957,
p. 239) in abstract thought. Pace Peirce:

Thought, however, is in itself essentially of the nature of a sign. But a sign is not a sign
unless it translates itself into another sign in which it is more fully developed. Thought
requires achievement for its own development, and without this development it is nothing.
Thought must live and grow in incessant new and higher translations, or it proves itself not
to be a genuine thought.

(Peirce, 1957, p. 239)

For example, consider once again the quadratic formula. Figure 3.12b represents
a particular case of a simple quadratic equation that could be solved visually. The
steps in the alphanumeric formula structurally resemble the visual process, thus
iconicity is evident. However, in more complicated cases of the equation ax2 +
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bx + c = 0 (e.g., in cases when a�=1), the visual process becomes tedious and
unreasonable to implement. Hence, the process shifts in mode from being iconic to
symbolic with the application of an alphanumeric formula. Here, the symbolic mode
of the formula does not convey the absence of a visual model. What takes place,
instead, is the incorporation of a particular visual experience in what is considered
to be a more general situation that serves a symbolic function.

Some visuoalphanumeric symbols could start at the indexical phase before tran-
sitioning to symbolic. For example, it is not apparent among beginning learners that
the function y = mx + b represents a graph corresponding to a set of points that lie
on a straight line, hence the relationship or the association may have to be pointed
out. While the y-intercept (b) is a part of the graphical representation, the situation
is not the same in the case of the slope (m) since it is a description of the inclination
of a line in terms of ratio. There is, thus, a dyadic relationship between sign (i.e.,
graph of a line) and object (linear function and its components). But, in its symbolic
mode, the students have to see the form y = mx + b as an abstract representation of
any nonvertical line.

The indexical phase in my Algebra 1 class took place in the context of the two
activities shown in Fig. 4.19a, b that focused on slopes and y-intercepts of a line.
In transitioning from the indexical to the symbolic phase, they used the transfor-
mation application activity in Fig. 4.20 to explore various situations of the slope
and y-intercept of a line. In the symbolic phase, each student developed his or her
own “lin-art” (Fig. 4.22) on a task (Fig. 4.21) that required him or her to bound his
or her region by line segments and then to identify the linear system of equations
that describe the boundary. (In a later task, the students revisited their lin-art and
established a linear system of inequalities.) In accomplishing the task, the students
manipulated their linear equations on the basis of an acquired symbolic understand-
ing that went beyond their initial index-oriented view of linear functions. Figure 4.23
(embedded in a student’s written work) was a closure activity that had the students
analyzing a linear model problem.

Some visuoalphanumeric symbols could also start at the iconic level before tran-
sitioning to indexical and finally to symbolic. For example, binary chips (Fig. 4.10a,
b), paired words such as win-loss used in a metaphorical sense, and the green alge-
block cubes all serve as iconic models for positive and negative integers. They
provide “simple” or “monadic experiences” (Peirce, 1958b, p. 315) in cases involv-
ing simple integer operations such as − 7 + 5, + 15 + 7, 3 + − 4, 8 + − 2, − 7 −
−2, 5 × 3, 2 −4, 15 ÷ 3, . and −8 ÷ 4 The number line and the binary chip mod-
els in more complicated cases of integer operations (e.g., −2 − −7, −3 × 5, −4 ×
−7, −4 ÷−2, and 4 ÷−2) seem to operate more at an indexical mode of signifying
than iconic (Fig. 4.9a, b).

Hence, when students perform operations on integers, they could retain the iconic
and indexical experiences or transition to symbolic understanding. To illustrate,
when my Cohort 1 students were in sixth grade, they used the binary chips in making
sense of −12 − −8, which meant taking away 8 black chips from 12 black chips
resulting in 4 black chips (i.e., −4). When they started to generalize, the iconic char-
acter of the results was preserved in relatively reasonable cases that involved taking
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away a smaller number of negative chips from a larger number of negative chips.
But they also had to deal with the issue that the iconic interpretation (i.e., −12 is
“more than” −8) with the binary chips (or with the algeblocks for that matter) was
not consistent with the mathematical interpretation (i.e., −12 < −8). Also, an addi-
tional conceptual dilemma was how to deal with the reverse case of subtraction, say,
−8 − −12. In these situations, the students’ iconic experiences had to transition
into indexical and then much later to symbolic experiences.

Figure 4.24 shows how we addressed the particular situation –8 – –12 in class
with the binary chips. First, the students gathered 8 black chips. Second, since they
saw that it was not possible to take away 12 black chips from 8 black chips, they
gathered 12 white chips and 12 black chips in two piles. Third, they took away the
12 black chips. Fourth, since there were 8 zero pairs that were all equal to 0, 4 white
chips were left (i.e., –8 – –12 = 4). In the last stage, the students visually saw that
–8 – –12 and –8 + 12 were equivalent expressions. Hence, when they dealt with

Consider the graph of the straight line below.

Fill in the missing values.
Vertical 

direction or 
change (Rise)

Horizontal 
direction or 

change (Run)

Rise
m = slope = --------

Run
From point A to point B 2 3 2/3
From point B to point C 2 3 2/3
From point C to point D 4 6 4/6 = 2/3
From point A to point D
From point B to point D
From point D to point C –4  / –6 = 2  / 3       
From point C to point A
From point D to point A
From point B to point A
From point D to point B

A.  What can you conclude about the slope of the given line for any pair of points on the line? 

B.  Imagine a horizontal line. What is its slope? Explain.

C.  Imagine a vertical line.  What is its slope? Explain.

a

–4 –6

A

B

c

D

x

1

1

Fig. 4.19 (continued)
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b

Fig. 4.19 a Indexical phase involving the linear function. b Follow-up activity involving linear
functions (MiC, 2006)

the general case of subtracting integers and, later, real numbers, it was the symbolic
experience that enabled them to focus on the rules and conventions for combining
any pairs of numbers that were extremely large (or extremely small), including real
number. But the symbolic phase never meant the absence of a visual representation
among the students. Instead, the visual was intertwined with the symbolic.
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1.  Compare the two graphs:

Which of these two graphs has a larger slope?

Explain how you determined your answer.

2. Compare the two graphs:

How are these two graphs similar?  

What is the difference between these two graphs?  

What caused the change to take place?  

3. Examine the graph:

Describe two things you can determine about the graph just by looking 
at it and not doing any calculations.   

Fig. 4.20 Transformation application activity involving linear functions (O’Brien, n.d.)

When Cohort 1 was in seventh grade, the students used the number line model
in exploring once again integer operations; however, they started at the indexical
phase. To illustrate, −8 – −12 meant starting at −8 on the number line and facing
the positive axis, turning around, and then moving backward 12 units. (See also
Fig. 4.9a, b.) The visual experience, repeated over several different pairs of num-
bers, allowed them to make sense of the sign (“direction”) of the result in various
situations of a and b when combined using either addition or subtraction and also
to focus on finding the result (“magnitude”) in a simpler way. So, for example,
when the students dealt with the subtraction problem involving −31 − −57, they
initially imagined the situation on a number line, predicted the sign to be posi-
tive (“start on negative axis, turn around, move backward several times, and you
end up somewhere along the positive axis”), and then reinterpreted the difference
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CLASS WORK

MATHEMATICAL OP-ART AND COLOR FIELD DESIGNS

Instructions:

1. Draw x-y axes on your centimeter grid paper. 

2. Design an Op-Art or Color Field whose boundaries are diagonal lines. No horizontal lines and 
vertical lines allowed. Use a maximum of four colors to shade regions. See models on the board 
to help you develop your own design. BE CREATIVE. A minimum of ten lines is required in your 
design. Number each line.

3. For each numbered line, write the correct equation of the line. Show complete work below to 
receive full credit. 

Fig. 4.21 Lin-art activity

as the distance between the absolute values of the two numbers but expressed
in the context of the constructed equivalent expression −31 + 57 or 57 – 31.
Again, repeated action on similar situations allowed them to transition to a sym-
bolic mode of signifying operations involving integers and, more generally, real
numbers.

In Algebra 1, both Cohorts 1 and 2 used algeblocks in developing a shared sense –
that is, the collective “seeing as” – of integer operations. Revisiting the mathematical
processes involved actually enabled them to quickly understand the basic arithmeti-
cal operations that were used in dealing with polynomial expressions. Initially, at
the indexical phase, integers were associated with small green unit cubes. A basic
mat consisting of two regions, one positive and one negative, allowed the students to
develop the visual image that negative (and positive) integers were indeed opposites
of positive (and negative) integers by the concrete action of “pulling” the cubes on
one region to the opposite region. Figure 4.25a, b shows how we visually tried to
make sense of the rules for −a × b and −a × −b, where a and b are positive inte-
gers, from an indexical standpoint. In Fig. 4.25a, −3 × 2 was associated with the
action of “pulling 3 groups of 2 on the positive region to the negative region,” which
explains the negative result. In Fig. 4.25b, −3 × −2 was interpreted as “pulling 3
groups of −2 on the negative region to the positive region,” which explains the pos-
itive result. But the consequent dilemma involved explaining why −a × b = −(a ×
b) and −a × −b = − (a × −b), which the Cohort 1 students also encountered in
seventh grade in the case of the number line model. Resolving this dilemma neces-
sitated making a transition to the symbolic mode. The steps in Fig. 4.26c illustrate
how we accomplished this in a particular case, which eventually routed the students’
symbolic experiences toward a deductive proof. In sixth grade, Cohort 1 established
the two rules symbolically in a much simple manner that was appropriate at their
grade level. With the binary chips as their iconic model, no indexical phase occurred.
At the symbolic level, we used the commutative property for multiplication in estab-
lishing the arithmetical fact that a × −b = −b × a = −ab = −ba. We then used
the numerical patterning activity in Fig. 4.26d in demonstrating the relationship
−b × −a = ba.
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Fig. 4.22 Samples of students’ lin-art

The foregoing discussion demonstrates the intricate relationship between iconic
and indexical on one side and symbolic on the other. Students who operate mostly at
the iconic and indexical modes without transitioning to the symbolic mode produce
visuoalphanumeric knowledge that has the property of being constrained general-
izations with very limited representational power. Students who operate mostly at
the symbolic mode – that is, are able to use the rules and conventions – but are
not provided with either transition opportunities or meaningful experiences at the
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Fig. 4.23 Diana’s work on a linear function problem

iconic or the indexical mode are likely to demonstrate the use of alphanumeric sym-
bols with very little to no understanding of the relevant relationships involved in the
development of such symbols.

It is perhaps hard to believe that such obtuse phenomena are possible but decades
of classroom research demonstrate this to be the case (e.g., Nickson, 1992). Also,
the two students above who were interviewed by Vlassis (2008) in relation to
solving linear equations exemplify learners at the symbolic mode who do not
have any visual means to make sense of equations; so they end up employing
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Then add 12 and −12. Regroup −8 and 12.

Take away zero pairs.

zero field

Start with − 8.

Next, take away −12.

So, −8 + 12 = 4.

Fig. 4.24 Binary chip model for −8 – −12 = 4

–3 x 2 = –(3 x 2) means pull 3 groups
of 2 cubes on the positive region to
the opposite region  

–3 x 2 = –(3 x 2) = –6 

a

–3 x –2 = –(3 x –2) means pull 3
groups of 2 cubes on the negative
region to the opposite region    

–3 x –2 = –(3 x 2) = 6

b

Fig. 4.25 (continued)
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Let us illustrate why – 3 x 2 = –(3 x 2) in Figure 3.25a using properties of integers. 

–3 x 2 = (–3 x 2) + 0

= (–3 x 2) + [(3 x 2) + –(3 x 2)]

= [(–3 x 2) + (3 x 2)] + –(3 x 2)

= [(–3 + 3) x 2] + –(3 x 2)

= 0 + –(3 x 2)

= –(3 x 2)

(Additive Identity Property)

(Additive Inverse Property)

(Associative Property)

(Distributive Property)

(Additive Identity Property)

(Additive Inverse Property) 

c

Since 4 x –5 =  –5 x 4 = –20 (by the commutative property), then

–5 x 3 = –15

–5 x 2 = –10

–5 x 1 = –5

–5 x 0 = 0

–5 x –1 = 5 = 5 x 1

–5 x –2 = 10 = 5 x 2

–5 x –3 = 15 = 5 x 3, etc.

The last three instances in the pattern demonstrate why –b x –a = ba for any integers a and b.

d

Fig. 4.25 a Visual actions relevant to −3 × 2 on an algeblock mat. b Visual actions relevant to
−3 × −2 on an algeblock mat. c Numerical demonstration showing why −3 × 2 = −(3 × 2). d
Numerical patterning activity illustrating why –b × −a = ba

case-sensitive and unreliable numerical strategies such as trial and error and brack-
eting. A few of my own middle school students in my 3-year study never seemed
to have overcome symbol realism and symbol attachment, which prevented them
from successfully making the transition. Davydov (1990) reminds us that alphanu-
meric expressions remain senseless entities unless they are “placed under” a “real,
object-oriented, sensorially given foundation” (p. 34). Even for Mason (1980), such
symbolic expressions have to be rooted in the enactive, routed in the iconic, and
“ultimately become enactive” (p. 11), especially if they have “to be built upon or
become a component in a more complex idea” (1980).

But, beyond the obvious rhetoric, the valuing of the symbolic mode and the tran-
sition phases in modes of signification share what Thurston (1994), Fields medalist
and pioneer of low-dimensional topology, has eloquently articulated about the
perennial human interest in the power of understanding in proof and more generally
mathematics in the following sentences:
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(C)omputers and people are very different. For instance, when Appel and Haken completed
a proof of the 4-color map theorem using a massive automatic computation, it evoked much
controversy. I interpret the controversy as having little to do with doubt people had as to
the veracity of the theorem or the correctness of the proof. Rather, it reflected a continuing
desire for human understanding of a proof, in addition to knowledge that the theorem is true.
On a more everyday level, it is common for people first starting to grapple with computers
to make large-scale computations of things they might have done on a smaller scale by
hand. They might print out a table of the first 10,000 primes, only to find that their printout
isn’t something they really wanted after all. They discover this by this kind of experience
that what they really want is usually not some collection of “answers” – what they want is
understanding.

(Thurston, 1994, p. 162)

Of course, there are many ways to characterize mathematical understanding, in
particular, symbol sense (e.g., Arcavi, 1994; Fey, 1990; Mason, 1980). However,
Thurston’s point above captures the purpose and significance of how rules and con-
ventions in the symbolic mode in visuoalphanumeric representations are perceived
in this book – that is, they convey a type of understanding that, like Davydov’s
(1990) notion of concept, reflects “the generality or essence” (p. 249) of a collec-
tion of answers that has been drawn by repeatedly acting on their iconic or indexical
representations. We throw in as a pedagogical aside what Thurston believes to be the
encompassing matter of “what is it that mathematicians accomplish” not in terms
of how they either prove theorems or make progress in mathematics but how they
“find ways for people to understand and think about mathematics” (Thurston, 1994,
p. 162).

4 Development of Visuoalphanumeric Symbols in Pattern
Generalization Activity in a Middle School Classroom

In the preceding section, we talked about the significance of visuoalphanumeric
thinking in activities relevant to the recognition and interpretation of institutional
symbols. In this section, which provides the context for Chapter 5, we focus on
the construction of visuoalphanumeric symbols relevant to pattern generalization
among my Cohort 1 students who participated in a 3-year longitudinal study that
involved various aspects of pattern generalization activity. In particular, we describe
the quality, content, and types of symbols that the students used to convey their gen-
eralizations on mostly linear and a few quadratic patterns. In Chapter 5, we provide
a more comprehensive account of the development of pattern generalization and
relevant issues in visualization among my Algebra 1 and Grade 2 students.

Table 4.1 is a summary of Cohort 1 students’ preinstructional modes of gen-
eralization by type on the five patterns shown in Fig. 4.26a. The responses have
been drawn from the Year 1 clinical interviews that occurred at the beginning of
the school year and prior to a 4-week teaching experiment on patterning and gen-
eralization. Overall, about 51% provided superficially iconic responses and about
24% suggested structurally iconic ones. To illustrate, the first three responses in
Fig. 4.26b are superficially iconic, that is, they exhibit external generality that is
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1.  Consider the sequence of figures below.

Figure 1 Figure 2 Figure 3 Figure 4

A.  How many circles would figure number 10 have in total? Explain howyou obtained your 
answer in detail.

B.  How many circles would figure number 100 have in total?  Explain how you obtained your 
answer in detail.

C.  You are now going to write a message to an imaginary Grade 6 student clearly explaining 
what s/he must do in order to find out how many circles there are in any given figure of the 
sequence. Message:

D.  Find a formula to calculate the number of circles in the figure number “n”.

2. Toothpicks are used to build shapes to form a pattern. The table below shows the number of 
toothpicks used to build a particular shape.

Shape number 1 2 3 4 5 6 7 8 20 60 n
Number of  
toothpicks

3 7 11 15 19 23

A. Fill in the missing number of toothpicks in the case of shape number 7, 8, 20, and 60. Explain 
how you obtained each answer.

B. Find a formula to calculate the number of toothpicks in Shape “n.” How did you obtain your 
formula?

3.  Tiles are arranged to form pictures like the ones below.

Picture 1 Picture 2 Picture 3 Picture 4

Find a formula to calculate the number of tiles in Picture “n.” How did you obtain your formula?

a

Fig. 4.26 (continued)
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4.  In the diagram below, a 3 x 3 grid of squares is colored so that only outside squares are
shaded. This leaves one square on the inside that is not shaded and 8 squares that are shaded.  

A.  If you had a 25 x 25 grid of squares and only the outside edge of squares are shaded, how
many squares would be shaded? How did you obtain your answer?  

B. If n represents the number of squares on a side and you have all the outside squares of an n 
x n grid shaded, write an algebraic expression representing the total number of shaded squares 
in the figure. How did you obtain your expression? 

5. Blocks are packed to form pictures that form a pattern as show below. 

Picture 1 Picture 2 Picture 3 Picture 4 Picture 5 

A. How many blocks are needed to form Picture 8? How did you obtain your answer? 

B.  How many blocks are needed to form Picture 35? How did you obtain your answer? 

C. Find a formula to calculate the number of blocks in Picture “n.” How did you obtain your 
formula? 

Dianara (Superficially Iconic, Verbal) on Task 1

Anna (Superficially Iconic, Visual) on Task 1

b

Fig. 4.26 (continued)
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Emma (Structurally Iconic, Visual) on Task 5

Frank (Superficially Iconic, Numerical) on Task 5

Lynette (Structurally) Ionic, Verbal) on Task 1

Dung (Structurally Ionic, Verbal alphanumeric) on Task 1

Fig. 4.26 a Year 1 preinstructional patterning tasks. b Student responses in relation to some of the
pattern tasks in Fig. 4.26a
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Table 4.1 Summary of sixth-grade students’ preinstructional modes of generalization

Pattern task

Superficially
iconic general-
izations (%)

Structurally
iconic general-
izations (%)

Could not
do (%)

Task 1 66 24 10
Task 2 97 3 0
Task 3 62 24 14
Task 4 3 7 90
Task 5 28 62 10

Mean age of 11; 10 males, 19 females; mostly Asian-Americans

Fig. 4.27 Two-layer circle
pattern

characterized by a surface understanding of a perceived general relationship across
the pattern stages. The last three responses in Fig. 4.26b are structurally iconic,
that is, they exhibit internal generality that focuses on a perceived structure within
and across the pattern stages. In either case of iconicity, the students’ descriptions
of their generalizations focused on relationships within, between, and across pattern
stages. Further, while they appeared generally unsystematic and minimally parsimo-
nious, the generalizations conveyed abstractions of characteristics they perceived in
the patterns.

Clinical interviews on tasks analogous to Fig. 4.26a were conducted immediately
after the Year 1 teaching experiment. Not surprisingly, none of the generalizations
were expressed in words. Instead, all the generalizations were alphanumeri-
cally drawn symbolic representations. The students were aware of the rules and
conventions in constructing a direct formula (i.e., a closed formula in function form)
that they initially developed in class and later emerged as a classroom mathematical
practice. In the classroom episode below, the class was exploring the two-layer cir-
cle pattern in Fig. 4.27. Ana and her group suggested a numerical symbolic strategic
that involved generalizing using differencing, which shares many of the features of
the institutional mathematical practice called finite difference method.

Anna: We made up a formula. Like we got the figures until figure 5, and we
tried it with other ones. We got n × 2 + 3, where n is the figure number and
timesed it by 2. So 5 × 2 equals 10, plus 3, that’s 13. So for figure 25, it’s 53.
FDR: I like that formula. So tell me more. So your formula is?
Anna: n × 2 + 3.
FDR: So how did you figure this out?
Anna: First we were like making the numbers to 25. We kept adding 2 and for
figure 25, it was 53.
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FDR: Wait. So you kept adding all the way to 25?
Anna: Yeah. . .. Then we used our chart. Then finally we figured out that if we
timesed by 2 the figures and plus 3, that would give us the answer.
FDR: Does that make sense? [Students nodded in agreement.] So what Anna
was suggesting was that if you look at the chart here, Anna was suggesting
that you multiply the figure number by 2, say, what’s 1 × 2?
Tamara: 2.
FDR: 2. And then how did you [referring to Anna’s group] figure out the 3
here?
Anna: Because we also timesed it with figure number 13.
FDR: What did you have for figure 13?
Anna: That was 29. And then 13 × 2 equals 26 plus 3.
FDR: Alright, does that work? So what they were actually doing is this. They
noticed that if you look at the table, it’s always adding by 2. You see this?
[Students nodded.] They were suggesting that if you multiply this number here
[referring to the common difference 2 by figure number, say figure number 1,
what’s 1 × 2?
Students: 2.
FDR: Now what do you need to get to 5? What more do you need to get to 5?
[Some students said ‘3’ while others said ‘4.’] Is it 4 or 3?
Students: 3.
FDR: It’s 3 more. So what is 1 × 2?
Students: 2.
FDR: Plus 3?
Students: 5. [The class tested the formula when n = 2, 3, and 25.]

One unfortunate consequence of the above alphanumeric practice was the grad-
ual loss of the students’ ability to justify their direct formulas. While they could
construct direct formulas using differencing, they became inconsistent in justifying
them. As they internalized the alphanumeric process and neglected the visual aspect
altogether, this particular symbolic appropriation, in fact, constrained them. In the
words of d’Alembert (1995), “(m)athematical abstractions help us in gaining this
knowledge [i.e., general relationships], but they are useful only insofar as we do not
limit ourselves to them” (p. 21; quoted in Alexander, 2006, p. 722). To illustrate,
Dung, prior to the Year 2 teaching experiment on pattern generalization (about 7
months after the Year 1 teaching experiment), dealt with the adjacent toothpick pat-
tern task in Fig. 4.28 in the following manner: He initially set up a two-column table
of values, listed down the pairs (1, 4), (2, 7), and (3, 11), and noticed that “the pattern
is plus 3 [referring to the dependent terms].” He then concluded by saying, “the for-
mula, it’s pattern number × 3 plus 1 equals matchsticks.” In writing T = (n × 3) + 1,
he noted that the coefficient referred to the common difference and the y-intercept as
the adjustment value that was needed in order to match the dependent terms. When
he was then asked to justify his formula, he provided the following faulty reasoning
in which he projected his formula onto the figures in a rather inconsistent manner
(see Fig. 4.29 for a visual illustration):
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For 1 [square], you times it by 3, it’s 1, 2, 3 [referring to three sides of the
square] plus 1 [referring to the left vertical side of the square]. For pattern 2,
you count the outside sticks and you plus 1 in the middle. For pattern 3, there’s
one set of 3 [referring to the last three sticks of the third adjacent square], two
sets of 3 [referring to the next two adjacent squares] plus 1 [referring to the
left vertical side of the first square].

Consider the sequence of toothpick squares below. 

1 2 3

A. How many toothpicks will pattern 5 have? Draw and explain.

B.  How many toothpicks will pattern 15 have? Explain.

C.  Find a direct formula for the total number of toothpicks T in any pattern number n. Explain 
how you obtained your answer.

D.  If you obtained your formula numerically, what might it mean if you think about it in terms of 
the above pattern?

E.  If the pattern above is extended over several more cases, a certain pattern uses 76 
toothpicks all in all. Which pattern number is this? Explain how you obtained your answer.

F.  Diana’s direct formula is as follows:  T = 4·n – (n – 1).  Is her formula correct? Why or why 
not? If her formula is correct, how might she be thinking about it? Who has the more correct 
formula, Diana’s formula or the formula you obtained in part C above? Explain.

Fig. 4.28 Adjacent toothpick pattern task

Pattern 1:
+ 1 1, 2, 3

Pattern 2:
1, 2, 3, 4, 5, 6

 + 1

Pattern 3:

3 sets of 3
 + 1

Fig. 4.29 Dung’s justification of his direct formula in relation to the pattern in Fig. 4.28
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Stage 1  Stage 2

Stage 3

Fig. 4.30 Losing squares pattern

But the students also found the above alphanumeric method too difficult to use
or to “transfer” in the Year 2 study when they had to deal with decreasing linear
patterns that involved negative differencing. For example, in a clinical interview
prior to a teaching experiment on decreasing patterns, Tamara was first asked to
establish and justify generalizations for two increasing linear patterns, which she
accomplished successfully. When she was then asked to obtain a generalization
for the losing squares pattern in Fig. 4.30, she first saw that every stage after the
first involves “minusing 2” squares. She then used multiplication to count the total
number of squares at each stage. When she then proceeded to obtain a direct for-
mula, she was perturbed by the negative value of the common difference and said,
“I was trying to think of, just like the last time, I was trying to get a formula. . . . I
was thinking of trying to do with the stage number but I don’t get it.” The presence
of the negative difference, including the necessity of multiplying two differently
signed numbers, partially and significantly hindered her from applying what she
knew about constructing direct formulas in the case of increasing patterns. In fact,
she had to first broaden her knowledge of multiplication to include two factors hav-
ing opposite signs before she was finally able to state the form S = −2 × n + 34.
Further, while she could explain what the slope and y-intercept in her direct formula
meant in the case of increasing patterns, she was unable to justify the forms she
established for decreasing linear patterns.

In Year 3, the students’ generalizations were also symbolic; however, they were
visuoalphanumeric symbolic representations. That is, the content of their con-
structed direct formulas involving alphanumeric objects was rooted visually on what
they interpreted to be the structure of a pattern across the known stages and assumed
to hold for the unknown stages as well. For example, in the clinical interview after
the teaching experiment on patterning and generalization, several students devel-
oped at least four different visuoalphanumeric symbolic representations on the T star
pattern task shown in Fig. 4.31a. In Fig. 4.31b, each direct formula actually com-
bined construction and justification with the alphanumeric expressions conveying
a perceived structure of the pattern. Dung cognitively perceived a middle star that
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stayed the same from stage to stage and three groups of neighboring stars that grew
by the stage number. Jenna saw overlapping groups of stars. Tamara offered two
formulas as a result of interpreting two structures for the same pattern. Her first for-
mula, s = 3n + 1, was the same as Dung’s. However, her mode of grouping stars was
different from Dung’s since she saw n groups of three stars instead of three groups
of n stars. In her second formula, she initially added n stars in order to justify the
expression 4n. She then took them away and then added the middle star that stayed
the same from stage to stage.

While the Year 1 rules for constructing alphanumeric symbolic generalizations
have been drawn from the numerical method of differencing that Anna and her group
shared in class, the Year 3 rules for developing visuoalphanumeric symbolic gener-
alizations have been drawn from the students’ experiences in two classroom events.
The first classroom event took place about 4 weeks before the teaching experiment
on pattern generalization. In the classroom episode below, the students were asked
to use their conceptual understanding of multiplication of two integers to obtain a
mathematical expression for the two sets of figures shown in Fig. 4.32. The activity
was meant to prepare them later when they had to perform multiplication of integers
with the algeblocks.

FDR: So what mathematical expression corresponds to what you see here
[referring to the first set]?

Francis: 6 circles.
FDR: Yes, there are 6 circles but I want a mathematical expression that shows

how you got 6.
David: Add them one by one.

Consider the pattern shown below.  

Stage 1 Stage 2     Stage 3

1. What stays the same and what changes?

2. Find a direct formula for the total number of stars T at any stage number n.  Explain why your 
formula makes sense. If needed, use the duplicate copy below to help you explain.

3. Find a second direct formula that is equivalent to the one you obtained in item 2 above. 
Explain why it works. If needed, use the duplicate copy below to help you explain.

4. If your two direct formulas above do not involve overlaps, find a direct formula that takes into 
account overlaps. Explain why it works. If needed, use the duplicate copy below to help you 
explain.

Fig. 4.31 (continued)
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Fig. 4.31 a T star pattern task. b Four visuoalphanumeric direct formulas for the pattern in
Fig. 4.31a

FDR: Yes, you can certainly add them one by one. But are there other ways of
getting 6?

Eric: 2 times 3. [FDR writes the answer on the board.]
FDR: So what do you mean by 2 × 3, Eric?
Eric: It means 2 threes.
FDR: Uhum, 2 threes or we say 2 groups of threes. Does that make sense?

[Students nod in agreement.] Okay, so now what expression works with the
second item here?

Salina: Three groups of 6.
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Fig. 4.32 Two multiplication tasks

FDR: Uhum, and how do we write that using multiplication?
Students: 3 times 6.
FDR: Times meaning what?
Salina: Groups of.

The second classroom event took place in relation to the tile patio pattern
task shown in Fig. 4.33 that asked them to obtain several different equivalent
direct formulas for the same pattern. Initially, the students worked in pairs to

Fig. 4.33 Tile patio pattern
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, 3 groups of 4, 

Fig. 4.34 Four direct formulas for the pattern in Fig. 4.33

establish a structural unit for the pattern. The structural unit addressed issues rel-
evant to aspects in the pattern that for them stayed the same and changed. Each
alphanumeric formula shown in Fig. 4.34 conveyed an embedded visual description
of a structural unit – and thus, a visuoalphanumeric symbol – that is stage-induced
and multiplicative in most cases.

We should note that the use of visuoalphanumeric symbols has been documented
in many other studies done with several different age-level groups [see, e.g., the
ZDM (2008) special issue on generalization]. But three points are worth noting.
First, in many of these reported studies, the emphasis has been about extrapolat-
ing semi-cognitive processes relevant to “capturing” in mathematical form what is
noticed, observed, or abduced in an emerging generalization. Consequently, such
studies have not explicitly articulated the central role of rules and conventions that
might have given some indication of, or insight into, the symbolic nature of direct
formula construction and justification. Second, we underscore the significance of
purposefully orchestrated joint activity and classroom interaction in enabling intra-
semiotic transitions to occur in pattern generalization activity. Among Cohort 1,
their 3-year story could be summarized as one in which their direct formula con-
struction and justification as a symbol system progressively transitioned from the
visual to the alphanumeric and finally to the visuoalphanumeric. This positive
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account illustrates the view that signs and their modes of signification are neither
predetermined nor arbitrary but negotiated and conventional. Third, in this section
we started to address the important role of structural unit and multiplicative thinking
as rules and conventions that the students used in their simultaneous construction
and justification of visuoalphanumeric-drawn direct formulas. We explore these
ideas further in the next chapter.

5 Overview of Chapter 5

Chapter 5 provides details concerning the central role of visual thinking in the
construction and justification of simple and complex algebraic generalizations
relative to linear and nonlinear figural patterns. While numerical- or symbolic-driven
processes help students fulfill aspects of school mathematical activity, the findings in
this chapter indicate that the absence of any visual-based context in learning math-
ematics is likely going to prevent them from further developing useful insights and
meaningful understanding. In Chapter 5, we explore in some detail the meaning and
significance of abductive reasoning in induction and generalization processes. We
dwell for the most part on figural patterns and address the primary dilemma of how
to develop reasonable inferences and algebraic generalizations on the basis of lim-
ited information (i.e., the known stages in any pattern) that could then be applied to
the unknown stages.

Also, in Chapter 5, we provide a visually drawn empirical account of progressive
evolution of structural thinking involving patterns. Such an account demonstrates
how accounts of progressive formalization, schematization, symbolization, and
mathematization all involve accounts of progressive abductions. In two sections,
we distinguish between entry-level abductions and mature abductions that produce
visuoalphanumeric representations. We also discuss constraints and difficulties in
making abductive transitions that have implications in the content and quality of
structural thinking. Finally we consider ways in which visuoalphanumeric represen-
tations in pattern generalization activity at the middle school level and structured
visual thinking in patterning activity at the elementary level mediate in students’
understanding of functions.





Chapter 5
Visuoalphanumeric Representations in Pattern
Generalization Activity

How general is general?
(Bastable & Schifter, 2008, p. 166).

The most important operation of the mind is that of
generalization

(Peirce, 1960, p. 34).
(A)lgebra . . . not as symbol manipulation, not as arithmetic with
letters, not even as the language of equations, but as a succinct
and manipulable language in which to express generality and
constraints on that generality

(Mason, 2008, p. 77).

In Chapter 4, we drew on a few examples from my own classroom work in
discussing a progressive account of symbol formation in school mathematics. A
visually grounded approach provides an alternative and effective route that could
assist students in understanding mathematics better. Otte (2007) notes how math-
ematical knowledge seems to be already “everything [that] just is and thus means
itself” (p. 243). The more pressing issue appears to be “not that of rigor but the
problem of the development of meaning” (Rene Thom quoted in Otte, 2007, pp.
244–245).

School mathematics content has been, and continues to be, depicted and
taught in solely alphanumeric terms. One effect of this valued perception toward
alphanumeric-driven rules and conventions involves the widely accepted binary
practice concerning the separation of the visual and referential, on one side, and the
abstract and operative, on the other (Fig. 2.8). Moyer’s (2001) study with 10 mid-
dle school teachers as well as my own in the context of a state-funded professional
development grant for Grades 5 through 9 teachers provide sufficient indications of
this continued practice, where visual learning is associated with the view that “math
is fun” and alphanumeric learning assigned the serious task of “doing real math.”

The empirical evidence presented in several sections in Chapter 4, however,
offers a counterstance, a way out of dichotomized thinking in favor of more
embedded and distributed mathematical practices in which mathematical knowl-
edge emerges from transitions in symbolizing from the iconic and/to indexical to
symbolic and, consequently, from visual images to more structured visual represen-
tations we call visuoalphanumeric symbols. I have also underscored the significance

145F.D. Rivera, Toward a Visually-Oriented School Mathematics Curriculum,
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and influence of appropriate teacher orchestration and psychological distancing in
helping students overcome cut points (Filloy & Rojano, 1989) and make transitions
at both intra- (visual to visuoalphanumeric) and inter-semiotic (symbol, image, and
language) levels. In this chapter, we provide a visually drawn empirical account
of progressive evolution of structural thinking in one particular content strand in
school mathematics, that is, patterns in both figural and numerical forms. Central in
this account is Peirce’s notion of abduction.

This chapter is divided into six sections. Section 1 involves clarifying the mean-
ing of patterns. Section 2 introduces readers to abductive reasoning or, simply,
abduction. This is an important section in light of its powerful role in the devel-
opment of inductive reasoning and, more generally, in mathematical reasoning.
Further, we establish a stronger claim in which accounts of progressive formal-
ization, schematization, symbolization, and mathematization all involve abductive
actions. Section 3 addresses issues surrounding entry-level abductions. Section 4
deals with visual templates as exemplifying instances of mature abductions that
produce visuoalphanumeric representations. In Section 5, we discuss constraints
and difficulties in making abductive transitions, which have implications in the con-
tent and quality of structural thinking. We close this chapter with Section 6 that
deals with the relationship between visuoalphanumeric generalization and linear
modeling in Algebra 1 and between structured visual thinking about patterns and
functional thinking in Grade 2.

1 Assumptions About Patterns

Meaningful patterns convey structures. Pace Resnik (1997), “the primary subject-
matter [of mathematics] is not the individual mathematical objects but rather the
structures in which they are arranged” (p. 201). In the context of patterning activity,
we assume that the known stages or objects in a pattern convey positions in some
interpreted structural relationship, which also means to say that they do not have
an identity or distinguishing features outside of that relationship. By structure, we
mean an arrangement of objects expressed in either figural or numeric form.

The goal in every pattern is to obtain an appropriate generalization. By general-
ization, we follow Peirce’s definition, as follows:

Generalization in its strict sense, means the discovery, by reflection upon a number of cases,
of a general description applicable to them all. This is the kind of thought movement which
I have elsewhere called formal hypothesis, or reasoning from definition to definitum. So
understood, it is not an increase in breadth but an increase in depth.

(Peirce, 1960, p. 256; italics mine)

Further, when a generalization has been drawn from a larger (versus small) number
of known cases, it signals “an increase of definiteness of the conceptions [we] apply
to [the] known things” (Peirce, 1960, p. 256).

At least in this chapter, patterns in a generalizing or structuring task have the
following properties:
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1. There is a closed or a direct formula that can be derived from the given stages.
2. The known stages, together with an interpreted formal hypothesis or generaliza-

tion, can assist in pattern extension, that is, generate a range of terms.
3. The stages resemble each other in some way.

For example, the sequence {2, 4, 6, 8, . . .} is a numerical pattern. The direct expres-
sion 2n is one way of describing the structure of the numbers in the sequence that
allows us to say that the numbers 10, 12, 14, and so on are reasonable extensions.
Also, it is perceptually apparent that evenness is one characteristic that is common
to each number in the sequence.

The Fibonacci sequence {1, 1, 2, 3, 5, 8, 13, . . .} is a famous example of a recur-
sive pattern; it can be generally described by the rule an = an−1 + an (where a1 = a2
= 1 and n is an integer greater than 1). Assuming that the pattern obeys the recursive

rule, its closed formula is 1√
5

[(
1+√

5
2

)n −
(

1−√
5

2

)n]
. The direct expression 5n – 2

(where n ≥ 1) is a generalization associated with the arithmetic sequence {3, 8, 13,
18, . . .} with the added condition that the pattern is an increasing sequence.

Resemblance encompasses implicit (deep) and explicit (surface) properties that
the stages in a pattern have in common. The properties are not inherently a priori
but interpreted – that is, depending on an individual learner’s knowledge and expe-
riences, he or she assumes a justified property relative to the pattern that he or she
then projects onto both known and unknown stages. Projecting involves employing
abductive processes that generate hypothesized properties that are or are not directly
knowable due to the incompleteness of the pattern stages. Abduction, for the time
being, pertains to viable inferences routed through generalizations that individual
learners “plausibly” claim in a pattern despite the fact that the information pre-
sented to them is incomplete (i.e., only a few initial or given stages in the pattern
are known). “Plausibility,” Peirce (1958a) writes, “is the degree to which a theory
ought to recommend itself to our belief independently of any kind of evidence other
than our instinct urging us to regard it favorably” (p. 173).

When students perform a pattern generalization, it basically involves mutually
coordinating their perceptual and symbolic inferential abilities so that they are able
to construct and justify a plausible and algebraically useful structure that could be
conveyed in the form of a direct formula (Lee, 1996; Radford, 2008; Rivera, 2010a).
Especially in cases involving visual patterns, among the most important perception
types that matter involves visual perception. Visual perception involves the act of
coming to see; it is further characterized to be of two types, namely sensory per-
ception and cognitive perception (Dretske, 1990). Sensory (or object) perception is
when individuals see an object as being a mere object in itself. Cognitive percep-
tion goes beyond the sensory when individuals see or recognize a fact or a property
in relation to the object. For example, in my Grade 2 class, 12 of the 20 students
who were individually interviewed and assessed for preinstructional competence
on pattern generalization exhibited sensory perception in the case of the triangular
pattern shown in Fig. 5.1a. Taking the stages as mere sets of objects, the 12 stu-
dents produced a variety of extensions in the shape of lines, rectangles, and triangles
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1 2

1. Use the circle chips to draw the next two figures.

2. Without using the chips, draw or describe stage 10 of the pattern.

3 

a

Consider the following steps in a pattern

b
Jana’s Stage 10 

Nikki’s Stage 10

Dexter’s Stage 10

Zina’s Stages 6 to10

c

Fig. 5.1 a Triangular pattern. b Samples of Grade 2 students’ stage 10 of the Fig. 5.1a pattern. c
Joshua’s (Grade 2) stage 10 of the Fig. 5.1a pattern
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(Fig. 5.1b). Seven other students exhibited cognitive perception in varying stages of
structural awareness. Among the seven, only Joshua produced a consistent cogni-
tive perception on the basis of his written work in the case of stage 10 (Fig. 5.1c).
Cognitive perception necessitates the use of conceptual and other cognitive-related
processes that enable individual learners to articulate what they choose to recognize
as being a fact or a property of a target object. It is mediated in some way through
other types of visual knowledge that bear on the objects, and such types could be
either cognitive or sensory in nature.

There are two kinds of patterns that we analyze in this chapter, which are as
follows.

Numerical patterns involve numbers as the primary objects of generalization.
Four points are worth noting with respect to all the numerical patterns that I used in
all my studies. First, when the students were presented with tables of numbers such
as the ones shown in Fig. 5.2, they had sufficient knowledge of the contexts, assump-
tions, and conditions that were needed in order to make sense of them.1 Second,
since most linear function modeling problems could be effectively and efficiently
analyzed as numerical patterns, numerical modes and strategies of generalizing
were encouraged, in particular, in the constructive aspect of pattern generalization.
Third, numerical tables of values were either presented or student generated. Fourth,
numerical tables of values can be presented in at least two ways (cf. Rivera, 2009).
Figure 5.3a are two examples of a table that fosters an inductive-structuring strat-
egy, while Fig. 5.3b exemplifies a table that employs a finite differencing strategy.
The tables were generated in relation to the circle fan pattern task shown in Fig. 4.1.

Figural patterns involve shapes as the primary objects of generalization. The
shapes need to be assessed for meaningfulness prior to generalization, which means
they have to be analyzed in terms of parts or subconfigurations that operate or
make sense within an interpreted structure. We use the term figural patterns to con-
vey what we assume to be the “simultaneously conceptual and figural” (Fischbein,
1993, p. 160) nature of mathematical patterns. The term “geometric patterns” is not
appropriate due to a potential confusion with geometric sequences (as instances of
exponential functions in discrete mathematics). The term “pictorial patterns” is also
not appropriate due to the Peircean fact that figural patterns are not mere pictures

1Parker and Baldridge (2004) emphasize the need for tables to have real (or experientially real)
and predictable contexts with a sufficient number of particular instances in order to generate a
reasonable algebraic expression (or formula). For example, the table below with the context about
rainfall could not be assessed correctly, that is, even if the expression appears to take the algebraic
form (1/2)h, “there is no reason why the rainfall will continue to be given by that expression, or
any expression. This question cannot be answered” (p. 90). Other examples include stock market
prices and gas prices, where tables could be generated but oftentimes do not lead to correct and
justifiable algebraic expressions.

It started to rain. Every hour Sarah checked her rain
gauge. She recorded the total rainfall in a table. How
much rain would have fallen after h hours?

Hours Rainfall
1 0.5in.
2 1 in.
3 1.5 in.
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Fig. 5.2 Sample of a context-based numerical table (Curriculum Planning and Development
Division, 2008, p. 8)

of objects but exhibit characteristics associated with visually drawn schematic
representations.

While all patterns for generalization purposes need to be well defined, ambiguous
ones allow learners to value this necessary condition. The term “ambiguous” shares
Neisser’s (1976) general notion of ambiguous pictures as conveying the “possibility
of alternative perceptions” (p. 50). The term “well-defined pattern” means there is
an unambiguous and unique structure that could be associated with the pattern and
described accordingly in an algebraically useful manner (i.e., a direct formula in
function form). We note, of course, that an individual learner’s level of cognitive
perception is likely to determine how well defined a pattern is, which explains why
we need to have both constructive and justificatory phases in pattern generalization.

The above point raises the important issue of ease in structure discernment rela-
tive to (figural) pattern generalizing. We discuss briefly for now the well-established
Law of Good Gestalt (Metzger, 2006, pp. 19–27). Later, in Sections 4 and 5, we use
the terms pattern goodness and Gestalt effect interchangeably and they both refer
to the same Gestalt law. This law pertains to the order in which we perceive, dis-
cern, and organize a figure, a picture, or an image – that is, we are predisposed
to organizing on the basis of what naturally belongs or fits together, including that
which is simple and recognizable enough that enables us to associate or specify a
geometric shape or an algebraic formula. Hence, a figural pattern that is high in
Gestalt goodness tends to have an interpreted structure that reflects the orderly, bal-
anced, and harmonious form of the pattern, which allows learners to easily specify
an algebraically useful formula. A figural pattern that is low in Gestalt goodness is
interpreted as being disorganized with a complex (unbalanced) structure that either
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Stage Number Total Number of Circles 
1 
2 
3 
4 
5 
6 
8 
n C = 1 + 3  x n  

Stage Number 

1 
2 
3 
4 
5  
6 
8 
n C = 3 x (n + 1) – 2  

1 + 3 x 1
1 + 3 x 2
1 + 3 x 3
1 + 3 x 4
1 + 3 x 5
1 + 3 x 6
1 + 3 x 8

Total Number of
Circles 
3 x 2 – 2
3 x 3 – 2
3 x 4 – 2
3 x 5 – 2
3 x 6 – 2
3 x 7 – 2
3 x 9 – 2

Stage Number 
n

Total Number of 
Circles C 

1 4  
2 7
3 10
4 13
5 16

+ 3 
+ 3 

+ 3 

+ 3 

a

b

Fig. 5.3 a Examples of an inductive-structuring table in relation to the Fig. 4.1 pattern. b Example
of a finite difference table in relation to the Fig. 4.1 pattern

has no easily discernible parts or consists of parts that have no “natural divisions,”
which makes the task of constructing an algebraically useful formula difficult to
accomplish.

Thus, in both cases of pattern goodness, visual actions that are conveyed by their
individual cognitive perceptions play a significant role in the construction of an alge-
braic generalization. Certainly, grade-appropriate tasks matter as well; however, it is
still a matter for individual learners to decide how they want to perceive, construct,
and interpret (stages in) a figural pattern. For example, prior to formal instruction
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1

1. Use the patten blocks to draw the next two figures.

Consider the following steps in a pattern

Consider the following steps in a pattern

2. Without using the blocks , draw or desceibe stage 10 of the patten.

2 3

a

1 2 3

b

1. Use the patten blocks to draw the next two figures.
2. Without using the blocks , draw or desceibe stage 10 of the patten.

c

d

Fig. 5.4 a House pattern task used with Grade 2 students (pattern taken from Greenes et al., 2001,
p. 79). b Star pattern task used with Grade 2 students (pattern taken from Greenes et al., 2001,
p. 79). c Sylvia’s (Grade 2) stage 10 of Fig. 5.4a. d Nikki’s (Grade 2) stage 10 of Fig. 5.4b
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on pattern generalization, second grader Joshua in Fig. 5.1c interpreted the trian-
gular pattern in Fig. 5.1a as having a well-defined structure that reflects what more
experienced and older students are likely to produce (i.e., the sequence of triangu-
lar numbers). Unlike Joshua, however, the remaining 19 students found Fig. 5.1a
to be low in Gestalt goodness. In the same class, Joshua and 11 others considered
the house pattern and the star pattern in Fig. 5.4a, b, respectively, as being high in
Gestalt goodness and, thus, well defined on the basis of how they quickly saw a cor-
rect structure for stage 10 in each pattern. They initially inspected the given stages
1 through 3, then extended the pattern to stages 4 and 5 with pattern blocks, and
finally drew on paper what they inferred to be the structure of stage 10. Figure 5.4c,
d provides examples of their drawn work on the two patterns. The remaining eight
students sensed the two patterns as having a low Gestalt effect.

The idea behind ambiguous patterns such as the one shown in Fig. 3.9 has been
drawn from Dörfler’s (2008) insights on the current state of patterns research. He
notes that patterns with well-defined stages impress on learners the view that “there
is an expected direction of generalizing,” which could “intimate one and only way

Fig. 5.5 Dexter’s (Grade 2) extensions of the Fig. 3.9 ambiguous pattern task
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[of continuing] a figural sequence” (p. 153). Consequently, such patterns might
induce “a strong regulating or even restrictive impact” on their thinking (p. 153).
He then recommends the use of “free generalization tasks” that ask them to think
about (figural) patterns in a different way, as follows:

How otherwise can one ask for, say, the number of matchsticks . . . in an “arbitrary” item
of the sequence? The situation would presumably be much more open if one asked sim-
ply “How can you continue?” or “What can you change and vary in the given figures?”
. . . I rather want to hint to possible further directions for research . . . a plea for “free”
generalization tasks not restricted by pre-given purposes.

(Dörfler, 2008, p. 153)

Figure 3.10 shows samples of well-defined figural patterns that four of my Algebra
1 students developed relative to the Fig. 3.9 task. Figure 5.5 shows second grade
Dexter (7 years old) who, in a clinical interview session, produced the same growing
L-shaped pattern in Fig. 3.10 prior to formal instruction at the beginning of the
school year. While he was unable to establish an algebraic generalization (i.e., using
variables to convey a direct formula), his incipient generalization on stage 10 of his
constructed pattern provides a glimpse of his emergent structure, that is, “[in stage
10,] there are 10 across and 10 up.”

2 Abductive Reasoning in Pattern Generalization Activity

When Cohort 1 and 14 others were in sixth grade, results of the clinical interviews
prior to a teaching experiment on pattern generalization indicate all but one extended
the incomplete pattern in Fig. 2.6a by adding two circles, one on the vertical side,
and the other on the horizontal side, from stage to stage. Figure 5.6a shows Shawna’s
extensions relative to the Fig. 2.6a pattern. While she initially stated that the pattern
“adds by 2,” she then focused on stage 4 and saw that “it adds one on here [top of
the column] and one on here [right end of the row].” Having that in mind, she con-
structed stages 5, 6, and 7 and eventually stated her generalization in words, shown
in Fig. 5.6b. We classify her incipient generalization as conveying structural iconic-
ity, that is, she noticed and interpreted an internal generality that applies within and
across the given stages. In light of her generalization, she then constructed stage 100
and said, “the bottom would be 100 and the vertical would be 99.”

Like Shawna, Dina in Fig. 2.6b and Anna in Fig. 4.26b also perceived the same
structure relative to the Fig. 2.6a pattern. Their thinking about the pattern differed
in their constructed stages. Anna and Dina saw the constant addition of two circles
and nothing more, which should explain why their constructed stages were as such,
that is, sets of circles that grew by two circles per set. Their incipient generaliza-
tion conveys superficial iconicity, that is, they noticed and interpreted an external
generality across the given stages.

Figure 5.6c shows Jenna’s extensions relative to the Fig. 2.6a pattern. Unlike
Dina, Anna, and Shawna, Jenna initially saw the lengths of the row circles as some-
how related to the stage number and the lengths of the column circles oscillated
over a cycle of 0, 1, 2, and 3 circles. Figure 5.6d shows her incipient generalization,
which conveys structural iconicity. Unfortunately, Jenna found it difficult to extend
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Fig. 5.6 a Shawna’s
extension in relation to
Fig. 2.6a. b Shawna’s verbal
generalization of her pattern
in Fig. 5.6a. c Jenna’s
extension of the pattern in
Fig. 2.6a. d Jenna’s verbal
generalization of her pattern
in relation to Figs. 2.6a and
5.6c. e Jenna’s predicted
stages 99 and 100 relative to
her generalization in Fig. 5.6d

her stages correctly. In Fig. 5.6e, she guessed that stage 99 would have a row of 99
circles and no circle on the column, while stage 100 would have 100 circles on its
row and 1 circle on its column, etc.

Figure 5.7 is a diagram that shows phases in pattern generalization, which I have
drawn on the basis of the clinical interviews that were conducted with my sixth-
grade class relative to the five tasks shown in Fig. 4.26a. In the diagram, abduction is
situated at the kernel of the generalizing process. Individual learners initially explore
a plausible rule (i.e., a tentative generalization) that might explain the known stages
and then use it to construct the unknown stages in any given pattern. A signpost
for abductive reasoning is when they offer an explanatory hypothesis or rule for a
given pattern on the basis of the available stages. They then use the abductive claim
to extend the pattern (“near generalization tasks” such as determining the fourth
or the fifth stage) and repeatedly test – that is the inductive phase – that ultimately
enables them to either confirm the rule (preferably a direct formula) or see the neces-
sity of developing a further abduction. When the rule is confirmed, a generalization
emerges that allows them to deal with far generalization tasks such as obtaining the
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Managing the Unknown
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Algebraically Useful Generalization

Fig. 5.7 Diagram of phases in generalization

77th stage of the pattern without laboriously constructing the preceding 76 stages.
A further abduction is warranted when the rule makes it almost difficult for them to
successfully deal with any far generalization task. In the above situation, for exam-
ple, Shawna first established two generalizations on the basis of the known stages
(adding by 2 s in the case of stages 1–4 and then extending the generalization to
stages 5–7; seeing a relationship between the number of circles on each row and
circle in stage 7 and then generalizing), which she then used to extend her pattern to
stage 100. Jenna, Dina, and Anna, however, needed to refine their abductions in an
algebraically useful manner.

Figure 5.7 should help understand why students need to accomplish both near
and far generalization tasks beyond the busy work of calculating dependent out-
comes. Near generalization tasks help students to begin the verification process
(inductive phase) following an explanatory hypothesis (abduction), a tentative gen-
eralization. With repetitive action over a few simple, manageable instances comes
the secure sense of confirming. Consequently it means slowly producing and pro-
jecting a plausible or an appropriate shape or image relevant to a pattern and an
interpreted structure. Being confronted with a far generalization task represents a
moment of perturbation. At this stage, they test the projective power and validity of,
including convenience in using, the hypothesis or tentative generalization in dealing
with an extremely large stage. Repetitive success in far generalization items signals
the moment of encapsulation and (empirical) justification in which a final general-
ization emerges and is seen as an object and a process, where the object (i.e., the
direct formula) conveys the structure of the pattern and the process (i.e., the individ-
ual coefficients, terms, and indicated operations) refers to the arithmetical power of
the established generalization in determining an exact outcome.

Thus, when students perform a mathematical generalization, they go through
stages of abduction and induction in which abduction is the creative domain of rule
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inference and formation and tentative generalization and induction the confirmatory
phase of testing and extending but only in relation to a stated abduction (cf. Rivera
& Becker, 2007a). In other words, it is simply not possible to induce without stating
an abductive claim. The original context in which abduction has been conceptual-
ized situates it as always being prior to induction (Peirce, 1957). However, recently,
abduction has been reinterpreted in a more dynamic manner that works simulta-
neously with induction. This is done to ensure the production of the best rule or
explanatory hypothesis, which in many cases occurs after a series of abduction and
induction (Arzarello, Micheletti, Olivero, & Robutti, 1998; Rivera, 2008, 2010a;
Rivera & Becker, 2008, 2010).

Hence, in thinking about generalizing patterns on the basis of a few known stages
such as the ones shown in Fig. 4.26a, abduction should help settle the issue of
whether such patterns are well defined. The property of a pattern being well defined
is not something that is inherent in any pattern. It becomes well defined only when
students establish an abductive claim, which they then use to impose and project on
both the known and unknown stages of the pattern. Sources of abduction are drawn
in several places and could be developed depending on the kind and type of learn-
ing experience and relevant contexts that matter in patterning activity. Certainly,
in figural patterns such as the ones shown in Fig. 4.26a, students’ abductive claims
about their structure, feature, property, or attribute within and across stages are likely
going to depend on their prior and current mathematical knowledge and, especially,
the Gestalt effect that such patterns have on them. Hence, progressive transitions in
abductive reasoning are possible.

An important aside on the general nature of abduction is necessary and useful
at this stage in order for readers to acquire a full sense of its value and, in fact, its
central role in mathematical reasoning. An exemplary model of mathematical rea-
soning involves deduction, which involves inferring a conclusion from completely
known premises. The monotonic canonical form in deduction, “if p, then q,” con-
veys how, say, having a known rule and an observed case always logically infers a
result. Consider, for example, the statements below taken from the pebble diagram
shown in Fig. 3.16.

Rule or Law: The sum of any number of even integers is even.
Case: 8, 4, and 6 are even integers.
Result: 8 + 4 + 6 = 18, an even sum.

Peirce (1960) in the late nineteenth century observed that we are by nature drawn to
“perpetually making deductions” (p. 449). He writes:

We conceive that Cases arise under these laws; these cases consist in the predication, or
occurrence, of causes, which are the middle terms of the syllogisms. And, finally, we con-
ceive that the occurrence of these causes, by virtue of the laws of Nature, results in effects
which are the conclusions of the syllogisms.

(Peirce, 1960, p. 449)

But Peirce also notes that both abduction and induction are reasonable and natural
inferential structures except that the order in which we set up the statements depends
on the context we are analyzing. While deductive reasoning proceeds from the rule



158 5 Visuoalphanumeric Representations in Pattern Generalization Activity

and the case (i.e., the premises) to the result (i.e., the conclusion), inductive reason-
ing begins with the result and the case leading to the rule and abductive reasoning
takes as given both the rule and the result and then concludes with the case. Thus,
for Peirce (1934), “(d)eduction proves that something must be; induction shows that
something actually is operative; abduction merely suggests that something may be”
(p. 106).

Alternatively, it makes sense to view a deductive inference as primarily predict-
ing in a methodical way an inevitable and valid result or conclusion because all
the required premises (the rule and the case) are completely known. Further, Peirce
notes how,

(d)eduction is the only necessary reasoning. It is the reasoning of mathematics. It starts from
a hypothesis, the truth or falsity of which has nothing to do with the reasoning; and of course
its conclusions are equally ideal. The ordinary use of the doctrine of chances is necessary
reasoning, although it is reasoning concerning probabilities. Induction is the experimental
testing of a theory. The justification of it is that, although the conclusion at any stage of the
investigation may be more or less erroneous, yet the further application of the same method
must correct the error. The only thing that induction accomplishes is to determine the value
of a quantity. It sets out with a theory and it measures the degree of concordance of that
theory with fact. It never can originate any idea whatever. No more can deduction. All the
ideas of science come to it by way of abduction. Abduction consists in studying facts and
devising a theory to explain them. Its only justification is that if we are ever to understand
things at all, it just be in that way.

(Peirce, 1934, p. 90; italics mine)

We note at this stage two important clarificatory points on abduction raised by
Thagard and Eco. For Thagard (1978), an abductive process involves developing and
entertaining inferences toward a rule (i.e., an explanatory theory), which is expected
to undergo testing via induction leading to an inference about a case. However, Eco
(1983) makes a stronger claim, that is, “it is important to stress that the real problem
is not whether to find first the Case or the Rule, but rather how to figure out both the
Rule and the Case at the same time, since they are inversely related, tied together by
a sort of chiasmus” (p. 203).

In pattern generalization activity, students always begin with the result (i.e., the
given stages in a pattern) and then proceed to find the appropriate rule (i.e., the direct
formula of the pattern). Consequently, they use these premises (i.e., result and rule
together) to explain why the conclusion (i.e., the case) is the way it is relative to
the pattern. The nature of such explanation is, of course, a matter of knowing that
it is but a “formulat[ion of] a general prediction” and carries with it “no warranty
of a successful outcome” (Sebeok, 1983, p. 9). For an abductive reasoning process
is “always-already” constrained by an incomplete knowledge base (the “result”)
that is used to determine an appropriate rule (at least for the time being). This is,
unfortunately, its weakness: it has the quality of being fallible because the source of
the case is not completely available. The inference that is constructed is, therefore,
ampliative and deductively invalid (Peirce, 1960, pp. 446–447). Taken together, the
rule and the result in abduction have a rather perfidious nature or, in Cifarelli and
Saenz-Ludlow’s (1996) words, are “plausible hypotheses on probation” (p. 161).

Inductive reasoning, which Peirce (1960) also classifies as a type of ampliative
inference, proceeds in the reverse order of deduction. The hypotheses involve the
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result and the case. Further, through repetition of several more cases, a rule can be
inferred. Where Peirce sees a difference between abduction and induction is on mat-
ters involving strength of inference. The conclusion in an induction has already been
drawn from repetition, which could be evaluated as being false, true, or true to some
degree. The conclusion in an abduction, however, is “truth producing” (Josephson
& Josephson, 1994) in the sense that it fuels discovery on the basis of a few known
instances (i.e., stages in a pattern). Hence, the essence of induction lies in verifying
an abductive inference through repeated testing.

To sum up, while abduction involves discovering a new hypothesis, induction
establishes the strength of the hypothesis through an experimental confirmatory
process that produces tendencies in support of the hypothesis. There is closure in
induction with a statement of a probable obvious generalization unlike abduction
that never seems to do so since it works primarily in discovering or suggesting new
events (Abe, 2003) or novel actions (Cifarelli, 1999). For Flach (1996), an abductive
inference is always confronted through inductive testing, and increased inductive
success means increased confidence in the abduced claim. Hoffmann’s (1999) point
astutely captures the original Peircean sense in which abduction forecloses any illu-
sion of a perspective-free induction: “Induction is not what can be generalized from
a sample of data, but only a quantitative determination of what is already given by
abduction” (p. 272).

Hence, in pattern generalization, there is a mutual, complicit relationship
between abduction and induction. Josephson articulates it clearly in the following
manner:

[I]nductive generalizations derive their epistemic warrants from their natures as abductions.
. . . [The] mechanisms for inductive generalization must be abductively well-constructed, or
abductively well-controlled, if they are to be smart and effective.

(Johnson, 2000, p. 44)

We end this section with three important points concerning abductive reasoning
in cognitive mathematical activity. These points are actually raised in various sec-
tions in this book, especially in the next chapter that deals with visual diagrams in
mathematical reasoning. First, we adhere to the notion of progressive abduction.2

Consistent with our proposed traveling theory in this book, progressive abduc-
tions are necessary in any account of progressive formalization. In the case of
pattern generalization activity, in particular, the construction and the justification
of a direct formula relative to patterns explored in the school mathematics curricu-
lum symbolize mature, complete, and structural abductions. The use of a recursive
rule, like in the case of Anna and Dina above, is indicative of entry-level, super-
ficial abductions that could still evolve into structural abductions as was the case
with Shawna. More generally, Josephson and Josephson (1994) have proposed the
following neo-Peircean version of abduction below that I associate with mature,

2This notion conceptually shares Thagard’s (1978) interpretation of Peirce’s abduction as
“cover[ing] both the act of arriving at plausible new hypotheses and the act of entertaining them
for the sake of further investigation” (p. 166). The end result (i.e., at least in provisional terms) of
progressive abduction is an inference to the best explanation (“IBE;” Hartman, 1965).
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structural abductive claims. The variable H stands for “the inference that yields the
best explanation.”

Case: D is a collection of data (facts, observations, givens).
Rule: H explains D (would, if true, explain D).
Strong Claim: No other hypothesis can explain D as well as H does.
Result: H is probably true.

To illustrate, while Anna and Dina produced an abductive claim, Shawna developed
a better abduction. Jenna also produced a reasonable abductive hypothesis; how-
ever, her structural abduction did not progress into an algebraically useful abduction.
Hence, as shown in Fig. 5.7, pattern generalization involves the development of an
algebraically useful structural abduction that could withstand inductive testing prior
to being classified as an algebraic generalization for the pattern. Additionally, the
strength of H could be evaluated by considering

• how good H is by itself, independently of considering the alternatives;
• how decisively H surpasses the alternatives, and;
• how thorough the search was for alternative explanations

(Josephson, 1996, p. 3).

Second, abductive reasoning offers explanations that do not prove, that is, are not
deductively sufficient (Josephson, 2000). Certainly, some deductive proofs do not
necessarily explain as well, so we need to be clear about the nature of explanations
in abductive reasoning. For Josephson (2000), such explanations primarily assign
causal responsibility; hence, reasoning proceeds from effect to cause.

(E)xplanations give causes. Explaining something, whether that something is particular or
general, gives something else upon which the first thing depends for its existence, or for
being the way that it is. . . .. It is common in science for an empirical generalization, an
observed generality, to be explained by reference to underlying structure and mechanisms.

(Josephson, 2000, pp. 38–39)

Since there is a strong relationship between abduction and induction, Josephson
(2000) notes that “smart inductive generalizations are abductions.” An inductive
generalization is

an inference that goes from the characteristics of some observed sample of individuals to a
conclusion about the distribution of those characteristics in some larger population.

(Josephson, 2000, p. 40)

Examples include categorical statements (“All A’s are B’s”), statistical general-
izations (“75% of A’s are B’s”), and example-driven concept learning in artificial
intelligence. The generalizations as they are routed in the conclusion basically
explain the characteristics of the available sample and do not necessarily explain
why the instances must be so. Josephson writes:

“All A’s are B’s” cannot explain why “This A is a B” because it does not say anything at
all about how its being an A is about why this one is, except that it suggests that if we want
to know why this one is, we would do well to figure out why they all are. Instead, all A’s
are B’s helps to explain why, when a sample was taken, it turned out that all of the A’s
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in the sample were B’s. A generalization helps to explain some characteristics of the set
of observations of the instances, but it does not explain the instances themselves. That the
cloudless, daytime sky is blue helps explain why, when I look up, I see the sky to be blue,
but it doesn’t explain why the sky is blue. Seen this way, an inductive generalization does
indeed have the form of an inference whose conclusion explains its premises.

(Josephson, 2000, p. 41)

Third, since the content focus in this chapter is pattern generalization, where justifi-
cation means the same way that Josephson (1996, 2000) viewed explanation in the
preceding paragraphs, we skip situations relevant to deductive closure in abductive
and inductive reasoning activity. An example of deductive closure in my Algebra 1
occurred when they tried to make sense of the rule -(a × b) = -a × b and –(a ×
−b) = −a × −b, where a and b are integers. Figure 4.25a, b enabled the students to
initially abduce and induce the appropriate rules using algeblocks. Then we shifted
to a deductive mode in Fig. 4.26c when we tried to understand the equivalent state-
ments using a particular example that modeled the deductive steps involved in the
actual proof with variables. Deductive closures drawn from processes of abduction
and induction are exemplified in recent work on exemplary uses of dynamic tech-
nologies in school geometry (e.g., Arzarello et al., 1998; Boero, Garuti, & Mariotti,
1996; Pedemonte, 2007) that demonstrate the cognitive unity thesis between and
among the three types of reasoning. Suffice it to say, an ideal full progression in
the school geometry curriculum involves transitions in thinking and reasoning from
the “truth-producing” (Josephson & Josephson, 1994) mechanisms of abduction
and induction to the “truth-preserving” (Josephson & Josephson, 1994) methods
of deduction. In the current school algebra content curriculum, in particular, pat-
tern generalization, we appear to be more concerned with situations that produce
algebraically useful explanatory hypotheses that could be explained in ways that are
appropriate to grade-level expectations (e.g., concrete structural justifications; cf.
Pylyshyn, 2006; Rivera, 2007b, 2010b, 2010d). Deductive closure in the form of,
say, the proof of mathematical induction is not usually pursued.

3 Entry-Level Abductions

Table 4.1 (p. 135) is a summary of the preinstructional modes of generalization
that my sixth-grade class exhibited during the clinical interviews relevant to the
five patterning tasks shown in Fig. 4.26a. There were more students who produced
superficially iconic generalizations on the first three tasks (about 75%) than those
who produced structurally iconic ones (about 17%). However, in the case of the fifth
task, there were more structurally iconic responses (about 62%) than superficially
iconic ones (about 28%). In the case of the fourth task, none of the students were
able to establish a generalization. How might one explain such seemingly divergent
findings? Certainly, it is reasonable to expect that superficially iconic generalizers
would consistently produce the same type of response on all tasks. One plausi-
ble response we explore in some detail involves the students’ visual predisposition
toward seeing in either additive or multiplicative terms. We first clarify what we
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Fig. 5.8 Additive versus
multiplicative schemes for
counting whole numbers
(Clark & Kamii, 1996)

mean by additive and multiplicative thinking in the context of students’ experiences
with whole numbers.

Figure 5.8 illustrates the fundamental difference between additive and multiplica-
tive thinking involving whole-number objects in terms of level of abstraction and
the complexity of inclusion relations involved. Drawing on Piaget’s (1987) concep-
tualization, Clark and Kamii (1996) share the same view that multiplication is an
“operation that requires higher-order multiplicative thinking that children construct
out of their ability to think additively” (p. 42). They note that while addition “is
inherent in the construction of number, which is accomplished by the repeated addi-
tion of ones,” multiplication “is a more complex operation that is constructed out
of addition at a higher level of abstraction” (p. 42). As shown in Fig. 5.8, additive
thinking necessitates only one level of abstraction and one inclusion relationship
(e.g., each unit of three consists of ones; one gets included in two, two in three,
three in four, etc.). In the case of multiplicative thinking, there is a need to establish
simultaneously (as indicated by the arrows) the following levels of abstraction and
inclusion relationships: a many-to-one mapping (e.g., between three units of one
and one unit of three) and at least two levels of relationships (e.g., horizontally by
ones: one in two, two in three, etc.; horizontally by threes: 1 three in two threes, 2
threes in 3 threes, etc.; vertically by threes: 1 threes, 2 threes, 3 threes, etc.).

In Fig. 5.8, the notion of a unit in the context of counting sets of objects plays a
central role in additive and multiplicative thinking. Sophian (2007) also shares this
view, that is, counting involves “the choice of a unit . . .. In principle, provided we
are consistent about what we take as a unit, we can count any sort of discriminable
element in any kind of array” (p. 64). For Sophian,

mathematical thinking requires a concept of unit that goes beyond our everyday notions
of objects and groups of objects. Specifically, it requires flexibility in the choice of units,
together with a concern for equivalences among units. . . . Notably, in counting, it is the
identity of the unit rather than its size that matters: Some of the shoes may be baby shoes
and others large men’s shoes, but we treat each of them as one shoe (or one half of a pair of
shoes).

(Sophian, 2007, p. 66; italics added for emphasis)

When we engage in additive thinking, which involves a single-level abstraction,
we employ a unit that may or may not be independent of the quantities involved
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in addition (and subtraction). For example, in the comparison situation, “Maria is
two inches taller than her sister Jana,” the unit – inches – pertains to height that
conveys a linear measure. We could, of course, use other linear units such as cen-
timeters. In the combination situation, “There are 29 students in a room with 12
boys and 17 girls,” the unit – number of people – is independent of either quantity
being added. When we engage in multiplicative thinking, which involves multi-level
abstractions, we employ a unit that is actually drawn from one of the quantities
involved in multiplication (and division). For example, in the comparison situation,
“Maria is twice as tall as her sister Jana,” the unit is Jana’s height which we then use
to compare Maria’s height with. In summary, both types of thinking necessitate the
use of a common unit that further enables us to understand the nature of the inclusion
relationships shown in Fig. 5.8. In Fig. 5.8a, the common unit may or may not be
independent of the quantities involved. In Fig. 5.8b, the many-to-one map initially
relies on the choice of a common unit that is then used to systematically count the
quantities involved.

Going back to the results in Table 4.1, at the preinstructional phase, superficially
iconic generalizers could only think additively, that is, they see relations of up to
one level of abstraction. Visually, it means they see parts in a stage number as dis-
connected and unrelated from each other, which explains why their attention, say,
in the case of increasing linear patterns was focused on the stable action of adding
the same number of objects from stage to stage. For example, the incipient gener-
alizations of Dina in Fig. 2.6b and Dianara and Anna in Fig. 4.26b relative to Task
1 in Fig. 4.26a all convey a singular focus on the constant addition of two circles
from one stage to the next. For Frank, whose written work is shown in Fig. 4.26b
relative to Task 5 in Fig. 4.26a, he saw the constant addition of two squares after
he obtained the initial differences between two consecutive stages in the pattern and
nothing else beyond that observation.

Structurally iconic generalizers, on the other hand, think in either structurally
additive or structurally multiplicative manner depending on pattern goodness. A
structurally additive generalization of a pattern is an additive arrangement of at
least two un/related parts in a figural stage. For example, Diana initially obtained
the total number of square tiles in stage 10 of Task 3 in Fig. 4.26a by adding, which
is as follows: “10 + 10 + 10 + 10 + 1 = 41.” Because the interviewer wanted to
determine whether she could see anything else, Diana was then asked to find the
total in the case of stage 100 in which case she replied, “100 + 100 + 100 + 100 + 1
= 401” tiles. From her last response, Diana gave no indication that she was seeing
a relationship among the parts in a figural stage. The incipient generalizations of
Shawna and Dung in the case of Task 1 in Fig. 4.26a could be classified as being
structurally additive; however, they both saw parts that were related in some way.
Dung’s reasoning is as follows:

Dung: Like these all have ahm the bottom has the same number of figures and
the top has the same number too [counting the overlapping circle on the
bottom row. He then builds 10 horizontal circles and then adds 9 circles
vertically.]
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JRB3: So that’s it? How many [circles] are there altogether?
Dung: 19. [Dung then deals with stage 100.]
JRB: So we probably will not make figure 100, are we? We probably don’t have

enough [circle chips on the table] for that. But can you picture?
Dung: You have like 100 to be on the bottom and 99 on top. So there’d be 199.

A structurally multiplicative generalization of a pattern is a multiplicative arrange-
ment among parts in a figural stage. The arrangement, which is not needed in
additive structures, involves establishing a many-to-one correspondence between
congruent parts. It requires abstraction on two levels, that is, seeing each part or
copy as consisting of equal subparts and then seeing all the relevant congruent
copies together as a single copy. For example, Jennifer’s visual reasoning below
in the case of Task 3 in Fig. 4.26a progressed from being superficially additive to
structurally multiplicative.

JRB: Do you see any patterns with these tiles?
Superficially
iconic abduction

Jennifer: You add four more squares on each
corner.

JRB: Okay, does that keep going on each picture
number?

Jennifer: Uhum.
JRB: So how many tiles altogether are in picture

10? [Jennifer starts to build picture 6 from the
tiles.] Could you tell me how many tiles are
there in picture 6 altogether?

Structurally iconic
abduction

Jennifer: 24.
JRB: 24? Are you sure there’s 24? You did that

real fast. How did you count it?
Jennifer: There’s six right here [referring to one

arm] and there’s four lines, 25, counting the
middle [square]. [In seeing multiples of the
same arm, Jennifer then determines the number
of tiles for pictures 9 and 10.] 37 [referring to
the number of tiles for picture 9].

Induction Phase

JRB: How did you get that so fast?
Jennifer: Coz there’s 9 here, 9 there. So there’s 9

on every arm. Then I multiplied by 4 and then I
counted this [referring to the middle square].

JRB: Good. So how [many] would you get for
picture 10?

Jennifer: Add another one [on each arm of picture
9]. There’s 41. There’s 10 here, 10 there, 41.

3JRB stands for Joanne Rossi Becker, interviewer.
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So, central to Jennifer’s structurally multiplicative generalization was her cogni-
tive perception of seeing two levels of abstraction, that is, an arm that consists of
n square tiles and all four arms that taken together are multiple copies of the same
arm each having length n.

In the case of Task 5 in Fig. 4.26a, we note that there were more struc-
turally iconic generalizations than superficially iconic ones. Liana’s reasoning below
exemplifies a structurally multiplicative generalization.

Liana: Picture 1 has 2. Picture 3 has 3 going across and 2 squares going up.
Picture 3 has 3 going up and 4 going across. Picture 4 has 4 going up and
5 going across. Picture 5 has 5 going up and 6 going across. So for picture
8 [there’d be] 8 boxes going up and 9 boxes going across. . . .. Altogether 8
times 8. Is it 8 × 9? 8 × 8.

JRB: Why don’t you check on for picture 6?
Liana: Six times 6 . . . and that’d be equal to 36.
JRB: And what about [referring to the adjacent square block]?
Liana: 37. . . . Picture 8 would be 8 times 8 . . . [uses a calculator] 65. . . .

Picture 35, 35 times 35 plus 1.

Emma’s written work in Fig. 4.26b and Dave’s reasoning below exemplifies a shift
in generalization from superficial to structural iconicity.

Dave: I just have to figure out the values first. . . . I was thinking if I just add it
by 2? . . . Or added by 3.

JRB: What were you seeing in picture 1?
Dave: 2. Picture 2 has 5.
JRB: What did you see?
Dave: See coz it adds 1 up here [referring to picture 3] every single time, add

1 row. So one right here and add 1 row up there. But that’s how high each
goes. So there is a pattern but it changes.

JRB: It’s not the same amount each time you mean?
Dave: Yes, it’s not the same amount coz this [referring to picture 2] adds 3, 5,

[for picture 4].
JRB: Uhum, and then how much to add the next time?
Dave: So this [referring to picture 6] is 6 plus 5 equals 11. 5, 4, 4, 3, 3, 2, 2, 1.
JRB: So what is it that you are seeing?
Dave: All of these together [referring to pictures 1 through 5].
JRB: Sort of build up? Is there a way that can help you find picture 8?
Dave: Yeah, it keeps on adding. In picture 6 add 7 more. [Dave uses the cubes

on the table to build picture 7.] Nah. Too many. I’ll draw it. [Dave uses a
graph paper and starts to build picture 6].

JRB: Are you starting on where on picture 6, on the bottom or the top?
Dave: Ahm, on the side.
JRB: So how many on the side?
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Dave: Six. [Dave draws 6 vertical, 6 horizontal lines forming a square. He then
shades the square. Then he adds one column and one row forming picture 7.
He next adds an adjacent square and adds 1 column and 1 row once more to
form picture 8.] So 8 plus 7 is 15. 7 plus 6 is 13. Wait. [Dave gets another
sheet.]

JRB: So what you’re doing is you’re adding the vertical and the horizontal on
each of these? Is that what you’re gonna do?

Dave: Yeah.
JRB: Is there an easier way?
Dave: I think there is.
JRB: How could that be?
Dave: Side by side. But then there’d be an extra one [square]. I shall just add

that one.
JRB: So without the extra what do you have? [Dave writes: 8 × 8.] So what

kind of figure is it though?
Dave: [Dave did not respond.] 8 times 9 minus 8 . . . plus 1. That’d be 65.
JRB: So how about picture 35. So what do you think?
Dave: I could write an expression.
JRB: That’s a nice idea. What do you think?
Dave: Okay. So 35 times 35 plus 1.
JRB: So think about any picture of any size. So how many blocks would you

have? Picture 8. Picture 35. Picture 100. Picture 1020.
Dave: So do you want a specific formula or the distance overall?
JRB: I’m not sure what you mean by specific formula. Not a specific number.

We want a general one.
Dave: Overall?
JRB: It’d work for any number I would put in.
Dave: So n times n plus 1.

Compared with Tasks 1, 3, and 4 in Fig. 4.26a, the stages in Task 5 consist of squares
whose basic structure has cohesiveness (i.e., in the sense of belonging together) and
clearly redundant parts (i.e., repetition of the same part). Task 5 appealed to some
students as being high in pattern goodness. Their interpreted structure enabled them
to “specify a geometric or algebraic formula that stands out through its simplicity”
(Metzger, 2006, p. 24), unlike the rest of the patterns which they saw as having parts
that necessitated further conceptualization. For example, Dung’s reasoning above in
the case of Task 1 in Fig. 4.26a demonstrates two shifts in his cognitive perception
of the parts in each figural cue. In thinking about stage 19, he initially perceived two
overlapping sets of circles each having a cardinality of n and then taking away one
circle corresponding to the overlap. He then changed his mind when he perceived
a nonoverlapping relationship between the row and the column of circles. In stage
100, for example, he saw a row of 100 circles and a column of 99 circles. This
conceptual kind of internal generality is difficult among students who merely per-
ceive external generality in superficially iconic terms. Frank’s written work relative
to Task 5 in Fig. 4.26b demonstrates this perceived difficulty. Because his attention
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was fixed on the second-order difference of two square tiles, he merely kept adding.
Certainly, it did not help that Frank (as well as a few others) harbored a view of
mathematics that was all about manipulating numerical expressions and relation-
ships as a consequence of his prior experiences. It constrained the manner in which
he approached all the five tasks in Fig. 4.26a.

Among Tasks 1, 3, and 4 in Fig. 4.26a, the students found Task 4 to be the most
difficult. Only one student produced a superficially iconic response that involved
constantly adding four squares from stage to stage (“in a 4 × 4 grid, there are 4 +
3 + 3 + 2 = 12 shaded squares; in a 5 × 5 grid, there are 16 shaded squares, etc.”).
Two students offered the following structurally iconic response: “In a 3 × 3 grid, 3
× 4 – 4 = 8, so in a 25 × 25 grid, 25 × 4 – 4 = 96 shaded squares.” The remaining
21 students did not see any relationship between a 3 × 3 and a 25 × 25 grid. Despite
this fact, 13 of them correctly obtained the total count for the 25 × 25 grid by either
unit counting (“1, 2, 3, . . ., 95, 96”) or group counting (“23 + 23 + 25 + 25 = 96”
or “25 + 24 + 23 + 24 = 96”).

Pattern goodness could explain why they found it difficult to establish a gener-
alization for the above pattern. The figural stages appealed to them as having a low
Gestalt effect in the sense of not perceiving “harmony” among the parts in each
stage. Pattern goodness was not immediate and conceptualizing the parts in, and
relationships among, the stages could be accomplished in several different ways that
necessitated more “acquired knowledge” unlike the situation in Task 5 in Fig. 4.26a.
Metzger (2006) writes: “Knowledge becomes even more decisive a factor the less
simple the structure of the image that requires completion” (p. 136). Thus, in some
cases of visual patterns, the Gestalt effect is immediate. However, in some other
cases, “the effects of knowledge and experience, and also of behavior” (Metzger,
2006, p. 137) play an equally significant role.

The idea of Gestalt effect plays a significant role especially in visual pattern-
ing tasks that are relatively unfamiliar to students. In Year 3 of my longitudinal
study, I asked my Algebra 1 class to establish a generalization for the nonlinear task
shown in Fig. 5.9a 3 months after a teaching experiment on pattern generalization
that focused on linear patterns. The embedded rectangular pattern task in Fig. 5.9a
was presented as a bonus item in an assessment that focused on factoring quadratic
(polynomial) expressions. The success rate was 65%. The following week, I asked
them once again to obtain a generalization for the same task in Fig. 5.9a as a bonus
item. However, I presented it in a different way shown in Fig. 5.9b. This time, the
success rate was 82%. Jackie’s written work on both tasks is shown in Fig. 5.10a,
b. Her written responses exemplify the thinking of those students who were unsuc-
cessful in the Fig. 5.9a task but were successful in the Fig. 5.9b task. In Frank’s
case, he provided no response to Fig. 5.9a since the visual array did not make any
sense with him. However, his written work in Fig. 5.10c showed a correct general-
ization. Further, the same generalization offered by Frank and Jackie in the case of
the Fig. 5.9b task was the most frequent structurally iconic response (57%) followed
by the formula D = n (n + 1) (25%; see Fig. 5.10d for a sample of students’ work).
It is certainly interesting to note how 19 out of 34 students interpreted a n × (n + 1)
rectangular cue as structurally consisting of a n × n square and a 1 × n rectangle.
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The drawing at the left represents a set of  
overlapping rectangles. 

The first rectangle contains  2 circles. 

The second rectangle contains 6 circles. 

The third rectangle contains 12 circles. 

The fourth rectangle contains 20 circles. 

A. How many circles are there in the fifth rectangle? How do you know for sure? 

B. Find a direct formula for the number of circles in the nth rectangle? Explain how 
you obtained it. 

C. How many circles are there in the 100th  rectangle?  How do you know for sure? 

Below are the first four rectangular numbers. 

Stage 1 Stage 2 Stage 3 Stage 4

A. Describe stage 10 in a way that makes sense to you (for e.g., draw, etc.) 

B. Find a direct formula that gives the total number of dots D at any stage n. Explain why your 
formula is true. 

C.  Is 9,900 a rectangular number? Explain your answer.  

a

b

Fig. 5.9 a Embedded rectangular pattern task. b Separated rectangular pattern task

aFig. 5.10 (continued)
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b

c

Fig. 5.10 (continued)
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Gemma, 8 th  Grader from Cohort 2 Selma, 8 th  Grader from Cohort 2 

Jennifer, 8th  Grader from Cohort 1 Emma, 8th  Grader from Cohort 1 

d

Fig. 5.10 a Ollie’s work on Fig. 5.9a. b Ollie’s work on Fig. 5.9b. c Frank’s work on Fig. 5.9b. d
Grade 8 students’ work on Fig. 5.9b that follows the form D = n(n + 1)

Thus, it seems to be the case that the students’ ability to pattern generalize was
significantly influenced by the strength (or weakness) of the Gestalt effect in relation
to figural patterns. In fact, the effect of knowledge was magnified in cases when
visual pattern configurations (and not necessarily shapes) became more difficult.
For example, when some of the students in the Year 3 study were asked to extend
the semi-free patterning task in Fig. 3.9, 3 of the 11 students offered the triangular
pattern shown in Fig. 5.11, which then necessitated additional knowledge in terms
of how to obtain a pattern generalization for such a nonlinear pattern that appealed
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Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 

Fig. 5.11 Triangular pattern resulting from the semi-free patterning task in Fig. 3.9

to them as having a more complicated structure compared with the ones shown in
Fig. 5.9a, b.

Within and beyond the Gestalt effect, we mention findings from vision studies
that illustrate the human visual capacity to encode in small amounts and recall very
little information when we perform a single glance on a figure (cf. Pylyshyn, 2006,
p. 445). In the case of copying a figure, for instance, we tend to return our gaze
several times on an aspect in the figure as we are constructing it. Hence, Gestalt
effect in relation to patterning activity could also be influenced by the students’
visual capacity to encode figural cues in memory. For example, when my Algebra
1 students encoded the structure of the figural cues shown in Fig. 5.9b, they actu-
ally pursued two different routes with one group seeing a rectangle (Fig. 5.10d) and
another group seeing the union of a square and a rectangle (Fig. 5.10b), which then
influenced the form of, as well as the time and ease it took them to develop, their
algebraic generalization. Also, going back to Table 4.1, which shows the sixth-grade
students’ overall performance on the five tasks shown in Fig. 4.26a, the larger per-
centage of success in the case of Task 5 in comparison with the rest of the tasks
could also be explained in qualitative terms by the relatively small amount of dis-
tractors that were present in each figural cue. In other words, the stages in Task 5
have a shared property that could be referred to as a “visual pop-out” in the sense
that it could be detected rapidly without much effort unlike the figural cues in the
case of the other tasks that require more effortful scrutiny (cf. Leslie, Xu, Tremoulet,
& Scholl, 1998, p. 11).

4 Mature Abductions: Visual Templates

Entry-level abductions involving figural patterns among my sixth-grade students
show the preponderance of superficially and structurally iconic generalizations.
Mature abductions are characterized as being structurally symbolic generaliza-
tions. A direct, variable-based formula is used to express a generalization, which
is expected to take the form of a function. Table 5.1 is a list of seven types of
algebraic generalizations that my middle school students produced relative to fig-
ural pattern generalization at the end of a 3-year study, and they all exemplify
visuoalphanumeric representations that have resulted from an evolved mode of
abductive reasoning. The constructive dimension in both constructive standard and
nonstandard generalizations refers to the cognitive perception that an interpreted
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structure relative to some pattern is seen as consisting of nonoverlapping parts that
when added together form the perceived shape that applies across the stages in
the pattern. The terms standard and nonstandard refer to the algebraic terms in a
direct expression, that is, standard means the terms are already in simplified form,
while nonstandard contains terms that can still be further simplified. Constructive
generalizations reflect the use of either an additive or a multiplicative scheme.
Deconstructive generalizations refer to the cognitive perception of seeing the known
figural stages in a pattern as consisting of overlapping parts that can be decomposed
quite conveniently. Auxiliary-driven constructive or deconstructive generalizations
pertain to seeing each known figural stage in a pattern in the context of a larger
configuration that has a well-known and/or simpler structure. Introducing an aux-
iliary set of objects strategically enables one to see a larger configuration as a way
of obtaining an appropriate generalization for the pattern rather quickly and easily.
Transformation-based generalizations are derived from initially performing actions
of moving, reorganizing, and transforming parts in a figural stage of a pattern into
some recognizable figure having a more familiar structure.

The existence of visual templates surfaced toward the end of my Year 3 study.
I have mentioned in the Introduction that Cohort 1 participated in all 3 years of
my study on pattern generalization with a Cohort 2 consisting of 19 seventh and
eighth graders asked to join in the third year of the study. The teaching experi-
ments on pattern generalization took place in the fall semester of each year with
an average time span of about 4 weeks. Each teaching experiment in Years 1 and 2
occurred immediately after an 8-week teaching experiment that focused on integers
and operations, while the Year 3 teaching experiment took place after an 8-week
teaching experiment on integers, exponents, polynomials, and operations involving
polynomials.

Section 4 in Chapter 4 provides details of the collective development of math-
ematical symbols relevant to pattern generalization activity in my 3-year design-
driven longitudinal study. The progressive account surfaced the following three
shifts in symbolic competence in relation to pattern generalization:

The symbols they used in the initial phase were visual, (structurally and
superficially) iconic, and verbal prior to any teaching experiment in Year 1.

In the second phase, they favored numerical generalizing that lingered through-
out the teaching experiments in Years 1 and 2. The symbols they used were
alphanumeric that followed the differencing strategy suggested by Anna’s group.
Numerical tables of values were also favored due to the convenience in using the
finite difference method in dealing with linear pattern problems (e.g., Fig. 5.3b).

In the third and final phase, they careened toward the visuoalphanumeric, which
involves, in the words of Rotman (1995), “folding into each other [i.e., the visual
and the alphanumeric] and are inseparable not only in an obvious practical sense, but
also theoretically, in relation to the cognitive possibilities that are mathematically
available” (p. 397). This phase took place in Year 3 when they began to think about
pattern generalization activity in multiplicative terms.

Year 3 was particularly interesting since there were two cohorts of students with
marked differences in their ability to generalize patterns. Hence, instead of reinvent-
ing the wheel, so to speak, I heeded Freudenthal’s (1981) advice about repeating at
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the point where I thought Cohort 1 benefited the most. In the Year 1 study, Cohort 1
spent a significant amount of time developing their understanding of a direct formula
for a pattern, which actually emerged as a progressive formalization of notations
from the use of arrow strings, numbers, and operations in a sequence and words
(e.g., Fig. 4.3) to the use of the equal sign and variables in a function context (e.g.,
Fig. 2.7). In other words, direct formula construction in Cohort 1 emerged as a
cultural and historical knowledge. So, in Year 3, I used this knowledge as my start-
ing point in talking about pattern generalization. Also, both cohorts were already
familiar with multiplicative thinking in relation to earlier activities where they used
algeblocks in making sense of integers, exponents, and polynomials.

In the Year 3 classroom episode below, both cohorts were asked to obtain and
justify an algebraic generalization for the tile patio pattern shown in Fig. 4.33. Five
members from Cohort 1 initially clarified for the entire class the meaning of the
term direct formula before they began working in pairs. Consequently, Cohort 2
was provided with the mathematical knowledge they needed to construct an accept-
able algebraic generalization. The classroom event also assisted them in avoiding
less efficient ways of expressing a generalization. The shared understanding that
resulted from the social feedback provided by Cohort 1 in fact became the basis of
communicative exchanges among the students in both cohorts. In the interchange
below, the following aspects were discussed: the meaning of a direct formula; the
elements that comprise a direct formula (equation form, two different variables);
the difference between a direct and a recursive formula; and the shape of a direct
formula.

FDR: What does direct formula mean?
Dave: A formula to find the [white tiles] in this problem [given] the patio stage

number.
If you’re given the patio number, you can find the number of tiles.

FDR: Okay. Meaning to say when you say direct formula, you need to find a
formula that expresses the number of white tiles for any given patio number.
So it should be like what? So how does it look then? . . . How do you know
direct formula when you see one or when you’re confronted with it?

Tere: Like you have to prove it. Like you have to do it.
FDR: Like how do you know one when you see one?
Tere: Coz it has variables in it.
FDR: So how? Describe those variables for me. How many variables do you

see at least?
Tere: Two.
FDR: And where do you see those variables?
Tere: In the equation and other one at the end.
FDR: So there’s an equation for one. . . . There should be one variable on the

left side of the equation and there should be another one on the other side of
the equation. [FDR makes a gesture by extending both his arms to indicate
both sides in an equation.] Does that make sense? . . . If I have a recursive
formula like add 2, is that a direct formula?
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Emy: No.
FDR: Why not?
Emy: Because it doesn’t have variables.
FDR: Well, for one it doesn’t have variables, so that’s one way to think about

it. That’s what you call a recursive formula. But I want you to come up with
a direct formula. Alright. Give me an example of a direct formula just so we
know.

Ford: n = 3n [FDR starts writing the partial formula.]
FDR: Same variable?
Ford: n = 3w plus 8. [FDR writes n = 3w + 8.]
FDR: Alright. This is an example of a direct formula. So there’s a variable

here on this side [referring to left] and a variable on the other side. What’s
another direct formula?

Dave: w = n times 4 plus 4. [FDR writes w = n × 4 + 4.]
FDR: Dave, is there another way to express n times 4?
Dave: n four.
FDR: So what’s another way to say n four plus 4? [FDR writes w = n4 + 4.] If

you want to be hip about it, what’s another way to write n4?
Che: 4n.
FDR: 4n. Normally in algebra we start with the coefficient and then followed

that up with a variable.

Figure 5.12 displays the written visuoalphanumeric generalizations of four Cohort 2
students in relation to the pattern shown in Fig. 4.33 that reflect the same responses
offered by some of the Cohort 1 students as shown in Fig. 4.34. Their direct formulas
conveyed how they cognitively perceived and abduced an interpreted structure that
made sense with the pattern.

Figure 4.31b also shows the written work of three students from Cohort 1 who
participated in a clinical interview immediately after the Year 3 teaching experi-
ment on pattern generalization. Again, the consistency of the visuoalphanumeric
process was evident in their work. Their direct expressions ranged in form from
simple (Dung and Tamara) to complex (Jenna and Tamara). Further, while Dung
and Tamara produced the same direct expression, 3n + 1, the consistent manner
in which they circled the objects empirically demonstrates differences in how they
abduced and constructed a structure for the T stars pattern shown in Fig. 4.31a that
influenced the form of their algebraic generalization.

Four and a half months after the Year 3 teaching experiment on pattern gen-
eralization, 8 eighth graders from Cohort 1 and 3 seventh graders from Cohort
2 (four males and seven females) on three nonroutine pattern tasks shown in
Figs. 3.9 and 5.13a, b. The basic intent of the last clinical interview was to
assess and describe the content and form of their pattern generalizations after
a prolonged period of time in which no patterning activity was pursued on
purpose.

As soon as I completed all the interviews, visual templates became particu-
larly evident. To illustrate, when Karen (Cohort 2, Grade 7) extended the pattern
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Isabel, 7 th  Grader from Cohort 2 Diana, 7 th  Grader from Cohort 2 

Ollie, 7 th  Grader from Cohort 2 Karen, 7 th  Grader from Cohort 2 

Fig. 5.12 Algebra 1 students’ visuoalphanumeric generalizations in relation to the Fig. 4.33
pattern

in Fig. 3.9 to five stages and then established and justified a deconstructive gener-
alization, she initially added a square on each row and column per stage number
resulting in the growing L-shaped pattern shown in Fig. 5.14a. In justifying her
direct formula, s = 2n – 1, we obtain a glimpse of her visual template below (see
Fig. 5.14b for a graphical illustration).

I visualized it in groups. So like for the 2n – 1, you take the stage number which are these
two [i.e., the two circled groups in every stage] and then you subtract 1 because there’s an
overlap.
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Stage 1 Stage 3 Stage 2

Consider the pattern below.a

Stage 1

Stage 2

Stage 3 

Stage 4 

B. Find a direct formula for the total number of points at any stage in the pattern. Justify your
formula.

A. Find a direct formula for the total number of sticks at any stage in the patten. Justify your
formula.

b Consider the following array of sticks below

1. How does Stage 4 look like? Either describe it or draw it on a graphing paper.

2. Find a direct formula for the total number of gray square tiles at any stage. Explain your 
formula

3. How many gray square tiles are there in stage 11? How do you know?

4. Which stage number contains a total of 56 gray square tiles Explain.

Fig. 5.13 a Growing frog pattern. b Growing squares pattern
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Two 
groups of
Stage 2 

Two groups 
of Stage 3 

Two groups 
of Stage 4 

 Stage 1 Stage 5 Stage 4Stage 3Stage 2

a

b

C

Stage 1 Stage2 Stage 3 Stage 4 Stage 5 

n – 1 

n – 1 plus 1

Fig. 5.14 a Karen’s extended pattern in relation to the Fig. 3.9 task. b Karen’s justification of
her formula s = 2n – 1 in relation to Fig. 5.14a. c Karen’s justification of her second formula
s = (n – 1) + (n – 1) + 1 in relation to Fig. 5.14a

So, what are visual templates? Giaquinto (2007) initially talked about it in the
context of structure discernment. He notes that when we investigate elements in
a structured set, we either recognize the set as a particular instantiation of an estab-
lished theory or at least share an isomorphic structure with the theory. Doing this
helps us deal with the elements in the set in the same way we would manipulate
the elements in the established theory. Giaquinto developed his notion of visual
template from Resnik (1997), who describes a template as a blueprint, a “concrete
device for representing how things are shaped, structured, or designed” (p. 227).
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Neisser’s (1976) notion of template matching is more general. At least in the con-
text of pattern recognition, individuals tend to use prototypes or canonical forms as
a standard or basic model that help them either learn a characteristic of a new object
or compare the new with an existing object.

The visual aspect in visual templates emphasizes the role of the “‘eye’ as a
legitimate organ of discovery and inference,” thus “restor[ing the] balance between
mathematical methodologies” (Davis, 1993, p. 342). Davis (1993) astutely points
out how “discovery is not usually made in the deductive way” (p. 342), that is, not
in the sole context of logical inference and verbal deduction but through our visual
capacities of observing and seeing. Also, following Arcavi (2003), visual templates
enable students to see the unseen of an abstract world that is dominated by relation-
ships and conceptual structures that are not always directly evident. Thus, visual
templates employ “visuospatial relations in making inferences about corresponding
conceptual relations” (italics added; Gattis & Holyoak, 1996, p. 231).

In Karen’s case, as soon as she constructed her pattern of five stages, she began to
think multiplicatively in terms of groups of the stage number. Figure 5.14c conveys
her second direct formula in additive form that we classify as a constructive nonstan-
dard generalization. Here pattern generalization in Fig. 5.14a, b, c demonstrates how
she also employed stage-induced grouping in making sense of her Fig. 5.14a pattern.

Figure 5.15 is a three-dimensional cognitive model of the visual template that
I have drawn from the clinical interviews with the 11 students. It is a refinement
of the model shown in Fig. 5.7. A more efficient and coordinated visual template
in pattern generalization activity has the following five properties that operate
in a distributed and dynamically embedded manner: structural unit, analogy,
stage-driven grouping, Gestalt effect, and knowledge/action effects. Gestalt effect
addresses issues relevant to visual attention and structural familiarity with pattern
goodness as a criterion for algebraic usefulness. Knowledge effect is related to the
degree of goodness of a Gestalt effect. The dashed segment that connects both
effects indicates a spectrum of favored modality. For example, when the Gestalt
effect is high in goodness, then there is less a need for knowledge mediation. When
the Gestalt effect is low, then additional knowledge is needed in terms of how to
make an interpreted structure of a pattern become more familiar to the perceiver.
Structural unit pertains to a perceived interpreted general identity of a pattern
within and across stages. It gives meaning to constructed units and addresses issues
of invariance and change. Thus, it deals with the issue of stability of form or shape,
property, attribute, or relationships in a pattern. Analogy addresses redundancy,
consistency, and coherence among parts in a pattern. Stage-driven grouping shapes
the content of an emerging template and, consequently, addresses operations that
are used reflective of the (sequence of) grouping actions that are performed within
and across stages. Central to the triad are the abductive–inductive and symbolic
actions that require effective coordination as well.

The operation/s, which could be either additive or multiplicative, actually
depends on how the pattern stages appeal to the student at the moment of cognitive
perception. In Karen’s case, her pattern has a linear structure that to her was a good
Gestalt, which enabled her to construct two equivalent direct formulas. Her basic
structural unit in Fig. 5.14b is the L-shaped figure that consists of two overlapping
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Gestalt Effect 

(Complexity Criterion) 

 Knowledge/Action Effect

Stage-driven Grouping  

(Templating; Operation 
Criterion) 

Analogy 

(Redundancy,
Consistency, and

Coherence Criterion) Structural Unit 

(Stability Property) 
Abduction 

Variable Unit Induction 

Fig. 5.15 A 3D cognitive model of a visual template involving pattern generalization

configurations or components. At the analogical phase, she repeatedly verified
her structural unit over three stages. Consequently, her stage-induced grouping in
Fig. 5.14b was multiplicative; she saw two copies of the stage number from one
stage to the next. In Fig. 5.14c, her basic structural unit consists of a corner square
that stayed the same from stage to stage and two nonoverlapping components each
having a cardinality of n – 1. She again verified the same structural unit over three
stages and then expressed her direct formula additively, s = (n – 1) + (n – 1) + 1,
which is another example of a constructive nonstandard generalization.

Emma (Cohort 1, Grade 8) also produced the same pattern in Fig. 5.14a relative to
the task shown in Fig. 3.9. Her pattern generalization was constructive nonstandard
and additive, that is, s = n + (n – 1), which she explained in the following manner
below (see Fig. 5.16 for a visual illustration).

FDR: What helped you in transitioning from these visual squares to a direct
formula?

Emma: Grouping it, I guess. This is stage 1 [referring to the one square]. This
is stage 2 [the column of two squares]. This is stage 3 [the column of three
squares] and this is stage 4 [the column of four squares]. And then so ahm
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1 2 + 1 3 + 2 4 + 3 5 + 4 

Fig. 5.16 Emma’s justification of her formula s = n + (n – 1) in relation to the pattern in Fig. 5.14a

when I figured that, I try to see what’s left. So if it’s 1 [the remaining square
on the row of stage 2], if you subtract the stage number from 1, you get 1. If
you subtract 1 from the stage number [stage 3] you get 2 [the two remaining
squares on the row of stage 3]. If you subtract 1 from this stage number [stage
4], you get 3 [the three remaining squares on the row of stage 4].

When Emma developed a second pattern for the task shown in Fig. 3.9, she pro-
duced the nonlinear sequence of triangular numbers shown in Fig. 5.11. In light
of her existing knowledge and experience, the pattern would be low on Gestalt
goodness, which meant conceptualizing about the parts and plausible relationships
among them would likely require more effortful visual attentional mechanisms and
acquired knowledge (in Metzger’s sense). On her own, she established her initial
structural unit upon seeing a growing vertical sequence of squares starting from
the right, which represent consecutive numbers from 1 to n (the stage number)
that she checked over several stages (e.g.: stage 2 has 1, 2 squares; stage 3 has 1,
2, 3 squares). Using stage-induced grouping, she suggested the following additive
formula:

Emma: I know what to write but I don’t know how to put it into a formula. Like
so if there’s n and then you add all the numbers before it. Like if it’s 5, you
put n – 1, n – 2, n – 3, and n – 4. But I don’t know how to put that in a
formula.

FDR: So if it’s stage 6, if you use your formula, it is?
Emma: It’s n plus n – 5 plus n – 4 all the way to 1.

Because Emma was aware that she needed to construct a direct formula, she sug-
gested a second structural unit that had her thinking about each pattern stage as
the union of two components, that is, (1) an L-shaped figure at the base that
she described by the rule 2n – 1 and (2) an appended interior shape correspond-
ing to “two stages before n.” Figure 5.17 shows her written generalization in
additive form.
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Fig. 5.17 Emma’s written generalization in relation to her pattern in Fig 5.11

Thus, in the two situations above with Emma, her visual attentional mechanisms
had her establishing two different structural units that resulted in two formulas
either of which could not be expressed in closed form. Feeling frustrated, we both
worked on her pattern together. Initially, I asked her to establish a relationship
between a particular pattern stage number and the complete rectangle formed by
joining two copies of the same stage number using two colored sets of unit squares.
For example, in Fig. 5.18, the figure on the left is stage 2, while the figure on the
right are two copies of stage 2 that together formed a rectangle with dimensions 2
× 3. She then employed the same visual strategy in dealing with stage 3. As soon
as she noticed that the total number of squares in each pattern stage was one half
the total number of squares in the complete rectangle, she concluded that stage n
would have s=(n(n + 1))/2 squares, an auxiliary-driven constructive generalization.
She then used stages 4 and 5 to verify that her formula was correct.

Diana (Cohort 2, Grade 7) implemented a multiplicative-driven visual attentional
mechanism on all three tasks in Figs. 3.9 and 5.13a, b that enabled her to establish
an algebraic generalization effectively and efficiently. Instead of looking for parts
that corresponded to a stage number, Diana sought out groups of parts that had
the same count and then connected the count with the appropriate stage number.
In the case of Fig. 3.9, Diana produced two patterns (Figs. 5.11 and 5.14a). The
direct formula she constructed in the case of the Fig. 5.11 pattern also took place
in joint activity with me. In the case of the Fig. 5.14a pattern, she produced two

Stage 2 

Stage 3 

Two Copies of Stage 2

Two Copies of Stage 3
Fig. 5.18 Auxiliary stages in
relation to the triangular
pattern in Fig. 5.11
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direct formulas, one deconstructive and the other auxiliary-driven constructive. In
the interview transcript below, she described how she reasoned abductively about
her two formulas.

FDR: Is there a formula here [referring to the pattern in Fig. 5.14a]?
Diana: Uhm, n = 2x − 1. This is step, stage 3. There’s like 2 threes and this

one [corner square] overlaps. [Refer to Fig. 5.14b for a visual illustration.]
FDR: So for stage 4? [Diana gestures two groups of four squares from the

figure and the corner square.] Is there another formula for that?
Diana: Uhm, I’m not sure this is the simplest form. n = x2 – (x − 1)2. Like if you

see a square and a square here [refers to stage 4 in Fig. 5.14a and gestures
to indicate that she is taking away (x – 1)2 squares].

In the interview segment below, Diana also used a multiplicative template in con-
structing and justifying her direct formula relative to the Fig. 5.13a pattern. Her first
direct formula was n = x(x + 1) +4(2x + 1), a constructive nonstandard generaliza-
tion, which she later simplified to n = x2 + 9x + 4 and justified as a constructive
standard generalization.

Diana: Well, basically you always, like, to this number here, to this part here
[referring to stage 2], you added 1 and on this side you add 1 to make it
longer [referring to the growing legs on every corner.] You always add 1 to
everything to make the legs longer. Instead of like 2 × 2, you make it 3 × 3.
And for this one, too [the middle rectangle], instead of 1 by 2, you make it 2
× 3. [She then finds a direct formula and obtains x (x + 1) + (2x + 1) = n].

FDR: Okay, so tell me what’s happening there? Where did this come from, x (x
+ 1)?

Diana: This, the little square, x times x + 1.
FDR: So where’s the x times x + 1 here [referring to stage 3]?
Diana: Like 3 × 3, or 3 × 4.
FDR: So where’s the 2x + 1 coming from?
Diana: This. I mean I can look at it like 2 times (x + 1) minus 1 but I just

made it, like, 3, 3, and 1, so 2x + 1. [She initially saw that each leg had two
overlapping sides that shared a common square.]

FDR: But this 2x + 1 is just for this side [referring to one leg], right?
Diana: For all of the legs, oh, [then adds a coefficient of 4 to her formula: x (x

+ 1) + 4(2x + 1) = n].
FDR: Okay, so are you happy with your formula?
Diana: I think I could simplify it. I’d like to see what happens if I simplify it.

[She then simplifies her formula to x2 + 9x + 4 = n.]. 4 would be these
[the corner middle squares] I’m pretty sure. 9x would be, 8, oh, yes, I see
it. I see how it works. There’s an x squared here [referring to the rectangle
which she saw as the union of an n by n square and a column side of length
n] if you see one square here and the 9x would be these legs [referring to
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the (n + 1)th column of the rectangle of length n and the eight row and
column legs minus the corner middle squares]. Plus 4 would be the center of
each leg.

The consistent manner in which Diana used a multiplicative template became
especially useful when she obtained her pattern generalization in relation to the
Fig. 5.13b task. Initially, she obtained a formula for the number of sticks on the
perimeter of each square, 4x. Next, she counted the interior sticks as follows: (1)
“[in stage 2] 2 minus 1 would be 1 so there would be 1 row going down and another
row so that would be rows of 2 sticks”; (2) “in stage 3, there’s 2 rows of 3 sticks”;
(3) “[in stage 4 there’s] three, okay, it’s two sets of three rows of 4.” She then wrote
4x + 2(x – 1)x = s which she simplified to 2x + 2x2 = s.

Table 5.2 provides a summary of the clinical interview results of the 3-year study
on pattern generalization in relation to linear patterning activity. The row percent-
ages under numerical and visual approaches by the year represent shifts from the
visual to the alphanumeric and then finally to visuoalphanumeric generalizing. The
row percentages under constructive standard generalizations were consistently high
except in the case of decreasing linear patterns that a few students have found to be
relatively difficult to justify. The row percentages under more complicated forms of
generalizations such as deconstructive and constructive nonstandard generalizations
significantly improved only in the Year 3 study when the focus of patterning activ-
ity shifted away from the use of difference-driven tables that engendered numerical
generalizing to a purposeful reorientation to the properties described in Fig. 5.15. In
Year 2, while none of the students interviewed could obtain a pattern generalization
involving deconstructive generalization, they could, however, numerically verify
their correctness on particular cases when the formulas were presented to them pri-
marily to justify. In Year 3, at least 86% of their responses involved constructing
and justifying deconstructive generalizations.

5 Situational Discords in Visual Templates

The 3D visual template in Fig. 5.15 consists of five properties that work dynamically
together. A discord takes place when there is no harmony among them. We point out
at least three situational discords, which are as follows: (1) having a pattern that has
a low Gestalt effect but could be overcome on the basis of having visually accessible
strategy; (2) having a pattern that has a high Gestalt effect but the knowledge that
is needed to obtain a pattern generalization is not accessible using a visual strategy;
and (3) having no structural unit with a significantly high knowledge effect.

Emma’s initial pattern generalization of the triangular sequence she constructed
in Fig. 5.11 above exemplifies situational discord (1). While her pattern was low
in pattern goodness, she was, however, able to overcome her difficulty by having a
visually accessible knowledge of the relationship between the known stages and the
associated rectangles (Fig. 5.18) that led to a direct formula.
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Table 5.2 Summary of Pattern Generalization

Year 1 Results
Before Teaching
Experiment (n = 29)

After Teaching
Experiment (n=11)

Overall Visual 63% 0%
Overall Numeric 37% 100%
Constructive

Standard
Generalizations

0% 100%

Constructive
Nonstandard
Generalizations

0% 0%

Deconstiuctive
Generalizations

0% 0%

Year 2 Results∗
Before Teaching
Experiment (n=8)

After Teaching
Experiment (n=8)

Overall Visual 12% 25%
Overall Numerical 88% 75%
Constructive

Standard
Increasing
Patterns

100% 100%

Constructive
Standard
Decreasing
Patterns

38% 75%

Constructive
Nonstandard
Generalizations

0% 0%

Deconstructive
Generalizations

50% 100%

Year 3∗

Before Teaching
Experiment

(n= 18; 5 new∗∗)

After Teaching
Experiment

(n = 14; 3 new∗∗)

Overall Visual 67%∗∗∗ 71%
Overall Numeric 33%∗∗∗ 29%
Constructive

Standard
Generalizations

100% 100%

Constructive
Nonstandard
Generalizations

6% 36%

Deconstructive
Generalizations

11% 86%

(∗Some tasks had multiple questions;
∗∗Did not participate in earlier two-year interviews;
∗∗∗More visual tasks than numerical).
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It can also happen that some constructed patterns are high on Gestalt goodness
but require some knowledge that is not visually accessible, that is, situational discord
(2). This happened with Tamara (Cohort 1, Grade 8). Her extended pattern relative
to the Fig. 3.9 task is shown in Fig. 5.19a. Comparing stages 1 and 2, she saw that
stage 2 has “one group of two squares” added to stage 1. She then abduced that stage
3 would have “two groups of two squares” added to stage 2, stage 4 “three groups
of two squares” added to stage 3, etc. In thinking about a direct formula, she saw
the following sequence:

(2 · 1 − 1, 2 · 2 − 1, 2 · 4 − 1, 2 · 7 − 1, 2 · 11 − 1, 2 · 16 − 1).

In obtaining a direct expression, Tamara then focused on the length of each row.
Unfortunately, the knowledge or the strategy she needed to obtain a formula for
the sequence (1, 2, 4, 7, 11, 16, . . .) was not visually accessible. Consequently, she
changed her pattern to Fig. 5.14a when she realized that she needed to “find a way
to relate grouping and stage number in some way.”

Considering the above situations with Emma and Tamara, students need to know
when, how, and why it is necessary to introduce auxiliary sets or, more generally,
employ figural transformations or what Duval (2006) refers to as the action of fig-
ural change in apprehending figures. Visual actions of moving, reorganizing, and
transforming, including the use of auxiliary sets and figural parsing, are power-
ful mathematical ways of inferring a plausible structure on a pattern with figural
stages. Figure 5.19b shows one possible figural transformation of Tamara’s pattern
in Fig. 5.19a that produces a transformation-based algebraic generalization.

Stage 1 Stage 2 Stage 3 Stage 4 

a

Fig. 5.19 (continued)
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Stage 1 Stage 2: 2 x 1 + 1 

Original Stage 3 3 x 2   +  1 

Original Stage 4               4 x 3        +  1  

Stage Number (n) Number of Squares (s) 
11

2 2.1+1
3 3.2+1
4 4.3+1
5 5.4+1
6 6.5+1
n n(n–1) + 1

b

Fig. 5.19 a Tamara’s extended pattern in relation to the semi-free construction task in Fig. 2.9. b A
figural transformation of Tamara’s pattern in Fig. 5.19a demonstrating the algebraic generalization
s = n(n − 1) + 1

Emma’s situation relative to the task in Fig. 5.13b exemplifies situational discord
(3). She first employed a numerical strategy in dealing with the pattern that to her
was low in Gestalt goodness. She saw that stage 1 had four sticks and claimed that
it was “four of stage 1.” In stage 2, she counted the total number of sticks (12) and
then saw it as “[stage 2] · 6.” She then checked that her numerical reasoning also
worked in stages 3 and 4. She noticed that since stage 3 had 24 sticks, it was equal
to “[stage 3] 8.” In stage 4, she claimed that 40 was “[stage 4] 10.” She concluded
that her direct formula for the total number of sticks was s = n · (2n + 2). When
asked to explain her formula, she said that n referred to the stage number and that
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the numbers 4, 6, 8, and 10 were “even numbers and that to get to 10, I multiply
it by 2 and add 2, so 2n + 2.” But when asked to explain how the formula might
make sense in the given stages, she said, “I don’t know, I don’t see it in the picture.”
Emma’s work on this task is an example of a knowledge-driven generalization with
no justification because she failed to establish a structural unit.

There were students who also employed acquired knowledge in constructing
an algebraic generalization despite their relative inability to establish a structural
unit. However, their justifications were inconsistent and, thus, invalid. Examples of
such student work are shown in Fig. 5.20a in relation to the growing chair pattern
task. What these students found difficult about the pattern was how to attend to the
relevant configurations or parts in each stage in a way that would lead to articu-
lating a structural unit that could then be generalized across stages. Dung (Cohort
1, Grade 8) provided a justification in Fig. 5.20b that showed how he merely tried
to fit his formula onto the stages in his pattern. Figure 5.20c shows equally valid
generalizations of six students on the same pattern that represent different visual
perspectives.

Like Dung in Fig. 5.20b, Frank (Cohort 1, Grade 8) also used knowledge-driven
generalization in developing two equivalent direct formulas relative to the Fig. 3.9
task. He produced the same L-shaped pattern in Fig. 5.14a and constructed the for-
mulas S = 2x – 1 and S = 2(x – 1) + 1 by first establishing a common difference
of two unit squares (“there’s two more than before”) from one stage to the next.

Anna, 8  

th  Grader from Cohort 1 Miguel, 8   

th  Grader from Cohort 2 

Frank, 8 

th  Grader from Cohort 1 Cheska, 8  

th  Grader from Cohort 1 

a

Fig. 5.20 (continued)
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b

Fig. 5.20 (continued)
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Ollie, 7  th  Grader from Cohort 2 

Dwayne, 8  th  Grader from Cohort 1 Selma, 8   th  Grader from Cohort 2 

Emma, 8  th  Grader from Cohort 1 

Tamara, 8  th  Grader from Cohort 1 c

Jobe, 8  

th  Grader from Cohort 2 

Fig. 5.20 a Samples of inconsistent justifications in relation to the growing chair pattern. b
Dung’s justification of his formula in relation to the growing chair pattern. c Samples of consistent
justifications in relation to the growing chair pattern

He described his numerical strategy in dealing with the Fig. 5.14a pattern in the
following manner:

I’d looked through the differences of each pattern, say [stages] 1 and 2 [referring to the
pattern in Fig. 5.14a]. You notice that there’s two more than before. So when I look at that,
I wanna multiply it by the number that’s different because you want to get to the next stage,
right? And that’s how many is needed to get to the next stage of your pattern.

However, Frank took for granted the necessity of having a structural unit. In his
justification, he tried to explain how each term in his direct formulas would assist
him in constructing his stages in a step-by-step manner instead of seeing how they
conveyed expressions relevant to the general structure of his pattern. Consider the
following segments from his interview:

Frank’s Justification of the Formula S = 2x – 1 (see Fig. 5.21a for a graphical
illustration):
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Stage 1 Stage 2 Stage 3 Stage 4 

Add one square to get twice the stage 
number then take away the square 

a

b Stage 2: Begin with two squares: 2. 

Take away 1 square: (2−1).

Double the square: 2(2−1).

Add a missing square: 2(2−1) + 1.
Rearrange to form stage 2. 

Stage 3: 
Begin with three squares: 3. 

Take away 1 square: (3−1).

Double it: 2(3−1). 

Add a missing square: 2(3−1) + 1.
Rearrange to form stage 3.

Fig. 5.21 a Frank’s justification of his formula s = 2x – 1 for the Fig. 5.14a pattern. b Frank’s
justification of his formula s = 2(x – 1) + 1 for the Fig. 5.14a pattern

Frank: In stage 2, 3 total, so if I had another 1, that would equal 4 so subtract
1 to get to stage 3.

FDR: What about for stage 3?
Frank: You would have ahm so 2 × 3 is 6 there would be an extra so you could

put wherever. [He puts the extra square at the end of the row.] But then you
subtract 1 which is the extra to get to 5.

FDR: Okay, so one more.
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Frank: So for stage 4, it has a total of 7. And then there’s 1 more [puts the extra
square at the end of the column] so you subtract that extra to get your total.

Frank’s Justification of the Formula S = 2(x – 1) + 1 (see Fig. 5.21b for a graphical
illustration):

FDR: Show me how you make sense of that formula here.
Frank: So if it’s 2 minus 1, that gives you 1, multiply by 2 is 2 plus 1 gives you 3.
FDR: So where is that there [referring to the cues]?
Frank: So say, stage 2, right [starts with 2 squares]? And then 2 minus 1 is

1 [takes away 1 square] and then you multiply 1 by 2 which gives you that
[puts another square] and then you add 1 there.

FDR: Hmm, so let’s try that for this one [stage 3].
Frank: So it would be 3 [starts with 3 squares] for this one. And then you

subtract 1 which gives you a total of two squares. 2 times 2 gives you 4 and
then you’re missing one so you add 1 more.

6 Structured Visual Thinking in Transformational Activity

We close this chapter by considering two issues that address functional think-
ing at different grade levels. In my Algebra 1 class, we deal with connections
between visuoalphanumeric generalization and linear function modeling. In my
Grade 2 class, we take into account the emergence of functional thinking as a
result of students’ experiences with figural patterns that convey structured visual
representations.

In my Algebra 1 class, figural pattern generalization activity provided my stu-
dents with an opportunity to engage in hypostatic abstraction and develop structure
sense, both processes being relevant to issues involving generalization and sym-
bolization that lie at the heart of algebraic reasoning (Kaput, Blanton, & Moreno,
2008, p. 20). In the Year 3 study, the students used their experiences in pattern
generalization in hypostasizing about linear functions and linear function modeling.

The first activity we pursued immediately after the teaching experiment on lin-
ear pattern generalization was linear function modeling. Initially, we discussed the
meaning of a function, which the students easily understood on the basis of their
conceptual experiences with figural patterns. The term function was a hypostasized
abstraction drawn from their experiences with patterns where every input corre-
sponded to a unique output based on some explicit rule in the form of a direct
formula. Also, when they were presented with the two linear modeling tasks shown
in Fig. 5.22, they used their experiences with pattern generalization in dealing with
the two situations. Figure 5.23 shows the written work of several students that
illustrates how they successfully applied their knowledge of pattern generalization
involving discrete objects to linear modeling problems whose domains were real
numbers. Later, they also relied on their knowledge of increasing and decreasing
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1. Complete the table below. When done, enter the completed table in your graphing calculator 
and then graph. 
Number of cars 

washed (c)
0 1 2 3 4 5 6 7

Amount of money 
raised (M)

–117.5 –113.5 –109.5

2. Why is the amount of money raised with no cars washed a negative value? What happens to 
the club’s finances?

3. Explain how the value of –$113.50 was obtained for 1 car. 
4. What kind of pattern does your table above represent? How do you know for sure? 
5. Find a direct formula that enables you to obtain the amount of money raised (T) for any 

number of cars washed (c).
6. What stays the same and what changes in the table above? How does knowing what stays 

the same and what changes relate to your direct formula? 
7. How much money would the club raise if the members washed 12 cars? Show work below.
8. How much money would the club raise if the members washed 60 cars? Show work below.
9. How many cars must the members wash to break even, that is, the number of cars needed  

so there is no loss or no profit? 
10. How many cars must the members wash to raise enough money for: 

a. the trip to Washington with an estimated cost of $8,750? Show work.
b. the Valentine’s Day dance with an estimated cost of $3,500? Show work. 

11. Realistically, can the car wash raise enough money for both of these activities? Explain. 

Road Test Problem

The engineers at an auto manufacturer pay students $0.38 per mile plus $250 per day to road 

test their new vehicles.

a. Find a function rule that relates the total daily pay P for driving x miles in one day.  

Explain your formula.

b. How much did the auto manufacturer pay Sally to drive 440 miles in one day? Show 

work.

c. John earned $545 test-driving a new car in one day. How far did he drive? Show work.

Fund Raising

The Middle Grades Math Club needs to raise money for its spring trip to Washington, D.C., and 

for its Valentine’s Day dance. The club members decided to have a car wash to raise money for 

these projects. The club treasurer provided the following information:

• Charge per each car washed: The usual charge for washing one car is $4.00.

• Materials expense: The total cost of sponges, rags, soap, buckets, and other materials 

needed will be $117.50.

As a member of the club, your job is to produce a mathematical analysis. Do as follows.

Fig. 5.22 Two linear function models

linear patterns in hypostasizing about slopes of lines, which were seen as quantita-
tive descriptions of constant rates of change. Overall, their experiences with patterns
conceptually mediated in an effective way that allowed them to easily transition and
hypostasize about concepts and processes relevant to linear functions and linear
function modeling.
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Emma, 8th  Grader from Cohort 1 Diana, 7 
th  Grader from Cohort 2 

Jennifer, 8th  Grader from Cohort 1 Dave, 8th  Grader from Cohort 1 

Fig. 5.23 Students’ written work on the road test problem

In my Grade 2 class, when they were presented with two numerical and
figural pattern tasks prior to formal instruction, none of them exhibited func-
tional thinking relative to the numerical tasks. For example, in the case of
the dogs and zebras pattern tasks shown in Fig. 5.24, they were primarily
engaged in empirical counting (e.g., counting all at each stage; counting on
from one stage to the next; skip counting by 2s or by 4s; combinations of
count-all and count-on) with very little indication of a concern toward struc-
tural understanding. Even when they were presented with a function-based task
in numerical form, shown in Fig. 5.25, none of them saw a relationship between
input and output and merely inferred a relationship between two successive
outputs.

However, when they were presented with the two figural tasks shown in
Fig. 5.4a, b prior to formal instruction, the patterns appealed to 60% of them as
having high pattern goodness with well-defined structures. In each case, they used
pattern blocks to build stages 4 and 5 and drew stage 10 on the basis of how they
interpreted the structure of the pattern from the known stages. Figure 5.4c, d shows
samples of students’ written work relative to stage 10 in each pattern task. Despite
their inability to describe in words a generalization for each pattern, their visually
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Dog Task 
A dog has two eyes.  Two dogs have four eyes. Three dogs have six eyes.  Four dogs have 
eight eyes. 

We only have four dogs on the table. So you need to imagine more dogs in your head. 

A. How many eyes are there in the case of five dogs? How do you know for sure? Can you 
show me on paper how you were thinking about it? 

B. How many eyes are there in the case of six dogs? How do you know for sure? Can you show 
me on paper how you were thinking about it? 

C. How many eyes are there in the case of ten dogs? How do you know for sure? Can you 
show me on paper how you were thinking about it? 

D. How many eyes are there in the case of twenty dogs? How do you know for sure? Can you 
show me on paper how you were thinking about it? 

E. If a normal dog has two eyes, how many dogs are there if you have a total of seventeen 
eyes? Explain your thinking.   

Zebra Task 

A zebra has four legs. Two zebras have eight legs. Three zebras have twelve legs. 

We only have three zebras on the table.  So you need to imagine more zebras in your head. 

A. How many legs do four zebras have? How do you know for sure? Can you show me on 
paper how you were thinking about it? 

B. How many legs do five zebras have? How do you know for sure? Can you show me on paper 
how you were thinking about it? 

C. How many legs do six zebras have? How do you know for sure? Can you show me on paper 
how you were thinking about it? 

D. How many legs do ten zebras have? How do you know for sure? Can you show me on paper 
how you were thinking about it? 

E. How many legs do twelve zebras have? How do you know for sure? Can you show me on 
paper how you were thinking about it? 

F. If a normal zebra has four legs, how many zebras are there with a total of 21 legs? Explain 
your thinking.  

Fig. 5.24 Dogs and zebras patterning tasks used with Grade 2 students in clinical interviews prior
to formal instruction

driven actions, which allowed them to construct stage 10 correctly, indicate early
manifestations of functional thinking. When they initially inspected stages 1–4 in
each task, which the interviewer constructed for them one by one, they cognitively
perceived a relationship between stage number and figural shape. Hence, figural pat-
terns that are well defined and have a high Gestalt effect can lay the groundwork for
a mathematical (symbolic) understanding of functions.
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I have a magic hanky. It does something with the numbers you put under it, as follows: 

1 4 2 5 3 6 4 7 

A. What do you think will happen in each case below? Explain how you know.  

5 ? 6 ? ?10  

B. Tell me what the magic hanky is doing with the numbers you put under it? How do you 
know?  

Fig. 5.25 Numerical-based function task used with Grade 2 students in clinical interviews prior
to formal instruction

7 Overview of Chapter 6

In Chapter 6, we focus on mathematical diagrams whose parts are conceptually
constructed in some way. We also discuss diagrammatic reasoning, which involves
distributed actions of manipulating, discerning, interpreting, and inferring relations
on diagrams. While diagrams are prevalent in school geometry, which provide the
conceptual tools necessary in establishing necessary and logical proofs, the exam-
ples we use in Chapter 6 are taken from school algebra and number sense. The goal,
of course, is to give readers a sense of how progressive diagrammatization occurs
and supports progressions in formalization, schematization, and mathematization of
the corresponding alphanumeric forms. In the introduction of the chapter, we clarify
the nature of diagrams in cognitive mathematical activity. In the first section, we dis-
cuss ways in which our visual system is naturally capable in seeing relationships in
diagrams. The second section focuses on three fundamental issues with mathemat-
ical diagrams, which are as follows: existence, universality, and choosing between
presented and generated diagrams. Having addressed the constraints in diagram-
ming, in the third section, we discuss different diagram types and address issues
surrounding progressive diagrammatization. In the last section, we explore the role
of diagrammatic reasoning in mathematical reasoning.





Chapter 6
Visual Thinking and Diagrammatic Reasoning

It is difficult to decide between the two definitions of
mathematics: the one by its method, that of drawing necessary
conclusions; the other by its aim and subject matter, as the study
of hypothetical state of things.

(Peirce, 1956, p. 1779)
Mathematics requires an inter-subjectively given object. This is
supplied in modern mathematics by conceptual systems and in
Greek mathematics by the diagram.

(Netz, 1998, p. 38)
Plainly the movement to accord diagrams a substantial role in
mathematics is crucial to a philosophy of real mathematics.

(Sherry, 2009, p. 60)

In Chapters 4 and 5, we specifically addressed contexts in which visuoalphanu-
meric symbols in school algebra and number sense could be interpreted as symbolic
entities that have roots in structured visual experiences. We also discussed the signif-
icance of progressive symbolization relative to intra- and inter-semiotic transitions
that occur from iconic and/to indexical and to symbolic representations. In this chap-
ter, we focus our attention on diagrams that are purposefully constructed to convey
visual relationships and mediate in students’ understanding of alphanumeric forms.
Examples of such diagrams include tables in pattern generalization, graphs of func-
tions, squares, sticks, and dots in adding and subtracting whole numbers, binary
chips and number lines used in understanding integer operations, etc.

For Peirce (1976), a diagram is a relationally iconic sign whose nature is best
described in terms of its relationship within a hypothetical state of things. Such a
state, Campos (2007) points out, is a category of firstness in that it thrives in an
imagined mathematical world in which pure hypotheses are as general as they are
sufficiently vague and definite. In this world, a hypothetical state does not have to
correspond to an actual state in reality, which is a secondness category. Further,
everything in this world could be accessed and known primarily through reasoning
and the use of logic whose propositions are either true or false. What the world
then produces are mathematical truths that each “has the character of a would-
be consequence of a hypothesis” (Campos, 2007, p. 472). One activity in such a
hypothetical state involves the creative construction of diagrams, “poietic creations
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[that are] independent of really existing facts” (Campos, 2007, p. 473), that lead to
necessary mathematical truths. Thus, Peirce’s view of mathematics as “the science
which draws necessary conclusions” is premised on this particular condition of the
“hypothetical state of things” (cf. Dea, 2006).

Peirce describes a diagram in the following way:

[It is] a representamen [i.e., a sign] which is predominantly an icon of relations and is aided
to be so by conventions. Indices are also more or less used. It should be carried out upon a
perfectly consistent system of representations, founded upon a single and easily intelligible
basic idea.

(Peirce, 1934, p. 341)

Mathematical activity then involves constructing, observing relations in, and exper-
imenting with diagrams (Peirce, 1958b, p. 229). Diagrams deal with relationships
among parts in objects (Stjernfelt, 2000, p. 358), “the internal structure of those
objects in terms of interrelated parts, [thus,] facilitating reasoning possibilities”
(Stjernfelt, 2007, p. ix). Campos (2007) captures the essential character of a Peircean
diagram in the following interesting manner:

A diagram, then, is a sign that represents in our minds the objects and relations that conform
to our hypothesis. We may actualize the imagined mental diagram by way of physical mod-
els, say via graphs, drawings or equations, but the diagram is a sign that conveys a meaning
to our “mind’s eye” – the meaning being the form of the relations that hold according to
our pure hypothesis. . . . [T]he essential act of diagramming in mathematics is not the act of
drawing a geometrical figure or writing an algebraic expression; it is rather the act of imag-
ining a representation that embodies the relations among objects that hold in our purely
hypothetical world.

(Campos, 2007, p. 475)

Solving an absolute value equation for the first time in my Algebra 1 class was
a difficult experience for many of my students. Their primary dilemma with the
algebraic form |x| = c had to deal with the hypothetical condition in which the
equation actually conveys seeing a number x that has a distance of c units from
either the left or the right side of the origin. This complex relationship, as a matter
of fact, was not articulated at all when they first learned about evaluating the absolute
value of a letter as a particular object in expressions such as |2| or |−2|. In class,
they saw that such an expression meant “the distance of 2 or –2 from the origin
is 2 units, so the result is always positive.” However, when the letter represents a
variable that could stand for any nonzero real number, that is, the general case of
|x|, geometrically it could refer to two possible locations on a number line from the
origin. It was this hypothetical possibility that my students found difficult to grasp,
at least initially.

In our class, the following piecewise symbolic definition of |x| made sense to
them but only when they began to associate a number line diagram that showed
each situation:

|x| =
⎧
⎨

⎩

x, x > 0
0, x = 0

−x, x < 0
.
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Figure 6.1a, for example, shows Cheska’s (Cohort 1, Grade 8) number line model
of the above definition. When the students later solved simple absolute value equa-
tions such as |x| = 3 and |x + 2| = 5, consistently interpreting expressions x and x
+ 2 as being 3 and 5 units away from the origin on both sides of the number line,
respectively, their thinking and reasoning underwent “elaborat[ion] (while) in the
process of tracing diagrams, when mind and body cooperate in the advent of the vir-
tual” (Batt, 2007, p. 246). In other words, the number line fulfilled the “operativity
of the diagram for mathematical thought” (Batt, 2007), which conveyed a type of
“diagrammatic abstraction” that “preserved or highlighted” (Gooding, 2006, p. 41)
the essential aspects in the definition of the absolute value.

Figure 6.1b shows the written work of Jennifer and Joko on three absolute value
equations that made sense to them on the basis of how they interpreted each expres-
sion inside the absolute value as conveying two particular locations on a number line
from the origin. Joko mentally perceived a number line in which he assigned two
different values for the same algebraic expression inside the absolute value (i.e., 5–
2x could either be 9 or –9 since | 9 | = |–9|). Jennifer’s solutions transitioned from
explicitly using a number line to eventually doing away with it. Nevertheless, in
either visual case (mental image or evident display of a number line), their written
work exemplifies how “a skeleton-like sketch of relations” (Stjernfelt, 2000, p. 358)

a

b

Fig. 6.1 (continued)
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cFig. 6.1 a Cheska’s number
line model of the absolute
value concept. b Written
work of Jennifer and Joko on
three absolute value
equations. c Cheska’s written
work on five absolute value
equations

diagram functioned in reminding them that they were considering two different
kinds of situations in the case of solving absolute value equations.

Toward the end of our first classroom session on solving absolute value equa-
tions, Dave (Cohort 1, Grade 8) asked whether absolute value equations always
produced two solutions. Cheska overgeneralized when she replied in the affirmative
and further claimed that the two answers would always be “opposites of each other.”
This, in fact, was how she saw them in her diagram. Figure 6.1c shows a few of her
initial solutions. So, the following day, we investigated different cases with the use
of a TI 84, a graphing calculator. Graphically, the students began with two graphs
that correspond to the left- and right-hand sides of a given absolute value equa-
tion (Fig. 6.2a). Then they investigated graphing situations under which an absolute
value equation would yield the following: (1) no solution; (2) one solution; (3) two
solutions; and (4) an infinite number of solutions (see Fig. 6.2a, b, c for examples).
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a

b

c

d

Fig. 6.2 a Representing an absolute value equation graphically on the TI 84. b Absolute value
equation with one solution. c Absolute value equations with two solutions. d Ping’s written work
on two absolute value equations

In each case above, I purposefully asked them to present an algebraic solution
with each graphical exploration so that they knew how to work on two different
types of representations. For example, while the students knew that |x| = −2 had
no solution since the two graphs

{
y1 = |x|
y2 = −2
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had no point of intersection, they still solved it, at least once, in order to see why it
was unnecessary to perform an algebraic procedure on a trivial case (Fig. 6.2d shows
Ping’s written work on a similar problem). The additional graphical experience with
the calculator allowed the students to deepen their understanding of what it meant
to solve an absolute value equation and how to interpret its solution/s on the basis of
the relationships they visually inferred on the relevant “iconic configurations” (Batt,
2007, p. 246).

Thus, the coordinated use of diagrams in reasoning such as the number line, the
alphanumeric forms that characterize an algebraic equation, and the graphs drawn
from the graphing calculator provided my students with both “aesthetic and cogni-
tive effects” (Batt, 2007, p. 246), a sense of poietic creativity in which imagining a
hypothetical situation (that of the absolute value) within the ground of carefully and
purposefully drawn diagrams (number line, algebraic equations, graphs) constructed
the conditions for necessary mathematical reasoning. Pace Peirce:

The work of the poet or novelist is not so utterly different from that of the scientific man. The
artist introduces a fiction; but it is not an arbitrary one; it exhibits affinities to which the mind
accords a certain approval in pronouncing them beautiful, which if it is not exactly the same
as saying the synthesis is true, is something of the same general kind. The geometer draws
a figure, which if not exactly a fiction, is at least a creation, and by means of observation
of that diagram he is able to synthesize and show relations between elements which before
seemed to have no necessary connection.

(Peirce (1932, p. 383) quoted in Batt, 2007, pp. 246–247)

In this chapter, we explore the implications of diagrammatic reasoning, that is,
reasoning with diagrams in formational and transformational cognitive activity.
From the above situation with my Algebra 1 students, their reasoning with dia-
grams actually evolved over three phases. They first learned to solve absolute value
equations with the aid of a number line. Then it was followed by an algebraic
approach using variables. In the third phase, they engaged in a graphical analysis
with the TI 84. Hence, consistent with the traveling theory that is pursued in this
book, in this chapter, we demonstrate how effective diagrammatization could fos-
ter the progressive evolution of mathematical reasoning and knowledge from the
initial phase of manipulating hypothetical conditions in some physical format to
eventually developing hypostatic abstractions and seeing particular relations in dia-
grams as instantiations of more general relationships. Diagrammatization for Peirce
is akin to “skeletonization” with its primary focus on the “essential relations” in
a given problem situation that then enables the drawing of necessary conclusions
from premises (Dea, 2006, p. 509). Bakker (2007) and Stjernfelt (2007) push this
intent further in their reconceptualization of the role of diagrams in mathemat-
ics learning. For Bakker (2007), diagrammatization – which involves constructing,
experimenting with, and observing/reflecting upon the results of diagrams – pro-
vides “opportunities for hypostatic abstraction [to] occur” (p. 27), a helpful step
in “processes involved in learning to reason” about mathematical concepts (p. 9).
In Diagrammatology, author Stjernfelt (2007) situates diagrams beyond their archi-
tectural significance in signage to their central epistemological role in knowledge
acquisition as follows:
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The fact that diagrams displays the interrelation between the parts of the object it depicts is
what facilitates its use in reasoning and thought processes, thus taking the concept of signs
far from the idea of simple coding and decoding and to the epistemological issues of the
acquisition of knowledge through signs.

(Stjernfelt, 2007, p. ix; italics added for emphasis)

Four points are worth noting early at this stage. First, Peirce considers algebraic
equations, expressions, and formulas as diagrams. Diagrams are, thus, not limited
to geometric figures. However, in this section, we focus on those visually drawn
diagrams that mediate in the understanding of alphanumeric forms.

Second, many of the examples that are pursued in various sections in this chapter
are drawn from the algebra and number sense strands of the school mathematics cur-
riculum, and there is a reason in doing this. While teachers take as given the visual
nature of geometry, statistics, and data analysis, the objects and symbols of num-
ber sense and school algebra seem unable to escape “the cultural imprisonments
of typography” (Rotman, 1995, p. 390). That is, the hegemony of alphanumeric
manipulation continues to drive the content and form of much of mathematical rea-
soning that is characterized by a particular “phobic mode of behavior” (Rotman,
1995, p. 394) toward visual forms. This reminds me of Rotman’s (1995) represen-
tational spectrum in Fig. 6.3 that shows the status of diagrams along a continuum
of symbolic necessities in mathematics. While the diagram shows numeric sym-
bols as not necessarily irreducible to writing, Rotman (1995) points out, however,
the (over)valuing we tend to accord the “rigorously literal, clear, and unambigu-
ous ideograms” over the “metaphorically unrigorous diagrams” (p. 399). Further,
he notes the implications of this seeming transposition in the following manner:

The transposition in question is evident once one puts this ranking of the literal over the
metaphorical into play: as soon, that is, as one accepts the idea that diagrams, however
useful and apparently essential for the actual doing of mathematics, are nonetheless merely
figurative and eliminable and that mathematics, in its proper rigorous formulation, has no
need of them. . . . [t]his alphabetic prejudice is given a literal manifestation: linear strings
of symbols in the form of normalized sequences of variables and logical connectives drawn
from a short, preset list determine the resting place for mathematical language in its purest,
most rigorous grounded form.

(Rotman, 1995, p. 399)

alphabetic 

writing    ideograms 

numeric 

diagrams 

Fig. 6.3 Rotman’s (1995)
representational spectrum
(p. 399)
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Third, Sherry (2009) has surfaced the metonymic issue of insufficiency of diagrams
(because they are drawn as empirical objects) and diagrammatic reasoning in deal-
ing with both the abstract nature and abstract properties of mathematical objects.
The matter, of course, is confounded by the fact that there are constraints in our
perceptual ability to gain access to the relevant abstraction on the basis of ambigu-
ities and inexactness of the diagrams we use to reason with. Sherry (2009) offers
a provocative (Wittgensteinian) response that we pursue in some detail that hope-
fully allows us to fully understand the nature and context of diagrammatic reasoning
(perhaps beyond Peirce) and further enrich our understanding of diagrams in math-
ematical activity that oftentimes deals with the hypothetical state of things. Sherry’s
(2009) provocative perspective that we view diagrammatic reasoning as an instance
of applied mathematical reasoning resonates well with progressive mathematization
and formalization that we have discussed in earlier chapters in this book.

Fourth, recent research studies empirically demonstrate a relationship between
type of visuospatial representations employed and success in mathematical problem
solving. We briefly discuss a few of these studies below.

Hegarty and Kozhevnikov (1999) distinguished between pictorial imagery (“con-
structing vivid and detailed visual images”) and schematic imagery (“representing
the spatial relationships between objects and imagining spatial transformations”)
with the latter type falling under the Peircean notion of a diagram. Based on their
work with 33 sixth-grade male students, they found that diagrammatic and pictorial
representations are positively and negatively, respectively, correlated with mathe-
matical problem solving. Diagrams include relationships that are relevant to solving
a problem unlike pictures that contain details irrelevant to a problem solution.

Booth and Thomas (2000) provided anecdotal evidence that shows older students
(ages 11–15 years) with low visuospatial skills preferring pictures over diagrams in
solving arithmetical problems perhaps because of a psychological need to “bring”
the pictures “nearer to their perception of reality” (p. 185) that unfortunately
distracted them from completely and correctly solving the problems.

Van Garderen’s (2007) multiple probe design work with three eighth-grade
students (one female, two males) with learning disabilities (LD) provided evidence
of improved problem-solving performance on tasks that involve one- and two-step
computational word problems due to a successful shift in thinking from pictures to
diagrams. Van Garderen’s (2006, 2003) empirical work in the case of a larger sam-
ple of students grouped by problem-solving ability (66 participants consisting of
students with LD, average-achieving, and gifted) produced findings that were con-
sistent with those found by Hegarty and Kozhevnikov (1999) above, including the
following important facts: (1) the gifted used diagrams (conveyed by drawing, ges-
turing, or talking aloud) more significantly than did the other two groups; (2) the LD
used pictorial representations more frequently than did the gifted; and (3) diagram-
and picture-use, respectively, positively and negatively correlated with spatial visu-
alization ability, which is correlated with mathematics achievement and is important
in learning geometry and in solving complex word problems.

Zahner and Corter (2010) statistically analyzed the “spontaneous (unprompted)
use of external inscriptions” (p. 178) of 34 adult students (mean age of 28 years)
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who solved six different problems based on different probability topics in the con-
text of a clinical interview. The inscriptions the novices produced were classified
as follows: schematic diagrams, which depict relationships; pictorial or iconic fig-
ures, which illustrate physical appearances of the objects involved in a problem;
and other “forms of spatial organization and tabulation of problem information” (p.
180). Zahner and Corter concluded that there is an association between (1) the use
of inscriptions and specific probability topics; (2) the choice of inscription and rate
of success in solving a probability problem; and (3) particular types of inscriptions
and stages in probability problem solving. To illustrate (1), the novices used an out-
come listing method in dealing with a combinatorial problem or a Venn diagram in
solving a compound event problem. In the case of (2), those who chose to, say, use
a schematic diagram or a tree in making sense of a problem involving the funda-
mental principle or combinations and conditional probability, respectively, obtained
significantly higher rates of solution success than the overall mean performance rate
for the problem.

Recently, I read a blog entry of a high school mathematics teacher who shared
with interested readers how he taught his students to factor simple quadratic trino-
mials of the form x2 + bx + c using a popular method shown in Fig. 6.4. On close
inspection, nothing in the numerically driven diagram reflects the iconic configu-
rations that might be conceptually relevant in factoring such trinomials unlike the
tic-tac-toe diagrams shown in Fig. 2.4a–c. That is, his students used the diagram
in Fig. 6.4 basically as a tool for generating the factors and nothing more. When I
emailed the teacher and commented that the method the students acquired did not
appear to at least resemble the mathematical process involved in factoring quadratic
trinomials such as the ones shown in Fig. 2.4a–c, his response below reflected the
use of a diagram that has been drawn from alphanumeric activity.

My students don’t have experience in algeblocks (or any manipulatives) from algebra 1, so
I hadn’t based the method off of them. But it is probably worth doing. I’ll design something
for my classes to try next week to see if it helps their understanding.

(Teacher X, 2009, email communication)

The point is, in Rotman’s (1995) words, “the distorting and reductive effects of
the subordination of graphics to phonetics [alphanumeric symbols in the case of
algebra] and [how they] have made it their business to move beyond this dogma”
(p. 390). In this chapter, we explore the implications of how thinking diagrams in
algebra and number sense would allow students to visually experience the “intricate
interplay of imagining and symbolizing [that is] familiar to mathematicians within
their practice” (Rotman, 1995, p. 392). This way, abstraction and generalization
in algebra and school mathematics, more generally, are seen as having “material,
empirical, embodied, [and] sensory dimension[s]” (Rotman, 1995, p. 391).

This chapter has four sections. Section 1 deals with four psychophysical and
cognitive perspectives on diagrams. Section 2 addresses three fundamental dilem-
mas with diagrams, namely: problem of existence; concern for universality; and
choosing between presented and self-constructed diagrams. In Section 3, we dis-
cuss different types of diagrams and implications of progressive diagrammatization.
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Fig. 6.4 Sample of factoring quadratic trinomials of the type x2 + bx + c by the x method (Teacher
X, 2009)

Section 4 explores in some detail Sherry’s (2009) point about diagrammatic
reasoning as an instance of applied mathematical reasoning.

1 Psychophysical and Cognitive Perspectives on Diagrams

Pylyshyn (2006) notes at least four interesting points about the role of the human
visual system in diagrammatic activity. First, our vision has natural mechanisms that
enable us to detect relationships and construct abstractions in diagrams. Adults, in
fact, tend to visually attend to structures unlike infants who initially focus on objects
(cf. Leslie, Xu, Tremoulet, & Scholl, 1998).

Two examples from my classes illustrate the above point. In my Algebra 1 class,
the graphing calculator activity in Fig. 4.20 allowed the students to primarily use
their vision in establishing a relationship between the y-intercept B in y = Ax + B
and the straight line by visually attending to lines that either went up, down, or
crossed the origin depending on whether B > 0, B < 0, or B = 0, respectively. In
fact, the visually drawn inference became the basis in which they formed hypostatic
abstractions relevant to types of slopes and intercepts of graphs. Further, what they
saw consistently across several examples allowed them to state their generalizations
about the role of the y-intercept C in the case of y = x2 + C and much later in the
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Fig. 6.5 Power functions on the TI 84+ using transformation graphing application

general case of power functions of the form y = xn + C, where n is a whole number
(Fig. 6.5). In my Grade 2 class, 60% of the students naturally exhibited structural
awareness relative to the two tasks shown in Fig. 5.4a, b prior to formal instruction
on pattern generalization. Figure 5.4c, d provides samples of their work on two far
generalization tasks.

Second, Pylyshyn (2006) points out how steps in a diagram actually function in
facilitating some kind of a concrete justification in visual form. For example, the
diagram in Fig. 2.1 visually assisted my Algebra 1 students in establishing the steps
needed to factor a quadratic binomial involving the difference of two squares. Also,
the visual steps in Figs. 3.14 and Fig. 3.15 provided them with three models of a
visual explanation of the Pythagorean theorem. In my Grade 2 class, the students
used their diagrammatic experiences (e.g., Figs. 1.1 and 3.1) in understanding the
numerical algorithm for adding and subtracting whole numbers with regrouping.

Third, even when our vision is predisposed to noticing relationships in a diagram,
it also depends on what we visually attend to that influences what and how we see. In
other words, when we glance at a diagram, some property, attribute, or relationship
may take more effort and time to acquire than others that would then influence the
steps we construct in relation to the diagram. For example, Emma had a difficult
time abducing a plausible relationship in the case of the figural stages in Fig. 5.13b
unlike Diana, who immediately saw each stage as the union of a growing perimeter
of sticks (4x) and two symmetrical sets of (x–1) rows of x sticks in the interior
of each square. Dung saw each stage in Fig. 5.13b in a much more complicated
manner. Figure 6.6 is a visual illustration of the steps he employed in his visual
thinking. He initially saw n disjoint rows and counted the total number of sticks per
row. In counting the number of sticks per row, he once again saw n disjoint squares
for a total of 4n and then subtracted the overlapping sticks, n–1. He then saw that
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4n – (n – 1) 

4 groups of 4 
sticks 

3 overlapping vertical 
adjacent sides 

[4n – (n – 1)]n 

4 rows of 
[4(3) – 2] 

sticks 

(n – 1)n 

Take away 3 
overlapping 
horizontal 

adjacent sides of 
4 sticks 

Fig. 6.6 Dung’s construction and justification of his formula for the pattern in Fig. 4.13b

there were (n–1)n overlapping horizontal rows (sides) in the interior of the larger
square.

In all reported accounts relevant to pattern generalization activity, in particu-
lar, what is not oftentimes pointed out when students’ thinking transition from
particularizing to generalizing is the qualitatively drawn observation that certain
visual mechanisms are operating behind the scenes that somehow assist them in
constructing an algebraic generalization. For example, Dung’s visual mechanism
in Fig. 6.6 had him parsing each complex stage into subconfigurations of separate
rows of squares and separate smaller squares per row. The diagrammatic reasoning
he employed biased the manner in which he interpreted each known stage in the
pattern, which he then projected onto the unknown stages. The relative absence or
ineffective use of the visual mechanism of parsing and biasing1 could help explain
why Emma was unable to justify the numerically driven formula she produced for
the Fig. 5.13b task. When she found it difficult to parse and bias the pattern stages in
a way that surfaced a structural unit, she resorted to using a numerical strategy that

1The process of figural parsing and biasing shares many of the characteristics that Gal and
Linchevski (2010) identified in relation to the operative apprehension of geometric figures (Duval,
1998), which involves engaging in an appropriate and purposeful “dimensional deconstruction of
figures” that leads to “infer[ring relevant] mathematical properties in axiomatic geometry” (Gal &
Linchevski, 2010, p. 180).



1 Psychophysical and Cognitive Perspectives on Diagrams 211

bypassed such mechanisms altogether. The same explanation could be claimed in
those cases when students resorted to superficially (versus structurally) iconic gener-
alizations. It was evident that they either did not use diagrams effectively (implicitly
or explicitly) or simply avoided them.

Fourth, the use of the number line diagram in Figs. 6.1a, b, including the diagram
in Fig. 6.7 that Jackie (Cohort 2, Grade 7) used when she solved word problems,

Fig. 6.7 Ollie’s word problem-solving strategy by diagramming
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conveys the view that a diagram “not only lessen(s) the burden on memory, but
also encourag(es) certain assumptions and ways of thinking about the problem(s)”
(Pylyshyn, 2006, p. 455). The diagrams shown in Figs. 6.1a, b and 6.7, in fact,
biased the manner in which the students dealt with such mathematical objects in
a way that could not be inferred on the objects themselves. They also assisted the
students when they had to hypostasize and generalize the processes involved and
deal with a variety of similar problem situations.

“Diagrams and other abstract models,” Novick (2006) points out, and rightly so,
“have a long history of guiding human activities, from the intellectual to the practical
to the leisure” (p. 1826). Table 6.1 lists examples of diagrams that have been devel-
oped over many years by individuals in everyday and mathematical settings. Across
the different forms, diagrams address basic issues such as computational offloading
and re-representation (Ainsworth & Loizou, 2003, p. 670; Zahner & Corter, 2010,
p. 196). Gemiliano (second grader) in Fig. 3.1 consistently and very quickly used
sticks and dots in helping him deal with all subtraction problems with regrouping.
The actions he performed on the diagrams he constructed effectively enabled him
to make the necessary changes and interpretations in the digits involved in the sym-
bolic aspect (i.e., the subtraction algorithm). The hypostasized term “regrouping”
for Gemiliano and his classmates, in fact, cued them to use their stored visual image
in guiding their symbolic actions on the relevant digits in any subtraction problem.

In problem-solving situations, when texts are available for comparison, diagrams
seem to provide more efficient and enhanced analyses that could also significantly
reduce cognitive effort. For example, Fig. 6.8b shows a combined visual–numerical
inductive-structuring table diagram that could help students develop an algebraic
generalization for the classic frog problem shown in Fig. 6.8a. Lewis (2009) notes
that when the same problem was presented to a sixth-grade class, the students used a
similar diagrammatic approach and noticed that the solution in each case resembled

Table 6.1 Examples of diagrams (Novick, 2006, pp. 1826–1827)

Geometric diagrams
Route maps
Multiplication tables
Abstract charts resembling networks
Abstract charts for illustrating patterns and navigation schemes
Origami diagrams for paper folding
Networks
Abstract matrices and networks used in game boards
Graphic-language expressions on blackboards
Scientific drawings
Tables
Corporate logos
Iconic diagrams such as photographs and line drawings of objects
Schematic diagrams or conceptual graphs displaying abstract concepts
Circuit diagrams, hierarchical trees, and Venn diagrams as schematic diagrams
Charts and graphs such as line graphs, bar graphs, and pie charts
Cartesian graphs
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a palindrome. Further, the organized presentation of arrows and numerical values in
Fig. 6.8b enabled them to infer with relative ease that the total number of jumps and
slides in each case involves a perfect square and an even number, respectively. Thus,
diagrams used in this manner allow learners to conveniently search for information
that otherwise would be difficult to accomplish with a solely textual approach (cf.
Larkin & Simon, 1987).

Diagrams can also “trigger the retrieval processes” relevant to “extracting knowl-
edge from memory” (Zhang, 1997, pp. 180–181). For example, my Algebra 1
students sustained their ability to factor a difference of squares a2 − b2 through-
out the school year each time they were reminded of the generic diagram shown in
Fig. 2.1. My Grade 2 class successfully added and subtracted whole numbers having
two and three digits with and without regrouping throughout the school year because
they could easily recall the visual processes they developed with squares, sticks, and
dots (Figs. 1.1, 2.13, 2.20, and 3.11a). One powerful diagram that my Algebra 1 stu-
dents always referred to whenever they had to solve quadratic equations of the type
ax2 + bx + c = 0 is the visual model shown in Fig. 3.12b, which reminded them of
the alphanumeric steps needed to solve such equations. In this particular situation,
it was interesting how the diagram had more conceptual impact than the quadratic
formula that helped them solve such equations. Figure 6.9 is a popular 10 × 10 unit
square grid approach that teachers have found effective in assisting their students
to understand the addition of two decimal fractions. When Suh, Johnson, Jamieson,
and Mills (2008) implemented the grid approach to decimals in a fifth-grade class,
the students (1) understood decimals as “an extension of the base-ten number system
and not a different system”; (2) established “generalizations about the relationship

On a row of seven chairs, three couples sit so that the three men M sit on the three chairs
on one end beginning from the left and the three women F sit on the other chairs starting from
the right. The middle chair is left vacant. What is the minimum number of moves needed to
interchange the men and the women under the following conditions:

1. The men can only move from left to right and the women only from right to left.
2. Each of them can either slide onto an adjacent chair or jump over one other

person to the vacant chair immediately after him or her.

1 2 3

A male-and-female couple sits on two chairs separated by a chair in the middle. They can
switch places in three moves, as shown below.

a

Fig. 6.8 (continued)
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n = 3

1 2 3 4 5 6 7

Case Visual Solution Number 
of 

Jumps

Number 
of 

Slides

Number 
of 

Moves
1 pair S-J-S (see figure below) 1 2 1 + 2 = 3

2 pairs  S-J-S-J-J-S-J-S (see figure below) 4 4 4 + 4 = 8

3 pairs S-J-S-J-J-S-J-J-J-S-J-J-S-J-S (see figure below) 9 6 9 + 6 = 
15

4 pairs S-J-S-J-J-S-J-J-J-S-J-J-J-J-S-J-J-J-S-J-J-S-J-S 16 8 16+ 8 = 
24

n = 1 n = 2

        1            2           3            4           5

        1            2            3

b

Fig. 6.8 a The frog problem (Lewis, 2009, p. 420). b A combined visual-and-table solution to the
Fig. 6.8a task (Humphries, 2010; Lewis, 2009, p. 422)
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0.24
+ 0.18
_____

0.42

Fig. 6.9 Fifth-grade student’s work (Suh et al., 2008, p. 48)

of numbers and their place value by stating that the value of the digits was deter-
mined by the place”; and (3) “helped [them] calculate the decimal sums, state the
decimals in words, and relate them to fractions” (p. 49).

2 Three Basic Issues with Diagrams

In this section, we deal with three fundamental dilemmas with diagram use, mean-
ing, and construction in mathematics. The first two issues are concerned with
matters involving existence and universality. The third issue deals with effectiveness
of presented and self-constructed diagrams.

Issues with existence deal with how we know a priori that our target object, the
subject of diagramming, actually exists. For Kulpa (2009), the easy answer is that if
it could be drawn, then it exists. Also, if it cannot be drawn, then it does not exist.
Apparently, in the case of, say, logic tables, Venn diagrams, and graphs used in
statistics and discrete mathematics, the problem of existence is a nonissue. In cases
involving other objects that have a continuous domain, however, something more
needs to be assumed. For example, a diagram of a segment that contains all the real
numbers in [0, 1] would be difficult to distinguish from a segment consisting of all
the rational numbers in the same interval. In relatively similar situations, it makes
sense to perceive a constructed diagram only as a physical representation of the ideal
diagram that exists in the mind. Because our minds are usually able to distinguish
between the two diagrams, we tend to actually reason with the ideal diagram itself.
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Kulpa (2009) also notes that with existence comes the issue of precision.
Imprecision errors occur when there is no harmony between the ideal and the phys-
ical diagram, which is, in fact, a consequence of the “physical limitations of the
diagrammatic medium” (p. 80). For example, in my Algebra 1 class, we confronted
this matter when we had to model irrational numbers in which case the physical met-
ric devices we used could only support rational approximations that made the task
more difficult and less convincing for beginning students. One interesting visual
activity we did in class is shown in Fig. 6.10. In the activity, the students had to
determine why it seems to be the case that rearranging the first diagram to form
the second diagram actually produced two different areas. The activity reinforced
the importance of the constant nature of slope for any pair of points on a straight
line, which should explain the imprecise manner in which the second diagram in
Fig. 6.10 has been drawn.

Issues with existence are not limited to constructing iconic diagrams that preserve
properties of their target objects. In many situations, students also construct dia-
grams that retain some of their iconic properties but are used primarily to facilitate
concept or process attainment and development in either formational or trans-
formational context. Such diagrams exist that fulfill, in Dörfler’s (2001a) words,
those “cases where in principle the mathematical notion is not amenable to dia-
grammatic methods and one has to stick to a kind of conceptual reasoning based
on linguistically or metaphorically prescribed properties” (p. 1; see also Dörfler,
2001b). With such diagrams, the relevant issue is not one on precision but in
seeing to it that the diagram does not mislead students to produce unnecessary
misconceptions.

For example, when my Algebra 1 students learned to simplify rational algebraic
expressions later in the school year, I used their experiences with fraction strips
(Fig. 3.4) in helping them understand the significance of what I refer to as a “unit
diagram” in simplifying variable expressions. When they manipulated the strips,
they developed the view that fractions could be constructed by taking multiples of

Fig. 6.10 Area problem (Teaching Committee of the Mathematical Association, 2001, p. 7)
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some unit fraction of the form (1/n), where n is a counting number. So (1/4) is a half
copy of (1/2), (3/5) means three copies of (1/5), 2(1/3) has seven copies of (1/3), etc.

When the students added and subtracted fractions and rational expressions that
had the same denominator such as the ones shown in Fig. 6.11a, I had them ini-
tially stating an appropriate common unit. Doing this emphasized the central role
of unitizing in performing the two operations. When we repeated the same process
several more times, the students began to draw an empty box consistent with their
experiences with fraction strips. Then they filled in the box with the correct common
unit. Figure 6.11b illustrates how they used the unit diagramming in dealing with
fractions that had different denominators.

Figure 6.12 illustrates how they used the unit diagram approach in making sense
of multiplying fractions and rational expressions. The diagram, in fact, played a
significant role that allowed them to see why the rule for multiplication worked that
way and not some other way.

Finally, we made sense of division not by working through examples but by
thinking about it in the general context of rule construction. As shown in Fig. 6.13,
we first established the appropriate unit diagram, transformed each fraction appro-
priately, and then focused on the numerators leading to the construction of a rule for
division.

Thus, in the case of learning to simplify fractions and rational algebraic expres-
sions, the students manipulated a unit diagram that assisted them in making sense
of the four operations in a more coherent manner. Two related points are worth
noting. First, the students’ initial experience with unit diagramming took place
when they learned to add and subtract polynomial expressions with algeblocks.
For example, Fig. 6.14 shows an algeblocks activity that involves adding poly-
nomials. In performing the operation, they initially determined the terms that
were similar before adding the relevant coefficients. Their understanding of sim-
ilar terms relied on the general concept of a unit. Second, consistent with their
experiences with polynomials and rational expressions, the students also used unit
diagramming in making sense of adding (and also subtracting) radical expressions
(Fig. 2.9b).

Issues involving universality deal with the general and representative nature
of constructed diagrams. One concern is universality drawn from specializing –
that is, when we use a diagram to explain a proposition, how do we justify the
generalizability of the diagram “to a wide (usually infinite) class of configurations”
(Kulpa, 2009, p. 81)? Our first response below is taken from Kulpa (2009), who
suggests employing a reasoning strategy he refers to as domain splitting. A second
response is given in Section 4 in relation to Sherry’s notion of diagrammatic
reasoning as an instance of applied mathematical reasoning.

Kulpa (2009) suggests placing constraints on the relevant domain, splitting the
domain over two or more subsets, or restricting the property that we want to prove.
For example, in school geometry, when we investigate the claim that “the altitudes
of all triangles intersect at a single point inside a triangle,” we may require con-
straining the set of triangles to, say, acute triangles so that the following statement
is true: Altitudes of all acute triangles intersect at a single point inside a triangle.
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a

b

Fig. 6.11 a Adding and subtracting fractions with the same denominator by unitizing. b Adding
and subtracting fractions with different denominators by unitizing
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Multiply: 

2 copies  2 copies

2 copies of    2 copies of 

Multiply: 

        2x copies                 x copies

             2x copies of     x 

Multiply: ,                      unit

1

15

1

15

Fig. 6.12 Multiplying fractions by unitizing

Or we may choose to further restrict its property as follows: Altitudes of all trian-
gles intersect at a single point. A second illustration is taken from school algebra
and number sense. Diagram construction is difficult to accomplish when the nature
and the context of variables transition from the particular to the general case. For
example, the multiplicative expression a · b, which conveys a (equal) copies of b
or a (equal) groups of b, is limited to counting numbers relative to the variable a.
However, there is no diagrammatic interpretation for a · b when both variables are,
say, irrational numbers. Hence, constraints have to be imposed on the domains in
most cases that involve variables.
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      =  =

=

=

=

unit

Fig. 6.13 Explaining division of fractions by unitizing

A third issue with diagrams and diagrammatic activity in school mathematics
deals with the situation that Pantziara, Gagatsis, and Elia (2009) refer to as pre-
sented diagrams versus self-constructed diagrams. The authors note that learners in
problem-solving situations perceive tasks with and without diagrams to be different
despite having the same basic structural characteristics. Cox and Brna (1995) made
a similar claim in the more general case of external representations in problem-
solving contexts. A recent study by Barmby, Harries, Higgins, and Suggate (2009)
conducted with two cohorts of elementary school students of upper ability in math-
ematics [20 students in Year 4 (ages 8–9) and 14 students in Year 6 (ages 10–11)]
shows that their students successfully generated a variety of counting strategies that
enabled them to determine the total number of circles in a presented array represen-
tation involving the multiplication of two whole numbers of up to two digits long.
However, they also saw that the array format “encourage(d) the over-use of ineffi-
cient counting strategies, in particular for the younger pupils, although this was less
prevalent for the older pupils” (p. 235).

The results of Pantziara et al. (2009), Cox and Brna (1995), and Barmby et al.
(2009), in fact, empirically illustrate a phenomenon that Zhang and Norman (1994)
refer to as representational effect in which “different isomorphic representations of
a common formal structure can cause dramatically different cognitive behaviors”
(Zhang & Norman, 1994, p. 88). Drawing on their study with 194 Grade 6 par-
ticipants on six problem-solving tasks, Pantziara et al. (2009) saw that “(i)n the
problem solving condition with diagrams, students needed to interpret and interact
with the presented diagrams, whereas in the condition without diagrams students
had to search for a solution strategy, such as constructing their own diagram” (p. 16).

In my own studies, however, it seems that a more fundamental issue with dia-
grams is not about assessing which representational format actually produces the
most significant learning or the most meaningful cognitive behavior but how stu-
dents use them, presented and constructed, in a lifeworld-dependent context with
a distributed nature. The 20 students that participated in a study by Ainsworth and
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Fig. 6.14 Adding polynomials with the algeblocks (© ETA/Cuisenaire R©, 2003, p. 53)

Loizou (2003), for example, produced more self-explanations in presented picto-
rial diagrams than in presented text-alone diagrams, which significantly improved
their learning and, thus, aided learning more effectively. With my participants, many
individual- or group-generated diagrams became presented diagrams for others and
many presented diagrams became the basis in developing self-generated ones.

As a further illustration of function over choice, Ponce (2008) has suggested
using the concept maps shown in Figs. 6.15 and 6.16a in helping middle school
students to recall and visually understand the algebraic process relevant to solving
absolute value equations and inequalities. The presented map in Fig. 6.15 is similar
to the one I used in my Algebra 1 class. In Ponce’s (2008) case, as well as mine, the
presented diagrams provide a powerful visual context that students can actually use
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Fig. 6.15 Concept map for
solving absolute value
equations and inequalities
(Ponce, 2008, p. 237)

whenever they find it necessary to construct their own diagrams either physically or
mentally in order to solve a particular absolute value equation. Figure 6.16b shows
the written work of Jing (Cohort 2, Grade 7) on a problem involving an absolute
value inequality. Jing’s work reflect an appropriation of a number line diagram in
making sense of the inequality that allowed her to successfully obtain the correct
solution set.

It, thus, goes without saying that the usefulness, meaningfulness, and represen-
tational power of either presented or self-constructed diagrams actually depend on
how students acquire them in classroom activity. In the school geometry curriculum,
students are always given presented diagrams as visual scaffolds that help them
produce a conjecture whose necessity they will eventually prove or disprove. In
the statistics and data analysis curriculum, students frequently generate diagrams
such as scatter plots, histograms, and bar graphs in order to have a visual sense
of, say, the behavior of a data set leading to statistical claims, generalizations, and
meaningful inferences. The point is that in either presented or generated context,
what matters significantly more than the diagrams themselves has to do with what
students do with them. Zahner and Corter (2010) expressly articulate the need for
diagrams to have a “facilitative effect” on individual learners especially in situa-
tions when they are confronted with complex or nonroutine problems. Certainly,
the facilitative effect could be taught. Pantziara et al. (2009), for example, empha-
size the crucial role of effective teaching strategies in helping students effectively
use diagrams. Novick (2006) argues along similar lines, that is, students’ ability to
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Fig. 6.16 a Examples of absolute value equations and inequalities using the concept map in
Fig. 6.15 (Ponce, 2008, pp. 238–239). b Written work of seventh grader Jing on an absolute value
inequality

“be effective diagrammatic reasoners” critically depends on instruction that helps
them see “applicability conditions that are most important for selecting an appro-
priate diagrammatic representation” (p. 1850). For example, Fig. 6.17b, c shows
the generated diagrams of two pairs of middle school students in Tarlow’s (2008)
study in relation to the pizza problem shown in Fig. 6.17a. The work of each pair of
students models diagrammatic transitions or progressive “instrumental reifications”
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a

b

Fig. 6.17 (continued)
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c I

Fig. 6.17 a Pizza problem (Tarlow, 2008, p. 485). b Progression of diagrams in the written work of
Shelly and Stephanie in relation to the Fig. 6.17a task (Tarlow, 2008, pp. 486–487). c Progression
of diagram in the written work of Angela and Magda in relation to the Fig. 6.17a task (Tarlow,
2008, p. 488)

(Dea, 2006, p. 509) from the informal (i.e., personal) to the formal (i.e., increasingly
symbolic and abstract) that Tarlow made possible when she provided her students
with an opportunity to “develop their own meaningful representations so as to have
the foundation necessary to make sense of mathematical abstractions” (p. 488). In
Tarlow’s teaching account, she effectively used her role in supporting her students’
“progression of [diagrammatic] representations,” from “find(ing) a solution to the
Pizza problem, to provid(ing) a justification for their solution, and to develop(ing)
combinatorial reasoning” (p. 488).

I also underscore the significance of effective curriculum sequencing and instruc-
tional orchestration of diagrams (Ng & Lee, 2009). For example, the recommended
diagrammatic sequence in Fig. 6.18a to teaching multiplication of whole numbers
at the elementary level if implemented on a large scale would predictably fos-
ter inefficient counting strategies since the presented diagrams mainly encourage
more exploratory and less structured visual thinking. Further, the suggested teach-
ing sequence would actually take more time than, say, the diagrammatic sequence
offered in the California-adopted Singapore elementary mathematics textbooks that
consistently employ place-value diagramming. In Fig. 6.18b, the place-value dia-
gram already conveys the use of the grid method, which is then linked to the standard
numerical algorithm for multiplying two whole numbers of up to three digits.

Referring to the study of Booth and Thomas (2000) concerning the issue of
pictorial versus diagrammatic representations, their recommendation of cognitive
integration should help overcome the cognitive phenomenon of differing represen-
tational effects of presented and self-generated diagrams and, more generally, any
two opposing forms of representations. Cognitive integration involves having “two
different modes of thinking” or “two qualitatively different hemispheric processors”
to interact that results in “an integrated whole with two connected, distinct, simul-
taneous modes of operation” (p. 172). For example, in my 3-year study on pattern
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generalization at the middle school level, I discussed in several places in this book
differences between alphanumeric versus visuoalphanumeric generalizations in the
case of linear patterns in terms of numerical versus visual modes of representa-
tions,2 respectively. The numerical approach involves constructing a differencing

a

Fig. 6.18 (continued)

2Swafford and Langrall (2000) found differing representational effects between presented and
self-generated tables of values in patterning activity among 10 sixth-grade students prior to formal
instruction. They note:

Tables seemed to be more useful when students constructed them to make sense of the
problem. However, when the interviewer provided a table for the student to complete or to
examine, the table seemed to be more of a distraction than an aid, diverting students’ focus
from the context of the problem to a string of numbers” (pp. 106–107).

In my 3-year study with my middle school students, however, those student-constructed tables
that merely show common difference (e.g., Fig. 5.3b) were problematic because they funneled
my students to a particular, narrow form of numerical strategy that encouraged mostly con-
structive standard generalizations with no room for more creative and other complex forms of
generalization (e.g., constructive nonstandard; deconstructive). The proposed inductive-structuring
tables (e.g., Fig. 5.3a) as an alternative diagrammatic representation help overcome issues that
Swafford and Langrall (2000) identified as unproductive and ineffective actions relevant to table
use [“hinder(ing) their abilities to recognize and describe the relationship between dependent and
independent variables implicit in the situation;” “cloud(ing) rather than clarify(ing) the students’
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b

Grade 3 Grade 4

Grade 5 Grade 5

Grades 1 to 2 Grades 3

Fig. 6.18 a Barmby et al.’ s (2009) teaching sequence involving multiplication (p. 237).
b Singapore approach to multiplication of whole numbers in the California-adopted version
(Curriculum Planning and Development Division, 2008, pp. 51 & 99; Copyright belongs to the
government of the Republic of Singapore, c/o Ministry of Education, Singapore, and has been
reproduced with their permission)



228 6 Visual Thinking and Diagrammatic Reasoning

table (e.g., Fig. 5.3b), while the visual approach involves implementing the 3D tem-
plate model shown in Fig. 5.15. A cognitive integration approach involves using an
inductive-structuring table (e.g., Fig. 5.3a), which involves a simultaneous process
of visually establishing and justifying a structural unit and setting up a structuring
numerical table of values that takes into account all the information acquired from
the structural unit.

3 Diagram Types and Progressive Diagrammatization

Following Peirce, diagrams for Dörfler (2001a) are inscriptions that have the quality
of permanence in some medium (paper, virtual, etc.). They are either geometric or
“less geometric [such as] arithmetic or algebraic terms, function terms, fractions,
decimal fractions, algebraic formulas, polynomials, matrices, systems of linear
equations, continued fractions and many more” (p. 2). Good diagrams, according
to Cheng (2002), exemplify “systems with limited abstraction, being neither too
abstract nor too specific” (p. 686).

Dörfler (2001a) provides additional characteristics of diagrams along several
dimensions as follows:

• They are structural and relational. Objects in diagrams are arranged and parts or
components are related in some way. They express relationships and, thus, are
relational than figurative.

• They possess internal meaning. There are rules on how to operate on and
transform them.

• They possess external or referential meaning. There are rules that allow them to
be used and interpreted within and outside mathematics.

• They are generic. They convey a kind of visual generality that encompasses
individual instances of the same type.

• They are perceptual and material. The relevant operations are performed in a
perceptual and material context.

Dörfler (2001a) also points out that considering the many different ways in which
we use diagrams, it is how they are used to solve a problem that captures the
meaning of diagrammatic reasoning (DR). Examples of DR in this book are as fol-
lows: the presented diagram in Fig. 2.1 that helps algebra students understand why
a2 − b2 = (a − b)(a + b); the presented diagrams in Fig. 2.11a–c that illustrate the
use of a bar representation in solving arithmetical problems; the student-constructed

recognition of a relationship between the independent and dependent variables;” “draw(ing) stu-
dents’ attention to the recursive relation between consecutive values of the dependent variable
instead of the relation between the independent and dependent variables”; “forc(ing) an artificial
relation between the numbers in the table with no regard for the context of the situation” (pp.
105–106)].
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graphs in Fig. 1.5c that help precalculus students obtain the correct intervals corre-
sponding to the solution of the stated polynomial inequalities; the presented pebble
arithmetic diagram in Fig. 3.16 that shows why the sum of even numbers should be
even; the student-generated diagrams in Fig. 4.14 that visually explain integer sums
and differences; the unit diagrams from Fig. 6.11a through 6.13 that help students
understand the rules involving rational algebraic expressions; and the presented dia-
gram in Fig. 6.14 that explains how algeblocks could be used to perform addition
of relatively simple polynomials. Bakker (2007) notes the following three important
steps in employing DR: (1) construct a diagram that represents the necessary and
significant relationships; (2) experiment with the diagram based on actions that are
permitted by the representational system that enabled its construction in the first
place; and (3) observe and reflect upon the results in order to articulate important
relationships (pp. 17–18).

Using DR to solve a mathematical problem involves getting rid of nonessential
information and transforming the problem in some abstract analogue, that is, skele-
tonizing it so that it surfaces only the essential elements needed in the (necessary)
solution. With the aid of DR, the focus switches to detecting, constructing, and
establishing regularities and invariant relationships that eventually take the shape of
concepts and theorems that are themselves diagrams in some other format. There
is, thus, a sense of progressive diagrammatization that is involved and necessary
in using diagrams for DR. For example, Tarlow’s (2008) experiences with her stu-
dents in relation to the Fig. 6.17a combinatorial task exemplify a DR situation in
which her students’ diagrams (Fig. 6.17b, c) underwent instrumental reification and
evolution from situated to mathematical.

One use of diagrams that for Dörfler (2001a) does not convey DR is when they
are used primarily to represent abstract objects and models and their structures
and nothing else; “they are then more kind of a methodological scaffold possibly
unavoidable but to be dismissed when successful” (p. 2). In light of this distinc-
tion, Dörfler (2001a) articulates what he considers to be the essence of DR as
follows:

This [i.e, the representational view of diagrams] is diametrically opposed to DR where the
focus is on the diagrams themselves as the objects of study and of operations and not on
their doubtful mediation with virtual objects. In this representational view mathematics is
a predominantly mental activity supported by diagrams whereas mathematics as DR essen-
tially is a material and perceptual one. And this does not reduce mathematics to meaningless
symbol manipulations since the diagrams have meaning through their structure, their opera-
tions and transformations and of course via their applications. This holds for all diagrams as
considered here in a way completely analogous to how geometric figures can have meaning.

(Dörfler, 2001a, p. 2)

Thus, Dörfler’s (2001a, 2001b) account of DR focuses on the integral and central
role of diagrams play in assisting students to perceptually and materially establish
abstract relationships primarily by manipulating what they are able to visualize or
see in empirical form. Those diagrams that basically do nothing else but represent
do not convey DR. For Dörfler (2007), and Peirce (1976) before him, diagrams are
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not just a means for investigating an object different from them. The diagrams turn into the
very objects of investigation and this latter one is carried out by manipulating and (invent-
ing) diagrams and detecting recurring patterns within these actions with diagrams. Those
patterns can then be formulated as theorems or by formulas which again are diagrams.

(Dörfler, 2007, p. 853)

For example, inductive-structuring tables (Fig. 5.3a) demonstrate how tables in pat-
tern generalization activity could be effectively utilized as a tool for DR (Rivera,
2009). Dörfler’s (2007) interpretation of DR above should help us understand the
following description of DR offered by Peirce himself:

The first things I found out were that all mathematical reasoning is diagrammatic and that
all necessary reasoning is mathematical reasoning, no matter how simple it may be.
By diagrammatic reasoning, I mean reasoning which constructs a diagram according to a
precept expressed in general terms, performs experiments upon this diagram, notes their
results, assures itself that similar experiments performed upon any diagram constructed
according to the same precept would have the same results, and expresses this in general
terms. This was a discovery of no little importance, showing, as it does, that all knowledge
without exception comes from observation.

(Peirce, 1976, pp. 47–48)

In the school mathematics curriculum, students deal with either pure or hybrid dia-
grams. Pure diagrams utilize only one representational medium. For example, in
school geometry, paper-folding activity involving diagrams alone can be used to
explore construction of geometric figures or to establish area formulas for circles
and certain quadrilaterals. In a second course in algebra, graphs of conic sections
can be introduced using a focus–directrix graphing diagram (Fig. 6.19) that con-
sists of parallel lines that are spaced one unit apart and concentric circles spaced
in a similar manner. A line takes the role of a directrix, while the common center
of the circles is the focus. A focus–directrix diagram allows students to investi-
gate and construct conic forms that are generated when they manipulate a particular
eccentricity (value), a concept that is central to the definition of a conic section.

Hybrid diagrams, presented and self-generated, can be either static or dynamic
depending on the context in which they arise. Algebraic expressions are combina-
tions of alphabet (or variable) and ideogram that together exemplify alphanumeric
representations. Other hybrid diagrams combine some other types of diagrams, say,
pictorial and textual labels, with the texts used to demonstrate further the reasoning
that is being targeted (Kulpa, 2009, p. 91). The goal of DR in a hybrid diagram is
to establish a correspondence between the two diagrams and the relevant propo-
sition that is being modeled. Figure 6.20 is the Nicomachus version of the left
diagram shown in Fig. 4.17. In such diagrammatic situations, Kulpa (2009) notes
“the variable is actually the whole diagram, parametrized by its size . . . varying
over the set of naturals” (p. 91).

Networks, matrices, and hierarchies exemplify what are oftentimes labeled
as spatial or schematic diagrams. They also have a hybrid character (Hegarty,
Carpenter, & Just, 1991; Novick, 2006). Novick (2006) points out how “each dia-
gram is optimized to serve a different representational function” (p. 1851). At the
very least, matrices store relational information between item pairs in two sets,
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Parabola on a Focus-Directrix Diagram Ellipse of eccentricity on a Focus-
Directrix Diagram 

Hyperbola of eccentricity 2 on a Focus-
Directrix Graph Paper 

Hyperbolas of varying eccentricities on a 
Focus-Directrix Graph Paper 

Fig. 6.19 Exploring conic sections on a focus–directrix graphing paper (Brown & Jones, 2006,
pp. 322–327)

networks show local and global connections and routes between nodes, and hier-
archies model power structures and precedence relations among items in a set.
Figure 6.21a–c shows examples of a network, a matrix, and a hierarchy, respectively,
drawn from particular areas in school mathematics.

Recent advances in graphing technologies enable students to construct
hybrid dynamic diagrams. Figure 6.22 shows dynamic transformations of

Fig. 6.20 Nicomachus version of the Fig. 4.17 diagram on the left (Kulpa, 2009, pp. 90–91)
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f2(x) = af1(b(x−c))+d, where f1(x) = x2, with the aid of a graphing calculator that
has a built-in computer algebra system with a slider (Zbiek & Heid, 2009, p. 543).
The same task can, in fact, be accomplished on a regular graphing calculator using
a transformation application.

In either pure or hybrid context, the dynamic component of the diagrams enables
students to experience and establish the abstract relationships involved by providing
them access to the changes that are taking place in the graphical representations
on the same screen of their calculators. Also, while the foregoing discussions echo
the central role of diagrams in mathematical reasoning, Lomas (2002) points out
how the perceptions we draw from “the shape properties of concrete diagrams” act
like “a surrogate for conscious awareness of shape properties of abstract geometric
objects depicted in the diagrams” (p. 210).

Dörfler’s point above about the mere representational versus diagrammatic
quality of diagrams (following Peirce) underscores the need for progressive dia-
grammatization. The distinction suggested by Dörfler about diagrams is the same
issue we tackled in Chapter 4 about transitions from iconic and/to indexical to sym-
bolic representations. I have pointed out in the earlier sections in this chapter and in
preceding chapters as well instances in my own classes where students appropriated,
constructed, and internalized visual representations progressively from the represen-
tational to the diagrammatic, from the metrical and quantitative to the schematic

a

A

B

C

A
 A     B    C

b

B

C

Fig. 6.21 (continued)
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c

Fig. 6.21 a Example of an energy network of cameras (Reprinted with permission from http://
faculty.kfupm.edu.sa/SE/salamah/operations_research_I/Khobar_intersections%20network.jpeg
by Muhamaad Al- Salamah). b Example of an adjacency matrix of a graph. c Hierarchy of
quadrilaterals (http://commons.wikimedia.org/wiki/file:Quadrilateral_hierarchy.png)

and qualitative, and from the material to the imagined symbolic or abstract. In
other words, the diagrams in this book, especially those that are used in teachers’
classes and in school mathematics textbooks, encompass all types that actually fall
along a continuum of progressive diagrammatization. Here I am reminded of Netz’s
(1999) interesting cognitive historical analysis of the nature and context of deduc-
tion in Greek mathematics, which had him considering diagrams (and language)
as central to the emergence, development, and success of the deductive method
in ancient Greece. For example, in shaping the condition of generality in both
form and practices, diagrams were constructed initially to develop a mathemati-
cal argument and convey specific relationships in some material form as lettered
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Fig. 6.22 Transformation of
graphs on a CAS with a slider
(Zbiek & Heid, 2009, p. 543)

or labeled diagrams, which were then repeated, permuted, and later assessed for
structure and invariance. Among the Greek mathematicians, in fact, the use of a
diagram came with it a “whole set of procedures for argumentation based on the
diagram” (p. 57).

4 Extending DR Beyond Establishing Regularities
and Constructing Mathematical Knowledge: Supporting
Growth in Mathematical Reasoning Through DR

Since the hypothetical state of things in the mathematical world consists of relations
and structures with invariant ones considered to be the most valued, constructing
diagrams is one powerful way of reifying them. Diagrams metonymically capture
their essence in some visible form that could then be manipulated in order to yield,
in some cases, hypostatic abstractions and, in other cases, more powerful (abstract)
diagrams in the form of, say, theorems and meaningful propositions. They “suggest
definitions and proof strategies [and] function as ‘frameworks’ in parts of proofs”
(Carter, 2010, p. 8). In many cases, they do not even have to be drawn precisely.
Contra Kulpa’s (2009) concern for precision in diagrams, Sherry (2009) thinks that
poorly drawn or inexact diagrams do not “generally affect proofs” despite the possi-
bility that they “may affect our success at guessing theorems” (p. 63). A haphazard
construction of partitioned squares in the case of Fig. 3.5a, which visually demon-
strates the series

∑∞
n=1 (1/4)n, is likely to prevent students from developing the

conjecture that its sum is (1/3). In school geometry that assumes Euclidean princi-
ples, a poorly constructed diagram of a convex polygon with n sides might deter
students from seeing and inferring that the sum of its n external angles equals 360◦.
However, their symbolic proofs are not at all influenced by the perceptions drawn
from their respective diagrams.

For Sherry, what matters significantly more than constructing a precise diagram
is the target mathematical knowledge that is, in fact, “nowhere to be seen” (Sherry,
2009, p. 64); it does not reside in the diagrams themselves. This means to say that
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when students are unable to establish the knowledge, it is not so much because of a
deficiency in the diagrams but in their “inability to grasp” the relevant “conceptual
relations” (Sherry, 2009, p. 68).

Sherry (2009) offers a description of DR that further enriches our understanding
of the role of diagrams in mathematical reasoning beyond, but still compatible with,
prevailing views of diagrams in the Peircean context. From an instrumental point of
view (in the sense of Verillon and Rabardel), when we let students “treat a diagram
as an instance of” a mathematical concept and encourage them to “deduce vari-
ous conclusions about the elements of the diagram” (p. 65), they acquire inferential
habits that enable them to gain access to many of the characteristics associated with
mathematical reasoning. Here, inference is distinguished from implication. While
an implication refers to a logical relationship between propositions, an inference is
“a type of mental act, whose outcome is a possible change in belief . . . [that is,] a
transition between two (personal-level) mental states” (Norman, 2006, p. 18). With
changes in our beliefs, there are bound to be changes in our conceptions. Thus,
greater competence in manipulating diagrams and their parts means developing bet-
ter mathematical knowledge as a result of the inferences that are constructed. Sherry
(2009) writes:

We learn more about a diagram just as we learn more about physical object, viz., by apply-
ing mathematical concepts and drawing inferences in accordance with mathematical rules.
Recognizing that a diagram is just one among other physical objects is the crucial step in
understanding the role of diagrams in mathematical argument.

(Sherry, 2009, pp. 65–66)

To illustrate, in my Algebra 1 class, we used the transformation activity shown in
Fig. 6.23a with a TI 84, a graphing calculator. The activity took place near the
end of the school year when the students have already acquired some knowledge
of the basic graphs (i.e., linear, quadratic, absolute value, and power functions).
Initially, they used their calculator and graphed the function (y1 = x2). Then they
graphed Maria’s function, y2 = x2 + 1, on the same viewscreen in which case they
knew that all the points on the original graph would vertically shift one unit up
along the dimension of the y-axis (Fig. 6.23b). In obtaining the reflection graph of
y2 about the x-axis, I anticipated that they would enter the function y3 = –x2 + 1
instead of y3 = –(x2 + 1). When most of them did, I used the overhead viewscreen,
graphed the two functions (Fig. 6.23c), and asked them to compare the two graphs.
When they saw that the two graphs were different, they decided to repeat the task all
over again in which case they concluded that Maria’s graph was represented by the
function y3 = –(x2 + 1) or y3 = –x2–1, while Lina’s graph took the form y4 = –x2+1.
They then used their experience to explore situations involving different y-intercepts
and different graphs that enabled them to eventually infer the generalization that
the commutative property does not hold in the case of a vertical translation and
reflection about the x-axis. That is, in visuoalphanumeric form, the action sequence

y = (f (x) → y = −f (x) → y = −f (x) ± c.
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Use your TI-84 to graph y = x2.

Maria initially performed a vertical shift of 1 unit followed by a reflection about the
x axis. Lina initially performed a reflection about the x axis followed by a vertical  
shift of 1 unit. 

1.   Would they yield the same graph? Why or why not? 

2.   Does commutativity hold in the general case of a vertical shift of c units 
      and a reflection about the x axis? 

3.   Explore other graphs you know and investigate commutativity involving 
      vertical shift and reflection about the x axis.  

a

b

c

Fig. 6.23 a A transformation task involving simple graphs. b Graphs of y = x2 and y = x2 + 1 on
a TI 84. c Graphs of y = x2, y = x2 + 1, y = –x2 + 1, and y = –x2 – 1 on a TI 84

was, in fact, different from the action sequence

y = f (x) → y = f (x) ± c → y = −(f (x) ± c) = −f (x) ∓ c

In the above diagrammatic activity involving transformations of graphs, the stu-
dents established generalizations and acquired knowledge relevant to inference
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making (e.g., repeated abduction and induction of an empirical regularity) on
the basis of manipulating graphs that they treated like everyday objects. Their
beliefs and conceptions about the two graphing actions transitioned from one
mental state (i.e., not paying attention to graphing action) to another (i.e.,
being aware of noncommutative graphing action). Later, with more examples,
their inferences transitioned from being reasonable (explaining with a few spe-
cific examples) to necessary (explaining at the visuoalphanumeric symbolic
level).

Thus, the act of constructing a diagram, presented and self-generated, is not so
much about establishing an exact figure (in a metric sense) as it is more about devel-
oping inferences from the “topological properties like incidence relations” (Sherry,
2009, p. 65) rather than the physical or material nature of such diagrams. They pro-
vide a basis for constructing explanations on the route to the operative and abstract
and, when applicable, deductive knowledge. For example, when my Algebra 1 stu-
dents used a number line to demonstrate their understanding of the absolute value of
a real number x, it mattered less to them whether they were a tad sloppy in locating
x and –x relative to the origin as they were more focused on visually demonstrating
a conceptual fact relevant to the absolute value symbol.

Sherry’s version of DR is as follows:

[D]iagrammatic reasoning recapitulates habits of applied mathematical reasoning. On this
view, diagrams are not representations of abstract objects, but simply physical objects,
which are sometimes used to represent other physical objects. . . .. For obtaining mathe-
matical knowledge . . . consists not in gaining information about abstract objects, but in
constructing inference rules. Mathematical proof is the construction of such rules, and
oftentimes the construction involves a diagram.

(Sherry, 2009, p. 67)

DR as conceptualized above takes us to the basic activity of mathematical reason-
ing, which involves learning inference rules that enable us to construct, establish,
and justify abstract propositions that are mediated by, and extracted from, diagrams.
In a Peircean context, when students effectively manipulate a diagram, their math-
ematical knowledge is (hopefully) an account of progress from the concrete to the
abstract. In a Sherrian context, however, their experience with the diagram should
provide them with an opportunity to see the mutually determining relationship
between inferential rule construction and the development of mathematical knowl-
edge, especially the role of mathematical explanation in establishing and justifying
propositional claims.

Consistent with his view that DR involves habits of applied mathematical rea-
soning, Sherry situates the origin of inference rule formation in pragmatism, that is,
in a lifeworld-dependent social context that allows the phenomenon of “hardening
into a rule” to occur:

[Wittgenstein] describes mathematical propositions as empirical propositions that have
hardened into rules . . .. An empirical proposition has hardened into a rule once it has come
to be used by a community for inferring one empirical proposition from another. . . . In order
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for an empirical proposition to harden into a rule, there must be overwhelming agreement
among people, not only in their observations, but also in their reactions to them.

(Sherry, 2009, p. 66)

For example, in my Algebra 1 class, the students’ diagrammatic experiences relative
to the Fig. 6.23a activity demonstrate how the inferential technique of establishing
an empirical regularity and generalization were both initially drawn from their visual
experiences with the graphs on their calculator. Then repeated similar and noncon-
tradictory experiences across different values of the y-intercept and different types
of graphs allowed them to infer something about the noncommutative nature of the
two transformation actions they were investigating. Following Wittgenstein, Sherry
(2006) notes that such empirical propositions harden into rules “when one no longer
has a clear concept of what experience would correspond to the opposite” (p. 496),
which then leads to a necessary inference.

One last point about DR deals with its productive role in what Cellucci (2008)
refers to as explanatory reasoning by the analytic method. The analytic method,
Cellucci points out,

is the method by which, to solve a mathematical problem, we formulate a hypothesis that
is a sufficient condition for its solution. The hypothesis is obtained from the problem, and
possibly other data, by some non-deductive inference: induction, analogical, and so on.
. . . The hypothesis must not only be a sufficient condition for the solution of the problem
but must also be plausible, that is, compatible with the existing data, in the sense that,
comparing the reasons for and the reasons against the hypothesis on the basis of the existing
data, the reasons for prevail over those against. Plausibility is distinct from probability, as it
appears from the fact that induction from a single instance often leads to hypotheses that are
plausible but whose probability is zero when the number of possible instances in infinite.

(Cellucci, 2008, p. 205)

When students construct diagrams and develop DR relevant to a task, they initially
produce plausible hypotheses (individual or shared) that are capable of under-
going modification when more information and data are known. The hypotheses
have explanatory power when they assume an essential role in solving the task
(Cellucci, 2008, p. 206). For example, the number line diagram contains useful
hypotheses about the absolute value notations that my Algebra 1 students used
to solve equations and inequalities successfully. Thus, mathematical explanations
behind diagram construction and interpretation involve establishing hypotheses
that have “heuristic value” and are effective “as a means of discovery” (Cellucci,
2008, p. 207), which then support mathematical proofs that necessitate the use
of a combination of analytic and synthetic (axiomatic) methods. Figure 6.24
provides another interesting and rigorous DR-based mathematical explanation
of the Pythagorean theorem that is based on Cellucci’s explanatory analytic
framework.
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Problem. Explain the Pythagorean Theorem.

Given a right triangle, construct the square on its shorter leg. Make a copy of the 
triangle and construct the square on its longer leg. Put the two resulting figures 
together as shown below.

Then slide up both the triangle on the left and the triangle on the right, forming a 
quadrilateral as shown below. Such quadrilateral equals the sum of the squares 
on the two legs of the triangle.

Therefore, to show that the square on the hypotenuse equals the sum of the 
squares on the two legs, we need only show that the quadrilateral is the square on 
the hypotenuse. To show that we state the following hypothesis:

(A) The three interior angles of a triangle are equal to two right angles.

Hypothesis (A) is capable of solving the problem since it implies that the two non-
right angles of the right triangles add up to a right angle. Thus, each angle of the 
quadrilateral is a right angle, so the quadrilateral is a square – the square on the 
hypotenuse of the right triangle. Since hypothesis (A) plays an essential role in 
solving the problem, it explains why the square on the hypotenuse equals the sum 
of the squares on the two legs.

Fig. 6.24 A DR-based mathematical explanation of the Pythagorean theorem (Cellucci, 2008,
pp. 207–208)

5 Overview of Chapter 7

In Chapter 7, we discuss cultural influences and blind-specific issues relevant to
visual attention, thinking, and performance in mathematics. Under cultural influ-
ences, we talk about differences in how mathematical objects and their images,
including mathematical proofs, are perceived, captured, and interpreted as effects of
sociocultural orientation and intentionality that yield a sense of shared experiences
with them in activity. A materialist account of mathematical objects is also pursued
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that links visual forms of mathematical knowledge to socially shared feelings and
practices. Under blind-specific matters, we discuss the nature of image construc-
tion and processing among blind learners in order to point out the need to broaden
our prevailing understanding of the sources and nature of visual representations to
include all aspects of our sensory modalities. We close the chapter with the notion
of multimodality learning in mathematics.



Chapter 7
Cultural and Blind-Specific Issues
and Implications to Visual Thinking
in Mathematics

Every culture, with its privileges or taboos of seeing, shapes a
certain way of thinking, as it is in turn shaped by norms or
vetoes of looking.

(Beltin, 2008, p. 189)
It is, of course, the norm rather than the exception that more
than one sense modality contributes to the perception of an
object. We hear, see, smell, and feel the same object. That is not
because all senses provide the same information, but because
the contributions from different modalities converge and overlap
sufficiently to be felt as “same” rather than as “different.”

(Millar, 1994, p. 47)
Overall, neuropsychological reports, neuroimaging and
behavioral findings support the view that visuo-spatial
processes and numerical representation are intimately related.
This relationship may constitute an early and fundamental link
which, although partially shaped by our cultural constraints,
remains an essential component of our cognitive architecture.

(de Hevia, Vallar, & Girelli, 2008, p. 1370).

In this chapter, we explore cultural and blind-specific issues and their implications
to visual thinking in mathematics. Cultural issues refer to those patterns of knowl-
edge and skills, tool use, thinking, acting, and interacting that are favored by, and
specific to, groups that support them. It is interesting to consider the possibility that
students’ developing explicit knowledge in a lifeworld-dependent context interacts
with macroconditions such as taken-as-shared cultural practices, which are likely
to influence the way they perform visualization without them being aware of them.
In a constrained Baudrillardian perspective, the social sign-mediated context that
Radford (2002) has usefully inserted in semiotic activity could also be interpreted
as conveying particular forms of sociocultural conditions and practices that effec-
tively “exclude and annihilate all symbolic ambivalence1” through their structures
that “designate, abstract, and rationalize” (Baudrillard, 1981/1972, p. 149). That is,

1For Baudrillard (1981/1972), the rationality of signs is seen in its ability to distinguish between
signifier and signified and
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such conditions and practices assist individuals by cueing them – their interpre-
tant (in a Peircean sense) and modes of signification (in a Wittgensteinian sense) –
to look at situations in a particular way.2 Ferreira (1997) expressly articulates the
(subtle) influence of the cultural standpoint in the following manner:

Different worldviews – the socially constituted world and its cosmological foundations –
and the everyday experience of active individuals account for the diversity of strategies of
mathematical reasoning. In other words, different cultures, and individuals within any given
culture, proceed differently in their logical schemes in the way they manage quantities and,
consequently, numbers, geometrical shapes and relations, measurements, classifications,
and so forth.

(Ferreira, 1997, p. 135)

Blind-specific issues are narrowly confined to neurophysiological and neuropsycho-
logical factors that influence the manner in which totally or partially blind learners
construct and process images, which may yield useful implications in our develop-
ing understanding of the role of visual thinking in mathematics. For example, based
on an extensive review of literature, Cattaneo et al. (2008) found that blind and visu-
ally impaired individuals tend to use different cognitive mechanisms to compensate
for their loss of sight (in varying degrees). While many of the documented mech-
anisms appear to be visual-like or similar to those used by nonblind subjects, the
authors underscore the necessity of multisensory capacity and performance among
blind subjects especially when they perform various cognitive tasks that test their
competence in processing visual and spatial information.

functions as the agent of abstraction and universal reduction of all potentialities and qualities
of meanings that do not depend on or derive from the respective framing, equivalence, and
specular relation of a signifier and signified. This is the directive and reductive rationaliza-
tion transacted by the sign – not in relation to an exterior, immanent “concrete reality” that
signs would supposedly recapture abstractly in order to express, but in relation to all that
which overflows the schema of equivalence and signification; and which the sign reduces,
represses, and annihilates in the very operation that constitutes it. . . . The rationality of the
sign is rooted in its exclusion and annihilation of all symbolic ambivalence on behalf of a
fixed and equational structure.

(Baudrillard, 1981/1972, p. 149).

I see social and cultural practices as providing conditions that engender the possibility of
reduction, repression, and annihilation of sign ambivalence. The well-defined character of signs
used in formal and institutional mathematical knowledge indicates this necessary elimination of
ambivalence.
2The term culture has many meanings and is certainly more complicated than the one that I
describe in this chapter [cf. De Abreu, 2000; Lerman, 2001; Nunes 1992; Rivera & Becker, 2007b;
special issue of the Journal of Intercultural Studies on culture in mathematics education edited
by FitzSimons (2002)]. Byrne et al. (2004), for example, identify six dimensions of culture that
merit individual analysis – that is, culture as pattern (social transmission processes); a sign of mind
(solidified cognitive habits drawn from social transmission); a bonus (knowledge and practices
resulting from social transmission); inefficiency (negative consequent actions resulting from social
transmission); physical products (cultural actions and tools); and meaning (rituals). My character-
ization of culture is pragmatic; it has useful elements that allow me to explain the ideas I pursue
later in relation to cultural forms of seeing in mathematics.
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The examples we discuss in some detail in this chapter in relation to the issue
of culture and visualizing have been drawn from both past and recent studies that
basically foreground the idea that visualizing mathematically is an interpretive
reproduction3 of particular cultural practices. In the case of totally and partially
blind students, having a sense of how they acquire knowledge allows us to further
enrich our understanding of what it means to visualize mathematical objects, con-
cepts, and processes other than what has already been discussed in the preceding
chapters with an eye on understanding the epistemic significance of a physiologi-
cally driven sensuous dimension in mathematical learning. Millar’s (1994) thoughts
in the opening epigraph provide an attractive source of insight and characterization
in this emerging idea of the sensuous mode in mathematical knowing. Drawing on
her longitudinal work with preschool and adolescent blind subjects, Millar shares
the view regarding the necessity of supplementation from a variety of modality
sources in the extreme case of loss of one modality (say, sight), however, with
the additional condition that convergence toward the same information should take
place since “redundancy facilitates processing” (p. 47).

Eight sections comprise this chapter with the first five sections addressing the
cultural issues. In Section 1, we begin with a very interesting interpretive historical
account that could explain subtle differences in visual attention and the construction
of concepts among students in diverse classrooms. We also discuss the theory-laden
and socialized nature of scientific knowledge construction. Both macro-contexts
provide sufficient reflection of the powerful influence of sociocultural practices
in lifeworld-dependent conditions that shape how students visualize objects, con-
cepts, and processes in school mathematics. In Section 2, we discuss interpretive
historical accounts of differences in the way objects and their images were per-
ceived, captured, and interpreted as a consequence of sociocultural modes of seeing
that influenced the nature and type of mathematical content that was valued and
produced. Section 3 discusses the implications of a materialist view of objects in
mathematics, which sees visual forms of mathematical knowledge as evocations
of shared social and cultural feelings and practices. Section 4 pursues a cultural
analysis of the nature of mathematical proofs in terms of particular ontological
perceptions of objects, which then influence the manner in which truths and the
empirical world are constructed. In Section 5, we deal with two interesting empiri-
cal studies that illustrate the effectiveness of culture-specific visual practices in early
childhood mathematics education, which could assist us in developing a model for
visual instruction in mathematics at the upper grade level.

The remaining three sections highlight findings from research conducted with
totally and partially blind subjects. In Section 6, we discuss perspectives drawn from
a few studies that describe the nature of image construction and processing among
them. The main point that is addressed deals with the need to broaden our prevail-
ing understanding of the sources and nature of visual representations to include all

3See footnote 4 in Chapter 2 (p. 55).
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aspects of our sensory modalities. Section 7 explores three implications for effec-
tive visual representation on the basis of studies that compared blind subjects with
their nonblind counterparts. Section 8 closes the chapter with a discussion on the
significant role of multimodality learning in mathematics with a particular focus on
learning tools that target several different modalities in simultaneity.

1 Cultural Preferences Relative to Visual Attention
and the Construction of Concepts

The work of Nisbett, Peng, Choi, and Norenzayan (2001) provides a useful start-
ing point in talking about cultural differences in perceptual processes. Based on a
synthesis of research, including their own, Nisbett et al. claim that the cultural dif-
ferences between ancient China and ancient Greece in relation to their views and
practices in science, mathematics, and philosophy could be traced to differences in
how they lived their social lives and employed cognitive procedures in acquiring
some knowledge of the world around them.

The ancient Greeks valued personal agency and freedom. Their sense of curios-
ity led them to discover rules and establish causal models, which Nisbett et al.
characterize as early manifestations of analytic thought that

involv(es) detachment of the object from its context, a tendency to focus on attributes
of the object to assign it to categories, and a preference for using rules about the cate-
gories to explain and predict the object’s behavior. Inferences rest in part on the practice
of decontextualizing structure from content, the use of formal logic, and avoidance of
contradiction.

(Nisbett et al., 2001, p. 293)

The ancient Chinese valued collective agency and community-driven practices.
Their advances in technology and science, far more superior than those of the
ancient Greeks, were actually drawn from a combination of practicality, intuition,
and empiricism, which Nisbett et al. characterize as early manifestations of holistic
thought that

involv(es) an orientation to context or field as a whole, including attention to relationships
between a focal object and the field, and a preference for explaining and predicting events
on the basis of such relationships. Holistic approaches rely on experience-based knowledge
rather than on abstract logic and are dialectical, meaning that there is an emphasis on change
a recognition of contradiction and of the need for multiple perspectives, and a search for the
“Middle Way” between opposing propositions.

(Nisbett et al., 2001, p. 293)

Current Western and Eastern findings seem to suggest the continued prevalence of
holistic and analytic thought with the former manifested in contexts such as asso-
ciative thinking and computing on the basis of similarity and contiguity and the
latter in terms of a predisposition towards constructing symbolic representational
systems and structured or rule-based computations (Nisbett et al., 2001, p. 293).
Table 7.1, which summarizes cultural differences between the ancient Chinese and
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Table 7.1 Cultural differences between the ancient Chinese and ancient Greeks in relation to
various aspects of science, mathematics, and philosophy (Nisbett et al., 2001)

Notions
Ancient Chinese/Eastern
standpoint

Ancient Greeks/Western
standpoint

Orientation of the
body

The self is oriented toward the
social environment
(collectivist), that is, attends
to the field or the situation
relative to the object

Capacity of the self to know an
object (individualist), that is,
attends to the object based
on his or her goal

Object
categorization

Predisposition toward
relational knowledge and
family resemblances:
preference for understanding
part–whole relationships in
order to know something
about an object

Rule-based: predisposition
toward isolating an object in
order to derive its attributes

Cognitive processing Preference for an explanation
of an event relative to an
object’s field; preference for
a dialectical approach that
involves “accepting,
transcending, and
reconciling apparent
contradictions”

Preference for
decontextualization and
separation of an object from
its field; use of formal
systems of logic

Continuity versus
discreteness

Valuing of the
interconnectedness of object
and matter (content)

Predisposition toward the
singularity of objects that
have universal qualities
which make categorization
possible

Sensitivity to the
field

Field dependent: wholes over
parts; one comes to know an
object through a “field of
forces”

Field independent: parts over
wholes; one comes to know
an object through its parts

Relationships and
similarities versus
categories and
rules

An object is known in the
context of some event; the
whole exists with parts
defined in a relational
context

An object is known
independent of context

Epistemological
processes

Experience-based knowledge
resulting from direct
perception

Logical and abstract knowledge
with a focus on reason over
senses

the ancient Greeks in most aspects of thinking, provides some context that might
explain differences in visual performance and attention in mathematics in diverse
classrooms. Certainly, the intent is not to put individual learners in narrow boxes but
to explain possible sources of differences in visual attention and visual processing
of mathematical objects, concepts, or processes.

In the context of professional and scientific disciplines, Kuhn (1970) also
contributed significantly to what is now accepted as the theory-laden and socialized
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nature of scientific observation and practices. Scientists oftentimes rely on the
taken-as-shared practices of their communities as an analytic way of coping with
complexity brought about by disordered data. Thus, observations and facts are
always interpreted in the context of the techniques, methods, and tools that are
shared in communities (cf. Löwy, 2008). Necessarily, individual visual experi-
ences are mediated and framed within one’s cultural frame of seeing and sensing
that then influences his or her perspective of what counts as objective, impartial,
and abstract/de-referential knowledge. This perspective is frequently more asserted
in various historical accounts of discovery and invention in the sciences than in
mathematics.

In school mathematics, students who use manipulatives in a lifeworld-dependent
situation are provided with an opportunity to become involved in particular acts of
selective attention and visualization. In fact, effective use of mathematical objects
necessitates the acquisition of appropriate conceptual relations and actions on them.
For example, recent graphing technologies relevant to graphic and virtual objects
provide powerful dynamic visual contexts in which both visualizing and thinking
are organized from the point of view of the mathematics community that values
particular ways of thinking about relationships, say transformations of graphs.

In an important sense, the subtle sociocultural influences, espoused in the works
of Nisbett et al. (2001) and Kuhn (1970) above, foreground the Wittgensteinian per-
spective about one possible source of mathematical practices – that is, in Watson’s
words:

Mathematics, says Wittgenstein, derives not from the material world, but from our particu-
lar ways of systematizing as we bring the physical world into the social world. Wittgenstein
gives us powerful tools for lifting the mantle of myth and mystery with which mathemat-
ics cloaks itself. He urges us to look for a non-discursive rationality, in introducing the
notions of “language-game” and “forms of life.” These two concepts are tied up with what
it is to grasp a rule without discursively interpreting it – that sometimes momentary, but
unshakeable conviction that “doing it like this is the right way to do it.”

(Watson, 1990, p. 285; italics added for emphasis)

Thus, a valued aspect of visualizing a mathematical object, concept, or process
involves making sense of the forms seen and/or produced and (re)organizing them
either by negotiating or conforming with institutional ways of seeing and interpret-
ing (i.e., that which comprises the language game). Certainly, this does not mean
stifling creative visualizing since visualizing is still an interpretive phenomenon.
For example, visual tools such as manipulatives by themselves are rendered useless
unless an interpretive structure is constructed, shared, and negotiated. But an inter-
pretive action on the tools is to some extent influenced by institutional practices
that provide intentional use and ascertain the validity of what is visually sensed.
Referring to the work of the Polish mathematician Leon Chwistek, who developed
the theory of multiple realities, Löwy (2008) writes:

Each theoretical/scientific truth, [Chwistek] added, is relative, that is, dependent on a given
system. We regard some truths – those that repeat themselves in all the known systems – as
absolute, but this is merely a result of the generalization of conventions. The truth of the lay
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experience is to some extent absolute because we do not doubt it, but it is in fact grounded
in widely shared beliefs, many of which will not withstand a truly critical examination.

(Löwy, 2008, p. 379)

2 Sociocultural Influences in Seeing and Imaging
from a Mathematical Perspective

In this section, we discuss sociocultural influences in the development of mathe-
matical ways of perceiving objects and their images in early history. We begin with
Belting (2008), whose work zeroes in on differences in the manner early Arabs and
Westerners thought about images. While the Arabs in early history were primarily
interested in visual theory and the science of optics, which explains their interest in
geometry, the Westerners were more into pictorial theory in relation to their inter-
est in art. Consequently, differences emerged in the manner each group perceived
the role of mathematics, including “modes of seeing and their aesthetics” (Belting,
2008, p. 184). Ibn An-Haitham (Alhazen), an Arab theorist in the eleventh century
who wrote the Book of Optics that was translated in the Latin under Perspectiva or
De Aspectibus, lived in an Islamic society whose ethos favored an “an-iconic cul-
ture” that enabled him “to dismantle the ancient authorities and to break with their
dependence on bodies and idols in visual perception” (Belting, 2008, p. 184).

Belting’s (2008) analysis of the translation of Alhazen’s book in English shows a
radical departure in terminology from the ancient Greek version. At the very least,
Alhazen was more interested in geometry and light, which to Western thought was
considered as abstractions, than “with anything mimetic and pictorial” (Belting,
2008, p. 185). For example, Alhazen concerned himself with matters involving
reflection and refraction properties of light and did not pay attention to the rele-
vant iconic images that were also being formed. Belting (2008) sums up the early
Arab view of the intricate relationship between image construction and geometry as
follows:

Geometry in Arab culture serves as the equivalent of what pictures are in Western culture. At
the same time, however, it functions quite differently from pictures, if we consider that one
of its main goals was to protect the eye from all sensuous distraction. . . . Geometry served
as a medium for purifying the world of the senses while at the same time representing the
supreme reign of light in the world. The light is not just there to illuminate bodies, as it
does in Western art, but has a superior existence. For Alhazen, mathematics in turn had a
superior beauty, as it is based on calculation, a beauty not just seen but “read” in a cognitive
act of perception. Alhazen often stated that he wanted to bridge physics and mathematics,
the one being material and the other abstract, and we may observe the same tendency in
Islamic art where geometry transforms the physical reality of its objects and buildings into
the mathematical beauty of tile patterns that, like a skin, obscure or eclipse the corporeality
of vessels or buildings underneath.

(Belting, 2008, p. 187)

Bier’s (2006) research on Islamic and Western art complements Belting’s (2008)
views. While Western art was preoccupied with figural and pictorial images
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(e.g., human portraits, images in coins), Islamic art tended to be more planar (two-
dimensional) and pattern-driven (hence “ornamental”). The Islamic approach to
art and architecture, in particular from the eighth to the eleventh centuries, could
be seen as “visual analogues to Islamic ideas or ways of thinking that were cen-
tral to the philosophical debates of the time” (p. 261). Among artists during this
period, the prevailing interest was on the mathematics of space and form in two
and three dimensions, “about surfaces and the plane, about units and repeats, about
properties of the circle and the nature of space” (p. 269) that were all new to
them. From the point of view of religion and metaphysics, the notion of multiplic-
ity was seen as important and derived from the unit viewed as “indivisible” with
number, more generally, seen in the context of learning something about the soul
and God.

How medieval Islamic artists came to construct and establish patterns from vari-
ous ornamental designs could be explained in terms of their close relationship with
“mathematicians who taught [them] practical geometry” and “played a decisive role
in the creation [and design] of those patterns” (Özdural, 2000, p. 171). Based on
Özdural’s (2000) textual analysis of available historical documents concerning the
relationship between mathematics and the arts in medieval Islam, records indicate
that regular meetings between geometers and artists took place quite frequently that
enabled the former to teach the latter mathematical matters, resulting in the creation
of more consistent and intricate pattern configurations. Artists relied on mathemati-
cians who provided them with practical solutions such as the use of the method
of dividing and assembling (cut-and-paste methods) in, say, constructing a larger
square from two, three, five, and six smaller squares, which they used in design-
ing wooden door and tile patterns that appear in mosques and other architectural
media.

Panofsky (1991) has also argued about cultural differences in thought between
the Renaissance and antiquity periods on matters involving the concept of perspec-
tives. That the differences in the pictorial representation of three-dimensional space
could be attributed to the manner in which each period perceived the world around
them. In particular, the structures that shaped different works of art in each period
were reflections of particular cosmologies, perceptual practices, and visual expe-
riences. For example, in antiquity, perspective length size (i.e., the retinal image)
was seen as curved depending on its proportional relationship to an angle of view
(i.e., conformal view); in the Renaissance, such a line was perceived to be straight
(i.e., collinear view). The following thought sums up Panofsky’s (1991) view of
differences in spatial representations on the basis of differing cultural practices:
“[I]t is essential to ask of artistic periods and regions not only whether they have
perspective, but also which perspective they have” (p. 41).

3 Materialist Versus Formalist Views on Mathematical Objects,
Concepts, and Processes

Bier (2000) offers the following provocative explanation regarding differences in
the notion of symmetry between artists and mathematicians:
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Although mathematicians treat symmetry as an ideal, in nature all symmetry is approximate.
The study of patterns in Oriental carpets may lead one to suppose that in art, as in nature, it
is in the approximation of symmetry, rather than in its precision, that beauty is to be found.
. . . The study of patterns and pattern formation in Oriental carpets provides insights into the
nature of beauty, which relies upon the beauty of nature in the realm of human choice.

(Bier, 2000, p. 132)

Her thoughts about patterns being approximate and rooted in human choice exem-
plify a materialist, grounded perspective that we explore in some detail in this
section.

Gerdes’s (2004) interpretation of the mathematical structures underlying Tonga
baskets illustrates a basic materialist point concerning the significance of “starting-
points that will allow learning to develop more easily” (p. 119) among students.
For Gerdes, artifacts and tools used in communities provide one useful source that
should motivate learners to make sense of mathematical objects, concepts, and pro-
cesses that are frequently claimed and supported on universal grounds. For example,
Fig. 7.1 shows a basket made by the Tonga weavers in the southeastern part of
Mozambique and its corresponding mathematical structure. In his analysis of sev-
eral weaving patterns, Gerdes (2004) traces their structural differences on social,
cultural, demographic, and periodic changes that took place in the evolving lived
experiences of the Tonga weavers. That cultural variability enabled weavers to
produce more complex design patterns and develop shared practices of weaving.
Form, regularity, order, and symmetry, Gerdes (2004) notes, are not a priori but are
“formed in productive activity” (p. 114), a reflection of “the societal experience of
production” (p. 115). Further, he writes:

The capacity to recognize order and regular spatial forms in nature has been devel-
oped through active labor. Regularity is the result of human creative labor and not its
presupposition. It is the real, practical advantages of the invented regular form that lead
to the growing awareness of order and regularity.

(Gerdes, 2004, p. 114)

Fig. 7.1 An example of a Tonga handbag (note: [2/3,5] refers to the class of plane patterns that
uses an over-two-under-three twill and has period 5)
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Thus, the initial ability to perceive geometric forms and patterns could be inter-
preted as having been derived from the context of practical and useful activity that
produces visual forms of knowledge. When such an activity transitions to reflections
about the corresponding art and shape, mathematical thinking emerges in ways that
allow the possibility of creatively imagining forms and patterns that may or may not
have material existence. “Early mathematical thinking,” Gerdes (2004) points out,
”started to liberate itself from material necessity: form becomes emancipated from
matter, and thus emerges the concept and understanding of form. The way is [then]
made free for an intra-mathematical development” (p. 115).

While it is an accepted fact that concrete objects for counting in elementary
mathematics classrooms provide sufficient context that assist students to understand
the value of knowing mathematics, a materialist approach would have them see
visual processes relevant to, say, recognizing coin and paper money as being related
to institutional conceptions and social practices that people have about them. For
example, Zebian (2008) investigated the role of artifact use on the everyday numer-
acy (i.e., orally and paper-based) practices of Lebanese micro-business owners from
the southern and Bekka regions using a combination of cognitive ethnography and
an experimental reaction–time study. He found that among the adult group, artifact
use

influences numerical recognition and conceptualization in a way that suggests tight linkages
between the visuo-spatial processes involved in recognizing numerals embedded in cultural
artifacts and the semantically based processes involved in the conception of these numerals.

(Zebian, 2008, p. 359)

In his study, Zebian (2008) employed an ecological4 approach to explore a possi-
ble relationship between currency use and concept of number. He initially utilized a
social constructivist framework to assess the extent to which “socially situated arti-
fact use and higher order cognition” among adult Lebanese sellers and nonsellers
influenced their cognitive representation and processing of numbers (p. 361). He
then used cognitive scientific methods to determine whether their understanding of
Arabic numerals was either notation independent or notation dependent. In particu-
lar, he focused on “whether the visuo-spatial properties of currency based numerals,
such as patterns and color of the bill” actually had an impact on how the Lebanese
owners internally represented currency-based magnitudes (p. 361).

The micro-business numeracy practices in Lebanon fall into two categories,
namely: oral- and paper-based. Oral-based practitioners (OBPs), on the one hand,
pride themselves in their memory skills despite having access to paper. All pur-
chases are stated orally. Transactions are oftentimes lengthy and involve repeatedly
enumerating items that are bought. OBP numbers are seen in context, that is, in

4Zebian’s (2008) “ecologically-informed approach to numeric cognition” involves coordinating
social and cognitive approaches. The cognitive approach “offers a way of thinking about how
surface notation is recognizable and decoded and how these processes are related to semantically-
based processes” (p. 362). The sociocultural approach “is acutely sensitive to the socially situated
cognitive demands of numeric practices” (p. 362).
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terms of the currency bills used with little to no attention paid to the corresponding
numerals. Paper-based practitioners (PPB), on the other hand, use cash registers,
books, logs, ledgers, invoices, and many others to record all of their transactions.
Further, numbers are seen in the context of numerals without referring to particular
currency bills.

Zebian’s findings indicate that while adults continue to rely on artifacts in
thinking, it seems that a more pertinent concern is not the assessment of whether
dependence on artifacts would diminish over time but to understand “what dimen-
sions of socially situated artifact use will impact which kinds of cognitive processes”
(p. 380). For Zebian,

artifacts do not merely amplify thoughts but rather call upon cognitive processes which
enable the coordination of different representations in a way that achieves or approximates
socially situated task goals.

(Zebian, 2008, p. 380)

Zebian’s (2008) materialist perspective would have us view differences in numeracy
practices in culture-specific situations as fundamentally determining the manner in
which artifacts are used to influence thinking. Here we are reminded of a recent
study done by Wood, Williams, and McNeal (2006) about primary children’s math-
ematical thinking in different classroom cultures. While artifact use and visual
strategies were not addressed in their work, it is reasonable to assume that dif-
ferences exist in the role and use of artifacts and visual strategies in each of the
following classroom cultures that seem to favor particular mathematical practices
relevant to arithmetical learning: (1) conventional textbook-driven classes; (2) con-
ventional problem-solving classes; (3) reform strategy-reporting classes; and (4)
reform inquiry/argument classes.

Were’s (2003) materialist perspective involving object construction in particular
cultures shares many of the same ideas espoused by Gerdes (2004), Ferreira (1997),
Zebian (2008), and other scholars who work within a situated cognitive view of
mathematical practices. However, for Were (2003), there is also a need to explain
the “role of objects as agents that activate mathematical thought” as a way of further
enriching our understanding of the “object world as a tool in the learning of mathe-
matical concepts” (p. 25). By object world, Were refers to the surrounding contexts
that help explain how individuals construct their mathematical knowledge.

Three studies are worth noting briefly in order to highlight Were’s (2003) mate-
rialist perspective. Toren (1990) made an observation that individuals in Fiji acquire
their notion of hierarchy in the context of a kava drinking ceremony, a social practice
in which hierarchy is associated with spatial reference points. Further, they acquaint
themselves spatially through reference points, say, within buildings. Saxe (1991)
found that the numerical processes of the street children in Brazil are tied to the
tools they use and their everyday experiences with problems as confectionary sell-
ers. Consequently, successful performance on school mathematics tasks with this
group of children seems to correlate with situations they encounter in their every-
day work as sellers. Jürg Wassmann (1994) observed that while Western conceptions
associated with space tend to be egocentric, the Yupno of Papua New Guinea uses
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three different ways of spatial perception (i.e., body-centered or relative reference
system; field names or local landmark system; absolute reference system).

In all three studies above, Were (2003) interprets the constructed mathematical
knowledge as a consequence of the relevant social and cognitive processes with-
out the authors fully taking into account the “material quality of objects” (p. 27).
By materiality of an object, it means the associated “synthesis of thought process”
(p. 28) that is evoked once individuals in particular cultures use the object in some
way. For example, patterns and knots as objects convey complexes of ideas, feelings,
relations, and social and cultural practices that are recalled and felt when used in an
activity. Hence, instead of dwelling on contexts (the object world) to explain math-
ematical thinking, Were (2003) focuses on relationships between the materiality of
an object and mathematical thinking.

For example, we frequently perceive patterns used in the mathematics class-
rooms as reflective of artifacts drawn from particular cultures. However, in Papua
New Guinea, for instance, recent curriculum changes in the elementary mathematics
curriculum reflect a shift in thinking from a language-based to an object-centered
learning in which patterns play a central mediating role in the emergence and devel-
opment of mathematical knowledge. At the very least, geometry and numeracy are
taught in the vernacular that also use pattern artifacts drawn from local craft and art.
Were (2003) writes:

[C]ertain properties of objects can harness mathematical thoughts, and it is these thoughts
that can be used fruitfully as a vehicle for learning. So for example, concepts of numeracy
and spatial reasoning are tapped directly from the mathematics embedded in various phe-
nomena with shape, symmetry, time, pattern, color, set theory, number, angle length, and
capacity illustrating some of the specific mathematical concepts the curriculum program
harnesses. The program also utilizes mathematics through the performative aspects of cul-
ture: traditional dance (drumbeats and movement); traditional music (rhythm and timing);
and traditional arts and crafts in the teaching of pattern, shapes, and designs. The focus on
visual and material culture in the curriculum emphasizes the concreteness of the learning
experience utilizing students’ familiarity with objects and materials, concepts, and cultural
practices.

(Were, 2003, p. 30)

Figure 7.2 is an example of a patterning activity for elementary students, while
Fig. 7.3 is an example of a curriculum guide on patterns for teachers. Patterns as
material objects are used to learn relevant mathematical concepts and processes.
Children use them to develop spatial reasoning; create local arts and crafts; learn
about number sequences and color patterns, seasons, and time; learn about their
central role in musical performances and dance routines; explore their environments,
name shapes and associate them with the local language; help them construct rules;
and so on.5

5Were (2003) provides a thorough and engaging discussion of the object of kapkap, a patterned-
shell ornament in the Western Island Melanesia, which he uses to demonstrate the rigor of
mathematical thinking that comes with understanding its social and cultural significance. While
the object conveys to these people certain “everyday and ritual performances,” it is the “translation
from mental to material form that mobilizes mathematical thinking and spatial reasoning” (p. 42).
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1. Look at the walls of the houses in your community. What patterns do you see? Draw 
them. 
2. Look at the material of the clothes you are wearing, what patterns can you see? Draw 
them if you can. 
3. Look for patterns in the things made in your community. Make a list of the things and 
draw the patterns. If you can you should collect items with different patterns on them. 
4. Were all pigs, which are now adult, baby pigs once? 
5. Were all butterflies baby butterflies once? 
6. How many different life cycle patterns can you think of? 
7. How many different patterns can you see in the things around you? 
8. Numbers can also be arranged in patterns. The numbers in counting order form a 
pattern made by adding one to the last number
two to the last number. 

. Write down the pattern made by adding 

9. Does it matter which number you start with? 

Fig. 7.2 Example of a patterning activity at the elementary level in Papua New Guinea (Were,
2003, p. 32)

Who in the community has knowledge of the traditional patterns and designs? 
What are the traditional patterns and designs? 
Why do we use traditional patterns and designs? 
When do we use traditional patterns and designs? 
Where do we use traditional patterns and designs? 
How do we draw traditional patterns and designs? 
Here are two examples from Ovatoi village in the Trobriand Islands, Milne Bay Province.  

Example 1 
Who?     Sobububwaluwa. 
What?    Traditional carving designs. 
Why?     Sobububwaluwa uses these designs in his carvings because they are attractive
               and catch the people’s attention.      
When?   These patterns are used when new canoes are cut and on new carvings to be
               sold to tourists.   
Where?  They are traditionally used on the prow boards and on the rear of the village
               canoes. These patterns are also used on the yam houses, and the chief’s
               dwellings.   
How?     These are carved with special carving knives and chisels. Another special tool
               is called the ligogu in the Kiriwina language.  

Fig. 7.3 Example of a teacher’s guide involving patterns at the elementary level in Papua New
Guinea (Were, 2003, p. 31)

4 Cultural Views on What Constitutes a Mathematical Proof

In 1979, Bishop talked about his research on the “visual and spatial aspects of math-
ematics” (p 136) using data drawn from 12 male first-year undergraduate students in
Papua New Guinea. Acknowledging cognitive differences between his participants
and their counterparts in the UK, he provided evidence of cultural practices in lan-
guage, drawing, and visualizing in Papua New Guinea that were not aligned with
Western practices, which certainly had implications in how and what mathematics
was learned in those communities. For example, processes relevant to generaliz-
ing had to take into account the linguistic structure in Papua New Guinea, which
then appeared to be drawn toward the use of specific rather than general terms.
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Also, comparing quantities was difficult or almost impossible to accomplish in most
cases since there appeared to be more adjectival and subjective than invariant and
objective units that were used in everyday activity. Bishop’s thoughts below about
the nature of conventions capture the sense in which we talk about cultural views
pertaining to the nature of a mathematical proof.

Conventions are of course learnt, as are the reasons for needing them, and the relationship
between the pictures and the reality that are conventionalizing. The hypothesis is therefore
provoked: perhaps much of the found difficulty with spatial tasks lies in understanding
their conventions, and that if these are known by those people, from both non-Western and
Western cultures, who are supposedly weak spatially, then perhaps they would not appear
to be quite so incapable.

(Bishop, 1979, p. 138)

Raju’s (2001) interesting work attempts to explain differences between Eastern and
Western practices in proof in mathematics in terms of the value accorded to the
empirical content of proof. The Western view favors a (neo)Platonist perspective
that sees mathematics to be consisting of knowledge that is located “between the
gross empirical world and the higher Platonic world of ideals” (p. 329). Platonists
believe that we can acquire knowledge of ideal objects only through the “shad-
ows” and the reflections they produce, say, in some medium. This explains why the
early Greeks considered mathematical activity (in particular, geometry) as a form of
“spiritual exercise . . . which turns one’s attention inward, away from sense percep-
tions and empirical concerns, and ‘moves our souls toward Nous’ (the source of the
light that illuminates the objects)” (p. 326). Further, contemporary Western thought
is skeptical of the empirical world because the truths that are produced are at best
contingent and not necessary.

Raju (2001) notes that while the West has accepted the nonabsolute status of
mathematical truths, however, it does not mean jettisoning “necessary” truths but
“shift(ing) the locus of this ‘necessary truth[s]’ from theorems and axioms to proof”
(p. 326). That is, in mathematical proofs, one establishes “tautological relation(s)
between hypotheses and conclusions,” which is not the same in physics that focuses
on “the empirical validity of the hypotheses/conclusions” (p. 327).

Certainly it is also reasonable to assume that some cultures do not subscribe to
the above Western views concerning the contingency of the empirical world and the
nonempirical status of necessary truth. For example, all the major schools of thought
in India between the seventh and early sixteenth century such as the Lokayata
believe in the opposite view – that is, they see the empirical as the main source
of validation and inference as fallible.6 An example of an empirical proof of the
Pythagorean theorem in shown in Fig. 7.4. The content of the proof relies heavily
on an empirical, visual demonstration that shares the same intent as the ones shown
in Figs. 3.14 and 3.15 (in the context of a visual discovery explanation approach).

6Raju (2001) also notes that Buddhists value inference as a valid means of validation but
reject authoritative testimony, while Naiyayikas value all three (empirical, inference, authoritative
testimony) means, including analogy (p. 328).
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-------  Koti   -------

Rotate 

bhuja 

Rotate 

   | 
   | 
bhuja 
   | 

|

Rationale for the sine rule in the Yukubhasa. The square corresponding to the smaller side 

(bhuja) is drawn on a palm leaf and placed on the square corresponding to the bigger side 

(koti), as shown. The bhuja is measured off from the SE corner of the larger square, and joined 

to the SW corner of the larger square and the NW corner of the smaller square. Cutting along 

the joining lines and rotating gives the square on the hypotenuse. This simple proof of the 

“Pythagorean” “Theorem” involves (a) measurement and (b) movement of the figure in space.

Fig. 7.4 Ancient Indian proof of the Pythagorean theorem (Raju, 2001, p. 328)

For Raju, the Western disavowal of empirical content in favor of a nonvisual
synthetic and abstract approach, especially during the time of Hilbert, influential
German mathematician in the nineteenth and early twentieth centuries, was a con-
sequence of an emerging industrial civilization that was at the time exploring the
full power and capabilities of machines. “So it is no surprise,” Raju writes,

that Hilbert’s view of mathematics was entirely mechanical . . . a proof had to be so rigidly
rule-bound that it could be mechanically checked – an acceptable proof had to be acceptable
in all cases.

(Raju, 2001, p. 330)

Those mathematical propositions that involved measurement and were established
empirically did not reach the status of theorems in Hilbert’s terms. For example,
Hilbert thought that the famous side-angle-side (SAS) theorem in Euclid’s Elements
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would have to be regarded simply as a postulate since the proof offered by the
Greeks was visual and empirical (using transformations). “Hilbert,” Raju points out:

reflected the then-prevalent Western view that doubted the role of measurement and the
empirical in mathematics. Picking and carrying involves movement in space, and it was
thought that movement in space may deform the object . . .. The avoidance of picking
and carrying in the proofs of the subsequent theorems in the Elements was interpreted,
by the twentieth century, as an implicit expression of doubt about the very possibility of
measurement.

(Raju, 2001, pp. 330–331)

Also, the notion of coincidence was seen as empirical that explains why the SAS
proposition would have the character of a postulate and not a theorem (which should
possess necessary truth). German philosopher Schopenhauer writes:

[C]oincidence is either mere tautology, or something entirely empirical, which belongs not
to pure intuition, but to external sensuous experience. It presupposes in fact the mobility of
figures; but that which is movable in space is matter and nothing else. Thus, this appeal to
coincidence means leaving pure space, the sole element of geometry, in order to pass over
to the material and empirical.

(Schopenhauer quoted in Raju, 2001, p. 331)

Among early Indian mathematicians, however, there was never a dichotomy
between (1) the sensible and the intelligible, (2) pure and applied, (3) mathematical
and physical, (4) spiritual and practical needs, (5) the abstract and empirical, and
(6) proof and calculation. They viewed mathematics as a means to some practical
end. Mathematical calculations were valued for their practical value in commercial
transactions and their usefulness in matters involving, say, astronomy. Finally, since
mathematical proofs were seen in the context of providing “rationale for methods
of calculation” (Raju, 2001, p. 333), they were simply taught and not recorded.

5 The Role of Artifacts and Visual Language in Early
Mathematical Development

Findings obtained from recent cross-cultural studies foreground the influential role
of artifacts and visual language in early mathematical development. Ginsburg, Lin,
Ness, and Seo (2003) investigated the everyday mathematical behavior of 4- and 5-
year-old American and Chinese children during free play. By everyday mathematics,
Ginsburg et al. refer to

whatever mathematics children acquire in their ordinary physical and social environments.
It may be formal and intuitive; it may be based in social and cultural experience; and, to a
small extent, it may even be formalized.

(Ginsburg et al., 2003, p. 236)

Ginsburg et al. observed that the children in both cultures who participated in their
study were actually engaged in similar types of everyday mathematics during free
play. They did not exhibit any preference for particular objects and worked through
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tasks such as patterns and shape, magnitude, and enumeration quite comfortably
with tools such as Legos and blocks.

Ginsburg et al. (2003) developed some interesting hypotheses in relation to par-
ticular aspects of “cultural differences in the frequency and complexity of everyday
mathematics” (p. 255) between the two groups. Overall, while they found that the
two groups did not differ in complexity of mathematical thinking, the Chinese group
engaged more frequently than the American group in activities that involved patterns
and shapes. One hypothesis that could explain why the Chinese group appeared to
be doing more everyday mathematics than did the American group could be biolog-
ical, that is, the former has the biological disposition toward mathematical activity
compared with the latter. While the remaining hypotheses that the authors raised
were environmental,7 two are worth noting in light of their relevance to the ideas
that are pursued in this book.

The first hypothesis concerns exposure to types of objects used by the chil-
dren during free play. While the participating Chinese preschools offered very few
playing objects due to limited physical space, which included Legos and blocks
that support activities involving patterns and shape, the participating American
preschools had a larger number of playing objects that consequently distracted the
children from fully engaging in mathematical activity.

The second hypothesis deals with what Ginsburg et al. refer to as “useful intuitive
foundations of mathematics” that foreground the significance of a visual orientation
in mathematical thinking as follows:

Whatever its origins, the greater frequency of mathematical activity among Chinese children
particularly if it persists over time, can provide a useful intuitive foundation in mathematics.
Extensive exploration of pattern and shape may result in visual intuitions that can provide
a sound basis for many mathematical ideas. Thus, a picture of a staircase may more vividly
capture the idea of a linearly increasing number series than may a numerical equation. To
the extent that intuitions of mathematics can usefully be comprised of visual images, expe-
rience with pattern and shape may enhance mathematical thinking. Further investigations of
the role of visual imagery in Chinese children’s later mathematical superiority may be infor-
mative. Further, does the need to learn the intricacies of characters make Chinese children
more visually oriented (and hence more mathematically oriented) than Americans?

(Ginsburg et al., 2003, p. 256)

Hence, a strategic use of visual objects could support growth in visual intuitions and
visual knowledge, which could enhance mathematical thinking in the long term.

It is interesting to peg the first environmental hypothesis above on a study on
manipulatives by Uttal, Scudder, and DeLoache who also note that the use of

many different kinds of bright, beautiful manipulatives may push children’s attention toward
the objects themselves and away from where it needs to be – on the relation of the symbol
to what the children are supposed to learn.

(Uttal et al., 1997, p. 50)

7Ginsburg et al. (2003) also suggested the hypothesis that the teachers involved in the study influ-
enced what the children were doing during free play. But this perspective was discounted due to
the fact that the teachers observed were not seen interacting with the children during free play.
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Uttal et al. cite a study by Stevenson and Stigler (1992) who saw that

Japanese teachers . . . use the items in the math set repeated throughout the elementary
school years . . . [while] American teachers seek variety. They may use Popsicle sticks in
one lesson, and marbles, Cheerios, M&M’s, checkers, poker chips, or plastic animals in
another. The American view is that objects should be varied in order to maintain children’s
interest. The Asian view is that using a variety of representational materials may confuse
children, and thereby make it more difficult for them to use the objects for the representation
and solution of mathematical problems.

(Stevenson and Stigler quoted in Uttal et al., 1997, p. 50)

With respect to the second hypothesis above, a study by Miura, Okamoto, Vlahovic-
Stetic, Kim, and Han (1999) provides empirical evidence of the influence of
language characteristics in mathematical thinking and performance. Miura et al.
assessed first- and second-grade Croatian, Korean, and US students in relation
to their fraction understanding prior to classroom instruction. They saw that
culture-specific visual language practices actually assisted their participants in
understanding mathematical concepts such as place value, counting, and fractions.

For example, in Korea, the term fraction is linguistically interpreted in the context
of part–whole relation. The fraction 1/3, spoken as sam bun ui il, literally means “of
three parts, one,” which is not the same in the USA in which case the fraction is
called a “third.” Miura et al.’s study shows that while the performance of the Korean,
US, and Croatian children that was tested did not differ in relation to the task that
asked them to associate numerical fractions with their pictorial representations, the
Korean students performed significantly better than the two other groups by the end
of first grade. Also, at the start of second grade, 75% of the Korean students were
more capable than the other groups in correctly identifying fractions that would not
be typically used at the grade level. Miura et al. then points out that

(a)ssuming that exposure to fractions and fraction terms for children in Grade 1 is similar
across countries, Korean children may be better able to make sense of the relation between
fraction terms and their visual representations because the Korean language supports the
connection between the two. The part–whole relation is an integral part of the linguistic
term. Once the unit fraction (e.g., 1/4 or “of four parts, one”) is understood, that knowledge
can be extended to more complex fractions.

(Miura et al., 1999, p. 363)

6 Multisensory Convergence on Imagery Tasks in Totally
and Partially Blind Subjects

In this section, we discuss the nature of image construction and processing in totally
and partially blind subjects. One basic issue confronting research in this field is the
extent to which the images they form are visual (pictorial) or nonvisual (e.g., spa-
tial). Further, in those cases when a sensory substitution device is used to help blind
subjects acquire information via the auditory or the tactile route, more research data
are needed to assess whether the information is processed the same as the original
input or is transformed into visual data. “There is convincing evidence” however,
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Ward and Meijer (2010) note, “from both tactile and auditory sensory substitution
devices that users of these devices recruit regions of the brain that are normally
specialized for vision” (p. 492).

Many congenitally blind subjects have been observed to have a tendency to
process and code imagery tasks more spatially than visually. For example, in a
reported study by Kerr, Foulkes, and Schmidt (1982), the congenitally blind sub-
jects described their dream settings in terms of spatial features that share many basic
features common to visual images such as “the size and shape of a room and the
location and orientation of objects and people in the environment” (Kerr, 1983, p.
266). Landau, Gleitman, and Spelke (1981) describe the case of a congenitally blind
21/2-year-old child who successfully developed and employed innate metric proper-
ties of Euclidean space in accomplishing a locomotor task that tested knowledge
of space and spatial relationships among objects. In a tactual mental rotation task,
Marmor and Zabeck (1976) observe that the imagery strategies of their blind sub-
jects did not use visual representations [see, also, Carpenter and Eisenberg (1978)
who inferred the same conclusion but in the context of a letter orientation task].
They claim, however, that having a visual experience “might enhance the speed and
accuracy of [their] performance” (Kerr, 1983, p. 266). A similar claim has been
offered on matters involving perspective taking and perspective structure (Heller &
Kennedy, 1990; Rieser, Guth, & Hill, 1986).

We point out two reasons why this section and the two that follow are included
in this book. First, Kerr (1983) has echoed the “need for a broader definition of
imagery” as a result of her work with blind subjects. Indeed, it is an important matter
to understand the characteristics of effective and meaningful image construction,
internalization, and processing in blind subjects and use such knowledge to develop
better visual instruction for sighted learners. Kerr (1983) writes:

In an effort to avoid visual metaphor in describing the imagery of blind subjects, it is tempt-
ing to substitute a metaphor based on another, non-visual, sensory modality. . . . [B]lind
subjects are not limited to modality-specific image processing but are capable of a broader
range of imagery experience, including imagery that is spatial in nature but without specific
ties to one sensory modality. . . . It has not been easy for sighted researchers and theo-
rists to dissociate themselves from visual metaphor and analogy in thinking about images
and imagery. The visual component of the imagery experience is surely its most salient
aspect for most sighted persons. Yet, . . . [we] underscore the need for a broader definition
of imagery than one that is specifically tied to the visual processing system. Kolers and
Smythe (1979) offered as one definition of an image, “a mental event that seems to preserve
the spatial, figural, chromatic, textural, and like properties of objects imaged” (p. 159). If
one omits the word “chromatic,” the definition characterizes precisely this kind of imagery
apparently experienced by the blind subjects who participated [in our study].

(Kerr, 1983, p. 275; italics added)

Tinti and Galanti, for example, observe that blind subjects effectively employ audi-
tory imagery in helping them enhance their memory and learning. The authors also
recommend the need to encourage them “to use a visual imagery strategy in learn-
ing tasks” but with an extra caution that “not too many items be included in a single
image” (Tinti & Galanti, 1999, p. 583). Cattaneo et al. (2008) also note the same
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observation with blind subjects based on a number of studies that show their predis-
position to employ “different cognitive strategies” when confronted with imagery
tasks. That is, they tend to “rely more on verbal/semantic, haptic, or purely spatial
(i.e. without a visual content) representations” (p. 1347). Cattaneo et al. note:

In fact, it is likely that blind individuals compensate for the lack of vision both at a per-
ceptual level, by enhancing their auditory capacities . . ., and at a higher cognitive level, by
developing conceptual networks with more acoustic and tactile nodes . . ., thus contradicting
the view that semantic networks are less elaborate in congenitally blind individuals.

(Cattaneo et al., 2008, p. 2347)

Second, findings from studies with partially and totally blind individuals will further
enrich our understanding of the nature and context of visualization in school math-
ematical learning, including the many purposes we assign to representational tools
that we use to teach mathematical objects, concepts, and processes. Kerr (1983), in
particular, notes that blind people are capable of producing visual images. What this
means is perhaps best captured in the following sentences below by De Beni and
Cornoldi (1988), who questioned the commonly accepted view that “visual imagery
is based on visual experiences” and that those who have “not previously had visual
experiences should not have visual images” (p. 650).

In our opinion, the weak point of this argument is the presupposition that visual images
are necessarily the products of visual experiences; rather, they may be representations that
are based on information collected through different sensory modalities and therefore may
maintain some of the properties of visual objects. We assume that people go beyond the lim-
itations imposed by the properties of single sensory channels and construct representations
that integrate information coming from different sensory modalities.

(De Beni & Cornoldi, 1988, pp. 650–651)

Ward and Meijer (2010, for example, document the visual-like experiences (e.g.,
“seeing sounds,” “perceiving edges, depth, movement, and color”) of their two
participants who became blind at ages 21 and 33 years. At the time of the study,
the blind subjects were already considered expert “users of a sensory substitution
system that converts visual images into auditory signals” (p. 498). The sensory
substitution tool allowed them to encode visual information, which could be seen
as a consequence of “experience-dependent learning of sensorimotor contingen-
cies (in sensory substitution) augmented by non-learned multi-sensory associations”
(p. 499). Farah argues along similar lines as De Beni and Cornoldi as follows:

(I)magery [among blind subjects] is not visual in the sense of necessarily representing
information acquired through visual sensory channels. Rather, it is visual in the sense of
using some of the same neural representational machinery as vision. That representational
machinery places certain constraints on what can be represented in images and on the
relative ease of accessing different kinds of information in images.

(Farah, 1988, p. 315)

The above remarks provide a complementary neurophysiological dimension to the
psychologically derived distributed context of visualization that we have discussed
in various sections in this book. In the psychologically derived view, visualization
is tied to an assemblage of factors that shape the process of visualization (external
environment, individual learner, task, etc.). That visualizing could be seen in terms
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of using and integrating various multiple sensory modalities, which then enable the
reification of an image and give the appearance and feel of being visual. Here we
are reminded of the blind French topologist Morin,8 whose famous work involves
the homotopy of a sphere – the eversion of a sphere (how to turn it inside out) – that
he initially constructed out of clay models by “touch alone . . . to communicate to
the sighted what [he] sees so clearly in his mind’s eye” (Johnson, 2002, p. 1246).
Morin’s spatial ability and imagination provide an example of a blind subject who
does not need a visual experience prior to developing spatial understanding. His
spatial imagination, in fact, enables him to visualize objects

from outside to inside, or from one “room” to another . . . [which] seems to be less depen-
dent on visual experience than on tactile ones. “Our spatial imagination is framed by
manipulating objects,” Morin said. “You act on objects with your hands, not with your
eyes. So being outside or inside is something that is really connected with your actions on
objects.” Because he is so accustomed to tactile information, Morin can, after manipulating
a hand-held model for a couple of hours, retain the memory of its shape for years afterward.

(Johnson, 2002, p. 1248)

Johnson shares another story of Morin, who was asked how he was able to compute
a sign in relation to a thesis that actually required a colleague to employ extended
calculations involving determinants. His following response echoes the foregoing
points raised by De Beni and Cornoldi: “I don’t know – by feeling the weight of
thing, by pondering it” (quoted in Johnson, 2002, p. 1248). Further, Johnson points
out,

Morin believes there are two kinds of mathematical imagination. One kind, which he calls
“time-like,” deals with information by proceeding through a series of steps. This is the
kind of imagination that allows one to carry out long computations. “I was never good
at computing,” Morin remarked, and his blindness deepened this deficit. What he excels
at is the other kind of imagination, which he calls “space-like” and which allows one to
comprehend information all at once.

(Johnson, 2002, p. 1248)

7 Benefits of Visual Representations: Three Lessons from Blind
Studies and Implications for Sighted Learners

Both blind and nonblind learners experience similar difficulties when they deal
with, say, geometry tasks that involve spatial representations and perspective taking.
Several researchers who have worked with blind subjects point out that the crucial
issue appears not in determining whether visualization precedes spatial cognitive
performance but in assessing the significance and limits of visual and tactile/haptic
(or even auditory) performance in their spatial ability. Certainly, both visual and
nonvisual actions are useful. For example, the tactile/haptic dimension allows blind
learners to develop their understanding of depth relationships and surface texture,

8Morin became fully blind at age 6.
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while the visual dimension helps them obtain a quick access to, and a better under-
standing of, form, shape detection, and coordinate systems (Heller & Kennedy,
1990).

Heller and Kennedy (1990) investigated the impact and significance of visual
experiences on two spatial cognitive tasks in 27 congenitally blind, late blind,
and sighted subjects. The shape-matching task tested their understanding of space,
while the perspective-taking task assessed their understanding of vantage points and
various viewpoints (top, side) relative to a given geometric object. In the shape-
matching task, the authors found that visual imagery and visual experience did not
play a significant role when the subjects were asked to match one figure to another
from among a given set of eight simple embossed two-dimensional patterns. In the
perspective-taking task, the subjects were first asked to draw views of a cube, a
cone, and a sphere from different vantage points with each figure represented hap-
tically in a three-dimensional array. They were then asked to identify the vantage
point of pictures drawn from different viewpoints. The authors found that, despite
the absence of a visual experience, the congenitally blind subjects were as success-
ful as the sighted and the late blind in perspective taking and interpreting. Further,
most subjects in all three groups found the top vantage view much easier to draw
than the side views.

While results of the above two tasks seem to suggest that visual imagery
is not necessary and crucial in spatial cognition and representation and tactual
performance, Heller and Kennedy (1990) articulate benefits in having a visual
experience, in particular, in matters involving processing time, memory load, and
time-constrained performance. They observed that the congenitally blind subjects
in their study needed more time to construct spatial representations and relation-
ships, unlike the sighted and late blind subjects who took less time to accomplish
the perspective-taking task (perhaps due to visual familiarity with the drawings).
Also, it is likely that blind learners will experience difficulty when their memory is
loaded or when performance on a task requires speed, unlike sighted learners who
possess visual imagery that, say, allows them to easily interpret tactual impressions.

Veraart and Wanet-Defalque (1987) investigated whether the representations of
locomotor space by 16 blindfolded-sighted, early-, and late-blinded subjects could
be explained in terms of the functions of their visual experiences. The basic task
had them locating objects relative to particular positions or landmarks in a given
room. While results of the actual study are not crucial here, the authors’ reflection
concerning the use of external cues as reference points in visual experiences has
useful implications in mathematics learning for the sighted. In today’s mathemat-
ics classrooms, concrete and virtual manipulatives and graphical technologies are
everyday visual tools that teachers use to help students learn mathematical objects,
concepts, and processes. For Veraart and Wanet-Defalque (1987), visual experiences
enable those who have them to use external cues as reference points instead of hav-
ing to construct an image of a spatial configuration. That is, “early visual experience
gives the ability to create a fictive frame of reference in relation to which kinesthetic
and vestibular information is coded” (Veraart & Wanet-Defalque, 1987, p. 137),
which is what visualizing activity in school mathematics is intended to be in part
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when students begin to learn mathematics with manipulatives and other learning
tools.

Drawing on her extensive analysis of the research literature on blind subjects and
their developing spatial knowledge and her longitudinal studies with two groups of
totally and partially blind subjects, Millar (1994) obtained similar results and echoed
the same recommendations. But her insight concerning the convergence and overlap
of various sensory modalities in (spatial) representation further deepens our under-
standing of the significance of “redundancy” in mathematical knowledge acquisition
processes. Redundancy does not mean repetition of the same experience over and
over again until some knowledge is obtained. What it means is that redundant cues
taken and recruited from other sensory modalities in the case of a loss in one major
modality (say, seeing) tend to facilitate depth, greater connection, and more precise
information and representation relative to the information being targeted for acquisi-
tion. For sighted learners, this means to say that, at the very least, “having more than
one source of concurrent information can actually facilitate processing” (Millar,
1994, p. 46) with the important additional condition that the sources be allowed to
converge and overlap, “deliberately producing the coincidence (in space and time)
of different forms of the ‘same’ information (touch, movement, sound, and expla-
nation)” (Millar, 1994, p. 237). Further, Millar notes that while many interventions
conducted with blind subjects involve sensory substitution, however,

substitute information alone is not enough, even if it is made sufficiently redundant. It
is essential also to ensure that what is substituted does, in fact, converge with exist-
ing information, that it not only complements it, but also overlaps sufficiently to restore
redundancy.

(Millar, 1994, p. 236)

For example, Veraart and Wanet-Defalque’s (1987) finding about the essential role
of external cues also needs to be correlated with purposeful informational redun-
dancy drawn from other modalities, which then need to converge and overlap. As a
practical matter and keeping in mind the role of visuals as “devices” in mathematics
among sighted learners, Millar points out that

extremely able and knowledgeable blind users can make the links [among the different
information drawn from several modality sources] themselves. But for most people, the
link between devices which substitute, rather than complement existing information and
means of coping, needs to be made obvious.

(Millar, 1994, p. 242)

Some of these strategies include implementing assisted learning and exploration,
using hand movements, employing particular kinds of drawings (and tactual-based
materials for the blind), and providing helpful haptic feedback. Also, Millar (1994)
recommends the use of “verbal description and spatial demonstrations” that “should
not be treated as incompatible alternatives” (p. 244). But then again she stresses that
they “need to be linked. . . . [and] the link should be made explicit and obvious”
(p. 244) depending, of course, on the nature, context, and requirements of the task
being resolved.
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8 Models and Implications of Multisensory Learning

We close this chapter by revisiting Sawada’s (1978, 1982) multisensory modality
research investigations in mathematical learning, which should provide a useful
synthesizing model in thinking about recent samples of interventions done with
blind students who learn mathematics from at least two modalities (i.e., auditory
and visual). Certainly, the insights of researchers whose findings I have discussed
in greater detail above, especially Millar’s (1994) ideas involving convergence and
redundancy, should also be incorporated in this framework. Toward the end of this
section, we provide samples of tools that are currently being used with blind learners
and exemplify the use of multisensory modeling in mathematical contexts.

Sawada and Jarman note that while there appears to be a correlation between
perceptual abilities and mathematics achievement, students’ modal-matching abil-
ity, in particular, the auditory–visual connection, could also influence mathematics
achievement. For example, learning the concept of “four” among young children
involves acquiring the fact that hearing it (auditory), circling a diagram with four
objects (visual), and demonstrating it with manipulatives and other concrete aids
(haptic or tactile) are all equivalent actions despite the fact that they have been routed
in different modalities.

In their experimental study with 180 fourth-grade male students9 of varying
IQ abilities, Sawada and Jarman (1978) inferred that any relationship between
modality-matching ability and mathematics achievement seems to depend on the
type of matching and the IQ level of the student. Their finding suggests that aware-
ness of the appropriate type of matching could provide important information
relevant to effective ways of individualizing mathematics instruction and learning.
For example, students with low IQ may likely benefit from an integrated auditory-to-
auditory matching compared with students that have medium intelligence. Sawada
and Jarman note:

This finding is somewhat surprising, since much of elementary school mathematics would
seem to depend as much on AV or VA or even VV matching abilities. In fact, in the high
IQ group, mathematics achievement seems to be uniformly dependent on all four modal-
ity matching abilities, but this uniform dependence seems to all but vanish with pupils of
medium intelligence.

(Sawada & Jarman, 1978, p. 133)

In a second study, Sawada (1982) added the haptic modality dimension in assess-
ing for predictors of mathematics achievement among 169 third-grade males and
females. He found that the haptic dimension plays a significant and useful role in
the mathematical learning of the different IQ-level groups. He writes:

[C]hildren who have difficulty integrating haptic information with other sensory infor-
mation do less well in learning mathematics. To the extent that a particular classroom
was strongly into the use of manipulatives, the force of these conclusions would be even

9Females were excluded as the authors’ way of coping with less complicated data at the time of
the study (i.e., holding the sex variable constant).
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more significant. In summary, if we as mathematics educators continue to recommend
the widespread use of manipulative aids (hands-on experience) in providing mathemati-
cal learning for children, then it seems important that we realize that children vary in the
extent to which they are able to integrate such haptically acquired information with other
information in the experience.

(Sawada, 1982, p. 393)

Recent studies and interventions used with blind students in both mathematical and
nonmathematical contexts also highlight the significant role of multiple-modality
learning.10 The images that blind students produce, Tinti and Galanti point out,

have the essential characteristics of visual objects . . . [and while] the images do not contain
typical attributes unique to visual objects . . . they seem to contain characteristics of objects
that could be processed to enhance memory.

(Tinti & Galanti, 1999, p. 579)

Gardner, Gardner, Jones, and Jones (2008), for example, developed a graphical
sight/audio/touch accessibility technology with a flexible user interface that helps
disabled children learn arithmetic by either receiving or entering data in differ-
ent ways. Figures 7.5 and 7.6 show two students doing arithmetic with the aid of
the arithmetic learning system tool. Depending on the type of disability, students
can enlarge an image or distinguish small objects using a tactile embosser. Tactual
images are mapped onto a touchpad, thus enabling learners to feel either text or
object. Also, labels of text or objects speak when pressed. Low-tech devices are
just as useful as the high-tech ones. Gibson and Darron (1999) used cardboard
and clay models in helping their blind subject haptically explore tactual displays
as a means of visualizing statistical concepts. Ducker (1993) used a combination
of Thermoforms and German films with two blind subjects in making sense of bar
charts and scatter diagrams.

Brewster (2002) was concerned about the manner in which blind people are pre-
sented with data obtained from graphs and tables. Instead of being presented with
the actual graphs, they either hear lines of digits that are read to them or feel serial
rows of digits in Braille that consequently make it impossible for them to establish
patterns and inferences. Karshmer and Farsi (2008), in particular, point out two dif-
ficulties in representing mathematical formulas in Braille. First, while ordinary text
is linear, mathematical equations are two dimensional. For example, the formula

10Ginns’s (2005) meta-analysis of 43 experimental studies prior to 2004 shows an overall strong
modality effect (with moderation effects in some aspects), that is, “across a broad range of instruc-
tional materials, age groups, and outcomes, students who learned from instructional materials using
graphics with spoken text outperformed those who learned from a graphics with printed text”
(p. 326). A nonmathematical context that involves the use of nonvisual modality modes of learning
among blind subjects involves studies in mobility (e.g., use of echoes, guide dogs, and long canes;
sound cues; felt cues; electronic travel aids and ultrasonic echolocating prosthesis; cf. Strelow,
1985; Veraart & Wanet-Defalque, 1987).
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Fig. 7.5 Doing arithmetic
with an arithmetic learning
system tool 1 (Gardner et al.,
2008, p. 4)

Fig. 7.6 Doing arithmetic with an arithmetic learning system tool 2 (Gardner, et al., 2008, p. 6)
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a =
√

x2 − y

z

contains a fraction and a superscript that are both two dimensional. When trans-
lated in linear form, it appears to blind subjects in the following form: a =
sqrt (((x super 2) − y) /z). Equations and formulas that have more parts make them
almost impossible to learn due to the complexity of the corresponding linear rep-
resentation. Second, while ordinary text has a manageable number of characters
(uppercase and lowercase letters, 10 digits, punctuation marks, and some special
characters), equations and formulas contain all the normal text characters and a
larger number of special characters and “escape sequences” (in cases when new
characters are introduced, thus necessitating new assignations). The blind mathe-
matician Giroux11 notes the difficulty of performing long calculations in Braille,
which to him explains why most blind mathematicians study geometry since “the
information is very concentrated, it’s something you can keep in mind (which is not
necessarily pictorial)” (Johnson, 2002, p. 1249).

Brewster (2002) then tested and found that nonspeech audio and haptic graphs
are effective alternative tools for presenting visual material to blind students.
Sonification (sound visualization) is a nonspeech sound tool that is used to present
graphical data. For example, sound graphs present line graphs in sound with time
mapped onto the x-axis and pitch to the y-axis. Learners hear the shape of a graph
in terms of rising and falling notes that are played over time, which then allow them
to distinguish between types of graphs and identify extremum points. Haptic tools
provide students with an opportunity to feel virtual objects through mechanical actu-
ators. They are more dynamic and appear three dimensional than are graphs drawn
on an embossed paper.12 For example, Brewster (2002) developed a device called
PHANToM that enables students to “feel textures and shapes of virtual objects,
modulate and deform objects with a very high degree of realism . . . [and] feel graphs
and tables as if they were really present in front of them” (Brewster, 2002, p. 614). In
Brewster’s (2002) two-part experimental study, the blind subjects performed signif-
icantly well in all aspects that assessed workload, completion time, and number of
correct answers. He found that combining speech with sound graphs and using hap-
tic line graphs were effective alternative methods for presenting graphs and tables
to blind learners.

11Giroux was completely blind at age 11.
12While recent haptic interface technologies in virtual reality provide externally induced compen-
satory strategies for blind learners due to loss in visual ability, they are also meant for them to
develop useful and detailed spatial cognitive maps in long-term memory that will help improve
their mobility and orientation skills (cf. Lahav, 2006).
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9 Overview of Chapter 8

In Chapter 8, we discuss various components of the progressive model shown in
Fig. 2.18. We begin with some provisional thoughts on visualization for math-
ematics education. We also assert a stronger symbolic view of visual actions in
mathematical cognitive activity. Then four sections are used to discuss the follow-
ing aspects of the progressive model: the intersecting circles; context of visualizing
in the referential phase; the ascension process within the concentric circles, and; the
nature of mathematical content and visualization in the operative phase. The closing
section clarifies the educational significance of “pleasure” in mathematical knowing
through visualizing.



Chapter 8
Instructional Implications: Toward Visual
Thinking in Mathematics

Simply put, the visual teaches us to think with the body.
(Sherwin, Feigenson, & Spiesel, 2007, p. 147)

The advantage of verbal formulations is that they can conform
to semantic or logical rules, but a preoccupation with
syntactical features of representation means that we still lack an
understanding of how visual thinking works in conjunction with
language-based reasoning.

(Gooding, 2006, p. 41)
I see the growth of mathematical knowledge as a process in
which an unrigorous reasoning-practice, a scattered set of
beliefs about manipulations of physical objects, gives rise to a
succession of multi-faceted practices through rational
transitions, leading ultimately to the mathematics of today.

(Kitcher, 1983, p. 226)

In this closing chapter, I should point out that we certainly have come a long way
since the time Klotz (1991) asserted that “visualization has a more important role
to play in mathematics education” and the need to be “willing to ask hard questions
about this approach” (p. 103). Research data from a variety of sources at least in
the last 20 years or so should help us deal with a nagging issue on visualization that
Taussig (2009) has succinctly captured for us in the following way: “But to get to
basics, why draw?1” (p. 265).

1Taussig’s (2009) reflection about the picture/text hierarchy below is worth noting in light of our
goal in this book of suturing the split:

[T]he hiatus or no-man’s land between picture and text in the anthropological tradition raises
a further question as to the general devaluation of drawing in relation to reading and writing
in modern Western cultures and maybe in many other cultures as well. We do everything to
get children to read, write, and speak well. But why not draw too? Shortly after I wrote this
I drove to the supermarket close to where I live in upstate New York past a sign on the road.
It read: “Summer Reading Camp.”

(Taussig, 2009, p. 268; italics added for emphasis)

269F.D. Rivera, Toward a Visually-Oriented School Mathematics Curriculum,
Mathematics Education Library 49, DOI 10.1007/978-94-007-0014-7_8,
C© Springer Science+Business Media B.V. 2011



270 8 Instructional Implications: Toward Visual Thinking in Mathematics

The perspective, toward visual thinking in mathematics, moves beyond the peren-
nial view that associates visuals and visual action with merely using and conjuring
“pretty pictures” that suffer a mild form of “illustration fallacy” (Tucker, 2006, p.
117).2 It embraces Arnheim’s (1971) “seeing as seeing in relation” and puts to work
the “inseparable suturing” (Mitchell, 1994, p. 95) of the visual and the alphanu-
meric in the construction of mathematical knowledge. Our response in this book to
the relevant hard questions, especially, Presmeg’s (2006) 13th Big Question – “What
is the structure and what are the components of an overarching theory of visualiza-
tion for mathematics education?” – involves the notion of progressive modeling. In
the Introduction, I referenced my own work (Rivera, 2007a) in a precalculus class
to demonstrate my initial orientation toward, and grounding in, this perspective.
Also, in the Introduction, I introduced the term progression in the context of more
recent work by Gravemeijer, Cobb, and colleagues, which basically sees symbol-
izing, notating, and tool use as processes that grow in abstraction and rigor over
classroom time. In Chapter 2, I introduced the term modeling in Magnani’s sense,
which involves developing and manipulating different types of representations as a
result of thinking through doing. Consistent with Kitcher’s (1983) perspective in the
opening epigraph, progressive modeling involves rational transitions along several
dimensions. In Chapter 3, we spoke about visual kinds from imaginal to forma-
tional and then to transformational. In Chapter 4, we discussed transitions in modes
of signification from iconic to indexical to symbolic. In Chapter 5, we compared
early with mature abductions in the context of progressive abduction. In Chapter 6,
we discussed progressive diagrammatization.

Certainly, the term rational in Kitcher’s rational transitions needs to be clarified
as well in the progressive modeling view. In Chapter 2, I emphasized the distributed
nature of cognition, a conceptual molting out of mind–brain perspectives in favor
of systemic embodiment, which involves orchestral actions involving the whole
body, the mind, and the relevant external representations. In Chapter 3, we sourced
the nature of individual mathematical cognition in an “always-already” lifeworld-
dependent context, where the developing rational actions of each learner are seen
as confronting and at the same time guided by the rational actions of the mathe-
matics community in which he or she participates. This distributed phenomenon
would then enable transitions in sign use, which has been significantly pursued in
some detail in Chapter 4. Chapter 5 provided an exemplar of this distributed tran-
sition in the context of pattern generalization, from the visual to the numeric and
then to visuoalphanumeric as a consequence of individual and social mathematical
cognitive activity. In Chapter 6, we pointed out the necessity of making transitions
in diagram use from the representational to the diagrammatic. In Chapter 7, we

2I borrowed these terms from Tucker (2006) who used them in the context of the history of visual
representations in science, in particular, nineteenth century scientific photographs. The use of pretty
pictures conveys the need to popularize scientific discourses and “the packaging of scientific con-
cepts for mass audiences” (p. 117). By illustration fallacy, it refers to “the mistake of assuming
that illustrations produced ‘outside’ of professional science lack scientific significance or value”
(p. 117).
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dealt with this issue of distributed contexts more forcefully by articulating macro
conditions such as sociocultural influences in the practice of mathematics and the
central neurophysiological functioning of multimodal processes in the extreme case
of learning (mathematics) among blind subjects.

In our progressive modeling structure, we have also pointed out the changing
intra-semiotic roles and content of visualization, from the visuals of imaginals to
the visual representations of abstract forms, and then again. Such changes are a
necessary component of the progressive model since “mathematical visual images”
are “concerned with particular forms of experiential meaning” (O’Halloran, 2005,
p. 142). The book is replete with examples of such changes that we have drawn
from several sources, in particular, in the number sense and algebra strands of the
school mathematics curriculum that for so long has been associated with an almost
exclusive preoccupation with alphanumeric symbolizing.3.

Visuals and visual actions in this book are not (merely) perceived in terms of
providing fun-filled activity in the mathematics classrooms. Also, they are not sim-
ply situated as being prior to abstraction and abstract actions as the visual/verbal
binary would perhaps have us think. They are, in fact, central to school mathemati-
cal practices and should, thus, be seen as a conceptual molting from the hegemony
of the visual/verbal oppositional view. Of course, we have been explicit in saying
that visualization alone does not offer a thaumaturgical route to better mathematics
learning. Nevertheless, in this book, we attempted to provide a sustained traveling
model in terms of ways in which visualization in mathematical cognitive activity
could be made to mean beyond typical, short-term touristic interventions and prac-
tices. Just as diagrams in ancient Greece were the metonym of their mathematics,
visuoalphanumeric representations could be ours in the history of the present.

In fact, the common thread that binds all visual studies in school mathematics
education, from the progressive modeling projects of Gravemeijer and colleagues
to instrumental genesis in technologies in mathematics learning and to the dia-
grammatic model of Dörfler, is the experience of reasoning and understanding that
comes with visual image manipulation, discernment, and construction. Such visu-
als are treated as instantiations of the concepts and processes that should provide
learners with an opportunity to develop mathematical habits relevant to developing

3I have intentionally left out research results from studies involving statistics, geometry, and
technology in mathematics learning. But there are interesting overlaps in terms of findings and
implications. Statistics and geometry in the school mathematics curriculum fundamentally rely on
visual representations, so the visual status in these content strands is not as problematic as the case
with the algebra and number sense strands. Certainly, there is much instructional and psycholog-
ical knowledge that could be gained from research done in these two areas, so I refer readers to
exemplary syntheses on geometry understanding (which includes spatial understanding) and statis-
tics learning (e.g., Battista, 2007; Clements & Battista, 1992; Gattis, 2001; Owens & Outhred,
2006; Shaughnessy, 1992, 2007). Concerning technology in mathematics learning, I refer readers
to several syntheses of research that also discuss the central role of visual representations in math-
ematical knowledge acquisition (Ferrara, Pratt, & Robutti, 2006; Laborde, Kynigos, Hollebrands,
& Strässer, 2006; Kaput, 1992; Mariotti, 2002; Yerushalmy & Chazan, 2002; Zbiek, Heid, Bume,
& Dick, 2007).
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logical inferences. Thus, visuals play a central role in mathematical understanding
and practices. Perhaps Raju (2001) was correct after all. In Chapter 7, we referred
to his historical interpretation of an emerging industrial civilization, characterized
by growth and development in machine technology and application of mechanical
rules, which may have inspired mathematicians like Hilbert to disavow empirical
content in favor of more synthetic and abstract or verbal approaches. But Netz’s
(1998) cognitive history of ancient Greek mathematics would have us see visuals in
a different light, a point that is central to the progressive modeling perspective we
have explored in this book. According to Netz,

In many of the manuscript traditions of Euclid, the definitions at the start of the book are
accompanied by diagrams. The text is “a point is that which has no part,” and next to this
Greek sentence there is a point drawn in the manuscript, and so on with all the rest of the
definitions. You will never even get a hint of this in modern editions [of the same text].
This is the axiomatic shrine, the holiest of the holiest. Here, we the modern expect the
Word to be enshrined alone; no other presence should defile the purity of the abstract verbal
formulation. But when we enter the temple we see there enshrined the picture, the diagram.
This, and not the Word, is the central object of Greek mathematics.

(Netz, 1998, p. 38)

Each section below addresses various aspects of the progressive model shown in
Fig. 2.18. Section 1 summarizes my thoughts on the role of visualization in mathe-
matics education, which I organize around three systemic standpoints that establish
it as a conceptual field. In Section 2, we discuss the importance of the intersect-
ing circles shown in the progressive model. Here we underscore the influence of
the social context in individual visual actions. In Section 3, we assert a stronger
perspective about visualizing in mathematical cognitive activity, which involves
situating it in the third mode of signification, that is, in the symbolic order in
which acts of seeing and interpreting necessarily reproduce institutional rules and
codes. Section 4 clarifies the context of visualizing in the referential phase, which
involves understanding the significance of visual actions such as “visual presence”
and “seeing-in.” In Section 5, we explain how the ascension process within the
concentric circles conveys different aspects of progression, from increasing concep-
tualizing actions to gradual abstracting and generalizing to conceptual restructuring.
Section 6 completes the discussion surrounding the progressive model by clarifying
the nature of mathematical content and the role of visualization in the operative
phase. Section 7 closes the chapter by clarifying the educational significance of
“pleasure” in mathematical knowing through visualizing.

1 Some Final Thoughts on Visualization for Mathematics
Education

Based on findings drawn from my own work, I have found it useful to think
of the triad of experience, learning, and culture as forming, to borrow a term
from Vergnaud (2009), a conceptual field that engenders the development of, and
growth in, visual thinking in mathematics among students. The meanings they
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associate with visual cognitive action in mathematical activity ought to be viewed
not from “one situation only but from a variety of situations and that, recip-
rocally, situation[s] cannot be analyzed with one concept alone, but rather with
several concepts, forming systems” (Vergnaud, 2009, p. 86). Such a view is com-
patible with the distributed context of visualization that I have talked about in
several places in this book. The triad provides “situations, schemes, and symbolic
tools of representations” (Vergnaud, 2009, p. 87) in varying degrees (contrasting
ones, especially) depending on interactions that take place in a lifeworld-dependent
context. In the following paragraphs, we address issues in each element of the
triad.

From a practical standpoint, visualizing in mathematics education provides stu-
dents with “an immediacy of access” (Sherwin et al., 2007, p. 147) that is not clearly
visible with alphanumeric symbols alone. For example, the paper-and-scissors activ-
ity in Fig. 2.1, which involves factoring a difference of two squared polynomial
terms, enabled my Algebra 1 students to construct a vivid pictorial understand-
ing of why the corresponding algebraic factored form took shape that way and not
some other way. Consequently, the visual representation influenced the manner in
which they developed their mathematical understanding of the represented knowl-
edge. This particular illustration, in fact, echoes a convergent perspective about the
influential role of external representations in individuals’ thoughts relative to some
represented knowledge (see, e.g., Karmiloff-Smith, 1992; Lave, 1988; Ng & Lee,
2009; Luria, 1976; Vygotsky, 1962, 1978).

Another practical engagement with the visual is the convergent view drawn
from various empirical studies dealing with everyday, scientific, and mathematical
objects, concepts, and processes that shows individuals’ capability in keeping their
visual experiences longer in memory and recalling them easily when prompted. For
example, my Algebra 1 students found the visual process in solving a quadratic
equation (Fig. 3.12b) much easier to recall than the quadratic formula. Another
example is drawn from my Grade 2 class whereby the students easily tapped onto
their visual knowledge when they needed to add and subtract whole numbers of up
to three digits with and without regrouping in alphanumeric form (Fig. 1.1 and 3.1).

A third practical consideration deals with solid empirical evidence that shows
significant relationships between visual perceptual skills and mathematical ability,
between visual perception and mathematical achievement, and between visual rep-
resentations (i.e., the use of either pictures or diagrams) and success in mathematical
problem solving. For example, the empirical study conducted with 171 second,
fourth, and sixth grade students by Kulp, Earley, Mitchell, Timmerman, Frasco, and
Geiger (2004) shows in clear terms the significance of visual skills in mathematics
learning, as follows:

[P]oor visual perceptual ability is significantly related to poor achievement in mathemat-
ics, even when controlling for verbal cognitive ability. Therefore, visual perceptual ability,
and particularly visual memory, should be considered to be amongst the skills that are
significantly related to mathematics achievement.

(Kulp et al., 2004, p. 50)
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From both instrumental and psychological standpoints, visualizing in mathematics
education occurs in the context of the epistemological model shown in Fig. 2.18,
which conveys the dynamic and embedded nature of growth in mathematical knowl-
edge resulting from purposeful progression. Under normal circumstances, various
signs that are used to express mathematical objects and their relationships in what-
ever mode of signification (icon, index, symbol) progress from the referential to
the operative, from situated to institutional, from concrete instances to a collection
to hypostatic abstractions, from the imaginal to the structured form of visuoal-
phanumeric, and so on. With each transition, we associate inter- and intra-semiotic
changes in inferential habits, mathematical explanations, and symbol notation and
use that occur as a result of a developing proficiency and competence with the rel-
evant visual tools that are used to reify mathematical objects, including varying
levels of mediation from emerging, shared, and institutional mathematical practices
that endow the tools with meaning and purpose.

It is also worth noting that mathematical objects, in particular, alphanumeric
expressions and diagrams, emerge but only in the context of an interpretive struc-
ture. Hence, one source of student difficulty is when symbols are pursued as singular
entities apart from some structure that give them specificity and relevance in the
first place. This observation was noted in Chapter 5 in connection with progressive
abductive reasoning in pattern generalization activity. We underscore the signifi-
cance of an algebraically useful generalization in Fig. 5.7 resulting from meaningful
actions of abduction and induction of patterns. Another source of student difficulty
is when a target structure is initially approached either as an instance of the opera-
tive domain or as situated in the abstract phase of the referential domain (Fig. 2.8).
A more fundamental source of student difficulty is when structures and their sym-
bols are not situated within a reasonable sense-making context that allows them to
be interpretively reified in a meaningful manner.

From both anthropological and cultural semiotic standpoints, visualizing in
mathematics education is not a simple matter of categorizing it as simply one among
many processes of knowledge acquisition. It should not be perceived merely as a
means for concretizing objects, concepts, and processes. Prevailing views among
teachers indicate this to be the case and nothing else (e.g., Cai & Moyer, 2008;
Moyer, 2001). The analysis offered by Tiragallo (2007) in relation to the weaving
practices of the women in Sardinia captures the purpose in which I implemented
and supported various visual thinking approaches in my own studies with my mid-
dle school and Grade 2 students. Weaving processes seem to share many similarities
with mathematical practices. The mathematical knowledge found in textbooks is
like carpets, blankets, linen chest covers, and bedsheets that are considered fin-
ished products. In creating the latter, weavers, in fact, require having the expertise to
coordinate various elements in an assemblage that consists of yarns, pegs, designs,
and braiding strategies. Tiragallo points out that the “visual experience” of weaving
“intertwines with that of the other senses in a multisensorial environment” (Grasseni
quoted in Tiragallo, 2007, p. 207). She writes:
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The technical and perceptive skills . . . come together with the corporeal capabilities to
bring together the rhythms and the recollections . . . with the resources of [the weaver’s]
particular environment and relations with the members of her community and other expert
communities.

(Tiragallo, 2007, p. 207)

Based on my classroom experiences with different age- and grade-level groups,
a similar phenomenon occurs whenever we ask students to visualize mathemati-
cal objects, concepts, and processes. Especially in formational and transformational
contexts, their structured images and models are not mere isolated entities but exist
within a larger process in which seeing and acting on them contribute to gaining
access to the intended knowledge in a lifeworld-dependent activity. Thus, effec-
tive and meaningful visual thinking in mathematics could be aptly described in
the same manner that Tiragallo theorized expert weavers’ visual skills. Tiragallo’s
further thoughts below about weaving action capture an important aspect of visu-
alizing about mathematical objects, concepts, and processes. They should remind
us of the many arguments in various places in the book concerning the distributed,
multimodal, and material dimensions of visual action in mathematical activity.

A weaver’s visual skill does not appear as separated from the other sensorial skills that go
into weaving. . . . [The weaver] . . . operat[es] in a visual world full of objects and surfaces,
which are for her the subject of her technical actions. In such a context, the perceptions of
her eyes are added to a complex of other sensorial stimuli . . ., which in turn combine with
the sensorial memory and the whole of spatial references belonging to the visual world. It
is a world in which the things that make it up have a meaning for the person acting in it.
[The weaver’s] visual skill does not live in the weaving as a skill per se: all the spaces and
objects involved in her actions . . . are elements in a corpus of experiences and they live in
her, taken from the immediate visual perception, which, if anything, confirms this wealth of
past experience.

(Tiragallo, 2007, pp. 206–207)

Consequently, the mathematical knowledge that students obtain, like expert
weavers’ knowledge, is not found in “the project or the relationship between the
structure of the mind and that of the world,” but “is immanent in the life of those
who know and develops in the context of practices that are established” (Tiragallo,
2007, p. 209).

2 Signifying Intersecting Circles

Considering the openly sociocultural orientation of the teaching experiments on
visualization that I developed and implemented in my own studies, I underscore the
culturally constituted nature – in O’Halloran’s (2005) words, the “interpersonally
orientating function” – of visual construction in mathematics that engenders partic-
ular ways of representing, interpreting, and apprehending images. The intersecting
circles in Fig. 2.18 symbolize the “always-already” complex relationship between
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individuals and their communities in various stages of progression. “Perceiving and
imaging,” Sherwin et al. (2007) point out, and rightly so, “are not merely processes
of identification brought about by looking and listening but active performances
in which specific intentions, purposes, and actions need to be fulfilled” (p. 156).
The intersection conveys the ethnographic fact that while some students find it
easy to perform visual thinking in mathematics, for many others it is an acquired
skill resulting from the appropriation and internalization of various attentional and
intentional resources. In this book, culturally constituted visual representations in
school mathematics are refinements that are drawn from personally constructed
imaginals, various visual-images-in-the-wild, and previously acquired formal visual
representations.

For example, when my middle school and Grade 2 students used learning tools
such as graphing technologies and manipulatives in mathematics learning, they
interpretively reproduced valued structures and “cultural protocols” (Deger, 2007)
of mathematical knowledge. In fact, one indication of competence in the use of such
tools is when students are able to grasp the intended mathematical knowledge (short-
term effect) and institutional ways of seeing, knowing, and reasoning (long-term
effect). Another interesting example that highlights the importance of mathemat-
ical ways of visualizing is drawn from a recent study by Mulligan, Prescott, and
Mitchelmore (2003) with 109 Year 1 Australian students. The children were briefly

a 

b

c

Fig. 8.1 (continued)
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Fig. 8.1 a Triangle with six circles (Mulligan, Prescott, & Mitchelmore, 2003, p. 24). b An exam-
ple of a no structure response from a Year 1 student (Mulligan et al., 2003, p. 25). c Three examples
of an emergent structure response from Year 1 students (Mulligan et al., 2003, p. 25). d Four exam-
ples of a partial structure response from Year 1 students (Mulligan et al., 2003, pp. 25–26). e Two
examples of a (full) structure response from Year 1 students (Mulligan et al., 2003, pp. 25–26)

shown a triangular pattern consisting of six circles (Fig. 8.1a). When then asked to
draw what they saw on a separate sheet of paper, only 20% produced the same tri-
angular pattern. Figure. 8.1b–e illustrates four categories of responses on the basis
of their level of visual experiences, namely: no structure; emergent; partial; and
full structure. The classification was justified on the basis of what the teachers
saw as important aspects of the shown figure (shape, arrangement, quantity) that
the students should have demonstrated in their pictorial responses. In this book,
what Mulligan et al. (2003) interpreted as “no structure” could be imaginals for
the students since they saw circles to begin with and nothing else. They exhib-
ited mere object or sense (versus cognitive) perception (cf. Chapter 5). Further,
the categories of emergent and partial structures fall within visual-images-in-the-
wild, while full structure conveys an interpreted visual representation (in Goldin’s
sense). Hence, from a sociocultural standpoint, the skill of visualizing mathematical
objects, concepts, and processes is not a simple matter of everyday visualizing as it
is also about constructing and justifying structural features, properties, attributes,
and relationships that are mathematically viable and valid from an institutional
standpoint.
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3 Past the Iconic and the Indexical: The Symbolic Mediated
Nature of Visual Thinking in Mathematics (a Stronger Version)

Everything commences in a lifeworld-dependent context, which means that mental
and physical images are constructed as signs in cognitive activity and, thus, are
interpreted phenomena. Further, when individual learners employ visual thinking in
mathematics in the lifeworld, the images they construct and manipulate work within
rules in cognitive activity that are needed for those images to make sense. In other
words, mathematical ways of seeing involve skilled and learned ways of seeing in a
particular way.

The foregoing view shares the perspectives of Miller (1990) and Goodman
(1976) about the cognitive subtleties of picture depiction.4 Contra the view that
pictures resemble the objects they depict, Miller and Goodman foreground medi-
ation by rules, conventions, symbol systems, functions, and intentions in picture
depiction processes. In mathematics, this means that students can only begin to rec-
ognize and manipulate images and objects once they understand the intent of/and the
underlying symbolic codes that shape those images and objects. We should add to
the symbol-mediated view the significance of tactile and gestural action, including
individual and social input, in gaining a better understanding of the nature and con-
tent of such images and objects. For example, in my Algebra 1 class, the students’
fascination with, and aesthetic appreciation of, the quadratic process in Fig. 3.12a, b
emerged when they visually grasped the necessary symbolic relationships that came
with manipulating the relevant objects.

4 Visual Presence and Seeing in the Referential Phase

Except in Chapter 7 where we explicitly dealt with a few issues concerning multi-
modality mathematics learning among blind individuals, one aspect that I did not
fully pursue in this book involves the “absent presence” (following Gergen,5 2002)
of gesturing, touching, and hearing that accompany visual action. That is, together

4Gregory (2005) also surfaces the continuous relationship between image and knowledge and
construction (i.e., what “it” is and what “it” is for). He writes:

We see a table as something to support things, and as made of hard scratchable inflammable
wood we have learned about from years of interactive experiments. A picture of a table calls
up this object-knowledge so it looks almost real – yet pictures are very odd. . . . When we
look at a familiar object we interact with it by appreciating its potential uses or functions. Its
picture calls up the knowledge of functions; but at the same time we are warned, by noting
that it is merely a picture, not to expect anything materially useful from it.

(Gregory, 2005, p. 120)

5I am using the term here in a metaphorical manner. But as an aside I refer readers to Gergen’s
(2002) very interesting article in which he explored the phenomenon of absent presence – “present
but simultaneously rendered absent . . . erased by an absent presence” (p. 227) – resulting from
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with visual thinking, the tactile, gestural, and auditory contribute in ways that pro-
vide students with the experience of grasping, controlling, and conceptualizing the
relevant structure of a mathematical object, concept, or process (cf. Radford, 2009;
Roth & Thom, 2009). “The golden rule of didactics,” Komenskii (1955) reminds us,
involves

everything that can be perceived by the senses, namely: the visible – for perception by
vision, the audible – for hearing, odors – for smell, that which can be tasted – for taste, and
that which can be touched – for touch. If any objects can be perceived by several senses at
once, let them be immediately sensed in different ways.

(pp. 302–303; quoted in Leushina, 1991, pp. 163–164)

For example, in Fig. 5.5, Dexter (Grade 2, 7 years old) used his right hand to
describe and ostensively indicate the structural parts of his emergent generalization,
which illustrates representational (versus everyday) gesture (cf. Goldin-Meadow,
Alibali, & Church, 1993). In the case of blind learners, for example, the use of
multiple sensory modalities assists them in developing visuospatial ability and rep-
resentations. In the case of students with learning disabilities, the auditory appears to
play an important role in their mathematical learning. In the case of sighted learners,
when they use their hands to either draw a figure or a diagram or play with alge-
blocks and other physical manipulatives, the interanimated experience allows them
to develop an appropriate cognitive perception of the relevant conceptual elements
at play.

The referential phase in Fig. 2.18 applies to mathematical objects, concepts, and
processes whose representations are either concrete (e.g., fractions) or abstract (e.g.,
irrational numbers). Visual-relevant actions in this phase help individual learners
develop a systematic way of conceptualizing or hypostasizing a target object, con-
cept, or process. In most cases such a process begins rather idiosyncratically (i.e.,
imaginals) that then undergoes classroom reconstruction (in formational or trans-
formational contexts) reflective of shared cultural views and practices. With more
experience and learning, the nonnatural process gives the appearance of everyday-
ness in which all visual images transition from personal to classroom to cultural.

In the referential phase, students are initially provided with an empirical experi-
ence of either a general nature or some particular occurrences relative to an intended
mathematical knowledge. This learning opportunity, interanimated in intent, allows
them to observe and establish conceptual interpretations. By either working through
the details in the case of a general phenomenon (i.e., “ascending to the concrete”
in Davydov’s sense; Chapter 3) or working with particular cases or situations in a
visual format leading to a target generalization of a mathematical object, concept,
or process, they begin to develop a sense of the representational scope of the visual
image or model despite limitations in representational power.

In other words, the image or model is the metonym of the target knowledge.
That is, while the image or model conveys a particular case or a domain set, it

our “diverted or divided consciousness invited by communication technology” (p. 227) and cyber-
driven culture.
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exemplifies both the case or set itself and the relevant general phenomenon. Having
representational scope of the model is a necessary action in transitioning to the
operative phase. Further, underlying representational scope is a phenomenon that I
refer to as visual presence, a term inspired from Noë’s (2004) notion of perceptual
presence. Noë underscores a most subtle human perceptual phenomenon called
presence that predisposes us to sense the totality of features of an object. For
example, when we see a face of a rectangular polyhedron, we actually have a
sense of the whole polyhedron despite not having access to the partially hidden or
occluded parts (which, as I have observed with my Grade 2 students, is a developing
visual skill especially when the polyhedron is drawn on paper with the missing
parts). In my Algebra 1 class, the students’ success, say, in factoring a difference of
two squares in Fig. 2.1 or in establishing an algebraic generalization for the pattern
in Fig. 2.6a could be explained in part by the visual presence they have about, and
impose on, those objects.

Related to the notion of visual presence is Veldeman’s (2008) phenomenolog-
ical concept of seeing-in. He notes that when we see objects in pictures, we are
“simultaneously aware of the picture surface and the depicted subject” (p. 493). By
picture surface, it means either the design features that make an image possible or
the design features “in virtue of which it represents” (p. 493). In the case of math-
ematical objects, concepts, and processes, when students see in a particular image
or model a depiction of a more general or abstract phenomenon, it means they are
consciously attending to particular features of the image or model in terms of how
they convey an interpretive general or abstract relationship or structure.

Visual thinking also applies to situations with an emergent structure. For exam-
ple, my Algebra 1 students made sense of simplifying rational algebraic expressions
only after having visualized the process in the context of an empty fraction strip
(Figs. 6.11a, b and 6.12), which helped them develop a structure in thinking about
the different operations. The empty strip as conveying the unit in any rational
expression exercise provided a powerful visual explanation that allowed them to
conceptually organize and think about an effective way to model the operations.
Hence, visual representations at the referential phase are not necessarily derived
from observations drawn from an external context. They could also be emergent
depending on the nature of the target regularity or structure, as “cognitive resources
for interpretation and modeling” with an epistemic function “that could provide
pictorial evidence” (Gooding, 2006, p. 60) leading to a more general and abstract
phenomena.

5 A Circling Ascent to the Operative

There are at least three interconnected interpretations of the concentric circles in
Fig. 2.18. First, the concentric circles convey increasing conceptualizing actions
that take place in progressive modeling, from personal to classroom to cultural and
then again. With more experience and learning, an interpreted structure emerges
leading to formal mathematical knowledge. The circles also indirectly assert the



5 A Circling Ascent to the Operative 281

necessity of meaningful repetition. Here I use the term repetition in the following
context described by Bier in relation to her account of the material meaning of
algorithm in the history of geometry of ornament in Islamic art:

Geometry [in ornament making] is not entirely present at the outset, but rather it becomes
emergent through process. . . . (W)hen an artist employs a particular technology to repeat
a specific design, no matter how complex the design unit that is to be repeated, it is the
process of repetition that carries the artisan from the initial step to the completion of a
pattern. Through the process of repetition, geometry emerges with the relationship of one
shape to another. The process is not necessarily deliberative (although it may be), but rather
it relies upon the interaction of a technology . . . and a medium.

(Bier, 2008, p. 492)

For Bier, Islamic artisans’ theoretical knowledge of patterns emerged as a conse-
quence of an “empirical understanding of the nature of pattern making” (p. 498),
which she considers to be a precursor to our current mathematical understanding
of algorithms. Algorithms in Islamic art, Bier (2008) notes, have been drawn from
artists’ analysis of “designs [that were] repeated to form patterns” (p. 508), a practi-
cal motive that differs from the nonreferential context in which algorithms in school
mathematics are oftentimes conveyed to students. Her claim reminds us of Sherry’s
(2009) claim about treating diagrams as instances of mathematical concepts. That is,
the more we learn about the diagrams we manipulate, the more we learn processes
relevant to making inferences and rules that are central to mathematical thinking
and work. Hence, in light of both views of Sherry and Bier, the concentric circles in
Fig. 2.18 represent increasing theoretical/mathematical manipulations and processes
with the relevant visual tools. Further, the growing circles symbolize a conceptual
progression from the referential to formal thought.

Second, the concentric circles can be seen as modeling the process of grad-
ual abstracting or generalizing. Cognitive mathematical activity is seen in terms
of a sequence of (hypostasized) abstractions or generalizations that occurs over
the course of acquiring mathematical knowledge about an object, a concept, or
a process. We point out that each circle conveys some conceptual content, which
means to say that the relevant concepts are (hypostasized) abstractions as well. For
example, when my Algebra 1 students transitioned from the iconic to the symbolic
phase in solving a quadratic equation (Fig. 3.12b), the iconic content at the refer-
ential phase already conveys an abstract conceptualization of the relevant process.
Different types of examples that exemplify complexity in variable assignment (e.g.,
the leading coefficient is not equal to 1; fractional coefficients) signal the neces-
sity of growth in the circling process up to the point when the quadratic formula
emerges at the operative phase that can handle all cases. Thus, among my Algebra
1 students, their mathematical understanding of the process of solving a quadratic
equation could be described in terms of the activity of building the operative through
a sequence of abstracting processes (cf. Brook, 1997, p. 80).

Third, the concentric circles symbolize a series of conceptual restructuring
(Stern & Mevarech, 1996) that occurs among students’ mathematical thinking as
they move from the referential to the operative phase. The restructuring involves
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either realigning new knowledge to fit into the old or “acquiring a new ability”
that is “able to do something that could not be done before” (i.e., an effect of
instrumentalization in instrumental genetic terms; Brook, 1997, p. 83).

6 The Operative Content Phase

There are at least three ways to describe the operative phase.
First, while the operative phase indicates cognitive activity that focuses on opera-

tive content, it could also signify finality or closure in a gradual abstracting activity.6

Second, while the operative phase refers to mathematical content in which the
attributes and properties are either generalizations or (hypostasized) abstractions
drawn from particular or general instances, it can also be perceived as having, in
Tiragallo’s (2007) words, the “trace of expert presence” (p. 215). Generalizations
involve interpretively establishing commonalities from known cases that are
then applied to the projected instances corresponding to the unknown cases.
(Hypostasized) Abstractions involve further generalizations that target essential
characteristics or qualities independent of any particular case.

Third, the operative phase does not imply the absence of visual thinking. It could
mean either seeing the visual in the symbolic or engaging in mathematical ways of
seeing that goes beyond everyday ways of seeing.

Also, the operative phase could refer to any of the following situations in
operative content whose components may or may not be grounded in concrete
contexts:

• Context-derived: A generalization or (hypostasized) abstraction that represents
the totality or essence of its original source data through processes of leaving out
or setting apart and summarizing.

• Context-independent: A generalization or abstraction that has no association
with any concrete or physical source data, but is constructed in some other
sign-mediated cognitive activity.

• Meta-context: A generalization or abstraction in context through processes of
comparing and/or extending particular context.

In all three situations above, learners work with rules and prototypes and exemplars.
They use an operative content either to deepen their understanding of the referential
content (in the case of context-derived) or as a means to explore other content.

What role does visualizing accomplish in the operative phase? It can support
the underlying general or abstract rule or process that is central to the relevant
operative content. For example, the account of visual templates that my Algebra
1 class manifested in patterning activity in Chapter 5 summarizes the content of my

6The terms generalization, abstraction, and gradual abstracting are conceptually related to the
three types of abstracting activity offered by Brook (1997), that is, abstracting out, abstracting
away, and building abstraction, respectively.
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students’ visuoalphanumeric experiences with patterns. In the context of free pattern
construction activity, in particular, they articulated various visual-driven processes
relevant to pattern generalization (multiplicative thinking, grouping via the concept
of a unit, etc.) that mattered significantly beyond their empirical experiences with
particular examples.

Visualizing can also support understanding when students make vertical tran-
sitions from one operative content level to the next. For example, my Algebra 1
students’ visual experiences with everyday fractions (as parts of wholes) and rules
using fraction strips gave them an operative context that allowed them to make sense
of rational algebraic expressions that are at a higher level of abstraction. Hence,
when they simplified rational expressions, the manner in which they made sense
of the relevant rules was based on their operative understanding of rules governing
rational numbers (Figs. 6.11a–6.13). However, vertical transitions are sometimes
difficult in cases when there is a cut between two content levels. A classic example
is drawn from Filloy and Rojano’s (1989) study in which the students’ experiences
were fraught with difficulties as they were transitioning from the simple case of
Ax + B = C to the more complex case Ax + B = Cx + D. As I have discussed in
Chapter 3, my Algebra 1 students used their combined knowledge of algeblocks and
prior knowledge in developing a visuoalphanumeric method that enabled them to
transform the latter equation into some equivalent form corresponding to the simpler
equation.

7 The Pleasure of Visual Forms in Mathematical Knowing

It is an established empirical fact (drawn from qualitative, quantitative, and, more
recently, neuroscientific data) that scientists, mathematicians, some professionals in
various disciplines, and different age-level groups of individuals in imaginal, for-
mational, and transformational contexts employ visual thinking in various aspects
of their cognitive activity. Apparently, there is pleasure that comes with visualiz-
ing, a sensuous semiotic mode of knowing that today still remains underutilized
and underemphasized in most institutional practices that value formal knowledge
in alphanumeric form, which is meant to signify resistance to ambiguous meaning.
By sensuous semiotic mode of knowing, we mean it in the same sense that Peirce
(1949) referred to abduction (or hypothesis or hypothetical inferences) as that which
“produces the sensuous element of thought,” unlike induction, which provides the
“habitual element,” and deduction, “the volitional element of thought” (p. 152).
Like any construction that generates hypotheses, visualizing images, in particu-
lar, forming visual representations, relative to mathematical knowledge construction
does carry with it “a peculiar sensation,” “emotion,” or “complicated feeling . . . of
greater intensity” (Peirce, 1949, pp. 151–152).7

7Radford’s (2009) notion of sensuous cognition encompasses the emotional dimension that Peirce
has noted about the term sensuous relative to abductive action. As an “alternative approach to
classical mental [and rational] views of cognition,” Radford characterizes sensuous modes of think-
ing in mathematics in “multimodal material” terms, which involve “a sophisticated coordination”
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Peirce’s point above concerning the sensuous element of thought reminds me
of Wise’s (2006) account of Maxwell, famous Scottish mathematician and theo-
retical physicist, who, in his 1870 address to the mathematicians and physicists of
the British Association for the Advancement of Science, shared how his colleagues
“felt” about “the results” of their “scientific inquiry” in the following way:

They learn at what a rate the planets rush through space, and they experience a delightful
feeling of exhilaration. They calculate the forces with which the heavenly bodies pull at one
another, and they feel their own muscles straining with the effort. To such men momentum,
energy, mass are not mere abstract expressions of the results of scientific inquiry. They are
words of power, which stir their souls like the memories of childhood.

(Maxwell, 1965, pp. 218, 220; quoted in Wise, 2006, p. 82)

Wise’s (2006) view of the “power of embodied mathematics,” which fuses intellec-
tual knowledge and its “material and sensual” (p. 81) dimensions together, is one
characteristic of this “momentous historical shift toward visualization” (Stafford
quoted in Wise, 2006, p. 82).

We provisionally close this book with the significance of “pleasure” relative to
visual thinking in mathematics. We articulate three senses of pleasure based on how
we perceive it in this book. First, pleasure can be seen as a marked indication that
one has achieved expert knowledge. Tiragallo describes the women in Sardinia who
associate their expert weaving practices with pleasure in the following manner:

(T)he doing . . . is connected to this pleasure in proceeding. A pleasure that is recognized is
a distinctive feature of the art of weaving, one of the signs of the successful and full entry
of the subject into that expert community.

(Tiragallo, 2007, p. 210)

In both my Algebra 1 and Grade 2 classes, the students’ expert knowledge of math-
ematical content has come to mean the ability to construct and justify mathematical
meaning by comfortably oscillating between individual and social ways of seeing.
Further, it is true that the act of interpreting with a visual form “lends it sensuously to
concrete instances”; however, it is not, to borrow Davey’s (2005) words, “conceived
as a solitary monologue on private pleasure but, rather, as an integral part of a shared
historical discourse concerning the realization of meaning” (p. 136). Like Tiragallo’s
(2007) weavers, many of my students who consistently employed visuoalphanu-
meric representations expertly negotiated their personal meanings with institutional

of speech and symbols, gestures, body, and actions performed on cultural tools (p. 111) in order
to deepen our understanding of how such “ephemeral symptoms [do not merely] announc(e) the
imminent arrival of abstract thinking, but genuine constituents of it” (p. 123). A good example
of this sensuous cognitive action to pattern generalization is shown in Fig. 5.5. Second grader
Dexter explained the structure of his generalization by pointing out the necessary parts using his
right hand. In this book, I addressed and emphasized various aspects of what I might classify as
visual rational cognitive action in the context of sociocultural learning despite the appearance of
similarities in the manner Radford (2009) developed his sensuous cognitive perspective. Both per-
spectives are complementary, of course. Finally, I note Thagard’s (2010) initial exploration of what
he calls embodied abduction that appears to share many of the same features of sensuous cog-
nition. Embodied abduction involves the generation of explanatory hypotheses by a convolutary
conceptual process that combines information drawn from two or more modality sources.
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practices. Suffice it to say, those student-generated imaginals and visual-images-
in-the-wild that are not effectively brought into a relationship with institutional
knowledge in a lifeworld suffer limited generalities and tend to be unproductive.
What is desirable, however, involves reconciling subjective and institutional forms
of expression through situations that enable all learners

to bring into language that which is held within an image, not to the end of surpassing the
visual but with the aim of enabling to see more of what has yet to be seen.

(Davey, 2005, p. 136)

For example, I am reminded of my Algebra 1 students’ experiences in relation
to the institutional practice of factoring simple second- and third-degree polyno-
mial expressions, which they consistently and interpretively associated with finding
dimensions of rectangles and solids due to their individual visual experiences with
algeblocks. Another example is drawn from my Grade 2 class. Figure 3.11a–c
illustrates powerful transitions in the students’ developing understanding of sub-
tracting with regrouping from the visual to the numeric. Suffice it to say, institutional
mathematical knowledge represents valued knowledge that oftentimes appear in
“linguistic” or symbolic modes of signification. The pleasure dimension occurs
when students are able to link and see the visual in the symbolic.

Second, there is pleasure when progressive schematization is achieved in a
conceptually smooth manner. Gooding’s (2006) interpretive account of the many
important scientific discoveries of Faraday, English chemist and physicist who dis-
covered benzene and contributed significantly to the study of electromagnetism,
illustrates the central and productive role of visual reasoning and thinking in Faraday
that led him to his theories in linguistic form (see also Miller, 1997 and Nersessian,
1994). Gooding’s point below nicely summarizes the encompassing nature of visual
representations in relation to discovery and rational thought:

(W)hile successful science does require a stable linguistic formulation, creative research
cannot be conducted solely with well-formed linguistic representations. There are non-
visual ways of forging an isomorphism of words, images or symbols to what they denote, but
images are particularly conducive to the essential, dialectical movement between the cre-
ative stages of discovery and the deliberative, rational stages in which rules and evaluative
criteria are introduced to fix meanings and turn images from interpretations into evidence.

(Gooding, 2006, p. 60)

Gooding captures an essential characteristic of progressive schematization in math-
ematical thinking whereby visual forms (mental images, concrete models) assist in
the transition from the creative stage of discovery, which involves interpretations,
to the rational stage of rule formation, which involves evidence and explana-
tion. Certainly, there are didactical challenges in cases when mathematical objects,
concepts, or processes appear to have no corresponding visual representations,
including those mathematical situations that Poincaré, French mathematician, cat-
egorized under sensible intuitions (i.e., “something else than pure logic” and “not
necessarily founded on the evidence of the senses” (Miller, 1997, p. 56)).
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Third, pleasure can signify “control, agency, and meaningfulness . . . [and] create
deep learning” (Gee, 2005, p. 4). Gee’s (2005) reflections on pleasure and learn-
ing in video games provide an appropriate closure in this book on visualization
in/and mathematics learning. Video games consist of story elements with underly-
ing abstract systems of rules about how objects are to be manipulated, what moves
should and should not be performed, and how objects and movements should be
interpreted to produce winning strategies. The initial stage in a video game activ-
ity involves understanding the story element and appropriately assigning meanings
to the objects, movements, and other relevant features. While any video game is
certainly constrained by the intent of its designer, the foregoing description shares
fundamental similarities with mathematical activity. Gee further points out that the
pleasure one gains in playing video games is rooted in the human predisposition for
pattern recognition, including the desire

to solve problems by finding patterns inside a safe world in which there is a clear and
comforting underlying order. We see the order (simplicity, pattern) clearly and we safely
play among the surprising complexity the game generates always knowing that simplicity
and order is there.

(Gee, 2005, p. 15)

Also, the story elements in video games exist not for the mere purpose of provid-
ing a context as it is more about making the process of playing more “profoundly
meaningful” (Gee, 2005, p. 20) to the gamer. Gee writes:

Humans find story elements profoundly meaningful and are at loss when they cannot see
the world in terms of story elements. We try to interpret everything that happens as if it
were part of some story, even if we don’t know the whole story. We are not just avid pattern
recognizers, we human prefer story-like patterns . . .. When something happens and we can
find no cause or explanation, we are at a loss and deeply unsatisfied.

(Gee, 2005, pp. 20–21)

Thus, one derives pleasure in a video game activity when he or she is able to grasp
and coordinate both the story elements and the underlying pattern structure. Once
the story is understood, the relevant constructed patterns of objects and movements
are easily and more meaningfully acquired through an evolving process of inter-
acting with the game. The same type of pleasure is what is desired in the case of
visualizing activity in school mathematics.
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Representational versus diagrammatic view of
diagrams, 232

Representational effect of diagrams, 226
Representational power, 106, 127, 222, 279
Representation in Gooding’s terms, 52
Representation in Piaget’s terms, 40
Representation in Vergnaud’s terms, 40, 272
Re-representation issue in diagrams, 212
Rotman’s representational spectrum, 205

S
Secondary forms of epistemic seeing, 72
Seeing-in, 272, 280
Seeing as intentional, 109
Semiotics, 7, 9–10, 16, 25, 71, 84, 95, 104,

106–108, 120–134, 146, 199, 241, 271,
274, 283

Sensible intuitions, 285
Sensory modalities–auditory, haptic,

kinesthetic, olfactory, 53
Sensory versus rational cognition, 87
Sensory substitution, 51, 258–260, 263
Sequential versus simultaneous perception of

images, 30
Sign activity, 22
Sign–object–interpretant, 60
Sign or signs, 22, 32, 40, 44, 50, 54, 57–58, 60,

71–72, 84, 95, 99, 104, 108–114, 119,
121–122, 125, 138, 143, 175, 199–200,
205, 241–242, 270, 274, 278, 284

Situational discords in pattern generalization,
185, 187

Social-sign mediated activity according to
Radford, 60, 95

Social-sign mediated context, 95
Sociocultural influences in the development

of mathematical ways of perceiving
objects and images, 247

Sonification, 267
Spontaneous use of external inscriptions, 65,

206
Stacking cups pattern, 102
Stage-driven grouping, 180–181
Structural awareness, 34–35, 54, 58, 65, 79,

114, 120, 149, 209
Structurally additive generalization of a

pattern, 163
Structurally multiplicative generalization of a

pattern, 164
Structurally versus superficially iconic or

icons, 172
Structural resemblance, 109
Structural similarities or relational structure,

44, 47

Structural versus superficial iconicity, 154
Structural unit in pattern generalization, 142
Structured visual representations, 13, 15, 45,

54, 63, 145, 193
Symbol

attachment, 112, 130
is symbolic, 99
realism, 112, 130

Symbolic, 3, 5–6, 8, 10–16, 19, 25, 31, 34–35,
42, 45–47, 49, 54, 57, 59, 61, 66, 79,
83–84, 86, 95–97, 99, 102, 106–107,
111–114, 117, 121–124, 126–128, 130,
135–136, 138–139, 142–143, 145, 147,
171–172, 180, 196, 199–200, 205, 212,
225, 233–234, 237, 241–242, 244, 270,
272–273, 278, 281–282, 285

Symbols in iconic model, 108
Symbols in indexical mode, 109
Symbols in symbolic mode, 109

T
Tactual images, 265
Tentative generalization, 155–157
Theoretical thinking and visualization in

mathematics, 25, 36, 281
Theory-laden and socialized nature of scientific

observation and practices, 53, 243
Tic-tac-toe diagram involving factoring

quadratic trinomials, 207
Transformational visual activity or scenario

visualization, 68–69, 94
Transformation Application of the TI-84, 69,

232
Transformation-based generalizations, 172
Two-triangular model of content in school

mathematics, 32
Types of algebraic generalizations involving

figural patterns, 171, 173–174

U
Unit in the context of counting sets of objects,

162
Unitizing, 217–220

V
Visual activity exploring π , 85
Visual activity exploring the Golden Rectangle,

85
Visual activity involving

√
2, 33

Visual addition of whole numbers, 39
Visual aids according to Leushina, 14
Visual/alphanumeric models for solving

quadratic equations, 82
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Visual/alphanumeric processes for solving
linear equations, 103

Visual approaches to percent problems using a
bar diagram in Netherlands, 38

Visual approaches to percent problems using a
tape diagram in Japan, 38

Visual approaches to percent problems using
unitary diagrams in Singapore, 38

Visual approaches to subtracting whole
numbers with regrouping, 209

Visual approach to multiplication in Singapore
elementary texts, 80

Visual attentional mechanisms, 182–183
Visual demonstration of the quadratic formula,

82, 273
Visual discovery activity involving the

Pythagorean Theorem, 93
Visual explanations of the Pythagorean

Theorem, 91, 209
Visual hierarchy of quadrilaterals, 233
Visual illustration of the sum of the first four

terms of
∞∑

n = 1

1
n , 34

Visual images, 2, 7, 9, 13, 15–17, 21, 25, 35,
40, 43, 45, 51, 54, 66, 68–69, 72, 87,
121, 145, 206, 257, 259–260, 271, 276,
279, 285

Visualization according to Presmeg, 7, 9
Visualization according to Zimmermann and

Cunningham, 2
Visualization defined in this book, 24, 35–40
Visualization as a progressive phenomenon, 10
Visualization in scientific discourse, 52
Visualizing as embodied, 15
Visualizing the sum of powers of 1/4, 66

Visually-salient rules relative to alphanumeric
objects, 81

Visual model involving least common
multiples and greatest common factors,
113

Visual number line model of absolute value,
202

Visual paperfolding activity involving
exponents, 63

Visual presence, 272, 278–280
Visual principle of acquisition, 44, 95
Visual principle of individuation, 51, 94–95
Visual principle of reasoning, 47, 95
Visual representational roots of mathematical

cognitive activity, 60
Visual-symbolic proof concerning slopes of

two perpendicular lines, 16
Visual templates, 146, 171–193, 282
Visual unitary diagrams for solving percent

increase and percent decrease problems,
38

Visual unitizing approach to simplifying
and operating on rational algebraic
expressions, 217–218

Visual/verbal opposition, 6, 271
Visual–verbal representation of Kaufmann, 45
Visuoalphanumeric symbols, 45–46, 108, 114,

116, 120–122, 131–143, 145–197, 237
Visuospatial processing, 29–30

W
Well-defined figural patterns, 154

Z
Zebian’s ecological approach to numeric

cognition, 250
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